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A refined disturbance rejection control
for vibration suppression of smart
structures under unknown disturbances

Shun-Qi Zhang1 , Xiao-Yu Zhang2, Hong-Li Ji3,

Shen-Shun Ying4 and Rüdiger Schmidt5

Abstract

Vibrations are usually caused by continuous disturbances with large amplitudes. Different from other control methods,

disturbance rejection control is a potential method, which considers the unknown disturbances in the control design.

To remedy the shortcomings of the existing disturbance rejection control in the vibration reduction of structures

especially under high-frequency periodic disturbances, this paper aims to improve the control ability of the current

disturbance rejection control for the vibration suppression of smart structures under any unknown periodic disturban-

ces with high-order frequency or random disturbances varying fast. Afterwards, the refined disturbance rejection

control is compared with the previously designed disturbance rejection control with proportional–integral observer

and disturbance rejection control with generalized proportional–integral observer on both theoretical and numeri-

cal levels.
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Introduction

Composite laminated thin-walled structures are widely used in aerospace and automotive engineering owing to
their lightweight and relatively high stiffness. However, these kinds of structures have very high sensitivity
for vibrations and very low damping ratios. In order to improve the structural performance, composite structures
are proposed to be integrated with piezoelectric materials forming smart structures. Because of the sensory and
actuation properties, smart structures have great potential in the applications of vibration control, acoustic
control, health monitoring, and energy harvesting.

In the area of vibration or acoustic control, the structural performance strongly depends on the control strat-
egy. Therefore, a mathematical model of smart structures for control design is needed, in order to avoid high
expenses for experiments. Among the linear modeling techniques for electro-mechanically coupled smart struc-
tures, there exist many approaches using solid elements1–3 or plate/shell elements based on various hypotheses,
e.g. classical plate hypothesis,4–6 first-order shear deformation (FOSD) hypothesis,7–10 higher-order shear
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deformation hypothesis,11–13 and zigzag hypothesis.14–16 Additionally, for nonlinear modeling, many researchers

developed geometrically nonlinear models, e.g. Mukherjee and Chaudhuri,17 Lentzen et al.,18 Dash and Singh,19

Zhang and Schmidt,20 and Zhang et al.21 among others, and a few developed electro-elastic materially non-

linear models.22,23

A good vibration suppression ability needs a proper and well-designed control strategy. Based on the math-

ematical model of smart structures, many control schemes have been applied and developed for vibration sup-

pression. The most frequently used control strategies are e.g. negative velocity/displacement feedback

control,7,13,24,25 Lyapunov feedback control,24,26,27 bang-bang control,28,29 and linear quadratic regulator

(LQR)/ linear quadratic Gaussian (LQG) control.16,30,31 Furthermore, many other advanced control schemes

were developed for smart structures, for example independent modal space control,32,33 model predictive con-

trol,34 sliding mode control,35,36 and robust control.37–39 Furthermore, without using a mathematical model, some

intelligent control methods can be applied, like neural network control40–44 and fuzzy logic-based control.45–47

All the control strategies mentioned above only took the displacement or velocity as the measured output, and

fed them back to controllers. They did not take into account the disturbances in the control design, due to the

difficulty or impossibility of the measurement for unknown disturbances. However, most of the vibrations or

acoustics are caused by disturbances, which have relatively large amplitudes compared to noises. In order to

provide an effective control for vibration reduction, disturbances might be estimated using an observer, and

afterwards the estimated signals are fed back to the controller. Concerning observation systems, several papers

developed various observers for the estimation of unknown disturbances or other variables, for example, Hou and

Müller,48 and Darouach et al.48,49 developed full- and reduced-order observers, S€offker et al.,50 Morales and

Alvarez-Ramirez,51 K€onig and Mammar,52 and Müller53 developed proportional–integral (PI) observers, and

Kalsi et al.54 and Zhu55 developed sliding-mode observers.
Based on the estimated signal, the disturbances can be compensated by a control scheme, here called distur-

bance rejection (DR) control. The very early development of DR control with PI observer (DR-PI) can be found

in the literature.56,57 Later, the method was applied to various nonlinear problems by Müller58 and S€offker and

