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Abstract

This doctoral thesis deals with the reconstruction conjecture in graph theory. This
over 70 year old conjecture asks the question of how to uniquely determine a graph
by its substructures. In this particular case, one has the isomorphism types of all
induced subgraphs in which, with respect to the original graph, exactly one vertex
and its adjacent edges are missing. The question now is about the uniqueness of the
subgraphs of a graph, that is, whether there exists exactly one graph or at least two
different graphs that contain the same isomorphism types as subgraphs in the given
number. The conjecture itself reads as follows: “All simple, finite and undirected
graphs on at least three vertices are reconstructible.” Reconstructible means that the
set of the isomorphism types of the induced subgraphs belong to exactly one graph
and that there exists no other, different graph which contains the same subgraphs.

Due to the lack of a universal approach to the problem, we help ourselves with the
following concept. We show that a class of graphs with a certain property is recon-
structible, provided that the graphs of this class have this property. Over the last
decades a wide range of classes of graphs have been proven to be reconstructible by
using this principle. The hope is that one day we find enough reconstructible graph
classes such that the union of these classes cover the set of all graphs and therefore
will prove the correctness of the reconstruction conjecture. A second approach is to
prove that certain invariants are reconstructible. This means that the value of an in-
variant is already determined by the induced subgraphs of the graph. In this respect
we try to find a complete set of reconstructible invariants that uniquely determine a

graph.

In this thesis, the author shows mainly two results. Regarding the first result, the
author generalizes a result of Bondy about separable graphs. Bondy was able to show
that separable graphs with no vertices of degree one are reconstructible. Furthermore,
he was able to show that certain separable graphs with vertices of degree one, are
reconstructible, too. The author extends and generalizes Bondy’s findings, adds new
insights, and thus increases the subclass of separable graphs with vertices of degree
one that are reconstructible.

The second result aims at graph minors. The author shows that the fact whether
one graph contains a certain other graph as a minor is often reconstructible. This
depends on the structure of the minor and the order and size of the original graph.
For that the graph and minor are distinguished by their connectivities. In addition,
the author points out that many graph invariants can be defined by certain minors. As
a consequence, it is shown that the Hadwiger number and the treewidth for certain
graph classes are reconstructible.



The thesis concludes with a generalization of the reduction of Yang as well as the
reduction of Ramachandran and Monikandan. The author shows in this regard that
the problem of the reconstruction of self-complementary classes of graphs can be
reduced to a smaller problem, thus simplifying potential reconstruction proofs of
these classes.



Zusammenfassung

Die Doktorarbeit bezieht sich auf die Rekonstruktionsvermutung in der Graphentheo-
rie. Diese tiber 70 Jahre alte Vermutung geht der Frage nach, wie man einen Graphen
eindeutig bestimmen kann. In diesem Falle besitzt man die Isomorphietypen aller in-
duzierten Teilgraphen, in denen beziiglich des Ursprungsgraphen genau ein Knoten
und seine adjazenten Kanten fehlen. Die Frage ist nun nach der Eindeutigkeit der Teil-
graphen eines Graphen, das heifst, ob es genau einen Graphen oder mindestens zwei
verschieden Graphen gibt, die die Isomorphietypen als Teilgraphen in vorgegebener
Anzahl besitzten. Die Vermutung selbst lautet: “Alle einfachen, endlichen und un-
gerichteten Graphen auf mindestens drei Knoten sind rekonstruierbar.” Rekonstru-
ierbar bedeutet in diesem Sinne, dass die Menge der Teilgraphen in dieser Form nur
Teilgraphen von genau einem Graphen sind und das kein weiterer Graph existiert,
der die gleichen Teilgraphen enthalt.

Aufgrund des Fehlens eines universellen Losungsansatzes zu der Fragestellung be-
hilft man sich mit folgendem Konzept. Man zeigt das eine Menge oder Klasse von
Graphen, die eine bestimmte Eigenschaft besitzen, unter Voraussetzung dieser Eigen-
schaft rekonstruierbar sind. Damit wurden tiber die letzten Jahrzehnte eine Menge
von Klassen als rekonstruierbar bewiesen und man hofft, dass eines Tages eine aus-
reichende Anzahl an rekonstruierbaren Klassen gefunden wird, so dass diese die
Menge aller Graphen iiberdeckt und damit die Rekonstruktionsvermutung beweist.
Ein zweiter Ansatz ist zu beweisen, dass bestimmte Invarianten rekonstruierbar sind.
Das heifit, dass der Wert einer Invariante bereits durch die Teilgraphen des Graphen
festgelegt ist. Diesbeziiglich versucht man eine vollstindige Menge von rekonstruier-
baren Invarianten zu finden, so dass diese einen Graphen eindeutig definieren.

In der Arbeit zeigt der Autor hauptsédchlich zwei Ergebnisse. Beziiglich dem ersten
Ergebnis geht der Autor auf ein Ergebnis von Bondy iiber separable Graphen ein.
Bondy konnte zeigen, dass separable Graphen ohne Knoten vom Grad eins rekon-
struierbar sind. Des weiteren konnte er zeigen, dass bestimmte separable Graphen,
die Knoten vom Grad eins besitzen, auch rekonstruierbar sind. Der Autor erweitert
und verallgemeinert die Ergenisse von Bondy, fiigt neue Erkenntnisse hinzu und ver-
grofert so die Teilklasse der separablen Graphen mit Grad eins, die rekonstruierbar
sind.

Das zweite Ergebnis bezieht sich auf Minoren in Graphen. Der Autor zeigt, das
der Fall, ob ein Graph einen speziellen Minor enthélt oder nicht enthilt, oft rekon-
struierbar ist. Dies geschieht in Abhédngigkeit von der Gestalt des Minors und in
Abhangigkeit der Ordnung und Grofse des urspriinglichen Graphens. Dafiir wird
eine Unterscheidung der Minoren und des urspriinglichen Graphens beziiglich ihres
Zusammenhangs angewandt. Dariiber hinaus weist der Autor darauf hin, dass viele



Invarianten in der Graphentheorie iiber bestimmte Minoren definiert werden konnen.
Solche Invarianten konnen mit Hilfe von “verbotenen Minorensidtzen” beschrieben
werden. Die Arbeit selbst zeigt, dass als Folge aus der Minorenbetrachtung die Had-
wigerzahl und die Baumweite fiir bestimmte Graphenklassen, abhédngig von ihrer
Ordnung und Grofle, rekonstruierbar sind.

Die Arbeit schliefst mit einer Verallgemeinerung der Reduktionsbeweise von Yang
beziehungsweise Ramachandran und Monikandan. Der Autor zeigt diesbeziiglich
auf, wie das Problem der Rekonstruierbarkeit von selbst komplementédren Klassen
auf einer kleineres Problem reduziert werden kann und vereinfacht damit potentielle
Beweise dieser Klassen.
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Introduction

The reconstruction conjecture for graphs was first investigated by Ulam and his doc-
toral student Kelly in the early 1940s. First results were accomplished by Kelly in his
doctoral thesis. Kelly also laid the foundation for some of the most used theorems
within the theory of the reconstruction conjecture. Over the last 75 years many re-
searchers tried to tackle the reconstruction conjecture. We had some major and minor
leaps that brought us closer to solving the reconstruction conjecture on the whole. To
this day however, we are missing the big breakthrough that solves the reconstruction
conjecture. Therefore this doctoral thesis gets into the line of the many works of the
past decades that tackled varied aspects of the reconstruction conjecture, yet failed to
solve it on the whole.

What does reconstructing actually mean? Reconstructing any mathematical structure
in our meaning is to solve a specific kind of puzzle. Yet while we know that the puzzle
has a solution, we are not interested in the solution itself. To work out a solution of a
given puzzle is merely a matter of time, algorithms and computing power. However
the aim of reconstructing a structure is to show that the solution to the puzzle is
unique. Hence there are not two or more different solutions to the same puzzle.

In our field of mathematics the structures are graphs. For our purpose we are given
the isomorphism types of all subgraphs of a specific graph. Compared to the origi-
nal graph those subgraphs are missing always exactly one vertex and their incident
edges. Then the question to answer is to determine if there are more than two non-
isomporphic graphs with the same isomorphism types as subgraphs or if there is
only one graph unique up to isomorphism that contains all these isomorphism types
as subgraphs.

This doctoral thesis deals with the reconstruction conjecture and edge-reconstruction
conjecture for graphs. On the one hand we work on separable graphs regarding
the reconstruction conjecture and on the other hand we work with minors of graphs
regarding the edge-reconstruction conjecture.

The first chapter displays the basic definitions in graph theory used in this doctoral
thesis. In addition, there are three main parts to this chapter. The first of these
three main parts, section 1.2, displays almost all known results regarding the recon-
struction conjecture. First the reconstruction conjecture is stated. Next we give the
structural theorems and results that have been proven for the reconstruction conjec-
ture. After that, we introduce in section 1.2.2 the first non-structural approach. We
list the graph classes that are known to be reconstructible. This first approach tries to
solve the reconstruction conjecture by solving the problem for specific graph classes
in the hope of finding enough specific classes to eventually solve the reconstruction
conjecture on the whole. Another approach is given in section 1.2.3. That states
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all known results regarding the reconstruction of graph invariants and parameters.
The hope regarding this approach is to find a complete set of reconstructible invari-
ants that uniquely define a graph. The second main part, section 1.3, is structured
like the first main part. First, we state the edge-reconstruction conjecture. Next, we
give the structural results regarding the edge-reconstrucion conjecture. After that all
known edge-reconstructible graph classes are displayed and last, we give the edge-
reconstructible graph invariants. The third and last main part of the first chapter,
section 1.4, broadens our view of the topic and deals with theories and results set-
tled around the reconstruction conjecture as well as other, different reconstruction
conjectures related to the reconstruction conjecture for graphs.

The second chapter picks up an idea by Bondy. Bondy did show that separable graphs
without vertices of degree 1 are reconstructible. He also did some work on the re-
maining separable graphs, in particular separable graphs with vertices of degree 1.
He was able to show that, if the 1-connected parts of the graph including a vertex
of degree 1 have a sepcific structure, then these graphs are reconstructible. We delve
deeper into that idea, generalize it and are able to give a certain restriction on the
1-connected parts of the separable graph containing a vertex of degree 1. We also
look at the automorphism group of parts of the separable graph to further strengthen
our results.

The third chapter deals with minors in the reconstruction conjecture and the edge-
reconstruction conjecture. We pose the question whether containing a specific mi-
nor or not is reconstructible or edge-reconstructible for certain graphs. The classes
of graphs we investigate are based upon their connectness. We give a bound for
2-connected graphs and connected minors as well as we show that the problem is
edge-reconstructible for a range of other graph classes. The chapter closes with an
application of the results. In particular we were able to show that the Hadwiger num-
ber and the treewidth is edge-reconstructible for a wide range of cases. We also give a
bound for the edge-reconstruction of the Hadwiger number and the treewidth based
upon the ratio between the order of the graph and the order of the minor. Further-
more these results can easily be applied to various exluded minor theorems (a graph
has a specific property if and only if it has no minors isomorphic to a specific set of

graphs).

The last chapter states options for future research. It discusses an idea about reducing
the problem of the reconstruction of self-complementary graph classes to subclasses
of that class. Those subclasses offer more structure and therefore might make the
original problem of reconstructing a specific self-complementary graph class easier.
In particular we use Yangs reduction about all graphs are reconstructible if and only if all
2-connected graphs are reconstructible and generalize it to all graphs in a self-complementary
graph class are reconstructible if and only if all 2-connected graphs in that self-complementary
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graph class are reconstructible. We proceed in the same manner with a theorem by Ra-
machandran and Monikandan and generalize it to self-complementary graph classes.
In effect this will yield that every graph in a self-complementary graph class is recon-
structible if and only if all 2-connected graphs in that class with diameter 2 or diameter 3 and
the complement holds diameter 3 are reconstructible. This might make proving the recon-

structability of perfect graphs or other self-complementary graph classes considerably
easier.






1 Basic Definitions and the Reconstruction Conjecture

This chapter contains the basic definitions and an overview of the state of the art
regarding the reconstruction and edge-reconstruction conjecture. Section 1.1 deals
with most graph theoretical defintions that are needed for this doctoral thesis. Section
1.2 deals with the reconstruction conjecture while section 1.3 deals with the edge-
reconstruction conjecture. In section 1.4 are a range of problems displayed that are
related to the reconstruction conjecture and edge-reconstruction conjecture.

1.1 Basic Definitions

This subchapter deals with most definitions that are needed for our theoretical work
regarding the reconstruction conjecture and edge-reconstruction conjecture. While the
tirst few definitions and notations are crucial for every aspect of this doctoral thesis
we encourage the reader to skip the remaining basic definitions and return to this
chapter when a specific notation or definition is needed.

First we define the graph itself.

Definition 1.1. (graph, vertex, edge)

Let V and E be a pair of disjoint sets. Then G = (V,E) is called a graph if E C
{vw | v,w € V} holds. The elements in V(G) := V are called vertices and form the
vertex set of G. The elements of E(G) := E are called edges and form the edge set of G.
Furthermore for every edge e = vw € E(G) between two vertices v,w € V(G) holds
vw = wo and this edge is only listed once as either vw or wv.

Two vertices that are related or connected to each other are called adjacent. An edge
attached to a vertex is called incident to that vertex.

Definition 1.2. (adjacent, incident)
Let G be a graph and v,w € V(G). If vw € E(G) holds, then the vertices v and w are
called adjacent and the vertices v and w are called incident to the edge vw.

The size of the vertex set and edge set are given by the order and the size of a graph
respectively.

Definition 1.3. (order, size)

Let G be a graph. The number of vertices in G is called the order of G and is denoted
by n(G) := |V(G)|. The number of edges in G is called the size of G and is denoted
by m(G) := [E(G)].
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The number of edges incident to a vertex is given by the next definition and is called
the degree of that vertex.

Definition 1.4. (degree, minimal/maximal degree, end vertex, isolated vertex)
Let G be a graph and v € V(G). Then the number of edges incident to v is called
the degree of v in G and is denoted by dg(v). The minimal degree of G is denoted by

0(G) := min dg(v) and the maximal degree of G is denoted by A(G) := max dg(v).
veV(G) veV(G)
A vertex of degree 1 is called an end vertex and a vertex of degree zero is called an

isolated vertex.

The collection of the degrees of all vertices of a graph is called the degree sequence.

Definition 1.5. (degree sequence, neighbourhood degree sequence)

Let G be a graph with V(G) = {v1,v,..,v4}. Then the degree sequence of G is a
sequence of its vertex degrees, e.g. (dg(v1),dg(v2),....dg(vn)). The neighbourhood
degree sequence of v € V(G) is a sequence of the degrees of the adjacent vertices of v.

The first theorem of this doctoral thesis is one of the most basic and well known
theorems in graph theory. The so called Handshaking Lemma is frequently used in
this thesis.

Theorem 1.6. (Handshaking Lemma)
Let G be a graph. Then

Y. dc(v) =2|E(G)|

veV(G)

holds.

Next we are going to define substructures of a graph that are graphs themselves.

Definition 1.7. (subgraph, induced subgraph, spanning subgraph)

Let G and F be two graphs. F C G is called a subgraph of G if V(F) C V(G) and
E(F) C E(G) holds. In addition F C G is called an induced subgraph of G if V(F) C
V(G) and E(F) := {vw | v,w € V(F)and vw € E(G)} C E(G). We denote the
induced subgraph of G on the vertex set V(F) with G[V(F)]. F C G is called a
spanning subgraph if F is a subgraph of G and V(F) = V(G) holds.

One of the most important subgraphs is where each vertex of a subset of the vertex
set is adjacent to all other vertices of that subset. Such a subgraph is called clique. If
a graph is a clique itself, than it is called complete graph.



Definition 1.8. (complete graph, clique, clique number)

Let G be a graph with E(G) = {vw | v,w € V(G)}. Then G is called a complete graph
on n(G) vertices and is denoted by K;,(c). If G contains an induced subgraph G’ which
is complete, then G’ is called a cligue in G. We denote by w(G) the order of the largest
clique of G and call it the cligue number.

The complement of a graph G contains all edges that G does not contain but no more
edges than these. In other words if G is a subgraph of the complete graph K, ) on
the same vertex set, then the complement of G on the same vertex set contains all
edges of K,,) except the edges of the subgraph G.

Definition 1.9. (complement)

Let G and G be two graphs with the same vertex set. Then G is the complement of G
if the following holds for all v,w € V(G): vw € E(G) holds if and only if vw ¢ E(G)
holds.

The complement of a clique is called a stable set.

Definition 1.10. (stable set, stability number)
Let G be a graph. V' C V(G) is called a stable set if G[V'] contains no edges. We
denote by a(G) the order of the largest stable set of G and call it the stability number.

An independent or stable subset of the edges is called a matching.

Definition 1.11. (matching, perfect matching, 1-factor, matching number)

Let G be a graph. A matching is a subset E’ C E(G) in which no pair of edges of E’
share a common vertex. A perfect matching is a matching of size 3|V(G)|. A perfect
matching is also known as 1-factor. The matching number v(G) denotes the size of a
largest matching in G.

We say that two graphs are structurally equal if they are isomorph to each other.

Definition 1.12. (graph isomorphism, isomorph)
Let G and H be two graphs. A graph isomorphism is a bijection

¢: V(G) = V(H),
with
vw € E(G) < ¢(v)p(w) € E(H).

Two graphs G and H are called isomorph if there exists a graph isomorphism between
G and H. We denote this with G = H.
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A series of vertices that are connected by edges is called a walk or in specific cases a
path.

Definition 1.13. (walk, path)

Let G be a graph. Let P = v1,v,03,...,0;,v1 be an ordered sequence of vertices
v1,02, ...,V € V(G), where every pair of consecutive vertices v;,v;11 € V(G) of that
sequence is connected by an edge. Then P is called a walk in G. If furthermore there
is no repitition of the vertices in that sequence, then C is called a path. The number of
edges in a walk or path is called the length of the walk of path.

If one may trace a path from one vertex to another, then those two vertices are called
connected. If this property holds for all pairs of vertices, then the graph itself is called
connected.

Definition 1.14. (connected, disconnected, cut vertex, bridge)

A graph G is called connected if there is a path between v and w for all v,w € V(G).
If there exist vertices v and w such that there is no path between them, then G is
called disconnected. A vertex v € V(G) is called a cut vertex if G is connected and
G[V(G) \ {v}] is disconnected. An edge e € E(G) is called a bridge if G is connected
and (V(G), E(G) \ {e}) is disconnected.

A separating set is a subset of the vertices that disconnects a connected graph. The
measure of how good a graph is connected is given by the connectivity.

Definition 1.15. (separating set, connectivity, edge-connectivity)

Let G be a connected graph and S C V(G) a subset. Then S is called a separating set
if G[V(G) \ S] is disconnected. The connectivity k(G) of G is the size of a minimal
separating set. If S is a minimal separating set with |S| = k, then G is called k-
connected. Analoguesly we define S, C E(G) as an edge-separating set if (V(G), E(G) \
Se) is disconnected. The edge-connectivity A(G) of G is the size of a minimal edge-
separating set. If S, is a minimal separating set with |S,| = k, then G is called k-edge-

connected.

A graph class of connected graphs that contains a cut vertex is called separable.

Definition 1.16. (separable graph)
A connected graph is called separable if it contains a cut vertex. In other words the
graph is 1-connected but not 2-connected.

Bridges and maximal subgraphs that are 2-connected are called blocks.

Definition 1.17. (block)
Let G be a graph. A maximal, 2-connected subgraph of G and bridges of G with their
end vertices are called blocks.



Next we will define the distance between two vertices in a graph. Upon that we may
define a measure for the spread of a graph. We call this the diameter.

Definition 1.18. (distance, eccentricity, diameter)

Let G be a graph. The distance between two vertices v,w € V(G) is the length of a
shortest path connecting the two vertices. We denote this number with d(v, w). Then
the eccentricity of a vertex v is defined as

p— d y
e(v) wren‘?(é) (v, w)

with v € V(G). The diameter of a connected graph is the maximal eccentricity, hence

diam(G) = :
iam(G) Urer‘l/eké)e(v)

An important theorem about the diameter of a graph is given by Harary and Robinson
in [36].

Theorem 1.19. (Harary and Robinson, 1985)
Let G be a graph. If diam(G) > 3 holds, then diam(G) < 3.

Substructures that form a closed path are called cycles and its special form where no
edge is repeated are called circuits.

Definition 1.20. (cycle, circuit, length, girth, cycle graph)

Let G be a graph and C = vy,v,03,...,0,v; be an ordered sequence of vertices
v1,02,...,0x € V(G), where the first vertex matches the last vertex and every pair
of consecutive vertices v;,v;11 € V(G) of that sequence as well as vy, v1 are connected
by an edge. Then C is called a cycle in G. If there is no repetition of the vertices in the
sequence, except the first and the last vertex, then C is called a circuit. The number of
vertices in a cycle where the first and last vertex are only counted once, is called the
length of the cycle or circuit. The length of a smallest circuit in G is called the girth of
G. If G itself is a circuit, then G is called a cycle graph.

A disconnected graph without circuits is called a forest whereas a connected graph
without circuits is called a tree.

Definition 1.21. (tree, forest)
A connected graph G that does not contain cycle graphs as subgraphs is called a tree.
A forest is a disconnected graph that does not contain cycle graphs as subgraphs.

An eulerian graph contains a special cycle.
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Definition 1.22. (eulerian graph)
A connected graph G is called eulerian if G contains a cycle C that visits all edges of
G exactly once. That cycle is called a eulerian cycle.

Similar to the eulerian graph a hamiltonian graph contains a specific cycle. Yet this
cycle is a circuit that contains all vertices exactly once.

Definition 1.23. (hamiltonian, hamiltonian graph)
A graph G is called hamiltonian if G contains a spanning subgraph which is a cycle
graph. That circuit is called a hamilton cycle.

We may define circuits of length 3 as triangles and graphs that do not contain such
subgraphs as triangle-free graph.

Definition 1.24. (triangle-free graph)
A graph G is called triangle-free if G does not contain an induced cycle or circuit of
length 3.

Another graph class form the bipartite graphs. The vertex set of bipartite graphs may
be partitioned into two disjoint sets such that the sets itself form stable sets.

Definition 1.25. (bipartite graph)
A graph G is called bipartite if there exist two non-empty sets V;, Vo C V(G) with

VinV, =0 and V1 UV, = V(G) as well as the induced subgraphs G[V;] and G[V;]
contain no edges.

Chordal graphs do not contain induced subgraphs that are circuits of length 4 or
larger.

Definition 1.26. (chordal graph, chord, split graph)

Let G be a graph. G is called chordal if every circuit with length at least 4 has a chord
that is an edge between two non-consecutive vertices of the circuit. A split graph is
a chordal graph which can be partitioned into two disjoint sets V1, V, C V(G) with
ViUV, = V(G) as well as V; is a clique and V; is an independent set.

The treewidth may be defined in several ways. We use the definition via the chordal
extension. The treewidth states how close a graph is to a tree.

Definition 1.27. (chordal extension, treewidth)

Let G be a graph. A chordal extension of a graph G is a chordal graph H on the same
vertex set as G with G C H. The treewidth of G is defined as the size of the largest
clique minus one in a chordal extension of G with the smallest clique number. We
denote the treewidth with tw(G).



Next we are going to define a graph theoretical invariant called the chromatic polyno-
mial and with it the chromatic number. The chromatic polynomial counts the number
of colorings of a graph where a graph is colored such that the colors of adjacent
vertices are different from each other. Such a coloring is called a proper (vertex)
coloring.

Definition 1.28. (chromatic polynomial)

Let G be a graph. Then P(G, x) counts the number of maps h : V(G) — {1,2,...,x}
with h(v) # h(w) for all v,w € V(G) with vw € E(G). P(G, x) is called the chromatic
polynomial of G.

Birkhoff has shown in 1912/13 [6] that the chromatic polynomial P(G, x) is actually a
polynomial.

The chromatic number is the least number of colors a graph may be colored with such
that the colors of adjacent vertices are different from each other.

Definition 1.29. (chromatic number)
Let G be a graph. Then the least positive integer x such that P(G,x) > 0 holds, is
called the chromatic number of G. The chromatic number is denoted by x(G).

The class of perfect graphs are defined via a relation of all their subgraphs.

Definition 1.30. (perfect graph)

A graph G is called perfect if x(G[V1]) = w(G[V1]) holds for every subset V3 C V(G).
That is the clique number equals the chromatic number for every induced subgraph
of G.

An important property of perfect graphs is given by the weak perfect graph theorem
by Lovész [48,50]. It states that the complement of a perfect graph is a perfect graph,
too.

