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Abstract

File synchronizers are tools with the goal to facilitate collaboration scenarios and data management
across multiple devices. They replicate the file system, e.g. from a cloud storage to a device disk, achiev-
ing convergence by only transmitting detected changes. A popular variant available in a plethora of
widely adopted products are state-based file synchronizers such as Dropbox. They detect operations
by computing the difference between a previously persisted state and the respective current state, per-
forming a bi-directional synchronization of two replicas. While users rely on synchronization to run
without errors, bugs in industrial synchronizers make this difficult. Users often have to detect and fix
synchronization errors themselves, and some errors remain undetected for a long time. This results in
cost-intensive iterations in cooperation processes, which should be avoided in academia and industry.

This work identifies three core challenges of state-based file synchronization. The first challenge is the
heterogeneity of different file systems, which requires the file synchronizer to detect and handle incom-
patible capabilities. Second, a synchronizer needs to detect and resolve conflicting operations that result
from a group of users working on their replica in isolation. Third, non-conflicting operations computed
from state differencing are not immediately suitable for propagation. The operation order is not avail-
able and operations may be affected by consolidation, such that important intermediate operations are
missing. This problem most notably affects file systems that support the move operation which changes
an object’s parent folder. The goal of this work is to design and analyze an algorithm and develop an
implementation of a file synchronizer that solves these challenges.

To address heterogeneity we analyze existing real-world implementations (such as the NTFS file system)
and their compatibility issues, and also examine related academic works. We identify six file system
capabilities relevant to file synchronizers, formally define a file system model F that is in large parts
compatible to the various existing definitions and suggest several alternatives for handling incompati-
ble differences. To detect conflicts we perform a precondition analysis of the operations of F . Resolving
conflicts is an open problem where the right approach depends on the context. Our related work anal-
ysis finds that most academic works present arbitrary resolution methods that lack a rationale for their
decisions. To determine a reflected conflict resolution approach we design a four-step framework which
starts with an informal definition of consistency properties and iteratively refines it to a set of formal and
detailed steps for resolving concrete conflicts.

Apart from F and a conflict resolution approach the main contribution of this work is Syncpal, an itera-
tive algorithm that reconciles two divergent file systems, solving all of the above challenges. It first han-
dles conflicts, one at a time, such that resolving one conflict does not negatively affect others. Whenever
possible, conflicts are avoided. It then finds a valid propagation order for the remaining non-conflicting
operations, breaking cyclic dependencies if necessary. The iterative nature of Syncpal reduces the over-
all complexity and the probability of bugs. The technical evaluation of our implementation of Sync-
pal includes its complexity analysis, automated testing and a comparison with five industrial-grade file
synchronizers. We find that our algorithm improves the handling of file system heterogeneity and syn-
chronizes changes from long offline periods correctly, where other implementations fail and may even
cause data loss. Our implementation has been in operation by 30 users over a period of over 18 months,
providing valuable insights for further research regarding usage patterns and practical requirements.
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Zusammenfassung

File Synchronizer sind Tools, die Kollaborationsszenarien und Daten-Management über mehrere Gerä-
te hinweg vereinfachen sollen. Sie replizieren Dateisysteme, z. B. von Cloud-Speichern auf Festplatten.
Dateisystem-Konvergenz wird erreicht, indem nur Änderungen übertragen werden. In der Praxis haben
sich zustandsbasierte File Synchronizer wie Dropbox oder ähnliche Produkte durchgesetzt. Sie erken-
nen Operationen via Differenzbildung aus einem zuvor persistierten und dem aktuellen Zustand zweier
Dateisystem-Replikate und erreichen dadurch deren bidirektionale Synchronisation. Benutzer sind dar-
auf angewiesen, dass die Synchronisation fehlerfrei abläuft. Marktübliche File Synchronizer erschweren
dies jedoch, sodass Benutzer Synchronisationsfehler oft selbst erkennen und unter großem Zeitaufwand
beheben müssen und manche Fehler lange Zeit unerkannt bleiben. Dadurch entstehen im Kooperati-
onsprozess kostenintensive Iterationen, die es in Wissenschaft und Wirtschaft zu vermeiden gilt.

Diese Arbeit identifiziert drei zentrale Defizite der zustandsbasierten Dateisynchronisation. Erstens be-
dingt die Heterogenität verschiedener Dateisysteme, dass File Synchronizer inkompatible Eigenschaf-
ten oft nicht erkennen und behandeln. Zweitens muss ein Synchronizer Konflikte erkennen und lösen,
die durch den isolierten Zugriff mehrerer Benutzer auf Dateisysteme entstehen. Drittens sind konflikt-
freie Operationen, die via Differenzbildung der Zustände erkannt wurden, nicht unmittelbar für die
Übertragung geeignet. Hier ist die Reihenfolge der Operationen unbekannt und diese wurden evtl. kon-
solidiert, sodass wichtige Zwischenoperationen fehlen. Dieses Problem betrifft insbesondere Dateisys-
teme, die Verschiebe-Operationen unterstützen, die den Überordner eines Objekts ändern. Ziel dieser
Arbeit ist es, diese Defizite durch einen neuartigen, verbesserten File Synchronizer zu beheben.

Zum besseren Verständnis der Heterogenität analysiert diese Arbeit bestehende wissenschaftliche Ar-
beiten und reale Dateisystem-Implementierungen wie NTFS und deren Kompatibilität. Der Autor iden-
tifiziert sechs Dateisystem-Fähigkeiten, definiert ein formales Dateisystem-Modell F , das zu bestehen-
den Definitionen größtenteils kompatibel ist, und schlägt mehrere Alternativen für den Umgang mit in-
kompatiblen Eigenschaften vor. Zur Konflikt-Identifizierung wird eine Vorbedingungsanalyse der Ope-
rationen von F durchgeführt. Das Lösen von Konflikten ist diffizil, da der geeignete Ansatz vom Kontext
abhängt. Ein Großteil wissenschaftlicher Arbeiten löst Konflikte willkürlich und ohne Begründung der
konkreten Entscheidungen auf. Zur Findung eines reflektierten Konfliktlösungsansatzes hat der Autor
ein vierstufiges Framework entwickelt, das eine informelle Definition von Konsistenzeigenschaften ite-
rativ zu einer Menge von formal definierten, detaillierten Konfliktauflösungsschritten verfeinert.

Neben F und dem obigen Konfliktlösungsansatz ist der Hauptbeitrag dieser Arbeit der iterative Algo-
rithmus Syncpal, der die Abweichungen zweier Dateisysteme synchronisiert und die genannten Defizite
löst. Konflikte werden nacheinander behandelt, ohne dass sich die Lösung eines Konflikts negativ auf
andere auswirkt. Wenn möglich werden Konflikte vermieden. Anschließend werden eine valide Über-
tragungsreihenfolge der verbleibenden, konfliktfreien Operationen ermittelt und eventuelle zyklische
Abhängigkeiten aufgelöst. Dieser iterative Ansatz reduziert die Gesamtkomplexität und die Wahrschein-
lichkeit von Programmierfehlern. Die technische Evaluation der Syncpal-Implementierung umfasst ei-
ne Komplexitätsanalyse, automatisierte Tests sowie einen Vergleich mit fünf weiteren, etablierten File
Synchronizern. Die Ergebnisse zeigen, dass Syncpal die Dateisystem-Heterogenität besser bewältigt und
Änderungen aus langen Offline-Phasen korrekt synchronisiert. Andere Implementierungen scheitern
hier häufig, was bis hin zu Datenverlust führen kann. Die Verwendung der Syncpal-Implementierung
durch 30 Benutzer über einen Zeitraum von über 18 Monaten liefert für weitere Forschungsfragen wert-
volle Einblicke bzgl. Nutzerverhalten und Anforderungen aus der Praxis.
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Chapter 1

Introduction

Since decades file-based tools, such as word processors, have been a core component in the daily work-
flow of users of computing devices. Users create large parts of their data in the form of files, which are
stored and distributed on multiple devices and storage systems in a hierarchical file system. Tasks such
as retrieving a specific file are already challenging when working only on the local disk [RSK04]. Diffi-
culty increases tremendously if a user wants to find the correct version of a file, when it could be located
on her mobile phone, personal computer, work laptop, company cloud storage, file server, or group ware
system [DP08; JOO15; SW13; Voi+06].

To avoid that users need to manually locate and copy files, one approach to ease this data management
problem is to consolidate all storage systems to a single, logical namespace. Variant #1 is to map each
storage into a local directory on the device. However, the configuration is challenging for novice users,
there are security risks and not all storage systems can be assumed to be “online” at every point of time1.
Variant #2 is to employ replication of the data. Programs called file synchronizers [BP98] keep one or
more local directories synchronized with other storage systems. They automatically recognize conflicts
and either automatically solve them or allow the user to choose a resolution.

With the increased availability and affordability of cloud services [Yan+16], cloud storage services like
Dropbox, Google Drive and OneDrive have become popular over the last ten years, indicated by the
high number of their users [Kol16; Pri17; TBM13]. Once the user installs the corresponding file synchro-
nizer of the cloud storage provider on every computing device, it will maintain the up-to-date versions
of all files on all devices, by continuously performing a bi-directional, pair-wise synchronization be-
tween each device and the cloud storage system. This also facilitates collaborative scenarios involving
several users, because files are no longer located on an isolated system such as the local device storage.
Instead files are transparently shared with others, thus supporting a group to develop documents in a
cooperative way.

1.1 Motivation

We wrote this thesis for two reasons. First, we found that file synchronizer literature is very sparse in
academia., s.t. this work can enrich the corpus, in particular in the area of CSCW and cooperative infor-
mation systems. Second, we observed multiple issues (detailed below) with industrial file synchroniz-
ers. By providing up-to-date and thorough research, we hope to inspire file synchronizer developers in
academia and industry alike. We envision that future file synchronizer releases make fewer intranspar-
ent decisions, cause less frustration for users, and avoid subsequent, manual repairs of directory struc-
tures and file contents. Due to the large (and still growing) user-base of these tools, their improvement
does have considerable practical impact.

Some of the issues we observed first hand with existing implementations include:

1For instance, while it would be technically possible to map the work laptop’s storage into a directory on the personal com-
puter, that directory would be inaccessible while the work laptop is turned off.
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• The synchronization process gets stuck or shows an error in an “offline scenario”, when the syn-
chronizer reconnects to the storage system after the user worked on the local file system without
connectivity for an extended time period.

• Lack of documentation of conflict detection or resolution behavior. When a conflict happens it
is automatically resolved, but synchronizers provide little to no visual feedback to the user. As a
consequence they make intransparent decisions, because they silently alter or undo operations
which the user thought were successful. Conflict resolution behavior also differs between differ-
ent implementations. Academic works do not provide reflection or recommendations regarding
conflict resolution.

• The synchronized file systems each have a slightly different definition (in other words: they are
slightly incompatible with each other). For instance, the BSCW groupware allows directories to
be linked into several parent directories, while desktop file systems (Windows, macOS) do not.
There are many other issues, such as varying sets of reserved names or characters. For this rea-
son, file synchronizers are heterogeneous data synchronizers [AC08; Fos+07]. Heterogeneity of file
synchronizers is not discussed in academia, and industrial synchronizers handle some aspects
incorrectly, causing synchronization errors.

• When a user requires synchronization with several storage systems, she has to install several file
synchronizers, because often each synchronizer is proprietary to a specific storage system. This
wastes computing resources and shows the need for a synchronizer that can abstract and syn-
chronize different storage systems. Such tools (e.g. Goodsync or Syncovery2) do exist, but come
with a complex user interface which is challenging to use for average users.

1.2 Goals and research questions

A heterogeneous synchronizer is typically state-based because alternative operation-based approaches
require operation logs that are not ubiquitously available. The term state-based means that the syn-
chronizer detects operations from comparing the current file system state with a persisted state of the
previous synchronization. This allows the synchronizer to be operational even when shut down while
the user changes the file system. However, detected operations lack information about their exact order
which makes their synchronization challenging in certain situations.

The goal of this work is to build a state-based, heterogeneous, near real-time file synchronizer geared
towards non-technical end-users. It synchronizes operations detected in two file system replicas as they
happen, typically in a client-server setup. It should support several storage system implementations
with different file system definitions, without the need to modify the storage systems themselves. Con-
sequently, the synchronization logic is entirely run on the client. This client-side reconciliation concept
is also found in previous works [MT94].

The research questions are as follows:

• RQ1 - File systems: What different kinds of file system definitions exist in academia and prac-
tice? Which criteria are relevant for file synchronizers? How should a file synchronizer’s internal,
abstracted file system model look like, which incompatibilities exist and how can they be handled?

• RQ2 - Operation order: As operations detected during state-based update detection lack order,
but not all operations are commutative, how can a valid order be detected and propagated by a
synchronizer? This question was already answered for file system models which do not support
move operations, but remains open for file systems which do support them.

• RQ3 - Conflicts: What sets of operations applied to two disconnected file systems are conflicting?
How do conflicts depend on the file system model? Can multiple conflicts be combined? What are
possible solutions for resolving individual conflicts and conflict combinations? Which conflicts
are relevant in practice? How can conflicts be explained to the user?

2See https://www.goodsync.com and https://www.syncovery.com, retrieved July 21, 2019.

https://www.goodsync.com
https://www.syncovery.com
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1.3 Research methodology

We start with literature review of academic file synchronizer works and works of related systems, as well
as manuals of real-world systems (e.g. file system APIs) to gain a deep understanding of file systems,
conflicts and related algorithms, and to identify shortcomings in existing works. We use that knowl-
edge to design our own synchronization algorithm. Because we focus on practical use, we implement
and distribute the synchronization algorithm as an executable program to real users, immediately after
designing it. This allows us to discover unexpected real-world issues and to iteratively improve the algo-
rithm. We verify the correctness of our algorithm via theoretical proofs. We also test our implementation
for correct behavior by a large number of hand-written and automatically generated software tests. To
compare the behavior of our work with other academical and industrial implementations we perform
controlled experiments.

1.4 Contributions

The main contribution is the development of a state-based reconciliation algorithm called Syncpal,
which synchronizes two disconnected file system replicas. The algorithm was published in [She19].

Since real-world file systems are heterogeneous, we present an analysis of the heterogeneous traits of
file systems in chapter 3, resulting in a unified model compatible with a large set of real-world mod-
els. We refer to [SP19] for the corresponding publication. The individual steps of the Syncpal algorithm
terminate provably, and synchronization can be interrupted at any time without causing side-effects.
Our approach finds a suitable order of the detected operations of the unified file system model (sec-
tion 4.2.7), which also supports move operations, which complicates the analysis. Syncpal also features
a new conflict resolution approach (chapter 5), which includes graceful handling of conflict combina-
tions and avoids conflicts wherever possible. We discover a lack of guidance in academic works w.r.t.
conflict handling and develop a reflected philosophy, which discusses several alternatives for resolving
conflicts.

We implemented the algorithm as an executable application for the operating systems Windows and
macOS. It has been used by 30 users over a period of over 18 months, which provides insights into daily
life conflicts (section 8.3) and helped discover various other issues in practice (section 7.5). We imple-
ment an extensive evaluation framework in section 8.2 that benchmarks our implementation, Dropbox,
Google Backup and Sync, Microsoft OneDrive and NextCloud, discovering numerous issues in all other
implementations.

1.5 Thesis structure

We begin with a survey of related works in chapter 2, which unravels the distributed systems research
topic and puts our work into context. We identify several characteristics of file synchronizers which
help guide the development of our approach. With our goals from section 1.2 in mind, we then focus on
file systems in chapter 3, where we first analyze existing implementations and their compatibility issues,
followed by extracting and formally defining the file system model we use for the remainder of this work.
This formal definition allows to discuss update detection for state-based synchronizers, which is done
in chapter 4. Before we present the overall synchronization algorithm in chapter 6, we first take a deep
dive into conflicts in chapter 5, starting from the generic concept (file system model-independent) of
what conflicts are and what achieving consistency means, down to the concrete approaches for finding
and resolving conflicts in the concrete file system model from chapter 3. In chapter 7 we present the
implementation of our algorithm, with its software architecture, project background, and unforeseen
issues we encountered in practice. We evaluate our algorithm on a technical level (not with users) in
chapter 8, and conclude and present future work in chapter 9.
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Chapter 2

Related Work

This chapter discusses related work to identify research gaps, find approaches to base our algorithm on,
and to put our work into context. We follow a top-down approach, starting with generic concepts and
narrowing them down to our specific field: file synchronizers.

Because file synchronizers are programs that achieve consistency in replicated, distributed systems, we
provide an introduction to these concepts in section 2.1. We identify optimistic replication systems as
the suitable sub-field, for which we present important characteristics and generic data synchronization
approaches in section 2.2. We then examine file synchronizer works specifically in section 2.4, but also
look at intricacies of their underlying data structure, file systems, in section 2.3. Finally, we mention re-
lated fields and technologies in section 2.5 and conclude in section 2.6, where we make suitable choices
regarding our own work for each characteristic found in section 2.2. The research questions that result
from gaps in related work are discussed in sections 2.3 (RQ1) and 2.4 (RQ2+3) respectively.

2.1 Distributed and replicated systems

From a high-level perspective, a file synchronizer is an application realizing a distributed system. The
main characteristic of a distributed system is that its software (the middleware or applications on top
of it) is installed on networked computers which exchange asynchronous messages (see [CKD10], p. 1).
The system appears as a single system to the user, even though it is distributed. The main advantage
(over a software system that runs on a single, isolated computer) is sharing of resources like data or
computing power. On the downside, distributed systems have to deal with many challenges, including
heterogeneity, openness, security, scalability, failure handling, concurrency or transparency [CKD10].
To understand how a file synchronizer fits into the research area we provide an ontology of distributed
systems and relevant sub-variants shown in figure 2.1. Bold boxes highlight the domain to which the
kind of file synchronizer belongs which we develop in this work.

There are various models that describe and categorize distributed systems. For instance, architectural
models like the client-server or peer-to-peer model are “concerned with the placement of [the system’s]
parts and the relationships between them” [CKD10, Chap 2]. Different variations of those models exist,
see [CKD10, sect. 2.2.3], such as extending a “multiple client, one server” model to “multiple clients,
multiple servers”.

One important variant is the use of replication [CKD10, sect. 15]. Here data is replicated (i.e., copied)
fully or in part1 between computers that serve them. Replication offers several advantages [SS05]: it
improves availability, because data can still be accessed even when some replicas are unavailable. It
also improves performance in terms of lower latency (users can work on nearby replicas) and increased
throughput (better bandwidth to nearby replica, and multiple replicas can serve data simultaneously).
We will further discuss replication in section 2.1.3. A very important topic in replicated distributed sys-

1Partial copies with limited life-span are often referred to as cache.
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Figure 2.1: Ontologoy of distributed and replicated systems

tems is consistency which is “the property that the state of replicas stay close together” [SS05], which we
discuss in the next section.

2.1.1 Consistency

Ideally the whole system’s state should be consistent, i.e., behave as if it consisted of a single data repos-
itory that is in a specific state. Since replication systems distribute data over multiple computers this
means that the state of all replicas should be equal at any point of time. As we will see in section 2.1.3
replicated systems vary in the degree of how and how fast they achieve consistency. Consistency is in
fact a large research field. During the last decades over 50 different notions of consistency have been
formulated in the form of models, see [VV16; AT16] for a survey. These models specify rules that make
the behavior of the system predictable, without specifying how to implement a consistency mechanism.
Two models often found in literature are strong consistency (or: linearizability) [HW90] and eventual
consistency [Ter+94]. The former resembles the ideal conditions described above by simulating sequen-
tial access to a single replica. When data is written in one replica, once the write operation has finished,
the written data must be available for reading at all replicas immediately. In contrast, eventual consis-
tency provides a much weaker guarantee. Here all replicas will eventually converge to the same state,
given that no new write operations are generated at any replica.

2.1.2 Consistency-availability trade-off

The two models presented above are placed on rather opposite ends of the consistency spectrum. From
their short description one can already derive the implications on availability in the event of a partition,
that is, when one or more replicas have become disconnected. In such an event distributed replicated
systems using the strong consistency model do practically not offer availability for the read and write
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operations. Since these systems implement the model using coordination, when a write operation is
executed at one replica, all other replicas have to confirm the receipt of that operation before it is ac-
tually committed. Consequently, the write operation would lock up the system during the time of the
partition, because the confirmation messages of one or more replicas are missing.

In contrast, eventually consistent replication systems offer high degrees of availability. Read and write
operations are executed immediately at the replica from which they originate, and are then propagated
to other replicas in the background whenever possible. The downside is that this allows the state of repli-
cas to diverge. Conflicts may arise which the system needs to resolve, with or without the involvement
of the users.

This trade-off between consistency and availability has been formally studied. Fischer’s impossibility re-
sult [FLP85] shows that reaching perfect consensus in a distributed, asynchronous system is impossible
if just one process can fail. Determining the presence of faulty processes is difficult as well. One cannot
reliably distinguish a faulty process from one that is slow or rule out that the network is the culprit. More
recently, Brewer has established the CAP theorem [Bre00; Bre12], where C refers to strong consistency, A
to availability and P to partition tolerance, that is, the ability to detect start and end of a partition and to
keep operating during a partition, possibly with degraded functionality2. The CAP theorem states that
during a partition, replication system designers have to choose between C and A3. However, the decision
is not binary for the entire system, but can be made in a fine-grained way, choosing different trade-offs
for each operation the system offers. For instance, a calendar management application could choose to
favor C over A for write and update operations, while favoring A over C for read operations. Different
approaches have been formally studied to achieve such hybrid consistency models, see e.g. [Bal+16;
Ter+13]. In summary, designers of replication systems are faced with the challenge of choosing a C-A
trade-off for each operation such that the choice minimizes the negative effects of a partition and in-
corporates the users’ willingness to wait for a response as well as their tolerance of data inconsistencies
[Bre12].

2.1.3 Optimistic and pessimistic replication systems

A common subdivision of replication systems is the one into optimistic and pessimistic replication sys-
tems [SS05]. Pessimistic systems bear that name because they are pessimistic about the lack of conflicts
or the consequence in case a conflict occurs. They prefer strict concurrency control and strong consis-
tency, avoiding conflicts altogether. Optimistic systems are situated on the opposite end. They assume
conflicts happen rarely in practice - and if they do, they can be solved after the fact. Therefore little
concurrency control exists, together with rather weak consistency guarantees (such as eventual consis-
tency). Classifying a concrete system as one or the other depends on the chosen C-A trade-off. A system
that chooses C over A for all operations is a fully pessimistic system, a system that always chooses A over
C is a fully optimistic one. Systems in-between employ a Hybrid approach.

In the following, the advantages and disadvantages of optimistic and pessimistic systems are discussed.

The main advantage of pessimistic approaches is strong consistency. The disadvantage is that this con-
sistency model is achieved via coordination between all participating nodes, which makes it hard to
deploy such systems in scenarios where nodes may only offer ad-hoc connectivity (e.g. tablet com-
puters only turned on occasionally) or in a geo-distributed setting, where computers are connected via
wide-area networks such as the Internet. Such networks have low reliability, increasing the risk that one
or more replicas are unreachable, blocking the operation from succeeding. Since communication is un-
reliable, pessimistic systems also don’t scale well, as adding more replicas further increases the chance
of communication failure, degrading availability and throughput. These disadvantage inhibit the use
of pessimistic approaches in the area of cooperative work. Pessimistic systems are also unsuitable in
scenarios such as software control management (SCM), where individuals need the ability to work on

2In general, forfeiting P is not an option because in practice partitions can and will happen (even in high-availability data-
centers). In such an event, a system that has not implemented P loses both C and A.

3While the system is not partitioned, both C and A can be provided.
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files in isolation, not locking them for other users. In this case users prefer A over C, accepting the risk
of conflicts due to concurrent changes.

Optimistic systems solve the disadvantages of pessimistic systems. They are suited for (and scale well
in) wide-area networks, by offering high availability. Their disadvantage is the weak consistency model,
which increases the chance of conflicts.

2.2 Achieving consistency in optimistic replication systems

A system that achieves consistency in optimistic replication systems is often referred to as data synchro-
nizer. In literature the term synchronization appears frequently and is, unfortunately, used with two
different meanings, depending on whether it is applied to processes or data. Process synchronization
deals with issues that arise when concurrent processes (or threads) need to occasionally join and agree
on certain actions, and to avoid race conditions. In this work we refer to data synchronization, which
deals with consistency and integrity of disconnected data replicas. We consider the definition of [AC08]
suitable who define that “synchronization is the process of enforcing consistency among a set of [repli-
cated] artifacts and synchronizers are procedures that automate - fully or in part - the synchronization
process.“

We start by presenting several characteristics of data synchronizers in section 2.2.1. We consider the
directionality characteristic the most distinct one, and thus present corresponding approaches in sec-
tions 2.2.2 and 2.2.3.

2.2.1 Characteristics of optimistic replication systems

We have compiled a selection shown in figure 2.2 from related works such as [SS05] and [MT94] and will
elaborate on them in the following subsections. It should be noted that various other characteristics
exist, such as syntactic vs. semantic scheduling, or single-master vs. multi-master [SS05].

2.2.1.1 Directionality

Directionality refers to the communication pattern of a synchronizer.

An uni-directional synchronizer determines the data to be transmitted and sends it to other replicas,
without further concern what these replicas will do with it. This data might be the current state of the
replica or a list of executed operations since the last synchronization.

Bi-directional synchronization4 indicates that information flows in both directions, that is, data is ex-
changed via a full-duplex channel, making the consistency algorithm aware of the current state (or op-
erations) of both replicas at once. Traditionally such systems have a synchronization phase where, con-
ceptually, all replicas take part in a roundtable meeting with the agenda to achieve consistency. The
process works as follows:

1. First, all available replicas establish a connection with each other and lock access to their data, to
avoid that the user can modify data during the synchronization phase.

2. Replicas exchange data (state or operations) and the merge algorithm (which may be distributed
or centralized) determines consistency, given the data from all replicas. It determines what the
final, consistent state should be, or which operations need to be propagated to each replica to
achieve global consistency. This includes finding conflicts and possibly resolving them, e.g. auto-
matically or by asking the user.

3. All replicas exchange states or operations data, apply it to their own replica and finally unlock
access to their data again.

4Replace bi-directional (which applies to star communication topology) with N -directional in case of a peer-to-peer commu-
nication topology.
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Figure 2.2: Characteristics of optimistic replication systems

In practice such approaches work best when synchronization involves only two replicas at a time, be-
cause the likelihood of failure increases for N-directional (N > 2) synchronization when using unreliable
communication channels (such as the Internet).

A number of issues have been identified for systems that use uni-directional synchronization. Here
conflicts are resolved on the receiving replica. The sending replica does not immediately know about
detected conflicts or their resolution. In the event of a conflict, the sending replica, which is still obliv-
ious of that conflict, may apply additional operations on objects affected by the conflict. These update
operations need careful handling. In [CJ05] the authors approach this problem with vector time pairs,
whereas [TRN15] solve it by creating a special conflict resolution function that can redirect the updates
happening after a conflict update to the correct targets.

2.2.1.2 Consistency algorithm data

An algorithm whose job is to achieve consistency of two or more replicas needs data. Typically, this
data comes in the form of complete operation logs or state. The former requires tight integration of the
consistency mechanism with the application that manages the data (see coupling, section 2.2.1.5). The
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logs describe all operations that took place at each replica since the last time consistency was achieved.
In the latter case the entire state of the application’s data is used. In some cases the algorithms, given
the current and a previous state, first compute operations from state deltas.

We note that the data processed by the algorithm does not necessarily have to coincide with the data
that is being transferred from one replica to another [Csi16], see transferred data characteristic in sec-
tion 2.2.1.4.

2.2.1.3 Communication topology

Communication topology (or network topology) describes the way networked computers are connected
to each other. Optimistic replication systems often use the star or (arbitrarily connected) peer-to-peer
topology, but many others exist, such as bus or ring. The choice of topology has a strong influence on
aspects like availability, load balancing and speed. “At one end of the spectrum, the star topology boasts
quick propagation, but its hub site could become overloaded, slowing down propagation in practice; it
is also a single point of failure. A random topology, on the other hand, is slower but has extremely high
availability and balances load well among sites.” [SS05] Systems with a peer-to-peer topology are often
uni-directional.

2.2.1.4 Transferred data

The transferred data can, again, be the application’s state, state deltas or operation logs. To illustrate
that transferred data and processed data don’t have to coincide, consider the following two examples:

1. A file synchronizer may achieve consistency between two replicas by sending the entire state from
one replica to another. When state data is received, operations are computed from performing a
diff (or delta) of the received state with a persisted state from the last successful synchronization.
These operations are then used by the consistency algorithm.

2. A file synchronizer whose consistency algorithm operates on state data may choose to transfer
only the initial state from replica X to Y. X’s state data is cached at Y and subsequently X only
transfers operation logs to Y. Y applies the received operations to the cached state, producing an
updated version that is supplied to its consistency algorithm.

2.2.1.5 Coupling to application

Coupling describes the degree of integration of the consistency algorithm into the application, from
a software development point of view. For example, the application might be a calendar management
software. We find that coupling typically ranges from tight to loose. Tight coupling means that achieving
consistency amongst multiple replicas is built into the application itself, or added as a plug-in in case
the application allows for extension of functionality this way. Typically, consistency algorithms based on
operation logs are tightly coupled, because the application needs to provide these logs to the consistency
algorithm [Fos+07].

On the other end, loose coupling means that the application is not aware of replication or its consistency.
Typically, state-based approaches such as [Fos+07] are loosely coupled. They are implemented as a 3rd
party program that extracts the entire state from the application on each replica and uses that state to
achieve consistency, without the application’s awareness.

We note that when we classify a system as loose later in this chapter, we refer to the coupling between the
synchronizer application and the replica it directly works with. There may still be intermediate systems
with tight coupling. For instance, consider a calendar application where a loosely coupled synchronizer
achieves consistency between N client replicas. The synchronizer is loosely coupled to the calendar
application, but may be tightly coupled to additional servers (and their software) used to exchange data
or meta-data.
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2.2.1.6 Heterogeneity

A heterogeneous synchronizer [AC08; Fos+07; PSG04; Her+12] allows data on different replicas to be
stored using varying schemas or languages. For instance, an address book application may store con-
tacts as a comma-separated value spreadsheet on one replica, but may use a proprietary database en-
gine on another replica. Another example from software engineering, is the model of a program which
may exist as source code but also as UML model. Algorithms that achieve consistency need to con-
vert the representations of the data accordingly and handle incompatibilities. In contrast, homogeneous
synchronizers are built on systems that store data in the same format on all replicas. Uni-directional
replication systems, such as Operational Transformation-based systems, are typically homogeneous.

2.2.1.7 Invocation

Invocation determines the points of time when synchronization is triggered. Synchronizers may follow
a continuous approach that attempts to automatically synchronize whenever users update their replica,
given that other replicas are available for synchronization. Another solution is discrete check-pointing
[MT94] where the user needs to explicitly trigger the synchronization process.

Each approach has advantages and disadvantages. While continuous synchronizers do their work as
often as possible at the expense of high bandwidth usage and lack of control for the user, it lowers the risk
for conflicts and avoids divergences of replicas that happen simply because the user may have forgotten
to trigger the synchronization. Discrete check-pointing suffers from increased risk for conflicts but saves
bandwidth and allows for workflows where users may not actually want automatic synchronization, e.g.
because they want to be in control over when updates of their replica are propagated (say, to avoid
synchronization of incorrect, intermediate file states, or to avoid high charges for bandwidth) [How93].
Most uni-directional systems use continuous invocation.

2.2.1.8 Conflict resolution

When users make concurrent updates in different replicas in isolation these may be incompatible with
each other and cause a conflict. The list of incompatible updates depends on the replica’s data structure.
For example, when considering a file system, a conflict occurs if a specific file is deleted in one replica
while its content is updated in another replica. Related work distinguishes two general approaches for
resolving conflicts [RC01]:

1. Manual conflict resolution: the conflict is visually presented to the user who is then given multiple
resolution options to choose from. Concrete synchronizers differ in whether they can propagate
all non-conflicting updates first and present the remaining conflicting updates to the user at the
end of the process, or whether conflict resolution is a necessary first step.

2. Automatic conflict resolution: the synchronizer chooses a resolution for the user and applies it
automatically. If users need specific conflicts to be resolved differently, they need to apply the fix
manually afterwards. This approach is typically used in synchronizers that run as a transparent
background service.

Which approach is superior to the other one is still an open question in the domain of file systems
[RC01]. We elaborate on conflict-related issues later in this work in chapter 5 on page 65.

2.2.1.9 File system state and operations model

While the general idea is that a file synchronizer is a synchronizer that works on file systems, each work
defines the state and operations of a file system differently. The most notable difference is whether a
file system is modeled as a set of paths without identity, or whether identities are also part of the model.
There are several other differences further examined in section 2.3.
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2.2.2 Bi-directional approaches

As described in section 2.2.1.1 the algorithm of a bi-directional approach is given data from all repli-
cas and decides how to achieve convergence. We sub-divide them further by the type of data used by
the consistency algorithm, which is either state or operations. The following two subsections further
elaborate on the respective approaches.

2.2.2.1 State-based

Approaches used in state-based synchronization vary strongly, depending on the supported data struc-
tures (and its operations) and other characteristics such as listed in section 2.2.1. We now describe a few
exemplary systems.

Non-incremental systems are one of the most simple approaches. They do not store any historic
information but only know about the current state of a replica. These systems resort to comparing the
respective current states, typically between two replicas at a time. RSync [TM+96] follows this approach.
Such approaches are also used in heterogeneous synchronizers (see section 2.2.1.6) where replicas whose
state is encoded in different formats are synchronized by converting the current state of one replica to
the format of the other one, followed by equalizing the two states by computing the delta/diff between
them [AC08].

Three-way merging (3wm) is a technique often used in incremental systems [AC08] that store historic
information. It refers to a family of algorithms that are given a base data set db (e.g. the state at the last
synchronization) and two independently modified data sets d1,d2 (which are both based on db). These
algorithms then find (or are already given) the differences between d1 and db (and d2 and db , respec-
tively) and produce a merged data set dm that contains a merge of both differences and db . 3wm is more
powerful than two-way merging because the historic state solves the create/delete ambiguity [GPP93].
Thus, 3wm can reliably conclude whether the absence of an object is due to deletion, or the existence
of an object is due to creation. When conflicts are detected, they may be resolved automatically or with
user involvement.

The algorithms strongly depend on the data structure and the operations they provide, s.t. merging two
text documents is very different from merging sets of tuples (e.g. databases), trees, or other application-
specific structures. Solving 3wm for text data is feasible with limited complexity. In [Mye86] the authors
describe how to detect the shortest sequence of edit operations (edit script) that transforms an input text
file to an output file, considering only line insertions and deletions as operations. After computing the
edit scripts e1 = d1 −db ,e2 = d2 −db , applications such as diff3, perform the 3wm of db ,e1,e2 [KKP07].
3wm has been prominently used in practice for merging software source code, in spite of the risk for
syntactic or semantic merge conflicts [Ape+11].

For tree-based data structures differencing (which includes matching of nodes) and merging is consid-
erably more complex, as surveys such as [Lin01, section 4.4] and [Bil05] demonstrate. Research is fre-
quently driven by concrete domains, such as merge conflict resolution [Ape+11; Men02] of source code
or merging UML models [PB03]. Generic synchronizers also exist, such as [Lin04], a framework that ap-
plies 3wm to XML documents. 3wm has also been applied to heterogeneous systems, see [Fos+07]. Here
the authors built a universal, heterogeneous synchronization framework called "Harmony" for tree-
based data. Developers who want to use Harmony synchronize an application’s state need to implement
two transformation functions (called “lenses”) that transform data structure to and from Harmony’s ex-
pected, internal tree format, to which 3wm is applied. Developers also need to specify a synchronization
schema, which defines invariants of the data5.

We note that conventional 3wm requires the state of both replicas to remain static during the synchro-
nization. In systems where updates occur frequently, such as collaborative text editors where multiple
key strokes per second are common, locking the data during synchronization would severely impact the

5For instance, a phone book application would have the invariant that states that a person can have at most one Work number.
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usability of the application. [Fra09] proposes an extension to 3wm that improves handling of concur-
rency, allowing the user to manipulate data even while the system is performing a synchronization.

For our work, 3wm is relevant, but not for merging divergent file content, because earlier (base) versions
of files are typically not available. Instead we consider the file system’s structure as a document. 3wm
can be used to detect and merge changes on the structural level, which is also done in [LKT05], see
section 2.4.2.

2.2.2.2 Operation-based

Operation-based approaches which use a complete log (sometimes also referred to as “trace” or “jour-
nal”), such as [SRK00; Ker+01; Ter+95; CH06], follow a common pattern. At each replica the application
collects a complete log of all operations performed by the user. When synchronization is triggered,
replicas connect to each other in a synchronization phase. The application locks access to the user, logs
are transmitted and all replicas roll back to a consistent state, i.e., a point in the log where all replicas’s
logs coincide. Then the reconciliation algorithm produces a schedule, that is, a total order of opera-
tions that interleaves the operations of all replicas, including conflict detection and resolution - which
may involve the user. Once a valid schedule is found, all replicas apply it and finally unlock access to
the user. [Qia04; SRK00] Approaches to find a schedule, such as [SRK00; Ker+01] model operations in a
way s.t. dependencies between operations are made explicit using assertions. Assertions consist of pre-
and post-conditions often formulated as first-order logic (FOL). These assertions represent constraints.
Finding a valid schedule therefore becomes a constraint satisfaction problem, where the goal is to max-
imize (rather than minimize, which would be the goal for solving planning problems) the number of
operations in the schedule - a NP-hard problem. There are also distributed variants of such algorithms,
see [CH06].

These log-based approaches suffer from multiple issues. In case operations occur frequently, the log
grows quickly and may become very large, especially if a replica is disconnected for longer periods. This
causes increased storage requirements, transfer time and time required for finding a schedule, which in
turn causes the replica to be locked for extended time periods. [Qia04] In addition, the log collection
must be 100% reliable. If there is a chance that executed operations are missing in the log, the replica’s
state will begin to diverge over time [Fra09].

2.2.3 Uni-directional approaches

The merge algorithms of uni-directional approaches are able to achieve consistency over time, without
the requirement to know about the data of all replicas at the point of the merge. Conflicts are detected
and resolved without the need to coordinate with other replicas. To achieve this, conflict resolution is
typically fully automatic and deterministic, without user involvement6. In the following sections we in-
troduce two popular approaches, Operational Transformation and Commutative and Convergent Repli-
cated Data Types.

2.2.3.1 Operational Transformation

Operational Transformation (OT), presented in the seminal work [EG89] and follow-up paper [SE98], is
an approach with a large amount of academic works and industrial use-cases7. OT has been used in dif-
ferent types of collaborative applications, such as groupware [EG89; SE98], document editing [Sun+04],
CAD design [Agu+08], XML [DSL02; Ost+06a] file systems ([NS16; Mol+03], see section 2.4.3) and many
others8.

6There are exceptions, such as [CJ05], where users can resolve conflicts non-deterministically.
7OT was popularized by Google Wave, which became Apache Wave http://incubator.apache.org/projects/wave.

html. It lives on in web-frameworks such as SwellRT http://swellrt.org/ or ShareDB https://github.com/share/
sharedb, and is used in industry products such as Google Docs https://www.google.com/docs/about/ or Codox Wave,
https://www.codox.io/. URLs retrieved July 21, 2019.

8See sections 1.2+1.3 of http://www3.ntu.edu.sg/home/czsun/projects/otfaq/ for further applications, retrieved July
21, 2019.

http://incubator.apache.org/projects/wave.html
http://incubator.apache.org/projects/wave.html
http://swellrt.org/
https://github.com/share/sharedb
https://github.com/share/sharedb
https://www.google.com/docs/about/
https://www.codox.io/
http://www3.ntu.edu.sg/home/czsun/projects/otfaq/
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The general idea of OT is the following: every operation performed by the user causes an OT operation
to be generated, executed and sent to all other sites. The operation is given the context in which it was
generated (e.g. operation Insert(“e”, 1) and context being a document’s state, “tst”, such that the Insert
operation transforms the document to “test”). Whenever a site receives an OT operation, it transforms
it against already-executed operations to account for their effect on the state. OT systems are generally
divided into two parts, the generic control algorithm (sometimes referred to as integration algorithm)
and a set of application-specific transformation functions. The control algorithm is independent of the
application and is in charge of processing incoming OT operations and maintaining a buffer of executed
(applied) operations, calling the transformation functions against the correct, buffered operations, in
the correct order. Many different variants were developed over time, such as dOpt [EG89], GOT [Sun+98],
SOCT2 [SCF97], TIBOT [LSL04], or COT [SS09]. Some rely on a central server to determine a global
operation order, some allow for arbitrary peer-to-peer arrangements. The application developer then
needs to develop one transformation function for each possible operation pair and ordering9.

2.2.3.2 CRDT

A CRDT10 [Sha+11b; Sha+11a] is a mutable object, replicated to each site, which offers an interface to the
application that uses it to store data. CRDTs can be divided into state-based CRDTs (Convergent Repli-
cated Data Types, CvRDT), and operation-based CRDTs (Commutative Replicated Data Types, CmRDT).
CvRDTs can be emulated by CmRDTs and vice-versa. Modifying an object immediately affects the ob-
ject’s local state. CvRDTs then asynchronously distribute the whole data type’s state to other replicas
(or just state-deltas [ASB15; vLP16; Ene+18] to reduce network usage), whereas CmRDTs log and send
only the operation itself, including its parameters. A core concept of CRDTs is commutativity, which
applies to the merge procedure of both operations and states. Whenever a site of a state-based CRDT
receives another replica’s state, it merges that received state with its local one. CvRDTs build on the con-
cept of a join-semilattice, which is a partial order with a defined least upper bound (LUB) [DP02]. By its
definition, the LUB has commutative, idemptotent and associative properties, and the merge function
computes the LUB of the local and received state, which ensures eventual convergence of all replicas. In
operation-based CRDTs operations are enriched with additional meta-data to make them commutative.

A considerable number of basic CRDTs have already been specified, such as counters, sets, registers,
maps, graphs [Sha+11a], lists [Roh+11] and JSON [KB17] which are used as building blocks in more
complex applications, such as collaborative rich text editing [Pre+09; Nic+16], 3d modeling [TIH19],
CAD [Lv+17; Lv+18] and file synchronization [TSR15; AMU12]. CRDTs have also been increasingly used
in industry applications, such as Amazon DynamoDB [DeC+07], Riak [Bas18] and many others11.

OT and CRDT research is still actively pursuing the holy grail of building truly provably correct replicated
systems with optimal space and time complexities (i.e., less than quadratic). While there is some effort
to unify these two theories [Meh+14] we also observed heated separative discussions where each “camp”
defames solutions of the other, in the style of “your proof is not a real proof” or “our implementation is
n times faster than yours”, see [Sun+18] and the corresponding online discussions12. It remains open
which theory turns out to be superior.

2.3 File systems

The core of any data synchronizer is the data model the synchronizer works on. For file synchronizers,
the data model is the file system. We reviewed related academic file synchronizer works to understand
how they model the file system (see section 2.3.1) and their general approach (see section 2.4). As our
results from section 2.3.1 show, file system definitions vary strongly between each work, different models
are not compared against each other, and some works don’t even provide any formal model. We would

9For instance, for a text editing system with insert operation i and delete operation d , the transformation functions
Ti i ,Tdd ,Ti d ,Tdi need to be developed.

10See [Pre18; Rij18] for an overview. The originating work is WOOT [Ost+06b].
11See https://github.com/ipfs/research-CRDT/issues/40, retrieved July 21, 2019.
12See https://news.ycombinator.com/item?id=18191867, retrieved July 21, 2019.

https://github.com/ipfs/research-CRDT/issues/40
https://news.ycombinator.com/item?id=18191867
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have expected that the file system model is formally defined, including its operations and invariants.
Since the analyzed works don’t consider several models, their differences or incompatibilities are not
discussed either. While there is some literature regarding the heterogeneity of data models for generic
data synchronizers (as presented in section 2.2.1.6), there is a lack of discussion for file systems. This
caused us to ask research question 1:

RQ1 - File systems: What different kinds of file system definitions exist in academia and practice? Which
criteria are relevant for file synchronizers? How should a file synchronizer’s internal, abstracted file
system model look like, which incompatibilities exist and how can they be handled?

The answers are found in sections 2.3.1 (for academic file system definitions) and 3.1 for practical mod-
els. Section 3.1 also discusses how to handle incompatibilities, providing guidance to researchers and
developers of file synchronizers.

The following sections discuss short-comings in related file synchronizer works regarding the file system
and operations model.

2.3.1 File system specifications

When reviewing related works we found that the degree of formalism varies strongly. Some works don’t
provide any file system specification [CJ05; EYL13], some [Bao+11; Li+12a; LKT05; Mol+03; TSR15;
UFB10; Bjø07] only provide a partial description, e.g. of their internal state database records or oper-
ations, and some synchronizers [BP98; NS16; RC01; Csi16] formally specify a file system (includings its
operations and invariants). There are considerable differences in the specifications13, which affects how
the synchronizers work internally. By comparing the file system models used in related works, we found
the following characteristics:

• Identity- vs. path-based model: as discussed in [TSR15, section 3] the file system and its operations
can be modeled using the identity-based approach where each object is identified by a unique ID,
or by a path-based approach (“namespace-based” in [TSR15]) where objects are only identified by
their path. ID-based approaches include [TSR15; Bao+11; Li+12a; Li+12b; LKT05; Mol+03; Bjø07],
for path-based approaches, see [BP98; NS16; Csi16; TH10].

• Hardlink14 support for files: a file system may support that a specific file is linked into multiple
directories (the name of each link may vary), or is linked multiple times under different name
into a specific directory. This typically affects only files, not directories, because that would allow
to form cyclic namespaces. File systems without hardlink support only allow each file and dir to
be linked once, which allows a diff algorithm to detect unambiguous move operations. For file
systems with hardlink support move operations can still be detected, but only for directories. For
files we instead have the link and unlink operation, and move operations become ambiguous
once the before state or after state link count for a file is different than 1.

• Directory support: while all file systems we encountered support directories (as otherwise they
would not be hierarchical), some file synchronizers limit the support for directories. In [Qia04,
Definition 2.3.1 + section 2.4.4] the authors model their file system as a set consisting only of file
paths and their identities. The Git VCS [TH10] does include directories as tree objects in its internal
commit files, but does not support empty directories. Although dropping support for directories
reduces the complexity of the synchronization algorithm, it also reduces the efficiency and in-
tention preservation15. We assume that for this reason the majority of synchronizers do support
directories.

13We note that modeling file systems is far from trivial once all its features (such as permissions and concurrency) are consid-
ered [Ntz16]. Many real-world specifications such as POSIX have only informal definitions and works exist [Rid+15] that iteratively
extract a formal model from existing file system implementations.

14We do not cover soft or symbolic links because they do not influence the file system model. They are separate files (with their
own identity) which the file system APIs can treat in a specific way (following them).

15If the user renames or moves a directory that contains sub-files, this causes the synchronizer to instead apply move opera-
tions to the other replica for each sub-file separately. This is neither efficient nor do the operation-intentions of the two replicas
match.
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Category Short-
hand

Description Related works

Directory
support, but
no hardlink
support

NH-MD Full support of operations: create,
edit, move, delete.

[LKT05], [Bao+11],
[Bjø07], our work

NH-M Supports create, edit, move. The
delete operation becomes a move

to a garbage directory.

[Mol+03]

NH-D Supports create, edit, delete.
Move becomes a sequence of

delete + create.

[BP98], [Li+12a; Li+12b],
[RC01; Csi16]

NH-RD Supports create, edit, rename,
delete. Rename operations do not

change the object’s parent
directory. Move operations that

do change the object’s parent
directory become a sequence of

delete + create.

[NS16]

Directory
support,

with
hardlink
support

H-All Supports edit, link, unlink, move.
Move exists only for directories.
Unlink of the last instance of an

object represents the delete
operation. Link represents create.

[TSR15]

No (empty)
directory
support

NED-All Supports createfile, edit,
deletefile, movefile.

Git [TH10], [Qia04,
Definition 2.3.1 + section

2.4.4]

Table 2.1: Operation support of file synchronizers

Overview of hardlinks, directory and operations supported by related works. Note that additional
file system interpretations are possible (e.g. NED-D, where move is modeled as delete+create), but
we found no corresponding works using those interpretations.

• Operation support: while all file synchronizers we found support create and edit operations, sup-
port for other operations varies.

Table 2.1 presents an overview of the above characteristics. If an implementation wants to detect move
or rename operations, approaches that compute operations from state should use an identity-based
model, because path-based models do not allow to reliably detect moved objects. Operation-based ap-
proaches such as [Mol+03; NS16] can be based on either identity-based or path-based models, because
the implementation is sure to know the exact order of operations.

Aside from the large diversity of definitions we found that most works fail to mention on which file
system their implementation is actually executed. It is often unclear whether the authors implemented
their own file system from scratch, use an abstraction layer on top of an existing file system, or whether
the implementation operates on an existing real-world file system directly (e.g. ext3, NTFS, etc.).

Finally, we note that the choice of a file system model influences the set of conflicts that exist for the
chosen model. We examine this effect more closely in section 5.6 on page 91, after having discussed the
concept of conflicts.
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2.3.2 Real-world file system operation logs

We found that approaches based on operation logs (such as [NS16; Mol+03]) do not discuss how this log
is obtained. Our conclusion is that a complete log of file system operations can only be obtained when
the information is either provided by the user, or when the synchronizer is tightly integrated into the file
system implementation, e.g. by hooking into the file system implementation, or writing the file system
from scratch. We back this observation in chapter 4 where we investigate the capabilities of obtaining
a complete log from the most wide-spread end-user file systems on Windows and macOS computers.
We find that without extending the file system implementation in some way, any solution is best-efforts,
i.e., the complete log cannot be obtained in all scenarios, and the synchronizer needs to fall back to
computing operations from state.

2.4 File synchronizers

This section presents selected file synchronizer works. Our overview excludes the following two related
areas:

• Systems that distribute files on multiple cloud-storage backends, see e.g. [Han+16; Tan+15;
Cel+16]. The core contribution of these works is the distribution aspect.

• Papers related to (remote) file synchronization, see [SM02]. This research topic discusses how a
specific file which exists on two remote sites can be efficiently transferred, s.t. after the transfer
both sites have the same file content, without transmitting the whole file.

An overview of the related works is presented in table 2.2 . After explaining the basic differences of state-
and operation-based approaches in section 2.4.1 we briefly describe each work, presenting state-based
approaches in section 2.4.2 and operation-based ones in section 2.4.3. Details regarding conflict detec-
tion and resolution are deferred to chapter 5, where we analyze the approaches of related work in sec-
tion 5.1 and propose solutions. In summary the analysis exhibits several shortcomings in related works,
such as inadequate formalism, lack of rationale regarding conflict resolution approaches, or missing
discussions how to resolve situations where several conflicts apply to one specific file at once. For this
reason the third research question considers different conflict-related aspects:

RQ3 - Conflicts: What sets of operations applied to two disconnected file systems are conflicting? How
do conflicts depend on the file system model? Can multiple conflicts be combined? What are possible
solutions for resolving individual conflicts and conflict combinations? Which conflicts are relevant in
practice? How can conflicts be explained to the user?

Answers are provided in chapter 5.

2.4.1 State- vs. operation-based approaches

This section presents the basic differences between state- and operation-based approaches for file syn-
chronizers. Figure 2.3 provides an overview for a two-replica scenario.

For operation-based approaches the concept we discussed in section 2.2.2.2 for generic data synchroniz-
ers also applies to file synchronizers. The file synchronizer’s merge algorithm is given a list of operations
and uses only this operation list for the reconciliation of updates and equalizing the replica’s states. The
operation lists may have been retrieved from the file system directly, or may have been deduced by a
preprocessing step that compares the current file system state to a previous state.

The merge algorithm of state-based approaches uses structures derived from the state of the synchro-
nized replicas, although some works also describe the additional use of computed operations from state
deltas. As presented in the seminal work [BP98], most state-based file synchronizers use a three-stage
process that consists of update detection, reconciliation and propagation stage. During update detec-
tion, which is performed for each replica separately, the differences between the state of the previous
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[BP98] [LKT05] [Bjø07] [UFB10]

Directionality Bi-directional Bi-directional Uni-directional N-directional

Coupling Loose Loose Loose Loose

Merge approach Analysis of

dirtyness

predicate

Variant of 3wm Unclear Unclear

Communication

architecture

Client/Server Client/Server Peer-to-peer Peer-to-peer via

dynamically elected

master

Consistency

algorithm data

State State State Operations computed

from state

Conflict

resolution

Manual Semi-Automatic

(depends on

operation)

Automatic Manual, Automatic

Transferred data State State Unclear (State?) State

ID/Path-based

file system model

Path-based ID-based ID-based Path-based

[Bao+11] [CJ05] [Li+12a; Li+12b] [RC01; Csi16]

Directionality Uni-directional Uni-directional Uni-directional N-directional

Coupling Loose Loose Loose Loose

Merge approach Unclear Vector time pairs Version vectors Command algebra

Communication

architecture

Client/Server Peer-to-peer Client/Server Unclear

Consistency

algorithm data

Operations

computed from

state / logged on

server)

State Operations

computed from

state

Operations

Conflict

resolution

Automatic Manual Automatic Manual

Transferred data Operations Operations Operations Operations

ID/Path-based

file system model

ID-based Unclear ID-based Path-based

[Mol+03] [NS16] [TSR15] [Naj16]

Directionality Uni-directional Uni-directional Uni-directional Unclear

Coupling Loose Unclear Unclear (Loose?) Unclear

Merge approach Operational

Transformation

Operational

Transformation

State-based CRDTs Synchronization

phase for move

operations, CRDTs for

all other operations

Communication

architecture

Client/Server Client/Server Peer-to-peer Unclear

Consistency

algorithm data

Operations Operations State Unclear (State?)

Conflict

resolution

Automatic Automatic Automatic Automatic

Transferred data Operations Operations State Unclear

ID/Path-based

file system model

ID-based Path-based ID-based ID-based

Table 2.2: Overview of file synchronizers
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Replica/X Replica/Y

1./Get/operation/log

File/system

3./Merge

File/system

create('f',/2content2)
move('f','test/g')
deletedir('test')
...

2./Transmit

Operation/log

(a) Operation-based

Replica3X

1.3Get3current3state

File3system

2.3Transmit

State

id333name333lastmod

...333...3333333333...

...333...3333333333...

id333name333lastmod

...333...3333333333...

...333...3333333333...

Replica3Y

Update
Detection

File3systemPrevious3state

Reconciliation Propagation

3.3Merge

(b) State-based

Figure 2.3: Overview of state- vs. operation-based file synchronizers (2-replica scenario)

synchronization and the replica’s current state are determined. The reconciliation stage uses the avail-
able states and the detected updates to schedule a list of operations that eliminate the divergences of all
replicas, including conflict detection. Finally, the propagation stage executes these operations.

Some state-based approaches, such as three-way merging discussed in section 2.2.2.1, allow the syn-
chronizer to build a merged state (during reconciation) and then atomically replace each replica’s di-
verged state with the merged state (during propagation). However, this is typically not possible for file
systems. Modifying file systems is expensive. Atomically replacing a replica with 30’000 files with an-
other state that consists of, say, 32’000 files is typically not supported. Consequently a state-based syn-
chronizer needs to manipulate each diverged replica in incremental steps, using the available file system
operations. This is challenging because states (and operations computed from state deltas) do not indi-
cate the order of operations. An example is shown in figure 2.4. Most works we present in section 2.4.2
ignore this detail. Only the authors of [RC01; Csi16] discuss it, but their work is limited to a file system
that does not support move operations, whose support is, however, very desirable. For this reason our
second research question is:

RQ2 - Operation order: As operations detected during state-based update detection lack order, but not
all operations are commutative, how can a valid order be detected and propagated by a synchronizer?
This question was already answered for file system models which do not support move operations, but
remains open for file systems which do support them.

We answer this question in section 4.2 on page 47.

2.4.2 State-based approaches

[BP98] is among the most-cited works for file synchronizers. Additional details are available in a tech
report, see [PV04] and an unfinished manuscript [JPV02]. Its algorithm is implemented in Unison, a
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user-level program available to end users16. Unison synchronizes two replicas upon the user’s request.
The authors formally specify their file system model, but they don’t mention operations explicitly. Their
model is path-based and excludes multiple hard-links, or symbolic links. Their algorithm consists of
the three stages update detection, reconciliation and propagation, which is a typical approach for many
bi-directional file synchronizers. In the update detection stage, both update detectors (one for the lo-
cal, one for the remote replica) collect the current state of the file system, consisting of a set of paths
with associated meta-data, such as the inode and the last-modified timestamp. The current state is
compared against an archive version taken from the most recently completed synchronization, to com-
pute a dirtyness-predicate, an upward-closed boolean function that returns true for a path that has
changed17 between the archived and current state, false otherwise. The reconciliation stage is given the
both replica’s dirtyness-predicates, computes a list of all non-conflicting changes and finds conflicting
ones, which are presented to the user for resolution. Finally, the propagation stage executes the changes
determined during reconciliation, to achieve convergence among both replicas. Unison is known to
work on end-user file systems on Windows, macOS and Linux. Its main limitations are (1) the assump-
tion that the file system is not changed by the user during any of the three stages, and (2) file system
objects have no identity, s.t. a move operation is not detected but instead synchronized via a delete +
create operation.

[LKT05] also performs a pair-wise synchronization of two replicas. The authors approach the task by
representing the scanned file system hierarchy as an XML document. The XML elements contain a glob-
ally unique ID (GUID) for each object18, but the authors don’t provide any further formalization of the
file system or its operations. Using a persisted base document T0 (from the last successful synchroniza-
tion) and the current documents T1,T2 from each replica they apply their own tree-based three-way
merge algorithm 3dm [Lin04] to compute the merged tree Tm that represents the final outcome, includ-
ing the resolution of conflicts. To make both replicas consistent their algorithm finally iterates over Tm ’s
nodes and compares them to the ones of T1 and T2 respectively to determine the necessary create, move
and delete operations required to achieve consistency19. Their work additionally contributes a method
to speed up the repeated scanning of the replica’s file system hierarchy. Their approach is called bub-
bling modification timestamps (BMT). They hook into the Linux file system API functionality, such that
whenever a file is modified, their hook updates the last-modified timestamp of not only the immediate
parent directory, but all ancestor directories. When subsequently scanning a directory (to obtain T1 or

16Available at http://www.cis.upenn.edu/~bcpierce/unison/, retrieved July 21, 2019.
17The specific change could be the creation of a new object, a change in an existing object, or the deletion of an existing object.

In case an object is moved, both its source and destination paths are marked dirty.
18The paper mentions the usage of UNIX inodes to uniquely identify file system objects, which does not make sense because

inodes are system-dependent, i.e., not globally unique. We can only assume that the implementation maintains a 1:1 mapping for
each object’s inode to the corresponding GUID.

