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Abstract

Modern parallel computers are consistently achieving more computing power in re-
cent years. The size of the hardware components decreases continuously and, at
the same time, parallel program codes become more complex. As a result, stability
and reproducibility and consequently performance variation in particular, are be-
coming more and more important. While other approaches are already investigating
load imbalances at the software-level or architectures at the microprocessor-level for
example, an important factor that is present in every measurement on every high-
performance computer has not been investigated so far: The node-level performance
variation. Therefore, this bachelor thesis first examines the performance of the in-
dividual computing nodes of the two clusters at RWTH Aachen University and how
large the variations within these measurements are. With the three well-known and
widely accepted benchmarks Linpack, HPCG, and STREAM, individual aspects of
both systems are strained and tested so that many important components are exam-
ined in single-node measurements. After statistically analyzing the collected data,
the temporal variations of the individual nodes as well as the spatial variations at
cluster-level are quantified.

In the second part of this thesis, the causes of the found variability are systemat-
ically investigated. Besides the separate long-term investigation of nodes identified
as outliers in repeated measurements over a period of one and a half months, various
other factors are systematically examined. As possible causes, the operating system,
the position of the nodes within the cluster and its racks, unfinished zombie and or-
phaned processes, and impairment of neighboring nodes in the form of heat leaks
are considered. Additionally, the multi-threaded STREAM benchmark is analyzed
with a different amount of OMP threads.

Since the development of performance and its variation over a longer period of time
is an exciting research topic, which contributes in particular to our understanding
of variations and complex interrelationships within the parallel computer, a toolkit
for automated measurement and data acquisition is developed within the scope of
this bachelor thesis. This enables the integration of benchmarks into the day-to-day
operation on both clusters to be fully automated evaluated with monthly reports.
The data obtained in this way form a basis for future research and allow a better
insight into the run-to-run variation also with regard to the implementation of state-
of-the-art solutions and their evaluation.

Keywords: Performance, Performance Variability, Node-Level, Benchmark Test-
ing, Parallel Computing, High Performance Computing, HPC






Kurzfassung

Moderne Parallelrechner erreichen in den letzten Jahren bestandig mehr Rechenleis-
tung. Dabei nimmt die Grofle der Hardwarebestandteile durchgehend ab und gleich-
zeitig werden die parallelen Programmcodes immer komplexer. Dadurch gewinnt die
Stabilitat und Reproduzierbarkeit und folglich insbesondere auch die Performanceva-
riation immer mehr an Bedeutung. Wahrend andere Ansétze bereits beispielsweise
Ungleichgewichte der Lastverteilung auf der Software-Ebene oder die Architektu-
ren auf Mikroprozessor-Ebene untersuchen, wurde ein weitere wichtige Ebene eines
Hochleistungsrechner bisher nicht weiter untersucht: Die Node-Level Performance-
variation. Daher untersucht diese Bachelorarbeit zunéchst, welche Performance die
einzelnen Rechenknoten der zwei Cluster der RWTH Aachen University erreichen
und wie grof3 die Variationen innerhalb dieser Messungen sind. Mit den drei be-
kannten und weit akzeptierten Benchmarks Linpack, HPCG, und STREAM werden
jeweils einzelne Aspekte beider Systeme betrachtet und getestet, so dass insgesamt
viele wichtige Konponente in single-node Messungen untersucht werden. Durch die
statistische Analyse der gesammelten Daten kann die zeitliche Variationen der Kno-
ten sowie die rdumlichen Variation auf Cluster-Level quantifiziert werden.

Im zweiten Teil der Arbeit wird systematisch den Ursachen der aufgefundenen
Variabilitat nachgegangen. Neben der gesonderten Betrachtung von als Ausreifler
identifizierten Knoten iiber einen Zeitraum von anderthalb Monaten werden syste-
matisch weitere Faktoren mit in die Uberlegungen hineingezogen. So werden das Be-
triebssystem, die Position der Knoten innerhalb des Clusters und seiner Racks, nicht
beendete verwaiste oder Zombie-Prozesse sowie Einfliisse benachbarter Rechenkno-
ten in der Form von deren Abwérme betrachtet. Zuséitzlich wird die Speicherband-
breite mit verschiedenen Anzahlen an OMP Threads untersucht.

Da die Entwicklung der Performance und ihrer Variation iiber einen langeren
Zeitraum ein spannendes Forschungsthema ist, welches insbesondere zu unserem
Verstéandnis der Variation und komplexeren Zusammenhéangen innerhalb des Paral-
lelrechners beitragt, wird im Rahmen dieser Bachelorarbeit ein Toolkit zur automa-
tisierten Messung und Datenerfassung entwickelt. Dieses ermoglicht es, automatisch
Benchmarks in den Normalbetrieb beider Cluster zu integrieren, diese vollautomati-
siert auszuwerten und in monatliche Berichte zusammenzufassen. Die so gewonnenen
Daten konnen eine Grundlage fiir zukiinftige Forschung bilden und kénnen einen bes-
seren Einblick in die run-to-run Variation auch im Hinblick auf die Implementierung
von state-of-the-art Losungen und deren Evaluation ermoéglichen.

Stichworter: Performance, Performancevariation, Node-Level, Benchmark Tests,
Parallelrechner, High Performance Computing, HPC
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1. Introduction

In recent years, several trends within modern high-performance computer systems
can be recognized. On the one hand, the hardware size is continuously decreasing,
while on the other hand, the complexity of the software and hardware is increasing at
the same time. With a yearly performance growth of approximately 85% [12], we are
on our way to exascale systems that are capable of executing at least one EFlop/s,
or a billion billion (i.e. a quintillion) calculations per second. Thus, the reliability
and stability of these machines and the reproducibility of experiments executed
on them are becoming more and more the focus of recent research. Therefore,
performance variations should be further investigated as they impact the overall
amount of work that can be done on a cluster and how reliable a measurement
is, affect the development cycle for applications and might increase energy costs.
Several studies show that variation is not only a major problem on all modern parallel
computers [4, [7, 28], 34, [41], 46], but also that variation is increasing [I}, 26, 27].
A factor influencing every measurement and application run on a highly parallel
computer and that has not yet been sufficiently researched is the variation at node-
level. Therefore, this thesis will investigate the node-level performance variation.

Variations in performance, which a user typically experiences in different long ex-
ecution times of their program, can lead to many unwanted negative effects resulting
in sub-optimal productivity on high-performance computing (HPC) systems. Since
the variations in runtime always deviate downwards from the best-case runtime, the
runtime variability has always negative effects on a systems overall performance, i.e.
the variation is never better than the optimally achievable performance [41].

Performance variation determines, among other things, how much actual work
can be done on a system. For example, consider a highly parallel job that runs
simultaneously on 1,440 cores and that has multiple synchronization points within
its code, which ensure that the next program section is entered by all processes at
the same time. If all cores have to wait for a single minute because one single core
executes the code a little slower than the others, a lot of computing time remains
unused. In this example, this wastes 24 core-hours, or a whole day of computing
time. Therefore, variation at node-level should not be neglected. When static load
balancing is used, one slow node not only wastes a lot of computing time, but also
deteriorates the overall performance of a multi-node job.

From the perspective of a user of the cluster, it is moreover desirable to get
a constant performance. An important task in development is the performance
tuning of an application, which is improving the runtime or overall performance
by making changes to the program code. However, these modifications can only
be evaluated by executing the application on the respective system and compare
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the results afterwards. If significant run-to-run performance fluctuations occur now,
wrong conclusions could be drawn and actual deteriorations could be identified as
improvements or vice versa. In practice, a single change is therefore often evaluated
by repeatedly running the program several times. This in turn is not the best use
of resources, as otherwise multiple jobs could run and more users could be served,
instead of running a single program repeatedly.

Most workload manager like LSF, PBS or SLURM rely on user-provided estimated
runtime to schedule work. In the present of variability, a cautious user hence over
estimates the walltime of a job, which causes the job scheduler to operate on poor
information and might lead to a inefficient scheduling on the system. Any job that
overruns the requested batch time is usually terminated and will therefore either
loss its progress since the last checkpoint, or in the case the job does not have any
check points, the entire run will be lost. These all contribute to the loss of user
productivity.

Furthermore, the identification and elimination of performance variation provides
consequently more performance “free of charge” By detecting and avoiding the
causes, considerably more performance can be achieved without making any changes
to or upgrading the hardware. Examples are speedups of 2.4x by mitigating OS
interrupts with simultaneous multi-threading [29], 1.9x when optimizing the code
to avoids prior load imbalances [13] or 28% more peak performance on a 1,736-node
partition after resolving Snoope Filter conflicts [34].

In addition, political decisions and the allocation of research funds are often influ-
enced by the peak performance achieved in the High-Performance Linpack (HPL) [11]
benchmark and the associated placement on the TOP500 [12], a list which publishes
and ranks the fastest 500 computers in the world at that time. The Chinese govern-
ment, for example, is investing enormously to lead the list with its systems consisting
of domestically produced processors [14]. Similarly, Apon et al. [3] showed a statis-
tical correlation between appearing in the TOP500 list and the financing by the U.S.
National Science Foundation as well as an increase in the number of publications.
Therefore, the operators of a computer cluster intend to ensure a stable performance
for its users and further to achieve the maximum obtainable performance.

Despite the efforts of modern research and state-of-the-art approaches, perfor-
mance variation not only still occurs on modern parallel machines [36], but is even
increasing [1, 26, 27]. The node-to-node variability is a factor that is present on
nearly all multi-node parallel computers, influences conducted measurement and
might slow down the whole system, when static load balancing is in use. Our inves-
tigation is therefore focused on the node-level. We want to express the run-to-run
variation in performance a user is typically experiencing on a multi-node system.
Although this variability of the participating nodes is a background noise that is
always given and should therefore be investigated, there are no detailed studies on
it. Perhaps the closest study to this is McCalpin [34]. He investigated occasionally
slow single-node HPL results and identified snoop filter conflicts as a cause, which
has been fixed in the benchmark’s newest version. This thesis could thus be seen as
an extension of these experiments to several aspects.



In Section [2| we first introduce how performance is measured. This includes the
definitions of the theoretically achievable compute peak performance and the mem-
ory bandwidth. Moreover, related work dealing with performance variation and ap-
proaches preventing or mitigating variability are discussed. There have been several
previous studies investigating the effects of performance variation, which consider
causes at different levels of a parallel computer. These range from the architecture
at microprocessor-level over the software and the operating system to the hardware
with manufacturing problems or shared resources with competing accesses.

In Section [3], a systematic inventory is made of the achievable performance of our
two available clusters with single-node runs. With four different benchmarks, rele-
vant aspects of both compute clusters are strained and tested. For this purpose, the
compute performance is considered with the compute-bound Linpack benchmark
and High-Performance Conjugate Gradient (HPCG) [10] 20] benchmark, which is a
memory-bound application. STREAM is used to measure the achievable memory
bandwidth. Additionally, the occurrences and length of interrupts by the operation
system are observed with the Fized Work Quantum (FWQ) [15] benchmark. We
statistically analyze the obtained data in order to quantify and express the occur-
ring variations. With repeating measurements on the same node, we can analyze
temporal run-to-run variations, use the mean value to express the spatial variation
at cluster-level and identify outliers.

Section [4] investigates possible causes of the revealed variability. The structure
is chronological to the order of the examinations carried out by us. Individual re-
sults are already discussed as they occur in order to lead to the next steps of the
investigations and to reflect the constantly growing understanding of variations and
correlations. First the reproducibility of the results is checked and then we separately
look at the outliers in a long-term investigation with continuous measurements over
one and a half month. As possible causes for node-level variation we consider inter-
rupts of the operating system, non-terminated processes of other users, which still
consume resources, and influences of neighboring nodes in the form of heat leaks. In
addition, a measurement series with different numbers of threads is performed with
STREAM. The gained insight and results are discussed in Section [5

To carry out repeated evaluations, a toolkit for automated measurement and data
acquisition is developed within the scope of this bachelor thesis. This allows us to
integrate benchmarks into the normal system operation and evaluate them fully
automatically with monthly generated reports. The data obtained in this way can
form a basis for future research and contributes to a better insight into the run-to-run
variations, also with regard to the implementation of state-of-the-art improvements
and increasing age of the two parallel computers. This toolkit is introduced and
explained in Section [6]

In Section [7 follows a conclusion with remarks to future work.






2. Background and Related Work

This section contains definitions and explanations of the necessary background
knowledge used in this thesis. First, two different ways to define the performance
of a computer are presented. The performance of a computer usually refers to its
computing power and achievable peak performance, which is presented in this sec-
tion. As another common performance metric we are using the memory bandwidth
of a machine, when it is reading from, or storing to, its memory. Afterwards, vari-
ations in this performance are discussed. In Section [2.2] references are made to
related work in research of performance variability and state-of-the-art approaches
to contain and prevent variations are introduced.

2.1. Performance

In general, the performance of a computer is a measure of how many computing
operations a machine can perform per second, and is therefore often referred to as
computing power [19]. For scientific computing, one mainly considers floating-point
data with double precision, i.e. numbers occupying 64 bits in memory. The per-
formance at which a system can execute multiplication and addition operations on
this data is measured in floating-point operations per second (Flops/s). Since more
complicated arithmetic operations, such as square root or trigonometric functions,
often share execution resources with multiplication and addition units and since they
are executed so slowly that in practice they do not make significant contribution to
overall performance, they are not considered and high-performance applications try
to avoid these expensive operations as much as possible.

When all components of a CPU are operating at their maximum speed, this is re-
ferred to as peak performance. The theoretical peak performance can be obtained by
calculating the number of floating-point operations performed in a cycle time of the
machine [IT]. As an example, we calculate the theoretical peak performance of a sin-
gle compute node of the CLAIX2016 cluster that is introduced in Section[3.1.1] Each
node has two sockets using Intel Broadwell EP (E5-2650v4) CPUs with a maximum
all-core Turbo Boost frequency of 2.4 GHz, 12 cores, AVX2 registers (256 bits), and
two fused-multiply-add (FMA) units per core. During one cycle, the register holds
four doubles and the two FMA units perform two operations each. This executes
in total 16 Flops per cycle. For this node’s peak performance Ppeqr, we therefore
calculate:

16 Flops

Poear, = 24
peak 1 cycle

2.4 GHz = 921.60 GFlop/s.
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The peak performance, however, is understood as an upper bound for the actual
achievable performance of a machine that will not be exceeded [II]. In practice,
the actual performance often deviates significantly from the theoretically calculated
peak performance. For example, this can be seen by using the High-Performance
Linpack (HPL) [I1] benchmark, which is explained in detail in Section[3.1.1] We run
this performance-analyzing application on the 2-socket machine introduced above
and measure on average a performance of 860.39 G Flop/s. Thus, our system has a
reasonably high efficiency of 93.36%.

To give a statistical overview on high-performance computers, Dongarra et al.
assemble the TOP500 [12], a list with the 500 most powerful computer systems
worldwide. The list is compiled and published twice a year since 1993 and com-
pares and arranges the machines according to their peak performance achieved in
the Linpack benchmark. In the course of time, their ranking has been extended by
two more lists. Since June 2013, the fastest 500 computers are sorted according to
their energy efficiency in the GREEN500 list, which is measured in Flop/watt. Fur-
thermore, the High-Performance Conjugate Gradient (HPCG) [10, 20] benchmark
represents an additional test to simulate a more realistic real-life application, which
is used since November 2017. To supplement the rankings with more information
and statistics, the cluster’s operators, their power consumption, the operating sys-
tem in use, the installed hardware, and more is collected.

