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A B S T R A C T

Cosmology presents the best hope of measuring the sum of neutrino masses in the future.
The Cosmic Microwave Background (CMB) has already been a treasure trove of information;
from Planck, BICEP/KECK, and their predecessors; and will continue to provide ever more
precise information with upcoming or proposed CMB experiments, such as LiteBird, CMB-S4,
CORE and PICO. These missions will have great synergy with other branches of cosmology. In
particular, massive neutrinos leave a distinct imprint on the matter distribution of the universe,
which upcoming large-scale structure experiments such as Euclid and the Square Kilometre
Array will observe with unprecedented levels of precision. The uncertainty in modelling of
non-linear structure formation is often neglected in other forecasts, or scales corresponding to
this regime are entirely removed. In this work, we take into account that our understanding
of non-linear modelling is imperfect. We show that a neutrino mass sum measurement is all
but guaranteed from cosmology in the next decade and that this statement is robust to choice
of cosmological model or modelling of non-linear effects.
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P U B L I C AT I O N S

1. CORE cosmological parameters: Di Valentino, Brinckmann, Gerbino, Poulin et al. 2016 [50]
In the first paper, we studied a number of different possible instrumental settings for the
CORE-M5 CMB satellite proposal to ESA for a myriad of common extended cosmologi-
cal models, e.g. varying neutrino mass sum, alone and in combination with varying effec-
tive relativistic degrees of freedom, curvature, primordial helium fraction, and equation
of state of dark energy. Additionally, we included future large-scale structure surveys
in the analysis: BAO with DESI and galaxy clustering with Euclid, and compared to a
mock Planck likelihood intended to mimic the sensitivity of the full Planck mission.

2. Archidiacono, Brinckmann, Lesgourgues, & Poulin 2016 [157]
For the second paper, we conducted a detailed study of the physical effects involved
in breaking degeneracies between the sum of neutrino masses and other cosmological
parameters, explaining the great improvement in sensitivity for the neutrino mass sum
when considering complementary probes. For this study, we considered the CORE-M5

CMB satellite proposal, BAO with DESI, as well as galaxy clustering and cosmic shear
with Euclid.

3. Sprenger, Archidiacono, Brinckmann, Clesse, & Lesgourgues 2018 [102]
In the third paper, we improve on the Euclid likelihoods employed in the first two papers
and develop galaxy clustering, cosmic shear, and 21cm intensity mapping likelihoods
for the Square Kilometre Array (SKA). We consider a few extended models relevant to
the sensitivity of future surveys to the sum of neutrino masses, varying neutrino mass
sum alone and in combination with varying number of relativistic degrees of freedom,
equation of state of dark energy, and dynamical dark energy, for many combinations of
the Euclid and SKA likelihoods with the full-mission Planck mock likelihood.

4. Vagnozzi, Brinckmann, Archidiacono, Freese, Gerbino, Lesgourgues, & Sprenger 2018 [1]
With the fourth paper, we clarify a subtlety related to the galaxy or halo bias when
considering a cosmology with massive neutrinos and definitively demonstrate that the
bias must be correctly accounted for when considering future surveys such as Euclid.

5. Brinckmann, Hooper, Archidiacono, Lesgourgues, & Sprenger (in prep.)
In the fifth paper, we compile a reference paper for the sensitivity of future large-scale
structure surveys (Euclid, SKA, DESI) and CMB missions (full-mission mock Planck,
Litebird, CMB ground based stage 4, CORE, and PICO), and relevant combinations
thereof, to the neutrino mass sum, considering varying sum of neutrino masses alone
and in combination with varying equation of state of dark energy, dynamical dark en-
ergy, and number of relativstic degrees of freedom.

6. Brinckmann & Lesgourgues 2018 [175]
Finally, in the sixth paper, we review relevant concepts on the topic of statistical inference
and outline recent developments of the cosmological sampling package MontePython.
The results of papers 1, 3 and 5 would not have been feasible without the improvements
in computational efficiency outlined in this paper.
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1
I N T R O D U C T I O N

Chapter 1 is based on Vagnozzi, Brinckmann, Archidiacono, Freese, Gerbino & Lesgourgues [1]
and Brinckmann, Hooper, Archidiacono, Lesgourgues & Sprenger (in prep.)

During the last three decades, the increasingly accurate observations of the Cosmic Microwave
Background (CMB) anisotropies have promoted Cosmology to a precision science. Combined
with other probes such as Type-1a supernovae, the statistical distribution of large-scale struc-
ture (LSS), the weak gravitational lensing, and the Lyman-α forest, the Planck satellite has mea-
sured the standard cosmological parameters with an accuracy down to the percent level [2].
Until now, however, the nature of Dark Energy and Dark Matter, accounting for about 95% of
the density of the Universe, still remains a deep mystery.

In the next decade, galaxy surveys like Euclid [3, 4] and the Square Kilometre Array
(SKA) [5, 6] will probe the growth of large-scale structure with an unprecedented precision,
up to redshifts z ∼ 3. Compared to the CMB, which is a snapshot of the early Universe, galaxy
surveys will achieve a tomography of the Universe over its last twelve billion years. In addi-
tion, the SKA will also achieve a precise map of neutral hydrogen through 21-cm intensity
mapping; a tracer of the large-scale structure distribution; back to the reionization era and the
cosmic dawn [7], up to redshift z ∼ 20. Euclid and the SKA will detect billions of galaxies,
over a large fraction of the sky, and will set unprecedented constraints on the various cos-
mological scenarios, through galaxy clustering and weak gravitational lensing. Three major
challenges of Euclid and SKA are to reveal the properties of Dark Energy and Dark Matter,
and to measure the cosmological neutrino mass.

Neutrinos are one of the most abundant particle species in the Universe, yet remain among
the least understood. While the Standard Model of Particle Physics treats neutrinos as funda-
mental massless particles, neutrino oscillation experiments have shown that at least two out
of the three neutrino mass eigenstates are massive. Therefore, massive neutrinos represent the
only direct evidence for physics beyond the Standard Model. In fact, neutrino oscillation ex-
periments have measured two mass-squared splittings: the solar splitting ∆m2

21 ≡ m2
2 −m2

1 '
7.6× 10−5 eV2 and the atmospheric splitting |∆m2

31| ≡ |m2
3−m2

1| ' 2.5× 10−3 eV2 [8–12], where
m1, m2, m3 denote the masses of the three mass eigenstates. The uncertainty in the sign of the
atmospheric splitting leaves two possibilities open for the neutrino mass hierarchy: a normal
hierarchy (NH) where ∆m2

31 > 0 and m1 < m2 < m3, and an inverted hierarchy (IH) where
∆m2

31 < 0 and m3 < m1 < m2.
Cosmological data currently provide the most stringent upper limits on the sum of the

neutrino masses, Mν ≡ m1 + m2 + m3, suggesting Mν . 0.15 eV at 95% confidence level
(C.L.) [2, 11, 13–32], with potentially interesting implications concerning the determination
of the mass hierarchy [20, 33–43]. These bounds are somewhat model-dependent and rely on
assuming an underlying background standard ΛCDM cosmological model. The upper limits
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introduction 2

on Mν typically degrade when considering extensions to this baseline model (e.g. when the
dark energy equation of state is allowed to vary), see e.g. [20, 24, 25, 31, 32, 44–49] for recent
investigations.

Moving from these upper limits to a robust detection of Mν is a key goal of upcoming
cosmological surveys. Cosmological observables are known to be very sensitive to neutrino
mass, with the potential to detect the neutrino mass scales well before laboratory experiments.
As mentioned, this conclusion is often tempered by the fact that cosmological constraints de-
pend on underlying assumptions on the cosmological model, since all constraints are derived
from global fits to the observed data set. Fortunately, different ingredients in the cosmological
model usually have distinct effects, and the cosmological data sets result in thousands of in-
dependent data points, such that in many cases parameter degeneracies can be broken. Still,
constraints on parameters like the total neutrino mass can weaken significantly when more
complicated cosmological models with extra free parameters are considered. Over the next
decades, we expect increasingly precise data on the power spectrum of CMB anisotropies and
large-scale structure. This will allow us to get not just stronger bounds on the total neutrino
mass, but also more robust and model-independent detection.

Therefore, a very interesting question to address is: which combination of datasets do we
need in order to detect the total neutrino mass at a given confidence level, not just assuming a
minimal underlying cosmological model, but also extended models? And at which point will
we be able to resolve parameter degeneracies?

This question can be addressed by performing sensitivity forecasts for parameter inference
from future cosmological data. The literature already presents many such forecasts and one
may wonder why we are doing new forecasts. The reason is that, these forecasts are usually
based on many different methods (e.g. Fisher matrix approaches with different prescriptions
or different Markov Chain Monte Carlo methods), assumptions related to future observations
(list of observables included for a given experiment, assumed instrumental sensitivities, list
of systematic errors taken into account and marginalized over) and assumptions related to
cosmology (list of parameters being varied). To give examples, when doing forecasts for a
given CMB experiment, one may choose whether to include information from CMB lensing
extraction; for a given redshift survey, one may use different schemes to remove information
from non-linear scales, model bias and redshift space distortions, etc.

We would like to compare the ability of different datasets to resolve a given parameter
degeneracy between the total neutrino mass and another cosmological parameter, and this
can be difficult since we usually have to refer to different published forecasts, where many of
the assumptions differ. What is important in this thesis is not that our assumptions are the
best (although we made an effort to implement as realistic assumptions as possible in our
pipeline), but that they are the same across the variety of datasets and cosmological models
that we consider. As such, we hope to provide a robust frame for comparing the merits of
different combinations of future experiments as far as the neutrino mass measurement is
concerned.

The goals of this thesis are to improve on current analysis methods, both in terms of mod-
elling and methodology, to better understand the physical effects involved in neutrino cosmol-
ogy, and finally the culmination of this work is to run a three-dimensional grid of forecasts,
with homogeneous methodology and assumptions. The three axes of the grid are: underlying
cosmological models, with more or fewer free parameters; CMB experiments (or combination
of them when relevant); Large Scale Structure surveys or combination of them. We perform
our forecasts with an MCMC exploration of the parameter space with a mock likelihood
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describing future data and instrumental sensitivities. Using modern tools this method is rea-
sonably fast and considerably more robust than Fisher matrix forecasts. Still, running a three-
dimensional grid of MCMC parameter inference run is a significant computational effort, and
we must carefully choose the number of cases that we want to consider for each axis of the grid.
Along the way, we outline fundamental aspects of the underlying theory (chapters 2 and 3),
document improvements in modelling (chapters 3 and 4) and methodology (chapter 6), and
make a study of the physical effects in play in neutrino cosmology (chapter 5), before finally
presenting the results of our forecasts (chapters 7 to 9).



2
C O S M I C M I C R O WAV E B A C K G R O U N D

Sections 2.1, 2.4 and 2.5 are based on Di Valentino, Brinckmann, Gerbino, Poulin et al. [50]
and sections 2.4 and 2.5 also on Brinckmann, Hooper, Archidiacono, Lesgourgues & Sprenger (in

prep.)

2.1 introduction

In the quarter century since their first firm detection by the COBE satellite [51], Cosmic Mi-
crowave Background (CMB) anisotropies have revolutionized the field of cosmology with an
enormous impact on several branches of astrophysics and particle physics. From observations
made by ground-based experiments such as TOCO [52], DASI [53] and ACBAR [54], balloon-
borne experiments like BOOMERanG [55, 56], MAXIMA [57] and Archeops [58], and satellite
experiments such as COBE, WMAP [59, 60] and, more recently, Planck [2, 61], a cosmological
"concordance" model has emerged, in which the need for new physics beyond the standard
model of particles is blatantly evident. The impressive experimental progress in detector sensi-
tivity and observational techniques, combined with the accuracy of linear perturbation theory,
have clearly identified the CMB as the "sweet spot" from which to accurately constrain cos-
mological parameters and fundamental physics. Such a fact calls for new and significantly
improved measurements of CMB anisotropies, to continue mining their scientific content.

dark matter . In particular, observations of the CMB angular power spectrum are not only
in impressive agreement with the expectations of the so-called ΛCDM model, based on cold
dark matter (CDM hereafter), inflation and a cosmological constant, but they now also con-
strain several parameters with exquisite precision. For example, the cold dark matter density
is now constrained to 1.25% accuracy using recent Planck measurements, naively yielding an
evidence for CDM at about ∼ 80 standard deviations (see [2]). Cosmology is indeed extremely
powerful in identifying CDM, since on cosmological scales the gravitational effect of CDM are
cleaner and can be precisely discriminated from those of standard baryonic matter. In this re-
spect, no other cosmological observable aside from the CMB could show, if considered alone,
the need for CDM to such a level of significance. Moreover, the cosmological signatures of
CDM rely mainly on gravity, while astrophysical searches of DM annihilating or decaying
into standard model particles depend on the strength of the interaction. Similarly, a possible
signal in underground laboratory experiments depends on the coupling between CDM parti-
cles and ordinary matter (nuclei and electrons). It is possible to construct CDM models that
could interact essentially just through gravity, and the current lack of detection of CDM in
underground and astrophysics experiments is leaving this possibility open. If this is the case,
structure formation on cosmological scales could result in the best observatory we have for

4



2.1 introduction 5

studying CDM properties, and a further improvement from future CMB measurements will
clearly play a crucial and complementary role.

baryons . CMB measurements also provide an extremely stringent constraint on standard
baryonic matter. The recent results from Planck constrain the baryonic content with a 0.7% ac-
curacy, nearly a factor 2 better than the present constraints derived from primordial deuterium
measurements [62], obtained assuming standard Big Bang Nucleosynthesis. In this respect, the
experimental uncertainties on nuclear rates like d(p, γ)3He that enter in BBN computations
are starting to be relevant for accurate estimates of the baryon content from measurements of
primordial nuclides. A combination of CMB and primordial deuterium measurements is start-
ing to produce independent bounds on these quantities (see e.g. [63, 64]). As a matter of fact,
a further improvement in the determination of the baryon density is mainly expected from
future CMB anisotropy measurements and could help not only in testing the BBN scenario
but also in providing independent constraints on nuclear physics.

light relics . The CMB is also a powerful probe of the density and properties of "light"
particles, i.e. particles with masses below ∼ 1 eV that become non-relativistic between recom-
bination (at redshift z ∼ 1100, when the primary CMB anisotropies are visible) and today.
Such particles may affect primary and secondary CMB anisotropies, as well as structure for-
mation. In particular, this can change the amplitude of gravitational lensing produced by the
intervening matter fluctuations [65] and leave clear signatures in the CMB power spectra. Neu-
trinos are the most natural candidate to leave such an imprint (see e.g. [66, 67]). From neutrino
oscillation experiments we indeed know that neutrinos are massive and that their total mass
summed over the three eigenstates should be larger than Mν > 60 meV in the case of a nor-
mal hierarchy and of Mν > 100 meV in the case of an inverted hierarchy (see e.g. [68–70] for
recent reviews of the current data). The most recent constraints from Planck measurements
(temperature, polarization and CMB lensing) bound the total mass to Mν < 140 meV [71] at
95% c.l. Clearly, an improvement of the constraint towards a sensitivity of σ(Mν) ∼ 30 meV
will provide a guaranteed discovery for the neutrino absolute mass scale and for the neutrino
mass hierarchy (see e.g. [33, 72–74]). Neutrinos are firmly established in the standard model
of particle physics and a non-detection of the neutrino mass would cast serious doubts on the
ΛCDM model, opening the window to new physics in the dark sector, such as, for instance,
interactions between neutrinos and new light particles [75].

Additionally, several extensions of the standard model of particle physics feature light relic
particles that could produce effects similar to massive neutrinos, and might be detected or
strongly constrained by future CMB measurements. Thermal light axions (see e.g. [14, 76, 77]),
for example, can produce very similar effects. Axions change the growth of structure forma-
tion after decoupling and increase the energy density in relativistic particles at early times1,
parametrized by the quantity Neff. Models of thermal axions will be difficult to accommodate
with a value of Neff < 3.25, and a CMB experiment with a sensitivity of ∆Neff = 0.04 could
significantly rule out or confirm their existence. Other possible candidates are light sterile
neutrinos and asymmetric dark matter (see e.g. [78–80] and [81]). More generally, a sensitiv-
ity to ∆Neff = 0.04 could rule out the presence of any thermally-decoupled Goldstone boson
that decoupled after the QCD phase transition (see e.g. [82]). The same sensitivity would also

1 The effective neutrino number Neff is normally defined at times such that all “light” particles (neutrinos, axions,
etc.) are still ultra relativistic.
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probe non-standard neutrino decoupling (see e.g. [83]) and the possibility of a low reheating
temperature of the order of O(MeV) [84].

In combination with galaxy clustering and type Ia luminosity distances, CMB measure-
ments from Planck have also provided the tightest constraints on the dark energy equation of
state w [2]. In particular, the current tension between the Planck value and the HST value of
the Hubble constant from Riess et al. 2016 [85] could be resolved by invoking an equation of
state w < −1 [86]. Planck alone is currently unable to constrain the equation of state w and
the Hubble constant H0 independently, due to a "geometrical degeneracy" between the two
parameters. An improved measurement of the CMB anisotropies could break this degeneracy,
produce two independent constraints on w and H0, and possibly resolve the current tension
on the value of the Hubble constant.

what’s next? In order to further improve current measurements and provide deeper in-
sight on neutrinos and the nature of dark matter and dark energy, a high precision CMB
mission is clearly an important goal. This does, however, raise two fundamental questions.
The first one is whether we really need to go to space and launch a new satellite, given that
several other ground-based and balloon-borne experiments are under discussion or already
under construction (see e.g. [87]). In fifteen years, it is certainly reasonable to assume that these
experiments will collect excellent data that could, in principle, constrain cosmological param-
eters to similar precision. However, there is a fundamental aspect to consider: ground-based
experiments have very limited frequency coverage and sample just a portion of the CMB sky.
Contaminations from unknown foregrounds can be extremely dangerous for ground-based ex-
periments, and can easily fool us. The claimed detection of a primordial Gravitational Waves
(GW) background from the BICEP2 experiment [88] was latter ruled out by Planck observa-
tions at high frequencies, showing that contaminations from thermal dust in our Galaxy are
far more severe than anticipated. This shows that unprecedented control of systematics and
a wide frequency coverage are required, both of which call for a space-based mission. In
fact, future ground-based and satellite experiments must be seen as complementary: while
ground-based experiments could provide a first hint for primordial GWs or neutrino masses,
a satellite experiment could monitor the frequency dependence of the corresponding signal
with the highest possible accuracy, and unambiguously confirm its primordial nature.

Moreover, most of the future galaxy and cosmic shear surveys will sample several extended
regions of the sky. Cross correlations with CMB data in the same sky area will offer a unique
opportunity to test for systematics and new physics. It is, therefore, clear that a full sky survey
from a satellite will offer much more complete, consistent and homogeneous information
than several ground based observations of sky patches. Moreover, an accurate full-sky map
of CMB polarisation on large angular scales can provide extremely strong constraints on the
reionization optical depth, breaking degeneracies with other parameters such as neutrino
masses.

The second fundamental question related to a new CMB satellite proposal arises from the
fact that after increasing sensitivity and frequency coverage, one has to deal with the intrinsic
limit of cosmic variance. At a certain point, no matter how much we increase the instrumental
sensitivity, we reach the cosmic variance limit and stop improving the precision of parameter
estimates. This opens the following issue: how close are we from cosmic variance with current
CMB data? The Planck satellite measured the temperature angular spectrum up to the limit
of cosmic variance in a wide range of angular scales; however, we are far from this limit when
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we consider polarization spectra. But how much can current constraints improve with a future
CMB satellite or ground based experiment?

This is one of the questions we want to address in this thesis, with a particular focus on
neutrino-related parameters (mass sum and effective number of relativistic species) and pa-
rameters correlated with these.

This chapter is structured as follows: in sections 2.2 and 2.3 we review cosmological pertur-
bation theory, with a particular focus on the CMB, and in sections 2.4 and 2.5 we describe the
experimental setup and analysis method.

2.2 relativistic perturbation theory

In order to understand the CMB we make use of cosmological perturbation theory. This thesis
is on the topic of neutrinos in cosmology and so, since neutrinos behave relativistically at early
times, we need to consider cosmological perturbation theory in full general relativity.

2.2.1 Metric perturbations

We start from a small perturbation δgµν of the Friedmann-Robertson-Walker (FRW) metric,

gµν = ḡµν + δgµν . (1)

The metric perturbations are then coupled to perturbations in the matter distribution via
the Einstein equations.

In the following, we will disregard curvature and only consider a flat FRW background
spacetime. As usual, latin indices indicate spatial vectors and tensors, which can be raised or
lowered with δij . In the presence of perturbations, the homogenous FRW metric, expressed in
terms of conformal time τ ,

ds2 = a2(τ)
[
dτ2 − δijdxidxj

]
, (2)

becomes

ds2 = a2(τ)
[
(1 + 2A)dτ2 − 2Bidxidτ − (δij + hij)dxidxj

]
, (3)

where the perturbations hij , A = h00 and Bi = h0i = hi0 are functions of both space and time.

2.2.2 Metric degrees of freedom

We would like to obtain quantities that are irreducable representations of the rotation group
and therefore perform a scalar-vector-tensor (SVT) decomposition of the perturbations hij and
Bi . We can decompose 3-vectors like Bi (the shift) into a longitudinal part and a transverse
part,

Bi = ∂iB + B̂i , (4)

where the irrotational (curl-free) longitudinal part is the gradiant of a scalar with shorthand
notation ∂iB = ∂B

∂xi and transverse part is the divergenceless (denoted by a hat) vector B̂i (i.e.
∂i B̂i = 0).
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Analogously, the rank-2 symmetric tensor hij can be decomposed into the trace of hij and a
traceless part sij (also called the shear or the strain),

hij = 2Cδij + 2sij , (5)

where the scalar C encodes the trace. The traceless part sij can be further decomposed into a
longitudinal, a transverse and a solenoidal part.

hij = 2Cδij + 2∂<i∂j>E + 2∂(iÊj) + 2Êij , (6)

where we have an anti-symmetrized part given by

∂<i∂j>E ≡
(

∂i∂j −
1
3

δij∇2
)

E (7)

and a symmetrized part defined as

∂(iÊj) ≡
1
2
(
∂iÊj + ∂jÊi

)
. (8)

Note that this time we have both a divergenceless vector ∂iÊi = 0 and a divergenceless tensor
Êi

i = 0 .
This leaves us with a total of ten degrees of freedom for the metric, four scalar, four vector,

and two tensor degrees of freedom:

Scalars

• A, i.e. the δg00 component of the perturbed metric (Eq. 3), corresponding to the general-
ized gravitational potential ψ , also called the lapse,

• the potential B from the irrotational part of δg0i (first term of Eq. 4),

• C, so the trace of δgij (first term of Eq. 6), which is the local distortion φ of the average
scale factor a(t) , also called the spatial curvature perturbation, acting as a kind of local
perturbation of the scale factor, giving (1− φ)a ,

• E from the traceless longitudinal part of δgij (second term of Eq. 6, i.e. Eq. 8), which is
the potential µ of the metric shear tensor.

The scalar modes can be seen as a generalization of the Newtonian potential and govern
growth of perturbations, CMB temperature anisotropies, non-linear evolution, etc..

Vectors

• Two from B̂i ,

• Two from Êi .

Vector modes account for Gravito-Magnetic effects generated by matter distributions with vor-
ticity. They correspond to perturbations that decay quickly with the expansion of the universe,
so vector modes are not important for cosmology, but only for some astrophysical GR topics,
such as black hole mergers.
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Tensors

• Two from Êij .

Tensor modes are predicted by inflation and account for primordial gravitational waves. How-
ever, they are tiny perturbations that are not important for understanding the CMB or e.g.
galaxy clustering. Although tensor modes can bring small corrections, they can, usually, be
safely neglected, unless we want to specifically study primordial gravitational waves, models
that predict them, or quantities that are degenerate with them in parameter space, which is
not the case in this thesis. For that reason, tensor modes will only be discussed briefly.

2.2.3 Gauge transformations

The perturbations in the previous section are defined with respect to a particular set of spatial
coordinates and time slicing. Performing a coordinate transformation can change the value of
the perturbation variables and introduce fictitious perturbations. For this reason, we are inter-
ested in quantities that do not change under a coordinate transformation. We will consider a
change of coordinates

Xµ → X̃µ ≡ Xµ + ξµ(τ, x) , where

ξ0 ≡ T , (9)

ξ i ≡ Li = ∂iL + L̂i ,

where the spatial translation Li is separated into a divergenceless vector, L̂i , and an irrotational
part with the scalar L, ∂iL .

The spacetime line element ds2 is invariant under coordinate transformation,

ds2 = gµν(X)dXµdXν = g̃αβ(X̃)dX̃αdX̃β , (10)

which we can use to determine how the metric transforms under this coordinate change.
Rewriting this expression, we get an expression relating the new metric g̃αβ(X̃) to the old one
gµν(X) ,

gµν(X) =
∂X̃α

∂Xµ

∂X̃β

∂Xν
g̃αβ(X̃) . (11)

We want to see what this metric transformation means for the perturbation quantities in the
perturbed metric (Eq. 3). To do this, we first consider the metric transformation in terms of
temporal and spatial indices and neglect higher order terms.

Starting with µ = ν = 0 we get

g00(X) =
∂X̃α

∂τ

∂X̃β

∂τ
g̃αβ(X̃) . (12)

We will neglect terms that are higher than first order in perturbation, leaving only α = β = 0 :

α = i, β = j⇒ g00(X) =
∂X̃i

∂τ

∂X̃ j

∂τ
g̃ij(X̃) , (13)

α = i, β = 0⇒ g00(X) =
∂X̃i

∂τ

∂τ̃

∂τ
g̃i0(X̃) , (14)

α = 0, β = 0⇒ g00(X) =

(
∂τ̃

∂τ

)2

g̃00(X̃) . (15)
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The partial derivatives ∂X̃i/j

∂τ are each proportional to ξ i and g̃i0(X̃) is proportional to B̃i , both
of which are first order in perturbation, making Eqs. 13 and 14 higher order in perturbation
and we are left with Eq. 15.

Next, let us consider µ = 0 and ν = i , so we have

g0i(X) =
∂X̃α

∂τ

∂X̃β

∂Xi g̃αβ(X̃) . (16)

Neglecting the higher order term (α = j, β = 0), where we have ∂τ̃
∂Xi = ∂iT times g̃j0 ∝ B̃j ,

which is second order in perturbation, we get contributions from the terms corresponding to
(α = 0, β = 0), (α = 0, β = j) and (α = l, β = j)

g0i(X) =
∂τ̃

∂τ

∂τ̃

∂Xi g̃00(X̃) +
∂τ̃

∂τ

∂X̃ j

∂Xi g̃0j(X̃) +
∂X̃l

∂τ

∂X̃ j

∂Xi g̃l j(X̃) . (17)

For µ = i and ν = j we have

gij(X) =
∂X̃α

∂Xi
∂X̃β

∂X j g̃αβ(X̃) . (18)

Neglecting higher order terms we are left with only (α = k, β = l), because for (α = 0, β = 0)
we have ∂τ̃

∂Xi
∂τ̃

∂X j = ∂iT∂jT and for (α = 0, β = l) we get g̃0l ∝ B̃l times ∂iT , both of which are
second order in perturbation. This means we have

gij(X) =
∂X̃k

∂Xi
∂X̃l

∂X j g̃kl(X̃) . (19)

To summarize, the metric transforms as

g00(X) =

(
∂τ̃

∂τ

)2

g̃00(X̃) , (20)

g0i(X) =
∂τ̃

∂τ

∂τ̃

∂Xi g̃00(X̃) +
∂τ̃

∂τ

∂X̃ j

∂Xi g̃0j(X̃) +
∂X̃l

∂τ

∂X̃ j

∂Xi g̃l j(X̃) , (21)

gij(X) =
∂X̃k

∂Xi
∂X̃l

∂X j g̃kl(X̃) . (22)

Let us see what this means for the transformation of our perturbation quantities.
We start with A. From Eq. 9 we have

X̃0 = X0 + ξ0 , i.e.

τ̃ = τ + T , (23)

giving
(

∂τ̃

∂τ

)2

= (1 + T′)2 , (24)

where the prime indicates a derivative with respect to conformal time. Remembering that
g00 = a2(τ)(1 + 2A) (from Eq. 3) and using Eqs. 20, 23 and 24 we get

g00 = a2(τ)(1 + 2A) = (1 + T′)2a2(τ + T)(1 + 2Ã) . (25)
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Taylor expanding the first and second factor on the RHS

a2(τ + T) = (a(τ) + a(τ)′T + . . .)2 , (26)

(1 + T′)2 = (1 + 2T′ + . . .) , (27)

and neglecting terms that are higher order in perturbation we are left with

a2(τ)(1 + 2A) = a2(τ) + 2a(τ)a(τ)′T + 2a2(τ)T′ + 2a2(τ)Ã . (28)

Defining the Hubble parameter in conformal time H = a′
a we can rewrite this to

A = HT + T′ + Ã . (29)

We now have the transformation for A

A→ Ã = A− T′ −HT . (30)

For the transformation for Bi, we remember from Eq. 9 that

X̃i = Xi + ξ i = Xi + Li . (31)

Rewriting Eq. 21 using Eqs. 23, 24 and 31 we get

g0i(X) =
∂(τ + T)

∂τ

∂(τ + T)
∂Xi g̃00(X̃) +

∂(τ + T)
∂τ

∂(X j + Lj)

∂Xi g̃0j(X̃) +
∂(Xl + Ll)

∂τ

∂(X j + Lj)

∂Xi g̃l j(X̃) ,

(32)

= (1 + T′)(∂iτ + ∂iT)g̃00 + (1 + T′)(δi
j + ∂iLj)g̃0j + (∂τXl + ∂τ Ll)(δi

j + ∂iLj)g̃l j , (33)

where we introduced the shorthand notation ∂τ = ∂
∂τ . We have ∂iτ = ∂τXl = 0 , so the

expression reduces to

g0i(X) = (1 + T′)(∂iT)g̃00 + (1 + T′)(δi
j + ∂iLj)g̃0j + (∂τ Ll)(δi

j + ∂iLj)g̃l j . (34)

Neglecting terms that are higher order in perturbation we are left with

g0i(X) = ∂iTg̃00 + δi
j g̃0j + ∂τ Llδi

j g̃l j . (35)

We have from Eq. 3

g̃00 = a2(τ̃)(1 + 2Ã) , (36)

g̃0j = −a2(τ̃)B̃j , (37)

g̃l j = −a2(τ̃)(δl j + h̃l j) . (38)

Inserting this into Eq. 35 we get

g0i(X) = ∂iTa2(τ̃)(1 + 2Ã)− δi
ja2(τ̃)B̃j − ∂τ Llδi

ja2(τ̃)(δl j + h̃l j) . (39)

Discarding higher order terms we have

g0i(X) = ∂iTa2(τ̃)− δi
ja2(τ̃)B̃j − ∂τ Llδi

ja2(τ̃)δl j . (40)



2.2 relativistic perturbation theory 12

We can rewrite this to

g0i(X) = −a2(τ)Bi = a2(τ̃)∂iT − a2(τ̃)B̃i − a2(τ̃)∂τ Li . (41)

Again Taylor expanding a2(τ̃) = a2(τ + T) = (a(τ) + a(τ)′T + . . .)2 we see the terms with
a(τ)′T would be second order in perturbation, so we are left with

−a2(τ)Bi = a2(τ)∂iT − a2(τ)B̃i − a2(τ)∂τ Li . (42)

So we find the transformation for Bi is

Bi → B̃i = Bi + ∂iT − ∂τ Li . (43)

However, we are more interested in the transformation of the perturbation quantities B and
B̂i . Recalling from Eqs. 4 and 9 that Bi = ∂iB + B̂i and Li = ∂iL + L̂i , we can rewrite Eq. 43 to

B̃i = Bi + ∂iT − ∂τ(∂iL + L̂i)

= ∂iB + B̂i + ∂iT − ∂iL′ − L̂′i , (44)

which we can separate into scalars and vectors

B̃i = ∂i B̃ + ˆ̃Bi = ∂i(B + T − L′)︸ ︷︷ ︸
scalars

+ (B̂i − L̂′i)︸ ︷︷ ︸
vectors

, (45)

allowing us to determine the transformations for B and B̂i ,

B→ B̃ = B + T − L′ , (46)

B̂i → ˆ̃Bi = B̂i − L̂′i . (47)

For hij we start from Eq. 22

gij(X) =
∂X̃k

∂Xi
∂X̃l

∂X j g̃kl(X̃)

=
∂(Xk + ξk)

∂Xi
∂(Xl + ξ l)

∂X j g̃kl(X̃) (48)

= (δi
k + ∂iLk)(δj

l + ∂jLl)g̃kl(X̃) .

Inserting Eq. 38 we get

gij(X) = −(δi
k + ∂iLk)(δj

l + ∂jLl)a2(τ̃)(δkl + h̃kl) . (49)

Neglecting higher order perturbation terms we have

gij(X) = −a2(τ̃)(δi
kδj

l(δkl + h̃kl) + δi
kδkl∂jLl + δj

lδkl∂iLk)

= −a2(τ̃)(δij + h̃ij + ∂jLi + ∂iLj) . (50)

Expanding a2(τ̃) again and disregarding higher order terms we are left with

gij(X) = −a2(τ)(δij + hij) = −a2(τ)(δij + h̃ij + ∂jLi + ∂iLj)− 2a(τ)a(τ)′Tδij . (51)
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From which we find

hij = h̃ij + ∂jLi + ∂iLj + 2HTδij , (52)

giving the transformation for h̃ij

hij → h̃ij = hij − ∂jLi − ∂iLj − 2HTδij . (53)

Again, we are more interested in the transformations for the perturbation quantities C, E, Êi
and Êij . From Eq. 6, we have hij = 2Cδij + 2∂<i∂j>E + 2∂(iÊj) + 2Êij , which we can insert in
the transformation from Eq. 53 to obtain

h̃ij = 2Cδij + 2∂<i∂j>E + 2∂(iÊj) + 2Êij − ∂jLi − ∂iLj − 2HTδij . (54)

Recalling from Eq. 9 that Li = ∂iL + L̂i and reordering terms we have

h̃ij = 2δij(C−HT) + 2∂<i∂j>E + 2∂(iÊj) − ∂j(∂iL + L̂i)− ∂i(∂jL + L̂j) + 2Êij , (55)

which we can rewrite to

h̃ij = 2δij(C−HT) + 2∂<i∂j>E + 2∂(iÊj) − 2∂i∂jL− 2∂(i L̂j) + 2Êij . (56)

Making use of the anti-symmetrized expression ∂<i∂j>L ≡
(
∂i∂j − 1

3 δij∇2) L we obtain

h̃ij = 2δij(C−HT) + 2∂<i∂j>E + 2∂(iÊj) − 2(∂<i∂j> +
1
3

δij∇2)L− 2∂(i L̂j) + 2Êij (57)

= 2δij(C−HT − 1
3
∇2L) + 2∂<i∂j>(E− L) + 2∂(i(Ê− L̂)j) + 2Êij . (58)

Comparison to Eq. 6 yields the transformations of the SVT perturbation quantities C, E, Êi
and Êij . Summarizing all the transformations, we have

A→ Ã = A− T′ −HT ,

B→ B̃ = B f + T − L′ ,

Bi → B̃i = Bi + ∂iT − ∂τ Li ,

B̂i → ˆ̃Bi = B̂i − L̂i ,

C → C̃ = C−HT − 1
3
∇2L , (59)

E→ Ẽ = E− L ,

Êi → ˆ̃Ei = Êi − L̂i ,

Êij → ˆ̃Eij = Êij ,

hij → h̃ij = hij − ∂jLi − ∂iLj − 2HTδij .

This illustrates the gauge problem: if we perform a coordinate change, we may change the
perturbation quantities. There are two solutions to this problem: define gauge-invariant per-
turbation variables or fix the gauge.
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2.2.4 Gauge-invariant metric perturbations

An example of gauge-invariant perturbation quantities are the so-called Bardeen variables [89],
which are combinations of metric perturbations that are invariant under coordinate transfor-
mation,

Ψ ≡ A +H(B− E′) + (B− E′)′ , (60)

Φ ≡ −C−H(B− E′) +
1
3
∇2E , (61)

Ψ̂i ≡ Ê′i − B̂i , (62)

Êij . (63)

From Eq. 59 we can show that these variables indeed do not transform under a coordinate
change. Beginning with Ψ, we have

Ψ̃ ≡ Ã +H(B̃− Ẽ′) + (B̃− Ẽ′)′

=
[
A− T′ −HT

]
+H(

[
B + T − L′

]
− [E− L]′) + (

[
B + T − L′

]
− [E− L]′)′ (64)

= A +H(B− E′) + (B− E′)′ ,

which indeed is invariant under coordinate transformation. Next we will consider Φ. From
Eqs. 59 and 60 we find Φ does not change under a gauge transformation,

Φ̃ ≡ −C̃−H(B̃− Ẽ′) +
1
3
∇2Ẽ

= −
[

C−HT − 1
3
∇2L

]
−H

([
B + T − L′

]
− [E− L]′

)
+

1
3
∇2 [E− L] (65)

= −C−H
(

B− E′
)
+

1
3
∇2E .

Finally, from Eqs. 47, 59 and 60 we can show that Ψ̂i is also invariant under gauge transforma-
tion,

ˆ̃Ψi ≡ ˆ̃E′i − ˆ̃Bi

=
[
Êi − L̂i

]′ −
[
B̂i − L̂′i

]
(66)

= Ê′i − B̂i .

This shows that we have a set of variables that are invariant under gauge transformation and
could therefore be considered the true perturbation quantitites.

2.2.5 Stress-energy perturbations

We describe the stress-energy tensor with the density ρ, pressure p, 4-velocity uµ, and anisotropic
stress σµν. The perturbed quantities are defined through

ρ(τ, xi) ≡ ρ̄(τ) + δρ(τ, xi) , (67)

p(τ, xi) ≡ p̄(τ) + δp(τ, xi) , (68)

uµ ≡ (−1− ψ, avi) , (69)

uµ ≡ (1− ψ, a−1(vi − Bi)) , (70)
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where we recall the metric perturbation A = ψ, that vi and vi are the 3-velocities, and that the
anisotropic stress is already first order in perturbation. The trace of the anisotropic stress can
be absorbed into the isotropic pressure, so we can choose the anisotropic stress to be traceless,
i.e. σi

i = 0. We also know that σµνuν = σ
µ
µ = 0, which in turn implies that σ00 = σ0j = 0, so

only σij is non-zero, making the anisotropic stress a traceless, symmetric 3-tensor.
The perturbed stress-energy tensor is given by

T0
0 = −(ρ̄ + δρ) , (71)

T0
i = (ρ̄ + p̄)avi , (72)

Ti
0 = −1

a
(ρ̄ + p̄)(vi − Bi) , (73)

Ti
j = δi

j( p̄ + δp) + σi
j . (74)

The universe consists of many different species of particles, but the contribution from each
species I to the perturbed stress-energy tensor, and therefore also the density and pressure
perturbations, as well as the velocity anisotropy, is simply given by the sum over all species,

Tµν = ∑
I

T I
µν , (75)

δρ = ∑
I

δρI , (76)

δp = ∑
I

δpI , (77)

σij = ∑
I

σ
ij
I . (78)

The 3-velocity is the exception, so we define the 3-momentum density δqi ≡ (ρ̄ + p̄)avi, which
will be useful later,

(ρ̄ + p̄)vi = ∑
I
(ρ̄I + p̄I)vi

I , (79)

δqi = ∑
I

δqi
I . (80)

Just like the metric perturbations, the matter perturbations are also gauge-dependent, e.g.
consider the temporal gauge transformations of the density and pressure perturbations,

δρ→ δρ− ˙̄ρα , (81)

δp→ δp− ˙̄pα . (82)

We want to define gauge-invariant quantities. First, we define the adiabatic pressure perturba-
tion

δpad ≡
˙̄p
˙̄ρ
δρ (83)

and split the pressure perturbation into an adiabatic and a non-adiabatic pressure perturbation
δp = δpnon−ad + δpad , where the non-adiabatic pressure perturbation is gauge-invariant

δpnon−ad = δp− δpad . (84)
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The longitudinal part of the 3-momentum density perturbation ∂iδq transforms as

δq→ δq + (ρ̄ + p̄)α , (85)

but we want a gauge-invariant quantity, so we define the comoving density perturbation

δρm = δρ − 3Hδq , (86)

where H is the Hubble parameter. From the metric and matter perturbations we define the
comoving curvature perturbation

R ≡ φ− H
ρ̄ + p̄

δq , (87)

recalling that C = φ , and the curvature perturbation on uniform density hypersurfaces

ζ ≡ −φ− H
˙̄ρ

δρ . (88)

2.2.6 Perturbed Einstein equations

We want to relate the metric perturbations to the stress-energy via the perturbed Einstein equa-
tions

δGµν = 8πGδTµν . (89)

As usual we are only interested in linear order in perturbation. From the Einstein equations
we get two evolution equations

φ̈ + 3Hφ̇ + Hψ̇ +
(
3H2 + 2Ḣ

)
ψ = 4πG

(
δp− 2

3
k2δσ

)
, (90)

(∂t + 3H)

(
Ė− B

a

)
+

φ− ψ

a2 = 8πGδσ , (91)

the second of which we can write in terms of the Bardeen variables Φ and Ψ

Φ−Ψ = 8πGa2δσ . (92)

We see that the Bardeen variables are equal if there is no anisotropic stress (and, by exten-
sion, in the Newtonian gauge the metric perturbations φ and ψ are equal). From the Einstein
equations we also get the energy and momentum constraint equations

3H (φ̇ + Hψ) +
k2

a2

[
φ + H

(
a2Ė− aB

)]
= −4πGδρ , (93)

φ̇ + Hψ = −4πGδq , (94)

from which we construct the Poisson equation,

k2

a2 Φ = −4πGδρm , (95)

also expressed in terms of one of the Bardeen variables, and, in fact, the Poisson equation is
gauge-invariant. The last two equations we wish to obtain from the Einstein equations is the
continuity equation and the Euler equation, which we get from energy-momentum conservation,
i.e. ∇µTµν = 0,

δ̇ρ + 3H(δρ + δp) =
k2

a2 δq + (ρ̄ + p̄)
[

3φ̇ + k2
(

Ė +
B
a

)]
, (96)

δ̇q + 3Hδq = −δp +
2
3

k2δσ− (ρ̄ + p̄)ψ . (97)
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2.2.7 Gauge fixing

Instead of defining gauge-invariant quantities, we can choose to fix the gauge. We have ten
metric and ten matter degrees of freedom and can fix two of them and keep track of the
remaining metric and matter perturbations.

There are many possibilities for how to fix the gauge. Popular choices include the syn-
chronous gauge φ = B = 0 (which is, in fact, not a gauge at all, as it is not uniquely defined.
However, synchronous coordinates are efficient for numerical computations), the uniform den-
sity gauge δρ = E = 0 with φ = −ζ (useful for super-horizon scales), the comoving gauge
δq = E = 0 with φ = −R and the spatially-flat gauge φ = E = 0 (either of which can be
useful for studying inflation). However, in the following, we will only discuss the Newtonian
gauge, which is what we will later use.

newtonian gauge . This gauge gets its name from the fact that it reduces to Newtonian
gravity in the small-scale limit. A convenient advantage of this gauge is that the Bardeen
variables Φ and Ψ reduce to the metric perturbations φ and ψ, making it an efficient choice for
obtaining gauge-invariant perturbations. In the Newtonian gauge we set two metric degrees
of freedom to zero B = E = 0, so we have the metric

ds2 = a2(τ)
[
(1 + 2ψ)dτ2 − (1− 2φ)δijdxidxj

]
. (98)

The Einstein equations become

3H(φ̇ + Hψ) +
k2

a2 φ = −4πGδρ , (99)

φ̇ + Hψ = −4πGδq , (100)

φ̈ + 3Hφ̇ + Hψ̇(3H2 + 2Ḣ)ψ = 4πG
(

δρ− 2
3

k2δσ

)
, (101)

φ− ψ

a2 = 8πGδσ , (102)

and the continuity and Euler equations are

δ̇ρ + 3H(δρ + δp) =
k2

a2 δq + 3(ρ̄ + p̄)φ̇ , (103)

δ̇q + 3Hδq = −δp +
2
3

k2δσ− (ρ̄ + p̄)ψ . (104)

2.2.8 Power spectra

Cosmological perturbation theory is a stochastic theory, which means we can describe per-
turbations in terms of probability distributions. The probability distribution for some pertur-
bation A(t,~x) is given by the dimensionless power spectrum PA(A, t,~x). We can study the
evolution of the fluctuation A through the usual statistical quantities, such as the mean or
variance, which can then be interpreted as e.g. the mean over different realizations of the
stochastic theory.
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As a concrete example, let us consider curvature perturbations. If we define the normaliza-
tion of the Fourier transform as

R~k =
∫

d3x R(~x) exp
[
−i~k ·~x

]
, (105)

R(~x) = 1
2π3

∫
d3k R~k exp

[
i~k ·~x

]
, (106)

and the two-point correlation function assuming isotropy as

ξR(r) ≡ 〈R(~x)R(~x +~r)〉 , (107)

where r = |~r| , then we can define the Fourier power spectrum

PR(k) ≡
∫

d3r ξR(r) exp
[
−i~k ·~r

]
(108)

as the Fourier transform of the two-point correlation function. This quantity is related to the
ensemble average through

〈
R~kR~k′

〉
= (2π)3δ(~k +~k′)

∫
d3r ξR(r) exp

[
−i~k ·~r

]
(109)

= (2π)3δ(~k +~k′)PR(k) , (110)

where the δ is the Dirac δ, and to the variance through

σ2
R ≡

〈
R2(x)

〉
=

1
(2π)3

∫
d3k PR(k) (111)

=
∫

d ln k PR(k) , (112)

where in the second equality we defined the dimensionless power spectrum

PR(k) ≡
k3

2π2 PR(k) . (113)

2.3 temperature anisotropies

2.3.1 The Boltzmann equation

The photons in the early universe are described by the phase-space distribution f (t,~x,~p), with
proper time t, spatial coordinate ~x and three-momentum ~p, and the equation of motion is the
Boltzmann equation

d f (t,~x,~p)
dt

= c[ fγ, fe] , (114)

where c[ fγ, fe] is the interaction term, which is a function of the photon and electron phase-
space distributions, fγ and fe. For CMB photons, the only relevant interaction is Thomson
scattering with free electrons. From the phase-space distribution, we have seven degrees of
freedom, leading to a computationally challenging problem. However, we can simplify the
computation by considering two regimes, I) tightly coupled regime and II) after tight coupling.
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i) tightly coupled regime , T > Tdec , z > zdec ∼ 1100 .
At early times the photons, electrons and baryons behave as one effective fluid. Because the

photons are in thermal equilibrium, the phase-space distribution is given by a Bose-Einstein
distribution,

f (t,~x,~p) =
1

exp(p/T(t,~x))− 1
. (115)

We want to expand the temperature and phase-space distribution into a homogeneous and a
perturbed part,

T(t,~x) = T̄(t,~x) + δT(t,~x) , (116)

f (t,~x,~p) = f̄ (t,~x,~p) + δ f (t,~x,~p) , (117)

where

f̄ (t,~p) =
1

exp(p/T̄(t,~x))− 1
, (118)

δ f (t,~x,~p) =
d f̄

d ln p
δT
T̄

. (119)

We define the temperature anisotropy

Θ(t,~x) ≡ δT
T̄

, (120)

so we have

δ f (t,~x,~p) =
d f̄

d ln p
Θ(t,~x) . (121)

This means the equation of motion for Θ(t,~x), i.e. the Boltzmann equation, now is a lower
dimensionality problem and therefore easier to solve.

ii) after tight coupling , T . Tdec , z . zdec .
Later on, the photons will decouple. Each decoupled photon follows a geodesic path de-

scribed by the geodesic equation

dpµ

dt
= −Γµ

αβ pα pβ , (122)

where Γµ
αβ is the Christoffel symbol. From this we get, in Newtonian gauge and for conformal

time η (with primes indicating derivatives with respect to conformal time),

d(ap)
dη

= apφ′ − aεn̂ · ~∇ψ . (123)

Here the n̂ = ~p/p is the direction of propagation of the photon. For massless photons, the
energy ε ≡

√
p2 + m2 is equal to the momentum p, leaving us with

d ln(ap)
dη

= φ′ − n̂ · ~∇ψ . (124)

The first term accounts for the distortion of the "local scale factor" a(1 + φ) and the second
for gravitational blue/redshifting due to the generalized gravitational potential ψ. From this
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expression we can see that for photons there can be no deviation from a Bose-Einstein dis-
tribution, but we need to account for a directional dependence of the temperature T(t,~x) →
T(t,~x, n̂), i.e.

f (t,~x,~p) =
1

exp(p/T(t,~x, n̂))− 1
. (125)

This dependence will, of course, propagate to the mean and perturbed quantities as well, so
that Θ(t,~x) → Θ(t,~x, n̂), picking up two new degrees of freedom (for six in total), i.e. the
two angles from n̂. From the Boltzmann equation we obtain the new equation of motion for
Θ(t,~x, n̂) ,

f (t,~x,~p) = f̄ (t,~x,~p)
(

1 +
d ln f̄ (t,~x,~p)

d ln p
Θ(t,~x, n̂)

)
. (126)

We can reduce the number of degrees of freedom by transforming to Fourier space Θ(t,~x, n̂)→
Θ(t,~k, n̂) and by expressing n̂ in spherical coordinates with the z axis aligned with~k, so that
~k · n̂ = k cos θ. This leaves us with five degrees of freedom for Θ(t,~k, θ).

Next we want to expand the temperature anisotropy in θ with a Legendre multipole expan-
sion,

Θ(t,~k, θ) = ∑
`

(−i)`(2`+ 1)Θ`(t,~k)P`(cos θ) , (127)

where ` is the multipole number, P` are the Legendre polynomials and Θ` are the temperature
anisotropy multipoles, i.e.

Θ0(t,~k) =
1
4

δγ(t,~k) is the monopole, related to the photon density perturbations, (128)

Θ1(t,~k) =
1
3k

θγ(t,~k) is the dipole, which has to do with the velocity divergence, (129)

Θ2(t,~k) =
1
2

σγ(t,~k) is the quadrupole, linked to the anisotropic stress. (130)

In real space the equation of motion for Θ is

Θ′ + n̂ · ~∇Θ− φ′ + n̂ · ~∇φ = −Γ(Θ−Θ0 − n̂ · v̂e) , (131)

where Γ is the conformal Thomson scattering rate, ignoring small corrections that are only
relevant for CMB polarization, and the third and fourth terms on the LHS come from Eq. 124.
We now have a general expression for the Boltmann equation for photon anisotropies.

2.3.2 Directional CMB temperature anisotropy

We observe the CMB today at t0 as a temperature map in direction −n̂, which we write as a
spatial average and a deviation from the average, i.e. a temperature perturbation or anisotropy,

Tobs(t0,~x0,−n̂) = T̄(t0) [1 + Θ(t0,~x0, n̂)] (132)

= T̄(t0) [1 + Θ0(t0,~x0)] + T̄(t0) [Θ(t0,~x0, n̂)−Θ0(t0,~x0)] , (133)

where the first term is the mean temperature of the CMB,
〈

Tobs〉 = 2.726 K, and the second
term gives the deviation from the mean δTobs, which is of order 10 µK.
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We cannot measure the average temperature across all of the universe, T̄(t0) = 〈T〉all space ,
but rather we measure the average temperature over all possible directions for our universe,

〈
Tobs

〉
all directions

= T̄(t0) [1 + Θ0(t0,~x0)] , (134)

and the temperature anisotropy

δTobs = Tobs −
〈

Tobs
〉

all directions
(135)

= T̄(t0) [Θ(t0,~x0, n̂)−Θ0(t0,~x0)] . (136)

For brevity, in the following we will drop the "all directions" subscript and refer to 〈T〉 as the
directional average and T̄ as the spatial average. If we take the ratio of the two, the spatial
mean will cancel and we are left with

δTobs

〈Tobs〉 (−n̂) =
Θ(t0,~x0, n̂)−Θ0(t0,~x0)

1 + Θ0(t0,~x0)
(137)

≈ Θ(t0,~x0, n̂)−Θ0(t0,~x0) , (138)

where we used that Θ0(t0,~x0) ∼ 10−5 � 1.

2.3.3 The Sachs-Wolfe effect

The Sachs-Wolfe effect accounts for gravitational red/blue-shifting of photons propagating
from the last scattering surface. Photons are gravitationally blue/red-shifted when enter-
ing/leaving an overdense part of the universe (or inversely, for an underdense part). This
effect is called the Sachs-Wolfe effect and is the reason for the hot and cold spots we see
in the CMB (i.e. hot/cold spots consist of photons originating from an under/over-dense
region at decoupling). We also need to remember that, the photons we are observing have
traversed a universe with an inhomogeneous mass distribution that is evolving in time. As
time passes, the over- and under-densities grow more pronounced and the photons take a
long time to traverse these regions (e.g. at late times the characteristic scale of a galaxy clus-
ter is of order 1 Mpc or 3.26× 106Ly), meaning the over- and under-densities will have had
time to grow. The effect of this is that photons will be more red/blue-shifted when leaving
an over/under-density than they were blue/red-shifted going in, which is a cumulative effect
called the integrated Sachs-Wolfe (ISW) effect. We start with the line of sight integral, i.e. the
Sachs-Wolfe formula [90],

Θobs(η0,~x0, n̂) =
∫ η0

ηdec

dη {g(η)(Θ̂ + ψ + n̂ · ~∇vb) + exp [−τ(η)] (ψ′ + φ′)} − ψ(η0,~x0) , (139)

where Θ̂ is intrinsic temperature anisotropy (i.e. before corrections), g(η) = −τ′(η) exp [−τ(η)]
is the visibility function, and τ is the optical depth, i.e. the depth of the "diffusion" or "fog"
effect caused by photon interactions, which is given by the integral over the scattering rate,
τ(η) =

∫ η0
η dη̃ Γ(η̃) .

The last term only contributes to the monopole, so we can safely disregard it. In order to
better understand this effect, we can make some simplifying assumptions that will allow us
to solve the integral analytically: we assume instant decoupling and neglect reionization, i.e. the
optical depth is replaced by the Heaviside function e−τ(η) ≈ Hea(η − ηdec) and the visibility
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function by a delta function g(η) ≈ δ(η− ηdec). We can now re-write the Sachs-Wolfe formula
to

Θobs(η0,~x0, n̂) ≈ Θ̂ (ηdec,~xlss) + ψ (ηdec,~xlss) + n̂ ·~vb(ηdec,~xlss) (140)

+
∫ η0

ηdec

dη {φ′(η,~x0 − n̂[η0 − η]) + ψ′(η,~x0 − n̂[η0 − η])} , (141)

where the subscript lss denotes the last scattering surface. We can now consider the different
terms of this equation. We see the first term is the intrinsic temperature anisotropy from the
previous sections, the second term is the Sachs-Wolfe correction, the third is the Doppler term,
and the integral is the ISW term.

The line-of-sight integral in real space is convenient for understanding the equations, but in
reality we need to go to Fourier space for the actual computations, as they will otherwise be
too time consuming. The line-of-sight integral in Fourier space is

Θobs(η0,~x0, n̂) =
∫ η0

ηdec

dη {g(η)(Θ̂ + ψ) + g(η)
θb

k2 + exp [−τ(η)] (ψ′ + φ′)} j`(k[η0 − η]) ,

(142)

where θb is the velocity divergence, j`(x) = π
2x J`+ 1

2
(x) is the spherical Bessel function, and, as

before, we disregarded the term that only contributes to the monopole.
The ISW effect is usually separated into two different regimes, even though it is technically

the same effect: I) the early integrated Sachs-Wolfe effect impacting sub-sound horizon scales
before the universe transitions deep into matter domination, where the metric fluctuations
are static and contribution to the ISW term is negligible, and II) the late integrated Sachs-Wolfe
effect, when the universe is dominated by a cosmological constant or by dark energy and the
equation of state changes again, leading to varying metric perturbations on all scales. Since
the early ISW effect is important in the time shortly after decoupling and on scales smaller
than the sound horizon, the effect is one of increasing power of multipoles of around ` ∼ 200,
corresponding to around the first acoustic peak of the CMB. In contrast, the late ISW effect
impacts the largest scales (` . 50) and tilts the Sachs-Wolfe plateau.