The line graph is a graph based on another graph. It takes the edges of the original
graph as vertices and connects them if the respective edges shared a common vertex
in the original graph.

Definition 1.31. (line graph)
Let G be a graph. Then L(G) = (V, E) is called the line graph of G with

1. V = E(G), that is each vertex of L(G) represents an edge of G,

2. for v,w € V holds vw € E if and only if the corresponding edges of the vertices
v and w share a common end vertex in G.
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A minor is a substructure of a graph that may be accomlished by a series of different
operations.

Definition 1.32. (minor, edge contraction)

A graph H = (V',E’) is a minor of a graph G = (V,E) if H can be obtained from G
by a series of vertex deletions, edge deletions, and edge contractions, where an edge
contraction is the operation that replaces two adjacent vertices v, w by one that is
adjacent to all vertices that were adjacent to v or w. For edge contractions, parallel
edges will be ignored and only a single edge will be inserted. G having H as a minor
is denoted by H < G.

The last two structures are the vertex cover and the edge cover. The vertex cover of a
graph is a subset of the vertices such that all edges of the graph are also incident to
to vertices of that subset. Hence, all edges are covered by vertices.

Definition 1.33. (vertex cover, vertex cover number)

Let G be a graph. A subset V' C V(G) is called a vertex cover if for all e € E(G) there
exists a v € V/ with v is an end vertex of e. The size of a minimal vertex cover, called
the vertex cover number, is denoted by t(G).

In comparison to the vertex cover the edge cover of a graph is a subset of the edges
of the graph such that all vertices of the graph are incident to at least one edge of the
edge cover. Hence, all vertices are covered by edges.

Definition 1.34. (edge cover, edge cover number)

Let G be a graph. A subset E' C E(G) is called an edge cover if for all v € V(G) there
exists an edge e € E’ with v is an end vertex of e. The size of a minimal edge cover,
called the edge cover number, is denoted by p(G).

1.2 The Reconstruction Conjecture

There is a good visualisation for the problem of the reconstruction conjecture which
was already given by Harary [32] and may come in handy. Imagine you are dealt a
deck of cards. Each of the cards has printed on one subgraph where exactly one vertex
is missing. The cards itself only hold the isomorphism types of the subgraphs which
are the unlabelled subgraphs. Furthermore the same card may occur multiple times
because the same isomorphism type of a subgraph may be derived from deleting
different vertices. Now, the problem to be solved is not to find a graph that has all
cards with the right multiplicity as subgraphs. This would be more or less a routine
matter to find the original graph. The problem to be solved is to show that the graph
that has all cards with the right multiplicity as subgraphs is unique and that there is
no other different graph that holds the same subgraphs with the right multiplicity.



Having an idea what the reconstruction conjecture is all about, we give the exact
mathematical formulations to fill this idea with life. We start by defining the deck
and its contents, namely the cards. Figure 1 holds the visualisation of the definition
of the vertex-deleted subgraphs, cards and the deck.

Definition 1.35. (vertex-deleted subgraph, card of G, deck of G)

Let G be a graph. Then the unlabelled vertex-deleted subgraph G, := G[V(G) \ {v}] for
some v € V(G) is called a card of G. The multiset of all cards of G is called the deck of
G and is denoted by D(G). A card of G can occur multiple times in the deck of G.

(] Uy U2 01 01 02 01 02
P ° ° ° °
o——eo °
(o U3 U4 03 U4 (%} U4 U3
G Go, Go, Go; Go,

° ° °

I I ]

°

D(G)

Figure 1: Graph G, the vertex-deleted subgraphs of G and the deck of G

With the cards from the deck we may reconstruct the original graph. Until the recon-
struction conjecture is proven to be correct, we need to take into account that there is
the possibility of different original graphs. We call these original graphs reconstruc-
tions.

Definition 1.36. (reconstruction of G)
Let G be a graph. Then the graph H is a reconstruction of G if V(H) = V(G) and
H, = G, holds for all v € V(G).

Since there might be different, non-isomorphic reconstructions for the same deck, we
define the word reconstructible for graphs with a unique reconstruction.

Definition 1.37. (reconstructible)
A graph G is called reconstructible if all reconstructions of G are isomorph to G. A
graph invariant or graph parameter of G is called reconstructible if it has the same
value for all reconstructions of G.
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The reconstruction conjecture then states that every graph on at least 3 vertices is
reconstructible.

Conjecture 1.38. (Reconstruction Conjecture)

All finite simple undirected graphs with at least three vertices are reconstructible.

The reconstruction conjecture itself is also known as Ulam’s Conjecture because it was
first considered by P. J. Kelly and S. M. Ulam in 1941, when Kelly wrote his doctoral
thesis under Ulam. The reconstruction conjecture is proposed to work for all graphs
with at least 3 vertices. The following example is the only known example with
non-isomorphic reconstructions of simple graphs and it is based on graphs with 2
vertices.

Example 1.39.

Let G = ({v,w},{vw}) = Ky and H = ({v,w}, ) be two graphs (see figure 2). Then
Gy & Hy and Gy = Hy. So H is a reconstruction of G because D(G) = D(H) holds.
In addition G 2 H and hence G and H are not reconstructible.

0 e
[ J ([ J

w oW
G~K, H D(G), D(H)

Figure 2: Two non isomorph graphs G and H with the same deck

1.2.1 Structural Properties

Over the last decades researchers accomplished to prove some fundamental structural
theorems regarding the reconstruction conjecture. This subchapter will list structural
approaches and structural aids for solving the reconstruction conjecture. One strong
property of the reconstruction conjecture is that a graph is reconstructible if and only
if its complement is reconstructible. This obersavtion is due to Kelly [39].

Theorem 1.40. (Kelly, 1957)
Let G be a graph. Then G is reconstructible if and only if its complement G is recon-
structible.

Proof.

Let G be a graph and G its complement on the same vertex set. The deck D(G)
may be determined from the deck D(G) by the identity G, = G, which holds for all
v € V(G). This is valid for both directions and therefore yields the claim. O
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This basic property comes in handy to reconstruct classes of graphs, graph invari-
ants and also for reductions of the reconstruction conjecture. Furthermore this prop-
erty holds for the reconstruction conjecture itself but not for the later defined edge-
reconstruction conjecture even though the edge-reconstruction conjecture is thought
to be the easier problem of the two.

The next theorem is probably the most famous and most useful property regarding
the reconstruction conjecture. It is obvious, that by having the deck of a graph G
we also get all subgraphs of G on at most n(G) — 1 vertices. Kelly’s Lemma goes
further by counting all subgraphs with order at most n(G) — 1 and giving us the
exact number of how often a specific isomorphism type of subgraph occurs in G.
When Kelly published his paper “A Congruence Theorem for Trees” [39] he did show
the first reconstructible class of graphs as well as the first structural property of the
reconstruction conjecture.

Theorem 1.41. (Kelly’s Lemma, 1957)
Let F and G be two graphs with n(F) < n(G). Then the number s(F, G) of subgraphs
of G isomorphic to F is reconstructible.

Proof.
Each subgraph of G isomorphic to F occurs in exactly #n(G) — n(F) cards G,. Summing
over all cards of G yields

s(F,G)- (n(G) —n(F)) = Y_ s(F,Gy)

veV(G)
s(F,G) = —S(F'Gv) )
< (FG)= 2 56y —n(P)

The parameter s(F, Gy) is reconstructible because the deck D(G) is known. Further-
more n(G) = |D(G)| holds and n(F) is known. Hence, the right hand side of the
equation is reconstructible and therefore the left hand side is reconstructible, too. [

As a corollary from Kelly’s Lemma we are able to deduce that the size of a graph is
reconstructible.

Corollary 1.42. (Kelly, 1957)

Let G be a graph. Then m(G) is reconstructible.

Proof.
The chosen subgraph in Kelly’s Lemma is F = K; that is the complete graph on two
vertices. Thus Kelly’s Lemma counts the number of edges. O

Tutte started counting subgraphs to reconstruct different structures and subgraphs.
Some of those that he found in his paper “All the King’s Horses (A Guide to Reconstruc-
tion)” [76] are given in the next theorem. This paper laid the foundation to a new
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method to reconstruct a whole range of graph invariants and sub-structures. It was
later improved by Kocay into what we know today as Kocay’s Lemma.

Theorem 1.43. (Tutte, 1979)
Let G be a graph and F = (F;, F,, ..., F;;) a sequence of graphs. Then

i) the number of disconnected spanning subgraphs of G with m components iso-
morphic to Fy, B, ..., Fy, is reconstructible,

ii) the number of separable spanning subgraphs of G with m blocks isomorphic to
Fi, F,, ..., F,; is reconstructible,

iii) the number of nonseparable spanning subgraphs of G with a specified number
of edges is reconstructible.

The proof of theorem 1.43 will be postponed after Kocay’s Lemma. We will use the
refined method by Kocay to show Tutte’s result. In order to state and prove Kocay’s
Lemma we need to define a cover.

Definition 1.44. (cover, number of covers)
Let G be a graph and F := (F, F, ..., Fy) be a sequence of not necessarily distinct
graphs. A cover of G by F is a sequence (G, Gy, ..., Gy) of subgraphs of G such that

Gi =2 Fforl <i<mand Lnj G; = G. The number of covers of G by F is denoted by
i=1
c(F,G).

Now, we are able to state Kocay’s Lemma as given in Kocay’s paper “Some new methods
in reconstruction theory” [41]. This is the refined version of the method first stated by
Tutte. He both gave a vertex and an edge version of this method. Remark that
both Tutte’s method as well as Kocay’s Lemma are designed for spanning subgraphs.
So this result neatly complements Kelly’s Lemma since Kelly’s Lemma works for
subgraphs on at most n(G) — 1 vertices.

Theorem 1.45. (Kocay’s Lemma, 1981)

Let G be a graph, F := (F, F,, ..., F) be a sequence of graphs such that n(F;) < n(G)
holds for all i € {1,...,m} and X the set of all isomorphism types of graphs with order
n(G). Then

Y ¢(F, X)s(X,G)

XeX

is reconstructible.
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Proof.
Let X’ be the set of all isomorphism types of graphs. Then we have

[[s(F.G) = Y c(F, X)s(X,G),

i=1 XeX!

where we count the sequence (Gi, Gy, ..., Gyy) of subgraphs of G such that G; = F
holds for all i € {1,...,m} in two different ways. n(F;) < n(G) holds by the definition
of a cover. Hence, the left hand side is reconstructible by Kelly’s Lemma. A part of
the sum of the right hand side is reconstructible in itself. Consider the summands
c(F,X)s(X,G). If n(X) > n(G) holds, then s(X,G) = 0 follows. If n(X) < n(G)
holds, then s(X, G) is reconstructible by Kelly’s Lemma and therefore c(F, X)s(X, G)
is reconstructible, too. Hence, we may reorder the previous sum into

[s(F,G) = ) c(F, X)s(X,G)
i=1 XeX’

& [[s(F,G)— ), c(F,X)s(X,G) = ) c(F,X)s(X,G).
i=1 XeX\X XeX

As stated all terms of the left hand side are reconstructible and therefore the right
hand side is reconstructible, too. O

Now, with the proof of Kocay’s Lemma we may prove Theorem 1.43. As stated before,
Kocay refined the method that Tutte used to prove Theorem 1.43 and by doing so he
made this theorem a corollary to Kocay’s Lemma. For the original proof and method
by Tutte refer to Tutte’s “All the King’s Horses (A Guide to Reconstruction)” [76].

Proof. (of theorem 1.43)
i) Without loss of generality assume m > 2 because the spanning subgraph is
disconnected.

holds by the same argument. Furthermore we may restrict the isomorphism

types X to those that satisfy c(F, X) > 0. Thus X is a disconnected graph with

n(X) = n(G) and components isomorphic to F, , ..., Fy, and therefore |X| = 1

holds. Hence, c(F, X) is reconstructible and by Kocay’s Lemma the parameter

p= Y. c(F,X)s(X,G) is reconstructible. So by Kocay’s Lemma we have that
Xex

p=)_c(FX)s(X,G)
XeX

P C(F’fx) = s(X,G)
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iif)

holds with X as described above. Thus the number of disconnected spanning
subgraphs of G with components isomorphic to Fy, F,, ..., F;, namely s(X, G), is
reconstructible, too.

Without loss of generality assume m > 2 because the spanning subgraph is
separable with m blocks isomorphic to Fy, B, ..., Fy.

1

) (n(F) 1) = n(G) 1

holds by the same argument. Again we may restrict the isomorphism types X
to those that satisfy ¢(F, X) > 0. Thus n(X) = n(G) holds and X is either dis-
connected or a separable graph with blocks isomorphic to Fj, F,, ..., F;. Denote
the set of the first isomorphism type with X;. This case and the contribution
to Kocay’s Lemma is solvable with part i) of this theorem. Denote the set of
the second isomorphism type with X;. The contribution of this case to Kocay’s
Lemma is known, yet the summands need to be determined. The number of
covers ¢(F, X) is in this case independent from the isomorphism type X and
therefore some fixed number p; = c(F, X) holds for all X € X;. Hence, with
p:= Y ¢(F,X)s(X,G) and Kocay’s Lemma we deduce
Xex

p= Y, cFX)s(X,G)

XeXyUXs
p— ¥ c(F,X)s(X,G)
PN XeXy — Z S(X, G)
Ps XX,

As stated, the left hand side is reconstructible and thus the number of sepa-
rable spanning subgraphs of G with blocks isomorphic to Fj, F, ..., F;, namely

Y. s(X,G), is reconstructible, too.
XeXs

Set F; = Ky for all i € {1,2,..,m} in Kocay’s Lemma. If the isomorphism type
X is disconnected, then part i) of this theorem counts the contribution of that
isomorphism type to Kocay’s Lemma. If X is separable, then part ii) of this
theorem counts the contribution to Kocay’s Lemma. If n(X) < n(G) holds, then
s(X,G) and the contribution to Kocay’s Lemma is reconstructible by Kelly’s
Lemma. Hence, the contribution from non-separable spanning subgraphs of G
with at most m edges to Kocay’s Lemma is reconstructible. This holds true for
all values of m. Finally the contribution to Kocay’s Lemma of non-separable
spanning graphs with exactly m edges is reconstructible by substracting the
sum of up to m — 1 edges from the sum of up to m edges. Denote the set of
isomorphism types X of non-separable spanning graphs with exactly m edges
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with Xj;. The number of covers is given by c¢(F, X) = m! for all X € X,,. Hence,
with p:= Y ¢(F, X)s(X, G) and Kocay’s Lemma we deduce
XeX

p=)_c(FX)s(X,G)

XeX
& p— ) oF,X)s(X,G)= ) m-s(XG)
XeX\ X XeXm
1
& P Y. c(FEX)s(X,G) | = ) s(X,G)
XGX\Xm XX

As stated with the arguments above, the left hand side is reconstructible and
thus the number of non-separable spanning subgraphs of G with exactly m

edges, namely Y. s(X,G), is reconstructible, too. O
XEXom

Another strong result which concludes this section was given by Miiller in his paper
“Probabilistic reconstruction from subgraphs” [59]. He showed in a probabilistic way that
almost all graphs are reconstructible, giving us a strong point that the reconstruction
conjecture might be true.

Theorem 1.46. (Miiller, 1976)
Almost all graphs are reconstructible.

1.2.2 Recognizable and Reconstructible Graph Classes

Besides proving the reconstruction conjecture by general and structural methods there
are two widely used ways. The first is to show that all classes of graphs are recon-
structible. Hence, you start by showing that some classes of graphs are reconstructible
and hopefully are able to show this eventually for all classes of graphs. The second
way is to show that graph invariants are reconstructible and that there exists a com-
bination of different graph invariants that define a graph completely. Results for the
second way and for the reconstruction of graph invariants are given in the next sub-
chapter.

In this section we will present a wide range of results regarding the reconstruction of
classes of graphs that have been accomplished since the reconstruction conjecture has
first been proposed.

The first result that has been proven in respect to the reconstruction conjecture was
given by Kelly. In his paper “A Congruence Theorem for Trees” [39] he has proven that
trees are reconstructible. This is both the first class that was reconstructed as well as
the first result in this field.
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Theorem 1.47. (Kelly, 1957)
Trees are reconstructible.

The proof is based upon the fact that every tree has either a central vertex or a central
edge and uses that the branches of a tree are countable. The method of counting
substructures in general graphs is known as Kelly’s Lemma and originates in his
paper. For a shorter and more precise proof see [10].

In the same paper by Kelly it was shown that disconnected graphs are reconstructible.

Theorem 1.48. (Kelly, 1957)
Disconnected graphs are reconstructible.

In general the reconstruction of classes of graphs divides naturally into two steps.
The two step method consists of showing that a graph is recognizable and weakly recon-
structible.

Definition 1.49. (recognizable, weakly reconstructible)

Let F be a class of graphs and G € F. The class F is called recognizable if for every
reconstruction H of G already H € F holds. The class F is called weakly reconstructible
if every reconstruction H € F of G is isomorphic to G.

The term recognizable states that every reconstruction of a certain graph is in the
same class as the graph itself. The second step consists of showing that the graph
is weakly reconstructible. This means to show that the graph and its reconstruction
are already isomorphic under the assumption that they both are in the same class.
Hence, for recognizable classes of graphs weakly reconstructible is then equivalent to
reconstructible.

To apply this method to an example we give the result by Kelly [39] and prove that
regular graphs are reconstructible.

Definition 1.50. (regular, k-regular)
Let G be a graph and k € IN. Then G is called reqular if dg(v) = k holds for all
v € V(G). If all vertices of G have degree k, then the graph is also called k-reqular.

Theorem 1.51. (Kelly, 1957)
Regular graphs are reconstructible.

Proof.
recognizable: The degree sequence is reconstructible as a direct result of Kelly’s Lemma.
For example the degree of the missing vertex v € V of a card G, is given by

dg(v) = m(G) —m(Gy)
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where m(G) is reconstructible by Corollary 1.42. Hence, regular graphs are recogniz-
able.

weakly reconstructible: Let G be a k-regular graph. Then every card G, has exactly
n(G) — k — 1 vertices of degree k and k vertices of degree k — 1. The unique way to
reconstruct G from its deck D(G) to yield a k-regular graph is to connect in any card
G, the missing vertex v of degree k to the exactly k vertices in G, of degree k — 1.
Alternatively, n(G) and k already define a k-regular graph completely up to isomor-

phism.
Thus, regular graphs are reconstructible because they are both recognizable and
weakly reconstructible. O

We may generalize the idea of the regular graph. A regular graph has only vertices
of one degree which is either even or odd. We may skip the condition where there
is only one degree allowed and generalize this to graphs of either only even or odd
degree. We start by showing that graphs where every vertex is of even degree are
reconstructible.

Theorem 1.52.
Graphs where every vertex has even degree are reconstructible.

Proof.

recognizable: The degree sequence of a graph is reconstructible and therefore graphs
where every vertex has even degree are recognizable.

weakly reconstructible: Let G be a graph where every vertex has even degree. If G
contains an isolated vertex v, then G is reconstructible because G, contains all non
trivial components. So we may assume that G contains no isolated vertices. Let
v € V(G). Then G, has exactly dg(v) vertices of odd degree. The unique way to
reconstruct a graph where every vertex is of even degree from G, is to connect the
missing vertex v to the dg(v) vertices of odd degree.

Thus graphs where all vertices have even degree are reconstructible because they are
both recognizable and weakly reconstructible. O

Corollary 1.53.
Connected graphs where every vertex has odd degree are reconstructible.

Proof.

recognizable: The degree sequence of a graph is reconstructible and therefore graphs
where every vertex has odd degree are recognizable.

weakly reconstructible: Let G be a graph where every vertex has odd degree. By the
Handshaking Lemma 7n(G) is even because every graph has an even number of ver-
tices of odd degree. Hence

de(v) = n(G) —dg(v) — 1
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is even for all v € V(G). So G is reconstructible by Theorem 1.52. By Theorem 1.40 is
a graph reconstructible if and only if its complement is reconstructible. Therefore, G
is weakly reconstructible.

Thus graphs where all vertices have odd degree are reconstructible because they are
both recognizable and weakly reconstructible. 0

Hence, that regular graphs are reconstructible follows directly from Theorem 1.52 and
its Corollary 1.53. As a direct result from Theorem 1.52, we have that eulerian graphs
are reconstructible, too.

Corollary 1.54.
Eulerian graphs are reconstructible.

Next we give results for the reconstruction of certain types of blocks. Namely we look
at critical blocks and line-critical blocks.

Definition 1.55. (critical block, line-critical block)

Let G be a graph. A block B is called a critical block if B — {v} is separable for all
v € V(B). The graph G is also called a critical block if G = B holds. A block B’ is
called a line-critical block if for all edges e € E(B’) the subgraph B’ — {e} is separable.
A graph G is also called a line-critical block if G = B’ holds.

In 1979 Krishnamoorthy and Parthasarathy showed in their paper “Reconstruction of
Critical Blocks” [43] that critical blocks are reconstructible.

Theorem 1.56. (Krishnamoorthy and Parthasarathy, 1979)
Critical blocks are reconstructible.

In the same year Fleischner proved in his paper “The reconstruction of line-critical blocks”
[25] that line-critical blocks are reconstructible.

Theorem 1.57. (Fleischner, 1979)
Line-critical blocks are reconstructible.

Bondy discussed in his paper “On Ulam’s Conjecture for Separable Graphs” [8] several
subclasses of separable graphs. First he did show that separable graphs without
vertices of degree 1 are reconstructible.

Theorem 1.58. (Bondy, 1969)
Separable graphs without end vertices are reconstructible.

Then he split the separable graph into different substructures, namely the trunk and
the limbs.
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Definition 1.59. (trunk, limb, root)
Let G be a graph. The trunk T(G) of a graph G is the induced subgraph of G, remain-
ing after successively removing all end vertices until none remain. A limb L(G) of G

is a nontrivial maximal connected subgraph of G having just one vertex in common
with T(G). This vertex is called the root of L(G), denoted by r(L(G)).

He then did prove that every reconstruction of a separable graph has the same trunk
and the same number and kind of limbs up to isomorphism.

Theorem 1.60. (Bondy, 1969)
Let G be a separable graph with end vertices. The trunk T(G) and all limbs L(G) are
reconstructible.

Lastly he reconstructed some separable graphs with vertices of degree 1 where the
trunk of that graph meets certain conditions.

Theorem 1.61. (Bondy, 1969)
Let G be a separable graph with end vertices. If the trunk T(G) is isomorph to a
complete graph, then G is reconstructible.

Another result on separable graphs is given by Ramachandran and Monikandan in
their paper “Graph reconstruction conjecture: Reductions using complement, connectivity
and distance” [67].

Theorem 1.62. (Ramachandran and Monikandan, 2009)
Separable graphs G with diam(G) = 2 are reconstructible.

The general case if separable graphs as a class are reconstructible is still unsolved.

Tutte did show in his paper “All the King’s Horses” [76] that hamiltonian graphs are
recognizable. This is actually a direct result of his counting technique that we dis-
cussed in the previous subchapter.

Theorem 1.63. (Tutte, 1979)
Hamiltonian graphs are recognizable.

Proof.

By Theorem 1.43 iii), the number of non-separable spanning subgraphs of G with a
specified number of edges is reconstructible. Hence, set the numbers of edges to n(G)
and the theorem yields the number of hamilton cycles. So hamiltonian graphs are
recognizable. O

We may give a specific subclass of hamiltonian graphs that is reconstructible. In
order to do so, we need to show that 2-connected graphs that contain a path with 3
consecutive vertices of degree 2 are reconstructible.
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Theorem 1.64.
2-connected graphs that contain a path with 3 consecutive vertices of degree 2 are
reconstructible.

Proof.

recognizable: 2-connected graphs are recognizable as graphs with minimal degree at
least 2 and not being disconnected or separable. Disconnected graphs are recon-
structible by Theorem 1.48 and separable graphs without end vertices are recon-
structible by Theorem 1.58. Furthermore, a 2-connected graph contains a path with
3 consecutive vertices of degree 2 if and only if there exists a card G, € D(G) such
that dg(v) = 2 and G, contains exactly two vertices of degree 1. Hence, 2-connected
graphs with 3 consecutive vertices of degree 2 are recognizable.

weakly reconstructible: Let G be a 2-connected graph and P is a path of G, such that
there are three consecutive vertices u,v,w € P with dg(u) = dg(v) = dg(w) = 2. Let
the sequence of these vertices be defined by uv, vw € E(G). Then G, contains exactly
two vertices of degree 1, namely 1 and w. Since G is 2-connected, there is exactly one
possibility to add v to G, to create a 2-connected graph. Hence add the vertex v of
degree 2 adjacent to the two vertices u and w of degree one to reconstruct G. O

Now, we can use the class of 2-connected graphs that contain a path with 3 consecutive
vertices of degree 2 to show that hamiltonian graphs, which exceed a specific order-
size ratio, are reconstructible.