In addition to pure compute power, other properties of a computer are often
measured and distinct performance metrics are compared. Another often used metric
is the memory bandwidth [19]. This is the rate at which a processor can read data
from or store to its memory. The data path to and from the last-level caches and
the main memory is most frequently examined and it is quantified in Byte/s. A
well-known benchmark to measure the bandwidth of a system is the STREAM [35]
benchmark, whose results reflect the true capabilities of the hardware [19]. Our
reference machine from before achieves an average memory bandwidth of about
92.35 GByte/s, with a multi-threaded STREAM using 24 OMP threads.

The consideration of the peak performance and the achievable memory bandwidth
over the slowest path covers the respective limitations of the practical achievable
performance of a given hardware configuration and a given application according to
the Roofline Model.

2.2. Performance Variation

When only identical hardware is installed in a cluster and uniform software runs
on all nodes, one expects to measure the same homogeneous performance through-
out the whole cluster. However, it has already been shown in the past by various
authors and papers [1, [4, [7, 20, 28] [34], 41], [46] that this is not the case and that
significant performance variation occurs. From the user’s point of view, this initially
manifests itself in differing runtimes with apparently identical execution of their ap-
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plication [46]. The causes and influences of these fluctuations in performance are
very diverse, have many factors, and often lie in small details. In addition, the
ever larger and more complex system architectures make it difficult to identify them
and offer more sources for possible errors. There is a reason McCalpin called his
work “The Detective Story”, when he was investigating performance variation on
the Xeon Gold and Platinum processors and Xeon Phi x200 (KNL) [32].

On a multi-user system, where multiple jobs are running on a shared memory
processor, memory conflicts, system overload, and other user’s priorities can be
additional causes for variation in performance [28]. However, it is common on large-
scale distributed memory systems for compute-intensive applications to be assigned
to their own computing nodes. As a result, many of the factors that normally
contribute to variation are not present on these systems, but application runtimes
can still vary significantly. Performance variation is a research area of great interest
that has already been intensively studied at different levels of the system stack and
practical solutions have been developed. Previous work identified problems that
cause variations, for example, in the program code of the application due to load
imbalances [§]. The constantly occurring interrupts of the operating system and the
assignment of hardware are further software-related causes [29]. At the hardware
level, hardware variation in manufacturing of semiconductors [I§], conflicts over
shared resources, such as networks [4, 24] [40], [46], or architectures [7, 9] are proven
to cause variability. In order to better classify these causes, we distinguish between
spatial variation and temporal variation. However, this is not to be understood
as a universally applicable classification of certain phenomena, since a network, for
example, can be assigned to both categories under certain circumstances.

2.2.1. Spatial Variation

Spatial variation occurs when the performance measured with the same application
at different spatial locations, e.g. different nodes or cores, fluctuates across these
locations [26]. These spatial variations between nodes or cores are often due to
systematically underlying errors, such as defective hardware or an inhomogeneous
cooling, but can also be the result of the design of architectures and networks. Since
the influences are usually not limited in time, they can be measured reproducibly
and are therefore easier to investigate.

Hardware Variation With ever smaller processors, which are now manufactured
at Intel in the 14 nm range or at Qualcomm even in the 7 nm range, variations in
manufacturing are increasing [36]. During the production of semiconductors, several
parameters, such as the gate width, device threshold voltage, channel length, and
oxide thickness, vary. As a result, among other things, the maximum frequency,
energy consumption, and temperature differ between chips of identical models, which
in turn leads to performance variation. Not only processors are affected by variation,
but also storage devices [17].
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Supposedly identical memory flash devices with the same part number have shown
to differ significantly in operation energy and bit error rate. Moreover, the Inter-
national Technology Roadmap for Semiconductors even claims that performance
variability and reliability management for design of computing hardware are prob-
lems with unknown solution in the next decade [18].

That is the reason why recent approaches, like Gupta et al. [I8], focus their
research on variation-aware software together with underdesigned and opportunistic
computing machines. Under the assumption that the hardware does not behave
homogeneously with constant specifications, it is continuously monitored. If, for
example, changes in the maximum frequency, or failures of individual processor
cores are detected, the system reacts accordingly at different levels of the software
stack. They also plan to increase energy efficiency and performance in the long term
and reduce the costs of a parallel computer at the same time.

Many-Core Architectures The individual cores of a multi-core processor often
perform different tasks [7]. In addition to user applications, operating system pro-
cesses are also executed in the background, which can lead to significant variations in
the execution of programs at the core-level. In particular, the first core is commonly
over-burdened and causes imbalances, as it executes a major part of the operation
system’s activity. For example, on a 64-core Intel Xeon Phi KNL 7230 processor sig-
nificant spatial differences in runtime are measurable with a matrix multiply kernel
on the first two cores compared to the remaining 62 cores. The excessive workload
of OS activity and user program on certain cores can lead to delayed synchroniza-
tions and thus reduce performance with static load balancing. Chunduri et al. [7]
successfully manage to avoid these effects by specifying corey as the last to start
executing user applications and by starting with the core of the highest ID when
assigning tasks. This core specialization mitigates OS noise and reduces the impact
on the user program, which leads to less performance variations.

Similarly, Dighe et al. [9] develop a variation-conscious mapping of the workload
to the individual cores of a CPU. On different 80-core processor with 65 nm technol-
ogy, they achieve energy efficient improvements from 6% to 35% with optimal core
allocation and from 5% to 10% performance improvements with dynamic thread
hopping across a range of compute/communication activity workloads at the same
time. Their method also solves the problems caused by hardware variations.

Network Heterogeneity The network of a supercomputer connects the individual
nodes with each other and enables communication. By using the network, however,
the occurring variation is almost always increased. As already mentioned, temporal
and spatial variations can influence a network at the same time. Here, spatial causes,
such as the design, are regarded and temporal effects are explained in Section [2.2.2]

In the course of time, versatile ideas and approaches for an optimal network have
been developed. However, every design has its advantages and disadvantages and
some are superior in different scenarios, i.e. there is not a single best topology [24].
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Thus, different networks achieve different throughput and variation with certain
communication patterns and workloads.

For example, Prisacari et al. [40] investigate Dragonfly networks, which, due to
their two-tier topology, achieve particularly high bandwidths with random uniform
all-to-all traffic. However, they sustain significant throughput losses in common
exchange patterns for scientific computations, such as multi-dimensional nearest
neighbor exchanges. They address this problem in a framework, which identifies
possible bottlenecks that appear in the network under arbitrary workload. With
application decomposing, routing, and mapping, they achieve optimal overall per-
formance and speedups of up to 10x in some applications with Cartesian nearest
neighbor exchanges.

Application-Level Imbalance Applications in HPC distribute the workload among
the individual processors and their cores, which sometimes results in workload im-
balances and cause individual hardware parts to be heavily loaded, while others
are less loaded or even remain unused [8]. However, applications must distribute
the workload evenly to achieve high scalability and the best performance on highly
parallel systems. In addition, imbalances are always potential causes of variations,
which should be avoided. Depending on the allocation strategy of the application,
this variation can also be classified as temporal. Adams et al. [2], who use the
Kernighan-Lin algorithm for solving the knapsack problem, show exemplarily that
an even distribution of work over all processors is not a trivial task. Since load deter-
mination is far too application-specific, they claim that no general-purpose solution
is possible and that their approach even relies on input from the user.

A new metric for measuring and expressing load balance by DeRose et al. [§]
enables to identify sources of imbalances within an application, which they imple-
ment in an infrastructure that measures, identifies, and visualizes the application
performance imbalances that are insightful for the user.

Programming Model The bulk-synchronous parallel (BSP) model [43] has become
widely used in parallel applications in recent years, is still the most common pro-
gramming paradigm used in petascale applications, and is targeted by exascale sys-
tem architectures [26]. It has been successfully applied in the fields of scientific
computing, artificial intelligence, parallel databases, Big Data, and simulations.

A BSP program code can be divided into small partial steps that can in turn
be divided into three phases [0, 43]. In the computation phase, the data retrieved
from the local memory are processed by the processors. In the communication
phase, the processors exchange data and communicate. Then, the global barrier
synchronization ensures that the current step has been completed by all components,
and that the data exchange is guaranteed to have been performed. Processors wait
until every processor has finished the current step, then every processor proceeds to
the next step of the algorithm.



2. Background and Related Work

One of the main challenges that BSP faces is performance variability [26]. Since
BSP uses the single instruction multiple data paradigm and different parallel tasks
might require different amounts of time between global synchronizations, workload
imbalance can arises and runtimed are determined by the slowest performing pro-
cessors or tasks. For example, Kocoloski et al. [26] measure that in a set of NERSC
petascale machines, up to 75% of the aggregated processing time across all pro-
cessors can be spent waiting for global communication and synchronization. Such
critical processes can be identified through Du et al.’s metrics and low-overhead
implementation [13]. By optimizing the code based on critical imbalances, average
speedups of 1.9x are achieved.

2.2.2. Temporal Variation

Variation can also occur for only a limited amount of time [26]. Some factors, such
as I/O accesses, interrupts of the operating system, or adjacent nodes, can impact
only a single measurement and might no longer occur in the next execution. This
temporal variation quantifies how a single node varies over time between successive
measurements and is therefore more difficult to investigate, as not all conditions are
necessarily reproducible.

Snoope Filter Conflicts on Skylake Xeon Chips During acceptance tests, Mc-
Calpin [34] notices temporal variation in Linpack performance, which is not limited
to a certain subset of nodes. In elaborate studies Snoop Filters are identified as the
cause for the significant performance losses. Previous Intel processors use an inclu-
sive L3 cache to track lines held in L1 and L2 caches, which is not anymore the case
for Skylake Xeon chips. The new CPUs use an almost completely undocumented
cache tracking functionality performed by inclusive Snoop Filters. A workaround
to avoid conflicts is to switch to 1 GB huge pages, which allows McCalpin to even
upgrade to a bigger problem size for HPL and achieve 28% more peak performance
than before on a 1,736-node partition of the investigated cluster.

Network Contention Shared resources always offer great potential for conflicts.
When considering the network again, temporal variations can also occur in addi-
tion to the spatial variation caused by the architecture mentioned in Section [2.2.1]
Competing access slows down the whole system. For example, if several fragmented
jobs communicating with each other are executed simultaneously, or, if a single ap-
plication sends and receives simultaneously data to and from several nodes due to
a complex communication behavior, the shared network can be overloaded. Wright
et al. [46] measure in experiments on three different Teragrid HPC systems running
on 256 MPI tasks performance variation of up to 25%, which can be attributed
to contention for network resources. They also conclude that the variation for ma-
chines with lower performing networks is always greater than for machines with high
throughput and that different variability occurs depending on the installed system.
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Bhatele et al. [4] identify moreover the software that is responsible for the job
placement on the individual nodes of a cluster as a cause for variation in applica-
tions that communicate a lot and run on multiple nodes. On two high-performance
systems that distribute the jobs differently fragmented across the computer, they
experiment with communication-heavy applications. When measuring the job of
interest, they place other jobs around it that also communicate much and that use
the network a lot. They find that fragmentation of jobs has very little impact on
variation, but that adjacent jobs have a large impact on other measurements. When
a job that communicates a lot is also surrounded with communication-heavy appli-
cations, they find that their message passing rates are up to 27.8% slower compared
to a noise free measurement.

1/0 Variability Another shared resource is an I/O file system like Lustre, Panasas,
PCEFS, or GPFS. They can be used simultaneously by several thousand nodes to
write output or load data [30]. These file systems have significant performance
losses especially under heavy load with many simultaneous or several large accesses.
On parallel systems, interference typically occurs when too many processes within
an application attempt to write to the same target, but also when different jobs
simultaneously perform competing accesses to the same shared memory. Lofstead
et al. [30] implement an adaptive I/O method assigning processes a writing, co-
ordinating or sub-coordinating role for each storage target. When the coordinator
process notices busy storage targets, it shifts more work to less loaded targets. They
achieve I/O performance improvements for a 16,384 process run with 16 7'B output
per 1/O of up to 4.8x compared to a non-adaptive approach.

Operating System Noise Since November 2017, 100% of the fastest 500 super
computers worldwide have exclusively been using the Linux operating system or
one of its distributions [12]. Linux allows developers to closely monitor applications,
increase productivity and eases porting by offering a rich set of services that other
operating systems do not provide [29]. However, the circumstance that there are
constantly running software and system processes in the background generates over-
head. These software interferences, or noise, are not directly controllable by the
application and extend its runtime. Work by Petrini et al. [39] and Jones et al. [25]
conduct that noise is an important key factor for the scalability of HPC applications.
Leén et al. [29] achieve a performance increase of up to 2.4x by moving system pro-
cessing off the critical path for their 16,384 tasks high-order finite elements shock
hydrodynamics application, which also does not require any changes, neither to the
OS, nor to the application.
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2.3. Thesis Goal

In this thesis, we use an approach that, to the best of our knowledge, has not been
discussed yet. While other authors and papers examine load imbalances at the
software-level or architectures at the microprocessor-level, we consider the variation
that a user experiences on the different nodes of a highly parallel computer while
executing their (single-node) programs. With different benchmarks executed on each
node, many important aspects of a modern parallel computer are considered and the
performance of each node is measured individually. This allows us to characterize the
temporal run-to-run variation of the nodes and the spatial variation of the whole
cluster, as experienced by the user. Subsequently, attempts are made to identify
possible sources of variation and recommendations are given to reduce or prevent
performance variation in the future.

12



3. Measuring Performance and
Performance Variation

First, we get an overview of the achievable performance on our two systems. On
each individual compute node, the same sets of benchmarks are executed, each of
which is designed to consider and strain a special aspect of a system and to measure
a distinct performance. The methodological approach with the used hardware, a
detailed description of the benchmarks, and the statistical evaluation are described
in Section [3.1] In Section [3.2] the obtained results are then statistically evaluated.
By repeating executions of the same benchmarks, a statement can be made about
the temporal variations on the respective node. Furthermore, the measurements
on each node allow the quantification of the spatial variation of the whole cluster.
With the gathered data, we can establish a statistically valid baseline and review
the distribution of the results. Additionally, with over 30 executions on each node,
we execute a sufficient number of runs to observe several instances of rare events.
Finally, the variability of the two clusters is compared.

3.1. Methodology

Since performance variation is frequently caused by the underlying hardware and
software architecture [41], and any change to a single component of the hard-
ware [45], or to the software [41] can create or eliminate variability, we examine
and compare two different high-performance compute clusters. In order to interpret
the results of the measurements correctly, it is important to know the underlying
specifications of the machines, which is thus presented in the following Section [3.1.1]

When designing a benchmark, only a particular aspect of the computer is con-
sidered and strained [I1]. Therefore, a single benchmark can not be used to reflect
on and judge the complete performance characteristic of a particular machine. We
have thus selected and tested several different benchmarks, which provide a good
overview of the performance of the two computer systems and their variations. In
Section [3.1.1] we briefly introduce these applications and the detailed configuration
for benchmarking is described in the corresponding results section.