19Missing from this list of operations is the update operation (i.e., updated files) which their algorithm deals with in a final step
after all other operations are executed.
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Operations:

2. deletedir('A')
1. move('A/c', 'B/c')

Figure 2.4: Example for non-commutative operation order

Applying the two operations move(’A/c’, ’B/c’), deletedir(’A’) detected in one replica to the other
replica is not trivial. Choosing the wrong order, i.e., first deleting “A”, would also delete “A/c” on
the other replica, causing replica states to diverge.

http://www.cis.upenn.edu/~bcpierce/unison/
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T2) their algorithm can then check whether the last-modified timestamp from T0 matches the one from
the scan, in which case it can skip recursively scanning that directory.

In [Bjø07] Microsoft’s distributed NTFS file system, DFS-R for Windows Server, is presented. Their ap-
proach synchronizes N replicas, arranged in an arbitrary (peer-to-peer) topology. Their state-based
approach is divided into two synchronization phases, a local and a global one, which take turns. The
local synchronization synchronizes a directory on a NTFS disk with a machine’s local database. Details
of local synchronization are not discussed by the authors. They also do not describe the (NTFS) file
system or its operations formally, but mention that they support create, delete, rename (which includes
move) and file-update as operations, and the file system to resemble an arborescence where each node
is uniquely identified by a local ID (c.f. inode) and appears exactly once. The database, however, is for-
mally described. It contains version vectors and globally unique IDs (as well as the local IDs) for each
object. Deleted objects remain in the database, with a tombstone-flag. A garbage-collection mecha-
nism that reclaims tombstones is also briefly discussed. The global synchronization, which is briefly
discussed, then synchronizes the databases of two machines at a time, using version vector information
to properly detect concurrent (conflict) changes.

In [UFB10] the authors also present an approach suitable for an environment where the goal is to achieve
efficient synchronization of N replicas, where the devices on which the replicas reside only provide
ad-hoc connectivity via a (wireless) local area network. A common approach is cloud-based file synchro-
nization [Zha+14] such as Dropbox, which is a pair-wise synchronization between a replica and a server,
over the Internet. The authors want to avoid downsides of cloud-based file synchronization, such as
poor performance due to slow upload bandwidths, costs, security and privacy concerns, by keeping the
content of files only on the devices, transmitting the content only within the local area network. When-
ever multiple devices which are concurrently connected to the local network and the Internet want to
synchronize, they connect to a cloud service. This service stores only the meta-data of the synchro-
nized objects and is in charge of coordinating the synchronization process. It chooses one device to act
as master, which then performs two rounds of pair-wise synchronizations with all other local devices
which are currently online. After the first round, the master is sure to have collected the changes of all
replicas, which it then distributes to all other replicas during the second round. This work does not pro-
vide sufficient detail to fully understand the pair-wise synchronization protocol. Neither the file system
model nor the operations are modeled formally. The update detection stage seems to compute the set of
operations from the archived and the current state of a replica. It is unclear whether the states (and com-
puted operations) use unique IDs or paths. It is also unclear how the reconciliation stage determines the
list of operations and how they are propagated.

[Bao+11] present a cloud-based file synchronization approach with an architecture similar to Dropbox.
Consistency is achieved by clients performing a pair-wise synchronization of their file system with a
central server. While clients communicate with a single end-point using a HTTP-REST interface, in the
cloud the load is distributed among a control server (providing the REST interface), meta-data server and
storage server. The authors specify their ID-based internal database record structure of the file system
state, but they don’t formalize the file system or its operations. Their synchronization protocol achieves
bi-directional synchronization by two consecutive uni-directional synchronizations. In the upstream
synchronization the client regularly scans its file system and detects operations. Since the authors don’t
explicitly explain the process, we assume that the client stores a persistent snapshot of the file system’s
state locally and computes a difference of the persistent snapshot and the current scan to derive the list
of operations. The client sends the list of operations to the control server (including payload in case
of created or modified files), which performs the reconciliation, updating both the storage- and meta-
data server. The latter keeps a historic log of operations of all users. The downstream synchronization is
achieved by clients regularly querying the control server, requesting the list of operations that happened
since the previous query. The client provides a timestamp in this query and the server serves the log of
operations (again, including file payloads) that the client then merges.

In [CJ05] the authors introduce synchronization using vector time pairs. Their algorithm internally uses
two (instead of one) version vectors, which fixes several of short-comings of version vectors, like the
inability to record conflict resolutions or the necessity for global consensus to garbage-collect deletion
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notices. The work presents how the algorithm works for synchronizing the modifications of individual
files. Whenever a file’s content has changed20 the corresponding logical clock entry is increased by one
in the respective vectors. The authors don’t formally specify their file system model or its operations. Al-
though the work presents pseudo-code for the synchronization of directories, it is unclear how files and
directories of two replicas are associated with each other. We assume that their approach is path-based
where files and directories have no identity, because move or rename operations are not mentioned at
any point. The authors make a Linux implementation available21 which appears to work on existing,
real-world file systems.

Another cloud-based file synchronization approach (similar to [Bao+11]) is presented in [Li+12a;
Li+12b]. The authors specify their ID-based internal database record structure of the file system state,
but they don’t formalize the file system or its operations. Even though files and directories are modeled
on IDs, they propagate move operations as delete + create operations. The basic synchronization is done
in two phases, where each phase reflects a uni-directional synchronization: In phase 1 (client-to-server)
the client sends locally detected operations to server. The server checks for conflicts, if any exist, none
of the operations are executed but the conflicts are returned to the client. The client then converts the
conflicting operations to resolve the conflicts and then retransmits the operations to the server, until no
more conflicts are reported. Then the server applies the client’s operations. In phase 2 the client receives
the list of updates from server. If there are local conflicts, the client first transforms the operations and
sends them to the server (the cycle from phase 1 is applied again). When there are no conflicts anymore,
all server updates are applied on the client.

In [TSR15] the authors use state-based CRDTs for file system synchronization. They formally specify
their file system model, but don’t mention operations explicitly. Their model is ID-based and supports
multiple hard-links for files. Their work describes conflicts and their automatic resolution in detail on
a conceptual level, but omits the intricate details of their implementation as state-based CRDT due to
space constraints.

In the thesis [Naj16] (and the later paper [NSE18]) a lot of theoretical work was done using CRDTs on var-
ious applications, including file systems. The authors formally specify a file system including its opera-
tions and their pre- and post-conditions in first order logic. They use CRDT sets to store the file system
state and design the merge function to solve different conflicts that can occur. Using CISE [Got+16], an
SMT-based solver, they find that it is not possible to use CRDTs to build a fully asynchronous file system
(where all file system operations can be executed asynchronously). The reason is that move operations
(of directories, for which only one path or link may exist at a time) executed concurrently in different
replicas can break the invariant of a file system. The invariant dictates that file systems always form
an arborescence from graph theory. When directory X is moved to Y in one replica but X is moved to
Z in the other (or when X is moved into Y in one replica and Y into X in the other) then the invariant is
violated22. To solve this problem, the authors then specify a mostly asynchronous file system, which is
a hybrid approach where move operations affecting directories have to be synchronized, while all other
operations can be dealt with by CRDTs. This model was verified to be provably correct using CISE. As
the approach was not actually implemented, various characteristics such as coupling, topology, direc-
tionality and others are unknown.

2.4.3 Operation-based approaches

In [RC01] and the follow-up work [Csi16] the authors formally model their path-based file system and
present a formal algebra of commands for the different file system operations. To reduce the complexity
of the problem, the move operation is replaced by delete+create. The authors provide a table of algebraic
laws which explore various properties of the commands, such as commutativity. Their synchronization
algorithm follows the general paradigm of [BP98]. First, all replicas determine their list of commands

20Deletions also count as modification.
21See https://swtch.com/tra/, retrieved July 21, 2019.
22In [TSR15] the authors work around the issue by translating two conflicting move operations into creating two copies of the

directory, including all its children.

https://swtch.com/tra/
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(operations) by computing the difference of their previous and current file system state. The updates
are sent to one chosen replica which performs reconciliation, including conflict detection. The notable
difference to [BP98] is that the number of participating replicas is n ≥ 2 (not forced to n = 2). Non-
conflicting updates are propagated, while conflicting ones need to be solved by the user. The work does
not discuss implementation details, such as propagation.

The following two works apply Operational Transformation to file systems. [Mol+03] is the first work
to our knowledge. They use SOCT4 [Vid+00] as control algorithm. The authors don’t specify their file
system model but provide a semi-formal definition of the operations (create files or directories, move
objects, deletion is modeled as a move operation of the object into a garbage directory), which are based
on IDs instead of paths. When files are text or XML files the OT algorithm can be applied to propagate
changes to other replicas or merge conflicting updates. The synchronizer was developed as part of the
LibreSource collaboration platform23. The implementation is a command-line tool with commands24

similar to SCM tools such as SVN or Git. In [Mol+03] the authors don’t discuss update detection, but
examining the workflow in LibreSource’s manual reveals that operations are computed by diffing states.
One issue in this work is that the transformation functions are provably wrong [NS16] because the au-
thor’s definition of the move operation misses the pre-condition that states that the path of the parent
directory of the destination may not begin with the source path25. This allows for concurrent changes
to become unsynchronizable.

[NS16] is a more recent OT-based work using the COT [SS09] control algorithm. The authors provide
a formal specification of their file system as a graph. They also specify the operations that create or
delete files or directories, update file contents or rename objects. Move operations that move an ob-
ject to another parent directory are not supported and are replaced by create + delete operations. Their
file system model is path-based. The provided OT transformation functions, apart from dealing with
conflicting and non-conflicting operations, also handle issues such as the adaptation of paths in case
directories are renamed on a specific replica26. Although the work mentions a prototype implementa-
tion, it is unclear how operations (updates) are detected and how their implementation is coupled to
existing file system implementations.

2.4.4 Summary

Of the 12 surveyed systems, three are operation-based and nine are state-based, indicating that state-
based systems are more common. While the merge approach of operation-based works is either OT-
or CRDT-based, the merge algorithm of each state-based work differs, and is sometimes not explained
at all, see [Bjø07; UFB10; Bao+11]. The merge algorithms vary because the data foundation, the file
system model, is defined differently, and because some synchronizers desire certain characteristics such
as peer-to-peer synchronization. Our survey provides us with an understanding of the challenges and
trade-offs made in the presented works. With these findings we selected a suitable merge algorithm for
our implementation. Details of our decisions are found in section 2.6.

2.5 Related fields and technologies

2.5.1 Version Control Systems

Version control systems (VCS) are software systems that manage and document changes to artifacts,
such as source code or other kinds of files. Different variants exist, e.g. centralized client/server sys-
tems like Concurrent Versions System (CVS) or Subversion (SVN), and decentralized systems such as Git.

23http://dev.libresource.org, retrieved July 21, 2019.
24See http://dev.libresource.org/home/doc/so6-user-manual/manuals/commandline.html and http://dev.

libresource.org/home/doc/so6-user-manual/manuals/reference/commands.html, retrieved July 21, 2019.
25For example, Move(“A”, “A/x”) must fail.
26For instance, if an already synchronized directory “x” is renamed to “y” by one device, while on another device the user

creates a new object at “x/z”, the create-path is adapted to “y/z”.

http://dev.libresource.org
http://dev.libresource.org/home/doc/so6-user-manual/manuals/commandline.html
http://dev.libresource.org/home/doc/so6-user-manual/manuals/reference/commands.html
http://dev.libresource.org/home/doc/so6-user-manual/manuals/reference/commands.html
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Each user has a local replica of the entire data set. It is divided into a workspace directory (which re-
sides on the normal file system, representing a specific revision or commit) and a proprietary database
that stores a complete history of all files and their versions, tracing their creation, deletion and content
modification over time. Thus, VCSs are optimistically replicated systems, because users can work freely
on their workspace copy in isolation. The synchronization process is triggered manually by the user, by
pulling new changes from the server, merging those with the user’s own changes. Most systems support
automatic, syntactic merging of text files using three-way merging (see section 2.2.2.1). They are often
deployed in software development and other text-data-focused environments. While file systems (and
file synchronizers working on those) only store the latest version of each object (such that after deleting
a file it is typically lost), the monotonically growing database of a VCS, which may consume an excessive
amount of disk space over time, is considered a feature.

2.5.2 Techniques for detecting causality and concurrency

When optimistically replicated systems exchange updates, various techniques exist to detect conflict-
ing vs. non-conflicting updates and how to merge them. When a system allows replicas to be arranged
in an arbitrary topology (e.g. peer-to-peer), the update detection (and merging) mechanisms need to
be able to detect whether any two updates are truly conflicting, i.e., it has to reject false conflicts that
arise because updates were received out-of-order. This requires knowledge about causality, i.e., which
updates precede others. Attaching a single time stamp to updates ui , such as a real-time clock value or
even Lamport’s logical clock [Lam78] is not sufficient, because t i mest amp(u1) > t i mest amp(u2) does
not imply that u2 causally precedes u1 [SM94]. Numerous approaches exist to determine causality from
attaching meta-data to transmitted operations or state, each with different advantages and disadvan-
tages. Examples include Version Vectors [Par+83] (and derivative works such as Concise version vectors
[MT07]), Vector clocks [Mat+89], Interval Tree Clocks [ABF08], Vector time pairs [CJ05], Hash histories
[KWK03] and many others.

We note that the file synchronizer we are building in this work does not require above mechanisms, for
there are only two replicas being synchronized. We use a star topology with one server and many clients.
The merge procedure run in the client is unaware of the identity of other clients. Instead, the updates
detected in the server replica are a serialization of the updates of all other clients. Because we use state-
based differencing, each artifact can only be affected by a specific type of update at most once (e.g. a file
can be detected as moved only 0 or 1 times). Thus, causality is implied and does not need to be explicitly
recorded.

2.5.3 Distributed File Systems

A distributed file system (DFS) is defined as a system that allows different (several) machines to share
a common filesystem [LS90]. DFSs such as AFS [Mor+86] and its descendant Coda [Sat+90], Locus
[Wal+83] and descendants such as Rumor [Guy+99] and Ficus [Rei+94] store large amounts of data,
structured in a hierarchical name space, distributed among multiple servers. To users who are con-
nected to one or more servers accessing the namespace is done transparently, i.e., clients (and users) are
unaware of the distribution and actual server topology. Typically support for this kind of transparency
is integrated into the client’s operating system kernel. The goal is not that client machines like desktop
workstations have a complete replica of the data, since they aren’t considered to be fault tolerant nor are
their disks large enough [Sat+90]. Some works offer caching functionality to clients on which they can
operate, but DFSs typically consider such modes of disconnected operations to be undesired. Therefore,
synchronization plays a role not so much between client and server, but between servers. Servers run
special, homogeneous DFS-software with tight coupling between the physical file system on the server
and the DFS, making it possible to lock the DFS during synchronization. In conclusion, DFSs differ from
typical file synchronizers because: (a) they don’t necessarily fully replicate the data on the clients, (b)
they are not fully optimistic in disconnected mode (between client and server), and (c) the client OS is
extended on kernel or driver level.
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2.5.4 Distributed databases

Database systems, such as relational databases or NoSQL key-value stores, also benefit from optimistic
replication and thus need to handle concurrent updates and resulting conflicts. Because the data model
and set of operations is typically limited to rows and columns (relational) or keys (NoSQL) with insert,
delete and update operations, the set of conflicts is smaller than for file systems. However, in practice
complexity is large, because databases have many additional operations, such as index-operations or
transactions, which complicate concurrency issues.

Industrial and academic systems are divided into two camps, where one focuses on applications that
require strong consistency (here database engines attempt to maximize performance/scalability), while
the other foregoes strong consistency for availability (CP vs. AP, see CAP theorem, section 2.1.2).
Database systems favoring consistency provide replication mechanisms that either use a multi-master27

approach with pessimistic concurrency control (e.g. Two-Phase Commit), or use a single master that op-
timistically (i.e., asynchronously) replicates data to multiple slaves. To improve scalability techniques
such as sharding28 are applied. Examples for these kinds of systems are MySQL29, MongoDB30 and
Postgres-R [KA10]. In the field of traditional relation databases there are also exceptions, such as Or-
acle31 which offers optimistic, multi-master replication. However, Oracle’s conflict resolution is best
efforts, without guarantee for convergence. If conflicts occur that cannot be automatically resolved, it is
the job of the database administrators to resolve them (man-made consistency). Aside from relational
systems, several NoSQL key-value stores have emerged which are specifically designed for optimistic
replication, such as Riak [Bas18] (based on CRDTs), CouchDB32, Amazon Dynamo [DeC+07] and Cas-
sandra [LM10]. These systems use variants of causal histories or version vectors (see section 2.5.2) to
detect concurrent, conflicting updates. Conflict resolution either happens within the database engine,
or is delegated to the application. In the former case, only simplistic resolution options are available,
such as Last-writer wins (LWW), where each update is assigned a timestamp and the update with larger
timestamp wins [JT75]. In the latter case the database stores multiple conflicting versions and defers
conflict resolution to the application. For instance, the read operation may indicate that there are mul-
tiple conflicting versions to the first client that reads data. The client can then solve the conflict, with or
without involving the user.

2.5.5 SyncML / OMA DS

SyncML (Sync Markup Language, known as OMA DS33 since 2002, Open Mobile Alliance Data Synchro-
nization) is an open standard for data synchronization. It specifies both the syntax and protocol for a
pair-wise synchronization of several types of data-collections between a client and a server. While orig-
inally designed to synchronize a mobile device with a server, OMA DS is nowadays also used for other
kinds of devices, such as desktop PCs. Different synchronization types are supported, e.g. two-way
or one-way synchronization, as well as various data types such as email, contacts, calendars, etc. The
OMA DS protocol specifies how to uniquely identify data objects and how to detect which objects need
to be transferred (via synchronization anchors). The synchronization is triggered by a client, sending
its changes to the server and requesting changes that happened on the server. Conflict detection and
resolution is done on the server, but OMA DS does not specify any particular approach.

While synchronization of files and folders is possible since version OMA DS 1.234 the support is optional

27Master nodes are allowed to perform write operations, slaves only read operations.
28In simplified terms, sharding in a relational database refers to storing some rows (data objects) in one master node, and

some other rows in another master node. Thus, there are multiple master using asynchronous replication, but they are in charge
of different data ranges, which avoids conflicts.

29See https://dev.mysql.com/doc/refman/8.0/en/replication.html, retrieved July 21, 2019.
30See https://docs.mongodb.com/manual/replication/, retrieved July 21, 2019.
31See “Oracle Advanced Replication” https://docs.oracle.com/cd/E18283_01/server.112/e10706/toc.htm, re-

trieved July 21, 2019.
32See http://docs.couchdb.org/en/stable/replication/index.html, retrieved July 21, 2019.
33See http://www.openmobilealliance.org/wp/ for further details, retrieved July 21, 2019.
34See sections 6.10.3 and 6.11 of http://www.openmobilealliance.org/release/DS/V1_2_2-20090319-A/

https://dev.mysql.com/doc/refman/8.0/en/replication.html
https://docs.mongodb.com/manual/replication/
https://docs.oracle.com/cd/E18283_01/server.112/e10706/toc.htm
http://docs.couchdb.org/en/stable/replication/index.html
http://www.openmobilealliance.org/wp/
http://www.openmobilealliance.org/release/DS/V1_2_2-20090319-A/OMA-TS-DS_Protocol-V1_2_2-20090319-A.pdf
http://www.openmobilealliance.org/release/DS/V1_2_2-20090319-A/OMA-TS-DS_Protocol-V1_2_2-20090319-A.pdf
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Figure 2.5: Characteristics chosen for our work

and only offered by few client and server implementations35. Just like with any other data type, file data
is embedded into the XML-encoded messages, using approaches such as base64, which adds ∼ 1

3 of the
file size. The size of each SyncML message is also limited (to avoid that parsing of a, say, 100 MB XML file
becomes problematic due to memory limitations), typically to 10s or 100s of kilobytes. Consequently,
larger files are split into a potentially large number of messages, which leads to a slower, inefficient
synchronization.

2.6 Conclusion

The goal of this thesis is to build a file synchronizer for end-users that can synchronize a variety of stor-
age systems without the need to modify their code-base. From our related work analysis we now con-

OMA-TS-DS_Protocol-V1_2_2-20090319-A.pdf, as well as http://www.openmobilealliance.org/release/DS/V1_
2_2-20090319-A/OMA-TS-DS_DataObjFile-V1_2_2-20090319-A.pdf and http://www.openmobilealliance.org/
release/DS/V1_2_2-20090319-A/OMA-TS-DS_DataObjFolder-V1_2_2-20090319-A.pdf, retrieved July 21, 2019.

35See “Files” column of implementation tables on https://en.wikipedia.org/wiki/SyncML, retrieved July 21, 2019.
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2.6. CONCLUSION 27

clude which trait our synchronizer should have for each of the characteristics we built in section 2.2.1.
An overview is shown in figure 2.5.

• Directionality: we choose a bi-directional approach, because it avoids issues of uni-directional
approaches discussed in subsection 2.2.1.1, and because it fits well to using the star communica-
tion topology (see below).

• Heterogeneity: as per our requirement, the synchronizer we build is a heterogeneous synchro-
nizer that transforms implementation-specific file system models into a slightly different, internal
model that is compatible with several specific models.

• Consistency algorithm data: We adopt the approach of related work such as [UFB10; Bao+11;
Li+12a; Li+12b]. They use state together with a computed list of operations determined from com-
paring a cached state with the currently determined state of the file system. As chapter 4 will show,
the state-based approach is more feasible in practice, because operation logs are not available on
many real-world storage systems, and because well-understood mechanisms such as three-way-
merge can be used. From the seminal work of [BP98] we adopt the generic three-stage processing
pipeline: update-detection, reconciliation and propagation.

• Communication topology: the goal is to support synchronization for a large number (that is, two
or more) of replicas/users. We choose the star topology (over peer-to-peer) with a central replica
for multiple reasons:

– Pair-wise synchronization between a client and a central replica is typically easier to imple-
ment than peer-to-peer based approaches. For instance, the synchronizer does not need to
implement membership management, as this is already offered by the storage system APIs
if necessary36. Also, peer-to-peer approaches have to establish causality between updates,
e.g. using version vectors (or similar mechanisms as discussed in section 2.5.2), dealing with
modifying these vectors in case new members are added.

– Peer-to-peer systems require maintenance of additional meta-data about files and directo-
ries (e.g. version vectors), which consume storage space.

– With the increased popularity and availability of cloud storage, average users are now well
familiar with setting up a pair-wise synchronization between their local disk and a cloud
storage. Setting up pair-wise synchronization requires less expertise than setting up peer-to-
peer systems.

– The central replica resides on a highly reliable server that is always online (assuming network
connectivity). This allows two devices A and B to synchronize their changes even when they
are not online at the same time. In contrast, even peer-to-peer systems that support epi-
demic propagation where device A can get its changes to device B via device C, require that
such a device (C) must have been online and connected to A and B coincidentally during the
synchronization of A <-> C and B <-> C.

• Coupling: our synchronizer has a loose coupling to the file system, because it is a heterogeneous
synchronizer. The file system is not aware of its synchronization.

• Transferred data: we use a hybrid approach. As will be shown in section 4.2.1, all storage sys-
tems provide transferring state information. However, always requesting and transferring state
is expensive. Therefore we use online or offline change detection for those storage systems that
support it.

• Invocation: we prefer the continuous mode over discrete checkpointing because it resembles a
“set it and forget it” approach suitable for end-users. This is also the prevalent mode in today’s
industrial file synchronizers.

36For example, a WebDAV-based file system offered by ownCloud would require the user to authenticate over HTTP’s au-
thentication mechanism. The backend providing the WebDAV API, here: ownCloud, already provides membership management
functionality, such as registration.
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• Conflict resolution: we choose automatic over manual resolution because it is in line with the au-
tomatic invocation, and because automatic resolution saves time and effort in case the resolution
was appropriate. We refer to chapter 5 on page 65 for more details.

• Model of file system state and operations: as shown in section 2.3 on page 14 there are a number
of choices to make for a file system model used internally by a file synchronizer. As chapter 3 will
show, we will choose a model where objects are unique identified by an ID, are linked into exactly
one parent directory with one name, supporting the operations create, delete, update and move.

The next chapter will further clarify why our choice for the file system state and operations model is
suitable.
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Chapter 3

File systems - analysis and definition

In section 2.2.1.6 we provided a general introduction to heterogeneity. In this chapter we take a closer
look at heterogeneity in the context of file systems. Just like many other industrial file synchronizers, we
aim to build a synchronizer that supports the file system APIs of popular end-user operating systems it
runs on, as well as the APIs of popular remote file systems, maximizing practical use. This enables users
to continue using existing file systems, without the (expensive) migration to a homogeneous system.
The disadvantage of such a file system agnostic approach is that we need to build an internal file system
model used in the synchronizer that is as compatible as possible with every file system the synchronizer
aims to support. This is challenging because no two file systems are exactly equal.

We start in section 3.1 where we analyze file system capabilities relevant to file synchronizers. We use
the term capability for a specific characteristic of a file system, such as namespace limitations or the
way object relationships are modeled. Their traits may be different (heterogeneous) between any two
file systems. If the synchronizer developer ignores or overlooks a capability, this impairs the usability of
the system because of bad side effects that occur during synchronization. For example, if a developer
overlooks that a file may not be named “aux” on Windows, the Windows implementation will run into
unexpected loops or errors while trying to synchronize such a file, which was synchronized successfully
by the macOS implementation. We have observed several instances of such side effects in practice in
leading industrial synchronizers. The result is either just a divergence of the file systems, or worse, data
loss. From our analysis we formalize the internal file system F using First Order Logic in section 3.2,
which we use in the remainder of this work.

3.1 Capability analysis

This section corresponds to our published work [SP19]. It provides an in-depth analysis of six file sys-
tem capabilities relevant to file synchronizers, which we discovered while implementing and technically
evaluating our own file synchronizer implementation. We discuss one capability per subsection. We first
state its significance for the user, followed by an analysis, then extract similarities that manifest in the
file synchronizer’s internal model and finally give advice how file synchronizers can handle incompati-
bilities, if applicable, with the goal to avoid data loss whenever possible.

To find capabilities we sample different types of file systems, selecting representative implementations
often used in today’s computing landscape. We examine Windows version 7-10 (NTFS) and macOS
version 10.11-10.13 (HFS+ and APFS) APIs because these are the most widespread end-user operating
systems at the time of writing. Our findings also transfer to UNIX and therefore to both file servers (e.g.
network-attached storage) and mobile devices such as smartphones. We consider WebDAV [Dus07]
which is widely available as interface for proprietary as well as open-source Internet (cloud) storages.
Dropbox (HTTP API v2 [Dro17]) is chosen as a representative for widespread cloud storages. BSCW
Social [Orb18] is a representative for groupware systems commonly found in academia, a system that
originates from the CSCW community [BHT97; JP14]. We note that many more file systems exist in
each category, such as ownCloud [own19] and OneDrive [Mic19] for cloud storages or CDMI [Sto15] for
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Figure 3.1: Analysis of object identification and namespace to object mappings

generic interfaces. However, they are either less used than the systems we analyzed, or their degree of
use is not documented. Our decision to reduce the number of examined systems to a representative set
improves the clarity of the results.

We note that the comparison done in this section is informal, as this allows the provision of immediate
results for a large selection of file systems. Some online resources such as [Cra08; Wik17] also provide
informal comparisons. Apart from [JPV02], an unfinished manuscript by the authors of [BP98], there is
no related scientific literature to the best of our knowledge that provides an in-depth discussion of the
capabilities of file systems. Providing a formal comparison, while interesting, is hindered by the fact
that real-world file system specifications, such as POSIX, are only formulated informally. While there
are a few academic works such as [Rid+15] which extract exhaustive formal specifications for real-world
implementations, most main stream file systems are not covered yet.

3.1.1 Physical object & namespace mapping

The namespace is the user-facing side of a file system. It consists of a hierarchical set of paths, where
a path is a notation for addressing a specific object. A path is a sequence of names, where names are
simple strings. Hierarchy levels of a path are separated by a separation character, such as ’/’ or ’\’. File
system implementations differ in their approach how objects are identified, physically stored and how
the mapping between namespace and objects works.

3.1.1.1 Significance

From the user’s perspective the synchronizer translates a prefix of the synchronized namespace between
the local and the remote replica, e.g. ’C:\SyncFolder’ to ’https://server.com/synced’. Users expect that the
local disk’s and the server’s namespace match exactly. However, due to technical limitations (analyzed
below) this is not always possible. A synchronizer that is aware of incompatibilities should find a suitable
way to inform the user about namespace mismatches [Dou96].

3.1.1.2 Analysis

An overview of the analysis is shown in figure 3.1.

We first classify whether file system objects (files, directories, etc.) can be identified uniquely (e.g. after
moving them) by a persistent identity, or whether only the path is available [TSR15]. Windows provides
the file index, and macOS or UNIX systems provide inode numbers. The WebDAV protocol specification
leaves it up to the implementation how to identify objects beyond their path. Some implementations
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may internally provide an ID for each resource, but a HTTP client cannot rely on its exposure1. BSCW
and Dropbox identify each object by a unique object ID, assigned upon creation by the server.

For identity-based systems, two further classifications are appropriate, because an object with a specific
ID may be accessible from one or more paths. In practice the cardinality varies per object type, s.t.
Windows or macOS forbid more than one link to a directory to prevent cycles to occur in the tree2.
Some systems model the parent child relationship s.t. each directory has a list of (name, i d) tuples of
its immediate children (name of the objects is part of the link), whereas others store the name as part of
the object and each directory maintains a simple list of immediate child IDs.

Two more aspects not covered in figure 3.1 are that the invariants of each file system need further exam-
ination. A file system may or may not allow two sibling objects to have the same name, and it may use a
case-sensitive or case-insensitive comparison while enforcing this invariant (case-sensitivity is further
discussed in section 7.2.1 on page 135).

3.1.1.3 Derived unified model

To derive the internal file system model we suggest the following approach:

• If one or more file systems are path-based, either let the internal model be path-based too, or
emulate IDs by generating them on the client, setting IDs as custom meta-data, if the file system
API supports it (e.g. WebDAV PROPPATCH, see section 9.2 of [Dus07]).

• When the parent child mapping varies, let the name be part of the object.

• If link cardinality varies, use the smaller (1) cardinality.

• When invariants vary, enforce the one that is most strict.

Applying these guidelines to the set of examined file systems yields an ID-based file system where each
object is linked exactly once, the name is part of the object and sibling nodes may not have the same
name, being case-insensitive.

3.1.1.4 Advice for handling incompatibilities

When a file synchronizer encounters an incompatible mapping at run-time, e.g. if a specific file exists
at multiple paths but the internal model limits file cardinality to 1, we suggest the synchronizer either
stops synchronizing, asking the user to fix the situation, or to automatically add the affected paths or
IDs to an ignore list. Numerous industrial synchronizers provide such an ignore list that users can fill
with paths to files or directories they want to exclude from synchronization. We suggest that this list
can also be manipulated by the reconciliation algorithm automatically to handle compatibility issues,
notifying the user in such an event. For certain traits, workarounds may be possible. For example,
junctions (Windows) and symbolic links (macOS) may be used to allow a N-cardinality for directories.
The synchronizer needs to choose one link as primary one and use junctions or symbolic links for all
other paths, updating them in case the primary link (and its path) changes.

1As an example, our analysis has shown that ownCloud’s WebDAV implementation provides the unique ID of an object, while
Apache’s mod_dav does not.

2Cycles cause problems for programs that iterate over the file system namespace, such as backup or synchro-
nizer tools. If multiple links for directories were allowed, these tools wouldn’t be able to easily detect them. To
detect them anyway, they would have to keep a visited list, containing IDs and corresponding paths, which would
be memory-intensive for large namespaces. In case of a backup tool, the inability to detect directory links would ar-
tificially inflate the number of files and dirs copied to the backup medium. In the worst case, this number becomes
infinitely large, if links formed a cycle in the namespace. To enable users to conveniently access a directory from
multiple other locations, they can instead use symbolic links or junctions, which are discussed in subsection 3.1.2.
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Files Directories
Device

files
Symbolic

links
Others

Windows X X X 3 X Link files, junctions
macOS X X X X –

WebDAV
[Dus07]

X X X X –

BSCW
Social

[Orb18]
X X X X

Plethora of object types other
than regular files and dirs, such
as: contact list, forum, calendar,
URL, poll, voting, appointment

scheduling, project, ....
Dropbox
[Dro17]

X X X X –

Table 3.1: Supported object types per file system

3.1.2 Supported object types

Files and directories are the two object types offered by all examined file systems. [JLP13] show that
even in groupware systems such as BSCW which offer many additional object types, the majority (90%)
of user interaction takes place with these two object types. A file system may also support other object
types that are incompatible with other systems.

3.1.2.1 Significance

When an object available on one file system is unavailable on the other one, its omission in the names-
pace, which is a loss of information, will confuse the user.

3.1.2.2 Analysis

While all examined file systems offer files and directories, there are several other types supported by just
a subset of file systems, e.g. device files or symbolic links on macOS and Windows, or special types like
contact lists, calendars or URLs on BSCW. Table 3.1 provides an overview. Some elements in table 3.1
are elaborated below:

• Device files: files mapped into the namespace that allow programs to communicate with devices.
Examples are block or character devices (terminals, printers or other physically installed devices)
or communication channels such as named pipes or sockets. Since UNIX systems have the mantra
that “everything is a file” 4, the file system’s namespace is used to list and work with these devices.

• Symbolic links: special files that link to a target path in the file system. The target is typically a
(real) file or directory. The file system APIs (and file managers) automatically interpret these files
and follow the redirection to the target path. Symbolic links differ from hard links in multiple
points:

– They are distinct files with their own ID. Programs working with the file system can identify
when a path is a symbolic link. Consequently, tools such as a backup programs can avoid
backing up the same physical files and dirs multiple times, by detecting symbolic links and
refusing to follow them.

3Unlike for macOS, devices aren’t mapped in ordinary file system namespace, but are accessible from a dedicated namespace,
such as \\.\DEVICENAME

4Seehttps://web.archive.org/web/20120320050159/http://ph7spot.com/musings/in-unix-everything-is-a-file,
retrieved July 21, 2019.

https://web.archive.org/web/20120320050159/http://ph7spot.com/musings/in-unix-everything-is-a-file
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– They can link to any target on any volume (whereas hard links pointing to a specific file
always exist on the volume of that file).

– When the target moves or gets deleted, the symbolic link breaks.

• Link files: similar to symbolic links: binary files with the .lnk extension that point to a user-defined
target path. File managers automatically follow the redirection, while file system APIs typically
don’t!

• Junctions: a special type of symbolic link that causes an existing, empty directory to redirect to
another target directory. They are implemented via reparse points 5, a mechanism that attaches
meta-data to the source directory, causing file system APIs and file managers to automatically
follow the redirection to the target.

3.1.2.3 Derived unified model

By taking the intersection set of the available object types of each file system, the internal model should
consist only of files and directories. We suggest to ignore other object types because they are specific
to that file system and cannot be meaningfully viewed or manipulated on other systems that do not
support them.

3.1.2.4 Advice for handling incompatibilities

We propose a similar handling as for mapping issues (section 3.1.1) where the synchronizer either
stops or adds affected objects to the ignore list automatically, notifying the user about this action. A
workaround is to create proxy objects, such as ’.url’ files, that allow the user to see the existence of the
corresponding objects, redirecting the user to the respective location on the other file system in case she
opens the proxy object.

3.1.3 Operations and atomicity

File system APIs offer many operations to both query the current state of the file system (e.g. listing a
directory’s content) or to manipulate it. In the update detection stage a state-based file synchronizer re-
lies on the query operations to extract the current state. At the final propagation stage, the synchronizer
needs to transform the scheduled abstract operations (which equalize both file systems) to concrete
manipulation operations of each file system. This is challenging because the exact operations, their
preconditions and their degree of atomicity6 vary.

3.1.3.1 Significance

A user expects that operations she applied to her local file system are consistently applied to other file
system by the synchronizer. Users also expect the synchronizer to avoid inconsistent states while syn-
chronization is active or was interrupted. Not handling related issues causes confusion (e.g. attempting
to open a partially transferred file) or additional work (such as manually cleaning up inconsistent files
and directory structures) for the user.

3.1.3.2 Analysis

Each examined file system offers operations to query the current state. This allows to list the names of
immediate children of a directory and to retrieve both system-generated and arbitrary meta-data infor-
mation about objects, such as their ID or the timestamp of last modification. There are slight variations
in the query operation signatures between each file system, but these are merely an implementation
detail. When considering manipulation operations, all file systems offer operations to create or delete
empty directories, or to move an object. However, there is significant variation in the availability and

5See https://docs.microsoft.com/en-us/windows/win32/fileio/reparse-points, retrieved July 21, 2019.
6We refer to atomicity as known from database systems, see also section 1.3.4 of [EN15].

https://docs.microsoft.com/en-us/windows/win32/fileio/reparse-points
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Windows macOS WebDAV BSCW Dropbox

Create empty
dir

X X X X X

Create file
Initially
empty

Initially
empty

With content With content With content

Move file or
dir

X X X X X

Copy file X X (UNIX: X)7 X X X
Copy dir

(with
sub-objects)

X X (UNIX: X) X X X

Delete file X X X X X
Delete empty

dir
X X X X X

Delete
non-empty

dir
X X (UNIX: X) X X X

Create file
hard-link

X X X X X

Create dir
link

X X X X X

Create other
file types

Symlinks,
Junctions

Symlinks X
Calendar,

contact list,
URL, ...

X

Mount
volume

X X X X X

Table 3.2: Namespace manipulation operations per file system

atomicity of operations used to create or update files, or to delete non-empty directories. For instance,
BSCW allows to atomically create non-empty files or delete non-empty directories, while Windows does
not. Another observation is that desktop file systems like Windows and macOS offer mount operations
which create a mount point that establishes a transition between volumes. An overview is shown in
table 3.2.

3.1.3.3 Derived unified model

A user would expect a file synchronizer to be capable of a set of operations the user also knows from
using the file manager. An exemplary list could be as follows:

• createdir(path) creates an empty directory at path

• deletefile(path) deletes the file at path

• deletedir(path) deletes the directory and all its children at path

• move(source, dest) moves an existing object from source to dest

• transfer(source, dest) transmits a file located at source on the source file system to dest on the des-
tination file system, to create a new file or update an existing one

7On a UNIX storage, files are copied by manually copying data-chunks by reading from the source file and writing to the
destination file.
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To not leave either file system in an inconsistent state, every operation is expected to succeed or fail
atomically. Optionally, a copy file operation can be used to copy a file on the destination file system in
case it is feasible to detect exact copies of files on the source file system, e.g. by using checksums.

3.1.3.4 Advice for handling incompatibilities

All discrepancies we found between concrete file system operations and the ones presented above result
from varying degrees of atomicity, which can be solved in the following ways:

• deletedir(path): if a file system does not offer an atomic, recursive implementation, we sug-
gest to first call move(path, temp) where temp is a path outside of the synchronized namespace,
but on the same volume. This move operation succeeds (or fails) atomically and appears as an
atomic delete operation to the synchronizer. Next, perform a post-order traversal of temp’s sub-
namespace, deleting first files then directories.

• transfer(source, dest): if the destination file system’s operation is not atomic, we propose to execute
transfer(source, temp), i.e., write transferred data to a temporary location temp that is outside the
synchronized namespace but also on the same volume. Once finished, perform move(temp, dest)
on the destination file system.

Finally, file synchronizers which detect move operations via the object’s ID should be aware of
mount points within the synchronized namespace. IDs are only unique within a volume. How-
ever, a mount point establishes a transition between volumes. When the user performs a conceptual
move(source, dest) operation where source is on volume A and dest on volume B, the synchronizer will
incorrectly detect a delete operation for source and a create operation for dest. We therefore suggest that
synchronizers detect mount points8 and either reject them (by stopping synchronization) or automati-
cally adding them to the ignore list.

3.1.4 Namespace limitations

Although the general namespace allows each name to consist of an arbitrary sequence of Unicode char-
acters, a file system may pose limitations on the namespace, affecting paths or the names of a path,
usually for technical or historical reasons.

3.1.4.1 Significance

When a user attempts to create an object with a name that violates a namespace limitation, the file
manager (or web interface) prevents the creation and provides immediate feedback how to fix the name.
When using file synchronization, the chosen name may be accepted by the source file system API, but
may violate a limitation of the destination API. The file synchronizer discovers this issue after a (possibly
large) delay which surprises the user, because to her the creation of the object initially appeared to be
successful. Furthermore, users will be confused if objects exist on one system but not the other one due
to a limitation that affects only the latter system.

3.1.4.2 Analysis

Table 3.3 illustrates which limitations each file system’s API is affected by. The following list provides a

8This can be achieved by querying the device ID of an object on UNIX or macOS, or retrieve the volume serial number of
Windows files.
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Windows macOS WebDAV BSCW Dropbox

Case-
sensitive9 X

X (default) /
X

Depends on
impl.10 X X

Unicode nor-
malization

sensitive
X X

Depends on
impl.

X
Requires

NFC input

Reserved
characters

/11, <, >, :, “,
/, \, | ?, *

/, :12

Only / (when
other

characters
are

encoded*)

See WebDAV,
Windows’
reserved

characters

See WebDAV,
Windows’
reserved

characters

Reserved
names

., .., ’ ’, CON,
PRN, AUX,

NUL, COM1-
COM9,

LPT1-LPT913

., .. –
Windows’
reserved
names

., ..

Max. path
length

32767 101614 – – –

Max. name
length

255 255 – – 255

Other
limitations

Names
ending with
’.’ or space15,

Short file
names

Violates
Unicode nor-

malization
preservation

– – –

Table 3.3: Namespace limitations per file system

*WebDAV character encoding: since all objects are addressed by URLs, subsection 2.2 of the URL spec-
ification (RFC 1738) addresses that in URLs there is a set of characters that are always safe to use, a set
of characters that are always unsafe, and that each scheme may have a set of reserved characters (in des-
ignated positions of the URL) with special meaning. Safe characters can be used in a name as is. It is
necessary to encode all unsafe characters as well as those reserved characters used outside of their nor-
mal context of the used scheme. In our case, the HTTP(S) scheme is used, therefore the “?” character
(whose typical meaning is to start a query string) needs to be encoded when it should be used without
that meaning, but, say, as part of a dir that should be created. The encoding process converts ASCII
characters into a %<ascii hex representation> (e.g. # is encoded as %23), non-ASCII characters (such as
arbitrary Unicode characters) are converted to a UTF-8 byte sequence, of which each byte is encoded as
%<byte value> (e.g. the character “ö” with UTF-8 code position U+00F6 has a hexadecimal byte repre-
sentation of c3b6 and is thus encoded as %C3%B6).
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summary of our findings. We refer to the respective file system documentation for further details16.

• A file system may reserve a set of characters from being used in object names, either at any po-
sition, or only in specific positions. Forward slashes are forbidden in all examined systems, as
they separate names in a path. Windows reserves the most characters, and other systems such as
BSCW or Dropbox have adopted Windows’ set of reserved characters and names for compatibility
reasons.

• Similarly, some systems reserve a set of names, such as “.” or “..”. Windows reserves a large set of
names such as “CON” or “PRN” for historical reasons and also reserves short file names [Mic18b]
in case a longer file name already exists (for example, given a directory named “project report”,
creating an object at “projec~1” is forbidden on volumes with short file name creation enabled).

• Many systems impose a maximum length of names and paths. Often names are limited to a length
of 255 characters. Shorter path lengths (such as macOS with 1016 characters) also cause issues,
e.g. deep directory hierarchies being inaccessible.

• While all examined systems use the Unicode alphabet with some form of encoding (e.g. UTF-
8), not all systems preserve the normalization form (such as NFC or NFD17) of characters. For
instance, the HFS+ file system on macOS does not preserve a large set of input characters but
converts them to an NFD-like form.

• Case-sensitivity may vary between two file systems. By default, the examined systems are all case-
insensitive. However, others such as the UNIX file system, are case-sensitive! We found all systems
to be case-preserving.

• In rare instances the file system APIs behave deceptively. They accept a name, seemingly execute
successfully, but actually change the name internally. This is problematic for file synchronizers,
as the next update detection phase will find an unexpected name and assume that the object was
moved by the user. One example is the Unicode normalization conversion of HFS+ volumes men-
tioned above, another is Windows which silently strips trailing spaces/dots from a name during
execution.

3.1.4.3 Derived unified model

For each limitation of file systems A and B we propose to take the one that is stricter (i.e., provides a
more narrow set of characters and names) and let the file synchronizer apply it to the file system with the
weaker limitation. For reserved characters or names this means to apply the union of the character/name
sets to both A and B. For length limitations, the shorter length is stricter. Regarding case-sensitivity, case-
insensitivity is stricter than case-sensitivity.

9Storage systems with X are case-insensitive. However, all of them are case-preserving, i.e., when creating a file “/aX”, it is
also stored with that upper/lower-casing.

10According to subsections 5.1 and 5.2 of [Dus07] , the namespace can be case-sensitive or case-insensitive, as chosen by the
implementation.

11Forward slashes are generally not allowed in file or dir names, because they separate the names within a path.
12The : character in a file/dir’s name is shown as forward slash in Finder, but the UNIX layer stores it as :, which can be verified

using the ls command.
13Extensions thereof are also reserved, like “CON.” or “CON.ext”
14This value was determined experimentally. The official documentation and other sources incorrectly state that there is no

limit.
15Windows APIs do accept paths end with dots or spaces, but they are stripped automatically. For instance, creating a new dir

“test..” will create a dir named “test”.
16See e.g. [BMM94], [App04], [App17] or [Mic18b].
17See http://unicode.org/reports/tr15/, retrieved July 21, 2019.

http://unicode.org/reports/tr15/
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3.1.4.4 Advice for handling incompatibilities

We suggest a file synchronizer takes one of the following approaches when encountering paths that are
incompatible w.r.t. the unified limitations:

1. Stop synchronization, ask the user to manually rename objects

2. Automatically rename objects to establish compatibility

3. Automatically add incompatible objects to the ignore list

While approach (1) is easy to implement, it is labor-intensive for the user. In case the stopped syn-
chronization goes unnoticed, and if it remains in that state for extended periods of time, this increases
the chance for conflicts. Approach (2) mitigates this problem, but automatic renaming can cause is-
sues when the affected objects belong to a naming scheme of a third-party application. Such applica-
tions may stop working once these files and directories no longer correspond to the expected naming
scheme. The last approach fixes the issues of the two ones but requires the implementation of the afore-
mentioned ignore list.

3.1.5 Meta-data

Meta-data provides further information about objects. It is not stored as part of the object, but at a
separate location.

3.1.5.1 Significance

When meta-data stored on one file system is incompatible with the other file system, a synchronizer
must skip their synchronization or perform a conversion. This type of data loss negatively affects the
user, because she cannot access meta-data available only on the remote file system during an offline
period.

3.1.5.2 Analysis

Each file system provides a diverse set of meta-data. Some meta-data are attributes managed by the file
system, others can be changed by a client application, such as a file synchronizer. Some systems offer
one or more APIs to write custom meta-data, e.g. Extended Attributes and Alternate Data Streams on
Windows, or xattr and Resource forks on macOS. Appendix A.1 provides further details. The following
meta-data is available on all file systems:

• Object type (file, directory, ...)

• File size (for files)

• Timestamp of creation and last modification

3.1.5.3 Derived unified model

All file systems support the retrieval of meta-data that is necessary to extract their state, such as the
object’s type or the last-modified timestamp. In case a file synchronizer models the file system using
IDs, all file systems except for WebDAV automatically generate and provide unique IDs. For WebDAV
we propose that the file synchronizer generates globally unique IDs (GUIDs) when creating objects on a
WebDAV file system, assigning the GUID via the PROPPATCH command.
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3.1.5.4 Advice for handling incompatibilities

Some meta-data, such as attributes, are system-specific and often lose meaning when copied to another
file system, especially when it is of different type or located on a different operating system or machine.
For instance, synchronizing the compressed attribute of a Windows file to the corresponding file on a
macOS file system defies any purpose. We find that bypassing meta-data synchronization largely fa-
cilitates a file synchronizer’s implementation. This also applies to authorization mechanisms, such as
UNIX permissions or the more powerful Access Control List entries, which can also be considered to be
meta-data, with varying availability and heterogeneity.18

The last-modified timestamp is an exception. We suggest to synchronize it because it is typically avail-
able on each file system, has the same meaning everywhere and users are aware of it when using the
file manager. Windows, macOS and Dropbox support overwriting this timestamp. WebDAV-based im-
plementations (including BSCW) protect the timestamp from being modified. Here we propose to set
the timestamp as a custom meta-datum instead. A caveat developers need to consider is the variety of
resolutions and formats of timestamps.

3.1.6 Locking

Locking allows one user to exclusively modify an object on a file system, while all other users are pre-
vented from modifying their own replica of that object.

3.1.6.1 Significance

Locking is an important mechanism that introduces pessimistic concurrency control in situations where
users expect that conflicts are likely to happen. It avoids conflicts or lost updates. In an example sce-
nario, a user locks a document she exclusively wants to work on for an hour. During this time, other users
should be unable to concurrently modify this file, and should be aware of this lock while it is set. The
information about the lock’s existence can be propagated by the synchronizer to other users while they
are online. In practice we have not observed locking to play a role for files stored on local disks. How-
ever, this feature is frequently used in groupware systems such as BSCW, and the transparent handling
and awareness of locking behavior is an early requirement for CSCW systems as described in [BR94].

3.1.6.2 Analysis

We analyzed the file systems’ locking capabilities to determine whether a file synchronizer can safely
protect an object from modification by the local user, because a different user locked the object. We
found that some systems such as Dropbox do not offer any locking mechanism. WebDAV and BSCW
provide an elaborate locking model, including lock meta-data such as the owner and expiration time.

The locking mechanisms of Windows (read-only attribute, file handle locking) and macOS (immutable
attribute, advisory locks via fcntl19 API) are less elaborate. They each work differently and protect other
aspects of modification. For example, the read-only attribute on Windows does not protect objects from
being moved or renamed, while the immutable attribute on macOS does.

We think that this diversity stems from the fact that each mechanism has a different purpose. On Win-
dows and macOS the read-only/immutable file attribute or handle-based locks were not designed for a
multi-user locking scenario. It is our understanding that they exist to allow users (and programs) to pro-
tect objects from modification on the same device, not across multiple devices. Handle-based locking
suffers from volatile characteristics20. On macOS, handle-based locking is designed for a set of cooper-
ative programs and not intended to prevent third-party programs from modifying files. On Windows,

18As an example for heterogeneity, macOS and Windows both support Access Control Lists, but their implementations vary
considerably. Additionally, synchronization of authorization data would require to also synchronize authentication data, i.e., user
accounts, which introduces additional challenges.

19See http://man7.org/linux/man-pages/man2/fcntl.2.html, retrieved July 21, 2019.
20When the program that owns the handle to an object terminates, the lock is automatically cleared.

http://man7.org/linux/man-pages/man2/fcntl.2.html
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handle-based locking has more wide-spread effect than just locking the object itself. It works on a “first
come, first served” basis. Even just opening a file for reading already locks it, protecting it against move
or delete operations. A file synchronizer may fail to obtain a lock, or inadvertently lock the path of any
parent object, which is not desired. In addition, reliable recursive locking of a directory is not possible
with the mechanisms offered by Windows and macOS.

3.1.6.3 Derived unified model

In case a pair-wise synchronization targets two file systems of equal type, such as two WebDAV systems,
lock synchronization is feasible. In any other scenario we advise to ignore lock synchronization due to
the strong differences in their implementation, making it impossible to meaningfully map one lock type
onto another one.

3.1.6.4 Advice for handling incompatibilities

Not synchronizing locks does not necessarily mean that the synchronizer completely ignores locks.
Some systems like WebDAV allow the discovery of locks (before the attempt of modifying a locked re-
source). Assume a scenario where a synchronizer detects that user 1 updated file f locally, while f is
locked on the remote replica by another user 2. The synchronizer may then skip synchronizing f and
notify user 1 about the lock’s existence. With additional implementation effort, a synchronizer may also
monitor the local user’s opened files and warn her in case she opens a file that is locked by other users
on the remote replica. We also suggest to convey the existence of locks by the use of overlay icons in the
file manager.

If lock discovery is unavailable we propose to treat failed operations like any other permission-related
failures, such as failures resulting from prohibitive ACL entries or UNIX permissions. The synchroniza-
tion may be stopped or the affected object could be skipped. The user should be notified about the
problem in either case and be provided with as much available information as possible to fix the prob-
lem.

3.1.7 Summary

Object & namespace mapping

Locking

Meta-data

Namespace limitations

Operation degree of atomicity

Supported object types

Windows

macOS

WebDAV

BSCW

Dropbox

Figure 3.2: File system capabilities overview

A summary of the capabilities of each file system is shown in figure 3.2. This radar chart depicts a rough
estimate of the degree of power for each capability from 0% (center) to 100%, based on a technical eval-
uation that includes information from above sections and appendix A.1. Smaller values indicate less
powerful namespace mappings, fewer supported object types, stronger namespace limitations, smaller
level of locking, etc. We chose 20% as minimum value only to improve readability. By intersecting the
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areas of the file systems a synchronizer supports we can derive the degree of limitations of the synchro-
nizer’s internal model21.

3.2 File system model definition

In this section we formally define the file system model F using First Order Logic (FOL). We built F

based on the NH-MD file system from section 2.3.1, while also considering the analysis from section 3.1.
We provide exemplary alternative specifications for the H-All and NED-All file system models in ap-
pendix A.2. The rationale of each decision is summarized below:

• Identity-based (rather than path-based) because IDs allow to reliably discern create, delete and
move operations when using a state-based update detection approach. Also, the majority of ex-
amined file systems are identity-based.

• Operation support: we detect delete, move, create and file edit operations, and we expect their
execution to be atomic. We consider it an important aspect to preserve and synchronize move
operations instead of replacing them with delete and create, for three reasons [RC01]:

– Improved performance: a move operation completes quickly and atomically, while deletion
and creation may incur significant overhead, such as payload data.

– Retention of meta-data, such as access permissions, previous versions or an event history.

– Improved usability: a user would be confused if she checked the log of the other replica
and found that her move operations are not shown, but are replaced by delete and create
operations.

• Support for directories (even empty ones). We think that users expect directory support, because
directories are also provided by the file managers they regularly use.

• No hardlink support: examining the physical object and namespace mapping from section 3.1.1,
we see that to be most compatible with all of the examined real-world file systems, F must limit
each object to exist exactly once in the tree. We choose to model the name as part of the object,
rather than of parent-child relation (this choice is arbitrary).

• The supported, synchronized object types are limited to files and directories, because they are
common to all examined file systems.

• We do not enforce any namespace limitations in F ’s invariants or operations directly. This allows
to build internal file system states during update detection stage which accurately reflect the un-
derlying, real file system’s state (which may have no namespace limitations). As explained later
in section 7.2.1 on page 135, our implementation still enforces a set of namespace limitations
L, but defers the evaluation and correction of object names until the reconciliation stage. L dic-
tates that name-comparisons are case-insensitive and Unicode normalization-insensitive, name
lengths are limited to 255 characters and various limitations from Microsoft Windows are applied
to all file systems, such as reserved characters and names.

3.2.1 File system constituents

We define F as a set of tuples where each tuple represents an object with a unique ID i ∈ I , parent
directory ID p ∈ I (where I is the set of unique IDs), type t ∈ T (with T = {

f i le,di r
}
), name n ∈ Σ+

(with Σ+ = Σ∗\{ε}), lastmodified meta-datum l ∈ L (where L is the set of all valid meta-datum values,
e.g. N) and content b ∈ B (where B is the set of arbitrary byte sequences, including ε). That is, F ⊂
I × I ×T ×Σ+×L×B , with tuples (ik , pk , tk ,nk , lk ,bk ) where the following invariants hold:

21The only exception is atomicity where, instead of accepting the union of all limitations, we suggested to emulate a higher
level of atomicity.
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Function Description

name(i ) Returns the name nk of the tuple where ik = i , or er r or if no such tuple
exists.

t y pe(i ) → {
di r, f i le

}
Returns type tk of the tuple where ik = i , or er r or if no such tuple exists.

l i st (i ) Returns the set of IDs of the immediate child nodes for the node with
ID i , i.e., the set of IDs of all tuples for which pk = i holds.

content (i ) Returns the binary data bk of the tuple where ik = i ∧ t y pe(i ) = f i le, or
error if no such tuple exists.

l astmodi f i ed(i ) Returns the lastmodified meta-datum for the node with ID i .
i d(i ,n) Returns the ID of the tuple where pk = i and name nk = n, or er r or if no

such object exists.

Table 3.4: Functions for working with file system IDs

tk = di r =⇒ bk = ε (3.1)

∀i , j ∈ I : i ∈ l i st ( j ) =⇒ t y pe( j ) = di r (3.2)

∀i ∈ I : i ∉ l i st (i ) (3.3)

∀i , j ,k ∈ I : j 6= k ∧ i ∈ l i st ( j ) =⇒ i ∉ l i st (k) (3.4)

∃ir oot∀i ∈ I : ir oot ∉ l i st (i ) (3.5)

∀i ∈ I \ {ir oot } : name(i ) 6= e ⇐⇒ t y pe(i ) 6= e ⇐⇒ l astmodi f i ed(i ) 6= e ⇐⇒ ancestor (ir oot , i ) (3.6)

∀i , j ,k ∈ I : j 6= k ∧ j ∈ l i st (i )∧k ∈ l i st (i ) =⇒ name( j ) 6= name(k) (3.7)

where helper functions are defined in table 3.4 and e is a shorthand for er r or in equation 3.6. We addi-
tionally define the predicate

ancestor (i , j ) =


tr ue j ∈ l i st (i )

tr ue ∃k ∈ l i st (i ) : ancestor (k, j )

f al se otherwise

to express whether the object with ID i is an ancestor of the object with ID j . F is an arborescence
rooted in the well-known object ir oot ∈ I with t y pe(ir oot ) = di r , where each object exists exactly once.
Equation 3.6 expresses that each object must be reachable from ir oot , while equation 3.7 states that no
two siblings may have the same name.

3.2.2 File system operations

The file system operations and their pre- and postconditions are specified in table 3.6. As it is often more
intuitive to address objects using paths rather then IDs, we also indicate the relationship between IDs
and paths. A path is a notation for addressing a specific file or dir node with ID i in the file system tree.
It is built by concatenating the names of all traversed nodes, starting from ir oot until reaching node i ,
separating the names with / (forward slash). Path-related helper functions are defined in table 3.5. Our
preconditions and invariants are equivalent to those defined by [NSE18], which the authors proved to
be correct using the CISE SMT solver [Got+16].
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Function / Predicate Description

spl i t (path) Returns a list of the individual name segments, by splitting path at each
/ character.

par ent (path) Returns / for all paths that contain / once, otherwise removes from path
all characters from the right-hand side up to (including) the first
encountered / character.

basename(path) Returns the last list element of split(path), e.g.
basename(’/home/user/foo’) = ’foo’. Formally, if we can split path =π/ω
s.t. π= par ent (path) and ω= basename(path) then the following
holds:
p =π/ω ⇐⇒ ∃i , j ∈ I : i ∈ l i st ( j )∧path( j ) =π∧name(i ) =ω

i d(path) Returns the id of path in case traversal was successful, or error
otherwise. The traversal algorithm starts with i = ir oot , and iteratively
updates i = i d(i ,n) for each n in spl i t (path).

path(i ) Performs a tree search starting at ir oot , iterating over all nodes until the
node n with ID i was found. If no node is found, error is returned.
Otherwise returns the path from the root node to n, concatenating the
respective names of the nodes along the traversal-path.

