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Abstract
State-of-the-art gas turbine technology is technically capable of providing the flexi-
ble power generation as required in today’s electricity markets. Still, the economic
and ecological pressure on gas turbine power generation demands cost reductions while
maintaining the technical standard. Digitalization has a high potential for cost-effective
optimization of gas turbine operation, using the existing large amount of available data
for an Asset Performance Management approach.
Aiming towards the objective of a digitally-supported ’Gas Turbine 4.0’, this research
presents a model-based approach to utilize legally required Nitrogen Oxide (NOx) and
Carbon Monoxide (CO) emission measurements as a precious source of information on
combustion performance. Semi-empirical emission models were derived from kinetics
and then adapted to the investigated three engines from the GT24/GT26 fleet. The de-
veloped gas turbine model covers component aging for the combustor and turbine outlet
temperature measurements. By the combined use of the emission data and models, en-
gine and aging models, observed emission progression in long-term operation could be
linked to aging mechanisms. Artificial Neural Networks as a prominent representative
of artificial intelligence were used as a benchmark for the modeling approach.
Beside the model’s very-own monitoring purpose, the method also offers a number of
application possibilities for Asset Performance Management, such as Virtual Commis-
sioning or an adaption of the maintenance strategy. Extending the findings to a large
part of the GT24/GT26 fleet further allowed relating operation regime and the observed
aging progress.

Kurzfassung
Die moderne Gasturbinentechnologie ist technisch in der Lage, die komplexen Aufga-
ben eines hochflexiblen Betriebs zur Kompensation der Residuallasten, die durch die
fluktuierende Einspeisung erneuerbarer Energien entstehen, zu meistern. Dennoch sieht
sie sich in der gegenwärtigen Strommarktsituation einem starken ökonomischen und
ökologischen Druck ausgesetzt, der Einsparungen im Betrieb bei gleichzeitiger Sicherung
der Leistungsfähigkeit fordert. Ein hohes Potenzial für kostengünstige Verbesserungen
bietet die Digitalisierung des Gasturbinenbetriebs auf Basis der ohnehin umfangreich
verfügbaren Betriebsdaten in einem Asset Performance Management Ansatz.
Auf dem Weg zur Vision einer digital unterstützten ’Gasturbine 4.0’ präsentiert diese
Arbeit einen modellbasierten Ansatz zur Verwendung der gesetzlich vorgeschriebenen



Stickoxid (NOx) und Kohlenmonoxid (CO) Messungen als wertvolle Informationsquel-
le über die Verbrennungcharakteristik. Semi-empirische Emissionsmodelle wurden aus
der Kinetik der Schadstoffbildung hergeleitet und anschließend auf den Anwendungsfall
der GT24/GT26 Gasturbine adaptiert. Mittels eines entwickelten Gasturbinenmodells,
das Komponentenalterung der Brennkammer und der Turbinenaustrittstemperaturmes-
sung umfasst, konnten die beobachtete Emissionsprogression im Langzeitbetrieb mit den
entsprechenden Alterungsphänomenen in Zusammenhang gebracht werden. Künstliche
neuronale Netze als ein prominenter Vertreter der künstlichen Intelligenz wurden als
Vergleichsmaßstab herangezogen.
Neben dem modelleigenen Zweck der Betriebsüberwachung, bietet die Methode meh-
rere Anwendungsmöglichkeiten im Asset Performance Management, wie zum Beispiel
virtuelle Inbetriebnahme oder eine Anpassung der Instandhaltungsstrategie. Die Er-
weiterung der gefundenen Erkenntnisse auf die gesamt verfügbare GT24/GT26 Flotte
erlaubte weiterhin, den Alterungsfortschritt mit der Fahrweise in Relation zu setzen.

Key words
NOx emissions, CO emissions, combustion modeling, process analysis, gas turbine, se-
quential combustion, asset performance management, gas turbine aging, sensor drift
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ṁ . . . . . . . . . . . . . . . . . Mass flow rate
n . . . . . . . . . . . . . . . . . . Number of data points
net . . . . . . . . . . . . . . . . ANN net input
OPC . . . . . . . . . . . . . . OPerational Concept
out . . . . . . . . . . . . . . . . ANN output
p . . . . . . . . . . . . . . . . . . Pressure
SEV on/off . . . . . . SEV operation switched on/off
SEV . . . . . . . . . . . . . . Sequential EnVironmental burner
T . . . . . . . . . . . . . . . . . Temperature
t . . . . . . . . . . . . . . . . . . Operation time
u, p, s, v . . . . . . . . . . . ANN layers
V̇ . . . . . . . . . . . . . . . . . Volumetric flow rate
v . . . . . . . . . . . . . . . . . . Velocity
V IGV . . . . . . . . . . . . Variable Inlet Guide Vane
w . . . . . . . . . . . . . . . . . ANN weights
x . . . . . . . . . . . . . . . . . . Mole fraction
XCO . . . . . . . . . . . . . . . Aging parameter for cold streaks
XNOx . . . . . . . . . . . . . . Aging split parameter
zcom . . . . . . . . . . . . . . . Characteristic length of combustor

Greek letters

α . . . . . . . . . . . . . . . . . . Pressure exponent EV
β . . . . . . . . . . . . . . . . . . Exponential factor EV
ε . . . . . . . . . . . . . . . . . . Measurement uncertainty
η . . . . . . . . . . . . . . . . . . ANN learning rate
γ . . . . . . . . . . . . . . . . . . Pressure exponent SEV
κ . . . . . . . . . . . . . . . . . . Model parameter ignition delay
λ . . . . . . . . . . . . . . . . . . Air-to-fuel equivalence ratio
ν . . . . . . . . . . . . . . . . . . Polytropic efficiency
o . . . . . . . . . . . . . . . . . . ANN target
φ . . . . . . . . . . . . . . . . . . On/off parameter for SEV
π . . . . . . . . . . . . . . . . . . Pressure ratio

VIII



Nomenclature

ψ . . . . . . . . . . . . . . . . . . Model parameter oxidation time
ρ . . . . . . . . . . . . . . . . . . Density
σ . . . . . . . . . . . . . . . . . . Standard deviation
τ . . . . . . . . . . . . . . . . . . Characteristic combustion time
Θ . . . . . . . . . . . . . . . . . ANN thresholds
θ . . . . . . . . . . . . . . . . . . Kinetic model parameter
υ . . . . . . . . . . . . . . . . . . Model parameter ignition delay
χ . . . . . . . . . . . . . . . . . . Model parameter oxidation time
ξ . . . . . . . . . . . . . . . . . . Model parameter ignition delay
ζ . . . . . . . . . . . . . . . . . . Discharge coefficient

Indices

[ ]0 . . . . . . . . . . . . . . . . Initial state
[ ]amb . . . . . . . . . . . . . . Ambient
[ ]com . . . . . . . . . . . . . . Commissioning
[ ]comp . . . . . . . . . . . . . Compressor
[ ]corr . . . . . . . . . . . . . . Corrected
[ ]cox . . . . . . . . . . . . . . . Complete oxidation
[ ]e . . . . . . . . . . . . . . . . Emission
[ ]equil . . . . . . . . . . . . . Equilibrium
[ ]fix . . . . . . . . . . . . . . . Fixed
[ ]hg . . . . . . . . . . . . . . . Hot gas
[ ]HPT . . . . . . . . . . . . . High Pressure Turbine
[ ]ign . . . . . . . . . . . . . . . Ignition (delay)
[ ]in . . . . . . . . . . . . . . . . Inlet
[ ]LPT . . . . . . . . . . . . . . Low Pressure Turbine
[ ]m . . . . . . . . . . . . . . . . Measured
[ ]p . . . . . . . . . . . . . . . . Predicted
[ ]pf . . . . . . . . . . . . . . . . Postflame
[ ]post . . . . . . . . . . . . . . Downstream of flame zone
[ ]pre . . . . . . . . . . . . . . . Upstream of flame zone
[ ]predict . . . . . . . . . . . . Predicted

IX



Nomenclature

[ ]red . . . . . . . . . . . . . . . Reduced
[ ]ref . . . . . . . . . . . . . . . Reference
[ ]res . . . . . . . . . . . . . . . Residence
[ ]sat . . . . . . . . . . . . . . . Saturation

X



1. Introduction

The world’s electricity demand (Fig. 1.1) is expected to increase in the next decades as
a consequence of the desire for a higher standard of living [1].
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Figure 1.1.: Power generation per year for different world regions. Data and
definitions taken from World Energy Outlook 2015 [1] for the ‘new
policies scenario’.

While developing countries try to establish a reliable electricity supply, electricity
is going to substitute other forms of energy in developed countries due to emission
regulations (transport) or convenience (residential use). Even though a reduction of
energy use by an improved efficiency may help to lower the overall energy consumption
in the ‘first world’, rebound effects, such as a more extensive use, often compensate
the energy savings. Likewise, renewable power generation is not expected to entirely
provide electricity with the expected reliability and 24/7 availability. Thus, new fossil
fuel based power plants, whose majority will be natural gas fired, are predicted to be
built worldwide, showing a remarkable net growth (Fig. 1.2)[1]. Among the natural
gas-fired energy conversion technologies, gas turbines are expected to provide a large

1
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part of the net growth as they offer the possibility to meet tomorrow’s energy demand
at different scales and operation scenarios.
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Figure 1.2.: Addition and retirements of power plant capacity by fuel. Data and
definitions taken from World Energy Outlook 2015 [1] for the new
policies scenario.

1.1. Gas Turbine Operation for Power Generation
After a technical introduction to gas turbine thermodynamics, requirements on gas
turbines for different global electricity markets are outlined.

1.1.1. Gas Turbine

The gas turbine (see Fig. 1.3) is an internal combustion engine which generates mechan-
ical power or thrust (when used for aircrafts) by the conversion of fuel-bound chemical
energy in a continuous combustion process. Generally, the gas turbine process includes
three steps: compression, combustion and expansion. During combustion, the energy
of the fuel in either a gaseous (‘(natural) gas’) or liquid state (‘oil’) heats a previously
compressed working fluid (the ‘gas’), which flows through the machine. Exiting the
combustor, the gas then releases its energy to a turning rotor by an expansion process
in the turbine. Part of the mechanical energy of the rotor is used to drive the previous
necessary compression process. The remaining surplus power in the fluid can then fur-
ther be expanded in order to transfer more energy to the rotor for a mechanical drive or
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for power generation. Alternatively, the excess energy in the fluid can be used to accel-
erate the gas in a nozzle to generate thrust for aircraft engines. As the gas temperature
at turbine inlet usually exceeds the allowable material temperature of the gas turbine
parts, those components are actively cooled by secondary air, which bypasses the com-
bustor to provide high pressure flow at comparably cool compressor outlet conditions.

Gas turbines operate continuously, in contrast to positive displacement engines: Tur-
bomachines add or extract energy between the working fluid in an open volume by
transferring kinetic energy to or from the fluid during pressurizing (compression) or
depressurizing (expansion). In contrast, displacement engines, i.e. piston engines, need
to change the actual size of a closed volume for compression or expansion processes.
The continuous mode of operation results in a compact design of a gas turbine even for
high power outputs and thus high power densities compared to other thermal engines.

compressor
combustion
chamber turbine

thrust nozzle

compressor
blades

air
exhaust gas

fuel lance turbine
blades

Figure 1.3.: Gas turbine scheme

The above described gas turbine process corresponds to a thermodynamic cycle
(Fig. 1.4a), whose ideal reference is the ‘Brayton Cycle’. In the case of the actual gas
turbine process, the gas is compressed polytropically from state 1, the compressor inlet,
to state 2, which is the compressor outlet/combustor inlet. During compression, energy
has to be transferred to the fluid by the rotation of the rotor. At the same time, the
temperature rises with pressure by the characteristics of the working fluid ‘gas’. Heat
is then added at constant pressure in the combustor, so that the highest temperature
is reached at state 3, the combustor outlet/turbine inlet. The fluid is polytropically
expanded in the turbine from state 3 to state 4 and thereby transfers its enthalpy (≡
Temperature for (ideal) gas) to mechanical work. Since more power can be taken out
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during expansion than has to be added during compression, denoted by the vertical
distance between state 1-2 and state 3-4, the net power of the gas turbine is positive.
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Figure 1.4.: Real gas turbine process as a thermodynamic cycle with losses in

expansion and compression

From a thermodynamic point of view, this open gas turbine cycle leaves some room
for improvement [2]. A ‘carnotization’ of the gas turbine cycle, i.e. a heat addition in
the combustion chamber at higher average temperatures, is justified by a theoretical
gain in cycle efficiency and an increased power density. A technical approach to this
is the sequential combustion (Fig. 1.4b), where a high pressure turbine only partially
expands the fluid from the first combustor, before it is reheated in a second combustion
chamber and finally expanded in the low pressure turbine to ambient pressure.
This reheat concept [3] was realized by ABB in the 1990’s and further developed by
Alstom. After Alstom’s withdrawal from gas turbine industry in 2016, the technology
was split between US-American General Electric (GE) and Italian Ansaldo Energia.
The exhaust gas at turbine outlet still contains sensible heat regardless of the reheat
concept. This waste heat can further drive a steam cycle, adding complexity to the
power plant but increasing the overall efficiency to the 60+ % range for the modern
H-class, hence making these combined cycles the most efficient fossil fuel-based power
plants at large scale.
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1.1.2. Worldwide Gas Turbine Use

The gas turbine offers many advantages in power generation, which are for example
the outstanding cycle efficiency in a combined process with a steam turbine and the
steady operation, enabling high power densities with a clean and fuel-flexible combus-
tion. Thus, different application scenarios for gas turbine use exist, depending on the
regional demands and the availability of fuel, i.e. natural gas in most cases. Emerging
economies with a remarkable economical growth utilize the gas turbine as a reliable and
quickly available large-scale power generation [4].
Especially when there are proper natural gas or oil resources available, power generation
by gas turbine can also be affordable, as for example in the Middle East with its growing
population.
The availability of domestic natural gas fields has also been the reason for a recent boom
in the US gas industry, where new gas turbine installation fueled with unconventional
gas replaced coal power plants and reduced the traditional US-American dependency on
energy imports [5]. Even though the exploration of shale gas increases the total oper-
ating costs, US gas turbines are outperforming coal power generation in the electricity
market.
Moreover, gas turbines also adapt well to changing external conditions such as fuel varia-
tion or flexible load demands, caused by a high share of renewables in regional electricity
grid, as for example in Southern California. High solar power generation deforms the
classical daily load demand with a peak load at midday to a duck-shaped profile with
demand for conventional power in the early mornings and evenings [6]. Even though the
number of profitable operation hours decreases, gas turbines can provide this required
flexible behavior and remain either in parking positions during midday or even perform
a complete shut-down for a few hours.
The high power density for the single cycle design in combination with acceptable (noise)
emissions also make gas turbines the favoured solution in densely populated areas [7, 8],
such as Japan [9], a country, which is searching for alternatives to its nuclear power
industry. Comparable to this application case, combined heat and power processes can
deliver district heating at the same time, yielding a positive business case, as was re-
cently proven by the local energy supplier in Dusseldorf, Germany, for a combined cycle
plant with district heating [10].
While these local solutions like in Dusseldorf can be profitable, the general gas turbine
use in the European, especially the German market, is predominated by other effects:
Solar and Wind Power at ‘zero’ fuel costs and subsidized by the state in many ways,
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challenge the traditional use case for gas turbines as peak load providers during mid-
day or even as base load suppliers. At the same time, the penetration of intermittent
renewable power generation into the electricity market unbalances electricity grids that
currently require stabilization by conventional power plants, comparable to the above
described case in Southern California, which however benefits from a much more pre-
dictable solar irradiation.
Gas turbine combined cycles are technically capable to efficiently balance the grid by
frequency response, flexible part load operation, and fast start-up procedures [11]. Still,
gas turbines compete in that field with existing coal power plants in Germany, which are
also able to deliver residual compensation in the given branched electricity grid. Fur-
thermore, coal power plants consume regional resources of inexpensive lignite instead of
imported natural gas, shifting the economical advantage to coal. The changing market
position of European gas turbines is thus determined by a decreasing number of yearly
operating hours and an ever rising number of engine starts, as displayed in Fig. 1.5 [12].
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Figure 1.5.: Yearly average starts of European and Non-European gas turbine units
of former Alstom type GT24/GT26 show different operation regime.
Figure reproduced from [12].

1.1.3. Ecological Aspects of Emission Behavior

NOx and CO emissions even occur during the combustion of ‘clean natural gas’ without
fuel-bound pollutants such as sulfur. Special focus is thus given to NOx and CO emis-
sions in this work, because of the following reasons: First, NOx and CO emissions have
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a toxic and possibly hazardous nature to the environment and their emission is thus
restricted by emission laws. Second, NOx and CO emissions also allow for an inves-
tigation of combustion behavior, since they are closely related to combustion chamber
parameters, as will be explained in the following.
Legislative limits for NOx and CO emissions define the available temperature range for
gas turbine combustor of a given technology (see Sec. 3.1.1). As the kinetic formation
mechanisms for both pollutants (NOx and CO) favor opposite temperature conditions,
a characteristic ‘bathtub’ curve (Fig. 1.6) is obtained (further details on kinetics is given
in Sec. 3.3.2.1 and 3.3.3.1). In other words, NOx formation is promoted by high tem-
peratures, while CO is formed under low temperature conditions, when slow reaction
rates of CO oxidation inhibit a full conversion of CO to CO2 in the combustion chamber.

low emissions
operation range
for premixed 

burners

Figure 1.6.: Simulated NOx and CO emissions vs. air-to-fuel equivalence ratio.
Emissions were calculated by a simple Cantera network model (using the Gri30
mechanism), consisting of a perfectly stirred reactor to model ignition (by addition of
H-radicals), followed by a plug flow reactor. Fuel and air inlet temperature 600 K,
pressure 15 bar and constant plug flow residence time.

Towards fuel-rich, thus towards hot conditions, CO emissions also rise. In this case,
there is less excess of air, so that incomplete oxidation of carbon occurs. This forma-
tion is however not relevant in conventional gas turbine technology at lean combustion
without air recirculation, because O2 is always abundant.
NOx itself can irritate the humans’ respiratory system, increasing the susceptibilty to
respiratory infections and aggravate asthma [13]. Additionally, ground level ozone as a
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harmful air pollutant causing all kinds of respiratory disorders [14], is mainly formed
by the reaction of NOx with volatile organic compounds in the presence of sunlight.
In the stratosphere, NOx pollution has the opposite effect on ozone and destroys the
earth-protecting ozone layer. NOx emission can also form acid rain with environmental
damage like forest dieback.
The colorless and practically odorless CO occurs naturally in low quantities. Concen-
trations as low as 35-50 ppm are considered tolerable for humans [15]. Longer exposure
to high concentrations, however unlikely in gas turbine operation, can though lead to
death, since red blood cells are hindered to sustain the humans oxygen supply when
carbon monoxide is absorbed by the lungs. Dangerously, the symptoms of that poison-
ing like headache or fatigue are often misinterpreted, so that poisoning can continue
unperceivedly until death [16].
Due to their hazardous nature, NOx and CO emissions are limited by environmental
protection laws. NOx emission limits have become more strict ever since their first leg-
islation in the 1970’s in the US, resulting in a stagnation of NOx emission per capita
for these regions, while the worldwide, and especially the Chinese emissions are still
increasing (see Fig. 1.7).
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Figure 1.7.: Increase in NOx Emissions per year and capita since 1960 for selected
regions [17]

Specific legislative emission limits for gas turbines are often site- and load-specific, but
reference-binding limits are defined on national or confederational level: Nowadays limits
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for new heavy-duty gas turbine installations in Germany, defined by the 13. BImSchV
[18], are at 25 parts per million (ppm)1, also in accordance with European limits [19],
recently upgraded by establishing the best available techniques conclusions [20]. China
also applied European standards in the recent revision of their emission legislation [21]
for gas turbines.
The United States limit gas turbine NOx emission more strictly to 15 ppm by federal
law [22]. Some US states prescribe even lower limits and require site-specific NOx single-
digit gas turbine operation, with for example 9 ppm limit in some parts of California
[23, 24]. Lieuwen and Yang [25] even report NOx emission limits down to 2 ppm as
proposal for the US. Japan’s NOx limits are in line with US standards, some regional
limits are also in the single-digits [24].
CO limits in the European Union are at least 50 ppm with some countries reducing
that number down to 25 ppm, however, only valid in the range of >70% load [26].
The US do not apply CO regulations at the present time [25]. There are nonetheless
site-specific limits from 10-40 ppm, which are usually not reached during high or base
load operation. Still, part load and flexible operation is expected to be included in
CO emission regulations, as recently announced by the European Union for medium
combustion plants [27].

1.1.4. Economical Aspects of Emission Behavior

Flexible operation, as demanded in some parts of the world (see Sec. 1.1.2), with daily
on-off cycles and more frequent, wider load changes, increase the thermo-mechanical
stress on the gas turbine components. That in return may affect performance deterio-
ration due to premature engine aging.
At the same time, cost competitiveness of electricity production demands higher effi-
ciency and thus higher firing temperatures. Accordingly, an increase of flame tempera-
tures reduces the margins to the strict legal NOx emission limits for a specific combustion
technology, which may already miss its full NOx reduction potential by premature ag-
ing.
Beside the ongoing effort to achieve high efficiencies, current market conditions also
require the ability to operate in ‘parking position’ at low load during times of low elec-
tricity prices. Due to the common reduction of firing temperatures with decreasing load,
present and future carbon monoxide (CO) emission regulations limit the achievable en-
gine turndown [28]. Aging-induced CO emissions may thus further restrict the market

1Emissions limits (in ppm) given in this section are referenced to 15% O2 and dry conditions
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access of a gas turbine, as the CO margin of a given combustion technology to the strict
legal limits would be reduced during low-load.