Theorem 1.65.
Let G be a hamiltonian graph with m(G) < n(G) + V(Gg_lj. Then G is recon-

structible.

Proof.
Since G is hamiltonian, G has a circle of length n(G). All other edges are chords
of that circle. So, the hamiltonian circle has at most {%J chords. Consequently

there are at least n(G) —2- {@J vertices in G of degree 2 and at most 2 - L%

vertices of degree at least three. We partition the hamilton circle into subpaths. That
means, partitioning the vertices of degree two evenly into connected paths of vertices
of degree two, seperated by vertices of degree at least three will yield
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if G is a finite graph. Hence, there is at least one path with three consecutive vertices
of degree two (pigeon hole principle). Furthermore, G is hamiltonian and hence 2-
connected. So by Theorem 1.64, G is weakly reconstructible. The edge number is
reconstructible and hamiltonian graphs are recognizable, thus G is reconstructible. [

Remark that in the last proof every graph that is too small (e.g. less than 10 vertices)
is reconstructible by a computer study of McKay (see Theorem 1.103).

Now, we want to collect some results on the progress of the reconstruction conjecture
on planar graphs. For this, we define planar graphs first:

Definition 1.66. (planar graphs, planar drawing, embedding, face)

A graph G is called planar if there exists an embedding of G into the plane, that is it
can be drawn on the plane in such a way that edges only intersect at a common end
vertex. Such a drawing is also called a planar drawing. A region of a planar drawing
that is bounded by edges of the graph is called a face. A vertex belongs to a face if one
of its incident edges is a bound of that face.

We state the results on some subclasses of planar graphs. We start with the subclass
of maximal planar graphs.

Definition 1.67. (maximal planar graph)
A graph G is called a maximal planar graph if G is planar but adding any edge to G
will result in a non-planar graph.

In 1978, Fiorini was able to show in his paper “A theorem on planar graphs with an appli-
cation to the reconstruction problem. I.” [20] that maximal planar graphs with minimal
degree at least 5 are reconstructible. In the same year Fiorini and Manvel improved
that result and proved in their paper “A theorem on planar graphs with an application to
the reconstruction problem. 11.” [24] that maximal planar graphs with minimal degree
at least 4 are reconstructible.
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Theorem 1.68. (Fiorini and Manvel, 1978)
Maximal planar graphs G with 6(G) > 4 are reconstructible.

The next two Theorems are an improvement of the results by Fiorini and Manvel and
show by removing the minimal degree condition that maximal planar graphs in gen-
eral are reconstructible. First, Fiorini and Lauri have shown in “The reconstruction of
maximal planar graphs. 1. Recognition” [21] that maximal planar graphs are recogniz-
able. Hence leaving only the weak reconstruction to be done.

Theorem 1.69. (Fiorini and Lauri, 1981)
Maximal planar graphs are recognizable.

In the same journal Lauri published in the article “The reconstruction of maximal planar
graphs. II. Reconstruction” [45] the second and final step to prove that maximal pla-
nar graphs are reconstructible. He did in fact show that maximal planar graphs are
weakly reconstructible. Hence we get the following theorem:

Theorem 1.70. (Lauri, 1981)
Maximal planar graphs are reconstructible.

The next subclass of planar graphs is called outerplanar graphs.

Definition 1.71. (outerplanar graph)
Let G be a planar graph. Then G is called outerplanar if there exists a planar drawing
of G such that all vertices belong to the outer face of the drawing.

Giles showed in his paper “The reconstruction of outerplanar graphs” [27] in 1974 that
outerplanar graphs are reconstructible.

Theorem 1.72. (Giles, 1974)
Outerplanar graphs are reconstructible.

Bilinski, Kwon and Yu were able to show the next result for the whole class of planar
graphs. In their paper “On the reconstruction of planar graphs” [5] they have shown that
the whole class of planar graphs is recognizable. Hence the first step in the two step
method of recognition and weak reconstruction for the entire class of planar graphs
has been accomplished.

Theorem 1.73. (Bilinski, Kwon, Yu, 2007)
Planar graphs are recognizable.
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In the same paper Bilinski, Kwon and Yu also reconstructed certain types of planar
graphs. In particular they showed that 5-connected planar graphs with a special
condition are reconstructible. For further information on that problem, see [5].

The class of P4-reducible graphs was reconstructed by Thatte in his paper “Some Re-
sults on the Reconstruction Problems. p-Claw-Free, Chordal, and Py-Reducible graphs” [75].
He uses the recursive construction of Ps-reducible graphs given by Jamison and Olariu
to show the result.

Definition 1.74. (Ps-reducible graph)
Let G be a graph. G is called Py-reducible if every vertex of G belongs to at most one
path on 4 vertices as induced subgraph, namely a Py.

Figure 3: Py

Theorem 1.75. (Thatte, 1995)
Py-reducible graphs are reconstructible.

It is mathematical folklore that the class of bipartite graphs is recognizable.

Theorem 1.76.
Bipartite graphs are recognizable.

Monikandan and Balakumar presented the next two theorems in their paper “Re-
construction of bipartite graphs and triangle-free graphs with connectivity two” [57]. Their
intend was to reduce the problem of the reconstruction conjecture to a smaller prob-
lem that excludes bipartite graphs. For this, see Theorem 1.102 and the section it is
included in. In order to reduce the problem, they have shown that certain bipartite
graphs of small diameter are reconstructible.

Theorem 1.77. (Monikandan and Balakumar, 2012)
All 2-connected, bipartite graphs G with diam(G) = diam(G) = 3 are reconstructible.

Theorem 1.78. (Monikandan and Balakumar, 2012)
Bipartite graphs G with diam(G) = 2 are reconstructible.

In the same paper Monikandan and Balakumar proved that 2 connected, triangle-free
graphs of a certain low diameter are reconstructible.

Theorem 1.79. (Monikandan and Balakumar, 2012)
All 2-connected, triangle-free graphs G with diam(G) = diam(G) = 3 are recon-
structible.
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In 1983 von Rimscha showed in his paper “Reconstructibility and perfect graphs” [68]
that perfect graphs as well as a range of subclasses of perfect graphs are recognizable.
First we give the proof for perfect graphs.

Theorem 1.80. (von Rimscha, 1983)
Perfect graphs are recognizable.

Proof.

Let G be a graph. The clique number w(G) of G is reconstructible by either Kelly’s
Lemma or if G is a complete graph as a regular graph by Theorem 1.51. The chro-
matic number x(G) is reconstructible by Theorem 1.88. Hence, it is reconstructible
if x(G) = w(G) holds. It remains to be shown that x(G’) = w(G’) holds for every
induced subgraph of G. Since every reconstruction of G has the same deck as G and
therefore the same induced subgraphs of G, we have x(G') = w(G’) for every in-
duced subgraph G’ C G. So determining from its deck that the graph is perfect is
recognizable. OJ

Several subclasses of perfect graphs were proven to be recognizable.

Theorem 1.81. (von Rimscha, 1983)
Chordal graphs, interval graphs, comparability graphs and split graphs are recogniz-
able.

In addition von Rimscha was able to show that certain subclasses of interval graphs,
comparability graphs and split graphs are reconstructible. For more details see [68].
One of the reconstructible subclasses of interval graphs are unit interval graphs.

Theorem 1.82. (von Rimscha, 1983)
Unit interval graphs are reconstructible.

In the next subchapter we are going to see that the chromatic polynomial is recon-
structible. Hence, as a direct result we get that chromatically unique graphs are weakly
reconstructible. Chromatically unique graphs are graphs which are defined by their
chromatic polynomial up to isomorphism. That is if G and H are two graphs on the
same vertex set, then P(G, x) = P(H, x) already yields G = H.

Theorem 1.83.
Chromatically unique graphs are weakly reconstructible.
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1.2.3 Reconstructible Graph Invariants

The second way to tackle the reconstruction conjecture is to find a combination of re-
constructible graph invariants that determine a graph completely. There are a couple
of basic graph invariants that are easy to proof. The order of the graph equals the
cards in the deck. The size of a graph is reconstructible by Corollary 1.42.

Further reconstructible basic graph invariants are summarized in the following theo-
rem:

Theorem 1.84.
Let G be a graph. The following graph invariants are reconstructible:

i) degree sequence of G
ii) neighbourhood degree sequence of the vertices of G
iii) clique number w(G)
iv) stability number a(G)
v) matching number v(G)
vi) girth of G
vii) vertex cover number 7(G)
viii) edge cover number p(G)

Proof.
i) The degree sequence of a graph is reconstructible by the identity

dg(v) = m(G) —m(Gy)
for every vertex v € V(G). m(G) is reconstructible by Corollary 1.42.

ii) The neighbourhood degree sequence states the degrees of the neighbours of a vertex.
This can be determined by comparing the degree sequence of the graph with the
degree sequence of the card.

iii) The clique number is reconstructible by Kelly’s Lemma if the graph is not a com-
plete graph. If the graph is complete, then w(G) is reconstructible by Theorem
1.51 because regular graphs are reconstructible.

iv) Since a graph is reconstructible if and only if its complement is reconstructible

we have that the stability number is reconstructible by the identity a(G) = w(G).

v) The matching number is reconstructible by Theorem 1.43 part i) if G contains
a perfect matching. If the graph does not contain a perfect matching, then the
largest matching is contained in one of the cards of the graph.
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vi) The girth states the length of a smallest circuit in G. It is reconstructible if the
smallest circle does not contain all vertices of the graph by Kelly’s Lemma. If
it does, then for example the number of hamilton circles is reconstructible by
Theorem 1.43.

vii) The stability number of G and the order of a graph are reconstructible. Gallai
[26] proved T(G) = |V(G)| — a(G) for all graphs G. Hence, the vertex covering
number 7(G) is reconstructible.

viii) The order and the matching number of G are reconstructible. Gallai showed
in [26] that p(G) = |V(G)| — v(G) holds for all graphs G. Therefore, the edge
cover number is reconstructible. 0

There are more basic graph invariants which may be determined easily from the deck
of G, but we want to move on to the more interesting graph invariants which include
new techniques for solving the reconstruction conjecture.

Gupta, Mangal and Paliwal reported in their paper “Some work towards the proof of
the reconstruction conjecture” [31] some progress on the diameter of a graph. They
were able to show by solving a system of linear equations that the diameter of 2 is
reconstructible and therefore, the associated graph class recognizable.

Theorem 1.85. (Gupta, Mangal and Paliwal, 2013)
Graphs of diameter 2 are recognizable.

By Theorem 1.40 we have that a graph is reconstructible if and only if its complement
is reconstructible. Combining this with the fact that if a graph has diameter greater
or equal to 3 then its complement has diameter less or equal to 3 we get the following
theorem:

Theorem 1.86. (Gupta, Mangal and Paliwal, 2013)

Let G be a graph. If diam(G) = diam(G) = 3 holds, then G is recognizable.

Tutte published in his paper “All the King’s Horses (A Guide to Reconstruction)” [76] a
range of polynomials that may be reconstructed. As mentioned earlier on, Tutte was
able to reconstruct a wide range of spanning subgraphs with his Theorem 1.43, which
was later on generalized by Kocay. As a result, we get the chromatic polynomial.

Theorem 1.87. (Tutte, 1979)
The chromatic polynomial is reconstructible.
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Proof.
Whitney proved in [77] that the chromatic polynomial might be determined as fol-
lows:

with

b= Y (~1)"®s(X,G)

XeX;

where X; is the set of all isomorphism types of graphs with order n(G) and i com-
ponents. The coefficients b; may be reconstructed by Tutte’s Theorem 1.43 part i) if
2 <i < n(G) holds because they are disconnected spanning subgraphs. If the span-
ning subgraph X is not disconnected, then i = 1 holds and the coefficient b; may be
reconstructed by Theorem 1.43 parts ii) and iii). U

The chromatic number is determined by the chromatic polynomial and so Tutte re-
constructed the chromatic number.

Corollary 1.88. (Tutte, 1979)
The chromatic number is reconstructible.

Proof.
The chromatic number is the least positive integer x such that P(G,x) > 0 holds.
P(G, x) is reconstructible by Theorem 1.87. O

As mentioned earlier on, we are looking for a range of different graph invariants that
may define a graph completely. The chromatic polynomial in itself is not sufficient
to define a graph up to isomorphism. For example, all trees on n vertices have the
chromatic polynomial of P(G,x) = x(x —1)"~1. Also, Figure 4 shows three graphs
with the same chromatic polynomial.

However, there are graphs that are called chromatically unique. That is, if G and H are
two graphs on the same vertex set, then P(G,x) = P(H,x) already yields G = H.
Hence, with the reconstruction of the chromatic polynomial we are able to show
that chromatically unique graphs are weakly reconstructible as mentioned already in
Theorem 1.83. Some classes that are chromatically unique are given for example in
the paper “Chromatically Unique Graphs” [14] by Chao and Whitehead.

The dichromatic polynomial is a generalisation of the chromatic polynomial. It is also
known as the Tutte polynomial.
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G1 GZ G3
Figure 4: Three graphs with P(G;, x) = x(x —1)3(x — 2)

Definition 1.89. (dichromatic polynomial)
The dichromatic polynomial of a graph G is defined as

ny Z ZC H—] n(G)
with

Cz']' = Z S(X,G)

XGXI']'

where X;; is the set of all isomorphism types of graphs with order n(G), size j and i
components.

The chromatic polynomial and the dichromatic polynomial are connected via the
identity P(G,x) = (—=1)"9)Q(G, —x, —1). Tutte proved in his paper that this more
general graph invariant is reconstructible. For the exact proof see [76].

Theorem 1.90. (Tutte, 1979)
The dichromatic polynomial is reconstructible.

Another graph invariant that Tutte was able to show is the characteristic polyno-
mial.

Definition 1.91. (characteristic polynomial)
Let G be a graph. The characteristic polynomial of G is defined as

x(G,x) = det(xl,g) — A),
where A is the adjacency matrix of G and I, the identity matrix.

Theorem 1.92. (Tutte, 1979)
The characteristic polynomial is reconstructible.
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Proof.
Sachs proved in [70] that the characteristic polynomial of a graph might be determined
as follows:

n(G) '
x(G,x) = Z a.x" (G
i=0

with

;=Y (—1)*X22:X5(X,G)
XeX;

where X; is the set of all isomorphism types of S-graphs with order i, ¢(X) is the
number of components of X and z(X) is the number of circuits in X. An S-graph is a
graph in which each component is either an edge or a circuit. Now, the coefficients a;
are reconstructible by Kelly’s Lemma if 0 < i < n(G) holds. If i = n(G) holds and X
is disconnected, then s(X, G) is reconstructible by Theorem 1.43 part i). If i = n(G)
holds and X is connected, then X is a Hamilton cycle. Hence in this case s(X,G) is
reconstructible by Theorem 1.43 part iii).

Therefore, the characteristic polynomial is reconstructible. O

Tutte generalized the characteristic polynomial to the idiosyncratic polynomial which
he defined in his paper “All the King’s Horses (A Guide to Reconstruction)” [76].

Definition 1.93. (idiosyncratic polynomial)
Let G be a graph. The idiosyncratic polynomial of G is defined as

l[)(G, x,y) = det(x[n(c) — B),

where B = A +y(] — A), A is the adjacency matrix of G, I,(¢) the n(G) x n(G)
identity matrix and | the n(G) x n(G) matrix in which every entry is 1.

The more general graph invariant, the idiosyncratic polynomial is connected to the
characteristic polynomial via the identity x(G,x) = (G, x,0). Tutte proved the re-
constructibility of the idiosyncratic polynomial in [76].

Theorem 1.94. (Tutte, 1979)
The idiosyncratic polynomial is reconstructible.

In certain cases is the treewidth reconstructible. In particular we can show that the
treewidth of disconnceted and separable graphs is reconstructible.

Theorem 1.95.
The treewidth of disconnected graphs and separable graphs is reconstructible.
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Proof.

Disconnected graphs are reconstructible by Theorem 1.48. Hence, the treewidth is
reconstructible, too.

Separable graphs without end vertices are reconstructible by Theorem 1.58. Hence its
treewidth is reconstructible.

Now, assume that G is a separable graph with end vertices, that is G contains a
vertex of degree 1. Consider the card G, with dg(v) = 1. Then tw(G) = tw(Gy)
holds, because both graphs contain the same minimal chordal extension. Adding the
vertex v to G, does not create a circle and therefore does not need to be taken into
consideration. Hence the claim follows. O

As stated at the beginning of this subchapter there has no complete set of graph
invariants be found that uniquely define a graph. A rather disappointing result was
given by Izbicki in his paper “Regulire Graphen beliebigen Grades mit vorgegebenen Eigen-
schaften” [38]. He did show how to construct an infinite number of regular graphs that
have the same chromatic number, degree sequence and connectivity.

1.2.4 Reductions of the Reconstruction Conjecture

Besides the reconstruction of certain classes of graphs and graph invariants Yang tack-
led the problem of the reconstruction conjecture in a third way. In his paper “The re-
construction conjecture is true if all 2-connected graphs are reconstructible” [78] he showed
that all graphs are reconstructible if a specific class of graphs is reconstructible. In
effect he reduced the number of graphs that needs proof for the reconstruction con-
jecture. In particular he reduced the reconstruction conjecture of all graphs to the
problem whether 2-connected graphs are reconstructible or not.

Theorem 1.96. (Yang, 1988)
Every connected graph is reconstructible if and only if every 2-connected graph is
reconstructible.

The proof itself makes heavy usage of Theorem 1.40 which states that a graph is
reconstructible if and only if its complement is reconstructible. He shows that for a
connected graph either the complement or the graph itself is 2-connected or the graph
or its complement are already reconstructible. For that he uses a graph structure
he calls a P-graph. First, we will define a P-graph and give his theorem about the
reconstruction of certain types of P-graphs. Then, we will give Yang’s proof for his
reduction.

Definition 1.97. (P-graph)
Let G be a graph. G is called a P-graph if
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i) G contains exactly two blocks where one of the blocks is an edge,

ii) there exists a vertex u € V(G) with dg(u) = n(G) — 2 and u is not incident to
the bridge of G,

holds.

block with vertex u se\lt‘iéf’ying dg(u) =n(G) -2
Figure 5: P-graph G

According to Yang [78] P-graphs are reconstructible if 2 connected graphs are re-
constructible. In addition, he did show that certain P-graphs are already recon-
structible.

Theorem 1.98. (Yang, 1988)
P-graphs are reconstructible if 2-connected graphs are reconstructible. In addition
P-graphs satisfying any of the following conditions are reconstructible:

i) the P-graph contains no vertex of degree 2,

ii) there exists a vertex u’ € V(G) with dg(u’) = 2 adjacent to a vertex of the bridge
but not incident to the bridge itself.

Now, given that these types of P-graphs are reconstructible we state Yang’s proof for
Theorem 1.96.

Proof. (of theorem 1.96)

“ =" Every 2-connected graph is also connected. Hence if connected graphs are
reconstructible, then so are 2-connected graphs.

“ <. Assume that all 2-connected graphs are reconstructible. Let G be a separable
graph with n(G) > 10. Remark that graphs with fewer vertices are reconstructible
by a computer study by McKay (see Theorem 1.103). We may further assume that
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G has end vertices since separable graphs without end vertices are reconstructible
by Theorem 1.58. Moreover we may assume that G contains a vertex u € V(G) of
degree dg(u) = n(G) — 2. Otherwise G contains no end vertices and is therefore re-
constructible by either Theorem 1.58 or our hypothesis that 2-connected graphs are
reconstructible. By Theorem 1.40 a graph is reconstructible if and only if its comple-
ment is reconstructible. Hence all restrictions we may achieve on a graph, we may
also assume for its complement.

Assume that G contains at least two end vertices. Hence G contains at least two ver-
tices of degree 1n(G) — 2. Then G meets one of three conditions. G is 2-connected
and therefore reconstructible by our hypothesis. G is a P-graph and therefore re-
constructible by Theorem 1.98. And last, G contains two non adjacent edges that
are incident to end vertices. These edges are incident to different vertices of degree
n(G) — 2. Let v € V(G) be an end vertex. Then the unique way to reconstruct G from
G, is to connect v to a vertex of degree n(G) — 3 in G, that is not adjacent to at least
one end vertex. All in all if G contains at least two end vertices, then the claim holds.
Now, assume that both G and G contain exactly one end vertex and exactly one ver-
tex of degree n(G) — 2. Denote the vertex of degree 1 in G with w € V(G) and the
vertex of degree n(G) — 2 in G with u € V(G). Then u is either a cut vertex or G is a
P-graph and thus reconstructible by Theorem 1.98. Hence, assume u is a cut vertex.
Let v € V(G) be the neighbour of w. Then u and v are the only cutvertices of G. Let B
be the block containing both # and v. In the connected card Gs with at least one end
vertex and with s € V(G) \ {u,v,w} the vertices u,v and w are identifiable. u as the
only cut vertex of degree n(G) — 3, w as the only end vertex not adjacent to u and v
as the neighbour of w. Hence, pick such a card G; where u and v are contained in the
same block and that block as large as possible. Hence, we know B and the location of
u and v in it. From G, we may reconstruct any other blocks and their connection to
B at the vertex u. Thus, this case is also reconstructible. O

The condition that a graph is reconstructible if and only if its complement is recon-
structible yields serveral other reductions of the reconstruction conjecture. In “Some
work towards the proof of the reconstruction conjecture” [31] Gupta, Mangal and Paliwal
used the theorem, that the complement of a graph of diameter greater than three has
diameter less than three. Hence, they concluded the following reduction.

Theorem 1.99. (Gupta, Mangal and Paliwal, 2003)
The reconstruction conjecture is true if and only if all graphs G with diam(G) = 2 or

diam(G) = diam(G) = 3 are reconstructible.

Furthermore they showed in this paper that the class of graphs of diameter 2 and
the class of graphs where both the graph and its complement have diameter 3 are
recognizable. Hence missing for the proof of the reconstruction conjecture is the weak
reconstruction of those two classes. They even refined it further by showing that the
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class of graphs where both the graph and its complement have diameter 2 and the
class of graphs where a graph has diameter 2 and its complement has diameter greater
than 2 are recognizable. They then split the class of graphs of diameter 2 into different
subclasses to get a similar result.

Theorem 1.100. (Gupta, Mangal and Paliwal, 2003)
The reconstruction conjecture is true if and only if all graphs G with either

i) G is an edge-minimal graph of diameter 2,
ii) G is a non-edge minimal graph of diameter 2, or
iii) diam(G) = diam(G) =3

are reconstructible.

Gupta, Mangal and Paliwal also included the recognizability of these classes. Hence
it remains to be shown that those three classes are weakly reconstructible to prove the
reconstruction conjecture.

Ramachandran and Monikandan combined in their paper “Graph reconstruction con-
jecture: Reductions using complement, connectivity and distance” [67] Theorem 1.96 and
Theorem 1.99 into the following stronger theorem.

Theorem 1.101. (Ramachandran and Monikandan, 2009)
The reconstruction conjecture is true if and only if all 2-connected graphs G with

diam(G) = 2 or diam(G) = diam(G) = 3 are reconstructible.

Monikandan and Balakumar combined the Theorems 1.96 and 1.99 with bipartite
graphs by showing that 2-connected bipartite graphs of diameter 2 (see Theorem 1.78)
and the class of graphs where a bipartite graph has diameter 3 and its complement
has diameter 3 (see Theorem 1.77) are both reconstructible. Hence, the following
theorem can be found in the paper “Reconstruction of bipartite graphs and triangle-free
graphs with connectivity two” [57] where it is sufficient to reduce the problem to specific
non-bipartite graphs.

Theorem 1.102. (Monikandan und Balakumar, 2012)
Every graph on at least 3 vertices is reconstructible if and only if all 2-connected

graphs G containing an odd cycle with diam(G) = 2 or diam(G) = diam(G) = 3 are
reconstructible.

Additional reductions can be found in this or other papers. For some other reductions
refer to the papers [57] and [58].
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1.2.5 Computer Studies

There are some computer studies carried out regarding the reconstruction conjec-
ture. In 1977 Brendan D. McKay published the paper “Computer reconstruction of small
graphs” [52] in which he started to prove the reconstruction conjecture for small graphs
using computer techniques. His 1997 paper “Small graphs are reconstructible” [53] ex-
tended the classes of graphs he worked on even further and proved the reconstruction
conjecture for graphs up to 11 vertices. Furthermore, he added special cases for classes
of higher order. His initial attempt was to find a counterexample to the reconstruction
conjecture, even though he states that a possible counterexample would probably not
be small. Regardless it was a useful step. Showing that the reconstruction conjecture
is true for small graphs came in handy for other researchers. To show that the recon-
struction conjecture is true for a class, usually ends up in lots of case differentiations
for small graphs. Here comes McKay’s work in and we may reduce our efforts to
graphs with order 12 or higher.

