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ABSTRACT 
This paper overviews recently developed approaches for forest acoustics based on a three-dimensional (3D) 
multiple scattering theory. The mean sound field is calculated with the effective wavenumber which 
represents the scattering by trunks, branches, and the canopy. The radiative transfer equation is formulated 
appropriately to forest acoustics; this result enables calculations of the mean sound intensities transmitted and 
backscattered from a stand of trees. The correspondence between sound propagation in a turbulent 
atmosphere and a forest is outlined. This correspondence, and the existing theory of the interference of the 
direct and ground reflected waves in a turbulent atmosphere, enable analysis of a similar effect in a forest, 
where these waves are scattered by forest elements. Numerical examples illustrating application of the 3D 
multiple scattering theory for calculating the mean sound pressure and mean sound intensity are presented. 
The 3D multiple scattering theory can also be used to study pulse propagation in a forest. 
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1. INTRODUCTION 
Forest acoustics is important in several applications such as noise reduction by a stand of trees and 

localization of sound sources, e.g., reference (1). Due to multiple scattering by trunks and branches, 
attenuation in the canopy, micrometeorology, and interaction with the impedance ground, sound 
propagation in a forest is a very complicated phenomenon. Despite significant efforts, there were no 
satisfactory prediction methods based on first principles.  

Recently, a 3D multiple scattering theory was applied to forest acoustics and the results obtained 
were reported in references (2-5). The 3D multiple scattering theory assumes that different scatterers 
in a forest have random locations. Then, the propagating sound field becomes a random field. This 
stochastic approach is often used in wave propagation in complex media. Using this approach, closed 
form equations for the mean sound pressure and mean sound intensity are derived. The 3D multiple 
scattering theory is a rigorous approach and enables predictions in realistic environments. The theory 
is related closely to sound propagation in a turbulent atmosphere. The results known in the latter field 
(6) can be used to advance forest acoustics. The main goal of this paper is to overview the 3D multiple 
scattering theory as applied to forest acoustics. Note that the theory might not be applicable and needs 
to be modified for a forest planted in a regular pattern.  

The paper is organized as follows. In Sec. II, scattering properties of the canopy and trunk layers in 
a forest are considered. Section III provides an approach for calculating the mean sound field. In Sec. 
IV, the radiative transfer equation (RTE) is introduced, which enables calculations of the mean sound 
intensity. Section V considers the RTE in the high-frequency approximation. The results presented are 
summarized in Sec. VI. 
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2. SCATTERING CROSS SECTIONS IN A FOREST 
In a 3D multiple scattering theory, a key quantity is the scattering amplitude  of a scatterer, 

which is defined as follows. Consider a plane wave propagating in the direction of the unit vector , 
which is incident on the scatterer. The scattered wave can be expressed as a product of the Green ’s 
function in free space, the amplitude of the incident wave, and the scattering amplitude , 
where the unit vector  is in the direction of the scattered wave. Thus,  characterizes the 
amplitude of the wave scattered in the direction of the vector . 

Equations for the statistical moments of the sound field in a forest contain the differential scattering 
cross section (DSCS), , and the total cross section (TCS), . These cross sections may be 
expressed in terms of the scattering amplitude as 

. (1) 

Here, is the number of scatterers per unit volume and  is the sound wavenumber in free space. It is 
often useful to express the TCS as a sum of the scattering cross section (SCS), , and absorption 
cross section (ACS), :  

+ . (2) 
The SCS characterizes the loss of energy of a sound wave propagating in the direction of the unit 
vector  due to sound scattering in all directions. It is obtained by integrating the DSCS over the unit 
vector :  

 (3) 

Here,  is the solid angle in the direction of the vector . The ACS has a similar meaning but is 
pertinent to sound absorption rather than scattering. The ACS accounts for sound absorption in a forest 
such as visco-thermal dissipation in foliage.   

There are two approaches for determining the DSCS and TCS in a forest: (i) The cross sections can 
be measured experimentally as explained in references (3,4). (ii) Trunks can be modeled as finite 
vertical cylinders, branches as finite slanted cylinders, and the canopy layer as diffuse scatterers. 
Using these scatterers, different realistic forests can be built.  