1.2. Motivation and Structure of Thesis
High shares of renewable power generation and existing fossil power plant capacities in
developed electricity markets create market pressure on the gas turbine, finding itself in
a vicious circle of the simultaneous urge for high efficiency, challenging load conditions
and a decreasing on-market time: Lucrative base load operation hours for gas turbines
vanish, load and demand profiles reduce profitable gas turbine operation to flexible op-
eration.
While costly component development for efficiency and lifetime improvements are post-
poned in times of uncertain paybacks, gas turbine service concepts come into spotlight:
The share of maintenance costs on total costs generally increases with less operation
time, additionally flexible operation requires more maintenance for highly loaded com-
ponents. Advanced service concepts and health management in the framework of Asset
Performance Management (APM) may counteract this techno-economic pressure, as ad-
vanced service concepts promise a cost reduction potential [29] in gas turbine operation
by employing innovative digital concepts for diagnostics and maintenance.
NOx and CO emissions provide a perfect choice as subjects to these advanced service
concepts, as they are constantly monitored. Furthermore, emission limits restrict opera-
tion modes and thus profitability and further indicate otherwise inaccessible combustion
parameters such as hot gas temperatures. Therefore, their in-depth analysis with regard
to aging phenomena, as presented in this work, may contribute to the success of possible
future APM concepts.
In the next chapter, such APM approaches, as already integrated in other than the
gas turbine industry, are presented as an integrative framework for innovative service
concepts. As APM can rely on physically based models and a phenomenological de-
scription, literature on gas turbine aging is summarized and existing model approaches
for combined aging and emission modeling are presented (Chapter 2). Chapter 3 in-
troduces the chosen method for the investigation of aging-induced emission progression
of the GT24/GT26 gas turbine with sequential combustion. Based on the theoretical
background of NOx and CO emission formation, semi-empirical emission models are
derived. Gas turbine data from commercial operation is processed and enriched by a
specifically developed engine model before serving as input to the emission prediction.
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The incorporation of aging models into the engine models is assessed for the identi-
fication and quantification of aging phenomena with regard to emission progression.
Chapter 4 presents the validation of the models for particular engines and evaluates the
aging behavior for the engine type by a fleet investigation. A comparison between the
physically-based approach and purely statistical models, which is moreover conducted
in the framework of this thesis, offers a fundamental benchmark scenario for the eval-
uation of model approaches in the age of ‘big data’. Chapter 5 concludes the findings
and sets the results in the framework of APM by giving outlooks to possible industrial
applications in gas turbine service.
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2. Review on Asset Performance
Management and Long-term
Emission Modeling

The literature review is divided into three parts. The first section explains applications
of APM in various industries as recently reported in the ever-growing field of the ‘In-
ternet of Things’. Since APM may require detailed phenomenological knowledge and
subsequent modeling, literature on aging in gas turbines and emission modeling is then
presented in the following sections.

2.1. Asset Performance Management
Several digital approaches are possible to help improve or regain profitability in tech-
nical equipment. Business optimization requires for example detailed market analysis
and tries to combine technical processes and the market environment, i.e. planning
on-market time according to maximum achievable profit. Since this approach requires
market models beside the technical information, it is not further pursued in this work.
Another available option for profit maximization in the framework of engine operation
is a more technically based APM, as generally defined by the ISO standards [30].
For the energy industry, assets can be understood as the actual physical equipment,
including engines, tools and facilities. Performance has a broader definition, covering
all types of intended asset function such as power generation, efficiency, reliability and
emission compliance. The management component describes the process of controlling
the targeted steps in this framework [31].

Álvarez Tejedor et al. [32] structure an asset management system into necessary steps
for its application in gas turbines. Fig. 2.1 illustrates the integrative concept of an APM
and may help to understand its particular tasks at different levels: Among other imag-
inable purposes of APM, basic implementations such as constant monitoring and diag-
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nostics of physical assets, online re-adjustments and evaluation of the fleet performance
are being used to exploit cost reduction potential within an APM. In these examples,
asset control values from long-term operation often serve as inputs and indicators for
data processing in the APM.

Asset 
management

cockpit

Decision support

Prognostics

Performance and health
management

Condition monitoring

Control and supervision level

Sensor level

Figure 2.1.: Scheme with particular tasks of Asset Performance Management (APM)
in power generation. Figure reproduced from Álvarez Tejedor et al. [32]

Originating from very specific and narrow applications related to condition-based
monitoring, new opportunities enabled by the digitalization of physical assets in the
‘internet of things’ and the evolving ‘big data’ tools, brought APM into the spotlight in
many industrial sectors:
The upstream oil and the shipping industry are predestined for APM by their remotely
located assets and the economical and ecological pressure. Operators in the oil and gas
industry are already investing in their digital infrastructure, whose top areas of focus
are big data analytics and the ‘internet of things’ [33] to be implemented in a short-time
horizon of <2 years. Upstream operating costs are then estimated to decrease by 3-5%
and unplanned downtime is forecasted to be reduced [34].
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Cost reduction estimations for the shipping industry were taken out of an in-fleet anal-
ysis of vessel of the same type, revealing cost reduction potential of 20+% between the
market average and best in class liners [35]. The reported road to achieve performance
benefits by an APM relies on the development of a digital ship, which is equipped
with sensors and monitoring equipment. Data tools in combination with the measure-
ment is then able to process and evaluate voyage (speed, weather, trim,...) and engine
(turbocharger, loads, exhaust,...) performance [36]. Similar goals, i.e. fuel savings by
optimizing the airplane routes, have already been introduced in the aviation industry
by Qantas [37] and Southwest [38] with the help of GE’s cloud-based system for APM
(GE Predix).
In the framework of this system, GE focuses on the development of ‘digital twins’ of
physical assets [39] for various industries and the application to APM [40] on one single
cloud-based platform. This GE Predix [41] as a competitor to Siemens Mindsphere
environment [42] has already been successfully implemented in the power industry [43],
where great optimization potential is expected by the deployment of ‘digital twins’ [44].
Among other things, future focus in the area of digitalization of power-generation-assets
lies in the life cycle management, thus incorporating time-dependent models for aging
and performance degradation in power generation systems [45]. The implementation of
APM shows potential for cost reduction, as already successfully proven in other indus-
tries. APM as a successor and integrator of simple known diagnostics and monitoring
systems to wider applications may utilize physically-based modeling in the creation of
these ‘digital twins’. Especially in engine health management, low dimensional physical
modeling is an affordable and powerful way to either progressively adapt for aging or to
train data-driven methods for different aging scenarios [46], which could also be applied
to gas turbines.
Thus, detailed investigation of gas turbine aging and emission phenomena and its mod-
eling is required in the context of this work and performed in the following sections.

2.2. Gas Turbine Aging
Gas turbines in operation are exposed to extreme conditions with high pressure, high
temperature, elevated flow velocity with quick expansion and high rotor speeds. Even
with the use of advanced materials for the highly loaded parts, the engine’s performance
(including power output, emissions, ...) is likely to change over its lifetime by aging.
At the same time, the increasing number of engine starts (see Fig. 1.5) leads to higher
operational costs, because inspection intervals are shortened according to elapsed equiva-
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lent operating hours: Typically, ’equivalent operating hours’ do not only consider actual
operating hours of the engine but also account for the impact associated to, for example,
load shedding1, trips2 and start-ups [47]. In this case, lifetime consumption of critical
gas turbine parts is expected to be higher than during normal operation due to thermal
stresses associated with these transient events. Once a threshold of equivalent operating
hours (≈ 30.000+ [2]) is reached, a complete inspection of the gas turbine and a replace-
ment of highly loaded hot gas parts is required. Responding to this increased market
pressure on operation and maintenance costs, engine upgrades are often developed in
order to enable an extension of this inspection cycle duration [48], which also underlines
the economic importance of aging monitoring, diagnostics and, above all, its prevention.
Relevant failure modes for the hot gas parts are for example high and low cycle fatigue,
creep, erosion and corrosion, as reported by Immarigeon et al. [49] for aeroengines.
Also for GT24/GT26 engines, analysis of field experience from inspections hints to in-
creased wear phenomena and drift of operation points as a consequence of more cyclic
operation [12].

Degradation is classified into recoverable, permanent and unrecouverable degrada-
tion. Component degradation and its effect on gas turbine performanc belong to the
latter, according to Meher-Homji et al. [50]. Unrecoverable degradation can only be
repaired by a major overhaul, i.e. a costly replacement of the hot gas parts. Other
non-recoverable degradation as stated by Meher-Homji et al. [50] is, for example, flow
path damage, surface erosion and corrosion, leading to airfoil profile losses, tip and seal
clearance increase and drift of control/calibration instrumentation. The effect of bad3

instrumentation was also described by Gulen et al. [51], who highlight the impact of
aging on the gas turbine control system by deviated turbine outlet temperature mea-
surements. False turbine outlet temperature measurements were identified as the root
cause for unexpected power output changes.
In contrast, recoverable deterioration includes, according to the definition by Meher-
Homji et al. [50], compressor and turbine fouling, while the latter is less prominent in
natural gas applications. Among others, Schneider et al. [52] and Therkorn [53] also
identified compressor and inlet filter fouling as a main aging process and described ac-
tions for their recovery during gas turbine operation, such as online compressor washing.
While profile and endwall losses in the turbosets are non-recoverable, as stated in [50],
modern active control clearance systems give the possibility to react on aging induced

1fast load changes
2uncontrolled shutdown
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tip clearance changes [54].
In addition, permanent aging is defined by Meher-Homji et al. [50] as the remaining
deterioration, even after a major inspection, which affects the unchanged parts, as for
example a distorted casing.
Most studies like the ones mentioned above, describe aging phenomena with relation
to changes in gas turbine power output, as for example Li and Nilkitsaranont [55].
Only few notable exceptions in literature investigated deviations in the combustion pro-
cess and related emission progression, despite its importance for gas turbine operation
(Sec. 1.1.3). Rudolf et al. [56] described the effect of a seal damage in the combustor
of the GT24/GT26 gas turbine, leading to a lack of air in the primary zone and result-
ing in higher flame temperatures and an increase in NOx emissions. Increasing NOx
emissions were also reported by Syed et al. [57], caused by a nozzle degradation in an
aeroderivate gas turbine. The nozzle degradation deteriorates the jet angle of fuel and
water injection for NOx reduction. The suboptimal interaction between heat release and
water injection then cuts the NOx reduction potential, yielding higher NOx emissions.

2.3. Emission Modeling
Since ambient conditions, fuel composition or load regimes vary during long-term opera-
tion, aging detection requires a comparison of the actual engine behavior with a suitable
reference model, incorporating these external factors and degradation. However, not all
emission modeling approaches are suitable for long-term prediction. Common modeling
approaches are presented in the following, before their respective suitability to long-term
NOx and CO prediction in literature is evaluated.

2.3.1. General Approaches

Different modeling approaches for emission prediction exist, such as rigorous approaches
(reactor network modeling, CFD), semi-empirical modeling or empirical/data-driven
methods, depending on the exact purpose and available computational power and/or
data.
Rigorous models such as reactor networks [28, 58] and CFD simulations [59, 60, 61], are
able to predict spatially resolved emission formation and thus allow for detailed inves-
tigation of combustor design and operation aspects. The accuracy and success of these
methods are highly dependent on the existence and quality of boundary conditions,
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such as oxidant and fuel composition and flows, temperatures, pressure and detailed
geometry [62].
While CFD simulations need exact component geometry and are computationally ex-
pensive, the reactor network approach is usually faster to process, as only simple geom-
etry information is needed. Still, the reactor network approach employs very accurate
chemistry. However, this approach also requires additional parameter identification and
estimations of parameters such as residence times in different reactors, heat loss factors
or degree of unmixedness [63].
Data-driven statistical modeling can be a powerful and fast approach for data analysis
of large data sets. For instance, Turgut [64] quantified the influence of ambient tem-
perature on CO emissions for different aircraft engines with empirical models. Similar
investigations were previously done by Hung [65].
Artificial Neural Networks as a special application of statistical models are also able to
predict pollutant emissions when adequate training data is available [66]. Still, useful
information about the governing physical phenomena is not explicitly incorporated in
purely statistical models, which inhibits, for example, their extrapolation capacity [67].
Nevertheless, empirical models are commercially available as a replacement for Contin-
uous Emission Monitoring Systems (CEMS), which utilize instrumental gas component
analyzers in contrast. Bainier et al. [68] recently reported their progress on the develop-
ment of such a Predictive Emission Monitoring System (PEMS) for CO, which however
requires re-calibration every quarter of a year. The commercially available PEMS are
also able to model NOx emissions during commercial operation with input data from
the process control system only [69, 70], and are in some cases certified for gas turbine
emission monitoring as a very cost-effective alternative to the CEMS. Beside being based
on purely empirical models, PEMS can also utilize theoretical models, deploying ther-
modynamic and combustion physics. While advanced empirical methods with sufficient
training data allow for reliable emission monitoring, a major issue for theoretical models
is their low performance in long-term prediction caused by gas turbine aging effects, as
reported by Swanson [69].
Semi-empirical prediction can be understood as a combination of both, physical and sta-
tistical modeling. It can deal with a less complete description of the combustion chamber
than purely reactor models or CFD by nature, as (statistical) parameter identification is
part of the model set-up. Semi-empirical models thus maintain the underlying physical
concepts and component information while keeping the advantage of low computational
effort and adaptation to engine-specific behavior, which makes this approach in partic-
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ular suitable for long-term modeling.

2.3.2. Long-term Modeling

Semi-empirical long-term modeling with aging incorporation has been applied in only
a few cases for emission prediction. So far, some research has been conducted for NOx
and CO, as presented in the following.

Lukachko and Waitz [71] carried out scenario calculations for aircraft engines with
pseudo-data to study the impact of turbine and compressor efficiency degradation on
NOx emissions, which were calculated with correlations available in literature. Bakken
and Skogly [72] proposed to replace the stack emission measurement with a NOx corre-
lation in order to assess off-shore gas turbine emissions at low cost. Accordingly, input
parameters to the presented NOx correlation were obtained by simulation tools and
could also be adapted for aging by adjusting compressor and turbine efficiencies as well
as pressure losses in the intake filter.
However, the combination of NOx emission measurements and their theoretical model-
based prediction can also serve as additional monitoring parameter for possibly aged hot
gas path components, as similarly reported for performance monitoring [73]: Syed et al.
[57] reported that, with a data-reconciliation-like approach derived from a network of
chemical reactors, deterioration of fuel nozzle characteristics could successfully be de-
tected by an increase in NOx emissions. Recently, combustion chamber aging induced
emissions of a GT26 engine were also investigated in a data reconciliation analysis by
Rudolf et al. [56, 74]. The data reconciliation technique thereby ensures physical consis-
tency of the (uncertain) measurement data to determine accurate combustor boundary
conditions. A model representing aging of the combustion chamber was developed and
tested for a limited number of base load operation points only.

CO emission data were less frequently used for long-term scenario calculations and
monitoring than NOx emission data. To the author’s best knowledge, modeled aging ef-
fects regarding to CO emissions have not yet been published. However, other long-term
influences beside aging were investigated. Recently, Therkorn et al. [75] assessed burner
switch-off concepts for the auto-ignited sequential combustor in the GT24/GT26 gas
turbine and successfully modeled its influence on CO emissions with a semi-empirical
model. Enriching this approach with accurate kinetics in a simple reactor model, Güthe
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et al. [28] demonstrated the capability to capture the effect of fuel reactivity (i.e. hy-
drocarbon and hydrogen content) at lab and engine scale.

2.4. Statement of Objective
While different applications of APM in a variety of industries already exist and gas
turbine emissions as well as gas turbine aging have already been separately studied in
the past, their combination has not been systematically investigated. This work aims
thus at creating semi-empirical NOx and CO emission models with aging incorpora-
tion for online emission monitoring, diagnosis, and operational support in gas turbine
maintenance, in order to validate the novel approach of an emission-augmented Asset
Performance Management. Therefore, appropriate gas turbine emission models to be
developed in this work should be able to provide unique features, such as modeling of
aging effects in long-term operation, identification of root causes for emission progres-
sion, and extrapolation capability from the originally mapped envelope during engine
commissioning to long-term operation.

In order to develop a physically meaningful model with a potentially broad applica-
tion, general theoretical examinations must be derived from kinetics and supplemented
by simulations of a generic and simplified reactor models. Findings from this general
analysis provide inputs to the final semi-empirical NOx and CO model, which is iden-
tified and validated on three engines from GE’s gas turbine fleet of the engine type
GT24/GT26. Underlying aging characteristics are investigated in a fleet analysis with
respect to operation regime of the engines to generalize the approach. Finally, the pur-
pose of combined aging and emission modeling in APM shall be shown exemplary by
future application concepts.
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The following chapter presents the investigated F-class GT24/GT26 gas turbine, the
available data sets and the methods used in this work. Methods used range from
semi-empirical emission modeling for NOx and CO, approaches for aging detection
to advanced statistical methods employing statistical modeling and data-driven ar-
tificial networks. These presented methods have the common goal to create redun-
dancy in models and measurements for the reliable analysis of aging induced emission
progression. Large parts of this work have been pre-published in Lipperheide et al.
[76, 77, 78, 79, 80, 81, 82, 83].

3.1. GT24/GT26 Heavy Duty Gas Turbine
The investigated F-class GT24/GT261 gas turbine is a heavy duty gas turbine of the
F-class, delivering ≈ 500 MW in a 1-12 combined cycle configuration. The sequential
design with two combustors, followed by a turbine each (high pressure and low pressure),
and state-of-the-art variable inlet guide vanes (VIGV) for increased part load efficiency
is displayed in Fig. 3.1.

1The different notation of GT24 and GT26 refers to the same engine type, which is however used in
different markets, i.e. the ‘American’ 60 Hertz market with a down-scaled version GT24 and the
GT26 for the ‘European’ 50 Hertz market. 60 Hertz turbines must generally be scaled down in order
to balance the effect of higher engine speeds, which would increase the mean tangential velocity for a
given geometry. At 60 Hertz, the diameter of the gas turbine (and accordingly the entire geometry)
is thus reduced to keep the aerodynamic design and the velocity ratios of the 50 Hertz compressor.

2In a 1-1 combined cycle configuration, the exhaust gas of one gas turbine is used in one steam turbine
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3.1.1. Sequential Combustion

The general architecture of the GT24/GT26 reheat concept (Fig. 3.1) with sequential
combustion technology imposes high complexity on the conducted research: The ex-
istence of a first high pressure turbine followed by a second combustor and turbine
generally augments the possibilities of engine control by splitting the overall fuel flow
to the respective combustion chambers.

Figure 3.1.: GT24/GT26 with sequential architecture.
Figure reprinted from Lipperheide et al. [76, 80].

This also explains why separate NOx models for each combustor are necessary. The
method, as presented throughout this chapter, accounts for the complexity by modeling
the independent combustion processes in the EnVironmental Burner (EV) (Fig. 3.2) and
Sequential EnVironmental Burner (SEV), as shown in Fig. 3.4. A more detailed model
for the EV combustor was implemented on top of this program structure to model the
flame zone temperature and aging effects, as explained in Sec. 3.3. In this particular
architecture, only the second, auto-ignited SEV combustor, is relevant for CO emission
as CO potentially occurring from the first (i.e. EV) combustor is fully oxidized in the
SEV. In return, the exact inlet composition of the oxidant, which is the exhaust gas
from the EV combustion chamber plus cooling air, remains imprecise and its calculation
may add undesired inaccuracy to the method. The uncertainty in this gas composition
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further demonstrates the superiority of the semi-empirical approach, which does not
have to rely on exact gas parameters but on more global measurements.

Both combustors feature a lean premixed combustion and an annular setup, i.e. a
circumferential burner placement with one open annular combustion chamber. How-
ever, the two installed combustors differ in their flame stabilization approach: vortex-
stabilization (EV) and stabilization by auto-ignition (SEV).

Vortex
breakdown

Liquid
Fuel

Ignition

Combustion
air

Gas injection
holes

Flame
front

Gas

Gas

Figure 3.2.: Schematic drawing of EV burner as in the original patent by Döbbeling
et al. [84].
The fuel lance, which is located in the middle of the half cones, was later introduced
to the concept by Zajadatz et al. [85]

The vortex-stabilized EV combustor (Fig. 3.2) consists of two half cone shells, which
are displaced against each other, opening two tangential slots. In the premixed mode
of natural gas (which is subject to this research), fuel is injected along the tangential
slots, enabling a good mixture in the generated swirl. At the outlet of the burner to the
combustor, the swirling flow induces a vortex breakdown. The formed inner recirculation
zone acts as a flame-stabilizing mechanism, igniting the fuel-air mixture and creating
a stable and curved flame front [86]. An evolution of the described burner features a
staged operation mode, where a rich zone is created by additional fuel injection (‘stage
1’) through a fuel lance (see Fig. 3.3) in the middle of the cone [87].
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Figure 3.3.: EV burner evolution from original patent as displayed in Eroglu et al.
[87]. The fuel lance is located in the middle of the half cones and was
later introduced to the concept by Zajadatz et al. [85]

A high ‘stage 1’ ratio, i.e. a greater amount of fuel is injected through a lance, is
required for stabilization at very low flame temperatures/load (i.e. ignition) [85]. When
nominal temperature levels are approached, the ‘stage 1’ ratio is ramped back. At in-
vestigated load levels, the ‘stage 1’ ratio is usually kept constant and is thus no subject
to further investigation.
The SEV combustor (Fig. 3.4), which is located downstream of the high pressure turbine,
features a different ignition and thus stabilization technique. SEV burner inlet temper-
atures are close to the high pressure turbine outlet conditions and therefore significantly
higher than average burner inlet (=compressor outlet) temperatures.
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generator
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Mixing 
region

Front 
panel
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Figure 3.4.: Schematic drawing of SEV burner from Poyyapakkam et al. [88]

The high temperature range enables an auto-ignition of the mixture after injection of
fuel to the hot exhaust gas from the EV. This auto-ignition effect also allows for a simple
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combustor architecture [86]. A key factor for successful operation is the adjustment of
the ignition delay, enabling a good mixing on the one hand, and ensuring the desired
flame stabilization by self-ignition on the other hand. Mixing itself is enhanced by vortex
generators upstream of the fuel injection [89]. Since fuel is surrounded by a relatively
cold carrier air shield at injection, it is prevented from igniting spontaneously in the
mixing zone but is auto-ignited after the sudden expansion at the front panel, where a
stabilizing recirculation zone is formed at the wall region.

3.1.2. Combustor Operation

The sequential architecture leads to a special characteristic, which is crucial for the gas
turbine control: Since the total fuel flow (∼power) is split between two combustors, the
standard control parameters VIGV and turbine outlet temperatures allow many possible
combinations. Generally, the fuel split by engine control is achieved by a schedule-based
control concept, based on turbine outlet temperature measurements or based on simple
algebraically calculated inlet temperatures. Depending on the total load (≈ VIGV),
either the outlet or the simulated inlet temperature is a leading control parameter for
one combustor and is adjusted within its respective material and thermodynamic limits
(schematically shown in Fig. 3.5). Thus a range of possible temperature settings allow
for myriad combinations for a given total fuel flow without impacting the overall power
significantly.
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Figure 3.5.: Exemplary temperature set points for fictional operational concept
(OPC). Thick lines indicate active limits, thin lines are corresponding
coupled temperature trends.

The flexibility as a feature of the sequential architecture also allows for an adaptation
to changing fuel compositions and engine conditions. The burner concepts (swirl stabi-
lized and auto-ignition) favor for example different emissions throughout the lifetime of
gas turbine components, as will be later shown in this work, so that an adjustment of
fuel split according to the engine state or the fuel supply may counteract undesired gas
turbine behavior in long-term operation.
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3.2. Available Data
As data build the foundation for this work, its availability and quality determines the
possibilities and the success of modeling. Thus, special focus is given to the presentation
and pre-processing of data in this chapter.
Four data sets were employed in the course of this work:
1. Detailed design information from a gas turbine model of the investigated engine
type served as a source of information for component behavior, such as compressor
and turbine mapping with respective cooling air flows, pressure levels, and estimated
temperatures.
2. For model identification, there were two different data-sets with measured data
available: Commissioning and re-adjustments data.
3. Models, as identified on commissioning data, were tested on long-term operation
data.
4. Fleet data from the GT24/26 was used to generalize findings on aging with respect
to operation regimes.
As quality and characteristics of the particular data sets differ significantly from each
other, they will be presented in detail in the following.