Theorem 1.103. (McKay, 1997)
The following classes of graphs are reconstructible:

i) graphs of order 4 — 11,
ii) graphs of order 12 and maximum degree at most 5,
iii) triangle-free graphs of order 4 — 14,
iv) square-free graphs of order 4 — 15,
v) bipartite graphs of order 4 — 15,

vi) bipartite graphs of order 16 and maximum degree at most 5.

The last Theorem 1.103 was actually proven for a stronger conjecture than the recon-
struction conjecture. An isomorphism-reduced deck is a deck which contains only one
isomorphism type of each card. Theorem 1.103 was proven for isomorphism-reduced
decks. It is clear that an isomorphism-reduced deck can be derived from the deck of
a graph.

The computer study itself is exhaustive. There are already one billion non isomorphic
graphs on 11 vertices and the number increases exponentially with the order of the
graph. Brendan D. McKay and Adolfo Piperno published the computer programms
nauty (no automorphisms, yes?) and Traces which come in handy to test graphs for
isomorphisms. A user’s guide may be found in [54,55]. Furthermore, they provide a
data base for all graphs up to a certain order and special classes of graphs of an even
higher order.
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1.3 The Edge-Reconstruction Conjecture

When talking about the edge-reconstruction conjecture we have the same picture in
mind that we imagine for the reconstruction conjecture. Again we are dealt a set of
cards which sum up the so called edge-deck. The difference is that in the cards are
not vertices missing but always exactly one edge is missing. Hence, for each edge
in a graph we are dealt a card and therefore the number of cards in the edge-deck
corresponds to the number of edges of the graph.

Definition 1.104. (edge-deleted subgraph, card of G, edge-deck of G)

Let G be a graph. Then the unlabelled edge-deleted subgraph G, := (V(G), E(G) \ {e})
for some e € E(G) is called a card of G. The multiset of all these cards of G is called
the edge-deck of G and is denoted by D,(G). A card of G can occur mutliple times in
the deck of G.

Figure 6 holds the visualisation of the definition of the edge-deleted subgraphs, cards
and the edge-deck.

U1 @
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D.(G)

Figure 6: G, the edge-deleted subgraphs of G and the edge-deck of G

Analoguesly we define an edge-reconstruction as a graph that has the dealt cards with
the right multiplicity as subgraphs.

Definition 1.105. (edge-reconstruction of G)
Let G and H be two graphs. Then the graph H is an edge-reconstruction of G if

De(H) = D(G)
holds, that is H and G have the same decks.
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Hence, in figure 6 G is an edge-reconstruction of D,(G). If all reconstructions of a
graph are isomorph to that graph then we will call it edge-reconstructible.

Definition 1.106. (edge-reconstructible)

A graph G is called edge-reconstructible if all edge-reconstructions of G are isomorph
to G. A graph invariant or graph parameter of G is called edge-reconstructible if it has
the same value for all edge-reconstructions of G.

The edge-reconstruction conjecture then states that every graph on at least 4 edges is
reconstructible.

Conjecture 1.107. (Edge-Reconstruction Conjecture)
All finite simple undirected graphs with at least four edges are edge-reconstructible.

The following example is one known example with non-isomorphic reconstructions
of simple graphs and it is based on graphs with 2 edges.

Example 1.108.

Let G = ({v1,v2,v3,04}, {v102,v304}) and H = ({v1,v2, 03,04}, {0102, 0203} ) be two
graphs. Then H is an edge-reconstruction of G because D,(G) = D,(H) holds. In
addition G 22 H holds and hence, G and H are not edge-reconstructible.

V] &——0 02 (%1 (%)
o—0 o—O
( J o o [ )
Uy &——0 U3 U4 @ U3
G H D(G), D(H)

Figure 7: two non isomorphic graphs G and H with the same edge-deck

Another known example with non-isomorphic reconstructions is given in the follow-
ing example. Now, the number of edges of the graphs is 3.

Example 1.109.

Let G = ({v1,v2, 73,04}, {0102, 103, 0203} ) and H = ({v1, 02,03, 04}, {0102, 0203, U204 })
be two graphs. Then H is an edge-reconstruction of G because D,(G) = D.(H) holds.
In addition G 2 H holds and hence, G and H are not edge-reconstructible.
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G H D(G), D(H)

U4 @ U3 U4 U3

Figure 8: two non isomorphic graphs G and H with the same edge-deck

1.3.1 Structural Properties

Analoguesly to the reconstruction conjecture we give the structural Theorems of the
edge-reconstruction conjecture. In structural terms the edge-reconstruction conjecture
differs greatly from the reconstruction conjecture. We are no longer able to benefit
from the Theorem that states that every graph is reconstructible if and only if its
complement is reconstructible. On the other hand the edge-reconstruction conjecture
is more open to algebraic methods.

We start this chapter with one of the most fundamental Theorems we have in both
reconstruction conjectures: the counting of subgraphs. Analoguesly to Kelly’s Lemma
for the reconstruction conjecture there exists an edge version of that Lemma.

Theorem 1.110. (Kelly’s Lemma, edge version)
Let F and G be two graphs with m(F) < m(G). Then the number s(F, G) of subgraphs
of G isomorphic to F is edge-reconstructible.

As a result of Kelly’s Lemma we get the following Corollary that may be found in
[9]:

Corollary 1.111.
All graphs are edge-reconstructible if all graphs without isolated vertices are edge-
reconstructible.

Proof.

Let G be a graph with isolated vertices. The degree sequence is reconstructible by
Kelly’s Lemma. Hence, the number of isolated vertices is known. Now, we may
look at the edge-deck of G and create a subgraph G’ C G such that G’ contains all
edges and vertices of G except the isolated vertices. We have |D.(G)| = |D.(G)]
and G, C G, holds for all e € E(G). Remark that the edge-deck of this subgraph is
edge-reconstructible. Now, assume that G’ is edge-reconstructible. Then G is edge-
reconstructible, too, because G equals the subgraph G’ in addition with the isolated
vertices. Both the number of isolated vertices and G’ are edge-reconstructible. 0
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Basically we can identify the number of isolated vertices in a graph and then create
a subgraph of the original graph without isolated vertices. If the subgraph is edge-
reconstructible, then so is the original graph. Hence from now on, we restrict our
focus to graphs without isolated vertices.

If a graph has no isolated vertices then its deck may be determined from its edge-deck.
This usefull Theorem is due to Greenwell and can be found in his paper “Reconstruct-
ing Graphs” [29]. So more or less solving the reconstruction conjecture will also solve
the edge-reconstruction conjecture.

Theorem 1.112. (Greenwell, 1971)
Let G be a graph with m(G) > 4 and 6(G) > 1. If G is reconstructible, then G is
edge-reconstructible.

After listing the result for the reconstruction conjecture in the previous subchapters
Greenwell lets us use them for the edge-reconstruction conjecture as well. Hence, in
the following chapters we will not list any classes of graphs or graph invariants that
are already reconstructible. We will mostly list classes of graphs and graph invariants
that are edge-reconstructible but are not known to be reconstructible yet.

Hemminger connects in his paper “On reconstructing a graph” [37] the reconstruction
conjecture to the edge-reconstruction conjecture in a different way. By the definition
of the line graph we are able to determine the deck of the line graph from the edge-
deck of the graph itself because the missing edges in the cards of the edge-deck
correspond to the missing vertices in the cards of the deck. Therefore, a graph is
edge-reconstructible if and only if the line graph is reconstructible and we are able to
determine the graph from its line graph.

Theorem 1.113. (Hemminger, 1969)
Let G be a graph. G is edge-reconstructible if and only if its line graph L(G) is
reconstructible and not K3.

The next Theorem, Hoffman’s Lemma, aims at finding an excludable configuration.
Hoffman introduces the concept of a forced move and concludes that certain forced
moves already imply that specific graphs are edge-reconstructible.

Definition 1.114. (forced edge, forced move)

Let G be a graph. An edge e € E(G) is called a forced edge if e is the only edge that
can be added to G, in order to yield an edge reconstruction of G. An ordered pair
e — f is called a forced move if f is the only edge besides e that can be added to G, in
order to yield an edge reconstruction of G. A sequence e; — f1, e2 — f2,..., e — fx
of forced moves is called conservative if {ey, ey, ...,ex} = { f1, f2, ..., fx} holds.
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Now, Hoffman shows that if there exists a conservative, odd length sequence of forced
moves in a specific graph, then this graph is edge-reconstructible. Hence, he shows
that this conservative, odd length sequence is an excludable configuration which is
not allowed to occur.

Theorem 1.115. (Hoffman’s Lemma)

Let G be a graph and e; — f1, e2 — f2,..., ex — fr a conservative sequence of forced
moves with k € IN odd. Then G is edge-reconstructible.

Proof.

Let H be an edge-reconstruction of G with H 22 G. ey — f; is a forced move. Then
G and H are the only edge-reconstructions of G and H = [V(G),E(G) \ {e1} U {f1}]
holds. In general

H=[V(G),E(G) \ {e;} U{fi}]
G = [V(H),E(H)\ {e;} U{f}]

holds with i odd and j even. Hence, H = [V(G), E(G) \ {ex} U{ fx}] holds with k odd.
But also G = [V(G), E(G) \ {ex} U { fi}] holds because the sequence of forced moves
is conservative. So G = H holds, a contradiction. O

Some result were able to be proven with the help of Hoffman’s Lemma. For exam-
ple he did show in cooperation with Myrvold and Ellingham that bidegreed graphs
are edge-reconstructible. It is highly recommended to look at their paper “Bidegreed
graphs are edge reconstructible” [63] for examples of forced moves and excludable con-
tigurations. For more information on Hoffman’s Lemma see also [9].

The next structural property about the edge-reconstruction conjecture is given by
Lovasz. In his paper “A Note on the Line Reconstruction Problem” [49] he introduced a
new concept of counting monomorphisms.

Definition 1.116. (monomorphisms, monomorphisms with defect)

Let G and H be two graphs. Let ¢ : V(G) — V(H) be 1 — 1-mapping. Then ¢ is
called a monomorphism from G to H. ¢ is called a monomorphism from G to H with
defect r if there exist just v edges vw € E(G) such that ¢(v)p(w) ¢ E(H) holds.
A monomorphism with defect 0 is a monomorphism in the usual sense. G —¢ H
denotes the set of all monomorphisms of G into H. Also G —, H denotes the set of all
monomorphisms with defect r of G into H

He uses the inclusion-exclusion principle to count monomorphisms and show that
beyond a certain size there will always be an isomorphism between every edge-
reconstruction of a certain graph. The following method, introduced by Lovasz
was later refined by Miiller and finally found its pinnacle in Nash-Williams” Lemma
which is up to date the most powerful tool that we have in order to tackle the edge-
reconstruction conjecture.
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Theorem 1.117. (Lovéasz, 1972) n(G)
Let G be a graph of order n(G) and size m(G). If m(G) > % ( 5 ) holds, then G is

edge-reconstructible.

Proof.
Let G and H be two graphs of order n(G) = n(H) and size m(G) = m(H) with

m(G) > 1 (n(ZG )) . Furthermore D,(G) = D,(H) holds that is H is a reconstruction

of G.
By the sieve formula we have

IG—oH| = Y (—~1)"D|F -, H]
FCG

where F runs over all subgraphs of G with V(F) = V(G) and E(F) C E(G). With the
inclusion-exclusion principle the right hand side maps no edges of G on edges of H.
Hence, all edges of G will be mapped on edges of H.

Now, we may apply the same for

|H = H| = Y (-1)"P)|F = H|.
FCH
H is a reconstruction of G and therefore has the same edge-deck as G. So
Y (—~1)"DIF »oH| = Y (-1)"D|F -, H
FCG FCH
holds. Hence, the sum without the final summand are equal. Furthermore for the last

summand holds

’G—>0H|:‘H—>0H‘:O

because m(G) > 3 (n(zG)) holds. Hence, |G —¢ H| = |H —( H| holds and with

H —¢ H| > 0 yields the claim. ]
| >0y

An improved bound is given by Schmeichel in his paper “A note on the edge reconstruc-
tion conjecture” [71]. He copies the proof of Lovasz with his idea about the inclusion-

1 (”(G)

exclusion principle but replaces the argument m(G) > 5 ’ ) by a condition for
the degree sequence.

Theorem 1.118. (Schmeichel, 1975)

Let G be a graph with degree sequence

(dl = dG(Ul),dz = dc(vz),..., dn(G) = dG(Un(G)))
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If
di +dyc)-iy1 = n(G)
holds for some i, then G is edge-reconstructible.

Proof.

Let G and H be two graphs of order n and size m with the above degree sequence.
Furthermore D,(G) = D,(H) holds that is H is an edge-reconstruction of G.

The proof follows almost exactly the proof of theorem 1.117 by Lovasz up to the last
argument. But we are not able to conclude that

|G—>0E|:|H—>QH|:0

holds because we are missing the argument m(G) > 3 (

n(G)
)
Hence, it remains to be shown, that |G —o H| = |H —( H| = 0 holds.

Consider the graph H. Then the degree sequence of H is dy <dy, < .. < d; with
d; = (n(G) —1) —dyg)_is1- Hence, with the condition d; +d,)_i1 > 1n(G) we
conclude that d; > d! holds for some i. Hence, there is no monomorphism that maps
H onto H because the monomorphism maps at least one vertex of bigger degree
on a vertex of smaller degree and therefore does not preserve the edges of H. So
|H —o H| = 0 holds and therefore |G —( H| holds, too.

n(G)
2
cessfully replaced by the argument of the degree sequence from above and therefore
concludes this proof. U

1

Hence, the missing argument of m(G) > 5 ( ) for Lovasz’s proof has been suc-

Miiller refines Lovész’s idea about the inclusion-exclusion principle by using not just
monomorphisms but also monomorphisms with defect. So in his paper “The Edge
Reconstruction Hypothesis is True for Graphs with More than n -log, n Edges” [60] he
successfully improves the ratio between edges to vertices from m(G) > % (n(zG ) ) to
the stronger bound m(G) > n(G) - (log, n(G) — 1). Remark that Miiller actually did
show that graphs with 2"(G)~1 > 11(G)! are edge reconstructible yet he chose to state
it for m(G) > n(G) - (log, n(G) — 1). In the proof of Miiller’s Theorem the reader may
also find the stronger bound of 2"(¢)~1 > 5 (G)!.

Theorem 1.119. (Miiller, 1977)
Let G be a graph and m(G) > n(G) - (log, n(G) —1). Then G is edge-reconstructible.
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Proof.

Let G be a graph with m(G) > n(G) - (log, n(G) — 1). Let H be a graph of order n(G)
and size m(G). Furthermore D,(G) = D,(H) holds that is H is an edge-reconstruction
of G.

This proof will be done by contradiction. Assume G 2 H that is |G —¢ H| = 0. For
r=0,1,..,m(G) we have by using the inclusion-exclusion principle

|G —oH|=|0 =g H|— )_|F—=oH|+ )_ |F—oH|..

FCG FCG
m(F)=1 m(F)=2

. 4 (=1)"9)|G = H]

— r+1
|G—+H|= ) |[F—=oH|— ) ( >|F—>0H|...
FCG FCG r

m(F)=r m(F)=r+1

o+ (_1)m(G)—r (m(rG)) |G o H|

where it is summed over all subgraphs F of G with V(F) = V(G). Analoguesly we
get

|H—>0H|:|®—>QH|— Z |F—>0H|+ Z |F—>0H|

FCH FCH
m(F)=1 m(F)=2

. 4+ (=1)"O|H = H]

— r+1
|H—,H|= ) |[F—oH|l—- ) ( )|F—>0H|...
FCH FCH r
m(F)=r m(F)=r+1

ot (—1)m@)r (m(rG)) |H —o H

All parts of the sums over the monomorphisms from subgraphs of G or H into H have

Il

the same value in the respected summands because D,(G) = D,(H) holds and there-
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fore contain the same subgraphs. The only difference is the last summand, namely

|H —o H| — |G = H| = (-=1)™©)|H —( H|

H =5, ] = G = H = (-0 (") 1 o

Hence, the sum over the differences over all monomorphisms with certain defects
yields

m(G) L L
Y |H —, H|— |G —, H| =2"%) . |H — H|
r=0

So we have
2m(G) < 2mC)|H —( H|
m(G) L L
r=0
<2-n(G)!

<2. (@)MG)
& m(G) < log, (2, (n(zc))n(c))

=log, 2+ n(G) -log, ( (2G)>

=1+n(G) - (log,n(G) —1).

Iy

This contradicts that m(G) > n(G) - (log, n(G) — 1) holds. Remark that the Theorem
is also shown for the condition 2"(6)~1 > n(G)! by the second last step of the first
inequality. O

The method which was first introduced by Lovasz found its pinnacle by Nash-Williams.
Nash-Williams contributed the chapter “The Reconstruction Problem” to the book “Se-
lected Topics in Graph Theory” [64] and in it he proved that a graph which may not be
edge-reconstructible needs to meet a very restrictive condition.

Theorem 1.120. (Nash-Williams’ Lemma, 1978)

Let G be a non edge-reconstructible, spanning subgraph of K, ). Then for every
subset E’ of E(G) such that |E'| = m(G) modulo 2 holds, there exists an automorphism
¢ of K, () such that E(GN ¢(G)) = E'.
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Up to date Nash-Williams” Lemma is still the most powerful structural Theorem for
the edge-reconstruction conjecture that has been proven. After Nash-Williams pub-
lished his Theorem many structural results were proven. First with Nash-Williams’
Lemma at hand we can rewrite the proof of Theorem 1.119 by Miiller and show that
it is now a corollary to Nash-Williams” Lemma.

Proof. (of Theorem 1.119)

Assume that 2"(G)=1 > »(G)! holds with G is a spanning subgraph of K, ). Then
m(G) > 0 and hence E(G) has 2"(G)~1 subsets E’ such that |E'| = m(G) modulo 2
holds. However K, ) has at most n(G)! automorphisms on its n(G) vertices. Since
n(G)! < 2™G)~1 holds, it can not be true that, for every E/ C E(G) such that |E'| =
m(G) modulo 2, there exists an automorphism ¢ of K, such that E(G N 7(G)) = E'
holds. So this yields a contradiction to Nash-Williams” Lemma and therefore G is
edge-reconstructible. O

Due to Hoffman [63] we have a restrictive condition for non edge-reconstructible
graphs to their average degree and minimal degree ratio.

Corollary 1.121. (Hoffman, 1987)
Let G be a non edge-reconstructible graph. Thend > 6(G) +1 — W holds, where
d is the average degree of G.

Caunter and Nash-Williams [13] showed the following restrictive condition with re-
gard to the ratio between average degree and maximal degree.

Corollary 1.122. (Caunter and Nash-Williams, 1982)
Let G be a connected, non edge-reconstructible graph. Then 2log,(2A(G)) > d holds,
where d is the average degree of G.

For a different and more algebraic approach to Nash-Williams” Lemma the reader
is encouraged to look at Bondy’s survey “A Graph Reconstructor’s Manual” [9]. The
following chapter contain many classes of graphs for which the proofs rely heavily
on Nash-Williams” Lemma.

1.3.2 Edge-Reconstructible Graph Classes

We start this chapter by reminding the reader of Theorem 1.112 by Greenwell which
more or less states that graphs that are reconstructible are also edge-reconstructible.
Therefore, we do not necessarily give information on the edge-reconstruction of cer-
tain graphs which have already been shown to be reconstructible.
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The first results are the known results for the class of planar graphs. While we are
still not able to reconstruct the class of planar graphs for both the reconstruction
conjecture and edge-reconstruction conjecture we have a wide range of results for
specific subclasses of the class of planar graphs.

Fiorini was able to show in his paper “On the edge-reconstruction of planar graphs” [19]
that maximal planar graphs with minimal degree 4 are edge-reconstructible. Re-
mark that Theorem 1.70 by Lauri (1981) states that maximal planar graphs are recon-
structible and therefore are edge-reconstructible, too. The result is given for additional
information on how to reconstruct graphs from the edge-deck.

Theorem 1.123. (Fiorini, 1978)
Maximal planar graphs G with 6(G) > 4 are edge-reconstructible.

In the same paper Fiorini proved that 4-connected planar graphs with minimal degree
5 are edge-reconstructible.

Theorem 1.124. (Fiorini, 1978)
4-connected planar graphs G with 6(G) > 5 are edge-reconstructible.

In 1982 Fiorini and Lauri were able to show in their paper “Edge-Reconstruction of
4-Connected Planar Graphs” [22] that 4-connected planar graphs with minimal degree
4 are edge reconstructible. This is a relaxation of the degree condition given in the
previous result and therefore improving the minimal degree from 5 to 4.

Theorem 1.125. (Fiorini and Lauri, 1982)
4-connected planar graphs with §(G) > 4 are edge-reconstructible.

The last result for planar graphs is of a more general nature and only holds restrictions
to its minimal degree. Lauri was able to show in his paper “Edge-reconstruction of
planar graphs with minimum valency 5” [44] that planar graphs with minimal degree of
at least 5 are edge-reconstructible.

Theorem 1.126. (Lauri, 1979)
Planar graphs G with §(G) > 5 are edge-reconstructible.

Another result by Fiorini and Lauri is the edge-reconstruction of 3-connected graphs
that triangulate a surface. Heavy usage is made of the topology of graphs that are
embedded in the plain or the real projective plain. For more information see their
paper “On the edge-reconstruction of graphs which triangulate surfaces” [23].

Theorem 1.127. (Fiorini and Lauri, 1982)
3-connected graphs that triangulate a surface are edge-reconstructible.
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An application of Hoffman’s Lemma and its theory of forced moves and excludable
configurations is to show that bidegreed graphs are edge-reconstructible. A bidegreed
graph is a graph that has only two different degrees in its degree sequence. Hence, all
vertices are of either minimal or maximal degree. Ellingham, Hoffman and Myrvold
[63] showed in 1987 that bidegreed graphs are edge-reconstructible.

Theorem 1.128. (Ellingham, Hoffman and Myrvold, 1987)
Bidegreed graphs are edge-reconstructible.

The actual problem to show that bidegreed graphs are reconstructible lies in the single
subclass where all vertices are of either minimal degree §(G) or of the maximal degree
A(G) = 6(G) + 1. Hence, we have two consecutive degrees. If the minimal degree
and maximal degree are not consecutive integers then there exists a card where the
degrees of exactly two vertices do not belong to the degree sequence G. Hence, the
graph is edge-reconstructible. The proof where minimal degree and maximal degree
are consecutive integers is a long case by case study. As a generalization of the last
Theorem Ellingham, Hoffman and Myrvold have shown the following:

Theorem 1.129. (Ellingham, Hoffman and Myrvold, 1987)
All graphs that do not have three consecutive integers in their degree sequence are
edge-reconstructible.

The next step would be to show that graphs with three consecutive degrees are edge-
reconstructible. Ellingham, Hoffman and Myrvold implied that the proof of tride-
greed graphs might suggest an induction argument to prove the edge-reconstruction
conjecture on the whole.

Pyber showed in his paper “The edge reconstruction of Hamiltonian graphs” [65] that
hamiltonian graphs of a sufficiently high order are edge-reconstructible. He uses
Nash-Williams” Lemma to show that if a hamiltonian graph is not edge-reconstructible,
then that graph needs to have a high number of hamiltonian cycles. He is then able
to prove, that for hamiltonian graphs of sufficiently high order this number of hamil-
tonian cycles can not be met and therefore yields a contradiction to Nash-Williams’
Lemma. His method works for hamiltonian graphs of order 240 or higher.

Theorem 1.130. (Pyber, 1990)
Hamiltonian graphs of sufficiently high order are edge-reconstructible.

Analoguesly to the reconstruction conjecture we may give a bound on the order-size
ratio of hamiltonian graphs in the edge-reconstruction conjecture. Due to the nature of
the edge-reconstruction conjecture we are able to improve that bound. First we need
the following general Theorem which is a again an improved version of Theorem 1.64.
In the edge-reconstruction conjecture two adjacent vertices of degree 2 are sufficient
to prove that a 2-connected graph is edge-recosntructible.
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Theorem 1.131.
Let G be a 2-connected graph. If G contains two vertices v, w € V(G) with vw € E(G)
and dg(v) = dg(w) = 2, then G is edge-reconstructible.