Müller.50,53 Due to limitations of PI observers, the DR-PI control can only estimate and compensate unknown

disturbances, which have low frequency or vary slowly. To break through the weakness of PI observers, a gen-

eralized proportional–integral (GPI) observer was proposed and developed recently by Zhang et al.9,59 The

corresponding DR control with GPI observer (DR-GPI) has excellent performance in estimation and compen-

sation of periodic disturbances with both higher and lower order frequency, in case the frequency is roughly or

exactly known. Additionally, the disturbance position and the impact factor should be known in both the DR-PI

and DR-GPI control schemes.
The literature survey reveals that the existing DR control strategies have very excellent control ability in some

aspect, but they are still weak in applications to structures under periodic disturbances with high frequency. This

paper aims to improve the current DR control, such that the refined DR control possesses very good ability in the

vibration suppression for smart structures under any unknown periodic disturbances with high frequency or

random disturbances varying fast. After that, the refined DR control as well as the DR-PI and DR-GPI control

are theoretically analyzed and numerically compared.

Dynamic model of smart structures

With regard to smart structures comprising plates or shells, a two-dimensional FE method can be applied based

on the Reissner–Mindlin hypothesis. By using Hamilton’s principle, a linear dynamic FE model can be

obtained as

Muu€q þ Cuu _q þ Kuuqþ Ku//a ¼ Fue (1)

K/uqþ K///s ¼ 0 (2)

Here, Muu; Cuu; Kuu; Ku/, K/u; K// denote the mass matrix, the damping matrix, the stiffness matrix, the

piezoelectric coupling matrix, the coupled capacity matrix, and the piezoelectric capacity matrix, respectively.

Furthermore, Fue; q, /a, and /s are respectively the external force vector, the nodal displacement vector, the

actuation voltage vector, and the sensor voltage vector. The overhead one dot and two dots denote respectively

2 Journal of Low Frequency Noise, Vibration and Active Control 0(0)



the first and the second time derivatives. For more derivation details of the system matrices, please refer to our

previous publication.9,59

For the convenience of control design, a state-space model should be derived based on the dynamic FE model.

We assume the state variable x, control input u, system output y, and disturbance input f as

x ¼ q

_q

" #
; u ¼ /a; y ¼ /s; f ¼ Fue (3)

A state-space model can be constructed as

_xðtÞ ¼ AxðtÞ þ BuðtÞ þ Nf ðtÞ (4)

yðtÞ ¼ CxðtÞ (5)

zðtÞ ¼ FxðtÞ þ GuðtÞ (6)

where the system matrices A, the control matrix B, the disturbance influence matrix N, and the output matrix

C are

A ¼ 0 I

�M�1
uuKuu �M�1

uuCuu

" #
; B ¼ 0

�M�1
uuKu/

" #
; N ¼ 0

~M
�1

uu

" #
; C ¼ �K�1

//K/u 0
h i

(7)

The state-space model in equations (4) to (6) has a disturbance input term Nf , which is slightly different from

that used in conventional control design. Moreover, the disturbance influence matrix N should be known. The

disturbance vector f can include any type of input, like external forces in this model, which have relatively large

amplitudes compared to noises. In most of the cases, vibrations are caused by disturbances.

Conventional disturbance rejection control

Observation models

Disturbances applied to smart structures are usually unknown and can be of various types. Further assuming that

the unknown disturbance vector is composed of a linear part and a residual error part, it leads to

f ðtÞ ¼ HvðtÞ þ DðtÞ (8)

where H is a coefficient matrix, vðtÞ denotes a vector of base functions, and DðtÞ represents a residual error vector,

which can be neglected. Taking the derivative of the base functions yields a state-space form of a fictitious

disturbance model

f ðtÞ�HvðtÞ (9)

_vðtÞ ¼ VvðtÞ (10)

Here, H and V denote the coefficient matrices respectively for the output and system matrices of the ficti-

tious model.
Due to various types of disturbances, the components of the disturbance vector can be expressed by many

forms of expressions, like Fourier series or high-order polynomial functions.9 In the simulation part, periodic

disturbances are mainly considered. Therefore, the components of the disturbance vector are assumed to be

expressed by finite terms of Fourier series

fi � ai0 (11)
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or fi � ai0 þ ai1cosðxi1tÞ (12)

The resulting coefficient matrices H and V associated with equation (11) lead to the proportional–integral

(PI) observer53

H ¼ I; V ¼ 0 (13)

While the coefficient matrices associated with equation (12) lead to the generalized proportional–integral (GPI)

observer9,59

H ¼ 1 1 0
� �

; V ¼
0 0 0

0 0 �xa

0 xa 0

2
64

3
75 (14)

where xa is the assumed disturbance frequency, determined by the designer.