3.2.1. Design Data

The design data set is an output of the OEM’s detailed gas turbine model. It was created
from a parameter variation of this detailed gas turbine model for different engine set
points and ambient conditions. Independent variations of the input parameters yield
a full description of the engine’s behavior over different load levels and its response
to ambient changes. As inherent to low-dimensional gas turbine modeling, important
intermediate state variables such as temperatures and flows, that cannot be measured
directly on the engine, are calculated.

3.2.2. Commissioning

Commissioning and re-adjustments include a variation of operation parameters to iden-
tify the ‘operation window’ with respect to pulsations and emissions and to correspond-
ingly determine operational settings. Commissioning and re-adjustment measurements
are usually manually carried out3, often with additional instrumentation, e.g. for accu-

3Data points may thus include time-averaged values as well as single data points whose stationarity
is assessed through monitoring by the commissioner.
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rate emission measurement and to allow detailed heat balancing with the aid of original
equipment manufacturer (OEM) design models. Commissioning and re-adjustments
data thus include high quality data of the gas turbine, compromising additional exhaust
gas measurements and larger variations of combustion parameters. Thus, this data set
(see Tab. 3.1) covers large parts of the typical commercial operation window where ini-
tially fixed engine set points can be changed or readjusted from one operation concept
to another during an investigated time period. Tab. 3.1 shows the available data points
for the respective emission analysis after removal of potentially erroneous measurement
points and disregard of irrelevant operation ranges.

Table 3.1.: Available data points for investigated engines during engine
commissioning

engine A engine B engine C
# data points NOx 124 186 168
# data points CO 25 32 30

For the NOx investigations, low load points (<60% of base load) were ignored. Sim-
ilarly, data points with irrelevant operation conditions outside previously defined CO
thresholds were also disregarded. Potentially erroneous measurements were detected
by comparison of the permanently installed Continuous Emission Monitoring System
(CEMS) to a redundant, reliable emission measurement system, which is used only
during commissioning.

3.2.3. Commercial long-term operation

Operation schedules are fixed after commissioning for commercial operation when long-
term data was recorded. This data set consists of five-minute averaged operation data of
three GT26 gas turbines including standard measuring points such as pressures along the
gas path, turbine outlet temperatures, ambient conditions, fuel flow and fuel composi-
tion. Data was further processed using a mild filter (see Sec. 3.2.5) to remove occasional
signal errors after deleting irrelevant operation conditions such as rotational speeds out
of the nominal grid frequency or stand-still times with no fuel mass flow. Additionally,
the emission-specific thresholds, as defined for the commissioning data set, were also
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applied to the long-term data. Remaining data points after filtering for NOx and CO
modeling are given in Tab. 3.2.

Table 3.2.: Available data points for investigated engines during long-term operation

engine A engine B engine C
# data points NOx 85,735 126,132 162,191
# data points CO 152,742 151,491 178,875

time period 1,248 days 885 days 984 days

Since data from commercial operation is intended for monitoring and diagnostics
purposes, it shows less absolute measurement accuracy than data of, for example, per-
formance testing. In contrast, a satisfying repeatability of measurements is necessary
for methods using trend analysis of specific values as often used in monitoring and
diagnostics [90].

3.2.4. Fleet Data

In addition to the three engines with the enhanced data sets (commissioning + long-
term, knowledge of operation concepts and service intervals), raw data of a large part of
the GT24/GT26 fleet was available. In total, 25 engines feature data record and transfer,
yielding a data set of 100+ years of operation. This data set includes variations in
operational concepts (OPC) (load regimes) and may thus generalize the aging approach
and link it to the mode of engine operation.

3.2.5. Filtering of Long-term Data

As the main purpose of the measurement system installed for long-term monitoring is op-
erational safety, some surplus parameters, which can however be precious for modeling,
may be outliers. Thus, a filtering technique was applied to long-term data from com-
mercial operation. The filtering itself utilizes a density-based technique: This concept
implements the idea that data points are more reliable when a similar combination of
measurements is acquired several times during normal operation, which makes the mea-
surements temporally independent from each other. Thus, the so-called time-dependent
density weighs each cluster of data points according to their total number and temporal
appearance during normal operation. Scattered clusters below a threshold of time-
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dependent density are deleted. A time-dependent density filter was processed using a
load parameter as first input variable and fuel flows of the two combustion chambers,
turbine outlet temperatures and emission data (NOx and CO) as second input parame-
ters. Filtering of emissions was further done by simple outlier detection with a threshold
of 95% deviation from the median of all points in a certain load range. The number
of available data points after filtering and covered operation period for the investigated
engines are shown in Tab. 3.2.

3.2.6. Emission Measurement System

The emission analyzer in the Continuous Emissions Monitoring Systems (CEMS) mea-
sures the concentration of NOx and CO in a sample of the exhaust gas. The sample is
extracted in the stack by a heated probe and transported to the analyzer by a heated
pipe in order to prevent condensation and thus corrosion in the sample lane. The sample
is then cooled down in a controlled manner in the analyzer to protect the instrumen-
tation downstream from moisture and eliminate possible interference of water to the
analyzed values. Values measured in the CEMS thus relate to a ‘dry gas’ state. As the
distance between the probe location at stack and the actual analyzer leads to a delay in
sampling, the emission data must be corrected accordingly by an interpolation at the
delay between two five-minute averaged data points before further processing.
The NOx analyzer itself employs the ultraviolet (UV) absorption principle. Distinctive
absorption peaks of the NO and NO2 in the UV spectrum allow for an independent mea-
surement of their concentrations: The detected loss of intensity at wavelengths bands,
emitted by a defined UV source and passed through the sample, correlates with the
concentration of the absorptive gaseous NO/NO2. Similarly, the CO and O2 concentra-
tion features non-dispersive infrared (IR) absorption, which carries out a comparable
measurement to the NOx analyzer for the IR spectrum, where CO has its absorption
peaks.
Despite the fact that NOx and CO are measured in the dry state and normalized to 15%
oxygen for legislative purposes, the measurements must be denormalized again and refer
to actual concentration in the wet exhaust gas for the modeling approach. This is neces-
sary for a sequential combustion engine since the second combustor reduces the oxygen
content significantly depending on the operating conditions, thus the standard normal-
ization to 15% O2 would bias the analysis. The relation between emission concentration
at 15% reference oxygen content and actual measurement is given by:

29



3. Emission Modeling of a Heavy-Duty Gas Turbine in Long-term Operation

emission15%O2 = emissionm ·
21− 15

15−O2m
(3.1)

The water content in the exhaust gas is recalculated by a global element balance, start-
ing from the remaining oxygen content and incorporating the intake air humidity (see
Appendix A.1).

3.3. Modeling
As the core application of the method to be developed is long-term modeling, it must
ensure extrapolation capability, thus incorporation of aging and engine-specific behav-
ior. This goal was achieved by using commissioning data at non-aged4 condition for
engine-specific model identification, before applying the model to long-term data. The
following paragraph briefly summarizes the underlying steps of the developed method
while detailed explanation of datasets and procedures is given in the course of this sec-
tion.
In a first step a simplified model of the gas turbine was built. This model was aligned
to design information and used to determine the (unmeasured5) combustion conditions,
such as hot gas, flame zone temperatures and air mass flow distribution for a ‘hypothet-
ical’ design engine. In a second step, available commissioning data was used to identify
engine-specific and semi-empirical emission models for non-aged conditions dependent
on computed virtual and actual physical measurements for the investigated gas turbine.
As mentioned in Sec. 1.1.3 & 1.1.4, special interest among gas turbine emission was
given to NOx and CO, whose presence in gas turbine combustion and their underlying
formation mechanism are explained.
Subsequently, the engine design model was used to process real long-term continuous
data and to extract aging information from this dataset. According to the detected
state of aging, output parameter of the model (i.e. hot gas temperatures) were then
adapted to aging phenomena. Finally, the output parameters, which then inherently
indicated the degree of aging, served as input to the previously formulated NOx model
and allowed for identifying different aging effects in comparison to the measured emis-
sions from the regulatory binding continuous emission measurement system.

4In this context, non-aged condition describes the engine’s state during commissioning, which does not
have to be necessarily brand-new, as engines after a major inspection reach non-aged performance
despite their pre-inspection operating hours.

5As explained later, hot gas temperatures are usually not measured during operation as the high
temperatures would not allow reliable temperature measurement over a significant period of time at
reasonable costs.
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It is worth noting that this method enabled a clear distinction between data used for
model identification (i.e. commissioning data) and model validation (long-term data
from commercial unit operation).

3.3.1. Simplified Engine Model

Very high temperature levels and the complex mechanical structure of gas turbines
impede reliable measurements in the hot gas path of the engine. In commercial industrial
turbines, direct hot gas temperature measurements are therefore not performed. Due to
its major influence on combustion performance, the combustion temperature must be
reconstructed from a simplified engine model in combination with mapped components
(see Fig. 3.6). The same applies to the air mass flows entering the combustor, which
cannot be measured either, as well as to the power output of the gas turbine in a
single-shaft configuration.

Design data can serve as a data basis for the development of component models in or-
der to reconstruct such ‘virtual’ measurements. Component models can be understood
as mappings for the reconstruction of the unmeasured, ‘virtual’ state variables from
measured parameters. These models, or mappings, were created to gain surrogates of
the detailed design data (see Sec. 3.2.1) by so-called observer models. When building
the model, the target variable is the design data equivalent of the ‘virtual’ state vari-
able; input parameters to the model f are taken at locations that have corresponding
measurements in the commissioning and long-term data set.
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Figure 3.6.: Simplified engine model.
Figure reprinted from Lipperheide et al. [76, 80].

3.3.1.1. Hot Gas Temperature Assessment

Temperatures in the combustors as used in this study are defined as follows: The hot
gas temperature Thg corresponds to the mixing temperature at the combustor exit with
combustor cooling air already mixed into it. The flame temperature Tflame as used for
the EV combustor solely corresponds to the temperature without the mixing of com-
bustor cooling air.
For the SEV combustor, only one hot gas temperature is relevant for modeling, as
the difference between SEV hot gas and flame temperature is expected not to change
significantly with time. In contrast to the EV combustor, geometry and cooling air
distribution is kept simpler in the SEV combustor. The cooling air distribution is thus
less prone to aging effects.
Concerning the estimation of the hot gas temperature, two different approaches were
available. With the first approach, named ‘energy-balance-calculation’ in the follow-
ing, the hot gas temperature can be computed with a simple combustion calculation,
i.e. an enthalpy balance between reactants and products, considering complete oxida-
tion of the fuel species. This calculation, however, requires reliable information on fuel
composition/mass flow and air mass flow. Another approach, which is referred to as
‘turbine-characteristic-method’ in this work, uses the mapping approach as described in
Sec. 3.3.1 to derive the hot gas temperature from measurable parameters such as the

32



3. Emission Modeling of a Heavy-Duty Gas Turbine in Long-term Operation

turbine outlet temperature and the pressure ratio over the turbine (see Fig. 3.7).
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Figure 3.7.: Component modeling approach for hot gas temperature assessment by
mapping. Actual measurements for turbine outlet temperature and
pressure ratio over the respective turbine define main input parameters
to a mapping, which accordingly outputs the hot gas temperature as a
virtual measurement.
Figure reprinted from Lipperheide et al. [83].

While the ‘energy-balance-calculation’ seems to be the obvious method, it includes
some serious drawbacks. As the combustor air flow must be derived by a compressor
flow calculated from a compressor map (see following Sec. 3.3.1.2), it would thus add
‘virtual’ measurements to the method anyway. Additionally, fuel mass flow measure-
ments may also show a notable uncertainty, as their accurate assessment is not part
of the engine control. Measurement and information uncertainties also exist in the
‘turbine-characteristic-method’, because turbine performance can vary with time and
operation. While pressure measurements are considered reliable, thermocouples at the
outlet of the high pressure turbine also show measurement errors due to their location
in extreme thermal conditions (as explained later in Sec. 3.3.4.1).
Nevertheless, advantages of the ‘turbine-characteristic-method’ predominate: The ‘tur-
bine-characteristic-method’ enables fast computation by its analytic formulation. Fur-
thermore, the use of the turbine outlet temperature directly links the hot gas calculation
to a parameter for actual gas turbine control during operation.
A second order mapping approach of turbine outlet temperature THPT,out and TLPT,out
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and pressure ratio πHPT, πLPT respectively, of the turbine was found to match hot gas
temperature trends. Remaining residuals between mapping and design data from that
step were modeled as a fourth-order function of inlet guide vane position V IGV and
ambient temperature Tamb (additionally ambient humidity RHamb for SEV temperature)
and added to the hot gas temperature prediction method, so that the surrogate model
is able to reach an accuracy of ± 1 Kelvin (EV) and ± 3 Kelvin (SEV) for the engine
states of interest. Mathematically, the calculation of the hot gas temperatures by the
mapping approach with the surrogate models fHPT and fLPT can be expressed as

Thg,EV = fHPT(THPT,out, πHPT, V IGV, Tamb) (3.2)

Thg,SEV = fLPT(TLPT,out, πLPT, V IGV, Tamb, RHamb) (3.3)

with the variables being measurements. Since benchmark experimental measurements
were not at hand, a comparison between the two calculation methods was performed
qualitatively. As NOx emission are commonly expected to increase exponentially with
temperature (as later explained in Sec. 3.3.2), the functional correlation of calculated
temperatures to NOx emission was evaluated in Fig. 3.8 for a limited number of defined
temperature variations within the commissioning data set. Especially at low tempera-
tures, the ‘turbine-characteristic-method’ outperforms the ‘energy-balance-calculation’
and was thus selected as approach in this work.
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Figure 3.8.: NOx measurements for EV-only operation over calculated flame
temperature (calculation of theoretical flame temperature with
a)mapping method and b)energy balance) and corresponding fit with
expected e-function shape for approximately constant pressure. All
scales are normalized to a reference value.
Figure reprinted from Lipperheide et al. [80].

3.3.1.2. Air Mass Flow Assessment

The reconstruction of mass flow, with respect to the specific load point and ambient
conditions, was also done through an empirical algebraic model fcomp, according to
the described approach in Sec. 3.3.1: The model predicts the mass flow as a second-
order approximation to inlet guide vane position and ambient temperature, additionally
combined with linear models for turbine outlet temperature and ambient humidity in-
fluences. The mathematical description of this calculation is

mcomp,out = fcomp(Tamb, V IGV, TLPT,out, THPT,out, RHamb) (3.4)

, where Tamb, RHamb, TLPT,out, THPT,out and V IGV are measured and fcomp is the sur-
rogate model of the compressor map, which has been determined from design data at
variations of these parameter in design data.
Other possibilities for mass flow reconstruction based on measurements such as a cor-
relation for the pressure drop over the intake filter or a global O2 element balance for a
given fuel mass flow were also tested. However, they did not turn out to be a reliable and
accurate method, due to high scatter in the required data (global O2 element balance)
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or missing information and benchmark for the intake characteristics (pressure drop over
the intake filter).

3.3.1.3. Power Output Modeling

Performance modeling was not subject to this research, but serves as a tool for validation.
However, the single-shaft architecture couples the power output of the steam and gas
turbine in the same measurement for a combined cycle power plant. Power measurement
can thus only serve as a reference, since details of the steam process and its evaluation
over lifetime are out of the scope of the present research.
Performance modeling was also done by mapping. The model consists of a polynomial
approach of second order for all independent variables, created and aligned to the design
data set (see Sec. 3.3.1). Variables for the performance model were chosen to cover the
driving physics of power generation in gas turbines and therefore include expressions
for the mass flow (≡ VIGV position), the enthalpy difference over the turbines (≡
Thg,EV−THPT,out and ≡ Thg,SEV−TLPT,out) and the pressure at the low pressure turbine
inlet pSEV, which also comprises Tamb variations by the characteristic turbine geometry:

Pout = fpower(pSEV, V IGV, Thg,EV − THPT,out, Thg,SEV − TLPT,out) (3.5)

This performance model was used in the course of this research to double-check turboset
aging, as a change of implicitly modeled turbine characteristics would be indicated by an
increasing ratio of predicted gas turbine power to the measured combined cycle power.

3.3.2. NOx Model

Before creating the NOx model, which was adapted to the purpose of long-term emission
modeling, driving formation phenomena are presented. The shape of a semi-empirical
function can then be deduced from kinetics and compared to approaches in literature.
Last, the process of the model alignment to the investigated engine will be explained.

3.3.2.1. NOx Formation

NO reaction chemistry includes many branched elementary reactions with nitrous in-
termediate products. Amongst these reactions, driving routes for the conversion of N2
to nitrogen oxides NO and NO2 could be identified by extensive research in the last
decades, as represented in the standard reference works of, for example, Lefebvre and
Ballal [24], Warnatz et al. [91] and Irvin Glassman and Richard A. Yetter [92]. Their
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conclusions will be shortly summarized in the following and then transferred to the
very-own purpose of this work.

Zeldovich/Thermal NOx In the Zeldovich mechanism, which is also often referred to
as ‘thermal NOx’, nitrogen and elementary oxygen react in a series of reactions:

N2 + O NO + N (R 3.1)
N + O2 NO + O (R 3.2)
N + OH NO + H (R 3.3)

Since the activation energy Ea to crack the N2 bound requires high temperatures,
the NOx production by this path is mostly determined by temperature, as the term
‘thermal’ NOx indicates.

NO2 pathway The NOx production over the N2O-intermediate was found to be impor-
tant in lean conditions (λ > 1.24) and under high pressure, which favors the three-body
reaction with inert shock partner ‘M’ [25].

O + N2 + M N2O + M (R 3.4)
H + N2O NO + NH (R 3.5)
O + N2O NO + NO (R 3.6)

Fenimore/Prompt NOx Fenimore [93] proposed an additional reduced mechanism to
the Zeldovich mechanism, to account for ‘prompt’ NOx production in the primary zone
by in-flame carbon C and hydrocarbon CH radicals.

CH + N2 HCN + N (R 3.7)
C + N2 CN + N (R 3.8)

NNH route The NNH route accounts for NOx production by H radicals under the
formation of intermediate NNH [94]. This reaction path is usually regarded as less
present in natural gas fired combustion but can be of major importance in hydrogen-
rich fuels, when the concentration of H radicals is higher [95].

N2 + H NNH (R 3.9)
NNH + O NO + NH (R 3.10)
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The formation of NO2 from NO Since NO is a very reactive radical, it is oxidized
rapidly to NO2 under ambient conditions via:

2 NO + O2 2 NO2 (R 3.11)
NO + O3 NO2 + O2 (R 3.12)

At high exhaust temperatures however, NO2 is not stable, so that the exhaust gas
mostly contains colorless NO. Under low-load or hyperstochiometrical conditions, NO-
rich regions with a temperature T < 1200K can lead to an undesired conversion to
NO2, the exhaust gas then turns into a yellow color. Under ambient conditions far
downstream of the turbine exhaust, NO is slowly oxidized to NO2 with time.

Contributions of different routes to total NOx Absolute amounts of certain paths
to total NOx production are difficult to evaluate. One approach is to eliminate the
paths one by one and model the kinetics of the remaining paths in a chemical reaction
network, consisting of reactor models (see Appendix B) [96]. However, the paths itself
are connected by branching reactions, leading to an inevitable but acceptably small error
of this approach [97]. Furthermore, the exact design of the chemical reactor network
and boundary conditions also influence the percentage of investigated NOx mechanism
of total NOx production.

Temperature dependency The temperature influence on total NOx emissions of gas
turbines is most commonly estimated to be exponential [24], regardless of the differ-
ent reported contribution of reaction paths to the overall NOx emission reported in
literature. The assumption of a simple exponential correlation for gas turbine combus-
tion parameters can be explained by a kinetic evaluation of the elementary reactions
(Eq. R 3.1-Eq. R 3.12), as described previously.

Eq. R 3.1 of the thermal NOx mechanism is rate-determing in the postflame zone6,
as it has a very high activation energy, causing high sensitivity regarding temperature
changes [99]. Together with Eq. R 3.2 and the assumption of a partial equilibrium of N,
the formation rate can easily be found to be [25, 100, 101]:

d[NO]
dt

= −k · [N2][O] (3.6)

6The postflame zone denotes the part of a combustion process, where a major part of the fuel-bound
energy has already been released. Detailed discussion of the definition is given by Biagioli and Güthe
[98].
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The temperature dependency of the reaction rate constant k can be modeled by the
Arrhenius approach:

k = A · exp (−Ea/RT ) (3.7)

where Ea denotes the activation energy and A is the so-called pre-exponential factor.
Eq. 3.6 can thus be extended to:

d[NO]
dt

= A · [N2][O] · exp (−Ea/RT ) (3.8)

The concentration of N2 can be assumed to be constant. The presence of O-radicals
may relate to the temperature-dependent equilibirum of O2 dissociation but is expected
to be higher for in-flame locations due to an elevated free radical generation in the
primary zone [102].

Pressure dependency Literature examining the influence of pressure on NOx forma-
tion is far less unanimous. Correa [100] proposed that NOx emissions rise with pressure

cNOx

cNOx,1 bar
= pα (3.9)

with an exponent α, for which experimental studies, as reported in literature (see [98]
and references therein), yield varying results while values of α ≈ 0.5 generally seem
reasonable for kinetic investigations of the Zeldovich mechanism.

3.3.2.2. Model Function

Biagioli and Güthe [98] and Güthe et al. [3] developed an Arrhenius-like NOx correla-
tion for the EV burner as a simplified form of Eq. 3.8, normalized to a reference flame
temperature and extended by the pressure dependency of Eq. 3.9 in the pre-exponential
factor. Their findings are based on reactor modeling with detailed kinetics and were
validated with high-pressure combustor test rig experiments. As the real GT24/GT26
engine compromises of two separate combustion chambers, each of them must be mod-
eled independently while overall NOx formation of the gas turbine is the sum of EV and
SEV NOx formation.
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Figure 3.9.: Influence of auto-ignition on NOx behavior over pressure variation for
fixed temperature.
Emissions were calculated by a simple Cantera network model (using the Gri30
mechanism), featuring a plug flow reactor with a limited number of of H-radicals
added for the ignited case. Fuel and air inlet temperature 1080 K, pressure 1-29.5 bar
and constant residence time.