Proof.

2-connected graphs are recognizable. Let G be 2-connected. Let v,w € V(G) be two
vertices with vw € E(G) and dg(v) = dg(w) = 2. For all vertices u € V(G) holds
dg(u) > 2. Consider Gyy. Gy contains exactly 2 vertices of degree 1, namely v and w.
Hence, Gy with the edge vw that is (V, E \ {vw} U {vw}) is the only reconstruction
of G. So G is edge-reconstructible. OJ

Now, we can use the class of 2-connected graphs that contain a path with two con-
secutive vertices of degree 2 to show that hamiltonian graphs which exceed a spe-
cific order-size ratio are edge-reconstructible. This improves the bound of Theo-
rem 1.65. The bound for the reconstruction of hamiltonian graphs was m(G) <

n(G) + {—"(Gg_lJ.

Theorem 1.132.

Let G be a hamiltonian graph with m(G) < n(G) + V(sz_lj. Then G is edge-
reconstructible.

Proof.
Since G is hamiltonian, G has a circle of lenght n(G). All other edges are chords of

that circle. So the hamiltonian circle has at most L"(iﬁj chords. So there are at

least n(G) — 2 - V(iﬁj vertices of G of degree 2 and at most 2 - L%J vertices
of degree at least three. Partitioning the vertices of degree two evenly into connected

paths of vertices of degree two, seperated by vertices of degree at least three will yield

if G is a finite graph. Hence, there is at least one path with two consecutive vertices
of degree two (pidgeon hole principle). Furthermore G is hamiltonian and hence 2-
connected. So by Theorem 1.131 G is weakly reconstructible. The size of G and the
property hamiltonian are recognizable, so G is edge-reconstructible. 0
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Remark, that in the last proof, every graph that is too small (e.g. less than 10 vertices)
is reconstructible by a computer study of McKay (see Theorem 1.103).

A long case by case study by Thatte in 1995 proved that p-claw-free graphs are edge-
reconstructible.

Definition 1.133. (claw, claw-point, claw-free, p-claw-free)

A claw is a bipartite graph Ky 3 := ({v1,v2,v3,v4},{v102,v173,v104}). The claw-point
is the vertex of degree 3 in a claw. A claw-free graph is a graph that does not contain
a claw as an induced subgraph. A p-claw-free graph is a graph that has no circuit of
length p with a claw-point on it.

Figure 9: A claw - the bipartite graph K3

Thatte was able to show in his paper “Some Results on the Reconstruction Problems.
p-Claw-Free, Chordal, and Ps-Reducible graphs” [75] that p-claw-free graphs are edge
reconstructible by applying Nash-Williams” Lemma and a range of excludable config-
urations.

Theorem 1.134. (Thatte, 1995)
p-claw-free graphs are edge-reconstructible.

The generalisation of p-claw-free graphs, namely the claw-free graphs was first proven
by Ellingham, Pyber and Xingxing Yu in 1988. In their paper “Claw-free graphs are edge
reconstructible” [18] Ellingham, Pyber and Xingxing Yu did prove that claw-free graphs
are edge-reconstructible. The proof exploits Nash-Williams” Lemma. Remark that a
claw-free graph is p-claw-free for every p. Thatte did prove that claw-free graphs are
edge-reconstructible by showing that both p-claw-free graphs and chordal graphs are
edge-reconstructible.

Theorem 1.135. (Ellingham, Pyber and Xingxing Yu, 1988 - Thatte, 1995)
Claw-free graphs are edge-reconstructible.

Line graphs are a special case of claw-free graphs. Therefore, Ellingham, Pyber and
Xingxing Yu also showed that line-graphs are edge-reconstructible.
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Corollary 1.136. (Ellingham, Pyber and Xingxing Yu, 1988)
Line-graphs are edge-reconstructible.

Next we are going to show that chordal graphs are edge-reconstructible. The proof
is another example of the two step method in which you first show that a class of
graphs is edge-recognizable and then weakly edge-reconstructible. For the proof we
use a different verion of Nash-Williams” Lemma as given in [75]. It introduces the
concept of an edge-replacing set.

Definition 1.137. (replacing edge, edge-replacing set)

Let G be an induced subgraph of K,y and E' C E(G). Then E"” C E(K,,(g)) is called
an edge-replacing set of E' if E(G) NE” = () and D.(G — E' + E”) = D,(G) holds. A
collection of all edge-replacing sets of E’ is denoted by rep(E’). If |E’| = 1 holds, then
we call E” also a replacing edge.

Nash-Williams” Lemma states now that if the graph G is not edge-reconstructible, then
for each subset of the edges of G there exists an edge-replacing set such that replacing
those edges will yield either a reconstruction isomorphic to G or a reconstruction not
isomorphic to G depending on the size of the edge-replacing set.

Theorem 1.138. (Nash-Williams’ Lemma, 1978)

Let G and H be two graphs with D,(G) = D.(H) but G 2 H. Then there exists for all
E' C E(G) a set E” C rep(E’) such that either G—E'+E'" = GorG—E +E"=H
depending respectively upon wether |E’| is even or odd.

With the help of Nash-Williams” Lemma Thatte was able to prove in his paper “Some
Results on the Reconstruction Problems. p-Claw-Free, Chordal, and P,-Reducible graphs”
[75] in a very short way that chordal graphs are edge-reconstructible. He basicly looks
at two cases, one of which are outerplanar graphs and the other is solvable by Nash-
Williams” Lemma. Remark for the proof it is of no interest that the edge-replacing set
has a specific size. Since we use mainly a proof by contradiction to Nash-Williams’
Lemma it is sufficient to argue that there exists no edge-replacing set.

Theorem 1.139. (Thatte, 1995)
Chordal graphs are edge-reconstructible.

Proof.

edge-recognizable: Chordal graphs are recognizable by Theorem 1.81 from their deck.
The deck is reconstructible from its edge-deck according to Theorem 1.112. Hence,
chordal graphs are edge-recognizable.

weakly edge-reconstructible: Assume that chordal graphs are not edge-reconstructible.
Let G be a chordal graph.

Assume that G contains a K4 on the vertices v1,vp,v3,v4. Then replacing the edges
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E' = {v1vy,v3v4} C E(G) by E” € rep(E(G)) with Nash-Williams’ Lemma yields a
chordless cycle v1,v,v3,v4,v1 Of length 4. A contradiction to G being chordal and
edge-recognizable. Hence, G does not contain a K4 as an induced subgraph.

Assume now that there exists an edge v1v; € E(G) such that v1v; is an edge of at
least three K3. Denote them with vy, v;,v3, v1,7v7,v4 and v1, V2, v5. Remark that there
exists no edges v3vy4, v3v5 and v4v5. Otherwise G would have a Ky as an induced
subgraph. Then there exists no replacing edge for v;v, which is a contradiction to
Nash-Williams” Lemma. Therefore, G does not contain an edge that is on at least
three K3. So G is outerplanar.

Outerplanar graphs are reconstructible by Theorem 1.72. Therefore outerplanar graphs
are also edge-reconstructible by Theorem 1.112.

Hence, chordal graphs are edge-reconstructible because they are edge-recognizable
and weakly edge-reconstructible. O

1.3.3 Edge-Reconstructible Graph Invariants

There is nothing to report on the matter of edge-reconstructible graph invariants that
haven’t already been proven to be reconstructible. Therefore, refer to the section about
reconstructible graph invariants and use Theorem 1.112 to prove that these invariants
are also edge-reconstructible graph invariants.

1.4 Reconstruction Numbers and related Reconstruction
Conjectures

This subchapter deals with questions related to the reconstruction conjecture. The
tirst part about reconstruction numbers is about the question of how many cards are
needed to show that a graph is reconstructible. The second part deals with partial
decks of the original deck of a graph and modified decks. The last part is about the
reconstruction conjecture in directed graphs.

1.4.1 Reconstruction Numbers

In 1985 Harary and Plantholt introduced in their paper “The Graph Reconstruction
Number” [35] the concept of reconstruction numbers. This concept is actually a
stronger statement than the reconstruction conjecture itself. We start with their defi-
nition:
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Definition 1.140. (reconstruction number)

Let G be a graph. The reconstruction number of G is the minimal k for which there
are {v1,0y,...,0r} C V(G) such that if H is a graph with {wy,w», ..., wx} € V(H) and
Gy, = Hy, for alli € {1,2,...,k}, then H = G holds. Denote that number with rn(G).

In other words, the reconstruction number of a graph G is the minimal number of
cards required in order to uniquely identify the original graph G. Hence if a recon-
struction number exists for a graph or a class of graphs then this graph or class of
graphs is reconstructible. This is because just a partial subdeck of the original deck is
required to show that the graph itself is reconstructible.

There are some classes of graphs for which the reconstruction number has been
shown. For example Myrvold proved in her paper “The Ally-Reconstruction Num-
ber of a Tree with Five or More Vertices Is Three” [61] the reconstruction number for trees.
In particular Myrvold showed the result for the ally-reconstruction number which may
be distinguished from the adversary-reconstruction number. The difference between
the ally-reconstruction number and the adversary-reconstruction number is simply
a best-case and worst-case scenario. Hence we look for the minimal and maximal
number of cards required to uniquely identify the original graph. Therefore the ally-
reconstruction number is the same as the originally introduced reconstruction number
by Harary and Plantholt. So for this thesis we continue the use of the term reconstruc-
tion number.

Theorem 1.141. (Myrvold, 1990)
Let G be a tree with n(G) > 5. Then rn(G) = 3.

For further information about reconstruction numbers the reader is referred to [2,35,
56,62]. Those will give a good overview and a good basis for getting into this field.

However there is one result for reconstruction numbers that holds particular interest.
Harary and Plantholt conjectured in their paper “The Graph Reconstruction Number”
[35] that in a probabilistic sense almost all graphs have reconstruction number equal to
three. Bollobas picked up that idea in his paper “Almost Every Graph has Reconstruction
Number Three” [7] and proved the conjecture by using random graphs.

Theorem 1.142. (Bollobas, 1990)
Almost every graph has reconstruction number three.

This is a stronger result than Theorem 1.46 given by Miiller in 1976. From this point
of view Miiller is a corollary from Bollobés since having a reconstruction number for
a class already implies that this class is reconstructible.

Interesting about Bollobas’s result is that a computer study by McMullen and Radzis-
zowski [56] showed that of the more than 12 million graphs on ten vertices only 12
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graphs have reconstruction number greater than 3. That means finding a class with
a higher reconstruction number than 3 might already be an interesting and difficult
task. The authors themselves introduced some of those classes.

Moving on from the vertex induced reconstruction numbers there exists analogously
to the edge-reconstruction conjecture the concept of the edge reconstruction number,
both in its ally and adversary form. For a survey of open questions about the edge
reconstruction number refer for example to [2] or one result is given, for example,
in [3].

1.4.2 The Isomorphism-Reduced Deck and Related Decks

There are several reconstruction conjectures out there. Some work on different struc-
tures and some are weaker or stronger versions on the same structures as the re-
construction conjecture itself. When reconstructing graphs we have all unlabelled
subgraphs as cards at our disposal. Yet a stronger version might not have all sub-
graphs available, but still needs to show that all reconstructions are isomorph to each
other. For that there is for example the isomorphism-reduced deck and isomorphism-
reduced edge-deck. Those decks contain only one card of each isomorphism type.

Definition 1.143. (isomorphism-reduced deck, isomorphism-reduced edge-deck)
Let G be a graph. ID(G) C D(G) and ID.(G) C D,(G) are maximal subsets of
the deck of G or edge-deck of G such that each isomorphism type of a card of G is
included exactly once. Then ID(G) is called the isomorphism-reduced deck of G and
ID(G) is called the isomorphism-reduced edge-deck of G.

A stronger version of the reconstruction conjecture or edge-reconstruction conjecture
would be if one would not have its deck or edge-deck at their disposal but only
isomorphism-reduced deck or isomorphism-reduced edge-deck. The related conjec-
ture would then be defined as:

Conjecture 1.144.
All finite simple undirected graphs with at least three vertices are reconstructible from
their isomorphism-reduced deck.

There are some results that have been proven for this stronger conjecture. For example
Theorem 1.103 by McKay was a computer study about the reconstruction conjecture.
In fact he did show that all graphs with at least 11 vertices are not just reconstructible
by their deck, but they are already reconstructible by their isomorphism-reduced deck.
For more information about that computer study see [53].

Similary the stronger version of the edge-reconstuction conjecture would be:



53

Conjecture 1.145.
All finite simple undirected graphs with at least four edges are edge-reconstructible
from their isomorphism-reduced edge-deck.

Other decks would be shuffled decks, k-decks or vertex-switching decks. For more infor-
mation, the definitions and some results see the “Graph Reconstructor’s Manual” [9]
by Bondy. There is also the question about legitimate decks. The question for legiti-
mate decks is, if to any given deck there exists at least one reconstruction or one at
all. For more information see “Graph Reconstruction - A Survey” [10] by Bondy and
Hemminger.

1.4.3 The Reconstruction Conjecture for Digraphs

A reconstruction conjecture related to our reconstruction conjecture but with a dif-
ferent set of structures is the reconstruction conjecture for digraphs. A digraph is a
graph where each edge has a direction. Hence for two vertices v,w € V(G) would
vw # wo hold. The definition reads as follows:

Definition 1.146. (digraph, arc)

Let V and E be a pair of disjoint sets. Then G = (V,E) is called a digraph if E C
{vw | v,w € V} holds. The elements in V(G) := V are called vertices and form the
vertex set of G. The elements of E(G) := E are called arcs and form the edge set of G.
Furthermore for every arc e = vw € E(G) between two vertices v,w € V(G) holds
vw # wv where vw € E(G) indicates an arc from v to w and wv € E(G) indicates an
arc from w to v.

The cards, decks, reconstructions and the term reconstructible for digraphs might be
defined analogously to those of undirected graphs. Hence, a related conjecture might
be proposed as followed:

Conjecture 1.147. (Reconstruction Conjecture for Digraphs)
All finite simple digraphs with at least three vertices are reconstructible.

Unfortunately this conjecture has been proven to be false. Beineke and Parker [4]
found counterexamples to the reconstruction conjecture for digraphs on 5 and 6 ver-
tices. Stockmeyer [72-74] improved that result by finding other small counterexam-
ples and then discovered a general proof that an infinite number of tournaments (a di-
graph that has exactly one arc between each pair of vertices) are non-reconstructible.
In fact he did show that there are non-reconstructible pairs of tournaments for every
order 2/ 4 2/ with i and j not both equal to zero. For this and more information about
the reconstruction conjecture for digraphs see also [10].
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01 01

U3 U2 U3 (%)

G H Deck of both G and H

Figure 10: two non isomorphic tournaments G and H with the same deck

One example of non-reconstructible digraphs on 3 vertices are given in Figure 10.

However some positive progress has been made for the reconstruction conjecture for
digraphs. There are some graph classes that are reconstructible despite the fact that
the reconstruction conjecture for digraphs is false in general. One example is given in
“On the problem of reconstructing a tournament from subtournaments” [34] by Harary and
Palmer. They did prove that nondiconnected tournaments (in diconnected tournaments
there are for every two vertices v, w oriented paths from v to w and from w to v) on
at least 5 vertices are reconstructible.

Theorem 1.148. (Harary and Palmer, 1967)
Nondiconnected tournaments on at least 5 vertices are reconstructible.



2 Reconstructing Separable Graphs

In this chapter we want to pick up an idea by Bondy about the sizes of the limbs of
separable graphs with end vertices and improve it by delving deeper into the structure
of the subgraphs.

As stated earlier, Bondy did show in his paper “On Ulam’s Conjecture for Separable
Graphs” [8] that separable graphs without end vertices are reconstructible. That are
seperable graphs with minimal degree greater or equal to 2.

Theorem 2.1. (Bondy, 1969)
Separable graphs without end vertices are reconstructible.

Bondy gave some results for separable graphs with end vertices, too. For that he split
the separable graphs with end vertices into different substructures, namely the trunk
and the limbs.

Definition 2.2. (trunk, limb, root)

Let G be a graph. The trunk T(G) of a graph G is the induced subgraph of G, remain-
ing after successively removing all end vertices until none remain.

A limb L(G) of G is a nontrivial maximal connected subgraph of G having just one ver-
tex in common with T(G). This vertex is called the root of L(G), denoted by r(L(G)).

He then did prove that every reconstruction of a separable graph has the same trunk
and the same number and kind of limbs up to isomorphism.

Theorem 2.3. (Bondy, 1969)
Let G be a separable graph with end vertices. The trunk T(G) and all limbs L(G) are
reconstructible.

Proof.

By definition the trunk of a graph is the induced subgraph of G, remaining after
successively removing all end vertices until none remain. Hence, choose a card G,
with dg(v) = 1. Now, T(G,) = T(G) holds. So the trunk is reconstructible.

The limbs are defined as the nontrivial maximal connected subgraphs of G having
just one vertex in common with T(G). Let Li(G), ..., Ly(G) be the limbs of G with
k> 1.

k =1 and |L1(G)| = 2 holds if and only if D(G) contains exactly one card G, such
that G, = T(G) holds. Hence, this kind of graph is recognizable and this limb is
reconstructible.

k =1 and |L1(G)| > 3 holds if and only if D(G) contains exactly one disconnected
card G, such that one component of G, is isomorphic to T(G) and the other one is
an isolated vertex. Hence, this kind of graph is recognizable. The structure of the
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limb itself is now reconstructible with Kelly’s Lemma and the fact, that the trunk is
reconstructible.

Now, let k > 2 hold. Consider the subdeck SD(G) C D(G) that contains all cards
Gy of G with dg(v) = 1. Hence, it contains the cards where end vertices of limbs
are missing. Suppose that a limb L;(G) has j end vertices. Then L;(G) is an induced
subgraph in at least |SD(G)| — j cards of SD(G) where L;(G) does not share more
than the root with the trunk. Ordering the limbs by size and the help of Kelly’s
Lemma allows us to count the number of limbs, their sizes and structures. So the
number of limbs and the isomorphism class of the limbs are reconstructible. O

Let G be a separable graph with end vertices and G, a card with v is a root of a limb
of G. A natural question that arises is if we can complete the trunk of G and attach all
missing limbs with that root and therefore reconstruct G. The answer to that question
is somehow disappointing. For this problem we can define the following kind of
vertices.

Definition 2.4. (similar, pseudo-similar)

Let G be a graph and v,w € V(G). The vertices v and w are called similar if there
exists an automorphism, that sends one vertex onto the other. The vertices v and w
are called pseudo-similar if G — v = G — w holds.

Now, it is clear that if two vertices are similar, then both vertices are pseudo-similar,
too. However, Harary and Palmer [33] did show that the converse is not true. The
following example shows a graph with two pseudo-similar vertices v and w, which
are not similar.

0 w

Figure 11: Counter example by Harary and Palmer

Harary and Palmer also presented in their paper “On similar points of a graph” [33] an
infinite class of graphs for which there are pseudo-similar vertices that are not similar.
Hence, this problem does not just arise for separable graphs with end vertices but it
may arise in other classes of graphs as well.

Bondy did show that separable graphs with end vertices are reconstructible if the
trunk of those graphs meets a very special condition. For example, we have seen in
Theorem 1.61 that a separable graph with end vertices is reconstructible if the trunk
is a complete graph. There are also other conditions for the trunk under which a
separable graph with end vertices is reconstructible.
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On the other hand, Bondy [8] gave also a condition for the limbs of a separable graph
with end vertices. This is the condition that we improve.

Theorem 2.5. (Bondy, 1969)
Let G be a separable graph with end vertices and Li(G), ..., Ly(G) be the limbs of G.
Let L;(G) with i € {1,...,k} have at least 3 vertices. If there exists no limb L;(G),
je {1, ..k} \{i} such that

V(Li(G))] = [V(Li(G))| -1
holds, then G is reconstructible.

Proof.

Let L1(G),...,Ly(G) be the limbs of G. Let L;(G), 1 < i < k be a limb on at least
3 vertices such that there exists no limb L]-(G), 1 < j < kandj # isuch that
[V(L;(G))| = |[V(Li(G))| —1 holds. Then there exists a card G, with dg(v) = 1
such that G, contains all limbs except L;(G). Furthermore G, contains a limb of size
|[V(L;(G))] —1. A limb of such size does not exist in G. Hence, this limb in G,
needs to be extended to L;(G) in order to yield a reconstruction of G. But then every
reconstruction of G is isomorph to G and therefore G is reconstructible. O

Remark that there might be multiple ways to yield a limb L;(G) from its sublimb
L;i(G) \ {v}. However, all those extended limbs with the fixed root r(L(G)) are iso-
morph to each other and hence, all reconstructions are isomorphic. Remark further
that applying this theorem consequtively to the largest limb and then going to the
smaller limbs yields for a non-reconstructible graph that it has limbs of all sizes up to
the size of the largest limb.

Example 2.6.

Let G be a separable graph with end vertices. G contains two limbs L1 (G) and L,(G)
of sizes 5 and 2 respectively (see Figure 12). The graph is reconstructible by Theorem
2.5. If we picture the card G, then T(G,) = T(G) holds and L,(G) is both a limb
in G and G,. However, L1(G) \ {v} is not a limb in G. By Theorem 2.3, all limbs
and the trunk of G are reconstructible. The only two ways to extend L1(G) \ {v} to
L1(G) is to connect the missing vertex v in G, to either v; or v,. Hence, both ways
yield a reconstruction of G from the card G,. Furthermore those reconstructions are
isomorphic and G; = G, holds with G; := (V(G),E(G)) and G, := (V(G), (E(G) \
{vv1}) U {voa}).

The idea given is that a card G, contains a subgraph, in our case a limb, which is not
in G. Hence, this limb needs to be extended in order to yield a subgraph that is in G.
In this case if the limbs are reconstructible, then a card with a limb too small gives us
the unique sublimb that needs to be extended into the limb of the original graph. This
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Figure 12: Separable graph with end vertices with limbs of sizes 2 to 5

idea may be refined. By generalizing this idea we are able to extend the subclasses of
separable graphs with end vertices that are reconstructible.

Up to now we only looked at the size of the sublimbs. But we can also look deeper
into the structure of the limbs. For our first case, there may be limbs that are exactly
of order one less than the limb we are looking at. Yet they might be of a different
isomorphism type thus making the original limb uniquely extendable into the original
graph.

Theorem 2.7.

Let G be a separable graph with end vertices and limbs L1(G), ..., Ly(G). Let L1(G) be
a limb of order at least 3 and v € V(L1(G)) be an end vertex of G. If there exists no
limb L;(G), i € {2, ...k} such that there is an isomorphism

¢ : Li(G) = L1(G) \ {0}
with

¢(r(Li(G))) = r(L1(G) \ {v}),

then G is reconstructible.

Proof.

Let L1(G), ..., Ly(G) be the limbs of G. Let L1(G) be a limb on at least 3 vertices and
and v € V(L1(G)) be an end vertex of G. Assume that there exists no limb L;(G),
2 <i < k such that there is an isomorphism ¢ : L;(G) — L1(G) with ¢(r(L;(G))) =
r(L1(G) \ {v}). Then the card G, is identifiable as a card, that contains a sublimb
of L1(G) namely L1(G) \ {v} which is no limb of G. Furthermore, T(G) = T(G,)
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holds and G, contains all limbs Ly (G), ..., Ly(G). Hence, L1(G) \ {v} in G, needs to be
extended with v in order to yield a reconstruction of G. But then every reconstruction
of G is isomorph to G and therefore G is reconstructible. O

Figure 13: Separable graph with end vertices with limbs of sizes 1 to 4

Example 2.8.

Let G be a separable graph with end vertices. G contains four limbs L; := Li(G), ...,
Ly := L4(G) of sizes 1 to 4 (see Figure 13). We may not prove that G is reconstructible
by Theorem 2.5 because for each limb there exists a limb of size exactly one less than
the original one. However, G is reconstructible by Theorem 2.7. If we picture the
card Gy, then T(G,) = T(G) holds and Ly, L, and L3 are both limbs in G and G,.
However, Ly \ {v} is not a limb in G. By Theorem 2.3 all limbs and the trunk of G are
reconstructible. The only two ways to extend Ly \ {v} to Ly is to connect the missing
vertex v in Gy to either v; or v;. Hence, both ways yield a reconstruction of G from
the card G,. Furthermore those reconstructions are isomorphic and G; = G, holds
with Gy := (V(G), E(G)) and Gy := (V(G), (E(G) \ {vv1}) U {vva}).