Table 3.5: Functions for working with paths

3.3 Conclusion

This chapter addresses all aspects of RQ1. We completed the analysis of file system definitions (which
we started in the previous chapter for academic models) by examining industrial file system models for
heterogeneity, sampling a set of representative systems. The discovered capabilities reflect the “crite-
ria [...] relevant for file synchronizers” of RQ1. Most of the characteristics we found for academic file
systems, such as identity- vs. path-based, different hardlink support and varying operation support are
also present in industrial systems. However, by experimentation and studying manuals we discovered
several additional heterogeneous capabilities not discussed in academic works which file synchronizers
need to address, including namespace limitations, meta-data or locking.

Our general suggestion for building a model with maximum compatibility is to limit its features to the
lowest common denominator. As doing so for all discovered capabilities would result in a weak model,
F follows this advice only for some capabilities (meta-data, locking, supported object types). For other
capabilities, like mappings or operations, F demands stronger features to improve performance and
usability.
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Operation Description, pre- and postconditions

cr eatedi r (path),
cr eatedi r (i , p,n)

Creates a new, empty directory with ID i and name n = basename(path)
in parent directory with ID p = i d(par ent (path)).

• Precondition: ¬ancestor (ir oot , i )∧ancestor (ir oot , p)∧ t y pe(p) =
di r ∧ i d(p,n) = er r or

• Postcondition:
i ∈ l i st (p)∧ t y pe(i ) = di r ∧ l astmodi f i ed(i ) 6= er r or

cr eate f i l e(path),
cr eate f i l e(i , p,n)

Creates an empty file with ID i and name n = basename(path) in parent
directory with ID p = i d(par ent (path)).

• Precondition: see cr eatedi r (path)

• Postcondition:
i ∈ l i st (p)∧ t y pe(i ) = f i le ∧ l astmodi f i ed(i ) 6= er r or

move(sour ce,dest ),
move(i ,u, v,n)

Moves a file or directory with ID i = i d(sour ce) from parent directory with
ID u = i d(par ent (sour ce)) to v = i d(par ent (dest )), and/or change the
object’s name to n.

• Precondition: t y pe(u) = di r ∧ i ∈ l i st (u)∧ t y pe(v) = di r
∧i d(v,n) = er r or ∧¬ancestor (i , v)

• Postcondition: i ∈ l i st (v)∧ i ∉ l i st (u)

Note: precondition ¬ancestor (i , v) ensures that the user cannot move a
directory to a destination dir below it, e.g. sour ce = ’/A’ cannot be moved to
dest = ’/A/x’.

del ete f i le(path),
del ete f i le(i , p)

Removes the file with ID i = i d(path) from parent directory with ID
p = i d(par ent (path)).

• Precondition: ancestor (ir oot , i )∧ i ∈ l i st (p)∧ t y pe(i ) = f i le

• Postcondition:
i ∉ l i st (p)∧¬ancestor (ir oot , i )∧ l astmodi f i ed(i ) = er r or

del etedi r (path),
del etedi r (i , p)

Removes the empty directory with ID i = i d(path) from parent directory
with ID p = i d(par ent (path)).

• Precondition: ancestor (ir oot , i )∧ t y pe(i ) = di r ∧ l i st (i ) = {}

• Postcondition: see del ete f i le(path)

edi t (path,op),
edi t (i ,op)

Changes the byte content of file with ID i = i d(path) by performing the
operation op (e.g. adding, removing or changing bytes at specific positions
within the file).

• Precondition: ancestor (ir oot , i )∧ t y pe(i ) = f i le
Let lpr e = l astmodi f i ed(i )

• Postcondition: ancestor (ir oot , i )∧ l astmodi f i ed(i ) 6= lpr e

Table 3.6: File system operations
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Chapter 4

Update detection for file systems

A central component of every file synchronizer is update detection, which is concerned with observing
the file system of a replica for changes. It delivers the changes to the reconciliation algorithm. The
reconciliation algorithm then decides which operations need to be executed on each replica to equalize
their state.

In our work we build a state-based file synchronizer that runs in the background and continuously syn-
chronizes two replicas, which cannot be protected (locked) against concurrent user activity. Its update
detector should ideally have the following characteristics:

1. Deliver operations and the current state in near real-time, to allow the synchronizer to start work-
ing in a timely manner. A state-based reconciliation requires the current state as foundation for
finding updates. Real-time operations are helpful to allow the synchronizer to discern concur-
rently executed operations by the user from those executed by the synchronizer itself. This allows
the synchronizer to abort an on-going synchronization in case the user’s concurrent operations
are conflicting its own scheduled ones (e.g. if a user locally deleted a file after the reconciliator
scheduled its upload operation).

2. Put as little load as possible on the replica, to allow a large number of concurrent users, e.g. on a
server.

In this chapter we look at update detection mechanisms offered by file systems. We identify issues that
violate the above characteristics and propose solutions. We start with analyzing available mechanisms
in real-world file systems to extract an overview of approaches in section 4.1. In the remaining sections
we take a closer look at the specific approaches.

4.1 Analysis and overview

Many data synchronization solutions, such as near real-time collaborative text editors, have a built-in
replication mechanism, which is thus tightly coupled to the application itself. Unfortunately, hetero-
geneous file synchronizers are typically loosely coupled. The application, the file system, is not aware
of its synchronization. A file synchronizer needs to extract its current state and operations, using APIs
offered by the file system. We start with an API analysis in section 4.1.1 and extract a taxonomy from it,
presented in section 4.1.2.

4.1.1 File system API analysis

A basic requirement for every file system is the ability to sample the current state, by listing all objects
in a directory and extracting their attributes (ID, parent, name, type, lastmodified - see section 3.2.1).
Without going into details, our analysis shows that all file systems examined in section 3.1 (Windows,
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Online Offline

Windows
X

ReadDirectoryChangesW 1

X
Change journal2 keeps track of
file operations. It is limited in

length, only for NTFS

macOS
X

FSEvents3 X

WebDAV
(X)

See below for more details
(X)

See below for more details
BSCW,

Dropbox
X

Via proprietary REST interface
X

Via proprietary REST interface

Table 4.1: File system APIs for update detection

macOS, BSCW, WebDAV, Dropbox) offer APIs for this purpose. Because regular sampling to detect ac-
tivity is expensive, we further analyze APIs that detect operations in near real-time in table 4.1. We sub-
divide them into online and offline, where online APIs only provide information while a process (such as
the file synchronizer) subscribes to receiving changes, whereas offline APIs have an internal persistence
mechanism, offering a process to retrieve information at any (later) point of time.

Regarding WebDAV, its RFC [Dus07] does not provide any means for monitoring changes. There is RFC
65784, a WebDAV extension that offers a sync-collection report that contains changes that took place
since retrieving the previous report, with the help of a sync token. As is common with HTTP, the API
needs to be called in regular intervals (polling), but it allows to track changes even while the client is
not online. To the best of our knowledge, at the time of writing there is no implementation of RFC
6578 for tracking changes of files and directories. There are some implementations which support it for
synchronizing changes of calendars and contact information5.

4.1.2 Taxonomy

From above analysis we build a taxonomy of update detection approaches:

1. Log-based update detection: the state-based file synchronizer uses an existing file system API
that provides a complete log of all operations as a side effect of executing them. There are two
sub-categories:

a) Online update detection: a callback mechanism transmits operations to the file synchro-
nizer (while it is active) in the order they happen. Operations taking place while the file syn-
chronizer is stopped will be lost. Examples are the callback-based APIs provided by macOS
or Windows for local disks. Section 4.3.3 discusses technical challenges that occur when us-
ing such APIs, because the provided operation events often lack important information or
are incorrect to begin with.

b) Offline update detection: similar to the online-mechanism, but the log of operations is per-
sistently stored by the file system, irrespective of whether the file synchronizer is active. The
file synchronizer can retrieve all operations even after a period of inactivity. Only some stor-
age systems such as Dropbox or BSCW offer such a service. The API is typically token-based.

1https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-readdirectorychangesw,
retrieved July 21, 2019.

2https://docs.microsoft.com/en-us/windows/win32/fileio/change-journals, retrieved July 21, 2019.
3https://developer.apple.com/library/content/documentation/Darwin/Conceptual/FSEvents_ProgGuide/

Introduction/Introduction.html, retrieved July 21, 2019.
4https://www.greenbytes.de/tech/webdav/rfc6578.html, retrieved July 21, 2019.
5http://sabre.io/dav/sync/, retrieved July 21, 2019.

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-readdirectorychangesw
https://docs.microsoft.com/en-us/windows/win32/fileio/change-journals
https://developer.apple.com/library/content/documentation/Darwin/Conceptual/FSEvents_ProgGuide/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/Darwin/Conceptual/FSEvents_ProgGuide/Introduction/Introduction.html
https://www.greenbytes.de/tech/webdav/rfc6578.html
http://sabre.io/dav/sync/
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The file synchronizer calls the API (with a token received from a previous call) and receives a
new token together with a list of all operations that took place since the last API call.

2. State-based update detection: using the (always available) file system APIs to build a file system
snapshot, the file synchronizer computes operations from those. By taking snapshots at times t1

and t2 and comparing them with each other, it deduces the list of file system operations. Sec-
tion 4.2 provides further details.

3. Hybrid update detection: uses state-based update detection as foundation, but ensures that the
characteristics from the introduction are maintained, by additionally using log-based update de-
tection where available. Section 4.3 provides more details.

As stated in section 4.1.1, approach (2) is available for every file system API. Several academic works
explicitly state the lack of availability of log-based update detection mechanisms as rationale for us-
ing a similar approach [LKT05; RC01]. In our implementation we use a hybrid approach presented in
section 4.3.

4.2 State-based update detection

In this section we elaborate on details of state-based update detection. We start with snapshots which
we describe in section 4.2.1, which are a data structure that stores state information. While snapshots
are typically kept in memory and are specific to one replica, database snapshots are a persistently stored
variant which include two replicas, see section 4.2.2. We describe how operations are computed from
two snapshots in section 4.2.3. In section 4.2.4 we describe update trees, which are memory structures
used in our reconciliation algorithm with better efficiency than snapshots. Finally, we address the prob-
lem of operation consolidation in section 4.2.5, which is specific to state-based update detection, and
discuss its side effects and a solution in subsequent sections.

4.2.1 Snapshots

In section 4.1.1 we discussed that obtaining the current state of a replica is feasible in all examined
file system APIs. File system states change over time and query operations are expensive, thus we now
define the snapshot data structure which is kept in memory and represents a replica’s abstracted state
at a specific point of time. It stores the list of objects with their attributes, such as ID, name, parent ID,
etc. and can be built using the functions l i st (i ), t y pe(i ), name(i ), l astmodi f i ed(i ) from section 3.2.1.
Its functions are shown in table 4.2, which are similar to those defined in section 3.2. These snapshot
functions also return error in case looking up the requested data is not successful. Note that snapshots
do not store any file contents, but only checksums of files.

4.2.2 Database snapshots

To compute operations it is necessary to take two snapshots at times t1 and t2 and compare them with
each other. We present the corresponding algorithm in the next section. In a file synchronizer the
computation is always done between two snapshots of the same replica, where the first snapshot is
the persisted6 database snapshot that expresses the replica’s state after the last synchronization, while
the second snapshot reflects the current replica’s state. Because the state of the two replicas and the
database is exactly equal once their synchronization has successfully finished, it is sufficient to have one
database snapshot that stores information of both replicas. Only the replica-specific IDs mismatch, thus
the database snapshot needs to establish a relationship between them.

A database snapshot dbsnapshot internally stores each object as a tuple

〈idb , pdb , name, iX , iY , l astmodi f i edX , l astmodi f i edY , t y pe, checksum〉
6For instance, a database snapshot might be built from a table stored in a relational database.
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Function Description

i d(snapshot , path) Returns the id of the path in case traversal was successful, or error
otherwise.

t y pe(snapshot , i ) Returns the type (file, dir) of the object with ID i .
l astmodi f i ed(snapshot , i ) Returns the lastmodified meta-datum for i.
par ent (snapshot , i ) Returns the parent directory ID of the object with ID i .
path(snapshot , i ) See path(i ) in table 3.5.
name(snapshot , i ) Returns basename(path(snapshot , i )).
checksum(snapshot , i ) Returns the checksum of the content of the file with ID i , or error if i

is not known or t y pe(snapshot , i ) = di r .
paths(snapshot ) Returns the list of paths contained in snapshot.
i d s(snapshot ) Returns the list of IDs contained in snapshot.
ancestor (snapshot , i , j ) Returns whether node with ID i is an ancestor of the node with ID j

in snapshot.

Table 4.2: Functions for working with snapshots

Function Description

dbi d(dbsnapshot , i ,r ) Returns idb for the provided ID i of replica r if i is known, error
otherwise.

i d(dbsnapshot , idb ,r ) Returns the replica-specific ID of replica r for the database ID idb ,
error otherwise.

Table 4.3: Functions for working with database snapshots

where i ddb is an unique (primary key) ID generated by the database engine. It establishes the 1:1 map-
ping between the IDs iX , iY of the replicas, where replica identifiers are denoted X ,Y henceforth. The
same principle applies to l astmodi f i ed . t y pe details whether the path points to a file or directory
and pdb expresses the database ID of the parent object. This compact representation allows to gener-
ate both dbsnapshotX and dbsnapshotY , where e.g. dbsnapshotX is the database snapshot for replica
X . To generate dbsnapshotX we only need i ddb , pdb , name, iX , l astmodi f i edX , t y pe from each tuple.
All snapshot functions defined in table 4.2 also apply to dbsnapshotX and dbsnapshotY . Additionally,
functions dbi d(dbsnapshot , i ) and i d(dbsnapshot , idb ,r ) defined in table 4.3 also apply.

4.2.3 Operation computation

The function compute_ops(db , snapshot ) shown in algorithm 1 detects an unordered set of operations
O = {o1, ...,on} that explain the differences between the snapshots db and snapshot. For each oi we
define the following functions:

• opt y pe(oi ) returns the operation’s type: create, delete, move, or edit

• i d(oi ) retrieves the object’s ID

• t y pe(oi ) returns the object’s type (file, directory)

• l astmodi f i ed(oi ) returns the object’s lastmodified meta-datum (the updated one for edited files)

• path(oi ) returns the path of the affected object, or path-tuple (source,dest) if opt y pe(oi ) = move.
If opt y pe(oi ) ∈ {edi t ,del ete} then path(oi ) returns the path from db rather than the one from
snapshot.

We can also express compute_ops(db, snapshot) using FOL to more clearly demonstrate the relationship
between the post-conditions of operations introduced in table 3.6 and the detection of these operations:
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1 Input : db , snapshot : snapshot structures taken at two d i f f e r e n t points of time , of the
same r e p l i c a

2 Output : set of detected operations
3
4 O = Set ( )
5 for i in ids (db) :
6 current_path = path ( snapshot , i )
7 i f current_path == error :
8 o = Operation ( delete , i , type (db , i ) , lastmodified (db , i ) , path (db , i ) )
9 O. put (o)

10 continue
11
12 has_moved = name(db , i ) ! = name( snapshot , i ) or parent (db , i ) != parent ( snapshot , i )
13 i f lastmodified (db , i ) ! = lastmodified ( snapshot , i ) and type (db , i ) == f i l e :
14 o = Operation ( edit , i , f i l e , lastmodified ( snapshot , i ) , path (db , i ) )
15 O. put (o)
16 i f not has_moved :
17 continue
18
19 i f has_moved :
20 path_tuple = ( path (db , i ) , path ( snapshot , i ) )
21 o = Operation (move, i , type (db , i ) , lastmodified ( snapshot , i ) , path_tuple )
22 O. put (o)
23 continue
24
25 for i in ( ids ( snapshot ) − ids (db) ) : # consider only IDs in ’ snapshot ’ that are not in ’

db ’
26 o = Operation ( create , i , type ( snapshot , i ) , lastmodified ( snapshot , i ) , path ( snapshot , i

) )
27 O. put (o)

Algorithmus 1 : Pseudo-code for compute_ops(db , snapshot )

• Creation of a file or directory, then a new ID must exist in snapshot that did not exist in db yet:
∃o ∈O : opt y pe(o) = cr eate ⇐⇒ i d(o) ∈ i d s(snapshot )∧ i d(o) ∉ i d s(db)

• Deletion of a file or directory, then the corresponding ID that still exists in db is no longer available
in snapshot: ∃o ∈O : opt y pe(o) = del ete ⇐⇒ i d(o) ∈ i d s(db)∧ i d(o) ∉ i d s(snapshot )

• Moving a file or directory, then the ID exists in both snapshots, but with different parent ID or
name: ∃o ∈ O : opt y pe(o) = move ∧ path(o) = (sour ce,dest ) ⇐⇒ i d(o) ∈ i d s(snapshot ) ∧
i d(o) ∈ i d s(db)∧[name(db, i d(o)) 6= name(snapshot , i d(o))
∨par ent (db, i d(o)) 6= par ent (snapshot , i d(o))]

• Editing a file, then the ID exists in both snapshots, but with different lastmodified meta-datum:
∃o ∈ O : opt y pe(o) = edi t ∧ t y pe(o) = f i le ⇐⇒ i d(o) ∈ i d s(snapshot ) ∧ i d(o) ∈ i d s(db) ∧
l astmodi f i ed(db, i d(o)) 6= l astmodi f i ed(snapshot , i d(o))

It is easy to see that the number of detected operations is finite, as the following axiom and lemma show.

Axiom 1. The number of objects (files, dirs) n = |R| in any replica R is finite, because each R requires
each object to be explicitly created by the user, creation speed is limited to y objects/second, R comes
into existence with 0 objects at time t (in the past) with now − t <∞.

Lemma 1. The number of operations detected by compute_ops(db, snapshot) is finite.
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Proof. by contradiction: Let O=compute_ops(db , snapshot ). Let k = |O| be the number of detected
operations. For k to be infinite, and because |db| and

∣∣snapshot
∣∣ are finite (as demonstrated in ax-

iom 1), the compute_ops algorithm must find an infinite number of operations for some object pair
(x, y), x ∈ db ∨ x = ε, y ∈ snapshot ∨ y = ε . However, it is trivial to see (and is further demonstrated in
section 4.2.5) that operation consolidation does not allow for this: for any (x, y) we can only detect one
of the following operations: none, create, delete, move, edit, move+edit. I.e., for any (x, y) the number
of operations that can be detected ranges from 0 <∞ to 2 <∞.

4.2.4 Update trees

To find and resolve conflicts, the snapshot structure and operation set O is insufficient. Instead our al-
gorithm converts a database snapshot and O of a specific replica into an update tree. The update tree
is an in-memory tree structure where each node represents a specific file or directory. Once built, it
represents the file system in the current state of the respective replica, but also contains deleted nodes.
This tree improves run-time performance by providing efficient means to search for nodes, e.g. using
idb or iX , iY and offers efficient traversal both up and down the hierarchy. In contrast to (immutable)
snapshots and computed operation sets, the structure of update trees can be efficiently manipulated
and easily updated with meta-information by different components of the reconciliation and propaga-
tion phase. More specifically, the conflict finder and resolver components update the tree by marking
which conflicts were already considered for each node, to avoid searching for conflicts more than once.
The propagation component keeps the update tree structure in sync with the changes it applies to the
physical replica and to the database. This allows the update trees to serve as shadow copy of the file
system’s current state and allows to efficiently look up the correct paths during propagation, which is
necessary because file system APIs are typically not ID- but path-based.

Each node has the following attributes:

• idb : provided by the database snapshot, is undefined (-1) for created files or directories, which are
not part of the database yet

• side: the identifier of the replica (X ,Y )

• name: the name of the object

• type: file or dir

• change_events: list of change-events (more details below)

• ID and lastmodified meta-data, where ID is the replica-specific ID, iX or iY

• processed: indicates whether the node was already considered during reconciliation, i.e., while
generating operations

• children: list of child nodes

• parent: pointer to the parent node

Objects that were moved by the user have two additional attributes:

• move_origin: the path of the object before it was moved

• move_origin_parent_id: pdb , that is, the ID of the object’s parent directory before it was moved

We use n for nodes. Attribute access is denoted with a dot, e.g. i = n.I D . The path p = path(n) of a
node n is computed by concatenating the nodes’ names from the root node to n, with a forward slash
separation character.

Figure 4.1 shows two visualizations of an update tree representing a file system before and after the user
applied some operations. Efficient search for nodes is implemented by adding look-up tables at each
tree’s root node, mapping from ID to the node object.
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Figure 4.1: Update tree visualization

Subfigure (a) shows a visualization of an update tree of a file system as a graph. At the top, the
label S indicates Synchronized state (i.e. the local and remote replica have the same structure) -
alternatively L or R indicate that the update tree is of the Local or Remote replica respectively (see
subfigure (b)). L and R are used synonymously to X and Y for identifying replicas. In the tree
each file or dir is represented by a node. The top left corner indicates the node’s idb . The first line
of the node indicates its name and type (file, dir). The line(s) below the name indicate change-
events, if present. Because subfigure (a) depicts a synchronized file system, there are no change-
events. In contrast, subfigure (b) shows a situation in which the user changed the file system from
subfigure (a) via multiple operations. “/some dir/another dir” was deleted, “/some file.html” was
edited, and “/some dir/another file.txt” was moved to the root level. The line in the node (here:
idb = 4) that starts with “Move” has the following form:
Move <source path> (P-ID: n.move_origin_parent_id)
P-ID is −1 in case the source parent dir is the root directory, since the root directory itself is not part
of the database and thus has no idb value.
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4.2.4.1 Change-events

To efficiently find conflicts or to determine non-conflicting operations, all those nodes affected by the
user since the last synchronization are marked dirty during the creation of the tree, using the informa-
tion from the set of computed operations O. Instead of using a single dirty bit, each node is assigned 0-2
change-events (like a bit mask). We define the following events:

• Create: indicates that a new file or dir was created, its ID is unknown to the database

• Edit: for files: indicates that the file’s content was changed (or it was deleted and replaced by
another created file, see next section for more details)

• Delete: indicates that a file or dir was deleted (either directly, or indirectly because a parent node
was deleted)

• Move: indicates that a file or dir was moved, by the user (changing the name, parent node, or both)

4.2.4.2 Generation

We perform the update tree generation as follows:

1. Create dir nodes for each oi ∈ O where opt y pe(oi ) = move ∧ t y pe(oi ) = di r , using path(oi ).
Assign each node with the Move change-event. This step (as well as others) creates missing in-
termediate nodes if necessary (e.g. if path(oi ) = ′some/dir′ then create an intermediate node for
’some’ if it doesn’t exist yet).

2. Create file nodes for each oi ∈O where opt y pe(oi ) = move∧t y pe(oi ) = f i le, see above for details.

3. Create dir nodes for each oi ∈ O where opt y pe(oi ) = del ete ∧ t y pe(oi ) = di r . Each node is as-
signed the Delete change-event. An important detail is that for any such oi , path(oi ) points to
the path of the db snapshot. In case the user applied operations o1=move(’/dir’, ’/dirMoved’) +
o2=deletedir(’/dirMoved/somedir’) to a replica, then path(o2)=’/dir/somedir’! When inserting the
node for o2 into the tree, the insertion algorithm must first attempt to find the possibly existing
new path (’/dirMoved/somedir’ in this case).

4. Create file nodes for each oi ∈ O where opt y pe(oi ) = del ete ∧ t y pe(oi ) = f i le. Like above, each
node is assigned the Delete change-event. In addition we also implement the special case where
we replace the Delete with an Edit change-event in case the user deleted the file and created an-
other file with the same name under the same parent. This approach has also been applied in
other works, such as [Li+12a; Li+12b; RC01]. In case the replacement is done, we remove the cor-
responding create-operation o j with opt y pe(o j ) = cr eate from O. The reason for this decision is
that many end-user applications, such as Word processors, apply a “safe” file replacement strat-
egy when updating a file’s content. The application doesn’t change the file by opening it, writing
bytes and closing it again (this approach would have preserved the file’s ID). Instead, it saves the
new version of the file to a temporary location, followed by deleting the original file, followed by
moving the temporary file to the original location. Semantically, this operation reflects an Edit op-
eration, therefore we decide to replace Delete and Create of a file with Edit in the update tree. We
think that it is reasonable to assume that, statistically, users edit files more often than deliberately
deleting a file and creating a new one with the exact same name, expecting that the synchronizer
honors the latter intention verbatim. The incorrect replacement would also only happen during
long periods in which no synchronization takes place.

5. Create dir nodes for each oi ∈ O where opt y pe(oi ) = cr eate ∧ t y pe(oi ) = di r with the Create
change-event.

6. Create file nodes for each oi ∈ O where opt y pe(oi ) = cr eate ∧ t y pe(oi ) = f i le with the Create
change-event.
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7. Create file nodes for each oi ∈O where opt y pe(oi ) = edi t ∧t y pe(oi ) = f i le with the Edit change-
event.

8. Create missing and update existing intermediate nodes for all unchanged files and dirs, by iterat-
ing over all objects in the database snapshot. This step serves several purposes:

a) It makes sure to update all those intermediate nodes created during the previous steps, which
lack important information, such as idb , the replica-specific I D or the l astmodi f i ed meta-
data, because this data wasn’t available for them in the corresponding operation used during
their creation.

b) It creates missing nodes without any change-event.

The update tree generation procedure generates a upd atetr eeX and a upd atetr eeY object.

Axiom 2. The number of change-events in each updatetree structure is finite. The change-events are
created based on O, where k = |O| is finite, see lemma 1 on page 49. As described above, some delete
and create operations in O may be consolidated to an Edit change-event. Whenever such a replacement
happens, the number of operations is decreased by 1, making it impossible that the number of change-
events reach infinity.

4.2.5 Operation consolidation

Operations computed from state are affected by consolidation, which refers to the elimination of oper-
ations that take place inbetween taking snapshots. Consider taking a snapshot at time t1. Then a user
creates a new file, then moves it to a different path and then deletes it. If we then take another snapshot
at time t2, the computed set O between the two snapshots will not contain any of these operations, be-
cause the file’s ID is not known in either snapshot. This observation was also made by [RC01] as simpli-
fying laws and their follow-up work [Csi16] which refers to this as minimal sequence or set of commands.
The authors considered file systems without move operation support. For F , which does support move
operations, we define the concept operation consolidation where two file system operations (as listed
in table 3.6) are consolidated to zero or one operation. We use ∼= as notation for a consolidation, such
that the left side of ∼= indicates the operations done by the user and the right side indicates how such
two operations would appear in O. The following list shows all consolidation rules, which we built by
examining every possible combination of two operations:

1. move(i ,u, v1,n1)+move(i , v1, v2,n2) ∼= move(i ,u, v2,n2)

2. createfile(i , p,n)+edit(i ,op) ∼= createfile′(i , p,n,c) (with l astmodi f i ed(snapshot , i ) correspond-
ing to the timestamp after the edi t (i ,op) operation took place)

3. create(i , p,n1)+move(i , p, v,n2) ∼= create(i , v,n2)

4. edit(i ,op1)+edit(i ,op2) ∼= edit′(i ) (with l astmodi f i ed(snapshot , i ) corresponding to the times-
tamp after the second edi t (i ,op) operation took place)

5. create(i , p,n)+delete(i , p) ∼= []

6. edit(i ,op)+deletefile(i , p) ∼= deletefile(i , p)

7. move(i ,u, v,n)+delete(i , v) ∼= delete(i ,u)

with create = createfile∨ createdir, delete = deletefile∨deletedir. cr eate f i l e ′ is a slightly modified vari-
ant of cr eate f i l e which also indicates the file’s content, while edi t ′ is a variant of edi t that does not
indicate the exact operation, as it is not necessary to know the exact content during update detection.

The consolidation rules can be applied iteratively to an operation input sequence, by first examining all
operation pairs in O for matching rules 1-4 (until no more of these rules match), followed applying rules
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5-7. For example, the sequence cr eate f i l e(1,0,′ test ′)+edi t (1)+move(1,0,0,′ test2′)+del ete f i le(1,0)
can be consolidated to

∼=cr eate f i l e ′(1,0,′ test ′,c)+move(1,0,0,′ test2′)+del ete f i le(1,0)
∼=cr eate f i l e ′(1,0,′ test2′,c)+del ete f i le(1,0)
∼= []

using consolidation rules 2, 3 and 5.

4.2.6 Side effects of operation consolidation

The advantage of operation consolidation is that the operation count is reduced, which improves pro-
cessing and transmission time and simplifies conflict resolution. However, there are two side effects
which we introduce informally in the subsequent subsections. Some of the related works, such as
[LKT05; Li+12a], fail to mention these side effects, or handle them incorrectly. For simplicity we re-
strict the scenario to a uni-directional synchronization, where two replicas X ,Y are initially equal, the
user modifies only replica X and the computed operations O are then applied to Y , see figure 4.2.

4.2.6.1 Lack of serialization order

It is easy to see that compute_ops() does not provide the serialization order of the computed operations.
It is not straightforward to determine the serialization of the create, delete, move and edit operations
when the goal is to apply them to the other replica, because the synchronization algorithm may not
violate the operation’s invariants. Consider the following examples:

1. User deletes file “x“ and moves “a” to “x”: deletefile operation has to be applied before the move
operation

2. User moves file “a” to “b” and creates another file at “a”: move has to be applied before createfile

There are several other examples which are discussed in subsection 4.2.7.1, which also explains how to
formally determine these reordering dependencies.

4.2.6.2 Cycles from missing move operations

Consolidation rule (1) can lead to cycles when considering the serialization order. Consider the example
of two files named “a” and “b” whose names are swapped by the user. This can only be done by per-
forming three move operations, e.g. move(’a’, ’temp’), move(’b’, ’a’), move(’temp’, ’b’). compute_ops() will
detect only two move operations, move(’a’, ’b’) and move(’b’, ’a’). Synchronizing these operations is not
straightforward, because the first one has to precede the second one, while the second one also has to
precede the first one.

4.2.7 Addressing side effects in a synchronizer

The following subsections address the issue of finding a valid operation sort order. Parts of this section
are also found in [She19]. We explain how to find order dependency rules, detect cycles and how to break
them.

As noted above and explained in figure 4.2 we assume uni-directional synchronization. In chapter 6
(section 6.3.2) we will address the specifics of bi-directional synchronization for which there is a chance
for conflicts between concurrent operations. We will show that our approach to address the side effects
of operation consolidation still works for bi-directional synchronization, as long as there are no such
conflicts (but, at most, pseudo-conflicts).
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Figure 4.2: State-based synchronization using computed operations

Illustration of a uni-directional synchronization from replica X to Y . Both replicas are initially
equal (e.g. empty). The file synchronizer maintains a db snapshot of X and Y . Whenever replica X
was modified by the user, e.g. by create or move operations, these are detected by taking a current
snapshot and calling compute_ops(db , snapshot ). The detected operations are then applied to
replica Y , after which both replicas are equal again. Afterwards the file synchronizer updates db to
be able to detect only modifications made by the user to X from this point forward.
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Figure 4.3: Operation order dependencies

4.2.7.1 Operation sorting

We build an algorithm Ō = sor t_oper ati ons(O) which turns an unordered set O to an ordered list Ō.
This requires an analysis of the operation preconditions because not all operations are commutative. Let
OT be the list of considered operation types. For any two types tA , tB ∈OT we instantiate the respective
operations oA ,oB , detected on replica X . We choose the parameters (i , p,u, v,n for F ’s operations) such
that applying the sequence (oA ,oB ) to replica Y is feasible, but applying (oB ,oA) would fail, because a
precondition of one of the two operations is violated7. We end up with a list of order dependencies, where
each order dependency contains tA , tB (in a specific order) and the violated operation precondition(s).
Finally, we examine whether cycles can be built from the order dependencies.

For F we choose OT = {
createfile′,createdir,move,edit′,delete′

}
. The operation del ete ′ summarizes

deletefile and deletedir and recursively deletes a directory’s children. Figure 4.3 shows an overview of
the eight order dependencies we found for the operation types in OT . The arrows are denoted with a
dependency number explained below:

1. delete before move, e.g. user deletes an object at path “x” and moves another object “a” to “x”

2. move before create, e.g. user moves an object “a“ to “b“ and creates another object at “a”

3. move before delete, e.g. user moves object “X/y“ outside of directory “X“ (e.g. to “z“) and then deletes “X“

4. create before move, e.g. user creates directory “X“ and moves object “y“ into “X“

5. delete before create, e.g. user deletes object “x“ and then creates a new object at “x“

6. move before move (occupation), e.g. user moves file “a“ to “temp“ and then moves file “b“ to “a“

7. create before create, e.g. user creates directory “X“ and then creates an object inside it

8. move before move (parent-child flip), e.g. user moves directory “A/B“ to “C“, then moves directory “A“ to
“C/A“ (parent-child relationships are now flipped)

We found these ordering rules by analyzing the pre-conditions of the file system operation from table 3.6
on page 44:

• createdir(i, p, n), createfile(i, p, n):

– ancestor (ir oot , p)∧ t y pe(p) = di r , in other words, the parent directory has to exist: rule
create before create (7)

– i d(p,name) = er r or , that is, name in p has to be free: rules move before create (2) and delete
before create (5)

• move(i, u, v, n):

– i ∈ l i st (u), i.e., object has to exist: rule move before delete of parent dir (3)

7For instance, when creating a directory and a file inside it, the order cannot be flipped. That is, (oA ,oB ) is feasible with
oA = cr eatedi r (1, ir oot ,′ di r ′) and oB = cr eate f i l e(2,1,′ f i le′), but (oB ,oA ) would fail, because precondition t y pe(1) = di r of
oB would be violated.
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Figure 4.4: Operation cycles

Graphical illustration of different types of operation cycles that result from chaining order depen-
dency rules. Subfigures a-c show minimal cycles that involve as few rules as possible. For subfig-
ure a we refer to appendix section A.3 that proves that cycles that exclusively consist of move oper-
ations connected only by rule (8) are impossible. Subfigures d-e show examples for more elaborate
cycles.

– t y pe(v) = di r , i.e., destination parent directory must exist: rule create before move (4)

– i d(v,n) = er r or , i.e., destination name has to be free: rules delete before move (1), move
before move occupation (6)

– ¬ancestor (i , v), i.e., destination parent directory may not be below the destination itself,
rule move before move parent-child flip (8)

The analysis of deletefile and deletedir do not yield any pre-conditions that lead to additional ordering
rules. We note that the pre-condition l i st (i ) = {} of deletedir is not an issue in practice, because the
implementation, when given the task to delete a directory, will automatically traverse over the sub-tree
of all child objects and delete all objects in a depth-first postorder order. In general, two delete oper-
ations cannot be dependent on each other, because either the two paths of the delete operations are
independent of one another (i.e., not in a parent-child relationship, in which case the delete order is
also independent), or they are hierarchically dependent on each other, in which case our reconciliation
algorithm will only create one delete operation for the highest node. See section 6.3.1 for more details.
We note that due to operation consolidation, edit’ can only co-exist with a move operation affecting the
same object. Because these two operations are commutative, edit’ is not part of any order dependencies.

We implemented fix_op_before_op() functions to detect and reorder incorrectly ordered operations,
see algorithms in appendix A.4 on page 205. Each operation is given the unsorted set O (ops) and the
(partially) sorted list Ō (sorted_ops), as well as the db and snapshot snapshots. The functions then
perform an in-place reordering of Ō.

4.2.7.2 Detecting cycles

To detect cycles we connect the order dependencies found above, see figure 4.4. As is easy see it’s im-
possible to build cycles using only delete and create operations. Cycles always include at least one move
operation. It is possible to find multiple cycles. The length of each cycle (as well as the total number of
cycles) is limited by k = |O|, see lemma 1 on page 49.

Algorithm 2 shows how a total order of operations is computed using the eight fix_xyz() functions
presented in appendix A.4 on page 205, where each function only establishes a partial order.
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1 Input : ops ( unsorted set of operations , O) , db , snapshot
2 Output : sorted_ops , l i s t of sorted operations
3 Global var iables : has_order_changed , reorderings
4
5 sorted_ops = l i s t ( ops )
6 complete_cycles = [ ]
7 reorderings = [ ] # type : L i s t [ Tuple [ Operation , Operation ] ]
8 while True :
9 has_order_changed = False

10 # A l l functions perform in−place reordering . I f the order was changed , they
s e t variable has_order_changed to True and add the p a r t i a l order to ’
reorderings ’ ( unless ’ reorderings ’ already contains i t )

11 # Note that the c a l l order of the f i x methods does NOT matter
12 fix_delete_before_move ( ops , sorted_ops , db , snapshot )
13 fix_move_before_create ( ops , sorted_ops , db , snapshot )
14 fix_move_before_delete ( ops , sorted_ops , db , snapshot )
15 fix_create_before_move ( ops , sorted_ops , db , snapshot )
16 f ix_delete_before_create ( ops , sorted_ops , db , snapshot )
17 fix_move_before_move_occupied ( ops , sorted_ops , db , snapshot )
18 f ix_create_before_create ( ops , sorted_ops , db , snapshot )
19 fix_move_before_move_hierarchy_flip ( ops , sorted_ops , db , snapshot )
20 i f not has_order_changed :
21 break
22 complete_cycles = find_complete_cycles ( reorderings )
23 i f len ( complete_cycles ) > 0 :
24 break
25
26 i f len ( complete_cycles ) > 0 :
27 resolution_operation = break_cycle ( complete_cycles [ 0 ] )
28 return [ resolution_operation ]
29 else :
30 return sorted_ops

Algorithmus 2 : Pseudo-code for sort_operations()

The function find_complete_cycles() used in algorithm 2 analyzes the reorderings collected so far
and attempts to find complete (closed) cycles by chaining the partial reorderings. The mundane details
of the implementation of this function are omitted. A developer needs to ensure that cycles are found,
even if...:

• ... the order in which reorderings are found do not follow the order of the operations in the cycle.
For instance, if a cycle consists of the operations (A, B, C, D), that cycle still has to be found even if
the partial reorderings were found in the order (B,C), (D,A), (A,B), (C,D).

• ... the cycle is hidden within a chain, in other words, a cycle can be formed not by just testing
whether the end of an just-extended chain coincides with the beginning of that chain, but it might
also coincide with any of the inner nodes of the chain. As an example, the reorderings might be
found and processed in the following order: (B,A), (A,C), (C,A). Simply connecting these orderings
produces a chain, but also an inner cycle (A,C).

The termination property of algorithm 2 is proven in the following theorem.

Theorem 1. The sort_operations() algorithm terminates.
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Proof. by contradiction: To not terminate, the algorithm would have to be caught in the while loop
indefinitely. However, this cannot happen, because after a finite number of iterations, the loop is always
left (line 21, 24).

At line 20 there are two cases that can hold: (1) one or more cycles exists (irrespective of whether our
algorithm already discovered them), or (2) no cycles exist at all (thus our algorithm cannot possibly
detect one).

We start with (1). If there is a cycle, then at line 20 order_changed must be True in every loop iteration,
because sorted_operations is a list with start and end, thus, an operation located at the beginning
of the list will always be moved to the end of the list by one of the fix functions. In this case, a cycle
is either detected in line 22 (because our algorithm discovered all its reorderings), in which case we
exit the while loop (line 24), or the cycle has not been discovered yet and a new loop iteration is started.
Because each cycle has a finite length of at most k operations, the cycle must also be discovered within
k loop iterations, after which the while loop is exited (line 24).

When considering situation (2), then there must be a total order of operations that is executable. If
there are k non-cyclic operations, then after at most k iterations, none of the fix_op_before_op()
functions will rearrange any operations any more (because they are already in a satisfactory order). Then
order_changed will be False and the loop will be exited (line 21).

4.2.7.3 Breaking cycles

To break a cycle C we need to find a suitable operation O in C, s.t. renaming the object targeted by O
to a temporary name will break C and convert it into a chain. By closely analyzing the different types
of cycles from figure 4.4, we find that for any cycle found in replica X there must always be at least one
operation oX (with i d(oX ) = i ) which frees a location (i.e., a name in a specific directory) that is used
by a follow-up operation o′

X . oX must either be a move (dependency rules 6+2) or a delete (dependency
rules 1+5) operation. Instead of executing oX , break_cycle() generates a different move operation rY

that breaks the cycle. rY renames i by appending a unique suffix to its name. We execute rY on Y and
the database snapshot and then restart the synchronization. This way, rY ’s effect is not detected after
the restart, but oX and o′

X are still detected because we did not modify X 8. However, the cycle is now
broken, because the order dependency (6, 2, 1, or 5) no longer applies.

An example can be found in figure 4.5. We refer to section 6.3.2 for additional examples and further
implementation details.

4.3 Hybrid update detection

A background synchronizer needs to continuously synchronize two replicas. Using only the state-based
approach would require to regularly sample each replica’s current state. On large file systems (with a
high number of files and directories), computing and transferring the state between replicas is expen-
sive. To avoid high system load and large delays, we propose a hybrid approach for those file systems
that offer log-based update detection.

The synchronizer determines the replica’s state information once, when creating its snapshot for the first
time. Subsequently, operations are retrieved from the log (via the log-based update detection) which
are applied to the cached state, producing the current state. The reconciliation then uses operations
computed from the state difference between the database snapshot (that contains the state of the file
system at the last successful synchronization) and the cached, current snapshot. A similar approach was
proposed by [Li+12a].

4.3.1 Advantages

This hybrid approach has several advantages:

8If oX is a move operation, changing the name of i in the database snapshot to a unique name will still find i as moved in X .
If oX is a delete operation then it will still be deleted in X
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Figure 4.5: Example for breaking operation cycle

Subfigure a shows the directory structure on the unchanged replica Y , the changed state on
replica X and the four operations computed by compute_ops() on replica X . The actual op-
eration sequence on X might have been something like move(’a’, ’a-temp’), move(’d’, ’a’), cre-
atedir(’d’), move(’a-temp/b’, ’d/a’), deletedir(’a-temp’). The computed operations cannot be ap-
plied to replica Y because they form a cycle. Let oX = deletedir(′a′) then we can instead apply
rY = move(′a′,′ a− temp′) on Y and update the db snapshot. The cycle is converted to a chain as
shown in subfigure b.

• In case a file system supports any online or offline log-based update detection APIs, these can be
leveraged to reduce its load. Since the operation log is applied to a cached snapshot to produce
the current snapshot, this effectively converts operation logs to state. In case the log-based update
detection becomes (temporarily) unavailable, our synchronizer can always fall back to sampling
the file system to build the current state.

• Only a state-based variant of the reconciliation algorithm needs to be implemented, because the
update detector can always provide the current state. It is not necessary to implement another
variant of the reconciliation algorithm that processes operation logs. Implementing the latter
would require significant efforts, using a different algorithm altogether.

4.3.2 Implementation algorithm

The simplified algorithm that detects updates for a file system offering operation logs is shown in algo-
rithm 3. Function set_up_subscription() uses the log-based, proprietary update detection API of
the file system to subscribe to operation logs. From now on, updates are collected in the background
and can be retrieved by calling get_new_operations(), which blocks the caller until new operations
are available. apply(ops, snapshot) takes the operation log and applies it to the provided, cached
snapshot, updating snapshot internally. The details of this function are omitted, because they depend
on the exact log data structure. Applying the log may fail if the log is incomplete or faulty. If applying the
logs was successful, the listener (e.g. the reconciliation component) is given the operation log (ops) as
well as the current snapshot. Otherwise, operations are computed from state, using compute_ops()
from section 4.2.3.
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Input : root_path to observe , l i s t e n e r whose on_new_operations ( ) method i s cal led
when updates are detected

set_up_subscription ( root_path )
snapshot = create_state_snapshot ( root_path )
while True :

ops = get_new_operations ( )
success = apply ( ops , snapshot )
i f success :

l i s t e n e r . on_new_operations ( ops , snapshot )
else :

# f a l l back to computing operations from s t a t e ( slow )
current_snapshot = create_state_snapshot ( root_path )
ops = compute_ops ( snapshot , current_snapshot )
snapshot = current_snapshot
l i s t e n e r . on_new_operations ( ops , snapshot )

Algorithmus 3 : Pseudo-code for hybrid update detection

4.3.3 Caveats and workarounds

While implementing the hybrid update detector component we encountered numerous issues.
One general issue is that snapshot creation is affected by race conditions. The function
create_state_snapshot() may take several seconds up to minutes to complete. During this time
period the user may execute concurrent operations. The effect of each of these operations may or may
not be contained in the resulting snapshot. We implemented logic in create_state_snapshot() to
internally apply concurrently detected operations to the snapshot after it was taken. If applying the
operations should fail, we restart the snapshot generation.

There are also numerous file system specific issues discussed in the following subsections.

4.3.3.1 Windows

On Windows the ReadDirectoryChangesW API fills a size-limited event buffer with file system events.
The information of each event is limited to a bitmask that indicates the operation type (create, delete, ...)
and the affected object path. Most notably, information such as the object’s ID, type and lastmodified
meta-datum are not provided. This results in various caveats:

1. Missing events: when many events occur in a short time period and the event buffer limit
is exceeded, events are missed. Because the buffer size cannot be increased indefinitely, the
workaround is to fall back to the state-based approach in case a buffer overflow is detected.

2. Bloated rename/move events: when an object is renamed, this causes ReadDirectoryChangesW
to produce two file system events, one that indicates the old, one that indicates the new path.
When an object is moved (i.e., its parent directory changes) this causes a delete followed by a
create event. Without further knowledge about object IDs it is impossible to discern actual move
operations from delete + create operations.

3. Race conditions when retrieving IDs and other meta-data: because events lack IDs and other
meta-data our implementation needs to use the file system’s query APIs9 to retrieve this data af-
ter the fact. This may fail because of the time that passes between the operation’s execution and

9We first open the object’s handle using CreateFileW(path), followed by retrieving information via
GetFileInformationByHandle(), see https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/
nf-fileapi-getfileinformationbyhandle, retrieved July 21, 2019.

https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-getfileinformationbyhandle
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-getfileinformationbyhandle
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our implementation calling the query API (even though this happens merely a few milliseconds
later). For instance, if the first event indicates the creation of an object at path “x” and the second
event indicates that “x” was renamed to “y”, querying the information for “x” (when processing the
first event) will fail, because “x” no longer exists. Even worse, if the real operation sequence was
createfile(“x”) + move(“x”, “y”) + createfile(“x”), then querying “x” will succeed, but provide wrong
values. We handle such cases by performing extensive plausibility checks that make sure that IDs
returned from the query operation, in conjunction with the reported operation type and path,
logically match with IDs from the cached snapshot. If the checks fail, we fall back to computing
operations from state. To avoid that the event buffer overflows due to spending too much time
with applying events, we use a multi-threaded approach. Thread #1 retrieves data from the event
buffer and uses the query APIs to complete the information as soon as possible. Thread #1 then
hands the events (enriched with query API information) over to thread #2 which applies them to
the cached snapshot.

4. Missing directory structure information: when the user moves an existing directory with sub-
objects from outside the synchronized directory d into d , then only a create event of the new path
is reported. Even after we retrieve the meta-data for that path itself, and learn that a new directory
was created, we still needed to implement extra logic to distinguish whether the user truly created
an (empty) directory (and possibly also created other objects inside it soon after), or whether the
user moved an existing, non-empty directory into d .

4.3.3.2 macOS

On macOS the FSEvents API allows to specify a callback function which FSEvents calls with a list of paths
and corresponding event type bitmask that indicates which change(s) occurred. The bitmask indicates
whether the object is a file or directory, and the type of operation (create, move/rename, modify, delete).
Just as for Windows’ ReadDirectoryChangesW API, the object’s ID, type and lastmodified meta-datum
are not provided. While FSEvents does not drop events (because its buffers are not limited), we still need
to handle several issues:

1. Bloated rename/move events: see Windows. Note: when an object’s parent directory changes, the
bitmask of each event indicates move correctly (not delete + create as done by Windows)

2. Race conditions when retrieving IDs and other meta-data: see Windows

3. Missing directory structure information: see Windows

4. Event aliasing: FSEvents may coalesce multiple operations to a single event in case they all affect
the same path within a short time period. There is no documentation how exactly this coalescence
is done. For instance, the callback might report two events where the first event is for path “x” and
has the create, modify, delete and rename bits set, and the second event is for file “y”, with only the
rename bit set. An event may even indicate that it affects both a file and a directory at the same
time. Due to this aliasing it is impossible to deduce the exact operations or their order, as there
are several valid explanations for these two events. As an example, the user could have performed
the following operation sequences:

a) delete(“x”) + create(“x”) + edit(“x”, <new content>) + move(“x”, “y”)

b) move(“x”, “y”) + create(“x”) + edit(“x”, <new content>) + delete(“x”)

Our solution for issue (4) is to no longer rely on the event type bitmask and instead execute the query
API on every reported path, deducing operations from the resulting data. For the above example, we
would query paths “x” and “y” and look up corresponding objects in the cached snapshot, using the IDs
delivered by the query API calls. query(“x”) would result in an error, and query(“y”) would either yield
the ID known in the snapshot at path “x”, indicating explanation (b), or would yield an ID unknown in
the snapshot, which would indicate explanation (a).
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4.3.3.3 BSCW

BSCW 7 offers a proprietary REST API sync_events for offline update detection. It delivers operations,
including their type (link, unlink, delete, undelete, create, rename, move), affected object and all its
meta-data, including its ID. There are still several caveats to consider:

1. Missing events: to save space the server admin may purge the event history. In this case a special
purge-event is inserted, which indicates this fact and allows our implementation to fall back to
computing operations from state.

2. Irrelevant events: because BSCW allows an object to be linked into multiple parent directories,
sync_events reports events that are irrelevant for our synchronized directory. For instance, if object
o is both linked to the root ds of the synchronized directory, but also to a directory do outside of
ds , then sync_events will report irrelevant events (which our implementation needs to discard),
such as an unlink operation of o from do , or a move operation that moves o to a different parent
directory d ′

o under do , or a link operation of o into yet another directory d ′′
o outside of ds .

3. Name aliasing: BSCW does not store historic information of an object’s name, but only the most
recent name. If, inbetween two sync_event calls, a user performs the operations create(“x”) + re-
name(“x”, “y”), sync_events would deliver a create event for “y” and a rename event that indicates
that “y” was renamed to “y”, which is superfluous and needs to be discarded.

4. Missing directory structure information: see Windows

4.3.4 Summary

We found our hybrid update detection approach to be feasible and efficient, but challenging to imple-
ment. Operation log data provided by file systems needs to be treated carefully, as it may lack important
information (such as object IDs) or be affected by aliasing. We can generalize that an update detector of
any ID-based file synchronizer that supports our examined file systems and relies only on operation logs
would need to implement hybrid approach anyway, using a cached snapshot, because the operation log
APIs do not provide sufficient detail on their own.

4.4 Conclusion

The goal of this chapter was to find an update detection approach that is both efficient and provides
not only the current state, but also a log of operations. The hybrid update detector we presented solves
this problem, by combining state-based with log-based methods. We examined the foundation, state-
based update detection, in detail for our file system model F , which supports the move operation. We
identified the concept of operation consolidation, which complicates detecting a valid operation order.
Our analysis of the side effects of this consolidation yields not only issues with operation commutativity
addressed by RQ2, but also the possibility of cycles. We presented a sorting algorithm that is based on
operation ordering rules which we found by analyzing the pre- and postconditions of the operations of
our model F . It solves RQ2 and the problem of finding cycles by iteratively applying the ordering rules
to a partially sorted list, until no more rules are apply, or the applied rules start to repeat, in which case
a cycle was identified.
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Chapter 5

Consistency and conflicts for file synchronizers

The goal of a bi-directional file synchronizer is to achieve eventual consistency between two replicas.
We first mentioned the concept of consistency on a technical level in section 2.1.1. Achieving consis-
tency between replicas means that divergences of each replica, which exist due to operations that were
applied to replicas in isolation, are eliminated by applying them from one replica to the other one. Once
the consistency algorithm has finished, the state of both replicas should converge and incorporate the
previously detected divergences1. To achieve this, the synchronizer has to propagate non-conflicting
changes, and detect and resolve conflicting ones. The most challenging aspect of consistency is conflict
handling. Conflicts are combinations of operations that are discovered to be incompatible with each
other by the synchronizer during synchronization, even though they were successfully executed on each
replica in isolation. On a technical level an operation oX detected in replica X is conflicting with opera-
tion oY detected in replica Y (and thus cannot be applied to Y by the synchronizer) if the preconditions
of oX no longer hold for Y ’s new state that resulted from applying oY to Y . A typical example is when
the content of a file is updated in replica X while that file is deleted in replica Y .

This chapter elaborates on consistency for file synchronizers. We start with an analysis of conflict res-
olution approaches of related work in section 5.1. With a few exceptions we find the presented conflict
resolution methods to be arbitrary. They are typically not backed up by a rationale, nor do they consider
prior work or discuss side effects. Only two works, [TSR15; NS16], present a general set of consistency
properties which are reflected in the concrete conflict resolution approaches (see section 5.1.2). To not
make the same mistake of presenting arbitrary conflict resolution approaches, we design a four-step
framework shown in figure 5.1. This top-down approach starts with an informal definition of consis-
tency properties and iteratively refines it to a set of formal and detailed steps for detecting and resolving
concrete conflicts. The first step is the definition of a high-level consistency philosophy in section 5.2,
which is a set of consistency properties that define what it means to achieve consistency, based on the
consistency properties of [TSR15; NS16] and our own suggestions. Step 2 defines conflict resolution poli-
cies presented in section 5.3, which are policies that generally apply for resolving conflicting operations,
but are still independent of any concrete conflict definitions. Because many concrete conflicts have
common traits, they should also be resolved using a similar approach. We group such similar conflicts
to conflict patterns and present them in section 5.4. In section 5.5 we present individual conflicts in de-
tail, focusing on the NH-MD file system. As discussed in section 2.3.1, there are several other file system
definitions. We discuss the relationship between the complexity of each file system and the number of
conflicts that need to be detected in section 5.6. Since a file system can be affected by more than one
conflict at once, which has not been discussed in related academic works, we present how we iteratively
resolve conflicts in section 5.7. Finally, we proof the termination properties of our conflict resolution
approach in section 5.8.

1Consequently, a trivial bi-directional synchronizer that always deletes all files and directories in both physical replicas and
the database snapshot would only achieve convergence but not consistency.
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Figure 5.1: Conflict handling framework

5.1 Related work analysis

The goal of the analysis is to determine how academic file synchronizers or Distributed File Systems
(DFS) resolve file system related conflicts (i.e., detection is not our concern, because the mechanisms are
very diverse and depend on the file system definition). We look both for concrete approaches for specific
conflict types and generic guidelines or policies the concrete approaches are based on. Additional points
we examine are the following:

• Is conflict resolution always automatic, always manual, or a mixture of both?

• How clear are conflict resolution approaches described?

• Given a clear description, is there a rationale provided for the specific approach?

• Do authors compare their approach with other approaches, to defend their rationale?

• Are any conflict awareness mechanisms being discussed?

We present the findings of our analysis in section 5.1.1. We keep the analysis on a high level. The descrip-
tion of the resolution of specific conflicts is deferred to subsections of section 5.5, after we described the
conflicts themselves in detail. In a few works we found generic consistency properties, which we refer
to as “consistency philosophies” which we describe in section 5.1.2 on page 69.

5.1.1 Conflicts

In this analysis we examined the works from section 2.4 as well as the DFSs Ficus and Coda. An overview
of the results is shown in table 5.1.

Resolution mode

A first glance at the Resolution mode column reveals a large degree of diversity. While some systems
are fully automatic or fully manual, others are hybrid. Hybrid systems get their name either because
they don’t mention the mode at all [CJ05], allow users to configure which mode they prefer [UFB10], or
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Type Resolution mode Clarity of conflict

resolution description

Remarks (e.g. introduced

winner-criteria or philosophy)

[Guy91;

Rei+94] (Ficus)

DFS Some automatic (call

user-made resolver),

some manual

Clear for automatic,

unclear for manual

1) No lost update criterion,
applies to concurrent file

update + delete. Resolve by
move to orphan directory

2) Email report provides

conflict awareness

[Sat+90] [KS91]

(Coda)

DFS Some automatic (call

user-made resolver),

some manual

Clear for automatic,

unclear for manual

1) Repair tool user invokes to

manually resolve conflicts

[BP98; PV04] Sync. Manual None Unison implementation offers

several options to resolve

conflict

[Bao+11] Sync. Automatic Only for file content

update conflict.

Mentions but ignores

other conflicts

–

[Bjø07] Sync. Automatic None –

[CJ05] Sync. Automatic or manual None –

[Mol+03] Sync. Automatic Clear (formal, via OT

transformation

functions)

Object unique ID comparison

used as criterion to choose a

winner

[Naj16] Sync. Automatic Clear –

[RC01; Csi16] Sync. Manual None Discusses conflict encoding

into file system vs. special GUI

[TSR15] Sync. Automatic Clear Presents philosophy that

conflict resolution

approaches (mostly) follow

[UFB10] Sync. Automatic or manual Only for file content

update conflict.

–

[Li+12a;

Li+12b]

Sync. Automatic Clear –

[LKT05] Sync. Some automatic

(speculative merging),

some manual

None –

[NS16] Sync. Automatic Clear Presents philosophy that

conflict resolution

approaches follow

Table 5.1: Analysis of conflict resolution approaches
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because the mode depends on the conflict. That is, some conflicts can be resolved automatically and
some require manual user intervention.

Clarity of conflict resolution

The clarity column demonstrates that out of the 14 analyzed works five provide a fully clear descrip-
tion, five do not describe conflict resolution at all, and the remaining four only describe it partially. We
would have expected works which use manual resolution to describe which resolution alternatives are
presented to users for them to choose from. However, the majority of works does not provide any alter-
natives. Coda mentions a conflict “repair tool”, but it is never illustrated or explained.

Resolution rationale

We found that the majority of works which describe their resolution do not present any rationale to
explain their concrete conflict resolution approaches, nor do they compare their approach with related
work. There are, however, a few notable exceptions:

• Ficus mentions the “no lost update rule” which states that if a file was deleted in one replica but
modified in the other, the file should be restored to avoid losing the update. However, the resolu-
tion of other conflict types is not following any identifyable rules.

• In [NS16] and [TSR15] the authors define a consistency philosophy, which they follow in their
concrete resolution implementation. We present further details in section 5.1.2 on the facing
page. The authors make several specific choices, however, not covered by the philosophy, which
seem to be arbitrary. For instance, if a specific name is concurrently occupied (via create or
move operations) on both replicas, [NS16] decide to resolve the conflict by renaming both objects,
while [TSR15] use a different approach for each object type combination (file-file, file-directory,
directory-directory) and provide a rationale for only one of these combinations.

• In [NS16] the authors evaluate the convergence behavior of their own work with those of indus-
trial synchronizers Dropbox, Google Drive and Microsoft OneDrive. In this evaluation the authors
briefly discuss advantages of their own conflict resolution approaches, comparing it to the ones
applied by industrial tools. For example, the authors note that if an industrial synchronizer recur-
sively merges the sub-objects of two independently created directories (where the directories are
located in the same parent directory and using the same name), unmerging is a painful process
for the user in case the automatic merge was inappropriate for that specific directory.