The execution of compute-intensive applications generates waste heat. Therefore,
after start-up it takes a certain amount of time until the CPUs are fully warmed up
and in thermal equilibrium. In several measurements, we determine the duration
certain benchmarks need to reach this state, which is described in Section [3.2.2] and
exclude this specific warm-up phase in all subsequent evaluations.

13



3. Measuring Performance and Performance Variation

3.1.1. Methodology of Experiments
System Architectures

In this thesis, measurements are carried out on two high-performance machines,
which differ in their hardware and are also in different phases of their life cycle.
Both computers are part of the Cluster Aix-la-Chapelle (CLAIX) located at RWTH
Aachen University. In order to distinguish the two systems from each other, they
are called CLAIX2016 and CLAIX2018 after the year of their installation.

CLAIX2016 The older system, the CLAIX2016, was installed in November 2016
and uses 2x Intel Broadwell EP (E5-2650v4) processors (12 cores each) with a
nominal frequency of 2.2 GH z and a maximum all-core Turbo frequency of 2.4 GH z
when running AVX2 code [23]. They have 128 GB DDR4-2400 main memory per
node, which are connected with an Intel Omni-Path x16 HPC network. In total, it
consists of 600 compute nodes and two separate front-end dialog nodes. CLAIX2016
is placed in the TOP500 list of November 2017 on the 488th place with a peak
performance of 558.42 T Flop/s [12].

CLAIX2018 In December 2018, the CLAIX was expanded by 1,032 computing
nodes consisting of two Intel Skylake (Platinum 8160) processors with 24 cores each
running at a nominal frequency of 2.1 GHz and 192 G B local memory per node [23].
The maximum all-core frequency for AVX2 code with Turbo Boost is at 2.5 GH z.
The system uses four dialog front-end nodes and connects all nodes with an Omni-
Path x16 HPC network. In the TOP500 list of June 2019, CLAIX2018 is ranked on
the 92th place with a measured Linpack peak performance of 2,483.58 T'Flop/s [12].

On both clusters, the Intel 19.0.1.144 C++ compiler (20181018) is used for com-
pilation. Further, parallel applications are executed using Intel MPI 2019.1.144
(20181016). Additionally, Intel Turbo Boost is enabled on both machines and each
node runs the Linux CentOS 7.6 distribution based on the Linux kernel version
3.10.0-514.

Performance Analysis Tools

We have a very large selection of applications to choose from and try not to over-
load the systems with measurements. Our selection covers the state-of-the-art per-
formance metrics and considers as many aspects as possible. With the well-known

and frequently used benchmarks FWQ, Linpack, HPCG, and STREAM, we have
portable applications that are known to give comparable results across systems.

Fixed Work Quantum The Fized Work Quantum (FWQ) [15] benchmark is de-
signed to measure interference caused by the operating system from the application’s
perspective [29]. The benchmark starts a pthread with a fixed amount of work on
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each core within a single node and measures repeatedly the time necessary to com-
plete this quantum of work. A single iteration only consists of incrementing a loop
variable and therefore has a very short runtime, which causes system interrupts to
have a significant effect on the execution time of each iteration. If no threads were
interrupted by the operating system, they would all take the same amount of time
to complete. In practice, however, applications are regularly interrupted to allow
the execution of system processes. This results in some threads taking more time
than others to handle the same fixed amount of work.

Due to the fixed workload of the benchmark, the data samples can be used to cre-
ate useful statistics on the system noise. Since data are collected for each individual
core of a CPU, statements can also be made about the load and distribution of OS
processes on the different cores.

High-Performance Linpack The High-Performance Linpack (HPL) [11] bench-
mark is part of the LINPACK Package and measures the floating-point execution
rate of a parallel computer. As already mentioned before, HPL is used as a metric
to compare the performance of computer systems at the TOP500 [12] list. Thus,
HPL has gained a lot of recognition and is one of the most widely used and discussed
metrics for high-performance computing systems [31].

The benchmark is a heavily optimized and scalable MPI program with a compute-
heavy kernel, which almost reaches the theoretical peak performance of a ma-
chine [31]. Since the amount of data required per computation is very small, Linpack
has a small Byte/Flop ratio and is therefore compute-bound. The kernel solves a
system of dense linear equations of the form

A-x =0, with Ae R"" and z,be R"

by performing LU factorization with row partial pivoting and solving the resulting
upper triangular system [I1]. The dominant calculations are dense matrix-matrix
multiplications and related kernels.

It measures the time required to factorize and solve the system, converts this time
into a performance rate, and tests the result for accuracy. To verify the result, the
scaled residual r is computed with

1Az — bl
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Here, € is the relative machine precision and the check is passed when 7 is less than
a set threshold (e.g. 16.0 by default).

In order to achieve the best possible result, the user is offered several tuning
options allowing the benchmark to be adapted to the individual machine in use.
The user can set the following values, among many others: the number of processes
and their grid dimensions P by ) and thus the data distribution can be specified,
the problem sizes are stated, one from six different broadcast algorithms can be
selected, the look-ahead depth is given, and the memory alignment is set.
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3. Measuring Performance and Performance Variation

High-Performance Conjugate Gradient The High-Performance Conjugate Gra-
dient (HPCG) [10} 20] benchmark is a metric designed to more closely represent the
workload of real-life applications and many important scientific calculations. The
metric measures a machine’s performance in Flop/s accordingly. Real-world ap-
plications are usually not strongly characterized by very expensive compute-bound
calculations, but have a diverse set of kernels that also contain many communication
steps. In addition, many kernels are memory-bound and have a small computation
to data-access ratio.

Therefore, the kernel of HPCG is designed to be memory-bound, to simulate the
access patterns of real applications through the same irregular access to memory,
and to cover major common communication and computation patterns. In a uni-
fied stand-alone code, HPCG generates a synthetic discretized three-dimensional
PDE model problem and computes preconditioned conjugate-gradient iterations for
the resulting sparse linear system. It measures the performance of versatile ker-
nels, which includes sparse matrix-vector multiplications, vector updates, global dot
products, local symmetric Gauss-Seidel smoother, and sparse triangular solve.

In November 2017, the TOP500 site started using the HPCG benchmark as an
additional metric to complement HPL. However, HPCG is not intended to replace
Linpack.

STREAM Processors increase in speed much faster than computer memory sys-
tems [33]. In the course of this process, more and more programs are limited in
their performance by the memory bandwidth of the system and not by the com-
puting power of the CPU. In practice, they spend a lot of time filling cache misses
instead of actually performing arithmetic operations.

The STREAM benchmark [35] is typically used to measure memory bandwidth
and hence works with data sets that are much larger than the available cache on
a particular system. Thus, the results better reflect the performance of very large
vector-based applications. The benchmark executes the four long vector operations
copy, scale, sum, and triad. STREAM always uses the same approach and always
counts only the bytes that the user program has requested to be loaded or stored,
so results are always directly comparable.

As the name suggests, the copy operation calculates the bandwidth with which a
vector w can be copied into a vector v. In the operations scale and sum, their kernels
are supplemented by an arithmetical operation. Hence, the vector w is multiplied
by a scalar a or added to a vector c¢ respectively and the result is stored again in
the vector v. The fourth kernel combines the previous ones in a so called vector
triad operation by executing the operation v; = w; + a - ¢; and therefore measures
the performance of data transfers between the arithmetic units of a processor and
memory.

STREAM also supports multiprocessor systems with OpenMP or MPI, when the
respective compiler flags are set and the problem size is adjusted. Since STREAM
measures the bandwidth of the main memory and not of the caches, the array size
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should be at least four times the size of the sum of all last-level caches.
The twenty shared-memory systems with the highest bandwidth are presented in
the STREAM “Top 20” results [33] list, similar to the TOP500.

3.1.2. Statistical Methodology of Evaluation

The repeated execution of the benchmarks results in large quantities of measured
values, which are evaluated statistically in order to gain an overview of the variation.
Since the individual benchmarks in a measurement series are repeated several times
on each node, we first calculate the arithmetic mean p per node. The empirical
standard deviation o per node is also considered, which preserves the statistical
dispersion behavior [42]. In order to express the variation of the performance, the
dispersion of the data is set in relation to the absolute measured values in the form
of their mean values. The quotient of empirical standard deviation and arithmetic
mean defines the coefficient of variation CoV', with CoV = 2. This is a measure for
statistical dispersion, with which data sets that are measured in different units can be
compared without conversions allowing us to directly compare different benchmarks
and their variations. Furthermore, this measure can be interpreted very vividly
using a normal distribution. Thus, this coefficient specifies exactly the performance
window by which the measured values vary in the 1o range around the mean value.
If, for example, the CoV is 2.00%, this means approximately 68.27% of all nodes
vary by a maximum of +2.00% around the expected value.

To describe and characterize the underlying distribution of the measured perfor-
mance, we use the moments of the distribution. For a better overview, Figure |3.1
shows various distributions with distinct moments. The symmetry of a distribu-
tion is measured using a) the skewness. A negative skewness usually indicates that
the tail is on the left side of the distribution and the distribution is said to be left
skewed. Since we histogram performance values later and look at their distribution,
a left skewed distribution means in our case that a large part of the measured val-

a) Skewness b) Kurtosis

left skewed distribution, normal distribution,
skewness < 0 kurtosis = 3 and skewness = 0

raised cosine distribution,
kurtosis < 3

logistic distribution,
kurtosis > 3

right skewed distribution,
skewness > 0

Figure 3.1.: Illustration of the skewness and kurtosis values and how they correlate
with the moments of a normal distribution (red).
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ues is concentrated on the right side and these nodes deliver a high performance.
However, the longer left tail indicates some nodes with strongly downward deviating
performance, i.e. slow outliers. A positive skewness suggests that the tail is at the
right side. This means the outliers are faster than the average and most nodes are
concentrated on the left side of the distribution. The second moment of a distri-
bution is b) the kurtosis, which is a measure of the steepness or “tailedness” of a
distribution. Distributions with low kurtosis scatter relatively evenly, while distri-
butions with high kurtosis spread more from extreme but rare events, i.e. outliers.
These moments of a distribution are typically interpreted in comparison to a normal
distribution (red graph in the figure) that has a kurtosis of 3 and a skewness of 0.

3.2. Results

The results of the benchmarks introduced for measuring performance are presented
in this section. They are statistically analyzed in order to gain an overview of the
existing variability in performance on both clusters. Furthermore, a comparison of
the variation in the single-node runs between the individual nodes and between the
two clusters is drawn.

3.2.1. Impact of Operating System Noise

In this first series of tests we examine the influence of the operating system on
the execution of the programs from a normal user. We simulate an application for
about 10 minutes on both clusters with FWQ), as introduced in Section [3.1.1] and
measure the occurrence and length of interrupts. The threaded version is used with
24 or 48 threads each that are each bound to a physical core with disabled hyper-
threading. There is nearly no communication between the threads, except for a
synchronization fo the start time and an aggregation of the sample data in the end.
In our setup, FWQ is configured to record 70,000 samples with a nominal execution
time of 9.32 ms on CLAIX2016 and 7.96 ms on CLAIX2018. Therefore, we observe
the system’s activity for a period of about 10.9 and 9.3 minutes on each node and
cluster.

CLAIX2016 In order to get an overview of the system noise per node, we first
consider the average runtime of all cores together and do not distinguish between
the individual cores at this point. Figure [3.2] shows the ascending sorted average
duration of the benchmark on 599 nodes. Note that the abscissa has several breaks.
We find only a rather small variation in the runtimes of the benchmark, which
fluctuates in the 1o interval with +1.4%, measured by the coefficient of variation. On
average one iteration lasts 9.32 ms (standard deviation: 0.13 ms). However, the two
nodes 1nm016 and 1nm017 stand out due to an extremely high volume of significant
long interrupts with particularly large mean value of about 9.52 ms and 12.46 ms.
The later is about 33.70% slower than the average node in this experiment. Here, we
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Mean runtime on 599 CLAIX2016 nodes with FWQ
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Figure 3.2.: Ascending sorted average runtime per node on the abscissa with FWQ.
Measurements are taken on 599 CLAIX2016 nodes, each with 70,000
iterations. Longer runtimes are an indication of increased occurrence of
interrupts and operating system noise.

would like to point out again that the workload in the synthetic FWQ benchmark
is to count a loop variable and that longer runtime is spent in interrupts. If these
two nodes are excluded from the statistics as outliers, the adjusted data set varies
only with a CoV of 0.04% (u = 9.32 ms, 0 = 4.02 ps).

The differences between these outliers and an average node are particularly ev-
ident in Figure [3.3] which shows the FWQ results for different selected nodes of
CLAIX2016. The abscissa indicates the sample number, while the ordinate is the
runtime of each sample in milliseconds. All cores are recorded in parallel and all
cores are displayed individually in the diagram in different colors and point styles.
The figure shows in a) the noise signal of a representative compute node chosen
at random. On a noise-free system, we would expect a continuous horizontal line
at 9.32 ms for each core. Each sample point above this line indicates interference

System noises on single nodes of CLAIX2016
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Figure 3.3.: System noise on a) a randomly selected node and b) and ¢) conspicuous
nodes of CLAIX2016. Each color represents the time it takes a single
core to complete its iteration. Measured times above 9.32 ms indicate
interrupts.
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caused by system processes. It is noticeable that at approximately equidistant in-
tervals of 14 thousand iterations, i.e. every 13 seconds, system activity increases.

The next two graphs to the right show the results of the two irregular nodes that
have significant long interrupts occurring in many iterations. With FWQ running
on these two nodes, we notice a very high amount of interrupts, which influence
the program execution very often and for a long amount of time. For example, on
1nm016 the longest iteration is 34.41x longer than the average and about 46.45% of
all iterations are interrupted. We were also able to reproduce this measurement over
the next few weeks by repeated measurements and again find high system activity
on all cores.

This excessive occurrence of interrupts must have a noticeable effect on the ex-
ecution of other programs and extend their runtimes. However, these nodes were
reserved for the integration of a Lustre file system and excluded from normal batch
operation, which means they were no longer available for subsequent measurements
with other benchmarks. After this maintenance concluded, we are able to remea-
sure the two nodes with FW(Q and other benchmarks. This time, we observe normal
levels of interrupts and no significant differences compared to other nodes.

Since we measured the occurrence of interrupts for each of the 14,400 cores, we
can also compare them afterwards. The average duration of the FW(Q benchmark on
the 24 cores of a node is calculated globally. As it can be seen in Figure [3.4] core,
and corejp are interrupted particularly frequently. These cores typically run the
operating system of the CPU, and CPU; of our two-socket machines. Accordingly,
user programs on the other cores are interrupted less frequently. Applications are
at times familiar with these conditions and therefore dynamically distribute the
workload to the individual cores to avoid load imbalances.

System noise per core on CLAIX2016
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Figure 3.4.: Comparison of system noise on CLAIX2016 per core with FWQ. Longer
runtimes suggest that more interrupts occur on the core.