2.3.4 Expansion in spherical harmonics

We expand the CMB temperature anisotropies in spherical harmonics

δTobs

〈Tobs〉 (−n̂) = Θ(η0, ~x0,−n̂)−Θ0(η0,~x0) (143)

= ∑
`≥1,

−`≤m≤`

a`mY`m(n̂) , (144)

where the `’s encode the scale and the m’s give the direction. We can invert this expression to
obtain

a`m =

√
2
π

i`
∫

d3~k Y`m(k̂)Θ`(η0,~k) , (145)

Each Θ`(η0,~k) is a Gaussian random number and we can consider the two-point correlation
function

〈
Θ∗` (η0,~k)Θ`′(η0,~k′)

〉
= Θ∗` (η0, k)Θ`′(η0, k′)PR(k)δ(3)(~k′ −~k) , (146)
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where we have defined the transfer function

Θ`(η0, k) ≡ Θ`(η0,~k)
R(ηini,~k)

, (147)

which does not have a directional dependence. The sum of many Gaussian random numbers
is also a Gaussian (central limit theorem), so the a`m in Eq. 145 is also a Gaussian random
number. We can compute the two-point correlation function

〈a∗`ma`′m′〉 =
2
π

i`−`
′
∫

d3~k
∫

d3~k′ Y∗`m(k̂)Y`′m′(k̂
′)
〈

Θ∗` (η0,~k)Θ`′(η0,~k′)
〉

. (148)

Inserting Eq. 146, the Kronecker δ takes care of one integral and we are left with

〈a∗`ma`′m′〉 =
2
π

i`−`
′
∫

d3~k Y∗`m(k̂)Y`′m′(k̂)Θ
∗
` (η0, k)Θ`′(η0, k)PR(k) . (149)

We can rewrite the integration to

〈a∗`ma`′m′〉 =
2
π

i`−`
′
∫

k2dk dk̂ Y∗`m(k̂)Y`′m′(k̂)Θ
∗
` (η0, k)Θ`′(η0, k)PR(k) . (150)

We have dk̂ Y∗`m(k̂)Y`′m′(k̂) = δ``′δmm′ , where the δ’s are Kronecker δ’s, so we are left with

〈a∗`ma`′m′〉 =
2
π

i`−`
′
∫

k2dk δ``′δmm′Θ∗` (η0, k)Θ`′(η0, k)PR(k) (151)

=
2
π

i`−`
′
δ``′δmm′

∫
k2dk Θ2

`(η0, k)PR(k) (152)

=
2
π

δ``′δmm′

∫
k2dk Θ2

`(η0, k)PR(k) , (153)

where we were able to rewrite the expression because of the Kronecker δ’s. Now, replacing
the scale dependent primordial power spectrum of curvature perturbations with the scale-
independent one PR(k) = 2π2

k3 PR(k), we arrive at the final expression

〈a∗`ma`′m′〉 = δ``′δmm′

[
4π
∫ dk

k
Θ2
`(η0, k)PR(k)

]
. (154)

The part in the brackets is called the power spectrum of temperature anisotropies in harmonic
space, i.e.

C` ≡ 4π
∫ dk

k
Θ2
`(η0, k)PR(k) , (155)

where Θ`(η0, k) plays the role of the transfer function, like Tm(η0, k) in the expression for the
matter power spectrum, connecting the primordial power spectrum from inflation with the
observed CMB anisotropies.

2.3.5 Cosmic variance

The C`’s contain all the information we can extract from the CMB temperature anisotropies
about our cosmological model, if the perturbations are linear and Gaussian. Primordial non-
Gaussianity has been widely studied (see e.g. [91–94]) and requires measuring the three-point
correlation function or bispectrum, but will not be addressed in this thesis. At CMB times, the
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growth of perturbations is linear, but the effect of non-linear formation on large-scale structure
observables will be an important topic throughout this work. However, even with Gaussian
perturbations that only experience linear growth, the information we can extract from the
CMB about our model is limited. This would be the case even with the single most sensitive
experiment imaginable. The reason is cosmic variance, i.e. we are limited to only one universe
and on large scales (small multipoles) we have a small number of Gaussian random numbers
on which to base our conclusions. We consider Cobs

` as an estimator of Ctheory
` ,

Cobs
` ≡ 1

2`+ 1 ∑
−`≤m≤`

∣∣∣aobs
`m

∣∣∣
2

, (156)

from which we can estimate the error due to cosmic variance

〈(
Cobs
` − Ctheory

`

)2
〉

=

〈(
1

2`+ 1 ∑
−`≤m≤`

a∗`ma`m − Ctheory
`

)2〉
(157)

=
2

2`+ 1

(
Ctheory
`

)2
, (158)

where
√

2
2`+1 is then the maximum precision with which we can estimate the power spectrum

of the underlying cosmological model from the observed power spectrum, even with infinitely
precise observations.

2.4 experimental configurations

We are primarily interested in the comparison of four future CMB experiments, based on
current expectations for instrumental sensitivities. These are:

• the Litebird2 satellite project of JAXA [95], currently in phase A, optimized for primor-
dial B-modes, with very good sensitivity but modest resolution.

• the CORE-M5 satellite project [50] recently submitted to the M5 call of ESA and not
approved within this call, but still being considered for future applications: CORE-M5

would have a slightly better sensitivity and significantly better resolution than LiteBird.
We will also compare the baseline CORE-M5 configuration to four other possible ver-
sions: LiteCORE-80, LiteCORE-120, LiteCORE-150, and COrE+ (i.e. the specifications of
the CORE proposal to ESA for the M4 call).

• the CMB Stage Four3 (CMB-S4) project [87], an ambitious project gathering many ground-
based detectors to be deployed over the next decade, with outstanding resolution and
sensitivity, but smaller sky coverage than satellites.

• and the PICO satellite project4 that may be submitted to NASA in the future, which
would improve over the sensitivity of LiteBird by a factor of 3 to 4.

2 http://litebird.jp/eng/
3 https://cmb-s4.org
4 See https://zzz.physics.umn.edu/ipsig/start and https://zzz.physics.umn.edu/ipsig/_media/pico_
science_aas_v11.pdf; channel resolution and sensitivity taken from https://zzz.physics.umn.edu/ipsig/
baseline.

http://litebird.jp/eng/
https://cmb-s4.org
https://zzz.physics.umn.edu/ipsig/start
https://zzz.physics.umn.edu/ipsig/_media/pico_science_aas_v11.pdf
https://zzz.physics.umn.edu/ipsig/_media/pico_science_aas_v11.pdf
https://zzz.physics.umn.edu/ipsig/baseline
https://zzz.physics.umn.edu/ipsig/baseline
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For each of these experiments we assume resolutions, sensitivity parameters and sky frac-
tions summarised in Table 1 for LiteBird, CMB-S4, and PICO, in Table 2 for CORE-M5 and
in Table 3 for the other CORE-related configurations. The two experiments likely to provide
results on the shortest time scale, Litebird and CMB-S4, will be complementary, since they are
optimised respectively for large and small angular scales. As such, it is natural to combine
them. We then make the same assumption as in [87]: we consider that the optimal combina-
tion will consist in LiteBird data for ` ≤ 50, CMB-S4 data for ` > 50 in the region covered
by the experiment (40% of the sky) and additional high-` data from LiteBird in the region
covered by the satellite but not by CMB-S4 (30% of the sky).

Channel [GHz] FWMH [arcmin] ∆T [µK arcmin] ∆P [µK arcmin]

1. LiteBird, `max = 1350, fsky = 0.7

140 31 4.1 5.8

2. CMB-S4, `min = 30, `max = 3000, fsky = 0.4

150 3.0 1.0 1.41

3. LiteBird + CMB-S4 in combination

low-` from LiteBird, `max = 50, fsky = 0.7

140 31 4.1 5.8

high-` from CMB-S4, `min = 51, `max = 3000, fsky = 0.4

150 3.0 1.0 1.41

additional high-` from LiteBird, `min = 51, `max = 1350, fsky = 0.3

140 31 4.1 5.8

4. PICO, `max = 3000, fsky = 0.7

62.2 12.8 2.76 3.9

74.6 10.7 2.26 3.2

89.6 9.5 1.41 2.0

107.5 7.9 1.20 1.7

129.0 7.4 1.13 1.6

154.8 6.2 0.99 1.4

185.8 4.3 1.84 2.6

222.9 3.6 2.19 3.1

Table 1: Experimental specifications for the CMB experiments used in this work. From left to right, fre-
quency channel(s) dedicated to cosmology, beam width, temperature and polarization sensi-
tivities for this/these channel(s). See the text for references to each experiment or combination
of experiments.

It is useful to add Planck to this list of experiments, in order to quantify the progress that
can be made compared to the present situation. We choose not to use the actual Planck likeli-
hood, in order to enjoy one feature of MontePython: when running only mock likelihoods, the
code automatically creates mock spectra at the beginning of the first run (for fiducial param-
eter values specified by the user), with, of course, a single fiducial model being used across
all likelihoods. Therefore, in our grid of forecast, it is technically easier to use a mock Planck
likelihood, with resolution and sensitivity assumptions close to those of the full Planck mis-
sion [2]. It is impossible to exactly mimick the real sensitivity of the Planck results, due to our
assumption of a Gaussian CMB likelihood with uncorrelated a`m’s (breaking mainly at low
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`’s), of uncorrelated temperature and polarisation noise, and of perfect foreground cleaning
up to `max. Nevertheless, we made an educated guess for the noise level in our mock Planck
likelihood, leading to sensitivities very close to the real ones, with the exception of the error
on τreio, which is smaller in our forecast than in reality by about 50%.

channel beam Ndet ∆T ∆P ∆I ∆I ∆y× 106 PS (5σ)

GHz arcmin µK.arcmin µK.arcmin µKRJ.arcmin kJy/sr.arcmin ySZ.arcmin mJy

60 17.87 48 7.5 10.6 6.81 0.75 -1.5 5.0

70 15.39 48 7.1 10 6.23 0.94 -1.5 5.4

80 13.52 48 6.8 9.6 5.76 1.13 -1.5 5.7

90 12.08 78 5.1 7.3 4.19 1.04 -1.2 4.7

100 10.92 78 5.0 7.1 3.90 1.2 -1.2 4.9

115 9.56 76 5.0 7.0 3.58 1.45 -1.3 5.2

130 8.51 124 3.9 5.5 2.55 1.32 -1.2 4.2

145 7.68 144 3.6 5.1 2.16 1.39 -1.3 4.0

160 7.01 144 3.7 5.2 1.98 1.55 -1.6 4.1

175 6.45 160 3.6 5.1 1.72 1.62 -2.1 3.9

195 5.84 192 3.5 4.9 1.41 1.65 -3.8 3.6

220 5.23 192 3.8 5.4 1.24 1.85 - 3.6

255 4.57 128 5.6 7.9 1.30 2.59 3.5 4.4

295 3.99 128 7.4 10.5 1.12 3.01 2.2 4.5

340 3.49 128 11.1 15.7 1.01 3.57 2.0 4.7

390 3.06 96 22.0 31.1 1.08 5.05 2.8 5.8

450 2.65 96 45.9 64.9 1.04 6.48 4.3 6.5

520 2.29 96 116.6 164.8 1.03 8.56 8.3 7.4

600 1.98 96 358.3 506.7 1.03 11.4 20.0 8.5

Array 2100 1.2 1.7 0.41

Table 2: Proposed CORE-M5 frequency channels. The sensitivity is calculated assuming ∆ν/ν = 30%
bandwidth, 60% optical efficiency, total noise of twice the expected photon noise from the sky
and the optics of the instrument at 40K temperature. This configuration has 2100 detectors,
about 45% of which are located in CMB channels between 130 and 220 GHz. Those six CMB
channels yield an aggregated CMB sensitivity of 2 µK.arcmin (1.7 µK.arcmin for the full array).

The specifications for the CORE-M5 proposal, a complete survey of polarised sky emission
in 19 frequency bands, with sensitivity and angular resolution requirements is summarized
in Table 2. Obviously, data from low (60-115 GHz) and high frequencies (255-600 GHz) chan-
nels will be mainly used for monitoring foreground contaminations (and deliver rich related
science). In our forecasts, we therefore use only the six channels in the frequency range of
130− 220 GHz and refer to this experimental configuration as CORE-M5.
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Channel [GHz] FWMH [arcmin] ∆T [µK arcmin] ∆P [µK arcmin]

LiteCORE-80, `max = 2400, fsky = 0.7

80 20.2 8.8 12.5

90 17.8 7.1 10.0

100 15.8 8.5 12.0

120 13.2 6.7 9.5

140 11.2 5.3 7.5

166 8.5 5.0 7.0

195 8.1 3.6 5.0

LiteCORE-120, `max = 3000, fsky = 0.7

80 13.5 8.8 12.5

90 11.9 7.1 10.0

100 10.5 8.5 12.0

120 8.8 6.7 9.5

140 7.4 5.3 7.5

166 6.3 5.0 7.0

195 5.4 3.6 5.0

LiteCORE-150, `max = 3000, fsky = 0.7

80 10.8 8.8 12.5

90 9.5 7.1 10.0

100 8.4 8.5 12.0

120 7.0 6.7 9.5

140 5.9 5.3 7.5

166 5.0 5.0 7.0

195 4.3 3.6 5.0

COrE+, `max = 3000, fsky = 0.7

100 8.4 6.0 8.5

115 7.3 5.0 7.0

130 6.5 4.2 5.9

145 5.8 3.6 5.0

160 5.3 3.8 5.4

175 4.8 3.8 5.3

195 4.3 3.8 5.3

220 3.8 5.8 8.1

Table 3: Experimental specifications for LiteCORE-80, LiteCORE-120, LiteCORE-150 and COrE+: fre-
quency channels dedicated to cosmology, beam width, temperature and polarization sensitivi-
ties for each channel.

2.5 likelihood and methodology

For CMB experiments, we assume a Gaussian likelihood for the multipole coefficients of tem-
perature, polarization and CMB lensing potential maps, described by equations (3.1) to (3.7)
of [96]. The noise spectrum of temperature and polarization are inferred from the resolution
and sensitivity parameters expected to reflect the instrumental characteristics according to
standard approximations (see e.g. equation (2.2) in [96]). The temperature and polarization
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noises are assumed to be statistically independent, which means that the noise spectrum NTE
`

is approximated as zero. Given the fiducial model and noise spectra, one can estimate the
error that would be performed on the measurement of the lensing potential spectra by run-
ning a quadratic estimator [97] (using products of four multipoles, each of the T, E or B type,
but avoiding any auto-correlation of the B-mode maps due to the non-Gaussianity of the aB

`m
multipoles. All quadratic estimators can then be combined in order to minimize the combined
noise: this defined the minimum variance estimator [97]. We use the FuturCMB5 code [96]
to compute the noise spectrum of the CMB lensing potential expected from this minimum
variance estimator technique.

We use the temperature, cross temperature-polarization, and E-mode polarization spectra,
CTT
` , CTE

` , and CEE
` , but do not consider the B-mode channel. The missions considered are also

sensitive to the BB lensing polarization signal, but we take the conservative approach to not
include it in the forecasts. This leaves open the possibility of using the channel for further
checks for foregrounds contamination and systematics. Note that in this work, we consider
fiducial models with negligible primordial gravitational waves from inflation. Otherwise, the
BB channel would contain primary signal on large angular scales and could not be neglected.

In the mock likelihoods, the variance of the “observed” multipoles alm’s is given by the sum
of the fiducial C`’s and of an instrumental noise spectrum given by

N` = w−1 exp(`(`+ 1)θ2/8 ln 2) , (159)

where θ is the FWHM of the beam, assuming a Gaussian profile, and where w−1 is the exper-
imental power noise related to the detectors sensitivity σ by w−1 = (θσ)2.

We assume that beam uncertainties are small and that uncertainties due to foreground
removal are smaller than statistical errors. In Figure 1 we show, for each CORE-related config-
uration, the variance Cl + Nl compared to the fiducial model Cl for the temperature (left) and
polarisation (middle) auto-correlation spectra. The data are cosmic-variance-limited up to the
multipole at which this variance departs from the fiducial model. The figure also shows that
the lensing reconstruction noise is different on all scales for the various configurations.

Together with the primary anisotropy signal, we also take into account information from
CMB weak lensing, considering the power spectrum of the CMB lensing potential CPP

` . In
what follows, we use the quadratic estimator method of Hu & Okamoto [97], that provides
an algorithm for estimating the corresponding noise spectrum NPP

` from the observed CMB
primary anisotropy and noise power spectra. Like in [98], we use, for chapter 5 and sections 7.1,
8.1 and 9.1 to 9.3, the noise spectrum NPP

` associated to the EB estimator of lensing, which is
the most sensitive one for all CORE configurations (out of all pairs of maps). We occasionally
repeated the analysis with the actual minimum variance estimator, and found very similar
results. For section 9.5 we always use the minimum variance estimator based on all pairs of
maps [97, 99].

− 2 lnL = ∑
l
(2l + 1) fsky

(
D
|C̄| + ln

|C̄|
|Ĉ| − 3

)
, (160)

5 http://lpsc.in2p3.fr/perotto/

http://lpsc.in2p3.fr/perotto/


2.5 likelihood and methodology 29

0 1000 2000

`

101

102

103

104

`(
`
+

1
)/

(2
π
)

C
T

T
`

[µ
K

2
]

Fiducial
Planck+lensing
LiteCORE-80
LiteCORE-120
CORE-M5
COrE+

0 1000 2000

`

10-3

10-2

10-1

100

101

102

103

`(
`
+

1
)/

(2
π
)

C
E
E
`

[µ
K

2
]

Fiducial
Planck+lensing
LiteCORE-80
LiteCORE-120
CORE-M5
COrE+

10 100 1000

`

10-7

`(
`
+

1
)/

(2
π
)

C
P
P
`

Fiducial
Planck+lensing
LiteCORE-80
LiteCORE-120
CORE-M5
COrE+

Figure 1: Fiducial model and variance Cl + Nl of each data point alm, given the sensitivity of each
CORE configuration (Planck is also shown for comparison). As long as the variance traces
the fiducial model, the data is cosmic variance limited. This happens down to different an-
gular scales for the temperature (left) and E-mode polarisation (middle). For CMB lensing
extraction (right), on all scales, there is a substantial difference between the noise level of the
different configurations.

where C̄l and Ĉl are the fiducial and theoretical spectra plus noise respectively, |C̄|, |Ĉ| denote
the determinants of the theoretical and observed data covariance matrices respectively,

|C̄| = C̄TT
` C̄EE

` C̄PP
` −

(
C̄TE
`

)2
C̄PP
` −

(
C̄TP
`

)2
C̄EE
` , (161)

|Ĉ| = ĈTT
` ĈEE

` ĈPP
` −

(
ĈTE
`

)2
ĈPP
` −

(
ĈTP
`

)2
ĈEE
` , (162)

D is defined as

D = ĈTT
` C̄EE

` C̄PP
V + C̄TT

` ĈEE
` C̄PP

` + C̄TT
` C̄EE

` ĈPP
`

−C̄TE
`

(
C̄TE
` ĈPP

` + 2ĈTE
` C̄PP

`

)

−C̄TP
`

(
C̄TP
` ĈEE

` + 2ĈTP
` C̄EE

`

)
, (163)

and finally fsky is the sky fraction sampled by the experiment after foregrounds removal.
Note that for temperature and polarization, C̄l and Ĉl could be defined to include the lensed

or unlensed fiducial and theoretical spectra, and in both cases the above likelihood is slightly
incorrect. If we use the unlensed spectra, we optimistically assume that we will be able to do
a perfect de-lensing of the T and E map, based on the measurement of the lensing map with
quadratic estimators. If we use the lensed spectra, we take the risk of double-counting the
same information in two observables which are not statistically independent: the lensing spec-
trum, and the lensing corrections to the TT, EE and TE spectra. To deal with this issue, one
could adopt a more advanced formalism including non-Gaussian corrections, like in [100, 101].
However, we performed dedicated forecasts to compare the two approximate Gaussian likeli-
hoods, and even with the best sensitivity settings of COrE+ we found nearly indistinguishable
results (at least for the ΛCDM+Mν model). The reconstructed parameter errors change by
negligible amounts between the two cases. The biggest impact is on the error on the sound
horizon angular scale σ(θs), which is 5% smaller when using unlensed spectra, because per-
fect de-lensing would allow to better identify the primary peak scales. When using the lensed
spectra, we do not observe any statistically significant reduction of the error bars, and we
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conclude that over-counting the lensing information is not important for an experiment with
the sensitivity of COrE+.

Hence, in the rest of this work we choose to always use the version of the Gaussian likeli-
hood that includes lensed TT, EE and TE spectra. We will occasionally refer to our full CMB
likelihoods with the acronym “TEP”, standing for “Temperature, E-polarisation and lensing
Potential data”.



3
L A R G E - S C A L E S T R U C T U R E

Chapter 3 is based on Sprenger, Archidiacono, Brinckmann, Clesse & Lesgourgues [102]

Future surveys like Euclid and SKA will reach the required sensitivity and angular resolution
to probe the non-linear growth of structures on small scales. Their figure of merit will there-
fore strongly depend on our understanding of the various, often complex physical processes
at play on these scales. This includes general relativistic corrections to nonlinear structure
formation (see e.g. [103] and references therein), the accuracy of Newtonian N-body simula-
tions [104] and fitting methods [105, 106] or emulators [107], the galaxy non-linear bias [108],
the baryonic feedback [109–111], the intrinsic alignment of galaxies [112], etc. Usually, when
doing forecasts, these considerations lead to the introduction of a maximal wavenumber kmax,
below which one trusts the theoretical prediction of the matter power spectrum, and above
which the physical uncertainties are expected to exceed the experimental noise. For instance,
kmax = 0.2 h Mpc−1 (h defining the Hubble expansion rate today H0 = h× 100 km/s/Mpc)
was often used in Euclid forecasts [3, 4]. Introducing such a cut-off scale means that, all the in-
formation obtained by the experiment on smaller scales is simply unexploited. However, this
information is crucial: indeed, the non-linear growth of structure can be significantly altered
in theories of modified gravity [113–115], interacting/decaying dark matter, and for massive
neutrinos [116]. Moreover, a larger lever arm allows for better constraints on the initial shape
of the power spectrum of density fluctuations from inflation [117].

Therefore, new methods need to be developed and tested in order to take into account
the non-linear theoretical uncertainties, while optimizing the amount of information relevant
for cosmology. For instance, it has been proposed to introduce either an error on the power
spectrum, totally uncorrelated between wavelength modes, or, on the contrary, a correlated
error increasing at small scales [118]. Significant differences in forecasts were found between
these two extremes. A totally uncorrelated error would underestimate the theoretical error,
given that non-linear physics should affect the matter power spectrum in a relatively smooth
way, as discussed in Ref. [119], whereas a correlated error may overestimate it, given that
different physical processes will have a different impact on different scales. As an example,
baryonic feedback is expected to dominate on scales 0.5 . kmax . 2 h Mpc−1, whereas the
numerical uncertainty of N-body simulations increases monotonically when going to smaller
scales.

In this chapter, we introduce a new numerical method to take into account the theoretical
uncertainties on the non-linear spectra in a more realistical way. Two cases, based on current
knowledge and expected improvements, will be presented: first, a conservative case, based
on the present theoretical non-linear uncertainties combined with a conservative redshift de-
pendent cut-off scale, and second, a realistic case in which we consider some expected and
realistic refinement in the modelisation of nonlinear effects, e.g. simply due to the increasing

31
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numerical resources by the time the real data will be available in the 2020’s. These two cases
allow us to present what we think are the most realistic range for the future constraints on the
cosmological parameters of the standard cosmological model, including the sum of neutrino
masses, as well as on the parameters of common extended cosmological scenarios. For the first
time, we use such a method to derive realistic forecasts for both Euclid and the SKA, and for
the combination of them, using three probes: galaxy clustering power spectrum, cosmic shear
angular power spectrum, and 21-cm intensity mapping subsequent to reionization. For this
purpose, we have used the Bayesian Markov Chain Monte-Carlo (MCMC) technique, rather
than the Fisher matrix formalism that might be subject to numerical instabilities, particularly
in non-standard cosmological scenarios.

The chapter is organized as follows: in sections 3.1 to 3.3, we introduce respectively the
calculations of the galaxy clustering power spectrum, the weak lensing angular power spec-
trum, and the 21cm intensity mapping power spectrum, as well as the related experimental
uncertainties due to Euclid and SKA specifications, and a description of the likelihood compu-
tations. Finally, in section 3.4, the method used to model the nonlinear theoretical uncertainties
is described.

3.1 galaxy clustering

3.1.1 Galaxy power spectrum

The spatial distribution of galaxies represents a biased tracer of the underlying dark matter
distribution. Therefore, various effects have to be taken into account when converting the
matter power spectrum1 Pm into the observed galaxy power spectrum Pg, i.e.

Pg(k, µ, z) = fAP(z)× fres(k, µ, z)× fRSD(k̂, µ̂, z)× b2(z)× Pm(k̂, z) . (164)

Before proceeding with explaining the different effects and the associated functions fi con-
tributing to this formula, let us notice that we have employed a flat-sky approximation [122,
123] that allows for an unambiguous definition of the angle between the Fourier modes k and
the line of sight distance vector r. The observer’s fixed point of view breaks the isotropy of
the matter power spectrum, but symmetry in perpendicular directions to the line of sight is
preserved. Hence, the following coordinates are sufficient to describe all the effects,

k = |k| , µ =
k · r
kr

. (165)

The parallel part of a mode is given by kq = µk and the perpendicular one by k⊥ = k
√

1− µ2.
Since we can observe only the redshift and the position in the sky, in order to get a distribu-

tion in three-dimensional space, we need to make assumptions on the underlying cosmology2.
However, physical quantities calculated within this fiducial cosmology may differ from the
corresponding values in the true/real cosmology (hereafter denoted by ,̂ e.g. Ĥ). The Fourier
modes of real space can be related to those of the fiducial space via

k̂2 =

[(
Ĥ
H

)2

µ2 +

(
DA

D̂A

)2 (
1− µ2)

]
k2 (166)

1 As explained later in section 8.4, when the model features massive neutrinos, we don’t plug in here the total
matter power spectrum Pm(k, z), but only the power spectrum of baryons and CDM Pcb(k, z), since the galaxy
power spectrum is more a tracer of the latter quantity, see e.g. [1, 120, 121].

2 This is actually one of the reasons for which alternative methods to express the 2-point statistics of galaxy distri-
butions are being discussed in the literature, see e.g. [103] and references therein.
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and

µ̂2 =

(
Ĥ
H

)2

µ2 ·
[(

Ĥ
H

)2

µ2 +

(
DA

D̂A

)2 (
1− µ2)

]−1

, (167)

where H and DA are, respectively, the Hubble parameter and the angular diameter distance
as functions of redshift z. The change in the power spectrum when extracted from the same
data but assuming different cosmologies, the so-called Alcock-Paczinsky effect, gives rise to
the first term in Eq. 164,

fAP(z) =
D2

AĤ
D̂2

AH
. (168)

The second term in Eq. 164 is due to the limited resolution of instruments suppressing the
apparent perturbations on small scales. Assuming Gaussian errors σq(z) and σ⊥(z) on coordi-
nates parallel and perpendicular to the line of sight at redshift z, the suppression factor turns
out to be exponential,

fres(k, µ, z) = exp
(
−k2 [µ2 ·

(
σ2
q (z)− σ2

⊥(z)
)
+ σ2

⊥(z)
])

. (169)

Since Fourier modes scale inversely w.r.t. spatial distances under a change of cosmology, the
above factor is independent of the assumed cosmology.

The cosmological redshift, that is used to obtain the spatial coordinates, is not the only
source of redshift. The classical Doppler effect induces an apparent anisotropy in the redshift-
space power spectrum. On large scales within the linear regime, this effect is described by the
Kaiser formula [124]. On top of this large scale infall, additional random peculiar velocities
of the galaxies further distort the redshift information on smaller scales, leading to features
in redshift-space called fingers of God [125]. Following Ref. [126], we describe this additional
suppression with an exponential factor. To sum up, the redshift effects encoded in the third
term of Eq. 164 are given by

fRSD(k̂, µ̂, z) =
(

1 + β(k̂, z) µ̂2
)2

e−k̂2µ̂2σ2
NL , (170)

where the first term in parentheses corresponds to the Kaiser formula and the exponential
accounts for the fingers of God. In particular, σNL has a fiducial value of 7 Mpc and we allow
it to vary between 4-10 Mpc in our forecasts, while β is the (possibly scale-dependent) growth
rate f (k̂, z) corrected by the galaxy bias b(z),

β(k̂, z) ≡ f (k̂, z)
b(z)

≡ 1
b(z)

·
d ln

(√
Pm(k̂, z)

)

d ln a
= − 1 + z

2b(z)
· d ln Pm(k̂, z)

dz
. (171)

The bias is a function of redshift which relates density perturbations in the galaxy field to dark
matter density perturbations. We will assume the linear approximation δg = b(z)× δm where
the bias is scale independent3. Approximate formulas for the bias are obtained by populating
cosmological simulations with galaxies which will then be measured. In this case, δg and δm

can be identified separately [120, 127, 128].
We divide the surveys into bins of width ∆z = 0.1 with mean redshift z̄. Correlation func-

tions are defined inside the bin’s data and are approximated to probe the power spectrum at
a fixed redshift z̄. The volume of one redshift bin can be computed via

Vr(z̄) = 4π fsky ·
∫

∆r(z̄)
r2dr =

4π

3
fsky ·

[
r3
(

z̄ +
∆z
2

)
− r3

(
z̄− ∆z

2

)]
, (172)

3 We will take into account the consequences of non-linear bias later, either in our choice of a cut-off kmax or through
our ansatz for the theoretical error function: this will be discussed in section 3.4.2.
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Table 4: Euclid specifications. [4, 118]

parameter zmin zmax fsky σz σθ [′′]

Euclid 0.45 2.05 0.3636 0.001(1 + z) 0

where fsky is the fraction of the sky covered by the survey. The distribution of galaxies is
discrete, rather than continuous like the density field δg. Therefore, we have to take into
account the experimental shot noise in each redshift bin,

PN(z̄) =
1

n̄(z̄)
=

Vr(z̄)
N(z̄)

, (173)

where N(z̄) is the number of galaxies in the bin, Vr(z̄) the volume of the bin and n̄(z̄) the
galaxy number density. Taking this shot noise into account, the quantity actually measured by
the experiment in each bin is

Pobs(k, µ, z̄) = Pg(k, µ, z̄) + PN(z̄) . (174)

3.1.2 Euclid specifications

The redshift range accessible to Euclid is roughly 0.45− 2.05. Hence, mean redshifts of z̄ =

0.5, 0.6, ..., 2.0 are used. The error on spectroscopic redshift measurements is assumed to be
σz = 0.001(1 + z), as in Refs. [4, 118]. The effect of angular resolution is neglected. Thus, σ⊥
is set to 0. The specifications for Euclid are summarized in Table 4. The redshift error can be
propagated to the error on radial distance,

σq =
c
H

σz . (175)

The galaxy number count distribution dN(z)/dz
1deg2 has been taken from Table 2 of Ref. [129] as-

suming a limiting flux of 3 × 10−16 erg s−1 cm−2. The values have been divided by 1.37 as
recommended for conservative forecasts. We use a sky fraction of fsky = 0.3636. The total
number of detected galaxies in a given redshift bin can be inferred from the given values,

N(z̄) = 41253 fsky deg2 ·
∫ z̄+ ∆z

2

z̄− ∆z
2

dN(z)/dz
1deg2 dz . (176)

As done in Ref. [118], the bias factor corresponding to galaxies detected by Euclid is assumed
to be approximately given by the simple relation (see, however, Ref. [130] for discussion about
a more realistic scale-dependent galaxy bias relation),

b(z) =
√

1 + z . (177)

In order to account for inaccuracies in this relation, we have introduced two nuisance param-
eters with mean value 1 in the form of the relation

b(z) = βEuclid
0 (1 + z)0.5βEuclid

1 , (178)

where a 5%-precision (2σ) is taken as a prior on the β-factors.
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3.1.3 SKA specifications

Currently, SKA1-MID Band 2 is the most promising option for a galaxy survey with SKA1.
We use specifications according to the baseline design defined in Ref. [131] (see Table 6). We
assume a survey area Sarea = fsky× 41253 deg2 in agreement with the optimization procedure
described in Ref. [132], while the frequency range of SKA2 is the same of Ref. [133].

The target signal of SKA is the HI line or 21cm line of cold neutral hydrogen with a rest
frequency of ν0 = 1420 MHz. The frequency range translates through the redshifting of ν0 into
a redshift range which has been rounded to fit redshift bins of width ∆z = 0.1. The frequency
ν and its error translate into redshifts

z =
ν0

ν
− 1 , (179)

σz = (1 + z)2 σν

ν0
. (180)

These relations are independent of cosmology. Therefore it is valid to treat z as a direct ob-
servable as was done in the case of Euclid.

The number counts of detected galaxies and their bias w.r.t. the underlying dark matter
distribution have to be extracted from simulations. This was done in Ref. [132] using the
following fitting formula

dN(z)/dz
1deg2 = 10c1 zc2 exp(−c3z) , (181)

bHI(z) = c4 exp(c5z) . (182)

Ref. [133] adapted the results to the current baseline design, obtaining the parameters listed
in Table 5. Ref. [132] used a frequency resolution of 10 kHz. Band 2 divided into 64,000 chan-
nels (see [131]) yields a bandwidth of δν = 12.7 kHz per channel, which verifies this number.
The same approach yields δν = 12.8 kHz for SKA2. By equating δν to the full width at half
maximum (FWHM), the approximation of a Gaussian error σν = δν/

√
8 ln 2 can be made.

This determines the error on the redshift measurement as described in Eq. 180. Note that
we are equating here the frequency sensitivity to the sensitivity of the mean frequency of a
galaxy’s signal. However, the fingers of God described by σNL, whose effect is indistinguish-
able from the redshift resolution, dominate the suppression of the power spectrum. Hence,
this approximation is good enough.

The inaccuracy of the theoretical bias formula can be accommodated for with similar nui-
sance parameters as in the case of Euclid,

b(z) = c4βSKA1/2

0 exp(c5βSKA1/2

1 z) , (183)

where βSKA1/2

0 , βSKA1/2

1 are assigned Gaussian priors with mean value 1 and standard devia-
tion 0.025. We also include the effect of angular resolution as a Gaussian error,

σ⊥ = (1 + z)DAσθ , (184)

σθ =
1√

8 ln 2
λ0

B
(1 + z) . (185)

The FWHM of an interferometer is approximately given by the wavelength divided by the
maximum baseline B. In the case of SKA, the wavelength is the redshifted rest wavelength
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Table 5: Fitting parameters. [133]

parameter c1 c2 c3 c4 c5

SKA1 band 2 (5σ) 5.450 1.310 14.394 0.616 1.017

SKA2 (10σ) 6.319 1.736 5.424 0.554 0.783

Table 6: SKA specifications. [131, 133]

parameter νmin [MHz] νmax [MHz] zmin zmax Sarea [deg2] δν [kHz] B [km]

SKA1 band 2 950 1760 0.00 0.50 5,000 12.7 150 (5)

SKA2 470 1290 0.10 2.00 30,000 12.8 3000 (5)

λ0 = 21.11 cm. The maximum baseline is B ≈ 150 km for SKA1 and B ≈ 3000 km for SKA2.
However, given the large sky fraction, the survey is not expected to exploit the maximum
resolution the array is capable of. The simulated number counts are valid for a 10,000 hour
survey. Taking a conservative approach, we use a maximum baseline of 5 km for both SKA1

and SKA2, corresponding to the diameter of the inner core of the array with a high density
of dishes. Even with this approach, the effect of angular resolution remains insignificant for a
galaxy survey.

3.1.4 Galaxy clustering likelihood

The galaxy power spectrum is defined as a function of a continuous density field, which
represents the probability density of finding a galaxy at some position r. The galaxy density
perturbation δg is then a perturbation of this probability density pg,

pg(r) = n̄(r)(1 + δg(r)) , (186)

where n̄(r) is the expected number density of galaxies on a homogeneous background; it is
calculated as the mean density over a sufficiently large volume. In our case this will be the
volume corresponding to one redshift bin.

Starting from this idea, Ref. [134] derived a method to estimate the galaxy power spectrum
Pg, with an error that will be used in the following to build up the likelihood. However, it is
worth noting that this is a simplified approach ignoring the possible effect of galaxy properties
such as luminosity (see e.g. [135]). The result is a Gaussian error

σ2
P =

(2π)3

VkVr
P2

obs(k) =
(2π)3

VkVr

(
Pg(k) + PN

)2 . (187)

The quantity in parentheses on the RHS is the observable power spectrum of Eq. (174) split
into the part proportional to the matter power spectrum and the shot noise PN = 1/n̄ = Vr/N,
where N is the total number of detected galaxies inside the observed volume Vr. The volume
Vk of the shell in k-space over which the estimator is averaged has to be big enough to cancel
the effects of performing a Fourier transform on a finite volume. It can be chosen to be as small
as Vk = (2π)3

Vr
, where Vr is the volume of the single redshift bin. Inside this volume Fourier
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modes are not independent. This means the likelihood is the product of as many Gaussians
as there are independent Fourier modes (one per Vk),

L = N exp

[
−1

2 ∑
independent k

VkVr

(2π)3

(
P̂obs(k)− Pobs(k)

)2

P2
obs(k)

]
. (188)

In the case of forecasts, P̂obs does not represent actual measurements, but it is mock data
corresponding to some fiducial cosmology, computed in the same way as the theoretical Pobs.
Hence, P̂obs and Pobs do not suffer from finite volume effects and are thus smooth, i.e. ap-
proximately constant, inside Vk. To replace the sum by an integral over the whole k-space an
additional factor of 1/2 has to be introduced to account for the fact that the power spectrum
is the Fourier transform of a real quantity, Pobs(k) = Pobs(−k). Reformulated in terms of
χ2 = −2 lnL, the result is

χ2 = ∑̄
z

∫
d3k

Vr(z̄)
2(2π)3

(
P̂obs(k, z̄)− Pobs(k, z̄)

)2

P2
obs(k, z̄)

. (189)

The dependencies of all quantities are shown here for clarity. Inside a redshift bin, all quan-
tities are evaluated at the mean redshift z̄ of that bin. In other words, anything is evaluated
at the same time. This approximation has to be made to get information on the equal-time
three-dimensional power spectrum Pobs(k, z̄).

The change of coordinates and Fourier modes depending on the choice of the cosmological
model has already been discussed in Sec. 3.1. Here, in order to estimate the χ2 we have to
deal with three different cosmologies: the fiducial one used to compute P̂obs, the one used
to compute Pobs, which we want to compare to the mock data, and, finally, the one used to
interpret the observations, in which all quantities of Eq. 189 are defined. The choice of the last
one is arbitrary since all conversion factors in Eq. 189 cancel. Therefore, we can assume it to
be equal to the fiducial one. To clarify what was done in the computation of forecasts, eq. (189)
can be rewritten such that every quantity depending on the underlying cosmology is labelled
with either f (fiducial cosmology) or s (sample cosmology):

χ2 = ∑̄
z

∫
(k f )2dk f

∫ 1

−1
dµ f V f

r

2(2π)2




H f

(D f
A)

2
P f

obs(k
f , µ f )− Hs

(Ds
A)

2 Ps
obs(k

s, µs)

Hs

(Ds
A)

2 Ps
obs(k

s, µs)




2

. (190)

We can now replace the observed power spectrum as a function of the galaxy power spectrum
and of the shot noise, and make use of the relation between the volumes in the two different
spaces:

Hs

(Ds
A)

2
Vs

r
N

=
H f

(D f
A)

2

V f
r

N
. (191)

Then the shot noise exactly cancels from the numerator and we are left with

χ2 = ∑̄
z

∫
(k f )2dk f

∫ 1

−1
dµ f V f

r

2(2π)2




H f

(D f
A)

2
P f

g (k f , µ f )− Hs

(Ds
A)

2 Ps
g(ks, µs)

Hs

(Ds
A)

2 Ps
g(ks, µs) +

H f

(D f
A)

2

V f
r

N




2

. (192)
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The prefactor fAP of Eq. 164 has been written explicitly so every power spectrum can be
evaluated in the same cosmology that was used to produce it. To compute the integral, ks and
µs must be expressed in terms of k f and µ f as described in Eqs. (166, 167).

Note that in this formula we correct some small inaccuracies present in the previous work
by Ref. [118]. In that reference, the pre-factor V f

r was incorrectly replaced by Vs
r (1 + z̄)−3, the

second argument of Ps
g was approximated as µ f instead of µs, and the volume in the last term

of the denominator was Vs
r instead of V f

r . We checked explicitly that these inaccuracies led to
slightly over-conservative error forecasts in Ref. [118].

3.2 cosmic shear

3.2.1 Angular power spectrum

A cosmic shear survey maps the alignments of galaxies induced by weak gravitational lens-
ing caused by large scale structures along the line of sight. The cosmological information is
extracted from auto- and cross-correlations of alignment maps at different redshifts.

The projected shear power spectrum of the redshift bins i and j at multipoles ` can be
inferred from the three-dimensional matter power spectrum via

Cij
` =

9
16

Ω2
mH4

0

∫ ∞

0

dr
r2 gi(r)gj(r)P

(
k =

`

r
, z(r)

)
. (193)

The functions gi(r) depend on the radial distribution of galaxies in the redshift bin i, i.e. on
the convolution of the distribution of detected galaxies with the corresponding redshift errors,

gi(r) = 2r(1 + z(r))
∫ ∞

r
dr′

ηi(r′)(r′ − r)
r′

, (194)

ηi(r) = H(r)ni(z(r)) , (195)

ni(z) =
Di(z)∫ ∞

0 Di(z′)dz′
, (196)

Di(z) =
∫ zmax

i

zmin
i

P(z, z′)
dngal

dz
(z′) dz′ . (197)

Due to the intrinsic alignment of galaxies, there is also a noise contribution N`. The noise
spectrum added to the theoretical Cij

` is

Nij
` = δijσ

2
shearn

−1
i , (198)

where σshear is the root mean square of the galaxy intrinsic ellipticity and is set to 0.3, and ni is
the number of galaxies per steradian in the i’th redshift bin. We divide the redshift range into
ten redshift bins with equal number of galaxies. Therefore, for every redshift bin, we have

ni =
ngal

10
× 3600

(
180
π

)2

. (199)
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Table 7: Sky coverage and cosmic shear specifications for Euclid (see [118]) and for SKA (see [136]).
Here ngal is in units of arcmin−2.

Experiment fsky ngal zm α β γ fspec-z zspec-max σphoto-z zphoto-max σno-z

SKA1 0.1212 2.7 1.1
√

2 2 1.25 0.15 0.6 0.05 2.0 0.3

SKA2 0.7272 10 1.3
√

2 2 1.25 0.5 2.0 0.03 2.0 0.3

Euclid 0.3636 30 0.9
√

2 2 1.5 0.0 0.0 0.05 4.0 0.3

3.2.2 Euclid and SKA specifications

The number density of sources and the corresponding redshift errors for Euclid and SKA are
taken, respectively, from Ref. [118] and from Ref. [136]4. The unnormalized redshift number
density distribution is given by

dngal

dz
= zβ exp

[
−
(

z
αzm

)γ]
. (200)

The redshift uncertainty is parameterized as follows,

P(z, z′) =





1− fspec-z√
2πσphoto-z

exp

[
− (z− z′)2

2σ2
photo-z(1 + z)2

]
+ fspec-zδ(z− z′) , z ≤ zspec-max

1√
2πσphoto-z

exp

[
− (z− z′)2

2σ2
photo-z(1 + z)2

]
, z ≤ zphoto-max

1√
2πσno-z

exp
[
− (z− z′)2

2σ2
no-z(1 + z)2

]
, z ≥ zphoto-max ,

(201)

where the measured redshift is denoted as z′, while the true one is denoted as z. Some of these
Gaussians span a big redshift range, but they are anyway multiplied by the distribution dngal

dz
that is almost zero outside the range of interest.

The number counts of Euclid are negligible above z = 3.5, so here the error function be-
comes

P(z, z′) =
1√

2πσphoto-z
exp

[
− (z− z′)2

2σ2
photo-z(1 + z)2

]
. (202)

The sky coverage fsky is the same as in the case of galaxy clustering (table 7).

3.2.3 Cosmic shear likelihood

The likelihood for lensing surveys is taken from Ref. [118],

− 2 lnL ≡∑
l
(2l + 1) fsky

(
dmix

l

dth
l

+ ln
dth

l

dobs
l
− N

)
, (203)

4 Ref. [136] provides values for Euclid which differ only in the value of σphoto-z
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where N is the number of redshift bins, which is equal to the dimension of the Cl-matrices
whose determinants are denoted with d. The determinant of these N× N symmetric matrices
can be defined as

dth
l = det

(
Cth ij

l + Nij
l

)
, (204)

dobs
l = det

(
Cfiducial ij

l + Nij
l

)
, (205)

dmix
l = ∑

k
det


Nij

l +





Cth ij
l , j 6= k

Cfiducial ij
l , j = k


 . (206)

Writing the theoretical angular power spectrum as Cl and the observational one as Ĉl , both
including noise, eq. (203) can be expressed as a multivariate Gaussian,

L = N∏
l,m

{
1√

det Cl
exp

[
−1

2 ∑
i,j

ai∗
lm(C

−1
l )ijaj

lm

]}
. (207)

The observed angular power spectrum is defined as

Ĉij
l =

1
2l + 1

l

∑
m=−l

ai∗
lmaj

lm . (208)

The inverse of a matrix A can be replaced with A−1 = adj(A)/ det(A), where adj(A) is
the adjugate of A, i.e. the transpose of the cofactor matrix of A. The likelihood can then be
rewritten by executing the sum over m,

L = N∏
l

{(
1√

det Cl

)2l+1

exp

[
−1

2 ∑
i,j
(2l + 1)Ĉij

l
(adj Cl)

ij

det Cl

]}
. (209)

The remaining sum over i and j yields exactly dmix
l . This can best be explained graphically,

∑
i,j

Ĉij
l (adj Cl)

ij = ∑
i,j

Ĉij
l

∣∣∣∣∣∣∣∣

... 0 ...

0 Ĉij
l 0

... 0 ...

∣∣∣∣∣∣∣∣
= ∑

j

∣∣∣∣∣∣∣∣

... Ĉi1 j
l ...

... Ĉi2 j
l ...

... ... ...

∣∣∣∣∣∣∣∣
= dmix

l . (210)

We can now compute χ2,

χ2 = −2 lnL = −2 lnN + ∑
l
(2l + 1)

(
ln dth

l +
dmix

l

dth
l

)
. (211)

Our best fit model, i.e. where the theoretical model gives the same as what is observed, should
yield an effective χ2 of zero. This means we should subtract the zero point from Eq. 211, where
the zero point is given by Eq. 211 with dth

l = dobs
l ,

χ2
0 = −2 lnL = −2 lnN + ∑

l
(2l + 1)

(
ln dobs

l +
N × dobs

l

dobs
l

)
. (212)

Finally, after introducing an approximative correction for incomplete sky coverage [118], we
obtain Eq. 203.
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3.3 21cm intensity mapping

3.3.1 21cm power spectrum

The goal of 21cm intensity mapping experiments is to measure the differential brightness
temperature ∆Tb, defined as the difference between the observed brightness temperature Tb
and the one expected for CMB photons only, Tγ.

The signal coming from 21cm hyperfine transitions of neutral hydrogen (HI) atoms is emit-
ted at the frequency ν0 = 1420.4057 MHz, so the frequency measured today can be directly
related to the redshift,

∆Tb ≡
Tb(z)− Tγ(z)

1 + z
. (213)

Here, we focus only on the low redshift signal coming from the neutral hydrogen inside
galaxies. A detailed description of cosmology with the 21cm-signal at high redshifts, both
from reionization and from the cosmic dawn and dark ages, and how it can be used to probe
modified gravity, can be found in Refs. [137–141]. At low frequencies, the mean differential
brightness temperature is given by

∆Tb ' 189
[

H0(1 + z)2

H(z)

]
ΩHI(z) h mK , (214)

where H0 is the Hubble constant H0 = h × 100 km/(s Mpc) and ΩHI(z) = ρHI(z)/ρc is the
mass density of neutral hydrogen divided by the critical density of the present-day universe.

Let us first understand where this relation comes from. The total brightness temperature at
redshift z is given by the background radiation field’s temperature, with some fraction of it
that is absorbed and re-emitted due to 21cm hyperfine transitions in neutral hydrogen atoms.
The properties of HI in absorption and emission are described by the spin temperature TS and
the optical depth τ through

Tb = TS(1− e−τ) + Tγe−τ . (215)

Due to the low probability of a 21cm transition, the optical depth is typically small. The
differential brightness temperature can therefore be written linearly in τ,

∆Tb =
TS − Tγ

1 + z
(
1− e−τ

)
≈ TS − Tγ

1 + z
τ . (216)

In order to compxute τ, the absorption coefficient α has to be determined through the equation
of radiative transfer

dI
ds

= −αI + j , (217)

where s is the radial distance (in physical units) and I is the specific intensity, which is the
energy flux per frequency and solid angle. Its radial derivative is given by

dI
ds

= E10
φ(ν)

4π

dn0

dt
. (218)

Each atom falling from the exited state 1 into the ground state 0 emits a photon of energy
E10. The radial derivative of the energy flux is hence proportional to the time derivative of the
number of atoms in the ground state per unit of physical volume, i.e. the number density n0.
Under the assumption of isotropy, the derivative with respect to solid angle becomes a factor
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of 1/4π. Due to line broadening, a single measured frequency corresponds to a small band of
emitted frequencies described by the line profile φ(ν), which is normalized to

∫
φ(ν)dν = 1.

In terms of Einstein coefficients, the time derivative of the number density can be written
as dn0/dt = −n0B01 I + n1B10 I + n1A10. In the next steps, we use natural units where } = c =
kB = 1, as well as the general relations A10 = 4πν3

0 B10 and g0B01 = g1B10. For 21cm hyperfine
transitions, the statistical weights are g0 = 1 and g1 = 3 and one gets TS � E10. Therefore,
one gets the simplifications

n1

n0
=

g1

g0
exp(−E10

TS
) ≈ 3(1− E10

TS
) , (219)

and nHI ≡ n0 + n1 ' 4n0 ' 4
3 n1. Put together, one gets

dn0

dt
= − A10

4πν3
0

3
4

nHI
E10

TS
I +

3
4

nHIA10 , (220)

which gives an expression for α,

α =
3A10

16TS

φ(ν)

ν0
nHI . (221)

The line profile will be described by the simple model of a constant distribution over some
range δν, corresponding to a small Doppler shift caused by constant velocity dispersion dv

ds
over a region of HI of radial extend δs,

φ(ν) =
1
δν

=
1

dv
ds δs · ν0

. (222)

Averaged over big volumes, the approximation of a constant Hubble flow dv
ds = H(z) can be

used. The optical depth is then given by

τ ≡
∫

δs
αds =

3A10

16ν2
0 TS

1
H(z)

nHI . (223)

The number density of neutral hydrogen can be written as its background value plus a per-
turbation in the HI density field,

nHI =
(1 + z)3

mH

3H2
0

8πG
ΩHI(z)(1 + δHI) . (224)

With all constants written explicitly, the differential brightness temperature is given by

∆Tb =
3A10

16ν2
0

3H0

8πGhmH

}c3

kB

(
H0(1 + z)2

H(z)

)
ΩHI(z)(1 + δHI)h

(
1− Tγ

TS

)
. (225)

The last term can be neglected because TS � Tγ inside galaxies, whereby we arrive at Eq. 214

when we also replace the constants in front with a numerical prefactor. Modelling the differ-
ential brightness temperature in this way was also done by e.g. Refs. [126, 142, 143].

Deviations from this value are proportional to the density perturbations in neutral hydro-
gen, which can be related to the dark matter density perturbations via

∆Tb − ∆Tb = ∆TbδHI = ∆TbbHIδm , (226)
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where, when computing the power spectrum of fluctuations in the differential brightness
temperature, it is convenient to neglect the local fluctuations of H(z). As a consequence, the
power spectrum P21 is proportional to the matter power spectrum as

P21 = b2
21Pm , (227)

with b21 ≡ ∆TbbHI. The redshift dependence of ΩHI(z) and bHI(z) are modelled following
Ref. [144] as

ΩHI(z) = ΩHI,0(1 + z)αHI (228)

bHI(z) = 0.904 + 0.135(1 + z)1.696 , (229)

with ΩHI,0 and αHI set to the fiducial values 4× 10−4 and 0.6, respectively, and allowed to vary
in the forecast. As in the case of galaxy clustering, we use nuisance parameters to describe the
future accuracy of bias modeling,

bHI(z) = βIM
0

[
0.904 + 0.135(1 + z)1.696βIM

1

]
, (230)

with mean value zero and a prior corresponding to a rms of 0.025.
Additionally, we have to consider observational effects analogous to those of the galaxy

power spectrum of Eq. 164, i.e.

P21(k, µ, z) = fAP(z)× fres(k, µ, z)× fRSD(k̂, µ̂, z)× b2
21(z)× Pm(k̂, z) . (231)

The prefactors are the same as in the case of galaxy surveys, because the signal dominantly
consists of radiation originating from galaxies. As such, it is affected by red/blue-shifting
according to the movement of the galaxies. A power spectrum reconstructed from this map of
intensities therefore suffers from redshift-space distortions, limited resolution, and the Alcock-
Paczinsky effect in the same way as one reconstructed from a map of galaxy positions.

By considering δ(k) as a set of independent Gaussian random realizations, the variance
is simply given by the power spectrum squared. In terms of independent modes of a finite
volume survey, it is corrected by the volume of a single independent mode (2π)3/Vr and by
the averaging volume Vk which determines the grid of sampled modes,

σ2
P(k) =

(2π)3

VkVr
P2(k) . (232)

So, the same formalism as described in section 3.1.4 can be used. The observed power spec-
trum also includes a noise spectrum,

Pobs
21 (k, µ, z) = P21(k, µ, z) + PN(z) , (233)

where PN(z) will be described in the next subsection. Note that, although the noise power
may mathematically take the role of the shot noise of galaxy power spectra, it is part of the
power spectrum itself, whereas shot noise is only an artefact caused by the discrete nature of
the signal, in contrast to the theoretical distribution used to describe it. In fact, there is also
a shot noise in the case of intensity mapping, since the signal still originates from discretely
spaced galaxies. Nevertheless, it is negligible (see e.g. [145]), because of the huge number of
observed galaxies when no selection process is reducing their number.

By identifying galaxies, all unwanted contributions to the power spectrum except for the
shot noise could be removed. Instead, the correlations of unprocessed intensity include corre-
lations in the foregrounds and in random noise in the sky or in the experimental setup itself.
Hence, the biggest disadvantage of 21cm intensity mapping surveys, in comparison to 21cm
galaxy surveys, is the high contamination of the signal with telescope noise and foreground
signals. If the latter are sufficiently smooth in frequency, they are nevertheless removable.
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3.3.2 SKA specifications

We start by describing the noise power spectrum PN in Eq. 231. We are here considering a
survey executed in single dish mode; this enhances the speed of the survey, but dismisses the
advantages of radio interferometry. In this case, the noise power is given by

PN(z) = T2
sys

4π fskyr2(z) (1 + z)2

2H(z)ttotν0Ndish
, (234)

where Tsys is the system temperature, ttot is the total observation time and Ndish is the number
of dishes. The noise power originates from random uncorrelated fluctuations in the intensity
of single pixels. Their amplitude is given by Tsys. Since this noise is independent of the signal
it can be described as an additional perturbation field whose power spectrum PN is added to
the power spectrum of the signal. We adopt ttot = 10000 h and Ndish = 200, i.e. the same noise
power as in Ref. [144], where one can also find a derivation of Eq. 234.