• Sometimes the rationale is dictated by the specifics of the underlying algorithm. In [Naj16] the
authors use CRDT sets and maps to model the file system. For those CRDT data types the con-
flict resolution mechanism for concurrent add or remove operations is limited to “add wins” or
“remove wins”. Consequently, update/delete conflicts (e.g. where one user updates a file that the
other user deletes) are resolved using one of these choices.

Winner-criterion

While most works define no consistency philosophy or general guidelines, we identified several winner-
criteria that can be used to identify the winner of a conflict. These include:

• Object type, e.g. directory wins over file, see [TSR15]

• Replica, e.g. let a specific replica’s operation take precedence, or choose a random replica, see
[Li+12a; Li+12b]

• Object ID, e.g. the object with higher ID wins, see [Mol+03]

• Timestamp, e.g. last writer wins (LWW), see [UFB10]

• No lost [file content] update, i.e. let file modifications win over deletions, see [Rei+94]
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Conflict awareness

Most works do not discuss how to make the user aware of conflicts or their resolution. Some DFS such
as Ficus or Locus [Wal+83] mention email reports, but provide no specifics of the email’s content, nor
whether reports are sent for automatically resolved conflicts.

Final remarks

In [RC01; Csi16] the authors note that when a synchronizer detects a conflict, it can either:

1. Keep knowledge about the conflict at the site of its discovery, making it accessible via a special
user interface of the synchronizer. Only one user is aware of the conflict. Files affected by the
conflict remain in their old state (diverging from other replicas) until the user chooses a specific
resolution.

2. Encode the conflict’s detection (and optionally a preliminary resolution) into the file system, which
allows replicas to immediately converge, making all users aware of the conflict.

The second alternative demonstrates that if a synchronizer claims to resolve a conflict automatically, e.g.
by appending a unique suffix to an object’s name in case of a name clash, it has in fact only encoded the
conflict’s detection into the file system, using a preliminary resolution. The conflict is only truly resolved
once a user performs further actions on the automatically renamed object.

5.1.2 Consistency philosophies

The two works [TSR15] and [NS16] present high-level consistency philosophies which we now review.

[TSR15] define that the common state of a file system is ”meaningful” to the users “when the users can
still see the effect of their own updates” after the synchronization finished. They define the two properties
element preservation and relationship preservation. Element preservation means that (1) “if the user
updates any file or directory, the updated elements should also be available in the merging outcome”,
and (2) that separate objects are not merged into a single object. Relationship preservation requires
that path-related changes made by the user on a replica should be visible after synchronization. The
underlying principles of the properties are that not a single update should ever be lost (even in the face of
conflicts), and that merging the changes of two replicas should have no side-effects, such as anomalous
results where objects unexpectedly disappear.

While most of these statements intuitively make sense, it is easy to see that the first underlying principle,
“no lost updates”, cannot possibly hold for every conflict2. The authors even provide a counter example
in their work. They define the “state conflict”, which is concerned with deleting an object in one replica
and updating it (e.g. the file’s content) in the other one. The authors chose the update operation to
take precedence over the delete operation in the merged file system. The delete operation is effectively
lost, which contradicts their relationship preservation property and the underlying “no lost updates”
principle.

A slightly different philosophy is defined as a set of consistency requirements in [NS16], where the con-
sistency reflects the limitation that not all updates can be preserved:

• Causality preservation: causally related operations must be executed in their causal orders,

• Convergence: after all operations were sent to all replicas, the state of all replicas must be equal,

• Intention-confined effect: operations applied to replicas by the synchronizer must be based on
operations generated by the user,

2We note that in [TSR15] the definition of “update” goes beyond the operation that changes the content of files (which was
the narrow definition used in [Rei+94]), but also includes other operation types.
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• Aggressive effect preservation: “effects of compatible operations should be preserved fully; effects of
conflicting operations should be preserved as much as possible”.

These four properties are a variation of the consistency model from Operational Transformation (OT),
see convergence, causality preservation, and intention preservation in [SE98]. These OT-based papers
are founded on work in the area of distributed systems with seminal works like [Lam78]. We note that
Causality preservation applies to operation-based systems, but not state-based systems such as the syn-
chronizer we build in this work, where the exact operation sequence is not available.

Finally, we note that both [TSR15] and [NS16] defined their consistency philosophies with fully auto-
matic conflict detection and resolution in mind.

5.2 Consistency philosophy

In this section we define the consistency philosophy we use in our synchronizer. We cherry-pick prop-
erties from the two philosophies presented above, refine them and add additional properties.

Like for [TSR15] and [NS16] our philosophy is designed for automatic conflict resolution mode. We
prefer automatic resolution for two reasons. First, user involvement to keep replicas synchronized be-
comes optional. Users only need to act and repair the file system if the automatic resolution was inap-
propriate in that specific case (in the eyes of the user), which allows them to concentrate on their actual
work. Second, our algorithm is built such that it requires to first resolve conflicts before non-conflicting
operations can be applied (see section 6.1). By automatically resolving conflicts we can immediately
propagate the non-conflicting operations, too, which reduces the risk that new conflicts occur for those
non-conflicting files and directories. Section 5.3.1 provides further details regarding the automatic vs.
manual resolution mode.

Our consistency philosophy has the following properties:

• Convergence: after a completed synchronization, the state of all replicas must be equal,

• Impact: operations applied to replicas by the synchronizer must be based on operations generated
by the user,

• Intention preservation: the synchronizer applies non-conflicting operations from one replica to
the other one without modification. For conflicting operations, the synchronizer preserves the
intention of both operations as much as possible, by modifying one of the operations. If preser-
vation is not possible the synchronizer discards the operation that required less effort to generate
(for the user). At the same time the synchronizer minimizes undesirable, manual clean-up work
for the user in case the automatic resolution was inappropriate. The synchronizer should store
sufficient information to allow the user to retroactively choose a different resolution option for a
conflict, in case she considers the default approach to be inappropriate.

• Awareness: if the synchronizer applies a non-conflicting operation from replica X to Y , the user
of Y must be able to inspect the operation history on demand, to understand which file system
changes originate from replica X . If the synchronizer modifies or discards conflicting operations
generated by the user, the user must be actively notified (e.g. via a push notification). This im-
proves transparency of the actions done by the synchronizer.

In comparison to previously presented philosophies such as [NS16] we added two major contributions.

First, we refined the intention preservation property by (1) specifying that each conflict has a winner and
a loser, (2) the synchronizer should prefer to modify the losing operation - and only if that fails, discard
the losing operation, (3) the modified/discarded operation is chosen according to the amount of effort
put into it by the user (if possible to estimate), and (4) the resolution approach considers the ease of
undoing the resolution if the user found that specific resolution to be inappropriate for the specific
conflict.
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Figure 5.2: Overview of conflict resolution policies

Second, we added the awareness property. Awareness, which [DB92] define as “an understanding of the
activities of others, which provides a context for your own activities”, is a well-researched topic in CSCW
literature. Various classifications (e.g. workspace awareness [GG02]), awareness types (e.g. activity or
process awareness [CSS09]), models (e.g. event-based [Pri93] or spatial models [BF93]) have been iden-
tified. According to [FPP95] our awareness property asks for asynchronous awareness, which is either
tightly coupled (for conflicting operations) or loosely coupled (for non-conflicting operations affecting
objects the user of replica X did not work on).

5.3 Conflict resolution policies

Conflict resolution policies are a set of rules that refine the conflict-related parts of the above consistency
philosophy, specifically the intention preservation property. An overview is shown in figure 5.2.

5.3.1 Resolution mode: automatic vs. manual

5.3.1.1 Choosing an approach

The first, most important decision to make is whether to resolve conflicts automatically or manually3.
As stated in [RC01], choosing between automatic and manual conflict resolution is still an open prob-
lem. The advantage of manual resolution is that the user has full control, which may increase her trust
in the synchronizer, because resolution actions have to be confirmed. Users also avoid subsequent,
unnecessary clean-up work that would have been required if the synchronizer had automatically re-
solved a conflict inappropriately. The downside is that users may feel annoyed by being requested to
act. This particularly affects users who often work offline for extended periods of time, which increases

3We note that a synchronizer can make different choices (automatic vs. manual) regarding the (1) general synchronization,
and (2) conflict resolution. For instance, a synchronizer may be configured to synchronize automatically whenever changes are
detected, but still enforce manual conflict resolution. This section focuses solely on aspect (2).
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the chance for conflicts. Additionally, this would increase the risk that new conflicts occur for non-
conflicting files in case a synchronizer’s algorithm requires that all conflicts have to be resolved first
before non-conflicting operations can be applied.

The advantages and disadvantages of automatic resolution can be derived from inverting those of man-
ual resolution. Users benefit because they save time and effort in case the resolution was appropriate.
However, in cases where the user considers a specific resolution to be inappropriate, the costs incurred
for subsequent, manual repair must be manageable. We refer to section 5.4.3 for a concrete example
regarding two conflicting createdir operations.

5.3.1.2 Challenges of automatic resolution

The challenge for automatic resolution is to find default settings that are appropriate for the variety
of workflows and scenarios in which the synchronizer is used. The following points outline different
choices a synchronizer developer must make.

First, the synchronizer needs to arbitrate, i.e., choose winners and losers. When two operations conflict,
there are two basic ways of arbitration:

1. The synchronizer picks a winner and a loser operation, based on some criterion (see next section).
The winner operation is applied as is to the other replica, the loser operation is first modified in
some way, depending on the conflict. In the most extreme case, the loser operation is discarded
completely. The advantage is that only the loser has to be notified about the conflict, because only
her operation was not applied as originally intended.

2. The synchronizer considers both operations as losers. Both operations require modification. This
approach avoids having to choose a winner-criterion, at the expense of preserving neither user’s
original intention of the operation.

For our own implementation we decided to choose a winner and loser operation to maximize intention
preservation.

The second choice is the configuration of automatic resolution, which can be split into who decides how
to resolve conflicts, and how is each conflict resolved.

Who decides? In the majority of file synchronizers we found the developer of the synchronizer makes
this choice and hard-codes one specific resolution mechanism into the algorithm. We find this approach
problematic due to its lack of flexibility and instead suggest that the synchronizer offers several resolu-
tion approaches. However, who should be allowed to pick from those options?

1. Give administrators this choice. Compared to end-users they have a higher technical expertise re-
quired to choose resolution approaches on an abstract level without concrete examples. However,
they may not be familiar with exact workflows of the users. There might also be several groups of
users with different workflows, which further complicates the selection for administrators.

2. Let users decide. This improves control over the program, but if implemented incorrectly (e.g.
showing an overloaded technical dialog such as shown in figure 7.1 on page 130) the choice may
overburden non-technical users and allow them to pick options that are often inappropriate.

We suggest to let users decide. To avoid overburdening them, users should be able to tweak the conflict
resolution on a case-by-case basis. Whenever a conflict occurs, the synchronizer resolves it automati-
cally using some pre-configured option and notifies the user. This opens a graphical dialog with several
functionalities:
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• It explains the conflict to the user. This includes providing context the user needs to understand
and resolve the conflict. For instance, if a file was updated by two users, the synchronizer can
open both conflicting files for the user with a single click (or even open a comparison view if the
corresponding application offers one).

• If the user considers the applied resolution as appropriate, she can just confirm that she has seen
the conflict.

• Otherwise she can ask the synchronizer to retroactively apply a different approach, from a set of
alternative resolution options. This way the user is not burdened with configuring resolution op-
tions for other conflict types she has never seen (but just the one at hand), and is given a concrete
example she can understand. The synchronizer can learn from the user’s choices over time, e.g.
applying the user’s previous choice the next time a similar conflict occurs. A challenge left as fu-
ture work is how exactly the learning algorithm works, including how the user can influence the
learning process.

How are conflicts resolved? Any resolution approach requires two decision steps. First, the choice of
a winner-criterion (see next section) that defines the winner operation (in the presence of a multitude of
criteria, which may also be ranked). Second, the specifics of how the synchronizer manipulates/discards
the loser operation and executes the winner operation. Because the concrete choices depend on the
conflict type we discuss our suggestions in the corresponding conflict sections.

5.3.2 Criteria for choosing a winner in automatic resolution

We collected numerous criteria from our related work analysis and user suggestions, and added our own
ideas. The following list explains and criticizes each criterion.

• Timestamps: the “last writer wins” (LWW, [JT75]) approach is well known in research [SS05] and
practice and has also been adopted by [UFB10]. The general idea is that newer is better. We fre-
quently observed that this is not necessarily true in practice and heavily depends on the concrete
scenario. Consider an example where a user revises a document on a laptop computer for 3 hours
on a train ride, returns home, turns on the desktop PC and fixes a typo in the same document
which has not been synchronized yet and thus contains the outdated version. It would be very
inappropriate if the synchronizer overwrote the document on all machines with the typo-fixed
version, only because it is newer. We advise against using this criterion, because a single times-
tamp bears no information w.r.t. the work put into the affected operation. There are also many
other issues with timestamps. Some file systems may not provide them for all operations4. Sev-
eral types of timestamps may exist (timestamp of when a change was registered on a client vs.
server). Also, wall-clock-based timestamps can be tampered with or may accidentally have lost
synchronicity, making it difficult to even decide who is the last writer.

• Operation type: suppose two conflicting operations have a different type (e.g. move vs. createfile,
or edit vs. delete) then we can choose one to take precedence. The “no lost update” rule of [Rei+94]
is an example for this criterion. It is not conclusive if both operation types are equal. As a general
framework we propose that operations are ranked by the amount of work that presumably went
into it. We propose the following simple order:

– Delete operations are ranked lowest - the user only needs to choose a target object and press
a button to delete it.

– Move operations require selection of source and target object, which may involve typing
characters if the object is renamed. Similarly, createdir operations require the selection of
the parent directory and choosing the directory’s name.

4For instance, the time when a file was renamed or moved is not available on many file system implementations.
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– Edit and createfile operations come last (and are ranked equally) because they involve chang-
ing content, which is presumably a lot more work.

• Replica/user: the synchronizer selects the operation of a specific replica or user as winner. This is
a suitable fallback criterion if other criteria are inconclusive or make no sense. We found that a
good choice is to prefer the operation performed on the server replica for synchronizers deployed
in a client-server star-topology setup. The server’s replica reflects the current state affected by
(potentially) many users, whereas the client’s local replica is typically only affected by a single
user. We think that a conflict caused by one user should not negatively affect the work done by
other users, especially since these users already have agreed on the common server replica state.

• Object ID: this approach is presented in [Mol+03]. The (unique) object IDs of the two objects
affected by the conflicting operations are compared to determine the winner operation. We do
not recommend this approach because users are typically not aware of object IDs and thus the
resolution result will appear arbitrary to the user.

• Object type: in [TSR15] the authors use this criterion for conflicts related to name clashes. If one
operation affects a directory and the other one affects a file, then one type can be chosen to take
precedence over the other. This criterion is inconclusive in case both objects have the same type.

We note that a user-centered design approach makes sense where users are involved in adding new
domain-specific winner-criteria. For instance, the following criteria were proposed by members of the
author’s organization:

• Estimate the amount of work for two conflicting edited files by counting the number of modifi-
cation file system events of each replica since the last synchronization. The user who updated
a file more often is assumed to have done more work and thus her file should win the conflict.
More elaborate versions of this criterion can also be built, e.g. including the delta of file’s size after
each modification. However, this criterion may only make sense for specific file types (where the
amount of work is reflected in the byte size delta) and user behaviors (where users or the applica-
tion actually updates a file regularly).

• Time of day: for example, in certain workflows the changes that occur at late hours may be more
important than changes registered in the afternoon. However, the same disadvantages as men-
tioned for Timestamps above do apply.

• File type (extension): is not actually a criterion, because by itself it is always inconclusive. However,
it can be used as a precursor in combination with another criterion. For instance, the configura-
tion could define that for concurrent file edit conflicts, the replica criterion is fixed to “server file
wins” for document files, whereas it is fixed to “client file wins” for spreadsheet files.

• Namespace location: similar to the file type presented above the location in the namespace may
be a precursor for another criterion, s.t. conflict that affect objects in one part of the hierarchy are
resolved differently than those situated in another part of the hierarchy.

• User: operations made by specific user accounts (or groups) may take precedence over the opera-
tion made by another user/group.

The set of criteria may also be combined to a cascaded set of criteria with different priorities. For in-
stance, the concurrent file edit conflict might be configured as “Server Replica wins” (lowest priority
used as fall back) + “Change made by Prof. Pepper wins” (higher priority) + “Client changes on document
files win” (highest priority). Due to the complexity we left implementing user-proposed winner-criteria
and cascaded winner-criteria as future work.
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Pattern Related concrete conflicts Affects name Affects
content

Intentions
preservable

Pseudo conflict Create-Create, Link-Link,
Move-Move (Source),

Move-Move (Dest),
Edit-Edit

X X X

Name clash
conflict

Create-Create, Link-Link,
Create-Link,

Move-Create, Move-Link,
Move-Move (Dest)

X X
(X for

Create-Create)

X

Edit conflict Edit-Edit X X X
Delete conflict Edit-Delete,

Move-Delete,
Link-Unlink

X X X

Move conflict Move-Move (Source) X X X

Indirect conflict

Move-ParentDelete X X X
Create-ParentDelete X X X
Move-Move (Cycle) X X X

Node-typing X X X

Table 5.2: Overview of conflict patterns

5.4 Conflicts patterns

Our consistency philosophy and conflict resolution policies are high-level concepts which are consis-
tently applied to the concrete conflicts presented in section 5.5. Because many conflicts share some
characteristics, they should also be resolved in similar approach. The conflict patterns presented in this
section group these conflicts to a set of conflict patterns.

Conflict patterns borrow ideas from Alexander’s Pattern Language [Ale+13]. At its core are design pat-
terns, which refer to each other, forming a pattern language. Design patterns describe problems and
possible solutions in a structured way. They are written from a high-level perspective such that their
solutions typically require adaptation to solve the concrete problem at hand. Patterns aren’t considered
perfect, but rather being hypotheses of what is most likely an appropriate solution for a given problem.
To quote Alexander,

[. . . ] each pattern represents our current best guess as to what arrangement of the physical
environment will work to solve the problem presented.

Although the origin of the pattern language is in architecture, it has been applied to many other do-
mains, including software engineering [Gam+77]. We apply the pattern language to file system conflicts.
We note that even though this domain is very specific, it is straightforward to abstract our patterns and
their foundation (the file system) s.t. they apply to generic graph structures whose operations follow
similar rules.

We start with an overview of patterns in section 5.4.1 and then present each pattern in sections 5.4.2-
5.4.7. From these patterns we derive the list of concrete conflicts presented in section 5.5.

5.4.1 Overview

An overview of conflict patterns is shown in table 5.2. The related concrete conflicts column shows the re-
lationship between conflict patterns and conflicts. The Intentions preservable column addresses whether
the intention of both conflicting operations can be preserved - either completely or at least to a large ex-
tent. Where this is not the case, one of the operations typically has to be discarded by the synchronizer.
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The general naming scheme for a conflict is <operation on replica X> - <operation on replica Y>.

For instance, Move-Create means that a move operation of one replica conflicts with a create operation
on the other replica. Some conflicts such as “Move-Move (Dest)” deviate from this scheme slightly. The
corresponding conflict sections explain the deviation in more detail.

5.4.2 Pseudo conflict

Description: At each replica an operation with the exact same outcome was applied. A pseudo conflict
may also be referred to as false conflict in other works.

Solution: Such kinds of conflicts can be solved without data loss and don’t require user notification.
The synchronizer only needs to avoid that the same operations are detected again in the future, by up-
dating its internal database to reflect the change. The replicas do not have to be manipulated, because
they both already have the same operation applied to them. A synchronizer that correctly differentiates
real vs. pseudo conflicts enable maximum conflict avoidance.

Conflicts:

• Create-Create: creating a file with the same name under the same parent where the content is the
same on both replicas

– Note: the concurrent creation of a directory is not listed here. We argue that if it were a
pseudo conflict, the effect would be that the synchronizer recursively merges sub-objects,
which may not be the intention by the user.

• Link-Link: creating a link to the same file in the same parent and name

• Move-Move (Source+Dest): moving the same object to the same parent and name

• Edit-Edit: editing the content of a file such that the content is equal on both replicas

To verify that two files have the same content (Create-Create, Edit-Edit), checksums are used. Various
algorithms exist, such as MD5 or SHA-1. These algorithms take binary data of any length (the file’s
content in our case) and produce a short, fixed-length output, the checksum, which can be compared
with negligible costs regarding network bandwidth and CPU time. There are two disadvantages. First,
computing them takes at least as much time as reading the entire data. Second, two files with different
contents can theoretically produce the same checksum, however, with a very low probability. We use
checksums because of the following advantages:

• Transmitting large files, which is extremely costly over slow networks, can be omitted in case of an
equal checksum.

• Checksums avoid that the synchronizer causes Create-Create or Edit-Edit conflicts when the syn-
chronization process was interrupted by the user while the synchronizer transmits a file to the
remote server. This is an implementation-specific detail due to the lack of transactions in some
protocols such as HTTP, and is further explained in figure 5.3.

• Support for migrating all objects of a replica from one location to another one without the need
of retransmitting sub-files: The user may desire to change the physical location of either replica
(i.e., on the local disk or on the remote server), e.g. because of quota restrictions or because she
wants to reorganize the file system namespace for any reason, then the use of checksums enables
the following workflow:

1. User deletes the configured pairing of the two root directories in the synchronizer user inter-
face. This deletes all synchronization-related meta-data, including the local database.
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CreateOperation FileSystemOperator HttpHandlerDatabase

file_id=Uupload_file(path)

file_id=Uextract_file_id_from_headers(headers)

headers=UPUT(path,Udata)

id_db=Uinsert_new_file(path,Ufile_id)

Figure 5.3: Uploading a file to a server

This figure is an UML sequence diagram, illustrating the upload process of a file. Time flows from
top to bottom. The synchronizer executes a CreateOperation, whose first task is to upload the file,
expecting the file’s server-replica-specific ID, followed by inserting the name, file ID (and other
meta-data such as lastmodified meta-data) into the database. Assume that at the first red dashed
line the file has been fully received by the server and was stored in its persistent storage. The Cre-
ateOperation can be aborted at any time, either by the user, or, say, by a power failure or program
crash. Should this happen anywhere in-between the two red dashed lines, then the upload is com-
plete, but the change is not reflected in the synchronizer’s database yet. When the synchronization
is restarted, the file would be detected as a Create-Create conflict when not using checksums.

2. User physically moves the root directories to a new location on either replica, using the tools
they are used to (such as a file manager).

3. User sets up a new pairing in the synchronizer user interface. The initial synchronization
will detect Create-Create pseudo conflicts for all files and directories5. Effectively, no files
are transmitted, only the local database is repopulated.

5.4.3 Name clash conflict

Description: The create, link or move operation oX detected in replica X and create, link or move oper-
ation oY detected in replica Y both target the same name within a specific parent dir. However, a name
may only be used once within a parent dir.

Exception: See Pseudo conflict pattern.

Solution: In general there are two approaches which preserve both user’s intentions:

5In this case, concurrent creation of directories would need to be considered as pseudo-conflicting.
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1. Merge the content of the two objects affected by oX and oY ,

2. Rename one or both objects. In the latter case finding a more suitable name for the objects is left
to the user after being notified about the conflict.

We note that there are other options for resolving name clash conflicts, e.g. discarding one operation
by deleting the affected object. However, such options would completely discard the intention of one of
the users and thus we do not follow up on them any further.

Which solution is better depends on the operation and the type of the object. We generally recom-
mend the rename approach, because when the users generated the operations, their intention was for
oX and oY to modify different objects. We agree with [TSR15] in their assumption that the user wants
the synchronizer to keep both objects separate, instead of merging them. Merging has several caveats
(see section 5.4.4 for issues when merging files), most notably that unmerging, in case of a bad merge,
is more tedious than keeping objects separate in the first place, deferring the merge to the user. The
authors of [Naj16] disagree and propose to always merge, but do not explain their decision.

One exception where renaming may not be appropriate is the case where oX = oY = cr eatedi r . All
tested industrial synchronizers (see section 8.2.5.4) and [TSR15; Naj16] prefer to merge the contents of
the directories recursively. While [TSR15; Naj16] don’t provide a rationale for this decision, we under-
stand that merging directories avoids conflicts. This is important when establishing a new synchroniza-
tion between two replicas (for which no synchronization was set up before), but whose file system are
already equal (as was explained above in section 5.4.2). Other works [Mol+03; NS16] prefer renaming
over merging for two createdir operations. In [NS16] the authors argue that “the merging is not the inten-
tion of any operation involved”, merging directories recursively may involve finding and solving conflicts
for sub-objects which is “difficult for users to understand and complex to implement by the underlying
system” and merging “may create a nontrivial burden to users who need to unmerge the merged subtrees”.
We consider the best solution to be a mixture of both approaches: generally prefer renaming, but initially
switch to merge mode temporarily until the very first synchronization has completed.

Whenever name clash conflicts are solved by renaming, the author of the synchronizer needs to choose
whether to rename one or both objects. In either case we recommend that objects are renamed by ap-
pending a globally unique suffix to their name. Other helpful information to include for the new name
are the date and time of conflict discovery, or the name of the replica or user. When renaming both
objects, the synchronizer implicitly considers both replicas to be negatively affected and should conse-
quently notify all affected users. When renaming just one object, one replica is implicitly chosen as the
winner and only the loser needs to be notified.

As for the winner-criterion (section 5.3.2) different criteria can be used for chosing the winner, such as
object type, operation type or replica/user. In our implementation we use only a single criterion, repli-
ca/user, to make conflict resolution predictable and comprehensible for the user. The first two criteria
(object type, operation type) are inconclusive in case oX and oY use the same object or operation type.
As discussed in section 5.3.2, we suggest to prefer the operation performed on the server replica for syn-
chronizers in a client-server star-topology setup.

5.4.4 Edit conflict

Description: The content of a file was changed on both replicas.

Exception: See Pseudo conflict pattern.

Solution: The goal is to preserve both replica’s changes. There are several approaches:

1. Merging: the synchronizer merges the content of both files. It needs to support specific file for-
mats (in [Mol+03] the authors support text and XML files). If the synchronizer is not integrated
into the application used to manipulate the file, this is done by a state-based 3-way-merge ap-
proach. Merging has several disadvantages, which is why we do not recommend this approach:
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• The 3-way-merge procedure needs to be implemented for each file format separately. This
is infeasible in practice, due to the large number of proprietary file formats.

• Either the complete history (for log-based approaches such as OT) or a base version (for 3-
way-merge) is required to merge both replica’s changes. The latter may not be available. In
particular, basic file system implementations such as those of macOS, UNIX and Windows
do not store older versions of a file by default.

• The merge itself may fail due to conflicts within the data, requiring user intervention.

• If the merge is successful, the result is a syntactic merge [SS05] which may be semantically
incorrect.6

2. Renaming both files: like for name clash conflicts, each file is renamed to a unique name. This
approach is applied in [TSR15]. All affected users should be notified.

3. Renaming one file: similar to name clash conflicts this requires to choose a winner and rename
the file of the loser (notifying the corresponding user). Renaming the loser can be implemented
by a simple rename operation, or moving the file to a different location, possibly outside of the
synchronized namespace, to preserve the loser’s changes. To select the winner there are several
criteria available, such as:

• Last-modified timestamps: the file with the higher timestamp is assumed to be winning copy
[UFB10]

• Replica or user: (see name clash conflicts) [Bao+11; Li+12a; Li+12b]

For the typical setup where synchronization happens in a client-server star-topology, we recommend
approach 3, with the server replica’s file taking precedence. We advice to not synchronize the loser’s re-
named file to the server (but keep it only on the local user’s replica). This avoids unnecessary bandwidth
use and makes sure that other users not involved in the conflict are oblivious of it.

5.4.5 Delete conflict

Description: On one replica an object is moved or edited, on the other replica the corresponding ob-
ject is deleted (either directly or as a consequence of deleting a parent directory).

Solution: Whether deletion or the edit/move operation should take precedence depends on the envi-
ronment in which the synchronizer is used, hence we don’t give a recommendation for the preference
itself. While using a criterion such as replica/user would be possible, the majority of works from research
and industry use the operation type criterion, with the configuration to prefer the move/edit operation
[NS16; Li+12a; Li+12b; TSR15; Rei+94; Naj16]. This is in line with our philosophy to discard the opera-
tion that was less work for the user. Given a selected preference, there are different ways to implement
the manipulation of the loser operation:

• If deletion is preferred:

– If the object is a file:

* If it was only moved, delete the moved file

* If it was (also) edited, the edited copy should be backed up prior to its deletion to pre-
serve the intention by the user who edited the file

– If the object is a moved directory, it should be deleted, but the implementation first needs to
check for sub-node conflicts and resolve these. This can be achieved by undoing the move
operation on the corresponding replica.

6For instance, if the base version is a text file that contains “The dogs jumps”, which is modified in replica X to “The dog
jumps” and in replica Y to “The dogs jump”, the merged result will be “The dog jump” which is semantically incorrect.



80 CHAPTER 5. CONSISTENCY AND CONFLICTS FOR FILE SYNCHRONIZERS

• If the edit or move operation is preferred, this should lead to a reconstruction of the object on the
replica that deleted it (in case the object was a dir: including the reconstruction of its sub-objects),
at the new location (the move operation’s destination).

5.4.6 Move conflict

Description: On both replicas the same file or directory was moved to a different location. That is, on
each replica either the name or parent directory (or both) differs. Note: if the operation affects a file on a
file system with hardlink support, this is not necessarily a conflict because the synchronizer can create
two links for the file in the merged result.

Exception: See Pseudo conflict pattern.

Solution: For file systems where a file or dir may only exist once, it is difficult to preserve the move-
intention of both replicas. One possibility is to create a copy of the object, as done in [TSR15] for direc-
tories. However, this approach no longer resembles the original intention of the user, because a second,
different object has come into existence, cluttering the file system and confusing the user. We suggest
that the synchronizer discards the move operation of one replica and prefers the one of the other replica,
which was also implemented in [NS16; Mol+03]. We use the replica/user criterion in our implementa-
tion, configured to let the server replica’s move operation take precedence.

5.4.7 Indirect conflicts

Two operations indirectly conflict with each other if they don’t target the same object or name, but dif-
ferent objects. There is always a hierarchical parent-child relationship between the objects affected by
the operations. Refer to sections 5.5.6+5.5.7+5.5.10 for the description and solutions of the conflicts
Move-ParentDelete, Create-ParentDelete and Move-Move (Cycle). The Node-typing conflict is described
in appendix A.2.4 on page 201.

5.5 Conflicts

This section presents each individual conflict and its resolution in full detail. Each subsection is ded-
icated to a specific conflict, providing a description, a formal definition using the operations from ta-
ble 3.6 on page 44 and the resolution approach. Our implementation actually finds conflicts using the
update trees introduced in section 4.2.4 on page 50. Detailed pseudo code for finding conflicts in these
trees is presented in appendix A.6 on page 211. To limit the scope of this work the following subsec-
tions only present details of the conflicts and their resolution for the NH-MD file system introduced in
section 2.3.1 on page 15. For the file systems H-All and NED-All we provide conflict descriptions and
definitions in appendix A.2 on page 197 for the interested reader, but omit details for their resolution
because our implementation focuses on the NH-MD file system.

Because it is possible that several conflicts are found, we find that a special property that must hold for
resolving any conflict is that the resolution must work independently of the existence of other conflicts,
and have no negative effect on other conflicts. We will provide further details in section 5.7, but already
mention here that our high-level conflict resolution approach is iterative. We find all conflicts, sort them,
resolve the conflict with highest priority and the restart the synchronization.

5.5.1 Create-Create

Description

On both replicas a new file or directory is created with the same name under the same parent dir. Is a
pseudo conflict if both operations are createfile operations where the content/checksum of the files is
equal, or if both operations are createdir operations and this synchronization iteration is the very first
one.
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The associated pattern is the name clash conflict.

Definition

Let f i r st s ync be a property that holds if the following two conditions hold: (1) synchronization has
not yet fully completed since the user configured the synchronization, (2) all nodes in the update trees
either have no change-event or only the create change-event.

Let

oX = cr eateX (iX , pX ,nX )

oY = cr eateY (iY , pY , pY )

with cr eate := cr eatedi r ∨ cr eate f i l e.

Then

pseudo(oX ,oY ) =[ f i r st s ync ∧ t y pe(oX ) = cr eatedi r ∧ t y pe(oY ) = cr eatedi r

∧ cor r espondi ng _ob j ect_i d(iX , X ) = iY ]∨ [t y pe(oX ) = cr eate f i l e

∧ t y pe(oY ) = cr eate f i l e ∧ cor r espondi ng _ob j ect_i d(iX , X ) = iY

∧ checksum(snapshotX , iX )

= checksum(snapshotY ,cor r espondi ng _ob j ect_i d(iX , X )]

is a function that indicates whether two createfile operations are pseudo-conflicting. Function corre-
sponding_object_id() is defined in appendix A.5.1.

We can now define the Create-Create conflict, using the ⊗ symbol to indicate that the two operations
are conflicting:

cr eateX (iX , pX ,nX )⊗ cr eateY (iY , pY ,nY ) =¬pseudo(oX ,oY )

∧ cor r espondi ng _ob j ect_i d(iX , X ) = iY

∧¬i sedi t (oX )∧¬i sedi t (oY )

where

i sedi t (oX ) = t y pe(oX ) = cr eate f i l e ∧∃del ete f i leX ( j , v) : v = pX ∧name(dbsnapshotX , j ) = nX

ensures that the createfile operation oX is not replaced by an edit operation, as explained in sec-
tion 4.2.4.2.

The violated precondition is i d(p,n) = er r or of the createfile or createdir operation. A file or dir cannot
be created at a location that is already occupied.

Resolution

Following the recommendations from section 5.4.3, we rename the object of the loser operation using
the following form, which is also used for other conflict types:�� ��<name without file extension>-conflict-<datetime (Y-M-D-H-M-S)>-<random string>[.<extension>]

The random string forces the new name to be unique, making sure that the rename operation will not
fail in practice (e.g. because the new name might be occupied by another object). After the rename
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operation finished and the synchronization is restarted, the two affected objects no longer have the
same name and the conflict is resolved.

We note that our implementation offers flexibility by providing two options for the replica criterion,
usually chosen at compile-time of the program. We offer options for Create-Create as well as most other
conflict types. We implemented the following options for Create-Create conflicts:

• Option 1: Local replica always wins.

• Option 2: Remote replica always wins.

5.5.2 Edit-Edit

Description

The content of an already synchronized file was changed on both replicas. Is a pseudo conflict if the new
content of both files is equal.

The associated pattern is the Edit conflict.

Definition

edi tX (iX ,opX )⊗edi tY (iY ,opY ) =[iX = ci d(iY ,Y )]

∧ [checksum(snapshotX , iX ) 6= checksum(snapshotY , iY )]

Function cid() is defined in appendix A.5.2.

Note that a del ete f i le and cr eate f i l e can count as edi t due to the consolidation of these two opera-
tions described in section 4.2.4.2.

Syntactically, no precondition is violated, but overwriting the file content on replica X with the one from
replica Y would cause X ’s changes to be lost. This semantic violation instead takes place on the update
tree levels, which are aware of the before-state (particularly its lastmodified meta-datum) of the file and
therefore know that both replicas independently made incompatible modifications.

Resolution

We resolve this conflict as described in the Edit conflict pattern, see section 5.4.4. We first back up the
file on the loser replica and then replace it with the content of the winner replica, updating the database
snapshot with updated replica-specific IDs, lastmodified meta-datum and checksums. Some replicas
may store older file versions automatically, in this case creating a backup is not necessary.

Like for Create-Create conflicts, we implemented the following options for the replica criterion:

• Option 1: Local replica always wins.

• Option 2: Remote replica always wins.

5.5.3 Move-Create

Description

On one replica the user moved an object into a specific parent dir v , giving it the name n, on the other
replica the user created a new object named n in the parent directory corresponding to v .

The associated pattern is the name clash conflict.
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Definition

cr eateX (iX , pX ,nX )⊗moveY (iY ,uY , vY ,nY ) =[pX = ci d(vY ,Y )]∧ [nX = nY ]

∧¬i sedi t (cr eateX )

with cr eate := cr eatedi r ∨ cr eate f i l e

Violated preconditions are i d(p.n) = er r or of the createfile/createdir operation, and i d(v,n) = er r or of
the move operation. A file or dir cannot be created at (or moved to) a location that is already occupied.

Resolution

Conflict resolution happens the same way as for Create-Create conflicts. Our implementation offers
four options, two for the replica criterion, two for the operation type criterion, using option 2 by default:

• Option 1: Local replica always wins.

• Option 2: Remote replica always wins.

• Option 3: Move operation always wins.

• Option 4: Create operation always wins.

5.5.4 Edit-Delete

Description

On one replica the content of an already synchronized file was changed, on the other replica that file
was deleted.

The associated pattern is the delete conflict.

Definition

edi tX (iX ,opX )⊗del ete f i leY (iY , pY ) = (iX = ci d(iY ,Y ))

Note that a del ete f i le and cr eate f i l e can count as edi t due to the consolidation of these two opera-
tions described in section 4.2.4.2.

On replica Y , ancestor (ir oot , iY ) is violated when trying to apply the edit operation. On replica X there
is no violation on a syntactic level, but on the semantic level: the changes of the edit operation would
be lost. The user who deleted the file would have done so without knowing that it was recently edited by
another user on the other replica.

Resolution

Our implementation offers four options, using the replica and operation type criterion, to determine
whether the edit or deletefile operation takes precedence, choosing option 1 as default:

• Option 1: Edit operation always wins.

• Option 2: deletefile operation always wins.

• Option 3: Operation of the local replica always wins.

• Option 4: Operation of the remote replica always wins.

If the configured option favors the edit operation, we perform the following checks:
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• If the delete node’s parent has no Delete change-event, a delete operation is performed for the edit
node which only deletes the corresponding local and remote replica’s entries from the database
(not the file system). This will cause the file to be detected as new in the next sync iteration, thus
it will be restored.

• If the delete node’s parent has a Delete change-event, the delete operation mentioned above would
only turn the Edit-Delete conflict into a Create-ParentDelete conflict in the next sync iteration. To
avoid that the synchronizer presents the user two conflicts, we first execute a move operation
that moves the file to the root physically, with a conflict-suffix, followed by executing the delete
operation that removes the file’s entry from the database.

If instead the delete operation takes precedence, we first perform a backup operation of that file. Next,
we perform the delete operation that removes the file physically from the losing replica and from the
database.

5.5.5 Move-Delete

Description

On one replica an object was moved, on the other replica the same object was deleted.

The associated pattern is the delete conflict.

Definition

moveX (iX ,uX , vX ,nX )⊗del eteY (iY , pY ) = (iX = ci d(iY ,Y ))∧¬i sedi t (del eteY )

with del ete := del ete f i le ∨del etedi r

and

i sedi t (del eteY ) =[t y pe(del eteY ) = del ete f i le]

∧∃cr eate f i l eY ( jY , vY ,nY ) : vY = pY ∧nY = name(dbsnapshotY , iY )

On replica Y , i ∈ l i st (u) is violated when trying to apply the move operation. You cannot move a file or
dir that is already deleted. On replica X there is no violation on the syntactic level, but on the semantic
level: the structural change of the move operation would be lost. The user who deleted the object would
have done so without knowing that it was recently moved by another user on the other replica.

Resolution

Like for Edit-Delete conflicts, the conflict resolution first needs to determine whether the move or delete
operation takes precedence. Because both Edit-Delete and Move-Delete conflicts belong to the Delete
conflict pattern, it makes sense that these two conflict types are resolved similarly. Thus, the options
described for Edit-Delete also apply here for Move-Delete.

When the move or delete operation applies to directories, conflict resolution becomes more involved,
because dirs can have children on which the user could have performed additional operations, on either
(or both) replicas. Specifically, new files or dirs could have been created, existing ones could have been
deleted or edited, and different kinds of move operations could have happened. Consider dir node A,
then these three types of moves on its child nodes are possible:

• Moves within the hierarchy of A (in other words: A’s path is a prefix of both the source and dest
path of such moves) - can only happen on the Move-replica of a Move-Delete conflict.

• Some node N outside of A is moved so that N is now a child of A (referred to as Move-ParentDelete
conflict, see next section) - can only happen on the Move-replica of a Move-Delete conflict.
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• Some child node of A is moved to a destination that is outside of A - can happen on both the Move-
or Delete-replica of a Move-Delete conflict (on the Delete-replica, the user must have moved the
child node out of A prior to deleting A).

For each of these cases we have to make sure that the synchronizer’s behavior is consistent w.r.t. the
selected resolution option and that it doesn’t produce incorrect file system or database operations.

The outline of the behavior related to child nodes is shown in the following table. It shows desired
outcomes for a Move-Delete situation. All situations have in common that on the left replica directory
“/A” was moved to “/B”, while “/A” was deleted on the right replica. However, in each situation (table
row) one or both replicas performed additional operations. The Delete wins and Move wins columns
illustrate the desired outcome for the corresponding chosen Move-Delete resolution option. The color
legend is as follows:

• Green: creation of a new object

• Yellow: a file’s content was edited

• Blue: node was moved

Situation Delete wins Move wins

L R

A → B

R

Q

S R

Q

A

S

Move-replica also deleted
some of the child nodes

S

All files are deleted (deletions
on move-replica have no

effect)

B

R

Q

S

Child nodes also deleted by
the move-replica were deleted

from both replicas and thus
cannot be restored

L R

A → B

R

Q'

S R

Q

A

S

X

Move-replica creates new
child nodes or edits existing

ones, inside the moved
directory

X

S

After undoing the move locally
(“/B” to “/A”), an Edit-Delete
conflict for “’/A/R/Q’” and a

Create-ParentDelete for
“/A/S/X” is detected (see

subsection 5.5.7) and resolved.

B

S

R

Q'

S

X

“/B” (and all of its
sub-elements) are detected as
new and are synchronized to

the delete-replica
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Situation Delete wins Move wins

L R

A → B

R

S'

R

Q

A

S

Q

Move-replica moves the child
node “/B/S” out of “/B”, to

“/S’”

S

Both “/B” and “/S’“ are deleted
on the move-replica, because

a Move-Delete conflict is
detected for both of them and

the moves are undone

B

R

Q

S

S'

Both “/B” and “/S’“ are
detected as new and are

synchronized to the
delete-replica, at the new

respective locations

L R

A → B

R

Q

S R

Q

A S'

The delete-replica moves the
child node “/A/S” out of “/A”
to “/S’” prior to deleting “/A”

S

S'

“/B” is deleted on the
move-replica, but “/B/S” is
first moved to “/S’” on the

move-replica

B

R

Q

S

S'

The move “/A/S” to “/S’”
should be executed on the

local replica. “/B” (with all its
children, except “/B/S”) is

detected as new on the
move-replica and therefore

synchronized to the
delete-replica

Another specialty in our desired Move-Delete resolution is explained in figure 5.4.

The general behavior of our Move-Delete resolution (which realizes the desired behavior described
above) is similar to the one defined for Edit-Delete conflicts:

• When the move operation takes precedence, that node and all its child nodes are deleted from the
database, so that the files are detected as new on the subsequent sync iteration and are therefore
synchronized to the replica that deleted the node, so that they restored at the new location (i.e.
the one corresponding to the Move-replica). However, for directories, the user who deleted the
dir could have moved one or more child objects outside of the deleted directory. Such objects
potentially still exist on both replicas and should therefore not be deleted from the database. More
details are provided in appendix A.7.2.

• When the delete operation takes precedence, we should not delete the other replica’s object in the
file system or database (as done in the Edit-Delete resolution), because this would have undesired
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L R

A

R → X S R

A

S

(a) Initial situation

L R

A

X S

A

S

(b) Introduced Create-ParentDelete
conflict

Figure 5.4: Avoiding Move-Delete detection for within-dir moves

Subfigure (a) shows the conflict situation. While a dir is deleted on the remote replica, the user of
the local replica moves/renames child nodes within that dir. According to our conflict definitions,
this causes the detection of both a Move-ParentDelete conflict (explained in the next section) and
a Move-Delete conflict for that node. There are two options to resolve this. First, we could treat the
situation as Move-Delete conflict. When that conflict’s resolution option is set to “move wins”, this
would cause the “/A/R” entry to be removed from the database, causing a Create-ParentDelete con-
flict as shown in subfigure (b), which is resolved by moving the object to the root (see section 5.5.7
for more details). In other words, treating the situation as Move-Delete conflict would save the
user’s within-dir move operation. The second option is to treat the situation as Move-ParentDelete
conflict, which is resolved by undoing the move. Effectively this means that within-dir move oper-
ations are lost. We prefer and implemented the latter approach, for two reasons: (1) Semantically
we see no advantage in saving namespace reorganizations within a dir that is deleted by another
replica. Moving such objects to the root (as done by the Create-ParentDelete resolution) only frag-
ments the synchronized namespace. (2) When interpreting the situation as Move-Delete conflict,
the user would be confused by two conflict messages shown consecutively, one for the Move-Delete,
one for the Create-ParentDelete conflict.

effects on its child nodes in case the conflict affects a directory. Instead, we undo the move, so
that a subsequent sync iteration no longer recognizes the move, but just the delete operation, as
a conflict-free situation. The delete operation will eventually be executed, but special situations
(such as other conflicts caused by child nodes) can be detected and handled first. Note that un-
doing the move is an involved operation and is further elaborated on in appendix A.7.1.

5.5.6 Move-ParentDelete

Description

On one replica a directory node A was deleted, on the other replica another object was moved such that
it is now an immediate child of A.

The associated pattern is the indirect conflict.

Definition

moveX (iX ,uX , vX ,nX )⊗del etedi rY (iY , pY ) = name(snapshotY ,ci d(iX , X )) 6= er r or∧(ci d(vX , X ) = iY )
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The precondition t y pe(v) = di r of the move operation is violated. You cannot move a file or directory
into a directory that is already deleted.

Resolution

Unlike the conflicts presented so far, we decided not to offer any configurable options for resolving this
conflict. Instead we always resolve it by undoing the move operation, as described in appendix A.7.1.
In the subsequent sync iteration, only the delete operation remains, which is then executed. This ap-
proach favors the user’s intention to delete the directory over the move operation. Other alternatives
have considerable disadvantages:

• Preferring the deletion, and not undoing the move operation, would destroy the object that was
moved inside it, which was neither intended by the user who moved the object nor the one who
deleted the directory.

• Preferring the move operation would require the synchronizer to recreate the directory (and all
ancestor directories leading to it), producing an inconsistent preservation of the delete-intention,
fragmenting the namespace. To the deleting user the directory would inexplicably re-appear. This
merged result is undesirable, also for the user who moved the object. She would not have moved
an object into the directory, had she known before that the other user already deleted it. Cleaning
up the workspace may cause a considerable amount of time.

Our suggestion to favor the deletion but to first undo the move causes only little loss of data. Once the
user is notified about the undone move operation, she can choose to restore the deleted directory, e.g.
from a server backup, and repeat the move operation.

5.5.7 Create-ParentDelete

Description

On one replica a directory node A was deleted, on the other replica a new object was created as an
immediate child of A.

The associated pattern is the indirect conflict.

Definition

cr eateX (iX , pX ,nX )⊗del etedi rY (iY , pY ) = (pX = ci d(iY ,Y ))∧¬i sedi t (cr eateX )

with cr eate := cr eatedi r ∨ cr eate f i l e

The violated precondition is t y pe(p) = di r of the createfile or createdir operation. You cannot create a
file in a directory that is already deleted.

Resolution

Like Move-ParentDelete, we offer no configurable options for resolving Create-ParentDelete conflicts. We
resolve it by physically moving created objects to the root, appending the conflict suffix introduced for
Create-Create conflicts. On the next sync iteration, the conflict is no longer detected and the directory
is deleted. This approach favors the user’s intention to delete the directory and we favor this solution
over recreating the deleted parent directory(ies), for the same reasons as given for Move-ParentDelete
conflicts.
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5.5.8 Move-Move (Source)

Description

On both replicas the same file or directory was moved to a different location. We denote this Move-Move
conflict “Move-Move (Source)” because it affects the same source object. Is a pseudo conflict if both the
destination parent dir and new name of the file or dir are equal.

The associated pattern is the move conflict.

Definition

moveX (iX ,uX , vX ,nX )⊗moveY (iY ,uY , vY ,nY ) = (iX = ci d(iY ,Y ))∧ [(vX 6= ci d(vY ,Y ))∨ (nX 6= nY )]

The violated preconditions is i ∈ l i st (u). The object is no longer in the expected source location of the
move operation.

Resolution

Following the recommendation of the Move conflict pattern (section 5.4.6) we resolve this conflict by
undoing the move of the loser replica. Like for Create-Create conflicts, we implemented the following
options:

• Option 1: Local replica always wins.

• Option 2: Remote replica always wins.

We decided to offer only a single resolution option that is equal for Move-Move (Source), Move-Move
(Dest) and Move-Move (Cycle) conflicts, because the move operation is the central operation in all of
these conflicts. Hence, resolving these conflicts the same way makes conflict resolution more compre-
hensible to the user.

As discussed in subsection A.7.2, the Move-Delete conflict resolution code may manipulate the locations
of orphaned nodes in the database. Because this causes Move-Move (Source) conflicts, the resolution
code adds the idb of the orphaned nodes together with the winner_replica to an in-memory registry.
Consequently, to determine the winning replica, the Move-Move (Source) resolution code first checks
whether the provided node’s idb is known in the registry:

• If not, loser_node is chosen according to the preconfigured resolution option for Move-Move
(Source) conflicts.

• If yes, loser_node = conflict.local_node if winner_replica == Remote
else conflict.remote_node

Then, undo_move(loser_node) is called to resolve the conflict.

5.5.9 Move-Move (Dest)

Description

The users of both replicas each move a different object into the same parent directory with the same
name. The name of this conflict is Move-Move (Dest) because both move operations affect the same
destination.

The associated pattern is the name clash conflict.
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Definition

moveX (iX ,uX , vX ,nX )⊗moveY (iY ,uY , vY ,nY ) = [iX 6= ci d(iY ,Y )]∧ [vX = ci d(vY ,Y )]∧ (nX = nY )

The violated precondition is i d(v,n) = er r or . A file or dir cannot be moved to a location that is already
occupied.

Resolution

Following the recommendations of the name clash conflict pattern (section 5.4.3), we rename the file on
the losing replica by appending the conflict suffix. There are two options for the replica criterion:

• Option 1: Local replica always wins.

• Option 2: Remote replica always wins.

5.5.10 Move-Move (Cycle)

Description

Given two distinct directories A and B , the user moves A into B ’s namespace on one replica while B is
moved into A’s namespace on the other replica. This would create a cyclic parent-child relationship in
the merged result, which is not allowed by F ’s invariants.

Definition

moveX (iX ,uX , vX ,nX )⊗moveY (iY ,uY , vY ,nY ) =(t y pe(snapshotX ,, iX ) = t y pe(snapshotY , iY ) = di r )

∧ iX 6= ci d(iY ,Y )

∧ancestor (snapshotX ,ci d(iY ,Y ), iX )

∧ancestor (snapshotY ,ci d(iX , X ), iY )

The violated precondition is ¬ancestor (i , v). A file or dir cannot be moved to a location that is below
itself.

Resolution

Since the attempt of applying the move operation of one replica to the other one will fail, the synchro-
nizer needs to undo one of the move operations.

5.5.11 Conflict type completeness

The ten conflicts presented above cover all possible conflict types. To show this, consider OT={createfile,
createdir, move, edit, deletefile, deletedir} which is the list of all operation types of file system F , see
table 3.6 on page 44. We start from an initially equal state for replicas X and Y . For any two types tA , tB

from OT we instantiate operations oX (of type tA) and oY (of type tB ), apply oX to X (which yields X ′)
and oY to Y (yields Y ′). We choose the operation parameters (i , p,u, v,n for F ) such that either applying
oY to X ′, or oX to Y ′ fails, due to violated preconditions.

Finding conflicts can be done manually or in an automated approach. We applied the manual, prag-
matic approach, examining each individual precondition of each operation type tA and finding a tB ,
oY and oX that produces a conflict. The following list illustrates the relationships between the conflicts
defined above and the preconditions:

• createdir, createfile:
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– ancestor (ir oot , p)∧ t y pe(p) = di r : see Create-ParentDelete conflict

– i d(p,n) = er r or : see Create-Create and Move-Create conflict

– Note: precondition ¬ancestor (ir oot , i ) is never violated, because the file system implemen-
tation makes sure to choose a unique i

• move:

– t y pe(u) = di r ∧ i ∈ l i st (u): see Move-Delete and Move-Move (Source) conflict

– t y pe(v) = di r : see Move-ParentDelete conflict

– i d(v,n) = er r or : see Move-Create, Move-Move (Dest) conflict

– ¬ancestor (i , v): see Move-Move (Cycle) conflict

• deletefile, deletedir:

– ancestor (ir oot , i )∧ i ∈ l i st (p): see Move-Delete, or pseudo Delete-Delete conflict

• edit:

– ancestor (ir oot , i ): see Edit-Delete conflict.

The above list covers all conflict types except for Edit-Edit. However, this conflict type is not a syntactic
but a semantic conflict, thus no formally defined precondition of the edit operation is violated.

5.6 Applicability of conflicts

Table 5.4 illustrates which conflicts apply for each file system model from table 2.1 on page 16. The
last row makes apparent that the number of conflicts increases with the complexity of the underlying
file system definition. The more conflict types, the more elaborate the implementation of the file syn-
chronizer needs to be, because it requires detection and resolution logic for each conflict. However, this
insight should not tempt a synchronizer developer to deliberately choose a simplified, internal file sys-
tem model (such as NH-D [BP98] or NH-M [Mol+03]), when the underlying file system’s definitions is
actually more complex7. Doing so degrades performance and usability, as explained in section 3.2 on
page 41. While a heterogeneous synchronizer, such as the one we develop in this work, also chooses a
simpler model (NH-MD vs. H-All), it does so for compatibility reasons rather than ease of implementa-
tion.

5.7 Iterative conflict resolution

5.7.1 Introduction

When resolving conflicts there are two challenges:

1. It is possible that a set of specific files is affected by multiple conflicts at the same time. Figure 5.5
illustrates a few examples. However, implementing resolution methods that consider multiple
conflicts is futile, as the number of conflict combinations is (countably) infinite.

2. Resolving a conflict may have bad side effects on other (still unresolved) conflicts or may require
special logic in case executing the winner operation on the loser replica first requires propagation
of other operations.

All related academic works we presented in chapter 2 ignore these challenges. We approach them as
follows:

7The available implementations of the two cited works operate on top of file systems such as NTFS (Windows) or APFS
(macOS), which are similar to the more powerful H-All definition.
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NH-MD NH-M NH-D NH-RD H-All NED-All

Create-Create X X X X X X
Link-Link X X X X X X

Link-Unlink X X X X X X
Create-Link X X X X X X
Move-Link X X X X X X
Edit-Edit X X X X X X

Move-Create X X XA) XB) XC) X
Edit-Delete X X X X X X

Move-Delete X XD) X XB) XC) X
Move-Move (Source) X X X XB) XC) X

Move-Move (Dest) X X X XB) XE) X
Move-ParentDelete X X XF) X X X

Content-ParentDelete X X X X X X
Move-Move (Cycle) X X X X X X

Node-typing X X X X X X

No. of conflicts 10 7 4 8 14 8

Table 5.4: Conflict applicability per file system
Footnotes:

• A) Becomes Create-Create conflict.

• B) X if detected move is actually a rename operation. X otherwise.

• C) X only for directories. X otherwise.

• D) Becomes Move-Move (Source) conflict.

• E) Applies to directories and files.

• F) Becomes Create-ParentDelete conflict.

File system model acronyms, as introduced in table 2.1 on page 16:

• NH-MD: No hardlink support, support for move and delete operations

• NH-M: No hardlink support, support for move but not the delete operation

• NH-D: No hardlink support, support for delete but not move operation

• NH-RD: No hardlink support, support for rename and delete operations

• H-All: Hardlink support, support for all operations

• NED-All: No (empty) directory support, support for all operations
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Figure 5.5: Conflict combination examples

Given the start situation shown in subfigure (a), (b) illustrates how a specific file can be affected by both
an Edit-Edit and a Move-Create conflict, because on replica L the file was moved from ’a’ to ’b’, on R
another ’b’ was created, and the content of the file was edited on both replicas. In (c) we see how a
Move-Move (Source) conflict can be combined with two Move-Create conflicts, by creating a new file on
each replica, at the same location that is occupied by the respective other replica’s move operation.
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Figure 5.6: Move-Move (Source) conflict resolution with new directory

1. We find all conflicts, sort them in a specific order (explained in section 5.7.2) and only solve one
conflict at a time, the one with the highest priority, followed by restarting the symchronization.

2. When resolving a conflict of type A-B, where operation A should win, rather than executing oper-
ations that merge the effects of A and B to yield a file system that looks as if operation A had won,
we instead only undo (or modify) operation B and then restart the synchronization. The consecu-
tive synchronization iteration recognizes operation A again, which no longer conflicts with B, and
eventually executes A once all conflicts have been resolved. The concrete resolution approaches
presented in section 5.5 use this approach.

This iterative approach keeps our implementation logic simple and thus less prone to errors. The fol-
lowing examples illustrate the advantages of our approach:

• For Move-Delete conflicts affecting a directory where the option is set to “delete wins”, undoing
the move is better than immediately executing the delete operation, because the latter would ig-
nore possibly existing Move-ParentDelete and Create-ParentDelete conflicts on child nodes of the
affected dir. See subfigures (a)+(b) of figure 5.11 on page 100.

• For Move-ParentDelete conflicts, just undoing the moves (rather than executing the Delete op-
eration immediately) allows to correctly handle potential Create-ParentDelete conflicts for other
child nodes of the deleted directory.

• For Move-Move (Source) or Move-Move (Cycle) conflicts, undoing the move of the losing replica is
better than trying to immediately execute the winning replica’s move operation, because the win-
ning replica may have moved the object to a new directory which doesn’t exist on the losing replica
yet. Extra logic would be required to catch such situations and compute the synchronization of
such directories. An example can be seen in figure 5.6.

5.7.2 Conflict type sort order

Our implementation sorts all found conflicts in the following order:

1. Move-ParentDelete
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2. Move-Delete

3. Create-ParentDelete

4. Move-Move (Source)

5. Move-Move (Dest)

6. Move-Create

7. Edit-Delete

8. Create-Create

9. Edit-Edit

10. Move-Move (Cycle)

If, for any particular conflict type, there are more than one conflicts, these are solved by path as follows:

• Move-ParentDelete, Create-ParentDelete: path of deleted directory node

• Move-Delete, Edit-Delete: path of deleted node

• Move-Move (Source): move origin path of the local node

• Move-Move (Dest), Move-Move (Cycle): path of local move node

• Move-Create: path of the create node

• Create-Create, Edit-Edit: path of the local create/edit node

Path sorting first compares the tree depth level (e.g. ’x/y’ < ’a/b/c’ because the former is on level 2, the
latter on level 3) . If two paths have equal depth, we use lexicographical order.