CLAIX2018 We run FWQ with the same binaries on CLAIX2018 without recom-
piling. The only difference to the execution on CLAIX2016 is the usage of 48 threads
to use all physical cores.
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Only a small variability between the individual nodes is observed on CLAIX2018.
The mean value has a CoV of only 0.07%. In addition, the interrupts on all nodes
occur evenly and have approximately the same length, i.e. no outliers are noticed.
At core level, coreg and coreyy, which are executing most of the Linux kernel’s work-
load, are also more affected by interrupts that the others.

In summary, we find a comparable level of system noise and interrupts on both
systems, which only have a very small variation in their occurrence and length (1o :
+0.04% and +0.07%). Moreover, we only notice in exceptional cases a temporary
increase in operating system activity on two out of 1,624 observed nodes.

3.2.2. Computing Power

The user is particularly interested in how much computing power is achieved and
in what level of variation to expect. To determine this, we look at the peak per-
formance with Linpack and the imitated real-world workload with the memory-
bound benchmark HPCG, which are both explained in Section [3.1.1] Since these
computation-intensive applications emit strong heat, we also investigate which in-
fluences the temperatures have on our measurements and whether a user has to pay
attention to these effects when running their code on a cluster.

Influences of Heat

When a CPU is heavily stressed by complex calculations, it generates a great deal of
heat [I]. This warming up of a compute node is not a sudden process, but happens
over time and a warm-up period can be observed. First, we determine for each
benchmark and cluster the time it takes to find and maintain a stable temperature
in thermal equilibrium after an application is started. Then we investigate whether
neighboring nodes that execute compute intensive kernels have an influence on the
observed node by heat transfer.

Characterizing Warm-Up Periods Figure illustrates a representative example
of the warm-up period on CLAIX2016 for the HPCG benchmark and includes the
first five minutes of this measurement. In addition to the temperature in a), the
frequency is shown in b). The frequency is considered because Intel Turbo Boost
2.0 and Enhanced SpeedStep Technology dynamically adapt it to the workload,
temperature, instruction set, and other factors. Immediately before the application
of interest is executed, a shell script is started in the background to monitor the
status of the node at equidistant times of approximately one millisecond. The fre-
quency is directly read from the /proc/cpuinfo interface, the temperature from
the /sys/devices/platform/coretemp interface. Since the script generates a low
overhead with text processing using awk and reading the interfaces, the performance
is slightly influenced. The additional workload causes about 5% less performance
when benchmarking with HPCG compared to a measurement without the script
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Node status over time
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Figure 3.5.: Warm-up period of a HPCG run on CLAIX2016. Temperature and
frequency of the first five minutes are observed.

running in the background. Linpack still achieves approximately 99% of its original
computing power. In order to be able to reflect on performance without overhead,
the following measurements are performed without this type of monitoring, if not
stated otherwise.

First, both processors clock between 2.2 GHz and 2.8 GHz. This indicates that
not all cores are used in this initialization phase of the benchmark and that the
Turbo Boost regulates the frequency. However, after about 110 s the frequencies
stabilize at 2.5 GH z on both processors and all cores and then remain at this level
for the rest of the run. This adapted frequency of 2.5 GHz is the characteristic
Turbo Boost frequency when the AVX2 instruction set is being used on all 12 cores
of Intel Broadwell EP processors [21]. The temperatures also rise steadily until
constant temperatures of 52 °C" and 63 °C respectively are reached after 150 s and
the node remains in this thermal equilibrium for the rest of the run.

Since CPUj of all observed CLAIX2016 2-socket systems is consistently ten degree
Celsius warmer than CPUy, a systematic cause is suspected. In fact, this difference
can be traced back to the hardware, which can be seen in Figure that shows
a CLAIX2016 node from two perspectives. Underneath the dark gray cover lays
CPU,;, CPUj is installed under the silver passive cooler. The fresh air first flows
through the dark gray cover and through the first passive cooler to cool CPUj.
Only then does the already heated air reach the second processor, which results in
a systematic temperature difference between the two CPUs on all observed nodes.

The warm-up period differs from benchmark to benchmark, the used instruction
set, and depends just as much on the hardware. Thus, when running Linpack,
CLAIX2016 clocks at 2.4 GHz and reaches temperatures of 70 °C" and 79 °C' after
70 s. The two Xeon Platinum 8160 processors on a CLAIX2018 node are also cooled
in a row. However, each node has a total of three active fans and one passive cooler
per CPU. The measured differences only amount to about four degrees Celsius. The
HPCG code uses the AVX2 units and the CPUs clock with a Turbo frequency of
2.5 GH~z after 100 s and temperatures of 69 °C and 73 °C' are reached after 210 s.
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CPUo CPU: fresh air supply

N

Figure 3.6.: Structure of a CLAIX2016 node from two perspectives. CPUj is closer
to the fresh air supply than CPUj and is therefore better cooled. Pic-
tures provided by the HPC chair and edited by the author of this thesis.

The AVX-512 instruction set is used for HPL and reaches a Turbo frequency of
1.6 GH~z after approximately 90 s and a stable temperature of 73 °C" and 76 °C
respectively after 150 s.

Since significant performance differences of up to 19.43% are measured during the
warm-up periods, we exclude the first run in our following reported measurements
and use it to get a stable temperature and frequency when necessary.

Impairment by Neighboring Jobs With regards to significant performance differ-
ences during warm-up of a node, we also look into influences of emitted heat from
adjacent nodes that perform compute-intensive applications, such as Linpack that
reached the higher temperature in our measurements compared to HPCG. In related
work, we have already seen that neighboring nodes can temporarily influence the
performance of our job of interest. As an example, we refer to competing accesses
to the network [4], [40], [46]. Therefore, we investigate the impairment from heat leaks
caused by adjacent nodes.

For this purpose, we request ten directly adjacent nodes and perform two mea-
surements. In the first test case, all ten nodes perform a Linpack run simultaneously.
Initially, we are only interested in the result of the job executed on the middle node.
The second test case differs in that Linpack only calculates on the same middle node
again, while the remaining nine nodes are idling and do not perform any calculations.

On both clusters, we choose five times ten neighboring nodes on a random basis
and therefore perform a total of ten measurements on 100 nodes. When selecting the
nodes, we also take into account to request nodes from different racks and locations.
We find that in the “solo” measurements with nine idle and one node that executes
Linpack performance variations of on average +0.25% occur on CLAIX2016 and the
performance differs on average by +0.47% on CLAIX2018 compared to the “heat”
measurements with all nodes running HPL.

If we continue to compare the measured temperatures, we also find only very
small differences. The heat transfer of the neighboring nine nodes causes only a
difference of 1 °C to 2 °C on the middle node. In idle measurements, however, the
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nine neighbours are 27 °C' to 40 °C' cooler compared to the measurements in which
they perform Linpack.

Since this temporal variation is not practically significant, we conclude that heat
leaks are not to be considered any further and that we therefore do not have to
pay attention to the workload and emitted heat from other nodes in our evaluation.
This allows us to conduct our experiments on several nodes at the same time and
independent from any other jobs by the scheduler on adjacent nodes. Therefore, the
following section does not deal further with the temperature of a node.

High-Performance Linpack

Both of our machines are equipped with Intel processors, which allows us to use the
Intel® Distribution for LINPACK* Benchmark [22], which is an optimized version
of the original Netlib HPL benchmark for Intel processors. Intel’s distribution can
be used for TOP500 runs and is an addition to the HPL benchmark. We use the
Intel-provided xhpl binary, which is dynamically linked against Intel MPIT libraries
from the Intel® Math Kernel Library (Intel MKL). For a measurement series, the
benchmark is executed 46 times in single-node runs back to back. The first run
is used as a warm-up phase for the node and is not considered afterwards (see
Section leaving us with 45 valid measurements to evaluate. These should be
a sufficient amount of measurements to consider rare events [32].

CLAIX2016 Linpack is configured to spawn one MPI process and fill the other
cores with threads, so the grid dimension P by () is set to 1 x 1. The block size N B
is set to 192 and the problem size N is selected so that approximately 80 percent
of the main memory is filled by the matrix, which are the recommended settings
from Inte [22]1. To ensure that the operating system only assigns threads to physical
processors, hyper-threading is deactivated. Thus, both processors of a node are used
efficiently and a good performance in the benchmark is achieved.

Figure a) shows the increasingly sorted mean values of the single-node per-
formance in combination with the standard deviation as error bars on the abscissa
in GFlop/s. The error bars are a measure for the temporal variation on a node.
Each node performed Linpack 45 times and the corresponding arithmetic means are
shown in the figure. If a node often achieves a different high performance in the
repeated execution of the benchmark due to temporal variation, the measurement
will have a larger standard deviation and the associated error bar will be larger.
Thus, the relatively small error bars in the figure illustrate that only small temporal
variations occur in this experiment. On average, a temporal variation of +0.07% is
measured in the 1o interval around the mean in these single-node runs.

Spatial variation is better visualized in the course of the curve and the frequency
distribution of the performance. A smooth rising curve is noticeable with a global
average performance of 860.07 GFlop/s and a standard deviation of 13.87 G Flop/s.
Especially three nodes stand out due to significantly less performance in the range
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Mean performance of 45 measurements on 594 CLAIX2016 nodes with Linpack
a) Mean performance with StdDev b) Distribution of mean performance
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Figure 3.7.: Performance measured with 45 Linpack runs on 594 CLAIX2016 nodes
in GFlop/s. The graph in a) shows the average performance with stan-
dard deviation as error bar. In b) their distribution with an additional
distribution density function is illustrated.

of 764 GFlop/s (4.8 standard deviations below the mean value) and the slowest
node delivers about 92.23% of mean performance. A better overview is provided by
Figure b), which shows the distribution in a histogram. With a kurtosis of 4.98,
a normal distribution with some outliers is approximately given. With two peaks at
855 G'Flop/s and 865 G Flop/s, our data is further a bimodal distribution. The out-
liers can be identified as slower than average by the skewness value of —0.31. Three
significantly slow nodes can be seen in the range of 794 GFlop/s. For reference, a
probability density function of a normal distribution with the same p and o values is
also added to the figure. Except for these three outliers, we have a relatively stable
system with only a small variation in peak performance. Within a 1o confidence
interval, we have a variation of +1.61% around the mean value, i.e. a CoV of 1.61%.

After removing the three outliers, the spatial variation in the lo interval is
still at +£1.52% with an average of 860.73 G'Flop/s and a standard deviation of
13.07 GFlop/s. This adjusted distribution is again almost normally distributed (kur-
tosis = 2.50) but this time slightly right-skewed (skewness = 0.24).

CLAIX2018 The experimental setup on CLAIX2018 is very similar. We also run
Linpack 46 times on each available node and evaluate 45 runs and discard one warm-
up run. In tuning tests, we have achieved better results with one MPI thread per
socket, i.e. two per node, than with just one. The problem size is also adapted to
the larger RAM of the newer machine and the block size is set to N B = 384.
Figure a) shows the mean performance in ascending order with the standard
deviations as error bars. We find a global average of 1,934.18 GF'lop/s with a stan-
dard deviation of 40.55 G Flop/s. The error bars indicate small temporal variations
with an average CoV of 0.25% per node. A single node is particularly noticeable
with higher temporal variability (CoV = 6.51%), which has a single run that is
much slower than the others. Just like on CLAIX2016, a few individual nodes with
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Mean performance of 45 measurements on 1,031 CLAIX2018 nodes with Linpack
a) Mean performance with StdDev b) Distribution of mean performance
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Figure 3.8.: a) Mean performance reported by Linpack in GFlop/s with standard
derivation on 1031 nodes of CLAIX2018 with 45 runs.
b) Histogram with distribution density function.

strongly downward deviating performance are striking. The slowest node performs
about 86.01% of the mean performance (9.13 standard deviations below the mean).

In the b) of the figure, the results are processed quantitatively in a histogram
and a normally distributed density function is added. The data distribution of our
measurement corresponds approximately to a normal distribution (kurtosis = 4.85).
With a skewness of —0.54, we see single nodes as outliers with lower results of
1,662 GFlop/s and 1,752 GFlop/s. The variation in peak performance is slightly
greater than on CLAIX2016 and varies by +2.10% in the 1o interval.

After removing six significantly slow outliers, the mean performance slightly in-
creases to 1,933.38 GFlop/s with a standard deviation of 38.78 G Flop/s. This also
reduces the spatial variation to CoV = 2.01%. The distribution is slightly right-
skewed, but still approximately normally distributed.

On both clusters the distribution follows approximately a normal distribution.
The temporal variations on the nodes are rather small on both clusters and amount
to respectively 0.07% and 0.25% measured by the CoV. The spatial variations
are higher with +1.52% and +2.01% within 1o, after removing extreme outliers. In
summary, both computers have a similar performance variation characteristic in this
compute-bound benchmark, with CLAIX2018 having a relatively slower performance
of the slowest node compared to the mean.

High-Performance Conjugate Gradient

We also use Intel’s optimized binaries for HPCG [22] from the Intel MKL and
execute the benchmark 31 times directly back to back. With the first run serving as
a warm-up phase, 30 valid measurements are evaluated. For the configuration, we
follow Intel’s recommendations [22] and use one MPI process per CPU socket and
one OpenMP thread per physical core. To ensure that the measurements meet the
official criteria, a runtime of 30 minutes per run is set.
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3.2. Results

CLAIX2016 Figure presents the results of a) the mean values in descending
order with the standard deviation as error bars, and b) the corresponding histogram
of the HPCG benchmark on CLAIX2016. An arithmetic mean of 22.22 GFlop/d]]
and a standard deviation of 0.06 GFlop/s are measured. The curve of average
values is almost a constant line, which contains only slightly more than two percent
of the nodes with downward deviating performance. The individual nodes also
vary temporally on average by 0.76% in the single-node runs. Only a single node
experiences variation of 14.36% and has a single run that is significantly slower than
the others. In addition, three other nodes with significantly less performance, and
nine nodes with slightly less performance stand out. With a kurtosis of 37.77 and
a skewness of —4.39 of the distribution function, these nodes are also recognized as
single, slow outliers by the moment of the distribution. The slowest node, however,
only achieves 2.63% less performance than the average. The spatial variation is
additionally very low and varies only with +0.26% in the 1o interval.

However, if the data set is adjusted for deviating measurements and six slow
outliers are removed, this distribution is almost normally distributed (kurtosis =
2.98, skewness = 0.39) and the spatial variation decreases to 0.17%.

Mean performance of 30 measurements on 589 CLAIX2016 nodes with HPCG
a) Mean performance with StdDev b) Distribution of mean performance
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3.9.: HPCG compute power of 30 measurements on 589 CLAIX2016 nodes.
In a), the mean performance in GFlop/s with the standard derivation
as error bars is shown. In b), an additional histogram is provided.

Figure

CLAIX2018 Again, we measure a greater variation in the achieved performance on
CLAIX2018. In Figure a), the mean computing power per node is shown in as-
cending order. On the 1,025 nodes measured, the global mean value is 37.31 GF' lopﬂ
with a standard deviation of 1.21 GFlop/s. In addition, the curve is again nearly
constant with exception to outliers. The error bars show that the temporal varia-
tions at node-level decrease with increasing performance. Furthermore, three dis-
crete variation values are recognizable. Thus, the 388 nodes with less performance

!The measured performance with HPCG is about 38.71x smaller than the Linpack performance
of the same nodes. With regards to TOP500, this is in the expected magnitude. In the list of
June 2019, the ratio of the top 10 is 54.33x on average [12].