Closed-loop models

In the framework of DR control, the estimated disturbances are fed back to the controller like the estimated state

variables. Therefore, the control law can be defined as

uðtÞ ¼ �Kxx̂ðtÞ � Kvv̂ðtÞ (15)

where the control gain Kx is obtained through LQR method, and Kv can be solved by specific means, with the

details in literature.59 Further substituting equation (15) into the state-space model (4)–(6), one obtains the closed-

loop system as

_x

_ex
_̂v

2
64

3
75 ¼

A� BKx BKx �BKv

0 A� LxC �NH
0 LvC V

2
4

3
5 x

ex
v̂

2
4

3
5þ

N
N
0

2
4

3
5f (16)

y ¼ C 0 0
� � x

ex

v̂

2
64

3
75 (17)

In the conventional DR control, the disturbance influence matrix N must be known, as it appears in the system

matrix of the closed-loop system, which means that the impact factor and the position of the applied disturbances

should be known. However, the disturbance itself can be unknown. As mentioned before, the coefficient matrices

of the PI observer are receptively identity and zero matrices. DR control with PI observer has an excellent ability

on the vibration suppression of smart structures under unknown disturbances with low frequency. For distur-

bances with higher order frequency, DR-PI control will fail to suppress vibrations, due to low dynamic perfor-

mance of the observer system. This weak point was improved by Zhang et al.,59 in which the PI observer was

extended to GPI observer. Because of unknown parameters existing in matrix V of the GPI observer, a good

control effect can be obtained if the assumed frequency xa is close to the actual one xd of the real disturbance,

with the best result when xa ¼ xd.

Generalized disturbance rejection control

Refined state-space model

In the conventional DR control, the disturbance influence matrix should be known. Moreover, for higher order

frequency disturbances, DR-PI control fails, and DR-GPI control works well but it needs to know the disturbance
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frequency. To remedy the aforementioned shortcomings, firstly a refined state-space model is proposed, such that

the closed-loop system does not contain the disturbance influence matrix N.
Based on the plant state space model given in equations (4) to (5), introducing a new state variable

z ¼ y

_y

" #
(18)

a refined state-space model can be derived as

_z ¼ ~Azþ ~Buþ ~N~f (19)

y ¼ ~Cz (20)

Here, the refined system matrix, control matrix, output matrix, and disturbance influence matrix are

respectively

~A ¼ 0 I
0 0

� �
; ~B ¼ 0

CAB

� �
; ~C ¼ I 0

� �
; ~N ¼ I

0

� �
(21)

The new disturbance ~f is constructed as

~f ¼ CA Axþ Nfð Þ þ CB _u þ CN _f (22)

From the matrix arrangement of B;C;N, it can be easily seen that CB¼CN¼ 0, which yields

~f ¼ CA Axþ Nfð Þ (23)

Here, the new disturbance includes the actual disturbance, as well as the plant state variables, which is defined

as generalized disturbance. The resulting DR control based on the refined state-space model is called the gener-

alized disturbance rejection (GDR) control.

Proportional–integral observer design

Following the design procedure of conventional PI observer, the generalized disturbance is assumed to be com-

posed of a linear and a residual error part as

~f ðtÞ ¼ HvðtÞ þ DðtÞ (24)

Neglecting the residual error and using step function to represent the generalized disturbance, the fictious

model can be derived as

~f ¼ Hv (25)

_v ¼ Vv (26)

where H ¼ I and V ¼ 0.
The extended model for the refined state-space model can be derived by introducing a new state variable

comprised of z and v as

_z
_v

� �
¼ ~A ~NH

0 V

� �
z
v

� �
þ ~B

0

� �
u (27)
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y ¼ ~C 0
� � z

v

� �
(28)

Here, the system matrix and the output matrix of the extended system are defined as

Ae ¼
~A ~NH
0 V

� �
; Ce ~C 0

� �
(29)