The following analysis explains the rationale for using this particular sort order. While the presented
conflict resolution approaches would work in any order, a closer look reveals that resolving one con-
flict can have a large effect on other existing conflicts, such as eliminating them or turning one conflict
type into another one. We examined a large set of conflict combination pairs and tested different or-
ders (including all variations for the resolution options, where available). The conflict type sort order
introduced above is the result of building a totally ordered list from the partial priorities we determined
between two conflict types. We write:

• type1 > type2 if conflicts of type1 have a higher priority and should be resolved before type2, for
reasons as detailed below,

• type1 | type2 if the order is irrelevant (as in: “it doesn’t matter which conflict type is solved first”),
usually due to an independence between the affected nodes, parent nodes or names.

The general metric for deciding whether type1 > type2 holds is that the intention of both replica’s op-
erations and the respective conflict resolution option should be maximized. Figure 5.7 illustrates the
maximization. The following table provides an overview. Each conflict combination is briefly ex-
plained in subsections 5.7.2.1 and 5.7.2.2. From the list of partial priorities it is trivial to construct the
totally ordered priority list presented above.
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Figure 5.7: Move-ParentDelete > Move-Move (Source)
The start situation shown in (a) is changed into a Move-Move (Source) + Move-ParentDelete situation in (b). (c)
illustrates that when first solving the Move-ParentDelete conflict, the Move-Move (Source) conflict disappears. The
intention of the operation of the local replica, moving ’A/c’ to ’B/c’, was denied because of the Move-ParentDelete
resolution, but the intention of the remote replica, moving ’A/c’ to ’c’ prevails. In (d), we show what happens when
instead solving the Move-Move (Source) conflict first, with the configuration option that the local replica wins such
types of conflicts. In this case, the Move-ParentDelete conflict remains, and once it is solved, all moves shown in (b)
will have been undone. We end up in a situation like the start situation, with the only difference that ’B’ was deleted.
None of the move operations prevail. Consequently, we favor the approach of (c) over (d).
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Type1 | Type2 Type1 > Type2

Move-Move (Source) | Move-Move (Dest)
Move-ParentDelete | Edit-Edit

Move-Move (Source) | Edit-Edit
Move-Create | Edit-Edit

Move-Move (Cycle) | Move-Move (Dest)
Move-ParentDelete | Create-ParentDelete

Move-Move (Cycle) | Move-Create

Move-Delete > Edit-Delete
Move-Delete > Move-Create

Move-ParentDelete > Move-Delete
Move-Delete > Move-Move (Dest)

Move-Move (Source) > Move-Create
Move-Move (Source) > Create-Create

Move-ParentDelete > Move-Move (Source)
Move-Delete > Create-ParentDelete

Move-Delete > Create-Create

5.7.2.1 Same priority conflict combinations

• Move-Move (Source) | Move-Move (Dest): solving the conflicts in either order results in no differ-
ence for the final outcome.

• Move-ParentDelete | Edit-Edit, Move-Move (Source) | Edit-Edit, Move-Create | Edit-Edit: for the
correctness of synchronization, first moving a file and then replacing it is equivalent to first re-
placing and then moving it.

• Move-Move (Cycle) | Move-Move (Dest): solving the conflicts in either order doesn’t result in any
difference. Even though undoing the move as part of solving a Move-Move (Cycle) conflict dis-
solves the Move-Move (Dest) conflict, the end result is equal, because of the same resolution op-
tion configured for all Move-Move (Source/Dest/Cycle) conflicts.

• Move-ParentDelete | Create-ParentDelete: solving the conflicts in either order results in no differ-
ence for the final outcome.

• Move-Move (Cycle) | Move-Create: solving the conflicts in either order result in negligible differ-
ence.

5.7.2.2 Different priority conflict combinations

• Move-Delete > Edit-Delete: while the resolution order doesn’t matter in case both conflicts affect
the same file, an example scenario exists where the Move-Delete conflict affects a parent directory,
and the Edit-Delete conflict affects a file inside that parent directory (i.e. the user who edited the
file also moved a parent dir). In this case resolving the Move-Delete conflict first allows the file to
stay in the directory. The opposite order would first move it to the root, which is unnecessary.

• Move-Delete > Move-Create: An example is shown in figure 5.8. In case delete is preferred over
move for Move-Delete conflicts, undoing the move also solves the Move-Create conflict. This pro-
duces fewer files with conflict-suffix. When choosing other configuration options, the conflict
resolution order is irrelevant and produces the same outcome.

• Move-ParentDelete > Move-Delete: as discussed in figure 5.4 this choice was made such that move
operations that take place within a directory that was deleted on the other replica will be dis-
carded.

• Move-Delete > Move-Move (Dest): An example is shown in figure 5.9. When resolving Move-Move
(Dest) first, the Move-Delete conflict always remains, irrespective of the configured option. The
end result always includes one file with a conflict suffix. If resolving the Move-Delete conflict first
and the configured option prefers delete to win, the move operation is undone, the Move-Move
(Dest) conflict disappears, an no file has the conflict suffix. If move wins, the entry for one object
is removed from the database and the Move-Move (Dest) becomes a Move-Create conflict., where
one file with conflict suffix remains.
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Figure 5.10: Move-Delete | Create-ParentDelete

• Move-Move (Source) > Create-Create and Move-Move (Source) > Move-Create: Undoing the move
(as part of the Move-Move (Source) resolution) solves the respective other conflict, while the oppo-
site order, solving the other conflict first, doesn’t. After the synchronization finished, this produces
fewer files with a conflict suffix in their name, compared to solving the conflicts in the opposite
order.

• Move-ParentDelete > Move-Move (Source): When solving Move-ParentDelete first, the other con-
flict disappears, since the resolution undoes the move operation of one replica. See figure 5.7.

• Move-Delete > Create-ParentDelete: These two conflict types can be intertangled in different
ways. Figure 5.10 demonstrates an example where different resolution orders yield no difference.
However, when the shared node of both conflicts is the deleted parent dir node, as shown in fig-
ure 5.11, resolving the Create-ParentDelete conflict first might produce a suboptimal result, be-
cause the created node would definitely be moved to the root directory, even if the configuration
for the Move-Delete is “move wins”, which would have produced a result where the created node
stays in the user-specified location.

• Move-Delete > Create-Create: Regardless which resolution option is used for resolving the Move-
Delete conflict, the final outcome will always contain just one file with a conflict-suffix. When
resolving the Create-Create conflict first, two files may have the suffix.

5.8 Proof of termination

5.8.1 Overview

As explained in section 5.7 our conflict resolution algorithm iteratively solves one conflict at a time,
until all conflicts are resolved. Here we demonstrate that our algorithm cannot get caught in an infinite
loop, by closely examining the effects of resolving conflicts. We find that sometimes resolving a conflict
introduces another conflict, or changes the conflict type of another existing one. Figure 5.12 provides
an overview of these kinds of dependencies. An arrow that connects conflict c with another conflict c ′
indicates that resolving c introduces c ′. If it were possible to find cycles8, our algorithm would never
terminate. However, below we show that each cyclic dependency (see red arrows in figure 5.12) does not

8For instance, a cycle would exist if resolving conflict c1 introduces c2, whose resolution introduces c3, whose resolution
introduces c4, etc.
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Figure 5.11: Move-Delete > Create-ParentDelete

cause a cycle. That is, the resolution of a conflict c of type t may cause another conflict c ′ of type t , but
resolving c ′ will not cause another c ′′ of type t .

We now present arguments for each conflict type in a separate section, where the following common
terminologies hold:

• The conflict indicated by the section title is denoted c.

• For conflicts Move-Move (Source), Edit-Edit, Move-Delete and Edit-Delete c affects nodes nX and
nY .

• For all other conflicts c affects nodes nX and mY .

• By default, nX is the loser node, unless stated otherwise.

• sit is the synchronization iteration where c is detected. sit+1 is the consecutive sync iteration
where c is resolved.

For each conflict we explain whether the resolution of c itself introduces a new conflict c ′ in sit+1. This
is typically not the case, but if it is, we clarify that it’s impossible that the resolution of c ′ would cause
a conflict c ′′ in sit+2, etc., leading to a never-terminating loop. For conciseness of our proofs we de-
fine that the second and third parameter of ancestor (snapshot ,n,m) may also be update tree nodes
rather than IDs. In other words ancestor (dbsnapshot ,n,m) := ancestor (dbsnapshot ,n.idb ,m.idb)
and ancestor (snapshotX ,n,m) := ancestor (snapshotX ,nX .I D,mX .I D).
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Figure 5.12: Conflict dependency graph

5.8.2 Move-Move (Source)

We apply undo_move() to the loser node. Physically undoing the move of nX may be possible or impos-
sible, as explained in appendix A.7.1.

5.8.2.1 Undo move is possible

The object is moved only physically, the database is untouched. In sit+1 the Move change-event for
nX is no longer detected. This solves c. A close examination of every other conflict type shows that
undo_move() can only cause a Move-Move (Cycle) conflict c ′ to be detected in sit+1 in certain situations:

1. Create-Create, Edit-Edit, Edit-Delete, Create-ParentDelete, Move-ParentDelete, Move-Move
(Source): resolving c does not cause new Move, Create, Edit or Delete change-events in sit+1. Thus,
c ′ must have existed in sit already.

2. Move-Create, Move-Move (Dest): see point 1 - if another Move-Create / Move-Move (Dest) conflict
c ′′ that already existed in sit affects nX with a Move change-event, then resolving c also resolves
c ′′.
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3. Move-Delete: see point 1 - also note that nY cannot have the Move and Delete change-event at the
same time.

4. Move-Move (Cycle): it’s possible that the existence of c for node n introduces a Move-Move (Cycle)
conflict c ′ in sit+1. For instance, c ′ might exist for two other distinct nodes q and r , as illustrated
in figure 5.13.

5.8.2.2 Undo move is impossible

The object is moved to the root (with a unique conflict suffix) physically, and the DB entry is updated.
In sit+1 the Move change-event of nX is no longer detected, which solves c. The Move change-event
node for nY is still detected in sit+1. As a side effect this solves other conflicts such as Move-Create,
Move-Move (Dest) in some situations.

It is not possible that undo_move(nX ) applied in sit introduces a Move-Move (Cycle) conflict c ′ in sit+1,
given that undoing the move is impossible. Theorem 2 shows that no c ′ can exist for node n and some
other node q . Theorem 3 shows that no c ′ can exist for two other distinct nodes q and r .

Lemma 2. Consider nodes n and q situated in an arbitrary relationship in sit , see figure 5.14 for possible
configurations. After moving n to the root level, there cannot be a parent-child relationship between n and
q in sit+1, unless there already was one in sit . The proof is a trivial proof by exhaustion, by examining the
effect of moving n to the root level for each configuration shown in figure 5.14.

Theorem 2. When undo_move(nX ) is used to resolve a conflict c in sit (conflict type of c can be Move-
Move (Cycle), Move-Move (Source), Move-Delete, Move-ParentDelete) and undoing the move operation of
nX is impossible, undo_move(nX ) cannot introduce new a Move-Move (Cycle) conflict c ′ between n and
some other node q in sit+1.

Proof. by contradiction. For c ′ to be found only in sit+1 (see section 5.5.10 for details) undo_move(nX )
would need to cause oppositional parent-child relationships between q and n in the replicas in sit+1

(where these relationships did not exist in sit yet, because if they had already existed in sit , c ′ would
have been detected in sit already). However, lemma 2 demonstrates that moving nX to the root cannot
introduce a new parent-child relationships between nX and qX in sit+1.

Lemma 3. Consider nodes n, q and r situated in an arbitrary relationship in sit , see figure 5.15 for possi-
ble configurations. After moving n to the root level, there cannot be a parent-child relationship between q
and r in sit+1, unless there already was one in sit . The proof is a trivial proof by exhaustion, by examining
the effect of moving n to the root level for each configuration shown in figure 5.15.

Theorem 3. When undo_move(nX ) is used to resolve a conflict c in sit (conflict type of c can be Move-
Move (Cycle), Move-Move (Source), Move-Delete, Move-ParentDelete) and undoing the move operation of
nX is impossible, undo_move(nX ) cannot introduce new a Move-Move (Cycle) conflict c ′ between two
distinct nodes q and node r in sit+1.

Proof. by contradiction: see proof for theorem 2. Now lemma 3 demonstrates that moving nX to the
root cannot introduce a new parent-child relationships between qX and rX in sit+1.

5.8.3 Create-Create

The resolution physically renames nX by appending a random conflict suffix. In sit+1 conflict c is solved
because nX .name 6= mY .name. It is not possible that the resolution introduces another conflict c ′ of
type Create-Create, Move-Create or Create-ParentDelete, because:
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Figure 5.13: Move-Move (Source) turns to Move-Move (Cycle) (undo possible)

Subfigure (a) shows the database state. We construct a situation where we first build a Move-Move (Cy-
cle) conflict c ′ between nodes q and r . Because undo_move(nX ) only modifies replica X , q and r must
have been in a parent-child relationship in replica Y . We locally move r into n (which also means that
r is below q , since n is a child of q) and remotely move q into r . To disguise c ′ we move the intermedi-
ate node, n, to the root on both replicas, but with slightly different names. This causes the Move-Move
(Source) conflict c for n, hiding the parent-child relationship between q and r . When synchronizing the
current situation, we detect only c as shown in subfigure (b). After resolving c in favor of replica R we
detect c ′ in sit+1 as shown in subfigure (c).
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Figure 5.14: Configurations of two nodes q and n

We note that dashed lines indicate that other nodes (not shown) may exist between the beginning
and end of a dashed line.

Figure 5.15: Configurations of nodes q , r and n

We note that q and r are interchangable.

• Create-Create, Move-Create: nX .name was chosen at random. A conflict c ′ would require that
another node m′

Y exists (with Create or Move change-event), where m′
Y .par ent = mY .par ent ∧

m′
Y .name = nX .name, which is extremely unlikely due to the randomized name suffix.

• Create-ParentDelete: The existence of mY with a Create change-event implies that mY .par ent
must not have a Delete change-event (a created object cannot exist in a deleted directory). Because
our conflict resolution did not delete the physical path of my .par ent or nX .par ent , their change-
events must have stayed the same between sit and sit+1 which means that it is impossible that a
c ′ Create-ParentDelete conflict was introduced by our resolution algorithm.

5.8.4 Move-Create

Appending the conflict suffix to nX ’s name has exactly the same effect as described in section 5.8.3,
irrespective of whether nX ’s change-event is Move or Create.

5.8.5 Move-Move (Dest)

Appending the conflict suffix to nX ’s name has exactly the same effect as described in section 5.8.3.
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5.8.6 Move-Move (Cycle)

Uses undo_move() of the loser node.

5.8.6.1 Undo move is possible

Similar to the argumentation of section 5.8.2.1, resolving a conflict c via undo_move(nX ) may introduce
another Move-Move (Cycle) conflict c ′ in sit+1. An example is shown in figure 5.16.

5.8.6.2 Undo move is impossible

The file is moved to the root (with conflict suffix) physically, and the DB entry is updated. In sit+1 this in-
troduces a Move change-event for node nY . This can cause Move-Create, or Move-Move (Dest) follow-up
conflicts, but no Move-Delete, Move-ParentDelete, Move-Move (Source) or Move-Move (Cycle) follow-
up conflicts:

• Move-Delete, Move-ParentDelete: the resolution of c just performed a physical move operation
(and changed the parent and name of the object in the database). Nothing was deleted, thus no
Delete change-event could have been introduced in sit+1.

• Move-Move (Source): because the resolution of c moved nX to the root on replica X , no Move
change-event is detected in sit+1 for nX , thus the introduction a Move-Move (Source) conflict for
n is impossible. Since the resolution does not affect mX at all, the introduction of a Move-Move
(Source) conflict for mY is also impossible.

• Move-Move (Cycle): see theorems 2+3.

Note that it is generally impossible that our resolution causes an infinite loop, see theorem 4.

Theorem 4. Resolving Move-Move (Cycle) conflicts cannot cause an infinite loop due to the introduction
of new Move-Move (Cycle) conflicts.

Proof. by contradiction: A necessary condition for finding a Move-Move (Cycle) conflict c is that at least
one directory node with a Move change-event exists on each replica. To cause an infinite loop, resolving
c would have to keep the number of Move change-events for directories stable (or even increase it) on
both replicas. This is impossible, for two reasons: (1) the configured option of which replica should win
conflict c is always the same for each resolution process (e.g. “remote replica wins”); (2) the only effect
of undo_move() on the loser replica is the reduction of Move change-events by 1. Consequently, once
only Move-Move (Cycle) conflicts remain, the number of directory nodes on the losing replica with a
Move change-event involved in a Move-Move (Cycle) conflict must reach 0 eventually.

5.8.7 Edit-Delete

If the configured option is delete wins: because our resolution of c removes the affected file both phys-
ically and from the database, n will no longer exist in sit+1. Because file nodes cannot have children,
there cannot be any other side-effects on other nodes.

If edit wins: resolving c removes the database entry of n. Thus, the only consequence is that the physical
file is detected with a Create change-event in sit+1. This can cause a Create-Create or Move-Create
conflict c ′ in sit+1, when a corresponding child node of nY .par ent exists, with a Create or Move change-
event. It cannot cause a Create-ParentDelete conflict, because when we resolve c we explicitly check for
a Delete change-event in nY .par ent and then move nX physically to the root. For that move operation
of nX to cause a Create-ParentDelete conflict c ′ in sit+1 this would require that replica Y ’s root was
deleted, which is an exceptional situation in which no synchronization is executed anyway.
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Figure 5.16: Move-Move (Cycle) introduces new Move-Move (Cycle) (undo possible)

Subfigure (a) shows the database state. We construct a situation where we first build a Move-
Move (Cycle) conflict c ′ between nodes q and r which is then disguised by moving nX into mX ,
which causes a Move-Move (Cycle) conflict c between m and n. Subfigure (b) illustrates c. After
undo_move(nX ) was applied, conflict c ′ is discovered in sit+1, as illustrated in subfigure (c).
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5.8.8 Edit-Edit

The only effect of resolving c is that neither nX nor nY will have a Edit change-event in iteration sit+1.
All other nodes and their change-events are exactly as they were in sit . Consequently, resolving c cannot
cause follow-up conflicts c ′.

5.8.9 Move-Delete

If the configured option is delete wins:

• If node is a file: See section 5.8.7 “delete wins”.

• If node is a dir:

– If undo_move() is possible: as described in section 5.8.2.1 a Move-Move (Cycle) follow-up
conflict c ′ is possible.

– Otherwise, no other conflicts are caused:

* Move-Move (Cycle): see theorems 2+3.

* Move-Move (Source) does not make sense, because nY is still deleted in sit+1.

* Move-Move (Dest) and Move-Create are impossible due to the randomness of the con-
flict suffix.

* Move-Delete and Move-ParentDelete are impossible, the resolution of c just performed
a physical move operation (and changed the parent and name of the object in the
database). Nothing was deleted, thus no Delete change-event could have been intro-
duced in sit+1.

If the configured option is move wins: the resolution described in appendix A.7.2 may cause the follow-
ing follow-up conflicts c ′:

• Move-Move (Source): if orphans are found their paths are bent to the root in the database. This
causes Move-Move (Source) conflicts which are automatically resolved in favor of the delete-
replica.

• Move-Move (Cycle): Let q and r both be orphan nodes below n for which
ancestor (dbsnapshot , q,r ) ∧ ancestor (snapshotX , q,r ) ∧ ancestor (snapshotY ,r, q) holds
in sit . Resolving c ′ makes q and r independent in the database in sit+1, while not affecting the
physical oppositional parent-child relationships. This causes a Move-Move (Cycle) conflict c ′ in
sit+1. An example is shown in figure 5.17.

• Create-Create: given that a Move-Create conflict c ′′ existed in sit between n and some other node
q (s.t. we detect c and c ′′ in sit ), then resolving c transforms c ′′ to a Create-Create conflict c ′ in
sit+1.

• Move-Create: given that a Move-Move (Dest) conflict c ′′ existed in sit between n and some other
node q (s.t. we detect c and c ′′ in sit ), then resolving c transforms c ′′ to a Move-Create conflict c ′
in sit+1.

• Move-Delete: let q be an orphan node of n. Let node r with ancestor (dbsnapshot , q,r ) be
deleted on replica X - but r is not modified, moved or deleted on replica Y . Then we detect
no Move-Delete conflict c ′ for r in sit . However, resolving c will cause r to be detected with a
Move change-event in replica Y in sit+1, which introduces c ′. An example is shown in figure 5.18.
However, as theorem 5 shows, this cannot cause an infinite cycle.
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Figure 5.17: Move-Delete introduces new Move-Move (Cycle)
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(d) Detection of new Move-Delete conflict in sit+1

Figure 5.18: Move-Delete resolution yields a new Move-Delete conflict

• Move-ParentDelete: let q be an orphan node. Let nodes r and s with
ancestor (dbsnapshot , q,r ) ∧ ancestor (dbsnapshot ,r, s) both be deleted on replica X
but r and s are not modified, moved or deleted on replica Y . Then we detect no Move-Delete
or Move-ParentDelete conflicts c ′ for r or s in sit . However, resolving c will cause r and s to be
detected with a Move change-event in replica Y in sit+1, which introduces a Move-ParentDelete
conflict c ′ for r and s and one Move-Delete conflict for r and s each.

• Create-ParentDelete: as explained in figure 5.4 on page 87, if nX is affected by a Move-Delete c and
a Move-ParentDelete conflict c ′ in sit , resolving c will transform the Move-ParentDelete conflict
to a Create-ParentDelete conflict.

• All other conflict types (Move-Move (Dest), Edit-Edit, Edit-Delete) are impossible, because the
resolving c does not introduce the corresponding events in sit+1.

Theorem 5. Resolving Move-Delete conflicts cannot cause an infinite loop due to the introduction of new
Move-Delete conflicts.

Proof. by contradiction: As figure 5.18 demonstrates, the reason why resolving c causes c ′ is because
ancestor (dbsnapshot ,n, q)∧ ancestor (snapshot , q,r ) holds, q and r are orphan nodes, and rX is
deleted. c ′ then applies to r . For c ′ to cause a new Move-Delete conflict c ′′, such relationships would
still need to exist, i.e., there would have to be child nodes of r that can become orphaned. However, the
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resolution of c changes the database in such a way that all sub-nodes of r are moved to the root level,
i.e., they are in a flat hierarchy, where no node below r exists. For any c ′ caused by resolving c, resolving
c ′ is trivial. The configuration must still be “move wins”, thus, the entry for r will be deleted from the
database (to reconstruct r in sit+2), without finding any orphan nodes below r .

5.8.10 Move-ParentDelete

Conflict c affects nodes n and m where nX is moved into mX and mY is deleted.

• If undo_move() is possible: Similar to the argumentation of section 5.8.2.1, resolving a conflict c
via undo_move(nX ) may introduce another Move-Move (Cycle) conflict c ′ in sit+1.

• If undo_move() is impossible: The object is moved to the root (with conflict suffix) physically, and
the DB entry is updated. In sit+1 this introduces a Move change-event for node nY . This can cause
Move-Create, Move-Move (Dest), or Move-ParentDelete follow-up conflicts, but no Move-Delete,
Move-Move (Source) or Move-Move (Cycle) follow-up conflicts:

– Move-Delete: the resolution of c just performed a physical move operation (and changed the
parent and name of the object in the database). If nY did not have a Move change-event
in sit this introduces one in sit+1. However, nX was not deleted when resolving c, thus no
Move-Delete conflict c ′ can be introduced for n. Because resolving c did not delete anything,
no c ′ for another node could have been introduced in sit+1.

– Move-Move (Source): because the resolution of c moved nX to the root on replica X , no
Move change-event is detected in sit+1 for nX , thus the introduction a Move-Move (Source)
conflict for n is impossible. Since the resolution does not affect mX at all, the introduction
of a Move-Move (Source) conflict for mY is also impossible.

– Move-ParentDelete: resolving a conflict c via undo_move(nX ) may introduce another
Move-ParentDelete conflict c ′ in sit+1, where c ′ affects nY and qX , given that
ancestor (dbsnapshot , q,n)∧ ancestor (snapshotY , q,n) holds. An example is shown in
figure 5.19. However, as theorem 6 shows, this cannot cause an infinite cycle.

– Move-Move (Cycle): is impossible, see theorems 2+3.

Theorem 6. Resolving Move-ParentDelete conflicts cannot cause an infinite loop due to the introduction
of new Move-ParentDelete conflicts.

Proof. by contradiction: As figure 5.19 demonstrates, resolving c may introduce c ′ in case the following
two conditions hold: (1) undo_move(nX ) is impossible, which causes a new Move change-event in
nY in sit+1, and (2) the corresponding node of nY .par ent already has a Delete change-event in sit

on replica X . For the resolution of Move-ParentDelete conflicts to cause an infinite loop, it would be
necessary that resolving c ′ (which exists due to the new Move change-event in nY ) would be able to cause
another Move-ParentDelete conflict c ′′ in sit+2. However, this is impossible, because when resolving
c ′ undo_move(nY ) is always possible: undo_move(nY ) means to move nY to the root level, with the
unique conflict suffix (unique part of suffix not shown in figure 5.19 for brevity), which cannot fail, as the
path must still be free in replica Y . Consequently, none of the reasons for undo_move() to be impossible
do apply (see appendix A.7.1).

5.8.11 Create-ParentDelete

A Create-ParentDelete conflict c affects nodes nX and m where nX is a created object under mX , while
mY is deleted. Because resolving c simply moves created nodes to the root physically, with a random
conflict-suffix (and without modifying the database), it is not possible to cause any follow-up conflict c ′.
The resolution of c does not introduce any new change-events. The node nX is detected with a Create
change-event in sit+1, just like in sit .
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Figure 5.19: Move-ParentDelete resolution yields a new Move-ParentDelete conflict

5.9 Conclusion

This chapter answers RQ3 which focuses on conflicts. We solve the problem of identifying all conflicts
by analyzing the preconditions of operation pairs, looking for cases where the effect of one operation vi-
olates the precondition of the other one. For our model F we found a total of ten conflicts. By repeating
the analysis for other file system models we found a dependency between conflicts and model, i.e., the
number of conflicts increases with the number and complexity of file system operations. By combining
all possible conflict pairs we found that several conflicts may affect a specific object. To address this we
contributed an iterative conflict resolution approach that solves one conflict at a time, automatically
without involving the user. It is configurable, as it offers several criteria to decide which operation wins
or loses. It also avoids negative side effects for other files or directories that are not part of the conflict,
by modifying the loser operation instead of the winner operation. To decide how conflicts are resolved,
each part of our four-step framework improves contributions made by related academic works. For in-
stance, we make conflict awareness an integral part of our consistency philosophy, and our resolution is
not arbitrary but based on a discussions and comparisons of different options. The resulting algorithm
is simple to implement and terminates provably.
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Chapter 6

Static synchronization

This chapter presents our synchronization algorithm called Syncpal, which combines conflict handling
(presented in chapter 5) and operation sorting (see section 4.2.7) into a high-level algorithm that solves
state-based synchronization of two file system replicas. Parts of this chapter (as well as conflict related
aspects from chapter 5) are also found in [She19]. To facilitate the explanation, we discuss the sim-
plified case of static synchronization where we assume that the file system is not changed by the user
during synchronization. This assumption is reasonable for file synchronizers explicitly invoked by the
user, because she can refrain from changing the file system during synchronization (and close all other
applications that might cause changes). In practice, however, many file systems cannot be locked by a
synchronizer. Thus, concurrent changes may invalidate an ongoing synchronization process. We refer
to section 7.3 which introduces the dynamic synchronization architecture of our implementation which
can handle such concurrent changes. We start with an overview of the algorithm in section 6.1. The
remaining sections explain the individual components introduced in section 6.1 and provide a conclu-
sion.

6.1 Algorithm overview

On a high level our algorithm is similar to the one presented in [BP98] where file system synchronization
is broken down into a three-stage process - update detection, reconciliation and propagation, which we
briefly introduce in the following subsections. In figure 6.1, a flow chart illustrates how our static syn-
chronization algorithm works in detail. The process starts at the top and follows the solid, bold arrows.
Computations happen in blue, hexagonal shapes. Outputs of computations are colored green. Bold,
dashed arrows associate computations with their output. Inputs are associated to computations using
thin, dashed arrows. Decisions are yellow. To reduce clutter, computations that require the local/remote
tree as input do not use incoming arrows, but instead have the tree icon as part of their shape.

6.1.1 Update detection

In the static synchronization approach, update detection is triggered in regular intervals (whereas the
dynamic version triggers update detection based on file system activity). This involves generating four
different snapshots. File system (FS) snapshots are generated using APIs provided by the file system, see
section 4.2.1, yielding snapshotlocal and snapshotremote. They represent the current state of the local and
the remote replica respectively. To find changes since the last synchronization, compute_ops() (see sec-
tion 4.2.3) does not compare those two snapshots, but compares the file system snapshot of each replica
with the corresponding database (DB) snapshots dbsnapshotlocal and dbsnapshotremote introduced in
section 4.2.2, which contain the historic state of each replica at the point of the last synchronization.
After computing

Olocal = compute_ops(dbsnapshotlocal,snapshotlocal)

and
Oremote = compute_ops(dbsnapshotremote,snapshotremote)
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Figure 6.1: Static synchronization algorithm
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the operation sets are transformed into the corresponding in-memory update trees for further process-
ing, as described in section 4.2.4. These trees are given to the reconciliation phase.

6.1.2 Reconciliation

The goal of reconciliation, which is detailed further in section 6.2, is to compute a list of operations from
the local and remote tree that will equalize both replicas once all operations have been executed. In
some cases achieving this goal in just one iteration (top to bottom in figure 6.1) is impossible. If conflicts
are detected our algorithm instead first sorts the conflicts and solves the first one by generating a new
list of one or more already sorted resolution operations which it sends to the propagation phase. It then
restarts automatically, as shown by the dark-red arrow in figure 6.1.

6.1.3 Propagation

In the propagation phase, see section 6.3 for more details, non-conflicting operations are first sorted
to avoid that operations scheduled earlier violate preconditions of later operations. If the sorting algo-
rithm finds that operations depend on each other in a cyclic relationship, the operation list is replaced
by a single operation that breaks the cycle. The operation(s) are then executed, updating the physical
replicas, the corresponding in-memory trees and the local state database.

6.2 Reconciliation

The reconciliation phase computes the list of Syncpal operations that need to be executed. It requires
upd atetr eelocal and upd atetr eer emote to build them. Reconciliation takes place as follows:

1. Iterate over all nodes in both trees and determine conflicts, which is a sorted list of conflicts
found in the tree (see section 5.5 and appendix A.6.1 for more information).

2. If conflicts is non-empty, generate a list of operations that solve the first conflict in conflicts.
See section 5.7 for more information. Provide the list to the propagation phase.

3. Otherwise, if no conflicts are found, iterate over all unprocessed nodes1 in a breadth-first approach
and generate Syncpal operations according to each node’s change-events as follows:

• Create: generate a create-operation. As with all other operations presented next, the opera-
tion data structure contains the corresponding node from the respective update tree, allow-
ing the propagation phase to query the node for the operation-specific information. In case
of Create, this information includes whether a file up-/download or a remote/local directory
creation is requested, as well as the corresponding paths at the time of execution. If the node
is affected by a pseudo Create-Create conflict, the operation is provided with the omit flag
(see next section for clarification). Mark the node processed. If the node is affected by a
pseudo Create-Create conflict, also mark the corresponding create node processed.

• Move: generate a move-operation. If the node is affected by a pseudo Move-Move (Source)
conflict, the operation is provided with the omit flag and the corresponding node is marked
processed. Mark the node processed, unless the node also has an Edit change-event, in
which case mark the node as partially processed.

• Edit: generate an edit-operation. If the node is affected by a pseudo Edit-Edit conflict, the
operation is provided with the omit flag (and the corresponding node on the other replica is
also marked processed). Mark node processed if the node has no move change-event (or has
one but is already marked partially processed), otherwise mark it partially processed.

1Before starting the iteration in step 3, we mark all nodes unprocessed. The iteration algorithm returns the next unprocessed
node using a breadth-first approach, considering the union of upd atetr eel ocal and upd atetr eer emote .
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• Delete: generate a delete-operation, which is given the update tree node and all its child-
nodes in case of a directory node (if any), because the propagation component needs to
delete the paths of the dir and all its children from the database and file system. If the cor-
responding node of the other replica also has a delete flag, the operation is provided with
the omit flag. Mark the node and all its child-nodes processed. Also find the corresponding
node in the update tree of the other side and mark it (and all its child-nodes) processed.

• No change-events: don’t generate an operation. Mark the node processed.

Step 2 illustrates our iterative approach. This keeps the implementation complexity simple, at the ex-
pense of execution time. In a scenario where there are 2 files affected by different conflicts, and 10 other
files not affected by any conflicts, the first iteration would generate (and execute) operations that solve
the first conflict. Then the synchronization would restart and would detect the one remaining conflict
and, say, 11 files not affected by any conflict2. The second iteration therefore generates and executes
operations to mitigate the second conflict. Then the synchronization would restart again, no conflicts
would be found and operations are generated for, say, 12 conflict-free files or dirs.

6.3 Propagation

The goal of the propagation phase is to sort and execute the Syncpal operations provided by the recon-
ciliation phase. The Syncpal operation data structure contains all necessary information required to do
so. Depending on the specific type of the operation, it will modify the relational database, the file system
of the replicas, and the upd atetr eelocal or upd atetr eer emote objects. A Syncpal operation structure is
given the following information:

• Both upd atetr eelocal and upd atetr eer emote .

• Affected node (of the replica where the operation was detected).

• Omit flag: boolean flag, if True, the operation only needs to change the database and omits
changing the physical replicas. This is the case when the same change was physically detected
in both replicas (pseudo conflict) and only the database needs to be updated to avoid detecting
this change again.

• Corresponding node (optional, only if omit flag is True) on the other replica.

• Conflict information (optional), such as name of the conflict or affected paths, to be displayed to
the user at the time of execution.

As illustrated in figure 6.1, the operations are sorted in some cases, or remain unsorted in other cases. If
the operations are conflict resolution operations, they don’t need to be sorted, because the resolution al-
gorithm already makes sure the operations are provided in an order which doesn’t violate the file system
limitations. Otherwise, if no conflicts were detected, the provided list of operations needs to be sorted
before execution, because operations are scheduled by the reconciliation phase in an order determined
by the breadth-first iteration of the trees. The propagation would otherwise fail to execute these oper-
ations due to the limitations of the file system APIs, see section 4.2.7.1 for more details. In case a cycle
is found while sorting, our algorithm generates a single operation that breaks this cycle and executes it.
Otherwise the sorted list of operations must be in a valid, non-cyclic order, ready for propagation.

For the remainder of this section, we first discuss the postconditions of each operation in more detail
in section 6.3.1. In section 6.3.2 we describe how operations are sorted and cycles are resolved. In sec-
tion 6.3.3 we describe and solve several challenges that arise during propagation, which exist mainly due
to the lack of transactions on desktop file systems.

2Assume that solving the first conflict was done in a way that it produces a single new file/dir that is no longer in conflict with
the other replica
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6.3.1 Operation details

The following subsections detail how each respective Syncpal operation changes the file system,
database snapshot and update trees. The first subsection is more verbose than the others, which omit
some details already explained in the first one.

6.3.1.1 Create operation

A create operation is based on a file system operation cr eateX (iX , pX ,nameX ) on replica X (where X
is a placeholder for local or r emote) with cr eate := cr eatedi r ∨ cr eate f i l e, which was detected by
compute_ops() and caused the corresponding node nX to be created in upd atetr eeX , with a create
change-event. If the omit flag is set for the create operation, it is also given the corresponding create
node nY in upd atetr eeY .

The execution of the create operation consists of three steps:

1. If omit-flag is False, propagate the file or directory to replica Y , because the object is missing there.

2. Insert a new entry into the database (and database snapshot), to avoid that the object is detected
again by compute_ops() on the next sync iteration.

3. Update the update tree structures to ensure that follow-up operations can execute correctly, as
they are based on the information in these structures.

The implementation of each step requires the explanation of a few details:

1. The path on replica Y is computed as pathY = path(npY )/nX .name. This requires find-
ing the corresponding parent node npY in upd atetr eeY via the i ddb of nX .par ent , s.t.
nX .par ent .i ddb = npY .i ddb . The sorting algorithm described in section 4.2.7.1 guarantees that
the create operation of a parent directory is executed before the create operation of any of its chil-
dren. Therefore, npY must exist in upd atetr eeY . Once pathY is computed, the corresponding
cr eate operation can be executed. During execution, iY and l astmodi f i edY are returned by
the file system APIs of replica Y . Should the omit flag be set, iY and l astmodi f i edY are already
known from the corresponding node, i.e., iY = nY .I D and l astmodi f i edY = nY .l astmodi f i ed .

2. A new tuple 〈i ddb , name, i dlocal , i dr emote , l astmodi f i edl ocal , l astmodi f i edr emote , t y pe〉 is
inserted into the database, where X and Y take the local or r emote value respectively, with
name = nX .name. The database component generates and returns i ddb .

3. Set nX .i ddb = i ddb (with i ddb from step 2). If nY was given (omit-Flag = True), also set nY .i ddb =
i ddb . Otherwise create and insert a new node nY below npY with the corresponding values.

6.3.1.2 Edit operation

An Edit operation is either based on a file system operation edi tX (iX ,op), or by operations

del ete f i leX (iX , pX )+ cr eate f i l eX ( jX , pX ,nX ) [+edi tX ( jX ,op)]

where the last operation fills the new file with some content, and nX = name(dbsnapshotX , iX ). Either
case causes the generation of a corresponding node nX in upd atetr eeX with an edit change-event.
If the omit flag is set to True for the edit operation, it is also given the corresponding edit node nY in
upd atetr eeY .

The execution of the edit operation consists of three steps:

1. If omit-flag is False, propagate the file to replica Y , replacing the existing one.

2. Update the database entry (and database snapshot), to avoid detecting the edit operation again.
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3. If the omit flag is False, update the upd atetr eeY structure to ensure that follow-up operations
can execute correctly, as they are based on the information in this structure.

Further details:

1. pathY is computed as path(nY ) where nY is found in upd atetr eeY using nX .i ddb .

2. The values l astmodi f i edX and l astmodi f i edY are always updated. If i dl ocal or i dr emote no
longer match nX .I D or nY .I D because the file was actually deleted+created, i dl ocal and i dr emote

are updated, too.

3. nY .I D and nY .l astmodi f i ed are updated with the values determined during propagation.

6.3.1.3 Move operation

A move operation is based on a file system operation moveX (iX ,uX , vX ,nameX ) which was detected
by compute_ops() and caused the corresponding node nX to be created in upd atetr eeX , with a move
change-event. The omit flag is set for the move operation in case the same move was also detected in
upd atetr eeY (pseudo Move-Move (Source) conflict).

The three execution steps are as follows:

1. If omit-flag is False, move the object on replica Y (where it still needs to be moved) from uY to vY ,
changing the name to nameX .

2. Update the database entry (and database snapshot), to avoid detecting the move operation again.

3. If the omit flag is False, update the upd atetr eeY structure to ensure that follow-up operations
can execute correctly, as they are based on the information in this structure.

Further details:

1. A move(sour ceY ,destY ) operation is executed with sour ceY = path(nY ), where nY is found in
upd atetr eeY using nX .i ddb , and destY = path(nvY )/nX .name, where nvY is the node corre-
sponding to nX .par ent .

2. The path psour ce = path(dbsnapshotX , iX ) and the parts of all sub-paths q which start with
psour ce /... are replaced with path pdest = path(dbsnapshotX ,nX .par ent .dbi d )/nX .name. All
other values in the database remain equal.

3. If the omit flag is false, nY is moved to be an immediate child of nvY in upd atetr eeY and is
renamed to nX .name.

6.3.1.4 Delete operation

A delete operation o is based on one or more file system operations delete(iX , pX ) with delete :=
deletedir ∨ deletefile, which were detected by compute_ops() and caused the corresponding node nX

(and child-nodes) to be created in upd atetr eeX , with a delete change-event. If the omit flag is set to
True, o is also given the corresponding delete node nY in upd atetr eeY . As discussed in section 6.2
delete operations are only generated for the highest-level node with a delete change-event, not for those
who have parent nodes with a delete change-event. If nX is a directory node, o is also given the list S of
sub-nodes which need to be deleted from the database.

The three execution steps are as follows:

1. If omit-flag is False, delete the file or directory on replica Y , because the object still exists there
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2. Remove the entry from the database (and snapshot). If nX is a directory node, also remove all
entries for each node n ∈ S. This avoids that the object(s) are detected again by compute_ops() on
the next sync iteration

3. Update the update tree structures to ensure that follow-up operations can execute correctly, as
they are based on the information in these structures

Further details:

1. The delete operation uses pathY = path(nY ) where nY is found in upd atetr eeY using nX .i ddb .
If nX is a directory, the implementation needs to recursively delete all sub-objects.

2. Let path psour ce = path(dbsnapshotX , iX ). Then all entries with path p are removed from the
database, where p = psour ce ∨∃r ∈Σ+ : p = psour ce /r , where Σ+ =Σ∗\{ε}.

3. Remove nX and nY from the update tree structures.

6.3.2 Breaking cycles in operation sorting

6.3.2.1 Introduction

To reiterate the topic of operation sorting, we extracted order dependency rules between all file system
operations in section 4.2.7.1 on page 56. By analyzing the operation preconditions we found a total
of eight rules. We tested all possible ways how two non-conflicting operations (detected on replica X )
can be arranged in an order such that trying to apply them on replica Y fails, because executing the
first operation invalidates the precondition of the second one. In section 4.2.7.2 we elaborated which
kinds of cycles can be built from the ordering rules and presented the sort_operations() algorithm in
algorithm 2 on page 58. In section 4.2.7.3 we discussed the concept of how to break cycles.

So far, the presented algorithms and discussions focused on the scenario where changes occur only in
one replica, being applied to the other, unchanged replica. In this section we generalize the scenario to
bi-directional synchronization, where operations are detected on both replicas, working with Syncpal
operations explained in section 6.3.1 instead of computed file system operations. Here we also discuss
implementation details of break_cycle().

6.3.2.2 From uni- to bi-directional synchronization

Section 4.2.7.3 on page 59 explains how break_cycle() works, in a setting where a set of file system
operations detected in one replica are applied to another replica (where no operations are detected). It
is straightforward to adapt the fix_op_before_op() functions introduced in section 4.2.7.1 (details in
appendix A.4 on page 205), the sort_operations() algorithm (algorithm 2) and break_cycle() to
our bi-directional synchronization algorithm introduced in this section, where non-conflicting changes
are detected on both replicas and operations are not pure file system operations but Syncpal opera-
tions. The reconciliation phase provides an unsorted set of operations O =Olocal ∪Or emote ∪Op , which
sort_operations() turns into a sorted list Ō. Olocal and Or emote contain operations affecting only
the respective replica, while Op contains pseudo-conflicting operations (Create-Create, Delete-Delete,
Move-Move (Source), Edit-Edit) which affect both replicas. We assume that there is no negative effect
of some operation oXi ∈ OX on any oY j ∈ OY (and vice versa), i.e., the order of any oXi relative to oY j

in Ō is irrelevant. We therefore adapt the comparison logic in the fix_op_before_op() functions to

compare all operation tuples except for
(
oXi ,oY j

)
and

(
oYi ,oX j

)
pairs. Comparing such pairs would be

computationally expensive. In section 6.3.2.5 we explain that this assumption is not true in all scenarios
and elaborates on how we handle such cases.

As discussed in section 4.2.7.3, every cycle must either contain a delete operation o (dependency rules
1 or 5) or a move operation o (dependency rules 6 or 2). Our implementation of break_cycle() takes
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the first cycle of Syncpal operations it finds and looks for a matching delete operation o in it. If no such
o can be found, a matching move operation o is found instead.

We then generate a resolution rename operation or (see next section) and only execute or , followed by
restarting the synchronization. Let nX be the node affected by o, then or is given nX ’s corresponding
node nY which we find in upd atetr eeY . or is provided with flag t = db if the omit flag is set for o (when
o ∈Op ), or t = both otherwise. Flag t is explained below.

6.3.2.3 Resolution rename operation

A resolution rename operation is a new type of Syncpal operation which changes only the name of an
object by appending a random suffix to it. It is provided with a flag t (target) where t = db indicates to
rename the object only in the database, whereas t = both means to rename it both physically and in the
database. Similar to other operations described in section 6.3.1, the paths on the physical file system are
computed using the current state, i.e., a move(sour ce,dest ) operation computes sour ce = path(nY )
and dest = source+suffix.

6.3.2.4 Effect and examples

The key to our approach is that the information of the move/delete operation o is not lost when exe-
cuting or , because or affects replica Y , while o affects replica X . Sorting (and thus, resolving a cycle) is
only done when no conflicts are found. After restarting the synchronization, both nX and nY will still
have the same change-events they had before executing or

3. Operation o will be detected again, but
the sorting algorithm will no longer find the dependency rule 1, 5, 6 or 2 for o that was found before
executing or . Due to the randomness of the suffix, executing or cannot cause new order dependencies
either, because it’s extremely unlikely that the new object name (containing the suffix) would coincide
with another existing object. Consequently, the cycle is broken and becomes a chain. Figures 6.2+6.3
provide further examples.

3If o is a delete operation, renaming the database entry (and the physical object on replica Y if it still exists, i.e., if the omit
flag is False) cannot possibly change the Delete change-event in nX , and won’t change the change-events in nY either. The same
holds if o is a move operation.
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Figure 6.2: Breaking a cycle, example 1

Subfigure (a) shows the start situation. On the local replica, the operations move(’A’,’ temp’), createdir(’A’),
move(’temp’, ’A/subpath’) were performed, which are detected as createdir(’A’) and move(’A’, ’A/subpath’),
see subfigure (b). Subfigure (c) shows the cyclic order dependencies. Our algorithm breaks the cycle by
appending a random suffix to A’s name, on the remote replica and in the database, which results in a
cycle-free situation shown in subfigure (d), where only order rule 4 holds.
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Figure 6.3: Breaking a cycle, example 2

Subfigure (a) shows the start situation. On the local replica, the operations move(’A’,’ temp’),
move(’temp/B’, ’A’), deletedir(’temp’) were performed, which are detected as deletedir(’A’) and
move(’A/B’, ’A), see subfigure (b). Subfigure (c) shows the cyclic order dependencies. Our algo-
rithm breaks the cycle by appending a random suffix to A’s name, on the remote replica and in the
database, which results in a cycle-free situation shown in subfigure (d), where only order rule 3
holds.

6.3.2.5 Handling cross-replica operation dependencies

In section 6.3.2.2 we stated the assumption that the order of an operation oXi ∈ OX relative to some
operation oY j ∈ OY is irrelevant. Dependencies between operations detected in different replicas are
typically detected as real conflicts, but our algorithm already resolved these conflicts once function
sort_operations() is called. However, our randomized testing procedure presented in section 8.1.3
on page 146 found several counter examples where the precondition ¬ancestor (i , v) of operation
moveX (iX ,uX , vX ,nameX ) (that is, an object cannot be moved to a target below itself) is violated by
another moveY (iY ,uY , vY ,nameY ) operation. A requirement is that each move operation targets a dif-
ferent object, and both objects are directories. An example is shown in figure 6.4, where subfigures (a+b)
demonstrate the scenario and subfigure (c) illustrates the detected order dependencies, found for each
replica. The final result of sort_operations() is

Ō = [moveL(1,−1,4,′ g ′),moveL(4,3,−1,′ n′),moveR (2,−1,1,′ w ′)]

and the propagation of these operations to the other replica will fail, because the precondition of the
first move operation is violated. The remote replica does not allow to move the node with idb = 1 into
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Figure 6.4: Example for cross-replica operation dependencies

the node with idb = 4. This situation is not a Move-Move (Cycle) conflict. It can be solved by first applying
the move operation detected in the remote replica to the local one (i.e. executing moveR (2,−1,1,′ w ′)
locally) followed by restarting the synchronization. In the next iteration sort_operations() will find
a cycle for the the operations with idb = 1,4, as illustrated in subfigure (d). After breaking the cycle, the
remaining move operations can be successfully propagated.

The underlying reason for the incorrect behavior of sort_operations() is that some functions
fix_op_before_op() called for some operation pair involving operation oXi require information from
the database snapshot, which changes after operations from OY are executed. In the example shown
in figure 6.4 the function fix_move_before_move_parent_child_flip() (for order dependency rule
8) presented in appendix A.4 on page 205 fails to detect the necessary database condition4, because it
can only be detected once the move operation for node with idb = 2 has executed. We analyzed similar
dependencies in other fix_op_before_op() functions by hand but found no related issues.

We now present our approach for solving this issue, referred to as Operation reshuffling.

This approach assumes that the only side effect that exists between two operations oXi and oY j is the
one we found in figure 6.4, affecting fix_move_before_move_parent_child_flip(). It assumes that

4Variable is_y_below_x_in_db would have to be true, but is detected as false.
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our analysis of all other fix_op_before_op() functions was flawless and that there are not any other
side effects we overlooked.

The Operation reshuffling approach gets its name because it reshuffles the order of the scheduled oper-
ations, lazily. It defers the execution of those impossible move-directory operations to a later synchro-
nization iteration, executing those first which are possible. It performs a simple analysis of sorted_ops
once it is available. Consider the pseudo-code of sort_operations() shown in algorithm 2 on page 58.
We replace the last line, return sorted_ops, with the following code:

reshuffled_ops = fix_impossible_first_move_op ( sorted_ops )
i f reshuffled_ops :

return reshuffled_ops
return sorted_ops

Function fix_impossible_first_move_op(sorted_ops) analyzes whether the first operation in
sorted_ops is an impossible move-directory operation. If yes, it returns a list of operations to exe-
cute instead of sorted_ops (more details below). If not, it returns nothing. Of course there might be
an operation oXi in sorted_ops which is an impossible move-directory operation, but oXi is not the
first operation. Determining whether oXi is (im)possible is not easily possible, unless all operations in
sorted_ops were simulated first, which is computationally expensive. Instead our approach deliber-
ately ignores this issue. Instead, it restarts synchronization whenever it detects that a move-directory
operationoXi would fail (at the point when it is executed). After restarting the synchronization oXi will
come first in the next synchronization iteration, and fix_impossible_first_move_op() will handle
it. We now explain the details of fix_impossible_first_move_op() and relate its steps to the exam-
ple from figure 6.4:

1. Check whether the first operation o1 in sorted_ops is a move-directory operation. If not, return.

2. Compute the paths source and dest necessary to execute o1 on the other replica, say, Y , and
check whether o1 is impossible, which is the case if dest starts with source + ’/’. If o1 is possi-
ble, return.

• In our example o1 = moveL(′n′,′ n/w/q/e ′) is found to be impossible. On replica R the node
with idb = 1 cannot be moved into the one with idb = 4, because 4 is below 1.

3. From our above analysis we know that o1 = move(i1,u1, v1,n1) is impossible because there must
be at least one other move-directory operation oY j that affects a node situated between the source
node i1 and target node v1. Traverse upd atetr eeY , starting from the corresponding destina-
tion parent directory node v1, up to the corresponding source node i1. Build a list l of all move-
directory nodes oY j found along the way.

• In our example, we traverse the remote update tree, from destination parent directory node
v1 = 4, up to the source node i1 = 1. We find l = [moveR (2,−1,1,′ w ′)].

4. Iterate over all operations in l and determine o f i r st which is the operation in l which comes earli-
est in sorted_ops.

5. Return a list reshuffled_ops that is a filtered version of sorted_ops. It contains only those
operations in sorted_ops that affect replica Y (or both replicas for operations whose omit-flag is
true), up to (including) o f i r st .

• In our example, reshuffled_operations = l . The first two operations from sorted_ops,
moveL(1,−1,4,′ g ′),moveL(4,3,−1,′ n′), are excluded.
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Syncpal then executes only the operations in reshuffled_ops and restarts the synchronization. In our
example, moveR (2,−1,1,′ w ′) is executed, updating the local replica and the database. The next itera-
tion will find and break the cycle as depicted in subfigure 6.4d. The consecutive iteration will achieve
convergence.

Our approach is easy to implement and has minimal impact on run-time performance. Exhaustive test-
ing using randomly generated operation sequences (see section 8.1.3 on page 146), which also produced
the example in figure 6.4, found no scenarios that exhibit any side effects other than the one we just dis-
cussed. This strengthens our degree of certainty that the assumption we made at the beginning of this
section is correct.

6.3.2.6 Proofs of termination

Theorem 7. The break_cycle() operation does not cause new cycles.

Proof. by contradiction: To cause new cycles, executing the resolution rename operation or in sync
iteration sit , which breaks the cycle (see section 6.3.2.3), would need to cause at least one new cycle
in sit+1. In general, each cycle must contain one of the reordering situations 6, 2, 1 or 5. Operation
or dissolves one of these situations, by renaming some node nY to a unique, un-used name ω, turning
the cycle into a chain. ω is impossible to cause a new situation 6, 2, 1, 5 in sit+1, because that would
require that a move or create operation exists in sit+1 where the affected node’s name matches ω, which
is impossible.

Theorem 8. The execution of the operations in sorted_ops returned by sort_operations() cannot
fail.

Proof. by contradiction: For the execution to fail, it would require that sorted_ops= [
...,oi , ...,o j , ...

]
where executing oi breaks the execution of o j . Because the fix_op_before_op() methods ensure that
order dependencies of operations on the same replica (or pseudo-conflicting operations) are dealt with,
oi must have been detected only in replica X and o j only in replica Y . For example, if some oYi is placed
before some oXi in sorted_ops, such that the execution of oYi invalidates oXi , then there would need
to be some kind of a dependency between oYi and oXi . However, this is not possible, because to have a
dependency between oYi and oXi would require a (real or pseudo) conflict that involves the correspond-
ing two nodes, or involve the cross-replica move operation depedency discussed in section 6.3.2.5 on
page 122. However, real conflicts are already solved at the point where sort_operations() is called,
sort_operations() does consider pseudo conflicts, and the cross-replica move operation depedency
has also been handled as discussed above.

6.3.3 Operation execution challenges

During the execution of Syncpal operations, our implementation needs to take care of several details to
allow for a successful execution of all operations. These are explained in the following subsections.

6.3.3.1 Concurrency handling

As outlined at the beginning of this chapter, our algorithm treats file systems as static, assuming that
the user does not perform any operations during the phases update detection, reconciliation and prop-
agation. In practice, file systems are dynamic, and we cannot ask the user to stop all activities during
these phases, especially since the synchronizer is active in the background. As a result, the generated
operations may become outdated, and attempting to execute them could have disastrous effects.

Our solution to minimize the chance that such problems occur is to query the file system for meta-data
right before performing an operation, to ensure that the operation is still valid. The returned meta-
data is compared to the data available from the snapshots and update trees that were generated during
update detection. The specific queries depend on the operation:
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• Create file, Move:

– ID and lastmodified meta-datum of the source object

– ID of the destination’s parent directory

– Verify that the name is not occupied in the destination parent directory

• Edit (file):

– ID and lastmodified meta-datum of the source object, on both replicas

• Create directory

– ID of the destination’s parent directory

– Verify that the name is not occupied in the destination parent directory

• Delete file: ID and lastmodified meta-datum of the target object

• Delete dir: ID of the target object

If any of the checks fail, the operation as well as all other operations are aborted and a new synchro-
nization iteration is triggered. Note that even though our dynamic synchronizer implementation (see
section 7.3) automatically detects user-made changes to the file system in real time, we still perform
most of these checks. The reason is that, in practice, several hundred milliseconds may pass before a
user-made change is registered by our dynamic implementation, which may already be a too long time
period.

6.3.3.2 File system tricks to emulate atomicity

There are two types of operations that may take long and whose effect may be atomic5 in some file
systems but not in others:

1. File transmissions (upload or download to/from the server), due to limited transmission speed,

2. Deleting non-empty directories, because some file system APIs only offers methods for the dele-
tion of files and empty dirs, thus all dirs have to be traversed and all their children have to be
deleted first (recursively). In some cases it’s even impossible to delete some sub-files or dirs due
to permission problems, e.g. caused by UNIX permission bits or prohibitive ACLs (Access Con-
trol Lists). On Windows systems, a file that is opened by another program (even just for reading)
cannot be deleted either.

To avoid that the file system, in particular its namespace, is left in an inconsistent state during or after
synchronization, or after interrupting an operation, we apply a few tricks to make the effect of these
operations to appear to be atomic to the user and the update-detection components.

1. To avoid that the user sees partially downloaded files in the synchronized namespace on a local
disk, Syncpal downloads files into an invisible, temporary directory (which is on the same disk
volume as the file’s final destination). Only once the download is complete it is moved to its final
destination. Such move operations, as long as they are on the same disk volume, are atomic and
take few milliseconds to complete.

2. To avoid that a recursive delete operation of a directory only succeeds partially, we instead move
the targeted directory to the aforementioned invisible, temporary directory. This move operation
succeeds (or fails) atomically and thus it atomically alters the synchronized file system names-
pace. After the move has completed, the directory and its content can be deleted in parallel to the
execution of other operations.

5We refer to atomicity as known from database systems, see also section 1.3.4 of [EN15].
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6.3.3.3 Path computation

Operations need to use the correct, up-to-date paths on the replica to which the operation should be
applied. An example is shown in figure 6.5. The operation data structure the propagator works with is
given the node of the respective update tree where the operation was detected. We need to compute the
path on the update tree of the other replica using the cid() function from appendix A.5.2.
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Figure 6.5: Path computation during propagation

Given the initial situation shown in subfigure (a), the local replica performed move(’D/F’, ’A’) while
the remote replica performed move(’D’, ’E’), as shown in subfigure (b). Due to the lexicographical
sorting and breadth-first iteration of update tree nodes, the operation scheduled first is the move
of the local replica. To successfully execute it, the corresponding remote source path needs to be
changed from ’D/F’ to ’E/F’ (because ’D/F’ no longer exists due to the move(’D’, ’E’) operation already
applied to the remote replica).

6.4 Termination and correctness

It is an important property for our algorithm to be provably correct and to terminate in finite time. In our
case, correctness is not easily formulated, because of the large amount of possible conflicts (ten different
types) and the different resolution options we provide for each conflict to make the implementation
usable in practice. The combination of different resolution options leads to an exponential explosion of
formal notions of correct behavior.
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We instead show correctness indirectly. We demonstrate that each operation our algorithm generates
and executes is both meaningful (because it keeps the intention of the user as much as possible) and
brings the algorithm one step closer to termination. Our algorithm terminates if both replicas have
converged. This is the case once the local replica matches the remote one. By the law of transitivity this
is the case if the local and remote replica’s snapshots each match their corresponding database snapshot.
We define termination as follows:

Definition 1. Let X ,Y be identifiers for two distinct replicas where snapshotX and snapshotY re-
flect the corresponding current file system state, and dbsnapshotX and dbsnapshotY reflect the
file system state known to the synchronizer after the last synchronization (the database snapshot).
The compute_ops() algorithm presented in section 4.2.3 computes divergences between these replicas.
Our synchronization algorithm s ync(X ,Y ) terminates iff compute_ops(dbsnapshotX , snapshotX ) =
compute_ops(dbsnapshotY , snapshotY ) = {}.

When this situation occurs during update detection, no operations will be generated, and thus there
won’t be any conflicts, cycles or any non-conflicting operations to propagate.