2See footnote 1. Here, the factor is 51.81 x.
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Mean performance of 30 measurements on 1026 CLAIX2018 nodes with HPCG
a) Mean performance with StdDev b) Distribution of mean performance
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Figure 3.10.: Performance measured with 30 HPCG runs on 1025 CLAIX2018 nodes
in GFlop/s. a) shows the average performance with standard deviation
as error bar. In b), the performance distribution is illustrated in a
histogram. Arrows point to the difficult to detect outliers.

vary temporally by more than +1.5% while the other nodes have variations of less
than +0.25% in the 1o confidence interval. On average, the CoV is 0.73%.

However, if the spatial variation is considered, it is distinctly greater. The overall
performance varies by +3.24% within the 1o confidence interval. In particular,
the histogram in Figure b) illustrates the extent to which the slowest eight
nodes deviate from the average. They only perform 18 GFlop/s, 25 GFlop/s and
30 GFlop/s, whereby the node with the lowest performance only achieves 46.30%
of the mean performance (16.62 standard deviations below the mean value). This
strong variation with slow outliers can also be recognized by the very large kurtosis
value of 207.50 and a skewness of —13.75.

After the removal of eight significantly slow outliers, the spatial variation in the
1o interval is only +£0.47% with an average performance of 37.41 GFlop/s and a
standard deviation of 0.18 GFlop/s. Moreover, this adjusted distribution is almost
normally distributed (kurtosis = 2.56) and slightly left-skewed (skewness = —0.48).

While most nodes achieve performances at a similarly high level, a few nodes
stand out that perform significantly slowly. Compared to the measurement with
Linpack, we find much greater and more frequent downward deviations. In addi-
tion, different nodes are affected in this measurement than before. The slowest nodes
as determined in the measurement with Linpack achieve in the HPCG benchmark
an average performance and vice versa. This means that different nodes stand out
as outliers in each benchmark.

Compared to the peak performance, both clusters again have a very similar vari-
ation characteristic. The only difference is that CLAIX2018 has more extreme out-
liers, which in the worst case achieve less than half the average performance.
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3.2.3. Memory Bandwidth

In order to measure the variation in the memory bandwidth, we perform experiments
with the STREAM multi-threaded benchmark version 5.1 on all nodes of the two
machines. In each measurement, the benchmark is executed 100 times directly back
to back. With an array size larger than four times the sum of all last-level caches, the
bandwidth from main memory is measured. To obtain the maximum throughput,
we pin one OMP thread to each core.

CLAIX2016 Figure a) shows the mean value of the memory bandwidth of the
100 runs of each node in ascending order and additionally the standard deviation
as error bars. The temporal variations amount to 1.05% on average, which can be
seen in the larger error bars. A mean performance of 90.73 GByte/s and a standard
deviation of 0.38 GByte/s is measured, which results in a spatial variation of 0.41%
across all 581 nodes. The lowest bandwidth on CLAIX2016 is 1.31% smaller than
the mean bandwidth and is 3.16 standard deviations below the arithmetic mean.

The multi-threaded STREAM is approximately normally distributed (kurtosis =
3.93, skewness = 0.17) and is slightly right skewed, which can be seen in Figure
b) that also includes a probability density function. The few outliers in this run are
faster than the average and no slow outliers seem to occur.

Mean memory bandwidth of 100 measurements on 580 CLAIX2016 nodes with STREAM (24 OMP threads)
a) Mean memory bandwidth with StdDev b) Distribution of mean memory bandwidth
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Figure 3.11.: Memory bandwidth measured with 100 STREAM runs (24 OMP
threads) on 580 CLAIX2016 nodes in GByte/s. a) shows the average
performance with standard deviation as error bar. In b) a histogram
illustrates the distribution.

CLAIX2018 On the 48-core nodes of CLAIX2018, we run a multi-threaded STREAM
with 48 OMP threads, which are also each pinned to a distinct core with hyper-
threading disabled. The benchmark runs on 1,029 nodes and its result are displayed
in Figure m a), which includes the mean values in GByte/s with the standard
deviations as error bars. The average bandwidth is 164.05 G Byte/s with a standard
deviation of 3.38 GByst/s, which leads to a CoV of 2.06%.
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Mean memory bandwidth of 100 measurements on 1029 CLAIX2018 nodes with STREAM (48 OMP threads)

a) Mean memory bandwidth with StdDev b) Distribution of mean memory bandwidth
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Figure 3.12.: Memory bandwidth measured with 100 STREAM runs on 1,029
CLAIX2018 nodes in GByte/s. a) shows the average performance with
standard deviation as error bar. In b) their distribution is illustrated
in a histogram. Arrows point to the difficult to detect outliers.

Variations of up to 2.45% are observed on single nodes with an average run-to-run
variability of +0.58%. Furthermore, the smallest bandwidth is 79.54% of the mean
bandwidth (9.94 standard deviations below the mean), which is also perceptible in
the skewness of —9.23. Figure b) shows the strongly left skewed histogram of
this measurement and, with a kurtosis of 88.14, the distribution is far from being
normally distributed.

If we adjust the measurement and remove nine slow outliers, we find a left-skewed
distribution whose kurtosis is close to a normal distribution and the spatial variation
decreases to only 0.30%.

While normally distributed performance occurs on CLAIX2016, the variation on
CLAIX2018 is greater with individual extreme outliers that reach significantly less
bandwidth. After filtering outliers, the distribution on CLAIX2018 also is approxi-
mately normally distributed. The interested reader is referred to additional exper-
iments with STREAM in Appendix [A] There, further measurements with different
numbers of OMP threads are conducted.

3.3. Summary

On both systems, we find statistically significant and practically significant per-
formance variability in different single-node benchmarks. The results of our mea-
surements with all relevant data and their statistical analysis are summarized in
Table 3.1 In nearly all benchmarks, a small fraction of single-node runs stands out
as extreme slow outliers. These outliers deliver performance that deviates signifi-
cantly downwards from the expected values. Adapted statistics are also listed in the
table after practical significant outliers have been excluded. In the analysis, these
can be evaluated as probably coming from a different population than the other
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System Linpack HPCG STREAM
CLAIX2016 | Number of Runs 45 30 100
Number of Nodes 591 (594) 583 (589) 581
Mean Performance 860.73 (860.39) 22.23 (22.22) 90.73
Standard Deviation 13.07 (13.87) 0.04 (0.06) 0.38
min / mean 96.04% (92.23%) | 99.06% (97.37%) 98.69%
Spatial Variation (10) +1.52% (£1.61%) | £0.17% (+0.26%) +0.41%
@ Temporal Variation (10) | +0.07% (+£0.07%) | +0.74% (+0.76%) +1.04%
CLAIX2018 | Number of Runs 45 30 100
Number of Nodes 1,026 (1,032) 1,017 (1,025) 1,018 (1,029)
Mean Performance 1,933.38 (1,932.59) 37.41 (37.31) 164.40 (164.05)
Standard Deviation 38.78 (40.55) 0.18 (1.21) 0.50 (3.38)
min / mean 94.57% (86.01%) | 95.02% (46.30%) | 98.50% (79.54%)
Spatial Variation (1) +2.01% (£2.10%) | £0.47% (+3.24%) | +£0.30% (£2.06%)
@ Temporal Variation (10) 0.25% (0.25%) +1.01% (£1.02%) | +£0.58% (+0.58%)

Table 3.1.: Measured values in GFlop/s and GByte/s of the three benchmarks and
their statistical analysis. The values are shown after the removal of
outliers and the original values of all measurements are shown in brackets.

values [I6], since other factors seem to influence the performance on these nodes.
The outliers are examined in particular in Section [

On CLAIX2016, we find spatial performance variability within 1o in a range from
+0.26% to +1.61% depending on the benchmark. The slowest nodes achieve from
1.31% to 7.85% less performance than the expected mean performance. Further-
more, the temporal variations range from +0.07 to +1.05%.

On CLAIX2018, spatial variations from +2.06% to +3.24% are found within the
1o interval around the mean value. Depending on the benchmark, the slowest nodes
reach only from 41.31% to 80.59% of the average expected performance. If the
temporal variation is considered, variations of +0.25% — +1.02% are found on aver-
age. In exceptional cases, significantly slower runs with temporal variation of up to
+6.51% on individual nodes are observed.

This overview is supplemented by a ranking of five the best and worst performing
nodes in Table[3.2] In the comparison, the placement of the nodes per measurement
series is determined and an overall ranking is formed. If a node was not available
for a single measurement, it is completely excluded from the ranking.

This ranking is created to examine whether there are fast and slow nodes within
the clusters that perform well or worse in all benchmarks. We find, however, that
it is only possible to create a ranking if the spatial variation is significantly greater
than the temporal variation. For example, if Figure a) is considered again, we
see that the nodes can be compared and ranked using the Linpack performance. The
slope of the curve and thus the spatial variation is clearly visible. The error bars are
moreover relatively small and smaller than the slope of the curve. Therefore, the
temporal variation is noticeably smaller than the spatial variation, which allows us
to sort the nodes according to their compute power.
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CLAIX2016 CLAIX2018
Node | Linpack | HPCG | STREAM Node | Linpack | HPCG | STREAM
1nm274 38 27 17 ncm0588 61 32 7
1nm166 3 15 112 ncm0572 9 11 165
1nm363 44 19 75 ncm0602 116 56 19
1nm320 32 78 73 ncm0617 39 94 98
1nm187 11 200 49 ncm0271 84 38 111
1nm208 570 568 592 ncm0177 920 872 1,023
1nm376 575 581 588 ncm0995 926 943 961
1nm560 594 587 593 ncm0491 1,008 919 921
1nm562 592 586 595 ncm0792 987 985 904
1nm561 593 588 594 ncm1010 980 942 995

Table 3.2.: Section of the globally considered ranking of all nodes based on their
placement in the three benchmarks.

However, for measurements with HPCG and STREAM, only very small changes
are sufficient to influence the order of the nodes. This can be seen clearly in the
plots of the average performance, where the temporal variations (error bars) are
significantly greater than the slope of the functions and thus the spatial variation.

With regard to the ranking list, it is noticeable that the nodes placed in the up-
per area seem to perform chaotically in the individual tests on CLAIX2016. Thus,
no nodes can be found that have consistently achieved the best performance in
all benchmarks. However, the last places are continuously occupied by the nodes
1nm[560-562]. With only one exception in HPCG, they are rated with the lowest
performance in every single measurement conducted suggesting a systematic prob-
lem with these nodes, which is investigated in Section

On CLAIX2018, the problem does not seem to be limited to any particular subset
of nodes. For example, the first placed node in the three test cases only occupies the
33rd place on average, and the last placed node the 972nd place (out of an average
of 1,017 nodes). Since the nodes place widely distributed across the benchmarks,
no systematic spatial variation seems to occur either. It is also noticeable that the
extreme outliers of the respective benchmarks do not achieve significantly less per-
formance than the mean in the other measurements as well. Therefore, Section
considers each measurement separately and no correlations between the benchmarks
are suspected.

We note that on both clusters we find statistically significant and practically
significant performance variations in single-node runs on a small fraction of nodes.
The variation on CLAIX2018 appears to be greater than on CLAIX2016 that also
shows a very stable performance when running HPCG and STREAM with less
outliers. Furthermore, we notice three nodes on CLAIX2016 that perform significant
low in all benchmarks. Otherwise, the problem is not limited to any particular subset
on both systems. In the next section, we investigate possible sources and discuss
possible reasons for these variation characteristics.
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Variation

In this section, we explore possible sources that cause the fluctuations in performance
measured and described in Section Since the large spatial variation is mainly
caused by single but extreme outliers, we closely investigate them in this section
and compare them to nodes that perform particularly well. We examine whether
we can reproduce the results at later points in time and record status data, such
as the temperature, frequency, power usage, and the CPU utilization. Because the
temporal variations measured with Linpack are negligible low and only amount from
+0.07% to £0.25% in the 1o interval, we do not need to measure repeatedly and form
an average value. In the measurements with HPCG, on the other hand, the temporal
variations range from +0.76% to +£1.01% and are therefore larger. However, if these
variations are compared with the deviation of the outliers to the mean with 1.99%
to 53.70% less performance, it is also sufficient to perform one measurement. Thus,
we only carry out a warm-up phase and one valid measurement in each case.

Because CLAIX2016 is longer in operation and is also measurably the more sta-
ble system, we start our investigations on this cluster, as described in Section
Subsequently, in Section the new measurements and experiments on CLAIX2018
are depicted. Since continuous scheduling adjustments are made with SLURM and
other settings are changed in the installation process, we hope to see improvements
in stability through the elapsed time. In addition, an investigation with continuous
measurements over a period of one and a half months is carried out on CLAIX2018.
Moreover, possible causal relationships between the position of the nodes in the rack
and their performance are examined, based on the structure of the clusters.

4.1. Studies on CLAIX2016

By repeating the measurements with HPL on the five slowest and the five fastest
nodes, we can verify the results of the first measurement. The nodes 1lnm[560-
562] achieve again significantly less performance than the reference nodes. However,
no qualitative statement can be made based on the temperature. Again, CPUj is
between 4.4 °C' and 9.9 °C' warmer than CPU;. Furthermore, temperatures between
60.9 °C' and 79.0 °C' are found on both subsets of nodes. Thus, we exclude the cooling
as a possible source and cannot recognize any connection to low performance.
However, the values of the frequency are unusual. The top five nodes work with
an average frequency of 2.449 G H z, while the bottom five run at only 2.249 GH z on
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average. We also find that the frequency of the nodes 1nm[560-562] is 2.2 GHz on
both CPUs throughout all measurements and appears to not dynamically adapt to
the workload, instruction set in use or temperature. Initially, we assumed that Intel
Turbo Boost was disabled on these three nodes. However, Turbo Boost is enabled
on all observed nodes. In order to verify our measurement on the kernel, we com-
pare the frequencies with Grafana] Grafana accesses a database of the hardware
performance counters on all nodes and prepares the data graphically, which enables
a retrospective analysis. For the time of our benchmarks, however, a higher, dy-
namically adapting frequency is found that does not match our measurements that
show a static frequency. Since the kernel reports different frequency values than the
hardware counter, we suspect problems with the installed drivers. Further research
shows that the nodes 1nm[560-562] have set different boot options than the other
nodes. The command cat /proc/cmdline reveals that the option intel_pstate is
disabled, which ensures the use of the CPU frequency scaling driver acpi-cpufreq
instead of the P-state driver. Since a uniform driver is used on the remaining nodes,
we assume that the usage of the ACPI CPUfreq driver was experimental purpose
and is not intended in the normal operation. Consultations with the system adminis-
tration revealed a total of eight nodes with disabled p-states, which were repeatedly
reserved for measurements in the past and the P-state drivers were intentionally
not used. After having concluded the experiments, it would have been necessary to
restore to the default, before making the nodes available to other users. We found
that the necessary restoring has not been conducted.