As an example of the second approach, we provide modeling of the trunk and canopy layers, which 
will be used later in the paper. Trunks are modelled as solid finite vertical cylinders with the scattering 
amplitude  from reference (7). The DSCS is then (3):  

 (4) 

Here,  is the length of a cylinder,  is its radius,  is the sinc function,  and  are the polar 
and azimuthal angles of the unit vector , and  and  are those of the unit vector .  The 
functions  are given by 

 (5) 

where,  is the Neumann factor,  is the Bessel function,  is the Hankel function of the first 
kind, and primes above these functions denote derivates with respect to the argument.  Although these 
formulas appear to be involved, they are relatively easy to implement numerically.  The SCS, , 
can be obtained with Eq. (3). Since trunks are assumed as solid cylinders,  and    

In the considered example, branches can be modeled as solid finite slanted cylinders. The DSCS is 
still given by Eqs. (4) and (5) with some transformation of the angles. Since the canopy layer usually 
consists of many small scatterers such as leaves, needles, and twigs, it can be modelled by diffuse 
scatterers. For such scatterers, the DSCS  does not depend on the vectors  and . 
Visco-thermal attenuation and induced vibration in the canopy layer may be modelled by a finite value 
of the ACS, .  

In a forest, the scattering amplitude and cross sections usually depend on the spatial coordinates 
. In what follows, this dependence is accounted for by including  as an argument of the 

corresponding quantities, e.g., , , and  
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3. MEAN SOUND PRESSURE 
In a 3D multiple scattering theory, the sound pressure in a forest can be written as  

 (6) 
Here, the brackets  indicate ensemble averaging, is the mean sound pressure (also termed 
the coherent sound field), and is the sound-pressure fluctuation. The mean sound pressure can be 
calculated using the well-known parabolic equation (PE) in a non-random medium,  

, (7) 

if the sound wavenumber  is replaced with the effective wavenumber  which accounts for sound 
scattering in a forest. In this equation, the -axis is in the direction of sound propagation, 

,  is the sound speed, and  is its reference value. The effective wavenumber is given by 

 (8) 

The effective wavenumber is also used in a 2D multiple scattering theory to predict the mean sound 
pressure, e.g., references (1,8,9). The effective wavenumbers for 2D and 3D cases coincide for 
horizontal sound propagation and differ for slanted propagation, see reference (2).  

Effective numerical algorithms for solving Eq. (8), which account for atmospheric stratification 
and sound interaction with the impedance ground, have been developed in atmospheric acoustics , e.g., 
reference (6). These algorithms can be readily applied to sound propagation in a forest. As an example, 
Fig. 1 depicts the complex amplitude of the mean sound pressure, , due to a point 
unit strength source. In the figure, dashed horizontal lines indicate the trunk and canopy layers, which 
are 12 m and 25 m high. For this example, the sound frequency is 1 kHz, the source height is 1 m, the 
number of trees per unit area is 1/ , and the tree radius is 0.09 m. These parameters 
and the scattering amplitude for solid finite vertical cylinders (7) enable us to calculate  in the 
trunk layer. In the canopy layer, we assume that  is that in the trunk layer multiplied by a 
factor 1.5. The relaxation model (6,10) with parameters pertinent for a fermentation/humus layer in a 
forest (11) is used to assess sound interaction with the ground, see reference (3) for more details. In 
Fig.1, four subplots depict gradually increasing complexity of sound propagation. Figure 1(a) 
corresponds to a source located above an impedance ground in a homogeneous atmosphere. In Fig. 
1(b), a 12 m high trunk layer is added to a homogeneous atmosphere. As a result, the complex 
amplitude in this layer and above is significantly attenuated starting at the range of about 200 m. In Fig. 
1(c), a 13 m high canopy layer is added to the previous geometry. This results in significant sound 
attenuation with height. Finally, in Fig. 1(d), the sound speed has a vertical gradient 0.12 1/s which 
results in downward refraction.   

The mean sound pressure attenuates approximately exponentially with propagation range and is 
applicable for a relatively small range. Beyond this range, the 3D multiple scattering theory provides 
approaches for calculating the mean sound intensity as explained in sections 4 and 5.  