We provided proofs of termination in different sections of this work. To reiterate, we showed that:

• As long as there are conflicting operations, the operations we generate to resolve a conflict cannot
cause an infinite loop (i.e., a resolution operation won’t generate infinitely many follow-up con-
flicts). Thus the conflict-detection and resolution phase will terminate, because the number of
conflicts is limited by the number of detected operations, which depends on the number of files
and directories, which is finite. More details are found in section 5.8 on page 99.

• The part of our algorithm that breaks cycles cannot create infinite loops because the generated
breaking operations won’t create new cycles. Similarly, the number of cycles is limited by the num-
ber of detected operations, which depends on the number files and directories, which is finite. See
theorem 7 in section 6.3.2.6.

• An iteration of our algorithm that finds neither conflicts nor cycles and has thus sorted the oper-
ations must terminate, because the execution of each operation o cannot fail. See theorem 8 in
section 6.3.2.6.

By showing that each step of our algorithm does the “correct step” w.r.t. our consistency philosophy, the
consequence is that our overall algorithm is correct.

6.5 Conclusion

Our Syncpal algorithm integrates the iterative nature of conflict resolution and operation sorting (pre-
sented earlier) into an overall algorithm that builds on state-based update detection, efficient reconcili-
ation using update trees and propagation using Syncpal operations. Our operation sorting approach de-
signed for uni-directional synchronization required some adaptations to work in a bi-directional setup.
Each of Syncpal’s steps are designed to be minimal (i.e., each step executes as few operations as possible
to solve a specific part of the problem) and atomic (by avoiding long-lasting transactions). Therefore the
user can interrupt the synchronization at any time without causing side effects. While the theoretical
drawback of our iterative algorithm is the increased run-time in those scenarios where many iterations
are required, we found that this is not problematic in practice. Either the synchronization is triggered
often, either manually or because the implementation uses hybrid update-detection that triggers on file
system changes. In this case one iteration typically suffices, with only 1-2 operations being propagated.
Or the synchronization was triggered rarely, in which case the user expects synchronization to take a
considerable amount of time anyway.

While our previous discussions are tailored to the file system model F , our approach is generic. It can
be adapted to other models comprised of different operations, preconditions and invariants. While a file
synchronizer developer needs to repeat finding all conflicting operations and order dependency rules,
she can reuse all other parts of Syncpal without further modifications.
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Chapter 7

Implementation

A primary goal of this thesis is not only the design but also the implementation of our Syncpal algo-
rithm. In this chapter we present BSync1, a tool geared towards end-users of Windows and macOS, with
production level quality. It uses a dynamic version of Syncpal presented in section 7.3. BSync runs in
the background and detects and propagates file system operations in near real-time. It allows users to
configure several different folder pairs, residing on heterogeneous storage systems, and have them syn-
chronized in parallel. BSync provides a graphical user interface (GUI) that offers conflict awareness and
inspection. To better understand how (and how often) conflicts affect users, BSync collects statistics
about synchronization, which is presented in section 8.3 in detail.

We start by presenting the different iterations of development in section 7.1. Section 7.2 then provides
an overview of the software architecture and describes its components and their interaction. The core
novelty of BSync is dynamic synchronization presented in section 7.3, which automatically triggers syn-
chronization based on user activity and handles concurrent user activity during synchronization. In
section 7.4 we describe our userbase as well as how BSync is packaged and deployed to users. We con-
clude with lessons learned in section 7.5, which describes requirements and problems that surfaced
only with the extensive help of BSync’s users.

7.1 Iterations of development

7.1.1 Background

The development of BSync and Syncpal did not start as an academic PhD thesis. In late 2014 a new work
package was created at Fraunhofer FIT for the EnArgus project. EnArgus2 is a platform built on top of
BSCW [BHT97] and we were in charge of the work package to create a file synchronizer compatible with
BSCW. To avoid building another proprietary solution (tailored to BSCW) we modified the requirements
and decided to build a solution with support for heterogeneous file systems. From 2015 to 2016 BSync’s
development was funded and approached with a software development mindset. In 2017 work on the
accompanying PhD thesis began. Since then the design and implementation of Syncpal radically im-
proved, because the academic research mindset and thorough analysis of related work identified and
corrected many shortcomings, such as an incomplete analysis of the operation order dependencies.

1Abbreviation for Better Sync, as a homage to the application GoodSync, https://www.goodsync.com/, retrieved July 21,
2019.

2See https://www.enargus.de/, retrieved July 21, 2019.

https://www.goodsync.com/
https://www.enargus.de/
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Figure 7.1: Local sync development prototype

7.1.2 Development prototypes

In 2015 and 2016 several internal development prototypes were built which were only distributed among
a few close test users. We picked Python 33 and Qt54 with PyQt55 bindings as technology stack, which
has not changed since then. Python is a versatile, yet powerful language that allows for rapid prototyp-
ing, and Qt5 is used for the GUI and other platform-dependent tasks.

The following prototypes were built:

• v0.1 local synchronization: this very first prototype focused on the synchronization logic itself
and only supported the file system APIs of Windows and macOS (which are abstracted by Python’s
core libraries). It allowed the user to synchronize two local directories, with configurable conflict
resolution options. Figure 7.1 shows a screen shot of the application, which consisted of a single
window.

• v0.2 WebDAV synchronization: based on version 0.1 we added support for WebDAV-based stor-
age systems, including BSCW. Additionally the synchronization was done in the background, by
repeatedly triggering the static Syncpal algorithm every 15 seconds. Figure 7.2 shows the GUI,
which is very similar to version 0.1.

• v0.3 Background sync: several alpha versions featuring a GUI comparable to those of industrial
synchronizers such as Dropbox, stream-lined for end-users. The user can configure several syn-
chronized folder pairs (referred to as “shares” in BSync) which are synchronized in parallel. By
default BSync is hidden, and the user accesses it via a tray icon. Figure 7.3 on page 132 has some
illustrations. Background synchronization works as in version 0.2.

We also continuously developed automated software tests further presented in section 8.1 along with all
versions.

3https://www.python.org/, retrieved July 21, 2019.
4https://www.qt.io/qt-for-application-development/, retrieved July 21, 2019.
5https://pypi.org/project/PyQt5/, retrieved July 21, 2019.

https://www.python.org/
https://www.qt.io/qt-for-application-development/
https://pypi.org/project/PyQt5/
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Figure 7.2: WebDAV development prototype

7.1.3 Beta versions

In 2017 and 2018 a total of eight beta versions of BSync were released, distributed to a wider target au-
dience of close to 30 users. The most important changes were the handling of platform inconsistencies,
improving the core algorithm in accordance to new findings made in writing this thesis, and the intro-
duction of a truly dynamic synchronization approach that is no longer dependent on regularly executing
the static Syncpal algorithm. Instead we implemented hybrid, filesystem event-based update detectors
for macOS, Windows, BSCW and other file systems, see sections 4.3+7.3. We also added the automatic
collection of statistics and further stream-lined the user experience. This included improving the visual
appeal of the GUI (see figure 7.4 ), the option to automatically start BSync after logon, automatic updat-
ing (deployment) and automatic retrial of operations that failed temporarily. These beta versions were
used exclusively to synchronize with BSCW. Other file system implementations (such as generic Web-
DAV or ownCloud/Nextcloud) were supported, but were not developed to production-level quality and
thus the functionality to select these file system types was not shown in the GUI.

7.2 Software architecture

The simplified software architecture is shown in figure 7.5 . The following list explains the purpose of
the individual modules. The red numbered arrows denote the activity flow which is further explained
in section 7.3. We use a layered approach where the UI implementation (which could be graphical or
text-based) is interchangeable.

• GUI: the user interface implemented using the Qt5 framework. It communicates with the applica-
tion layer via method calls (GUI to application) and Qt signal messages (application to GUI).

• BSyncCore: the facade of the application layer. All interaction between UI and application layer
take place via this module. It is in charge of managing one or more Syncpal instances (one
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(a) Quick view window (single click on tray
icon)

(b) Context menu (right click on tray icon)

(c) Conflict inspection window

(d) Synchronization progress inspection

Figure 7.3: Background sync development prototype
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Figure 7.4: BSync beta version

instance per share, i.e., synchronized folder pair). Combines states from different Syncpal in-
stances to one common state. Forwards messages from Syncpal instances to the GUI.

• Syncpal: Is in charge of orchestrating the synchronization process, split into the three phases up-
date detection, reconciliation and propagation. Each Syncpal performs its work asynchronously
using its own thread.

• Update Detector: its task is to discern expected from unexpected file system events delivered by
the File System Observer sub-module, to deliver unexpected events to the Syncpal module,
and to generate an update tree from the most recent file system state upon request by Syncpal.
There are two Update Detector instances per Syncpal, one for the remote, one for the local
replica.

• File System Observer: regularly delivers up-to-date snapshots and file system events of the
designated replica to the Update Detector. The implementation subscribes to the proprietary
event stream and performs hybrid update detection where possible, as described in section 4.3. If
an unsuitable mapping between namespace and objects is found (see section 3.1.1), that is, if a
specific object appears more than once, the File System Observer raises an error, causing the
synchronization to stop. The user then has to remove all but one link to the object.

• Reconciliator: Given two update trees, the Reconciliator examines them for cross-platform
incompatibility issues and conflicts and returns the list of operations to propagate. The work is
divided into several sub-modules described below:

– Platform Inconsistency Checker: examines the names of the objects of each tree for
issues they would cause when attempting to propagate these objects to the respective other
replica. See section 7.2.1 for a detailed module description.

– Conflict Finder, Conflict Resolver: as described in section 5.5 these sub-modules
find and sort conflicts and generate resolution operations that resolve the first conflict (if
any).

– Operation Generator: Generates the unsorted list of operations for non-conflicting and
pseudo-conflicting operations.

• Propagator: Given the generated list of operations from the Reconciliator, the Propagator
sorts the operation (if necessary) and the propagates one operation at a time, using the Executor.
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Figure 7.5: Implementation architecture
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• Sorter: sorts the list of operations as described in section 6.3.2.

• Executor: executes each operation and tells the Update Detector about the file system event it
should expect.

• Database: contains the persisted file system state. We implemented the database using the
SQLite library.

7.2.1 Platform Inconsistency Checker

In chapter 3 we elaborated on different platform incompatibilities. The Platform Inconsistency
Checker handles all issues related to the names of objects. Our approach is to build a set of rules from
the union of all limitations of the supported file systems and apply these rules to all replicas. This way,
the names of objects can be equal on both replicas and in the database, which simplifies synchroniza-
tion logic. The rules enforce case- and Unicode normalization insensitivity on sensitive replicas, and
ensure that the union of all reserved characters, names and maximum name lengths apply to the names
of all objects on all replicas (even on those replicas where no such reservations exist).

Our implementation iterates over the objects of the update tree of each replica separately. It exam-
ines the names of all objects as well as all sibling nodes. Whenever it finds a name (or sibling names)
that violates a rule, the Platform Inconsistency Checker generates one or more resolution rename
operations that change the object’s names on the replica. Users are notified about such rename op-
erations, similarly as they are notified about conflicts. The synchronization process is then restarted,
as it would be for conflicts. We implemented a two stage process shown in algorithm 4. The split
into two stages reduces the complexity of the implementation of each individual stage. The first stage,
normalize_unicode_chars(), enforces Unicode normalization insensitivity by applying the NFC nor-
malization to object names. It detects clashes and renames one of the objects to enforce insensitivity.
There are many intricate details our code deals with which are beyond the scope of this work, such as
the HFS+ file system on macOS which is neither Unicode normalization preserving nor correctly imple-
menting Unicode normalization insensitivity.

def handle_cross_platform_inconsistencies ( update_tree_root_node ) :
r es ol u t i on_ ope r at i on_ l is t = normalize_unicode_chars ( update_tree_root_node )
i f len ( r e so lu t i o n_o per at i o n_l i s t ) > 0 :

return r es ol u t i on_ ope r at i on_ l i s t
r es ol u t i on_ ope r at i on_ l is t = handle_reserved_chars_and_case_sensitivity (

update_tree_root_node )
return r eso l u t i on_ ope r at i on_ l i s t

Algorithmus 4 : Platform Inconsistency Checker pseudo code

Stage two is reached only once Unicode normalization insensitivity has been established.
handle_reserved_chars_and_case_sensitivity() then checks each object’s name for reserved
characters or names and generates rename operations that replace, strip or prefix these characters/-
names to resolve the issue. It also limits the names of objects to 255 characters and detects clashes.

7.3 Dynamic synchronization

Instead of asking the user to explicitly invoke the synchronization, BSync runs transparently in the back-
ground. The development prototypes described in section 7.1.2 simply applied the static Syncpal algo-
rithm in regular intervals. This is very inefficient, because sampling a file system’s state is computation-
ally expensive. Doing so takes a long time and puts strong load on the system (i.e., does not scale). In
general, file system load caused by a user comes in bursts, thus most state samplings are superfluous.
If the user did perform changes, they are not picked up until the next sampling, causing a considerable
delay until BSync processes those changes.
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7.3.1 Requirements

In BSync we require a new, efficient approach that performs synchronization shortly after the detection
of user activity, without putting much load on the system. Since most file systems cannot be locked for
exclusive access by BSync (and doing so would not be a good idea), our new dynamic algorithm needs to
invalidate an ongoing synchronization against concurrent user activity. For instance, let o be a createfile
operation that uploads file f to the remote replica. If o is scheduled as 5th operation in the queue, by
the time o is executed, f might already have been deleted, edited, or moved to a different location by the
user. The hybrid update detection approach used by BSync’s new approach (see section 4.3) does not
indicate the origin of the operation (i.e. which program caused it). Thus, some module of BSync must
disambiguate those detected file system operations caused by BSync’s propagation stage from those
caused by the user. That is, the stream of detected operations must be separated into expected and
unexpected ones. BSync then needs an approach to use unexpected operations to invalidate the ongoing
synchronization.

7.3.2 Implementation

The modules of our implementation are shown in figure 7.5 on page 134. The dynamic version of Sync-
pal is explained via the activity flow, depicted by the red arrows. We now elaborate on the meaning of
each arrow:

• 1. The File System Observer modules report detected operations together with the most re-
cent snapshot to the Update Detector, whenever file system activity is detected.

• 2. The Update Detector compares the detected operations against a list of expected operations,
which it received from the Propagator (see step 6.3). Those operations that do not match are,
consequently, unexpected events. If all received events are expected, the activity ends here. Other-
wise the unexpected events are reported to Syncpalwhich decides how to handle them depending
on which stage it is in:

– If no stage is active (i.e. BSync is idle), a new synchronization iteration is started. Syncpal
switches into update detection stage and proceeds with step 3.

– If some stage is active, Syncpal keeps it running and does not abort it. Syncpal sets a restart
flag to True, which remembers to start a new iteration once the ongoing iteration has con-
cluded.

• 3. Syncpal requests the two Update Detector instances to build update trees. During the gener-
ation the Update Detector implementation is able to handle concurrently detected operations
reported by the File System Observer, by internally restarting the tree generation.

• 4. The generated update trees are returned to Syncpal. Since BSync is implemented in Python
whose threads do not use multiple CPU cores due to the Global Interpreter Lock6, in step (3)
Syncpal requests the generation of the local and remote update tree, one at a time. Once both
trees are built, Syncpal asks both Update Detector instances whether any of the trees are out of
date again (e.g. the local update tree might have become out of date by the time the remote update
tree was generated). If so, Syncpal goes back to step (3), otherwise it proceeds to the next step.

• 5. Syncpal switches to the reconciliation stage and requests that the Reconciliator builds a list
of operations from the two update trees. The reconciliation process is divided into several steps
and submodules, each with a specific task:

– 5.1 The Platform Inconsistency Checker is invoked first. It checks each update tree for
problems with object names. If any are found, reconciliation ends and the rename operations
that resolve these problems are provided to Syncpal. Otherwise we continue with step 5.2.

6https://wiki.python.org/moin/GlobalInterpreterLock, retrieved July 21, 2019.

https://wiki.python.org/moin/GlobalInterpreterLock
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– 5.2 The Conflict Finder examines both trees for real and pseudo conflicts. If no real
conflicts are found, continue with step 5.3. Otherwise the found conflicts are given to the
Conflict Resolver, see step 5.4.

– 5.3 The Operation Generator builds the list of non-conflicting operations and returns
them to Syncpal.

– 5.4 The Conflict Resolver sorts the conflicts found in step 5.2, and returns a list of reso-
lution operations that resolve the first conflict to Syncpal.

• 6. Syncpal switches to propagation stage and provides the operations to the Propagator. If
the operations consist only of non-conflicting operations, the Propagator gives the operations
to the operation Sorter (step 6.1). Otherwise the Propagator proceeds with executing them, by
handing them to the Executor (step 6.2).

– 6.1 The Sorter sorts operations and finds cycles, as described in section 6.3.2. It either pro-
vides the sorted list of operations (if no cycle was found), or the resolution rename operation
that breaks a cycle, to the Executor.

– 6.2 The Executor executes one operation o at a time. It provides each o with the current list
of unexpected detected operations it retrieves from the Update Detector modules. Each
operation has a tailored implementation that compares every unexpected event against the
update tree node(s) it is supposed to propagate. If at least one unexpected event is found to
disturb o, the Executor aborts propagation prematurely and continues at step 7.

* For instance, let o be a Create operation for a directory node nX such that executing
o will create the directory on replica Y (see section 6.3.1 on page 117). The following
unexpected events would be disturbing:

· move(P, any) where P is the path of some parent directory of nX (check move opera-
tions on both replicas)

· moveX (path(nX ), any), as the object is no longer at its original location

· moveY (any, pathY ) to detect a Move-Create conflict

· delete(P) where P is the path of some parent directory of nX (check on both replicas),
which also detects Create-ParentDelete conflicts

· del eteX (path(nX )), as the object no longer exists

· cr eateY (pathY ) to detect Create-Create conflicts

· edi tX (path(nX )), as the object’s meta-data stored in nX has become out of date

· edi tY (pathY ) - only for for pseudo Create-Create conflicts of a file

• 7. The Executor reports to Syncpal that it finished. It provides a boolean flag b that indicates
whether a new synchronization iteration should be triggered, either because a cycle was broken,
or because a disturbing unexpected event was detected.

– If b or the restart flag from step 2 is True, Syncpal starts a new synchronization iteration (go
to step 3).

– Otherwise the synchronization has concluded and Syncpal is idle again.

As these detailed steps illustrate, our approach simply lets the Update Detector modules detect and
collect unexpected (user-made) operations. Each executing operation needs to request (pull) those un-
expected events and compare them against its own data.

We built this approach after several other, unsuccessful designs. For instance, we found a push-based
approach to be problematic, where each core module (File System Observer, Update Detector,
Reconciliator, Propagator) is implemented as asynchronous module with its own thread. Informa-
tion was pushed from module to module, i.e., an Update Detector would asynchronously generate an
update tree and then push it to the Reconciliator, the Reconciliator would asynchronously build
a list of operations and push them to the Propagator, etc. However, such a design suffers from many
problems, such as high code complexity, difficult-to-catch race conditions or dead-locks, and large de-
lays between detecting unexpected events and aborting an ongoing synchronization.
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Figure 7.6: BSync’s monthly unique users over time

7.4 Software deployment

Between July 2017 and December 2018 close to 30 unique users transmitted usage statistics, see fig-
ure 7.6. The majority of users were from our organization, Fraunhofer FIT, as well as associated partners
like RWTH Aachen. The author of this thesis has also used BSync throughout this time period to syn-
chronize thesis documents between personal and work computers.

To allow for an easy installation of BSync we developed a one-click build tool that produces an installa-
tion program for Windows and macOS. The build tool performs the following fully automated steps:

1. Freezing of the Python code, using pyqtdeploy7, which compiles Python source code into byte
code and bundles them in an executable binary (.exe on Windows) with a C++ compiler. This
binary also bundles a Python interpreter, such that users are not required to install Python itself,

2. Collection of dependencies, such as dynamically linked libraries like Qt, SQLite or (py)curl, which
need to be shipped with the binary for it to work,

3. Building of an installation program, using the WiX toolset8 on Windows, and DropDMG9 on
macOS. See figure 7.7 for an illustration of the installation program.

The resulting installation programs allow end-users to install or update an existing BSync installation
with ease.

7.5 Lessons learned

Over the years of developing BSync we acquired numerous requirements and insights from our users,
presented below.

7.5.1 Partial synchronization

The core idea of BSync has been to synchronize all divergences of two file system replicas, in both direc-
tions. However, users presented two use-cases where only a subset of objects should be synchronized:

7https://pypi.org/project/pyqtdeploy/, retrieved July 21, 2019.
8http://wixtoolset.org/, retrieved July 21, 2019.
9https://c-command.com/dropdmg/, retrieved July 21, 2019.

https://pypi.org/project/pyqtdeploy/
http://wixtoolset.org/
https://c-command.com/dropdmg/
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(a) Windows (b) macOS

Figure 7.7: BSync installation programs

1. Exclusion of specific files or directories: a user may want to avoid that a specific local sub-directory
is uploaded to the server (and thus shared with other users). Conversely, the user may want to
exclude a specific remote sub-directory from being downloaded, e.g. because she doesn’t need it,
or because it’s child objects would consume too much local disk space.

2. Uni-directional synchronization: file systems like BSCW may limit the permissions a user has for
specific directories. These permissions themselves are not present on the corresponding other
replica, such as the local disk. When the user modifies objects locally, BSync needs to detect that
these operations cannot be propagated to the other replica (due to a permanent lack of permis-
sion) and should not even try to do so.

Addressing these use-cases is left as future work, see section 9.3.

7.5.2 Handling of temporary objects

The majority of files BSync propagates are managed by other third-party applications which store their
state in a set of files. While these applications are in use, they create temporary objects, such as tempo-
rary files containing intermediate results, automatic backups or lock files. For instance, Microsoft Word
creates a lock file named “~$filename.docx” when the user opens “filename.docx”, which is automati-
cally deleted once the user closes the document again. Because synchronizing these files is not helpful
and consumes unnecessary bandwidth, earlier beta versions of BSync used a hard-coded filter that dis-
cards such objects on the lowest level, during update detection. Newer BSync versions allow expert users
to add their own filter patterns, to accommodate other applications.

7.5.3 Non-deterministic file system behavior

We have observed different kinds of erratic behavior in the implementations of file systems where a file
system operation (that should execute successfully) was unexpectedly refused, with some kind of per-
mission error. These kinds of errors were hard or impossible to synthesize in automated tests. The issue
is sometimes temporary, where failures only occur due to high concurrent load. For example, Windows
might refuse to delete a directory because it was supposedly not empty, even though BSync previously
deleted all its children and verified that the directory was empty. The issue may also be permanently,
e.g. if a Antivirus program, which interferes with file system operations on a kernel level, blocks access
to a (supposedly) infected file, which inhibits BSync from reading or uploading it.



140 CHAPTER 7. IMPLEMENTATION

Figure 7.8: BSync user feedback form

7.5.4 Bug triage

When deploying software to users it is important to detect and resolve bugs that do not occur during de-
velopment. Such defects occur e.g. due to a different usage pattern of the software or due to a different
environment, such as system configuration. In BSync we included a feedback form shown in figure 7.8
that allows users to report errors (or suggest new features). The form’s user interface is similar to author-
ing an email. Users can provide a summary, a longer description, and BSync automatically attaches the
most recent replica states, the database state and a log file to the report. The log file contains extensive
traces of BSync’s modules.

Even with this feedback mechanism in place, we still found bug triage to be very challenging. Data syn-
chronization is a state-based process that involves the state of several systems (file system replicas in
this case). Bugs can occur at different places (file system and its observation, update detection, recon-
ciliation, propagation, etc.) and in some instances BSync’s implementation is not even to blame. For
instance, if the server’s file system lists files that are supposedly in a specific directory, but returns “file
not found” errors when BSync attempts to download them, the user blames BSync first. The main chal-
lenge for a synchronizer developer is to answer the following questions:

1. What did truly happen? E.g. what operations did the user perform, or what was the remote
replica’s state?

2. What did the synchronizer think was happening?

3. What did the user expect to happen? What should the synchronizer have done?

Logs and state files (attached to the feedback form) only cover question 2, as well as the synchronizer’s
behavior (including error messages). However, logs do not cover errors in the user interface, which
require screenshots to understand the issue. Questions 1 and 3 need to be answered by the user. An
analysis of the submitted reports has provided the following two key insights:
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Figure 7.9: BSync user feedback form, revisited

• Without guidance users have a hard time formulating informative reports. Many reports con-
tained barely any information beyond statements such as “The sync doesn’t work” or “The appli-
cation is just hanging...”.

• Timing is important: the larger the time period between error and extraction of information from
the user, the less likely users still remember their last steps (to answer question 1).

Even when interviewing users following a bug report a few minutes after it was submitted, users were
already fuzzy about the file system operations they performed. Answering question 1 is further compli-
cated when several BSync users are involved, whose operations are distributed via the server.

To improve BSync’s quality we used two approaches. First, we provided guidance and improved the
feedback form, see figure 7.9. Users are now presented with a number of questions (with sample an-
swers) as guidelines for what information to provide in a report. Users can also create screenshots (for
UI problems) and attach arbitrary files. However, this approach is no silver bullet. It is unrealistic to
expect that users remember their actions. Our second approach addresses this via in-house testing.
Before releasing a new version of BSync with major changes we perform a one-hour test session with
multiple users and developers, all simultaneously located in the same room. Users were instructed to
work with BSync and their third-party applications as usual, but keep their latest actions in mind, or
even note them down. Sometimes users were also asked to design and execute collaborative scenarios
with a high degree of concurrency and system load. Whenever problems occur, users report them im-
mediately with the feedback form and the developer additionally examines the problem personally, or
assists with filling the report.
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7.5.5 Platform incompatibilities

We discovered the majority of platform incompatibility issues early on in section 3.1, via manual testing
and examination of the official documentation of file system APIs. Here we present how these issues
manifest in practice on the Fraunhofer FIT BSCW server which covers over 20 years of user activity.
While recent BSCW versions perform similar reserved object name checks as Windows does, for com-
patibility reasons, earlier BSCW versions did not. Consequently, a number of work spaces contained
legacy objects with names that contain such reserved patterns, e.g.:

• A directory named “Interview, etc.” would require to strip the trailing dot.

• When BSCW auto-generates objects, such as archived emails, the names contain quotation marks
which BSync needs to remove.

• Objects with names like “A/B Test 1.8.2001 14:30 Uhr” contain multiple reserved characters, such
as forward slash or colons often used in time stamps.

• Some file systems APIs such as the one of macOS allow object names to contain control chars
(ASCII range 1-31) not supported by other file systems.

We also investigated whether the varying support of namespace to object mapping causes issues in prac-
tice. In the largest work spaces we examined we found that only a handful of BSCW objects were linked
into more than one parent directory, which is rejected by Syncpal. Manual removal of all but one link
could be achieved within a short amount of time to resolve the issue in practice.

7.6 Conclusion

Building a near real-time synchronizer is difficult. In contrast to the static variant of Syncpal, we need
to detect and handle concurrent operations. This requires an appropriate software architecture with
an efficient, yet simple data flow between components. Over time, we tested and implemented various
approaches. We found that purely push-based ones do not perform well, which push data from update
detection to reconciliation to propagation. It has proven difficult to manage the high, multi-threaded
code complexity, race conditions and latency. Our final approach is much simpler. As figure 7.5 shows,
the three stages are no longer arranged as a strict chain. We only push file system operations into the
update detection component, which identifies and caches unexpected user-made operations. These are
then pulled just in time, by the propagation component. The dynamic version of Syncpal is a single-
threaded component that coordinates the overall synchronization process. While this limited use of
multi-threading slows down some aspects of synchronization, it reduces the overall CPU usage to a
level that users accept and expect of a background process. Another side effect of near real-time syn-
chronization is the necessity to translate conflict detection logic. As conflicts could arise during an on-
going propagation, it would be inefficient to run the reconciliation process (including conflict detection)
whenever a new, unexpected operation is detected. We instead built simple, purely operation-based
heuristics that evaluate whether the history of all detected, unexpected operations disturbs the cur-
rently scheduled operation. While this approach requires additional implementation effort, it improves
the synchronization efficiency considerably.

The longitudinal evaluation of the implementation by the BSync user group yielded numerous user re-
quirements and a deep understanding of the day-to-day use of our file synchronizer. Many of these
learnings have been adopted but also provide insights for future work, most notably the ability to syn-
chronize only parts of a replica.
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Chapter 8

Evaluation

In this chapter we perform a technical evaluation of Syncpal and its implementation. We first focus on
correctness of our implementation by building hand-crafted as well as automatically generated tests in
section 8.1. We then examine the correctness of other synchronizers in section 8.2, where we develop
and apply a test framework to four industrial-grade file synchronizers. Our hypothesis is that their con-
vergence behavior varies strongly, because we found strong divergences in academics works as well, as
demonstrated in section 5.1. To understand how our implementation is used in practice we collected
statistics which we analyze in section 8.3. We examine the complexity in terms of computation time and
memory use in section 8.4 and conclude in section 8.5.

8.1 Automated testing to verify correctness

The theoretical proofs presented in previous chapters are a necessary, but not sufficient, condition for
the correctness of the implementation of Syncpal. To complement the proofs we created three types of
automated tests in the form of black-box tests [Nid12] where implementation details of our algorithm
are considered to be unknown. We apply these tests to our implementation of the Syncpal algorithm,
BSync, which we presented in chapter 7. They cover aspects not covered by the theoretical proofs, e.g.
platform-specifics, and verify that the translation of our algorithm (from English language or pseudo-
code to Python code) is free of errors.

An inherent issue in testing is that the problem’s state space (file system operation sequences) is infinite,
but test execution is required to be a finite process1. Consequently, tests cannot verify correctness of
an algorithm the same way proofs by contradiction or induction can, which are not example-based.
To reduce the chance for errors to a minimum we apply the combination of both approaches, formal
proofs and explorative black-box testing. During our development process those tests also turned out to
be very valuable because they discovered regression errors introduced when changing parts of the code.

We apply the concept of falsifiability [Pop02; HO48] to the statement “the synchronization result of our
BSync implementation is correct for all existing file system operation sequences executed concurrently
on two replicas”, by building tests that demonstrate counter examples of the following forms:

• Synchronization does not finish in a certain time period (caught in an infinite loop), or crashes
with an error.

• Synchronization finishes without error, but the two replica states are not equal.

• If a test oracle (=expected result) is available, the two equal replica states (determined after syn-
chronization finished without errors) do not match the oracle. Such an oracle can either be crafted
by hand or can be inferred if an arbitrary list of operations is only applied to replica X by the test
(i.e., the test does not manipulate replica Y ). In that case, we can automatically build a test oracle
which expects that the synchronizer applies an equivalent set of operations to replica Y .

1In the release process of a software the test execution is typically expected to finish within a few hours.
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The steps performed by each test are as follows (where steps 2, 4 and 8 only apply to tests for which a
test oracle is available):

1. Establish a start scenario: create a set of files (with random content) and directories on one replica
and synchronize them the other (empty) one, s.t. both replicas and the database state match.

2. Create two expected states elocal ,er emote , by taking a snapshot of each replica, which still resemble
the start scenario.

3. Execute a list of file system operations Ōl ocal ,Ōr emote on the physical local and remote replica.

4. Execute a list of simulated file system operations by manipulating elocal ,er emote to reflect the ex-
pected final replica states after synchronization has completed.

5. Start the BSync implementation, wait for it to complete within a limited time.

6. Take final state snapshots fl ocal , fr emote of the local and remote replica.

7. Verify that fl ocal = fr emote .

8. Verify that el ocal = flocal and er emote = fr emote .

When a test fails, either the algorithm or its implementation is the cause. To investigate, our test imple-
mentation ensures that sufficient information is kept to repeat the same scenario.

We now explain the three types of test we built, each one presented in a separate subsection. The first
type is a set of hand-crafted test cases presented in section 8.1.1, which focus on implementation- and
platform-specific aspects as well as conflicts and their correct resolution. Sections 8.1.2+8.1.3 explain
automatically generated tests, where the first type generates all possible scenarios, each with a limited
number of operations, and the second type randomly generates a long list of operations.

8.1.1 Hand-crafted tests

We built over 350 tests (with test and tooling code exceeding 13’000 lines of code). Around 150 tests are
white-box tests, with the following goals:

• Test individual components, such as the database or file system observers,

• Regression tests of libraries used by BSync (including Python’s file system abstraction), to verify
that the behavior of these libraries is stable when updating the library or using different operating
system versions,

• Synchronization logic tests, where the test needs state introspection to detect when a new syn-
chronization is started. These tests generate non-conflicting, concurrent operations, which mod-
ify a replica while the synchronization is in progress. They verify that the affected operations are
skipped (if necessary), and that BSync starts a consecutive iteration which synchronizes the re-
maining operations.

The remaining tests are black-box tests where each test manually defines a list of operations to execute
on each replica, and a test oracle. The tests are executed on static file systems and cover the following
goals:

• Verify that BSync applies non-conflicting operations to the other replica without modification.
The tests include both simple sanity checks and more involved scenarios with complex opera-
tion interleavings. The tests also consider case-insensitivity, operation sorting (as well as breaking
cycles) and pseudo conflicts.
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• Verify that BSync handles namespace limitations correctly, such as reserved names or characters.
See section 7.2.1 on page 135 for further details.

• Verify the correct detection and resolution of conflicts. Our tests cover both simple and complex
scenarios, where a set of files is affected by multiple conflicts. We provide test oracles for all con-
flict resolution options.

When implementing tests we applied Equivalence Class Partitioning (ECP) and Boundary Value Analysis
[SLS14; Nid12] to limit the number of tests.

8.1.2 Generated deterministic tests

Building hand-crafted tests does not scale and misses a lot of incorrect behavior of the system under test
[Amj04]. We applied a variant of Model checking [Cla08], which was also done by the file synchronizer
work [Bjø07]. Model checking is “an automated technique that, given a finite-state model of a system
and a formal property, systematically checks whether this property holds for (a given state in) that model”
[BK08]. A common property to check is the safety property. In our case, the synchronizer should not do
anything undesirable, such as crash because of a bug or because a precondition of a file system opera-
tion was violated, or terminate without crashing, producing two divergent replicas. Another common
property is the liveliness property, that states the synchronizer performs those actions it is supposed to
do, such as propagating all non-conflicting operations to the other replica, producing two convergent
replicas.

Applying model checking to our file synchronizer requires reducing the problem space, as the space
is otherwise infinitely large when tree depth and/or the set of object names is unlimited2. We imple-
mented the following reductions, some of which were also used in [Bjø07]:

• We only apply operations to one replica. This eliminates the need to check the correct resolution
of conflicts, which would require another, independent implementation that finds and resolves
conflicts. This also allows us to compute the test oracle, as discussed in section 8.1. The synchro-
nization problem space is now defined as follows: for any synchronized start state, with replica
states sX = sY , executing any list of file system operations l that transforms sX to s′X (sX 6= s′X ), run
the synchronization and verify that the synchronizer changed sY to s′Y such that s′Y = s′X .

• We limit the start state space to consist of b f files and bd directories. We find the distinct set of
start states by using a recursive solution to the well-known integer partition problem [And03].

• We limit the names of objects to single-character strings, drawn from the lower-case ASCII alpha-
bet, a-z.

• We limit the number of operations to up to cc f create file operations, ccd create directory opera-
tions, cm move operations, cd delete operations and ce edit operations.

The generation of test scenarios is a recursive process:

• Build a set OT L of operation type lists by computing all permutations of the operation types. For
instance, if ccd = 1,cm = 2 and all other c variables are 0, then
OT L = per mut ate([cr eatedi r,move,move])
= {[cr eatedi r,move,move], [move,cr eatedi r,move], [move,move,cr eatedi r ]}.

2In practice there are limitations, such as maximum path length and the limited alphabet of names, e.g. based on the Unicode
alphabet. However, the space of all file system states is still extremely large, and the problem space of every possible transition
between any two states is exponentially larger.
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• For every start state s, iterate over every operation type list otl ∈OT L, and iterate over every opera-
tion type ot ∈ otl . Generate all possible operations o for the given operation type ot . For instance,
if ot = del ete, iterate over every possible object in the file system (except for the root directory)
and instantiate a delete operation o for that object. This requires keeping a shadow copy of the file
system state in memory for every possible operation sequence. Add o to operation list l .

• Whenever an operation o was applied, persist a new test scenario to disk.

Because this simple approach produced many similar test scenarios, further reductions were necessary:

• For any two equal states s′X1
and s′X2

that result from applying two different operation list l1, l2

to sX , discard one of the lists. For instance, if sX consists of a single file named ’a’ and l1 =
[move(′a′,′ b′)], l2 = [move(′a′,′ c ′),move(′c ′,′ b′)], then we can discard either l1 or l2.

• For any two distinct states s′X1
, s′X2

whose sets of names are different but would be coincidental
if every new, unused name (used by any of the operations) were replaced by a universal variable
name, discard one of the states (and the corresponding list). For instance, if sX consists of a single
file named ’a’ and s′X1

is based on l1 = [move(′a′,′ b′] and s′X2
is based on l2 = [move(′a′,′ c ′)], then

both lists have in common that object ’a’ was renamed to a previously unused name and we can
discard either l1 or l2.

For the implementation of our model checker we applied additional implementation-specific tech-
niques to speed up test generation and execution:

• We used parallelization for generating test scenarios, distributing the computation using a divide
and conquer approach. Generation was run on over 120 CPU cores (distributed over dozens of
machines) for almost one month, followed by merging the results on a single machine (filtering
duplicated results) over a period of 5 days.

• We analyzed slow code paths and optimized them by a factor of 4-16 using Cython, which converts
Python to C code.

• For generating and executing test scenarios we implemented a simple in-memory file system in
C (using Cython) used instead of the real device file system, because real file systems (even RAM
disks) turned out to be a performance bottleneck.

Despite these optimizations we had to choose rather small values for b and c defined above, to limit
generation and execution time. We chose b f = 1,bd = 3, focusing on a larger number of directories
(rather than files) because move operations on directories produce the most challenging scenarios for
the operation sorting routines. We chose cc f = 1,ccd = 2,cm = 3,cd = 3,ce = 0, ignoring edit operations
because they have no impact on operation ordering. The resulting 5.5 million test cases (computed in
almost one month as described above) helped solving various issues in the Syncpal algorithm and its
implementation.

8.1.3 Generated random tests

To overcome the limits resulting from state explosion in the model checking approach described above,
we also implemented the generation of random test scenarios. As noted in [GHJ07], who also applied
randomized testing, the “difficulty of model checking (and theorem proving) makes randomized testing
attractive, when software actually has to be delivered”.

The randomized testing approach generates a much larger number of operations (e.g. 30 and more)
before starting the synchronizer. Each operation type and its parameters is chosen at random, using a
uniform distribution. Thus, every operation type is equally likely. We implemented two test modes. The
first mode applies the randomly generated operations only to replica X . The test oracle expects Syncpal
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to apply an equivalent set of operations to replica Y . As such, this mode is similar to the generated de-
terministic tests presented in the previous section. The second test mode applies operations to replicas
X and Y separately, deliberately causing conflicts. Here the test oracle can only verify that the state of
both replicas has converged, but does not assume that the final states coincide with s′X or s′Y , due to
possible conflicts.

When generating a large number g of operations, an initially open question is how large g should be,
and the effect of g on the tree size. We identified two conditions that must be avoided when running the
tests:

1. When g is large, the file system tree size (i.e., the number of objects) might grow beyond a thresh-
old, causing performance bottlenecks. For instance, if the tree grew to, say, 100’000 nodes, per-
formance would degrade, because every aspect of running the test becomes more complex (e.g.
executing Syncpal, or generating suitable operations). A work around is to enforce pruning of the
tree once its size exceeds a threshold.

2. Trivial situations where compute_ops(sX , s′X ) and compute_ops(sY , s′Y ) both yield a set of delete
and create operations, without move or edit operations. For instance, it is intuitively obvious that
applying 1’000 randomly generated operations to a tree of 20 objects is very likely to delete all
those 20 objects that originally existed in sX , and create, move, delete and edit an arbitrary num-
ber of objects which then all appear as new (create operation) in s′X , due to operation consolida-
tion. However, such scenarios are simple to synchronize and we strive for generating operation
sets OX ,OY which include all types of operations equally, to increase the chance that all types of
conflicts and operation order dependencies are triggered.

We experimentally collected several statistics, by running tests for uni-directional synchronization (af-
fecting only replica X ) as well as bi-directional synchronization, repeating tests thousands of times for
each g ∈ {3,10,20,30,50,100,200,1000}. The following statistics were collected:

• Tree size st after the synchronization has completed.

• Percentage sp = #of create operations
st

, determined at the stage where all conflicts have been resolved.
Condition (2) above states that sp should be as small as possible.

• Number of conflicts sc found in the first reconciliation iteration (only for bi-directional tests), to
determine how many conflicts the tests cause, in relation to st .

By analyzing histograms we found that st does not grow beyond 40 objects for uni-directional or beyond
250 objects for bi-directional synchronization, for any g . Thus, explicitly pruning the tree is not neces-
sary. However, for g > 30 the majority of test iterations yield sp = 100%. The statistic sc roughly follows a
normal distribution with µ≈ g

3 , as long as g ≤ 100. For g ≥ 200 the value of sc is typically below 4 again,
because the distribution of sp is very strongly skewed towards 100%.

As a consequence we decided to also randomize g . We chose the intervals [3,100] for bi-directional tests,
and [3,30] for uni-directional tests, using a uniform distribution. This makes it possible to test all kinds
of scenarios. We ran millions of test cases which uncovered many smaller implementation issues. We
stopped testing once no anomalies were discovered for several weeks.

8.2 File synchronizer comparative test

The goal of this section is to explore the convergence behavior of industrial-grade file synchronizers. We
start with discussing related work in section 8.2.1 and present the selected synchronizers in section 8.2.2.
We briefly introduce the test categories we designed in section 8.2.3. The generic test framework and
setup is presented in section 8.2.4. Section 8.2.5 then describes the concrete tests and the detailed re-
sults. We conclude in section 8.2.6 with a result summary and a discussion.
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8.2.1 Related work

When considering papers that compare file synchronizers, the majority of related work is primarily con-
cerned with performance benchmarks, not with convergence behavior. In [BDM15] the authors bench-
mark 11 cloud file synchronizers w.r.t. how client capabilities such as chunking, streaming, dedupli-
cation and others affect metrics such as consumed traffic and synchronization completion time. The
authors in [CLD16] perform similar benchmarks, but for synchronization apps running on mobile de-
vices with limited computing power and unreliable networks. Further benchmarking works exist, see
e.g. [KK17; LZD13; Wan+16]. Although these papers do not deal with convergence, they provide valu-
able clues for how to build a test framework for synchronizers based on virtual machines.

A few works exist which focus on convergence. [Hug+16] apply property-based testing using Quviq
QuickCheck [Art+06] which "tests properties—universally quantified boolean formulæ—by generating
random values for the quantified variables and checking that the formula evaluates to true" [Hug+16].
They test the file synchronizers of Dropbox, Google Drive and ownCloud, building a formal specifica-
tion of the behavior of these synchronizers in the process. To reduce the number of model states the
authors limit the operations they randomly generate to read, write and delete operations on a single file.
Contrary to our work, they omit testing the move operation or working on multiple files or directories.

Two academic works presenting novel file synchronization algorithms also compare their convergence
behavior with those of industrial synchronizers. The first work, [NS16], formally defines a path-based file
system with its operations (create, update, delete, rename, but without the move operation). The authors
formally define their merge algorithm for concurrent operations (conflicting and non-conflicting) as
"combined effects", and generate test cases by building all possible pair-wise operations (one operation
on the local, one on the remote replica). For each pair they iterate over the operation parameters using
similar strategies as the parameters we introduce in section 8.2.5, e.g. operation types, number of targets
and path relationships, which yields a total of 61 distinct tests which they execute in a similar VM-based
setup. The second work, [TSR15] also formally defines the file system and merge behavior, but limits the
test to five hand-selected scenarios that mostly deal with conflicting operations. Both works test Google
Drive, OneDrive and Dropbox and discover some of the same issues as we do in this section. However,
the degree of detail of testing the propagation of conflict-free operations is limited in both works. This,
and the fact that the results are over two years old, justify a repetition.

There are also works that perform black-box testing of other distributed systems with eventual consis-
tency, similar to file synchronizers. For instance, [BMP17] test the convergence behavior of near real-
time text editors like Google Docs. The authors develop an approach to automatically build test cases,
while eliminating redundant ones, which speeds up test execution. However, their approach does not
test an accumulation of multiple operations, as it always executes a single concurrent operation per
replica.

8.2.2 Synchronizers under test

There is a tremendous number of industrial-grade synchronizers available on the market3. In our selec-
tion we focused on implementations that work on macOS and Windows, have a provably wide-spread
user base and popularity and offer an English or German user interface and documentation. Testing
took place from January to April 2018. We selected the following implementations, with version num-
bers and remarks shown in table 8.1:

• Dropbox [Dro18], Google Backup and Sync4 [Goo18] and Microsoft OneDrive [Mic19], because
they are synchronization clients for commercial cloud services with the three largest documented

3Examples include Dropbox, Google Backup and Sync, Microsoft OneDrive, Box, Amazon Drive, OwnCloud/NextCloud,
Goodsync, cloudStore, Resilio, Seafile, SugarSync, MagentaCloud, SpiderOakOne, Leitz Cloud, Tonido, TeamDrive, MyDrive, Strato
HiDrive, CloudMe, hubiC, pCloud, sync.com, tresorit, iDrive and many more.

4The Backup and Sync client synchronizes data with the Google Drive service, see https://drive.google.com. The client
was formerly known as “Google Drive” [Hac17].

https://drive.google.com
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Name Windows version macOS version Remarks

Dropbox 42.4.114 42.4.114 LAN sync was deactivated.
Google Backup

and Sync
3.38.7642.3857 3.39.8297.0200 Only the sync functionality was used

(all Backup functions were
deactivated).

Microsoft
OneDrive

Version 2018,
17.3.7294.0108

Version 2018,
17.3.7131

“On-demand” option was
deactivated to ensure that files are
fully downloaded.

NextCloud 2.3.3.1 2.3.3 (84) Synchronization via NextCloud 13.0.1
server.

Unison 2.48.4 2.48.15 Synchronization via Linux server
instance also running version 2.48.4.

Table 8.1: Tested synchronizer implementations

number of users5 we could find.

• ownCloud/NextCloud [Nex18]: an open source industrial-grade client-server software suite used
by organizations such as the author’s employer (Fraunhofer FIT), to set up an in-house private
enterprise cloud. We tested the NextCloud client which, at the time of testing, was technically
equal to the ownCloud client6.

• Unison [Pie18]: an open-source file synchronizer client for Windows, macOS and Linux from re-
search by the authors of [BP98], which is still under active development!

Apart from Unison we also found the research synchronizers Tra7 by the authors of [CJ05], and So68

from [Mol+03]. We discarded testing the implementations for the following reasons:

• Tra: the implementation was only available for Linux as source package, which has been unmain-
tained since 2005. Compilation with modern compilers on modern Linux systems was not suc-
cessful despite considerable efforts. Support from the original author was not available. Cross-
compilation for Windows was not possible.

• So6: the available client implementation does not work as described in the paper. The core con-
cept of the command-line based So6 synchronizer is to synchronize multiple workspace directo-
ries with a central queue directory. Similar to Version Control System tools such as Subversion,
users modify their own workspace and then issue a commit to the queue via So6, or they pull
changes from the queue by issuing an update command. Another similarity to Subversion is that
a commit only succeeds if the workplace is already up to date. We identified an issue that So6
does not allow concurrent, isolated move operations in two different workspaces. When applying
move operations directly to the file system via the file manager, So6 detects them as delete + create
operations, which is not what we intended. However, So6 provides a ”rename” subcommand that
moves (or renames) a file or directory, making So6 aware of that operation. The flaw of the So6 im-
plementation is that this rename subcommand immediately triggers a commit command. Since a
commit command will fail whenever the workspace is not up to date w.r.t. the queue, concurrent
move or rename operations are impossible. For clarification we had a discussion with the authors
but were unable to find a solution for this issue.

5Dropbox: 500 million (03/2016) [Dro16], Google Backup and Sync: 800 million (01/2016) [Pri17], OneDrive: 115 million daily
users (08/2017) [Sur17] or 250 million (11/2014) [Gri14].

6See https://github.com/owncloud/client, retrieved July 21, 2019.
7See https://swtch.com/tra/, retrieved July 21, 2019.
8See http://dev.libresource.org/home/doc/so6-user-manual.html, retrieved July 21, 2019.

https://github.com/owncloud/client
https://swtch.com/tra/
http://dev.libresource.org/home/doc/so6-user-manual.html
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8.2.3 Test categories

We divided our tests into three categories that target different aspects of synchronization. They were
chosen because we put considerable effort into solving the related issues in BSync. The tests determine
the amount of effort developers of other synchronizers put into their implementation. We now briefly
describe each category. Detailed test descriptions are presented later, in section 8.2.5.

8.2.3.1 Conflict-free operations

These tests aim at exploring how a synchronizer handles both easy and challenging concurrent file sys-
tem operations which do not conflict. The goal is to determine how closely operations performed at one
replica are applied to the other replica. In an “easy” test we examine whether a move operation applied
to a file or directory at one replica is also applied as move operation to the other replica. More “challeng-
ing” tests perform a series of move, create and delete operations that are challenging to reproduce on the
other replica due to operation consolidation. By shutting down the synchronizer we enforce state-based
update detection. Some tests only operate on one replica, leaving the other replica untouched. Others
modify both replicas concurrently, but avoid conflicts by always targeting different objects.

8.2.3.2 Conflict operations

Tests of this category apply operations on both replicas in order to produce conflicts. We investigate
how synchronizers resolve conflicts and how they visually present them to the user. As explained in
section 5.1 there is a high degree of variance in conflict detection and resolution in academics works,
and we assume that industrial synchronizers lack standardization as well.

A core assumption we make in all our comparative tests is that we presume that the tested file syn-
chronizers use a similar file system model F , as defined in section 3.2. Thus, the set of conflicts and
propagated operations should match the ones of Syncpal. The tests result presented in section 8.2.5 will
show if this assumption does not hold. For instance, a synchronizer that internally models the file sys-
tem as a set of paths without IDs is unable to reliably detect move operations, which will be reflected in
the test results.

8.2.3.3 Cross-platform issues

As discussed in section 3.1 filesystems on Windows and macOS have many subtle yet important dif-
ferences. Synchronizers that support both operating systems need to handle undesired side effects
and should provide awareness to the user in case files or directories with incompatible characteristics
(e.g. names) cannot be synchronized. Our tests focus on aspects such as case-insensitivity and reserved
names.

8.2.4 Test framework and setup

To run tests introduced in section 8.2.3 we designed a framework and test setup that enables complete
reproducibility of the results by eliminating errors resulting from manual test execution. We built a set
of fully automated test suites where tests are executed in an environment that is tightly controlled. We
note that while test execution is fully automated, the analysis of the results is manual. We initially im-
plemented automated result analysis, however, we found that client behaviors varied strongly, making
the implementation of test oracles cumbersome and error-prone. By repeating each test three times we
minimize the chance of result misinterpretation due to human error.

8.2.4.1 Requirements

Before designing and implementing the framework, we collected two general requirements:

1. Testing new synchronizers must be effortless. These synchronizers typically come with a propri-
etary server file system. Our framework should avoid additional implementation efforts to support
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Figure 8.1: Synchronizer evaluation system setup

those server file system APIs. Only some configuration effort should be required when adding a
new synchronizer, e.g. the specification of the local data directory root path, and the path to the
synchronizer client binary file.

2. Generate reproducible results not affected by race conditions, by strictly controlling concurrency.
Other works such as [BMP17] are affected by race conditions, which complicates the result analy-
sis.

8.2.4.2 Testing method

Because the tested synchronizers provide no introspection into their state, we are limited to black-box
testing. We only manipulate and monitor file systems and network activity to detect quiescent states.
We control concurrency by explicitly starting and stopping synchronizers, solving requirement 2, and
collects results for analysis.

8.2.4.3 Architecture and setup

The synchronizers under test typically synchronize a specific local disk directory with a server file sys-
tem. They don’t allow to synchronize two local directories with each other. For this reason, and because
we want to test the synchronizers on both Windows and macOS, a multi-machine setup is required. As
noted in [BDM15], virtual machines (VM) are most suitable, because they allow to establish a controlled
environment, with fixed hardware configurations, eliminating uncontrolled variables in the experiment.

Our system setup is shown in figure 8.1. It consists of two physical machines. The test suite runs on a
test machine such as the author’s regular work station. On the virtualization machine we run two VMs of
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each operating system (OS). This allows to test for different behavior of the synchronization clients w.r.t.
platform combinations (e.g. Windows-to-Windows, Windows-to-macOS, etc.). In each VM we install
the synchronizer clients under test and configure them with equal settings, such as account credentials
and data directory path on the local disk. To test cross-platform issues such as case-sensitivity, we set
up a case-sensitive disk volume on macOS instead of using the default volume which is case-insensitive.

We built a test framework split into three components: agents, TestCommander and test suites:

• Agents are components we developed, installing one in each VM. Their job is to execute com-
mands received by the TestCommander, such as start Dropbox, create directory ’test’ in the Drop-
box data directory, await file system activity in the Dropbox data directory to cease or await network
activity to cease. To improve configuration flexibility, the commands are not sent from the test ma-
chine to an agent directly but are relayed via a message queue server.

• The TestCommander offers the same functionality as the agents, but augments the agent’s API by
a host parameter that specifies on which VM host(s) the command should be executed. It also
implements two helper methods. The reset synchronization method provides a clean slate for a
specific synchronizer by clearing its data directories on all hosts, making sure that all clients are in
an empty, quiescent state. The method establishBase establishes a base set of files and directories.
It first resets synchronization, followed by creating the files (with random content) and directories
at one host, waiting that they are synchronized to all other hosts.

• The test suites are a set of tests that use the TestCommander to establish the base scenario con-
sisting of a predefined set of files and directories, as well as applying operations to the local and
server replica.

The multi-machine setup makes it easily possible to account for requirement 1. Instead of directly ma-
nipulating the local and server replica, we use two hosts, the remote and the local host, and install the
synchronizer and agent in each of them. The remote host runs the remote client9, the local host runs the
local client. The remote client is used to indirectly manipulate the server replica as follows:

1. Shut down the local client, to avoid concurrency effects,

2. Start the remote client,

3. Manipulate the file system on the remote host,

4. Wait for the network activity to cease on the remote host.

The replicas and agents are shown in figure 8.2.

In summary, the execution of a test involves the following steps:

1. Establish a base scenario, using the TestCommander,

2. Shut down local client,

3. (optional) manipulate server replica via remote replica, wait for remote client to synchronize
changes (see steps 2-4 described above),

4. (optional) manipulate local replica,

5. Start local client, wait for synchronization to finish,

6. Collect results from the local and remote agent.

9“Remote client” = file synchronizer client application executed on the remote host.
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Figure 8.2: Indirect manipulation of the server replica

8.2.4.4 Test result analysis

The analysis of a finished tests either yields that it passed or failed. A passed test should indicate that the
synchronization was successful. Informally a user will come to this conclusion if the state of the local
and remote replica matches (considering directory structure and file contents, as presented by the file
manager) and if the effect of the operations applied by the user to both replicas separately is observable
in the final state. We use a similar assessment to decide whether a test has passed or failed. Formally, we
consider the distributed system of the local, remote and server replica to be a labeled transition system
(S,O,→). S is a set of states (each σ ∈ S = (σl ,σr ,σs ) is a triplet of the local, remote and server replica
state). O is the finite set of operations that are part of the test. → is a set of labeled transition relations (S×
O×S) that transform one state into another. Letσb be the state that represents the base scenario, i.e. the
set of initial files and directories established at the beginning of each test, before applying operations.

Definition 2. Two states σ1,σ2 ∈ S are equivalent, or σ1 ≡ σ2, iff the directory structures (set of paths)
of both states match, the type of every path (file, directory) matches and checksums (e.g. SHA-1) of files
match.

We do not require the ID or lastmodified meta-datum to match, because each replica uses its own values,
and because we found that some synchronizers copy objects they are supposed to move, which creates
new IDs. The average user is typically not aware of IDs on the local disk, nor are IDs presented by the
file manager.

Definition 3. A necessary condition for a test to pass is that σl ≡ σr , where σl ,σr are the quiescent
local/remote states obtained after all test operations were applied (and the synchronizer clients have
presumably propagated them).
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Definition 4. A test that consists exclusively of conflict-free operations has passed iff def. 3 and σl ≡
σo ∧σr ≡σo holds, where σo is the test oracle state obtained by applying all test operations (for the local
and remote replica) to σb in a separate simulation.

For conflict operations and cross-platform issues tests we do not build oracles because we expect each
file synchronizer to resolve the situation differently anyway, and we do not claim authority on what the
most correct resolution is for each case. Here only definition 3 applies.

8.2.4.5 Implementation

VM provisioning To run all VMs in parallel a powerful host was chosen as virtualization machine. We
used a Mac Pro with macOS 10.11.6 (El Capitan), 2x 2,26 GHz Quad-Core Intel Xeon, 24 GB RAM, and
a SSD drive. The VMs were created using VirtualBox10 v5.2.6 and Vagrant11 v2.0.1, using Boxcutter12

templates to generate fresh Windows guest operating systems. Each VM was configured with 2 virtual
CPUs and 2 GB of memory. We installed Windows 10 Enterprise Fall Creator’s update (v1709) and macOS
10.12.6 (Sierra) as guest operating systems. We used Ubuntu server (Xenial) for the message queue server
VM, running RabbitMQ13 v3.5.7 as message queue server implementation.

Machine provisioning was done using Vagrant which allows to execute provisioning commands on each
boot, such as copying the current version of the agent code into VM’s file system and setting up an
additional private network used for communication between VMs. The agents use this private network
to communicate with the message queue server.

Network monitoring and firewall On operating systems such as Windows we found no ready-to-use
method to monitor network traffic of a specific process. We instead chose a solution that allows to query
the traffic of a network interface card (NIC). To ensure that we only count traffic of synchronizer clients,
we executed only one client at a time and used the Binisoft Windows Firewall Control14 on Windows and
the Radiosilence15 firewall on macOS to limit Internet access to synchronizer clients only. Using a Fire-
wall has additional advantages. For one, synchronizer client versions remain fixed over time, because
auto-updaters shipped with the clients cannot detect or download newer versions. Another benefit is
that system CPU and network load is kept constantly low, because no other auto-update mechanisms
(e.g. Windows Update or macOS App Store updates) can start consuming CPU or network resources.
Since we configured an additional private networking interface for each VM for the agent-to-message-
queue-server communication, we could easily exclude agent traffic in our network monitoring, by only
querying the NIC traffic of the NAT interface used by the synchronizers to communicate with the server
replica.

Agent implementation We implemented the agent program in Python, to allow re-use of components
such as the file system observer used in BSync. The communication between TestCommander and agent
was done using the celery16 framework, using RabbitMQ as messaging broker. Each agent was assigned
to a dedicated message queue so that the TestCommander could address them separately.

8.2.5 Test descriptions and results

In this section we present the description and results for each test category. To improve the reading
experience, some details are moved to appendix A.8 on page 219. We refer to the specific appendix
sections where appropriate.