The exact same model function, as shown in Biagioli and Güthe [98] was used in
this work for the EV combustor. For the SEV combustor however, this original model
was slightly changed to account for the auto-ignition character of the SEV flame, with
parameter pmin (see Fig. 3.9), being the minimum pressure where ignition takes place:

c NOxEV = c NOx0,EV ·
(
pEV

pref,EV

)α
· exp

(
β ·

(
Tflame,EV,ref

Tflame,EV
− 1

))
(3.10)

c NOxSEV = c NOx0,SEV ·
(
pSEV − pmin

pref,SEV

)γ
· exp

(
δ ·
(
Thg,SEV,ref

Thg,SEV
− 1

))
(3.11)

c NOxtotal = c NOxEV + c NOxSEV · φ (3.12)

φ =


0 if SEV off
1 if SEV on.

(3.13)

Input parameters to both equations are pressure p and respective relevant temperature
Tflame for the EV combustor and Thg for the SEV combustor, which are reconstructed
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by the combustor and engine model. While the reference parameters pref,EV for the EV
combustor or pref,SEV for the SEV respectively, and Tflame,EV,ref, respectivelyThg,SEV,ref

in the equation were set in advance, model parameters such as NOx concentration at
reference point c NOx0,EV/SEV and pressure (α and γ) and temperature coefficient (β
and δ) were fit with commissioning data.

By doing this, the fitting method itself must account for the special characteristics of
data recording in commissioning. During commissioning, the operation window of the
gas turbine is assessed by systematically varying its operation parameters (i.e. firing
temperatures, internal fuel splits, etc.) in order to determine the settings that satisfy
the various targets (e.g. performance, emissions, combustion dynamics). In the course
of that procedure, some engine conditions are observed more densely/frequently than
others, giving them a higher share of data points. The fitting method must consider this
fact in order to avoid misleading formulations that are biased by the uneven distribution
of data points, as presented in the following.
A sole fit of the EV combustor in a first step appeared to be a robust method to achieve
satisfying results with the limited data available. For this fit, in the case where only
the EV combustor is operated, data points were extracted to identify the parameters
for NOx contribution from the EV burner. While parameters pertaining to the NOx
production of the EV burner were fixed, the parameters of the SEV contribution were
then fit to the residuals from all remaining points in a second step. This approach of
adding two concentrations is valid here, since NOx emissions refer to the final amount of
substance in the exhaust, which does not change significantly in EV-only compared to
normal operation. In a third step, the fitting of all available points were evaluated and
a slight re-adjustment of the parameters compared to the previously obtained values
within predefined bounds was allowed. For the entire fitting process, the Least-Square
method7 from Matlab was used for parameter identification. In order to reduce the
dimensionality of the fit, the pressure coefficient from [98] was directly taken from their
rig data to a complete engine environment.

7Mathematically expressed, this method minimizes the squared error for all n avalaible data points
between the measured values yi with i = (1, ..., n) and the function f(xi,~c). In this method, pa-
rameters ~c are adjusted to match function output of input variables xi to the measured values yi:
min

~c

∑n
i=1 (f(xi,~c)− yi)2
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3.3.2.3. Parameter Identification

Tab. 3.3 shows the obtained fitting accuracy from commissioning data for each of the
three engines. Parameters vary significantly between data sets due to engine-specific
behavior, caused by production and assembly, measurement inaccuracies and available
data during commissioning/adjustment, whose distribution was observed to have a great
impact on fitting parameters. Especially, availability of EV-only operation is very crucial
to the accuracy and the mathematical robustness of the fitting procedure as it determines
the first part of the NOx model solely.

Table 3.3.: Model identification from commissioning data: fitting accuracy for NOx
model

engine A engine B engine C
rRMSE 0.15 0.55 1.64

A general problem is that pressure and temperature are not varied fully independently
from each other during operation of a gas turbine so that one fitting parameter could
compensate for another one, thus reducing the meaningfulness of the fitting. Never-
theless, a clear trend is distinguishable (see Fig. 3.10 and Tab. 3.3) and an acceptable
fitting accuracy was obtained. Furthermore, Fig. 3.10d) compares the second redun-
dant measurement system, which is only connected during commissioning, to the actual
CEMS emission measurements.
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Figure 3.10.: Model identification (as in Eq. 3.10-3.12) of NOx prediction model and

performance of emission measurement system during commissioning. ε
indicates the expected uncertainty of the measurement system. All
scales are normalized to a reference value.
Figure reprinted from Lipperheide et al. [76, 80].

3.3.3. CO Model

CO models can be derived from kinetics easily, as the elementary reactions can be
reduced to one driving oxidation reaction. This leads to a semi-empirical formulation,
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which has similarly been used before but in a different context. The semi-empirical
formulation was then adapted to the special purpose of long-term modeling, with few
global combustion measurements available. It was then fitted to the investigated engines.

3.3.3.1. CO Formation

Carbon monoxide (CO) is an intermediate product of the combustion process of hydro-
carbons. Detailed investigations on combustion kinetics and reaction paths conclude,
that the formation of CO during combustion occurs along many different paths and
intermediate products in in-flame kinetics. However, the further oxidation of CO only
yields the end-product CO2, as explained in Turns et al. [103]:

CO + 1
2 O2 CO2 (R 3.13)

Glassman et al. [104] showed that governing elementary chemical reactions for the CO
oxidation can be expressed by the following reduced kinetics:

CO + O2 CO2 + O (R 3.14)

O + H2O OH + OH (R 3.15)

CO + OH CO2 + H (R 3.16)

H + O2 OH + O (R 3.17)

Moreover, Connors et al. [105] and Klarmann et al. [60] stated, that only equation
R 3.16 is rate-determing for CO oxidation under gas turbine combustion conditions. Ad-
ditionally, the concentration of OH is assumed to be in equilibrium ([OH] = const) in
high-temperature post flame eddies, where CO oxidation occurs [103]. Neglecting the ir-
relevant inverse reaction, the time-dependent conversion of CO (according to Eq. R 3.16)
then follows the simple differential equation:

d[CO]
dt

= −k · [CO] · [OH] (3.14)
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The solution of Eq. 3.14 is an exponential function that asymptotically approaches zero,
as the reverse reaction is neglected8. Accordingly, the occurrence of CO in gas turbine
exhaust gas is caused by insufficient kinetic progress to completion. This can either
be caused by a short time ∫ texit

tignition dt = τpf for post-flame oxidation for a given overall
combustor residence time with a long ignition delay or by a small reaction rate constant
k due to low temperature levels.

3.3.3.2. Model Function

As a consequence and proposed similarly by Connors et al. [105], the CO concentration
can be modeled as a decreasing exponential function of a dimensionless characteristic
time

τred = τpf

τcox
(3.15)

where τpf is a measure for residence time in the post flame zone and the difference of
overall residence time τres and ignition delay time τign. As schematically illustrated in
Fig. 3.11, τcox

9 as a measure for the complete oxidation time implicitly includes the
reaction rate constant k while τres represents the overall residence time.

8Otherwise, the more complex function with incorporation of the reverse reaction would asymptotically
approach the equilibrium concentration

9The complete oxidation time can be understood as the time, which is needed to reach a CO concen-
tration sufficiently close to its equilibrium or, if the reverse reaction is neglected, close to zero.
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Figure 3.11.: Simple representation CO formation in an auto-ignited combustor

Thus, the dimensionless (reduced) time τred is a measure for the burnout progression,
ranging from τred = 0 (no burnout) to τred =inf, while the first occurrence of complete
burnout is reached at τred = 1 (with τres = τcox by definition [28].

The oxidation of CO leads thus to a decline of the initial value COpeak of Eq. (3.14)
to its equilibrium COequil by oxidation of ∆COpeak = COpeak−COequil within (reduced)
time τred and slope α:

COe = ∆COpeak · exp
(
−θ τpf

τcox

)
+ COequil

= ∆COpeak · exp
(
−θτres − τign

τcox

)
+ COequil (3.16)

According to investigations by Klarmann et al. [60] the physical meaning of the ‘peak
value’ is the CO concentration at the transition point from an in-flame CO kinetic to
its post-flame equivalent and therefore the starting point of the post-flame oxidation.

While the characteristic-time-based modeling approach described above allows for a
detailed chemical modeling giving insights into the chemical processes of CO oxidation, it
cannot be successfully extended to the present engine operational data set. Important
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boundary conditions such as the fuel and oxidant flows, which these time scales are
very sensitive to, are not available during commercial long-term operation with the
required accuracy. Moreover, reactor models lack the possibility to adapt for changing
engine- or even burner-specific characteristics (i.e. aging) during operation by parameter
identification.
The advantage of semi-empirical approaches is thus to allow for the adaption to different
burners/engines and the use of already existing or reliable reconstructed measurements.
Therefore, the above presented formulation for CO oxidation (Eq. R 3.16) was adapted
to standard global gas turbine parameters and made suitable for subsequent application
to long-term data with aging.
First, the exponent of Eq. 3.16 was transformed into a spatial dependent formulation so
that overall residence time τres can be expressed by a global combustor length zcom and
the volumetric flows (V̇pre and V̇post) before and after combustion, using the assumption
of a constant cross-sectional area Acom and the kinematic relation of V̇ /Acom = v = z

τ
with v denoting velocity:

− θ · τres − τign

τcox
= −θ · zcom − vpre · τign

vpost
· 1
τcox

(3.17)

The remaining two characteristic times, τign and τcox were replaced by first-order
approximations of global combustion chamber parameters such as pressure p, combustor
inlet temperature Tin, hot gas temperature Thg,SEV and respective model parameters κ,
ξ, υ, χ, ψ:

τign = f(Tin, p) ≈ κ+ ξ · Tin + υ · p (3.18)

τcox = f(Thg,SEV, p) ≈ f(Thg,SEV) ≈ χ+ ψ · Thg,SEV (3.19)

While both times depend on their respective temperature levels and on the combustor
pressure, the function for τcox could be simplified due to the coupling of both variables in
gas turbine operation, where pressure and hot gas temperature are directly related under
given choked turbine conditions for the investigated turbine at the relevant load levels.
Equation 3.17, 3.18 and 3.19 were then used in Equation 3.16, where input parameters
are normalized to a reference value (denoted by ref) to enhance the numerical stability
for later parameter identification:
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COe = ∆COpeak·

exp

−θ
zcom −

vpre

vpre,ref
·
(
κ+ ξ · Tin

Tin,ref
+ υ · p

pref

)
vpost

vpost,ref
·
(
χ+ ψ · Thg,SEV

Thg,SEV,ref

)
 + COequil (3.20)

The number of model parameters θ, κ, ξ, υ, χ, ψ and zcom could be further reduced.
Introducing b1 = κ · (θ · zcom) and similar for ξ, υ, χ and ψ results in:

COe =

∆COpeak · exp


1 + vpre

vpre,ref
·
(
b1 + b2 ·

Tin

Tin,ref
+ b3 ·

p

pref

)
vpost

vpost,ref
·
(
b4 + b5 ·

Thg,SEV

Thg,SEV,ref

)
 + COequil (3.21)

For further simplification, the choked capacity of the low pressure turbine downstream
of the SEV combustor was assumed to be constant and the influence of v̇pre was estimated
to be negligible at the given parameter variations, so that both velocities (∼ volumetric
flows) were regarded as constant and could be ignored in the numerical expression:

COe =

∆COpeak · exp


1 +

(
b1 + b2 ·

Tin

Tin,ref
+ b3 ·

p

pref

)

b4 + b5 ·
Thg,SEV

Thg,SEV,ref

 + COequil (3.22)

C2+ and Humidity Influence Additional determining influences on CO emissions are
fuel composition and ambient air humidity due to their significant effects on ignition
delay time τign. So called ‘long-chain hydrocarbons’ C2+ show a higher reactivity than
pure methane, which results in shorter ignition delays during auto-ignition and thus
lower CO emissions, compared to methane combustion at equal combustion conditions.
High humidity in the air adversely affects CO emissions as high water content in the
oxidant extends the ignition delay. As both phenomena are difficult to assess by gas tur-
bine operation data analysis due to their infrequent and random appearance, a generic
reactor, programmed in the Cantera environment in Matlab, served as an auxiliary tool
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(see App. B).
The generic reactor features a plug-flow characteristic, which makes it suitable to ac-
count for auto-ignition effects, similar to the actual combustor. The chemistry was mod-
eled in detail with the Saudi Aramco Mechanism, developed at the National University
of Ireland Galway [106]. Although the assumption of a plug-flow reactor simplifies an
auto-ignited gas turbine combustion chamber by neglecting cooling flows, it ensures that
the driving pre- and post-flame kinetics of CO oxidation are explicitly modeled without
secondary effects. The results of the reactor model as shown in Fig. 3.12 allowed for
a calculation of an equivalent inlet temperature T+

in at reference fuel composition and
humidity.
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Figure 3.12.: Influence of C2+ fraction and combustor inlet temperatures Tin on
ignition delay as modeled by a generic plug flow reactor

The difference between T+
in and Tin compensates for the changes in the ignition delay

by these effects through a corresponding change in temperature, which would have the
same effect on ignition delay:

T+
in = Tin + ∆TC2+ + ∆Thumidity (3.23)

Equation 3.22 is thus extended to:
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COemission =

∆COpeak · exp


1 +

b1 + b2 ·
T+

in
T+

in,ref
+ b3 ·

p

pref


b4 + b5 ·

Thg,SEV

Thg,SEV,ref

 + COequil (3.24)

The final equation 3.24 served as the governing expression for predicting CO emis-
sions at the SEV combustor outlet as a function of its equivalent inlet temperature T+

in ,
pressure p and hot gas temperature Thg,SEV. The five unknown parameters b1-b5 are
implicitly related to kinetic and/or engine specific parameters and thus allow for an
engine-specific adaption by parameter identification. As COequil is a purely physical pa-
rameter, it was not fitted to the specific engine but modeled by an exponential expression
as function of combustor outlet temperature Thg,SEV only. The value of ∆COpeak was,
however, burner specific and dependent on boundary conditions such as air-fuel-ratio or
oxidant gas composition. Especially in-flame phenomena are expected to influence this
peak value. For the sake of simplicity and mathematical stability of the parameter iden-
tification, these influences were not modeled and a constant ∆COpeak was set according
to findings from Klarmann et al. [60]. The choice of a constant ∆COpeak is consistent
with investigations made by Connors et al. [105]. Their linear modeling approach also
sets a constant y-intercept, which can be interpreted as a CO peak value.

Required Measurements While the inlet temperature Tin is equal to the measured
turbine outlet temperature of the high pressure turbine (THPT,out)

Tin = THPT,out (3.25)

and p is also recorded during gas turbine operation, the hot gas temperature Thg,SEV can-
not directly be measured. This value is reconstructed from measured engine parameters
(see Fig. 3.7) through the surrogate model (see 3.3.1.1).

3.3.3.3. Parameter Identification

The commissioning and re-adjustment data (see Tab. 3.1) of each engine served as the
parameter identification data set to determine the parameters b1-b5 of equation 3.24
with a Least-Square10 fitting method in Matlab. Since CO emissions can vary up to
10See Sec. 3.3.2.2 for a mathematical description of the least-square method
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four orders of magnitude during gas turbine operation, parameter identification, result
visualization and evaluation are done in a logarithmic scale (basis 10) to achieve a
balanced weighting of the different scales.

Table 3.4.: Model identification from commissioning data: fitting accuracy for CO
model

engine A engine B engine C
rRMSE 0.10 0.16 0.13

Fig. 3.13 and Tab. 3.4 show the obtained fitting accuracy for all three engines (Fig. 3.13a)-
c)) and an evaluation of the accuracy of their continuous emissions measurement system
vs. the redundant one used as a reference during commissioning (d). The model ac-
curately reproduces CO emissions in a wide range but loses accuracy at low emission
levels. The low CO concentrations lie within the accuracy range of the measurement
system itself, so that a random distribution can be observed in this emission range. The
scattered distribution of measurements in the parity plot of the CEMS measurement
system and the reference system, which is only present during commissioning, confirms
this observation. Thus, low CO emissions below a threshold were initially excluded from
all evaluation.

51



3. Emission Modeling of a Heavy-Duty Gas Turbine in Long-term Operation

rRMSE: 0.10

(a) Engine A

rRMSE: 0.16

(b) Engine B

rRMSE: 0.13

(c) Engine C

log10 (COCEMS)

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

lo
g

1
0

(C
O

re
fe

re
n
ce
)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
engine A

engine B

engine C

(d) CEMS CO performance
Figure 3.13.: Model identification of CO prediction model and performance of

emission measurement system during commissioning. All scales are
normalized to a reference value.
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3.3.4. Aging Modeling

Two main aging effects on combustion behavior were observed and extracted for further
examination and modeling in the course of the research. The first aging effect could be
detected at the high pressure turbine outlet temperature, the second one is a change
of cooling air distribution in the EV combustor. After linking the identified aging
phenomena to root causes and addressing methodological challenges, their impact on
emission behavior is explained and modeled in this section.

3.3.4.1. High Pressure Turbine Outlet Temperature

For the given GT24/GT26 gas turbine, the high pressure turbine outlet temperature
THPT,out, which is located and measured at the entrance of the second combustor, is used
as a control parameter for the first combustor. This high pressure turbine outlet/SEV
inlet section is a complex assembly that is particularly exposed to thermo-mechanical
wear due to the high temperatures at the HPT outlet and is thus prone to aging.
Fig. 3.14 shows exemplary two different aging effects related to the high pressure turbine
outlet temperature, as similarly reported in literature (see Sec. 2). First, the so-called
temperature-shift describes a general negative deviation of the averaged temperature
measurements from the actual gas temperature, which was found in the long-term data.
Second, the THPT,out measurement spread describes the hot and cold spots, respectively
their degree of deviation.
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THPT,out,corr

hot spot

cold
spot

Figure 3.14.: Schematic deviation of circumferential thermocouples in annular
combustor to corrected gas temperature. The black circle indicates zero
deviation (=ideal initial state).

The temperature inhomogeneity and the general bias can theoretically be induced by
different root causes. Part of the temperature deviation can be caused by marginal cold
streaks which are assumed to only deviate the temperature measurement by locally cool-
ing single thermocouples. Additionally, thermocouples can be subject to aging/drifting
by metallurgical changes themselves which is, however, unpredictable [107], especially
in varying operation conditions. At the same time, actual cold gas break-in may create
a real, existent and measured cold spot. Cold spots at high pressure turbine outlet
can also be caused by uneven annular air distribution in the EV combustor, leading to
hotter and colder burners. Such an inhomogeneous temperature is likely to propagate
through the turbine to differing temperature zones at the turbine outlet.
The actual contribution of these three different possible root causes (1. temperature
drift, 2. temperature spread by cold gas break-in and 3. temperature spread by marginal
cold gas streaks and/or metallurgical thermocouple aging) of the observed temperature
deviation could, however, not be quantified with the given operation data set. Espe-
cially in the hottest part of the engine, the spatial resolution, reliability and redundancy
of measurements and the determination of the combined measurement system are not
sufficient to detect such detailed flow phenomena. Yet, it was possible by model-based
approaches to link observable emission progression effects to these phenomena and in-
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troduce state variables to determine the aging progression by phenomenon, as explained
in the following sections.

Impact and Modeling of THPT,out Measurement Drift Since the amount of fuel
injected into the first burner array (EV) is commanded by the control system (see
Sec. 3.1.2) in order to reach and stabilize a certain turbine outlet temperature THPT,out,
the THPT,out measurement has a direct influence on actual the hot gas temperature. For
example, Gulen et al. [51] reported that the spread and drift in turbine outlet temper-
ature measurements lead to a significant difference in power output between two gas
turbines of the same type. This is doubtful in this context with the GT24/GT26 archi-
tecture, since the EV temperature only marginally affects power and efficiency.
For the given engines, examination of the turbine outlet temperature THPT,out over life-
time has shown that temperature measurements tend to measure lower temperatures
compared to actually prevailing temperatures. In return, that causes the control system
to command higher fuel flow rates to the EV burner while the overall fuel mass flow
is set by the total demanded power (see Fig. 3.16). Consequently, this change in fuel
split between EV and SEV leads to higher real EV-firing temperatures and thus to an
increase in NOx-formation rate. The drift in measured turbine outlet temperature was
evaluated in the current research by using the special architecture of the GT24/GT26
gas turbine, where sequential turbine outlet temperature measurements THPT,out allow
for a quantitative turbine outlet temperature comparison over a lifetime during a certain
operation mode.

By comparing the actual temperature difference ∆THPT-LPT,out = THPT,out − TLPT,out

to its initial value ∆Tt=0,HPT-LPT,out during the specific operation mode, the actual high
pressure turbine outlet temperature could be assessed periodically in operation data
(Fig. 3.16). In the course of this assessment, aging effects for the low pressure turbine
thermocouples at their moderate environment are assumed to be negligible, as for ex-
ample the progress of temperature deviation between the spot temperatures at the LPT
outlet indicate (see Fig. 3.15, especially in comparison to Fig. 3.18).
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Figure 3.15.: Long-term temperature stability at LPT outlet indicated by deviaton
of spot temperatures to control value.
Cold and hot spot temperature is calculated as the mean of the three
coldest/hottest thermocouples, average spot temperature is the mean of the
remaining thermocouples. Scales not shown due to confidentiality.

The effect of the THPT,out-drift further justifies the choice of the ‘turbine-characteristic-
method’ for calculation of the hot gas temperature, which directly links the thermocou-
ple aging effect to a deviation in the combustion control. Even though the exact root
causes for the temperature drift (as presented in Sec. 3.3.4.1) could not be revealed, the
effect is clearly quantifiable with the explained method: The detected temperature drift
is processed by the control system, which in return overcontrols hot gas temperature
Thg,EV.
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Figure 3.16.: Schematic aging model for temperature measurement drift at HPT
outlet. Scales not shown due to confidentiality.
Figure partially reprinted from Lipperheide et al. [76, 80].

The phenomenon of the THPT,out measurement drift could be detected redundantly by
fuel flow measurements for cases when they were available (Engine A features frequent
mass flow measurements of fuel, Engines B& C suffer from infrequent fuel mass flow
records):
When the TLPT,out is set for the maximum load point, the total fuel flow is fixed, too.
The split between the two combustors, however, is done by the engine control, which is
then obviously mislead by the bad temperature measurement at HPT outlet.
Fig. 3.17 displays the deviation between actual measured turbine outlet temperature
THPT,out and its calculated equivalent over operation time, based on the fuel split between
both combustors. It is worth noting, that a simple depiction of the fuel-flow split instead
of reconstructed temperatures in Fig. 3.17 is not possible. Adjustments in the OPC
impact the fuel split on purpose, because of changes of the set parameters. This would
superimpose the displayed aging effect.
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Figure 3.17.: Fuel split-based temperature drift

∆THPT,out = THPT,out,measured − THPT,out,calculated between measured
turbine outlet temperature and its fuel-flow-based calculation
(according to GE-internal calculations schemes) at base load. Engines
B & C lack frequent fuel mass flow data. Scales not shown due to
confidentiality.