Since there is no need to resolve a single galaxy, SKA1 has access to signals from higher
redshift. Therefore, band 1 can also be used for intensity mapping. Following Ref. [145], the
system temperature is defined as the sum of the instrument’s temperature Tinst and the sky
temperature,

Tsky = 20 K
(

408 MHz
ν

)2.75

. (235)

The Gaussian suppressions of the power spectrum are quantified using the relation between
the full width at half maximum to the rms, given by FWHM =

√
8 ln 2 σ. In the case of

frequency, the channel width due to band separation into 64,000 channels is used as FWHM,

σθ =
1√

8 ln 2
λ0

D
(1 + z) , (236)

σν =
δν√
8 ln 2

. (237)

In single dish mode, the angular resolution is determined by the diameter D = 15 m of a
single dish. As a result, σθ is as big as 0.34 ◦(1 + z).

As we already mentioned, foregrounds are expected to be much larger than the 21cm signal
itself. Nevertheless, foregrounds are expected to be sufficiently spectrally smooth to be re-
moved. Here, correlations between remnants of the foregrounds or artefacts of their removal
are expected to be negligible. Yet, the effect of foreground removal is taken into account in two
ways. First, the observed part of the sky is decreased to the regions with the lowest foreground
intensity. Following Ref. [144], the probed fraction of the sky is reduced to fsky = 0.58. Second,
as discussed in Ref. [146], foreground removal does not work close to the edges of the fre-
quency band (i.e.. 50 MHz). Therefore, we reduce the redshift range to exclude information
from the edges.

The specifications used for intensity mapping forecasts are listed in Table 8.
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Table 8: IM specifications. [131, 145]

parameter νmin [MHz] νmax [MHz] zmin zmax δν [kHz] Tinst [K]

SKA1 band 1 ∼400 (350) ∼1000 (1050) 0.45 2.65 10.9 23

SKA1 band 2 ∼1000 (950) 1421 (1760) 0.05 0.45 12.7 15.5

3.4 non-linear theoretical uncertainty

Euclid and the SKA will survey a large sky volume and detect a huge number of galaxies.
This will dramatically decrease the size of sampling variance and shot noise compared to
current surveys. Therefore, on small scales, theoretical errors will be the leading source of
uncertainty and the limiting factor for parameter extraction, at least for analyses based on
three-dimensional power spectra, such as galaxy surveys and intensity mapping. Here, we
describe our strategy for modelling the theoretical error. Since it is easier to deal with the
theoretical error of the bi-dimensional angular power spectrum, we start by discussing the
weak lensing case.

3.4.1 Cosmic shear error modelling

The simplest way to model the theoretical uncertainty is to introduce a cutoff. This means
neglecting all theoretical uncertainties up to a wavenumber kNL, while dismissing all informa-
tion above that wavenumber. This scheme is a good approximation when the result does not
depend strongly on the region where the uncertainty increases from almost zero to infinity.
Since non-linear effects increase with time, the cutoff scale should then decrease with redshift.
Following Ref. [147], the redshift dependence of non-linear effects can be parametrised as

kNL(z) = kNL(z = 0) · (1 + z)2/(2+ns) . (238)

The quantity of interest for weak lensing surveys is the shear power spectrum C`, which is
given by Eq. 193 as a weighted integral of P(k) convoluted with a window function spanning a
large range in k. Therefore, there is no simple equivalent `NL of kNL. Our approach consists in
identifying values of ` above which most information comes from wavenumbers k > kNL. First,
we find the value r corresponding to the maximum of the product of the window functions
for a pair (i, j) of redshift bins,

rij
peak =

∫ ∞

0

dr · r
r2 gi(r)gj(r)

∫ ∞

0

dr
r2 gi(r)gj(r)

. (239)

This value mostly depends on the lower redshift bin of i and j, so an average over higher bins
can be performed to get r̄i

peak ≡ (∑j>i rij
peak)/(N − i) where N is the number of bins. This can

be related to a maximum ` through

`i
max = kNL(z) · r̄i

peak . (240)

All Cij
` at ` larger than `i

max or `j
max are discarded. The resulting C`’s are still quadratic.
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Figure 2: Euclid cosmic shear combined with Planck (see section 3.5 for details): sensitivity to a 0.1%
variation of P(k) for different cut-off wavenumbers (always scaled with redshift). The flat
`max = 5000 cut-off (blue) shows the amount of information available in absence of a cut-
off. The second (green) and third (red) cases are more conservative than a sharp cut-off at
` = 1310 would be. For comparison, the dashed line marks ` = 1310, corresponding to the
`max used by the KiDS collaboration in Ref. [148] as a reasonable cut-off producing stable
results. The last case (cyan) is a little more constraining than this sharp cut-off, intended to
reflect improvements in non-linear modeling in the analysis of future data. For our analysis
we will use kNL(0) = 0.5 h/Mpc (conservative) and kNL(0) = 2.0 h/Mpc (realistic) as our
non-linear cut-off wavenumbers. The corresponding 1-σ sensitivity of our MCMC forecasts
can be seen in table 9.

One way to better understand the likelihood consists in splitting it in contributions from
each `. The likelihood for cosmic shear can be expanded as

− 2 lnL = ∑
`

∆χ2
`(∆P) , (241)

where δP is the difference between the fiducial and sampled power spectrum. To understand
the weight of each multipole, we can plot χ2

`(δP) versus ` while assuming that the fiducial and
sampled power spectra differ by the same relative factor ∆P = ∆P(k, z̄) = P − P̂ = 0.001P
for every redshift and wavenumber. The resulting contributions ∆χ2

` solely depend on the
characteristics of the likelihood.

In Figure 2, we see the ∆χ2
` contributions to the Euclid cosmic shear likelihood for different

choices of kNL(0). A comparison of forecasts for Planck + Euclid cosmic shear for these values
of kNL(0) is shown in Table 9. We see that the sensitivity does not differ by a large amount
despite great changes in the non-linear cut-off, with only ns and Mν showing non-negligible
improvement in sensitivity with increasing cut-off values. Since the results do not depend
strongly on the choice of kNL, the cut-off approximation is accurate enough.

For our analysis, we will adopt two values: a “conservative” cut-off kNL(0) = 0.5 h/Mpc,
and a “realistic” cut-off kNL(0) = 2.0 h/Mpc. The realistic case is supposed to reflect improve-
ments in the modelling of non-linear scales in the analysis of future data. Previous analyses,
like that of Ref. [148] with a sharp bin-independent cut-off at l = 1310, used an amount of
information somewhere “in between” our conservative and realistic assumptions.

In Figure 3, we show the sensitivity distribution for Euclid, SKA1 and SKA2 for the realistic
(left) and conservative (right) non-linear cut-offs. We see that SKA1 is not competitive and
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Table 9: Planck (see section 3.5) plus Euclid cosmic shear 1-σ sensitivity (normalized by corresponding
Planck-only values) of MCMC forecasts for the non-linear cut-off values used in Figure 2. We
see that most sensitivities do not depend strongly on the choice of a given kNL(0). Only ns and
Mν show a non-negligible improvement in sensitivity, despite the large changes in the cut-off.
Therefore, we find that the non-linear cut-off scheme is appropriate for our analysis.

kmax 100ωb ωcdm θs ln(1010As) ns τreio Mν [eV]

0.5 h/Mpc 0.77 0.27 0.97 0.94 0.72 0.96 0.50

1.0 h/Mpc 0.76 0.27 0.94 0.95 0.70 0.98 0.41

2.0 h/Mpc 0.76 0.25 0.97 0.94 0.65 0.97 0.36

lmax = 5000 0.74 0.24 0.94 0.94 0.58 0.96 0.30

Planck only 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Figure 3: Sensitivity distribution for all cosmic shear likelihoods. The left panel shows the realistic
approach and the right panel the conservative one. The ∆χ2-values are contributions for each
multipole l obtained by setting ∆P = 0.001P for all k. We find that SKA1 is not competitive,
but that SKA2 will out-perform Euclid.

that SKA2 will be more constraining than Euclid, because of the better accuracy of redshift
measurements and of the greater sky coverage.

3.4.2 Power spectrum error modelling (galaxy clustering + intensity mapping)

For the case of the three-dimensional galaxy power spectrum Pg(k, z) = Pg(k, µ, z), things are
a bit more complicated. After binning in z-space, instead of dealing with a discrete expansion
parameter ` in each bin of mean redshift z̄, we have two continuous variables (k, µ). The
traditional way to build a likelihood is recalled in section 3.1.4. The contribution of one redshift
bin and of the interval (k± dk

2 , µ± dµ
2 ) to −2 lnL (i.e. to the χ2) can be written in a differential

form,
dχ2

dkdµ
= k2 Vr(z̄)

2(2π)2 ×
[

∆Pg(k, µ, z̄)
σobs(k, µ, z̄)

]2

, (242)

where ∆Pg(k, µ, z̄) is the difference between the predicted and observed galaxy power spec-
trum, the prefactor proportional to k2 accounts for the density of independent Fourier modes,
and Vr(z̄) is the volume of one redshift bin given by Eq. 172. The observational error is given
by σobs(k, µ, z̄) = Pg(k, µ, z̄) + PN , where PN is some constant noise. If we want to understand
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how the experimental sensitivity depends on different scales, it is worth looking at the effec-
tive error,

dχ2

dkdµ
≡
[

∆Pg(k, µ, z̄)
σeff(k, µ, z̄)

]2

⇒ σeff(k, µ, z̄) = σobs(k, µ, z̄)
[

k2 Vr(z̄)
2(2π)2

]−1/2

. (243)

The power spectrum decreases when k increases, such that the effective error decreases ap-
proximately like ∝ k−2. This in turn means that the amount of accessible information grows
to infinity. If a cut-off kNL is used to prevent this, the region directly below this cut-off will
be the one with the biggest weight in the likelihood, making the results very sensitive to the
choice of kNL. Thus, a more realistic way to account for the theoretical error is needed.

We first review the approach of Ref. [118] to this problem. It starts from the assumption that
for each (k, µ, z), we can reasonably estimate the 1σ uncertainty δPg(k, µ, z) on the theoretical
prediction for the galaxy power spectrum Pg(k, µ, z) (e.g. by comparing the output of various
simulations) and define a 1σ envelope function α for the relative error,

α(k, µ, z) = δPg(k, µ, z)/Pg(k, µ, z) . (244)

The concrete implementation of this error in the likelihood is not trivial, because the errors
made on Pg(k, µ, z) at different values of (k, µ, z) should in principle be correlated. If we as-
sume that the whole (k, µ, z) volume probed by the experiment can be split in bins in which
the errors are uncorrelated, we can introduce one independent nuisance parameter per bin,
and marginalise over it. This approach is actually numerically expensive, but in good ap-
proximation, the marginalisation can be replaced by an analytic minimisation. This leads to a
simple expression for the contribution of each uncorrelated bin (k± dk

2 , µ± dµ
2 , z̄± ∆z̄

2 ):

dχ2

dkdµ
= k2 Vr(z̄)

2(2π)2 ×
[
∆Pg(k, µ, z̄)

]2

σ2
obs(k, µ, z̄) + σ2

th(k, µ, z̄)
(245)

where σth(k, µ, z) = α(k, µ, z)Pg(k, µ, z). Note that the bin width in (k, µ)-space appears ex-
plicitly in the differential expression on the left-hand side, while the bin width in redshift
space appears implicitly in the expression of Vr(z̄) given in Equation (172). Equivalently, one
can take an arbitrary binning in (k, µ, z)-space, provided that the theoretical error is rescaled
self-consistently: this is the approach followed in Ref. [118].

The difficulty is then to evaluate the correlation length in (k, µ, z)-space. The authors of
Ref. [118] chose a method that compares the effect of the theoretical error to a reference
∆χ2 = 1, obtained by varying a single Gaussian nuisance parameter. However, this method
makes the amplitude of the error dependent on the range of the integrals [kmin, kmax], and on
the number of redshift bins. As a result, the error depends on the survey specifications and
cannot be used in our combined forecast of the future sensitivity of various experiments. It is
therefore necessary to take a closer look at the correlation of the theoretical error.

The authors of Ref. [119] address this problem by introducing the full correlation matrix of
the theoretical error. They write the contribution of each redshift bin to their log-likelihood as

χ2 = ∑
i,j

[
(∆P(ki)−Q(ki))

δij

σobs(ki)σobs(k j)
(∆P(k j)−Q(ki)) + Q(ki)C−1

ij Q(k j)

]
, (246)

where the wavenumber range has been discretised arbitrarily, redshift-space distortions are
neglected (thus quantitites do not depend on µ), Q(ki) is a single realization of the theoretical
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error, and Cij = 〈Q(ki)Q(k j)〉 is the error correlation matrix, for which one needs to make
some assumption. Ref. [119] parametrises Cij in terms of an error amplitude for each given ki
(equivalent to δP(ki) = α(ki)P(ki) in our notation), and a correlation length ∆k such that the
correlation is exponentially suppressed for |ki − k j| > ∆k,

Cij = α(ki)P(ki) exp

[
−(ki − k j)

2

2∆k2

]
α(k j)P(k j) . (247)

The forecasts can then be performed with a marginalisation over each nuisance parameter
Q(ki). Compared to the previous method, this approach relies on one more assumption: one
needs to postulate not only an error amplitude function α(k), but also a correlation length
∆k, accounting for the minimum typical scale over which we allow the theoretical error to
fluctuate randomly. This enlarged parametrisation compared to Ref. [118] is a good thing,
because it makes more clear and explicit assumptions on the theoretical error. The authors of
Ref. [119] argue that ∆k can be matched with the Baryon Acoustic Oscillation (BAO) scale.

Unfortunately, there are several reasons why we cannot directly use this approach in our
forecasts. First, the marginalisation over one nuisance parameter for each ki is still tractable
for the authors of Ref. [119] because their forecast is Fisher matrix based. In a full MCMC
forecast like ours, it would introduce too many varying parameters and the convergence of the
MCMC chains would be prohibitively slow. Additionally, Ref. [119] neglected RSD corrections
and assumed no correlations between the error in different redshift bins. In the present work,
we wish to incorporate RSD effects and to address the issue of error correlations in redshift
space. In principle, this would imply a generalisation of Eq. 246 to one nuisance parameter
for each argument Q(ki, µj, zk), with a six-dimensional correlation matrix. This problem is too
heavy to be solved with an MCMC approach. Note that we cannot simply approximate the
marginalisation over each Q by an analytic minimization, because there is no simple analytic
solution in presence of an exponential correlation function.

Therefore, we chose to stick with the idea of Ref. [119] in formulating the problem in terms
of correlation lengths, but, in order to make it computationally tractable, we assume that the
(k, µ, z) space can be split into approximately uncorrelated bins. In other words, we replace the
non-diagonal covariance matrix by a diagonal one with a bigger spacing (∆k, ∆µ, ∆z) between
adjacent bin centers (ki±1, µj±1, zk±1), such that the Q(ki, µj, zk) are statistically independent:

χ2 = ∑
m,n

[
(∆Pg(km, z̄n)−Q(km, z̄n))2

σ2
obs(km, z̄n)

]
+ ∑

i,j,k

Q2(ki, µj, zk)

(α(ki, µj, zk)Pg(ki, µj, zk))2 . (248)

As usual in the expression of a galaxy survey likelihood, the first sum runs over all indepen-
dent Fourier modes km (see section 3.1.4 or seminal papers like Ref. [134]) and over redshift
bins of mean z̄n separated by ∆z̄. Instead, the second sum runs over the centers of the larger
bins with uncorrelated theoretical errors, spaced by steps (∆k, ∆µ, ∆z) that play the role of
correlation lengths. The function Q is assumed to be continuous, with a few nodes Q(ki, µj, zk)

that are treated as nuisance parameters. In principle, the value of Q in an arbitrary point
(k, µ, z), or equivalently (k, z), which appears in the first sum could be obtained by perform-
ing a smooth interpolation of the Q function between the node values. However, in practice,
we do not need to perform any such interpolation in our numerical implementation: we shall
see below that Q can be eliminated analytically and does not appear in our final expression
(253).
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It is conventional to assume that, in the first sum the volume of each independent mode is
so small that the discrete sum can be represented by an integral (see section 3.1.4),

∑
m,n
→∑

n

∫ kmax

kmin

dk · k2
∫ 1

−1
dµ

Vr(z̄n)

2(2π)2 . (249)

Actually, the second sum can also be replaced by an integral, provided that we rescale the
steps of integration by the correlation lengths, in order to avoid counting the contribution of
each independent nuisance parameter multiple times,

∑
i,j,k
→ ∑̄

z

∆z̄
∆z

∫ kmax

kmin

dk
∆k

∫ 1

−1

dµ

∆µ
. (250)

In other words, this is equivalent to increasing the number of nuisance parameters by some
factor, while dividing their weight by the same factor in order to keep a fully equivalent
expression. Then the χ2 can be written with a single integral

χ2 = ∑
n

∫ kmax

kmin

dk · k2
∫ 1

−1
dµ

Vr(z̄n)

2(2π)2

[
(∆Pg(k, µ, z̄n)−Q(k, µ, z̄n))2

σ2
obs(k, µ, z̄n)

+
Q2(k, µ, z̄n)

σ2
th(k, µ, z̄n)

]
, (251)

where we defined

σth(k, µ, z) =
[

Vr(z)
2(2π)2 k2∆k∆µ

∆z
∆z̄

]1/2

α(k, µ, z)Pg(k, µ, z) . (252)

Finally, we can approximate the marginalisation over nuisance parameters by an analytic min-
imisation5 and obtain a computationally tractable expression,

χ2 = ∑
n

∫ kmax

kmin

dk · k2
∫ 1

−1
dµ

Vr(z̄n)

2(2π)2

[
(∆Pg(k, µ, z̄n))2

σ2
obs(k, µ, z̄n) + σ2

th(k, µ, z̄n)

]
. (253)

This expression differs from the usual likelihood derived in absence of a theoretical error
only through the presence of the term σ2

th in the denominator. The χ2 defined in Eq. 253 has
the same form as the one used in Ref. [118], but the new ingredient is the more rigorous
definition of the quantity σth in Eq. 252, which comes from a precise discussion of the role of
correlation lengths (∆k, ∆µ, ∆z). We must now specify this term and motivate some choices
for the correlation lengths and for the error envelope function α(k, µ, z). These choices should
be guided by the types of errors which are expected to be made on theoretical predictions for
non-linear corrections, and by the shape and amplitude of these errors.

The choice of ∆µ relates to the question: for a given bin (ki, zk), how many independent
nuisance parameters should describe the error for different µj values? A most reasonable
answer is one. Indeed, the error made on the prediction of the non-linear power spectrum
Pm(k̂, z), and on the (possibly non-linear) bias b(k̂, z), is isotropic in 3D Fourier space. When
it propagates to α(k, z, µ) (the relative error on Pg(k, µ, z)), it only gives a small µ-dependence
through the projection from k̂ to k, with no further error introduced in this projection. On
the other hand, the departure from our possibly too simplistic ansatz for RSD and fingers-
of-God corrections, as well as instrumental resolution effects, could potentially be strongly µ-
dependent and motivate the introduction of more than one independent nuisance parameter
per (ki, zk) bin.

5 Like in Ref.[118], we perform the analytic minimization with a small approximation. Since σobs contains Pg, it
should also contain a term Q added to it. This small dependence of the standard deviation on the theoretical error
has an extremely small impact. We neglect it and stick to the definition σobs = Pg + PN .
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However, there are some arguments in favor of neglecting the theoretical error from RSD
modeling, compared to other theoretical error sources. They will be discussed later in the
context of quantifying the total theoretical error. We conclude that, for a given bin (ki, zk), the
errors made on Pg(k, µ, z) for different µ values can be considered as fully correlated with
each other to very good approximation. Taking a single independent nuisance parameter per
(ki, zk) bin is mathematically equivalent to setting ∆µ = µmax − µmin = 2 in Eq. 252. Therefore
the theoretical error expression is reduced to

σth(k, µ, z) =
[

Vr(z)
(2π)2 k2∆k

∆z
∆z̄

]1/2

α(k, µ, z)Pg(k, µ, z) . (254)

For the correlation length in wavenumber space we will use ∆k = 0.05 h/Mpc, like in
Ref. [119]. This is chosen due to being similar to the BAO scale, which is the smallest inherent
scale in the matter power spectrum, and as a conservative guess for the correlation length in
k-space.

The correlation length in redshift space is harder to guess. Theoretical errors are not nec-
essarily correlated throughout the whole redshift range probed by the experiment. A value
close to, but slightly smaller than, the total redshift range probed by the experiment (1.5 for
Euclid, 1.9 for SKA2) should be a conservative guess. We assume ∆z = 1, which is equivalent
to assuming between one and two z-bins with independent theoretical errors for each ki bin.
Note that Ref. [119] did not discuss the issue of correlations in redshift space and used the
χ2 formula (248) in each redshift bin, each time with a new bunch of independent nuisance
parameters Q(ki). This is equivalent to setting a correlation length ∆z implicitly equal to the
size of individual redshift bins ∆z̄. We do not adopt this approach, since the errors made by N-
body simulations in the prediction of Pm(k̂, z) at a given scale k̂, and for two nearby redshifts
z̄n and z̄n+1, should not be statistically independent. Moreover, the impact of the theoretical
error should not directly depend on the number of bins in which one chooses to split the data.

The relative error envelope function α(k, µ, z) should model uncertainties on three types of
non-linear corrections: the prediction of the matter power spectrum itself, of the bias, and of
redshift-space distortions. We will neglect the third contribution (i.e. uncertainties on the RSD
correction term) for several reasons. First, the fingers-of-God correction term already leads
to a strong suppression of the power spectrum, which results in a big relative observational
error when the power spectrum becomes smaller than the noise power. At this point, any ad-
ditional theoretical error becomes irrelevant. Furthermore, RSD corrections can be modelled
up to higher order than used here [149] and their modelling is continuously improving (see
e.g. Refs. [150, 151] and references therein). Therefore, we can focus on the theoretical error on
the non-linear matter power spectrum and bias predictions. The bias is usually assumed to be
linear up to scales k < 0.2 h/Mpc. Beyond, a non-linear treatment would be more realistic (see
e.g. [108]), but non-linear bias can be predicted by future simulations up to some residual un-
certainty. Hence, the theoretical uncertainty should account mainly for inaccuracies in matter
power spectrum and bias predictions from simulations.

The HALOFIT semi-analytic formula [105, 152], which we use for the present forecasts, only
reaches accuracies of 5% at k < 1 h/Mpc and 10% at k < 10 h/Mpc, according to Ref. [105].
This error was estimated from a comparison with N-body simulations. The more recent HM-
code [106] achieves better precision than HALOFIT for k values larger than the BAO scale
(k > 1 h/Mpc), while the precision on BAO scales is a little worse. Overall, the effect is
an error of 5% on all scales [106]. Finally, Ref. [104] found that present-day N-body codes
(Ramses [153], Pkdgrav3 [154], Gadget3 [155]) agree to within 1% at k = 1 h/Mpc and 3% at
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k = 10 h/Mpc. Following the plots in Ref. [104], we assume an exponential growth of the un-
certainty in the decimal logarithm of k crossing 0.33% at k = 0.01 h/Mpc. However, these are
pure dark matter simulations and the effect of baryonic feedback, as well as the k-dependence
of galaxy-to-mass bias on nonlinear scales, will increase the error. According to Ref. [109], the
effect of baryonic feedback reaches the one percent level at k = 0.3 h/Mpc and grows to a 30%
suppression of the power spectrum at k = 10 h/Mpc. To account for uncertainties in the future
modeling of baryonic feedback, which will of course be smaller than the effect itself, and to
allow for remaining additional uncertainty from bias and RSD modeling at small scales, we
increase the theoretical error to 1% at k = 0.3 h/Mpc and 10% at k = 10 h/Mpc. Consequently,
we define a relative error function passing through these three fixed points:

1. 0.33% error at k = 0.01 h/Mpc,

2. 1% error at k = 0.3 h/Mpc,

3. 10% error at k = 10 h/Mpc.

This can be achieved with the following ansatz,

α(k, z) =





a1 exp
(

c1 · log10
k

k1(z)

)
, k

k1(z)
< 0.3

a2 exp
(

c2 · log10
k

k1(z)

)
, k

k1(z)
> 0.3 ,

(255)

where the wavenumber k1 coincides with 1 h/Mpc at redshift zero and scales with redshift
like

k1(z) =
1h

Mpc
· (1 + z)2/(2+ns) . (256)

The four free factors are fixed by the three fixed points defined above and the condition of
continuity:

a1 = 1.4806 % , c1 = 0.75056 ,

a2 = 2.2047 % , c2 = 1.5120 .

What we will call later the “realistic case” amounts to trusting this error function up to large
wavenumbers. Then, the information coming from small scales is suppressed gradually by the
increasing relative error function, and the actual value of the cut-off kmax becomes effectively
irrelevant. What we will instead call the “conservative case” is an analysis using this error
function, while introducing a sharp cut-off at k = 0.2 h/Mpc (i.e., the error is effectively
infinite above this value), following the scaling in redshift as defined Eq. 238.

Examples of the effective error6 for each likelihood, and for a few selected redshift bins,
are shown in Figure 4 for galaxy clustering and Figure 5 for intensity mapping. On the same
plot, we show which scales the experiments are most sensitive to, by plotting dχ2

dkdµ arbitrar-
ily normalised to a constant relative difference between the theoretical and observed spectra
(∆Pg = εPg). The vertical line marks kNL(z̄), which is used as a sharp cut-off for the conserva-
tive setting. Note the different kNL(z̄) values, corresponding to the mean redshift of each bin.
Both the realistic and conservative setting make use of the theoretical error (red). For galaxy
clustering, the observational errors (blue) dominate the error in the radial direction (right
panel), due to redshift space distortions, whereas the closer we get to µ = 0 the observational

6 The effective theoretical error is defined analogously to the observational one (Eq. 243).
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Figure 4: Galaxy clustering: examples of the relative effective error σeff/Pg in select redshift bins, de-
composed into contributions from the observational error (blue) and theoretical error (red).
To show which scales the experiment is most sensitive to (taking these errors into account),
we show in grey the function ∼ dχ2/(dkdµ), which is arbitrarily normalised to a constant
relative difference between the theoretical and observed spectra (∆Pg = εPg). The vertical line
marks the sharp cut-off used for the conservative setting, kNL(z̄).
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Figure 5: Intensity mapping: examples of relative effective errors σeff/P21 and sensitivity contributions
∼ dχ2/(dkdµ), arbitrarily normalised to ∆P21 = εP21. The vertical line marks kNL(z̄), which is
used as a sharp cut-off for the conservative setting. Both the realistic and conservative setting
make use of the theoretical error (red). Note the different kNL(z) values, corresponding to the
mean redshift of each bin.
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error diminishes and the theoretical error takes over. This illustrates the necessity for intro-
ducing a measure of the error on non-linear modelling. The effect is also seen as a function of
µ in the bottom panel of Figure 6. For intensity mapping, we notice that the trend is different
from galaxy clustering (Figure 4). Due to the poor angular resolution, the observational error
(blue) is larger in the transverse direction compared to the line-of-sight, especially for band 1,
and dominates on most scales.

Just like we did for cosmic shear, we can illustrate the sensitivity of the likelihood to differ-
ent parts of the data set by computing the χ2 contribution projected on the parameters z̄, k, or
µ. The likelihood for galaxy surveys and intensity mapping can be written as

χ2 = ∑̄
z

∫ kmax(z̄)

kmin

dk
∫ +1

−1
dµ k2 Vr(z̄)

2(2π)2 ×
∆P2

σ2
obs + σ2

th
, (257)

where ∆P is the difference between the fiducial and sampled power spectrum. Again, by
omitting one of the sums or integrals, we obtain the desired projection. Similar to Figure 3 for
cosmic shear, we see in Figure 6 the effect of varying the power spectrum by ∆P = ∆P(k, z̄) =
P− P̂ = 0.001P, but now for galaxy clustering and intensity mapping and projected onto z̄
(top row), k (middle row), or µ (bottom row) The left panel shows the realistic case and the
right panel our conservative case.

From Figure 6, we see again that the sensitivity of galaxy survey forecasts for SKA1 are
not competitive with the ones for Euclid and SKA2. This is because of the small sky coverage
and low number of galaxies, which result in a large observational error. SKA1 will cover a
much smaller redshift range than Euclid and SKA2. At low redshifts the constraining power
of galaxy clustering data strongly depends on the amount of non-linear information available,
i.e. on the non-linear uncertainty and cut-off. Since an SKA1 galaxy survey is limited to low
redshifts, the difference between the sensitivity of the conservative scheme compared to the
realistic one is expected to be quite large. We can see this effect in Figure 4 (middle row),
where, for the conservative case, the sharp cut-off at kNL(z) removes the k-range in which
galaxy clustering with SKA1 is sensitive.

Intensity mapping with SKA1 is more promising than SKA1 galaxy clustering. In contrast
to galaxy surveys, the observational error of intensity mapping dominates for high k for both
µ = 0 and µ = 1 (Figure 5). As a result, there is less non-linear information available. The poor
angular resolution limits the information gain to radial directions µ ' 1 for large redshifts,
i.e. for band 1 (Figure 6, bottom row). For the realistic case, band 1 provides a greater amount
of information on linear and mildly non-linear scales, whereas band 2 is better at probing
highly non-linear scales (Figure 5, left panel, with the cumulative effect summarized in Figure
6, middle row, left panel). In the conservative case, band 1 accesses more information than
band 2, since the non-linear scales are largely removed by the sharp cut-off (Figure 5, with the
cumulative effect in Figure 6, middle row, right panel).

Galaxy surveys with Euclid or SKA2 are much more sensitive than for SKA1. The excellent
angular resolution, high sky coverage, and low shot noise levels strongly suppress observa-
tional errors. For µ = 0 the information gain is almost entirely limited by theoretical accuracy,
especially on non- and quasi-linear scales, so there is a lot of potential for increasing the sen-
sitivity of predictions with improved modelling of non-linear effects on structure formation
(Figure 4, left panel). At µ = 1 redshift-space distortions suppress the power spectrum at high
k to a level where shot noise again dominates (Figure 4, right panel). In comparison, Euclid
is more sensitive at high redshifts than SKA2, because a higher density of detected galaxies
is achieved, as the galaxies are brighter in the infrared than in the 21cm regime. SKA2 is
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Figure 6: Sensitivity distribution for all three-dimensional power spectrum likelihoods. The left panel
shows the realistic approach and the right panel the conservative one. The ∆χ2-values are
contributions when two of the quantities k, µ and z are integrated or summed over, and
∆P = 0.001P everywhere. For intensity mapping (IM), band 1 and 2 of SKA1 are considered.
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more sensitive at lower redshifts, because of the greater sky coverage achieved due to the
transparency of the Milky-Way to 21cm radiation (Figure 6, top row).

In chapter 8, section 8.4 and chapter 9, sections 9.4 and 9.5, we will use the results of
this chapter to derive realistic (and conservative) sensitivities for Euclid and the SKA, with a
particular focus on neutrino-related quantities and dark energy. However, first we will address
a non-linear effect that is relevant when considering neutrinos: the scale-dependent galaxy
bias induced by massive neutrinos.

3.5 experimental setup

We run Markov Chain Monte Carlo (MCMC) forecasts for several possible experimental con-
figurations, following the commonly used approach described for example in [96] and [156].
The method consists in generating mock data according to some fiducial model. One then
postulates a Gaussian likelihood with some instrumental noise level, and fits theoretical pre-
dictions for various cosmological models to the mock data, using standard Bayesian extraction
techniques. For the purpose of studying the sensitivity of the experiment to each cosmological
parameter, as well as parameter degeneracies and possible parameter extraction biases, it is
sufficient to set the mock data spectrum equal to the fiducial spectrum, instead of generating
random realisations of the fiducial model.

In this section we summarize the mock data sets used in our forecasts in sections 8.4, 9.4
and 9.5, their shorthand names and relevant assumptions for non-linear modeling. These data
sets can be combined in single forecasts. For this purpose we followed some rules to avoid
double-counting of information:

• Only combine GC+GC, GC+IM or IM+IM if the redshift ranges do not overlap, since
both take their information from the position of galaxies.

• Do not combine CS+CS because they all use information down to redshift zero.

Galaxy clustering (sections 3.1 and 3.4.2)

kmin = 0.02 1/Mpc cuts off scales that are bigger than the bin width or violate the small
angle approximation

Non-linear cut-off at kNL(z) = kNL(0) · (1 + z)2/(2+ns) (see Eq. 238)
Theoretical uncertainty growing with k after k = 0.01 h/Mpc (see Eq. 255):
0.33% (k ≤ 0.01 h/Mpc), 1% (k = 0.3 h/Mpc), 10% (k = 10 h/Mpc)

• Euclid GC cons. Euclid galaxy clustering conservative
Theoretical uncertainty, kNL(0) = 0.2 h/Mpc

• Euclid GC real. Euclid galaxy clustering realistic
Theoretical uncertainty, kmax = 10 h/Mpc

• SKA1 GC cons. SKA1-MID band 2 galaxy clustering conservative
Theoretical uncertainty, kNL(0) = 0.2 h/Mpc

• SKA1 GC real. SKA1-MID band 2 galaxy clustering realistic
Theoretical uncertainty, kmax = 10 h/Mpc

• SKA2 GC cons. SKA2-MID galaxy clustering conservative
Theoretical uncertainty, kNL(0) = 0.2 h/Mpc
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• SKA2 GC real. SKA2-MID galaxy clustering realistic
Theoretical uncertainty, kmax = 10 h/Mpc

Intensity mapping (sections 3.3 and 3.4.2)

Same kmin, non-linear cut-off and theoretical uncertainty as for galaxy clustering

• SKA1 IM1 cons. SKA1-MID band 1 intensity mapping conservative
Theoretical uncertainty, kNL(0) = 0.2 h/Mpc

• SKA1 IM1 real. SKA1-MID band 1 intensity mapping realistic
Theoretical uncertainty, kmax = 10 h/Mpc

• SKA1 IM2 cons. SKA1-MID band 2 intensity mapping conservative
Theoretical uncertainty, kNL(0) = 0.2 h/Mpc

• SKA1 IM2 real. SKA1-MID band 2 intensity mapping realistic
Theoretical uncertainty, kmax = 10 h/Mpc

Cosmic shear (sections 3.2 and 3.4.1)

`min = 5 Non-linear cut-off at `i
max = kNL(z) · r̄i

peak (see eqs. (238) and (240))

• Euclid CS cons. Euclid cosmic shear conservative
kNL(0) = 0.5 h/Mpc

• Euclid CS real. Euclid cosmic shear realistic
kNL(0) = 2.0 h/Mpc

• SKA1 CS cons. SKA1-MID cosmic shear conservative
kNL(0) = 0.5 h/Mpc

• SKA1 CS real. SKA1-MID cosmic shear realistic
kNL(0) = 2.0 h/Mpc

• SKA2 CS cons. SKA2-MID cosmic shear conservative
kNL(0) = 0.5 h/Mpc

• SKA2 CS real. SKA2-MID cosmic shear realistic
kNL(0) = 2.0 h/Mpc

Cosmic microwave background

• Planck Instead of the real Planck data, it is more convenient to run our forecasts
with some mock temperature, polarization and CMB lensing data generated for the
parameter values of our fiducial model. We go up to `max = 3000 and we use noise
spectra matching the expected sensitivity of the final Planck data release, in particular
improving constraints from polarization.

In section 9.5 we used a subset of the Euclid and SKA configurations, namely the "realistic"
setup for galaxy clustering and the "conservative" setup for cosmic shear, and the DESI BAO
setup from section 5.2, but we recomputed noise spectra for all CMB configurations from
section 2.4 using the minimum variance estimator, in order to have a fair comparison between
CMB experiments.



4
N E U T R I N O I N D U C E D G A L A X Y B I A S

Chapter 4 is based on Vagnozzi, Brinckmann, Archidiacono, Freese, Gerbino & Lesgourgues [1]

Considerable effort is being devoted towards future large-scale structure surveys, such as
galaxy redshift surveys, able to access smaller and increasingly non-linear scales. At the same
time, achieving a reliable detection of Mν requires an exquisite control of systematics, includ-
ing both instrumental and modelling systematics. A potential particularly delicate modelling
systematic stems from the fact that we only have access to biased tracers of the matter power
spectrum, such as the clustering of galaxies. The underlying matter power spectrum is related
to the measured power spectrum of a biased tracer Pt(k, z) through

Pt(k, z) = b2
m(k, z)Pm(k, z) , (258)

where the bias bm quantifies the statistical relation between the clustering of matter and of its
luminous tracers (see e.g. [158] for a recent review). In this chapter, we will be concerned with
galaxies as biased tracers of the underlying matter field.

The bias bm, as appearing in Eq. (258), is defined with respect to the total matter field,
comprising CDM, baryons, and massive neutrinos. When considering galaxies as tracers, we
can already at this point appreciate an important subtlety: Eq. (258) implicitly assumes that
galaxies trace the total matter field. However, the typical scales probed by galaxy clustering are
below the neutrino free-streaming scale, where neutrinos do not cluster. Hence, one should
actually expect galaxies to trace the CDM+baryons field instead of the total matter field. This
expectation has been proved to be valid by several dedicated simulations [120, 121, 159, 160],
as well as theoretical studies [161], and its consequences for parameter inference are the topic
of investigation of this chapter. Our work is not the first one to investigate the impact of this
aspect on parameter inference. As far as we are aware, such a study was first carried out
in [127], which found that taking this effect into account when analysing future data will
be crucial. In our work we confirm this finding, although there are a number of differences
between our analysis and that of [127], which we shall comment more on later.

In cosmologies without massive neutrinos, the behaviour of the bias as a function of scale
(wavenumber k) is well understood, albeit increasingly harder to model at smaller scales.
On large, linear scales (k . 0.15 h Mpc−1 at z = 0), the bias can be modelled to very good
approximation as being constant [158]. On smaller, non-linear scales, complexities inherent to
the process of galaxy formation and evolution make the bias intrinsically scale-dependent [158,
162]. On mildly non-linear scales, accurate phenomenological parametrizations of the scale-
dependent bias exist (see e.g. [163] for constraints on scale-dependent galaxy bias models
from current data, and [130] for a study on the scale-dependent galaxy bias from CMB lensing-
galaxy cross-correlations, with applications to constraints on Mν).

In cosmologies with massive neutrinos, the situation is more complex. In this case, the bias
defined with respect to the total matter field is scale-dependent even on large scales, with the
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form of the scale-dependence dictated by the value of Mν: bm(k, z) = bm(k, z, Mν). On the
other hand, one can define the bias with respect to the CDM+baryons power spectrum Pcb(k),

Pt(k, z) = b2
cb(k, z)Pcb(k, z) . (259)

In this case, the bias bcb becomes scale-independent on large scales, and universal [120, 121, 159,
160]. That is, its scale-dependence is no longer determined by Mν, but only by properties inher-
ent to galaxy formation and evolution, and appears only on small scales1. Hereafter, all quan-
tities (power spectra, biases, and so on) are implicitly considered to be redshift-dependent.
Hence, for simplicity, we will drop all z-dependences in our equations from now on.

The common approach when deriving constraints on Mν from clustering measurements is
to define the bias with respect to the total matter power spectrum, as in Eq. (258). The bias is
still approximated as scale-independent, at least on large scales. While formally incorrect, this
choice does not affect analyses given the current sensitivity of cosmological data. However, this
could be no longer true with upcoming high-precision cosmological data aiming to measure
Mν. Therefore, it is timely to explore the impact of neglecting the neutrino-induced scale-
dependent bias (NISDB) in light of future clustering measurements.

In this chapter, we revisit the issue of the neutrino-induced scale-dependent bias in light of
future data from the Euclid satellite [4, 168]. As we noted earlier, a previous similar study was
performed in [127], where a Fisher matrix approach was adopted. Our work differs from [127]
on at least three main aspects: I) we use a Markov Chain Monte Carlo (MCMC) approach,
which is better suited to capture important parameter correlations, such as those involved
in the measurement of the sum of the neutrino masses. The MCMC approach enables us to
definitively show that correcting for the NISDB will be important, in order not to bias the deter-
mination of cosmological parameters, in particular the sum of the neutrino masses, II) we clarify a
number of subtle issues concerning improper ways of correcting for the NISDB effect, and III)
our MCMC forecasts includes an extensive modelling of systematic effects for the upcoming
Euclid survey.

This chapter is organized as follows: in section 4.1, we show how to correct for the NISDB
in practice, and clarify a number of subtle issues concerning this correction. In section 4.2,
we describe the simulated datasets we consider and how we model them. In section 4.3, we
present our findings. They indicate that correcting for the NISDB will be crucial for future
cosmological surveys and are summarised in Tab. 11 for the reader’s convenience. Finally, in
section 4.4 we provide concluding remarks.

4.1 correcting for neutrino induced bias

In this section, we describe in detail our prescription for correcting for the NISDB effect. We
begin in Sec. 4.1.1 by considering a simple example to get a feeling for how the correction
could be implemented. In section 4.1.2 we discuss a more general and correct approach in the
presence of redshift-space distortions (RSD). We then comment on the impact of non-linear
evolution and how it modifies our correction in section 4.1.3. Finally, we give a schematic

1 In reality, even defining the bias with respect to the CDM+baryons field still leaves a tiny residual scale-dependence
in bcb on large scales [128, 164–167]. Essentially, the reason is that the scale-dependent growth induced by massive
neutrinos affects the critical collapse overdensity for halos at different scales. Heuristically, we can think of this
effect as being due to the impact of massive neutrinos on halo formation, whereas the effect we will be concerned
with in this paper is related to whether or not halos can form in first place. For simplicity, since the residual scale-
dependence due to the effect of neutrinos on halo collapse is extremely small, we choose to ignore it here. This
effect is nonetheless worth exploring in much more detail, and we plan to return to this issue in a future project.
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summary of our final prescription for correcting for the NISDB effect, taking into account
RSD and non-linear evolution, in section 4.1.4.

4.1.1 Bias correction in the absence of redshift-space distortions

In the absence of RSD, we can compare the two expressions for the power spectrum of a
given tracer Pt(k), Eqs. (258, 259), and obtain the following relation between the “meaningful”
bias defined with respect to the CDM+baryons field bcb and the “effective” one defined with
respect to the total matter field bm,

bm(k, Mν) = bcb(k)

√
Pcb(k, Mν)

Pm(k, Mν)
. (260)

At the level of linear perturbation theory, this can be expressed as

bm(k, Mν) = bcb(k)
Tcb(k, Mν)

Tm(k, Mν)
, (261)

where Tcb(k, Mν) and Tm(k, Mν) are the linear transfer functions of the CDM+baryons and
total matter components, respectively. In particular, the CDM+baryons transfer function is
given by

Tcb(k, Mν) =
ΩcdmTcdm(k, Mν) + ΩbTb(k, Mν)

Ωcdm + Ωb
, (262)

where Ωcdm [Ωb] and Tcdm(k, Mν) [Tb(k, Mν)] denote the CDM [baryon] density parameter
and transfer function, respectively. Notice that the definition of transfer function we adopt
automatically includes the growth function D(k, z). In Eq. (261), we have explicitly written
all k and Mν dependences to emphasize the important fact that bcb is universal (its scale-
dependence is not dependent on the value of Mν), while bm is not. The dependence of bm on
Mν arises from the dependence of the transfer functions on the neutrino mass2.

Equation (261) allows us to express the galaxy power spectrum Pt in terms of the total
matter power spectrum Pm through a rescaling by a factor (Tcb/Tm)2, since one can insert
Eq. (261) into Eq. (258) to get

Pt(k, Mν) = b2
cb(k)

(
Tcb(k, Mν)

Tm(k, Mν)

)2

Pm(k, Mν) . (263)

Notice that all the terms appearing on the right-hand side of Eq. (263) are known: the linear
total matter power spectrum Pm and transfer functions Tcb and Tm can be computed by using
Einstein-Boltzmann codes, and we can model the universal bias bcb accurately up to mildly
non-linear scales.

4.1.2 The impact of redshift-space distortions

Redshift-space distortions (RSD) arise from the fact that galaxies are observed not in real
space, but in redshift space. Thus, the redshift-space power spectrum we observe needs to be

2 We remind the reader that the scale-dependence of bcb we explicitly introduced is relevant only on small non-linear
scales [158], or equivalently at large k, which we will not be concerned with in this work.
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corrected for the effect of peculiar velocities. Kaiser showed in a seminal paper [124] that, on
large scales (small k) and when not including massive neutrinos, Eq. (258) is modified due to
the effect of RSD to

Pt(k) =
(
bm(k) + fm(k)µ2)2

Pm(k) , (264)

where f is the growth rate, not to be confused with the growth factor that is included in the
transfer functions. The growth rate f is defined as

fm(k) =
d ln

(√
Pm(k, z)

)

d ln a
, (265)

with a being the scale factor (of course, the growth rate is implicitly redshift-dependent).
Finally, the µ term in Eq. (264) is defined as the cosine of the angle between the Fourier mode
k and the line-of-sight vector r,

µ ≡ k · r
kr

, k ≡ |k| , r ≡ |r| . (266)

Note that the expression in Eq. (264) is not exact, as it lacks an exponential suppression due
to the fingers-of-God (FoG) effect [126, 169]. However, the FoG correction is bias-independent
and therefore does not impact our discussion. Hence, for simplicity, we drop it for the moment.
It will be included later in the analysis.

Kaiser’s result was derived for models in which the growth rate is scale-independent, which
is true for the minimal ΛCDM model, but not in presence of massive neutrinos. In the latter
case, one could expect again that RSD effects are driven solely by the baryon and cold dark
matter fluctuations. This has been checked explicitly on the basis of simulations in [170], where
it was proven that in the presence of RSD and massive neutrinos (but neglecting FoG effects),
one has

Pt(k, Mν) =
(
bcb(k) + fcb(k, Mν)µ

2)2
Pcb(k, Mν) , (267)

with

fcb(k, Mν) ≡
d ln

(√
Pcb(k, z, Mν)

)

d ln a
. (268)

As in the previous subsection, we can always use this result to define an effective bias bm(k, Mν)

and an effective growth rate f eff
m (k, z, Mν) such that the following holds,

Pt(k, Mν) =
(

bm(k, Mν) + f eff
m (k, z, Mν)µ

2
)2

Pm(k, Mν) , (269)

provided that the “effective” bias bm(k, Mν) is related to the “meaningful” one by Eq. (261),
while the effective growth factor should be defined as

f eff
m (k, z, Mν) ≡

(
Tcb(k, z, Mν)

Tm(k, z, Mν)

)
fcb(k, z, Mν) . (270)

As a note of warning, the above should not be confused with the actual growth rate of the
total matter spectrum

fm(k, z, Mν) =
d ln

(√
Pm(k, z, Mν)

)

d ln a
. (271)
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Both of these effective quantities, bm and f eff
m , are easy to implement at the level of likelihood

modules of an MCMC sampling package, with a proper computation of fcb(k, z, Mν) and
f eff
m (k, z, Mν) based on the total matter spectrum and on transfer functions. However, as we

shall discuss very shortly, it is better to perform an implementation directly at the level of the
Einstein-Boltzmann solver, which can be modified to output directly Pcb and fcb on top of Pm

and fm: this allows to better take non-linear growth effects into account.
We emphasize that in the absence of RSD, the NISDB effect could be corrected equivalently

by either rescaling the bias [Eq. (261)] or the power spectrum [Eq. (263)] by related quantities,
(Tcb/Tm) or (Tcb/Tm)2 respectively. The symmetry between bias and power spectrum is broken
by the growth rate term in the RSD correction.

4.1.3 The impact of non-linear effects

Before discussing the details and results of our analysis, the impact of non-linear evolution
on cosmological perturbations needs to be discussed. Usually, in Boltzmann solvers, non-
linear effects are introduced via prescriptions such as Halofit [105] or HMcode [106]: these are
accurate simulations-based fitting formulas for the non-linear matter power spectrum. In [152]
Halofit has been revised and extended to describe non-linear evolution in cosmologies with
massive neutrinos.

Let us consider the case in which the NISDB correction, envisaged in Sec. 4.1.2, is imple-
mented at the level of likelihood module in the MCMC sampling package. In such a way, the
correction would be implemented after applying the Halofit prescription to the linear evolu-
tion. However, the transfer functions entering Eqs. (261, 270) are by definition linear quantities.
Hence, the NISDB correction, as described in Sec. 4.1.2, would rescale the non-linear power
spectrum by a linear quantity, and would be somewhat inconsistent.

One way to address this issue, is to derive the right quantities not at the level of likeli-
hood module, but rather at the level of the Einstein-Boltzmann solver. We modified the code
CLASS [171] in such a way as to output at the same time Pcb(k, z, Mν) and Pm(k, z, Mν) for each
given model. The former is used for computing the galaxy spectrum Pt(k, z, Mν) [derived from
Eqs. (267, 268)], while the latter can be used for computing other observables, for instance the
Limber-approximated cosmic shear spectrum. For consistency, when computing non-linear
spectra, the code processes the linear Pcb(k, z, Mν) with a version of Halofit without massive
neutrino corrections, and the linear Pm(k, z, Mν) with a version of Halofit including the mas-
sive neutrino corrections3 of Ref. [152]. These new features will be included in a forthcoming
release of the public CLASS code.

4.1.4 Prescription summary

Let us briefly summarize our prescription for correcting for the NISDB effect, taking RSD and
non-linear effects correctly into account. The prescription works according to the following
three steps:

1. Compute the CDM+baryons power spectrum Pcb(k) by tracking the evolution of the
CDM and baryon overdensities in the Einstein-Boltzmann solver.

3 Note that another consistent way of getting the non-linear total matter power spectrum Pm(k, z, Mν), previously
investigated in Ref. [121], is to compute first the non-linear Pcb(k) using Halofit without neutrino mass effects,
and then to add the contribution of the linear neutrino spectrum Pν(k) and of the cross-correlation term.
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2. Use the Halofit prescription to calculate the non-linear corrections to Pcb(k), and obtain
the non-linear CDM+baryons power spectrum Pnl

cb (k). Pay attention to which version of
Halofit is used. The version used in this case should not have the non-linear corrections
due to massive neutrinos.

3. Finally, in the likelihood module, multiply the obtained non-linear CDM+baryons power
spectrum Pnl

cb (k) by the universal bcb-dependent RSD correction, to obtain the theoretical
galaxy power spectrum Pth

t (k), i.e., to first approximation,

Pth
t (k, Mν) =

(
bcb(k) + fcb(k, Mν)µ

2)2
Pnl

cb (k, Mν) . (272)

The obtained theoretical galaxy power spectrum Pth
t (k) can then be compared to the

measured galaxy power spectrum through the likelihood function, in order to obtain
constraints on the cosmological parameters through the usual MCMC analysis. In prin-
ciple, a non-linear RSD correction should be used instead of the linear Kaiser formula
in Eq. (272): for instance, see [172, 173] for a resummed perturbation theory approach to
modelling non-linear RSD. However, the correct way of implementing non-linear RSD
corrections is still a matter of debate in the community. In this work, we limit our analy-
sis to linear scales and hence only model linear RSD (see section 4.2).

4.2 datasets and analysis methodology

In this section, we discuss the analysis we conduct in order to determine the impact of the
NISDB correction on constraints from future galaxy clustering data. For each experiment, we
construct a mock likelihood wherein the role of the mock data spectrum is played by the
theoretical spectrum of a fiducial cosmological model. These likelihoods take into account the
expected noise level and systematic uncertainties associated with the experiments.

We perform an MCMC parameter inference from these combined likelihoods in order to
forecast the sensitivity of the future experiments to the model parameters (this approach was
already followed e.g. in [96, 102, 118]). Our analysis pipeline is implemented in MontePython [174],
an MCMC sampling and likelihood package that has recently been updated to v3.0 [175].
The features of v3.0, most notably an expanded suite of likelihoods and a more efficient
Metropolis-Hastings sampler, were employed for this work. MontePython is interfaced with
the Boltzmann solver CLASS [171]. We choose a fiducial model where Mν is pessimistically set
to 0.06 eV (since this value of Mν should in principle be the hardest to detect), the minimal
value allowed by neutrino oscillation data in the normal ordering scenario [8–12].

On the CMB side, we use the likelihood fake_planck_realistic [50] included in MontePython
v3.0, taking into account temperature, polarisation and CMB lensing extraction. We adopt
noise spectra roughly matching those expected from the full Planck results4. For the purpose
of forecasting sensitivities, it is easier to use a mock Planck likelihood rather than a real one,
because we can then use the exact same fiducial model across all likelihoods.

On the side of Large Scale Structure (LSS), we employ the Fourier-space galaxy cluster-
ing mock likelihood euclid_pk presented in [102], with specifications for the Euclid mission
taken from [4, 118, 129]. To reiterate, the likelihood employs the following corrections and
approximations (for full details see section 3.1):

• Redshift-space distortions using the Kaiser formula [124].

4 Courtesy of Anthony Challinor, for the CORE-M5 proposal.
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• Exponential suppression due to Fingers of God [126].

• Correction due to limited instrumental resolution.

• Correction for Alcock-Paczyński effect.

• Two nuisance parameters, β0 and β1, to account for inaccuracies in the bias evolution
with redshift b(z) = β0(1 + z)0.5β1 .

• Flat sky approximation [122, 123].

• NISDB correction discussed in this work.

We remark that the procedure to correct for the NISDB outlined in Sec. 4.1.4 is fully general
once RSD and non-linear effects are properly accounted for. However, we will only use the
linear power spectrum in this work. Our choice is motivated by considerations of simplicity, in
addition to the fact that the correct way of accounting for non-linear RSD is still under debate.
To restrict ourselves to linear scales, we impose a cut-off kmax in wavenumber space, scaling
with redshift as in section 3.4,

kmax(z) = kmax(z = 0)× (1 + z)
2

2+ns , (273)

where kmax(z = 0) = 0.2 h Mpc−1 and ns is the tilt of the primordial scalar power spectrum.
We note that it will be interesting to check the impact of including non-linear scales, modulo
a correct modelling thereof, on our results, and defer this analysis to future work.

We consider a seven-parameter cosmological model described by the six-parameter con-
cordance ΛCDM model with the addition of the sum of the neutrino masses Mν. The seven
parameters are the physical baryon and CDM energy densities ωb ≡ Ωbh2 and ωcdm ≡ Ωcdmh2,
the angular size of the sound horizon at decoupling θs, the redshift of reionization zreio in place
of the optical depth to reionization τreio, and the amplitude and tilt of the primordial scalar
power spectrum As and ns, in addition to the sum of the neutrino masses Mν. The neutrino
mass spectrum is approximated as three mass eigenstates degenerate in mass. It has been
shown that this approximation is sufficiently accurate for the sensitivity of current and future
data, which are strongly sensitive to the sum of the neutrino masses Mν and negligibly sensi-
tive to the masses of the individual eigenstates [18, 20, 50, 74, 99, 157, 176–180]. The values of
the cosmological parameters defining our fiducial model are reported in Tab. 10.

Parameter Fiducial value

ωb 0.02218

ωcdm 0.1205

100 θs 1.04146

zreio 8.24

ln[1010As] 3.056

ns 0.9619

Mν (eV) 0.06

Table 10: Fiducial values for the cosmological parameters adopted when simulating future cosmologi-
cal data.

To explore the impact of not correctly accounting for the NISDB correction, we consider the
following two cases, denoted by correct and wrong respectively:
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• Correct: the NISDB correction is properly applied, at the level of Boltzmann solver, as
discussed in Sec. 4.1.4.

• Wrong: the NISDB correction is not applied at all. We use the same fiducial mock data
as in the correct case.

We run MCMC chains for the two cases considered above, monitoring the convergence of the
generated chains through the Gelman-Rubin R− 1 parameter [181], and requiring R− 1 < 0.01
for the chains to be considered converged.

4.3 results

Here, we discuss the results of our MCMC analysis. The posterior distributions of Mν are
shown in Fig. 7, with the correct case corresponding to the blue solid curve and the wrong case
to the red dashed curve. The vertical dot-dashed line at Mν = 0.06 eV corresponds to the input
fiducial value of Mν. The 68% C.L. bounds on Mν from the two cases are reported in Tab. 11.
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Figure 7: One-dimensional marginalized posterior probabilities, normalized to their maximum values,
of the sum of the active neutrino masses Mν (in eV) for the two cases considered in this anal-
ysis: the correct case (blue solid), where the neutrino-induced scale-dependent bias (NISDB)
correction is properly applied, and the wrong case (red dashed), where the NISDB correction
is not applied. The dot-dashed vertical line at Mν = 0.06 eV shows the input fiducial value of
Mν used in our analysis. It is clearly visible that the input fiducial value is perfectly recovered
for the blue curve (correct case). When the correction is not applied, we fail in recovering the
input fiducial value, as shown by the red curve.