The extended observer system can be constructed as

_̂z
_̂v

" #
¼Ab

ẑ
v̂

� �
þ ~B

0

� �
uþ Lz

Lv

� �
y (30)

where

Ab ¼
~A � Lz

~C ~NH

�Lv
~C V

" #
(31)

Observer gain design

The observer gains must be well designed to stabilize the observation system. There are many ways to determine

the observer gains Lz and Lv, e.g. Lyapunov method, Riccati approach, and pole placement method. The first two

methods for DR control were well described in literature.59

Riccati approach. The observer gains are assumed as

LT
x LT

v

� � ¼ CeP
�1 (32)

where the positive definite matrix P can be solved by the following standard Riccati equation

AeP
�1 þ P�1AT

e � 2P�1CT
e CeP

�1 þ bI ¼ 0 (33)

Here, b is a parameter for observer design, larger b produces larger observer gains.

Pole placement method. The aim of the observer design is to let the observation system stable, meaning that all the

eigenvalues of Ab must be placed in the left half-plane. Rearranging the observation system matrix, one obtains

Ab ¼
�Lz1 I 0

�Lz2 0 I

�Lv 0 0

2
64

3
75 (34)

The eigenvalues can be derived by solving the following characteristic polynomial function of Ab

sI � Abj j ¼
sI þ Lz1 �I 0

Lz2 sI �I

Lv 0 sI

�������
�������

¼ s3I þ s2Lz1 þ sLz2 þ Lv

�� �� ¼ 0

(35)

Further assume that the observer gains, Lz1; Lz2, and Lv, are diagonal matrices. The corresponding components

of observer gains are respectively l1i; l2i, and l3i, such that the characteristic polynomial function can be
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arranged as

jsI � Abj ¼
Ym
i¼1

s3 þ l1is
2 þ l2isþ l3i

� �
¼

Ym
i¼1

sþ 1

Toi

	 
3

¼ 0 (36)

where Toi is a parameter proportional to the settling time. Therefore, all the poles of Ab will be placed in the left

half-plane if Toi satisfies

Toi > 0; ði ¼ 1; 2; . . . ;mÞ (37)

Usually, smaller Toi leads to a more robust observer system.

Closed-loop control system

Due to the framework of disturbance rejection control, the control input is modified to

u ¼ �Kzz� Kvv̂ (38)

Here, the state variable is measurable and used directly, which is the typical difference compared with the con-

ventional DR control. Usually the state variables are unknown in the conventional DR control, the estimated state

variables are used in a feedback loop. The control gain for the dynamic part Kz is obtained by the LQR optimization

method, while that for generalized disturbance is solved by specific manner, as can be found in literature.53

Assuming a new state variable for the closed-loop system as

~x ¼ x z ez v̂
� �T

(39)

with ez ¼ z� ẑ, one obtains the closed-loop system as

_x

_z

_ez
_̂v

2
66664

3
77775 ¼

A �BKz 0 �BKv
~NCAA ~A � ~BKz 0 �~BKv
~NCAA 0 ~A � Lz

~C ~NH
0 0 Lv

~C V

2
664

3
775

x
z
ez
v̂

2
664

3
775þ

N
~NCAN
~NCAN

0

2
664

3
775f (40)

y ¼ 0 ~C 0 0
� � x

z

ez

v̂

2
66664

3
77775 (41)

Additionally, the control input can be reconstructed as

u ¼ 0 �Kz 0 �Kv

� � x
z
ez
v̂

2
664

3
775 (42)

Here, the GDR control with PI observer is denoted as the GDR-PI control.

Active control simulation

Description of piezoelectric plate structure

A cantilevered composite plate structure bonded with two piezoelectric layers at the upper and lower

surfaces, proposed by Lam et al.,4 is shown in Figure 1. The host structure in the middle is made of T300/976
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graphite–epoxy composite materials with four uniform thickness substrate layers sequenced as

½�45�=45�=� 45�=45��. The thickness of each composite substrate layer and PZT layer are respectively

0.25mm and 0.1mm. The material properties of T300/976 and PZT are listed in Table 1.
The upper layer of PZT is acting as a sensor, while the lower one is an actuator. An unknown disturbance is

applied on tip point A. The dynamic FE model is derived by a discretization of 5� 5 elements with uniformly

reduced integration over the elements. Moreover, the damping matrix is assumed as Rayleigh damping coefficient

with the ratio of 0.8% for the first six modes. For validation test, the first six eigenfrequencies are calculated, as

shown in Table 2, and compared with those in literature,4 which shows very excellent agreement.