Impact and Modeling of THPT,out Measurement Spread While the use of the high
pressure turbine outlet temperature for control purposes employs the mean value of
all circumferential temperature measurements, the incorporation of aging to the SEV’s
second combustor requires a more detailed and spatially resolved approach. Still, the
combustion behavior of the second combustor, which is governing CO formation, is
influenced by THPT,out: This temperature is closely related to the combustor’s inlet
temperature and thus influences the ignition delay, which in return is driving the CO
formation in the SEV.

Locally low temperatures increase the ignition delay for individual burners and ac-
cordingly reduce the time available for oxidation, eventually leading to a reduced CO
burnout and thus to increased CO emissions. Taking such local effects into account, one
obvious approach is to determine the individual CO formation of each of the 24 burners
within the annular combustor, based on their individually measured inlet temperature.
However, a drawback of the method is its sensitivity to single outliers in the temperature

58



3. Emission Modeling of a Heavy-Duty Gas Turbine in Long-term Operation

measurement, which are themselves also biased by leakage [79].
A more balanced approach is to group the burners into g = 3 groups with d = 3 cold
burners in group g = 1, d = 3 hot burners in group g = 2 and (24−2 ·d) average burners
in group g = 3 according to the long-term behavior of the temperature spread. The
total CO formation of the combustor is then the weighted addition of the CO emission
of each zone:

COe = COe,g=1 ·
d

24 + COe,g=2 ·
d

24 + COe,g=3 ·
24− 2 · d

24 (3.26)

The temporary evolution of the zones measurement deviation is displayed in Fig. 3.18
for cold, hot and average zones with a schematic azimuthal temperature distribution for
different stages of aging.
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cold spots
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A-A: spatial measurement deviation
from „corrected“ temperature
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→

→

hot spots

average spots

cold spots

Figure 3.18.: Schematic aging model for increasing temperature measurement spread
with same axis scaling as in Fig. 3.15. Scales not shown due to
confidentiality.

With ongoing aging of the engine, the actual gas temperature (THPT,out,corr) itself
differs from the average of all thermocouple measurements due to measurement bias
described by Lipperheide et al. [79] (see Sec. 3.3.4.1). Based solely on standard gas
turbine instrumentation, an accurate evaluation of the root cause and impact of the
temperature deviations with aging was not explicitly feasible. As explained before,
temperature measurements could either show actual cold zones by shifted cooling air
leakage, or just deteriorated measurements by metallurgical aging/drift of a thermocou-
ple and/or marginal cold gas streaks, which are not expected to influence the actual
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inlet temperature of an individual burner but only the temperature measurement. In
order to account for these two aging influences, i.e. temperature inhomogeneity due to
cooling air leakage and measurement bias because of marginal cold streaks/thermocou-
ple aging, temperature measurements for each gth thermocouple group (ranging from
g = 1=hottest to g = 3=coldest) were corrected according to a constant parameter XCO

over lifetime t, which is a measure for the share of actual cooling air leakage compared
to total assessed temperature deviation (as displayed in Fig. 3.18).

T+
g,in(t) = T+

in,corr(t) + [∆Tg,in(t = 0) + (∆Tg,in(t)−∆Tg,in(t = 0)) ·XCO] (3.27)

with
∆Tg,in(t) = Tg,in(t)− Tin,corr(t) (3.28)

where T+ denotes the described surrogate temperature to account for fuel composition
and ambient condition changes, as detailed in Equation 3.23. Thus, XCO = 1 describes
the case, where deviation over lifetime is entirely caused by actual cooling air leakage,
whereas XCO = 0 associates all deviation to the measurement bias by marginal cold
gas streaks and metallurgical aging/drifting of a thermocouple. As XCO is an engine-
specific aging parameter assumed as constant, its constant value was identified from
long-term data by minimizing the overall model deviation between CO prediction and
measurement.

3.3.4.2. Combustor Flow Distribution

The air flow through the lean premixed EV combustor is guided by a liner, which cools
the casing of the combustor through little holes before the combustion air enters the
actual burner. This intended air flow may change with aging, due to sealing losses along
its way, shifting more cooling flow to larger cross-section when sealing performance
deteriorates. The second aging effect which could be observed is an ongoing decrease in
(relative) pressure drop ∆pEV over the first combustor (EV) for respective load levels
(see Fig. 3.19).
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new

aged

Figure 3.19.: Schematic aging model for decrease of combustor discharge coefficient.
Scales not shown due to confidentiality.
Figure partially reprinted from Lipperheide et al. [76, 80].

In order to compare different load levels, the measured static pressure drop ∆pEV

has to be transformed to a discharge coefficient ζ (with density ρref and velocity vref;
reference at compressor outlet) [108] and smoothed by a moving average filter11. The
general defitinion of a flow coefficient is given in Eq. 3.29):

ζ = ∆p · 2
ρref · v2

ref
(3.29)

From this global point of view the thermally-induced pressure drop and/or dynamic
pressure showed only minor influences on the pressure measurement in the specific EV
combustor, therefore these two phenomena were no subject of further investigation.

11A moving average filter calculates the arithmetic mean ζm(t) at a timestep t of n previous data points
with ¯ζ(t) = 1

n

∑n
i=0 ζ(t− i)
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Figure 3.20.: Simplified air distribution model of EV combustor.
Figure reprinted from Lipperheide et al. [76, 80].

A simplified network model of the air flow system in the combustion chamber was
then used to correlate the change of air flow distribution to the decrease of the overall
pressure drop, i.e. the change of the total flow coefficient. This model had been derived
from a detailed geometry-based design model by lumping the various main flow, cooling
and leakage paths into an overall network.

In order to allow for determining all its parameters by the measured long-term data,
this network was kept simple. The architecture shown in Fig. 3.20 preserves the main
characteristics of the aging combustion chamber while limiting the amount of parameters
in such a manner that its values can be identified from the data and one assumption on
the flow distribution.

The simplified combustor model (Fig. 3.20) showed good agreement with an GE-
internal geometry-based design model for air flow distribution in the combustion cham-
ber. Additionally, the detailed information about the flow from the design model was
used to derive the value of the discharge coefficient ζ (Eq. 3.29) under new and non-
aged conditions.
With ongoing operation and aging, the measured overall discharge coefficient (Eq. 3.29)
deviates from the design point. Different parts of the combustor (or discharge coefficients
as their equivalents in flow models) can age in a different manner, leaving the network
mathematically underdetermined. The difference between design discharge coefficient
and time-variant actual discharge coefficient derived from measurements therefore had
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to be distributed to the different discharge coefficients by the following assumptions:
The main flow path of combustion air (ζ2 , burner/flame zone) were assumed to show
no aging effects, as reported during visual checks of the combustor during inspection.
The split (XNOx) (see Eq. 3.32) between pressure drop change in the inlet (ζ1) and
the combustor (equivalent resistance of ζ2 and ζ3) was thus assumed to be constant for
the observed time period. In order to adapt for specific engine behavior, the value of
XNOx was identified as a constant parameter from the commercial operation data for an
optimum match between prediction and measurement for the given gas turbine while
XNOx = 1 would estimate all aging to the discharge coefficient ζ1 which would accord-
ingly relate to no change in cooling air distribution. The mathematical formulation of
the network as the combination of the different flow coefficients, each given by Eq. 3.29,

ζtotal = ζ1 +
 ζ2,design · ζ3

ζ2,design + ζ3

2

(3.30)

eventually gives an analytic description of the adapted flow coefficient ζ3 as a function
of constant flow coefficient ζ2, aging split XNOx, design discharge coefficient and the
total flow coefficient ζtotal that was calculated from the continuous operation data and
is changing with ongoing operation by aging. Solving Eq. 3.30 for ζ3 yields:

ζ3 =
 1√

(1−XNOx) · ζtotal − ζ1,design +XNOx · ζtotal,design
− 1√

ζ2,design

−2

(3.31)

with

XNOx = ζ1,design − ζ1

ζtotal,design − ζtotal
= const. (3.32)

As the air distribution is then given in the combustion chamber, it was possible to
determine the flame zone temperature Tflame (see Fig. 3.20) from the previously derived
hot gas temperature. In order to do so, the enthalpy flow of the cooling air hcooling at
compressor outlet temperature Tcomp,out was subtracted from the hot gas temperature
hhotgas. For engine A the NASA polynoms were used as an analytic formulation of the
enthalpy of the exhaust gas, whose composition was obtained by the assumption of
complete combustion. Since the transmission of fuel flow data is frequently missing for
engines B and C, constant heat capacities had to be assumed instead. This assumption
further simplifies the calculation to the mass weighted mixing law. The computationally
expensive recursive calculation of a temperature from a given enthalpy for engine A was
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further avoided by setting the averaged heat capacity of the flame zone equal to the
averaged one of the hot gas:

hflame = hhotgas ·
(

1 + ζ2

ζ3

)
+ hcooling ·

ζ2

ζ3
. (3.33)

Tflame = hflame
hhotgas

Thotgas + Tref

+ Tref (3.34)

The influence of the change in pressure drop was thus related to an increase in flame
hot gas temperature by adapting the share of the secondary cooling air flow.

3.3.4.3. Turboset Aging

When gas turbine aging in industrial applications is reported in literature (see Sec. 2)
and industrial applications, deterioration of the turboset (compressor and turbine) is
often mentioned as the main root cause, especially when power output and efficiency is
investigated. Even though this work focuses on the emission progression, the influence
of turboset aging on the chosen method had still to be estimated and considered.
The following section discusses turboset aging influences, separated into compressor and
turbine, on NOx and CO emissions for the respective combustors. While compressor
influences could be neglected a-priori by the structure of the model for reasons given in
the next section, turbine aging may have an influence on the hot gas mapping. Thus,
a step-by-step approach is presented to evaluate the influence of turbine aging, as later
examined in the results part Sec. 4.2.2.

Compressor Aging A common aging phenomenon in compressors is fouling [51], caused
by particle deposition in the compressor despite the efforts taken to filter the intake air.
Particle deposition in the compressor eventually results in a deteriorated flow pattern
and thus decreasing compressor efficiency and mass flow at the same time [109, 110].
Compressor aging is recoverable to a certain extent by (online-) washing, which clears
the deposition, reduces the number of particles in the compressor and regains com-
pressor efficiency. As the compressor needs more than 50% of the power generated by
the turbine on the same shaft, those changes in the compressor characteristics can be
detected by power output loss of the entire engine. As indicating parameters for com-
pressor efficiency assessment (compressor in- and outlet pressures and temperatures)
are measured during gas turbine operation, it can easily be linked with observed power
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output loss.
All models (simplified engine model, emission and aging) were aimed to be built inde-
pendently from parameters influenced by compressor aging, as for example intake mass
flows and power output. The possible influence of compressor aging on the specific
emission prediction models will be evaluated in the following.

NOx emissions EV NOx emissions prediction turned out to be a function of solely
combustor pressure and combustor temperature with satisfying accuracy. As the com-
bustor temperature was assessed by the turbine mapping approach12, air mass flow is
not needed for an energy balance. Merely the recalculation of a flame temperature from
the hot gas temperature utilizes the cooling air split, which in return is calculated from
the change of mass-flow based discharge coefficients. Cooling air distribution may also
be changed by different pressure gradient in the compressor, considered as a secondary
or tertiary effect within the general accuracy and thus neglected in the following inves-
tigations. Residence time of gas in the EV burner is included implicitly in the model
by the pre-exponential factor c NOx0,EV. The factor was estimated to be constant for
the given swirl-stabilized flame over the examined load range, so that NOx prediction
is merely independent from compressor characteristics in the model presented (see Sec.
3.3.2).

NOx emissions SEV Again, the NOx formation in the second combustor is depen-
dent on pressure and temperature only. With the given assumption of a choked flow
through the LPT turbine, no influence of mass flow and compressor characteristics on
residence time was expected. The cooling air distribution was seen to be determined by
geometry only.

CO emissions As CO emissions are affected by combustion in the second combustor
(SEV), characteristic volumetric flows may also be seen as constant, assuming choked
flow and thus independence from mass-flow.
Once again, the calculation of the hot gas temperature was carried out by the map-
ping approach and therefore is independent from compressor parameters, which could
potentially change through compressor aging.

12as a reminder: the turbine mapping approach reconstructs unmeasured hot gas temperatures by the
use of component models, i.e. mapping of the turbines, and measured parameters as inputs to the
mappings (see Sec. 3.3.1)
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Turbine aging Turbine aging is reported to be less prominent in gas turbine operation
with light fuels [50]. Yet, it can be detected by power output loss, as suitable parameters
for a direct assessment of turbine efficiency are not commonly available in standard gas
turbine operation: While inlet and outlet pressures of the turbine are measured, only
outlet temperature can directly be detected, as the turbine inlet temperature measure-
ment would require advanced technologies for challenging high-temperature conditions.
However, model supported approaches exist (i.e. the use of the ISO inlet temperature)
and root causes for turbine aging are also identified, as for example the increase in tip-
clearance [111]. When the gap between the blade tip and the casing widens, leakage
flow is increased and turbine efficiency and thus power output drops.

Hot Gas Temperature Mapping While hot gas temperatures could be modeled
almost independently of compressor mass flow, they may be influenced by turbine aging
because the hot gas mapping implicitly includes the polytropic efficiency, which is prone
to turbine aging. Thus, uncertainty is added to the method by the hot gas temperature
assessments. This topic will be discussed in the following.

Consideration of Turbine Aging Since turboset parameters, which may potentially
age as well, could not be avoided completely in the modeling, a detailed evaluation was
carried out for a possible case of superposed combustor and turbine aging. First, it is
important to understand possible effects of lower turbine efficiency on the hot gas cal-
culation: Given a full load point, a decreased polytropic efficiency would hypothetically
lead to lower turbine inlet temperatures for controlled turbine outlet temperatures and
a constant pressure ratio (in reality, inlet pressure would even decrease with lower inlet
temperatures under choked flow conditions). Still, measured NOx emissions tend to
increase with operation time. The NOx characteristics would thus be contradictory to
the turbine aging hypothesis. However, the hypothesis of turbine aging could not be
discarded, since for both, NOx and CO prediction, an aging-specific parameter had to
be introduced to solve the under-determination of the model. As this parameter was
adapted during long-term operation, it might have overcompensated unseen trends in
hot gas temperature evolution. In the case of NOx prediction, the aging factor XNOx

would turn out to be smaller in the presence of turbine aging, since a decrease in hot
gas temperature would be compensated by an increase in the difference between hot gas
and flame temperature. For CO emissions, the aging factor XCO would also decrease,
thus expecting a lower influence of actual cold gas break-ins instead of cold air streaks.
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This hypothesis was investigated by a sensitivity analysis for NOx formation:

1. Polytropic efficiencies for both turbines, HPT and LPT, were taken from design
data

2. Hot gas temperatures as a function of pressure ratio and polytropic efficiency
and corresponding flame temperatures for aged combustor (≈ 40% discharge flow
coefficient drop, assumed XNOx = 0.99) were calculated

3. The calculated flame temperature served as input to the NOx model and yields a
NOx formation

4. NOx emission was recalculated by steps 1-3 with decreased polytropic efficiency

5. Aging factor XNOx was adapted to equalize resulting NOx emissions from 3 and
4.

Similarly, the potential influence of consideration of turbine aging on the aging factor
XCO was calculated and will be presented in 4.2.2.

3.3.5. Parameters for Modeling Approach

The entire model approach under consideration of emission, aging and engine perfor-
mance only relies on a few control parameters of the gas turbine (see Tab. 3.5). These
parameters from engine control and monitoring either serve directly as an input to the
emission and aging models or are pre-processed by the engine model. The aging factors
for NOx and CO are incorporated in the model approach as state variables.

67



3. Emission Modeling of a Heavy-Duty Gas Turbine in Long-term Operation

Table 3.5.: Parameters in NOx and CO model
NOx model CO model

THPT,out

measurement X X
shift X X
spread X

TLPT,out X X
VIGV X X
Tcomp,out X
mfuel,EV X
pcomp,out X
∆pEV X
pSEV X X
pamb X X
Hamb X X
Tamb X
C2+ X
Aging factor NOx X
Aging factor CO X

3.4. Model Application
In order to identify the root causes for aging, the aging and emission models had to
be combined in a specific manner. Different scenario cases for NOx and CO prediction
were tested, considering their main aging phenomena separately. The previously for-
mulated emission models thereby quantify the impact of an aging phenomenon when
emission progression for an isolated aging phenomenon is compared to the total mea-
sured emission progression from available long-term data. Fig. 3.21 illustrates the idea
of the isolated aging model use. When an aging model is intentionally left out from
the total data processing in the benchmark case, the emission prediction is expected to
differ from the measurements by the value of emission progression. With this approach,
the aging case may then also quantify the respective emission progression for the left-out
aging phenomena, which is equal to the difference between incomplete prediction and
measurement.
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Figure 3.21.: Schematic illustration of model application for aging quantification.
The benchmark case predicts hypothetical long-term emissions without
aging; the aging case models emission prediction.

3.4.1. Fleet Aging

Since the limited number of three engines used for the detailed model identification is
not sufficient to establish a distinct correlation between aging and operation regime (i.e.
flexible vs. continuous operation), a broader statistical basis, i.e. a larger part of GE’s
GT24/GT26 fleet from the fleet data set (Sec. 3.2.4), was necessary. Within this fleet,
different engines are operated in different markets, resulting in significant variations of
the operation regime. For example, base load engines run for a high number of operation
hours but only a few starts per year, whereas cycling or peaking units feature daily start-
stop cycles with a very limited amount of operation hours. The existence of different
operation regimes within the fleet enables to quantify the impact of flexible gas turbine
operation on gas turbine aging: Number of starts was chosen as a measure for flexibility,
as they increase thermo-mechanical stress in the engine and are already widely used in
the calculation of equivalent operating hours in the industry (see Sec. 2.2). The drift
of the high pressure turbine outlet temperature THPT,out (see Sec. 3.3.4.1) was thereby
considered a useful measure for gas turbine aging, as it directly results in undesired
emission progression. This phenomenon is at least partially caused by an actual aging
effect, i.e. the increasing leakages (see Sec. 3.3.4.1), and reliably detectable by the
THPT,out - measurement drift (see Sec. 3.3.4.1).
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3.4.1.1. Detection of Inspection Interval

Operation hours and starts are counted continuously during the entire lifetime of the en-
gine. Large inspections after ∼ 30,000 equivalent operation hours however, re-establish
the initial and non-aged state of the engine. Since inspection intervals are not recorded
in the long-term operation data set, they had to be identified from the data itself. The
respective procedure is illustrated in Fig. 3.22, depicting the evolution of the turbine
outlet temperature measurement deviation over gas turbine lifetime with an inspection
event in 2015, where the initial state could be restored.

operation
interval #1

operation
interval #2

Figure 3.22.: Detection method of service intervals in long-term data.

By the means of a smoothed function (dashed line) of the scattered indicator for
the measurement drift, peak values were identified and associated to the event of an
inspection that re-establishes the initial state without aging. The entire data record
time for each engine was thus divided into intervals from a maximum to a minimum,
which correspond to one detected inspection interval each. For the entire interval,
the THPT,out measurement drift for this investigation could thus be calculated as the
difference between the functional value of a maximum point to its corresponding value of
the subsequent minimum point. This method however, only provides one average value
for the measurement drift over an entire inspection interval. Additional investigations
have shown that some engines change their operation regime between seasons. However,
available data quality and the temporal distribution of suitable sequential turbine outlet
temperature measurements for drift detection did not allow for a more detailed resolution
of such operational seasonal ‘subperiods’ with sufficient precision.
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3.4.1.2. Data Set Quality

Fig. 3.23a depicts the distribution of the 25 engines with respective inspection intervals,
marked by one star/dot each, according to their operation regime. Obviously, the fleet
data set features independent variations of engine starts and operation time, which is
obviously necessary for this investigation. If starts and operation hours were strongly
correlated, a clear identification of flexible operation on aging would not be possible,
since aging could either be a function of operation hours or starts.
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(a) Fleet investigation on (partial)
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Cumulated starts vs. operation time

Figure 3.23.: Fleet investigation on (partial) independence of starts and operating
hours. Round points indicate intervals disregarded to insufficient
overall time periods or absolute number of data. Scales not shown due
to confidentiality.

Nevertheless, there are several engines with similar operation time between two in-
spections, but a differing number of engine starts in for the same time period. This
distribution thus enables an isolated investigation of engine starts as a measure for the
impact of flexible operation on aging. However, some of the investigated operation in-
tervals lack consistent and sufficiently frequent observations. The ‘density’ of available
data was quantified through a data record ratio, which is defined as ratio between the
time span with an active data acquisition system and the total time period in the corre-
sponding operation interval. Infrequent data logging leads to a less reliable investigation,
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since parameters had to be interpolated for the unrecorded time and the smoothing, as
shown in Fig. 3.22, had to bridge large gaps. For very large gaps and insufficient data,
the method might then even miss inspection intervals. Thus, intervals with infrequent
data records (data record ratio less than 50%) were discarded from the investigation,
because of an unsatisfying amount of total temperature drift data, or a short total time
period. Additionally, inspection intervals with a total detected temperature drift be-
low a threshold, which was expected to be the accuracy of the detection method, were
discarded from the investigation. Finally, 16 inspection intervals remained for further
investigations (see Fig.3.23b)). Although the cleaning of the data set removed some
variance from the data set, the distribution of the remaining engines was still consid-
ered to be valid for the assessment (see Fig.3.23b)).
A similar study was conducted with the second aging indicator for the EV combustor.
The combustor flow coefficient was extracted from fleet data for each inspection interval
of the respective engine. After deleting irrelevant data and dismissing periods of infre-
quent data record, the data basis did not allow for a further investigation, as operation
hours and starts were correlated in the data set.

3.4.1.3. Indicator Selection

In order to extract the desired information from the fleet data, the right indicators/pa-
rameters used for evaluating flexible operation and aging had to be chosen. Cumulated
engine starts have been identified as an appropriate indicator for flexible operation,
while aging is well represented by the THPT,out drift. Further, the indicator for lifetime
i.e. the operation hours as a third variable, must also be displayed to check for a spuri-
ous correlation. Since the absolute number of starts and THPT,out drift are expected to
increase with operation time, only an uncoupled variation of operation time and num-
ber of engine starts allows for an isolated identification of the aging impact by cyclic
operation. A normalization of aging phenomena to operation time would seem to be
an obvious method to include lifetime as a third variable. This normalization would,
however, overestimate the influence of inspection interval duration against the actual
aging phenomenon by the reciprocal nature of the normalization.
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3.5. Statistics
Statistical methods in this context cover validation metrics as well as a benchmark
method for data-driven prediction and a probability-based alternative to the Monte-
Carlo method for uncertainty assessment.