In the last theorem we removed only end vertices from the limbs to yield a sublimb,
which is not a limb of the original graph. We may generalize this to any removed
vertex of a limb which is not a neighbour of the root or the root itself by applying
Theorem 2.7 recursively on the sublimbs that the original limb requires in order to
have a chance of not being reconstructible. Thus we get the following corollary.

Corollary 2.9.
Let G be a separable graph with end vertices and limbs L1(G), ..., Ly(G). Let L1(G) be
a limb of order at least 3 and

v € V(Li1(G)) \ {r(L1(G)) UNg(r(L1(G)))}
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that is a vertex v € L(G) which is neither the root nor its unique neighbour. Let
L C L1(G) \ {v} be the connected component containing the root of L1(G) and set
r(L) := r(L1(G)). If there exists no limb L;(G), i € {2,...,k} such that there is an
isomorphism

with

then G is reconstructible.

Proof.

Let L1(G), ..., Ly(G) be the limbs of G. Let L1(G) be a limb of order at least 3 and v €
V(L1(G)) \ {r(L1(G)) UNg(r(L1(G)))} thatis a vertex v € L1(G) which is neither the
root nor its unique neighbour. Let L C L;(G) be the connected component containing
the root of L1(G) and set r(L) := r(L1(G)). Assume that there exists no limb L;(G),
i € {2,...,k} such that there is an isomorphism ¢ : L;(G) — L such that ¢(r(L;(G))) =
r(L) holds.

We prove the corollary by induction over the order of the limb:

base case: Let L1(G) be a limb of order 3. Then v is an end vertex of G and Theorem
2.7 may be applied.

inductive step: Assume that the statement is true for all limbs of a fixed order k > 3.
Let L1(G) be a limb of order k + 1.

Assume that v € L1(G) is an end vertex of G. If there exists no limb L;(G), i € {2, ..., k}
such that there is an isomorphism ¢ : L;(G) — L1(G) \ {v} with ¢(r(L;(G))) =
r(L1(G) \ {v}), then G is reconstructible by Theorem 2.7.

Now assume that v € L1(G) is not an end vertex in G. Assume that Theorem 2.7
may not be applied on the end vertex v1 € L1(G). Then there exists a limb L,(G) and
an isomorphism ¢ : Ly(G) — L1(G) \ {v1} such that ¢(r(L2(G))) = r(L1(G)) holds.
L(G) is of order k. Furthermore ¢(v) = w holds for some w € Ly(G). Remark that
w is neither the root nor the neighbour of a root in L,(G). Hence, by the induction
hypothesis the statement is true for w and therefore true for v via the isomorphism ¢.
This concludes the proof. O]

For Corollary 2.9 we may also present an alternative and direct proof which is ana-
loguesly to the proof of Theorem 2.7.

Proof.

Let L1(G), ..., Ly(G) be the limbs of G. Let L1(G) be a limb of order at least 3 and
v € V(L1(G)) \ {r(L1(G)) UNg(L1(G))} that is a vertex v of limb Li(G) which is
neither the root nor its unique neighbour. Let L C L1(G) be the connected component
containing the root of L1(G) and set r(L) := r(L1(G)). Disregard the other connected
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components not containing the trunk when identifying the limbs. Assume that there
exists no limb L;(G), 2 < i < k such that there is an isomorphism ¢ : L;(G) — L
with ¢(r(L;(G))) = r(L). Then the card G, is identifiable as a card, that contains
a sublimb of L{(G) namely L which is no limb of G. Furthermore T(G) = T(G,)
holds and G, contains all limbs L;(G), ..., Lx(G). In addition it contains some trees
as other components. Hence, L in G, needs to be extended with v and the other
tree components to L1(G) in order to yield a reconstruction of G. But then every

reconstruction of G is isomorph to G and therefore G is reconstructible. O
// T ( G ) \\
\\ r ( Ll ) !
S r ( Lz ) r ( L3 )

01
Figure 14: Separable graph with end vertices

Example 2.10.

Let G be a separable graph with end vertices. G contains four limbs L; := L;(G), ...,
Ly := L4(G) (see Figure 14). Now, we can prove in various ways that G is recon-
structible. We may apply Theorems 2.5, 2.7 or Corollary 2.9 for the card G,,. We may
apply Theorem 2.7 or Corollary 2.9 for the card G,,. And last we may apply Corol-
lary 2.9 for the card G,,. Hence, we see that Corollary 2.9 is the most generalized one,
which in turn is a direct result of Theorem 2.7. This actually means that if Corollary
2.9 may be applied for some card G, for which Theorem 2.7 may not be applied, then
there exists a different card Gy, 2 G, for which both Theorem 2.7 and Corollary 2.9
may be applied. In this case the missing limb that triggers both Theorem 2.7 and
Corollary 2.9 is a limb isomorphic to a path of length 2. Yet the resulting cards are
Gy, and Gy, respectively.

We can now combine the structures of the limb with results that we have for the graph
itself. The limbs and their structures are known and we have established theorems
to show in certain cases that the graph is reconstructible. Now, we add insights of
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the graphs itself to the previous theorems. In particular we look at the structure and
isomorphism type of the trunk. For that we want to divide the trunk’s vertices into
orbits under its automorphism group.

Definition 2.11. (orbit)
Let G be a graph and Aut(G) its automorphism group. Then for any vertex v € V(G)
the orbit of v under Aut(G) is defined as

Aut(G)-v={g-v| g € Aut(G)}.

Corollary 2.9 states that the graph G needs to have for every limb L;(G) all possible
sublimbs of L;(G) as limbs of the original graph in order to be non-reconstructible.
Extending this result on the orbits of the trunk under the automorphism group of the
trunk yields the following;:

Theorem 2.12.
Let G be a separable graph with end vertices and limbs L1(G), ..., Ly(G). Let L1(G) be
a limb of order at least 3 and

v € V(L1(G)) \ {r(L1(G)) U Ng(r(L1(G)))}

that is a vertex v € L;(G) which is neither the root nor its unique neighbour. Let
L C L1(G) be the connected component after removing v containing the root of L1 (G)
and set r(L) := r(L1(G)). If there exists no limb L;(G), i € {2, ...k} with

r(Li(G)) € Aut(T(G)) - r(L)

such that there is an isomorphism

with

then G is reconstructible.

Proof.

Let L1(G), ..., Ly(G) be the limbs of G. Let L1(G) be a limb of order at least 3 and
v € V(L1(G)) \ {r(L1(G)) U Ng(L1(G))} that is a vertex v of limb L;(G) which is
neither the root nor its unique neighbour. Let L C L1(G) be the connected component
containing the root of L1(G) and set r(L) := r(L1(G)). Disregard the other connected
components not containing the trunk when identifying the limbs. The trunk itself is
reconstructible by Theorem 2.3. Therefore, the automorphism group of the trunk and
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the orbits of the trunk under the automorphism group of the trunk are reconstructible.
Assume that there exists no limb L;(G), 2 < i < k with (L;(G)) € Aut(T(G)) - r(L)
such that there is an isomorphism ¢ : L;(G) — L with ¢(r(L;(G))) = r(L). Then the
card G, is identifiable as a card, that contains a sublimb of L;(G) namely L which
may be a limb of G but whose root (L) is in Aut(T(G)) -r(L). G itself on the other
hand, does not contain any limb isomorph to L where the root of that limb is in
Aut(T(G)) - r(L1(G)). Hence, L in G, needs to be extended with v and the other
tree components to L1(G) in order to yield a reconstruction of G. But then every
reconstruction of G is isomorph to G and therefore G is reconstructible. O

The previous theorem states that for any limb all sublimbs of that limb need to be
limbs of the graph itself where the roots are in the same orbit under the automor-
phism group of the trunk in order to be non-reconstructible. The following example
visualizes Theorem 2.12.

v
Figure 15: Separable graph with end vertices with limbs of sizes 1 to 4

Example 2.13.

Let G be a separable graph with end vertices. G contains four limbs Ly := L1(G), ...,
Ly := L4(G) (see Figure 15). The roots of the limbs L1, L, and L3 are in one orbit under
the automorphism group of the trunk. The root of L4 is not in the same orbit under
the automorphism group as the roots of the other three limbs. Now, we are not able to
prove that G is reconstructible by either Theorem 2.7 or Corollary 2.9. Theorem 2.12
on the other hand states that the card G, contains two limbs of the isomorphism type
of the limb L;. The graph G only contains one of those. Furthermore, we are able to
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distinguish those two limbs in G, because the roots of the two limbs are in different
orbits under the automorphism group of the trunk. Since we are able to reconstruct in
which orbit the roots of the various isomorphism types of the limbs are in the original
graph, the only option for a reconstruction of G is to add v to the limb of size three
which root is not in the same orbit as the other three. Hence, G is reconstructible.

The remaining separable graphs with end vertices that we are not yet able to re-
construct have a precise and rather symmetric structure. So we may propose two
problems that contain the entire separable graphs with end vertices that haven’t been
proven to be reconstructible yet. We divide the remaining graphs by the structure of
its trunks and how the limbs are attached to the trunk. The first problem contains all
graphs where the roots of all limbs are in one orbit under the automorphism group
of the trunk.

Problem 2.14.

Let G be a separable graph with end vertices and Theorem 2.12 is not applicable.
Show that G is reconstructible if all roots of the limbs of G are in one orbit under the
automorphism group of the trunk.

A special case of the first problem was already proven by Bondy and also stated
earlier on. When the trunk is isomorph to a complete graph, then all vertices of the
trunk are in the same orbit under the automorphism group of the trunk. Furthermore
the only problem to attach the limbs to the trunk is to find out, what isomorphism
types of limbs share a common root. The following theorem is also a special case of
the more general problem, where the automorphism group of the trunk acts transitive
(i.e., there exists only one orbit under the group action) on the vertices of G[V(T(G))].
We restate Theorem 1.61:

Theorem 2.15. (Bondy, 1969)
Let G be a separable graph with end vertices. If the trunk T(G) is isomorph to a
complete graph, then G is reconstructible.

The second problem consists of the graphs where the limbs are attached to the trunk
in at least two different orbits.

Problem 2.16.

Let G be a separable graph with end vertices and Theorem 2.12 is not applicable. Show
that G is reconstructible if the trunk has at least two orbits under the automorphism
group of the trunk that contain roots of limbs of G.



3 Reconstructing Minors

This chapter deals with the reconstruction and edge-reconstruction of minors con-
tained in graphs. In particular we want to determine by the deck or the edge-deck
of a graph G if G contains a certain minor H or not. Hence, we want to show when
G having H as a minor is reconstructible or edge-reconstructible. The main idea is to
show that minors of certain sizes need to be contained already in a card of a graph
if the graph itself is of sufficient high order or of sufficient high size. We will give a
general limit on what minors are recognizable in which graphs.

We start by defining a k-minor coloring. This coloring is the basis for the theory in
this chapter. Plainly spoken if G contains a minor H on k vertices, then we color the
graph G such that the vertices that are combined via edge contractions during the
process of finding a minor must share the same color. The combined vertex has then
the same color as the vertices it consists of. Furthermore, H is colored in k differnt
colors. The proper definiton reads as follows:

Definition 3.1. ((edge-proper/proper) k-minor coloring)

Let G be a graph and H a minor of G on k vertices. A map ¢ : V(G) — {1,2,...,k} :
v — ¢(v) is called a k-minor coloring if the minor H may be obtained from G by a
series of the following operations:

i) Deleting a vertex of G.
ii) Deleting an edge of G.

iii) Let v, w be two vertices with ¢(v) = ¢(w) =i € {1,2,...,k} and vw an edge.
Contracting along the edge vw by replacing v and w by one vertex u that is
adjacent to all vertices that were adjacent to v or w. Furthermore the contracted
graph G™ inherits the colors from its original graph and u has the same color as
v and w, that is

x—@(x) ,x#u

¢lg: V(G") — {1,2,...,k} : {x o) | x=u

Furthermore, all vertices of H are of different color.

A k-minor coloring ¢ is called proper if there exists no subgraph G’ C G with V(G’) C
V(G), such that G’ has a k-minor coloring.

A k-minor coloring ¢ is called edge-proper if there exists no subgraph G’ C G, such
that G’ has a k-minor coloring.

Remark that proper means in particular that the operation i) is not available. Remark
further that edge-proper means in particular that the operations i) and ii) are not
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available.
Remark that the k-minor coloring is not necessarily unique.

The proper and edge-proper k-minor coloring will be used to show when containing
a minor is reconstructible or edge-reconstructible respectively. In particular, a minor
H is both a minor of some card G, € D(G) or G, € D,(G) and the graph G itself
if G has no proper or no edge-proper k-minor coloring respectively. Proofs for that
claim can be found in the next subchapters. We will then show, when such a k-minor
coloring may or may not exist.

The first subchapter about minors in the reconstruction conjecture focuses on minors
for the vertex version of the reconstruction conjecture. The next subchapter will be
about minors for the edge-reconstruction conjecture.

3.1 Minors regarding the Reconstruction Conjecture

In this section we show for a few classes under which conditions it is reconstructible
if such a graph contains a certain minor or not. In particular we show results for
disconnected and separable graphs and give some ideas for 2-connected graphs. Yet
the structure of the reconstruction conjecture limits our results, whereas the structure
of the edge-reconstruction conjecture is more open to our ideas. The basic idea is to
show when a minor of a graph is already given in a certain subgraph of that graph.

The first result is that a disconnected graph containing any minor is reconstructible.
This is due to the fact that disconnected graphs are already reconstructible.

Theorem 3.2.
Let G be a disconnected graph and H a graph. Then G containing H as a minor is
reconstructible.

Proof.
Disconnected graphs are reconstructible by Theorem 1.48. Hence, G containing any
minor is reconstructible, too. O

The second result is that 2-connected minors in separable graphs are reconstructible.
This is due to the fact that 2-connected minors need to be contained in a block of G.
The result follows with the fact that every separable graph has at least 2 blocks or
some vertices of degree one.

Theorem 3.3.
Let G be a separable graph and H a 2-connected graph. Then G containing H as a
minor is reconstructible.
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Proof.

Separable graphs without end vertices are reconstructible by Theorem 1.58. Hence, G
containing any minor is reconstructible, too.

Now assume that G is a separable graph with end vertices, that is G contains a vertex
of degree 1. If H is two connected, then H needs to be a minor of a block of G. Hence
choose a vertex v € V(G) with dg(v) = 1, then H is a minor of G,. So a separable
graph G containing a 2-connected minor is reconstructible. O

The case of a separable minor in a separable graph seems to be as difficult as the
reconstruction conjecture itself.

For 2-connected graphs we give some ideas for the bounds on the order and size of the
graph in comparison to its minor. Yet no general bound could be found because an
arbitrary large graph could contain a very small minor without the minor occuring in
any card. For the bound that we are going to give we use the proper k-minor coloring
and give some properties for it. Remark that the results for a proper k-minor coloring
are very crude. However, we will use these basic ideas of the proper k-minor coloring
and refine them for the edge-proper k-minor coloring and are able to show in the next
subchapter some interesting results with it.

The first structural result for proper k-minor colorings is that a k-minor coloring exists
if and only if no cards contain that minor as a minor itself.

Theorem 3.4.

Let G be a graph and H a minor in G on k vertices. Then G has a proper k-minor
coloring if and only if there exists no card G, € D(G) such that G, contains H as a
minor.

Proof.

“ =" Let ¢ :V(G) — {1,2,..,k} : v — ¢(v) be a proper k-minor coloring. Assume
that there exists a vertex v € V(G) such that H is a minor of G,. Then G, has a
k-minor coloring with G, C G and V(G,) C V(G). This contradicts that ¢ is proper.
“ <. Let H not be a minor in G, for all v € V(G) but a minor of G. Then G
has a k-minor coloring ¢. Moreover, there exists no proper subgraph G’ of G with
V(G') € V(G) such that this subgraph contains H as a minor. Hence, the k-minor

coloring ¢ is proper. U

Hence, as a result of this Theorem we are able to prove that if there is no k-minor
coloring, then there exists a card such that this card contains the minor as a minor
itself. Hence, it is reconstructible from the deck of the graph whether that graph
contains this minor or not.

Corollary 3.5.

Let G be a graph and H a graph on k vertices. If there exists a k-minor coloring that
is not proper, then G containing H as a minor is reconstructible.
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Proof.

Let ¢ be a k-minor coloring that is not proper. Then by Theorem 3.4 there exists a card
Gy € D(G) such G, contains H as a minor. Since the deck of G is known, we find a
card that contains H as a minor. Hence, G having H as a minor is reconstructible. [J

An interesting result of the proper k-minor coloring is that all vertices of a single color
class induce a connected subgraph.

Theorem 3.6.

Let G be a graph and H a minor of G on k vertices. Let G have a proper k-minor
coloring and V; C V(G) contains all vertices of color i € {1,2,...,k}. Then V; induces
a connected subgraph in G.

Proof.

Let ¢ denote the proper k-minor coloring in G. By operation iii) of the k-minor color-
ing definiton we may only contract edges where the end vertices have the same color.
Furthermore since ¢ is proper, operation i) of the k-minor coloring definition is not
available. In H all vertices are of different color. Therefore all vertices in V; need to
merge into a single vertex in H via edge contractions. Assume that V; induces not a
connected subgraph in G. Then there are vertices v and w in V; such that v and w
are in different components in the induced subgraph G[V;]. Hence, there is no edge
that connects the components by which one may contract. Therefore, v and w will be
merged in different vertices of H. So H contains two vertices of the same color. A
contradiction. O

With the result that all vertices of a single color class induce a connected subgraph of
the graph, we are able to give some bounds on such a color class. The general idea
is to limit the order and size of the original graph if you are looking for a specific
subgraph. In particular, the next result is for 2-connected subset of a color class and
limits its size.

Theorem 3.7.

Let G be a graph and H a minor of G on k vertices. Let G have a proper k-minor
coloring and V; C V(G) contains all vertices of color i € {1,2,..,k}. If V/ C V;
is maximal with V! induces a 2-connected subgraph of G, then |V/| < dy(v) holds
where v € V(H) is of color i.

Proof.

Let G be a graph and H a minor of G on k vertices. Let G have a proper k-minor
coloring and V; C V(G) contains all vertices of color i € {1,2,..,k}. Furthermore
V! C V; is maximal with V/ induces a 2-connected subgraph of G.

Assume that |V/| > dg(v) holds where v € V(H) is of color i. First remark that the
sequence in which to contract the edges within a single color class is insignificant.
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Hence contract all edges within the color class i except the edges between vertices
of V!. Now v € V(H) has dy(v) neighbours in the minor H. Hence the previously
contracted graph needs at least di(v) edges between the vertex set V/ and the other
color classes. Remark that for all color classes which are incident to v in H, there is
at least one edge between a vertex of V/ and a vertex of that specific color class in the
previously contracted graph. Hence there exists a vertex v’ € V/ such that the same
contracted graph minus the vertex ¢’ still has all the necessary edges between V/ \ {v'}
and the other color classes. This holds because there are di(v) edges needed between
V/\ {v'} and the other color classes and we have |V/\ {¢'}| > dy(v). Furthermore the
induced subgraph on the vertices V! \ {¢'} is connected because the induced subgraph
on V! is 2-connected. Hence all vertices in V/\ {¢'} and therefore all remaining
vertices of color i can be merged to the single vertex v € V(H) via edge contractions.
This is a contradiction to G having a proper k-minor coloring. Hence |V/| < dy(v)
holds. 0

The results for a proper k-minor coloring and the reconstruction conjecture are very
limited. However, the idea to limit the order and size of a graph is more applicable
for the edge-reconstruction conjecture than for the reconstruction conjecture itself. In
the next subchapter we are going to show how this idea can truly shine.

3.2 Minors regarding the Edge-Reconstruction Conjecture

This section deals with reconstructing minors for the edge-reconstruction conjecture.
Hence, we show when a graph containing a specific minor is edge-reconstructible. All
in all, we look at disconnected, separable and 2-connected graphs. Since disconnected
graphs are reconstructible, we have that containing a minor for disconnected graphs
is edge-reconstructible. For separable graphs we show that in some cases they are
always reconstructible. Finally, for 2-connected graphs we prove that there is a spe-
cific ratio between the order and size of the graph and the order and the size of the
minor which tells us if a graph contains that minor. In addition, we are going to give
some edge-reconstructible graph invariants that may be defined with the concept of
minors.

As in the previous subchapter we are going to use the theory of the k-minor coloring.
In this case we are going to use the edge-proper k-minor coloring. As seen before for
the ratio between the graph and its minor we will determine if a minor must already
be contained in a card of the edge-deck of the graph.

Hence, the first Theorem that we are going to prove is that a graph has no edge-proper
k-minor coloring if and only if that minor is contained in some card of the graph.
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Theorem 3.8.

Let G be a graph without isolated vertices and H a minor in G on k vertices. Then G
has an edge-proper k-minor coloring if and only if there exists no card G, € D,(G)
such that G, contains H as a minor.

Proof.

“ =" Let g : V(G) — {1,2,..,k} : v — ¢(v) be an edge-proper k-minor coloring.
Assume that there exists an edge e € E(G) such that H is a minor of G,. Then G, has
a k-minor coloring with G, C G. This contradicts that ¢ is edge-proper.

“ <. Let H not be a minor in G, for all e € E(G) but a minor of G. Then G has
a k-minor coloring ¢. For every G, with v € V(G) holds m(G,) < m(G) because G
has no isolated vertices. Hence there exists no proper subgraph of G such that this
subgraph contains H as a minor. Hence the k-minor coloring ¢ is edge-proper. O

As a direct conclusion from Theorem 3.8, we have that if there exists no edge-proper
k-minor coloring, then the question whether the graph contains that minor or not is
edge-reconstructible.

Corollary 3.9.

Let G be a graph without isolated vertices and H a minor in G on k vertices. If there
exists a k-minor coloring that is not edge-proper, then G containing H as a minor is
edge-reconstructible.

Proof.

Let ¢ be a k-minor coloring that is not edge-proper. Then by Theorem 3.8 there exists
a card G, € D,(G) such G, contains H as a minor. Since the edge-deck of G is known
we find a card that contains H as a minor. Hence G having H as a minor is edge-
reconstructible. O

We can derive from the proper k-minor coloring of the previous subchapter a con-
nection to the edge-proper k-minor coloring. In particular, an edge-proper k-minor
coloring needs to be proper. Hence, we have for proper k-minor colorings are valid
for edge-proper k-minor colorings, too.

Theorem 3.10.
Let G be a graph and H a minor of G on k vertices. Let ¢ be a k-minor coloring. If ¢
is edge-proper, then ¢ is proper, too.

Proof.

Assume, that ¢ is not proper. That is, there exist vertices vy,...,v; € V such that
G' = G[V'] with V! = V \ {v,...,v¢} has a k-minor coloring. Hence, G’ C G holds
and therefore ¢ is not edge-proper. 0
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We will continue with some basic properties for edge-proper k-minor colorings in
order to delve deeper into the theory of edge-proper k-minor colorings. The first
property that we are going to show is that the induced subgraph of one color class of
an edge-proper k-minor coloring forms always a tree.

Theorem 3.11.
Let G be a graph and H a minor of G on k vertices. Let ¢ be an edge-proper k-minor
coloring, then any induced subgraph by one color class of G is a tree.

Proof.

Let ¢ be a proper k-minor coloring. Let V' C V(G) be the set of all vertices of a fixed
colori € {1,2,...,k}, thatis V' C V(G) is maximal with for all v € V’ holds ¢(v) = i.
Assume that the spanning subgraph G[V’] on the vertices V' is not a tree. Then G[V’]
is either disconnected or contains at least |V'| edges. G[V’] needs to be connected.
By Theorem 3.6 every color class of a proper k-minor coloring induces a connected
subgraph of G. Theorem 3.10 states that the edge-proper k-minor coloring ¢ is also
a proper k-minor coloring. Hence, G[V'] is connected. So the connected induced
subgraph G[V’] contains at least |V’| edges. Hence, there exists at least one edge,
that we do not contract along. Denote this edge by e. Then ¢ is a k-minor coloring
for G* = [V,E — {e}]. This yields a contradiction because the k-minor coloring ¢ is
edge-proper, that is, there is no graph G* C G, such that G* has a k-minor coloring.[]

Next, we are going to show for an edge-proper k-minor coloring that the vertex sets
of two different color classes may be connected by at most one edge. In particular
this edge exists if and only if the two vertices of these two colors are adjacent in the
minor.

Theorem 3.12.

Let G be a graph and H a minor of G on k vertices. Let ¢ be an edge-proper k-minor
coloring. Leti,j € {1,2,...,k} be two colors and V; C V(G) and V; C V(G) be all
vertices of color i and j respectively. Then v,w € V(H) with ¢(v) =i and ¢(w) = j
are adjacent if and only if there exists two vertices v € V; and w’ € V; such that
v'w’ € E(G) holds. In particular, |[{v'w’ € E(G) | v' € V; and w’ € V;}| <1 holds.