We first consider the correct case, where the NISDB correction is properly applied. In this
case, we can see that we correctly recover the fiducial value of Mν, represented by the vertical
dot-dashed line in Fig. 7. In fact, we find Mν = (0.061± 0.019) eV, in perfect agreement with
the fiducial value of Mν = 0.06 eV.

Next, we consider the wrong case where the NISDB correction is not applied. In this case,
we see that the choice of not applying the NISDB correction has biased our determination of
Mν. We find Mν = (0.046± 0.015) eV, about 1σ away from the fiducial value of Mν = 0.06 eV.
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Parameter NISDB correction No NISDB correction

Mν (eV) 0.061± 0.019 0.046± 0.015

ωcdm ≡ Ωcdmh2 0.1205± 0.0003 0.1207± 0.0003

ns 0.9621± 0.0014 0.9612± 0.0014

Table 11: Contraints at 68% C.L. on the sum of the neutrino masses Mν and on the two cosmological
parameters most correlated with Mν, the cold dark matter physical density ωcdm ≡ Ωcdmh2

and the scalar spectral index ns. The constraints are obtained from the combination of mock
CMB and galaxy clustering data described in Sec. 4.2. The datasets are simulated to match
the expected sensitivity of the final data release from the Planck satellite and the upcoming
Euclid satellite. The constraints are reported for the two cases considered in this analysis:
the correction for the neutrino-induced scale-dependent bias is applied; the correction is not
applied. By comparing the limits with the input fiducial values in Tab. 10, it clear that failure
to apply the correction leads to biased determinations of cosmological parameters.

It is interesting to note that when the NISDB correction is not applied, the result is not only
a biased determination of Mν, but it also features a spurious ∼ 25% decrease in the error bar
σMν , consistent with the previous findings of [127].

These results are consistent with analytical expectations. It is well-known that on linear
scales the effect of non-zero neutrino masses is to suppress the total matter power spectrum
by an amount approximately given by [66, 67, 182]:

Pm(k, fν)

Pm(k, fν = 0)
' 1− 8 fν , (274)

where fν is the neutrino fraction:

fν ≡
ρν

ρν + ρc + ρb
=

Ων

Ωm
. (275)

However, the CDM+baryons power spectrum is actually reduced by a smaller amount:

Pcb(k, fν)

Pcb(k, fν = 0)
' 1− 6 fν . (276)

Comparing Eq. (274) and Eq. (276), we see that the impact of not applying the NISDB cor-
rection is to first approximation expected to lead to a decrease in both the inferred mean
value Mν and error σMν by a factor of 8/6. This ratio approximately matches our results for
Mcorrect

ν /Mwrong
ν = 0.061 eV/0.046 eV and σcorrect

Mν
/σ

wrong
Mν

= 0.019 eV/0.015 eV.
Finally, shifts in the inferred value of Mν are expected to impact the inferred values of other

cosmological parameters which are degenerate with Mν. In particular, we have checked that
the two most affected parameters are the CDM physical energy density ωcdm ≡ Ωcdmh2 and
the scalar spectral index ns. The CDM physical energy density is negatively correlated with
Mν, while ns is positively correlated. Both degeneracies are well-understood and documented
in the literature [157, 180]. In Fig. 8 we show a triangular plot featuring the joint and one-
dimensional posterior distributions of Mν, ωcdm, and ns, for both the case where the NISDB
correction is applied (blue solid curves/blue contours) and the case where it is not applied
(red dashed curves/red contours).

The 68% C.L. bounds on ωcdm and ns are reported in Tab. 11. For the correct case, where the
NISDB correction is applied, we find ωcdm = 0.1205± 0.0003, perfectly recovering the input
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Figure 8: Triangular plot showing joint and one-dimensional marginalized posterior distributions for
the parameters which are most correlated with the sum of the three active neutrino masses
Mν (in eV). These parameters are the dark matter physical density ωcdm ≡ Ωcdmh2 and the
scalar spectral index ns. The panels along the diagonal show the one-dimensional probability
distributions of the individual parameters. The remaining blocks show the 2D joint distri-
butions. The distributions are shown for two cases: the case where the neutrino-induced
scale-dependent bias (NISDB) correction is properly applied (blue, 1D posteriors are given
by solid curves), and the case where the NISDB correction is not applied (red, 1D posteriors
are given by dashed curves). The one-dimensional distributions along the diagonal represent
normalized probability distributions and are hence in arbitrary units.

fiducial value. Similarly, we find ns = 0.9621 ± 0.0014, also perfectly recovering the input
fiducial value. For the wrong case where the NISDB correction is not applied, the two previous
values shift to ωcdm = 0.1207± 0.0003 and ns = 0.9612± 0.0014 respectively. Although these
correspond to < 1σ shifts, they provide further indications that implementing the NISDB
correction is important, not only for future determinations of the total neutrino mass, but also
of other cosmological parameters, as found in [127].

Similar considerations concerning shifts in other parameters would hold in extended cos-
mologies as well, especially when considering additional parameters which are to some extent
degenerate with Mν (such as the dark energy equation of state parameter w and the curvature
density parameter Ωk), and could be explored in future work. As a final remark, we remind
the reader that the details concerning the shifts and direction of degeneracy between the dis-
cussed parameters depend to some extent on the type of data used. For instance, when baryon
acoustic oscillation distance measurements are considered, the degeneracy between Mν and ns
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is expected to be reverted [180], i.e. the two parameters become negatively correlated instead
of positively correlated.

4.4 concluding remarks

Cosmological data is exquisitely sensitive to the sum of the three active neutrino masses Mν,
and a combination of measurements from next-generation surveys is expected to provide the
first measurement ever of Mν, and thus of the absolute neutrino mass scale. Galaxy clustering
is particularly sensitive to the effects of non-zero Mν. However, galaxy clustering analyses
also present significant challenges, such as the correct modeling of galaxy bias. Failure to do
so could introduce significant model systematics which propagate to the determination of
cosmological parameters, including Mν. It is known that massive neutrinos introduce a scale-
dependence in the galaxy bias even on large scales, if the bias is defined with respect to the
total matter field. On the other hand, the bias defined with respect to the cold dark matter
plus baryons field is universal, hence independent of the effects of Mν. Most cosmological
analyses in the presence of massive neutrinos so far have ignored this effect, defining the bias
with respect to the total matter field and, at the same time, treating the bias as universal. Not
accounting for this neutrino-induced scale-dependent bias (NISDB) could introduce severe model
systematics in future analyses of galaxy clustering data.

In this work, we have quantified the importance of properly correcting for the NISDB effect
when analysing galaxy clustering data. This issue was previously addressed in [127] using a
Fisher matrix forecast. We revisit it through an MCMC sensitivity forecast and with an ex-
tended modeling of systematic effects. We have presented a simple prescription for correcting
for the NISDB effect, summarized in Sec. 4.1.4. In doing so, we have also clarified some sub-
tle issues concerning the correct way to implement the NISDB correction in the presence of
redshift-space distortions and non-linearities.

We then presented a forecast based on mock cosmic microwave background and large-scale
structure likelihoods, intended to mimic the legacy data release from the Planck satellite and
measurements of the galaxy power spectrum from the Euclid satellite. We have shown that
failure to implement the NISDB correction can introduce systematics in the inferred value of
Mν. In particular, we find that the value of Mν inferred is a factor of ∼ 8/6 lower than the fidu-
cial value. At the same time, the 1σ uncertainty on the inferred value decreases by the same
factor of ∼ 8/6 with respect to the case where the correction is properly implemented. The
latter effect represents a spurious increase in sensitivity. These results agree with the findings
of [127] and match theoretical expectations. Finally, we have examined how the shift in the
inferred value of Mν correspondingly propagates to shifts in other cosmological parameters,
such as Ωcdmh2 and ns.

We encourage the community to correctly account for the NISDB effect in future analyses of
galaxy clustering data in the presence of massive neutrinos, in order to increase the robustness
of the analyses and minimize the impact of modeling systematics. The tools necessary to easily
correct for the neutrino-induced scale-dependent bias effect will be made publicly available
in an upcoming release of the CLASS code.



5
N E U T R I N O P H Y S I C S

Chapter 5 is based on Archidiacono, Brinckmann, Lesgourgues & Poulin [157]. Additionally, the
introduction and section 5.0.1 is based on Di Valentino, Brinckmann, Gerbino, Poulin et al. [50]

Neutrino oscillation data show that neutrinos must be massive, but the data are insensitive to
the absolute neutrino mass scale. For a normal hierarchy of masses (m1, m2 � m3), the mass
summed over all eigenstates is approximately at least 60 meV, while for an inverted hierarchy
(m3 � m1, m2) the minimal summed mass is approximately 100 meV [68–70].

The individual neutrino masses in these hierarchical limits are below the detection limit
of current and future laboratory β-decay experiments, but they can remarkably be probed
by cosmology [33, 66, 67, 72–74, 182–184]. The detection of the neutrino mass scale is even
considered as one of the safest and most rewarding targets of future cosmological surveys,
since we know that these masses are non-zero, that they have a significant impact on structure
formation, and that their measurement will bring an essential clue for particle physicists to
decipher the neutrino sector puzzle (origin of masses, leptogenesis and baryogenesis, etc.).
Even the unlikely case of a non-detection would be interesting, since it would force us to
revise fundamental assumptions in particle physics and/or cosmology, see e.g. Ref. [75].

Besides experimental sensitivity, parameter constraints are limited by degeneracies: a de-
generacy indicates the ability of one parameter to mimic the effect of another parameter on
a particular observable, making it impossible to disentangle them and to corner the value of
each parameter separately. The key approach to tackle this problem consists in a joint analysis
of complementary probes with different degeneracy directions in parameter space. For that
reason, the next step in the era of precision cosmology will be based on the synergy of high-
and low- redshift probes.

One of the parameters that will benefit from such an approach is the neutrino mass sum (here-
after Mν). Indeed, the impact of massive neutrinos on cosmological observables comes from
a very special effect: light massive neutrinos behave as radiation before their non-relativistic
transition, while afterwards they gradually become a matter component; therefore their im-
pact on cosmological probes at different redshifts is closely related to their mass.

For individual neutrino masses below 600 meV, the non-relativistic transition of neutrinos
takes place after photon decoupling. After that time the neutrino density scales like matter
instead of radiation, with an impact on the late expansion history of the universe. This is im-
portant for calculating the angular diameter distance to recombination, which determines the
position of all CMB spectrum patterns in multipole space. At the time of the non-relativistic
transition, metric fluctuations experience a non-trivial evolution which can potentially impact
the observed CMB spectrum in the range 50 < ` < 200 due to the early ISW effect [66, 185, 186].

70
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However, for individual neutrino masses below 100 meV, the non-relativistic transition hap-
pens at z < 190, hence too late to significantly affect the early ISW contribution.

Finally, massive neutrinos slow down gravitational clustering on scales below the horizon
size at the non-relativistic transition, leaving a clear signature on the matter power spec-
trum [66, 182, 187]. The magnitude of this effect is controlled mainly by the summed neutrino
mass Mν. Roughly speaking, the suppression occurs on wavenumbers k ≥ 0.01 h Mpc (which
means that even relatively large wavelengths are affected), and saturates for k ≥ 1 h Mpc.
Above this wavenumber and at redshift zero, the suppression factor is given in first approx-
imation by (Mν/10 meV)%, i.e. at least 6% even for minimal normal hierarchy [66, 152, 182].
CMB lensing is expected to be a particularly clean probe of this effect [65, 99, 179, 188].

These neutrino mass effects have been widely studied in the literature [66, 185, 189, 190]
and their impact on CMB and large scale structures on linear scales is well known. Even on
non-linear scales, the neutrino mass effect is better understood thanks to recent progress in
N-body simulations [152, 191–193].

However, neutrino cosmology is about to face a revolution for two reasons. First of all, current
upper bounds on the neutrino mass sum are getting closer and closer to the minimum value
allowed by the inverted hierarchy Mν ∼ 0.11 eV [13, 15, 71]. Thus, future experiments will
look at ultra-light neutrinos that became non-relativistic in a relatively recent cosmological
epoch.

Secondly, future galaxy surveys will reach a very high sensitivity on very small scales. As
for now, the use of small scale data is limited by the uncertainty on non linear structure for-
mation, which is difficult to model, especially in presence of massive neutrinos [121, 194–197].
A major theoretical goal in the next few years will be to provide a better understanding of the
processes governing clustering on small scales. Having the non linear effects under control,
we will be able to exploit small scale data in order to break degeneracies. The neutrino mass
effects are already important on linear scales, but by including smaller and smaller scales one
would have a better lever arm and improve the constraints on Mν.

The aim of this chapter is to investigate the physical effects induced by massive neutrinos as
they will be unveiled by future cosmological data. We will pay specific attention to the correla-
tion between Mν and other cosmological parameters, and show that directions of degeneracy
are very sensitive to probes of the cosmic history at different epochs. For some combinations
of CMB and Large Scale Structure data sets, a correlation between Mν and τreio has already
been observed in Refs. [198, 199], but its interpretation is far from obvious and requires a
detailed investigation. This correlation is very important, for the reason that independent
measurements of the optical depth by 21cm surveys will lead to a remarkable improvement
on the sensitivity to the neutrino mass [198]. We will confirm this expectation with a dedi-
cated forecast showing that even the minimum allowed value of the summed neutrino mass
could be detected at the 5σ level in a time scale of about ten years. Before proceeding, we will
consider the question of neutrino mass splitting.

5.0.1 Neutrino mass splitting

Cosmology is mainly sensitive to the summed neutrino mass Mν, but the mass splitting does
play a small role, since the free-streaming length of each neutrino mass eigenstate is deter-
mined by the individual masses [33, 66, 67, 74, 176, 184]. Hence, before doing forecasts for
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future high-precision experiments, it is worth checking the impact of making different as-
sumptions of the mass splitting (for fixed total mass) on the results of a parameter extraction.
If this impact is found to be small, we can perform generic forecasts sticking to one mass
splitting scheme. Otherwise, several different cases should be considered separately.

We know from particle physics that there are two realistic neutrino mass schemes, NH and
IH, both tending to a nearly-degenerate situation in the limit of large Mν, but that limit is
already contradicting current bounds (Mν < 210 meV from Planck 2015 TT+lowP+BAO [2],
Mν < 140 meV when including the latest Planck polarisation data [71], Mν < 130 meV with
recent BAO+galaxy survey data [15] and Mν < 120 meV with BOSS Lyman-α data [13], all at
95%CL). On top of NH and IH, the cosmological literature often discusses three unrealistic
models (for the purpose of speeding up Boltzmann codes and integrating only one set of
massive neutrino equations): the degenerate case with masses (Mν/3, Mν/3, Mν/3), that we
will call DEG; the case (Mν/2, Mν/2, 0) that we will call 2M and the case (Mν, 0, 0) that we
will call 1M. These three unrealistic cases are potentially interesting to use as a fitting model
in a forecast, because the total mass can be varied down to zero: thus, on top of estimating
the value of Mν, one can assess the significance of the neutrino mass detection by comparing
the probability of Mν = 0 to that of the mean or best-fit value. Any of the DEG, 1M, or 2M
models can achieve this purpose, however, we can already discard 1M and 2M, as a detailed
inspection of the small difference between the matter power spectrum of these three models
for fixed Mν shows that the spectrum of the DEG model is much closer to that of the two
realistic models (NH, IH) than the spectrum of 1M or 2M (see e.g. Figure 16 in [67]). Even
current data starts to be slightly sensitive to the difference between 1M and (NH, IH) [18].
Hence we only need to address the question: can we fit future data with the DEG model, even
if the true underlying model is probably either NH or IH, or does this lead to an incorrect
parameter reconstruction?

Run Fiducial model Fitted model posterior curve in Figure 9

1. NH with Mν = 0.06 eV DEG top panels, green

2. NH with Mν = 0.06 eV NH top panels, grey

3. NH with Mν = 0.10 eV DEG bottom panels, solid green

4. NH with Mν = 0.10 eV NH bottom panels, solid grey

5. NH with Mν = 0.10 eV IH bottom panels, solid red

6. IH with Mν = 0.10 eV DEG bottom panels, dashed green

7. IH with Mν = 0.10 eV NH bottom panels, dashed grey

8. IH with Mν = 0.10 eV IH bottom panels, dashed red

Table 12: List of fiducial and fitted model used to check for possible parameter reconstruction bias
when using the wrong assumptions on neutrino mass splitting.

We first consider a fiducial model with a total mass Mν = 60 meV, thus necessarily given
by NH. We generate mock data using the precise mass splitting of NH for such a value, with
∆m2

atm = 2.45× 10−3 (eV)2 and ∆m2
sol = 7.50× 10−5 (eV)2. We then compare the results of

forecasts that assume either DEG or NH as a fitting model (still with fixed square mass dif-
ferences). In both cases, the free parameters are the usual 6-parameter ΛCDM (with fiducial
values given in footnote 1) and Mν. These two forecasts correspond to the first two lines in
Table 12. The results for the CORE-M5 satellite, alone or in combination with DESI BAOs and
Euclid cosmic shear, are shown in the top three panels of Figure 9. This is the most pessimistic
case for measuring the neutrino mass, since it corresponds to the minimal total mass allowed
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Figure 9: Reconstruction of the total neutrino mass using various schemes for the mass splitting (NH,
IH, degenerate), not always matching the assumed fiducial model. Table 12 gives the explicit
correspondence between the different curves and the assumptions made on the fiducial and
fitting models. Vertical solid lines show lower prior edges in the NH and IH cases, while
dashed lines show the fiducial values. The MCMC runs extracts the fiducial mass up to some
reconstruction bias never exceeding 0.5σ.
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by oscillation data. When looking at the results, one should keep in mind that we are fitting
directly the fiducial spectrum, hence the posterior would peak at the fiducial value in absence
of reconstruction bias; while with real scattered data the best fit would be shifted randomly,
typically by one sigma. By looking at the results of the DEG fit (green curves in Figure 9 and
numbers in Table 19), we see that CORE-M5 alone would not detect Mν = 60 meV with high
significance, but it would typically achieve a 3σ detection in combination with DESI BAOs,
or a 4σ detection when adding also Euclid cosmic shear data. There is a small offset between
the mean value of Mν found in the DEG fit and the fiducial value, corresponding respectively
to 0.2σ, 0.2σ, 0.5σ in the CORE, CORE+DESI, and CORE+DESI+Euclid cases. This can be
attributed to bias reconstruction from assuming the wrong fitting model. However, in this sit-
uation, the conclusion of fitting real data with DEG would be that the preferred scenario is NH,
since Mν = 100 meV would be disfavoured typically at the 2σ level by CORE+DESI+Euclid,
and one would then perform a second fit assuming NH in order to eliminate this reconstruc-
tion bias. More detailed discussions on the discrimination power of future data between NH
and IH can be found e.g. in Refs. [33, 74].

Next, we considered a fiducial total mass Mν = 100 meV, which could be achieved either
within the NH or IH model. We are not interested in the possibility of directly discriminating
between these two models, because the sensitivity of CORE+DESI+Euclid is clearly too low
for such an ambitious purpose. Instead we only want to check whether using the DEG model
for the fits introduces significant parameter bias. For that purpose, we perform six forecasts
for each data set, corresponding to the two possible fiducial models (NH or IH) fitted by each
of the three models DEG, IH or NH. We see on the lower panels of Figure 9 that the fiducial
mass is again correctly extracted by the DEG fits, up to a bias ranging from 0.1σ to 0.3σ: this
is smaller than with a fiducial mass of 60 meV because masses are now larger and relative
differences between NH, IH, and DEG are reduced. The error bars are always the same up to
less than 0.1σ differences.

We have checked that regardless of the real mass splitting realised in nature, and with
the experimental data sets discussed in this analysis, we can correctly reconstruct the mass
simply by fitting the DEG model to the data. For the purpose of our forecasts, the most
important things to check are that the error is stable under different assumptions, and that
the reconstruction bias induced by fitting DEG to NH or DEG to IH is under control: this is
found to be the case. So the next forecasts can be done using either NH or IH as a fiducial,
and sticking to DEG as the fitted model. We can even do something simpler and use DEG as
both fiducial and fitted model in the forecasts, since we know that if the fiducial model was
NH or IH we would not have a large bias. This is exactly what we will do in the rest of this
chapter and in chapters 8 and 9. However, we also see that in future analyses, we ought to
be a little bit more careful, and compare the results of different fits using either NH or IH as
a fitted model, to assess the impact of different assumptions on the posterior probability for
Mν.

5.1 effect of a small neutrino mass on the cmb

5.1.1 General parameter degeneracies for CMB data

In the minimal, flat, 6-parameter ΛCDM model, it is well-known that the CMB temperature
and polarisation unlensed spectra are determined by a number of effects1, which remain

1 For a review of these effects, see e.g. Ref. [200], section 5.1 of Ref. [66], and Ref. [201].
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identical as long as one fixes quantities usually depending on distance and density ratios,
such as:

• the sound horizon angular scale θs(zdec) =
ds(zdec)
dA(zdec)

at decoupling,

• the diffusion angular scale θd(zdec) =
dd(zdec)
dA(zdec)

at decoupling,

• the baryon-to-photon ratio Rdec =
3ρb
4ργ

∣∣∣
dec

at decoupling,

• the redshift of radiation-to-matter equality zeq = ρ0
m

ρ0
r
− 1 ,

• the redshift of matter-to-cosmological-constant equality zΛ =
(

ρ0
Λ

ρ0
r

)1/3
− 1 .

The CMB spectra also depend on a few extra parameters, like the scalar amplitude and tilt
(As, ns) and the optical depth at reionization τreio. However, bearing in mind that the small-`
(large angular) part of the spectra is loosely constrained due to cosmic variance, the param-
eters zΛ, As and τreio are always less constrained by CMB data than (θs, θd, R, zeq, ns), and
also than the combination Ase−2τreio giving the overall spectrum normalisation on small an-
gular scales. The fact that we actually measure lensed CMB spectra gives extra information
on the amplitude and slope of the matter power spectrum P(k, z) at low redshift: in practice,
this increases the sensitivity to the parameters (As, zΛ), which enter into the normalisation of
P(k, z).

Adding neutrino masses into the model leads to several new effects studied extensively in
the literature [66, 186, 201]:

(a) Neutrino masses affects the background expansion history. If we rely on standard as-
sumptions for the photon and background densities (Tcmb = 2.726 K, Neff = 3.046) and
further fix ωb and ωcdm, the changes in the background evolution caused by neutrino
masses are confined to late times. Then, the values of ds(zdec), dd(zdec), Rdec and zeq

are preserved, and the neutrino masses only impact the angular diameter distance (and,
therefore, θs and θd in an equal way) and zΛ (and hence, the loosely constrained late
ISW effect). It is even possible to choose an appropriate value of the cosmological con-
stant for each set of neutrino masses, in order to keep a fixed dA(zdec): in that case, the
impact of neutrino masses on the background is confined to variations of zΛ and of the
late ISW effect, and cannot be probed accurately due to cosmic variance, unless external
non-CMB datasets come into play.

(b) At the perturbation level, massive neutrinos interact gravitationally with other species
and produce small distortions in the CMB peaks. For individual neutrino masses mν

smaller than ∼ 600 meV, the neutrinos become non-relativistic after recombination: in
that case the distortions can only be caused by the early ISW effect, and affect the CMB
temperature spectrum in the multipole range 50 < ` < 200 [66, 185, 186]. Note that
this neutrino-mass-induced early ISW effect takes place even if the redshift of equality
is kept fixed: it is different from the redshift-of-equality-induced early ISW effect, which
affects the height of the first CMB peak in the range 100 < ` < 300.

(c) Finally, at the lensing level, massive neutrinos slow down the growth of small-scale struc-
ture (leading to the well-known suppression factor 1− 8ων/ωm in the small-scale matter
power spectrum at redshift zero) and globally decrease the impact of CMB lensing: the
peaks are less smoothed and the damping tail less suppressed [65].
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All these effects have played a role in previous constraints on neutrino masses from CMB data
alone, or combined with other probes. Interestingly, while the sensitivity of CMB instruments
increases with time, different effects come to dominate the neutrino mass constraints: early
ISW effects (b) with WMAP alone [60], lensing effects (c) with Planck alone [2], and back-
ground effects (a) when combining CMB data with direct measurements of H0 [85]. There
are now several combinations of cosmological probes giving a 95%CL upper bound on the
summed mass Mν ≡ ∑ mν of the order of 120 meV to 150 meV [13, 15, 18, 71], while neutrino
oscillation data enforces Mν ≥ 60 meV at 95% CL [8]. The remaining conservatively allowed
window is so narrow, ∆Mν ∼ 90 meV, that the impact of a realistic variation of the neutrino
masses on the CMB is getting really small. Our purpose in section 5.1.3 is to study precisely
this impact, and to understand the degeneracy between Mν and other parameters when using
future CMB data only, specifically for the very low mass range 60 meV< Mν < 150 meV. This
requires some preliminary remarks in section 5.1.2.

5.1.2 CMB data definition

The discussion of degeneracies is meaningless unless we specify which data set, and which
experimental sensitivities, we are referring to. In this chapter, we take as a typical example
of future CMB data a next-generation CMB satellite similar to the project COrE+, submitted
to ESA for the call M4. A new version of CORE was recently submitted again for the call
M5 [202, 203], with a small reduction of the instrumental performances, mainly in angular
resolution. However, COrE+ and CORE-M5 are very similar, and the conclusions of this paper
would not change significantly by adopting the CORE-M5 settings.

When displaying binned errors in Cl plots, and when doing MCMC forecasts with mock
data and synthetic likelihoods, we assume that this CORE-like experiment is based on 9 fre-
quency channels with sensitivity and beam angles given in section 2.4 We mimic the effect
of sky masking by adopting a Gaussian likelihood with an overall rescaling by a sky fraction
fsky = 0.70.

Our dataset consists primarily of temperature and E-mode polarisation auto-correlation
and cross-correlation spectra CTT

` , CEE
` , CTE

` . To get more information on CMB lensing, one
can either analyse B-mode maps (in absence of significant primordial gravitational waves, the
B-mode only comes from CMB lensing and foregrounds) and add the CBB

` spectrum to the
list of observables; or perform lensing extraction with a quadratic or optimal estimator [204],
and add the CMB lensing potential spectrum Cφφ

` to the list of observables (equivalently one
could use the deflection spectrum Cdd

` = `(`+ 1)Cφφ
` ). We cannot use both CBB

` and Cφφ
` in the

likelihood: the same information would be counted twice. Here we choose to use the lensing
potential spectrum, which better separates the contribution of different scales to lensing, that
would be mixed in the CBB

` spectrum by some integration kernel. To give an example, we will
see in Figure 10 (bottom plots) that the neutrino mass effect on Cφφ

` is more pronounced on
small angular scales, while in the lensed CBB

` this effect would be nearly independent of `2.
So the CMB data set that we have in mind consists in measurements for CTT

` , CEE
` , CTE

` , Cφφ
` ,

with a synthetic Gaussian likelihood similar to that in Ref. [96], and a lensing extraction
error spectrum Nφφ

` based on the quadratic estimator method [97] for the EB estimator. In

2 However, we will also see that within the range in which error bars are small, the neutrino mass effect on Cφφ
` is also

nearly `-independent, so we may expect that trading Cφφ
` against CBB

` in the likelihood would have a minor impact
on our conclusions.
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the likelihood, we keep the lensed CTT
` , CEE

` , CTE
` . Indeed, unlike CBB

` , these spectra are only
weakly affected by lensing, and the lensing information redundency between lensed temper-
ature/polarisation spectra and the Cφφ

` spectrum is small enough for being negligible at the
instrumental sensitivity level of a CORE-like experiment [50].

5.1.3 Degeneracies between very small Mν’s and other parameters with CMB data only

We will discuss the impact of increasing the neutrino mass, while keeping various parameters
or combination of parameters fixed. We illustrate this discussion with the plots of Figure 10,
showing the spectrum ratio between different models sharing a summed mass Mν = 150 meV
and a baseline model3 with Mν = 60 meV. The plots shows the residuals of the lensed TT
(top), lensed EE (middle) and lensing potential (bottom) power spectrum, as a function of
multipoles ` with a linear (left) or logarithmic (right) scale. The light/pink and darker/green
shaded rectangles refer respectively to the binned noise spectrum of a cosmic-variance-limited
or CORE-like experiment, with linear bins of width ∆` = 25. All spectra are computed with
the Boltzmann solver CLASS [171, 205, 206], version 2.5.0, with the high precision settings
cl_permille.pre.

Our discussion will also be illustrated by the results of Monte Carlo Markov Chains (MCMC)
forecasts for our CORE-like experiment: Figure 11 gives the 2D probability contours for the
pairs of parameters most relevant to our discussion. The MCMC forecasts are done with ver-
sion 2.2 of the MontePython package [174].

The main conclusions can be reached in four steps:

1. We first assume that we increase neutrino masses with respect to the baseline model,
while keeping the parameters {ωb, ωcdm, h, ns, As, τreio} fixed (green solid curve in Fig-
ure 10). Given the discussion in point (a), we expect that this is not a very clever choice,
because the angular diameter distance is not preserved. So if the baseline model is a
good fit to the data, the new model will be discrepant. Indeed, by looking especially
at the top left and middle left plots in Figure 10, we see even-spaced oscillations sig-
naling a change in the angular diameter distance, and the residuals are far above the
instrumental noise.

2. We then perform the same increase in Mν, but now with a fixed angular diameter dis-
tance to recombination, which means that {ωb, ωcdm} are still fixed, but h varies. With
class, this is easily achieved by keeping the input parameter 100θs constant. Since the
early cosmology and the sound horizon at decoupling are fixed, fixing θs means adjust-
ing H0 and the angular diameter distance for each Mν. Then, the angular diffusion scale
θd is also automatically fixed. In Figure 10, this transformation corresponds to the dashed
red residuals. As expected, the previous oscillations disappear in the residuals. The only
visible effects are much smaller oscillations, some tilt at large ` due to a different level
of CMB lensing, and a tilt at small ` due to a different late ISW effect. However, both ef-
fects are below cosmic variance. We conclude that, the measurement of the temperature
and E-mode spectra alone does not allow us to distinguish between Mν = 60 meV and

3 Our discussion is general and the value of cosmological parameters for the baseline
model is unimportant. We choose Planck-inspired values, {ωb, ωcdm, h, ns, As, τreio, Mν} ={

0.02214, 0.12070, 0.6663, 0.9624, 2.12× 10−9, 0.0581, 0.06 eV
}

, giving an angular sound horizon at recombina-
tion θs (which defines the angular scale of the CMB acoustic peaks) roughly equal to 100 θs = 1.04075. In
this chapter, our total neutrino mass Mν is assumed to be shared equally among the three species, like in the
degenerate (DEG) model.
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Figure 10: Relative change in the CMB spectra induced by increasing the summed neutrino mass from
Mν = 60 meV to Mν = 150 meV. The plots show the residuals of the lensed TT (top), lensed
EE (middle) and lensing potential (bottom) power spectrum, as a function of multipoles
` with a linear (left) or logarithmic (right) scale. The light/pink and darker/green shaded
rectangles refer, respectively, to the binned noise spectrum of a cosmic-variance-limited or
CORE-like experiment, with linear bins of width ∆` = 25. The physical baryon density ωb
and the scalar spectral index ns are kept fixed. In the first case (green solid line) the value
of the Hubble constant is fixed at the reference value, while in all the other cases (labeled
as fixed θs) h decreases in order to keep θs consistent with the reference model. Moreover,
in the third case (dotted blue line), we tried to compensate for the changes in the lensing
spectrum by increasing As, and in the fourth case (dotted-dashed black) we aim at the same
result by increasing ωcdm.

150 meV, and that in a CMB analysis the parameters (Mν, H0) are inevitably correlated,
as it is well known, and illustrated by the upper left plot in Figure 11.
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Figure 11: 68% and 95% CL posterior probability contour levels for different pairs of parameters,
for an MCMC forecast of the sensitivity of a CORE-like experiment to the parameters of
a 7-parameter model (ΛCDM plus total neutrino mass Mν). The CMB data is assumed to
consist of measurements of the TT, EE, TE and lensing potential spectra.

We can try to quantify this correlation. A simple numerical exercise shows that in or-
der to keep the same value of θs while fixing {ωb, ωcdm} and varying Mν, one finds a
correlation

∆h ' −0.09
(

∆Mν

1 eV

)
. (277)

We will come back to this relation later, and show that the correlation angle changes
slightly when other effects are taken into account.

We now look at the bottom plots in Figure 10, showing variations in the lensing potential
spectrum. The dashed red line is consistent with the fact that a higher neutrino mass
implies more suppression in the small-scale matter power spectrum P(k, z), and hence
in the large-` lensing potential spectrum Cφφ

l . A comparison with the instrumental errors
show that this effect is potentially relevant: the dashed red residual is outside the 68%
error bars in about 30 consecutive bins, leading to a χ2 increase by many units. It is also
visible that the neutrino mass effect would be detectable only in a range given roughly
by 50 ≤ ` ≤ 800, in which the effect is nearly equivalent to a suppression by some
`-independent factor (by about 3% in our example).
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Hence, we see that a CORE-like CMB experiment could in principle discriminate be-
tween Mν = 60 meV and 150 meV, and that the effect of the neutrino mass with fixed
{ωb, ωcdm, θs, ns, As, τreio} can be simply summarised as an apparent mismatch between
the normalisation of the TT,TE,EE spectra and that of the CMB lensing spectrum. To
check whether the distinction can be made in reality, and not just in principle, we must
think whether the variation of other cosmological parameters could cancel this effect,
and lead to new parameter correlations with Mν.

As explained in references [207, 208], in a pure ΛCDM model with no massive neutrinos,
the dependence of the global amplitude of Cφφ

` on the cosmological parameters is given
approximately by:

`4Cφφ
` ∝ As

(
Ω0.6

m h
)2.5

(` > 200) ,

and in terms of ωm

`4Cφφ
` ∝ Asω

3/2
m h−1/2 (` > 200) ,

plus an additional minor dependence on Ωm. If we include massive neutrinos, the lin-
ear growth of structure becomes scale dependent, thus the exact impact of Mν on Cφφ

`

is `-dependent, but only by a small amount in the range constrained by observations.
Anyway, given that the neutrino mass slows down the growth of cold dark matter per-
turbations, we can generally assume:

`4Cφφ
` ∝ Asω

3/2
m h−1/2M−α

ν , (278)

with α > 0. This qualitative result shows that in order to compensate an increase of Mν,
we have a priori two possibilities: increasing As, or increasing ωm. We will explore them
one after each other in the next points, and arrive at interesting conclusions.

3. We have the possibility to increase As in order to compensate for the neutrino mass effect
in Cφφ

` , while keeping Ase−2τreio fixed, in order to have the same overall normalisation
of the large-` temperature and polarisation spectra. Hence, this transformation implies
a higher reionisation optical depth τreio. We could expect that, this change in the optical
depth is unobservable due to cosmic variance, which would mean that there is a param-
eter degeneracy at the level of CMB data, and that the three parameters (Mν, As, τreio)

are correlated.

This turns out not to be the case. In our example, the higher neutrino mass shifts the lens-
ing potential down by 3%. This could be compensated by increasing As by 3% as well,
and shifting τreio by ∆τreio = 1

2 log 1.03 ' 0.015. This is a very big shift compared to the
expected sensitivity of a CORE-like experiment, σ(τreio) ' 0.002. Hence this degeneracy
should not be present.

This is illustrated by the third set of curves (dotted blue) in Figure 10. We estimated
numerically the reduction factor for Cφφ

400 in the second model (red dashed). We increased
As by exactly this factor, keeping Ase−2τreio fixed. The new model has a much larger
reionisation bump in CEE

` , with a residual largely exceeding the error bars.

The lower left plot in Figure 11 brings the final confirmation that in a global fit of CMB
data, with lensing extraction included, there is no significant correlation between Mν

and τreio.

At this point, we still expect that very small neutrino masses could be accurately mea-
sured by CMB data alone, unless the other way to compensate for the neutrino mass
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effect in the lensing potential (by increasing ωm) works better than increasing As, and
does lead to some parameter degeneracy. This is what we will explore in the final step
of this discussion.

4. Considering that ωb is accurately determined by the first peak ratios, we can increase
ωm = ωb +ωcdm by enhancing ωcdm only. It is difficult to infer analytically from equation
(278) the amount by which ωcdm should be enhanced in order to cancel the effect of Mν

in the lensing potential, because during the transformation, we must keep θs fixed; since
θs depends on both h and ωm, the Hubble parameter will also change. In the example
displayed in Figure 10, we found numerically the factor by which we should increase
ωcdm (with fixed ωb and θs), in order to nearly cancel the neutrino mass effect in the
lensing power spectrum. This leads to the dotted-dashed black curve. In the lensing
potential plots (bottom), the new residual is back inside the cosmic variance band.

The problem with the previous attempt was that changing τreio had “side effects” (namely,
on the reionisation bump) potentially excluded by the data. Increasing ωcdm also has
“side effects”: it affects the redshift of radiation/matter equality zeq, and hence the am-
plitude of the first two peaks (through gravity boost effects and through the early ISW
effect); it also affects the redshift of matter/Λ equality zΛ and the late ISW effect; and
finally, it has a small impact on the angular diameter distance. All these effects can be
identified by looking at the details of the dotted-dashed black residuals in Figure 10.
The key point is that a tiny enhancement of ωcdm is enough to compensate for the neu-
trino mass effect in Cφφ

` , in such way that the “side effects” all remain well below cosmic
variance. Hence, we expect a parameter degeneracy between Mν and ωcdm when using
CMB data alone, that will compromise the accuracy with which the neutrino mass can
be pinned down, and lead to a correlation between these parameters. We notice that
this correlation between Mν and ωcdm is completely driven by CMB lensing. Removing
lensing extraction would diminish the correlation factor. The residual correlation would
be due to the lensing of the CTT

` spectrum (related to the tiny deviation of the black dot
dashed line from the red dashed line on small scales in the top left panel of Figure 10),
and it would disappear with delensing.

This is confirmed by the lower right plot in Figure 11: in a global fit of CMB data, we
obtain a degeneracy direction approximately parametrised by the slope of the dashed
curve in that plot,

∆ωcdm = 0.01 ∆Mν ∼ ∆ων . (279)

Which is exactly the relation we used in Figure 10, when transforming to the fourth
model (dotted-dashed black curves).

We can reach the main conclusion of this section: for CMB data alone (including lensing
extraction), there is no significant parameter degeneracy between (Mν, As, τreio), but there is
one between Mν and ωcdm. This is the most pronounced parameter degeneracy involving
the neutrino mass when the cosmological model is parametrised by {ωb, ωcdm, θs, ns, As, τreio},
and the correlation is given approximately by equation (279).

If instead the model is parametrised by {ωb, ωcdm, h, ns, As, τreio}, for the obvious reasons
discussed previously, there is an additional clear correlation between Mν and h. We return to
the correlation factor, that we estimated before to be given by equation (277). This equation is
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actually not a very good fit of the contours in the upper left plot of Figure 11: the dashed line
in that plot corresponds to

∆h ' −0.13
(

∆Mν

1 eV

)
. (280)

The explanation for this mismatch is simple. Eq. (277) assumed fixed θs and ωcdm values.
If instead we try to keep θs fixed while varying ωcdm according to equation (279), we see
increased correlation between Mν and h, as shown by equation (280)4.

Hence, with CMB data only, the clearest and most important degeneracies involving the
summed neutrino mass are between Mν and ωcdm (due to lensing) and Mν and h (due to the
angular diameter distance). There are other correlations, but they are much less pronounced.
The third one would be between Mν and ns [180]. This can be understood by looking closely
at the dotted-dashed in Figure 10 (lower right plot). The variation of ωcdm did not only rescale
the amplitude of the CMB lensing potential, it also generated a small positive tilt. The reason
is that we have decreased the ratio ωb/ωcdm, thus changing the shape parameter controlling
the effective spectral index of the matter power spectrum P(k) for k > keq: a smaller baryon
amount relative to CDM implies a bluer spectrum. Hence, the (Mν, ωcdm) degeneracy is more
pronounced when it goes together with a tiny decrease of the tilt ns, by such a small amount
that it would not conflict with temperature and polarisation data. This negative correlation is
visible in Figure 11, upper right plot.

5.2 effect of neutrino mass on the bao scale

The acoustic oscillations of the baryon-photon fluid that we observe in the CMB power spec-
trum produce a characteristic feature in the two point correlation function. In Fourier space
the feature is located at a peculiar scale, the BAO scale, kBAO = 2π/rs(zdrag), where rs(zdrag)

is the comoving sound horizon at baryon drag

rs(zdrag) =
∫ τdrag

0
csdτ =

∫ ∞

zdrag

cs

H(z)
dz .

The observed scale, assuming an isotropic fit of a galaxy sample5, provides the ratio
rs(zdrag)

DV(zBAO)
,

where DV is the volume distance, defined as

DV(z) =
[
z/H(z)(1 + z)2dA(z)2]1/3

,

and DA = (1 + z)dA(z) is the comoving angular diameter distance. In the ΛCDM model
with massive neutrinos, the ratio rs(zdrag)/DV(zBAO) can only depend on the four parameters
{ωb, ωcdm, ων, h}. More precisely, rs(zdrag) depends on the three parameters {ωb, ωcdm, h2},
while for redshifts below the non-relativistic transition, z � znr ∼ 2× 103(mν/1 eV), DA(z)
depends only on ωtot = ωb + ωcdm + ων and on h, because it can be approximated as

DA(z) =
∫ z

0

cdz′

H(z′)
' 3000

∫ z

0

dz′√
ωtot(1 + z′)3 + (h2 −ωtot)

Mpc . (281)

4 Note that we estimated the correlation factor in equation (279) with one significant digit, and in equation (280)
with two significant digits: this is consistent with the fact that the correlation is much more clear and pronounced
in the second case (the ratio of the minor over major axis is much smaller).

5 Anisotropic fit allow to disentangle the longitudinal information (i.e. the radial scale Hrs) from the transverse one
(i.e. the tangential scale DA/rs).
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Note that the term inside the square root is a polynomial in z′ in which the constant term is
precisely h2 (so as expected, for small redshifts z� 1, DA(z) depends only on the h parameter,
like in a Hubble diagram).
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Figure 12: Relative error on rs/DV . Gray error bars refer to the current BAO measurements: from
left to right 6dFGRS [209], SDSS MGS [210], LOW-Z, C-MASS [211]. Black error bars mark
the expected sensitivity of the future DESI experiment [199, 212]. Green solid line and red
dashed lines are the same as in figure 10, i.e. higher Mν with fixed h (green solid line) and
higher Mν with fixed θs and varying h (red dashed line). However, here the black dot dashed
line is obtained by increasing Mν and varying h and ωcdm as in Eqs. (282).

In Figure 12 we show the residuals of current and future BAO measurements, taking as
a reference the same model as before with Mν = 60 meV, as well as the relative difference
on rs(zdrag)/DV(zBAO) between several models with a higher mass Mν = 150 meV (already
introduced in section 5.1.3) and the reference model. For future measurement we take the
example of DESI, assuming the same sensitivity as in Refs. [199, 212].

We first vary only Mν with fixed {ωb, ωcdm, h, ns, As, τreio} (green solid line). This means that
the early cosmological evolution is identical, while the matter density is slightly enhanced at
late times (after the neutrino non-relativistic transition), by about one percent. Thus ds(zdec)

and rs(zdrag) are fixed, but dA(zdec), dA(zBAO) and DV(zBAO) are subject to change. We have
seen that this transformation shifted the CMB peaks by a detectable amount. However, the
accuracy with which CORE will measure θs (< 0.01%) is much greater than that with which
DESI will measure the BAO angular scales (∼ 1%). From Eq. 281 we can see analytically that
the typical variation of DA(z) between the two models is negligible for z� 1 and of the order
of 1

2
∆ων
ωtot
' 0.25% for 1 < z < znr. This explains why the green curve in Figure 12 remains

within the BAO error bars.
This preliminary discussion brings us to the key points of this section:

• the BAO data alone can bound the neutrino mass, but not with great accuracy. We showed
previously that increasing Mν with fixed {ωb, ωcdm, h} had no detectable effects, but
this was because the mass variation was too small. If one keeps increasing ων with the
other parameters fixed, the function inside the square root in Eq. 281 keeps increasing
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for the same value z′, and DA(z) decreases. To avoid a BAO bound on Mν, one could
try to exactly compensate the variation ∆ων by an opposite variation in either ωb or
ωcdm, to keep DA(z) exactly constant. But in that case, the early cosmological evolution
would change (sound speed, redshift of equality, redshift of baryon drag) and the ratio
rs(zdrag)/DV(zBAO) would be shifted anyway. Hence there is no parameter degeneracy
cancelling exactly the effect of Mν in BAO observables, at least in the ΛCDM+Mν model.
This explains why in Figures 13 and 14, the contours involving Mν are closed for DESI
data alone, setting an upper bound on the summed mass of a few hundreds of meV.

• the strong degeneracy between Mν and h observed in the CMB case cannot exist with BAO
data. This denegeracy came from the possibility to keep constant angular scales (θs(zdec),
θd(zdec)) by varying h with fixed {ωb, ωcdm}. Indeed, when fitting CMB data with differ-
ent neutrino masses, one can keep the same value of dA(zdec) by altering the late time
cosmological evolution: while Mν tends to enhance the density at late times, one can
decrease h and the cosmological constant in order to compensate for this effect. This
cannot be done with BAO data, because they probe dA(z) at several small values of
z, comparable to the redshift of the transition zΛ. The proof is particularly obvious if
we look at Eq. 281 again. Whatever change in h modifies the constant term inside the
square root, and thus the value of DA(z) for z ≤ 1. Thus the (Mν, h) degeneracy dis-
cussed in the CMB section must be broken by BAO data. We get a first confirmation of
this by looking at the red dashed curve in Figure 12, obtained by increasing Mν with
a constant θs(zdec): the new model departs from the other one by a detectable amount,
at least given BAO-DESI errors (especially at z � 1, as expected from this discussion).
The second confirmation comes from the right plot in Figure 13, showing very different
correlations between Mν and h for CMB-CORE alone and BAO-DESI alone.

• there exists, however, a correlation between Mν, h and ωcdm with BAO data, but along different
angles than with CMB data. This comes from the possibility to modify parameters in such
a way that both rs(zdrag) and DV(zBAO) get shifted, but almost by the same relative
amount. To compensate for the effect of an increasing ων, one has three parameters to
play with: {ωb, ωcdm, h}. However, ωb is precisely fixed by CMB data alone, and for that
reason we keep it to its Planck best-fit value. We then find that variations of the other
two parameters by approximately

∆ωcdm ∼ −0.5∆ων , ∆h ' −0.017
(

∆Mν

1 eV

)
' −1.6 ∆ων (282)

achieve a nearly constant ratio rs(zdrag)/DV(zBAO) in the redshift range best probed by
the BAO-DESI experiment. As argued before, this ratio is more sensitive to h than ωcdm
in that range, so the correlation between ωcdm and ων is weak, while that between h and
ων is strong (see Figure 13).

The parameter correlations found in eq. (282) for BAO data are very different from those
found in the previous section for CMB data:

∆ωcdm ∼ ∆ων , ∆h ' −0.13
(

∆Mν

1 eV

)
' −12 ∆ων . (283)

The combination of CMB and BAO data can thus break these degeneracies, as it is often the
case when combining high and low redshift probes of the expansion history. The breaking
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does not arise from the joint measurement of ωcdm and ων (because BAO data are much less
sensitive to ωcdm alone than CMB data), but from that of h and ων, for which the different
directions of degeneracy appear very clearly on Figure 13. Thus, the future BAO-DESI data
will contribute to tighter constraints on Mν.
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Figure 13: Marginalized one- and two- σ contours in the plane (ωcdm, Mν) (left panel) and (H0, Mν)
(right panel), for CMB-CORE or BAO-DESI mock data. The black dashed lines show the
directions of degeneracy given in Eqs. (283), and the blue ones in Eqs. (282).
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Figure 14: Marginalized one- and two- σ contours in the plane (θs(zdec), Mν) (left) and(
r(zdrag)/DV(z = 1), Mν

)
(right), for CMB-CORE or BAO-DESI mock data. In the CORE

contours, samples are coloured according to the value of H0.

Another way to illustrate the degeneracies discussed here is to fit CMB data or BAO
data alone with a ΛCDM+Mν model, and to plot the results in the space of parameters
(Mν, θs(zdec)) and (Mν, rs(zdrag)/DV(zBAO)) for a median redshift zBAO = 1. This is shown
in Figure 14. When fitting CMB alone, thanks to the degeneracy of Eqs. (283), we can increase
Mν while keeping dA(zdec) and θs(zdec) fixed (left plot), but this is at the expense of decreasing
the BAO angular scale by more than allowed by observational errors (right plot). Conversely,
when fitting BAO data alone, we can play with the degeneracy of Eqs. (282) to keep the BAO
angular scale fixed, but this requires θs(zdec) to vary. The right plot in Figure 14 illustrates, in
an alternative way to the right plot of Figure 13, how the combination of the two data sets can
improve neutrino mass bounds.



5.3 effect of neutrino mass on large scale structure observables 86

Finally, we expect, as a secondary indirect effect, that the correlation between Mν and
(As, τreio) will be more noticeable in a combined analysis of CMB and BAO than for CMB
alone. In section 5.1.3, we mentioned in points 3 and 4 that the impact of Mν on CMB lensing
could be compensated in two ways: by increasing either (As, τreio) (point 3) or ωcdm (point
4). We explained why the former option is favoured with CMB data alone. Since we just ar-
gued that BAO data can reduce the degeneracy between neutrino masses and ωcdm, the latter
option is more relevant when the data are combined with each other. Indeed, we will see a
small correlation between (Mν, τreio) in the combined results presented in sections 8.2 and 8.3,
one that was hardly noticeable with CMB alone. Of course, this degeneracy is not perfect, and
extends only up to the point at which τreio becomes too large to be compatible with CMB
polarisation data.

5.3 effect of neutrino mass on large scale structure observables

5.3.1 Cosmic shear and galaxy clustering spectrum

The Euclid satellite, whose launch is scheduled for 2020, will provide the most accurate ever
galaxy redshift survey, measuring cosmological observables, such as cosmic shear and galaxy
clustering, with 1% accuracy. Euclid data will certainly lead to a major breakthrough in preci-
sion cosmology thanks to very precise low redshift measurement which will break the CMB
degeneracies among cosmological parameters (see Refs. [117, 118, 178, 183, 213–217]). Here
we use the information extracted from the cosmic shear power spectrum projected in angular
harmonics (2D) and the galaxy clustering power spectrum (3D). Both observable are related
to the non-linear matter power spectrum depending on wavenumber and redshift, Pm(k, z). In
our forecasts, we estimate this quantity using the halofit algorithm, updated by Ref. [105]
and also by Ref. [152] for the effect of neutrino masses, as implemented in class v2.5.0.

Cosmic shear. The cosmic shear auto and cross correlation angular power spectrum in the i and
j redshift bins is given in the Limber approximation by:

Cij
` = H4

0

∫ ∞

0

dz
H(z)

Wi(z)Wj(z)Pm

(
k =

l
r(z)

, z
)

, (284)

where the window functions are given by

Wi(z) =
3
2

Ωm(1 + z)
∫ ∞

0
dzs

ni(zs)(r(zs)− r(z))
r(zs)

, (285)

and the number of galaxies per steradian in the i bin is given by

ni(z) =

∫ zMAX
i

zmin
i

dn/dzP(z, zph)dzph
∫ ∞

0 dn/dzP(z, zph)dzph

with P(z, zph) being the error function

P(z, zph) =
1√

2πσ2
ph

exp
[
−1

2

(
z− zph

σph

)]
.

We use the Euclid prescription for the galaxy surface density

dn/dz = z2 exp
[
−(z/z0)

1.5
]
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with zmean = 1.412z0. Finally, we consider a photometric redshift error σph = 0.05(1 + z), sky
fraction fsky = 0.3636, mean internal ellipticity 0.22 and total number of observed galaxies 30
per arcmin2.

Galaxy clustering. For galaxy clustering the observed power spectrum reads:

P(kref, µ, z) =
DA(z)2

refH(z)
DA(z)2H(z)ref

b(z)2 [1 + β(z, k(kref, µ, z))µ2]2 × Pm(k(kref, µ, z))e−k(kref,µ,z)2,z)µ2σ2
r ,

where µ is the cosine of the angle between the line of sight and the wavenumber in the
reference cosmology (ref) kref, k is the wavenumber in the true cosmology and it is defined as
a function of kref

k2 =

(
(1− µ2)DA(z)2

ref
DA(z)2 +

µ2H(z)2

H(z)2
ref

)
k2

ref.

The factor
[
DA(z)2

refH(z)
]

/
[
DA(z)2H(z)ref

]
encodes the geometrical distortions related to the

Alcock-Paczynski effect. The bias can be written as b =
√
(1 + z), β encodes the redshift space

distortions

β(k, z) =
1

2b(z)
d ln Pm(k, z)

d ln a
,

and finally the spectroscopic redshift error is σr = dr(z)/dzσz.
Both the Cij

` and the P(k) provide information on a broad range of scales; therefore, given
the same survey sensitivity, they are more efficient than BAO in constraining cosmological pa-
rameters; however, for the very same reason, they are more prone to systematic effects such as
residual errors in the estimate of non-linear corrections, non-linear light-to-mass bias or red-
shift space distortions (see e.g. Ref. [218, 219]). For that reason, we include in our forecast a the-
oretical error on the observable power spectrum, increasing above a given redshift-dependent
scale of non-linearity (see Ref. [118], or Ref. [119] for a more refined treatment).

The assumed theoretical error amplitude has a direct impact on the galaxy clustering sensi-
tivity to cosmological parameters. Here we stick to the approach of Ref. [118], and we refer to
this work for details and equations. As emphasised in Ref. [119], this approach is extremely
(and maybe overly) conservative, because the error is assumed to be uncorrelated between
different k-bins. The error grows as a function of the ratio k/knl(z), where knl(z) is the redshift-
dependent scale of non linearity, with a shape and amplitude inspired from the typical resid-
uals between different N-body codes6. Choosing a value for the error amplitude parameter ε

amounts to estimating the accuracy of grids of N-body simulations and of models for various
non-linear and systematic effects in a few years from now. The baseline choice in Ref. [118]
was ε = 0.05. In this paper, given the progress in the field observed since 2012, we choose to
reduce it to ε = 0.025, meaning that the uncorrelated theoretical error saturates at the 2.5%
level in the deep non-linear regime. This error is explicitly shown in Figure 16 for z = 0.5 and
z = 2, and its impact on the lensing harmonic spectrum appears in Figure 15 for the lowest
and highest redshift bins of the Euclid lensing survey. In presence of a theoretical error, the
issue of where to cut the integrals in the galaxy clustering likelihood becomes hardly relevant,
provided that the cut-off is chosen in the region where the theoretical error dominates. In
what follows, we will cut the observable P(kref, µ, z) at kmax = 0.6 h/Mpc for all redshifts. For

6 The error function is explicitly given by α(k, z) ≡ ∆Pm(k,z)
Pm(k,z) =

ln[1+k/knl(z)]
1+ln[1+k/knl(z)]

ε, where knl(z) is identical to the
quantity kσ(z) computed at each redshift by Halofit, and the error amplitude parameter ε is the unique free
parameter in this model. The asymptotic error in the deep non-linear regime is then given by 100ε % .
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cosmic shear, the inclusion of the theoretical error is also important, although the observa-
tional error bar does not decreases indefinitely with ` due to the finite angular resolution of
the shear maps. In our forecasts, we perform a cut at `max = 2000.

5.3.2 Degeneracies between Mν and other parameters

In Figure 15 and 16 we show the relative shift in the shear power spectrum and in the galaxy
power spectrum that is obtained when increasing the summed neutrino mass while keeping
various quantities fixed. We also show for comparison the observational and theoretical errors
computed in the same way as in Ref. [118], using the survey specifications listed above. We
will study the impact of increasing the summed neutrino mass on these observables: (1) when
keeping the usual cosmological parameters fixed, (2) when tuning h at the same time in order
to keep the same angular peak scale in the CMB, and (3) when playing with other parameters
in order to minimize the impact of neutrino mass on LSS observables. The discussion in
(2) (respectively, (3)) is relevant for understanding the degeneracy between Mν and other
parameters when fitting CMB+LSS data (respectively, LSS data alone).