4. MEAN SOUND INTENSITY 
The mean sound intensity is given by . Substituting with Eq. (6), the mean 

intensity can be written as 
 (9) 

The first term on the right-hand side  is termed the coherent sound intensity 
and the second term  the diffuse sound intensity.  

In the radiative transfer theory, the mean intensity can be expressed in terms of the radiance,  

. (10) 

The radiance  is defined as the average energy flux within a unit solid angle  in the direction 
of the unit vector n. It follows from Eq. (10) that the mean intensity is obtained by integrating the 
radiance over all directions of the vector n. The radiance can be found by solving the RTE:  
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. (11) 

 

 
Figure 1 – Complex amplitude of the mean sound pressure versus range and height. The geometries of sound 

propagation are explained in the text.  
 
Solutions of the RTE are well developed in many fields of physics and can be readily applied to 

forest acoustics. The RTE accounts for diffraction. Similar to the mean sound intensity, the radiance 
can be expressed as a sum , where is the coherent radiance and 

 is the diffuse radiance. Reference (3) provides RTEs for the coherent and diffuse radiances.  
Consider an example of using the RTE in forest acoustics. Let a plane sound wave be normally 

577



 

 

incident on the forest edge, with a receiver located at the other edge of the forest. The forest is modeled 
with four layers: ground, trunks, canopy, and open air. This geometry is pertinent to sound attenuation 
by a stand of trees. Parameters typical for a temperate conifer forest are considered: the height of the 
canopy layer is 25 m, the height of the trunk layer is 12 m, the number of trees per unit area is 0.05 
1/ , and the tree radius is 0.09 m. Furthermore, the sound frequency is 1 kHz and the height of the 
receiver is 2 m. Using these parameters, the TCS and DSCS in the trunk layer can be calculated with 
Eqs. (2)-(5). Currently, scattering and absorption properties of canopy layers are mostly unknown. For 
concreteness, we assume that  and the TCS is equal to  in the trunk layer for 
the vector  in the direction of the incident wave. Sound interaction with the ground is modelled 
similar to that in Fig. 1.   

 

Figure 2 – (a) Normalized sound intensities transmitted through the forest. (b) Normalized sound intensity 

backscattered from the forest.  
 

For the considered example, the RTE, Eq. (11), is solved in a modified Born approximation. Figure 
2(a) depicts the mean, coherent, and diffuse sound intensities, normalized by the incident intensity, 
transmitted through the forest versus the forest length. The coherent intensity exponentially attenuates 
with increasing forest length. The diffuse intensity is zero at the forest edge, reaches a maximum at 
74.5 m, and then decreases with the forest length. The mean sound intensity is a sum of the coherent 
and diffuse intensities. Figure 2(b) depicts the mean sound intensity backscattered from the forest. The 
backscattered intensity monotonically increases with increasing forest length and reaches a plateau at 
about 140 m.      

The RTE is valid for both low and high frequencies. Sound propagation in the atmosphere is usually 
considered in the high-frequency approximation. In this approximation, the RTE simplifies as 
explained in the next section. 

5. HIGH-FREQUENCY APPROXIMATION  
The high-frequency approximation corresponds to narrow-angle sound propagation in a 

predominant direction, which we align with the -axis. In this case, the RTE can be reduced to the 
following PE, see reference (5):  

 (12) 

Here,  is the spatial correlation function of the sound field,  
and  are two points of observation located at the same range ,  is the vector 
between the observation points in the plane perpendicular to the -axis,  is the 
geometrical center of these two points, and  corresponds to the ACS in the direction of the -axis. 
The mean sound intensity is obtained by setting  in the correlation function: 

. In Eq. (12), the function  is given by  
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where  has the following meaning. In the narrow-angle approximation, the DSCS 
 depends only on the difference between the vectors  and : . In 

this formula, , where  is the component of the vector  perpendicular to the 
-axis. Then, , where . Thus,  is 

the DSCS in the narrow-angle approximation. 
Equation (12), which is termed the second-moment PE, also describes the correlation function of 

the sound field in a turbulent atmosphere. In this case, the DSCS, , is expressed in terms 
of the spectra of atmospheric turbulence and , see reference (5) for details. Effective numerical 
techniques for solution of the second-moment PE have been developed in atmospheric acoustics 
(6,12,13) and can be used to study sound propagation in a forest. This approach can be generalized to 
account for sound refraction in a forest. 