Proof.

“ ='": Assume that no vertex of color class i has a neighbour in color class j. ¢ is
edge-proper. Therfore only edges will be contracted, where the end vertices of that
edge share the same color. So all vertices of the color class i and only the vertices
of color class i will merge into a single vertex in H. In addition, contracting edges
will give the resulting vertex the union of neighbours of the end vertices of the edge.
Yet, no vertex of color i has a neighbour of color j. Hence, the resulting vertex of the
color class i is not adjacent to the vertices of color class j and therefore neither to the
resulting vertex of the color class j.
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“ <" Let V; € V(G) and V; C V(G) be all vertices of color i and j respectively.
Let o' € V; and w' € V; with o'w’ € E(G). Then, the vertices of color class i will
merge into a single vertex v € V(H) with ¢(v) = i. Analogusly, V; will merge into
w € V(H) with ¢(w) = j. Contracting edges will give the resulting vertex the union
of neighbours of the end vertices of the edge. Since ¢ is edge-proper, no edges may
be deleted. Hence, v is adjacent to w in H.

It remains to be shown that [{v'w’ € E(G) | ' € V; and w’ € V;}| <1 holds. Assume
that there are at least two edges between the color classes V; and V;. Denote those
edges with vjw| € E(G) and vyw, € E(G) with v},v; € V; and wj,w, € V;. Let
w) # wh hold while ] and v, may be the same vertex. Consider the subgraph
Gy == [V(G), E(G) \ {vjw,}]. With the above results in this proof the resulting vertex
of color class V; is adjacent to the resulting vertex of color class V; in the minor H;
of Gy because the edge vjw| € V(G;) exists. All other edges in the resulting minor
H; are unchanged compared to the minor H of G. Hence H = H; holds. This is a
contradiction to ¢ being edge-proper because G; C G has an edge-proper k-minor

—=

coloring. Hence [{v'w’ € E(G) | v' € V; and w’ € V;}| <1 holds. O

With these two properties we show when a graph containing a specific minor is edge-
reconstructible. We start with the first case for disconnected graphs.

Theorem 3.13.
Let G be a disonnceted graph and H a graph on k vertices. Then G containing H as a
minor is edge-reconstructible.

Proof.

Disconnected graphs are reconstructible by Theorem 1.48. Then they are also edge-
reconstructible by Theorem 1.112 and Corollary 1.111. Hence, G containing H as a
minor is edge-reconstructible. O

Next, we prove that for some separable graphs it is edge-reconstructible whether a
graph contains a specific minor or not. In this case we have a separable graph with a
2-connected minor. We actually get the stronger result that this case is reconstructible.
But with Theorem 1.112 and Corollary 1.111 it is also edge-reconstructible.

Theorem 3.14.

Let G be a separable graph and H a 2-connected graph. Then G containing H as a
minor is reconstructible.

Proof.

If G is separable without end vertices, then G is reconstructible by Theorem 1.58.
Therefore, G containing H as a minor is reconstructible.

Now, assume that G is separable with end vertices. H is 2-connected. Therefore H is
a minor in a 2-connected subgraph of G. Let v € V(G) be a vertex of degree 1, that
is an end vertex of G. Then H is a minor in the card G,. Hence, G containing H as a
minor is reconstructible. 0
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Analogously, we have the same argument for a separable graph and a disconnected
minor.

Theorem 3.15.
Let G be a separable graph and H a disconnected graph. Then G containing H as a
minor is edge-reconstructible.

Proof.

Let G be a separable graph and H a disconnected graph. Since H is disconnected
there are at least two components of H. We restrict this proof to the case with two
components of H. The proof for more components works analogously. Hence, there
are two disjoint subgraphs of G that contain these two components of the minor H
as minors. In G those two subgraphs are connected by at least one edge ¢ € E(G)
because G is separable. Hence, G, € D,(G) contains those two subgraphs as well. So
G containing H as a minor is edge-reconstructible. 0J

The last case for separable graphs might be very difficult to prove. That case consists
of a separable graph with a separable minor. This might be as difficult as edge-
reconstructing separable graphs itself.

Now, we move on to the final case. After showing results for disconnected and sep-
arable graphs we prove a specific ratio for 2-connected graphs. That is the graph
G is 2-connected. Analogously to Theorem 3.15 we get the following results for 2-
connected graphs and a disconnected minor.

Theorem 3.16.
Let G be a 2-connected graph and H a disconnected graph. Then G containing H as a
minor is edge-reconstructible.

Proof.

Let G be a 2-connected graph and H a disconnected minor in G. Since H is discon-
nected there are at least two components of H. We restrict this proof to the case with
two components of H. The proof for more components works analogously. Hence,
there are two disjoint subgraphs of G that contain these two components of the minor
H as minors. In G those two subgraphs are connected by at least one edge e € E(G)
because G is 2-connected. Hence, G, € D,(G) contains those two subgraphs as well.
So G containing H as a minor is edge-reconstructible. OJ

The case for 2-connected graphs and a connected minor H is shown for a specific ratio
between the order and size of the graph and the order and size of its minor. The basis
for the limit on the order-size ratio for 2-connected graphs is given by the following
edge-reconstructible class. Remark that we restate Theorem 1.131.
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Theorem 3.17.
Let G be a 2-connected graph. If G contains two vertices v, w € V(G) with vw € E(G)
and dg(v) = dg(w) = 2, then G is edge-reconstructible.

Hence, from now on we may restrict our attention to 2-connected graphs that do not
contain two adjacent vertices of degree 2. In the end we want to use Theorem 3.8,
which states that a graph contains a minor already in some cards if and only if it does
not have an edge-proper k-minor coloring. Hence, we are going to show how small
the original graph can get in comparison to the order and size of its minor and the
original graph still contains the minor in some card of its edge-deck.

In order to achieve that, we first give a sharp bound for the number of vertices of a
color class if that graph has an edge-proper k-minor coloring.

Theorem 3.18.

Let G be a 2-connected graph that does not contain two adjacent vertices of degree
2 and H a connected minor in G. Let ¢ be an edge-proper k-minor coloring and let
v € V(H) with di(v) > 2 have color i € {1,2,...,k}. Then

[{w e V(G) | p(w) = i}] < 3du(v) =5
holds that is there are at most 3dy(v) — 5 vertices of color i in G.

Proof.

Let H be a minor of G on k vertices and ¢ be an edge-proper k-minor coloring. Denote
the color classes with V; C V(G),V, C V(G),..., Vx C V(G) where V; contains all
vertices with color i. Remark that in order to have the maximal size of a color class,
we may assume that V; contains only vertices of degree at most 3. If V; contains a
vertex v of degree d > 4, then this vertex might be replaced by two adjacent vertices
of degree 3 and d — 1, where the first vertex is adjacent to two neighbours of v and the
other vertex is adjacent to the remaining neighbours of v. Hence, this yields a bigger
color class and therefore a contradiction. So without loss of generalization we may
assume that V; contains only vertices of degree 2 and 3.

Let v € V(H) be of degree 2 and of color i € {1,2,....k}. Hence, there are exactly
2 edges from color class V; into two different other color classes in G by Theorem
3.12. By Theorem 3.11 the color class V; is a tree in G. Furthermore there are no two
adjacent vertices of degree 2 in G. Hence, the color class V; consists of exactly one
vertex in G and therefore |V;| = {w € V(G) | ¢(w) =i}| =1 = 3dy(v) — 5 holds.
Let v € V(H) be of degree 3 and of color i € {1,2,...,k}. Again by Theorem 3.11 the
color class V; forms a tree as a subgraph of G. Furthermore there are exactly 3 edges
from the color class V; into three different other color classes in G by Theorem 3.12.
There are no two adjacent vertices of degree 2 in G. Hence, the color class consists of
one vertex of degree three. Then to this vertex we may attach at most three vertices of
degree 2. Since we are not able to attach vertices of higher degree than three and we
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are not able to have two vertices of degree two adjacent to each other, our color class
V; ends there. Hence, we have |V;| = [{w € V(G) | ¢(w) =i}| <4 =3dy(v) —5.
Now, let v € V(H) be of degree d > 4 and of color i € {1,2,..,k}. Let G’ C G be
a graph such that G’ fullfills all conditions as G does, except it may contain fewer
vertices than G. All these vertices come from one color class V; and there is a minor
H' C H of G’ such that the difference between H' and H is exactly one edge which
is incident to v. Identify the vertex v for H with v’. Hence, dy/(v') = d — 1 holds.
Denote all vertices of color i in G’ with V/. By induction we assume that the statement
is true for some value d — 1 € IN which means it is true for color i in G’. Hence, we
have for dy(v') =d—1and [{w € V(G) | p(w) = i}| < 3dy/(v') —5 = 3(dy(v) —
1) — 5. We want to extend the color class V/ to V; by adding and replacing vertices
and edges and therefore yielding G from G'.

By Theorem 3.11 the color classes V/ and V; form trees. In order to extend V/ to V; we
may replace a vertex w’ € V! with a tree that contains vertices of degree 2 and 3. The
form of the tree depends on the degree w’ and its placement within the color class V.
Assume the vertex w’ has dg/(w’) = 2. Then either exactly one or both neighbours of
w' are in V. Assume that exactly one neighbour of @’ is in V'. Then replace w’ with a
tree of order at most 4, which in turn is connected to vertices of G. Exactly one vertex
of that tree has degree 3 in G in order to yield a connection to another, third color
class. Furthermore that tree is connected to both neighbours of w’. Hence, the tree
consists of exactly one vertex of degree 3 and at most three vertices of degree 2 which
are then connected to the other color classes or the neighbour of @’ in G'. Hence, we
replace one vertex by up to four vertices. So

{weV(G) | pw) =i} < {w e V(G | p(w) =i} —1+4

< 3d(v') —5+3

=3(dy(v) —1)—5+3

= 3d H(U) -5
holds. Now assume that both neighbours of w’ are in V/. Then replace w’ with a tree
of order at most 4, which in turn is connected to vertices of G. Exactly one vertex
of that tree has degree 3 in G in order to yield a connection to another color class.
Furthermore that tree is connected to both neighbours of w’ in V. Hence, the tree
consists of exactly one vertex of degree 3 and at most three vertices of degree 2. Up
to two vertices of degree 2 are connected to the neighbours of @’ in V/ and up to one

vertex of degree 2 is connectected to another color class. So we replace one vertex by
up to four vertices. Hence,

{weV(G) | p(w) =i} < {w e V(C) | p(w) =i}| —1+4
< 3dy(v')—5+3
=3(dy(v)—1)—5+3
:3dH(U)—5
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holds.

Last assume that @’ has degree 3 in G. Then replace w’ with a tree of order at most
4, which in turn is connected to vertices of G. exactly two vertices of this tree have
degree 3. There might be a vertex of degree 2 adjacent to both of these vertices of
degree 3. Then there might be another vertex of degree 2 adjacent to one of the
vertices of degree 3 and adjacent to another color class. The remaining neighbours of
the tree are the same neighbours that @’ had in G’. So we replace one vertex by up to
four vertices. Hence,

{w e V(G) | p(w) =i} < [{w e V(C) | p(w) =i} —1+4
< 3d(v') —5+3
=3(dy(v) —1) —5+3
= 3dy(v) —5 O

holds. This concludes the proof.

Using the bound on the size of the color class we may sum over all color classes and
get a restriction on the order of the original graph if that graph contains an edge-
proper k-minor coloring.

Theorem 3.19.

Let G be a 2-connected graph and H a connected minor of G on k vertices with
dp(s) > 2 for all s € V(H). Furthermore G does not contain two adjacent vertices of
degree 2. If there exists an edge-proper k-minor coloring, then

n(G) <m(H)—n(H)+2Y_ (du(v) —2)

veV/!

holds, where V' C V(H) is the set of all vertices of degree 3 or greater in the minor
H.

Proof.

Let G be a 2-connected graph and H a connected minor of G on k vertices with
dy(s) > 2 foralls € V(H). Let V' = V(H) \ V' be the set of all vertices of degree
2 in H and H[V'] is the induced subgraph of H on the vertex set V. Furthermore G
does not contain two adjacent vertices of degree 2. Let ¢ be an edge-proper k-minor
coloring. The requirements of Theorem 3.18 are then fullfilled for any vertex v € H
with color i € {1,2, ..., k} and any color class V; C V(G).

Let v € V(H). Then the size of its color class V; is bounded by 3dy(v) — 5. Now we
sum all color classes up.

Remark that if two vertices of degree 3 or more are adjacent to each other in H, then
there might not be two vertices of degree 2 and of different color be adjacent to each
other in G. The proof of Theorem 3.18 states that a maximal color class has only
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vertices of degree 2 adjacent to other color classes. Hence, we need to substract one
vertex of a pair of two color classes if they are adjacent in H and both have degree 3
or greater. This will add up to m(H[V']).

Remark further that if a vertex of degree 2 of color i is adjacent to a vertex of degree
3 of color j in H, then the corresponding vertex of color i in G is adjacent to a vertex
of degree 3 or greater of color j in G. By the same argument about the proof of
Theorem 3.18 we need to substract one vertex for that connection. This will add up
to 2|V”| because each vertex of degree 2 in H is adjacent to two vertices of degree 3
or greater in H. Otherwise if two vertices of degree 2 are adjacent in H then there
would be two vertices of degree 2 adjacent in G. That would yield a contradiction to
the requirements.

Last add one vertex in G for every vertex of degree 2 in H. This sums up to |V"|.
Now with V(G) = V; UV, U ... U Vi we get the following:

n(G) <) (3du(v) —5) —m(H[V']) = 2|[V"| + V"]

:UE;(ZdH(v) —5)+ deH(v) —m(H[V']) — |V

=UEZ,2dH(U) —5|V| fm(H) +m(H[V']) = m(H[V']) — [V"|

ZZf(VH) —n(H) —4|V'[ +2 Z/dH(v)

=m(H) —n(H)+2) (dezez‘)/— 2). 0O

veV/’

Now inverting the last Theorem we get that if the number of vertices exceeds this ra-
tio, then there exists a card that contains the minor of the original graph already
as a minor itself. Hence, in this case the graph containing that minor is edge-
reconstructible.

Theorem 3.20.
Let G be a 2-connected graph and H a connected minor of G on k vertices with
dy(s) > 2foralls € V(H). If

n(G) >m(H) —n(H)+2 Y (du(v) —2)

veV!

holds where V' C V(H) is the set of all vertices of degree 3 or greater in H. Then G
having H as a minor is edge-reconstructible.

Proof.

Let G be 2-connected and H a connected minor of G on k vertices with dy(s) > 2
for all s € V(H). By Theorem 3.17 2-connected graphs G with two adjacent vertices
of degree 2 are edge-reconstructible. Hence we may assume, that G does not contain
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two adjacent vertices of degree 2. Now all requirements for Theorem 3.20 are satisfied.
Hence, we conculde, that if
n(G) >m(H) —n(H)+2 )Y (du(v) —2)
veV’
holds that G does not have an edge-proper k-minor coloring. Then by Theorem 3.9 G
containing H as a minor is edge-reconstructible for those conditions. OJ

As an example and a conclusion of Theorem 3.20 we get the following sharp bound
for the number of vertices of the original graph if the minor is a complete graph. The
bound for a minor that is a complete subgraph is also an upper bound for all minors
of the same order. Since a complete graph has the maximal number of edges on a
certain vertex set this will also produce the biggest bound for all minors on the same
number of vertices.

Corollary 3.21.

Let G be a 2-connected graph and the complete graph Kj is a minor of G with k > 4.
If n(G) > 3k(k — 3) holds, then G containing K as a minor is edge-reconstructible.

Proof.
It is sufficient to show that Theorem 3.20 holds. Hence, we show

n(G) > m(Ke) —n(Ky) +2 ) (di, (v) —2)
veV’

holds, where V' C V(K}) is the set of all vertices of degree 3 or greater in Ki. Then
|V'| = k holds and dg, (v) = k — 1 holds for all v € V(K). Furthermore we have

m(Ky) = k(kz_l). Hence, we get

n(G) > m(Ky) —n(Ki) +2 ) (d,(v) —2)

veV/
= - k2T k—1-2)
2 veV!
_ %k(k—l) k4 2k(k—3)
5
= 2k(k—3). 0

Using Theorem 3.18 again and summing over all color classes gives us a bound on
the size of the graph, too, if the graph contains an edge-proper coloring.

Theorem 3.22.
Let G be a 2-connected graph and H a connected minor of G on k vertices with
dy(s) > 2 for all s € V(H). Furthermore G does not contain two adjacent vertices of
degree 2. If there exists an edge-proper k-minor coloring, then

m(G) <2m(H)—2n(H)+2)_ (du(v) —2)

veV/
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holds, where V' C V(H) is the set of all vertices of degree 3 or greater in the minor
H.

Proof.

Let G be a 2-connected graph and H a connected minor of G on k vertices with
dp(s) > 2forall s € V(H). Let V" = V(H) \ V' be the set of all vertices of degree
2in H and H[V’] is the induced subgraph of H on the vertex set V'. Furthermore G
does not contain two adjacent vertices of degree 2. Let ¢ be an edge-proper k-minor
coloring. The requirements of Theorem 3.18 are then fullfilled for any vertex v € H
with color i € {1,2, ..., k} and any color class V; C V(G).

Let v € V(H). Then the number of edges within its color classV; is bounded by
m(H|[Vj]) < 3dy(v) — 6 because it is a tree and the number of vertices is bounded by
3dp(v) — 5. Now we sum all color classes up and the edges in between them.
Remark that if two vertices of degree 3 or more are adjacent to each other in H, then
there might not be two vertices of degree 2 and of different color be adjacent to each
other in G. The proof of Theorem 3.18 states that a maximal color class has only
vertices of degree 2 adjacent to other color classes. Hence, we need to substract one
vertex of a pair of two color classes if they are adjacent in H and both have degree 3
or greater. This will add up to m(H[V']).

We then add m(H) that is the number of edges connecting different color classe in G.
Remark further that if a vertex of degree 2 of color i is adjacent to a vertex of degree
3 of color j in H, then the corresponding vertex of color i in G is adjacent to a vertex
of degree 3 or greater of color j in G. By the same argument about the proof of
Theorem 3.18 we need to substract one edge for that connection. This will add up
to 2|V”| because each vertex of degree 2 in H is adjacent to two vertices of degree 3
or greater in H. Otherwise if two vertices of degree 2 are adjacent in H then there
would be two vertices of degree 2 adjacent in G. That would yield a contradiction to
the requirements.

The sum yields with the identity Y} dy(v) = m(H) +m(H[V']) the following;:

vl
m(G) < Z/(?’dH(U) —6) +m(H) —m(H[V']) = 2|V"|
=:Z;(2dH(v) —6)+ UGZV,dH(U) +m(H) —m(H[V']) —2|V"|
ZUEZV/MH(U) —6|V'| + m(H) + m(H[V']) + m(H) — m(H[V']) — 2|V"
=2m(H) —2n(H) —4|V'| + Y _ 2dy(v)
=2m(H) —2n(H) +2 ;V/(d,:?; —2). O

Inverting the bound of the last Theorem we get that a graph containing a specific
minor is edge-reconstructible if the number of edges exceeds the bound necessary for
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an edge-proper k-minor coloring. Hence, we get the following ratio for the number of
edges of the original graph.

Theorem 3.23.
Let G be a 2-connected graph and H a connected minor of G on k vertices with
dy(s) > 2foralls € V(H). If

m(G) >2m(H) —2n(H)+2 Y (du(v) —2)
veV’
holds where V' C V(H) is the set of all vertices of degree 3 or greater in H. Then G
having H as a minor is edge-reconstructible.

Proof.

Let G be 2-connected and H a connected minor of G on k vertices with dy(s) > 2
for all s € V(H). By Theorem 3.17 2-connected graphs G with two adjacent vertices
of degree 2 are edge-reconstructible. Hence we may assume, that G does not contain
two adjacent vertices of degree 2. Now all requirements for Theorem 3.22 are satisfied.
Hence we conclude, that if

m(G) >2m(H) —2n(H)+2)_ (du(v) —2)
veV’
holds that G does not have an edge-proper k-minor coloring. Then by Theorem 3.9 G
containing H as a minor is edge-reconstructible for those conditions. O

As an example and a conclusion of Theorem 3.23 we get the following sharp bound
for number of edges of the original graph if the minor is a complete graph.

Corollary 3.24.
Let G be a 2-connected graph and the complete graph Kj is a minor of G with k > 4.
If m(G) > 3k(k — 3) holds, then G containing Ky as a minor is edge-reconstructible.

Proof.
It is sufficient to show that Theorem 3.23 holds. Hence, we show

m(G) > 2m(Ky) —2n(Ky) +2 Y (dk, (v) —2)
veV’

holds, where V' C V(Ky) is the set of all vertices of degree 3 or greater in K. Then
V' = V(K) holds and dg, (v) = k — 1 holds for all v € V(Kj). Furthermore we have
m(Ky) = k(kz_l). Hence, we get

m(G) > 2m(Ky) —2n(Ky) +2 Y (dk, (v) —2)

veV’
=k(k—1)—2k+2) (k—1-2)
veV’!
= k(k—1) — 2k 4 2k(k — 3)
= 3k(k —3). O
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Summing up all the different cases we get the following:

Theorem 3.25.
Let G be a graph and H a minor. G containig H as a minor is edge-reconstructible if
any of the following holds:

i) G is disconnected,
ii) G is separable and H is either disconnected or 2-connected,
iii) G is 2-connected and H is disconnected,

iv) G is 2-connected and H is connected and either

n(G) >m(H) —n(H)+2 )Y (du(v) —2)

veV/

or

m(G) >2m(H) —2n(H)+2 Y (du(v) —2)
veV’

holds, where V' C V(H) is the set of all vertices of degree 3 or greater in H.
Proof.
i) The claim is given by Theorem 3.13.
ii) The claim is given by Theorem 3.15 and Theorem 3.14 respectively.
iii) The claim is given by Theorem 3.16.

iv) The claim is given by Theorem 3.20 and Theorem 3.23 respectively. O

3.2.1 Hadwiger number, Treewidth and the Edge-Reconstruction Conjecture

There are a range of invariants that might be defined via minors of graphs. Two
examples are the Hadwiger number and the treewidth of a graph.

The Hadwiger number states the order of a largest clique that is a minor in a graph.

Definition 3.26. (Hadwiger number)
Let G be a graph. Let k € IN be maximal such that the complete graph K} is a minor
of G. Then h(G) = k is called the Hadwiger number of G.
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With the results for minors in the edge-reconstruction conjecture in the previous sub-
chapter we are able to give a bound for the edge-recognition of the Hadwiger number.
The complete graph is 2-connected and therefore either always edge-reconstructible
as a minor or edge-reconstructible as a minor above a specific bound.

The Hadwiger number is reconstructible if the graph is either disconnected or sepa-
rable.

Corollary 3.27.
Let G with §(G) > 1 be either a disconnected or a separable graph. Then the Had-
wiger number /(G) is edge-reconstructible.

Proof.

For a disconnected graph some component contains the largest clique as a minor. For
a separable graph some block contains the largest clique as a minor. Both components
and blocks are induced subgraphs in some cards of the deck of G. This yields the
claim. 0J

If G is neither disconnected nor separable, then G is 2-connected. Hence, we may use
the bounds from the previous subchapter. For the bound on the order of the graph
we get:

Corollary 3.28.

2-connected graphs with Hadwiger number /(G) are edge-recognizable if

1(G) > 2 (h(G) +1)(k(G) ~2)

holds.

Proof.
Let G be 2-connected. G containing Ky, 1 and Ky as a minor is edge-reconstructible by
Corollary 3.21 if n(G) > 3(k+1)(k — 2) > 3k(k — 3) holds. O

Since we also have a bound on the number of edges of the original graph, we are able
to show a bound for the Hadwiger number for the size of a graph.

Corollary 3.29.
2-connected graphs with Hadwiger number /1(G) are edge-recognizable if

m(G) > 3(h(G) +1)(h(G) — 2)

holds.

Proof.
Let G be 2-connected. G containing Ky 1 and Ky as a minor is edge-reconstructible by
Corollary 3.24 if m(G) > 3(k+1)(k —2) > 3k(k — 3) holds. O
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The other invariant is the treewidth. It is a prime example of an excluded minor The-
orem. The treewidth for disconnected and separable graphs is edge-reconstructible
since it is reconstructible.

Theorem 3.30.
Let G be a disconnected or separable graph. Then the treewidth of G is edge-
reconstructible.