3.5.1. Validation Metrics

Long-term emission prediction results were compared to measured data by using the root
mean square error (RMSE) in favor of, for example, the coefficient of determination, as
the RMSE provides a measure of model quality in the actual unit (ppm for emissions),
and because it is applicable to the present non-linear regression without any adaptions.
The RMSE is defined as

RMSENOx =

√√√√∑n
t=1 (c NOxp(t)− c NOxm(t))2

n
(3.35)

RMSECO =

√√√√∑n
t=1(log10(c COp(t)− log10(c COm(t)))2

n
(3.36)

where n is equal to the number of data points (Tab. 3.2), []m denotes measured values
and []p denotes predicted values.

The relative root mean squared error (rRMSE) was used to evaluate the accuracy of
the model identification from commissioning data in order to make the model compara-
ble for different engines with possible different overall emission ([]e) levels. It is defined
as the RMSE divided by the mean (denoted by the overbar) of all measured values

rRMSE = 1
ce,m
·

√√√√∑n
t=1 (ce,p(t)− ce,m(t))2

n
(3.37)

Another meaningful value for model quality assessment is the residual between pre-
dicted and measured value:

Residuals = log10(ce,m(t))− log10(ce,p(t)) (3.38)

Residuals are displayed in their logarithmic form for simultaneous scaling and refer-
encing to the measured value. This approach was chosen, since a sole referencing to
the measured value would overrate errors at low emissions. With the definition given,
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positive residuals mean a higher actual measured emission value than its predicted equiv-
alent.

Scatter plots as the most commonly used graphical presentation in the result chapter
contribute to the validation as a visual tool, which allowed for the detection of single
outliers and distribution of residuals.

3.5.2. Uncertainty and Sensitivity

An uncertainty analysis was performed in this work in order to evaluate inevitable uncer-
tainty contributions of input parameters to the model, beside model-own inaccuracies.
The sensitivity analysis, which is closely related to the uncertainty, was then used to
examine the influence of improvements in input parameter accuracy on overall model
quality. It can be interpreted as the benefit, which an increased accuracy of a single
measurement would give to overall model performance.

3.5.2.1. Polynomial Chaos Expansion

The Polynomial Chaos Expansion (PCE) (see C.1) as a very computational cost-effective
alternative to the Monte-Carlo-Method is able to define the variance of output param-
eters of a model with uncertain input parameters. In contrast to the Monte-Carlo-
Method, where output parameters have to be calculated for a large number of varying
input parameter within their accuracy limits, the PCE features an analytic approach,
first developed by Wiener in the late 1930’s [112]. The PCE transforms the actual
and maybe complex model, which shall be object to the uncertainty analysis, into a
metamodel. This metamodel is mathematically structured in a way, that allows for
fast assessment of the two main statistical moments, ‘expectation value’ and ‘variance’
for a given input parameter distribution. As only few runs of the actual model suffice
to build the metamodel, this approach is very advantageous over the standard Monte-
Carlo-Method, which would need many runs of the model to obtain a high resolution
output distribution. Stefano Marelli and Bruno Sudret [113] developed and published a
powerful PCE tool for Matlab which was used in the course of this research. Basic ideas
and mathematical transformations are explained in the appendix to raise a basic under-
standing of the method and its use for uncertainty quantification. An extension of the
method features sensitivity analysis by the calculation of ‘Sobol Indices’, a first-order
sensitivity index, that is a measure for the contribution of one parameter to the total
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output variance over variation in all other parameters, ranging from 0=no contribution
to 1=entire contribution [114].

3.5.2.2. Application to Emission Prediction

In the current research, PCE was used to determine the uncertainty and sensitivity of
NOx and CO emission prediction. The entire model, including the analytic emission
models and the simplified engine model, could be transformed to a PCE formulation
with only few input parameters, which are pressure, VIGV, turbine outlet tempera-
tures, compressor outlet temperature and ambient conditions (pressure, temperature,
humidity) and mass fuel flow (see table 3.5). For a set of parameters (corresponding
to defined load point13), a Polynomial Chaos Expansion was carried out with Gaussian
distribution for each of the input variables around its expectation value and variance
taken from data sheets and/or expert evaluation.

Variances of these processed parameters as an input to the PCE method were derived
from sensor calibration or expert evaluation. For pamb, total sensor performance and
long term stability were evaluated to a standard deviation of σ = 0.0005 bar; the accu-
racy of a pressure sensor used for gas path measurements were estimated to σ = 0.04 Pa
for compressor outlet and the respective fraction for ∆pEV and pSEV in long-term opera-
tion14. While uncertainties in pressure measurements could be set by information from
manufacturers, accuracies of temperature measurements were more difficult to define:
As already mentioned in this work and known from literature, hot gas temperature
measurements in gas turbines tend to deviate by many indeterminable influences (i.e.
leakage streaks, sensor drifts ), which are themselves subject to indeterminable uncer-
tainties by aging. Thus, standard deviations in temperature measurements, especially
turbine outlet temperature measurements, are solid expert evaluations in accordance
with absolute deviations, as previously detected and investigated in this work. The
same applies to variance in fuel measurements, which were estimated to be below 5%
for the mass flow and below 0.02 percentage points for the C2+ content.
Aging factors are neither subject to uncertainty nor to sensitivity, as they are, despite
being processed in the model, no input parameters by definition but rather state vari-

13Definition of load points by THPT,out, TLPT,out, VIGV and ambiance only. Pressures for these setups
are then derived from the simplified engine model as a surrogate to actual measurements

14Assumptions: upper range limit for gas turbine pressure sensor = 55 bar, measurement span =
maximum respective combustor pressure [115]; Standard deviation of ambient pressure sensor for
overall performance and long-term stability = 32.5 Pa, variance of ambient temperature measurement
equal to 0.05 K, variance of relative humidity 1% [116]
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ables in the model.
Load points for uncertainty calculations concerning the NOx emissions were distributed
over the entire full load and part load range, according to a hypothetic OPC (see
Fig. 3.5), CO is only investigated in low load points by varying THPT,out at small VIGV
openings.

3.5.3. Machine Learning Tools

As a comparison to the semi-empirical model, emission prediction by Artifical Neural
Networks (ANN) (further explanations in Appendix D) was tested.

Amongst many available data methods, ANNs were chosen, because they are reported
to have successfully modeled gas turbines in the past [117, 118, 119, 120, 121, 122, 123].
The exact same approach as for the physically-based modeling was used with parameter
identification, i.e. training for ANNs, on commissioning data and validation with long-
term data. Thus, a certain capability of extrapolation was demanded by the neural
network method, too.

From the commissioning data set, different data subsets were tested (see Tab. 3.6).
First, the ‘raw’ data set (data subset ‘NOx’ and ‘CO’) includes solely raw measurements,
which previously served as inputs to determine the engine state by physical modeling.

Table 3.6.: Parameters in data subsets used for Artificial Neural Network (ANN)
NOx NOxflame NOxflame+amb CO COflame

dataset raw virtual virtual+amb raw virtual
Tcomp,out X
pcomp,out X X X
VIGV X X X X X
pSEV X X X X X
THPT,out X X X
TLPT,out X X
pamb X X X
Hamb X X X
Tamb X
C2+ X X
SEV on/off X X X
Tflame,EV X X
Tflame,SEV X X X
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Merely ambient and thus possibly correlated measurements were intentionally left
out whenever possible, since their insufficient variation in the commissioning data set
could easily cause over-training of the network. Second, data subsets with processed
measurements were created (data subsets ‘NOxflame’ and ‘COflame’): From the simplified
engine model used in Sec. 3.3.1, the EV flame temperature and SEV hot gas temperature
were derived in order to replace the respective turbine outlet temperatures (THPT,out

and TLPT,out for NOx, TLPT,out only for CO) in these data sets. The ANN is thus
only used for emission modeling while the engine model (mapping) is employed for raw
data processing in this case. In case of NOx, two further investigations were carried
out: The aging model and its direct link to the EV flame temperature allows for an
easy integration of EV combustor aging to the neural network method. Training could
still be done with commissioning data, only the EV flame temperature in the long-
term data inputs (data subset ‘NOxflame’) to the neural network had to be replaced by
its aged equivalent. Further on, the virtual data-subset was also enriched by ambient
measurements (ambient temperature, pressure and humidity) to investigate potential
initial mismatches between training and validation data by external influences (data
subset ‘NOxflame+amb’).
Similar investigations were, however, not feasible for the CO model, as its structure does
not allow for a simple aging incorporation from raw commissioning data: The CO aging
model explicitly needs the partitioning of SEV combustion chamber segments into hot,
medium and cold groups and its mathematical representation by a weighted addition.
With the limited input data from commissioning, such a model could not be established
in the framework of ANNs.
Input parameters to different subsets are summarized in Tab. 3.6.

As the neural network training and thus its composition is expected to vary with
the data available for training (for details of ANNs, see Appendix D), the number
of necessary neurons in the hidden layer was estimated a-priori for each data subset.
Fig. 3.24 illustrates the necessary number of neurons in the hidden layer to achieve small
errors in the training data set.
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Figure 3.24.: Required number of neurons for different data sets.
20 different runs for each configuration, since ANN performance is dependent on
initial parameter guess. Lines show the smoothed minimum achieved errors for
respective number of neurons. Final results do not have to correspond necessarily to
that minimum, as only one specific ANN with satisfying results in long-term data is
shown. Figure reprinted from Lipperheide et al. [83].

When using the virtual data set with flame temperatures from the engine model, five
neurons are sufficient to reach maximum accuracy (in terms of rRMSE) in the training
data for both emissions investigated. When using raw data or virtual data enriched by
ambient measurements, the higher number of parameters also demands more neurons to
reach maximum accuracy. Thus, the number of neurons for further investigations were
set to five for the following cases:

• NOxflame

• COflame

• CO

and to ten neurons for:

• NOxflame+amb

• NOx.

As an implementation of the above described methods, the Matlab Neural Network
Toolbox [124] was used in this study. For the given case, Bayesian regularization was
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chosen as an implementation of backpropagation training algorithm, since it promises
good regularization even for small datasets, as they are existing for the purposes here.
The Matlab Neural Networks Toolbox also features a cross-validation algorithm to po-
tentially prevent the overtraining by an excess of neurons by simultaneously employing
three different data sets while training: The actual training was done on the training
data sets, which represents 70% of all commissioning data; the error in the validation
data set (15%) of all data was simultaneously monitored to prevent overtraining and the
remaining 15% were used for testing by default. Although this algorithm is designed to
potentially prevent the overtraining by an excess of neurons, the necessary neurons were
still estimated a-priori to prevent a potential source of errors in Sec. 3.5.3. Since inher-
ent starting values and the split of data sets into training and validation are influenced
by random initial guesses in this method by nature, exact results may vary for each run.
Thus, results in the following chapter will be displayed for selected representative ANN,
which correspond to the observed behavior of several test runs. Detailed explanation
can be found in App. D.
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This chapter presents the results of the previously introduced modeling approaches.
A large part covers the semi-empirical long-term emission modeling, which was also
evaluated by the statistical methods presented in Sec. 3.5.2. Particular focus is given
to the uncertainty impact of turbine aging. Results will be set in a wider context by
comparing the results to the ANN benchmark method and by a discussion of the findings
with respect to the fleet data.

4.1. Aging Quantification
By the use of different scenario cases, either incorporating the aging phenomena to
long-term emission modeling or using a simplified engine model without consideration
of aging, the impact of aging on respective emissions could be examined. Results will
be presented separately by its phenomenon in the following.

4.1.1. NOx Emission Aging

As two discussed aging phenomena (air split and turbine outlet temperature drift) di-
rectly influence Tflame of the EV-burner, they also affect the NOx emissions prediction.
Thus, the isolated incorporation of aging corrections for Tflame may quantify the impact
of the discussed aging phenomena on NOx emissions. In order to do so, four different
cases were examined for available long-term data.
Case 1NOx: Both aging effects considered (turbine outlet temperature correction & air
flow distribution adaption)
Case 2NOx: One aging effect considered (turbine outlet temperature correction)
Case 3NOx: One aging effect considered (air flow distribution adaption)
Case 4NOx: No aging effects considered
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Table 4.1.: Model validation on long-term operation data: RMSE for prediction of
NOx emissions for examined engines and different cases (XNOx optimized
for case 1NOx)

RMSE XNOx case 1NOx case 2NOx case 3NOx case 4NOx improvement
engine A 0.99 1.27 1.33 1.72 1.98 35%
engine B 0.00 1.84 2.64 3.37 3.97 53%
engine C 0.95 3.01 3.02 4.01 4.08 26%

When the NOx correlation was applied to long-term data, the incorporation of all
aging phenomena (i.e. case 1NOx scenario) yielded the best prediction performance for
each of the investigated engines (Tab. 4.1). The parity plots for the case 1NOx scenario
in Fig. 4.1 show satisfying model performance over the investigated load range. The
trend in NOx emission is reproduced within the accuracy associated with the CEMS.

A comparison between case 2NOx and case 3NOx allows for an evaluation of the two
described aging phenomena against each other. It can be derived that incorporating
the change in NOx emission by deteriorated turbine outlet temperature measurements
(case 2NOx) improved the accuracy of the prediction more than the sole integration of
change of air flow distribution (case 3NOx) for all investigated gas turbines.
This, in return, leads to the conclusion that the drift of turbine outlet temperature
measurement has a higher impact on observed NOx emission progression over the com-
bustor’s lifetime for the investigated engines than the change in EV air flow distribution.

The model yielded different prediction accuracies for each engine (see Tab. 4.1). First,
this is due to the different availability of commissioning data, which served as a training
data set. Parameter identification is a major but inevitable source of inaccuracy, which
relates to the differing commissioning data set for each engine. For example, engine
B and C have worse relative RMSEs compared to engine A in the commissioning data.
Additionally, a visual inspection of distribution of fitting data revealed, that the data
sets lack an important commissioning run where SEV temperature varies for a constant
EV temperature, even though more overall commissioning data points were available
(Tab. 3.2). Generally, the commissioning procedures turned out to be disadvantageous
for emission mappings, due to poor variations of driving emission parameters, even
though providing a high absolute number of datapoints.
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Figure 4.1.: Long-term performance of NOx prediction with aging incorporation

(case 1NOx) (only 20% of data are displayed). ε indicates the expected
uncertainty of the measurement system. All scales are normalized to a
reference value.
Figure reprinted from Lipperheide et al. [76, 80].

Second, the different optimum flow aging parameters represent engine-specific be-
havior, which may occur within the same gas turbine fleet because of assembly and
production. Concerning gas turbine B, the aging of the flow coefficient had a greater
impact on the change in emissions compared to engine A and C, as indicated by a lower
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estimated parameter X. While engine A and C show only a slight share of flow coefficient
decrease in the cooling air feed as X reaches towards one, engine B estimates a higher
impact of feed air flow change by pressure drop.

Regarding engine A, its combustor flow coefficient obviously indicates faster and
stronger aging than engine B & C (see Fig. 4.2), which would correspond to a higher ag-
ing parameter X (see Tab. 4.1) in case of comparable absolute aging of flow coefficient 3
according to Eq. 3.32. A closer look at the pressure drop measurement reveals that this
apparent behavior is due to a single sensor fault. The pressure drop over the combustor
is measured by two redundant differential pressure sensors between compressor outlet
plenum and combustor exit. The parameter ∆pEV used in this study is the mean of
both measurements. In the case of Engine A, the two measured pressure drops differed
significantly, leading to different combustor flow coefficients when calculated separately.

likely sensor failure

assumed as correctly
reading sensor

mean of #1 and #2

Figure 4.2.: Total combustor flow coefficients according to Eq. 3.29 for sensor fault
detection of sensor # 2 in engine A. Redundant combustor flow
coefficient based on pressure sensor reading # 1 for same engine A and
engine B and C as comparison.
Figure reprinted from Lipperheide et al. [80].

A comparison among all flow coefficient evolutions in available fleet data reveals that
sensor # 2 of engine A is completely out of the ‘normal’ degradation range (see Fig. 4.2)
while sensor # 1 of the same engine A matches the behavior of engine B & C well.
Thus, only sensor # 1 is regarded to be reliable. When using sensor # 1’s pressure
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measurement only for the above conducted investigation, the aging factor XNOx would
decrease to 0.97.

It is also worth noting, that an aging factor XNOx in the range of ≈ 0.95− 0.99 still
translates to a significant seal loss in valve 2, since the parallel architecture of the flow
network, the absolute values of the valves and the definition of XNOx favors high nu-
merical XNOx values.
However, optimized XNOx may also include undesired effects. Since the flow network is
underdetermined, the aging parameter had to be optimized during long-term operation,
which made it prone to overcompensation of superimposed influences. Especially for
engine B and C, estimations of XNOx may be less reliable due to less frequent data for
drift detection, a less prominent NOx progression in long-term operation and a partially
correlated parameter identification data set. This might also explain the large differ-
ence in XNOx values for engine B and C values which, however, does not have a great
influence on overall NOx emission progression.

However, absolute residuals (depicted in Fig. 4.3) meander in all investigations. These
meandering deviations are mainly caused by long periods of sole part load operation
with a generally lower absolute NOx level. Increasing transient operation could also
be a cause, which however could not be investigated with data sample resolution of
five minutes. In addition, engine parameters for the aged engine may also be set in a
range, which was originally not covered during commissioning and are thus outside of the
validity of the previously established NOx-correlation. The reason of the prominent rise
of residuals for engine B at approximately 0.5 of the operation time, similarly seen for
engine C, could not be identified entirely by the available data. A manual and unreported
re-adjustment of the temperature outlet measurement or a CEMS-calibration may be
a cause for example. Expected secondary influences on NOx-formation like ambient
temperature, fuel composition and relative humidity were investigated through partial
residuals but have been found to be negligible.
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Figure 4.3.: Residuals of NOx prediction with aging incorporation (case 1NOx)

compared to standard prediction (case 4NOx). Gray area indicates the
68.2% interval around mean value. All scales are normalized to a
reference value.
Figure reprinted from Lipperheide et al. [76, 80].

4.1.2. CO Emission Aging

The combination of the CO model (Eq. 3.24) and the aging model for the combustor
air distribution (Eq. 3.27) also allowed for a quantification of the aging influence on CO
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emissions. In order to illustrate this influence, two cases are distinguished. Case 1CO

predicts CO emission over operation time when considering the evolution of cold and hot
zones in the T+

g,in(t) temperature distribution. Case 2CO only uses the average T+
in,corr(t)

for all 24 burners during model identification and validation and therefore disregards
aging of the temperature homogeneity.
Case 1CO: Consideration of cold and hot zones in high pressure turbine outlet temper-
ature
Case 2CO: Mean high pressure turbine outlet temperature

Table 4.2.: Available long-term data and prediction model performance for different
engines.

RMSE XCO case 1CO case 2CO improvement d
engine A 0.49 0.17 0.42 60 % 3
engine B 0.12 0.1 0.12 15% 3
engine C 0.31 0.08 0.2 58% 3

The parity plots (Fig.4.4) between the actual measured and the respective predicted
CO emissions for case 1CO display the best-achievable accuracy of each model. The
comparison of the plots for case 1CO vs. case 2CO highlight the influence of aging on
CO emission formation, which can be quantified by comparing the corresponding RMSE
values (see Tab. 4.2).

Based on the metrics given in Tab. 4.2 and the residual distributions in Fig. 4.4, the
best match between predicted and measured CO emission for all engines was obtained
in case 1CO, when aging models are incorporated.
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Figure 4.4.: Long-term performance of CO prediction with aging incorporation (case

1) and corresponding temperature deviation (only 20% of data are
displayed1). All scales are normalized to a reference value.

However, the accuracy of the model and the impact of aging differs among the engines
for several reasons. The RMSE of engine A was improved by 60% and the RMSE of
engine C by 58% when incorporating aging. As engine B obviously ran more often at its
nominal load than A and C, CO levels and thus their prediction error are generally lower.
The aging effect was also less prominent (15%) for this specific engine, as illustrated
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in the residual time series presented in Fig. 4.5,. Whereas engines A and C show a
clear underprediction of CO emissions with increasing operation time (∼ aging) in case
2CO without modeling of aging effects, the residuals displayed for engine B are mostly
overlayed to the ones that disregard aging phenomena. This is an indicator for a small
CO aging effect, thus a negligible effect of actual cold gas break-ins at the high pressure
turbine outlet.

As explained in Sec. 3.3.4.1, this small aging influence should also be expressed in the
model by a very small aging factor XCO in the range of zero. The method, however,
calculated the factor XCO to a non-zero value of 0.12. This adaption of the aging factor
XCO can be seen as an over-compensation, which does not reduce the prediction error
introduced by aging significantly (see Tab. 4.2) but compensates for model inaccuracies
in a non-physical way instead.

Fig. 4.5 also illustrates a secondary effect that leads to obvious residuals. In both
cases (case 1CO & case 2CO), residuals appear to meander with seasonal changes in a
way that CO emission is over-predicted in colder ambient conditions. For the case 2CO

scenario, this phenomenon is less evident, since seasonal influences are superimposed by
aging (Fig. 4.4). The seasonal deviations can be explained by a change of the cooling
air flow distribution that is not considered in the model. Low ambient temperatures
induce changes in mass flow and thus pressure levels in the compressor stages, which
then correlate with a lower pressure drop (see Fig. 4.5) in the cooling air flow system of
the combustor. Provided that the geometry of the cooling channels is imposed by the
installed hardware, this leads to a reduction of volumetric cooling flow and ultimately
to a delayed quenching in the combustor. Thus, the time for CO oxidation is prolonged
and real CO emissions decrease accordingly. This effect was clearly revealed by the
results, but not quantified, since the measurement resolution and data basis was not
sufficient for a desired semi-empirical approach.
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Figure 4.5.: CO residuals of prediction model over operation time and ambient
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displayed). All scales are normalized to a reference value.
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4.2. Evaluation of Results
The evaluation compromises technical sources of errors in the emission measurement sys-
tem as well as uncertainties introduced by the method itself, i.e. the hot gas assessment
by the mapping approach and the general model structure.

4.2.1. Emission Measurement System

Besides all model-induced uncertainties in the variables, which are difficult to quan-
tify, a second reliable emission measurement system during commissioning allowed for
independent evaluation of the CEMS system (see Fig. 3.10d) and Fig. 3.13d)). It is
worth noting, that the scattering in the CEMS system imposes an accuracy limit to the
method and explains a great part of the scattering in the long-term prediction:
Concerning the NOx model, the major part of the remaining NOx residuals (see Fig. 4.1)
lay within this range of accuracy of the legislative binding CEMS. In this particular case,
the accuracy of the CEMS system thus imposes a limit to the maximum possible quality
of the derived model. The CO scatter in long-term operation (see Fig. 4.4) can, however,
not be explained solely by the uncertainty in the CEMS system. Although there is an
inevitable scattering by the CEMS system (see Fig. 3.13d)) for CO measurements, its
range is smaller than the actual residuals for long-term prediction, which is caused by
the described Tamb influence and may also be affected by the five-minute averaging of
the sampling.