Sound propagation in a turbulent atmosphere has been investigated relatively well and is 
summarized in reference (6). The results from this reference and the correspondence between sound 
propagation in a turbulent atmosphere and forest can be used to advance forest acoustics. As an 
example, consider the effect of trees on the interference of the direct and ground-reflected waves. For 
typical ground impedances of forest floors and certain frequencies and ranges, this interference could 
result in significant reduction of the sound pressure level. In practice, however, this reduction does not 
fully occur since scattering by trees diminishes the coherence between the direct and ground-reflected 
waves. A similar phenomenon exists (and is well studied) in atmospheric acoustics, where turbulence 
reduces coherence between these waves. Using the similarity between sound propagation in a 
turbulent atmosphere and forest, we rigorously account for the effect of trees on the interference 
between the direct and ground-reflected waves, see reference (5). For the mean-squared sound 
pressure, we have  

. (14) 

Here,  and  are the path lengths of the direct and ground-reflected waves,  is 
the spherical-wave reflection coefficient, and  is the coherence factor which describes the loss of 
coherence between the direct and ground-reflected waves due to scattering in a forest. The coherence 
factor is expressed in terms of DSCS,  

(15) 

where  is the propagation range, , and  and  are the source and receiver 
heights. For sound scattering by trunks and , Eq. (15) reduces to   

(16) 

Equations (14-16) enable us to access the effect of trees on the interference of the direct and 
ground-reflected waves. As an example, the solid line in Fig. 3 depicts the sound pressure level (SPL) 
relative to that in free space, , versus sound frequency . The propagation range is 
100 m, the source and receiver heights are 1 m and 2 m, the height of the trunk layer is 12 m, the 
number of trees per unit area is 0.05 , and the tree’s radius is 0.09 m. The ground impedance is the 
same as that assumed in Figs. 1 and 2. The other two lines in Fig. 3 correspond to the cases when there 
is no forest (in Eq. (14), ) and when the direct and ground-reflected waves are added 
incoherently ( ). It follows from Fig. 3 that without the forest, the interference results in 
maxima and minima of the SPL as a function of frequency. With the forest, the interference minima are 
reduced by several dB due to the coherence loss between the direct and ground-reflected waves, 
resulting in an apparent increase in the SPL. However, the ground effect interference pattern is 
predicted not to be completely suppressed since, as shown by several measurements (1), there remains 
some coherency between direct and ground-reflected paths in a forest. When these waves are 
incoherent, the maxima and minima are completely suppressed, and the SPL only slightly depends on 
the frequency (Fig. 3).  
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Figure 1 – SPL relative to that in free space for the interference of the direct and ground-reflected waves in a 

forest.  
 

6. CONCLUSIONS 
This paper overviewed application of a 3D multiple scattering theory to forest acoustics (2-5). In 

this theory, the differential scattering cross section (DSCS), total cross section (TCS), scattering cross 
section (SCS), and absorbing cross section (ACS) are utilized to characterize different scatterers in a 
forest such as trunks, branches, and the canopy. Approaches were outlined to access these cross 
sections. 

The mean sound pressure  may be calculated with a standard parabolic equation (PE) if the 
sound wavenumber in free space, , is replaced with the 3D effective wavenumber, , which 
accounts for sound scattering in a forest. The mean sound intensity  was expressed in terms of the 
radiance , which satisfies the radiative transfer equation (RTE).  In the high-frequency 
approximation, the RTE reduces to the second-moment PE for the correlation function of the sound 
field ; the mean sound intensity is obtained by setting  in the correlation function. 
The correspondence between sound propagation in a turbulent atmosphere and forest was outlined and 
used to predict the effect of trees on the interference of the direct and ground-reflected waves. The 
methods for calculating the mean sound pressure and intensity were illustrated by numerical examples.     

Propagation of continues sound signals was considered. A 3D multiple scattering theory can also be 
used to predict pulse propagation in a forest as described in reference (4).  3D multiple scattering 
theory appears to be a very suitable approach for forest acoustics.   
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