After this configuration error had been fixed and the affected nodes had been
restarted, we measure their performance again. The same binaries and config-
urations as before are used and we measure average performance improvements
of +8.55% on these nodes for Linpack. Two nodes achieve with 871 GFlop/s
and 873 GFlop/s more performance than the average, one node performs with
840 G'Flop/s less than the average. Overall, we reduce the variation measured by
the CoV from 1.61% to 1.52% and the new slowest node now reaches about 96.04%
of the mean performance (before: 92.23%). This improvement is also reflected in

the other benchmarks. We measure on average an improved performance of +2.43%
for HPCG and +8.36% with STREAM on these three nodes.

Additionally, the bimodal distribution with two peaks in Figure b) indicates
that there are two populations of nodes that differ in at least one property, thus
they perform differently. In further investigations, we therefore look for correlations
between the performance and properties of the nodes. Since in previous experiments
we were in all likelihood able to exclude the operating system as a source of error (see
Section, the same binaries are executed on all nodes, and the inspected drivers
are the same, we suspect hardware related issues. We assign the performance of the
three benchmarks to the placement within the rack in so-called heat maps. This
mapping is colored in a green-yellow-red color scale indicating where each value

Thttps://grafana.com/grafana
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Figure 4.1.: Two-colored heat map for Linpack on CLAIX2016. Nodes of the first
peak are colored in orange, nodes of the second peak in green and a gray
color indicates that the node was not available during the measurement.

lies within this range of performance. Particularly high values are highlighted in
green, performances in the midfield are given a yellow color and red indicates slow
nodes. If a node was not available, it is grayed out. This allows us, for example, to
identify inhomogeneous cooling systems, when a conspicuous number of nodes with
low performance accumulates in one location. In this analysis, the newly obtained
values are used for CLAIX2016 after the configuration errors have been corrected
on the nodes 1nm[5660-562]. The complete set of generated heat maps can be found
in Appendix [B] and this section only includes selected diagrams.

The larger spatial variation of the Linpack measurements is also reflected in a
colorful heat map in Figure However, no significant pattern is discernible.
Neither individual racks perform particularly well, nor patterns can be found with
regard to placement in the rack, such as height or relative direction. To reflect on the
bimodal distribution in the heat map, an additional two-colored mapping is created.
We color the nodes of the first peak in orange and those with more performance in
green. The result of this second mapping can be seen in Figure 4.1, However, even
this only two-colored mapping cannot explain the bimodal distribution and excludes
a node’s position within the cluster as a possible cause for variation.

The low spatial variation measured with HPCG leads to a very monotonous color
gradient of the heat maps in Figure [B.3] Most of the nodes are within the yellow
color range, a few nodes are greener, and red outliers are also noticeable. However,
no patterns can be detected. STREAM is also further investigated with a bandwidth
heat map created from the initial measurements, which can be found in Figure [B.4]
The mapping is free of patterns and shows no conspicuity as well.

In summary, the outliers of all benchmarks on CLAIX2016 are due to a configu-
ration error. Otherwise, the performance is normally distributed and does not vary
much, so no further investigations are carried out on CLAIX2016. Additionally, the
position of the nodes within the rack does not seem to have any influence on the
performance and offer no definitive explanation for the two peaks with Linpack.
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4.2. Investigations on CLAIX2018

The further experiments on CLAIX2018 with HPL and HPCG took place at the
same time. We start with the description of the study with HPCG, because both
studies depend on the findings of the other measurement, improvements are first
achieved with HPCG, and HPCG has more and extremer outliers.

4.2.1. Examining Significantly Low Performing Nodes with
HPCG

Before we begin to reproduce the results and to investigate outliers, we look into
the two discrete values of the temporal variations. Among other things, we aim
to determine whether there are certain aspects and conditions to consider on some
nodes in order to prevent temporal variation, or whether several repetitions are
necessary in the following measurements in order to compensate for these variations.

We find that the nodes with about 2% temporal variation are all located within
the 600 series rack of the cluster (see Figure in Appendix [B). This can indi-
cate, for example, differences in the cooling of the individual racks, which is why
we use Grafana to examine the status data of these nodes. We do not find any
differences in temperature. In addition, it is noticeable that among the 30 executed
measurements on these nodes only one single measurement with about 11% less per-
formance occurs. We moreover notice that by simultaneously submitting our jobs
on the weekend, when the cluster is typically not heavily used, several jobs start
at once. Thus, all 395 jobs that experienced temporal fluctuations of 2% were ex-
ecuted at the same time. Further analysis reveals that the power draw, CPU load,
and memory bandwidth are all simultaneously dropping on all each nodes for about
ten minutes. Since this is a non-representative, non-reproducible effect, we exclude
this single run from the evaluation as a measurement error. For the nodes that run
at said incident, only 29 executions are thus analyzed. This reduces the temporal
variation on average to 0.43% (before: 1.05%) while the average performance in-
creases to 37.37 GFlop/s (before: 37.31 GFlop/s). This small temporal variation
allows us to perform only one warm-up run and one measurement per node. If a
performance heat map is now created (Figure , again the position of the nodes
in the cluster does not seem to correlate with the performance.

To validate the previous results, we remeasure the fastest three nodes and the
slowest eight nodes as identified in the initial HPCG runs in Section [3.2.2] The
script for monitoring the temperature and frequency of the individual cores results
in approximately 5% overhead. Therefore, average values of around 35.64 G Flop/s
are expected. Since we find significant differences in the first run of these remeasure-
ments compared to the initial runs, we decide to observe these eleven nodes over
a longer period of time. In the course of this, we try to measure the day-to-day
variation by running HPCG at different times of the day and on different days of
the week. The results are shown in Figure On the abscissa, there is a time line
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and the performance in GFlop/s is illustrated on the ordinate. In addition to the
measured performance, the G-symbol on the abscissa indicates a reboot of nodes in
the corresponding color.

Of the former eight nodes identified as slow outliers, only three nodes remain
slow. Some of the outliers achieve twice as much Flop/s as before and perform as
good as an average node now. The variations of the performance from measure-
ment to measurement all lie within the temporal variations of the respective nodes.
During our observations, the node ncm0583 was randomly restarted on July 28th,
presumably due to a node failure. Afterward, we detect an increase of 22.50% in
performance, improving it to the same level as the other reference nodes. The node
maintains the same improved performance during subsequent measurements until
the end of our study. Therefore, we investigate the effects of planned restarts and
whether this result is reproducible. On August 7th, we hence intentionally reboot
the remaining slow nodes ncm0085 and ncm0610. In the first measurement after
the reboot, both nodes achieve respectively 19.36% and 21.97% more G Flop/s than
before. In addition to HPCG, Linpack is also used to examine whether changes in
performance can be detected after the reboot. However, only differences in the per
thousand range are found.

While the HPCG performance remains measurably improved on the nodes ncm0583
and ncm0610 over a longer period of at least three weeks, ncm0085 drops back to
29.90 GFlop/s after less than 29 hours. Between these two measurements, only
three further jobs of other users have been executed on this node. We also notice
that the first run after the restart consumes an average power of 358 W, is 70 °C'
warm, and clocks with a frequency of 2.504 GHz. In the second measurement with
less performance, a power consumption of 345 W, an temperature of 70 °C', and a
frequency of 2.532 GHz was measured on average. Especially when the frequency
is compared at core-level, significantly increased values of 2.6 GHz, compared to
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Figure 4.2.: Monitoring the performance of selected CLAIX2018 nodes over a longer
period of time with HPCG. Reboots of nodes are indicated by the G-
symbol in the corresponding color.
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the normally expected 2.5 GHz, are noticeable. Based on the observation, that
the power consumption of modern CPUs is roughly proportional to the third power
of the clock frequency [19], an increasing frequency results in a larger power draw
and thus in an increasing performance. However, since we measure an increase in
frequency and a decrease in the performance and power consumption at the same
time, something else has to happen. The execution of HPCG on all cores under
Turbo Boost should clock with a frequency of 2.5 GHz. However, since we find
some cores with frequencies of 2.6 GH z, this is not the case. In addition, the lower
energy consumption indicates that not all AVX2 units are used, so we assume that
the CPU is used by other processes and is still partially occupied.

To test this hypothesis, we divide the following job into two parts. The first step
is to idle for 25 minutes and to output the load average at equidistant intervals of
five minutes, which is followed by an ordinary HPCG run. In addition, the job is
monitored with our own scripts and retrospectively with Grafana. As a reference
node to ncm0085 we choose ncm0670 and submit the same job scripts.

The load average is a measure for CPU usage [44]. Only the actual CPU load is
measured and processes or threads that wait for 1/O, network, or anything else that
does not require the CPU are not included. It focuses only on processes that actively
take CPU time and indicates whether the physical CPU was over- or underutilized
in the last one, five, and fifteen minutes. The output is not normalized and must
therefore be divided by the number of cores for a correct interpretation. For example,
when the command uptime returns the output

20:00:48 up 50 days, 3:58, O users, load average: 0.18, 21.44, 48.51

on a compute node with 48 cores, we see that the node is in operation for 50 days and
nearly 4 hours since the last restart and that no user are connected via ssh sessions.
During the last minute, the node had a workload of 0.18/48 = 0.38% on average, and
was utilized 21.44/48 = 44.67% of the time during the last five minutes. However,
during the last 15 minutes, it had a workload of 48.51/48 = 101.06% and was
therefore overloaded by 1.06%. After at least 15 minutes of idle time, we therefore
expect a load average close to 0 and thus a normalized workload of 0% in all three
values of the load triplet.

The results of these experiments are collected together with the previously ob-
tained findings in Table 4.1} This includes the status, such as frequency, tempera-
ture, and power draw, of the node ncm0085 before and directly after a restart, as
well as the normalized CPU load average depending on the time in idle mode and
the HPCG performance achieved afterwards. In addition to the differences in status
already described, the different idle load is directly noticeable. The processors of
ncm0085, for example, are still running at 47.94% capacity on average during the
last 15 minutes, while they are idling for 15 minutes. Even after 25 minutes without
starting a new process, the utilization rate is still at 17.13%. If this is compared
with the same node after a restart, we notice significantly lower load averages of
0.10% and 0.13%. At the same time, the performance increases by 18.58% from
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ncm0085 ncm0085
before reboot after reboot ncmo670

Frequency 2.532 GHz 2.504 GHz 2.520 GHz
Temperature 70 °C 70 °C 70 °C
Power draw 345 W 358 W 361 W
Load average | 1 min- | 5 min- | 15 min- | 1 min- | 5 min- | 15 min- | 1 min- | 5 min- | 15 min-
after idling for | average | average | average | average | average | average | average | average | average

0 min 22.75% | 74.67% | 91.48% | 0.50% | 0.12% | 0.12% | 2.25% | 6.44% | T7.75%

5 min 0.35% | 27.35% | 66.23% | 0.27% | 0.19% | 0.12% | 0.33% | 0.56% | 5.69%
10 min 0.00% | 10.02% | 47.94% | 0.10% | 0.13% | 0.10% | 0.02% | 0.01% | 4.15%
15 min 0.04% | 3.73% | 34.90% | 0.02% | 0.13% | 0.10% | 0.35% | 0.54% | 3.06%
20 min 0.35% | 1.60% | 23.60% | 0.06% | 0.10% | 0.10% | 0.06% | 0.31% | 2.27%
25 min 0.33% | 0.69% | 17.13% | 0.06% | 0.17% | 0.13% | 0.04% | 0.17% | 1.69%
Performance 30.08 GFlop/s 35.67 GFlop/s 35.84 GFlop/s

Table 4.1.: Performance differences and measured status data of selected
CLAIX2018 nodes. The frequency, temperature, power draw, normal-
ized average CPU load after a certain amount of time in idle state, and
the achieved HPCG performance is shown.

30.08 G'Flop/s before the restart to 35.76 GFlop/s after rebooting. For reference,
we recorded the same data on the node ncm0670, which has a low idle load av-
erage of 1.69% after 25 minutes idle and reaches 35.84 GFlop/s. This indicates
that background processes or unfinished processes of other users could still be run-
ning on some nodes, which therefore deliver significantly less performance in HPCG.

To conclude, our long-term investigation with HPCG on CLAIX2018 shows that
the performance losses are due to presumably zombie or orphaned processes of other
users or OS daemons running in the background. They partly occupy the processors,
which decreases the performance on affected nodes. Analogous to the results on
CLAIX2016, the performance does not seem to correlate with the position of the
nodes within the cluster. In addition, a cluster-wide effect caused performance losses
during the initial measurement in Section [3.2.2]

4.2.2. Observing Outliers with Linpack

With Linpack we start our investigation by reviewing the results of the initial mea-
surement. For this purpose, single-node measurements are repeated on the fastest
three and the slowest five nodes. We notice performance increases from 4.69% to
13.72% on the nodes that were initially classified as “slow”. The other nodes bring
99.20% of the original computing power despite the additional monitoring script.
Due to longer jobs of other users, reservations, and SLURM errors, our experiments
have less time points than the HPCG measurement running at the same time. Figure
documents the temporal course of the performance. In the figure, the 1o inter-
val of the expected performance is highlighted and the G-symbol indicates restarts.
During the first four weeks, we do not notice any significant differences in the per-
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formance of the nodes that do not lie within the temporal variations. Given the
success of rebooting slow nodes and mitigating non-terminated processes of other
users, we request reboots for all observed slow HPL nodes and measure the idle load
average.

When observing the idle load, processes that continue to consume resources can
neither be detected on nodes with high performance, nor on those with less per-
formance. Likewise, we do not detect any significant changes after planed restarts.
Thus, the low computing power in Linpack results is apparently not caused by zom-
bie or orphaned processes.
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Figure 4.3.: Monitoring the performance of selected CLAIX2018 nodes over a longer
period of time with HPL. The blue highlighted area is the expected
performance within the 1o interval. Reboots of nodes are indicated by
the @-symbol in the corresponding color.

Because we do not notice any additional load on the slow nodes and because we
exclude several issues that can be caused by the software, such as the OS, usage
of different drivers, and background processes, the hardware is again considered.
Again, we compile a performance heat map, which can be found in Appendix [B| as
Figure Linpack has a larger spatial variation, which is almost normally dis-
tributed. This can be perceived in the colorful mapping in many different shades.
The placement of performance in the second cluster also appears to be randomly
distributed for HPL within the racks. Slow and fast nodes can be found in every
rack and at every position. Thus, the cluster appears to be cooled homogeneously
and there seems to be no correlation between the performance and the placement
within the cluster.

In summary, the performance variation in the measurements with Linpack is not
influenced by processes running in the background. Additionally, the position within
the server rack has presumably no influence on the performance. Likewise, we do
not detect any day-to-day fluctuations and restarts also have no impact on the peak
performance of a node. Further ideas are discussed in Section [5
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The results in Section indicate that statistically significant and practically sig-
nificant variations in performance occur between single-node runs on the different
compute nodes of a compute cluster. With the usage of the well-known and widely
accepted benchmarks Linpack, HPCG, STREAM, and FWQ, which test many rel-
evant characteristics of a modern parallel computer, we demonstrate run-to-run
fluctuations on two independent cluster systems. We are able to characterize the
temporal and spatial variations of both systems, as well as to identify some sources
that caused significant variability. Moreover, we can exclude other factors and lay
the foundation for future work.