As in the previous sections, we will then check our theoretical conclusions through an
MCMC forecast of the sensitivity of future experiments that will measure the spectra dis-
cussed above. In Figure 18 we plot the marginalized one- and two- σ contours showing the
degeneracies at study: (ωcdm, Mν) (upper left panel), (H0, Mν) (upper right panel), (ns, Mν)
(bottom left panel), (As, Mν) (bottom right panel). The CORE only contours (in gray) are the
same as in Figure 13. The Euclid related contours have been obtained through an MCMC
forecast including either galaxy clustering (in green) or cosmic shear (in red), following the
specifications listed in section 5.3.1. Fitting Euclid mock data alone would return wide con-
tours in parameter space. Given that the two quantities best measured by CMB experiments
are the angular scale of the acoustic horizon and the baryon density, the question in which we
are most interested is: assuming that information on ωb and θs is provided by a CORE-like
CMB experiment, what is the pull on other parameters coming from Euclid alone? To address
this, when fitting Euclid data, we impose two uncorrelated Gaussian priors on respectively ωb
and θs, with standard deviations taken from our previous CORE-CMB forecast, while keeping
τreio fixed, since the latter does not affect galaxy clustering and shear observables in any way.

1. Neutrino mass effects with all standard cosmological parameters fixed: the usual neutrino–induced
step–like suppression.

Like in the previous sections, we start by increasing the summed neutrino mass from
Mν = 0.06 eV to Mν = 0.15 eV, keeping all the other cosmological parameters fixed
{ωb, ωcdm, h, ns, As, } (green solid line). Note that in most of the literature, the effect of
neutrino masses on the matter power spectrum is discussed precisely in that way. One
reason is that fixing {ωb, ωcdm, ns, As, } amounts in keeping the same “early cosmological
evolution” until the time of the neutrino non-relativistic transition. The choice to fix also
h is mainly a matter of simplicity.

As expected, the larger Mν induces a relative suppression of power on small scales
compared to large scales, visible both in the shear and in the galaxy power spectrum. To
be precise, in the redshift range surveyed by Euclid, 0 < z < 2.5, neutrinos with a mass
Mν > 0.05 eV are already well inside the non-relativistic regime, thus, the spectrum is
suppressed on scales smaller than the free-streaming scale k > kfs(z). In the redshift
range of interest, 0 < z < 2.5, the free streaming wavenumber spans the range [0.0077−
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Figure 15: Relative error on the galaxy lensing Cll
` in the first redshift bin (0 < z < 0.42, left panel) and

in the tenth redshift bin (1.7 < z < 2.5, right panel). Here the redshift range is 0 < z < 2.5
and is divided in ten equi-populated redshift bins. The light pink rectangles refers to the
observational error. The light green shaded area shows the relative error associated to our
model for the theoretical uncertainty on Pm(k, z). Green solid and red dashed lines are the
same as in Figure 10, i.e. higher Mν with fixed h (green solid line) and higher Mν with fixed
θs and varying h (red dashed line). The blue dotted line, besides the higher Mν, implies a
smaller value of h (∆h ∼ −3∆ων), an increase of ns by 0.4% and of As by 2%.

0.0041] h Mpc−1 (respectively, [0.0192− 0.0103] h Mpc−1) for Mν = 0.06 eV (respectively,
Mν = 0.15 eV)7. The suppression in power makes both the Cij

` and the P(k) directly
sensitive to the neutrino mass sum, while this was not the case for the purely geometrical
information encoded in BAO measurements.

This sensitivity is reinforced by non-linear effects which are well visible on Figures 15

and 16. In the shear spectrum of Figure 15, in absence of non-linear corrections, the
green curve would be almost constant for ` > 100. Non-linear gravitational clustering
produces a characteristic “spoon shape” or dip [152]. The minimum of the dip is seen
at ` ∼ 40 in the first redshift bin and ` ∼ 1000 in the last one. In Figure 16, non-linear
effects are responsible for the further decrease of the green curve for k ≥ 0.1 h/Mpc.

2. Neutrino mass effects with h varied to keep the CMB angular scales fixed: why does LSS data
lifts the (Mν, h) degeneracy?

The second part of the discussion consists in increasing Mν by the same amount, while
varying h like in section 5.1.3, in such way as to keep a constant angular diameter dis-
tance to recombination, constant sound horizon angular scale, and constant damping
angular scale (red dashed line). As we have seen in Section 5.1.3 this procedure leads to
the well known (Mν, h) CMB degeneracy.

We showed that this degeneracy is broken by BAO data, because the lower value of h
increases the angular diameter distance at low redshift (see Section 5.2). This conclusion
is valid also for galaxy P(k) and shear Cij

` , since the red dashed residuals in Figures 15,
16 are well outside the observational and theoretical error bars. For clarity, we should
explain the shape of these red dashed lines, which is slightly counter-intuitive.

7 The free streaming length depends on the mass of each neutrino rather than on the sum. Here we have assumed
three massive degenerate neutrinos.
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Figure 16: Relative error on the non linear matter power spectrum Pm(kref, z) perpendicular to the line
of sight (µ = 0) at redshift z = 0.5 (left panel) and z = 2 (right panel). The light pink shaded
area refers to the observational error, including cosmic variance. The light green shaded area
shows our model for the theoretical uncertainty. Here the redshift range is 0.5 < z < 2 and
is divided in 16 redshift bins. Green solid and red dashed lines are the same as in Figure 10,
i.e. higher Mν with fixed h (green solid line) and higher Mν with fixed θs and varying h
(red dashed line). The blue dotted line, besides the higher Mν, implies a smaller value of h
(∆h ∼ −4∆ων) and an increase of As by 5%.

In the case of galaxy clustering, the higher value of Mν and lower value of h lead to
an almost constant suppression of power on every scale, plus some wiggles on small
scales (see Figure 16). This may sound surprising since we are used to seeing more
suppression on small scales when increasing the neutrino mass. This is true for fixed h,
but here we are decreasing the Hubble rate at the same time. Since ωm = Ωmh2 is kept
fixed, this means that we are increasing Ωm. For subtle reasons which can be understood
analytically, the large-scale branch of the matter power spectrum is suppressed by the
increase of Ωm

8, while the small-scale branch is suppressed by massive neutrino free-
streaming, coincidentally by roughly the same amount. This explains the almost constant
suppression of power in the galaxy clustering spectrum (red dashed line, Figure 16).
The wiggles located around k ∼ 0.1 h Mpc−1 are related to the shift of the BAO scale
due to the different angular diameter distance at low redshift, as we have explained in
section 5.2 (see also Ref. [220]).

The situation is a bit different for the galaxy lensing spectrum Cij
` (red dashed line,

Figure 15) which probes metric fluctuations instead of matter fluctuations. As a result9,

8 In order to understand the observed behaviour, we have to elaborate on the matter power spectrum Pm enter-
ing Eq. 5.3.1. An analytic study of the linear power spectrum expressed in units of (Mpc/h)3 as a function of
k in units of h/Mpc shows that at any given redshift, the large-scale branch (k � keq) depends only on a fac-
tor (g(Ωm, z)/Ωm)2 coming from the Poisson equation and from the behaviour of matter perturbations during
Λ domination (see e.g. Ref. [66], equation (6.39)). The function g(Ωm, z) ≤ 1 is related to the decrease of mat-
ter perturbations during Λ domination. When increasing Ωm, we decrease this factor (g(Ωm, z)/Ωm)2 and we
suppress the large-scale power spectrum, but not the small-scale one. Indeed, looking again at equation (6.39) in
Ref. [66], the small-scale branch receives an extra factor k̃4

eq (i.e. k4
eq with keq in h/Mpc). This new factor is actually

proportional to z2
eqΩ2

m (eq. (6.32) in the same reference), and the latter cancels the former Ω−2
m factor.

9 Since the lensing spectrum directly depends on metric fluctuations, it does not share with the matter power
spectrum the factor Ω−2

m coming from the Poisson equation. Indeed, the factor Ω−2
m discussed in the previous

footnote is exactly cancelled by a factor Ω2
m that appears in Eq. 284 when replacing the window functions with
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the large-scale branch of the Cij
l ’s slightly increases when we decrease h and increase Ωm.

Instead, the small-scale branch remains nearly constant due to the antagonist effects of
neutrino free-streaming and of the increase in Ωm, but the neutrino effect wins on non-
linear scales. As can be seen on the right panel of Figure 15, for the highest redshift
bins, the lensing data is able to discriminate this effect and to lift the (Mν, h) degeneracy,
although with less significance than the galaxy clustering data.

These conclusions are confirmed by the (Mν, h) joint probability contours presented in
the upper right panel of Figure 18, for CORE, Euclid-lensing and Euclid-pk. Indeed, the
slope of the (Mν, h) degeneracy is different from the one observed in CMB data, and it
is mainly driven by the CMB prior on θs.

3. Degeneracy between Mν and other parameters from Large Scale Structure data alone.

Finally we increase Mν, decrease h by a smaller amount than the one required for fix-
ing θs, and, at the same time, we vary the primordial power spectrum parameters, the
amplitude As and also the index ns in the case of cosmic shear (blue dotted lines). It is
clear from Figures 15 and 16 that this procedure can almost cancel the effect induced by
a larger Mν both in the shear Cij

` and in the galaxy P(k), leading to a new degeneracy.
We shall now explain the reasons for this degeneracy.

Considering that the primordial power spectrum of scalar perturbations is given by

k3PR(k)
2π2 = As

(
k
k0

)ns−1

, (286)

the matter power spectrum Pm can be written as

Pm(k, z) ∝ As

(
k
k0

)ns

T(k, z)2 , (287)

where T(k, z) is the time and scale dependent linear transfer function of matter den-
sity fluctuations (not separable in the case of massive neutrinos). As we have already
explained, neutrinos induce a relative suppression of power on scales k > kfs; this sup-
pression is encoded in the transfer function T(k, z) of Eq. 287. In Figure 17 we show
how T(k, z) is suppressed by a larger neutrino mass sum on k > kfs at redshift z = 0
and z = 2. Changing (ns, As) affects only the primordial power spectrum, while leaving
T(k, z) unchanged, therefore, since we keep ωb and ωcdm fixed, any deviation from the
green solid line is due only to the variation of h and Ωm. If, besides increasing Mν, we
decrease h to keep θs fixed (red dashed line), then the suppression of T(k, z) extends to
k < kfs (because of the (g(Ωm, z)/Ωm)2 factor) and the wiggles, due to the shift of the
BAO scale, appear at smaller scales. This graphically explains what we have already dis-
cussed in point 2. Reducing the tweaking on h (blue dotted line) implies less reduction
of power on the large scale branch and a smoothing of the wiggles; anyhow, the massive
neutrino suppression of the transfer function is not fully compensated. However, if we
look at Eq. 287 it is clear that a red tilt of the primordial power spectrum, combined with
a smaller normalization, can mimic the same effect of a larger neutrino mass, reducing
power on small scales respect to large scales.

Eq. 285. As a result, the large-scale branch of the Cij
l ’s depend on g(Ωm, z)2 only, while the small-scale branch is

proportional to Ω2
m.
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Figure 17: Relative error on the linear transfer function T(k) at redshift z = 0 (left panel) and z = 2
(right panel). The line color/style - model correspondence is the same as in Figure 16.

The left and right bottom panels of Figure 18 show the degeneracies between Mν and
(ns, As). We can see that the degeneracy between Mν and ns is mildly positive in galaxy
lensing, as expected from the discussion above, while it is negative in CMB, as explained
at the end of section 5.1.3, and mildly negative in galaxy clustering. The reason why this
positive (Mν, ns) correlation emerges with cosmic shear, but not with galaxy correlation
data, is related to the window function. Indeed, since the window function (Eq. 285) for
each redshift bin is given by the integral over the line of sight, the Cij

` ’s of Eq. 284 receive
contributions from a larger range of scales. Therefore, being sensitive to a wider lever
arm in k space, cosmic shear will be particularly sensitive to scale dependent variations
of the power spectrum.

Notice that here the tweaking of As is larger than the one we performed at point 3 of
section 5.1.3. Thus, the corresponding ∆τreio ∼ 0.5 ln(1.05) ∼ 0.027 would lead to an
enhancement of the reionization bump even bigger than the one we observed in the
blue dotted line of the CEE

` plot (Figure 10, second row, right panel). This already shows
that the degeneracy discussed here can be lifted by combining LSS data with CMB data.
Nevertheless this discussion was important to understand the pulls in parameter space
appearing when all data sets are combined with each other.

Figure 18 confirms the points discussed previously, and provides a comprehensive graphical
summary of the complementarity between future CMB and LSS data in the context of neutrino
mass measurement.

First, we see that even when adopting CMB-derived priors on ωb and θs, the LSS data can-
not efficiently constrain the neutrino mass, due to the degeneracy discussed in the previous
paragraphs (point 3), involving mainly (Mν, As, H0), and to a lesser extent, ns. We have seen
that this degeneracy requires a milder correlation between Mν and H0 than the CMB data:
∆h ∼ −3∆ων for LSS alone, instead of ∆h ∼ −12∆ων for CMB alone. Since in Figure 18 the
Euclid mock data was fitted together with a prior on θs, the final correlation angles repre-
sent compromises between these values. The lensing data also exhibits a negative correlation
between Mν and ωcdm.

The CMB and LSS contours of Figure 18 clearly intersect each other for several pairs of
parameters:
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Figure 18: Marginalized one- and two- σ contours in the plane (ωcdm, Mν) (upper left panel), (H0, Mν)
(upper right panel), (ns, Mν) (bottom left panel), (As, Mν) (bottom right panel). The black
dashed lines show the degeneracies encoded in CMB data, the red and green dashed lines
account for some of the most prominent correlations arising from cosmic shear and galaxy
clustering, respectively.

• The CMB and LSS data prefer different directions of degeneracy in (Mν, H0) space, hence
the combination between them can strongly reduce the uncertainty on both Mν and H0.

• The CMB data lifts the (Mν, As) degeneracy present in the LSS data, for the reason men-
tioned above: the shift in As would need to be compensated by a shift in τreio producing
a reionisation bump incompatible with the data. However, in the combined data set, the
LSS data would keep pulling towards more positive correlation between Mν and As.

• the very different correlations in (Mν, ωcdm) space reduces uncertainties on ωcdm, with a
side effect on the CMB side. We have seen that the effect of neutrino masses on the CMB
lensing spectrum can be compensated either by playing with ωcdm, or with (As, τreio).
The CMB alone would favour the first option. Like BAO data, weak lensing data breaks
the (Mν, ωcdm) degeneracy and leaves only the second option. This goes in the same
direction as the previous point: pulling towards more positive correlation between Mν

and As.

Hence, we can already anticipate that the combination of CMB plus LSS data leads to an
enhanced degeneracy between (Mν, As) compared to CMB data alone. As a consequence, in
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order to maintain a fixed combination Ase−2τreio , the combined data may generate a significant
correlation in (Mν, τreio) space.



6
M E T H O D O L O G Y A N D T O O L S

Chapter 6 is based on Brinckmann & Lesgourgues [175]

In this chapter, we review relevant concepts on the topic of statistical inference and outline
recent developments of the cosmological sampling package MontePython, which is the frame-
work within which the developments of chapters 2 and 3 were implemented. The results of
chapters 7 to 9 were obtained with MontePython and would not have been feasible without
the improvements in computational efficiency outlined in this chapter. Finally, in section 6.5
we provide a comprehensive overview of the current features and options of MontePython.

6.1 montepython introduction

MontePython [174] is an MCMC sampling package in Python used for parameter inference in
cosmology, similar to CosmoMC [221, 222] and CosmoSIS [223]. The modular nature of MontePython
means modification of the code is particularly easy, and encourages implementation of spe-
cific modules to other Python sampling packages, e.g. the extensive library of cosmological
likelihoods1. MontePython has two different modes: when running with
> python montepython/MontePython run <options>

it is a sampler (similar to CosmoMC), and when running with
> python montepython/MontePython info <options>

it is a tool for analyzing MCMC chains and plotting results (similar to GetDist2).
The code is currently interfaced with the Boltzmann code CLASS [171, 205, 206, 224] and

extensions thereof, e.g. HiCLASS [225] and SONG [226]. There also exist some publicly available
branches of CLASS achieving different purposes, e.g. ExoCLASS for advanced energy injection,
recombination and reionisation features [227], CLASS_SZ for Sunyaev-Zel’dovich observables
[228], CLASSgal for computing the number count C`’s [214]3, or a branch incorporating non-
local contributions to General Relativity [229]4.

In principle, it could easily be extended for use with e.g. CAMB [201, 230], via the new Python
wrapper5, or PyCosmo [231], a Boltzmann code in Python.

In this chapter, we present the latest development of MontePython over the past couple of
years. In particular, we introduce two new ingredients that both contribute towards improv-
ing the performance of Metropolis-Hastings sampling. In section 6.2, after recalling the way
in which the Metropolis-Hastings algorithm is implemented in MontePython, we present a

1 A practice the authors fully support and encourage, with proper citations and credits.
2 http://getdist.readthedocs.io/en/latest/
3 this feature has also been implemented in the main CLASS, but with small differences in the two implementations.

The original CLASSgal code is still available at https://cosmology.unige.ch/content/classgal
4 see the pull request #86 in https://github.com/lesgourg/class_public
5 http://camb.readthedocs.io/en/latest/

95

http://getdist.readthedocs.io/en/latest/
https://cosmology.unige.ch/content/classgal
https://github.com/lesgourg/class_public
http://camb.readthedocs.io/en/latest/


6.2 metropolis-hastings sampling strategy 96

new adaptation algorithm for the jumping factor. In section 6.3, we detail our strategy for
calculating the Fisher matrix and its inverse, which can be used as a proposal density for a
Metropolis-Hastings run. In section 6.4, we provide several examples of runs showing that
these features speed up convergence and can save many hundreds of CPU-hours in the case
of difficult runs, with a poor prior knowledge of the covariance matrix. IFinally, we summarise
all the functionalities of MontePython in the current release, including extended cosmological
parameter definitions with respect to CLASS in section 6.5.1, sampling options in section 6.5.2,
analysis and plotting options in section 6.5.3 and likelihoods in section 6.5.4. Indeed, the new
release of the code incorporates several new plotting options and even more new likelihoods
based either on current or mock data.

The version of the code described in this paper has version number 3.0 and is available at
https://github.com/brinckmann/montepython_public

6.2 metropolis-hastings sampling strategy

MontePython can switch between different ways to explore parameter space, which include
Metropolis-Hastings, Nested Sampling, Cosmo Hammer, and a new Fisher sampling method
described in section 6.3. These different algorithms are called methods in the code, and the
same list of methods also includes post-processing algorithms like Importance Sampling or
Adding Derived Parameter(s)6.

The default method is the Metropolis-Hastings algorithm, working since v2.0.0 (2013) with
a fast sampling method quickly summarised in section 6.2.1, and since v2.2.0 (October 2015)
with a covariance matrix update method summarised in section 6.2.4. In this release v3.0.0
we extend the latter to update also the jumping factor, as described in section 6.2.4, and we
call the new approach superupdate.

6.2.1 Fast sampling

In MontePython the Metropolis-Hastings draws random jumps in parameter space from a
Gaussian proposal density. The latter is encoded in a matrix C, describing the parameter cor-
relations and the standard deviations relative to each other, and an overall jumping parameter
c, such that the parameter jumps ∆p are generated randomly from the probability distribution
P = N exp(− 1

2c ∆pTC−1∆p). Thus the actual covariance matrix of the proposal density is cC.
The standard way to generate random vectors from a multivariate Gaussian probability is to
go to a basis of independent parameters, like the basis of the eigenvectors of C; to generate
independent random displacements along the eigenvectors; and to project back to the original
space.

It is well-known that optimal proposal densities generate an acceptance rate of the order of
0.25, and that for Gaussian posterior distributions, this can be achieved when C is a good ap-
proximation to the covariance matrix of the posterior distribution, while the jumping parameter
is fixed to (2.4)2 [232]. Note that this jumping parameter applies when generating one single
random number and moving in one single direction. Alternatively, for each jump, one can
generate N random numbers and move in N directions simultaneously, but then each of these
N random numbers should be drawn from a Gaussian distribution with variance c = j2/N,
where j = 2.4 is called the jumping factor.

6 The full list of methods can be viewed with MontePython.py run --help, and is of the form -m {MH, NS, CH,
IS, Der, Fisher}.

https://github.com/brinckmann/montepython_public
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Thus, in absence of fast sampling, the jumps could just be generated each time indepen-
dently and randomly from P (global method), or in cycles of N draws along each of the N
eigenvectors of C (sequential method). These methods can still be activated7 in MontePython,
but they are sub-optimal in presence of likelihoods with nuisance parameters.

Fast sampling was proposed by [222] for MCMC parameter estimation. For this sampling
method, we separate the sampling of fast nuisance and slow cosmological parameters to opti-
mize performance when dealing with a large number Nfast of nuisance parameters.

Generating displacements along the eigenvectors mixes slow and fast parameters and does
not allow for high-speed explorations of the fast parameter space only. But introducing eigen-
vectors is not the only way to go to a parameter basis in which the proposal density is or-
thogonal. In particular, one can perform a Cholesky decomposition of the covariance matrix
into C = LLT where L is a lower triangular matrix. In the space of the vectors ∆p′ related
to the physical parameters through ∆p′ = L−1∆p, the proposal density is orthogonal, so the
jumps can easily be generated by drawing random numbers for each component of ∆p′ with
a single one-dimensional Gaussian probability distribution of variance c, and projecting back
to ∆p = L ∆p′. The great advantage over the previous eigenvector-based scheme is that when
∆p′ only has non-zero components above a given index, this is true also for ∆p. Thus one can
generate some jumps that will leave the slow parameters unchanged.

We begin by ordering our input parameters in blocks according to computational time. In
practise, this is simply achieved by writing them in the right order in the input parameter
file. The first block is that of cosmological parameters requiring new calls to the Boltzmann
code. The next blocks are nuisance parameters for a given likelihood, which can be changed
without requiring a Boltzmann code evaluation if the cosmological parameters are held fixed.
The nuisance parameter blocks should be ordered from the slowest to fastest likelihood. When
a nuisance parameters is common to several likelihoods, it should just be declared within the
slowest block. We call M the number of blocks and dj the number of parameters in the j-th
block, with d1 = Nslow being the number of cosmological parameters. MontePython will auto-
matically detect the number M of blocks and will expect the user to pass an M-dimensional
over-sampling vector F. F1 is the over-sampling factor of the cosmological parameter and is
normally fixed to one. The other entries are the required number of redundent sampling for
each of the other blocks.

When running chains, for j = 1, ..., M, we generate sequences of Fjdj random jumps in
the dj components of ∆p′ corresponding to the j-th block. In other words, during Fjdj steps,
we generate dj random numbers for each of the relevant components of ∆p′, drawn from a
Gaussian distribution with standard variance c = j2/dj. Thus each full cycle consists of ∑j Fjdj
random jumps, with only F1d1 = Ns of them requiring a call to the Boltzmann code. Later we
will call this number the Fast Parameter Multiplier (FPM):

FPM = ∑
j

Fjdj. (288)

There is no precise rule to fix the over-sampling factors F2,...,N . These factors should be in-
creased for faster likelihoods and/or larger numbers of nuisance parameters in the block.
With too low numbers, one would not enjoy the advantages of the slow-fast parameter de-
composition. With too high numbers, the time spent in the (∑j Fjdj − Ns) iterations over fast
parameters could be significant compared to the time spent in the Ns iterations over slow
parameters, and the convergence of the results for the cosmological parameter would be de-

7 with the jumping flag -j {global, sequential} instead of the default -j fast.
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layed. For instance, for the nuisance parameters of the Planck likelihood, we usually apply an
oversampling factor of 4.

6.2.2 Update and Superupdate

While the Metropolis-Hastings algorithm would in principle require Markov Chains, i.e. chains
with a proposal density that is constant in time, it is highly desirable to implement some
automatic update algorithms in order to get converged results even when starting from bad
guesses for the Gaussian proposal density. We recall that the propoosal density is parametrised
as P = N exp(− 1

2c ∆pTC−1∆p) and thus depends on two quantitites, the covariance matrix
C and the jumping parameter c related to the jumping factor j. MontePython has two comple-
mentary options for speeding up the convergence of Metropolis-Hastings runs:

• --update U: update of covariance matrix, C, every U cycles [default: U = 50]

• --superupdate SU: additionally, update of jumping factor, j, starting SU cycles after each
covariance matrix update [default: SU = 0, meaning “deactivated”; recommended: 20]

Once certain criteria are met, the covariance matrix will be updated periodically and the
jumping factor will be adapted every step. This leads to dramatic improvements in runtime,
especially for runs with little prior knowledge in the form of an appropriate starting stepsize
or a good initial proposal distribution. In the next two sections we describe the strategy chosen
for these two schemes.

6.2.3 Update strategy

The covariance matrix update mechanism was implemented early on in CosmoMC and is part
of MontePython since v2.2.0 (October 2015), through the flag --update. The MontePython
and CosmoMC implementations of this feature are very similar. For instance, in both codes, the
decision to start or stop the update mechanism depends on the value of the Gelman-Rubin
statistic, R [181], for the most poorly converged parameter. The update starts when the number
max(R − 1) computed from the second half of each chain goes below 3, and stops when it
goes below 0.4. The difference between the two implementations only resides in two aspects:

• Non-MPI-user friendliness. The most straightforward way to launch multiple chains is to
run MontePython with MPI, e.g. for 8 chains:
mpirun -np 8 python montepython/MontePython.py run ...
The alternative would be to launch 8 chains manually, or within a small shell script with
a for loop. With CosmoMC, this second option would be incompatible with the covariance
matrix updating. In MontePython, because installing MPI can sometimes be cumbersome,
we chose to code the --update mechanism in such a way that it will work equally well
with or without MPI. In the latter case, the user should just run several times python
montepython/MontePython.py run ..., and the update mechanism will still start and
use the information from all the chains running in the same directory8.

8 There is no need to know how this is implemented in the code, because it is fully transparent to users. In brief,
the key point is that MontePython reads and writes the covariance matrix in a file, rather than using the Message-
Passing-Interface. The only difference between MPI and non-MPI runs is that in the former case, the code can
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• Keeping only Markovian steps in the final results. To be rigorous, the user would like to
base his/her final results and plots on true Markovian chains. This is what happens by
default with MontePython. Indeed, every time that the covariance matrix is updated, the
code writes in all chains files a comment line starting with
# After <k> accepted steps: update proposal...
which also contains information on the current convergence (thus these comments can
also be used to scrutinise what is happening with the run). When analysing the chains
with the info mode, by default, the code will only consider the part of the chains after
the last update, i.e. the Markovian part. If the user wants to de-activate this behaviour in
order to get more points in the chains, she/he can use the flag --keep-non-markovian.

Finally, the update periodicity is controlled by the U input parameter (default: U = 50), which
is in units of cycles. Given that a cycle consists in FPM steps (see eq. (288)), the update takes
place every

Nupdate = U× FPM (289)

steps (here we are referring to proposed steps, not accepted steps).

6.2.4 Superupdate strategy

The covariance matrix updating does not fully achieve the task of reaching optimal conver-
gence conditions automatically. The other part of the proposal density is the jumping param-
eter c, related to the jumping factor j. If j is too large, the acceptance rate (a.r.) is too small
and the number of accepted models remains insufficient to extract statistical information. If j
is too small, the a.r. may get close to one. In that situation the chains would grow rapidly, but
adjacent points would be very correlated, and the chains would not necessarily sample the
full posterior distribution. Thus one should target a compromise value of the acceptance rate.
Since the work of [232], cosmologists usually aim at a.r. ' 0.25 (although larger values in the
range 0.3-0.5 would in principle still be acceptable).

While f = 2.4 matches this goal for a multivariate Gaussian posterior, many runs target
non-Gaussian posteriors, e.g. due to non-trivial priors on cosmological parameters (like the
requirement of a positive neutrino mass) or to strongly non-Gaussian posteriors for the nui-
sance parameters (like those of the Planck high-` likelihoods). The current practise consists in
training a bit and trying manually different values of f until the acceptance rate is correct. For
instance, one quickly comes to know that, e.g., a given version of the Planck likelihood usually
needs a given value of f to achieve a.r. ' 0.25. Of course, it would be better to let the code
find this value automatically for each combination of a model and a dataset. An automatic
jumping factor adaptation would also make the code more powerful when starting from a
very bad proposal density (e.g., when adding many new free parameters to a previous run, or
when investigating a very constraining set of likelihoods when only the covariance matrix of
a much less constraining set is available).

define a “master chain” and some “slave chains”, and only the master chain occasionally pauses in order to
update the covariance matrix; in the latter case, all chains occasionally pause for the same purpose, but this does
not affect convergence, and it only increases the total running time by a very small amount. Note that exchanging
information on the covariance matrix through a file could have a potential inconvenience: When the user analyses
an on-going run with the info mode, she/he could generate a new covariance matrix that may interfere with the
automatic updating mechanism. This is not the case because when the user runs in info mode, the covariance
matrix calculation is de-activated by default; it is only activated with the --want-covmat flag.
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For that purpose, we added to version v3.0.0 the new option --superupdate, which is
complementary to --update: they should normally be used in combination, but then it is only
necessary to pass the --superupdate flag since --update is activated by default.

Note that other schemes to update the full proposal density (rather than just the covariance
matrix) have been investigated in the past. For instance, an Adaptative Metropolis algorithm
for single-chain runs was proposed in [233], and a version of this algorithm was implemented
in a cosmology MCMC code by the CAMEL collaboration [234]. After trying this method for
single chains, we adapted it freely to the multi-chain case, in a way which remains compatible
with the traditional covariance matrix update scheme (--update).

Overall strategy. When running with --superupdate SU, the code starts from a jumping factor
that can be set manually with a command flag (e.g. –f 2.2), but when nothing is passed, 2.4
is used by default. The code keeps a record of the acceptance rate, a.r., and of the jumping
parameter, c, of the last SU cycles, i.e. of the last SU × FPM steps. It also keeps track of the
average a.r. and c̄ over these last SU cycles. This information is used to compute the start-
and stop-criteria. Since --superupdate requires --update to be active, the run can be divided
in several “update sequences”, which are the ensemble of steps between two consecutive
updates. The first “update sequence” is just the time until the first update. The basic principle
of superupdate is to adapt the jumping factor at each step according to the recurrence relation

ck = ck−1 +
1

(k− kupdate)
(a.r.− 0.26) , (290)

where k is the current step number, while kupdate is the first step number of each new “update
sequence”. For the first sequence, kupdate = 0. This recurrence relation leads to faster updating
at the beginning of each new sequence, and to slower updating and safe convergence proper-
ties after some time.

Starting the jumping factor update. The code starts applying the recursion relation (290) when
two conditions are met:

• We do not want to update the proposal distribution too early, as it could be based on
chains still in the burn-in phase. For this reason, we wait until the chains have reached
a certain level of convergence: the numbers (R− 1) computed from the second half of
each chain should be below 10 for all parameters.

• We wait until we have done SU cycles since the beginning of the new “update sequence”,
or since the very beginning if we are still in the first sequence: (k− kupdate) ≥ SU× FPM.
Since the mean acceptance rate a.r. is computed over the last SU cycles, the recurrence
will only take into account some steps from the same “update sequence”. Choosing
SU & 20 ensures that the mean acceptance rate is not computed over too small a sample,
where shot noise may lead to an acceptance rate significantly different from the target
one (i.e. due to random fluctuations in the acceptance rate leading to prematurely stop-
ping adaptation of the jumping factor). We recommend using SU = 20, as we found this
to be a good compromise between efficiency and precision, but higher values can be con-
sidered in order to decrease the impact of superupdate (the jumping factor would start
evolving later and would perform smaller excursions) or to further decrease the impact
of shot noise on the determination of the jumping factor. Note that with SU > U, su-
perupdate would sometimes only be active after the very last update of the covariance
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matrix, in the final stage of the run, when the convergence is already good (or possi-
bly before the chains are well enough converged for updating the covariance matrix to
begin). Thus one should normally consider the range 20 ≤ SU < U only.

Rescaling when the covariance matrix gets updated. Since the true covariance matrix of the Gaus-
sian proposal density is in fact given by the product cC, it would be sub-optimal to leave c
unchanged when the matrix C is updated at the beginning of each new “update cycle”. Sup-
pose for instance that in the n-th “update cycle”, a good jumping factor cn has been found in
combination with a covariance matrix Cn (by this we mean that the acceptance rate has the
correct order of magnitude). If at the beginning of the next cycle the matrix is adapted to a
Cn+1 which is much smaller, while cn+1 restarts from the same value cn, then obviously the
whole proposal density will shrink and the acceptance rate will increase too much. We can
limit this effect by requiring analytically that at each covariance matrix update, the volume
probed by the full proposal density remains constant, which is achieved simply by imposing:

cN
after det(Cafter) = cN

before det(Cbefore) , (291)

where N is the number of free (slow+fast) parameters. This rescaling might not be very ef-
ficient when the evolution of the covariance matrix comes from only one or few parameters,
but in general, it is the best simple guess that one can do. In terms of the jumping factor, this
gives:

jafter = jbefore

[
det(Cbefore)

det(Cafter)

] 1
2N . (292)

Note that, for the first update of the covariance matrix, the logic behind this re-scaling does
not hold. Indeed, if we started from a poor input covariance matrix, the first re-scaling of the
jumping factor may be completely unrealistic. For safety, at the first update time, we reset the
jumping factor to the input value (provided via –f [default: 2.4]).

Stopping the jumping factor update. We adapt the jumping parameter until three conditions are
met:

• The a.r. should converge to 26% with a tolerance of 1 percent point9 (in many cases, the
a.r. starts low and increases to the optimal value, then the adaptation will stop when the
code reaches 25%):

|a.r.− 0.26| < 0.01 . (293)

• In addition to the a.r. criterium, in order to stop adaptation of the jumping parameter
we also require that it is stable,

∣∣∣∣
c̄

ck−1
− 1
∣∣∣∣ < 0.01 , (294)

where c̄ is the mean of the jumping parameter over the last SU × FPM steps. Also, we
do not wish to allow the jumping parameter to converge to arbitrarily low values, as the
risk of chains getting stuck in local minima would increase. Therefore, we introduce a
minimum for the jumping factor corresponding to 10% of the initial jumping factor. If
a small jumping parameter is desired, it is instead recommended to input a low value
with –f.

9 This behaviour is controllable by the options --superupdate-ar and --superupdate-ar-tol.
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• Finally, we require that the number max(R− 1) computed from the second half of the
chains is below 0.4 for all parameters: this is the same condition as for stopping the
covariance matrix update. Thus the superupdate mechanism will only stop its activity
in the final “update sequence”, during which a large number of truly Markovian steps
(generated with a constant proposal density) can be accumulated.

Non-MPI user friendliness. We implemented the superupdate mechanism in MontePython with
the same coding principles as for the update mechanism. Thus it can also be used with or
without MPI, thanks to the fact that the communication between chains works through files
rather than MPI commands. In the running directory, a file jumping_factors.txt stores the
sequence of all jumping factors that have been used, while the file jumping_factor.txt only
contains the final one, that can be used as an input value in the next run. When chains are
restarted in the same directory using the -r command, this will be done automatically.

Keeping only Markovian steps in the final results. When --superupdate is activated, the code still
writes some comment lines in the chains at the beginning of each new “update cycle”, with
information on the current value of max(R− 1), j and a.r.. Additionally, it writes an extra line
of comments when the jumping factor updating stops. When analyzing the chains in info
mode, and unless the user passes the option --keep-non-markovian, all the lines before will
be discarded and the final numbers and plots will be based on purely Markovian chains.

Alternative implementation for single chain runs. The superupdate mechanism in principle re-
quires multiple chains, since it uses convergence tests based on the Gelman-Rubin statistic.
For single chain runs the code will split the chain into three separate chains in order to com-
pute the Gelman-Rubin statistic, a practice that may be less reliable than running multiple
chains. However, MontePython also has an alternative to superupdate that was previously
implemented for single chain runs by [235]. This other mechanism is activated by the flag
--adaptive instead of --superupdate. It does not use the Gelman-Rubin statistic, and it is
slightly closer to the original Adaptive Metropolis algorithm of [233], with an update of the
covariance matrix at each single step.

6.3 fisher matrix

The well-known Fisher matrix is built from the second derivatives of the effective χ2 with
respect to the model parameters computed at a minimum of the χ2, i.e. at the maximum of
the likelihood (see e.g. [236]):

Fij =
1
2

∂2χ2

∂pi∂pj
= −∂2 lnL

∂pi∂pj
. (295)

By definition of the maximum likelihood point, the Fisher matrix must be positive definite and
invertible. Its inverse is the covariance matrix of the Gaussian approximation to the likelihood
near the best-fit point. If the matrix of second derivatives is not computed at that point, it may
not be invertible.

6.3.1 Motivations for Fisher matrix computation

We implemented in MontePython v3.0.0 a calculation of the Fisher matrix directly from the
likelihood and from eq. (295), using a finite difference method that we will detail in the next
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section. The motivation behind this calculation is twofold:

Boosting MCMC runs. The inverse Fisher matrix can be used as the input covariance matrix
of an MCMC run (e.g. Metropolis-Hastings). In that case we don’t need a high-accuracy cal-
culation of this matrix, because any approximate result will likely be a good enough guess,
that the Metropolis-Hastings “update” mechanism will quickly improve anyway. This method
leads to a very significant speed up in most cases, since one rarely starts an MCMC run with
already at disposal a very good covariance matrix including all pairs of parameters. Still, the
method can work only if the code finds an invertible Fisher matrix in the first place, and
this is only guaranteed at the exact maximum likelihood point. This condition can be easy or
difficult to achieve depending on the type of run:

• For parameter forecasts with mock data, we usually use the fiducial spectra in the role
of the observed spectra, without generating a random realisation (see e.g. [96] for com-
ments on this methodology). Thus the maximum likelihood exactly coincides with the
fiducial model, known in advance by the user. Then the new Fisher method works par-
ticularly well.

• For parameter extraction from real data, we know at most an approximation to the best
fit point. Then, one may hope that if the distance between the true and approximate
best fit points is small compared to the steps used in the finite difference method, the
approximate Fisher matrix computed in the latter point will still be positive definite and
invertible. We found however that this does not happen very often, so the possibility to
use this new method for real data remains somewhat random. To increase chances, we in-
corporated in MontePython a few minimum-finding algorithms taken from the optimize
python library10, that may at least help to get closer to the true best-fit point before try-
ing the Fisher matrix computation. However, our tests show that, for the moment, the
implemented minimization algorithms are not very robust, especially in the presence of
many nuisance parameters.

In summary, the new Fisher calculation definitely improves all MCMC forecasts (as shown
in section 6.4), and it may also improve MCMC runs with real data (see a few examples in
section 6.4.2) unless one ends up with likelihood shapes that happen to be too complicated
for finding the minimum and/or running the Fisher algorithm.

Replacing MCMC runs. When one knows that the posterior of a given run should be nearly
Gaussian, or when one is not interested in the details of the posterior (e.g. non-trivial param-
eter correlations with some skewness, kurtosis, banana-shape, etc.), it is tempting to replace
whole MCMC parameter extraction runs by simple Fisher matrix computations. Then the
inverse Fisher matrix will give some approximate one-dimensional confidence regions and
two-dimensional elliptic contours. This is particularly straighforward for sensitivity forecasts

10 If the user runs MontePython with the command flag --minimize, before using any engine (Metropolis-Hastings,
Fisher, etc.), the code will re-evaluate the central starting point using a χ2 minimization algorithm. This call is done
in the routine get_minimum() of the module montepython/sampler.py. After loading some approximation for the
best-fit point and for the iteration step size, this routine calls the python function numpy.optimize.minimize(),
which accepts several values of the input parameter method, corresponding to different minimization algorithms.
By default we did set method=‘SLSQP‘, which calls the Sequential Least SQuares Programming algorithm, but the
user is free to edit the module and change one line to try different methods. The algorithm stops when the χ2

seems to be converged up to the tolerance passed through the MontePython input flag --minimize-tol (default
10−5), but there is no guarantee that the algorithm leads to the true minimum.
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since, in that case, the maximum likelihood point is known in advance. It can also be envis-
aged for real data if the maximum likelihood point is known up to good approximation, for
instance, after a run with the new --minimize option of MontePython (whose success is not
guaranteed).

In the cosmology literature, a vast majority of parameter forecasts are based on Fisher
matrix calculations. These are usually performed by specific codes, using the fact that after a
few steps of analytic calculations, Fij can be re-expressed as a function of the derivative of the
observable quantities with respect to the parameters (e.g. ∂C`/∂pi or ∂P(k)/∂pi). Instead, the
Fisher matrix computation performed by MontePython is a direct likelihood-based evaluation,
since we compute ∂ lnL/∂pi. The two approaches are mathematically equivalent, but the
latter may offer some practical avantages. Indeed, the quantity which is primarily build to
model a given experiment is the likelihood. Skipping the analytical steps leading to derivatives
like ∂C`/∂pi or ∂P(k)/∂pi sometimes avoids complicated expressions, the need to introduce
approximations, and further risks to make an error.

In both approaches, one has to compute some numerical derivatives with a given step size.
For a purely Gaussian likelihood, the step size should be irrelevant, provided that it is not
so small that numerical errors (from the Boltzmann code or from the likelihood code) come
to dominate. Very often, Boltzmann codes are optimized in order to give an accuracy on the
χ2

eff of the most constraining experiments (typically, nowadays, the Planck experiment) of the
order of δχ2 ∼ O(10−1), simply because achieving better precision would not change the
results on confidence intervals, and would thus be a waste of computing time. Therefore, it is
dangerous to use steps ∆pi such that

∆χ2 ≡ 1
2

(
lnL(pbestfit

i + ∆pi)−L(pbestfit
i )

)
(296)

is significantly smaller than 0.1. This provides roughly a lower bound on the ∆pi’s. The ques-
tion of the upper bound is more delicate, and especially important when the likelihood is not
Gaussian: different choices can then return significantly different Fisher matrices and confi-
dence limits. The community is split between different approaches on this issue. One school
suggests to take the smallest possible steps until numerical noise comes into play, in order to
be as close as possible to the mathematical definition of the second derivatives. Another school
prefers to choose steps such that ∆χ2 ' 1 (resp. 4) if the final goal is to deliver predictions
for 68% (resp. 95%) confidence limits on the parameters, since in that case the Fisher matrix
gives a Gaussian approximation of the likelihood valid precisely in the region that is relevant
for the parameter bounds (see e.g. [96]). Many Fisher codes do not even target any particular
given order of magnitude for ∆χ2, and choose the steps ∆pi arbitrarily.

In MontePython v3.0.0, we approach this problem by letting the user choose a target value
for ∆lnL = 2∆χ2. By default, the code will first try to get an invertible Fisher matrix with
∆lnL ∼ 0.1, and will iteratively increase this value in case the result is non-invertible, as
explained in the next section. However, the user can choose the first value of ∆lnL, and may
for instance set it to 0.5 or 2 (with the flag --fisher-delta).

6.3.2 Iterative strategy for the fisher matrix computation

The Fisher matrix calculation is a “method”, like e.g. Metropolis-Hastings, Nested sampling,
Importance Sampling, minimization, etc. It is activated by launching MontePython v3.0.0 in
run mode with the command flag:
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• --method Fisher : calculate Fisher matrix

The calculation takes place around parameter values specified by the first entries of each list
in the input file:

data.parameters[’P1’] = [p1, .., .., .., .., ..] ,

unless another best-fit model is passed with the command line -b path/to/file.bestfit.
The user may control the step size for the finite difference derivatives with two parameters:

• --fisher-delta D: target ∆lnL value for finding the steps ∆pi [default: D = 0.1]

• --fisher-tol T: tolerance for ∆lnL (note: decreasing slows down computation) [default:
T = 0.05]

Then the code finds the step size for each parameter matching the target ∆χ2 = D ± T by
bisection. Sometimes the bisection struggles to converge (e.g. for non-Gaussian likelihoods,
or if the calculation is not centered on the maximum of the likelihood). In this case, after 10

attempts, it gradually increases the tolerance T at each step until convergence is obtained.
However, in such an event, it may be preferable to adjust the input parameters instead (e.g.
target D or best fit parameter values).

Once the step sizes have been obtained, the code computes all the elements of the Fisher
matrix. If the result is a non-invertible matrix (due to the non-Gaussianity of the likelihood or
to a bad guess for the maximum likelihood), the code enters into a stage of iterations over the
target value of ∆χ2, which is steadily increased until the matrix becomes invertible, following
the sequence D, 2D, 3D, ...ND. The maximum number of iterations can be controlled with

• --fisher-step-it N: number of step iterations attempted [default: N = 10]

If the matrix inversion still fails after the maximum number of iterations, the code stops and
returns an explicit error message.

Whenever the code finds an invertible Fisher matrix, it stores both the Fisher matrix and
its inverse in distinct files with the extension .mat. The inverse Fisher matrix file matches the
usual format of any covariance matrix that the Metropolis-Hastings algorithm would take in
input for the density proposal. Thus it can immediately be used in an MCMC run with the
input flag -c path/to/file.covmat.

6.3.3 Dealing with prior boundaries

In the last section we mentioned that the code finds the step sizes ∆pi used in numerical deriva-
tives with a bisection algorithm. The bisection starts with a first tentative step size given by the
input σ

input
i value for a each parameter, as given by the input file or by the input covariance

matrix specified by the input flag -c path/to/file.covmat (the second always has priority).
In cases where a pbestfit

i ± σ
input
i value exceeds the prior boundary, we change the initial step

σinitial
i according to the following criteria:

Case 0: When there are no boundaries, or the difference between the boundary and the center
is greater than σ

input
i , the initial step is given by σ

input
i :

σ
input
i < Bi− and σ

input
i < Bi+ ⇒ σinitial

i = σ
input
i ,
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where the lower boundary distance is Bi− = pbestfit
i − plower−boundary

i and the upper one is
Bi+ = pupper−boundary

i − pbestfit
i .

Case 1: When one or both of the boundary distances is smaller than σ
input
i , but both are still

larger than a tenth of σ
input
i , we set the initial step to the smaller of the two boundary distances:

0.1σ
input
i < Bi−/+ < σ

input
i ⇒ σinitial

i = min(Bi−, Bi+) .

Case 2: When one or both of the boundary distances is smaller than a tenth of σinput, we
instead assume the likelihood is symmetric around the best-fit point, and we only compute
steps in one direction (the one in which the distance to the boundary is the greatest), while
mirroring the likelihood values to the other direction:

Bi−/+ ≤ 0.1σ
input
i ⇒ σinitial

i = min(max(Bi−, Bi+), σ
input
i ) .

Once the steps have been settled in that way, the diagonal elements of the Fisher matrix are
given by the numerical derivatives

Fii =
∂2 lnL

∂p2
i
≈ lnL(pi+∆pi)− 2 lnL(pi) + lnL(pi−∆pi)

∆p2
i

(297)

and the the off-diagonal ones by

Fij =
∂2 lnL
∂pi∂pj

≈ lnL(pi+∆pi, pj+∆pj)− lnL(pi+∆pi, pj−∆pj)

4∆pi∆pj

− lnL(pi−∆pi, pj+∆pj)− lnL(pi−∆pi, pj−∆pj)

4∆pi∆pj
. (298)

Asymmetric steps. In cases 0 and 1, the code always uses symmetric steps, and in case 2 it
postulates a symmetry of the likelihood. In some situations the user may find it beneficial to
use instead some asymmetric steps to compute the Fisher matrix. This can be activated with
the input flag:

• --fisher-asymmetric : allow for asymmetric steps (note: slows down computation) [de-
fault: False]

Then the “case 1” and “case 2” rules are replaced with some evaluations of the likelihood at
pi + ∆p+i and pi − ∆p−i, with ∆p+i = min(σinput

i , Bi+) and ∆p−i = min(σinput
i , Bi−). In that

case the diagonal terms of the Fisher matrix are given by

∂2 lnL
∂p2

i
≈ 2

(
∆p−i

∆p+i

)
lnL(pi+∆p+i)−

(
∆p−i

∆p+i
+ 1
)

lnL(pi) + lnL(pi−∆p−i)

∆p−i∆p+i + ∆p2
−i

, (299)
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and the off-diagonal ones by

∂2 lnL
∂pi∂pj

≈
(

∆p2
−j

∆p+j
+ ∆p−j

)−1(
∆p2
−i

∆p+i
+ ∆p−i

)−1

×
{(

∆p−j

∆p+j

)2
[(

∆p−i

∆p+i

)2

lnL(pi+∆p+i, pj+∆p+j)− lnL(pi−∆p−i, pj+∆p+j)

]

−
(

∆p−i

∆p+i

)2

lnL(pi+∆p+i, pj−∆p−j) + lnL(pi−∆p−i, pj−∆p−j)

+

[(
∆p−j

∆p+j

)2

− 1

](
lnL(pi−∆p−i, pj)−

(
∆p−i

∆p+i

)2

lnL(pi+∆p+i, pj)

)
(300)

+

[(
∆p−j

∆p+j

)2

− 1

] [(
∆p−i

∆p+i

)2

− 1

]
lnL(pi, pj)

+

[(
∆p−i

∆p+i

)2

− 1

](
lnL(pi, pj−∆p−j)−

(
∆p−j

∆p+j

)2

lnL(pi, pj+∆p+j)

)}
.

6.3.4 Efficient treatment of nuisance parameters

Not counting the few intermediate steps necessary for the automatic determination of step
sizes (which is typically around 2− 4 evaluations per parameter), the calculation of one Fisher
matrix requires a number of likelihood evaluations equal to

Nevaluations = 1 + 2Nparams + 4
Nparams−1

∑
n=1

n , (301)

i..e. one in the best-fit point, two for each diagonal element and four for each off-diagonal
element, where Nparams = Ncosmo + Nnuisance is the total number of parameters, Ncosmo is the
number of cosmological parameters and Nnuisance is the number of nuisance parameters. For a
typical Planck run we have 6 cosmological parameters and 26 nuisance parameters, resulting
in 2049 likelihood evaluations when the target ∆χ2 is not iterated on.

The fact that varying only nuisance parameters does not require a call to the Boltzmann
solver allows us to considerably optimize the computation. In MontePython, the routine call-
ing the likelihoods always keeps a memory of the previous step (model parameters and cos-
mological observables). Therefore, if the likelihood is evaluated at a new point such that
only nuisance parameters have changed, MontePython knows that the Boltzmann code should
not be called again. To optimize the Fisher matrix calculation, we just need to arrange the
Nevaluations calls of the likelihood in a particular order minimizing the number of calls to the
Boltzmann solver.

We loop over the parameters starting from the cosmological ones and ending with the
nuisance ones.

For each parameter pi, we first perform all the calculations involving the value (pi−∆pi,
i.e. L(pi−∆pi) for the diagonal element and L(pi−∆pi, pj±∆pj) (for each j > i) for the non-
diagonal elements. Then we perform all the calculations involving the value (pi+∆pi, i.e.
L(pi+∆pi) for the diagonal element and L(pi+∆pi, pj±∆pj) (for each j > i) for the non-
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diagonal elements. In that way, the number of calls to the Boltzmann solver is drastically
reduced to

Ncalls = 1 + 4Ncosmo + 4
Ncosmo−1

∑
n=1

n , (302)

corresponding to Ncalls = 85 for a typical Planck run (again without step iteration). This vastly
reduces the computational time11.

6.3.5 Plotting likelihood contours from inverse Fisher matrix
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Figure 19: Confidence ellipses inferred from the inverse Fisher matrix (black lines) plotted on top of
the 2d marginalized posterior distribution of a Metropolis-Hastings forecast. We fitted mock
BAO data from the DESI survey combined with mock Planck data, assuming an 8 parameter
cosmological model (νwCDM).

11 Note that if the number of operation was not reordered in such a special way, we would still get some gain, but
the number of calls would still be as large as

Ncalls = 1 + 2Ncosmo + 4

(Nparams−1

∑
n=1

n−
Nnuisance−1

∑
m=1

m

)
.

This corresponds to Ncalls = 697 for a typical Planck run, without step iteration.
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Having the Fisher matrix and its inverse, the user can easily write a small scripts to plot the
ellipses corresponding to two-dimensional confidence levels in parameter space. This is not
possible with MontePython, which can only do plots when some MCMC chains are present.

However, the MontePython plotting tools are useful for comparing the results of MCMC
runs with the Gaussian posterior approximation given by the inverse Fisher matrix. For that
purpose, one can analyse MontePython results with the usual info mode, adding just one input
flag: --plot-fisher. Then the code will check whether a Fisher matrix has been computed
and stored in the same directory as the chains that the user is trying to plot. If this is the case,
the Fisher ellipses are drawn on top of the MCMC contours, like in figure 19.

This figure shows a sensitivity forecast based on mock BAO data from the DESI survey
combined with Planck data, for a cosmological model with massive neutrinos and dynamical
dark energy (νwCDM, 8 free parameters). The Fisher matrix was actually computed before
launching the chains, and its inverse was used as an input covariance matrix. The final MCMC
contours prove that in this case, the Fisher approximation is excellent. This inverse Fisher
matrix does not only provide a good proposal density for MCMC runs, it also gives excellent
estimates of parameter bounds, and it could be substituted to the whole MCMC results.

One could be in a situation in which a Fisher matrix is first computed around a guess for
the best-fit point, and then used to launch MCMC chains that will be centered on the true
best-fit point (in the case of a Gaussian posterior). In the comparison plot, one may find that
the Fisher ellipses have the right shape, but are offset with respect to the true best-fit point. In
order to get a nicer plot, the MontePython user can use the input flag --center-fisher. This
will automatically center the Fisher ellipses on the maximum likelihood point extracted from
the MCMC chains, instead of using the central values read in the log.param file, even if the
Fisher matrix was actually computed in that point.

6.4 illustration of performance

In order to illustrate the performance of superupdate and the impact of using an inverse
Fisher matrix as input covariance matrix, we have chosen a few data sets and cosmological
models, and performed some fits with or without these different options. The comparison is
especially interesting in the most difficult situations: large number of free parameters, small
prior knowledge (i.e. poor guess for the input covariance matrix), etc.

6.4.1 Forecasts with a small prior knowledge

We first run some MCMC forecasts for the combination of mock BAO data from the DESI12

survey and Planck13 data. We use the mock DESI likelihood called fake_desi_vol (docu-
mented in 6.5.4). For a forecast, we don’t need to use real Planck data. We use instead
a likelihood which simulates roughly the approximately of the Planck satellite, but uses
some synthetic data corresponding to the Planck best-fit model. This likelihood is called
fake_planck_realistic and is also documented in 6.5.4.

We fit these datasets with the minimal 6-parameter ΛCDM model and with several extended
models featuring up to 12 free parameters. These extensions are listed in the first column of
Table 13 and include massive neutrinos, dynamical dark energy with a constant equation of

12 http://desi.lbl.gov
13 http://sci.esa.int/planck/

http://desi.lbl.gov
http://sci.esa.int/planck/
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Mock data: fake_planck_realistic, fake_desi_vol (see 6.5.4)

Running time: 12 hours

model # param. R− 1: R− 1: R− 1: Fisher

update superupdate + superupdate

ΛCDM 6 0.030 0.015 0.013

+ ∑ mν + w0 8 0.036 0.022 0.018

+ Neff + running 10 not converged not converged 0.040

+ Ωk 11 not converged not converged 0.048

+ wa 12 not converged not converged 0.088

Running time: 48 hours

ΛCDM 6 0.0035 0.0029 0.0019

νw0CDM + Neff + running 10 0.014 0.0054 0.0038

Table 13: For mock data and several cosmological models, comparison of three sampling options, using
the Gelman-Rubin convergence criterium. See text for details.

state, extra relativistic degrees of freedom, a running of the primordial spectrum index, spatial
curvature, and finally dynamical dark energy with a CPL parametrisation [237, 238].

We run MontePython in these different cases with the Metropolis-Hastings algorithm and
three different methods:

• update [--update]: periodical update of the covariance matrix,

• superupdate [--superupdate]: additional adaptation of the jumping factor,

• superupdate + Fisher [first --method Fisher; then --superupdate]: same but starting
from the inverse Fisher matrix computed by MontePython.