Parameter configuration

In the control simulation, three control methods are implemented into vibration suppression of smart structures,

namely LQR control, DR control with PI observer (DR-PI), DR control with GPI observer (DR-GPI), GDR

control with PI observer (GDR-PI). The control parameters for the control strategies are listed in Table 3. From

the parameter configuration in the table, it can be clearly recognized that the frequency of periodic disturbance

should be known in DR-GPI control, which is not necessary for other controllers.
To analyze the performance of the GDR-PI control, various groups of parameters with changing �R or To are

considered, as listed in Table 4. Two groups of parameters, LQR and GDR-PI, are selected from Table 3 for

reference. Decreasing each �R by 100 times yields parameters for GDR-PI-1 �3. Alternatively, decreasing each To

by 10 times leads to parameters for GDR-PI-4 �6.

Table 1. Material properties of the smart plate.

T300/976 PZT

Y1 ¼ 150 GPa Y¼ 63 GPa

Y2 ¼ 9 GPa � ¼ 0:3
G12 ¼ G13 ¼ 7:1 GPa q¼ 7600 kg/m3

G23 ¼ 2:5 GPa d31 ¼ d32 ¼ �2:54� 10�10 C/N

� ¼ 0:3 �33 ¼ 1:5� 10�8 F/m

q¼ 1600 kg/m3

Figure 1. A cantilevered plate with piezoelectric layers.

Table 2. First six eigenfrequencies of the plate.

Modes Present Lam et al.4 Deviation (%)

1 21.5083 21.4655 0.1994

2 63.2409 63.3468 0.1672

3 129.9076 130.8108 0.6904

4 183.4276 182.4012 0.5627

5 217.8606 218.2537 0.1801

6 382.1172 381.9080 0.0548
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Amplitude–frequency response characteristics

Based on the parameters given in Table 3, the frequency response of the uncontrolled system, the closed-loop

system of LQR, DR-PI, DR-GPI, and GDR-PI control can be presented by a Bode plot, as shown in Figure 2.

The parameter table shows that the common parameters for all control schemes are the same, and the latter three

schemes have additional parameters. As discussed in literature,9,59 the parameter b is used to stabilize the observer

system, which has very slight influence on the frequency response if it is large enough. Note that the parameter To

of GDR-PI significantly affects the frequency response. Generally, the smaller To, the better the characteristics of

the frequency response.

Table 3. Parameters for various control strategies.

Control method Common parameters Other parameters Observer solution

LQR �Q ¼ 10�2; �R ¼ 10�6 None None

DR-PI �Q ¼ 10�2; �R ¼ 10�6 b ¼ 105 ARE

DR-GPI �Q ¼ 10�2; �R ¼ 10�6 b ¼ 105; xa ¼ xd ARE

GDR-PI �Q ¼ 10�2; �R ¼ 10�6 To ¼ 10�4 PPM

LQR: linear quadratic regulator; DR-PI: disturbance rejection control with proportional–integral; DR-GPI: disturbance

rejection with generalized proportional–integral; GDR-PI: generalized disturbance rejection with proportional–integral;

ARE: algebraic Riccati equation; PPM: pole placement method.

Table 4. Parameters for study of the GDR-PI control.

Control method Common parameters

Other

parameters

Observer

solution

LQR �Q ¼ 10�2; �R ¼ 10�6 None None

GDR-PI �Q ¼ 10�2; �R ¼ 10�6 To ¼ 10�4 PPM

GDR-PI-1 �Q ¼ 10�2; �R ¼ 10�8 To ¼ 10�4 PPM

GDR-PI-2 �Q ¼ 10�2; �R ¼ 10�10 To ¼ 10�4 PPM

GDR-PI-3 �Q ¼ 10�2; �R ¼ 10�12 To ¼ 10�4 PPM

GDR-PI-4 �Q ¼ 10�2; �R ¼ 10�6 To ¼ 10�5 PPM

GDR-PI-5 �Q ¼ 10�2; �R ¼ 10�6 To ¼ 10�6 PPM

GDR-PI-6 �Q ¼ 10�2; �R ¼ 10�6 To ¼ 10�7 PPM

LQR: linear quadratic regulator; GDR-PI: generalized disturbance rejection with proportional–integral; PPM: pole