As soon as a job with several nodes is executed, the network of the cluster is
used for communication. This almost always causes additional variation with com-
peting access and possible multiple hops over routing and must therefore be taken
into account in every multi-node run. For example, the results of simulations by
Jain et al. [24], who investigate performance comparisons and variations for different
topologies and different workloads, can be used together with our new determined
node-to-node variations to further determine which topology is best suited for clus-
ters with this particular workload and produces the least fluctuations. However,
this is out of the scope of this thesis. Furthermore, the network variation is already
part of several other studies |4} 24, 40} [46] and has been well investigated. We fo-
cus on the single-node variations that are always given as background noises on the
different nodes and within a compute cluster and thus take a different approach.

This thesis’ findings in Section [3.2.T]with the measurements using the FWQ bench-
mark reproduce results of Petrini et al. [39] and Jones et al. [25], showing that the
operating system and its interrupts cause variation in program execution. Further-
more, the observed patterns of increasing system activity in equidistant intervals
are consistent with the work of Ledn et al. [29], which assigns regular interruptions
and recurring patterns to as many as 735 background processes and sources on their
system.

In addition to confirming related work, we furthermore show that the occurrence
and length of these interrupts is the same on all nodes. The variations are statis-
tically and practically not significant (from +0.04% to £0.07% within 1o) and a
user will not notice them in the execution of their programs. Only in exceptional
cases (2 out of 1,624) significantly more system noise was found for a limited period
of time. This suggests that the operating system does not have to be considered,
when investigating fluctuations in performance at the node-level when the same ker-
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nel version and patch level is installed on the whole system. Hence, to the best of
our knowledge, the operating system can be ruled out as a source for node-to-node
fluctuations.

For this reason, the FWQ benchmark is particularly well suited to detecting faulty
configurations. Problems with the OS on individual nodes lead to an increased
amount of interrupts. So if there were any problems with the OS on individual
nodes, they would immediately be recognized as they would stand out from the
otherwise variation-free cluster.

The measurements in Section [3.2.2)indicate that the heat leak from adjacent nodes
has only a negligible effect on the performance. The results reveal that only minor
performance differences occur, when neighboring nodes emit strong heat through
computational-intensive applications compared to a measurement with idling neigh-
bors. The fluctuations in performance caused by this waste heat are only within
0.250 and therefore statistically not significant. Thus, it is not necessary to consider
the workload of other nodes because their emitted heat does not affect our single-
node measurements significantly in practice.

The temporal variations on a single node ranges, with a confidence interval of
lo, from +0.07% (see Section to 1.05% (e.g. Section [3.2.3), regardless of
which cluster or node is used. These results signify that performance tuning can
be correctly evaluated on these clusters as long as the expected performance gains
do not fall below 1.05%. In practice, developers often try to achieve performance
improvements in the range of 5% to 10% [4]. Thus, this thesis confirms that the
tuning of the runtime of applications in practice is advisable, if the programmer
evaluates the changes to the program code on the same compute node and if the
aimed gains exceed the maximum measured temporal variations of 1.05%

In addition, individual single-node measurements on our systems have a maximum
accuracy of 1.05%. If higher accuracy is required, several repetitions to determine
a mean value are inevitable.

It is further noticeable that the variation is greater for memory-bound applica-
tions (like HPCG and STREAM) than for compute-bound benchmarks (HPL). A
programmer should thus be aware of how his application behaves and whether its
kernel’s performance is limited by the memory bandwidth or the processor’s com-
pute capability in order to avoid possible errors. Hence, some memory-bound ap-
plications, as they often occur in scientific computing, might have greater temporal
fluctuations than computation-intensive codes.

If the spatial variation of the peak performance is taken into account, we find a
normally distributed computing power on both systems, which varies by 1.52% and
2.01%, respectively. On CLAIX2016, three single nodes stand out with significantly
low performance, which were successfully attributed to a configuration error leading
to an average performance loss of 7.82% and whose correction contributes to the
stability of the cluster in all three benchmarks (see Section[4.1)). Individual compute
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nodes are often reserved for separate measurements and are deliberately configured
differently from their default settings. If these systems are excluded from the normal
batch operation, no problems arise. However, if these changes are neither noticed
nor reset before they are released to the normal user, this can lead to significant
performance losses. Therefore, it would be beneficial to have an automated system
to detect and resolve any configurations that might deviate from the default settings.
Alternatively, a hard reset to restore the default values could be routinely carried
out, after an experiment has been completed.

With the exception of this one error, the peak performance on CLAIX2016 is
furthermore bimodal and has two peaks. This suggests that there are two popula-
tions of nodes, which perform differently and therefore are expected to differ in some
aspect. Hence, this thesis examines whether connections between the performance
of the nodes and their placement within the machine can be determined. For this
purpose, various position heat maps can be found in Appendix [B] which illustrate
the performance of each node within the server racks in every evaluated measure-
ment. Since the two-color heat map in Figure shows that the nodes of the two
peaks are seemingly distributed randomly in the cluster, other factors must cause
the differences in performance. As already mentioned, the heat maps of the other
benchmarks do not show any patterns or correlations as well. Neither some racks,
nor certain heights or sides favor particularly good or bad results. Conversely, this
means the cooling system of both machines ensures a homogeneous cooling without
individual nodes being affected by strong waste heat. Another possible assumption
is again based on the hardware. For example, the CPUs could be produced in two
different batches, which can be checked by means of the serial number. The ver-
ification of this hypothesis would be associated with removing all processors from
several hundred nodes and therefore lies outside the scope of this thesis. The spatial
Linpack variation on CLAIX2018 is also probably due to hardware variation. In
Section [£.2] no day-to-day variation is measured, so that temporal influences can
be excluded to the best of our knowledge. For example, even tiny differences in the
application of the heat conducting paste or in the manufacturing of an arbitrary
hardware part can suffice for a node to systematically achieve less performance than
other nodes.

To keep performance fluctuations in compute-bound kernels that are executed on
multiple nodes on CLAIX2016 low, the cluster could be divided into two partitions.
For example, Bhatele et al. [4] show that job fragmentation has only an insignificant
impact on the performance. The performance is only decreased, when the job of
interest uses the network a lot and is surrounded by other strong communication.
The nodes of the lower peak on CLAIX2016 can form the first partition and the
remaining one the second. The scheduler can internally assign that multi-node jobs
only run on nodes of the same partition. This allows the spatial variation of the
measurements to be reduced and decreases the amount of load imbalances due to un-
even performance between individual nodes. It is therefore advisable to implement
specialized compute-bound scheduling on CLAIX2016 in order to reduce variation
in certain cases as a workaround and evaluate the effects in future work.
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5. Discussion

The spatial variation of memory-bound applications are mainly caused by single
infrequent outliers, which achieve in the worst case only 41.31% of the average per-
formance and result in strongly left-skewed distributions (Section. This causes
serious problems especially with multi-node jobs and with static load balancing be-
cause one slow node is sufficient to slow down the entire run. Further experiments
reveal a correlation between unfinished processes running in the background on some
CLAIX2018 nodes and their HPCG performance. Their source and frequency has
not yet been clarified and is thus to be further researched.

A possible source are jobs from other users. All nodes are available in the normal
batch operation and we measure significant performance losses after the execution
of three jobs by other end users. Individual processes can become orphaned or
continue to run in the background as zombie processes. Hence, these three applica-
tion executions can be considered whether they can cause this phenomenon on the
corresponding node.

There is also the possibility that individual OS daemons may consume more re-
sources on some nodes, or that problems may occur with the SLURM workload
manager. These additionally possible causes should also be investigated in order to
effectively prevent the occurrences of outliers in the future.

If the outliers identified on CLAIX2018 are disregarded, the performance with
HPCG and STREAM is approximately normally distributed and slightly left-skewed
with a spatial variation of 0.18% and 0.26%, respectively. Likewise, the spatial vari-
ation of these benchmarks on CLAIX2016 is at a low level (0.11% and 0.33%) and
shows no outliers. This is an indicator that some memory-bound applications and
some important scalable applications, but not all, might run with virtually no sig-
nificant node-to-node variations on a large part of the nodes. Thus, efforts should
be made to handle the few outliers. This will significantly improve the system’s
stability. Considering the spatial variation, a programmer should analyze whether
their program code is compute-bound or memory-bound, in order to be able to bet-
ter estimate the expected variation.

In addition, we find uptimes of well over 50 days on about 90% of all nodes on
both systems and only a few nodes were restarted in between. On the one hand, this
means that the individual nodes run very reliably and on a stable operating system.
They last a long time without crashing or having to be restarted for maintenance
and administration purposes.

On the other hand, the long times between suggestive reboots can lead to problems
because critical updates can require reboots. Additionally, the longer a computer
is in uninterrupted operation, the higher is the probability of unwanted terminated
processes that continue to occur in the process table and consume a small amount of
resources or of processes whose parent process has already been terminated. Thus,
it should be investigated how often restarts should be performed. The dialog sys-
tems for log-in, for example, are rebooted every Monday at 6am. It must therefore
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be considered whether it benefits to restart all nodes every x days, which consumes
5,328 core-hours with an average downtime of 5 minutes, or whether a restart should
only be performed before larger measurements with multiple nodes.

Various studies have shown that variation is constantly increasing [36] and will
be a growing problem in the future [II, 26, 27]. Therefore, it would be interesting to
run a VARIATIONDSO00 list that ranks the variation in performance of the TOP500
supercomputers. This would allow the HPC community to point out the problems
of performance variation and create more awareness, which an individual customer
cannot do. Moreover, already known issues, such as the increasing hardware varia-
tion, could be better addressed. The list could additionally contribute sustainably
to a better understanding of the sources of performance variation, as it would collect
more data and would encourage more research.

At the time of these measurements, CLAIX2018 is a relatively new cluster that has
recently completed its pilot phase and might further improve its variability charac-
teristics and thus its performance after troubleshooting. With regard to the TOP500
list, computers can be recognized that have significantly improved their first reported
performanceafter installation in later runs with identical hardware and same theo-
retical peak performance. For example, Sequoia at the Lawrence Livermore National
laboratory improved by 5.20% from 16,423.8 T'Flop/s to 17,173.2 T Flop/s while the
theoretical peak performance remains at 20,132.7 T Flop/s and while the total cores
count remains the same in both cases [I2]. The Cray XC40 system at the United
Kingdom Meteorological Office and Cascade at the Pacific Northwest National Lab-
oratory are further examples, who enhanced by 4.05% and by 8.24%, respectively.
Since the hardware is seemingly unchanged, the gained performance could be due
to less variation, or other improvement to the software.

The installation of a new cluster is usually followed by several acceptance-, stress-,
and burn-in tests [37]. The operator of a cluster places the requirement on the man-
ufacturer that all nodes must achieve a minimum performance [34]. Otherwise, the
node is regarded as faulty, will be further examined and possible replaced. Practical
experience and our results conform that this regulation is considered reasonable.
Further, it is feasible to expand the requirements in the future to reduce the spatial
variability within a cluster. With a normally distributed performance, less variation
is expected on average compared to a strongly skewed distribution or with several
peaks. Thus, besides to define a minimum performance threshold for each node, a
spatial variation restriction can be established. This can specify that the achievable
performance should be distributed normally across the cluster and should moreover
vary spatially below a fixed threshold.

Furthermore, we recommend that these tests are not only performed immediately
after installation, but also repeat them as a regular maintenance work. On the
one hand, otherwise unnoticed configuration errors can be detected, which improves
the stability of the system. In addition to our results, other studies also report
on the importance of long observation periods in the investigation of the causes of
variations [4, 38, 41]. On the other hand, the performance of individual nodes can
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5. Discussion

change over time. Individual circumstances can alter, such as that some hardware
components’ characteristics change with increasing age [I7], and problems often
occur more frequent after an installation. Therefore, frequent health checks can
help to guarantee a stable performance. A first approach is laid with this thesis,
which documented the performance and its variation and investigated significantly
low performing nodes over a longer period of time. A collection of scripts with the
presented benchmarks is composed into a toolkit, which enables automated mea-
surements and monthly reports. These evaluation also flag nodes with significantly
downwards deviating performance and enables to separately monitor these outliers.
More information and details can be found in Section [0 where we go in detail and
explain its usage.
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6. Toolkit for Automatic
Measurements and Monthly
Reports

In the course of this thesis, a toolkit is developed, which automates the submission
and evaluation of benchmarks. Job scripts of the presented benchmarks are fully
automatically generated, submitted, and evaluated after a successful termination.
The gained measurement data are stored in a table with a clear structure and
graphs are created. This allows automatic monthly measurements and reports to be
integrated into the daily operation of CLAIX2016 and CLAIX2018, which generates
data to facilitate investigation and a better understanding of performance variation
over time and system age. This data can be used for future work in the HPC group.
This tool is strongly adapted to the clusters of the RWTH Aachen University, their
hardware, and the used software. Therefore, transfers to other systems may require
further adjustments.

In the following, the kernels integrated in this version and the mechanics of usage
of the toolkit are explained.

6.1. Kernels

Since the toolkit is to be used beyond this thesis and in order to enable a smooth
integration into the day-to-day operations of the systems, not all benchmarks pre-
sented in Section [3.1.1] are included, although we cannot rely on a single benchmark
either. For example, our results show that nodes that deliver a significantly low
performance in one benchmark do not necessarily have the same low performance
in other benchmarks. Likewise, a single benchmark cannot judge the overall perfor-
mance of a system or consider all aspects. In addition, each measurement should
consume as few computing resources as possible. Thus, benchmarks with short run-
times are selected or configured in a way that conserves resources. It is recommended
to continue the measurements with the three benchmarks STREAM, Linpack, and
HPCG, which are described in detail in Section 3.1.I] We exclude FWQ because
we have found no significant fluctuations and each measurement generates roughly
70 GB of data that must be evaluated and stored.

To measure the memory bandwidth, we use a multi-threaded STREAM bench-
mark. With its very short runtime, even 100 runs can be measured again. Depending
on the cluster, 24 and 48 OMP threads are used to obtain the maximum bandwidth.
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6. Toolkit for Automatic Measurements and Monthly Reports

The variation in compute power is determined using the compute-bound Linpack
benchmark, as well as the memory-bound benchmark HPCG. However, the bench-
marks are configured to consume as few resources as possible, but still to reflect on
the variation at the node-level. The runtimes are set to approximately five minutes
and three repetitions in this toolkit. This means that the HPCG results cannot be
used for official TOP500 measurements, which require a running time of 30 min-
utes, but we still achieve a similar performance. Linpack’s runtime and measured
performance depends on the problem size N. This means that the maximum peak
performance is only achieved with the largest N possible. However, we configure
Linpack to have a runtime of about five minutes to conserve resources. Thus, we
measure a sub-optimal performance, but can still reflect on the variation between
runs and clusters. In addition, warm-up phases of the hardware are also considered
at this point.

The toolkit has a modular structure and can easily be extended by further bench-
marks. All previously presented benchmarks are already included and can be de-
ployed with little effort. Further benchmarks can be added easily, and the evaluation
can be adapted to meet future requirements easily.

6.2. Mechanics of Usage

This section describes the main functions and use of the toolkit, i.e. the preparation
and installation, as well as the evaluation are explained.