10See https://www.virtualbox.org/, retrieved July 21, 2019.
11See https://www.vagrantup.com/, retrieved July 21, 2019.
12See https://github.com/boxcutter/, retrieved July 21, 2019.
13See https://www.rabbitmq.com/, retrieved July 21, 2019.
14See https://www.binisoft.org/wfc, retrieved July 21, 2019.
15See https://radiosilenceapp.com/, retrieved July 21, 2019.
16See http://www.celeryproject.org/, retrieved July 21, 2019.

https://www.virtualbox.org/
https://www.vagrantup.com/
https://github.com/boxcutter/
https://www.rabbitmq.com/
https://www.binisoft.org/wfc
https://radiosilenceapp.com/
http://www.celeryproject.org/
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An unforeseen but very important consideration in test design was to limit the number of tests. While
implementing and executing tests we discovered that some file synchronizers are very slow. It may take
them up to a minute to transfer even simple changes from one replica to the other. Consequently most of
the test execution time is spent waiting for quiescent states. Long waiting periods to detect these states
are necessary to avoid invalid test results, causing test execution times of 3 minutes or more, per test.
This means that automatic test generation as done in sections 8.1.2+8.1.3 is inappropriate. To have tests
complete within finite time and to make the result analysis manageable, we instead carefully selected a
small sample of tests (a few hundred, not thousands or more), using equivalence class partitions (ECP)
[SLS14] to reduce the test count.

8.2.5.1 Conflict-free operation tests description

Tests of this category consist of one or more operations that do not conflict with each other. We designed
four test groups presented in table 8.2. Its “Param.” column contains the short-hand of parameters,
whose values represent different equivalence classes. The tests are run multiple times, s.t. each iteration
uses a different parameter value. Table 8.3 introduces the parameters for conflict-free operations tests.

Name Description Param. Expected result

Individual

single-replica

operation

Each test executes a single operation on

the remote replica: create, delete, edit and

move. The operation affects either a file or

a directory (edit operation only affects

files). These tests are sanity checks.

H, O The local client applies the exact

same operation on the local replica.

Complex

single-replica

operations

Multiple create, move and delete

operations with complex order

dependencies from section 4.2.7 are

executed on the remote replica. E.g.

swapping the name of two files or

directories. See appendix section A.8.1.2

for more details.

H, O The remote replica remains

unchanged. The local client applies

an equivalent set of operations s.t.

the final local replica state matches

the remote replica state.

Multi-level

operations

Two sets of rename, move, create and edit

operations are applied to a set of

hierarchically dependent objects. See

appendix section A.8.1.3 for more details.

H, O, D The operations of a set applied to

one replica by our test code should

be applied to the corresponding

other replica in exactly the same

way by the synchronizer.

Distributed

move and

edit of file

One specific synchronized file is only

moved on the remote replica and only

edited on the local replica.

H, O On both replicas the file should be

located at the destination path of

the move operation, with the

updated content.

Table 8.2: Description of conflict-free operations tests



156 CHAPTER 8. EVALUATION

Parameter name,

values

Short-

hand

Description

Host pair:

Windows-Windows,

macOS-macOS,

Windows-macOS,

macOS-Windows

H The operation systems of the local and remote host. For instance,

“macOS-Windows” means that the remote client runs on a macOS

VM, the local client on a Windows VM. Tests of the categories

conflict-free operations and conflicts are repeated with all four host

pair values. Our hypothesis is that the choice of the host pair may

influence the test result, because the Windows and macOS code of

the synchronizer may differ, or because subtle differences

between macOS and Windows file system APIs affect the data

collected during update detection and therefore affect the

synchronization result.

Operation detection mode:

online, offline

O When “offline”, the remote client is first shut down, then our test

agent applies operations to the remote replica and finally starts

the remote client again. Therefore the remote client is forced to

detect operations from state. When “online”, the remote client is

kept running during the execution of operations on the remote

replica. It can use the log of file system events for synchronization,

which may yield different results.

Operation distribution:

same replica, distributed

D Given two sets of non-conflicting operations, when “distributed”,

one set is executed on the local, the other on the remote replica.

Otherwise (“same replica”) both sets are executed on the remote

replica.

Table 8.3: Test parameters for conflict-free operations tests

8.2.5.2 Conflict-free operation test results

The test results are shown in table 8.4. A X symbol in a cell indicates that definition 4 on page 154
holds and that the final file system structure corresponds to the expected result from the test descrip-
tion table. The X indicates that the final file system structure is either not equal or does not match the
expected result. In that case see the corresponding appendix sections for further details. Please refer to
section A.8.1.1 for the remarks.

Test BSync Dropbox Backup
and Sync

One-
Drive

Next-
Cloud

Unison

Individual
single-replica
operation (create,
delete, edit)

X X X XA) X X

Individual
single-replica
operation (move)

X XB) XC) X X XD)

Complex
single-replica
operations

X X X E) X X XD)

Multi-level
operations

X XF) X X X X

Distributed move
and edit of file

X XG) X XG) XG) XH)

Table 8.4: Results of conflict-free operations tests
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8.2.5.3 Conflict operation tests description

Each of our tests enforce a situation we classify as conflict, equal to those described in section 5.5. To
limit the amount of tests, we did not build tests where files are affected by multiple conflicts.

During the execution we instruct the agent to automatically create screen shots in regular intervals
shortly after starting the local or remote client. This allows us to manually inspect whether the user
is visually notified about synchronization issues or automatic decisions made by the client. We created
one test per conflict, as illustrated in table 8.5. The parameters are explained in table 8.6.

Conflict name Description Param.

Create-Create A file or directory named “test” is concurrently created in each replica. H, F, R

Edit-Edit The content of synchronized file “test” is concurrently changed in each

replica.

H, R

Name clash Forces a Move-Create or a Move-Move (Dest) conflict. For the former, the

move operation is always done on the remote replica, while the create

operation is done on the local replica. We combine these two different

conflict types because all tested synchronizers produce the same result for

both types.

H, F

Edit-Delete of file Concurrently changes the content of a file in one replica and deletes it in the

other one.

H, C

Move-Delete Concurrently moves a file or directory in one replica and deletes it in the

other one.

H, F, C

Move-

ParentDeleted

Moves a synchronized file “file” into a synchronized directory “test” on one

replica. Deletes “test” in the other replica.

H, C

Create-

ParentDeleted

Creates a new file “test/new” or edits an existing one at “test/file” in one

replica, and deletes directory “test” in the other replica.

H, C

Move-Move

(Source)

Moves a synchronized file or directory “test” to “testMoved” in one replica

and to “testOtherMoved” in the other replica.

H, F

Move-Move

(Cycle)

Given the synchronized directories “A” and “B”, we move “A” to “B/A_moved”

on the remote replica and move “B” to “A/B_moved” on the local replica.

H

Table 8.5: Description of conflict operations tests
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Parameter name,

values

Short-

hand

Description

Object type mix:

file-file, file-directory,

directory-directory,

file, dir

F When testing conflicts, different objects are concurrently

manipulated at the local and remote replica. For instance,

“file-directory” indicates that the operation applied to one

replica affects a file, while the operation applied to the other

replica affects a directory. For tests that target a specific, already

synchronized object, file or dir means that operations are

applied to a file or directory respectively.

File content randomization:

random, deterministic

R When testing create-create or edit-edit conflicts, “deterministic”

means both files are created (or updated) with the same file

content in both replicas (which Syncpal counts as pseudo

conflict), whereas “random” generates different, randomized

contents.

Delete on replica choice:

remote, local

C When testing conflicts that involve a delete operation (e.g.

Move-Delete or Edit-Delete), this parameter decides whether the

delete operation is applied to the local or remote replica.

Table 8.6: Test parameters for conflict operations tests

The table in appendix section A.8.2.1 provides a list of alternative expected outcomes.

8.2.5.4 Conflict operation test results

Before discussing test results, table 8.7 presents how each synchronizer client notifies the user about
conflicts as they happen and whether users can inspect conflicts after the fact (after the notification has
disappeared). We note that the table does not include Unison because here the user manually triggers
the synchronization process and both conflicting and non-conflicting operations are graphically pre-
sented in a table. The “Not synced” tab of NextCloud’s client GUI is used to show both unsynchronizable
files due to namespace limitations (such as files using Windows reserved names or characters) and con-
flict files. Figure 8.3 illustrates the GUI users can use to inspect conflicts for our BSync implementation,
NextCloud and Unison.

BSync Dropbox Backup
and Sync

One-Drive Next-
Cloud

Notification about conflict X
Windows,

macOS

X X X
Only

Windows

X
Windows,

macOS
GUI to inspect conflicts X X X X (X)

Table 8.7: Conflict notifications
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(a) Unison

(b) BSync (our implementation)

(c) NextCloud

Figure 8.3: User interfaces used to visualize conflicts

Graphical user interfaces provided by Unison, NextCloud and BSync to inspect conflict detections
or resolutions (after the fact). Subfigure a (Unison) shows two non-conflicting create operations (of
a file and directory) as well as the detection of an Edit-Edit conflict. The user needs to choose from
a set of options for resolving the conflict (left to right, right to left, skip, merge).
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Table 8.8 shows the detailed test results. For detailed explanations of the cell labels (Merge, Duplicate,
...) and further remarks see appendix sections A.8.2.1 and A.8.2.2. Unexpected or wrong out-of-sync
results are marked in bold.

Conflict name Param. Our impl. Dropbox Backup

and Sync

OneDrive Next-

Cloud

Unison

Create-Create

F=file-file,

R=random

Rename
A)

Rename
B)

Rename
C)

Rename
D)

Rename
E)

Detected
F)

F=file-file,

R=determ.

Merge Merge Merge Merge Merge G) Merge

F=dir-dir Merge Merge Merge Merge Merge Merge

F=file-dir Rename
A)

Rename
B)

Rename
C)

Rename
D)

Out of
sync H)

Detected
F)

Edit-Edit
R=random Overwrite Duplicate-

Sync

Duplicate-

Sync

Duplicate-

Sync

Duplicate-

HostOnly

Detected
F)

R=determ. Merge Merge Duplicate-
Sync

Merge Merge G) Merge

Name clash
F=dir-dir Rename

A)
Merge Rename,

out of
sync I)

Rename
D)

Merge G) Merge

F=file-file,

file-dir

Rename
A)

Rename
B)

Rename,

out of
sync I)

Rename
D)

Rename,

out of
sync J)

Detected
K)

Edit-Delete of

file

C=any Restore Restore Delete Restore Restore Detected
F)

Move-Delete
F=file,

C=any

Restore Restore Local N) Restore Restore Restore

F=dir,

C=any

Restore Restore Local N) Local Restore Restore

Move-

ParentDeleted,

Create-

ParentDeleted

C=any Delete Restore Local L) Restore Restore Detected
M)

Move-Move

(Source)

F=file Remote Duplicate Remote Remote /

Duplicate
O)

Duplicate Duplicate

F=dir Remote Duplicate Remote Remote Duplicate Duplicate

Move-Move

(Cycle)

– Remote Out of
sync P)

Out of
sync P)

Remote Out of
sync P)

Detected
Q)

Table 8.8: Results for conflict operations tests

8.2.5.5 Cross-platform issue tests description

We implemented one or more tests for each of the following five cross-platform issues:

• Case-sensitivity: Windows is always case-insensitive. macOS disk volumes, by default, are case-
insensitive as well. However, macOS allows to create case-sensitive disk volumes. We create one
and configure the synchronizer to use it, if possible. Our tests explore how synchronizers deal
with upper/lower-case file name clashes and whether conflicts are correctly detected if names
only differ regarding their upper/lower-case between replicas.



8.2. FILE SYNCHRONIZER COMPARATIVE TEST 161

• Unicode normalization: Windows disk volumes are both Unicode normalization preserving and
sensitive. On macOS disk volumes formatted with HFS+ are neither sensitive nor preserving as
macOS always normalizes Unicode special characters to a NFD-like version. Our tests investigate
whether Unicode special characters are automatically normalized to the form that is natively used
on the corresponding platform and how synchronizers handle duplicated file names that only
differ in their normalization form.

• Reserved characters and names: Windows provides a large set of reserved characters and names
that can be created without problems on macOS, including issues such as short (8.3) filenames.

• Maximum name length limit: on both Windows and macOS a file name’s maximum length is 255
characters. We test whether synchronizers take this limit into account in situations where they
proactively extend a file’s name, e.g. when creating conflict copies of files.

• Windows 8.3 file names: 8.3 file names (or short filenames, SFN) are a relict from the DOS (Disk
Operating System) era. Given an existing file “my longer text.myext”, Windows forbids creating (or
moving other objects to) “MY_LON~1.MYE”. This is counter-intuitive, because “MY_LON~1.MYE”
is not part of the parent directory’s listing returned by the file system APIs. On macOS, no such
limitations exist. Our tests explore how synchronizers deal with situations where corresponding
files are created or moved on macOS and then synchronized to Windows.

We refer to section 3.1 on page 29 where we present multiple expected results a client might implement
to handle each issue. Like for conflict operation tests (see section 8.2.5.3) cross-platform tests also in-
struct the agent to automatically create screen shots.

1) Case-sensitivity:

Name Description Parameters

Case-sensitivity

clash

On macOS (remote replica) we create two files or directories

with equal name but varying upper/lower case (one

upper-case, one lower-case object). If F=directory, we create a

sub-file named “lower” or “upper” in the corresponding

directory.

F,

H=macOS-macOS,

macOS-Windows

Case-sensitivity

conflict

On one replica we apply CreateFile(f), on the other we apply

CreateFile(F). This needs to cause a conflict on case-insensitive

volumes (solved by automatically renaming one file), but not

necessarily on case-sensitive ones.

H=macOS-macOS,

macOS-Windows

2) Unicode normalization:
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Name Description Parameters

Unicode

normalization -

clash

On Windows (remote replica) we create two files named “ä” and

“ä” (one normalized using the NFC, one using the NFD

normalization). This can be synchronized to another Windows

host, but needs to be handled on macOS where both

normalizations would clash.

H=Windows-

macOS,

Windows-Windows

Unicode

normalization -

Windows

conversion

On Windows (remote replica) we create file “ä” with the

NFD-normalization (untypical for Windows) to observe

whether the client performs an automatic conversion. We

expect the client to either convert the file name to the typical,

platform-native NFC normalization on both the remote and

local Windows host, or to skip conversion and use the

NFD-form on both Windows hosts.

H=Windows-

Windows

Unicode

normalization -

macOS conversion

On macOS (remote replica) we create file “ä” (which macOS

always normalizes as NFD) to observe whether the local

replica’s Windows client converts the normalization form to the

Windows-native NFC form.

H=macOS-Windows

3) Reserved characters and names:

Name Description Parameters

Reserved characters

and names

On macOS (remote replica) we create a file that contains “?”, as

a representative for reserved characters, assuming that a

synchronization client will behave equally for any reserved

character. We also create the files "LPT1" and "LPT1.foo.bar" to

test reserved names. Finally we create files "a ." and "b " to test

handling of names that end with “.” or space. We expect a

synchronizer to either automatically rename those files, or to

skip their synchronization. In any case, they should notify the

user about their decision.

H=macOS-macOS,

macOS-Windows

4) Name length limit:

Name Description Parameters

Name length limit -

conflict names

We produce a Create-Create conflict for two random-content

files whose name length is 252 characters, being very close to

the 255 limit. We test whether the local client (who discovers

the conflict) truncates the original file’s name before

appending the “conflict” suffix that is typically used when

resolving such conflicts, see section 8.2.5.4.

H

Name length limit -

temporary names

This test only applies to BSync and OneDrive. Their local client

can correctly apply complex single-replica operations (see

section 8.2.5.1) which involve having to temporarily rename

objects to a randomly generated name to make other necessary

move operations possible. This test runs the “Move Occupied 1”

test described in appendix section A.8.1.2. For instance,

OneDrive creates a directory “1180107144710-A” which it

finally renames to “A” after applying other move operations. We

test whether the synchronization is still successful if directory

“A”’s name is instead 253 characters long.

H=Windows-macOS
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5) Windows 8.3 file names:

Name Description Parameters

Windows 8.3 file

names - distributed

creation

On the remote replica we create a file “aaaaaa~1” which uses a

short file name pattern. The remote client transmits the file to

the server replica. On the local replica we create a long file

“aaaaaaaaaa” and start the local client, to examine whether it

detects (and how it handles) the issue that “aaaaaa~1” cannot

be created on the local replica.

H=Windows-

Windows

Windows 8.3 file

names - macOS

clash

The initial file system consists of two synchronized files named

“aaaaaaaaaa” and “b”. On macOS (remote replica) we apply the

operation Move(b, aaaaaa~1) and observe the result on the

local replica, where this move operation is forbidden by

Windows.

H=macOS-Windows

8.2.5.6 Cross-platform issue test results

The detailed test result are shown in table 8.9, with shorthands: NN = No Notification, IN = Inconsistent
Names.

Unexpected or wrong results are marked in bold. For remarks and referenced figures, see appendix
section A.8.3.1.

8.2.6 Summary and discussion

Using our test framework we compared the convergence behavior of BSync, Dropbox, NextCloud, Google
Backup and Sync, Microsoft OneDrive and Unison. We designed three test categories (conflict-free oper-
ations, conflict operations and cross-platform issues), each made of several tests. We built a setup that
consists of four virtual machines (2x Windows, 2x macOS) where the corresponding synchronizer clients
are installed. A separate test computer runs the automated tests, sending commands to test agents we
developed that are installed in the VMs as well. These agents execute these commands, such as opera-
tions that modify the file system, or start or stop a specific synchronizer client. We limited the number of
tests using Equivalence Class Partitioning. The test execution time was still considerably long. Conflict
and cross-platform tests took about 12 hours each, conflict-free tests took about 28 hours, for a single
run. Because we repeated all tests three times, added run-time amounts to one week. Additional time
was required for manual result analysis. In the remainder of this section we summarize our findings.

8.2.6.1 Synchronizer-specific issues

We found that some synchronizers show behavior that affects the result of several (if not all) test cate-
gories.

The Backup and Sync client appends a numeric suffix such as “ (1)” to the name of objects whenever
there is a problem with using the originally intended name. This suffix is only used on one, not all,
replicas. This causes names to be inconsistent on both replicas. The Dropbox client does not seem to
use an internal ID-based file system model (such as F ) but a path-based one, which we discovered in
our multi-level conflict-free operation tests. To avoid performance bottlenecks, Dropbox seems to use
heuristics to identify moved files, such as comparing checksums, which allows it to send move opera-
tions to the server, rather than deleting and re-uploading such files. Once the Dropbox client receives a
move operation from the server, it never physically moves the affected object on the local replica, but
first copies the local file(s) to the destination, followed by either deleting the local source or moving it to
an internal cache where it is kept for a varying amount of time before it is finally deleted. This behavior
degrades the performance of move operations that affect large files or directories and consumes addi-
tional disk space. The Unison client works similarly in this regard, and it is known that its internal file
system model is path-based [BP98].
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Test name Param. Our impl. Dropbox Backup

and Sync

One-Drive Next-

Cloud

Unison

Case-

sensitivity

clash

F=any,

H=macOS-

macOS

Remote

rename

Remote

rename,

NN

Un-

changed
– A) Un-

changed

Skipped B)

F=any,

H=macOS-

Windows

Remote

rename

Remote

rename,

NN

IN C) Skipped D) Skipped B)

Case-

sensitivity

conflict

H=macOS-

macOS

Autom.

rename

Autom.

rename

No conflict Autom.

rename

No conflict Detected
G)

H=macOS-

Windows

Autom.

rename

Autom.

rename

IN E) Autom.

rename

Out of
sync F)

Detected
G)

Unicode nor-

malization -

clash

H=Windows-

Windows

Remote

rename

Remote

rename,

NN

Unchanged Out of
sync H)

Out of
sync H)

Out of
sync I)

H=Windows-

macOS

Remote

rename

Remote

rename,

NN

IN J) Out of
sync H)

Out of
sync H)

Out of
sync I)

Unicode nor-

malization -

Windows

conversion

H=Windows-

Windows

Autom.

con-

version
K)

Autom.

con-

version K),

NN

No con-

version

No con-

version

Normali-
zation

mismatch
L)

Normali-
zation

mismatch
L)

Unicode nor-

malization -

macOS

conversion

H=macOS-

Windows

Autom.

con-

version

Autom.

con-

version

No con-
version

M)

Autom.

con-

version

Autom.

con-

version

Autom.

con-

version

Reserved

characters

and names

H=macOS-

macOS

Remote

rename

Trims

white-

space of

file “b “ N)

Unchanged Skips chars

(syncs

names) O)

Unchanged Unchanged

H=macOS-

Windows

Remote

rename

Trims

white-

spaceN),

NN P)

IN, creates
un-

deletable
files Q)

Skips chars

and names
O)

Skips chars

and names

on

Windows
R), NN

Skips chars

and names

on

Windows
R)

Name length

limit -

conflict

names

H=any Truncates

file name

Out of
sync S)

IN T) Truncates

file name

Out of
sync S)

–

Name length

limit -

temporary

names

H=Windows-

macOS

Truncates

file name

– – Hangs
indefini-

telyU)

– –

Win 8.3 file

names - distr.

creation, see

figure A.14

H=Windows-

Windows

Remote

rename V)
Skips SFN

(local), NN

IN Autom.

Rename

Skips SFN

(local)

Skips SFN

(local)W)

Win 8.3 file

names -

macOS clash,

see fig. A.15

H=macOS-

Windows

Remote

rename V)
Removes

file “b”

(local)

IN SFN
replaces
long file

name

Out of
sync

Out of
sync

Table 8.9: Results for cross-platform issues tests
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8.2.6.2 Conflict-free operations

We found that all synchronizers were able to synchronize individual operations correctly. However, only
our implementation and OneDrive managed to correctly apply complex operation sequences or multi-
level operations to the other replica. Other implementations showed various flaws, such as becoming
out of sync temporarily or permanently, or even crashing completely. The distributed edit and move
operation applied to a file was only merged by BSync and Google’s implementation - all others produced
two files: the old file at the new location and the new file at the old location.

8.2.6.3 Conflict operations

We observed several cases of unexpected behavior when clients detect or resolve conflicts.

Our tests show that NextCloud could not handle Create-Create conflicts in cases where a file and a di-
rectory was created on the first and second replica respectively. Some name clash conflicts also caused
issues with NextCloud, s.t. different replicas became out of sync.

The OneDrive client showed inconsistent behavior for Move-Delete conflicts. The client always restored
the object in case it is a file, but always favored the locally applied operation in case it is a directory. All
other synchronizers applied the same resolution strategy, irrespective of whether the affected object is a
file or directory.

Apart from BSync and OneDrive, all other synchronizers had issues dealing with Move-Move (Source) and
Move-Move (Cycle) conflicts appropriately. They either duplicated directory structures, which clutters
the file system, or became out of sync. For OneDrive’s client we discovered that the resolution of Move-
Move (Source) conflicts is done differently on macOS vs. Windows.

Considering conflict awareness we observed that most synchronizers display little (graphical) informa-
tion about conflicts and their resolution to the user. Apart from BSync only Unison and NextCloud
provided a GUI to inspect conflicts. Unison’s GUI showed detected conflicts, providing the user with
multiple choices for resolving them. NextCloud’s GUI offered a window that shows entries for resolved
conflicts, providing the affected file name and an explanation, but only for those types of conflicts the
client solved by appending a conflict-suffix to the file name. Most notably, conflicts such as Move-Delete
or Edit-Delete (whose resolution does not involve appending this suffix) are not found in this GUI. In
contrast BSync offers a GUI with detailed conflict information for all conflict types. We also found that
the only synchronizers that showed real-time notifications while conflicts happen are BSync, NextCloud
and OneDrive’s Windows client.

As expected, we found a high degree of variance in the automatic conflict resolution applied by the
industrial synchronizers. While all implementations agreed on how to deal with Create-Create conflicts,
there was no consensus on how other conflict types should be resolved.

8.2.6.4 Cross-platform issues

When one replica is case-sensitive and one is case-insensitive, we found that NextCloud and Backup
and Sync had issues with detecting and resolving case-sensitivity clashes.

Except for BSync, all other synchronizers had issues dealing with Unicode normalization, or handling
clashes of duplicate names that only differ by their normalization. The clients either went into an un-
expected error state, or they did not inform the user about automatically applied rename operations or
skipped synchronizations of affected files.

There is no consensus regarding the handling of Windows’s reserved characters and names. Some syn-
chronizers transferred all those objects to the server replica but then omitted their synchronization on
the Windows replica, while others (such as OneDrive) skipped sending reserved characters to the server
replica, but did send reserved names. Some implementations applied automatic renaming (that turns
reserved characters into allowed ones) already on the macOS replica when encountering those reserved
names or characters. We observed that some synchronizers applied consistent rename-schemes, while
others only renamed some reserved characters but not others.
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Apart from our implementation, all synchronizers had issues with some of our tests regarding Windows
8.3 short file names or using names with a length that is close to the limit of 255 characters.

8.2.6.5 Discussion

As our results have shown, other synchronizers often did not correctly synchronize concurrent opera-
tions accumulated during longer offline periods. This is particularly relevant in practice for users who
frequently work offline. Such bugs cause irritation for the user and lower their trust in the synchro-
nizer17. If any error messages were shown at all (for instance, Dropbox never did and failed silently
throughout all tests), they were as helpful as “Unknown error” or “Upload error” (Backup and Sync,
NextCloud) which is not indicative of the cause. These errors and messages indicate that synchronizer
developers did not thoroughly analyze the file system model. Our own thorough analysis of file system
model F made it not only possible to avoid these issues, but also helped to design the tests.

We think that further insights may be gained from a dialog between researchers and industry, in partic-
ular for conflict handling. It would be interesting to discuss why products such as Dropbox and Google’s
Backup and Sync hide conflicts from the user, given that these companies have UX specialists who know
how to design usable software. The dialog may also reveal insights for the specific conflict resolution ap-
proaches used in each synchronizer.

8.3 Synchronization and conflict statistics

As discussed in section 7.1 on page 129, our implementation, BSync, has been in productive use since
July 2017 by close to 30 users. We performed an empirical evaluation by collecting various statistics to
answer the following questions:

• Can we confirm the findings of other works [SS05; WRB01; KS92; Rei+94] which state that file
system conflicts are rare in practice?

• Which of the ten conflicts discussed in chapter 5 are most common? We assume that Edit-Edit
conflicts occur most often, from personal observation and asking other users.

• Considering conflict-free operations, how is BSync used by its users? What is the distribution of
operation types? Is the number of create operations outweighed by the sum of edit, move and
delete operations?

• How often do pseudo conflicts occur in practice? Was the effort justified to implement pseudo
conflict detection?

In the following subsections we discuss related work, how we collected statistics data and present our
results.

8.3.1 Related work analysis

There are numerous works [SS05; WRB01; KS92; Rei+94] which re-affirm the use of optimistic replica-
tion for file systems. They found that its main disadvantage, conflicts, are not actually a problem in
practice, because they occur rarely. The cited works can be divided into theoretical analyses and empir-
ical evaluations. The former is done in [WRB01] where the authors built a mathematical model used in
a simulation where synchronization and file updates occur regularly. The simulation then manipulates
the synchronization interval µ, while files are regularly updated (with a different rate) in each replica.

They found that s = #of conflicts
synchronization increases with µ. The relationship is not linear, but s asymptotically

approaches a limit. Consequently, when 1
µ is the number of reconciliations per time unit, the conflict

17We are aware of multiple anecdotes (and have first hand experience) where users stop relying on file synchronizers doing
their job correctly after working offline, because of mishaps. Users then copy files they work on out of the synchronized directory
and finally copy it back in once they are online again.
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rate r = s ∗ 1
µ is small not only for small values of µ (which is intuitive: synchronizing often will cause a

very small s, and thus r is also small), but also for large values of µ (synchronizing very rarely also causes
r to be small). There is a worst-case for some µ where r is largest.

Other works provide empirical evidence. In [KS92] write update conflicts were only found in less than
0.5% of all write operations. In [Rei+94] the relative conflict frequency was even smaller, stated as
∼ 0.0035%. However, this figure only covers non-directory updates and ignores name-collision conflicts
which were automatically resolved at an earlier stage. The authors also found that “an environment in
which some machines are often disconnected will generate more conflicts”, which confirms the proposi-
tions of [WRB01]. Another discovery in [Rei+94] is that such averaged numbers are misleading. “Con-
flicts tended to happen more often to users who worked with the disconnected machines. A few users thus
experienced much higher conflict rates, while many users encountered considerably fewer conflicts than
the average.” [Rei+94].

8.3.2 Data collection

In BSync we implemented a log that contains all successfully executed operations and resolved conflicts.
The log is regularly transmitted to a central server for data analysis. For non-conflicting operations, the
log entries include the following information:

• Operation name (“create”, “edit”, “move”, “delete”) and affected replica (local, remote),

• Omit flag: if True, then the operation is a pseudo conflict operation, False otherwise,

• File extension, e.g. “.pdf”, or “dir” in case the affected object is a directory.

For conflicts the log entries include these items:

• Conflict type (“Create-Create”, ...),

• Local and remote file extension,

• Loser replica identifier (local, remote).

For both conflicts and non-conflicting operations we always transmitted an anonymized user ID. Any
information that allows to identify individual users was omitted, such as file or account names. Unfortu-
nately this made it difficult to answer questions like “what user activity causes conflicts?”, as this would
require user interviews, but we did not know the user’s identity. We note that users are able to opt out of
the statistics collection in the settings dialog of BSync.

8.3.3 Results

We now present the analysis of the statistics data we collected in the time period of July 2017 to De-
cember 2018. We note that the results of every analysis strongly depends on the environment, i.e., the
users and the way they work. The discussed user base with close to 30 users consisted predominantly of
property administration staff, who work with tools like Autodesk Revit or WSCAD. The files produced by
these tools are then synchronized by BSync. The second user group (about one third of the users) were
mostly software engineers who use BSync for any kind of files other than source code, e.g. documents
and images. Source code management is delegated to expert tools, such as Git.

8.3.3.1 Operation analysis

Figure 8.4 breaks down the 793′973 conflict-free operations logged by BSync. The innermost ring shows
the operation type distribution. The next ring breaks each operation type down into real vs. pseudo-
conflicting operations. The outermost ring breaks the real operations down into local vs. remote opera-
tions. Local operations refer to operations that were detected on the server and thus propagated to the
user’s device. The enclosed table provides values rounded to 0.5%.
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Name Operations Relative Pseudo conflicting,
relative

Local operations
(relative to non

pseudo conflicting)

Create 666’735 84% 25% 72%
Edit 74’645 9.5% 17% 37.5%

Move 35’276 4.5% 0.5% 83.5%
Delete 17’317 2% 3.5% 54%

Figure 8.4: Break down of operations

Contrary to our assumptions the create operation makes up the largest portion of all operations (84%).
There are several explanations for this. First, 25% of the create operations are pseudo conflicting oper-
ations, which were created when the user configured a new folder pair, but already possessed the data
on the local disk. These operations simply reflect the rebuilding of the persisted state, see section 5.4.2
on page 76 for more details. Second, some users treated BSync as backup software for a large number of
(smaller) files, such as images, which were never modified again. Third, applications such as Autodesk
Revit or WSCAD create a large number of temporary files and folders which they seem to never delete.
Because the log entries do not contain directory names we do not know the extent of create operations
that can be explained by the last two arguments.

Our mechanism to detect and resolve pseudo conflicts has proven beneficial to avoid real conflicts. As
the table in figure 8.4 shows, create and edit operations have a considerable amount of such pseudo con-
flicts. We note that it is unlikely that two users independently edited a specific file resulting in the exact
same content. A deeper analysis of these edit operations revealed that 84% of them affect files which
change very frequently on the local disk, because they are continuously being written to, e.g. lock files
or other temporary files. When they change during synchronization while BSync is online, the problem
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discussed in section 5.4.2 on page 76 applies again. The synchronizer detects that the file changed while
it was uploaded, aborts the transfer and restarts the synchronization. The next synchronization iteration
detects that the file has been edited on both the server and the local disk, because the previous transfer
did finish (was not truly aborted).

8.3.3.2 Conflict analysis

An overview of the 951 conflicts is shown in figure 8.5, together with the most common file extensions
for Edit-Edit conflicts. The inner ring of figure 8.5a shows the conflict type distribution. The outer ring
uses a different color for each unique user experiencing the conflict.

The resulting chance for conflicts per operation is 951
793′973 = 0.12%, which is in the same range as in

[Rei+94; KS92]. We can also confirm the statement of [Rei+94] that conflicts are concentrated on a few
users. 79.3% of all conflicts were experienced by two users. The chance for conflicts is 1.88% for the
user who experienced most of the conflicts (shown in pure green in figure 8.5a), which is 15 times larger
than the average. Interestingly, most Edit-Edit conflicts occurred for users who predominantly worked
online, which is contradictory to previous statements that assumed that conflicts occur the longer the
offline period is. The three most affected file extensions, shown in figure 8.5b, are extensions used by the
WSCAD application. When two distinct users work on a file in parallel in WSCAD, the synchronizer is
only notified of the edit operation (and can detect conflicts for it) once the file is saved, which happens
either due to the user’s request, or when some condition triggers WSCAD to automatically save it. Since
it is possible that a user may work on such a file without saving it for, say, an hour, the chance that some
other user also works on that file (and saves it) within that time period is not negligible, causing such
conflicts.

8.4 Complexity and performance analysis

To determine the practical viability we evaluate both the complexity and performance of Syncpal. We
start with a complexity analysis using the Big-O notation in section 8.4.1, followed by performance mea-
surements of our BSync implementation in section 8.4.2.

8.4.1 Complexity analysis

Let n = count (i d s(db))+count (i d s(snapshot )) be the number of objects. h is the height of the update
trees, and k is the number of operations detected by compute_ops(). We start with memory complexity
analysis, which is straightforward. Syncpal generates snapshots and update tree structures, each with n
objects, as well as k operation objects. Thus, memory complexity is O(n + k). For the computational
complexity we break down the analysis for each stage separately, followed by analyzing the overall com-
plexity.

We start with update detection whose complexities are shown in table 8.10. Building snapshots is O(n)

Step Average case Worst case

Build snapshot O(n) O(n)
compute_ops(db, snapshot) O(n) O(n)
Generate update trees (step 1-7, step 8) O(k·h), O(n·h) O(n2)
Generate update trees (total) O(n·h) O(n2)

Total O(n·h) O(n2)

Table 8.10: Complexities of update detection stage

because we have to iterate over all objects in the file system (or database), which is O(n), and add them
to the snapshot structure, which is O(1). The compute_ops() function, see algorithm 1 on page 49, iter-
ates over all objects in the snapshots twice and creates k operations. We can approximate k = n, even
though in practice this only holds in the first synchronization iteration. Typically, k ¿ n in consecutive
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(a) Break down of conflict types

(b) Most common file extensions for Edit-Edit conflicts

Figure 8.5: Conflict analysis
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iterations. When generating update trees, creating and inserting a new node into a tree is O(h). Steps
1-7 depend on k and step 8 depends on n, so in an average case, complexity is O((k+n)·h)). In the worst
case, where the file system resembles a degenerate tree, i.e., h = n, the complexity is O(n2).

Table 8.11 shows the complexities of finding conflicts during reconciliation, see algorithms presented in
appendix A.6 on page 211. We distinguish between the very first synchronization iteration (first_sync

Step Average case Worst case

cor r espondi ng _node_di r ect (), node.g et_chi l d() O(1) O(1)
corresponding_object_id() O(h) O(n)
Find Move-Move (Cycle) conflict O(k2) O(n2)
Find all other conflicts (first_sync is True) O(n·h) O(n2)
Find all other conflicts (first_sync is False) O(n) O(n2)

Total (first_sync is True) O(n·h) O(n2)
Total (first_sync is False) O(k2 +n) O(n2)

Table 8.11: Complexities of finding conflicts

is True) and consecutive iterations. In the first iteration only Create-Create conflicts can exist, and cor-
responding_object_id() is used to find them. The average complexity in this case is O(n·h) rather than
O(k·h), because all n objects are detected as created in the first iteration, thus k = n. In consecutive
iterations, finding conflicts is O(n) for all conflicts except Move-Move (Cycle), because we iterate over all
n objects, but finding a conflict for a specific object is O(1). Create-Create conflicts may still exist, but
now finding them involves calling corresponding_node_direct() rather than corresponding_object_id().
Complexities of resolving conflicts depend on the conflict, as shown in table 8.12.

Conflict Average case Worst case

Create-Create, Move-Create, Edit-Edit, Edit-Delete,
Move-Move (Dest),

O(1) O(1)

Undo move: Move-Move (Source/Cycle), Move-Delete
(when delete operation wins)

O(h) O(n)

Move-Delete (when move operation wins) O(n) O(n)
Create-ParentDelete O(k) O(n)
Move-ParentDelete O(k·h) O(n2)

Total (take worst of all above) O(n) O(n2)

Table 8.12: Complexities of resolving conflicts

For the propagation stage, if sorting is not required, complexity is O(k). However, if sorting is required,
we need to analyze sort_operations(), whose complexities are shown in table 8.13. Considering algo-

Step Average case Worst case

Sorting iterations (outer loop in algorithm 2) O(1) O(k)
fix_xyz() (inner loop) O(k2) O(k2)
fix_impossible_first_move_op(), section 6.3.2.5 O(1) O(n)
find_complete_cycles(), break_cycle() (inner loop) O(k) O(k)

Total O(k2) O(n +k3)

Table 8.13: Complexities of sort_operations() in propagation stage

rithm 2 on page 58 and theorem 1 on page 58, we see that the outer loop is executed at most k times.
The fix_xyz() functions in the inner loop are O(k2) each, find_complete_cycles() and break_cycle() are
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O(k), which overall yields O(k3) for sort_operations(). In practice, cycles are rare and sorting completes
in a single iteration, thus sort_operations() is typically O(k2).

Table 8.14 shows the overall complexity of Syncpal, assuming that there are c synchronization iterations.
The complexity of the very first synchronization is lower because no sorting is needed. As long as there

Case Average case Worst case

First synchronization (only create operations) O(c·n·h) O(c·n2)
Normal synchronization O(c· (n·h +k2)) O(c· (n2 +k3))

Table 8.14: Complexities of Syncpal algorithm

are only create operations (non-conflicting or pseudo-conflicting) only order dependency rule 7 applies.
However, the generation of operations described in section 6.2 is done by breadth first iteration, which
implicitly satisfies this rule. In practice, when only a small set of changes needs to be synchronized, c = 1
and k is so small that even k2 is irrelevant. Thus, the average case complexity is O(n·h).

8.4.2 Performance analysis

We built an automated test that determines execution times and memory usage while it runs. The goal
is to determine the maximum feasible number of objects and operations, and to identify potential op-
timizations. Our test first creates n = [100,1′000,10′000,100′000] directories on the root level on one
replica, followed by synchronizing them to the other one. Then k = [100,1′000,10′000,100′000] oper-
ations are executed on one replica and then synchronized to the other one. We evenly divide k into
createdir, delete and move operations. We are interested in execution times and memory usage incurred
when building snapshots, detecting operations (compute_ops()), building update trees, finding conflicts
(note that our test scenario does not have any), generating Syncpal operation and sorting them. From
the user’s perspective, synchronization consists of only two stages, the planning stage that builds the
list of operations (which entails all steps we just mentioned) and the execution stage, which propagates
all planned operations. We are only interested in performance of the planning stage, because the ex-
ecution stage’s duration depends entirely on the operations themselves18 and we can provide visual
progress feedback to the user. Such feedback is not available for the planning stage, consequently this
stage should be as short as possible. A user would stop using a synchronizer if planning took several
minutes for every change, or consumed large amounts of memory.

8.4.2.1 Result analysis

Results for the memory use are shown in table 8.15, execution times are given in table 8.16.

The first bottleneck regarding execution time is snapshot creation. While filling a snapshot is efficient
(O(1)), obtaining meta-data for each object is expensive. On a local disk this requires opening and clos-
ing a file handle on Windows, or performing a stat() call on macOS, which becomes noticeable (t > 0.27
s) for n > 1′000. On a remote file system addressed using WebDAV obtaining meta-data is even more

18For instance, transferring large files takes much longer than moving objects or creating directories.

Artifact Memory
use (MB)

Growth Notes

Snapshot 70 Linear with n Use per replica.
Operation list from
compute_ops()

1 Linear with k –

Update tree 50 Linear with n Use per replica.

Table 8.15: Measured memory use for n = 100′000
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Step Execution
time

(seconds)

Growth Notes

Snapshot creation ∼ 27 Linear with n Time per replica. Measured on a Solid
State Disk.

compute_ops() ∼ 1 Linear with n –
Update tree generation ∼ 3 Linear with n·h Time per replica.
Reconciliation (find
platform
inconsistencies, find
conflicts, build Syncpal
operations)

∼ 10 Linear with n,
quadratic with k

The 10 seconds evenly distribute
among the three sub steps. Measured
for k ≤ 10′000.

Operation sorting ∼ 160 Quadratic with k Measured after applying k = 10′000
operations (also measured
k = 100,1′000 but aborted with
k = 100′000).

Table 8.16: Measured execution times for n = 100′000

expensive, as it requires network calls for each directory. We note that our hybrid update detection ap-
proach presented in section 4.3 on page 59 mitigates this issue in practice, because the expensive snap-
shot creation is done only during the very first synchronization iteration.

The second execution time bottleneck is operation sorting. Sorting 10′000 operations or more is in-
feasible, as the user would assume that the synchronizer has crashed. However, in practice we observed
that reconciliation typically either produces a large number of create operations exclusively (which don’t
require sorting), or a small number (usually below 100) of operations of mixed type, where sorting com-
pletes in a fraction of a second.

Considering memory use, the bottlenecks clearly are snapshots and update trees. For instance, synchro-
nizing a directory with n = 100′000 objects would incur 4∗70+1+2∗50 = 381 MB, because 4 snapshots
and 2 update trees are required.

8.4.2.2 Future optimizations

Our first suggestion is to reduce memory use. By moving snapshots from memory to a relational
database and implementing the compute_ops() algorithm using SQL queries, the memory use can be
reduced considerably. However, execution time is expected to increase by one order of magnitude. To
reduce the memory footprint of update trees we can omit step 8 of the update tree generation procedure
and instead only update missing meta-data of intermediate nodes from dbsnapshot . However, addi-
tional work is required to verify that finding conflicts and sorting still works on such incomplete trees,
and the Platform Inconsistency Checker module needs to be updated to efficiently find inconsistencies
using incomplete update trees.

The latter suggestion also has a beneficial impact on execution time. As the update tree generation time
mostly depends on the number of nodes, omitting step 8 will reduce the complexity from O(n·h) to
O(k·h). Omitting step 8 will also speed up reconciliation time, as the majority of time is spent iterating
over all n nodes. When instead iterating over the incomplete tree, i.e., over k nodes, this reduces the
average case complexity from O(k2 +n) to O(k2 +k) =O(k2).

Optimizing sorting is left as future work.
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8.5 Conclusion

This chapter provided a technical evaluation of BSync, our implementation of Syncpal, as well as other
industrial-grade synchronizers. Except for section 8.4.1 we employed automated testing or data collec-
tion combined with a manual result analysis.

We found that the tests from section 8.1, which focus on our own implementation, are a valuable com-
plement to the theoretical proofs. They uncovered several kinds of coding errors. Some affected parts
of Syncpal which were formally proven to be correct but were incorrectly translated to code. Others af-
fected modules that were not part of the proofs (e.g. the update tree generation routines). The tests also
helped to confirm or refute assumptions, such as the one discussed in section 6.3.2.5. They also uncov-
ered an incorrect definition of the Move-Move (Cycle) conflict (see section 5.5.10), which we originally
defined with an additional precondition that requires that directories A and B are hierarchically inde-
pendent in dbsnapshot . However, our random tests in section 8.1.3 found counter examples where the
conflict holds, even when A and B are hierarchically dependent.

Looking outwards, testing other synchronizers revealed a plethora of issues when faced with extended
offline periods or platform inconsistencies, which negatively affect their usability. The results thus val-
idate our motivation and confirm all those issues discussed in section 1.1. Our implementation signifi-
cantly improves usability for the discussed problems.

Finally, our complexity and performance analysis done in section 8.4 revealed numerous future opti-
mizations. These were not implemented yet, as it is good engineering practice to focus on features and
correctness first and optimize the code later. Some memory and performance bottlenecks, such as linear
growth of complexity with n, affect state-based synchronizers in general, not just BSync. Even leading
industrial products with large software engineering teams have not been able to overcome them. For in-
stance, the help documents of Dropbox and OneDrive warn users that the synchronizer’s performance
degrades when synchronizing more than 300’000 or 100’000 objects respectively19. In practice BSync
did not yet encounter performance bottlenecks, as even large synchronized BSCW workspace directo-
ries contained less than 50′000 objects. Future optimizations will still be necessary when rolling out to a
wider audience.

19See https://support.microsoft.com/en-us/help/3125202 for OneDrive and https://help.dropbox.com/space/
file-storage-limit for Dropbox, retrieved July 21, 2019.

https://support.microsoft.com/en-us/help/3125202
https://help.dropbox.com/space/file-storage-limit
https://help.dropbox.com/space/file-storage-limit
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Chapter 9

Conclusion and outlook

This work was driven by the motivation to build a file synchronizer for end-users. Compared to state-
of-the-art academic works and industrial products it should provide a better handling of heterogeneous
file systems and synchronize long offline periods correctly. To show that we have achieved this goal with
our Syncpal algorithm we revisit the research questions and discuss the effect of our findings on research
and industry in section 9.1. There are still some limitations illustrated in section 9.2. In section 9.3 we
present future work, which is derived from these limitations as well as suggestions made by our users
who used BSync in practice for several years. We finally conclude this work in section 9.4.

9.1 Discussion of research questions

RQ1 - File systems: What different kinds of file system definitions exist in academia and practice? Which
criteria are relevant for file synchronizers? How should a file synchronizer’s internal, abstracted file
system model look like, which incompatibilities exist and how can they be handled?

The file system models used internally in academic file synchronizers have shown to be dissimilar. Some
works model files and directories as uniquely identifiable objects, others use anonymous paths. The
mechanisms used to link objects in the file system tree may differ. The existence of directories as a dis-
tinct entity varies between works, and there is a disagreement regarding the set of available operations,
including their pre- and postconditions. We extended our analysis to implementations found in prac-
tice, such as NTFS or WebDAV, which have shown further traits of heterogeneity. These include varying
namespace limitations, as well as different mechanisms to manipulate meta-data or lock objects. We
proposed a method to build an internal model with maximum compatibility to existing real-world file
systems, by integrating compatible traits and suggesting methods to handle incompatible ones, e.g. by
adding objects to an ignore list. Our comprehensive heterogeneity analysis and methods for handling
incompatibilities improve the usability of file synchronizers by providing awareness to the user. In con-
trast, several existing industrial systems ignore some of these heterogeneous traits, causing permanent
replica discrepancies which degrades usability. To the best of our knowledge we are the first to dis-
cuss heterogeneity for file systems and file synchronizers in academia, thus providing a foundation for
prospective works.

RQ2 - Operation order: As operations detected during state-based update detection lack order, but not
all operations are commutative, how can a valid order be detected and propagated by a synchronizer?
This question was already answered for file system models which do not support move operations, but
remains open for file systems which do support them.

We first solved the problem of finding a valid operation order for the simplified case of uni-directional
synchronization, where only one replica is manipulated. Using the formally defined pre- and postcon-
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ditions of the operations of our file system model we found a number of operation order dependency
rules1, by analyzing all possible operation combinations. As our file system model includes the move
operation, these rules deviate from those of related works that omit this operation. We found that our
rules can form cycles and proposed a mechanism that breaks them by injecting a temporary rename
operation. Our approach also works for bi-directional synchronization, but requires minor adaptations
to compensate for cross-replica side effects of the move operation. Our evaluation of leading indus-
trial synchronizers confirmed that our approach substantially improves the efficiency and correctness
of synchronization in practice, when several operations accumulate due to long offline periods. De-
tected move operations are retained, and their synchronization is more efficient than re-transmitting
files. Syncpal does not exhibit anomalous behavior found in other academic and industrial solutions,
such as temporary or permanent synchronization loops which cause divergent file system replicas.

RQ3 - Conflicts: What sets of operations applied to two disconnected file systems are conflicting? How
do conflicts depend on the file system model? Can multiple conflicts be combined? What are possible
solutions for resolving individual conflicts and conflict combinations? Which conflicts are relevant in
practice? How can conflicts be explained to the user?

Conflicts between operations depend on the specific operations offered by the file system model. Using
operation precondition analysis we found ten different conflicts types for our internal file system model.
We discovered that the lower a file system model’s complexity, the fewer conflict types exist. We designed
and applied a four-step framework that derives how to resolve conflicts. It allows to build a coherent and
reflected set of conflict resolution steps, superior to the arbitrary resolution steps we found in related
academic works. We designed an iterative conflict resolution approach which solves one conflict at a
time, manipulating the operation on the losing (rather than the winning) replica. This avoids negative
side effects of the resolution on other conflicts which we observed in industrial synchronizers and keeps
the implementation of resolving each individual conflict simple. Instead of limiting Syncpal to one spe-
cific resolution approach we designed and implemented several criteria for selecting the winner or loser
replica. We are also the first in academia to discuss conflict combinations where multiple conflicts affect
a specific object. To deal with such situations we extended our iterative resolution approach to first sort
conflicts according to their type. We built an optimal sort order that maximizes the preservation of the
users’ intentions by analyzing all possible resolution orders for different conflict type combinations.

We found that Edit-Edit and Create-Create conflicts were most relevant in practice for our test-users.
These conflicts were predominantly produced a single application, WSCAD, but not due to offline work,
but by WSCAD which delays committing the user’s work to files in parallel online work. We designed a
tabular log that explains the conflicts and their resolution to the user in a graphical user interface. While
leading industrial synchronizers provide little or no conflict-related information our conflict handling
and their visualization improves the conflict recovery process for end-users.

9.2 Limitations

We start with presenting two major limitation that apply to state-based file synchronizers in general,
followed by providing limitations specific to Syncpal.

The first limitation is the performance hit already encountered during the update detection stage. Mem-
ory and execution times depend on the number of objects n. Regardless how well an implementation
is optimized, a user might want to synchronize a directory that has too many objects for the implemen-
tation to handle. To overcome this limitation, users either have to cooperate and synchronize only a
sub-tree of the file system, or concepts such as bubbling modification timestamps [LKT05] can be used,
which allow to identify the specific sub-trees that changed since the last synchronization, so that update
detection can be limited to those sub-trees. The second inherent limitation is that files are black-boxes

1For instance, the createdir operation of a parent directory needs to precede the creation of its children.
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that make it impossible for the synchronizer to merge conflicting edit operations. However, even if the
synchronizer understood the data model of a file, automatic merging would still be undesired because
it is limited to syntactic merging. Ultimately, merging is an AI-complete problem.

The following is a list of Syncpal- or BSync-specific limitations:

• When incompatibilities between two different file systems are found, BSync does not always im-
plement the most user-friendly alternative to resolve them. For instance, when BSync detects
objects with more than one link, it stops and asks the user to delete all but one, instead of adding
links an ignore list.

• Replicas synchronized by Syncpal may not be arranged in cyclic configurations. For instance,
given replicas X ,Y , Z we may synchronize X ↔ Y and Y ↔ Z . Thus X ↔ Z implicitly holds, by
transitivity. However, we may not synchronize X ↔ Z explicitly. This may cause non-conflicting
situations to be detected as real conflicts, because operations detected in X may reach Z several
times, out of order. To overcome this limitation, Syncpal would need to keep a history of opera-
tions, to be able to identify out-of-order operations. We ignore this limitation, because not only
would a solution incur additional time and space complexity, but most synchronization config-
urations (in practice) are set up using a client-server star topology, where this problem does not
occur.

• Because Syncpal cannot lock file systems for exclusive access, there is a chance that concurrent
file system modifications made by the user invalidate operations executed by Syncpal. We imple-
mented some checks to minimize this chance, but they cannot entirely eliminate it.

• When a user edits and moves/renames a file while being offline, and the edit operation changes
the file’s ID (e.g. to safely replace it), Syncpal’s state-based update detection incorrectly detects
the two operations as delete + create operation.

9.3 Future work

Discussions with our users revealed several use-cases where synchronization needs to be limited to a
sub-set of objects. For instance, when a user has only read-only permissions to one of the replicas,
the synchronization direction should be uni-directional. This requires major adaptations to Syncpal,
which is inherently built with bi-directional synchronization in mind. Users also requested the ability
to save space, by limiting the synchronization to smaller files or directories. This could be realized by
implementing an ignore list feature. An even better approach is the use of placeholder files, where all files
and directories are visible on the user’s local disk, but files are empty placeholders that are downloaded
(and kept in sync) only on-demand. This approach has also been implemented by various industrial file
synchronizers2. The ignore list is still needed for limitations that cannot be handled by placeholder files,
such as ignoring extra links on file systems that support only one link per file, or ignoring files whose
names are reserved.

Another requested feature was to improve control over the synchronization process such that it is no
longer fully automatic. A user may not trust a fully automatic synchronizer [How93], or the connection
to the server might be metered. This can be addressed with a user-controlled synchronization mode
that is semi-automatic. It holds off from automatically synchronizing until some condition is met. For
instance, the user might set a pause interval during which synchronization is completely stopped, or
define that update detection stays active but synchronization only starts after the file system’s state was
quiescent for at least five minutes. Syncpal might also ask the user for confirmation based on a set of
rules, e.g. to confirm the synchronization of delete operations.

A lot of future work is left to improve conflict handling, such as implementing additional user-proposed
or cascaded criteria to choose the conflict winner, or retroactively applying different conflict resolutions

2See e.g. Microsoft OneDrive’s Files On-Demand feature, Google’s Drive File Stream application, or Dropbox’s Smart Sync
feature.
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using learning techniques. We also plan to investigate approaches that avoid conflicts to begin with.
This can be achieved by providing better awareness about concurrent user activity, e.g. a warning if an-
other user opened the same file(s) as we did. Pessimistic concurrency control, such as locks, is another
alternative. Integrating BSync into the operating system’s file manager would allow to use overlay icons
to convey status information and a file’s lock state and offer custom actions (made available in the con-
text menu), such as the ability to lock a file. Any changes affecting the user interface should be evaluated
with users, to complement the rather technical evaluations we performed in this work.

Finally, some users were dissatisfied with BSync’s performance during propagation. Propagation was
particularly slow when transferring many small files, or transferring a large file where only small portions
changed. The performance can be improved significantly by implementing client capabilities [BDM15]
such as chunking, delta encoding and bundling. We note that this requires changes to both the client
and server replicas, where changing the latter might not be possible. As work-around users suggested
the ability to prioritize specific files or directories such that they are transferred first.

9.4 Closing words

Optimistic replication has many advantages, most notably improved availability, which enables users to
work offline. State-based file synchronizers such as Syncpal are universally applicable, because they al-
low to replicate the state of any third-party application. However, the synchronization granularity stops
at the file level, ignoring the data model of the third-party application that creates those files. There
are a few tailored applications whose synchronization is aware of the data model, but they require the
application’s author to integrate the synchronization process natively into the software. To simplify this
process several frameworks have emerged that make integration of data synchronization techniques
such as Operational Transformation and CRDTs easier. They range from replicated databases such as
Couchbase Lite or CouchDB3, to web frameworks like Y.js4 that run in the browser, to SDKs for mobile
apps5. Mobile apps are an excellent use-case for replication to mitigate negative effects of intermittently
losing connectivity due to unreliable cellular networks. However, integrating optimistic replication is in-
herently difficult. The application’s data model and its operations may be very elaborate, which in turn
requires complicated conflict handling. Many of these applications that integrated data synchroniza-
tion, such as Google Docs, are known to misbehave under certain conditions and result in a divergent
state [BMP17]. Having to transform and store the data model in a replicated database requires addi-
tional effort. Due to the increased complexity developers often shy away from using replication and
synchronization. Consequently, file-based applications, which ignore these concepts, are here to stay,
and file synchronizers will continue to play an important role in users’ lives. As we have shown, the
synchronizer’s lacking ability to deal with the application’s data model can be mitigated with the help
of usability tweaks, like providing helpful awareness and intelligent conflict handling. Our suggestions
are an important first step towards a better user experience for file synchronizers. By sparing users the
work and frustration to find and fix synchronization errors, our work avoids cost-intensive iterations in
cooperation processes for both academia and industry.

3See https://www.couchbase.com/products/lite and http://couchdb.apache.org/, retrieved July 21, 2019.
4See http://y-js.org/, retrieved July 21, 2019.
5See e.g. https://aerogear.org/services/data-sync/, http://www.ensembles.io/, https://firebase.google.

com/, or https://realm.io/. Retrieved July 21, 2019.

https://www.couchbase.com/products/lite
http://couchdb.apache.org/
http://y-js.org/
https://aerogear.org/services/data-sync/
http://www.ensembles.io/
https://firebase.google.com/
https://firebase.google.com/
https://realm.io/
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Appendix A

Appendix

A.1 File system meta-data handling

A.1.1 System-generated meta-data

Meta-data is data that provides further information about objects. Conceptually, each object has a key-
value store attached to it, representing its meta-data. Meta-data is not stored as part of the object, but
at a separate location. Each file system examined in section 3.1 provides a different set of meta-data,
where some values are managed (i.e. changed) only by the system, and some can be altered by the user.
The following table gives an overview which system-generated meta-data can be retrieved from each file
system.
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Windows macOS WebDAV1 BSCW Dropbox

Device id X X X X X

Object id
X

(file ID)
X

(inode)
X

X
(oid)

X
(id)

Type X X
X

(Resource
type)

X
(Resource
type and

class,
indicates e.g.
calendar or
other types)

X

Create /
last-modified
timestamps

X X X X X2

File size X X X X X
Read-only
attribute

X X X X X

Hidden
attribute

X X X X X

Other
attributes or

meta-data

archived,
compressed,
encrypted,

omit content
search

indexing,
system file,
temporary
file, others
[Mic18a]

archived,
nodump,
opaque,
append
[App06]

Content-
type3,
ETag4

MD5
checksum
(for files),

various
others, such
as owner’s

username, or
event history

SHA-256
checksum,

revision
(unique

string for a
specific file,

used to
detect

changes)

Row hints:

• Device id: unique identifier of the volume on which an object resides

• Object id: unique identifier of an object itself. When the identifier has a special name in the
context of the file system, it is mentioned in parentheses.

• Type: indicates whether the object is a file, directory, or of another type (e.g. symbolic link)

• Attributes: a bitmask of flags. Some of the flags can be changed by the user and user-level appli-
cations, others are managed by the file system

– Read-only / immutable: when set, applications cannot alter the content of a file

– Hidden / invisible: indicates to file managers to hide the file from the user

A.1.2 Writing arbitrary meta-data

Aside from reading system-generated meta-data, most storage systems support one or more ways to
write arbitrary, user-defined meta-data. The following table summarizes this capability:

1See section 15 of RFC 4918 for more details. Meta-data enforced by the server is referred to as live properties in the RFC.
2Separate last modified server + client timestamp.
3HTTPs Content-Type header which contains the MIME type, e.g. application/json
4Entity tag, contains arbitrary content used to determine whether the content of a file changed.
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Windows: X
Extended Attributes (EA)5: Attribute data is stored in the master file table (MFT),
values are limited to 64 KB in length, per entry.
Alternate Data Streams (ADS) [Mic06]: ADS allows to attach additional text files
(name and content) of arbitrary length to an existing file (of arbitrary type).

macOS: X
xattr [App10]: xattr allows to set key-value pairs. Values can be text or binary data.
Resource forks6: Similar to ADS on Windows, macOS allows to store alternative
data streams for a file. The main content is the data fork, whereas additional
(named) streams are resource forks.