4.2.2. Uncertainty Assessment of Turbine Aging

Despite the fact, that turbo set aging was not in the scope of this research, it might
have had an influence on the results presented by model overcompensation, resulting
in deviating aging factors (see chapter 3.3.4.3). While the influence of compressor ag-
ing on the emissions models could be shown to be negligible beforehand, turbine aging
could neither be excluded in the model parameters, nor quantitatively evaluated due to
the lack of determining measurements. Thus, an ‘expert evaluation’ had to be carried
out to estimate the possible impact of the polytropic efficiency on hot gas temperature
assessment and the determination of the aging factors accordingly: For an estimated
loss in polytropic efficiency of 3% in high and low pressure turbine, the estimation of
XNOx would change from 0.99 to 0.92 to compensate the decrease of hot gas tempera-
ture by turbine aging for a representative high load point. Concerning the adaptable
aging parameter XCO, it would decrease from 0.5 to 0.44 for an hypothetical low load
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point with considerably high CO emissions. At the same time, the estimated 3% loss of
turbine efficiency would decrease the overall full load power of the GT power by about
6% (when assuming compressor power to ≈ 1/2 of turbine power) and the SEV hot gas
temperature by about 30 K for a given typical turbine outlet temperature. With the
assumption of choked flow, a reduction of 30 K in turbine inlet temperature would result
in a 0.3 bar pressure drop to preserve the constant volumetric flow at a given VIGV2

position. Neither of these potentially remarkable changes can be detected from Fig. 4.6:
The pressure at the low pressure turbine inlet remains constant for defined inlet guide
vane positions. A power decrease can neither be detected in full load investigations
(Fig. 4.6 b)) nor during start up of the combined cycle (Fig. 4.6 c)). Start up points
even include GT-only operation (the lowest load points of each sequence), so that pos-
sible fluctuations from the steam cycle can be eliminated a-priori. The identification of
constant power at EV-only operation over operation time also helps justifying the theory
of the detected temperature-shift (see Fig. 3.16). The increase of temperature difference
between THPT,out and TLPT,out over operation time could also be caused theoretically by
turbine aging: As EV-only operation is controlled by the THPT,out temperature, which is
without firing the SEV directly proportional to the LPT inlet temperature, the TLPT,out

measurement would increase with lower LPT efficiency. This would, however, be ac-
companied by a drop in power output due to a significant reduction of the enthalpy
difference over the second turbine, which could not be retrieved from data (see Fig. 4.6
c)).

It can thus be concluded, that the omission of turbo set aging was valid, since it had
only negligible and non-detectable influences on the models presented.

2A given VIGV position also defines the turbine outlet temperature by the operation cycle as explained
in Sec. 3.1.2.
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4.2.3. Uncertainty Analysis

Fig. 4.7 shows the uncertainty calculations superimposed to long-term performance of
the respective emission prediction. For the NOx model, the uncertainty lay within the
accuracy range introduced by the emission measurement system. CO prediction shows a
larger uncertainty by nature, still in the range of the long-term model performance. As
the model does not include the seasonal fluctuations evoked by the pressure change in
the cooling air flow (see Fig. 4.4), a residual between theoretical uncertainty and actual
prediction performance remained.
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Figure 4.7.: Uncertainty evaluation for NOx and CO model. All scales are

normalized to a reference value.

Nevertheless, uncertainty evaluation has proven that the model has sufficient accuracy
for meaningful conclusions concerning the investigated aging-induced emission progres-
sion.

4.2.4. Sensitivity Analysis

Based on the above described uncertainty evaluation, the sensitivity analysis was per-
formed by the calculation of Sobol Indices (see C.1.2) for selected full load (NOx) and
low load points (CO). Tab. 4.3 shows the first-order Sobol indices calculated for sensi-
tivity analysis.
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Table 4.3.: Results of sensitivity analysis: Sobol Indices for input parameters at full
load (NOx) at different engine settings and low load (CO).

NOx model NOx model CO model
full load full load variation low load

THPT,out measurement 0.0040 0.0373 0.0762
shift 0.0357 0.3365 0.7086
spread (min,max) (0.1184,≈ 0)

TLPT,out 0.9227 0.6082 0.0154
Tk2 ≈ 0 ≈ 0
VIGV ≈ 0 ≈ 0 ≈ 0
mfuel,EV ≈ 0 ≈ 0
Pk2 ≈ 0 0.0086
∆pEV ≈ 0 ≈ 0
pSEV 0.0325 0.0062 0.0156
pamb 0.0036 0.0024 ≈ 0
Hamb ≈ 0 ≈ 0 ≈ 0
Tamb ≈ 0 ≈ 0
C2+ 0.0478

Unsurprisingly, Sobol Indices3 for temperature or aging-related measurements tended
to be higher than those for pressures. That is due to the fact, that temperature mea-
surements are generally more inaccurate and both phenomena (NOx and CO emissions)
are mostly temperature-driven. Regarding the NOx model, the influence of the sec-
ond combustor becomes evident. With the second combustor contributing the majority
of NOx to the overall emissions at full load settings, the model is very sensitive to the
TLPT,out measurement. Thus, the aging-influenced parameters, such as temperature shift
and ζEV have only negligible influence, since they affect only the EV combustor. As
the sequential architecture allows for a variable fuel split between the two combustors,
equivalent full load operating points exist with variations in the temperature settings.
Depending on the fuel split, the importance of the TLPT,out measurement decreases, since
more power and thus NOx formation can be shifted towards the first combustor (see 4.3
NOx model (full load variation). The CO model reacts very sensitive to all parameters
related to the THPT,out measurement, as the ignition delay is the driving force of the

3As explained in Sec. C.1.2, Sobol indices quantify the contribution of one parameter to the total
output variance with 0=no contribution to 1=entire contribution
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CO oxidation. THPT,out measurement, shift and spread contribute more than 90% to the
first order variance of the model, making it the decisive input parameter.

4.3. Artificial Neural Network Performance, Evaluation
and Comparison

Investigations of aging induced emission progression was also conducted with Artifi-
cial Neural Networks (ANN) for NOx and CO emission prediction. ANNs are proven
to be generally capable of modeling emissions from given engine measurements, with
worse RMSE (Tab. 4.4 & 4.5) than the semi-empirical models (Tab. 4.1 & 4.2) in all
investigated data subsets of this study.

Table 4.4.: Fitting accuracy and longterm results from Artificial Neural Network for
NOx prediction for engine A. Please refer to Sec. D for an explanation of
the different cases.

rRMSEcom RMSElongterm

raw 0.05 4.63
flame 0.09 2.04
flame aging 0.09 3.07
flame + amb 0.07 6.38

Table 4.5.: Fitting accuracy and longterm results from Artificial Neural Network for
CO prediction

rRMSEcom RMSElongterm

raw 0.03 0.49
flame 0.08 0.41

Results in Tab. 4.4 & 4.5 and Fig. 4.8 & 4.9 allow for some general observations:
The accuracy in the training data (i.e. the commissioning data) set was better for
all investigated cases (data subsets and emissions) than for the semi-empirical model
(compare Tab. 4.4 & 4.5 vs. Tab. 3.3 & 3.4).
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Figure reprinted from Lipperheide et al. [83].
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As the error is of the same magnitude as the measurement accuracy, the severe prob-
lem of over-fitting may be present, despite a-priori determination of the neurons. Data
subsets with more input parameters, such as ambient parameters or engine control pa-
rameters instead of the more comprehensive virtual hot gas temperatures, led to an even
higher accuracy during training (indicated by the black dots for commissioning data in
Fig. 4.8 & 4.9). Obviously, the higher number of neurons in combination with a wider
data base also allowed for a more accurate fit.

When applied to long-term data, it can be seen that this gain in training accuracy
adversely affected the actual ANN performance for long-term emission prediction. On
the long-term data set, neural networks with worse training accuracy performed better.
They obviously captured the general characteristics of the physics better and are less
prone to overfitting than datasets with the given small number of datapoints but more
parameters and neurons.

Moreover, the superior long-term performance in parameter sets with hot gas tem-
peratures compared to the raw data sets is also another justification for the chosen
calculation approach for hot gas temperatures by the mapping method (see Sec. 3.3.1).
The long-term RMSE decreased significantly for the virtual data set without aging cor-
rection compared to the raw data set. For CO, prediction could be improved from
0.49 to 0.41 (-15%) in terms of RMSE and for NOx, the RMSE dropped from 4.54 to
2.04 (-56%). This improvement is also qualitatively visible in the parity plots for NOx
(Fig. 4.8b) vs. Fig. 4.8a)) and CO (Fig. 4.9b) vs. Fig. 4.9a)).
Beside these general findings without consideration of the aging models, some results
specific to NOx and CO prediction were obtained concerning the application of the pre-
viously defined aging models and are presented in the following paragraphs.
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Unexpectedly, the long-term performance worsened from an RMSE of 2.04 ppm to
3.07 ppm when the aging model was used together with the ANN approach. A vi-
sual inspection of the residual plot in Fig. 4.8c) reveals the reason behind. Residuals
show that the NOx increase with operating time observed in measured NOx emissions
is appropriately captured and corrected by the aging model with, however, generally
larger residuals: An initial discrepancy between prediction and measurements is kept
throughout the operation time while the model without aging incorporation superim-
poses the initially negative residuals with the positive residuals at later operation times,
thus leading to a seemingly better overall performance.
As engine B showed a stronger aging effect in the physically-based model (see Fig. 4.3),
its aging performance was also tested in the framework of Neural Networks. Fig. 4.8
d) clearly shows a more distinguishable aging effect for the comparison between a ANN
without and with flame correction, leading to a 23% reduction in terms of the RMSE.
In order to investigate the root cause of the initial mismatch of engine A, the data subset
with flame temperatures and ambient conditions was tested. Fig. 4.10 shows that the
initial mismatch disappeared when the data set was enriched by ambient parameters.
However, the overall worsening of the prediction caused by the described overtraining
superimposed the aging trend with a high scatter.
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CO predictions improved slightly when the engine model was used (see Tab. 4.5),
thereby reaching similar accuracy as the semi-empirical model, when no aging model was
used (compare Fig. 4.9b) vs 4.9a) and Tab. 4.2). Yet, CO prediction shows a lenticular
distribution (Fig. 4.9b)) with a deviating emission behavior for high operation times
(Fig. 4.9c)). When investigating these residuals over operation time (Fig. 4.9 c), the
CO emission aging causing this deviation in the scatter-plot is also evident.

4.4. Impact of Operation Mode on Aging
The aging parameter THPT,out-drift shows a clear correlation with flexible operation for
the investigated GT24/GT26 fleet data (see Fig. 4.11 a)). The fleet data reveals that
gas turbine in flexible operation age faster. The scattering as visible in Fig. 4.11 was
tested against other possible influence parameters as e.g. the average load level during
operation, which showed no correlation. Also the operation time, indicated by the
colorbar, is uncoupled from the correlation.
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As a comparison, Fig. 4.11b) shows a similar result for the entire available data
set with results from insufficient data sets. Even though the scatter is increased and
outliers are present, the general trend is kept with a notable uncertainty in the high
cyclic operation region (cumulated starts ≈ 1000+). The spread of data points around
zero, especially the negative temperature drift, is physically not meaningful but caused
by the inaccuracy of the drift detection when data becomes scarce. The engines and their
inspection periods with highly cyclic operation would definitely enrich the investigation
as they provide more variance in the operation regime but had to be handled as outliers
due to their infrequent and thus unreliable data.
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The following chapter will conclude findings from this work in its two core areas. The
first part mainly summarizes the novel modeling approach, which combines emission
modeling with aging modeling for commercial long-term operation.
The conclusive part of this chapter embraces the initial motivation of this work and
takes up the application of long-term emission modeling for APM (Asset Performance
Management).

5.1. Long-term Emission Modeling
Encouraging results were obtained for NOx and CO emission prediction for a heavy duty
gas turbine in commercial operation. Measurements from operation monitoring served
as input to an engine model, by which virtual measurements, such as relevant temper-
atures, were created. The reconstruction of virtual temperatures by turbine mappings
turned out to be a reliable method for hot gas temperature estimation in the combustor.
By incorporating operation data into the engine model, these virtual measurements also
relate to the actual engine condition. A reliable NOx correlation formed on training
data uses these virtual and real measurements as input parameters and successfully
allowed for detection of deterioration in the combustion process, by comparison of pre-
dicted and measured NOx emissions. Based on both measured parameters and virtual
measurements from the same engine model, an analytic CO model was also identified
on commissioning data of the investigated gas turbines.
Particular focus has been given to the influence of aging in long-term commercial oper-
ation, which emerges as a sensible contribution requiring appropriate consideration in
the engine and emission models. In the course of this study, three main aging effects
were identified and quantified. The NOx emission progression in the EV combustor is
majorly caused by a drift in the temperature measurement, which is control variable.
Furthermore, the NOx emission progression is also affected by a change in air distribu-
tion by decrease of pressure drop.
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The phenomenon for deteriorating CO emission performance was identified as aging
induced cold gas leakage and accordingly modeled. This leakage locally extends the ig-
nition delay of the affected burners in the sequential combustor, and thus increases the
CO emission level by reducing the time available for oxidation. This aging phenomenon
was successfully modeled by grouping burners into cold and hot sections.
The physically based long-term modeling approaches for NOx and CO presented here
augment the existing research on emission modeling, which often overlooked the ever
increasing importance of long-term prediction skills.

In the framework of modeling, ANNs as a prominent representative of artificial in-
telligence in ‘big data’ were benchmarked against the physically-based modeling. It
turned out, that ANNs were capable of dealing with the investigated cases, even though
commissioning data is very small as a training set for ANNs. CO long-term prediction
by ANN was in the order of the semi-empirical benchmark modeling for all tested data
sets with varying level of design information. A clear aging trend could be detected by
the model, which could, however, not be enriched by a dedicated aging model due to
its structure. Still, a pure statistical approach with only raw input data was not able to
detect and model NOx aging phenomena correctly. When an engine model with aging
incorporation was added to the method, ANNs yielded acceptable results in the range
of the physically-based method for NOx prediction. In this case, ANNs only replaced
the NOx emission modeling but the physically-based engine model was still used for
data pre-processing. This is in accordance to reported ANN applications in literature,
where ANNs are used for fault detection in combination with detailed component-level
degradation models for training [125, 126, 127]. Thus, ANNs offer a very good alterna-
tive to semi-empirical approaches for emission modeling if all required input parameters
are available. ANNs could even outperform semi-empirical approaches when emission
behavior is difficult to model with few global parameters due to highly non-linear flow
and mixing behavior as, for example, in staged combustion.
Overall, it can be concluded, that an engine model based on OEM’s detailed know-how
is required, although ANNs have proven to successfully and efficiently master part of the
modeling scope. In order to reach satisfactory accuracy of long-term emission modeling,
at least a physically-based pre-processing step was necessary for ANNs.
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5.2. Incorporation into APM
The long-term emission modeling can also be used as a precious tool in APMs. Its
utilization in APM approaches, as discussed in the following, may promise to increase
engine availability, reduce production losses and costs while maintaining legal emission
compliance over full- and partload as well as operational flexibility to low loads.

5.2.1. Adaption of Commissioning Strategy

A major task of engine commissioning is the mapping of the NOx emissions at different
load levels. These NOx mappings are a precious source of information for the engine’s
characteristic, especially in sequential combustion with myriad possibilities of engine set
points.

With an analytic and reliable model, as available for NOx from Sec. 3.3.2, the number
of needed measurements during commissioning can be reduced. The primary task of
the measurements is the identification of the model parameters. The identified model
then allows for an entire mapping for various load levels, which were initially not mea-
sured. Such a virtual commissioning approach is based on a design-of-experiment (DoE)
method (see Appendix C.2), as performed here with an open-source toolbox developed
by Joscha Reimer [128]. The three different set points (V IGV ,THPT,out and TLPT,out),
which unambiguously define the engine’s operation, were the only input parameters to
this DoE. Remaining parameters necessary for the NOx model, such as flame tempera-
tures and pressures, were calculated accordingly from the simplified engine model. Fig.
5.1 shows a possible distribution of an optimized measurement strategy in comparison
to the status quo. The design-of-experiment achieved to potentially reduce the number
of measurements to only 30, compared to the 90 data points used for engine A (see
Tab. 3.1), while maintaining a comparable quality criterion (see Tab. 5.1) as defined in
Appendix C.2.
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to a defined TLPT,out and are thus added at the lower end of the axis.

Table 5.1.: Quality criterion for existing commissioning strategy and DoE for
different initial parameter estimations (0,±20 % deviation from ‘true’
parameters)

-20% 0% +20%
status quo 0.27 0.06 0.02
DoE 0.49 0.1 0.03

A virtual commissioning strategy for CO could not be performed. The DoE formu-
lation of CO was in this case ill-conditioned. Without the consideration of ambient
temperature, which is of course no control parameter, pSEV and Thg,SEV do not vary
independently from each other in the critical load level for CO emissions. However,
with only ≈ 25 data points used for the parameter identification in the present study,
there is less need for a reduction of measurements. Since the check of NOx emission
compliance is only one task during commissioning, the adaption of the described DoE
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strategy to the actual engine demands consideration of other relevant scopes, such as
pulsation mappings, proof of guaranteed performance and start-up procedures.

5.2.2. Impact of Operation on Aging

The established link between an aging mechanism, as investigated in this work, and the
operation regime provides the possibility for a more accurate planning of future main-
tenance timing and scope. This may eventually improve asset reliability, availability
and maintenance cost. Concurrently, it can be used to optimize the business case for
plant operators by properly accounting for lifetime and maintenance cost impacts when
defining the target operation profile.

5.2.3. Avoidance of Manual Adjustments

Findings from this work can be used to recalculate optimum engine parameters for an
aged engine. As a long-term goal, obtained optimum control parameters can be applied
online to engine control during operation to meet emission limits over component life-
time while maintaining optimum engine performance with low maintenance costs. The
effect depicted in Fig. 5.2 could thus be avoided. A frequent re-adjustment of turbine
outlet temperatures opposite to the trend of measurement deviation (see Sec. 3.3.4.1)
was manually performed by service teams during the service interval. The use of the
detected and validated measurement deviation at the turbine outlet temperature mea-
surement could instead correct the temperature set parameter online, recovering this
aging phenomena by simple control interventions and thus ensuring a stable engine
operation throughout lifetime.
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Figure 5.2.: re-adjustments of control parameter THPT,out or respective turbine inlet
control temperature during operation time to maintain hot gas
temperature and balance overheating caused by apparent temperature
drift. Scales not shown due to confidentiality.

5.2.4. Adaptive Control Concept

If aging is unrecoverable, gas turbine operation can still balance its negative effects by
an advanced control system, incorporating aging and emission models to a predictive
higher-level control system. The temperature spread at the high pressure turbine outlet
is for example such a non-recoverable aging phenomenon. With ongoing aging progres-
sion, low load levels get closer to the CO emission limit, which could, for example, be
compensated on the expense of other performance or emission parameters.
Such adaptive re-adjustments of the operational concept clearly require an optimization
by, at least, trial-and-error, which could be done virtually with the developed models.
One could also think of a remote optimization system to automatically adjust the set
points of the control concept, without touching the actual safety-relevant engine con-
trol. The aging and emission models developed here are valuable, but not the only,
input functions to this optimization. It has to incorporate various further constraints
such as combustion instabilities and lifetime reduction. In this context, special focus
must also be given to the exact optimization target, which might differ by use case from,
for example, maximum power output to efficiency to lifetime.
Aging and emission are thus a key component of a future optimization system. Its fi-
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nal application, however, requires a thorough analysis and definition of the operator’s
specific targets and consideration of other aspects of gas turbine operation.

5.2.5. Monitoring, Diagnostics & Health

The most obvious application of aging-induced emission analysis and its modeling is
monitoring and diagnostics during commercial long-term operation. The models were
able to represent the engine behavior for several years of operation between major over-
hauls with an adequate accuracy when accounting for aging effects, reducing the pre-
diction error of emission models significantly to about 54%(NOx) and 60%(CO).
The reliable description of NOx and CO emissions in aged combustors may eventu-
ally help to determine engine health parameters for commercial long-time gas turbine
operation. Quantifying the influence of engine aging on emissions allows for an online
evaluation of the engine state by emission monitoring solely and emerges as a meaningful
indicator for a condition-based maintenance. Especially in combination with the fleet
aging analytics, the validated emission models are a powerful tool for scenario calcula-
tions, where emission progression is predicted for different stages of aging, depending
on the operation regime of the engine (Sec. 5.2.2).

5.3. Gas Turbine 4.0 in Asset Performance Management
Improvement potential by the findings of this work can be identified as examples of
different levels of APM. Discussed concepts correspond to the initially presented APM
scheme (see Fig. 2.1), which can now be enriched by application examples in Fig. 5.3.
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Figure 5.3.: Incorporation of discussed approaches into different APM levels as
defined in [32]

By means of reliable emission and aging models, turbine outlet temperature mea-
surements can be evaluated on the sensor level and be identified as the root cause for
deviations on the control level. The validated and modeled aging phenomena can serve
as an indicator for monitoring and diagnostics in performance and health management.
Its extension to the fleet also allows for aging prognostics as a function of the operation
regime. Examples for decision support in maintenance are the proposed adaption of
commissioning strategy to save on costly commissioning measurements, the adaption of
the control concept to aging and the recovery of aging phenomena. These approaches
are bricks of the APM pyramid, building the foundation to a future possible Asset Man-
agement Cockpit to be applied by the gas turbine manufacturer (see Fig.2.1).
In the long-run, these approaches contribute to the integral goal of a digitally supported
gas turbine 4.0. As mentioned in the introduction, the digitalization creating physical
twins of physical assets is a key factor to economical success of machine fleets of all
kinds. Especially for gas turbine use in the competitive power market environment, its
ongoing optimization is essential, for which digital support offers a cost-effective possi-
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bility compared to costly component development. In the framework of a gas turbine
4.0., emission-based digital approaches are just one aspect. In the long-term, a specific
evolution of sensors overcoming limits of todays’ measurement technology and an inte-
gration of design and manufacturing processes are imaginable. This ongoing combined
effort could bring the gas turbine to the digital century, ensuring a continuous optimiza-
tion of engine performance in the entire fleet, which could in return improve the digital
‘gas turbine twin’ by an ongoing data generation.
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A. Thermodynamical Modeling

Thermodynamical modeling is used for the calculation of humidity in the exhaust gas,
as explained in the following.