6.2.1. Mechanics of Building

The toolkit is located in the GitLab repository 2019 BA_Hanneken Performance-
Variation[] in branch develop. To customize the project ID under which the jobs
are submitted, the user can specify it in line 8 of the make.sh script. If none is
specified, the system works under the user account and therefore without a project
ID. To build, one simply has to navigate into the top-level directory and execute
sh make.sh, which generates the jobscripts for STREAM, HPCG, and HPL for
CLAIX2016 and CLAIX2018. To keep the data comparable, the binaries are not
recompiled, but Linpack and HPCG of the MKL and an already compiled STREAM
benchmark are included in the sourcecodes/ directory. Building also generates
folders for storing the results (data/) and the run.sh script that is used for running
and evaluating series of measurements.

"https://git.rwth-aachen.de/hpc-thesis-artefacts/2019_ba_hanneken_performance-
variation
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6.2. Mechanics of Usage

6.2.2. Mechanics of Running and Evaluating

In lines seven through twelve of the run.sh script, the user can specify which of the
pre-installed benchmarks shall run in the current measurement. Nevertheless, all
measurements carried out previously are evaluated. With the command sh run.sh,
the main script is executed, which starts to evaluate the previously executed mea-
surements by first canceling not yet started but submitted jobs. At the same time,
new folders are created in which the evaluation is saved. The folders are given the
current date as name. For each benchmark and cluster, a sub-directory is generated,
which gives us the structure data/<date>/<benchmark ma- chine>/. With the
help of Gnuplot (version 4.7, also tested with version 5.3), the measurements are eval-
uated statistically. The evaluation generates graphs for each benchmark and saves
all data for future use. In addition, a table is created under data/statistics.dat,
which is supplemented by the new results after each evaluation. We record the
average performance, its standard deviation, the coefficient of variation, and the
quotient of min/mean.

The generated output files are moved to a sub-folder, which can also be found
under data/<date>/<benchmark_machine>/outputfiles. A maximum of 200 M B
of data is generated per benchmark.

6.2.3. Remarks and Recommendations

In Section [4.2] we continuously measure individually selected nodes at intervals of
one to seven days over a period of one and a half months. Since the temporal vari-
ation on normal, not further significantly fluctuating nodes did not exceed a C'oV
of 1.05%, it is sufficient to measure all nodes once a month. Previous work by the
HPC Group has shown that the average energy consumption at the weekends on
CLAIX2016 is significantly lower than the average energy consumption on week-
days, which leads to the conclusion that the cluster is used less at the weekend [5].
Therefore, it is advisable to start large measurements on all nodes in these empty
spaces at the weekend with a low priority. This will reduce the load on the normal
batch operation as much as possible. The measurements on all nodes form the ba-
sis for further investigations that focus only on some slow nodes. Outliers of this
measurement (deviation of more than 20) should be considered more often and with
additional tests. Since fast nodes have no negative influence on the performance of
the system or on multi-node jobs, we also recommend that only significantly slow
nodes are observed. With this toolkit, only outliers that deviate downwards are
recognized and are marked in the file data/outliers.dat. However, it may help
to continue using a few normal nodes as a reference if necessary. As an additional
test the idle load can be measured with the command sh run.sh idle of all dis-
covered outliers on the list. The repeated measurement of these outliers can also
be performed and evaluated with sh run.sh outliers with the selected bench-
marks (STREAM, Linpack, and HPCG). This is recommended on a weekly basis in
order to examine the fluctuations and evaluate them.
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7. Conclusion and Future Work

The goal of this thesis was to investigate the node-level performance variability in
parallel applications running on HPC platforms. In experiments on two different
parallel computers, we measured the order of magnitude of the temporal variations
of the individual compute nodes of a parallel computer in single-node runs Moreover,
we determined how strongly the spatial variation at cluster-level influences the per-
formance on these machines, and were able to identify sources of possible variation,
and excluded some other factors. Furthermore, a toolkit was created as part of this
thesis, which enables the automated measurement and evaluation of benchmarks.
This allows the performance, and thus its fluctuation, to be monitored over a long
period of time during the normal operation of a cluster and additionally, it allows
to identify outlying nodes. The obtained data can form the basis for future work,
might contribute to a better understanding of the variations with increasing age of
the clusters, and might help in the evaluation of new variation-aware programming
techniques.

We investigated the influences of neighboring jobs that emit strong heat by per-
forming compute-intensive applications, of the operating system in the form of in-
terrupts, and of a node’s position within the server rack and conclude that these
effects only have an insignificant correlation with performance variation. When ad-
jacent nodes radiate waste heat, small differences in performance are measurable.
These performance decrements are not further considered with a maximum devia-
tion of 0.250. Similarly, our experiments and measurements showed that the OS is
a potential cause for variation, as it interrupted the execution of user applications,
but the occurrence and length of interrupts did not differ significantly from node to
node and therefore did not cause any differences on the node-level. The placement
of nodes within a cluster, such as height, relative direction, and distinct racks, show
no correlation either. Thus, these factors can be excluded as possible causes for
fluctuations in performance on the node-level.

The temporal variation is at a similar level on all nodes on both clusters. However,
it must be distinguished whether an application is limited by the computing power
or the memory access. Memory-bound applications vary in time on our systems by
up to +1.05%, while compute-intensive applications have negligible low fluctuations
of +£0.25%. Thus, a user must be aware of how their applications’ performance is
limited and that performance tuning can only be evaluated, if the expected perfor-
mance gain is greater than 1.05%. Likewise, individual single-node measurements
have a maximum accuracy of 1.05% and several repetitions are necessary, when a
higher precision is needed.
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7. Conclusion and Future Work

Excluding outliers, the spatial performance is approximately normally distributed.
Moreover, the restriction of an applications’ performance is important again. If a
kernel is compute-bound, fluctuations of up to +£1.98% occur, while memory-bound
code only varies up to +£0.33%. However, the spatial variation becomes significantly
greater, if outliers are also considered. For example, we measured performance losses
of up to 58.69% (16.590 below the mean value) on individual CLAIX2018 nodes
with HPCG. Further testing and analysis has shown that presumably zombie and
orphaned processes or OS daemons run in the background and consume resources,
even when the node is otherwise idling. One possible solution to this phenomenon is
to restart the affected nodes. However, this is not optimal, so that further research
is needed to identify the source of the occupancy of the CPUs and to determine
its frequency in occurrence. The restart cycle of all nodes can also be examined
to determine whether the period between successive restarts should be adjusted or
whether one reboot should be performed before large multi-node jobs. Additionally,
slow nodes on CLAIX2016 in different benchmarks revealed a configuration error
on some nodes. This again illustrates how important it is to recognize and prevent
the infrequent outliers. In the future, data centers should therefore pay particular
attention to individual outliers because they significantly worsen a system’s stability,
while otherwise a stable performance was found.

Moreover, it is interesting to investigate the magnitude of performance variation
in jobs with multiple nodes. The single-node data collected within this thesis for
each node can serve as a basis for this future work. Neglecting the variation by the
network, Monte Carlo methods can be used to perform simulations to determine the
average variation of a multi-node job. These network effects and the utilized network
architecture, as well as I/O influences, can be investigated further. Since individual
nodes are connected by more hops than others due to the network topology, or com-
pete over the shared resource, variations on the node-level are expected here. With
further data, such as the average node request for jobs, and the scheduling procedure
with SLURM, an expected value for the variations of multi-node measurements can
be determined more elaborated.

In summary, significant variations in performance on the node-level of modern
parallel computers are mainly induced by infrequent slow outliers that impair the
stability of the whole system. Otherwise, the performance is normally distributed
and varies from +0.07% to +£2.01% within 1o. Temporal variations are particularly
small in compute-bound kernels, while memory-bound code tends to experience
smaller spatial variations.
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A. Multi-Threaded STREAM with
Different Number of OMP
Threads

STREAM is also further investigated on both systems with bandwidth heat maps
created from the initial measurements. They can be found in Appendix [B| as Fig-
ure [B.4] and Figure B.§f Both mappings are free of patterns and shows no con-
spicuity, so additional experiments are conducted to examine the outliers. For this,
we consider additional multi-threaded STREAM measurements with one to 24 or
48 OMP threads each, depending on the system The threads are each bound to a
physical core with the spread binding policy.

CLAIX2016 The memory bandwidth from one to 24 OMP threads with the stan-
dard derivation and the occurring variation is shown in Figure As the number
of threads increases, the reached bandwidth also increases overall. Especially from
one to twelve threads, it increases strongly and already reaches 82.59% of the max-
imum bandwidth at twelve threads. In addition, the variation is particularly large

for one to six threads. Hence, the best bandwidth per variation rate is reached with
24 threads.

Mean STREAM memory bandwidth and variation (1g) on 580 CLAIX2016 nodes with different thread count
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Figure A.1.: Memory bandwidth with different numbers of OMP threads on
CLAIX2016.
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A. Multi-Threaded STREAM with Different Number of OMP Threads

CLAIX2018 As expected, the bandwidth increases as the number of OMP threads
increases. The maximum bandwidth is measured with 48 threads (see Figure [A.2).
Peaks at ten, sixteen, 26 and 29 threads can be observed. In addition, the bandwidth
of one to sixteen threads increases much more than in the other range, reaching
already 77.99% of the maximum bandwidth with sixteen threads. Furthermore,
the variation is particularly high when using one to seven, ten, 47, and 48 threads.
Hence, the best bandwidth per variation rate is reached with 22 threads, which
reaches 67.79% of the optimal bandwidth and reduces variation at the same time.

STREAM Mean memory bandwidth and variation (10) on 1029 CLAIX2018 nodes with different thread count
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Figure A.2.: Memory bandwidth with different numbers of OMP threads on
CLAIX2018.
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B. Performance-Placement Heat
Maps

This section provides the figures of the heat maps from the Performance Placement
Analysis from Section 4 This assignment is colored in a green-yellow-red color scale
that indicates where each value lies within this range. Particularly high values are
highlighted in green, performances in midfield are given a yellow color, and red
indicates slow nodes. If a node was not available, it is grayed out. A more detailed
description can be found in the corresponding section.

CLAIX2016
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Rack 01 LC Rack 02 LC Rack 03 LC Rack 04 LC Rack 05 LC Rack 06 LC Rack 07 LC Rack 08 LC Rack 13 LC Rack 12 LC
8520 7264 85597 85935 se191  aggs 7555 83561 8999 87209 87293 87975 87128 86545 876,14 s6s9 | sara3
s878 7218 86598 89025 8217 sas 8651 86519 85346 86961 ss4a 872,00 s se2 862,70 8652 sa4ss
ss0d6 87795 863 85181 88433 86650 85050 4521 85303 853 865 86961 s9%0 85387 846,40 s7936 85278
8994 7138 838 s 84675 86440 86780 87189 aisss 83663 513 8s3s1 s125 8755 87389 so1ss 86443
85160 86302 82 87491 8566 85584 85091 s06 912 2, 663 85686 86502 874, 87073 77,18 87487 85008
8793 86520 8270 87356 86920 85323 8133 85160 aises 87013 s101 7912 85616 86803 855,19 86983 8371 3862 87006
87435 86175 8645 84701 86312 85608 85743 87133 a3 8921 8279 87013 8030 8228 865,44 87735 84603 8200 87859
473 sera se636  8a7as 8519 63,25 8723 se1se 8436 86763 85805 84921 87336 7, 85452 s0a  sna 88093 84965
85465 85465 8400 ss3Es 856, 64,04 8757 6717 86140 332 8226 867,63 sa42  ssiso 84852 87302 sseis a7591 86310
739 86927 86491 87550 8123 6802 85998 86998 8727 87169 s021 8533 8800 86866 88513 s6325 8388 s781 | 85601
87865 86516 a7611 88977 ss83a 85218 88016 83276 8323 87650 895 87169 600 85983 86059 85953 86936 86421 87055
81036 87860 815 86103 86150 86640 86650 85115 6310 85452 88523 87650 8626 83634 85596 86535 84519 ss790 576
85367 83665 8522 85346 87059 se 8725 84969 888,97 334 854,86 452 87084 858,62 071 8728 565 829
8217 86560 85320 w0 7300 89753 85239 85160 8843 86530 86409 8333 siiss 85777 88243 85985 86397 8887 8335
86375 84936 s588 86565 8177 6202 85129 86031 85761 86750 86823 86530 sasea  ssesl 854,25 85069 84545 077 e
ss676 85219 s991 s s6171 | 85505 88625 85960 seass 85945 8761 86754 8s667 83664 844,93 85271 88555 s 81203
8106 8779 85186 86619 sasgo 87238 8723 840 81524 90049 8128 85945 86674 88925 868,26 a3 ss3de
sa956 85103 86494 77,05 86656 8410 87440 86828 8i616 86184 87468 90049 85075 9,06 87748 s250 83127
85003 85061 85017 88156 86505 84546 87250 86028 81813 87538 87810 86180 s165 85453 857,76 8105 85231
ss1d6 85627 03 8769 87851 85430 86949 85120 8232 85389 a7300 87538 84793 85850 87582 si113 85408
8781 85409 86315 85449 s852 85385 87359 843 as259 8198 389 618 86569 861,74 s757 83740
7418 84676 s4408 86319 8056 89237 8035 84335 87443 85738 s, 819,98 8748 86019 840,05 324 030
87587 86889 s s 84 se 8355 85176 86694 85580 85951 85738 857,66 i 856,48 s730 85427
87488 sisds 85068 8227 8529 se412 84903 85336 84836 88533 85580 sass 85827 841,27 ssaes  8s258
84439 8501 85388 87100 85208 8116 837,60 86675 8ol 8751 84836 8411 87397 85209 mssy  sssa3
86595 862,17 85626 86313 86580 88235 85033 85536 85656 85848 86960 86841 88285 86695 857,18 8151 8sys1
86135 87151 a7835 87348 87066 84333 s64d0 85605 005 84453 8298 85848 86876 87835 873,59 s75  saass
867,56 863,38 866,11 853,68 843,84 845,73 858,24 855,18 849,84 844,53 869,33 872,54 871,66 852,13 849,32
i snn 86577 88977 85640 86482 s7348 8676l 87084 Ba5AS a7162 85518 81904 86575 8319 867,20 m987 86270
8920 89626 8947 86740 8576 7L s520  ss0a2 8014 86430 sssss  aasas 85460 87249 350 se4ss a6e8 86191
86253 84836 8053 s 8876 85280 85500 85923 8897 87570 8913 86430 86878 85067 85343 86613 8001 86113
8760 86886 8470 85053 sasds 85146 7206 a2 85125 88247 8637 87570 8491 86435 8772 86423 86715 86270

Figure B.2.: Identical to Figure [4.1L  Two-colored heat map for Linpack on
CLAIX2016. Nodes of the first peak are colored in orange and nodes
of the second peak in green.
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Figure B.3.: Performance placement heat map for HPCG on CLAIX2016.
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Figure B.4.: Performance placement heat map for multi-threaded STREAM (24
OMP threads) on CLAIX2016.
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Figure B.7.: Temporal variation heat map for HPCG on CLAIX2018
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Figure B.8.: Performance placement heat map for multi-threaded STREAM
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