For the update and superupdate runs, the proposal density is initialised as the “Planck 2015

covariance matrix”, i.e. as the covariance matrix publicly distributed with the MontePython
package, derived from the analysis of a well-converged run based on the Planck 2015 like-
lihoods and assuming the 6-parameter ΛCDM model. Also, in these two runs, the jumping
factor is initially set to 2.4 (thus it remains equal to this value with the update method). For
the Fisher matrix calculation, we pass to the code the exact best-fit model used to generate the
mock data.

For each model and method, we launch the code with 8 chains, where each chain is running
on 6 cores, using a total of 48 cores. After either 12 or 48 hours, we compute the worse [181]
convergence criterium (R− 1) over all parameters, removing the initial 10-20% of each chain
(depending on the duration of the burn-in phase, but always the same for a given combination
of models and experiments).

The difficulty of these runs reside in the poor guess for the input covariance matrix. In
the six parameter runs, the input covariance matrix is derived from Planck data alone, while
the DESI BAO data is very constraining. This means the proposal density is much too wide
initially, and needs to shrink to the small region allowed by DESI data. When adding extra
parameters, the situation is even worse. For the extra parameters, the code does not rely on
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the input covariance matrix, but on the standard deviations written in the input file (for which
we plug the Planck error bars). Therefore, the proposal density needs to learn both the correct
order of magnitude for the jumps in these new directions, and the parameter correlations
involving the extra parameters.

We find that, for the simplest models (6 and 8 parameters), all three methods successfully
obtain at least a convergence of R− 1 = 0.03, although superupdate and superupdate + Fisher
perform better, obtaining an R− 1 up to a factor 2 smaller. For the more complicated models
(10, 11 and 12 parameters), starting from a Fisher matrix and using superupdate makes a
big difference, as only the runs starting from a Fisher matrix managed to obtain any level of
convergence, when limiting ourselves to only 12 hours of runtime. However, if we allow for
longer runtime (48 hours) the update and superupdate methods also manage to converge,
thanks to periodic updates of the covariance matrix, with the superupdate and superupdate
+ Fisher runs showing a factor of 2.6 to 3.7 better convergence than update alone. Figure 20

explicitely shows why the jumping factor adaptation and the Fisher matrix calculation result
in a very significant speed up for the convergence of this run.

6.4.2 Current data

For a comparison of the efficiency of our new methods using current data, we consider only
the 6-parameter ΛCDM model, that we fit to two data sets: a small set with just Planck and
BAO likelihoods, and a larger one including Large Scale Structure (LSS) likelihoods (galaxy
clustering from SDSS and weak lensing from CFHTLens). More details are given in Table 14.
We perform again some fits in three different ways (update, superupdate, superupdate+Fisher),
exactly like in the previous section (i.e. starting update and superupdate from the “Planck
2015 covariance matrix” distributed with the code, and from a jumping factor 2.4). We use the
same number of chains and cores as in the forecasts, and allow the chains to run for 12 or 48

hours.
Like in the previous section, these runs illustrate the case of starting from a bad guess for

the proposal density, because the input covariance matrix takes only Planck into account and
needs to shrink to the smaller region compatible with BAO and LSS data. There are other
significant differences with respect to the runs of the previous section. First, when we use the
“small” dataset, we have all the nuisance parameters of the Planck high-` TT likelihood, which
have strongly non-Gaussian posteriors and are correlated with each other. This means that the
optimal jumping factor is significantly different from 2.4 (it is actually closer to 1.9). It also
means that the Fisher matrix calculation is difficult, due to the large number of parameters, the
non-Gaussianity of the likelihood with respect to some parameters, and the fact that we only
have a poor approximation of the best-fit point in parameter space (we compute the Fisher
matrix in the approximate best-fit extracted from the chains of an earlier run with Planck data
only). With the extended data set, the code actually fails to obtain an invertible Fisher matrix
with the full Planck TTTEEE + BAO + LSS data, so we had to switch to the Planck-lite TTTEEE
likelihood in order to get rid of nuisance parameters.

The run with the small dataset shows the impact of the automatic jumping factor update:
with superupdate, the code rapidly adapts the jumping factor to about 1.9, while with update
it remains stuck at 2.4, leading to a small acceptance rate. Table 14 shows a gain in (R− 1) by
a factor of two when using superupdate. However, this run also shows that using the inverse
Fisher matrix is not always a good idea with current data and many non-Gaussian parameters,
because the Fisher Matrix can be such a poor approximation of the likelihood (especially in the
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Figure 20: Evolution of the acceptance rate, jumping factor and convergence estimators for the last
run from Table 1 (10 parameter model, mock Planck+DESI, 48h) using U = 50, SU = 20,
FPM= 10, and thus Nupdate = 500. The jumping factor information is updated at each
step, and the information on (R− 1) every Nupdate step (computed over the last 50% of the
chain). This information can always be extracted from the code output. Instead, the local
acceptance rate of the upper pannel was computed by post-processing the chains for the
purpose of this plot, and was defined by averaging over about 500 steps (so this is slightly
different from the quantity a.r. used by the superupdate algorithms, which is only averaged
over SU× FPM=200 steps). The “Fisher” run essentially catches the right covariance matrix,
jumping factor and acceptance rate from the beginning. The “superupdate” run reduces
its jumping factor in order to quickly accumulate many points and get a good covariance
matrix estimate; once this is done, it increases the jumping factor to avoid a too big accep-
tance rate. Finally, the “update” run needs about 3500 more steps before entering into an
efficient sampling regime with a good covariance matrix and acceptance rate, which corre-
sponds to about 12 hours on our 48 cores: thus we can say that in this particular example,
“superupdate” saved about 600 core-hours for a single run.

direction of the non-Gaussian nuisance parameters) that it is actually a worse input covariance
matrix than the one derived from MCMC chains for a previous Planck-only run. Therefore,
the preliminary Fisher calculation degrades the performance by a factor three compared to
superupdate + the “Planck 2015 covariance matrix”.

The run with the large dataset (but with the Planck-lite TTTEEE likelihood) shows instead
the same trend as the forecasts: both superupdate and Fisher bring significant improvement ,
by up to a factor two in (R− 1).
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Planck 2015 (highl TT, low`, lensing) + BAO (MGS, 6dFGS, LOWZ, CMASS)

Running time: 12 hours

model # param. R− 1: update R− 1: superupdate R− 1: superupdate + Fisher

ΛCDM 6 0.019 0.0098 0.029

Planck 2015 (highl TTTEEE lite, low`, lensing) + BAO (MGS, 6dFGS, LOWZ, CMASS)

+ galaxy clustering (SDSS DR7 LRG), weak lensing (CFHTLenS)

Running time: 12 hours

ΛCDM 6 0.042 0.032 0.018

Running time: 48 hours

ΛCDM 6 0.0062 0.0047 0.0038

Table 14: For current data and the ΛCDM model, comparison of three sampling options, using the
Gelman-Rubin convergence criterium. See text for details.

These different situations bring us to the following conclusion, which match several other
tests that we have performed and not included here:

• using superupdate is essentially always a good idea. The only situations in which one
could consider sticking to update are the easiest ones, i.e. when a new run involves a
dataset and a model so similar to a previous run that we already have an excellent knowl-
edge of the covariance matrix and of the optimal jumping factor. In that case, update and
superupdate are nearly equivalent, but in the most unlucky situations, superupdate
could have a transitory phase during which the jumping factor would go away from
the optimal value before going back to it asymptotically, and would lose a bit in effi-
ciency. This is normally marginal and we can safely recommend to use superupdate in
all cases: then, depending on the “difficulty” of the run, the improvement will range
from negligible to large.

• when there are many non-Gaussian parameters, such as the Planck nuisance parameters,
the Fisher matrix computation often fails, and even when it does not fail, the inverse
Fisher matrix is often a bad approximation for the proposal density, compared to any in-
put covariance matrix that was inferred from chains with the same nuisance parameters.
For example, this means that when using the full Planck high-` likelihoods one should
use the distributed “Planck 2015 covariance matrices”, or one’s own covariance matrices
from previous runs, instead of the Fisher option. In almost all other cases, we found that
computing and starting from the inverse Fisher matrix is a very powerful way to speed
up convergence.

6.5 conclusion and summary of features

We find that using superupdate and an inverse Fisher matrix as input covariance matrix
reduces convergence time in most cases, and makes the process of obtaining convergence
significantly simpler, due to much fewer trial and error runs being necessary.
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The Fisher matrix computation is very quick, so we recommend that for forecasts (where
the minimum is known) with a Metropolis-Hastings algorithm are preceded by a Fisher ma-
trix computation, when an accurate covariance matrix is not available beforehand. Likewise,
superupdate generally performs equal to or better than update alone, as it optimizes the
acceptance rate, and we recommend its use for all Metropolis-Hastings runs.

We acknowledge that the calculation the Fisher matrix is not entirely robust in MontePython
v3.0.0, since in difficult cases with many non-Gaussian parameters (such as the Planck nui-
sance parameters), the Fisher matrix found by the code can be non-invertible, due to numer-
ical errors and/or a poor estimate of the best-fit parameter values. We expect that further
progress can be made in the future in the minimization and Fisher algorithms. However, we
have tested our new features in hundreds of runs (including the few cases detailed in section
6.4) and found them extremely convenient for saving CPU time.

6.5.1 Extra parameterisations

By design, any function in CLASS that has been incorporated into the CLASS python wrapper14

can be accessed directly from MontePython, without any additional coding required. However,
sometimes it can be useful to define a specific parametrization within MontePython. This is
easily done in the python/data.py module, where the MontePython input parameters can be
intercepted and re-defined or re-named before being passed to CLASS. This happens in the
update_cosmo_arguments() function, where all varying cosmological parameters are iterated
through, and any additional parametrisations that are desired can be included by adding a
simple if statement similar to existing ones.
MontePython includes several reparameterisation of this type. Some of them just deal with

ordinary cosmological parameters, e.g.:

• if the parameter Omega_Lambda is used as a MontePython input parameter, instead of
being passed to CLASS, it is used for defining h through h =

√
(ωb + ωcdm)/(1−ΩΛ) .

• if the parameter Omega_L is used as a MontePython input parameter, instead of being
passed to CLASS, it is used for defining omega_cdm via ωcdm = (1−ΩΛ)h2 −ωb .

• if the parameter ln10ˆ{10}A_s is used as a MontePython input parameter, instead of
being passed to CLASS, it is used for defining A_s.

• if the parameter exp_m_2_tau_As (≡ e−2τreio As) is used as a MontePython input parameter,
instead of being passed to CLASS, it is used for defining A_s (assuming that tau_reio is
also being used).

The code includes many other re-definitions related to isocurvature modes, neutrinos, dark en-
ergy, etc. Below, we expand the discussion concerning a few of the implemented neutrino and
dark energy re-parameterisations. The user can easily extend the list of re-parameterisation
for her/his specific cases.

14 Note that “incorporating” a new CLASS parameter in the wrapper just consists of adding one line in
python/cclassy.pxd with just a declaration of this parameter (e.g. double my_param). The declaration must be
done within the structure to which the parameter belongs. Incorporating a new CLASS function also boils down
to declaring it in this file. New coding in the file python/classy.pyx is only required when one wants to create a
new function specific to the wrapper itself, rather than just interfacing a CLASS function.
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6.5.1.1 Neutrino hierarchy

MontePython can sample the total neutrino mass, with the individual neutrino masses ar-
ranged according to the Normal Hierarchy (NH, with two less massive and one more massive
neutrino) or Inverted Hierarchy (IH, with one less massive and two more massive neutrinos).

The quantities passed to CLASS are the individual neutrino masses, but the quantity we
are interested in sampling is the sum of neutrino masses. Formally, this is done using as a
varying MontePython parameter M_tot_NH or M_tot_IH. Then, for each sampled value of the
total neutrino mass (Mν), the individual neutrino masses (mi) are calculated by solving the
system of equations (see e.g. [33])

Mν = m1 + m2 + m3 ,

∆m2
atm = m2

3 −m2
` ,

∆m2
sol = m2

2 −m2
1 ,

where ` is 1 for NH and 2 for IH, and ∆m2
atm and ∆m2

sol are the current central values of the
mass splittings obtained from neutrino oscillation experiments [10] (for a more recent study
see e.g. [40])

NH: ∆m2
atm = 2.524× 10−3 eV2 ,

∆m2
sol = 7.50× 10−5 eV2 ,

IH: ∆m2
atm = −2.514× 10−3 eV2 ,

∆m2
sol = 7.50× 10−5 eV2 .

Additionally, the three parameters related to extra relativistic or non-cold dark matter (ncdm)
species N_ur=0.00641, N_ncdm=3 and T_ncdm=’0.71611,0.71611,0.71611’ should be fixed as
cosmo_arguments, to reflect the fact that have three distinct standard active neutrino species
and no extra relativistic degrees of freedom (unless one is studying a scenario with extra rel-
ativistic relics, in which case N_ur should be varied). Note that T_ncdm gives, for each species,
the temperature of the neutrinos in units of photon temperature. In reality, the standard neu-
trinos distribution contains slightly non-thermal distribution, while by default CLASS will treat
them as thermal species. The price to pay is to have a temperature ratio adjusted to 0.71611 in
order to get the right neutrino density in the non-relativistic regime, and a small contribution
to N_ur in order to get the right density in the relativistic one. This is why with three massive
species we advise to take N_ur=0.00641 instead of N_ur=0, but this correction is anyway well
below the sensitivity of current experiments.

6.5.1.2 Degenerate massive ν’s and varying Neff

In addition to arranging the mass of the neutrinos in a neutrino hierarchy, it is possible to
sample the total neutrino mass for a case with three massive neutrinos with degenerate mass.
Although not a realistic scenario, it is often sufficient to use three degenerate neutrinos (see
e.g. [50]), speeding up computations in the Boltzmann solver.

This is done via the input parameter M_tot, remembering to specify the cosmo_arguments
from before, but this time with only one type of neutrino species, N_ur=0.00641, N_ncdm=1 and
T_ncdm=0.71611, and instead specifying the degeneracy of the neutrino species, deg_ncdm=3.
The total neutrino mass is then simply divided by the number of massive neutrino species
and the resulting particle mass is passed to CLASS.
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Additionally, this allows for varying the effective number of relativistic species, Neff, by
using the degeneracy of neutrino species, deg_ncdm, as a varying cosmological parameter
instead of a fixed quantity.

For completeness, it is possible to use only one or two degenerate massive neutrinos and
the rest massless, but this has been shown to be slightly inaccurate for the precision of current
experiments [18].

6.5.1.3 Dynamical dark energy

Many phenomenological dark energy models can be treated using the fluid sector of CLASS,
which has several free parameters labelled as _fld. By default, this sector uses the PPF param-
eterisation [239], although real fluid equation can be restored by setting use_ppf to ’no’ in
the cosmo_arguments.

In principle, the dynamical dark energy equation of state parameters w0_fld and wa_fld,
with a CPL parameterisation [237, 238] defined through w(a) = pDE/ρDE = w0 +wa(1− a/a0)

(where, as usual, p is the pressure, ρ is the density, and a is the scale factor), can be passed
directly to CLASS. However, it may be useful to sample the quantity w0 + wa (implemented
as w0wa) and w0 (implemented w0_fld), in order to restrict the parameter space of w0 + wa to
only negative values (as in e.g. [26]).

6.5.1.4 Sterile ν parametrization

A final example of how a specific parameterisation can be introduced in MontePython is
sterile neutrinos. In addition to degenerate massive neutrinos, one may wish to sample the
sterile neutrino mass and the contribution of sterile neutrinos to Neff, while avoiding the
region of parameter space where the sterile neutrino mass becomes arbitrarily large and the
contribution to Neff becomes arbitrarily small (see Fig. 32. of [2]).

For this we defined the effective sterile neutrino mass ms,eff ≡ ms∆Ns as a possible varying
cosmological parameter (m_s_eff), that should be used along with the parameter deg_ncdm__2
standing for the contribution of sterile neutrinos to Neff. This case is a bit more complicated
than the others, as, in addition to setting N_ncdm=2 and T_ncdm=’0.71611,0.71611’, we also
need to set the degeneracy of normal neutrinos deg_ncdm__1 as a ‘phantom’ varying cos-
mological parameter, but with the parameter fixed to 3. The mass of the degenerate active
neutrino species can also be varied as m_ncdm__1. This means the output of the chains will be
the mass of a single active neutrino, rather than the sum, but of course we know that in this
case Mν = m_ncdm__1× deg_ncdm__1 = 3 m_ncdm__1.

The effective sterile neutrino mass is then converted to physical sterile neutrino mass within
the data.py module, in the function update_cosmo_arguments(), by dividing with ∆Ns (as-
suming that this is the ncdm species number 2 and that it is Dodelson-Widrow-like, i.e with
the same temperature as active neutrinos). It is finally passed to CLASS along with the other
neutrino masses.

6.5.2 Sampling options

MontePython has the following general sampling options

• --method : sampling method (MH, NS, CH, IS, Der, Fisher) [default: MH]
which refer respectively to Metropolis-Hastings, Nested Sampling (= MultiNest), Cosmo
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Hammer (= emcee), Importance Sampling, Derived (= reprocessing the chains to add
columns with extra derived parameters requiring a new CLASS run for each model), and
Fisher.

• –T : sample from the probability distribution P1/T instead of P [default: 1.0]

Options for Metropolis-Hastings and variants

• --method MH : Metropolis-Hastings sampling [default: MH]

• --update : proposal distribution update frequency in number of cycles [default: 50]

• --superupdate : also adapt jumping factor. Adaptation delay in number of cycles [de-
fault: 0] (i.e. deactivated by default. Recommended: 20)

• --superupdate-ar : target local acceptance rate [default: 0.26]

• --superupdate-ar-tol : tolerance for local acceptance rate [default: 0.01]

• --adaptive : running adaptation of covariance matrix and jumping factor (note: only
suitable for single chain runs) [default: 0]

• --adaptive-ts : starting step for adapting the jumping factor [default: 1000]

• –f : jumping factor [default: 2.4]

• --minimize : attempt to re-evaluate starting point using a χ2 minimization algorithm [by
default uses SLSQP via numpy.optiminize.minimize(), can be changed in sampler.py
function get_minimum()]

• --minimize-tol : tolerance for minimization [default: 10−5]

Fisher matrix options

• --method Fisher : compute a Fisher matrix [default: MH]

• --fisher-asymmetric : allow for asymmetric steps (note: slows down computation) [de-
fault: False]

• --fisher-step-it : number of step iterations attempted [default: 10]

• --fisher-delta : target ∆ lnL value for step iteration [default: 0.1]

• --fisher-tol : tolerance for ∆ lnL (note: decreasing slows down computation) [default:
0.05]

• --fisher-sym-lkl : cut-off for switching to symmetric likelihood assumption in units
of σ. Relevant when parameter space boundaries are close to the central value [default:
0.1]

MontePython also supports sampling with MultiNest (--method NS) [240–242] via a python
wrapper [243] and emcee [244–246] via CosmoHammer (--method CH) [246]. For these sampling
options we refer to the official documentation of those codes.
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6.5.3 Analyze and plotting options

The range of plotting options and the general presentation of the plots has been significantly
improved in MontePython v3.0.0. We should, however, point out that the user is free to use
other plotting tools, if she/he prefers. In particular, the MontePython output is fully compatible
with Antony Lewis’s GetDist15. Note that MontePython writes in each output directory a file
in the .paramnames format just for this purpose. GetDist has some very advanced plotting
functionalities and a very nice graphical interface. However, the user will benefit from a few
advantages when using the MontePython analyzing and plotting tools, such as: automatically
evaluating the burn-in phase; automatically eliminating the non-Markovian part of the chains;
and automatically reading information regarding the parameter names, ranges and scalings
in the log.param file.

6.5.3.1 Chain analysis

When analyzing the chains, MontePython eliminates automatically the burn-in phase at the
beginning of each chain, before applying additional cuts that can be customised with the
options listed below. The burn-in phase of each chain is defined as: all the first points in
the chains until an effective χ2 value smaller than χ2

min + 6 was reached for the first time. This
number of 6 can be adjusted manually (it is equal to 2 LOG_LKL_CUTOFF, where LOG_LKL_CUTOFF
is a parameter set in montepython/analyze.py, with a default value of 3). For runs in which a
good estimate of the best-fit model was passed in input (with the option -b <xxx>.bestfit),
the burn-in phase defined in this way may not exist at all.

Additionally, MontePython has the following options for analyzing chains (thus they should
be written after the command line python montepyhton/MontePython.py info):

• --keep-non-markovian : keep the non-Markovian part of the chains [default: False].

• --keep-fraction : pass a decimal fraction, e.g. 0.8 to keep the last 80 % of the part of the
chains that remain after the burn-in removal (note: redundant if non-Markovian points
are discarded) [default: 1.0]

• --want-covmat : compute a covariance matrix based on the chains (note: this will over-
write the one produced by --update) [default: False]

• --bins : the number of bins for computing histograms [default: 20]

• –T : raise posteriors to the power T [default: 1.0]

• --silent : do not write any standard output (useful when running on clusters) [default:
False]

• --minimal : use this flag to avoid computing posteriors, confidence limits and plots. The
code just analyses the chains and outputs the files containing the convergence statis-
tics, the best-fit parameters, and possibly the covariance matrix if --want-covmat is on
[default: False]

15 http://getdist.readthedocs.io/en/latest/

http://getdist.readthedocs.io/en/latest/


6.5 conclusion and summary of features 119

Updating the proposal distribution or jumping parameter means that all prior steps in the
chain are no longer Markovian, i.e. that each step should not depend on any prior steps. How-
ever, by using appropriate criteria for stopping adaptation of the jumping parameter and pro-
posal distribution, and only including all steps after this point in our final analysis, we can en-
sure that our process was still Markovian. This is automatically done, but can be disabled with
the command --keep-non-markovian, especially in slowly converging cases, when the user
struggles to get a good covariance matrix that would stop the updating process, and wants to
see some approximate results anyway. Although the burn-in phase is always removed, if non-
Markovian steps are included the user may want to use the option --keep-fraction <number>
in order to remove the first part of the chain.

6.5.3.2 Basic plotting

The most basic plotting features are implemented as command line options (but many of them
can also be passed through an input customisation file, as we shall in 6.5.3.3):

• --no-plot : disable plotting [default: False]

• --no-plot-2d : only plot 1d posterior distributions [default: False]

• --all : output all individual 2D subplots and histogram files as separate files

• --ext : format and extension of the plot files (pdf, eps, png) [default: pdf]

• --no-mean : in 1D plot, do not plot the “mean likelihood” as dashed lines, only plot the
posteriors as solid lines [default: False]

• --contours-only : line contours instead of filled contours [default: False]

• --posterior-smoothing : smoothing scheme for 1D posteriors: 0 means no smoothing,
1 means cubic interpolation, n > 1 means fitting ln(P) with a polynomial of order n
[default: 5]

• --interpolation-smoothing : for 2D contours only, interpolation factor for getting a
finer histogram before applying Gaussian smoothing and getting contours; 1 means no
interpolation, increase for finer curves [default: 4]

• --gaussian-smoothing : for 2D contours only, width of Gaussian smoothing applied to
histogram before getting contours, in units of bin size; increase for smoother contours,
decrease for more exact results [default: 0.5]

• --short-title-1d : short 1D plot titles. Remove mean and confidence limits above each
1D plots. [default: False]

• --num-columns-1d : for 1D plots, number of plots per horizontal raw; if ’None’ this is
set automatically (trying to approach a square plot) [default: None]

• --fontsize desired fontsize [default: 16]

• --ticksize desired ticksize [default: 14]

• --line-width set line width [default: 4]
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• --decimal number of decimal places on ticks [default to 3]

• --ticknumber number of ticks on each axis [default to 3]

• --legend-style specify the style of the legend, to choose from ‘sides‘ or ‘top‘ [default:
sides]

When an Inverse Fisher matrix has been computed --method Fisher, the Fisher ellipses can
be plotted on top of MCMC contours using the plotting options:

• --plot-fisher : plot inverse Fisher matrix contours [default: False]

• --center-fisher : centers Fisher ellipses on the parameters extracted from the best-fit
model found in the chains, instead of the central starting values found in the input file
[default: False]

6.5.3.3 More advanced plot customisation

Further options for customizing plots can be passed through a file with extension .plot
called with the option --extra. All current functionalities are mentioned in the example
file plot_files/example.plot, which the user would call with the plotting option --extra
plot_files/example.plot. Although this file is self-explanatory, we list here the main func-
tionalities provided by the use of .plot files. Several options have been present since the first
release of MontePython:

• on-the-fly redefinition of the chain parameters with a simple syntax. For instance, if you
know that there is a parameter called A and one called B, you can in principle replace the
numbers in the column A by the result of any algebraic operation involving A alone, or A
and B, or even more parameters, like e.g. A + 3 A /B. The file plot_files/example.plot
provides the following example:

info.redefine = {’omega_cdm’: ’(0.01*omega_b+omega_cdm)/(H0/100.)**2’}
In this example, the code takes the numbers in the column omega_b and first multi-
plies them by 0.01, knowing that in the chains, ωb was rescaled by 100 (this actually
depends on what the user wrote in the input file). Thus, 0.01*omega_b is the true ωb,
and (0.01*omega_b+omega_cdm)/(H0/100.)**2 is in fact Ωm. With the above command,
each value of ωcdm is replaced on-the-fly by Ωm when the chains are read. The next
necessary step is to change the name of the parameter for this column from omega_cdm
to Omega_m, which can be done by the next functionality.

• redefinition of parameter name, for the purpose of redefinitions or making the parame-
ter name better readable by the LaTeX routines of the plotting algorithm, e.g.

info.to_change = {’omega_cdm’: ’$Omega_\mathrm{m}$’ }
will replace omega_cdm with Omega_m. Note that, for the purpose of getting a nice LaTeX
format, MontePython already does several basic operations automatically, like identify-
ing greek letters, subscripts and superscripts. Hence, at the time of producing a plot
label, it would automatically convert omega_cdm into $\omega_{cdm}$. The functionality
info.to_change is useful in order to further customise the LaTeX formatting.

• redefine the overall rescaling factor when the one from the input file is not optimal (scal-
ing factors are useful e.g. to get rid of powers of ten in the plot captions, for very small
or large parameters). This is done with the syntax info.new_scales = {’A’: 100}.
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• specify the list of parameters to be plotted (taking into account the new names, if there
were name redefinitions). This is done with the info.to_plot = [...] syntax, which is
very useful e.g. for getting rid of nuisance parameters in the 1D and 2D plots.

The new functionalities in MontePython v3.0.0 are:

• parameters to control the legends: info.plot_legend_1d, info.plot_legend_2d,
info.legendnames (see plot_files/example.plot for details).

• parameters to control the colors: info.MP_color_cycle, info.MP_color, info.alphas
(see plot_files/example.plot for details).

• these lines simply overwrite the value of some parameters defined previously by the
code within the python class info. Many other such lines can be added there, for instance
info.ticknumber = 5, etc. Thus some of the options described previously as command
line options can also be passed here, as lines of python.

• sometimes, the user would like to add some extra lines of python code in the plotting
script, in order to further customise 1D or 2D plots, e.g. with vertical or horizontal lines,
bands, arrows, labels, etc.. Usually, these lines are meant for only specific 1D or 2D
plots. One can now achieve this by writing a few extra lines of python code in little
files with a .py extension, which will be read and executed before finalizing the rele-
vant plots. If they start with appropriate if statements, they will only be taken into ac-
count when plotting specific parameters. Some self-explanatory examples are provided
together with the code in the files plot_files/example.plot, add_h_contour.py, and
add_sigma8_Omegam_contour.py.
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6.5.4 Likelihoods

Below is a comprehensive list of the likelihoods in the MontePython v3.0.0 package, as well
as references to the paper(s) that should be cited when used (i.e. either where the likelihood
was published and/or first used with MontePython). We recall that it is easy to modify these
likelihoods or to create new ones. Some guidelines are given in the MontePython online doc-
umentation16, in the section “Existing likelihoods, and how to create new ones”. The column
LU (Last Updated) shows the version number of the last modification.

In the column D (Dependencies), SC stands for self-contained; D means that some external
data files must be downloaded; W means that we provide a wrapper to some external likeli-
hood code that must be downloaded together with some data (as e.g. for Planck likelihoods);
M means that this likelihood will automatically generate its own mock data, unless it has al-
ready been generated by a previous run. In the cases D, W, M, if you run the likelihood before
downloading the required external files or before having created mock data, a self-explanatory
message will tell you where to download from or what to do.

16 http://monte-python.readthedocs.io

Forecast likelihoods

name description type LU D ref.(s)

core_m5 CORE M5 ESA proposal CMB 3.0 M [50]

[247]

euclid_lensing Euclid Weak Lensing 3.0∗ M [118]

[102]

euclid_pk Euclid Galaxy Clust. 3.0∗ M [118]

[102]

fake_desi DESI BAO: dA/rs 3.0 M [50]

fake_desi_euclid_bao best from DESI + Euclid BAO 3.0 M [212]

fake_desi_vol DESI BAO: rs/dV 3.0 M [157]

fake_planck_bluebook Planck 2015 est.: TTTEEE CMB 2.0 M [248]

fake_planck_realistic Planck 2018 est.: TTTEEEφφ CMB 3.0 M [50]

litebird LiteBIRD est. CMB 3.0 M [50]

[95]

ska1_IM_band1 SKA1 band 1 21cm Int. Map. 3.0∗ M [102]

ska1_IM_band2 SKA1 band 2 21cm Int. Map. 3.0∗ M [102]

ska1_lensing SKA1 Weak Lensing 3.0∗ M [102]

ska1_pk SKA1 Galaxy Clust. 3.0∗ M [102]

ska2_lensing SKA2 Weak Lensing 3.0∗ M [102]

ska2_pk SKA2 Galaxy Clust. 3.0∗ M [102]

Table 15: Forecast likelihoods. ∗ Euclid likelihoods will be updated and SKA likelihoods published
when the relevant publication has been accepted for publication.

http://monte-python.readthedocs.io
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Current data likelihoods

name description type LU D ref.(s)

acbar ACBAR 2017 CMB 1.0 SC [249]

bao 6dFGS BAO 1.1 SC [209]

BOSS DR9, [250]

SDSS DR7 [210]

bao_known_rs same as bao assuming BAO 1.1 SC [251]

known sound horizon value

bao_angular angular 2-point BAO 3.0 SC [252]

correlation function [253]

SDSS DR7: LRG [254]

BOSS DR10&11: CMASS [255]

BOSS DR12: QSO [256]

bao_boss 6dFGS, BAO 2.0 SC [209]

BOSS DR10&11: [211]

LOWZ, CMASS, [210]

SDSS DR7: MGS

bao_boss_aniso BOSS DR10&11: CMASS BAO 2.0 SC [211]

bao_boss_aniso_gauss_approx BOSS DR10&11: CMASS BAO 2.0 SC [211]

bao_boss_dr12 BOSS DR12: BAO 3.0 SC [19]

LOWZ & CMASS [257]

bao_fs_boss_dr12 BOSS DR12: BAO+RSD 3.0 SC [19]

LOWZ & CMASS [257]

bao_smallz_2014 6dFGS, BAO 3.0 SC [209]

SDSS DR7: MGS [210]

bicep BICEP CMB 1.0 SC [258]

bicep2 BICEP2 CMB 2.0 SC [88]

BK14 Bicep-Keck-Planck 2014 CMB 3.0 D [259]

BK14priors priors for the latter CMB 3.0 D [259]

boomerang BOOMERanG CMB 1.0 SC [260]

cbi CBIpol CMB 1.0 SC [261]

CFHTLens CFHTLens as Ωα
mσ8 prior Weak Lens. 2.1 SC [262]

CFHTLens_correlation full CFHTLens correlation Weak Lens. 2.2 SC [262]

clik_wmap_full WMAP 7yr CMB 1.2 W [263]

(through Planck wrapper)

clik_wmap_lowl WMAP 7yr: low ` CMB 1.2 W [263]

cosmic_clocks_2016 cosmic clocks H(z) 3.0 SC [264]

cosmic_clocks_BC03 cosmic clocks H(z) 2.1 SC [265]

cosmic_clocks_MaStro cosmic clocks H(z) 2.1 SC [265]

Table 16: Current data likelihoods (letters a-c)
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name description type LU D ref.(s)

cosmic_clocks_BC03_all cosmic clocks H(z) 2.1 SC [265]

[266]

[267]

da_rec prior on angular diameter distance dA(zrec) 1.1 SC [251]

gunn_peterson constraints on reionization history xe(z) 1.0 SC [268]

hst Hubble Space Telescope H0 prior 3.0 SC [85]

igm_temperature constrains on baryon temperature Tb(z) 1.0 SC [269]

ISW NVSS,2MPZ,WI×SC,SDSS/Planck ISW 3.0 SC [270]

JLA full JLA likelihood Supernovae 2.1 D [271]

JLA_simple simplified JLA likelihood Supernovae 2.1 D [271]

kids450_qe_likelihood_public KiDS-450 Weak lensing 3.0 D [148]

lowlike Planck 2013 + WMAP 9: low-` CMB 1.2 W [272]

Planck_actspt ACT 2013, SPT 2011 CMB 2.0 W [273]

[274]

Planck_highl Planck 2015: TT high ` CMB 2.2 W [275]

Planck_highl_lite Planck 2015: TT high ` lite CMB 2.2 W [275]

Planck_highl_TTTEEE Planck 2015: TTTEEE high ` CMB 2.2 W [275]

Planck_highl_TTTEEE_lite Planck 2015: TTTEEE high ` lite CMB 3.0 W [275]

Planck_lensing Planck 2015: lensing CMB lensing 2.2 W [208]

Planck_lowl Planck 2015: TTTEEE low ` CMB 2.2 W [275]

Planck_SZ Planck 2015: SZ cluster counts Cluster Count 2.2 SC [276]

as Ωα
mσ8 prior

polarbear Polarbear CMB 2.1 SC [277]

quad QUAD DR3 CMB 1.0 SC [278]

sdss_lrgDR4 SDSS DR4: LRG Galaxy Clust. 3.0 SC [279]

sdss_lrgDR7 SDSS DR7: LRG Galaxy Clust. 3.0 SC [280]

[257]

simlow from Planck 2016: TTTEEE low ` τreio prior 3.0 SC [71]

[281]

sn Union2 Supernovae 1.0 SC [282]

spt SPT DR1 CMB 1.0 SC [283]

spt_2500 SPT DR1, ` ≤ 2500 CMB 1.0 SC [283]

timedelay quasar time delays Time Delay 1.1 SC [284]

WiggleZ WiggleZ power spectrum Galaxy Clust. 2.0 SC [285]

WiggleZ_bao WiggleZ BAO BAO 2.1 SC [286]

wmap WMAP 7yr (own wrapper) CMB 1.0 D [263]

wmap_9yr WMAP 9yr (own wrapper) CMB 1.2 D [287]

Table 17: Current data likelihoods (letters c-z)
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Λ C D M A N D F U T U R E S U RV E Y S

Chapter 7 is based on Di Valentino, Brinckmann, Gerbino, Poulin et al. [50]

7.1 Λcdm and derived parameters

7.1.1 Future constraints from CORE

Adopting the method presented in section 2.4, here we forecast the achievable constraints
on cosmological parameters from CORE in four configurations: LiteCORE-80, LiteCORE-120,
CORE-M5 and COrE+. We work in the framework of the ΛCDM model, that assumes a flat
universe with a cosmological constant, and is based on 6 parameters: the baryon Ωb h2 and
cold dark matter Ω c h2 densities, the amplitude A s and spectral index n s of primordial infla-
tionary perturbations, the optical depth to reionization τ , and the angular size of the sound
horizon at recombination θ s . Assuming ΛCDM, constraints can be subsequently obtained on
"derived" parameters (i.e. that are not varied during the MCMC process) such as the Hubble
constant H0 and the r.m.s. amplitude of matter fluctuations on spheres of 8 M pc−1 h; σ8. The
ΛCDM model has been shown to be in good agreement with current measurements of CMB
anisotropies (see e.g. [2]) and it is therefore necessary to first consider the improvements in
sensitivity possible for a future CMB satellite experiment, such as CORE, on the parameters
of the model.

Parameter LiteCORE-80, TEP LiteCORE-120, TEP CORE-M5, TEP COrE+, TEP

Ωbh2 0.022182± 0.000052(2.9) 0.022180± 0.000041(3.75) 0.022182± 0.000037(4.0) 0.022180± 0.000033(4.5)

Ωch2 0.12047± 0.00033(4.1) 0.12049± 0.00030(4.8) 0.12048± 0.00026(5.4) 0.12048± 0.00026(5.4)

100θMC 1.040691± 0.000097(3.2) 1.040691± 0.000082(3.7) 1.040691± 0.000078(4.0) 1.040693± 0.000073(4.3)

τ 0.0598± 0.0020(4.1) 0.0597± 0.0020(4.5) 0.0597± 0.0020(4.5) 0.0597± 0.0020(4.5)

ns 0.9619± 0.0016(2.8) 0.9620± 0.0015(3.0) 0.9619± 0.0014(3.2) 0.9619± 0.0014(3.2)

ln(1010 As) 3.0563± 0.0037(3.9) 3.0562± 0.0035(4.3) 3.0563± 0.0035(5.1) 3.0562± 0.0034(5.3)

H0[km/s/Mpc] 66.96± 0.14(4.4) 66.95± 0.12(5.2) 66.96± 0.11(5.6) 66.95± 0.10(6.2)

σ8 0.8173± 0.0014(5.8) 0.8173± 0.0012(7.4) 0.8172± 0.0011(7.8) 0.8173± 0.0010(8.6)

Table 18: Forecasted sensitivity at 68% c.l. on cosmological parameters assuming standard ΛCDM for
the CORE-M5 proposal and for three other possible CORE experimental configurations. The
dataset used includes TT, EE, TE angular spectra and information from Planck CMB lensing.
The numbers in parenthesis show the improvement i = σPlanck/σCORE with respect to the
current constraints coming from the Planck satellite.

Our results are reported in Table 18, where we show the sensitivity at 68% c.l. on the
cosmological parameters from CORE-M5 and we compare the results with three other possible
experimental configurations: LiteCORE-80, LiteCORE-120 and COrE+. Besides the standard 6
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Figure 21: 2D posteriors in the σ8 vs H0 plane (left panel) and on the Ωbh2 vs Ωch2 plane (right panel)
from the recent Planck 2015 data release (temperature and anisotropy) and from the simu-
lated LiteCORE-80, CORE-M5 and COrE+ experimental configurations. ΛCDM is assumed
for the CORE simulations. The improvement of any CORE configuration in constraining
parameters with respect to Planck is clearly visible.

parameters we also show the sensitivity obtained on derived parameters such as the Hubble
constant H0 and the amplitude of density fluctuations σ8.

7.1.2 Improvement with respect to the Planck 2015 release

In Table 18, we show the improvement in the accuracy with respect to the most recent con-
straints coming from the TT, TE and EE angular spectra data from the Planck satellite [71], sim-
ply defined as i = σPlanck/σCORE. As we can see, even the cheapest configuration of LiteCORE-
80 could improve current constraints with respect to Planck by a factor that ranges between
∼ 3, for the scalar spectral index ns, and ∼ 6, for the σ8 density fluctuations amplitude. The
most ambitious configuration, COrE+, could lead to even more significant improvements: up
to a factor ∼ 8 in σ8 and up to a factor ∼ 6 for H0, for example. Similar constraints can be
achieved by the proposed CORE-M5 configuration. The improvement with respect to current
Planck measurements is clearly visible in Figure 21, where we show the 2D posteriors in the
σ8 vs H0 plane (left panel) and on the Ωbh2 vs Ωch2 plane (right panel) from the recent Planck
2015 data release (temperature and polarization) and from the LiteCORE-80, CORE-M5 and
COrE+ experimental configurations. These numbers clearly indicate that, there is still a signif-
icant amount of information that can be extracted from the CMB angular spectra, even after
the very precise Planck measurements.

It is important to note that, the most significant improvements are on two key observables:
σ8 and the Hubble constant H0 that can be measured in several other independent ways. A
precise measurement of these parameters, therefore, offers the opportunity for a powerful test
of the standard cosmological model. It should indeed also be noted that the recent determi-
nation of the Hubble constant from observations of luminosity distances of Riess et al. (2016)
[85] is in conflict at above 3 standard deviations with respect to the value obtained by Planck
(see also [288, 289]). A significantly higher value of the Hubble constant has also recently been
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Figure 22: 2D posteriors for several combinations of parameters for the LiteCORE-80, CORE-M5 and
COrE+ experimental configurations. ΛCDM is assumed as the underlying fiducial model.

reported by the H0LiCOW collaboration [290], from a joint analysis of three multiply-imaged
quasar systems with measured gravitational time delays. Furthermore, values of σ8 inferred
from cosmic shear galaxy surveys such as CFHTLenS [291] and KiDS [292] are in tension
above two standard deviations with Planck. While systematics can clearly play a role, new
physics has been invoked to explain these tensions (see e.g. [86, 293–298]) and future and
improved CMB determinations of H0 and σ8 are crucial in testing this possibility.

7.1.3 Comparison between the different CORE configurations

It is interesting to compare the results between the different experimental configurations as
reported in Table 18 and as we can also visually see in Figure 22, where we show a triangular
plot for the 2D posteriors from LiteCORE-80, CORE-M5 and COrE+.

We find four main conclusions from this comparison:

• When we move from LiteCORE-80 to COrE+ we notice an improvement of a factor ∼ 1.6
on the determination of the baryon density Ωbh2, and an improvement of a factor ∼ 1.4
on the determination of the Hubble constant H0 and the amplitude of matter fluctuations
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Figure 23: 2D posteriors in the H0 vs σ8 (left panel) and Ωbh2 vs Ωch2 (right panel) planes from Planck
(simulated), CORE-M5, and future BAO dataset from the DESI survey. ΛCDM is assumed
as the underlying fiducial model.

σ8. COrE+ is clearly the best experimental configuration in terms of constraints on these
cosmological parameters. However, the CORE-M5 setup provides very similar bounds
on these parameters as COrE+, with a degradation in the accuracy at the level of ∼
10− 12%.

• Moderate improvements are also present for the CDM density (of about ∼ 1.3) and the
spectral index (∼ 1.14). The constraints from CORE-M5 and COrE+ are almost identical
on these parameters.

• The constraints on the optical depth are identical for all four experimental configurations
considered. This should not come as a surprise, since τ is mainly determined by the large
angular scale polarization that is measured with almost the same accuracy with all the
versions of CORE.

• Moving from COrE+ to CORE-M5 the maximum degradation on the constraints is about
12% (for the baryon density).

From these results, and considering also the contour plots in Figure 21 and Figure 22 that
are almost identical between CORE-M5 and COrE+, we can conclude that CORE-M5, despite
having a mirror of smaller size, will produce essentially the same constraints on the parame-
ters with respect to COrE+ with, at worst, a degradation in the accuracy of just ∼ 12%.

7.1.4 Constraints from CORE-M5 and future BAO datasets

We have also considered the constraints achievable by a combination of the CORE-M5 data
with information from Baryonic Acoustic Oscillation derived from a future galaxy survey as
DESI. We found that the inclusion of this dataset will have minimal effect on the CORE-M5

constraints on ΛCDM parameters. This can clearly be seen in Figure 23, where we plot the 2D
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posteriors in the H0 vs σ8 (left panel) and Ωbh2 vs Ωch2 (right panel) planes. The CORE-M5

and the CORE+DESI contours are indeed almost identical.
It is also interesting to investigate whether the Planck dataset, when combined with future

BAO datasets, could reach a precision on the ΛCDM parameters comparable with the one
obtained by CORE-M5. To answer to this question we have simulated the Planck dataset
with a noise consistent with the one reported in the 2015 release and combined it with our
simulated DESI dataset. The 2D posteriors are reported in Figure 23: as we can see, while the
inclusion of the DESI dataset with Planck will certainly help in constraining some of ΛCDM
parameters, such as H0 and the CDM density, the final accuracy will not be competitive with
the one reachable by CORE-M5. In particular, there will be no significant improvement in the
determination of σ8 and the baryon density.
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N E U T R I N O M A S S S E N S I T I V I T Y I N A M I N I M A L M O D E L

Section 8.1 is based on Di Valentino, Brinckmann, Gerbino, Poulin et al. [50],
sections 8.2 and 8.3 are based on Archidiacono, Brinckmann, Lesgourgues & Poulin [157],

and section 8.4 is based on Sprenger, Archidiacono, Brinckmann, Clesse & Lesgourgues [102]

8.1 neutrino mass sensitivity in a minimal 7-parameter model

We fit the 7-parameter ΛCDM+Mν model for different CORE settings, alone or in combination
with mock DESI BAOs and Euclid cosmic shear data. Our forecasts consist in fitting these
models to mock data, with a choice of fiducial parameters1 slightly different from chapter 7,
including in particular neutrino masses summing up to Mν = 60 meV.

Since we are looking at very small individual masses (mainly in the range mν < 100 meV),
we expect the sensitivity of the CMB to Mν to be dominated by CMB lensing effects. The
different CORE settings considered here lead to different sensitivities to the CMB lensing
potential. However, we only observe marginal differences between the forecasted mass sensi-
tivities shown in Table 19, with a symmetrized error ranging from 48 meV for LiteCORE-80

to 44 meV for CORE-M5 and COrE+. The reason is that the neutrino mass effect on the CMB
lensing potential does not peak at the highest multipoles: rather it consists of a nearly con-
stant suppression for a wide range of angular scales with l > 100. Hence, in order to achieve a
good detection of Mν, it is sufficient to have data in the region where the signal-to-noise ratio
(S/N) is the largest, which is roughly from ` = 200 to 700 for CMB lensing. Lensing extraction

1 The new choice of fiducial parameters is Ωbh2 = 0.022256, Ωch2 = 0.11976, 100θs = 1.0408, τ = 0.06017, ns =
0.96447, ln(1010 As) = 3.0943, Mν = 60 meV, with neutrino masses ordered like in the Normal Hierarchy (NH)
scenario.
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Figure 24: Results for the minimal model with massive neutrinos (discussed in section 8.1 and Table 19).
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Parameter Planck, TEP LiteCORE-80, TEP LiteCORE-120, TEP CORE-M5, TEP COrE+, TEP

Mν (meV) < 315 (68%CL) 78+36
−59 74+38

−53 72+37
−51 72+38

−49

Ωbh2 0.02219± 0.00017 0.022250± 0.000059 0.022256± 0.000042 0.022256± 0.000039 0.022255± 0.000034

Ωch2 0.1198± 0.0015 0.11987+0.00050
−0.00071 0.11983+0.00048

−0.00067 0.11980+0.00043
−0.00065 0.11981+0.00044

−0.00066

100θs 1.04069± 0.00036 1.04080± 0.00010 1.040800± 0.000087 1.040800± 0.000082 1.040800± 0.000079

τ 0.074± 0.017 0.0604± 0.0021 0.0604± 0.0021 0.0604± 0.0020 0.0604± 0.0021

ns 0.9637± 0.0051 0.9643± 0.0020 0.9643± 0.0018 0.9644± 0.0018 0.9644± 0.0018

ln(1010 As) 3.081± 0.033 3.0951± 0.0042 3.0950± 0.0041 3.0949± 0.0040 3.0949± 0.0041

H0 (km/s/Mpc) 65.6+2.5
−1.4 66.79+0.82

−0.44 66.84+0.77
−0.40 66.88+0.73

−0.39 66.87+0.73
−0.39

σ8 0.783+0.040
−0.021 0.828+0.011

−0.006 0.8288+0.0098
−0.0059 0.8293+0.0095

−0.0057 0.8291+0.0093
−0.0058

Parameter Planck, TEP LiteCORE-80, TEP LiteCORE-120, TEP CORE-M5, TEP COrE+, TEP

+ DESI + DESI + DESI + DESI + DESI

Mν (meV) 72+36
−48 65± 22 65+23

−20 65+23
−19 66+22

−20

Ωbh2 0.02226± 0.00012 0.022260± 0.000053 0.022259± 0.000041 0.022257± 0.000039 0.022258± 0.000033

Ωch2 0.11966± 0.00071 0.11970± 0.00031 0.11971± 0.00030 0.11971± 0.00028 0.11971± 0.00028

100θs 1.04080± 0.00030 1.04080± 0.00010 1.040800± 0.000083 1.040800± 0.000078 1.040800± 0.000074

τ 0.0608± 0.0044 0.0603± 0.0021 0.0603± 0.0021 0.0602± 0.0021 0.0603± 0.0020

ns 0.9647± 0.0027 0.9646± 0.0017 0.9646± 0.0015 0.9646± 0.0015 0.9645± 0.0015

ln(1010 As) 3.0954± 0.0086 3.0944± 0.0039 3.0944± 0.0039 3.0944± 0.0039 3.0944± 0.0039

H0 (km/s/Mpc) 66.94± 0.28 66.98± 0.27 66.98± 0.26 66.98± 0.26 66.97± 0.26

σ8 0.829+0.012
−0.009 0.8309± 0.0043 0.8305± 0.0039 0.8305± 0.0038 0.8304± 0.0037

Parameter Planck, TEP LiteCORE-80, TEP LiteCORE-120, TEP CORE-M5, TEP COrE+, TEP

+ DESI + Euclid + DESI + Euclid + DESI + Euclid + DESI + Euclid + DESI + Euclid

Mν (meV) 65± 23 63+16
−18 63+15

−17 62± 16 62+15
−17

Ωbh2 0.02226± 0.00011 0.022256± 0.000052 0.022256± 0.000040 0.022256± 0.000037 0.022255± 0.000032

Ωch2 0.11977± 0.00032 0.11978± 0.00018 0.11977± 0.00018 0.11977± 0.00017 0.11979± 0.00018

100θs 1.04080± 0.00031 1.040800± 0.000095 1.040800± 0.000084 1.040800± 0.000077 1.040800± 0.000072

τ 0.0606± 0.0046 0.0603± 0.0020 0.0603± 0.0021 0.0603± 0.0020 0.0595± 0.0020

ns 0.9644± 0.0025 0.9645± 0.0016 0.9645± 0.0014 0.9645± 0.0014 0.9645± 0.0014

ln(1010 As) 3.0951± 0.0086 3.0945± 0.0039 3.0947± 0.0039 3.0947± 0.0038 3.0944± 0.0038

H0 (km/s/Mpc) 66.96+0.23
−0.17 66.97+0.21

−0.14 66.97+0.21
−0.13 66.98+0.20

−0.13 66.98+0.19
−0.13

σ8 0.8314+0.0039
−0.0030 0.8316+0.0034

−0.0027 0.8314+0.0033
−0.0026 0.8315± 0.0028 0.8316+0.0031

−0.0024

Table 19: 68% CL constraints on cosmological parameters in the ΛCDM+Mν model (accounting for the
summed mass of standard neutrinos) from the different CORE experimental specifications
and with or without external data sets (DESI BAOs, Euclid cosmic shear). For Planck alone,
we quote the results from the 2015 data release, while for combinations of Planck with future
surveys, we fit mock data with a fake Planck likelihood mimicking the sensitivity of the real
experiment (although a bit more constraining).

on smaller angular scale will always have a smaller S/N and would bring little additional
information. In the range 200 < ` < 700, LiteCORE-80 has a slightly worse sensitivity to the
CMB lensing spectrum than other settings considered here, and hence a larger σ(Mν); the
other settings mainly differ for ` > 700. We conclude that the determination of Mν cannot
drive the choice between different possible CORE settings, unlike the determination of other
parameters (e.g. tensor-to-scalar ratio, Neff) that critically depend on the sensitivity and/or
resolution of the instrument.

However, a next-generation CMB satellite is essential for getting such tight bounds on the
summed neutrino mass, because of its potential to measure small-scale polarisation and to
constrain the optical depth to reionization τ (this is true for all CORE configurations). Indeed,
the suppression induced by neutrino masses in the CMB lensing potential could be nearly
cancelled by an increase in the primordial spectrum amplitude As. Since the product e−2τ As
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Figure 25: Results for the minimal model with massive neutrinos (discussed in section 8.1 and Table 19).

is fixed by the global amplitude of the CMB temperature/polarisation spectra, increasing As

requires increasing τ. Future ground-based CMB experiments would only marginally improve
on the τ determination from Planck, due to their limited sky coverage and large sampling
variance for small multipoles. Hence, they would be affected by an (Mν, τ) degeneracy for
the reasons discussed above. To prove the importance of this effect we repeated the forecast
for CORE-M5, but removing all polarisation information for ` < 30 and replacing it with
a Gaussian prior on τ with the sensitivity of Planck, σ(τ) ' 0.01. We find a degeneracy
between Mν and τ and the error bar on the summed mass degraded by a factor 2. Instead, we
can clearly see in the left panel of Figure 24 that there is no such degeneracy, neither in the
Planck-alone contours, caused by too weak sensitivity to the CMB lensing spectrum, nor in
CORE-alone contours because they break this degeneracy by measuring τ with good enough
precision.

We can check how the combination of CMB data with other probes can achieve better con-
straints with CORE than with Planck. We find that CORE+DESI BAOs is about two times
more constraining than Planck+DESI. This is related again to the better CMB lensing spec-
trum extraction and optical depth measurement by CORE. There are actually two ways to
compensate the CMB lensing spectrum suppression induced by neutrino masses: by increas-
ing As and τ, or by increasing ωcdm [157]. This leads to a strong (Mν, ωcdm) degeneracy when
using only CMB data (Figure 25, left plot). However, future BAO data will fix ωcdm with very
good accuracy. In the Planck+BAO case, the (Mν, τ) degeneracy would then still remain (Fig-
ure 24, middle plot). In the CORE+BAO case, with ωcdm fixed by BAOs and τ nearly fixed by
polarisation measurements, very little degeneracies remain: in Figure 24, middle plot, we just
see a small positive correlation controlled by the error bar on τ. Hence CORE will powerfully
exploit the synergy between CMB and BAO measurements for measuring the neutrino mass.
The combination with Euclid will further reduce degeneracies and errors by independently
measuring the lensing spectrum at smaller redshifts than CORE. Even with very conservative
assumptions on Euclid (i.e. including only cosmic shear data for k ≤ 0.5h/Mpc) we find that
CORE+DESI+Euclid would have a sensitivity of σ(Mν) = 16 meV, almost guaranteeing at
least a 4σ detection.

8.2 combination of cmb , bao and galaxy shear/correlation data

In this section we will present the results of our Markov Chain Monte Carlo forecast of the
combined sensitivity of future CMB, BAO and LSS experiments to the cosmological parame-
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ters described in section 5.1, in particular to the neutrino mass sum.For these results we used
the approach discussed in chapter 5. In particular, we already commented at the end of sec-
tion 5.3.1 on our conservative choices for the precision parameters (following the approach of
Ref. [118]): theoretical error parameter ε = 0.025, cut-off at kmax = 0.6 h/Mpc for galaxy corre-
lation, and at `max = 2000 for cosmic shear. Still this choice comes from a subjective estimate
of the accuracy with which non linear corrections and systematic effects will be modelled in
the future, and different assumptions would lead to different parameter sensitivities.

σ(Mν)/[meV] σ(τreio) σ(109 As) σ(ns) σ(ωcdm) σ(h)

CORE 42 0.0020 0.0084 0.0018 0.00052 0.0052

CORE+DESI 19 0.0020 0.0080 0.0014 0.00026 0.0022

CORE+DESI+Euclid-lensing 16 0.0020 0.0078 0.0014 0.00023 0.0019

CORE+Euclid (lensing+pk) 14 0.0020 0.0079 0.0015 0.00025 0.0017

CORE+Euclid (lensing+pk)+21cm 12 −− 0.0042 0.0014 0.00021 0.0017

Table 20: Expected 1 σ sensitivity of CORE, CORE + DESI, CORE + DESI + Euclid (lensing), CORE
+ Euclid (lensing+pk), CORE + Euclid (lensing+pk) + “21cm-motivated τreio prior” to the
parameters {Mν, τreio, 109 As, ns, ωcdm, h}. We did not combine DESI and Euclid-pk in order
to avoid double counting the information coming from the wiggly part of the spectrum.

In the first four lines of table 20 we report the expected sensitivity of CORE, CORE+DESI,
CORE+DESI+Euclid-lensing and CORE+Euclid (lensing+pk) to Mν and other cosmological
parameters playing a crucial role in our analysis of parameter degeneracies: τreio, 109As, ns,
ωcdm and h (the last independent parameter, ωb, is always very well constrained by CMB
data alone). In figure 26 we plot the one dimensional posteriors and the one- and two-σ
marginalized contours for the same parameters.