placement method.
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Figure 2. Bode plot of the smart plate.
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From Figure 2, it can be seen that the controlled systems (LQR, DR-PI, DR-GPI, GDR-PI) have lower

amplitudes than the uncontrolled system. Because LQR is an ideal control scheme, all state variables are fed

back to the controller, which is not possible in a real system. In DR-PI and DR-GPI, the estimated state variables

are used in the closed-loop system. That is the reason why LQR has smaller amplitudes than DR-PI and DR-GPI

control, especially in the lower range of frequency. However, for DR-GPI control, since the frequency of distur-

bance is assumed to be known, it leads to significant lower amplitudes around the assumed frequency. In GDR-PI

control, the mathematical model is absolutely different from conventional DR models. Therefore, it can reach

extremely lower amplitudes by setting To or ( �Q; �R).
To deeply understand the GDR-PI control, several groups of parameters are considered in the following

simulations. Decreasing each To by 10 times, the frequency–amplitude characteristics change greatly, as shown

in Figure 3. The smaller To generates smaller amplitudes of vibrations. Alternatively, keeping To constant and

decreasing each �R by 100 times, one obtains the frequency plot, as shown in Figure 4. A similar tendency can be

obtained, that is smaller �R produces smaller amplitudes of vibrations.

Time response analysis of vibration suppression

Considering a periodic disturbance waving at the first eigenfrequency of the structure, f ¼ 0:1cosð135:1387tÞ N,

applied at point A, the time response can be obtained as shown in Figure 5. The figure generally shows that the
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Figure 3. Frequency analysis of GDR-PI with changing To.
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Figure 5. The dynamic behavior of the smart plate under a harmonic disturbance force with the frequency xd ¼ 21:508 Hz:
(a) sensor output and (b) control input.
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A: (a) sensor output and (b) control input.
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controlled systems have significant ability in vibration suppression. Going into section A and B, the details will be

clearly shown in Figures 6 and 7.
In the first stage, from 0 s to 0.3 s, it shows that GDR-PI performs best in vibration suppression in comparison

with others. Due to the fact that the DR-PI control strategy fails to estimate the disturbance with relatively high

frequency (first eigenfrequency), it leads to negative effect on vibration control, and only the free vibration is

counteracted. Therefore, the DR-PI control cannot be better than the LQG control, and should be worse than the

LQR control. Compared with the DR-PI control, a much better control result can be obtained by the DR-GPI

control with increase of time. This is because the DR-GPI control can estimate the disturbance very precisely even

with higher order frequency. However, the GPI observer needs rising time to follow the real disturbance. This is

the reason that at the very beginning the result of DR-GPI is very close to that of DR-PI, and later the former one

gets smaller amplitudes of vibration with increasing time. Going into the details of section B given in Figure 7,

time from 2 s to 2.3 s, the results of DR-GPI shows excellent performance, since the GPI observer predicts the

disturbance perfectly in the stable state.

Conclusions

Based on the conventional DR control, this paper has developed a GDR control with PI observer, for the

vibration suppression of smart structures especially in the range of higher order frequency. In comparison to

conventional DR control methods, DR-PI control and DR-GPI control, the current GDR-PI possesses very

excellent performance.
From the simulation results, it can be seen that the parameters of (�Q; �R) and To significantly influence the

amplitude–frequency characteristic plots. For the vibration suppression of structures under high-order periodic

frequency, GDR-PI performs best when compared with LQR, DR-PI, and DR-GPI in the first beginning period.

After the system gets stable, the amplitudes of vibration suppressed by DR-GPI control become the smallest ones.

The reason being that the GPI observer contains the frequency information of the real disturbance. However, the

GPI needs rising time to follow exactly the real disturbance. This is why the control effect of DR-GPI is worse

than that of GDR-PI in the first starting stage.
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Figure 7. The dynamic behavior of the smart plate under a harmonic disturbance force with the frequency xd ¼ 21:508 Hz, section
B: (a) sensor output and (b) control input.
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