A.1. Global O2 Element Balance
The measured relative humidity (RH) at the intake is translated into the water satura-
tion pressure for a given ambient temperature by:

xH2O = psat
pamb
RH − psat

(A.1)

The saturation pressure psat for the given ambient temperature is calculated by an
Antoine-like equation from [129]. The composition of dry air is simplified to 21% O2 and
79%N2, so that oxygen content of the humid air is calculated to xO2 = (1− xH2O) · 0.21.
The global air-to-fuel equivalence can be obtained from the measured oxygen content in
the exhaust gas by:

λ = 0.21
0.21− xO2,exhaust

(A.2)

Combustion is assumed to be complete and with CH4 only, so that the exhaust compo-
sition can be derived. Humidity is increased by 2molH2O

1molfuel ,
1molCO2
1molfuel is formed, 2·(λ−1)molO2

1molfuel

and 2·(λ)· 0.79
0.21molN2

1molfuel and
2·(λ)·

xH2O
xO2molO2

1molfuel remain in the exhaust. Total moisture content is then

calculated by the fraction of xH2O,exhaust =
2+2·(λ)·

xH2O
xO2molO2

1molfuel to the total specific amount
of exhaust gases.
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B. Chemical Modeling

Chemical modeling uses detailed information of underlying elementary reaction mech-
anisms to investigate kinetics in any chemical reaction. In the framework of this work,
special focus is given to pollutant formation.

B.1. Reaction Mechanism
Simple gross chemical equations are not sufficient when assessing chemical reactions
beyond stochiometry and energy balances. The investigation of time-resolved reaction
progress needs information of the underlying elementary reactions and their kinetics, as
each of them could determine the overall speed of reaction. Those elementary equations
for a certain chemical reaction (combustion of natural gas in this particular case) are
then combined to a reaction mechanism. Two of the mechanisms available are used in
the present study and are presented in the following.

B.1.1. Gri30

The Gri30 [130] is a complementary mechanism to model natural gas combustion, in-
cluding NOx formation and reburn chemistry, which has been the industry standard for
the last two decades [131]. The Gri30 is developed and under ongoing optimization at
UC Berkeley. The latest version features a total of 53 species and 325 reactions, which
are continuously tested against experimental data, such as ignition delays and species
profile measurements.

B.1.2. Saudi Aramco Mechanism

Advances in measurement techonologies, such as shock tubes and laser diagnostics, im-
proved the accuracy of measured kinetic coefficients and urged to re-develop reaction
mechanisms. Among these, the Saudi Aramco Mechanism (AramcoMech) [106], devel-
oped at the National University of Ireland, Galway, is used in this work. Throughout
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the development of the AramcoMech, special attention was given to the accurate as-
sessment of varying fuels from C1-C4 and their influences on combustion kinetics. Still,
NOx chemistry is not in the scope of this mechanism, so that Gri30 is used in this study,
when referring to NOx kinetics.

B.2. Reactor Modeling
The elementary chemical reactions as defined in the reaction mechanism above have to be
connected to a reactor model in order to allow for the simulation of species concentration,
pressure and temperature and their progress over time. The model thus serves as a
framework for the interaction between the defined elementary reactions of the reaction
mechanism. As the focus of reactor modeling is rather on the chemical phenomena than
on flow or corresponding mixing, the underlying only assume very basic flow states, such
as a batch reactor, a mixed flow reactor and a plug flow reactor (see Fig. B.1). The
flow states in return define the governing influences on a reaction, which is the available
residence time at a certain species concentration and temperature.

B.2.1. Batch Reactor

The batch reactor has no in- or outflows and is characterized by a uniform composition
inside at each timestep, thus a perfect mixing. The uniform composition at a certain
time results from the progress of reaction, starting from the initial species concentration,
and the initial temperature and pressure only. These parameters, however, change with
time as reactants are continuously converted exo- or endothermically to products until
equilibrium, so that the model has to be solved time-dependently with an adequate time
resolution. A batch reactor model thus gives the concentration trends over time under
the assumption of a perfectly mixed fluid, evolving from an initially set state.

B.2.2. Mixed Flow Reactor

The so-called mixed flow reactor similarly assumes a perfect and immediate mixing
inside the reactor. In contrast to the batch reactor, a mixed flow reactor features in-
and outflow. While the state of the reactants and their composition at the inflow is set,
the outflow is assumed to correspond to the state of the species inside the reactor, which
in return results from the total residence time inside the reactor at steady conditions.
The residence time is yielded by the available reactor volume, the amount of incoming
flow and the occurring temperature at reaction progress. Thus, the resulting outflow
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Batch Plug flow Mixed flow

dV

Figure B.1.: Basic chemical reactor model configurations

cannot be modeled time-dependent but reaches a steady state for the incoming flow
composition and available reactor volume given.

B.2.3. Plug Flow Reactor

A plug flow reactor follows a hypothetical volume of reactants of an initial state through
the reactor with an initial velocity. The considered volume is assumed to be perfectly
mixed inside but with no interactions to its neighboring volumes. A comprehensive
understanding of the plug flow reactor is thus a row of sequential batch reactors, each
with an adequately small volume to model one time step of the reaction. Another
realization of a plug flow is a single batch reactor moving along in space with each single
time step. There, its velocity may change by a transition in density of the fluid (for
example by temperature or non-equimolar reactions), which can also be accounted for
by introducing the simple relation of velocity v, time t and distance travelled s for each
batch reactor time step: v = s

t
. The final product composition after the given traveling

time or distance of the single batch reactor is thus at steady state as it evaluates the
transient single batch reactor after the fixed traveling distance.
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C. Mathematical Methods

Mathematical methods employed in this work are two statistical methods for very spe-
cial applications. The polynomial chaos expansion can replace Monte-Carlo methods
for uncertainty assessment with the advantage of less computational power and the pre-
sented design of experiment approach estimates the best data distribution for parameter
identification of a known correlation.

C.1. Polynomial Chaos Expansion
The polynomial chaos expansion is able to assess uncertainty and sensitivity by creating
a statistical metamodel of the actual model. The following chapter explains the basic
approach and its application to the current work by the UQ Toolbox [113] for Matlab,
which is used in this work.

C.1.1. Evaluation of Uncertainty

The polynomial chaos expansion of a computational model with output Y and function
M of a random input vector with independent components X (described by a joint
density probability function ρ) is defined as the sum of multivariate polynomials Ψα(X)
and corresponding coefficients yα.

Y = M(X) =
∑
α∈A

yαΨα(X) (C.1)

The multivariate polynomials Ψα(X) are choosen to be orthonormal to a probability
distribution ρ(ξ). ∫

Ψα(ξ)Ψβ(ξ)ρ(ξ)dξ = δj,k (C.2)

As for the probability distribution of uncertain input parameters there are different
assumptions possible. A common approach is to assume a Gaussian distribution for
uncertainty in the input parameters with:
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ρ(ξ) = 1√
2π

exp−ξ
2/2 (C.3)

In the special case of a Gaussian as defined probability distribution, the polynomials
must be of a Hermite Polynomial shape to fulfill orthonormality.

Ψα(ξ) = Heα(ξ)√
α!

(C.4)

,with

Heα(ξ) = (−1)α · exp(ξ2) · dα
dxα exp(−ξ2) (C.5)

In order to identify the coefficients yα the attribute of orthonormality is used. Equa-
tion C.1 is multiplied with Ψβ which corresponds to a Galerkin Projection:

yα = E [M(X) ·Ψα(X)] (C.6)

The computational intense analytic solution of the integral can be simplified by Gaus-
sian Quadrature, using a finite formulation of the integral at N locations with weights
w(i),

yα =
∫
M(ξ)Ψα(ξ)ρ(ξ)dξ ≈

N∑
i=1

w(i)M
(
ψ(i)

)
Ψα

(
ψ(i)

)
(C.7)

so that yα of the PCE model are fully defined from M
(
x(i)

)
actual values from the real

model.
When calculating the statistical moments, the above introduced PCE metamodel

enables a direct assessment of the expectation value µ and variance σ from coeffecients
yα. The expectation value of the model M for normally distributed input parameters is
defined and expressed in PCE as:

µ(M) =
∫
M(ξ) · ρ(ξ)dξ =

∑
α
yα

∫
ρ(ξ)Ψα(ξ)dξ (C.8)

Since the Hermite Polynom Ψ0 ≡ 1 by definition, the expression ∫
ρ(ξ)Ψα(ξ)dξ is sim-

plified ∫
Ψα(ξ)ρ(ξ)dξ =

∫
Ψα(ξ)Ψ0(ξ)ρ(ξ)dξ = 〈Ψα,Ψ0〉 = δα,0 (C.9)

so that the expectation value can directly be drawn from coefficient y0:

µ = E [M(X)] = y0 (C.10)

Variance σ is defined as the expectation of the squared deviation of the variable M(X)
from its previously calculated mean µ(M). As the square of the polynomials introduces
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the Kronecker symbol by the definition of the orthonormal basis in C.1, the variance is
reduced to the sum of squared coefficients yα:

σ = E
[
(M(X)− µ(M))2] =

∑
α∈A,α 6=0

(yα)2 (C.11)

C.1.2. Variance-based Sensitivity Analysis

Additionally, PCE offers a possibility for fast computation in variance-based sensitiv-
ity analysis by first-order Sobol Indices. The Sobol Index Sv of input parameter Xi,
determines the variance of output Y with Xi fixed at its ‘real’ value x∗i :

Sv = V ar[Y |Xi = x∗i ]
V ar[Y ] (C.12)

Since the ‘real’ value x∗i is not known, it is replaced by the expectation value of Xi:

Sv = V ar[E[Y |Xi]]
V ar[Y ] (C.13)

This first-order Sobol Index can thus be interpreted as the contribution of Xi to the
overall output variance or the change in variance if the investigated input parameter Xi

was fixed. The Sobol decomposition itself is expressed by:

Y = f0 +
∑
i=1

fi(xi) +
∑
i<j

fi,j(xi, xj) + ..., (C.14)

or in more general terms:

f(x) = f0 +
∑

v⊂{1,...,g}
v 6=∅

fv (xv) (C.15)

by introducing v := {i1, ..., ik} ∈ {1, ..., g} and the subvector xv denoting components
contained in v. A condition of the function is their orthogonality, thus:

∫ 1

0
fi1,i2,...,is (Xi1, Xi2, ..., Xis) dXk = 0, for k = i1, ..., is (C.16)

The expectation value, which is defined as the integral over X, can then be calculated
for the entire input parameter set:

f0 = Y (C.17)

The calculation of conditional expectation values (with fixed input Xi, thus not subject
to definition C.16) further leads to for the first two parameters Xi and Xj:
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fi (Xi) = E (Y |Xi)− f0

fij (Xi, Xj) = E (Y |Xi, Xj)− f0 − fi − fj
(C.18)

By this feature, variance is easily computable:

∫ 1

0
f2(X)dX − f2

0 =
d∑
s=1

d∑
i1<...<is

∫
f2
i1,...,i2dXi1, ..., dXis (C.19)

leading to

Var(Y ) =
d∑
i=1

Vi +
d∑
i<j

Vij + ...+ V12...d (C.20)

, where
Vi = VarXi (EX∼i (Y |Xi))
Vij = VarXij

(
EX∼ij (Y |Xi, Xj)

)
− Vi − Vj

(C.21)

Traditionally, Sobol Indices are also evaluated by computationally expensive Monte-
Carlo-Methods. Instead, the PCE can be rearranged into summands of increasing order.
Equation C.1 is reordered to:

M(X) = y0 +
∑

u⊂{1,...,g}
u 6=∅

∑
α∈Au

yαΨα(X) (C.22)

with the truncation set Au:

Au = {α ∈ A : k ∈ u⇔ αk 6= ∅, k = 1, ..., g} (C.23)

A comparison of equation C.22 and equation C.15 provides:

fv (xv) =
∑
α∈Av

yαΨα(X) (C.24)

Finally, the variance C.20 can be directly drawn from the coefficients of the PCE:

Var[fv (xv)] =
∑

v⊂{1,...,g}
v 6=∅

(yα)2 (C.25)

C.2. Design of Experiment
Design-of-Experiment (DoE) [128] approaches allow for an a-priori choice of variable
variations in an experiment. DoE methods can, for example, optimally define the choice
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of investigated experimental set-ups to cover a certain space of possible variations when
no additional information of analytic relation between parameters exists. Moreover,
the functional dependence of experimental variables is often already known by physi-
cal laws. Experiments are then only conducted to yield parameters, which adapt the
known functional shape. In this case, model based design of experiments may iden-
tify the experiments with the highest amount of information in the first place, so that
combinations of variables with less information on the overall function behavior can be
waived from possibly costly experimental agendas. Mathematically, this model-based
design of experiment can be expressed as a minimization of the variance in the identified
parameters, which would in reality be derived from selected experimental runs. In the
DoE method, equivalent simulations obviously replace the experimental runs.
Given an arbitrary model function with measurement points ω and a vector of n pa-
rameters in Rn

f : Ω× Rn → R (C.26)

, the set Tvar := {t1, ..., tm} ⊆ Ω is the potentially available set of all measurements.
As a part of these, the subset S ⊆ Tvar contains the selected measurements only. The
vector (ws)i denotes the location of these selected measurements with:

(ws)i =


1 if ti ∈ S
0 else

(C.27)

Optimal measurement points (and thus the definition of the subset S) are then selected
by a minimization of the prediction error between ‘true’ and obtained model outputs.
F (p) are the model outputs of f(ti, p) for the set Tvar and ‘unknown’ parameter vector
p, while η are the functional values of a pre-defined true parameter set p̂, which serves
in this case as the non-existent actual experimental results. The deviation between
‘true’ outputs η and the F (p), weighted by the expected output standard deviation
with ∑ := diag (σ1, ..., σm).

min
p⊆Rn

∥∥∥∑−1 (F (p)− η)
∥∥∥2

2 (C.28)

The definition of ‘true’ parameter set can either be based on previous experimental
findings or educated guesses, when no data exists. Apparently, an out-of-range choice
of the ‘true’ parameters would influence the method’s outcome. However, this guess
is also an inevitable step to the mathematical process, when no previous knowledge on
parameter magnitudes is available. The ‘unknown’ parameter vector p itself is identified
at Tvar. Given a linear approach for model F (p)
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F (p) = Ap+ b (C.29)

, Equation C.28 becomes:
min
p⊆Rn

∥∥∥∑−1 (Ap+ b− η)
∥∥∥2

2 (C.30)

The resulting vector of parameters p?S can then be understood as a realization of the
normally distributed probability vector

P ?
S ∼ N (p̂, CS) (C.31)

with covariance matrix
CS :=

(
AT

∑−1WS
∑−1A

)−1 (C.32)

around actual values equal to expectation value p̂. In this notation, WS is the diagonal
matrix of weights ws. The best accordance between expectation value p̂ and obtained
value p?S would be reached with the smallest variance of P ?

S , i.e. the diagonal entries
of matrix CS being as small as possible. The normalized trace of matrix CS is thus a
common approach to quantify the quality criterion φ of the method and used in Sec.
5.2.1. The initial problem of minimizing experimental effort to obtain the best fitting
parameters p is thus reduced to the following minimization problem:

min
w⊆{0,1}mvar

φ (C(w)) (C.33)

As the vector w is discrete between zero and one, the minimization problem can be solved
by simply trying all possibilities, which sum up to 2m. Clearly, this approach is not
applicable with increasing length m of the vector. In this case, the discrete optimization
problem is converted to a continuous one and solved accordingly with common solvers,
setting an initial value for p = p0, where optimization starts. Eventually, the continuous
solution is re-transformed to the discrete states with heuristic methods, such as rounding.
The method can be improved by a sequential approach, where the initial parameter is
readjusted after each new measurement so that the influence of the initial guess p on
the method is reduced. The same reduction of dependency on the initial boundary can
also be reached by setting an additional limit to possible values for p, which is derived
from already conducted method runs.
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D. Artificial Neural Networks

Artificial Neural Networks (ANN) mimick the structure of a human brain in an abstract
model. As human brains, ANN learn from experience, i.e. training data, by adapting
their inherent parameters. ANN are used commonly used for pattern recognition in
classification and clustering problems and for regression and statistical modeling of
complex systems.

D.1. Neural Network Design
The ANN consists of multiple interconnected artificial neurons (Fig. D.1), holding infor-
mation about the system. The artificial neuron itself is simplistic by nature, processing
an input signal yj from other nodes or neurons to an output signal yk by weights w
as a measure for each inputs significance and transfer or activation functions F with a
threshold value Θ, which eventually defines the binary output of a neuron.

Mathematically, the input is processed by the weights:

su =
b∑

j=a
(yj · wu,j) + wu,0 (D.1)

, where wu,0 is called the bias, which allows the neuron to have an output in the case of
zero input. The output is calculated by the transfer function:

yu = F (su) (D.2)

The inherent parameters weights and thresholds are adjusted during learning to mini-
mize a defined error function for the problem.

D.1.1. Hidden Neurons

The design of neural networks can mainly be influenced by the number of neurons in
the hidden layer, while the number of hidden layer is usually set to one for standard
fitting problems [117]. According to Kruse et al. [132], the number of neurons should
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Figure D.1.: Schematic representation of an artificial neuron as in [117]

be high enough to cover all expected characteristics. However, exceeding this minimum
necessary number increases the risk of overtraining. This behavior is comparable to a
polynomial fit of a high order in the magnitude of grid points available, which would
lead to a very accurate fit on the training data set, but also to an underestimation of
the general trend in favor of modeling local deviations. Especially in neural network
training with an unusually small number of data points, the choice of neurons is thus
decisive for the success of the method.

D.2. Training Procedure
The progress of training can either be supervised, when known targets are present for
training, or unsupervised, when underlying interrelationships in the data itself must be
found. As ANN are used in this study for regression analysis, only the idea behind
supervised learning will be described in the following. the goal of ANN supervised
training is the minimization of the error e between its own predictions yANN and the
targets o.

e = o− y (D.3)

The adjustment of thresholds and weights in the neuron are then done according to the
Delta-rule with learning rate η:

123



D. Artificial Neural Networks

∆Θ = −η(o− y)
∆wu,j = η(o− y)xu,j

(D.4)

The Delta-rule thus simply shifts thresholds and weights in the direction of decreasing
error: If the error is greater than zero, less neurons should be transmitted by the network.
In this case, weights should decrease, while threshold are increased according to the
Delta-rule (Eq. D.4) to reduce neuronal network output. For a simple case just a
negotiation, where inputs are inverted, a graphical interpretation of the problem as in
Kruse et al. [132] helps to understand the error minimization process by the Delta-rule.
When extended to multilayer problems with input, hidden and output layer, this simple
form of the delta rule fails to train ANNs, since the sequential route through different
neuron layers cannot be considered.
Werbos [133] overcame this shortcoming by using differentiable transfer functions as for
example the logistic function instead of simple jump functions with a threshold only and
using a gradient-based description of the minimization process. With a differentiable
formulation of the transfer function, the error function can be derivated with respect to
the weights of a single neuron u: The total error is the sum of the error of each output
neuron v ∈ Uout

e =
∑

v∈Uout

ev. (D.5)

Since the error only depends on the weights ~wu as a function of the input netu = ~wu · ~inu,
the gradient of the error yields:

~5~wu · e = ∂e

∂ ~wu
= ∂e

δnetu
· ∂netu

∂ ~wu
(D.6)

With netu = ~wu · inu, the second factor yields:

∂netu

∂ ~wu
= ~inu (D.7)

The first factor must consider the successor (‘succ’) neurons neurons s = succ(u) until
the output layer v. With the definition of the total output error e = ∑

v∈Uout (ov − outv)2

the derivation can be expressed as

∂e

∂netu
= −2 ·

∑
v∈Uout

∑
s∈succ(u)

(ov − outv) ∂outv
∂nets

· ∂nets

∂netu
= 2 · ϑu (D.8)

, where ϑu is chosen to abbreviate the term in the following. Rearrangements of the
sums and the definition of net input as a function of the preceding p outputs from
predecessor (‘pred’) neurons
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D. Artificial Neural Networks

nets = ~ws · ~ins =
 ∑
p∈pred(s)

wsp outp

−Θs (D.9)

yields a recursive calculation of ϑu:

ϑu =
 ∑
s∈succ(u)

ϑs wsu

 · ∂outu

∂netu
(D.10)

A more detailed mathematical description of this backpropagation process can be found
in Kruse et al. [132]. Accordingly to the above-described Delta-rule, weights are finally
changed into the direction of decreasing errors for the backpropagation process:

∆~wu = −η2 ·
~∇~wu · e = η · ϑu · ~inu (D.11)
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[106] Wayne K. Metcalfe, Sinéad M. Burke, Syed S. Ahmed, and Henry J. Curran. A
hierarchical and comparative kinetic modeling study of C1- C2 hydrocarbon and
oxygenated fuels. International Journal of Chemical Kinetics, 45(10):638–675,
2013.

[107] Emile Webster. Drift in type k bare-wire thermocouples from different
manufacturers. International Journal of Thermophysics, 38, 05 2017. doi:
10.1007/s10765-017-2210-1.

[108] Hans-Georg Münzberg and Joachim T. Kurzke. Gasturbinen: Betriebsverhalten
u. Optimierung. Hochschultext. Springer, Berlin, 1977. ISBN 3540080325.

[109] Ebi A. Ogiriki, Yiguang G. Li, Theoklis Nikolaidis, ThankGod E. Isaiah, and
Gowon Sule. Effect of Fouling, Thermal Barrier Coating Degradation and Film
Cooling Holes Blockage on Gas Turbine Engine Creep Life. Procedia CIRP, 38:
228–233, 2015. ISSN 22128271. doi: 10.1016/j.procir.2015.07.017.

[110] Rainer Kurz, Klaus Brun, and Meron Wollie. Degradation Effects on Industrial
Gas Turbines. Journal of Engineering for Gas Turbines and Power, 131(6):
062401, 2009. doi: 10.1115/1.3097135.

[111] Rainer Kurz and Klaus Brun. Degradation in Gas Turbine Systems. In ASME
Turbo Expo 2000: Power for Land, Sea, and Air, page V002T03A003, 2000. doi:
10.1115/2000-GT-0345.

[112] Norbert Wiener. The homogeneous chaos. American Journal of Mathematics, 60
(4):897–936, 1938.

[113] Stefano Marelli and Bruno Sudret. UQLab User Manual– Polynomial Chaos
Expansions.

[114] Stefano Marelli, Carlos Lamas, and Bruno Sudret. UQLab User Manual -
Sensitivity analysis.

[115] Emerson Process Management. Rousemount 3051 Pressure Transmitter, Catalog
2008-2009.

137



Bibliography

[116] Vaisala. Vaisala Combined Pressure, Humidity and Temperature Transmitter
PTU300, 2008.

[117] Magnus Fast. Artificial neural networks for gas turbine monitoring. Doctoral
Thesis, Division of Thermal Power Engineering, Department of Energy Sciences,
Faculty of Engineering, Lund University.

[118] M. Fast, M. Assadi, and S. De. Development and multi-utility of an ANN model
for an industrial gas turbine. Applied Energy, 86(1):9–17, 2009. ISSN 03062619.
doi: 10.1016/j.apenergy.2008.03.018.
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