First of all, we notice that the projected 1 σ errors in table 20 and 1D distributions in figure 26

reflect the theoretical points we have discussed in the previous sections: both DESI and Euclid
greatly improve the sensitivity to Mν, ωcdm and h. The uncertainty on Mν tightens by more
than a factor two for CORE+DESI and a factor three for CORE+Euclid, compare to the CORE
only sensitivity. The error on H0 shrinks by a factor larger than two for CORE+DESI and a
factor three for CORE+Euclid. However once more we want to stress that in the case of DESI
the improved sensitivity arises from reducing the degeneracy between H0 and Mν, while in the
case of Euclid the longer lever arm of the shear data is specifically sensitive to the suppression
of power at small scales induced by Mν.

The first column of figure 26 shows all the degeneracies with respect to Mν. Let us describe
the evolution of those correlations with the addition of the different datasets:

1. CORE data only. When only CMB data are considered, correlations follow the directions
expected from our extensive discussion of section 5.1.3. Let us just note that contrarily
to ΛCDM runs without neutrino mass as a free parameter, the mild correlation between
As and ns is negative, which is a result of the mild negative (resp. positive) correlation
between Mν and ns (resp. As).

2. Adding DESI data. In general, the size of the 2D-distributions shrink by a factor ∼2. The
extended regions defining the positive correlations between (Mν, As) and (Mν, τreio) be-
come steeper, since it is not possible anymore to play with H0 or ωcdm to compensate the
effect of the summed neutrino mass on the CMB lensing spectrum. Indeed, as described
in section 5.2, moving along this degeneracy direction would lead to very different BAO
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Figure 26: Marginalized one− or two−σ contours and one dimensional posteriors in the
(Mν, ωcdm, H0, As, ns, τreio) parameter space, showing the expected sensitivity of various fu-
ture experiments: CORE only (gray contours), CORE+DESI (blue contours), CORE+Euclid
(red contours) and CORE+Euclid+21cm (green contours). The last independent parameter,
ωb, is always very well constrained by CMB data alone.

angular scales. Thus, the effect of the summed neutrino mass on CMB lensing is rather
compensated by playing with parameters to which BAO data are insensitive2, namely
As and τreio.

3. Adding Euclid (lensing + P(k)) data. Most of the discussion on the inclusion of DESI data
still applies here, since Euclid data contains information on the BAO scale at differ-
ent redshift. However the matter / shear power spectra contain extra information on
cosmological perturbations, and lift or reinforce some parameter degeneracies, consis-
tently with our previous discussion in section 4.2, point 3. The (Mν, H0) degeneracies get

2 As side remarks, note that such compensation cannot be done by playing with ns: as a consequence, both the
(Mν, ns) degeneracy and the (As, ns) degeneracy are lifted when BAO data are added; finally, because of the
different neutrino mass compensation driven by the inclusion of BAO data, the correlations of ωcdm and H0 with
respect to As, ns, τreio are lifted, as well.
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considerably reduced because the LSS data would prefer a different correlation angle
between these two parameters. As expected, the Euclid data considerably tightens the
positive correlation between Mν and As, and as a side effect the combined data leads to a
clear positive correlation between Mν and τreio. The degeneracy between Mν and ωcdm is
lifted by the weak lensing data. All these degeneracy reductions lead to an overall shrink-
ing of all contours involving Mν, H0 and ωcdm by a factor of order 3 between CMB and
CMB+LSS data. The neutrino mass value is accurately determined independently of the
value of ns, and the mild correlation between Mν and ns in CMB data disappears with
additional LSS data.

Compared to figure 26, table 20 presents the results of one more MCMC run featuring
CORE, DESI and Euclid weak lensing, but not the Euclid galaxy clustering information. The
comparison of these results with those for CORE and Euclid weak lensing+galaxy clustering
show the importance of geometrical information (BAO angular scales) versus shape informa-
tion (full matter power spectrum), although both runs do contain some shape information
coming from the weak lensing data. We clearly see that adding more shape information on
the matter power spectrum benefits only to the determination of Mν and H0, and actually by
a modest amount (10 to 15% per cent). At face value, this means that even if the analysis of
future galaxy clustering data was plagued by unexpected systematics (besides the level that
we conservatively took into account with our theoretical error bar), the prospects to accurately
determine the summed neutrino mass with future surveys would not collapse.

In order to further improve the measurement of the neutrino mass with cosmological data,
one should try to add independent constraints on the parameters that remain most strongly
correlated with Mν in the CMB+LSS contours: these are H0, As and τreio. The role of a very
precise determination of H0, free of astrophysical systematics, for the measurement of the neu-
trino mass, has already been stressed e.g. in [17]. It was also previously noticed in Ref. [198]
that 21cm surveys could improve the determination of the optical depth to reionization, and
thus of the summed neutrino mass. Having understood the physical explanation for the
(Mν, τreio) degeneracy, we wish to further investigate this possibility, while keeping our con-
servative assumption on the matter power spectrum theoretical error.

8.3 adding 21cm surveys

In the near future, many experimental efforts will be devoted to measuring precisely the
epoch of reionization (EoR), mostly through the 21 cm line created by the hyperfine transition
of the Hydrogen atom3, including the value of τreio. In general, details of the EoR are strongly
connected to fundamental questions in cosmology and astrophysics. They could shed light
on many properties of the first galaxies and quasars, measure the time at which they form,
explain how the formation of very metal-poor stars proceeded, and reveal whether the first
galaxies were indeed the only re-ionizing source.

However, these experiments can also have great implications for neutrino physics in cosmol-
ogy. Indeed, the independent measurement of the epoch of reionization by 21cm surveys may
break the degeneracy between As and τreio [198, 299] which appears in combined analyses of
future CMB+LSS data.

3 e.g. PAPER 64: http://eor.berkeley.edu, 21CMA: http://21cma.bao.ac.cn, MWA: http://www.mwatelescope.
org, LOFAR: http://www.lofar.org, HERA: http://reionization.org or SKA: http://www.skatelescope.
org.

http://eor.berkeley.edu
http://21cma.bao.ac.cn
http://www.mwatelescope.org
http://www.mwatelescope.org
http://www.lofar.org
http://reionization.org
http://www.skatelescope.org.
http://www.skatelescope.org.
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To assess the impact of 21cm surveys on σ(Mν), we performed a final MCMC run combining
CORE+Euclid mock data with a gaussian prior on the value of τreio. In agreement with fore-
casts on the sensitivity of HERA or SKA, we fixed the prior variance to σ(τreio) = 0.001 [6, 198].
Note that by doing so, we are being conservative, since 21cm surveys will not only measure
the evolution of the mean free electron fraction xe(z) (and thus the optical depth τreio), but also
the power spectrum of the 21cm signal at different redshifts, P21cm(k, z), related to variations
along the line of sight of the free electron fraction xe(n̂, z) [300]. We are therefore using the
minimal amount of information that one can extract from these experiments, and one could
go beyond following e.g. the procedure of Refs. [198, 299, 301, 302].

The results of our MCMC forecast are summarized by the last line of table 20, and the green
contours in figure 26.

The main impact of the τreio−prior is to reduce the possibility of varying of As, necessary
to adjust the CMB parameter As exp(−2τreio), by almost a factor two. Since Mν was correlated
directly with As and indirectly with τreio, the sensitivity to the summed neutrino mass also
improves thanks to 21cm data, going from σ(Mν) = 14 meV for CORE+Euclid to 12 meV. As a
side effect, the positive correlation between Mν and ωcdm and the negative correlation between
Mν and h get steeper.

Thus, even if nature has chosen the summed neutrino mass to be close to the lower limit
of the normal hierarchy, Mν = 60 meV, we expect that the joint analysis of CORE + Euclid +
21cm data will detect it at more than 5 σ.

8.4 improved treatment of large-scale structure

It is well known from neutrino oscillation experiments that at least two neutrinos are massive.
However the absolute value of the mass has not been determined yet, neither by cosmology
(for up-to-date upper limits see Refs. [15, 20, 40]), nor by β-decay experiments (in this regard
see the sensitivity of the forthcoming KATRIN experiment [303]). One of the biggest achieve-
ments of Euclid and SKA will be to pin down the neutrino mass sum Mν. Therefore, our
baseline model will be ΛCDM+Mν, parameterized as follows:

{ωb, ωcdm, 100× θs, τreio, ln(1010As), ns, Mν}. (303)

Our fiducial model assumes a minimal value of the total neutrino mass and some Planck
inspired values for other parameters:

{0.02218, 0.1205, 1.04156, 0.0596, 3.056, 0.9619, 0.06 eV}. (304)

We assume the total neutrino mass sum Mν to be equally split among the three active neutrino
species. This degenerate neutrino mass scheme is motivated by the fact that the deviation of
its theoretical predictions both from the normal mass ordering and from the inverted mass or-
dering is negligible compared to the sensitivity of current and forthcoming cosmological data
[18, 67, 74]. For a detailed discussion of the physical effects involved in the measurements of
Mν with galaxy clustering and cosmic shear, and for the impact of 21-cm surveys, see chap-
ter 5 or Refs. [157, 304]. Here we just mention that low redshift measurements are sensitive
to massive neutrinos because their free-streaming induces a relative suppression of the lin-
ear matter power spectrum on scales smaller than the free-streaming scale after the neutrino
non-relativistic transition [66, 67, 189, 190]. On top of the linear suppression, an additional
dip appears at non-linear scales, caused by the delay of the onset of the non-linear growth in
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neutrino cosmologies [152]. Euclid and SKA span a broad range of redshifts and scales, where
the aforementioned effects on the shape of the matter power spectrum can be detected, as
long as an accurate theoretical prediction is provided [121, 193, 194, 196, 197].

This section makes use of the approach of chapter 3 and we take into consideration the
results of chapter 4, i.e. remember that Refs. [120, 121] have shown that in massive neutrino
cosmologies the clustering properties of halos are determined by cold dark matter and baryons
only (hereafter, cb), rather than the total matter field (i.e., cold dark matter + baryons + mas-
sive neutrinos). Therefore, the galaxy power spectrum must be reconstructed by taking into
account only the cb field, ignoring the contribution of light massive neutrinos with a free-
streaming length far larger than the typical size of a galaxy. Neglecting this effect can lead to
sizeable errors, as we showed in chapter 4 (see also Refs. [1, 127]). Following this approach,
already used in Refs. [170, 305], we have modified Eq. 164 of the observed galaxy power
spectrum as follows:

Pg(k, µ, z) = fAP(z)× fres(k, µ, z)× fRSD(k̂, µ̂, z)× b2(z)× Pcb(k̂, z) . (305)

Moreover, the β factor of the Kaiser formula, i.e. the ratio between the growth rate and the
bias, embedded in the third term of Eq. 305 ( fRSD(k̂, µ̂, z)) and originally defined in Eq. 171

has to be rewritten as:

β(k̂, z) = − 1 + z
2b(z)

· d ln Pcb(k̂, z)
dz

, (306)

where the bias is now rightfully assumed to be scale independent, being defined as δg =

b(z) × δcb. The same considerations apply to the 21cm power spectrum, indeed the neutral
hydrogen in low redshift galaxies is a biased tracer of the cb field only. Therefore, Pm has to
be replaced with Pcb in Eq. 227 and Eq. 231, and, as in the case of galaxy clustering, the Kaiser
formula has to take into account the cb growth rate, rather than the total matter one.

We will now evaluate the sensitivity of Euclid and SKA (combined with Planck) to cosmo-
logical parameters by performing a Markov Chain Monte Carlo (MCMC) forecast, i.e. using
Monte-Carlo Markov Chains to fit the spectra of the fiducial model assuming the likelihood
expressions discussed in the previous sections. Our MCMC forecasts are obtained with the
MontePython package4 [174, 175], implementing our new Euclid and SKA likelihoods to fit
the theoretical spectra provided by the Boltzmann solver CLASS [171] to the mock data. In
Table 21 we report the expected sensitivity of various probe combinations. In Figures 27 and
28 we depict the corresponding 1 σ uncertainty, in order to visualize the impact of different
experiments, probe combinations and theoretical error prescriptions.

We replace theoretical error approach of the last section with that of section 3.4, where we
elaborated on our conservative and realistic approach to the implementation of the theoretical
error in Section 3.4.1 and 3.4.2. The sensitivity of galaxy clustering measurements is affected
by the choice of the theoretical error more than cosmic shear and intensity mapping. As
explained in Section 3.4.2, SKA1 is more sensitive than SKA2 and Euclid to the theoretical
error prescription, because of its narrow redshift range. Indeed, Figure 27 shows that only for
SKA1 the uncertainty to every cosmological parameter shrinks in the realistic configuration
with respect to the conservative one. In the case of SKA2 and Euclid, the improvement of
the sensitivity due to the more optimistic theoretical error prescription mostly concerns the
primordial power spectrum parameter ns: In the absence of a sharp cut-off in the measured
power spectrum, the extended lever arm in k provides more constraining power. Finally, notice
that the sensitivity of SKA1 band 2 intensity mapping to the derived parameters Ωm and σ8

4 https://github.com/brinckmann/montepython_public
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CS GC σ(100×ωb) σ(ωcdm) σ(ln
[
1010As

]
) σ(ns) σ(H0)/[ km

s Mpc ] σ(τreio) σ(Mν)/[meV] σ(σ8)

Planck - - 0.015 0.00133 0.0088 0.00351 1.220 0.0045 0.084 0.01810

Planck+SKA1

c
-

0.013 0.00071 0.0085 0.00286 0.892 0.0045 0.071 0.01480

r 0.012 0.00061 0.0084 0.00275 0.734 0.0045 0.059 0.01160

-

c

0.012 0.00072 0.0084 0.00279 0.460 0.0044 0.045 0.00986

c 0.012 0.00046 0.0081 0.00257 0.439 0.0043 0.042 0.00802

r 0.012 0.00044 0.0085 0.00260 0.439 0.0045 0.040 0.00733

-

r

0.011 0.00041 0.0085 0.00184 0.215 0.0045 0.027 0.00474

c 0.011 0.00036 0.0084 0.00183 0.214 0.0044 0.026 0.00432

r 0.011 0.00034 0.0083 0.00180 0.217 0.0044 0.025 0.00390

Planck+SKA2

c
-

0.011 0.00036 0.0083 0.00240 0.339 0.0044 0.033 0.00544

r 0.011 0.00033 0.0083 0.00199 0.259 0.0044 0.026 0.00385

-

c

0.010 0.00030 0.0076 0.00152 0.083 0.0042 0.016 0.00199

c 0.010 0.00029 0.0076 0.00151 0.080 0.0042 0.015 0.00112

r 0.010 0.00029 0.0076 0.00142 0.081 0.0041 0.015 0.00092

-

r

0.010 0.00026 0.0065 0.00058 0.071 0.0034 0.013 0.00110

c 0.010 0.00025 0.0065 0.00055 0.070 0.0034 0.013 0.00085

r 0.010 0.00025 0.0062 0.00055 0.072 0.0033 0.012 0.00064

Planck+Euclid

c
-

0.012 0.00038 0.0084 0.00253 0.446 0.0044 0.043 0.00810

r 0.011 0.00034 0.0082 0.00233 0.305 0.0043 0.030 0.00507

-

c

0.010 0.00032 0.0080 0.00168 0.115 0.0043 0.019 0.00221

c 0.010 0.00030 0.0079 0.00168 0.109 0.0044 0.018 0.00214

r 0.010 0.00030 0.0079 0.00165 0.105 0.0043 0.017 0.00157

-

r

0.010 0.00027 0.0064 0.00060 0.077 0.0034 0.014 0.00133

c 0.010 0.00026 0.0065 0.00056 0.078 0.0034 0.014 0.00121

r 0.010 0.00024 0.0061 0.00051 0.077 0.0033 0.012 0.00096

Planck+Euclid c c 0.010 0.00029 0.0077 0.00159 0.088 0.0042 0.017 0.00189

+SKA1 IM2 r 0.010 0.00025 0.0062 0.00052 0.068 0.0033 0.013 0.00098

Planck+SKA1

IM1

c 0.011 0.00030 0.0081 0.00224 0.099 0.0044 0.018 0.00213

r 0.011 0.00030 0.0079 0.00219 0.095 0.0043 0.017 0.00194

IM2

c 0.011 0.00033 0.0084 0.00243 0.172 0.0045 0.027 0.00513

r 0.011 0.00031 0.0086 0.00234 0.109 0.0046 0.019 0.00261

IM1 c 0.011 0.00030 0.0081 0.00216 0.090 0.0044 0.017 0.00194

+IM2 r 0.011 0.00029 0.0079 0.00205 0.075 0.0043 0.016 0.00116

Table 21: Expected 1 σ sensitivity of Planck, Euclid and SKA to the cosmological parameters. For each
probe combination in the first and in the second column we indicate whether the cosmological
probe is present or not, and whether the theoretical error is described with a conservative (c)
or a realistic (r) approach.
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Figure 27: 1 σ uncertainty for various combinations of experiments, all including Planck, to the baseline
cosmological parameters. The combinations of experiments are specified on the x axis at
the bottom of the plot. Empty circles denote realistic settings, while filled circles denote
conservative settings. In the case of combinations of cosmic shear with other likelihoods, the
left part of the circle describes the setting for the cosmic shear likelihood. The fiducial value
is given on the left axis, while the scale of the 1 σ uncertainty is written on the right axis.
The Planck sensitivity is written inside the box in the upper right corner, and is also shown
as a dashed line when within the range of the y axis on the right hand side.
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Figure 28: Same as Figure 27 but for the derived parameters ΩΛ, Ωm and σ8.

greatly benefits from the realistic theoretical error configuration (Figure 28). The improvement
of the constraints on these parameters with respect to the conservative configuration is caused
by low redshift probes breaking the degeneracy intrinsic in CMB data. This mechanism does
not work for SKA1 IM2 if a conservative approach to the theoretical error is used, because of
the inadequate sensitivity. However, the different correlation of SKA1 IM2 in this part of the
parameter space appears if we apply a more optimistic approach to the theoretical error is
assumed.

Table 21 and Figure 27 show that both Euclid and SKA will greatly improve the sensitivity to
the summed neutrino mass and to the other cosmological parameters with respect to currently
available data sets. For a given error prescription, the combination Planck + Euclid (CS + GC)
nearly achieves the best possible precision within our baseline ΛCDM+Mν model, and adding
SKA1 (IM2) and SKA2 (CS + GC) seems to lead to a negligible improvement. However, we will
see in the next section that SKA1 (IM2) and SKA2 (CS + GC) should improve the sensitivity
to the parameters of several extended cosmological models.

Concerning the neutrino mass sum, with a realistic description of the theoretical error, the
sensitivity of Planck + Euclid (CS+GC) (Planck + SKA2 (CS + GC)), to a fiducial neutrino mass
of 60 meV is 13 meV (12 meV). This fantastic accuracy implies a 5 σ detection of a non-zero
neutrino mass in the scenario of the minimal mass sum. Using a conservative prescription of
the theoretical error degrades the sensitivity to 18 meV (15 meV), which still provides a more
than 3 σ detection and a factor 5 improvement with respect to Planck-only. Our results on
the sensitivity of Euclid and SKA to the neutrino mass sum are consistent with the previous
literature [118, 183, 198, 199]. Note that Ref. [199] finds exactly the same uncertainty (σ(Mν) =

0.012 eV) as in our most constraining data combinations (Planck + SKA2 (CS + GC)) by using
Planck-polarization + CMB-Stage-IV + BAO-DESI + 21cm-HERA.

Figures 29 and 30 show the marginalized 1 σ and 2 σ contours and one dimensional posteri-
ors in the (ωb, ωcdm, As, ns, Mν, H0, τreio, σ8, Ωm) parameter space for the most constraining
data combinations with respect to Planck-only. Figure 29 assumes the conservative theoretical
error setup, and Figure 30 the realistic one.
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Figure 29: Marginalized 1 σ and 2 σ contours and one-dimensional posteriors in the
(ωb, ωcdm, As, ns, Mν, H0, τreio, σ8, Ωm) parameter space, showing the expected sensitivity
of Planck-only, Planck + Euclid (CS + GC), Planck + SKA1 (CS + GC), Planck+SKA1-IM
and Planck + SKA2 (CS + GC). Here the analysis is performed following the conservative
approach for the description of the theoretical error.
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Figure 30: Marginalized 1 σ and 2 σ contours and one-dimensional posteriors in the
(ωb, ωcdm, As, ns, Mν, H0, τreio, σ8, Ωm) parameter space, showing the expected sensi-
tivity of Planck-only, Planck + Euclid (CS + GC), Planck + SKA1 (CS + GC), Planck + SKA1

IM(1 + 2) and Planck + SKA2 (CS + GC). Here the analysis is performed following the
realistic modeling of the theoretical error for GC and IM and the conservative approach for
CS. This is done to isolate the effect of a theoretical error approach without a cut-off from
contributions of CS.
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These figures show that combining high redshift CMB data with low redshift measurements
breaks the degenerecies among the cosmological parameters that are present when using only
CMB data (red lines and contours). For example, if we look at the contours in the plane
(Mν, ωcdm) we can see that both Euclid and SKA (SKA1 intensity mapping, or SKA2 (CS
+ GC) lift the degeneracy and even slightly reverse it (a physical interpretation is given in
chapter 5 or Ref. [157]). This propagates to other parameters, causing an overall shrinking
of all contours and leading to an increase of the sensitivity. From the triangle plots, we can
verify once more that SKA1 (CS + GC) results (blue lines and contours) benefit from a realistic
modelling of the theoretical error more than the other experiments. If we look at the SKA1

(CS + GC) one dimensional posterior on H0, we can see that it is considerably narrower
in the realistic configuration. Given the correlation between H0 and the other cosmological
parameters, this effect leads to a remarkable increase of the sensitivity not only to H0, but also
to the other cosmological parameters, e.g. the neutrino mass sum. Indeed, only the realistic
approach would allow for a significant detection of the minimal neutrino mass with SKA1

(CS + GC). Interestingly, the combination and Planck and SKA1 intensity mapping (green
lines and contours) has a sensitivity which is roughly comparable to that of Planck + Euclid
(CS + GC) and Planck + SKA2 (CS + GC) for most parameters, with the notable exception of
the primordial power spectrum parameters.

Finally, our analysis shows that, regardless of the theoretical error description, both Euclid
and SKA (SKA1 intensity mapping, or SKA2 (CS + GC)) will provide a detection of a non-zero
neutrino mass in the next few years. This result appears to be very robust at least as long as we
assume a minimal 7-parameter cosmological model. One of the purposes of the next chapter
is to assess to which extent this remains true in the presence of additional parameters.



9
S E N S I T I V I T Y T O N E U T R I N O S I N E X T E N D E D M O D E L S

Sections 9.1 to 9.3 are based on Di Valentino, Brinckmann, Gerbino, Poulin et al. [50],
section 9.4 is based on Sprenger, Archidiacono, Brinckmann, Clesse & Lesgourgues [102],

and section 9.5 is based on Brinckmann, Hooper, Archiadiacono, Lesgourgues & Sprenger (in prep.)

9.1 degeneracy between neutrino mass and other parameters

In chapter 8, section 8.1, we found a sensitivity of about σ(Mν) = 44 meV for CORE-M5,
using any configuration, or 21 meV in combination with future BAOs, and 16 meV with future
cosmic shear data. We explained why the sensitivity to Mν has a very weak dependence on
the assumed instrumental settings for CORE. To check how much these predictions depend
on the assumed cosmological model, we do several extended forecasts with 8 free parameters
instead of 7.

The new parameters studied in this section are the primordial helium fraction, the tensor-
to-scalar ratio, the constant Dark Energy equation of state parameter, the primordial scalar
tilt running, and the effective density fraction of spatial curvature. Since our focus here is on
neutrino masses, we do not investigate the sensitivity to these parameters in as much detail.
For instance, we use here a (weak energy principle) prior w > −1, while in the Dark Energy
section we will also consider phantom Dark Energy or a time-varying w. Also, as in the rest
of this paper, we stick to a mock CORE likelihood including only temperature, E-polarisation
and lensing data, and not using B-mode information: hence we obtain much worse constraints
on r than in the CORE inflation paper [247], in which B modes play an essential role; but at
least the present forecast allows to conservatively prove the absence of parameter correlation
between Mν and r at the level of precision of CORE combined with DESI and Euclid.
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Figure 31: Posterior distribution of the summed neutrino mass in the extended models ΛCDM + Mν,
ΛCDM + Mν + w and ΛCDM + Mν + Ωk. The vertical dashed line shows the fiducial value.
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Figure 32: Results for the extended model ΛCDM + Mν + Ωk. The (Mν, Ωk) degeneracy is removed by
adding BAO data.
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Figure 33: Results for the extended model ΛCDM + Mν + w (with a prior w > −1). The w axis scale
changes between plots because of the huge difference of sensitivity between data sets. The
(Mν, w) degeneracy gets partially resolved by adding Euclid cosmic shear data.
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Parameter Planck, TEP LiteCORE-80, TEP LiteCORE-120, TEP CORE-M5, TEP COrE+, TEP

YHe 0.247± 0.014 0.2475± 0.0042 0.2476± 0.0030 0.2476± 0.0028 0.2476± 0.0025

Mν (meV) fixed 77+36
−60 74+37

−53 74+37
−52 73+37

−51

r < 0.055 (68%CL) < 0.020 (68%CL) < 0.019 (68%CL) < 0.020 (68%CL) < 0.020 (68%CL)

Mν (meV) fixed < 95 (68%CL) < 97 (68%CL) 68+33
−52 66+31

−51

w (> −1) < −0.74 (68%CL) < −0.886 (68%CL) < −0.895 (68%CL) < −0.900 (68%CL) < −0.904 (68%CL)

Mν (meV) fixed < 73 (68%CL) < 72 (68%CL) < 72 (68%CL) < 71 (68%CL)

102 d ln ns/d ln k −0.20± 0.67 −0.01± 0.30 0.00± 0.25 −0.00± 0.25 0.00± 0.23

Mν (meV) fixed < 110 (68%CL) 74+37
−53 74+37

−52 72+37
−50

102 Ωk −0.37+0.83
−0.69 −0.37+0.60

−0.33 −0.33+0.56
−0.31 −0.30+0.51

−0.29 −0.28+0.48
−0.30

Mν (meV) fixed < 200 (68%CL) < 197 (68%CL) < 193 (68%CL) < 188 (68%CL)

Parameter Planck, TEP LiteCORE-80, TEP LiteCORE-120, TEP CORE-M5, TEP COrE+, TEP

+ DESI + DESI + DESI + DESI + DESI

YHe 0.248± 0.010 0.2477± 0.0041 0.2477± 0.0030 0.2477± 0.0027 0.2477± 0.0024

Mν (meV) 70+33
−51 65+25

−21 65+23
−20 65± 21 66+23

−19

r < 0.062 (68%CL) < 0.020 (68%CL) < 0.019 (68%CL) < 0.020 (68%CL) < 0.020 (68%CL)

Mν (meV) 72+37
−47 62+26

−21 62+23
−21 63± 22 63+23

−19

w (> −1) < −0.961 (68%CL) < −0.965 (68%CL) < −0.9653 (68%CL) < −0.965 (68%CL) < −0.965 (68%)

Mν (meV) < 66 (68%CL) < 56 (68%CL) < 57 (68%CL) < 60 (68%CL) < 57 (68%CL)

102 d ln ns/d ln k −0.01± 0.58 0.01± 0.31 0.01± 0.25 0.01± 0.24 −0.00± 0.23

Mν (meV) 71+35
−48 66+25

−22 66+24
−21 66+24

−20 61+22
−19

102 Ωk 0.07± 0.19 0.01± 0.11 0.00± 0.10 −0.00± 0.10 0.00± 0.10

Mν (meV) < 122 (68%CL) 66± 31 65+31
−27 65+29

−26 66± 28

Parameter Planck, TEP LiteCORE-80, TEP LiteCORE-120, TEP CORE-M5, TEP COrE+, TEP

+ DESI + Euclid + DESI + Euclid + DESI + Euclid + DESI + Euclid + DESI + Euclid

YHe 0.2470± 0.0091 0.2477± 0.0040 0.2477± 0.0029 0.2477± 0.0027 0.2477± 0.0024

Mν (meV) 63± 26 63± 17 63± 16 62± 16 62+15
−17

r < 0.063 (68%CL) < 0.020 (68%CL) < 0.020 (68%CL) < 0.020 (68%CL) < 0.020 (68%CL)

Mν (meV) 62± 23 60+16
−18 60+15

−17 60+15
−17 60+15

−17

w (> −1) < −0.9914 (68%CL) < −0.9920 (68%CL) < −0.9921 (68%CL) < −0.9923 (68%) < −0.9926 (68%)

Mν (meV) 44+23
−29 45+23

−19 46+22
−18 48+22

−17 48+21
−17

102 d ln ns/d ln k 0.01± 0.52 0.01± 0.29 0.01± 0.24 0.00± 0.23 0.01± 0.22

Mν (meV) 63± 25 63± 17 63± 16 63± 16 63± 16

102 Ωk 0.03± 0.14 0.012± 0.100 −0.002± 0.094 0.004± 0.098 −0.003± 0.096

Mν (meV) 70+34
−30 65± 22 62± 22 63± 21 62± 21

Table 22: 68% CL constraints on the additional parameters of several extended 8-parameter models,
for the different CORE experimental specifications, and with or without external data sets
(DESI BAOs, Euclid cosmic shear). For Planck alone, we quote the results from the 2015 data
release, obtained with a fixed mass Mν = 60 meV, while for combinations of Planck with future
surveys, we fit mock data with a fake Planck likelihood mimicking the sensitivity of the real
experiment (although a bit more constraining). In the case with free tensor-to-scalar ratio r,
we did not include B-modes in the likelihood, unlike in the CORE inflation paper [247]. In
the case with free w we used a (weak energy principle) prior w > −1, that will be relaxed in
the Dark Energy section of this paper.

Our extended forecast results are summarised in Table 22. When varying the helium frac-
tion, the tensor-to-scalar ratio1, or the tilt running, we find essentially the same sensitivity to

1 With a free r and in the forecasts based on CMB data alone, the error bar σ(Mν) can be slightly smaller in the
extended model than in the 7-parameter model, which may sound odd. In fact, it comes from a volume effect in
Bayesian parameter extraction: models with r 6= 0 are less discrepant with the data when Mν is small, so after
marginalising over r the posterior for Mν is shifted to lower values.
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Mν as in the 7-parameter model. Nonetheless, the cases with free w or Ωk make the neutrino
mass detection more difficult, due to clear parameter degeneracies with Mν when using CMB
data alone (see Figures 31, 32, 33).

We see in Figures 31, 32 that the (Mν, Ωk) degeneracy (a particular case of the geometrical
degeneracy described in [201, 306]) gets broken by the inclusion of BAO data, bringing the
error down to σ(Mν) ' 28 meV. With additional Euclid cosmic shear data, one would reach
σ(Mν) ' 21 meV, still guaranteeing a 3σ detection, while Planck+DESI+Euclid could only
achieve σ(Mν) ' 32 meV for free Ωk.

In the case with free w (Figures 31, 33), the degeneracy remains problematic even with
CORE+BAO data, but ultimately Euclid cosmic shear data could partly differentiate between
the physical effects of w and Mν effects and lead to σ(Mν) ' 19 meV under the prior w > −1,
instead of 26 meV for Planck+DESI+BAO. The error bar would degrade by also allowing for
phantom dark energy, but on the other hand, the inclusion of further Large Scale Structure
data (e.g. the Euclid galaxy correlation function) would further help to break the degeneracy,
since the effect of neutrino masses and w have a different dependence on redshift and scales
[183].

9.2 extra relativistic relics

The minimal cosmological scenario predicts that, at least after the time of nucleosynthesis, the
density of relativistic particles is given by the contribution of CMB photons plus that of active
neutrino species, until they become non-relativistic due to their small mass. This assumption
is summarized by the standard value of the effective neutrino number Neff = 3.046 [307]
(see Refs. [308, 309] for pioneering work and Ref. [310] for a review of the subject). A more
recent calculation beased on the latest data on neutrino physics finds Neff = 3.045 [311], but
at the precision level of CORE the difference is irrelevant, and we will keep 3.046 as our
baseline assumption. However, there are many simple theoretical motivations for relaxing this
assumption. We know that the standard model of particle physics is incomplete (e.g. because
it does not explain dark matter), and many of its extensions would lead to the existence of
extra light or massless particles; depending on their interactions and decoupling time the latter
could also contribute to Neff. Depending on the context, these extra particles are usually called
extra relativistic relics, dark radiation or axion-like particles in more specific cases. In the
particular case of particles that were in thermal equilibrium at some point, the enhancement
of Neff can be predicted as a function of the decoupling temperature [82]. Even in absence
of a significant density of such relics, ordinary neutrinos could have an unexpected density
due to non-standard interactions [83], non-thermal production after decoupling [312], or low-
temperature reheating [84], leading to a value of Neff larger or smaller than 3.046. There are
additional motivations to consider Neff as a free parameter (background of gravitational waves
produced by a phase transition, modified gravity, extra dimensions, etc. – see Ref. [313] for a
review).

Over the last years the extended ΛCDM + Neff has received a lot of attention within the
cosmology community. Assuming Neff > 3.046 has the potential to solve tensions in obser-
vational data: for instance, internal tensions in pre-Planck CMB data, which have now disap-
peared (Neff = 2.99± 0.20 (68%CL) for Planck 2015 TT,TE,EE+lowP [2]); or tensions between
CMB data and direct measurements of H0 [85] (however, solving this problem by increasing
Neff requires a higher value of σ8, which brings further tensions with other datasets [2]). In any
case, the community is particularly eager to measure Neff with better sensitivity in the future,
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in order to: (i) test the existence of extra relics and probe extensions of the standard model
of particle physics; (ii) get a window on precision neutrino physics (since the contribution of
neutrinos to Neff depends on the details of neutrino decoupling); and (iii) check whether the
tensions in cosmological data are related to the relativistic density or not.

Since CMB data accurately determines the redshift of equality zeq, the impact of Neff on CMB
observables is usually discussed at fixed zeq [66, 189, 314]. The time of equality can be kept
fixed by simultaneously increasing Neff and the dark matter density ωcdm (or, depending on
the choice of parameter basis, Neff and H0). The impact on the CMB is then minimal, which
explains the well known (Neff, ωcdm) or (Neff, H0) degeneracy: the latter is clearly visible
with Planck data in Figure 34 (left plot). However, this transformation does not preserve
the angular scale of the photon damping scale on the last scattering surface: hence the best
probe of Neff comes from accurate measurements of the exponential tail of the temperature
and polarisation spectra at high-`. Hence the accuracy with which CMB experiments can
measure Neff is directly related to their sensitivity and angular resolution, as confirmed by the
following forecasts. Increasing Neff has other effects on the CMB coming from gravitational
interactions between photons and neutrinos before decoupling: a smoothing of the acoustic
peaks (however, very small, and below the per-cent level for variations of the order of ∆Neff ∼
0.1), and a shift of the peaks towards larger angles caused by the “neutrino drag” effect [66, 189,
314]. This means that in order to keep a fixed CMB peak scale, one should decrease the angular
size of the sound horizon θs while increasing Neff: this implies an anti-correlation between θs

and Neff that can be observed in Figure 34 (right plot). Therefore, by accurately measuring
Neff, we could get a more robust and model-independent measurement of the sound horizon
scale, which would in turn be very useful for constraining the expansion history with BAO
data.

Since the parameter Neff is closely related to neutrino properties, and since we know that
neutrinos have a small mass, we forecast the sensitivity of different experimental set-ups
to Neff while varying simultaneously the summed neutrino mass Mν. This leads to more
robust predictions than if we had fixed the mass (although a posteriori we find no significant
correlation between Neff and Mν). We investigate the CORE sensitivity to Neff within two
distinct models:

• The model “ΛCDM + Mν +∆Nmassless
eff ” has 3 massive degenerate and thermalised neu-

trino species, plus extra massless relics contributing as ∆Nmassless
eff > 0. It is motivated by

scenarios with standard active neutrinos and extra massless relics (or very light relics
with m� 10 meV).

• The model “ΛCDM + Mν + Nmassive
eff ” only has 3 massive degenerate neutrino species,

with fixed temperature, but with a rescaled density. During radiation domination they
contribute to the effective neutrino number as Nmassive

eff , which could be greater or smaller
than 3.046. This model provides a rough first-order approximation to specific scenarios
in which neutrinos would be either enhanced (e.g. by the decay of other particles) or
suppressed (e.g. in case of low-temperature reheating).

Choosing the same fiducial model as in footnote 1, with a summed mass equal to Mν =

60 meV, we fit the 7-parameter ΛCDM+Mν model for different CORE settings, alone or in
combination with mock DESI BAOs and Euclid cosmic shear data.

The results of our MCMC forecasts are shown in Tables 23, 24, and Figure 34. Since the
determination of Neff depends mainly on observations of the exponential tail in the CMB
spectra, our results for σ(Neff) vary a lot with the sensitivity/resolution assumed for CORE,
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Parameter Planck, TEP LiteCORE-80, TEP LiteCORE-120, TEP CORE-M5, TEP COrE+, TEP

∆Nmassless
eff < 0.19 (68%CL) < 0.062 (68%CL) < 0.045 (68%CL) < 0.040 (68%CL) < 0.036 (68%CL)

Mν (meV) < 310 (68%CL) 77+37
−59 72+34

−56 71+34
−54 70+35

−53

Ωbh2 0.02208± 0.00025 0.022305± 0.000070 0.022293± 0.000052 0.022289± 0.000047 0.022284± 0.000041

Ωch2 0.1184± 0.0030 0.12056+0.00066
−0.00096 0.12030+0.00057

−0.00079 0.12023+0.00052
−0.00074 0.12015+0.00051

−0.00071

100θs 1.04087± 0.00046 1.04070± 0.00013 1.04070± 0.00010 1.040700± 0.000094 1.040800± 0.000085

τ 0.071± 0.018 0.0605± 0.0020 0.0606± 0.0021 0.0605± 0.0021 0.0606± 0.0021

ns 0.9589± 0.0095 0.9665± 0.0026 0.9663± 0.0023 0.9661± 0.0023 0.9661± 0.0022

ln(1010 As) 3.071± 0.037 3.0970± 0.0044 3.0964± 0.0043 3.0961± 0.0042 3.0960± 0.0042

H0 (km/s/Mpc) 64.8± 2.3 67.15+0.80
−0.58 67.13+0.74

−0.51 67.12+0.71
−0.50 67.11+0.71

−0.47

σ8 0.778+0.038
−0.024 0.831+0.011

−0.006 0.831+0.010
−0.006 0.8308+0.0097

−0.0059 0.8307+0.0097
−0.0055

Parameter Planck, TEP LiteCORE-80, TEP LiteCORE-120, TEP CORE-M5, TEP COrE+, TEP

+ DESI + DESI + DESI + DESI + DESI

∆Nmassless
eff < 0.15 (68%CL) < 0.061 (68%CL) < 0.042 (68%CL) < 0.038 (68%CL) < 0.033 (68%CL)

Mν (meV) 85+41
−50 72± 24 71+23

−20 70+23
−20 65+22

−20

Ωbh2 0.02237± 0.00015 0.022310± 0.000065 0.022293± 0.000050 0.022289± 0.000045 0.022279± 0.000038

Ωch2 0.1216+0.0012
−0.0020 0.12046+0.00048

−0.00081 0.12023+0.00040
−0.00059 0.12017+0.00036

−0.00054 0.12045+0.00034
−0.00046

100θs 1.04050± 0.00036 1.04070± 0.00013 1.04070± 0.00010 1.040700± 0.000091 1.040700± 0.000080

τ 0.0614± 0.0046 0.0605± 0.0021 0.0606± 0.0021 0.0605± 0.0021 0.0605± 0.0018

ns 0.9695+0.0037
−0.0053 0.9667+0.0020

−0.0026 0.9662± 0.0020 0.9661± 0.0020 0.9653+0.0016
−0.0020

ln(1010 As) 3.102± 0.010 3.0967± 0.0044 3.0962± 0.0043 3.0959± 0.0040 3.0966± 0.0036

H0 (km/s/Mpc) 67.56+0.42
−0.65 67.23± 0.33 67.15± 0.29 67.13± 0.29 67.13± 0.28

σ8 0.833± 0.011 0.8316± 0.0044 0.8311± 0.0040 0.8309± 0.0038 0.8309± 0.0037

Parameter Planck, TEP LiteCORE-80, TEP LiteCORE-120, TEP CORE-M5, TEP COrE+, TEP

+ DESI + Euclid + DESI + Euclid + DESI + Euclid + DESI + Euclid + DESI + Euclid

∆Nmassless
eff < 0.111 (68%CL) < 0.054 (68%CL) < 0.040 (68%CL) < 0.038 (68%CL) < 0.032 (68%CL)

Mν (meV) 84+25
−28 71+16

−18 68+15
−18 68+15

−17 67+14
−17

Ωbh2 0.02234± 0.00013 0.022301± 0.000061 0.022290± 0.000048 0.022289± 0.000045 0.022282± 0.000038

Ωch2 0.1211+0.0007
−0.0013 0.12043+0.00034

−0.00065 0.12026+0.00029
−0.00050 0.12023+0.00028

−0.00046 0.12017+0.00027
−0.00040

100θs 1.04060± 0.00034 1.04070± 0.00012 1.040700± 0.000095 1.040700± 0.000089 1.040800± 0.000080

τ 0.0611± 0.0046 0.0605± 0.0021 0.0604± 0.0021 0.0605± 0.0021 0.0597± 0.0020

ns 0.9678+0.0031
−0.0040 0.9662± 0.0021 0.9660± 0.0019 0.9659± 0.0018 0.9658± 0.0017

ln(1010 As) 3.100+0.008
−0.011 3.0967± 0.0043 3.0960± 0.0041 3.0961± 0.0041 3.0958± 0.0039

H0 (km/s/Mpc) 67.37+0.28
−0.42 67.18± 0.23 67.14± 0.20 67.12± 0.19 67.10± 0.19

σ8 0.8314+0.0037
−0.0030 0.8319+0.0034

−0.0026 0.8318+0.0032
−0.0024 0.8317+0.0032

−0.0023 0.8318+0.0030
−0.0022

Table 23: 68% CL constraints on cosmological parameters in the ΛCDM + Mν + ∆Nmassless
eff model

(accounting for standard massive neutrino plus extra massless relics, with ∆Nmassless
eff > 0)

from the different CORE experimental specifications and with or without external data sets
(DESI BAOs, Euclid cosmic shear). For Planck alone, we quote the results from the 2015

data release, while for combinations of Planck with future surveys, we fit mock data with a
fake Planck likelihood mimicking the sensitivity of the real experiment (although a bit more
constraining).

and are only marginally affected by the inclusion of extra datasets like BAOs and cosmic
shear surveys. The value lmax at which the signal-to-noise blows up in the temperature or
polarisation spectrum varies a lot between the different experimental settings, as can be seen
in Figure 1. Thus there is a dramatic improvement in σ(Neff) between Planck and LiteCORE-80

(factor 3), and still a substantial one between LiteCORE-80 and COrE+ (factor 1.7). However,
stepping back to the design of CORE-M5, one maintains a very good sensitivity, σ(Neff) =

0.041, only 10% worse than what could be achieved with the better angular resolution of the
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Parameter Planck, TEP LiteCORE-80, TEP LiteCORE-120, TEP CORE-M5, TEP COrE+, TEP

Nmassive
eff 2.93± 0.19 3.045± 0.063 3.047± 0.045 3.045± 0.041 3.045± 0.036

Mν (meV) < 310 (68%CL) < 110 (68%CL) 73+37
−53 73+37

−52 72+37
−49

Ωbh2 0.02208± 0.00025 0.022250± 0.000089 0.022255± 0.000066 0.022254± 0.000060 0.022255± 0.000051

Ωch2 0.1184± 0.0030 0.1198± 0.0011 0.11983± 0.00082 0.11981± 0.00077 0.11979± 0.00071

100θs 1.04087± 0.00046 1.04080± 0.00016 1.04080± 0.00012 1.04080± 0.00011 1.04080± 0.00010

τ 0.071± 0.018 0.0604± 0.0021 0.0604± 0.0021 0.0604± 0.0021 0.0603± 0.0021

ns 0.9589± 0.0095 0.9642± 0.0036 0.9644± 0.0031 0.9643± 0.0030 0.9643± 0.0028

ln(1010 As) 3.071± 0.037 3.0950± 0.0048 3.0950± 0.0045 3.0950± 0.0045 3.0948± 0.0043

H0 (km/s/Mpc) 64.8± 2.3 66.81+0.88
−0.71 66.86+0.78

−0.59 66.85+0.76
−0.58 66.86+0.70

−0.55

σ8 0.778+0.038
−0.024 0.829+0.011

−0.007 0.8291+0.0098
−0.0065 0.8289+0.0094

−0.0066 0.8291+0.0090
−0.0063

Parameter Planck, TEP LiteCORE-80, TEP LiteCORE-120, TEP CORE-M5, TEP COrE+, TEP

+ DESI + DESI + DESI + DESI + DESI

Nmassive
eff 3.07± 0.15 3.044± 0.061 3.047± 0.045 3.046± 0.040 3.044± 0.035

Mν (meV) 74+35
−54 65± 25 66+24

−22 65+24
−21 61± 21

Ωbh2 0.02228± 0.00018 0.022257± 0.000082 0.022258± 0.000062 0.022257± 0.000057 0.022251± 0.000048

Ωch2 0.1200± 0.0025 0.1197± 0.0010 0.11973± 0.00075 0.11970± 0.00068 0.12002± 0.00059

100θs 1.04080± 0.00045 1.04080± 0.00016 1.04080± 0.00012 1.04080± 0.00011 1.040800± 0.000097

τ 0.0608± 0.0045 0.0603± 0.0021 0.0603± 0.0021 0.0603± 0.0021 0.0604± 0.0018

ns 0.9655± 0.0065 0.9644± 0.0032 0.9646± 0.0028 0.9645± 0.0026 0.9637± 0.0024

ln(1010 As) 3.096± 0.012 3.0944± 0.0049 3.0944± 0.0045 3.0944± 0.0044 3.0953± 0.0038

H0 (km/s/Mpc) 67.05± 0.82 66.96± 0.42 66.97± 0.35 66.97± 0.33 66.97± 0.32

σ8 0.830± 0.012 0.8307± 0.0045 0.8305± 0.0041 0.8305± 0.0039 0.8304± 0.0037

Parameter Planck, TEP LiteCORE-80, TEP LiteCORE-120, TEP CORE-M5, TEP COrE+, TEP

+ DESI + Euclid + DESI + Euclid + DESI + Euclid + DESI + Euclid + DESI + Euclid

Nmassive
eff 3.05± 0.11 3.044± 0.057 3.046± 0.042 3.046± 0.039 3.045± 0.034

Mν (meV) 66+31
−35 62± 20 62± 18 62± 17 62+15

−17

Ωbh2 0.02225± 0.00016 0.022253± 0.000081 0.022258± 0.000062 0.022256± 0.000055 0.022253± 0.000047

Ωch2 0.1198± 0.0017 0.11976± 0.00089 0.11978± 0.00067 0.11978± 0.00062 0.11977± 0.00054

100θs 1.04080± 0.00038 1.04080± 0.00016 1.04080± 0.00012 1.04080± 0.00011 1.040800± 0.000092

τ 0.0607± 0.0045 0.0602± 0.0021 0.0603± 0.0021 0.0602± 0.0021 0.0595± 0.0020

ns 0.9646± 0.0049 0.9644± 0.0029 0.9644± 0.0025 0.9644± 0.0024 0.9644± 0.0023

ln(1010 As) 3.095± 0.010 3.0944± 0.0048 3.0946± 0.0044 3.0945± 0.0043 3.0944± 0.0041

H0 (km/s/Mpc) 66.97± 0.54 66.96± 0.32 66.98± 0.27 66.98± 0.25 66.97± 0.23

σ8 0.8313+0.0039
−0.0029 0.8316+0.0035

−0.0026 0.8315+0.0033
−0.0026 0.8315± 0.0028 0.8315+0.0030

−0.0024

Table 24: Same as previous table, but for the ΛCDM + Mν + Nmassive
eff model (accounting for non-

thermalised active neutrinos degenerate in mass).

COrE+ mission. Instead, LiteCORE-120 would be 25% worse than COrE+. Hence CORE-M5

appears as a good compromise for the purpose of measuring Neff.
By achieving σ(Neff) = 0.041 with CORE-M5 alone, or σ(Neff) = 0.039 in combination

with future BAO data from DESI and/or cosmic shear data from Euclid, we could set very
strong bounds on extra relics, neutrino properties, the temperature of reheating, etc., especially
compared to Planck + DESI BAOs, which would only yield σ(Neff) = 0.15. To be more specific,
let us consider the case of early decoupled thermal relics, like in Ref. [82]. Assuming that the
last-decoupled relics leave thermal equilibrium at a temperature TF, and that the subsequent
number of relativistic degrees of freedom is entirely accounted for by standard model particles,
we notice that there are many well-motivated scenarios predicting a value of ∆Neff ranging
from 0.05 to 0.3, because this corresponds to particles decoupling during the QCD phase
transition. In case of a non-detection of extra relics by CORE, the 95% exclusion bound from
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Figure 34: Parameter degeneracy between Neff and H0 or θs, assuming the extended model
“DEG+Neff”, with three experimental settings for CORE or with a fake Planck likelihood
mimicking the sensitivity of the real experiment (always using all CMB information from
TT,TE,EE + lensing extraction). The correlations observed in the Planck case are explained
in the text. The degeneracy with H0 is almost entirely resolved by CORE, while that with θs
is limited to a much smaller range.

CORE + BAOs, ∆Neff < 0.076, would exclude most of this range, while Planck + BAOs would
not even touch it.

A sensitivity of σ(Neff) = 0.041 would also have crucial implications for the determination
of other important cosmological parameters, through a considerable reduction of parameter
degeneracies. For instance, without making assumptions on Neff, Planck + DESI BAOs would
measure H0 with 1.2% uncertainty, and ωcdm with 2% uncertainty. Figure 34 (left plot) shows
that CORE-M5 would almost completely resolve the (Neff, H0) degeneracy, such that CORE +
DESI BAOs would pinpoint both H0 and ωcdm with 0.5% uncertainty. This would have reper-
cussions on several other parameters, and would allow to fully exploit the synergy between
different types of cosmological data. Also, the determination of Neff based on the observation
of the CMB damping tails would reduce the uncertainty on the sound horizon angular scale,
from σ(θs) = 0.00046 for Planck to σ(θs) = 0.00011 for CORE: hence the calibration of the
sound horizon scale in future BAO data would be much more accurate, and the scientific
impact of these observations (for instance, on Dark Energy models) would be enhanced.

9.3 light sterile neutrinos

Right-handed or sterile neutrinos are present in several well-motivated extensions of the stan-
dard model of particle physics [78, 315]. If their mass is of the order of a few keV or bigger,
they can play the role of warm or cold dark matter, and they are constrained mainly by X-ray
and Lyman-alpha observations [315]. If their mass is of the order of the meV or smaller, they
will simply behave as extra relativistic relics contributing to Neff. There is another interesting
range deserving a specific study: that of light sterile neutrinos with a mass in the meV to
eV range. Such particles have been extensively discussed over the past years, for the reason
that the oscillations between such sterile neutrinos and active neutrinos (or more precisely,
between the mass eigenstates formed of active and sterile neutrinos) could explain a number
of possible anomalies in short-baseline neutrino oscillation data (see e.g. Ref. [316]).
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Sterile neutrinos with large mixing angles would normally acquire a thermal distribution
through oscillations with active neutrinos, and their mass would then be very constrained
(essentially, as much as that of active neutrinos). However, the explanation of short baseline
anomalies requires an O(1) eV mass in tension with cosmological data. To avoid these bounds,
people have discussed several ways to prevent sterile neutrino thermalisation (see e.g. Refs. [78,
79, 317]). In that case, the bounds on the sterile neutrino mass become model-dependent, but
a wide category of models can be parametrised in good approximation with two numbers (Ns,
meff

s ), related to the asymptotic density at early times, given by ∆Neff = Ns, and the asymptotic
density at late times, given by the effective mass meff

s = 94.1ωs eV [2, 61], where ωs is the sterile
neutrino density. This covers both the case of light early-decoupled thermal relics, and that
of Dodelson-Widrow (i.e. non-resonantly produced) sterile neutrinos. For the later case, the
physical mass of the sterile neutrino is given by ms = meff

s /Ns.
To investigate the sensitivity of CORE to a non-thermal sterile neutrino, we stick to the

same fiducial model as in the last subsections (total mass Mν = 60 meV and Neff = 3.046), but
we now fit it with an extended model with 9 free parameters, including the summed mass
of active neutrinos Mactive

ν , as well as Ns and meff
s . We impose in our forecasts a top-hat prior

meff
s /Ns < 5 eV, designed to eliminate models such that the extra species has a large mass, a

very small number density, and behaves like extra cold dark matter.

Parameter Planck, TEP LiteCORE-80, TEP LiteCORE-120, TEP CORE-M5, TEP COrE+, TEP

msterile
eff (meV) < 332 < 56 < 41 < 37 < 34

∆Nsterile
eff < 0.20 < 0.080 < 0.058 < 0.053 < 0.048

Mactive
ν (meV) fixed < 79 < 76 < 77 < 82

Parameter Planck, TEP LiteCORE-80, TEP LiteCORE-120, TEP CORE-M5, TEP COrE+, TEP

+ DESI + DESI + DESI + DESI + DESI

msterile
eff (meV) < 123 < 52 < 42 < 39 < 35

∆Nsterile
eff < 0.168 < 0.077 < 0.059 < 0.054 < 0.049

Mactive
ν (meV) < 65 43+21

−33 45+24
−28 47± 26 48± 26

Parameter Planck, TEP LiteCORE-80, TEP LiteCORE-120, TEP CORE-M5, TEP COrE+, TEP

+ DESI + DESI + DESI + DESI + DESI

+ Euclid + Euclid + Euclid + Euclid + Euclid

msterile
eff (meV) < 60 < 43 < 37 < 35 < 33

∆Nsterile
eff < 0.151 < 0.074 < 0.057 < 0.054 < 0.049

Mactive
ν (meV) < 63 43+23

−26 44± 23 44± 22 44+22
−20

Table 25: 68% CL constraints and upper bounds on cosmological parameters in the ΛCDM + Mactive
ν

+ msterile
eff + ∆Nsterile

eff model (accounting for massive active neutrinos plus one light and non-
thermalised sterile neutrino) from the different CORE experimental specifications and with or
without external data sets (DESI BAOs, Euclid cosmic shear). For Planck alone, we quote the
results from the 2015 data release, obtained with a fixed active neutrino mass Mactive

ν = 60 meV,
while for combinations of Planck with future surveys, we fit mock data with a fake Planck
likelihood mimicking the sensitivity of the real experiment (although a bit more constraining).
For concision, we only show the bounds for the extended model parameters.

Our results for the parameters (Mactive
ν , Ns, meff

s ) are given in Table 25, and the probability
contours for (Ns, meff

s ) are shown in Figure 35. For CORE-M5, the bounds on the sterile sector
are impressive:

(meff
s , Ns) < (37 meV, 0.053), (CORE−M5, 68%CL)
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Figure 35: Results for the extended model ΛCDM + Mν + one light and non-thermalised sterile neu-
trino with effective mass meff

s , contributing to the effective neutrino number as Ns.

to be compared with

(meff
s , Ns) < (330 meV, 0.2). (PlanckTT + lowP + lensing + BAO, 68%CL).

The sensitivity to (meff
s , Ns) depends heavily on the CORE settings. The error on Ns varies

by a factor two between LiteCORE-80 and COrE+. As discussed in section 9.2, this comes
mainly from the ability to measure the temperature and polarisation damping tail up to high
multipoles when the instrumental sensitivity and resolution are good enough. Besides, the
measurement of the CMB lensing potential constrains the density of hot dark matter today,
and hence roughly Mactive

ν + meff
s . If this were the only effect, all CORE configurations would

lead essentially to Mactive
ν + meff

s = 60± 44 meV at one sigma, and to the same constraints on
meff

s . However, there is some extra sensitivity to meff
s coming from the fact that for small Ns, the

physical mass associated to a given value of meff
s can be large2, such that the sterile neutrinos

have their non-relativistic transition before photon decoupling. In that case, there are addi-
tional effects on CMB primary anisotropies3 that an experiment sensitive to smaller angular
scales can constrain better. This explains the gain in sensitivity to meff

s between LiteCORE-80

and COrE+. CORE-M5 appears as a good compromise, more constraining than LiteCORE-80

by 50% for both Ns and meff
s . In summary, with a sensitivity to meff

s ten times better than
Planck, CORE-M5 appears as an ideal instrument for constraining light sterile neutrinos, and
the CORE data release will play a key role in the discussion of anomalies in short baseline
neutrino oscillations.