Proof.

Disconnected graphs are reconstructible by Theorem 1.48. Hence, with Theorem 1.112
by Greenwell and Corollary 1.111 disconnected graphs are edge-reconstructible, too.
So the treewidth of disconnected graphs is edge-reconstructible.

By Theorem 1.95 the treewidth is reconstructible for separable graphs. Hence with
Theorem 1.112 by Greenwell and Corollary 1.111, the treewidth has been proven to
be edge-reconstructible. O

The remaining question is, whether the treewidth of a graph is edge-reconstructible
or not if that graph is 2-connected. The treewidth may be defined via a finite set of
forbidden minors. For that we define the forbidden minors as an obstruction set and
give the forbidden graph characterisation.

Definition 3.31. (forbidden graph characterisation, obstruction set)
Let X be a set of graphs or a graph class. Then

Forb4(X):={G|H A GV H e X}

is the class of all graphs that do not contain any graph of X as a minor. Forb<(X) is
called a forbidden graph characterisation by the minors isomorphic to the graphs in X
and X is called an obstruction set.

Then as a result of Robertsons and Seymour’s graph minor Theorem [69], we get a
forbidden graph characterisation for graphs with treewidth at most k.

Theorem 3.32. (Robertson and Seymour, 1990)
Let k € IN and G be the graph class with for all G € G holds tw(G) < k. Then
G = Forb4(X) holds for a finite set X of graphs.

In other words, the class of all graphs with treewidth at most k may be defined with
the help of an obstruction set. The property if 2-connected graphs G do or do not
contain minors from a set X, is edge-reconstructible if a certain order and size ratio is
met. Hence, we get the following Theorem as a result of Theorem 3.25.
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Theorem 3.33.
Let G be a graph and Gy := Forb<(X) the class of all graphs with treewidth at most
k. Then G having treewidth k is edge-reconstructible if either

n(G) > max {m(H) —n(H)+2 ) (du(v) —2)}
k veV’

or

m(G) > max {2m(H) —2n(H) +2 ) _ (du(v) —2)}
k veV’

holds, where V' C V is the set of all vertices of degree 3 or greater in H and X} is the
obstruction set for Gy.

Proof.

Let G be a graph with treewidth k and Gy, the class of all graphs with treewidth at
most k. Then by Theorem 3.32 both the class Gi_; and the class Gy have a forbidden
graph characterisation.

Let X be the obstruction set of all graphs with treewidth at most k. In order to verify
that G has treewidth exactly k, we need to show that G contains no H as a minor such
that H € Xj holds. Furthermore we need to show that G contains at least one graph
of X_1 as a minor in order to have a treewidth greater than k — 1.

By the implication H < G holds tw(H) < tw(G) (see for example [17, p. 290]), we
have that the graphs in Xj_; are minors of subgraphs of the graphs in X;. Hence by
Theorem 3.25, we can distinguish that G contains a minor of Xj;_; U X} if one of the
following holds:

n(G) > max {m(H) —n(H)+2)_ (du(v) —2)}
k veV’

or

m(G) > max {2m(H) —2n(H) +2 ) _ (du(v) —2)}
k veV’

where V' C V is the set of all vertices of degree 3 or greater in H. O



4 Future Research

For future work there are a range of problems that might be of interest. There are
yet a lot of graph classes that haven’t been proven to be neither reconstructible nor
edge-reconstructible. Furthermore, the reconstruction of some graph invariants is still
open.

One specific class of graphs regarding the reconstruction conjecture comes to mind.
In chapter 1.2.4 about the reductions of the reconstruction conjecture almost all reduc-
tions use the property of Theorem 1.40 that is a graph is reconstructible if and only
if its complement is reconstructible. Hence, we are not just able to use the reductions
to simplify the reconstruction conjecture for all graphs but to also simplify certain
graph classes. In this case we are able to adapt the proofs such that they hold for self-
complementary classes of graphs as well. In particular we can deduce the following
Theorem from the reductions.

Theorem 4.1.
Let G be a graph class that is closed under the complement operation. That is for
every G € G holds G € G. Then all graphs in G are reconstructible if and only if

all 2-connected graphs G € G with diam(G) = 2 or diam(G) = diam(G) = 3 are
reconstructible.

The Theorem is a generalisation of Theorem 1.101 by Ramachandran and Monikan-
dan from 2009. But instead of using all graphs, we use a self-complementary graph
class G. That is if G € G holds, then G € G follows. Since the class of all graphs is
self-complementary, the last Theorem gives a generalisation.

The proof of Theorem 4.1 can be easily done with the following ideas. Theorem 1.96
by Yang states that every connected graph is reconstructible if and only if every 2-
connected graph is reconstructible. The proofs main argument is Theorem 1.40 that
is the Theorem about the complement of a graph. Hence, the proof can be adapted
to self-complementary graphs. The second part is about the argument of the di-
ameter. It is widely known that if a graph has diameter greater or equal to three,
then its complement has a diameter of three or less. Hence, this can be adapted to
self-complementary graphs as well. These ideas outline the proof for the Theorem
above.

However we will give the exact proofs below. Remark that the following proofs are
identical to the original proofs except that they do not just work on all graphs but on
self-complementary graph classes, too. Most of the times we only add a single line
that states that we now work on self-complementary graph classes.

We begin with proving that P graphs in a self-complementary graph class are recon-
structible if 2-connected graphs in that graph class are reconstructible. The original
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proof is given by Yang Yongzhi in [78]. Remark that the entire proof was already
true for self-complementary graph classes. Therefore, the proof is almost copied in its
entirety.

Theorem 4.2.
Let G be a graph class closed under the complement operation. P-graphs in G are
reconstructible if 2-connected graphs in G are reconstructible.

Proof.

Let G be a graph class closed under the complement operation. Hence, for every
G € G holds G € G. Furthermore, define the following vertices in the P-graph
G € G. Let u € V(G) be a vertex adjacent to all vertices except an end vertex. Hence,
dg(v) = n(G) — 2 holds. Furthermore, let v € V(G) be incident to the bridge and
adjacent to an end vertex. And last let w € V(G) be an end vertex of G different from
u.

The prove uses induction on 7(G). Assume that 7(G) > 10 holds. Remark that graphs
with fewer vertices are reconstructible by a computer study by McKay (see Theorem
1.103). P-graphs with no vertices of degree 2 or with at least one vertex adjacent to v
and of degree 2 are reconstructible by Theorem 1.98. Hence, we may assume that G
does contain vertices of degree 2 of which none is adjacent to v. Let V/ C V(G) \ {u}
be the set of vertices that are adjacent to some vertices of degree 2. Let t € V' and
s € V(G) with st € E(G) and dg(s) = 2. We distinguish four cases:

1.) There exists a t € V' with dg(t) = n(G) — 2. In Gs the vertex s needs to be
reattached to two vertices of degree n(G) — 3, neither of which can be v, to get a
reconstruction H. No matter which two vertices of degree n(G) — 3 we choose,
H will always be isomorph to G and therefore reconstructible.

2.) There exists a t € V' such that dg(t) = n(G) — 3 and ¢ is adjacent to at least

two vertices of degree 2 in G. Consider G;. We have the following degrees
dg(u) = n(G) — 2, dg(v) < n(G) —3, dg(w) = 1 and dg(t) = n(G) — 3. All
other vertices can not be adjacent to the vertices of degree 2 that t is adjacent to
and therefore have degree of at most n(G) — 4. Hence, u is identifiable in G; as
the only vertex of degree n(G) — 3 that is not adjacent to the vertex w of degree
1.
Since v is not adjacent to a vertex of degree 2, the only way to reconnect s to
Gs and get a reconstruction H not isomorph to G is to connect it to u# and a
vertex ' of degree n(G) — 4 in G that is adjacent to one less vertex of degree
2 than t is. Since dg(t) = n(G) — 3 holds, this can only happen if there are
exactly three vertices of degree 2 in G; two adjacent to t and one adjacent to t'.
Denote the vertex of degree 2 adjacent to t' with s’. Since ¢ and ' are adjacent
to all other vertices except w, the mapping that swaps t for #, s for s’ and is
the identity otherwise, is an isomorphism between G and H. Hence, this case is
reconstructible.
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3.) Forany t € V', dg(t) < n(G) — 3 and G has at least two vertices of degree 2. We
consider three subcases.

3.1.)

3.2.)

3.3.)

There exists a vertex t € V' such that f is adjacent to all vertices of degree
2 in G. Thus u and t are the only vertices adjacent to all 2-vertices in Gs.
Hence, H = G holds.

So from now on we may assume that 3.1.) is not the case that is there is
no vertex besides u that is adjacent to all vertices of degree 2. Hence, all
vertices except u have degree less or equal to n(G) — 3. Moreover if there
exists a vertex with degree n(G) — 3, then that vertex is adjacent to all
vertices except w and one of the vertices of degree 2. Hence, with case 2.)
we can assume in this case there are exactly two vertices of degree 2 in G
and that vertex is adjacent to exactly one of them.

There exists a vertex t € V' with dg(t) = n(G) — 3. In this case we can, by
the last paragraph, let s’ be the other vertex of degree 2 and ' and u are its
neighbours. Hence, we may also assume that dg (') < n(G) — 3 holds.

So we get H from G; by reconnecting s to a vertex u’ € {u,t'} of degree
n(G) —3and a vertex t € V(G;) \ {u, '} of degree n(G) — 4 that is adjacent
to all vertices of Gs except s’ and w. s’ is identifiable as the only vertex of
degree 2 in G; and u and t' are its end vertices. If dg(t') # n(G)—3
holds, then we can identify u in G and if dg(d') = n(G) — 3 holds, then it
makes no difference whether we reconnect s to u or t’. Likewise if t"/ # t
holds, then, other than s, and t are adjacent to the same vertices. That
is the mapping swaps u’ for u, #’ for ¢, and the identity otherwise, is an
isomorphism of G onto H.

The last subcase is where the two previous cases fail to hold.

u is the only vertex adjacent to all vertices of degree 2in G and forallt € T
holds dg(t) < n(G) — 4. First we note that there is no vertex x # v with
dg(x) = n(G) — 3; for such a vertex x is different from u and so is not
adjacent to at least one vertex of degree 2, nor to w, and so is adjacent to all
other vertices - which includes another vertex of degree 2 contradicting our
assumption in this case. Thus we can assume that dg(x) < n(G) — 4 for all
x € V(G) \ {u,v}. Consider the case dg(v) = n(G) — 3. To get H from G,
u must be reconnected to all vertices except for the only end vertex that is
adjacent to the unique vertex of degree n(G) — 4.

Thus we can assume that dg(x) < n(G) — 4 for all vertices x € V(G) \ {u}.
Since dg(u) = n(G) —2, f(u) = u and for all x # u, every isomorphism

ox : Gy = Hp(y) must have oy(#) = u. Moreover, for x # u or w, w
is identifiable in both G, and Hp(,) as the only end vertex not adjacent
to u. So we must also have oy (w) = w. Let w be adjacent to g in H.

Thus f(v) = g and, for x # u or w, we obviously have o,(v) = g. Now
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let G' = (V(G)\ {w}, E(G)\ {uv}) and H' = (V(H)\ {w}, E(H) \ {uq}).
Then G; & Hy, G, = Hy, and the observation show that, for x # u or o,
0x|Gy : G = H}(x).
Thus f is an hypomorphism from G’ to H'. Remark that a hypomorphism
f from G’ to H' in Yang Yongzhi’s meaning is, that H' is a reconstruction
of G’ or the other way around. Hence, for a hypomorphism f : V(G') —

V(H') in Yang Yongzhi’s meaning would follow, that G/ = H]'((x) holds for

all x € V(G’). We have three possibilities for G': it is 2-connected, it is
separable without end vertices or it is separable with end vertices. The first
case is covered by our hypthesis and the second case is covered by Theorem
1.58, but actually implies that Gy, is separable and so does not occur. In the
third case let y be the neighbour of v. Then y is the only cut vertex of G’/
because if u were also a cut vertex, then G’ + uv = G, would be separable.
This yields a contradiction. So G’ is a P-graph on n(G) — 1 vertices and is
reconstructible by our induction hypothesis.

We have shown that G’ =2 H’'. Butv € V(G’) and g € V(H’) are identifiable
as the only vertices not adjacent to the identifiable vertex u. Hence, under
any isomorphism of G’ onto H’, v must be mapped to g and u to u. It
follows that G is isomorphic to H. That completes case 3.).

4.) G has exactly one 2-vertex and for the only member t of V', dg(t) < n(G) — 3
holds. Once again we have three subcases.

4.1.)

42.)

First we have dg(v) # dg(t). The only way to reconnect u to G, to get
H 2 G is to connect u to w instead of s, since s and w are the only ver-
tices of degree 1 in G,. But for that to happen, we must have f(s) = w
and the degrees of the neighbours of s in G are {dg(u),dg(t)}, which is
different to the degrees of the neighbours of s in H thatis {dg(u),dg(v)} =
{dy(u),dg(v)}. This is a contradiction, since, if f is a hypomorphism from
G to H the degrees of the neighbours need to stay the same for all vertices

yand f(y).

We have dg(v) = d(t) < n(G) — 3. So, in Gy, for any vertex x # s or u, u is
the only vertex of degree n(G) — 3 that joins all the vertices of degree 2, or
that joins an end vertex if there are no vertices of degree 2 in G,. The latter
occurs when x = { holds. And u is similarly identifiable in Hg,). So we
have oy (u) = u for any isomorphism oy : Gy = Hy(y).

Now let 0 : Gs = Hg(,). Since dg(t) = dg(v) > 3, w is the only end vertex
in G;. Thus o(u) = 1 is a vertex of degree n(G) — 3 and so is adjacent to
all vertices of H() except w. Hence, the mapping 7 that swaps u and u'
and is the identity otherwise is an automorphism of Hy(. Consequently
70 : Gs = Hp(s) has To(u) = u. So we have, for all x # u, the existence of
an isomorphism 0, : Gx = Hy(,) with ox(u) = u. Since w is the only end
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vertex not joining u in Gy we must have oy (w) = (w).

We now proceed as in case 3.3.) with the construction of G’ and H’, which
are hypomorphic via f, and we again get that G’ is either 2-connected or
separable with v of degree 1. The latter happens when dg(v) = 3. As
before, it now follows that G is isomorphic to H.

4.3.) Last we have dg(t) = dg(v) = n(G) —3 > 7. Suppose that we get H 2% G
by reconnecting w to Gy, at g # v; thatis, H = (V(G), E(G) \ {vw} U{qw}).
Now G, has no automorphism that takes v to t (otherwise, G can be recon-
structed by considering Gy), Hg(,) has no automorphism that takes g to ¢
(since G 2 H), and Gy, has no automorphism that takes v to g (since G 2 H).
Thus, by our degree conditions, there are unique vertices ', 7', 4’ # w, s that
are not adjacent, respectively, tot, v, and q. Moreover, we can assume that
t', v" and ¢’ are all distinct, and that ¢, v, and g are pairwise adjacent: for
t' = v/ implies there is an automorphism of G, that takes v to t; t' = ¢/ im-
plies that we have an automorphism of G, that takes v to g; and assuming
that some pair of t, v or g are not adjacent leads to a similar contradiction.
Thus dg(w) = 1, dg(s) = 2, v/, ¢/, and t' are adjacent to u and to two
of v, g, and t, while all other vertices have degree at least four in G.
We will use this to show that the set {s,w} is identifiable in G, for all
x € V(G) \ {s,w}. First note that s is the unique vertex of degree 2 in G,
forall x € V(G)\ {g,s,t,u,v}, and that w is the unique end vertex in Gy for
allx € V(G) \ {t,u,v,w}. And s and w are the only end vertices in G,. And
in G¢, s and w are the only end vertices. In G, t might be a vertex of degree
2 but it is of distance 2 from the unique end vertex w, while s is of distance
3 from w; v’ might also be a vertex of degree 2 but it is indistinguishable
from s, so it does not matter which we call s.

Finally, in Gy, w is the unique isolated vertex and the only two possible
vertices of degree 2 other than s are ¢’ and t'. But then ¢4’ and s are indis-
tinguishable. And since v is adjacent to both g and ¢, g has degree less than
t has in Gy; thus s can be distinguished from #’ by its neighbours.

Now let G” and H” be constructed from G and H, respectively, by adding
the edge sw. But then, since {s, w} is identifiable for each x € V(G) \ {s, w},
each isomorphism oy : Gx & Hg ) is also an isomorphism of G{ onto Hy'.
And since for x € {s,w}, f(x) € {s,w}, and Gy = Gy = Hp() = Hj’f’(x),

f is also a hypomorphism of G” onto H”. Thus G” = H" since G” is 2-

connected. But w is the only vertex of degree 2 in G” and s is its only

neighbour of degree 3, so we also have G = H. This contradiction com-

pletes this case and hence, completes the proof of this Theorem. O

Next we give the second proof by Yang Yongzhi [78]. Again remark that the proof did
already hold for self-complementary graph classes. Hence, we just replace the class
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of all graphs by a self-complementary graph class and cite his proof.

Theorem 4.3.

Let G be a graph class closed under the complement operation. Every connected
graph in G is reconstructible if and only if every 2-connected graph G € G is recon-
structible.

Proof.

Let G be a graph class closed under the complement operation. Hence, for every
G € G holds G € G.

“ =" Let G € G be a 2-connected graph. Every 2-connected graph is also connected.
Hence, if all connected graphs in G are reconstructible, then so is G.

“ <. Assume that all 2-connected graphs in G are reconstructible. Let G € G be
a separable graph with n(G) > 10. Remark that graphs with fewer vertices are re-
constructible by a computer study by McKay (see Theorem 1.103). We may further
assume that G has end vertices since separable graphs without end vertices are recon-
structible by Theorem 1.58. Moreover we may assume that G € G contains a vertex
u € V(G) of degree dg(u) = n(G) — 2. Otherwise G € G contains no end vertices and
is therefore reconstructible by either Theorem 1.58 or our hypothesis that 2-connected
graphs are reconstructible. By Theorem 1.40 a graph is reconstructible if and only if
its complement is reconstructible. Furthermore, for every G € G holds G € G. Hence,
all restrictions we may achieve on a graph, we may also assume for its complement.
We distinguish two cases:

Assume that G contains at least two end vertices. Hence, G contains at least two ver-
tices of degree n(G) — 2. Then G meets one of three conditions. G € G is 2-connected
and therefore reconstructible by our hypothesis. G € G is a P-graph and therefore
reconstructible by Theorem 4.2. And last G € G contains two non adjacent edges that
are incident to end vertices. These edges are incident to different vertices of degree
n(G) —2. Let v € V(G) be an end vertex. Then the unique way to reconstruct G
from G, is to connect v to a vertex of degree n(G) — 3 in G, that is not adjacent to
at least one end vertex. Then we apply Theorem 1.40 which states that a graph is
reconstructible if and only if its complement is reconstructible. All in all if G contains
at least two end vertices then the claim holds.

Now assume that both G € G and G € G contain exactly one end vertex and exactly
one vertex of degree n(G) — 2. Denote the vertex of degree 1 in G with w € V(G) and
the vertex of degree n(G) — 2 in G with u € V(G). Then u is either a cut vertex or
G € G is a P-graph and thus reconstructible by Theorem 4.2. Hence, assume u is a cut
vertex. Let v € V(G) be the neighbour of w. Then u and v are the only cutvertices of
G. Let B be the block containing both u and v. In the connected card Gs with at least
one end vertex and with s € V(G) \ {&, v, w} the vertices u,v and w are identifiable.
u as the only cut vertex of degree n(G) — 3, w as the only end vertex not adjacent to u
and v as the neighbour of w. Hence, pick such a card Gs; where u and v are contained
in the same block and that block as large as possible. Hence, we know B and the
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location of u and v in it. From G, we may reconstruct any other blocks and their
connection to B at the vertex u. Thus this case is also reconstructible. O

Last we modify a Theorem by Ramachandran and Monikandan given in [67] that
states that all 2-connected graphs are reconstructible if and only if all 2-connected
graphs G having a vertex v € V(G) lying on more than one induced P; such that
diam(G) = 2 or diam(G) = diam(G) = 3 are reconstructible. Remark again that
their main argument is based upon the complement and therefore holds for self-

complementary graph classes as well.

Theorem 4.4.

Let G be a graph class closed under the complement operation. Then all 2-connected
graphs in G are reconstructible if and only if all 2-connected graphs G € G having
a vertex v € V(G) lying on more than one induced P, such that diam(G) = 2 or

diam(G) = diam(G) = 3 are reconstructible.

Proof.

“ =1 Bvery 2-connected graph with diam(G) = 2 or diam(G) = diam(G) = 3 is in
particular a 2-connected graph, too.

“ &' Let G € G be a 2-connected graph. Remark that G € G holds. Assume that
all vertices of G are on at most one induced P4. Then G is a Ps-reducible graph and
therefore reconstructible by Theorem 1.75. Hence, we may assume from now on that
there exists at least one vertex v € V(G) that lies on more than one induced P;. Re-
mark that vertices that induce a P; in G also induce a P; in G. Now we differentiate
some cases:

First assume that diam(G) = 2 holds. Then G is reconstructible by assumption.

Next assume that diam(G) = diam(G) = 3 holds. Then G is also reconstructible by
assumption.

Next assume that diam(G) = 3 and diam(G) # 3 holds. By Theorem 1.19 the diam-
eter of G needs to be less than 3. Hence, G is connected with diam(G) = 2. If G is
separable, then G is reconstructible by Theorem 1.62. If it is 2-connected, then G is
reconstructible by assumption. Hence, since G is reconstructible, so is G by Theorem
1.40.

Last assume that diam(G) > 3 holds. Then diam(G) < 3 holds by Theorem 1.19 and
we apply the same reasons as in the previous case. Hence, this case is also recon-
structible. O

With the modified proofs we may prove the generalisation of Ramachandran and
Monikandan’s main Theorem 1.101 given in [67]. That generalisation is Theorem
4.1.

Proof. (of Theorem 4.1)
The Theorem follows directly from Theorem 4.3, Theorem 4.4 and Theorem 1.75. [
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One of the most widely known self-complenetary graph classes is the class of perfect
graphs. Hence, we can deduce the following corollary from 4.1.

Corollary 4.5.
Let G be the class of perfect graphs. Then all perfect graphs are reconstructible if and

only if all 2-connected graphs G € G with diam(G) = 2 or diam(G) = diam(G) = 3
are reconstructible.

The last corollary reduces significantly the number of perfect graphs that need con-
sideration for reconstruction. Hence, we propose the class of perfect graphs for re-
construction with the idea to reduce the number of perfect graphs that need consid-
eration.

Problem 4.6.
Show that perfect graphs are reconstructible.
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diconnected tournament, 54
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edge, 1

edge contraction, 8

edge cover, 8
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edge-reconstructible, 36
edge-reconstruction, 35
Edge-Reconstruction Conjecture, 36
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end vertex, 2
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forced move, 38
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girth, 5, 26 path, 4

graph, 1 perfect graph, 7

graph isomorphism, 3 perfect matching, 3
planar drawing, 21

hamilton cycle, 6
hamiltonian, 6
hamiltonian graph, 6
Handshaking Lemma, 2 recognizable, 16

Hoffman’s Lemma, 39 reconstructible, 9
reconstruction, 9
Reconstruction Conjecture, 10
reconstruction number, 51
regular, 16

planar graphs, 21
pseudo-similar, 56

identity matrix, 28
idiosyncratic polynomial, 29
incident, 1

independent set, 3 replacing edge, 49
isolated vertex, 2 root, 19, 55
isomorph, 3
isomorphism-reduced deck, 34, 52 separable, 4
isomorphism-reduced edge-deck, 52 separating set, 4
shuffled deck, 53
Kelly’s Lemma, 11 similar, 56
edge version, 37 size, 1
Kocay’s Lemma, 12 split graph, 6
legitimate decks, 53 stability number, 3
length, 5 subgraph, 2
limb, 19, 55 mduc?d subgraph, 2
line graph, 7 spanning subgraph, 2
line-critical block, 18 tournament, 53
matching, 3 Traces, 34
tree, 5

matching number, 3

maximal planar graph, 21 treewidth, 6

trunk, 19, 55

minor, 8
monomorphisms, 39 Ulam’s Conjecture, 10
with defect, 39
vertex, 1
Nash-Williams” Lemma, 43, 49 vertex cover, 8
nauty, 34 vertex cover number, 8
neighbourhood degree sequence, 2, 25 vertex-deleted subgraph, 9

) vertex-switching deck, 53
obstruction set, 83

orbit, 62 walk, 4
order, 1 weakly reconstructible, 16
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