Note that with CORE data alone, we find no lower bound on the active neutrino mass Mν

in presence of a sterile neutrino, because the physical effect of the mass Mν = 60 meV in
the fiducial model can be partially endorsed by the sterile neutrino mass. In other words, the
data is not able to tell whether the fiducial mass of 60 meV belongs to active neutrinos, or to a
mixture of sterile and active neutrinos. By removing degeneracies, BAO data from DESI makes
the CMB lensing spectrum more sensitive to Mactive

ν +meff
s , and given the upper bound on meff

s ,
one now finds a lower bound on Mactive

ν . Cosmic shear data from Euclid directly probes the
free-streaming effect associated with Mactive

ν +meff
s , which results in a slightly better sensitivity

to Mactive
ν , but the constraints on the sterile neutrino sector remain roughly the same as when

considering CORE alone.

2 More precisely, the velocity dispersion given by 〈p〉/ms can be much smaller than for active neutrinos
3 Hot Dark Matter particles become non-relativistic before photon decoupling have a direct impact on CMB fluctu-

ations at the level of primary anisotropies: they tend to suppress small-scale fluctuations.
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9.4 extended models with improved large-scale structure treatment

In this section, we describe the results obtained by fitting our mock data to three physi-
cally motivated extensions of the baseline model: (1) ΛCDM+Mν+Neff, (2) ΛCDM+Mν+w0,
(3) ΛCDM+Mν+(w0, wa). These extensions have been discussed at various points in the past
as potentially degenerate to some extent with neutrino masses, so the results of this section
also aim at assessing the robustness of a future neutrino mass detection against extended
cosmology assumptions. We leave for future work the study of models with a free spatial cur-
vature parameter, which is also likely to degrade the sensitivity to the total neutrino mass (see
e.g. [304] for a recent discussion).

In Table 26, we report the expected sensitivity of various combinations of Planck, Euclid
and SKA probes to the non-standard cosmological parameters and to those among the stan-
dard ones that show a relevant deviation from the baseline case. In Figure 36, we depict the
corresponding 1 σ uncertainty, to show how the sensitivity degrades in extended models. The
decrease in the accuracy is caused by the degeneracies illustrated in the contour plots of Fig-
ure 37.

We shall now proceed to discuss the results for each one of the three extended models.
Notice that throughout this section, what we call the “realistic” case assumes the realistic
theoretical error prescription of section 3.4 for GC and IM, but still the conservative one for
CS.

9.4.1 ΛCDM+Mν+Neff

We first promote the effective number of relativistic degrees of freedom Neff. This quantity pa-
rameterizes the radiation density (ρr) of the universe in the early universe beyond the photon
density (ργ),

ρr = ργ

[
1 +

7
8

(
4
11

)4/3

Neff

]
.

In the cosmological standard model Neff is equal to 3.045 [307, 311], representing the three
active neutrinos. We use this as our fiducial value. A deviation of Neff from 3.045 could be
caused, for instance, by several plausible extensions of the Standard Model of particle physics,
e.g. with sterile neutrinos [317–319]. Notice that a variation of Neff implies a different expan-
sion rate of the universe, with a profound impact on the cosmological observables at any
redshift [66, 313, 314, 320, 321].

From Table 26, we can see that in the realistic theoretical error scenario the uncertainty
is σ(Neff) ≤ 0.051 for Planck + Euclid and Planck + SKA2. Such an accuracy allows for a
detection of more exotic models, e.g. with new bosons from new broken symmetries, leading
to early decoupled or partially thermalized additional degrees of freedom [322].

In Figure 36 the predictions for this model appear as squared markers. We see that the sen-
sitivity to Mν, ωcdm and H0 degrades significantly with respect to the baseline model (circle
markers) for every probe combination. In general, this degradation is caused by the strong
degeneracies between Neff and the aforementioned parameters. The importance of these cor-
relations is illustrated in the top-left plot of Figure 37. Observables that are more sensitive
to the expansion rate of the Universe, such as cluster number counts, can break these degen-
eracies [216], and would bring back the sensitivity to all the baseline parameters close to the
values obtained in the baseline model. Interestingly, the strongest correlations affect ωcdm and
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Planck+SKA2 Planck+Euclid Planck+Euclid+SKA1 Planck+SKA1

σ (CS+GC) (CS+GC) (CS+GC)+(IM2) (IM1)

ΛCDM ωcdm
0.00080 0.00083 0.00082 0.00121

0.00073 0.00073 0.00071 0.00118

+ Mν H0/[ km
s Mpc ]

0.237 0.272 0.251 0.350

0.205 0.207 0.194 0.334

+ Neff Mν/[meV]
0.021 0.022 0.022 0.028

0.015 0.016 0.014 0.027

Neff
0.048 0.051 0.050 0.076

0.041 0.041 0.039 0.073

ΛCDM ωcdm
0.00029 0.00030 0.00030 0.00030

0.00026 0.00026 0.00025 0.00030

+ Mν H0/[ km
s Mpc ]

0.081 0.154 0.088 0.100

0.072 0.105 0.069 0.100

+ w0 Mν/[meV]
0.019 0.021 0.019 0.020

0.016 0.017 0.013 0.020

w0
0.0033 0.0073 0.0029 0.0046

0.0023 0.0047 0.0014 0.0046

ΛCDM ωcdm
0.00029 0.00029 0.00030 0.00034

0.00026 0.00026 0.00025 0.00034

+ Mν H0/[ km
s Mpc ]

0.101 0.232 0.099 0.200

0.084 0.162 0.072 0.202

+ w0 Mν/[meV]
0.027 0.027 0.025 0.030

0.024 0.024 0.018 0.031

+ wa w0
0.0045 0.0157 0.0046 0.0114

0.0032 0.0098 0.0016 0.0115

wa
0.027 0.050 0.027 0.049

0.020 0.033 0.013 0.050

Table 26: Expected 1 σ sensitivity of Planck, Euclid and SKA to the cosmological parameters relevant
in each extended model. For each probe combination the results in the top row are obtained
with the conservative theoretical error approach applied to every observable; the results in
the bottom row assume the realistic error prescription for GC and IM, while the conservative
one is used for CS.
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Figure 37: Marginalized one- and two-σ contours and one dimensional posteriors for the
three extended models ΛCDM+Mν+Neff (top left), ΛCDM+Mν+w0 (top right) and
ΛCDM+Mν+(w0, wa) (bottom left), in the realistic theoretical error scenario.
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H0, for which the reduction in sensitivity is more prominent than in the other dark energy
extended models. Instead, concerning Mν, adding SKA (IM2) to Euclid with a realistic theoret-
ical error leads to σ(Mν) = 0.014 eV, i.e. nearly the same sensitivity as in the baseline model,
and a 4.3σ detection of a non-zero absolute neutrino mass. Therefore, the effect of Neff on the
cosmological probes can easily be disentangled from the effect of the neutrino mass sum with
forthcoming galaxy and hydrogen surveys.

9.4.2 ΛCDM+Mν+w0

The second extended model includes a constant Dark Energy equation of state parameter w0,
with fiducial value −1 as in the ΛCDM model. From Table 26 and Figure 36, we observe
an important degradation (by almost a factor two) of the sensitivity to Mν and H0 for Euclid
CS+GC and SKA2 CS+GC. The importance of the parameter degeneracies with w0 can be seen
on the posterior distributions, displayed on Figure 37. But we also find that these degeneracies
can be reduced, 1) by combining Euclid with SKA1-IM, 2) in the realistic theoretical error
scenario, in such a way that the sensitivities to Mν and H0 are brought back to the ones of the
baseline model.

It is also found that the 1 σ sensitivity to w0 is improved almost by a factor two when consid-
ering the realistic theoretical error scenario, with σ(w0) = 0.0047/0.0023/0.0014 respectively
for Planck+Euclid, Planck+SK2 and Planck+Euclid+SKA1-IM. It is therefore worth noticing
that combining Euclid with the low-redshift SKA intensity mapping survey allows a very im-
portant improvement of the forecasted sensitivity to w0. This is due to the intensity mapping
of band 2 of SKA1 being sensitive down to very low redshift (zmin = 0.05).

9.4.3 ΛCDM+Mν+(w0, wa)

The third extended model allows for a variation of the Dark Energy equation of state with the
CPL parameterization [237]

w(a) = w0 + (1− a)wa .

We adopt the ΛCDM values of these parameters w0 = −1 and wa = 0 in the fiducial model.
In the conservative scenario, our results for Planck+Euclid are well compatible with those of

Ref. [4], and globally the sensitivities are significantly degraded with respect to the previous
model ΛCDM+Mν+w0 model. In the conservative scenario, this is still true for the Planck+
SKA1-IM combination. However, as soon as we include CS+GC probes with a realistic error,
the results are impressively stable and very mildly affected by the presence of an additional
free parameter, as can be seen in Table 26 and Figure 36. In Figure 37 we see the importance
of adding CS+GC information (green and yellow contours) in order to break the degeneracies
of the Planck+SKA1-IM results (blue contours).

Ultimately, by combining Planck, Euclid CS+GC and SKA1-IM, we can expect sensitivities
down to σ(w0) = 0.0016 and σ(wa) = 0.013, as well as σ(Mν) = 0.018 eV. By comparing
with the results obtained for Planck and Euclid CS+GC only, we see that intensity mapping
with SKA1 should lead to a useful increase of the sensitivity to the neutrino mass (allowing
potentially for a 3.4σ instead of 2.5σ detection of the minimal mass), and to a very strong
improvement in the sensitivity to the two DE parameters.
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9.5 future cmb experiments in combination with improved lss treatment

The complete results of our forecasts are summarised in in tables 27 to 32, tables 27 to 32.
However, as the main focus of this thesis is neutrinos, we will restrict our discussion to the
results for the neutrino mass sum. A more intuitive and graphical summary of the sensitivity
to the neutrino mass sum is presented in the form of the standard deviation of that parameter
in figs. 38 and 39.

10 2

10 1 Planck Litebird

10 2

10 1

(M
)

CMB S4 CMB S4 + Litebird

    
    

   C
MB

    
CM

B 
+ 

DE
SI

  C
MB

 +
 Eu

cli
d

    
    

+ 
SK

A
+ 

re
io

 pr
ior

10 2

10 1 CORE-M5

    
    

   C
MB

    
CM

B 
+ 

DE
SI

  C
MB

 +
 Eu

cli
d

    
    

+ 
SK

A
+ 

re
io

 pr
ior

PICO

CDM + M + Neff + w0 + w0 + wa

Figure 38: Neutrino mass sensitivity for each CMB experiment, alone and in combination with DESI,
Euclid, Euclid + SKA1 IM, Euclid + SKA1 IM + τreio prior. Each subplot corresponds to
one CMB setup (Planck, Litebird, CMB-S4, CMB-S4+Litebird, CORE-M5, or PICO from top
left to bottom right) and relevant combinations with large-scale structure surveys. The five
vertical dotted lines indicate 1 to 5-σ significance towards a detection of a non-zero neutrino
mass of around the minimum normal hierarchy mass Mν ≈ 60 meV. See text for discussion.

The pair of figures actually contain redundant information, but fig. 38 is ordered in a way
to highlight the impact of each LSS dataset in combination with a given CMB experiment,
whereas fig. 39 show the importance of using more precise CMB datasets in combination with
a given LSS experiment.

First let us consider the minimal cosmology scenario (ΛCDM + Mν). Figures 38 and 39 show
that, as long as a minimal cosmology is assumed, for a minimal normal hierarchy scenario
with Mν = 0.06 eV we find:
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Figure 39: Neutrino mass sensitivity for each CMB experiment, alone and in combination with DESI,
Euclid, Euclid + SKA1 IM, Euclid + SKA1 IM + τreio prior. Each subplot corresponds
to one CMB setup plus large-scale structure survey combination (CMB only, CMB+DESI,
CMB+Euclid, CMB+Euclid+SKA1 IM, CMB+Euclid+SKA1 IM+τreio prior from top left to
bottom right). The vertical dotted lines indicate 1 to 5-σ significance towards a detection of a
non-zero neutrino mass of around the minimum normal hierarchy mass Mν ≈ 60 meV. See
text for discussion.

• CORE and PICO are so sensitive that they would only need to be combined with the
BAO scale data from DESI for a 3-σ detection,

• more than a 4-σ detection could be achieved already by Planck or LiteBird when com-
bined with Euclid,

• LiteBird in combination with Euclid and SKA1 intensity mapping reaches the 5-σ thresh-
old, which is nearly true for Planck as well,

• a 7-σ measurement could be achieved by CORE or PICO in combination with Euclid,

• a staggering 13-σ detection once SKA1 intensity mapping and the τreio prior is added,
illustrating the enormous benefit towards a precise neutrino mass detection from hav-
ing a very accurate independent determination of τreio, e.g. from surveys focused on
reionization and the dark ages,

• even when combining with Euclid and SKA1, only a 3-σ detection could be achieved by
CMB-S4 when viewed in isolation. However, it is important to keep in mind that adding
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information from low-` polarization data strongly constrains τreio, which leads to greatly
improved sensitivity on Mν, and therefore CMB-S4 provides much better sensitivity once
LiteBird or the τreio prior is included (similarly, low-` Planck data would already help
in this regard). This is the effect we discussed in chapter 5 and the effect is illustrated in
fig. 40.

0.0505 0.0561 0.0616 0.0672 0.0728

τreio
0.0243 0.0437 0.0631 0.0825 0.102

Mtot

0.0505

0.0561

0.0616

0.0672

0.0728

τ r
ei
o

CMB-S4 + Euclid
CMB-S4 + Euclid + LiteBird
CMB-S4 + Euclid + SKA1 IM + τreio prior

Figure 40: Optical depth to reionization τreio vs neutrino mass for the three configurations CMB-S4 +
Euclid, CMB-S4 + Euclid + LiteBird, CMB-S4 + Euclid + SKA1 IM + τreio prior in the minimal
7 parameter ΛCDM+Mν model. See text for discussion.

For extended models the neutrino mass sum sensitivity degrades, as expected. We make
the following observations about the sensitivity of our surveys to the neutrino mass sum in
extended models, comparing to a minimal normal hierarchy scenario with Mν = 0.06 eV:

• the sensitivity only degrades slightly when also varying the number of extra relativistic
degrees of freedom, Neff, as expected for current and future surveys. The exception is
for forecasts involving the τreio prior: if we could precisely determine the optical depth
to reionization, we would be able to strongly constrain the neutrino mass sum (at better
than 5-σ, even with current CMB data in combination with Euclid and SKA1 intensity
mapping), but the addition of Neff, which is strongly degenerate with the CDM energy
density and slightly so with the spectral index of the primordial power spectrum and
the neutrino mass sum, and through these with the amplitude of the primordial power
spectrum, As, which in turn means accurately determining the optical depth to reion-
ization (and thereby As) is a little less helpful in precisely measuring the neutrino mass
sum than for cases without varying Neff,

• the worst sensitivity is always obtained when including dynamical dark energy, i.e. in
order to obtain a reasonable level of significance for the detection CMB plus DESI BAO is
never enough and we need at least the combination of LiteBird and Euclid (3-σ), CORE
or PICO along with Euclid (4-σ), or Planck with both Euclid and SKA1 IM (3-σ),
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• in order to reach a 5-σ neutrino mass sum detection, we would require a very sensitive
CMB experiment (i.e. CORE, PICO, or a combination of CMB-S4 and LiteBird) combined
with Euclid and SKA1 intensity mapping, when including dynamical dark energy,

• however, if we are able to make an accurate independent measurement of the optical
depth to reionization, even Planck in combination with Euclid and SKA1 intensity map-
ping would be enough for a 5-σ neutrino mass detection in any of the extended models
considered, showing that the expectation of a neutrino mass detection from cosmology in the
next decade is robust to different choices of cosmological model.
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CMB only CMB + DESI CMB + Euclid + SKA + τreio prior

σ (100 ∗ωb) 0.016 0.013 0.011 0.011 0.011

σ (ωcdm) 0.0014 0.00076 0.00026 0.00026 0.00017

ΛCDM σ (H0) /[ km
s Mpc ] 1.4 0.25 0.08 0.073 0.069

σ
(
ln 1010As

)
0.0089 0.0089 0.0063 0.0063 0.0023

+ Mν σ (ns) 0.004 0.003 0.00056 0.0005 0.00047

σ (τreio) 0.0045 0.0045 0.0034 0.0033 0.00097

σ (Mν) /[eV] 0.097 0.044 0.014 0.013 0.0072

σ (100 ∗ωb) 0.025 0.019 0.013 0.012 0.012

σ (ωcdm) 0.003 0.003 0.00076 0.00075 0.00071

ΛCDM σ (H0) /[ km
s Mpc ] 2.1 0.91 0.21 0.21 0.2

σ
(
ln 1010As

)
0.013 0.012 0.0065 0.0065 0.0035

+ Mν σ (ns) 0.0091 0.0069 0.00068 0.00066 0.00059

σ (τreio) 0.0046 0.0045 0.0033 0.0033 0.00095

+ Neff σ (Mν) /[eV] 0.099 0.047 0.016 0.015 0.012

σ (Neff) 0.19 0.17 0.044 0.043 0.044

σ (100 ∗ωb) 0.017 0.013 0.011 0.011 0.011

σ (ωcdm) 0.0016 0.00082 0.00027 0.00026 0.00018

CDM σ (H0) /[ km
s Mpc ] 21 0.84 0.11 0.073 0.069

σ
(
ln 1010As

)
0.0089 0.0089 0.0065 0.0063 0.0023

+ Mν σ (ns) 0.0043 0.0031 0.00065 0.0005 0.00046

σ (τreio) 0.0047 0.0045 0.0035 0.0033 0.00099

+ w0 σ (Mν) /[eV] 0.14 0.051 0.017 0.014 0.0079

σ (w0) 0.48 0.038 0.0051 0.0014 0.0014

σ (100 ∗ωb) 0.018 0.013 0.011 0.012 0.011

CDM σ (ωcdm) 0.0016 0.00092 0.00027 0.00027 0.00019

σ (H0) /[ km
s Mpc ] 20 1.7 0.17 0.079 0.072

+ Mν σ
(
ln 1010As

)
0.009 0.0087 0.0075 0.0067 0.0023

σ (ns) 0.0043 0.0032 0.00066 0.00055 0.00046

+ w0 σ (τreio) 0.0046 0.0045 0.0039 0.0035 0.00096

σ (Mν) /[eV] 0.14 0.069 0.025 0.018 0.011

+ wa σ (w0) 0.84 0.2 0.01 0.0016 0.0016

σ (wa) 2.2 0.52 0.034 0.013 0.012

Table 27: Expected 1 σ sensitivity of for Planck alone and in combination with DESI, Euclid, Euclid
+ SKA1 IM, Euclid + SKA1 IM + τreio prior. Combinations reaching the 3-σ (5-σ) threshold
towards a neutrino mass sum detection for a minimal normal hierarchy neutrino mass sum
Mν = 0.06 are highlighted in green (bolded dark green), see text for discussion.
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CMB only CMB + DESI CMB + Euclid + SKA + τreio prior

σ (100 ∗ωb) 0.018 0.014 0.011 0.011 0.011

σ (ωcdm) 0.0011 0.00072 0.00024 0.00023 0.00024

ΛCDM σ (H0) /[ km
s Mpc ] 1.3 0.25 0.09 0.082 0.082

σ
(
ln 1010As

)
0.0051 0.0052 0.0042 0.004 0.0039

+ Mν σ (ns) 0.0045 0.004 0.00056 0.00052 0.00051

σ (τreio) 0.0022 0.0022 0.002 0.0019 0.0019

σ (Mν) /[eV] 0.095 0.044 0.012 0.011 0.01

σ (100 ∗ωb) 0.025 0.02 0.011 0.011 0.011

σ (ωcdm) 0.0046 0.0045 0.00095 0.00093 0.00092

ΛCDM σ (H0) /[ km
s Mpc ] 1.9 1.3 0.25 0.24 0.24

σ
(
ln 1010As

)
0.012 0.012 0.0043 0.0042 0.0031

+ Mν σ (ns) 0.008 0.0075 0.00082 0.00081 0.00077

σ (τreio) 0.0022 0.0021 0.0019 0.0019 0.00091

+ Neff σ (Mν) /[eV] 0.098 0.047 0.014 0.013 0.013

σ (Neff) 0.27 0.26 0.059 0.057 0.058

σ (100 ∗ωb) 0.018 0.015 0.011 0.011 0.01

σ (ωcdm) 0.0012 0.00078 0.00024 0.00024 0.00024

CDM σ (H0) /[ km
s Mpc ] 21 0.85 0.12 0.082 0.08

σ
(
ln 1010As

)
0.0052 0.0051 0.0041 0.004 0.0041

+ Mν σ (ns) 0.0046 0.004 0.00061 0.00052 0.00053

σ (τreio) 0.0022 0.0021 0.002 0.0019 0.0019

+ w0 σ (Mν) /[eV] 0.13 0.051 0.014 0.011 0.011

σ (w0) 0.48 0.038 0.0046 0.0013 0.0013

σ (100 ∗ωb) 0.019 0.015 0.011 0.011 0.011

CDM σ (ωcdm) 0.0012 0.00083 0.00026 0.00025 0.00023

σ (H0) /[ km
s Mpc ] 20 1.7 0.16 0.082 0.081

+ Mν σ
(
ln 1010As

)
0.0052 0.0051 0.0044 0.0042 0.0028

σ (ns) 0.0047 0.0039 0.00062 0.00053 0.00052

+ w0 σ (τreio) 0.0023 0.0022 0.002 0.002 0.00092

σ (Mν) /[eV] 0.13 0.068 0.019 0.015 0.014

+ wa σ (w0) 0.81 0.19 0.0095 0.0016 0.0016

σ (wa) 2.1 0.5 0.031 0.012 0.012

Table 28: Expected 1 σ sensitivity of for Litebird alone and in combination with DESI, Euclid, Euclid
+ SKA1 IM, Euclid + SKA1 IM + τreio prior. Combinations reaching the 3-σ (5-σ) threshold
towards a neutrino mass sum detection for a minimal normal hierarchy neutrino mass sum
Mν = 0.06 are highlighted in green (bolded dark green), see text for discussion.
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CMB only CMB + DESI CMB + Euclid + SKA + τreio prior

σ (100 ∗ωb) 0.0035 0.0034 0.0026 0.0026 0.0025

σ (ωcdm) 0.00079 0.00064 0.0003 0.0003 8.6e-05

ΛCDM σ (H0) /[ km
s Mpc ] 0.77 0.24 0.056 0.041 0.025

σ
(
ln 1010As

)
0.022 0.017 0.0087 0.0088 0.002

+ Mν σ (ns) 0.0024 0.0022 0.00058 0.00054 0.00042

σ (τreio) 0.011 0.0096 0.0047 0.0047 0.00097

σ (Mν) /[eV] 0.075 0.04 0.018 0.017 0.0047

σ (100 ∗ωb) 0.0051 0.005 0.0046 0.0046 0.0044

σ (ωcdm) 0.00092 0.00078 0.00047 0.00047 0.00032

ΛCDM σ (H0) /[ km
s Mpc ] 0.85 0.29 0.11 0.11 0.096

σ
(
ln 1010As

)
0.024 0.018 0.0086 0.0082 0.0025

+ Mν σ (ns) 0.0039 0.0034 0.00063 0.00056 0.00044

σ (τreio) 0.012 0.0099 0.0048 0.0045 0.001

+ Neff σ (Mν) /[eV] 0.081 0.043 0.017 0.016 0.0073

σ (Neff) 0.042 0.039 0.02 0.021 0.02

σ (100 ∗ωb) 0.0034 0.0035 0.0026 0.0026 0.0026

σ (ωcdm) 0.00086 0.00071 0.00029 0.00027 9.6e-05

CDM σ (H0) /[ km
s Mpc ] 10 0.83 0.083 0.038 0.025

σ
(
ln 1010As

)
0.039 0.018 0.0087 0.0081 0.002

+ Mν σ (ns) 0.0024 0.0022 0.00066 0.00052 0.00042

σ (τreio) 0.02 0.01 0.0047 0.0044 0.00097

+ w0 σ (Mν) /[eV] 0.08 0.046 0.02 0.016 0.0057

σ (w0) 0.18 0.036 0.0045 0.0014 0.0013

σ (100 ∗ωb) 0.0034 0.0035 0.0025 0.0026 0.0026

CDM σ (ωcdm) 0.00086 0.00077 0.0003 0.00028 0.00011

σ (H0) /[ km
s Mpc ] 12 1.6 0.16 0.051 0.031

+ Mν σ
(
ln 1010As

)
0.036 0.02 0.01 0.0087 0.002

σ (ns) 0.0025 0.0024 0.0007 0.00059 0.00043

+ w0 σ (τreio) 0.019 0.011 0.0055 0.0047 0.001

σ (Mν) /[eV] 0.076 0.062 0.028 0.022 0.0095

+ wa σ (w0) 0.37 0.18 0.01 0.0016 0.0017

σ (wa) 2.1 0.38 0.032 0.013 0.012

Table 29: Expected 1 σ sensitivity of for CMB S4 alone and in combination with DESI, Euclid, Euclid
+ SKA1 IM, Euclid + SKA1 IM + τreio prior. Combinations reaching the 3-σ (5-σ) threshold
towards a neutrino mass sum detection for a minimal normal hierarchy neutrino mass sum
Mν = 0.06 are highlighted in green (bolded dark green), see text for discussion.
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CMB only CMB + DESI CMB + Euclid + SKA + τreio prior

σ (100 ∗ωb) 0.0033 0.0032 0.0024 0.0024 0.0025

σ (ωcdm) 0.00053 0.00025 0.00014 0.00013 8.2e-05

ΛCDM σ (H0) /[ km
s Mpc ] 0.54 0.23 0.044 0.027 0.024

σ
(
ln 1010As

)
0.004 0.0039 0.0036 0.0035 0.0018

+ Mν σ (ns) 0.0018 0.0015 0.00046 0.00043 0.00041

σ (τreio) 0.002 0.002 0.0019 0.0018 0.0009

σ (Mν) /[eV] 0.042 0.019 0.008 0.0071 0.0045

σ (100 ∗ωb) 0.005 0.0048 0.0043 0.0042 0.0044

σ (ωcdm) 0.00072 0.00061 0.00033 0.00034 0.00031

ΛCDM σ (H0) /[ km
s Mpc ] 0.63 0.29 0.098 0.092 0.091

σ
(
ln 1010As

)
0.0044 0.0043 0.0038 0.0037 0.0023

+ Mν σ (ns) 0.0029 0.0026 0.00047 0.00045 0.00044

σ (τreio) 0.0021 0.0021 0.0019 0.0019 0.00089

+ Neff σ (Mν) /[eV] 0.042 0.021 0.0096 0.0086 0.0068

σ (Neff) 0.038 0.037 0.019 0.019 0.019

σ (100 ∗ωb) 0.0033 0.0033 0.0025 0.0024 0.0024

σ (ωcdm) 0.00061 0.00032 0.00014 0.00013 8.8e-05

CDM σ (H0) /[ km
s Mpc ] 6.2 0.82 0.081 0.027 0.025

σ
(
ln 1010As

)
0.0042 0.0039 0.0036 0.0035 0.0018

+ Mν σ (ns) 0.002 0.0016 0.00052 0.00044 0.00041

σ (τreio) 0.0021 0.0021 0.002 0.0019 0.00089

+ w0 σ (Mν) /[eV] 0.063 0.034 0.011 0.0081 0.0055

σ (w0) 0.11 0.032 0.0045 0.0014 0.0013

σ (100 ∗ωb) 0.0033 0.0033 0.0025 0.0025 0.0025

CDM σ (ωcdm) 0.00063 0.00039 0.00015 0.00014 0.0001

σ (H0) /[ km
s Mpc ] 8.9 1.6 0.14 0.033 0.031

+ Mν σ
(
ln 1010As

)
0.0043 0.0039 0.0038 0.0036 0.0018

σ (ns) 0.002 0.0016 0.00052 0.00046 0.00043

+ w0 σ (τreio) 0.002 0.0021 0.002 0.0019 0.00091

σ (Mν) /[eV] 0.063 0.051 0.015 0.011 0.0093

+ wa σ (w0) 0.31 0.18 0.0095 0.0016 0.0015

σ (wa) 1.8 0.45 0.031 0.012 0.012

Table 30: Expected 1 σ sensitivity of for CMB S4 + Litebird alone and in combination with DESI, Euclid,
Euclid + SKA1 IM, Euclid + SKA1 IM + τreio prior. Combinations reaching the 3-σ (5-σ)
threshold towards a neutrino mass sum detection for a minimal normal hierarchy neutrino
mass sum Mν = 0.06 are highlighted in green (bolded dark green), see text for discussion.
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CMB only CMB + DESI CMB + Euclid + SKA + τreio prior

σ (100 ∗ωb) 0.0039 0.0039 0.0029 0.0029 0.0027

σ (ωcdm) 0.00053 0.00025 0.00014 0.00013 7.9e-05

ΛCDM σ (H0) /[ km
s Mpc ] 0.54 0.22 0.045 0.027 0.024

σ
(
ln 1010As

)
0.004 0.0039 0.0035 0.0035 0.0017

+ Mν σ (ns) 0.0017 0.0015 0.00046 0.00044 0.00042

σ (τreio) 0.0021 0.002 0.0019 0.0019 0.00089

σ (Mν) /[eV] 0.042 0.02 0.0079 0.0072 0.0044

σ (100 ∗ωb) 0.0059 0.0057 0.0049 0.0052 0.0049

σ (ωcdm) 0.00073 0.00067 0.00035 0.00036 0.00032

ΛCDM σ (H0) /[ km
s Mpc ] 0.64 0.31 0.1 0.1 0.095

σ
(
ln 1010As

)
0.0044 0.0043 0.0038 0.0039 0.0023

+ Mν σ (ns) 0.003 0.0026 0.00047 0.00045 0.00043

σ (τreio) 0.0021 0.0021 0.0019 0.0019 0.00091

+ Neff σ (Mν) /[eV] 0.042 0.021 0.0094 0.0089 0.0069

σ (Neff) 0.041 0.04 0.019 0.02 0.019

σ (100 ∗ωb) 0.0039 0.0037 0.0028 0.0028 0.0028

σ (ωcdm) 0.00058 0.00031 0.00014 0.00013 8.5e-05

CDM σ (H0) /[ km
s Mpc ] 5.2 0.8 0.079 0.028 0.025

σ
(
ln 1010As

)
0.0041 0.0038 0.0035 0.0036 0.0017

+ Mν σ (ns) 0.0018 0.0015 0.00051 0.00044 0.00041

σ (τreio) 0.002 0.0021 0.0019 0.0019 0.00089

+ w0 σ (Mν) /[eV] 0.058 0.034 0.01 0.0081 0.0055

σ (w0) 0.12 0.032 0.0044 0.0014 0.0013

σ (100 ∗ωb) 0.004 0.0038 0.0029 0.0028 0.0029

CDM σ (ωcdm) 0.00061 0.00037 0.00015 0.00013 0.0001

σ (H0) /[ km
s Mpc ] 8.2 1.6 0.14 0.033 0.031

+ Mν σ
(
ln 1010As

)
0.0042 0.0039 0.0037 0.0036 0.0018

σ (ns) 0.0019 0.0015 0.00051 0.00045 0.00043

+ w0 σ (τreio) 0.002 0.0021 0.0019 0.0019 0.00091

σ (Mν) /[eV] 0.059 0.049 0.015 0.012 0.0092

+ wa σ (w0) 0.3 0.18 0.0089 0.0017 0.0016

σ (wa) 1.9 0.43 0.03 0.012 0.012

Table 31: Expected 1 σ sensitivity of for CORE-M5 alone and in combination with DESI, Euclid, Euclid
+ SKA1 IM, Euclid + SKA1 IM + τreio prior. Combinations reaching the 3-σ (5-σ) threshold
towards a neutrino mass sum detection for a minimal normal hierarchy neutrino mass sum
Mν = 0.06 are highlighted in green (bolded dark green), see text for discussion.
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CMB only CMB + DESI CMB + Euclid + SKA + τreio prior

σ (100 ∗ωb) 0.0029 0.0029 0.0022 0.0021 0.0022

σ (ωcdm) 0.00049 0.00024 0.00014 0.00013 7.5e-05

ΛCDM σ (H0) /[ km
s Mpc ] 0.5 0.22 0.043 0.026 0.022

σ
(
ln 1010As

)
0.0041 0.0038 0.0036 0.0035 0.0017

+ Mν σ (ns) 0.0017 0.0014 0.00046 0.00044 0.0004

σ (τreio) 0.0021 0.002 0.0019 0.0019 0.00089

σ (Mν) /[eV] 0.041 0.019 0.0081 0.0073 0.0043

σ (100 ∗ωb) 0.0043 0.0041 0.0038 0.0038 0.0037

σ (ωcdm) 0.00062 0.00052 0.00031 0.00029 0.00027

ΛCDM σ (H0) /[ km
s Mpc ] 0.58 0.27 0.089 0.081 0.079

σ
(
ln 1010As

)
0.0043 0.0041 0.0036 0.0034 0.0021

+ Mν σ (ns) 0.0027 0.0022 0.00047 0.00044 0.00041

σ (τreio) 0.0022 0.002 0.0019 0.0018 0.00089

+ Neff σ (Mν) /[eV] 0.04 0.02 0.0087 0.008 0.0061

σ (Neff) 0.032 0.031 0.016 0.016 0.016

σ (100 ∗ωb) 0.003 0.0028 0.0022 0.0022 0.0022

σ (ωcdm) 0.00053 0.00029 0.00014 0.00013 8.7e-05

CDM σ (H0) /[ km
s Mpc ] 4.3 0.79 0.081 0.026 0.023

σ
(
ln 1010As

)
0.0042 0.0038 0.0037 0.0035 0.0017

+ Mν σ (ns) 0.0018 0.0014 0.00051 0.00043 0.00041

σ (τreio) 0.0021 0.002 0.002 0.0019 0.0009

+ w0 σ (Mν) /[eV] 0.055 0.034 0.01 0.008 0.0054

σ (w0) 0.11 0.03 0.0045 0.0013 0.0014

σ (100 ∗ωb) 0.0029 0.0029 0.0023 0.0021 0.0022

CDM σ (ωcdm) 0.00059 0.00035 0.00015 0.00013 9.8e-05

σ (H0) /[ km
s Mpc ] 7.1 1.6 0.14 0.032 0.028

+ Mν σ
(
ln 1010As

)
0.0042 0.0038 0.0036 0.0036 0.0017

σ (ns) 0.0018 0.0015 0.00049 0.00045 0.00042

+ w0 σ (τreio) 0.002 0.002 0.0019 0.0019 0.00088

σ (Mν) /[eV] 0.055 0.048 0.015 0.012 0.0088

+ wa σ (w0) 0.28 0.17 0.0097 0.0015 0.0017

σ (wa) 1.8 0.41 0.029 0.012 0.011

Table 32: Expected 1 σ sensitivity of for PICO alone and in combination with DESI, Euclid, Euclid +
SKA1 IM, Euclid + SKA1 IM + τreio prior. Combinations reaching the 3-σ (5-σ) threshold
towards a neutrino mass sum detection for a minimal normal hierarchy neutrino mass sum
Mν = 0.06 are highlighted in green (bolded dark green), see text for discussion.
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S U M M A RY O F R E S U LT S A N D C O N C L U S I O N S

10.1 neutrinos in cosmology

Chapter 5 and sections 8.2 and 8.3 are based on
Archidiacono, Brinckmann, Lesgourgues & Poulin [157]

The foundations of a new era in precision cosmology are based on two cornerstones: the
high sensitivity of future CMB and galaxy survey experiments, and a deep understanding of
the physics governing the processes of recombination and structure formation. The extreme
accuracy of future data will offer the opportunity to constrain particle physics with cosmology,
exceeding in many cases the precision of laboratory experiments. However, in order to exploit
the new data, cosmologists will need an accurate enough theoretical model taking into account
the underlying physics.

Neutrinos provide an excellent example of how the sensitivity of future cosmological sur-
veys may lead to such an important result as the summed neutrino mass detection, even when
uncertainties on the details of the cosmological model are marginalised over.

In chapter 5, we have provided a careful discussion of the physical effects induced by mas-
sive neutrinos and their impact on cosmological observables, as they will appear in the data
analysis of the next generation of cosmological experiments. We have shown how the unique
nature of light neutrinos, being relativistic until very late times and behaving as a matter com-
ponent after the non relativistic transition, makes possible to identify different signatures at
different epochs of the cosmic history. Therefore, the correlation between the summed neu-
trino mass and the other cosmological parameters changes, depending on the redshift range
probed by the various data sets.

The results relating to this study were presented in sections 8.2 and 8.3 and focused on the
sensitivity of future CMB-CORE and BAO-DESI experiments to the summed neutrino mass
are consistent with the literature (see Refs. [198, 199]). Moreover, the results of our forecasts
including a Euclid-like survey prove the importance of cosmic shear and galaxy clustering as
complementary probes. We pointed out that the results of our Euclid cosmic shear + galaxy
correlation forecasts depend very much on the choice of the theoretical error introduced to
account for the systematics coming from the deep non-linear regime. Nevertheless, they are
again compatible with previously published results. For instance, Ref. [183] found σ(Mν) =

11 meV for Planck + Euclid cosmic shear / galaxy correlation, but with a different treatment of
the uncertainty on non linear corrections. Ref. [174] found a larger error, close to 20 meV, but
for Planck + Euclid cosmic shear or Planck + Euclid galaxy correlation, not trying to combine
the two LSS probes together and without CORE data. Ref. [198] found σ(Mν) = 12 meV for
Planck + CMB-Stage-IV + BAO-DESI + 21cm-HERA, identical to our estimate for CORE +
Euclid + 21cm-τreio-prior.
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Anyhow, the main goal of this study was not to present a new set of forecasts, but to dis-
cuss the details of physical effects and parameter degeneracies involving neutrino masses. In
particular, we clarified the reason for which an unexpected degeneracy between the neutrino
mass sum and the optical depth at reionization will appear in the analysis of future high
precision galaxy surveys, as already pointed out e.g. in [198, 199]. We showed that this degen-
eracy is not present in a CMB-only analysis, because the neutrino mass effects on CMB lensing
can be compensated by playing with h and ωcdm in a better way than by adjusting (As, τreio).
However, the former degeneracy is lifted once BAO and LSS low redshift measurements are
taken into account. Moreover, we demonstrated that the LSS data introduce a strong correla-
tion between Mν and As, which finally leads to a clear (Mν, τreio) degeneracy in the combined
CMB+LSS analysis.

These conclusions clarify why further independent measurements of the optical depth will
benefit a neutrino mass determination, as previously noticed by the authors of [198]. For
instance, the results from the HERA or SKA 21cm surveys will provide an independent con-
straint on τreio, thus breaking this degeneracy. Our results indicate that this could reduce the
error on Mν with respect to the CMB+LSS case, leading to a robust detection of the summed
neutrino mass at more than 5 σ for CORE+Euclid+HERA or SKA. In principle, it would be
possible to do even better if H0 could be measured in an independent and robust way with an
error below σ(H0) ∼ 0.17km/s/Mpc.

In conclusion, the remarkable complementarity of future different cosmological data will
lead to extremely accurate constraints on the neutrino mass sum and, possibly, on other neu-
trino properties, answering some of the still open questions of modern physics.

10.2 future cosmic microwave background experiments

Section 10.2 is based on Di Valentino, Brinckmann, Gerbino, Poulin et al. [50]

In sections 7.1, 8.1 and 9.1 to 9.3, we forecasted the constraints on several cosmological
parameters that can be achieved by the CORE-M5 satellite proposal. Table 33 provides a sum-
mary of our main results. Assuming ΛCDM, the improvement with respect to Planck is ex-
tremely significant: CORE-M5 can simultaneously improve constraints on key parameters by
a factor ∼ 8 (σ8), ∼ 5.5 (H0, Ωcdmh2), 4.5 (Ωbh2, τ), and 3 (ns).

Some of the parameters such as σ8, H0, and Ωbh2 can be measured or derived independently
by galaxy surveys or luminosity distance measurements. Future comparisons with the CORE-
M5 results will therefore provide a crucial test for cosmology and the ΛCDM scenario and its
extensions. The interest of such measurements by several means is exemplified by the current
tensions between the Planck dataset and the local determination of the Hubble constant from
[85] or measurements of weak lensing cosmic shear from surveys as CFHTLenS and KiDS-450

[291, 292]. These tensions may reveal either previously unknown systematic effects, or new
physics. While these current tensions will likely be resolved by the time CORE flies, the large
improvement brought by CORE on so many parameters will surely bring new opportunities
for revealing tensions with whatever precision datasets will be available by then. These are
opportunites for fundamental breakthoughs.

In sections 8.1 and 9.1 to 9.3, we have considered several possible extensions to the basic
six parameters ΛCDM model. The forecasted constraints on these extra parameters are sum-
marized in the second section of Table 33. As we can see, also on these extensions CORE-M5

can provide significantly more stringent constraints than the current ones, with a factor of n
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Parameter Description Planck 2015 + Lensing CORE-M5 expected uncertainties

ΛCDM

Ωbh2 Baryon Density Ωbh2 = 0.02226± 0.00016 (68 % CL) [2] σ(Ωbh2) = 0.000037 {4.3}
Ωch2 Cold Dark Matter Density Ωch2 = 0.1193± 0.0014 (68 % CL) [2] σ(Ωch2) = 0.00026 {5.4}

ns Scalar Spectral Index ns = 0.9653± 0.0048 (68 % CL) [2] σ(ns) = 0.0014 {3.4}
τ Reionization Optical Depth 0.063± 0.014 (68 % CL) [2] σ(τ) = 0.002 {7.0}

H0 [km/s/Mpc] Hubble Constant H0 = 67.51± 0.64 (68 % CL) [2] σ(H0) = 0.11 {5.8}
σ8 r.m.s. mass fluctuations σ8 = 0.8150± 0.0087 (68 % CL) [2] σ(σ8) = 0.0011 {7.9}

Extensions

Mν Total Neutrino Mass Mν < 0.315 eV (68 % CL) [2] σ(Mν) = 0.043 eV {7.3}
Neff Relativistic Degrees of Freedom Neff = 2.94± 0.20 (68 % CL) [2] σ(Neff) = 0.040 {5.0}

(me f f
s , Ns) Sterile Neutrino Parameters (me f f

s < 0.33eV, Ns < 3.24) (68 % CL) [2] σ(me f f
s , Ns) = (0.037 eV, 0.053) {8.9, 4.5}

Table 33: Current limits from Planck 2015 and forecasted CORE-M5 uncertainties. The first 6 rows as-
sume a ΛCDM scenario and the following rows give the constraints on parameter extensions,
always while also varying the neutrino mass sum. In the fourth column, numbers in curly
brackets {...} give the improvement in the parameter constraint when moving from Planck
2015 to CORE-M5, defined as the ratio of the uncertainties σPlanck/σCORE.

improvement that ranges from 4 up to more than 6, clearly opening the window to new tests
or discoveries for physics beyond the standard model.

In particular, we found that:

• CORE-M5 alone could detect neutrino masses with an uncertainty of σ(Mν) = 0.043
eV, enough to rule out the inverted mass hierarchy at more than 95% c.l.. When com-
bined with future galaxy clustering data as expected from surveys as DESI or EUCLID,
CORE-M5 will provide a guaranteed discovery for a neutrino mass. Other cosmological
information from CORE-M5, as cluster number counts (see the CORE cluster science
paper [323]) could further reduce these uncertainties.

• CORE-M5 could also provide extremely stringent constraints on the neutrino effective
number Neff with σ(Neff) = 0.040. This uncertainty, that can be further reduced by
combining the CORE-M5 data with cluster number counts data from CORE-M5 itself
and/or complementary galaxy surveys, will test the presence of extra light particles at
recombination and the process of neutrino decoupling from the primordial plasma at
redshift z ∼ 109.

• Large angular scale polarization will also be measured by CORE, providing new con-
straints on the reionization process. It is here worthwhile to note that the ability of
CORE-M5 to measure polarization over a wide range of angular scales will provide a
crucial test for the cosmological scenario. The constraints on the optical depth τ from
large angular scales, for example, can be only validated by a measurement of small
angular scale polarization with results consistent with the overall ΛCDM scenario.

It is also interesting to summarize the constraints from different experimental configurations
and to compare them. We do this in table 34, where we report the ratio of the 1-σ forecasted
error of a certain experimental configuration over the expected 1 σ error from the proposed
CORE-M5 setup. For generality, we also compare the constraints with those expected from
the JAXA Litebird proposal [204] that at the time of this work was in conceptual design
phase (called ISAS Phase-A1). Litebird presents a significantly different experimental design
with respect to the CORE configurations studied in this thesis, with, for example, a smaller
primary mirror of 60 cm.
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Parameter CORE-M5 CORE-M5 CORE-M5 CORE-M5

vs Litebird vs LiteCORE-80 vs LiteCORE-120 vs COrE+

ΛCDM

Ωbh2 3.5 1.4 1.1 0.9

Ωch2 2.3 1.3 1.2 1.0

100θMC 5.8 1.3 1.1 0.9

τ 1.0 1.0 1.0 1.0

ns 2.6 1.1 1.1 1.0

ln(1010 As) 1.2 1.1 1.0 1.0

H0[km/s/Mpc] 3.0 1.3 1.1 0.9

σ8 2.5 1.3 1.1 0.9

Extensions

Neff 4.8 1.5 1.1 0.9

Mν 1.6 1.1 1.0 1.0

Table 34: Improvements from CORE-M5 on cosmological parameters with respect to several proposed
configuration defined as the ratio of the forecasted 1 σ constraints, σ/σCORE−M5.

As we can see from the results in table 34, any CORE configuration is expected to constrain
cosmological parameters with an improvement that ranges from a factor 2 to 5 respect to
Litebird. CORE-M5, for example, will constrain the neutrino effective number with a precision
about 5 times better than Litebird. It is clear from the results presented in the Table that CORE
will have the possibility to probe new physics that will not be accessible by Litebird alone.
However, constraints on the reionization optical depth will be comparable, since the imprint
of reionization is mainly on large scale polarization that can be equally measured by Litebird
and CORE.

Also from table 34, we see that CORE-M5 could produce constraints that are up to 50%
better than those expected from the cheaper LiteCORE-80 configuration. A significantly higher
precision is indeed expected on key parameters as the baryon abundance, the Hubble constant,
and the neutrino effective number. On the other hand, the differences between CORE-M5 and
LiteCORE-120 and COrE+ are expected to be of the order of ∼ 10%.

From one side we can then consider the forecasts presented here for CORE-M5 as conser-
vative: if the experimental sensitivity will be for some reason degraded to LiteCORE-120 we
expect no significant variations in the constraints presented in this thesis. On the other hand,
the more expensive COrE+ configuration would only slightly improve the main parameter
constraints and would not present a decisive improvement in the specific scientific aspect of
parameters recovery and model testing. Indeed the scientific driver for higher angular resolu-
tion is not the improvement in parameters accuracy.

To conclude, we have presented in sections 7.1, 8.1 and 9.1 to 9.3 a large number of fore-
casts on cosmological parameters for the CORE-M5 proposed mission. The expected improved
constraints, presented in Table 33 clearly calls for of a next CMB satellite mission as CORE.
CORE-M5 can probe new physics with unprecedented precision. We have compared the con-
straints with different experimental configurations and found that the expected constraints
are stable under a degradation of the experimental configuration to LiteCORE-120 that has
a significantly smaller number of detectors. Assuming the ΛCDM cosmological scenario, we
also found that the CORE-M5 setup can produce constraints that are almost identical (at worst
a ∼ 10% degradation) to the ones achievable by the larger aperture COrE+ configuration.
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10.3 improved large-scale structure treatment

The production of robust and accurate forecasts on the sensitivity to cosmological parameters
of future surveys like Euclid and the Square Kilometer Array is an important task in the con-
text of the preparation phase of these surveys. A major difficulty comes from the theoretical
uncertainties arising on mildly non-linear scale, induced by the complexity of physical pro-
cesses at play, such as non-linear clustering and baryonic feedback. In chapter 3, we take these
uncertainties into account with a method that has lots of similarities with previous attempts
in Refs. [118, 119]. We discuss a compromise between the fully uncorrelated theoretical error
of Ref. [118], which is arguably too conservative, and the approach of Ref. [119] based on
an exponentially-decaying error correlation, which is too expensive numerically for MCMC
forecasts. Our method is at the same time realistic, firmly rooted on physical results from var-
ious astrophysical studies, and computationally tractable. It relies on an ansatz for the error
amplitude and correlation length on non-linear scales up to kmax = 10 h Mpc−1.

For the first time, we present, in sections 8.4 and 9.4, forecasts based on MCMC simulations
for four cosmological scenarios, two different modelings of the non-linear theoretical error
(one conservative and one realistic) and 14 experimental configurations and combinations:
overall more than 140 MCMC simulations. Additionally, in section 9.5, we present a grid
of 120 MCMC simulations for the same four cosmological models, considering six different
experimental CMB configurations: we consider the current Planck sensitivity as a baseline
and discuss the impact of four mission or survey projects: LiteBird, CORE, CMB-S4 and PICO,
including a combination of CMB-S4 and Litebird. Finally, for LSS surveys, we restrict ourselves
to future BAO, galaxy redshift surveys, cosmic shear surveys and intensity mapping surveys
from DESI, Euclid and SKA, where the latter two are a subset of the array of experimental
configurations and non-linear theoretical error modelling used in sections 8.4 and 9.4. We
also discuss the impact of a τ prior, motivated by future 21cm measurements. This work is
therefore the most exhaustive analysis of this kind released so far, both for Euclid and the
Square Kilometer Array, and the combination of them.

It also paves the way towards a realistic implementation of the non-linear theoretical errors,
going beyond the usual cut-off scale method that is i) too pessimistic on non-linear scales be-
cause it cannot exploit all the power of the survey, ii) at the same time too optimistic because
it does not account for the theoretical uncertainties on the power spectrum below the mildly
non-linear cut-off scale. Three observational probes have been considered: galaxy clustering
and weak lensing (for Euclid, SKA1 and SKA2), and HI intensity mapping (for SKA1) at low
redshift (probing the already reionized universe). Compared to the usual Fisher approach, a
bayesian MCMC method allows to probe non-Gaussian posteriors and is immune to the some-
times critical numerical stability issues that are linked to the choice of step size for numerical
derivatives.

Our main findings arise from the impact of the non-linear theoretical uncertainty on the
power spectrum, and are summarized thereafter:

1. Despite the fact that the theoretical error removes a lot of information from large wavenum-
bers, we find that for galaxy clustering, when considering scales up to kmax = 10 h Mpc−1

with the theoretical error, we increase the lever arm to constrain ns and improve the sen-
sitivity to this parameter by about a factor two.

2. Because of the degeneracy breaking, the former point also leads to an improvement
for H0 (by about 50% for Planck+SKA1 and 25% for Planck+Euclid) and for the total
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neutrino mass Mν (by about 70% for Planck+SKA1 and 50% for Planck+Euclid). We also
observe a factor two improvement on ωcdm for SKA1-GC.

3. The sensitivity to the derived parameters σ8, Ωm and ΩΛ significantly improves for
nearly all the experimental configurations.

4. Concerning the extended cosmological models, there is a remarkable improvement for
the constraints on the dark energy equation of state parameters w0 and wa.

5. With either Planck+Euclid or Planck+SKA2, the neutrino mass could be constrained to
σ(Mν) = 0.012 eV with the baseline model and assuming a realistic theoretical error,
leading to a 5σ-detection.

6. The degeneracy of several parameters (including Mν) with Neff, w0 and wa is not as
severe as previous thought. CS+GC data with the realistic theoretical error assumption
can break the degeneracies. The final sensitivity to e.g. the total neutrino mass is stable
at least against these simple extensions of the minimal cosmological model.

It is worth noticing, that any source of error on the power spectrum can be incorporated
in our non-linear treatment, eventually at the price of modifying the overall shape of the
theoretical error and the correlation length, if this source is dominant. The assumed error on
the spectrum has strong impact on parameter sensitivities. Therefore, we recommend to use
an efficient implementation of the theoretical error, as the one illustrated here, in the analysis
of forthcoming surveys.

We have studied the constraining power of each individual probes and the advantage of
combining them. In particular, we considered the combination of the Euclid survey with the
SKA HI intensity mapping survey. The sensitivity to various parameters is reported in Table 21

and 26. Our main conclusions are:

1. Overall, SKA1-IM is more constraining than SKA1 (CS + GC), whereas Euclid and SKA2

perform similarly and better than SKA1-IM.

2. The forecasts on w0 and wa improve by up to a factor five when including non-linear
scales with a realistic modelling of uncertainties and when combining Euclid with SKA1-
IM. In the most constraining scenario we obtain σ(w0) = 0.0016 and σ(wa) = 0.013, i.e.
a factor forty of improvement compared to Planck alone.

These results emphasize the importance of combining Euclid with a survey extending the
information down to very low redshift, such as SKA1 intensity mapping. This combination,
together with the modelling of non-linear uncertainties, could make the difference between
a 4-σ strong indication and a 5-σ detection of the total neutrino mass when the DE is mod-
elled with two free parameters. It is even more crucial for constraining the DE parameters
themselves.

Our method to deal with the non-linear uncertainties is only a first proxy that could be
made more accurate and updated with the results of future N-body simulations, with a better
understanding of the baryonic feedback, or with analytical progress on any other source of
error. The suggested implementation can nevertheless be considered as a realistic target, given
that it is based on the current understanding of those processes and on conservative assump-
tions about the expected precision of future N-body simulations. For intensity mapping, our
analysis could be refined by using a more precise foreground modelling.
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Realistic forecasts could be produced for other cosmological scenarios, e.g., specific dark-
energy/modified-gravity parameterizations, or for assessing the accuracy of bayesian selec-
tion of inflationary models, see Refs. [324, 325].

Obviously, extending the parameter space leads to more pronounced parameter degenera-
cies and call for additional data. Extra constraining power might come from independent
probes (e.g., the 21cm intensity mapping from reionization provided by SKA), and also from
the cross-correlations between different probes (e.g., between galaxy shear and clustering), left
for further study.

Our main findings for the MCMC grid with an array of CMB experiments are, for a minimal
7-parameter ΛCDM + Mν model:

1. If we are able to obtain a precise independent measurement of the optical depth to
reionization, Planck in combination with Euclid and SKA1 intensity mapping would
be able to reach a 5-σ detection of the neutrino mass sum, even for a minimal normal
hierarchy neutrino mass sum of Mν ≈ 0.06.

2. LiteBird does not require an independent τreio measurement, the combination with Eu-
clid and SKA1 is enough to reach the 5-σ level.

3. CORE, PICO, or a combination of LiteBird and CMB-S4: reach the 3-σ level when only
adding BAO data from DESI; safely exceed the 5-σ level when data from Euclid is added
instead.

Additionally, we find that the expectation of a neutrino mass sum detection from cosmology
is robust to the choice of model, i.e. we find in the case of the extended model that degrades the
neutrino mass sum sensitivity the most (of those under consideration, which here is dynamical
dark energy):

1. LiteBird + Euclid as well as Planck + Euclid + SKA1 intensity mapping reach the 3-σ
level towards a neutrino mass sum detection.

2. To reach the 4-σ level, we need at least Euclid plus CORE, PICO, or a combination of
LiteBird and CMB-S4.

3. We would expect to obtain at least a 5-σ detection of a non-zero neutrino mass sum if we
combine a highly sensitive CMB experiment (CORE, PICO, or a combination of LiteBird
and CMB-S4) with Euclid and SKA1 intensity mapping.

The conclusion of this thesis is, therefore, we are all but guaranteed a non-zero neutrino mass
sum detection in the next decade, or at least have a very strong indication that physics beyond
the Standard Model of Particle Physics or Cosmology needs to be considered.
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