WebDAV: X Using the PROPPATCH command (see section 9.2 of [Dus07]), most servers
support setting arbitrary meta-data (referred to as dead properties) for any
resource in XML format.

BSCW: X Via WebDAV’s PROPPATCH.
Dropbox: X Writing arbitrary meta-data is not supported. Note: the documentation mentions

an alpha-stage properties API, which allows to define a property template (which
likely is the property’s schema) and then use it to set, update, or remove instances
of the template. However, there is no API function to add new templates.

A.1.3 Authorization

Authorization limits actions an authenticated7 user is allowed to perform on file system objects. We
assume that a user is always authenticated by some means provided by the file system API.

5See https://github.com/jschicht/EaTools for a summary of the mechanism, or e.g. https://msdn.microsoft.
com/en-us/library/windows/hardware/ff625895 for a concrete API function. Retrieved July 21, 2019.

6See http://xahlee.info/UnixResource_dir/macosx.html, retrieved July 21, 2019.
7Authentication refers to unique identifying a user, whereas authorization defines what a specific, identified user is allowed

to do.

https://github.com/jschicht/EaTools
https://msdn.microsoft.com/en-us/library/windows/hardware/ff625895
https://msdn.microsoft.com/en-us/library/windows/hardware/ff625895
http://xahlee.info/UnixResource_dir/macosx.html
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Windows Access control list (ACL) mechanism that allows to selectively grant or deny specific users or

groups (identified by the security identifier, or SID) a set of permissions8. When setting new

permissions for a directory, one can define whether these are inherited to sub-elements.

macOS
UNIX permissions: a mechanism available to UNIX systems and its descendant such as
macOS. The OS has a set of users and groups. Users can be in one or more groups. Each
object in the file system is assigned a specific owner (user) and group. Each object has three
permission masks assigned to it, one that applies to the assigned owner, one to the assigned
group and one to everyone else. The permissions that can be set in a permission mask are
Read, Write and Execute.

• For files, the meaning of each permission is self-explanatory. Execute means that the
file is an executable file and the caller is allowed to execute its binary code or script
content. If the Write permission is not set, this means the content of the file cannot be
changed, but the file can still be moved or deleted!

• For directories Read means that the user is able to list the contents of the dir, Write

means that the user may move the dir or create, move/rename or delete immediate

children inside of it. Execute allows to change to the directory and list its contents.

ACL: macOS has an ACL mechanism that is similar to the one of Windows. See the note below

regarding ACLs vs. UNIX permissions.

WebDAV WebDAV doesn’t specify how authentication and authorization has to be implemented.

WebDAV is typically offered as a machine-to-machine interface by a backend system that

then actually implements user and permission management, such as BSCW or owncloud.

Since WebDAV is implemented over HTTP, clients typically authenticate themselves using the

WWW-Authenticate header to transmit their credentials (see RFC 2617) or by sending session

cookies. Authorization mechanisms are then left to the implementation. However, to allow

only specific users to modify resources, section 6.2 of [Dus07] advises to use shared locks.

BSCW BSCW offers an elaborate user and permission management system via the workspaces and

roles concepts. A directory becomes a workspace if there is at least one user assigned to it via

a role. A role is a set of permissions. There are a few pre-installed roles, such as “Member”

(has most permissions, like read and write) or “Restricted member” (has only read

permissions) to choose from, and server administrators can modify these roles or create new

ones. Roles and their permissions are automatically inherited to sub-objects, unless a

sub-object has another role assigned to it for the authenticated user.

Dropbox While the user always has full permissions for objects in her own directories, Dropbox offers a

“can view” permission when sharing a folder with another user.

ACLs are generally more powerful than UNIX permissions because permissions can be granted or de-
nied for multiple specific users or groups in different ways, whereas permissions can only be set for
the owning user and one specific group. While ACLs under Windows and macOS are similar, their im-
plementations do differ in detail. The available permissions are slightly different, and on macOS ACL
entries cannot automatically be inherited for new objects created within a dir which already has an ACL
entry.

8The available permissionsre are can be found at https://technet.microsoft.com/de-de/library/
cc753525(v=ws.10).aspx, retrieved July 21, 2019.

https://technet.microsoft.com/de-de/library/cc753525(v=ws.10).aspx
https://technet.microsoft.com/de-de/library/cc753525(v=ws.10).aspx
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A.2 Alternative file system definitions

A.2.1 File system definition for H-All

This section formally defines the file system H-All from table 2.1 on page 16. The main differences to the
NH-MD file system we formally defined in section 3.2 are:

• Directories are objects that store a list of (I D,name) tuples,

• Files can have one or more incoming edges in the arborescence,

• The name is no longer an attribute of the node but of the edge,

• There are two new operations, l i nk and unli nk, that add or remove links (edges) between an
existing directory and file. unli nk replaces del ete f i le or del etedi r .

We refer to table A.1 for redefined basic functions.

Function Description

l i st (i ) Returns the set of ( j ,ω) tuples of the immediate child nodes for the directory node with ID i .

j ∈ I are the IDs of the child nodes, ω ∈Σ+ are the corresponding names, with Σ+ =Σ∗\{ε}.

i d(ipar ent ,ω) Helper function used in i d(path). Returns i if (i ,ω) ∈ l i st (i par ent ), error otherwise.

name(i ) No longer defined.

path(i ) No longer defined.

paths(i ) Performs a tree search and returns the set of paths
{

pathk
}n

k=1 s.t. ∀k : i d(pathk ) = i .

basename(path) Returns the last list element of split(path), e.g. basename(’/home/user/foo’) = ’foo’. Formally,
if we can split path =π/ω s.t. π= par ent (path) and ω= basename(path) then the
following holds:

path =π/ω ⇐⇒ ∃i ,u ∈ I ,ω ∈Σ+ : (i ,ω) ∈ l i st (u)∧ {π} = paths(u)

Table A.1: Functions for working with file system IDs (H-All)

All invariants from section 3.2.1 have to be adapted, except for eq. 3.6 which remains the same. The
adapted invariants are as follows:

∀i , j ∈ I ,ω ∈Σ+ : (i ,ω) ∈ l i st ( j ) =⇒ t y pe( j ) = di r (A.1)

∀i ∈ I ,ω ∈Σ+ : (i ,ω) ∉ l i st (i ) (A.2)

∀i , j ,k ∈ I ,ω,ν ∈Σ+ : j 6= k ∧ t y pe(i ) = di r ∧ (i ,ω) ∈ l i st ( j ) =⇒ (i ,ν) ∉ l i st (k) (A.3)

∀i ∈ I ,ω ∈Σ+ : (ir oot ,ω) ∉ l i st (i ) (A.4)

∀i ∈ I \ {ir oot } : t y pe(i ) 6= er r or ⇐⇒ ancestor (ir oot , i ) (A.5)

∀i , j ,k ∈ I ,ω,ν ∈Σ+ : j 6= k ∧ ( j ,ω) ∈ l i st (i )∧ (k,ν) ∈ l i st (i ) =⇒ ω 6= ν (A.6)

With an adapted version of ancestor (i , j ):

ancestor (i , j ) =


tr ue ∃ω ∈Σ+ : ( j ,ω) ∈ l i st (i )

tr ue ∃ω ∈Σ+,k ∈ I : (k,ω) ∈ l i st (i )∧ancestor (k, j )

f al se otherwise

The list of operations is shown in table A.2.
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Operation Description, pre- and post-conditions

l i nk(path,new path),

l i nk(i ,u,name)

For the existing file with ID i = i d(path) this operation creates a new link with
name ω= basename(new path), located in the parent directory node with ID
u = i d(par ent (new path)).
Precondition:
t y pe(i ) = f i le ∧ancestor (ir oot ,u)∧ t y pe(u) = di r ∧ i d(u,ω) = er r or

Postcondition: (i ,ω) ∈ l i st (u)

unli nk(path),

unli nk(i ,u,name)

Removes the link to the node with ID i and name ω= basename(path) from
parent directory node with ID u = i d(par ent (path)). If t y pe(i ) = di r , the directory
must be empty!
Precondition: i d(path) 6= er r or ∧ (i ,ω) ∈ l i st (u)
∧(t y pe(i ) = f i le ∨ [t y pe(i ) = di r ∧ l i st (i ) = {}])

Postcondition: (i ,ω) ∉ l i st (u)∧ i d(path) = er r or

cr eatedi r (path),

cr eatedi r (i ,u,name)

See table 3.6

cr eate f i l e(path),

cr eate f i l e(i ,u,name)

See table 3.6

move(sour ce,dest ),

move(i ,u, v,name)

Moves a directory node with ID i = i d(sour ce). This may change the parent from ID
u = i d(par ent (sour ce)) to v = i d(par ent (dest )) when moving it to a different
directory, or the name from ω= basename(sour ce) to ν= basename(dest ), or
both.
Precondition: t y pe(u) = di r ∧ (i ,ω) ∈ l i st (u)∧ t y pe(v) = di r
∧t y pe(i ) = di r ∧ i d(dest ) = er r or ∧¬ancestor (i , v)
Explanation: ¬ancestor (i , v) ensures that the user cannot move a directory to a
destination dir below it, e.g. sour ce = ’/A’ cannot be moved to dest = ’/A/x’.

Postcondition: i d(sour ce) = er r or ∧ i d(dest ) = i

edi t (path,op),

edi t (i ,op)

See table 3.6

Table A.2: File system operations

A.2.2 Conflict definitions for H-All

The following list specifies all conflicts that apply to this file system definition. Only those aspects are ex-
plained which deviate from section 5.5 describing the conflicts of the NH-MD file system. For simplicity,
we assume that object IDs are equal on both replicas, and we ignore optimizations such as summa-
rizing a deletefile and a createfile operation to edit or considering two createdir operations as pseudo-
conflicting.

• Create-Create: See NH-MD.

– Definition: cr eateX (iX ,uX ,nameX ) ⊗ cr eateY (iY ,uY ,nameY ) = [uX = uY ] ∧ [nameX =
nameY ]∧ [t y peX (iX ) = di r ∨ t y peY (iY ) = di r ∨ contentX (iX ) 6= contentY (iY )]

• Link-Link:

– Description: On both replicas a new link to an already synchronized file is created with the
same name under the same parent directory.

– Associated pattern: Name clash conflict

– Definition: l i nkX (iX ,uX ,nameX ) ⊗ l i nkY (iY ,uY ,nameY ) = (iX 6= iY ) ∧ (uX = uY ) ∧
(nameX = nameY )

– Violated precondition: i d(u,ω) = er r or

– Resolution: See name clash conflict. For any name clash conflict in the H-All file system we
suggest that the loser operation is also chosen based on the amount of work of the opera-
tions. Exemplary, the increasing order may be: unlink, link, move, create/edit.
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• Link-Unlink:

– Description: On one replica all links of a synchronized file were removed (s.t. the file is
deleted), on the other replica an additional link is created for the same file.

– Associated pattern: Delete conflict

– Definition: l i nkX (iX ,uX ,nameX )⊗unli nkY (iY ,uY ,nameY ) = (iX = iY )∧pathsY (iY ) =;
– Violated precondition: t y pe(i ) = f i le

– Resolution: See delete conflict, where occurrences of edit or move are to be replaced with
link.

• Create-Link:

– Description: On one replica a new file or dir with name name is created in parent dir v, on
the other replica a new link for a synchronized file is created with name name in v.

– Associated pattern: Name clash conflict

– Definition: cr eateX (iX ,uX ,nameX ) ⊗ l i nkY (iY ,uY ,nameY ) = (iX 6= iY ) ∧ (uX = uY ) ∧
(nameX = nameY ) with cr eate := cr eatedi r ∨ cr eate f i l e

– Violated precondition: i d(u,ω) = er r or

– Resolution: See name clash conflict

• Move-Link:

– Description: On one replica a directory is moved to directory v with new name name, on the
other replica a new link for a synchronized file is created with name name in v.

– Associated pattern: Name clash conflict

– Definition: moveX (iX ,uX , vX ,nameX ) ⊗ l i nkY (iY ,uY ,nameY ) = (iX 6= iY ) ∧ (vX = uY ) ∧
(nameX = nameY )

– Violated precondition: i d(u,ω) = er r or

– Resolution: See name clash conflict

• Edit-Edit: See NH-MD.

• Move-Create: See NH-MD. Only affects moved directories.

• Edit-Delete:

– Description: On one replica the content of an already synchronized file was changed, on the
other replica all links to that file were removed.

– Definition: edi tX (iX ,opX )⊗unli nkY (iY ,uY ,nameY ) = (iX = iY )∧pathsY (iY ) =;
• Move-Delete:

– Description: On one replica a directory was moved, on the other replica the only existing
link to that directory was removed.

– Definition: moveX (iX ,uX , vX ,nameX )⊗unli nkY (iY ,uY ,nameY ) = (iX = iY )

• Move-Move (Source): See NH-MD. Only affects moved directories.

• Move-Move (Dest): See NH-MD. Only affects moved directories.

• Move-ParentDelete:

– Description: On one replica a dir was deleted, on the other replica an object was moved to
be an immediate child of the corresponding dir.
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– Definition: moveX (iX ,uX , vX ,nameX ) ⊗ unli nkY (iY ,uY ,nameY ) = pathsY (iX ) 6= ; ∧
(vX = iY )

• Create-ParentDelete:

– Description: On one replica the only existing link to a dir d was removed, on the other replica
a file or directory was created as an immediate children of d .

– Definition: cr eateX (iX ,uX ,nameX )⊗unli nkY (iY ,uY ,nameY ) = (uX = iY ) with cr eate :=
cr eatedi r ∨ cr eate f i l e

• Move-Move (Cycle): See NH-MD. Only affects moved directories.

A.2.3 File system definition for NED-All

The NED-All file system consists of a non-hierarchical set of files where each file has a ID i ∈ I , a path
p ∈ P , byte-content b ∈ B and the lastmodified meta-datum l ∈ L. I is the set of unique IDs, P is the set of
valid paths, B is the set of arbitrary byte sequences and L is the set of all valid lastmodified meta-datum
values (e.g. N). The file system F S is thus a set of (i , p,b, l ) tuples. Directories are not part of the model
and can be considered to be just a visualization computed at run-time by a file manager that helps the
user to locate files. We define the following helper predicates and functions:

i ∈ F S =
{

tr ue ∃p ∈ P,b ∈ B , l ∈ L : (i , p,b, l ) ∈ F S

f al se otherwise

p ∈ F S =
{

tr ue ∃i ∈ I ,b ∈ B , l ∈ L : (i , p,b, l ) ∈ F S

f al se otherwise

path(i ) =
{

p ∃p ∈ P,b ∈ B , l ∈ L : (i , p,b, l ) ∈ F S

er r or otherwise

i d(path) =
{

i ∃i ∈ I ,b ∈ B , l ∈ L : (i , path,b, l ) ∈ F S

er r or otherwise

l astmodi f i ed(i ) =
{

l ∃p ∈ P,b ∈ B , l ∈ L : (i , p,b, l ) ∈ F S

er r or otherwise

The following two invariants hold for NED-All:

∀i , j ∈ I : i ∈ F S ∧ j ∈ F S =⇒ [(i = j ∧path(i ) = path( j ))∨ (i 6= j ∧path(i ) 6= path( j )] (A.7)

∀i ∈ I ,r ∈ R @ j ∈ I : i ∈ F S ∧ j ∈ F S ∧ i 6= j ∧path( j ) = path(i )/r (A.8)

with R being the set of relative paths (i.e., paths that do not start with ’/’), such as ’file.ext’ or ’somedir/-
file.ext’. The first invariant expresses that every file must have a different path and ID, while the second
one illustrates that if a file exists in F S with path p, there cannot be another file with a path that starts
with p but has an non-empty suffix r , because that would mean that p is both a directory and file path
at the same time.

The list of operations is shown in table A.3.
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Operation Description, pre- and post-conditions

cr eate f i l e(path) Creates a file at path, generating its ID i and lastmodified meta-datum l . Its
byte-content b =; is empty.
Precondition: i ∉ F S ∧ [∀r ∈ R @q ∈ P : q ∈ F S ∧ (q = path/r ∨path = q/r )]

Postcondition: (i , path,b, l ) ∈ F S

move f i le(sour ce,dest ),

move f i le(i ,dest )

Moves the file with ID i = i d(sour ce) to destination path dest
Precondition: i 6= er r or ∧dest ∉ F S
∧[∀r ∈ R @q ∈ P : q ∈ F S ∧ (q = dest/r ∨dest = q/r )]

Postcondition: i d(sour ce) = er r or ∧ i d(dest ) = i

del ete f i le(path),

del ete f i le(i )

Deletes the file with ID i = i d(path)
Precondition: i 6= er r or

Postcondition: path ∉ F S

edi t (path,op),

edi t (i ,op)

Opens a handle for the file with ID i = i d(path) for writing, performs the
operation op (e.g. adding, removing or changing bytes at specific positions
within the file), then closes the handle again.
Precondition: i 6= er r or . Let lpr e = l astmodi f i ed(i )

Postcondition: i d(path) 6= er r or ∧ l astmodi f i ed(i ) 6= lpr e

Table A.3: File system operations

A.2.4 Conflict definitions for NED-All

The following list provides the formal specification of all conflicts that apply to the NED-All file system
definition. Descriptions, associated pattern, resolution and other aspects are not repeated, see sec-
tion 5.5.

• Create-Create: cr eate f i l eX (pathX ) ⊗ cr eate f i l eY (pathY ) = (pathX = pathY ) ∧
[contentX (pathX ) 6= contentY (pathY )]

• Edit-Edit: See NH-MD.

• Move-Create: cr eate f i l eX (path)⊗move f i leY (i ,dest ) = (path = dest )

• Edit-Delete: edi tX (iX ,opX )⊗del ete f i leY (iY ) = (iX = iY )

• Move-Delete: move f i leX (iX ,destX )⊗del ete f i leY (iY ) = (iX = iY )

• Move-Move (Source): move f i leX (iX ,destX ) ⊗ move f i leY (iY ,destY ) = (iX = iY ) ∧ (destX 6=
destY )

• Move-Move (Dest): move f i leX (iX ,destX )⊗move f i leY (iY ,destY ) = (destX = destY )

• Node-typing:

– Description: On replica X the user creates or moves a file to path p, on replica Y the user
creates/moves a file to some path q where q = p/... . Consequently, p points to a file on X
but to a directory on Y .

– Associated pattern: Indirect conflict

– Definition: cr eateor moveX (pathX ) ⊗ cr eateor moveY (pathY ) = ∃r ∈ R : (pathX =
pathY /r ) ∨ (pathY = pathX /r ) with cr eateor move(path) := cr eate f i l e(path) ∨
move f i le(i , path)

– Violated precondition: ∀r ∈ R @q ∈ P : q ∈ F S ∧ (q = dest/r ∨dest = q/r )

– Resolution: One of the paths has to be automatically renamed. We suggest to rename the
shorter of the two paths, because this gives higher priority (and therefore stability) to direc-
tory paths.
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A.3 Proof for impossible move operation cycles

This section addresses pure move operation cycles (see section 4.2.7.2 on page 57). It proves that it is im-
possible to have cycles that exclusively consist of move operations connected only by order dependency
rule 8.

To reiterate, rule 8 states that a move operation oi affecting directory A has to be executed after another
move operation o j affecting directory B iff in the database snapshot, B is below A, and in the current
snapshot, A is below B.

Formally, let O=compute_ops(db, snapshot), where db and snapshot are taken for replica X at times t1

and t2 respectively. Let Ō be a list created from set O. Then rule 8 formally states the following:

∀oi ,o j ∈ Ō,oi 6= o j : opt y pe(oi ) = move ∧opt y pe(o j ) = move ∧ i > j

⇐⇒ ancestor (db, i d(oi ), i d(o j ))∧ancestor (snapshot , i d(o j ), i d(oi )) (A.9)

Figure A.1 illustrates an example, where o j affects path ’a/b’ (moved to ’b’) and oi affects path ’a’ (moved
to ’b/a’), therefore, according to equation A.9, Ō = [

o j ,oi
]

must hold.

a

b

X

b

a

X

1.

2.

move('a', 'b/a')move('a/b', 'b')

8

8

Figure A.1: Move operation cycle example

Theorem 9. It is impossible to build a cycle C̄ = [ok ]n
k=1 which is a subset of Ō, s.t. ∀ok ∈ C̄ : ok ∈ Ō ∧

t y pe(ok ) = move where equation A.9 is true for each pair of adjacent operations (o j ,oi ) ∈ C̄ with

i =
{

j +1 if i < n

1 otherwise, i.e., j = n

Informally: it is impossible to have move operation cycles whose move operations are connected only
by rule 8.

Proof. by contradiction: suppose you built C̄ = [o1, ...,on] s.t. it contains n move operations where equa-
tion A.9 holds for every pair (o1,o2), ..., (on−1,on). At this point C̄ is still a chain, not a cycle. Since the
ancestor () predicate is transitive9, and since equation A.9 holds for these pairs (as stated above) then

∀k ∈ [2, ...,n] : ancestor (db, i d(ok ), i d(o1)) (A.10)

must also hold. To turn C̄ into a closed cycle, equation A.9 would also have to hold for
one specific r s.t. (on ,or ),r ∈ [1, ...,n −1], i.e., ancestor (db, i d(or ), i d(on)) would have to hold.
This contradicts with equation A.10, because it’s impossible for ancestor (db, i d(or ), i d(on)) and
ancestor (db, i d(on), i d(ok=r )) to be true at the same time.

9ancestor (i dX , i dY )∧ancestor (i dY , i dc ) =⇒ ancestor (i dX , i dc )
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A.4 Operation reordering methods

Here we present algorithms 5-12. Each function detects and reorders incorrectly ordered operations.

1 def fix_delete_before_move ( ops , sorted_ops , db , snapshot ) :
2 foreach op in ops where optype (op) == delete :
3 foreach move_op in ops where optype (move_op) == move:
4 delete_parent_id = id (db , parent ( path (op) ) )
5 ( source , dest ) = path (move_op)
6 move_dest_parent_id = id ( snapshot , parent ( dest ) )
7 i f delete_parent_id == move_dest_parent_id :
8 i f basename( path (op) ) == basename( dest ) :
9 i f sorted_ops . index (op) > sorted_ops . index (move_op) :

10 move_first_after_second (move_op , op , sorted_ops )

Algorithmus 5 : Pseudo-code for fix_delete_before_move()

1 def fix_move_before_create ( ops , sorted_ops , db , snapshot ) :
2 foreach op in ops where optype (op) == move:
3 foreach create_op in ops where optype ( create_op ) == create :
4 ( source , dest ) = path (op)
5 source_parent_id = id (db , parent ( source ) )
6 create_parent_id = id ( snapshot , parent ( path ( create_op ) ) )
7 i f source_parent_id == create_parent_id :
8 i f basename( source ) == basename( path ( create_op ) ) :
9 i f sorted_ops . index (op) > sorted_ops . index ( create_op ) :

10 move_first_after_second ( create_op , op , sorted_ops )

Algorithmus 6 : Pseudo-code for fix_move_before_create()

1 def fix_move_before_delete ( ops , sorted_ops , db , snapshot ) :
2 foreach op in ops where optype (op) == delete and type (op) == dir :
3 foreach move_op in ops where optype (move_op) == move:
4 ( source , dest ) = path (move_op)
5 delete_dir_path = path (op)
6 i f source . s t a r t s w i t h ( delete_dir_path + ’ / ’ ) :
7 i f sorted_ops . index (move_op) > sorted_ops . index (op) :
8 move_first_after_second (op , move_op, sorted_ops )

Algorithmus 7 : Pseudo-code for fix_move_before_delete()

1 def fix_create_before_move ( ops , sorted_ops , db , snapshot ) :
2 foreach op in ops where optype (op) == create and type (op) == dir :
3 foreach move_op in ops where optype (move_op) == move:
4 ( source , dest ) = path (move_op)
5 move_dest_parent_id = id ( snapshot , parent ( dest ) )
6 i f move_dest_parent_id == id (op) :
7 i f sorted_ops . index (op) > sorted_ops . index (move_op) :
8 move_first_after_second (move_op , op , sorted_ops )

Algorithmus 8 : Pseudo-code for fix_create_before_move()
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1 def f ix_delete_before_create ( ops , sorted_ops , db , snapshot ) :
2 foreach op in ops where optype (op) == delete :
3 foreach create_op in ops where optype ( create_op ) == create :
4 delete_parent_id = id (db , parent ( path (op) ) )
5 create_parent_id = id ( snapshot , parent ( path ( create_op ) ) )
6 i f delete_parent_id == create_parent_id :
7 i f basename( path (op) ) == basename( path ( create_op ) ) :
8 i f sorted_ops . index (op) > sorted_ops . index ( create_op ) :
9 move_first_after_second ( create_op , op , sorted_ops )

Algorithmus 9 : Pseudo-code for fix_delete_before_create()

1 def fix_move_before_move_occupied ( ops , sorted_ops , db , snapshot ) :
2 foreach op in ops where optype (op) == move:
3 foreach move_op in ops where optype (move_op) == move:
4 i f op == move_op :
5 continue
6 ( source , dest ) = path (move_op)
7 source_parent_id = id (db , parent ( source ) )
8 ( other_source , other_dest ) = path (move_op)
9 move_dest_parent_id = id ( snapshot , parent ( other_dest ) )

10 i f source_parent_id == move_dest_parent_id :
11 i f basename( source ) == basename( other_dest ) :
12 i f sorted_ops . index (op) > sorted_ops . index (move_op) :
13 move_first_after_second (move_op , op , sorted_ops )

Algorithmus 10 : Pseudo-code for fix_move_before_move_occupied()

1 def f ix_create_before_create ( ops , sorted_ops , db , snapshot ) :
2 foreach op in ops where optype (op) == create :
3 foreach cd_op in ops where optype ( cd_op ) == create and type ( cd_op ) ==

dir :
4 i f op == cd_op :
5 continue
6 i f parent ( path (op) ) == path ( cd_op ) :
7 i f sorted_ops . index ( cd_op ) > sorted_ops . index (op) :
8 move_first_after_second (op , cd_op , sorted_ops )

Algorithmus 11 : Pseudo-code for fix_create_before_create()
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1 def fix_move_before_move_parent_child_flip ( ops , sorted_ops , db , snapshot ) :
2 foreach x_op in ops where optype ( x_op ) == move and type ( x_op ) == dir :
3 foreach y_op in ops where optype ( y_op ) == move and type ( y_op ) == dir :
4 i f x_op == y_op :
5 continue
6 ( x_source , x_dest ) = path ( x_op )
7 ( y_source , y_dest ) = path ( y_op )
8 is_x_below_y = x_dest . s t a r t s w i t h ( y_dest + ’ / ’ )
9 i f not is_x_below_y :

10 continue
11 is_y_below_x_in_db = y_source . s t a r t s w i t h ( x_source + ’ / ’ )
12 i f is_y_below_x_in_db :
13 i f sorted_ops . index ( y_op ) > sorted_ops . index ( x_op ) :
14 move_first_after_second ( x_op , y_op , sorted_ops )

Algorithmus 12 : Pseudo-code for fix_move_before_move_parent_child_flip()
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A.5 Finding conflicts in snapshots

A.5.1 Corresponding object id

The following algorithm of function corresponding_object_id(i, r) which is given an ID i of an
object on replica r, and finds the ID of the corresponding object (should it exist) on the other replica by
using the replica-specific IDs and the closest idb . Ideally, the object with ID i is known in the database.
If it is not, the algorithm finds the closest parent directory known in the database and attempts to find
the corresponding parent, using object names to fill the gaps.

1 Global data : snapshot_x , snapshot_y , db : the current s t a t e of each r e p l i c a and the
database s t a t e

2 Input : i , r : ID and r e p l i c a i d e n t i f i e r for which the ID i s given
3 Output : corresponding ID on the other replica , or error
4
5 i f r i s X :
6 snapshot = snapshot_x
7 snapshot_other = snapshot_y
8 other_replica = Y
9 else :

10 snapshot = snapshot_y
11 snapshot_other = snapshot_x
12 other_replica = X
13
14 id_db = dbid (db , i , r )
15 i f id_db i s error :
16 names = [ ] # i n i t i a l i z e empty l i s t
17 current_path = path ( snapshot , i )
18 # Find parent dir known in the database :
19 while [ current_id_db = dbid (db , id ( snapshot , current_path ) , r ) ] i s error :
20 names += basename( current_path )
21 current_path = parent ( current_path )
22
23 names = reverse (names)
24 # builds s t r i n g of a l l names with ’ / ’ in−between
25 relat ive_traversed_path = ’ / ’ . join (names)
26
27 corresponding_parent_id = id (db , current_id_db , other_replica )
28 corresponding_parent_path = path ( snapshot_other , corresponding_parent_id )
29 i f corresponding_parent_path i s error :
30 return error
31 corresponding_path = corresponding_parent_path + ’ / ’ + relat ive_traversed_path
32 corresponding_id = id ( snapshot_other , corresponding_path ) # may be err or
33 return corresponding_id
34
35 else :
36 other_si te_id = id (db , id_db , other_replica )
37 return other_si te_id

A.5.2 Corresponding object id (direct)

This section presents function cid(i, r), a variant of the above algorithm that requires that the object
for which to find the corresponding object in the other replica is known to the database.

1 Global data : db : the database s t a t e
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2 Input : i , r : ID and r e p l i c a i d e n t i f i e r for which the ID i s given
3 Output : corresponding ID on the other replica , or error
4
5 i f r i s X :
6 other_replica = Y
7 else :
8 other_replica = X
9

10 id_db = dbid (db , i , r )
11 i f id_db i s error :
12 return error
13 other_si te_id = id (db , id_db , other_replica )
14 return other_si te_id
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A.6 Finding conflicts in update trees

A.6.1 Finding conflicts

The following algorithm is given the update tree structures from the local and remote replica and finds
conflicts by iterating over all nodes in a breadth-first approach:

1 Input : local_update_tree , remote_update_tree
2 Output : l i s t of c o n f l i c t objects to be sorted and resolved by the resolver
3
4 c o n f l i c t s = [ ]
5 local_move_dir_nodes = [ ]
6 remote_move_dir_nodes = [ ]
7
8 foreach node in ( local_update_tree + remote_update_tree ) :
9 i f current_node . i s _ d i r and ChangeEvent .Move in current_node . events :

10 i f current_node . side i s l o c a l :
11 local_move_dir_nodes += current_node
12 else :
13 remote_move_dir_nodes += current_node
14
15 i f ChangeEvent . Create in node . events and ConflictType . Create_Create not in node .

confl icts_already_considered :
16 c o n f l i c t s += check_create_create_confl ict (node)
17 i f ChangeEvent . Edit in node . events and ConflictType . Edit_Edit not in node .

confl icts_already_considered :
18 c o n f l i c t s += check_edit_edit_confl ict (node)
19 i f ChangeEvent . Delete in node . events :
20 i f node . i s _ d i r :
21 c o n f l i c t s += check_move_parentdelete_conflict (node)
22 c o n f l i c t s += check_create_parentdelete_conflict (node)
23 c o n f l i c t s += check_move_delete_conflict (node
24 c o n f l i c t s += check_edit_delete_confl ict (node)
25 i f ChangeEvent .Move in node . events
26 c o n f l i c t s += check_move_create_conflict (node
27 i f ConflictType . Move_Move_Dest not in node . confl icts_already_considered :
28 c o n f l i c t s += check_move_move_dest_conflict (node
29 i f ConflictType . Move_Move_Source not in node . confl icts_already_considered
30 c o n f l i c t s += check_move_move_source_conflict (node
31
32 c o n f l i c t s += determine_move_move_cycle_conflicts ( local_move_dir_nodes , remote_move_dir_nodes )

Each Conflict data structure consists of the conflict type, and the local and remote nodes
whose operations are conflicting. The conflicts_already_considered list is maintained for
every node, to avoid that symmetric conflicts, such as Edit-Edit or Move-Move(Source) con-
flicts are detected twice. The function corresponding_node_in_other_tree() is implemented
exactly like corresponding_object_id() in section A.5.1, but is adapted to work on update
trees instead of snapshots. corresponding_node_direct() works like cid() in section A.5.2,
also adapted to work on update tree nodes. The algorithms that find individual conflicts, e.g.
check_create_create_conflict(), are explained in the subsequent subsections.

A.6.2 Create-Create conflict

1 Input : create_node
2 Output : c o n f l i c t ( optional )
3
4 i f f i r s t _ s y n c :
5 corresponding_parent_node = corresponding_node_in_other_tree ( create_node . parent )
6 else :
7 corresponding_parent_node = corresponding_node_direct ( create_node . parent )
8 i f corresponding_parent_node == error :
9 return
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10 child_request = ChildNodeRequest . ReturnOnlyNonDelete
11 corresponding_create_node = corresponding_parent_node . get_child ( create_node .name, child_request )
12
13 i f corresponding_create_node != error and ChangeEvent . Create in corresponding_create_node . events :
14 i f ! is_pseudo_conflict (node) :
15 c o n f l i c t = make_create_create_conflict ( create_node , corresponding_create_node )
16 corresponding_create_node . confl icts_already_considered += ConflictType . Create_Create
17 return c o n f l i c t

Finding Create-Create conflicts is straightforward and shown in the algorithm above. Instead of provid-
ing pseudo-code for is_pseudo_conflict() we refer to the FOL definition in section 5.5.1 on page 80
for more details.

A.6.3 Edit-Edit conflict

1 Input : edit_node
2 Output : c o n f l i c t ( optional )
3
4 corresponding_node = corresponding_node_direct ( edit_node )
5 i f corresponding_node ! = error and ChangeEvent . Edit in corresponding_node . events :
6 i f ! is_pseudo_conflict ( edit_node ) :
7 c o n f l i c t = make_edit_edit_conflict ( edit_node , corresponding_node )
8 corresponding_node . confl icts_already_considered += ConflictType . Edit_Edit
9 return c o n f l i c t

A.6.4 Move-Create

1 Input : move_node
2 Output : c o n f l i c t ( optional )
3
4 move_parent_node = move_node . parent
5 corresponding_parent_node = corresponding_node_direct ( move_parent_node )
6 i f corresponding_parent_node ! = error :
7 child_request = ChildNodeRequest . ReturnOnlyNonDelete
8 potential_create_child_node = corresponding_parent_node . get_child (move_node .name,

child_request )
9 i f potential_create_child_node != error and ChangeEvent . Create in potential_create_child_node

. events :
10 c o n f l i c t = make_move_create_conflict (move_node , potential_create_child_node )
11 return c o n f l i c t

A.6.5 Edit-Delete

1 Input : delete_node
2 Output : c o n f l i c t ( optional )
3
4 i f delete_node . i s _ d i r :
5 return
6
7 corresponding_edit_node = corresponding_node_direct ( delete_node )
8 i f corresponding_edit_node != error and ChangeEvent . Edit in corresponding_edit_node . events :
9 c o n f l i c t = make_edit_edit_conflict ( delete_node , corresponding_edit_node )

10 return c o n f l i c t

A.6.6 Move-Delete

1 Input : delete_node
2 Output : c o n f l i c t ( optional )
3
4 corresponding_move_node = corresponding_node_direct ( delete_node )
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5 i f corresponding_move_node == error or ChangeEvent .Move not in corresponding_move_node . events :
6 return
7
8 c o n f l i c t = make_move_delete_conflict ( delete_node , corresponding_move_node )
9 return c o n f l i c t

A.6.7 Move-ParentDelete

To find Move-ParentDelete conflicts we iterate over all those sub-nodes of the corresponding node of
the deleted dir which have the Move change-event. If at least one such move node exists, a Move-
ParentDelete conflict is found.

1 Input : delete_node ( only directory nodes )
2 Output : c o n f l i c t ( optional )
3
4 corresponding_dir_node = corresponding_node_direct ( delete_node )
5
6 i f corresponding_dir_node != error :
7 i f ChangeEvent . Delete in corresponding_dir_node . events :
8 return
9

10 move_nodes = [ ]
11 foreach sub_node in corresponding_dir_node . children :
12 i f ChangeEvent .Move in sub_node . events :
13 move_nodes += move_node
14
15 i f not move_nodes . empty ( ) :
16 c o n f l i c t = make_move_parentdelete_conflict ( delete_node , move_nodes)
17 return c o n f l i c t

A.6.8 Create-ParentDelete

Finding Create-ParentDelete conflicts works very similar to finding Move-ParentDelete conflicts. In-
stead of iterating over sub-nodes with a Move change-event, we iterate over those with a Create change-
event.

1 Input : delete_node ( only directory nodes )
2 Output : c o n f l i c t ( optional )
3
4 corresponding_dir_node = corresponding_node_direct ( delete_node )
5 i f corresponding_dir_node != error :
6 i f ChangeEvent . Delete in corresponding_dir_node . events :
7 return
8
9 create_nodes = [ ]

10 foreach sub_node in corresponding_dir_node . children :
11 i f ChangeEvent . Create in sub_node . events :
12 create_nodes += sub_node
13
14 i f not create_nodes . empty ( ) :
15 c o n f l i c t = make_create_parentdelete_conflict ( delete_node , create_nodes )
16 return c o n f l i c t

A.6.9 Move-Move (Source)

1 Input : move_node
2 Output : c o n f l i c t ( optional )
3
4 corresponding_move_node = corresponding_node_direct (move_node)
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5 i f ChangeEvent .Move not in corresponding_move_node . events :
6 return
7 i f corresponding_move_node != error :
8 corresponding_move_node . confl icts_already_considered . append( ConflictType . Move_Move_Source)
9 i f move_node .name != corresponding_move_node .name or move_node . parent != corresponding_move_node .

parent :
10 c o n f l i c t = make_move_move_source_conflict (move_node , corresponding_move_node )
11 return c o n f l i c t

A.6.10 Move-Move (Dest)

1 Input : move_node
2 Output : c o n f l i c t ( optional )
3
4 node_parent_in_other_tree = corresponding_node_direct (move_node . parent )
5 i f node_parent_in_other_tree != error :
6 child_request = ChildNodeRequest . ReturnOnlyNonDelete
7 potential_move_child = node_parent_in_other_tree . get_child (move_node .name, child_request=

child_request )
8 i f potential_move_child ! = error && ChangeEvent .Move in potential_move_child . events &&

potential_move_child . i_db != move_node . i_db :
9 c o n f l i c t = make_move_move_dest_conflict (move_node , potential_move_child )

10 potential_move_child . confl icts_already_considered . append( ConflictType . Move_Move_Dest)
11 return c o n f l i c t

A.6.11 Move-Move (Cycle)

1 Input : local_move_dir_nodes , remote_move_dir_nodes
2 Output : l i s t of c o n f l i c t s ( optional )
3
4 c o n f l i c t s = [ ]
5
6 for local_node in local_move_dir_nodes :
7 for remote_node in remote_move_dir_nodes :
8 i f local_node . i_db == remote_node . i_db :
9 continue

10 local_db_path = local_db_snapshot . get_relative_path_for_db_id ( local_node . i_db )
11 remote_db_path = remote_db_snapshot . get_relative_path_for_db_id ( remote_node . i_db )
12 i f local_db_path . s t a r t s w i t h ( remote_db_path + ’ / ’ ) or remote_db_path . s t a r t s w i t h ( local_db_path

+ ’ / ’ ) :
13 continue
14 # The paths are independent . Check i f they are now in a c y c l i c re lat ionship
15 corresponding_local_node = corresponding_node_direct ( remote_node )
16 corresponding_remote_node = corresponding_node_direct ( local_node )
17 i f is_a_below_b ( a=local_node , b=corresponding_local_node ) and is_a_below_b ( a=remote_node , b=

corresponding_remote_node ) :
18 c o n f l i c t s += make_move_move_cycle_conflict ( local_node , remote_node )
19
20 return c o n f l i c t s
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A.7 Resolving conflicts in update trees

A.7.1 Undoing a move

The undo_move(move_node) function is used in the resolution of Move-Delete, Move-Move(Source),
Move-Move(Cycle) and Move-ParentDelete conflicts. Table A.4 shows caveats that need to be consid-
ered. They are illustrated by example that starts with the initial situation shown in figure A.2, attempting
to undo the operation move(“A/B”, “B_moved”).

S

1

            A: Dir                    

2

            f: File                    

3

            B: Dir                    

Figure A.2: Initial situation for illustrating problems for undo_move()

The algorithm solving all these issues is shown below:

Pseudo-code for undo_move():

1 Input : move_node , well−known root_dir_id
2 Output : a Move operation that undoes the move of move_node
3
4
5 origin_dir_node = move_node . get_move_origin_parent_node ( )
6 move_origin_filename = basename(move_node . move_origin )
7 is_undoing_move_possible = True
8 i f is_a_below_b ( a=origin_dir_node , b=move_node) :
9 is_undoing_move_possible = False

10 e l i f ChangeEvent . Delete in origin_dir_node . events :
11 is_undoing_move_possible = False
12 else :
13 potential_origin_node = origin_dir_node . get_child ( move_origin_filename , child_request=

ChildNodeRequest . ReturnOnlyNonDelete )
14 i f potential_origin_node != error and potential_origin_node . change_events . contains_any ( [

ChangeEvent . Create , ChangeEvent .Move] ) :
15 is_undoing_move_possible = False
16
17 target_parent_id = origin_dir_node i f is_undoing_move_possible else root_dir_id
18 target_name = move_origin_filename i f is_undoing_move_possible else a d d _ c o n f l i c t _ s u f f i x (

move_origin_filename )
19 also_update_db = not is_undoing_move_possible
20
21 return MoveOperation (move_node , target_parent_id , target_name , also_update_db )

A.7.2 Move-Delete

1 Input : move_node , delete_node
2 Output : MoveOperation or DeleteOperation that resolves the c o n f l i c t
3
4 i f configured option == Move Wins :
5 deleted_child_nodes = delete_node . get_child_nodes_recursively ( )
6 deleted_child_node_db_ids = [ ]
7 foreach node in deleted_child_nodes :
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Caveat Illustration Resolution

Path of move
origin parent dir

has changed

L

1

            A_moved: Dir            
Move ’A’ (P-ID: -1)        

3

            B_moved: Dir            
Move ’A/B’ (P-ID: 1)        

2

            f: File                    

Use IDs to locate the
current path of the
move origin parent
dir, instead of the

path from the
snapshot

Move origin parent
dir is now below
the move node

L

3

            B_moved: Dir            
Move ’A/B’ (P-ID: 1)        

2

            f: File                    

1

            A_moved: Dir            
Move ’A’ (P-ID: -1)        

Move the object
whose move should
be undone to the
root directory,
appending a unique
conflict suffix.

Move origin parent
dir was deleted

L

3

            B_moved: Dir            
Move ’A/B’ (P-ID: 1)        

1

            A: Dir            
Delete        

2

            f: File                    

The original name
of the object under

the origin parent
dir is already in use

L

3

            B_moved: Dir            
Move ’A/B’ (P-ID: 1)        

1

            A: Dir                    

2

            B: File            
Move ’f’ (P-ID: -1)        

Table A.4: Caveats to consider in undo_move()
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8 deleted_child_node_db_ids += node . i_db
9 db_modifications = [ ]

10 i f delete_node . i s _ d i r :
11 all_child_node_db_ids = database . get_child_node_db_ids ( delete_node . i_db )
12 orphan_node_db_ids = all_child_node_db_ids − deleted_child_node_db_ids
13 for o_db_id in orphan_node_db_ids :
14 orphan_node = delete_node . root . get_node_by_db_id ( o_db_id )
15 new_name = orphan_node .name( ) + g e t _ c o n f l i c t _ s u f f i x ( )
16 db_modifications += database . build_update_path_query_for_db_id ( o_db_id ,

new_name)
17 winner_side = delete_node . side
18 c o n f l i c t _ r e s o l v e r . register_orphans ( orphan_node_db_ids , winner_side )
19 db_modifications += database . build_delete_rows_query ( delete_node . i_db )
20 db_modifications += database . build_delete_rows_query ( deleted_child_node_db_ids )
21 return DeleteOperation ( delete_node , db_modifications , omit=True )
22 else :
23 # d e l e t e wins
24 i f delete_node . i s _ d i r :
25 return undo_move(move_node)
26 else :
27 db_modifications = database . build_delete_rows_query ( delete_node . i_db )
28 return DeleteOperation ( delete_node , db_modifications , omit=False )

The necessary steps for resolving Move-Delete conflicts are shown in the above algorithm. While the
steps are straightforward in case the strategy is “delete wins”, the steps for “move wins” are more in-
volved. As outlined in subsection 5.5.5, the goal is that if the delete replica moved objects from below
delete_node to a location outside of delete_node prior to deleting the directory, that these moves should
be synchronized on the mover’s replica eventually.

To realize this, our implementation starts by marking the rows for delete_node and all those child nodes
that were actually deleted on the deleter’s replica to be removed from the database (removal of these
rows is executed by our propagator component when executing the DeleteOperation). Those cor-
responding files and dirs that still physically exist on the mover’s replica will therefore be detected as
new and be synchronized in subsequent sync iterations. The deletions of rows is problematic, how-
ever, in cases where the delete replica moved objects outside of delete_node. Their rows should remain
in the database, but they would become orphaned, as they lack some of their parent paths. Not fixing
these orphan paths can lead to multiple issues in consecutive synchronization iterations. We therefore
bend the paths of orphans to a unique path (with conflict suffix) on the root level in the database. For
instance, an orphan node with path “/dir_that_deleter_replica_deleted/some_dir” is set to “/some_dir-
conflict-<datetime>-<random string>”. This will cause a Move-Move(Source) conflict in the subsequent
sync iteration for each orphan node, because physically the corresponding file or dir isn’t at this loca-
tion on either replica. Since our goal is that the orphans end up in the same location as they are on the
deleter’s replica, we temporarily register the affected nodes in an in-memory registry so that the resolver
automatically resolves them in favor of the deleter’s replica (because it finds the nodes the registry).
This overrules the default resolution option for Move-Move (Source) conflicts in this case. Move-Move
(Source) conflicts resolved in this way are not presented as conflicts to the user, because it wasn’t the
user who produced them, but the synchronizer.





A.8. FILE SYNCHRONIZER COMPARATIVE TEST DETAILS 219

A.8 File synchronizer comparative test details

A.8.1 Conflict-free operations

A.8.1.1 Result remarks

• A) OneDrive’s macOS remote client does not pick up the individual delete operation while the
client is online in a timely manner. The operation is only synchronized either when waiting for
30-120 seconds, restarting the remote client, or when performing additional create or move oper-
ations on the remote replica.

• B) Low network traffic indicates that move operations are detected by the remote and local Drop-
box client correctly, but the local client does generally not move objects (in any test!). It instead
creates a copy of the object at the destination, followed by deleting the source (or moving it to an
internal cache). This behavior is particularly inefficient if the move operation targets a large file or
a directory with many (large) sub-files.

• C) When the local client of Google Backup and Sync is on a macOS VM and the move operation
targets a non-empty directory, the local client does not move it but instead creates a new directory
at the target location, moves all immediate child objects of the source directory into the target
location and finally deletes the source directory. If the local client is on a Windows VM, or when
moving a file, the client moves the object as expected.

• D) This test (and follow-up tests) shows that Unison does not support move operations, which is
also described in their corresponding paper [BP98]. The remote client detects the move operation
as delete operation of the source file and an additional create operation at the destination path.
Similar to Dropbox (see remark B), Unison maintains a temporary cache of files during synchro-
nization, s.t. the local client actually copies the moved object instead of deleting and retransmit-
ting it.

• E) Various issues occur, depending on the concrete test. For some tests, file system objects have a
“ (1)” appended to their name in one replica but not in the other. In other tests, the remote client
GUI indicates errors but states that the cause is “unknown”. In some tests, the replica’s final state
only becomes synchronized when restarting both clients. More detailed results are found in the
appendix section A.8.1.2.

• F) Dropbox duplicates directory structures, see appendix section A.8.1.3.

• G) Final file system structure contains two files: the original file at the destination path and the
updated file at the source path.

• H) Since the remote client synchronizes the move operation as delete + create operation to the
server replica, the local client detects an Edit-Delete conflict for that file and asks the user to re-
solve the conflict.

A.8.1.2 Complex single-replica operations

Here we present the five concrete tests whose collection we labeled “Complex single-replica operations”,
together with the detailed results.

A.8.1.2.1 Test description The following two tables provide a description of the five tests:
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Name Move-Swap Move-Chain
Description Two objects are swapped by applying

three move operations. A state-based
update detector computes only two
operations, which the client cannot
apply to the other replica without
special handling.

The names of three objects are
shifted along the alphabet using
chained move operations. The client
on the other replica must apply the
operation chain in the same order.
We tested forward and backward
shifting to find out whether internal
client sorting correctly deals with
both directions.

Parameters O, F O, F

Base scenario
1

S

x: File
2

y: File

Note, for F=dir, “x” and “y” are
directories with each having a subfile
“x” and “y” respectively.

1

S

b: File
2

c: File
3

d: File

Note, for F=dir, all root-level objects
are directories with each having a
subfile “b”, “c” and “d” respectively.

Applied
operations

Move(x, temp), Move(y, x),
Move(temp, y)

Move(d, e), Move(c, d), Move(b, c)

Computed
operations

(state-based)

Move(x, y), Move(y, x) Move(d, e), Move(c, d), Move(b, c)

Expected result
2

S

x: File
1

y: File
1

S

c: File
2

d: File
3

e: File

The remaining three tests are labeled “Move-Occupied” because they involve move operations to destina-
tions that are already occupied in the replica. The applied operations are challenging for a synchronizer
to apply, in particular if parameter O=offline.
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Name Move-Occupied 1 Move-Occupied 2 Move-Occupied 3
Parameters O O O

Base scenario

1

S

A: Dir

3

file: File

2

B: Dir

1

S

A: Dir

3

file: File

2

B: Dir

1

S

a: Dir

3

subfile: File

2

d: File

Applied
operations

Move (A, temp),
CreateDir(A),
Move(temp, A/B)

Move(A, temp),
Move(temp/B, A),
Delete(temp)

Move(d, a/a), CreateDir(d),
Move(a, d/a)

Computed
operations
(state-based)

Move(A, A/B),
CreateDir(A)

Move(A/B, A), Delete(A) CreateDir(d), Move(a, d/a),
Move(d, d/a/a)

Expected
result

1

S

B: Dir

3

file: File

2

B: Dir

4

A: Dir S

3

file: File

2

A: Dir
1

S

a: Dir

3

subfile: File

4

d: Dir

2

a: File

Refer to figure 4.1 on page 51 for an explanation of the update tree figures used throughout this chapter.

A.8.1.2.2 Results The following table shows detailed results. It only contains those file synchronizers
which showed unexpected behavior in at least one of the tests.
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Name Param. Dropbox Backup and Sync NextCloud

Move-Swap, see
figure A.3 for
details

O=online,
F=file

X A) X
Name mismatch

X B)

O=online,
F=dir

X A) X
Name mismatch

X

O=offline,
F=file

X A) X
Out of sync, error

message C)

X D)

O=offline,
F=dir

X A) Name mismatch X

Move-Chain,
see figure A.4
for details

O=online,
F=file

X A) X
Name mismatch

X D)

O=online,
F=dir

X A) X
Name mismatch

X D)

O=offline,
F=file

X
Out of sync

X /X
Requires client

restart E)

X
Out of sync

O=offline,
F=dir

X
Out of sync

X
Name mismatch

X
Out of sync

Move-Occupied
1, see figure A.5
for details

O=online X A) X
Name mismatch

X

O=offline X A) X
Out of sync, remote

client detects no
changes F)

X

Move-Occupied
2, see figure A.6
for details

O=online X A) X
Name mismatch

X

O=offline X A) X
Name mismatch
(macOS) / client
crash (Windows)

X

Move-Occupied
3, see figure A.7
for details

O=online X A) X
Name mismatch

X B)

O=offline X A) X /X
Requires client

restart G)

X D)

X indicates that the final file system structure matches the expected one and that no file payloads were
unnecessarily transmitted (unless a remark states otherwise).

Remarks:

• Name mismatch: indicates that the final file system structure on the local and remote replica is
generally equal, but the names of some individual nodes on the local replica do not match the
corresponding ones on the remote replica.

• A) Although the final structure matches the expected one, this was not achieved by the local client
moving the same set of objects on the local replica as our test code did on the remote replica.
Instead, the local client copies files on the local replica, and leaves directories in place, only moving
sub-files where necessary.

• B) The remote client correctly uploads just meta-data (containing the move operations), but the
local client re-downloads file payloads of both files (which is inefficient).

• C) The remote client GUI displays an error message “Can’t sync 2 files: an unknown error oc-
curred.”, where a error-details-dialog reveals an “Upload Error” for both files.
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• D) The remote client uploads the payload of all files (inefficient), consequently the local client also
re-downloads file payloads.

• E) After starting the remote client, it only transmits a sub-set of the operations (which ones depend
on the host-platform and whether the chain applies a forward or backward shift) to the server
replica. The GUI displays an error message “Can’t sync 2 files”. The synchronization only recovers
(and produces a correct result) after restarting the remote client. This includes (re-)transmission
of file payloads by both the local and remote client.

• F) The remote client does not detect (or transmit) any changes. Consequently the local replica
remains unchanged.

• G) After starting the remote client, it only transmits the Move(d, a/a) operation. The synchroniza-
tion only recovers (and produces a correct result) after restarting the remote client.

2

L

x: File
1

y (1): File

Figure A.3: Incorrect result for test Move-Swap, Backup and Sync

The result shows that the local Backup and Sync client attempts the Move(x, y) operation, but y is
already occupied, thus it falls back to Move(“x”, “y (1)”), followed by Move(“y”, “x”). The local client
keeps this inconsistent “y (1)” name indefinitely. The remote replica remains unchanged.
Note: any red nodes shown in the remainder of this chapter indicate incorrect nodes.

L

c: File d: File e: File

Old content

(a) Dropbox

1

L

c (1): File
2

d: File
3

e: File

(b) Backup and Sync

L

c: File d: File e: File

Old content

2 3 4

(c) NextCloud

Figure A.4: Incorrect results for test Move-Chain

Subfigures a-c show the incorrect results on the local replica of the Move-Chain test for the corre-
sponding clients. Subfigure a lacks IDs because Dropbox never moves objects but instead copies
them. Consequently, files lose their (file system) ID in any case. The corresponding remote replica
remains unchanged.
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1

L

B: Dir

3

file: File

2

B: Dir

4

A (1): Dir

Figure A.5: Incorrect results for test Move-Occupied 1, Backup and Sync

We note that the corresponding remote replica remains unchanged.

L

3

file: File

2

A (1): Dir

(a) Name mis-
match

(b) O=Offline (Windows) crash dialog

Figure A.6: Incorrect results for test Move-Occupied 2, Backup and Sync

Subfigure a shows the name mismatch produced for parameter value O=online (for local client
running on macOS or Windows) or O=offline (given that the local client runs on macOS). The cor-
responding remote replica remains unchanged. Subfigure b shows the crash dialog of the local
client if O=offline and local client runs on Windows. In this case, both local and remote replica
remain unchanged and are permanently out of sync.
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1

L

a: Dir

3

subfile: File

4

d (1): Dir

2

a: File

Figure A.7: Incorrect results for test Move-Occupied 3, Backup and Sync

We note that the corresponding remote replica remains unchanged.

A.8.1.3 Multi-level operations

Here we present the three concrete tests whose collection we labeled “Multi-level operations”, together
with the detailed results.

A.8.1.3.1 Test description The following two tables provide a description of the tests:
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Name Rename parent move outside to inside
Description One operation set renames the parent directory at path “d”, the other

operation set moves another directory “od” into the parent directory.
If parameter D=distributed, the rename operation is applied to the remote
replica and the move operation to the local replica.

Parameters O, D

Base scenario
1

S

d: Dir

4

otherfile: File
3

file: File

2

od: Dir

Operation set 1 Move(od, d/odMoved)
Operation set 2 Move(d, dRenamed)

Expected result

1

S

dRenamed: Dir

4

otherfile: File

3

file: File
2

odMoved: Dir
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Name Rename parent and sub-file Rename parent and update/create
sub-file

Description One operation set renames the
parent directory at path “d”, the other
operation renames a sub-file within
the parent directory.
If parameter value D=distributed, the
parent rename operation is applied to
the remote replica and the sub-file
rename operation to the local replica.

One operation set renames the
parent directory at path “d” on the
local replica, the other operation set
edits the content of a sub-file and
creates a new one within the parent
directory, on the remote replica.

Parameters O, D O

Base scenario
1

S

d: Dir

2

file: File
"abc"

Operation set 1 Move(d, dRenamed)
Operation set 2 Move(d/file, d/fileRenamed) Edit(d/file), CreateFile(d/newfile)

Expected state
1

S

dRenamed: Dir

2

fileRenamed: File
"abc"

1

S

dRenamed: Dir

2

file: File
"xyz"

3

new: File
"pqr"

A.8.1.3.2 Results The following table shows detailed results. It only contains those file synchronizers
which showed unexpected behavior in at least one of the tests.
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Name Param. Dropbox Backup and
Sync

NextCloud Unison

Rename parent
move outside to
inside, see
figure A.8 for
details

O=any,
D=same
replica

X X X X

O=any,
D=distributed

X
Duplicated

structure

X /X
Requires

client restart
A)

X
Out of sync B)

X
Detects
Create-

ParentDelete
conflict C)

Rename parent
and sub-file, see
figure A.9 for
details

O=any,
D=same
replica

X X X X

O=any,
D=distributed

X
Duplicated

structure

X X
Duplicated

structure

X
Duplicated

structure
Rename parent
and
update/create
sub-file, see
figure A.10 for
details

– X
Duplicated

structure

X X X
Duplicated

structure

Remarks:

• A) After starting the local client, it only deletes “od”. The synchronization only recovers (and pro-
duces a correct result) after restarting the local client.

• B) The local client displays an error “od: Unknown error” for a brief period. But the error message
then disappears, leaving the local replica in an inconsistent state.

• C) The local client detects “od” as remotely deleted and “d” as locally deleted but remotely as
“changed” (due to the remotely applied move operation into “d”). This is equivalent to detecting
a Create-ParentDelete conflict. The final result depends on how the user chooses to resolve the
conflict.

L

d: Dir

odMoved: Dir

otherfile: File

dRenamed: Dir

file: File

(a) Dropbox

L

dRenamed: Dir

file: File
4

otherfile: File

2

od: Dir
1

3

(b) NextCloud

Figure A.8: Incorrect results for test ’Rename parent move outside to inside’

Subfigures a-b show the incorrect results on the local replica of the test Rename parent move outside
to inside for the corresponding clients.
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L

dRenamed: Dir

file: File fileRenamed: File

d: Dir

(a) Dropbox, Unison

L

dRenamed: Dir

file: File fileRenamed: File

(b) NextCloud

Figure A.9: Incorrect results for test ’Rename parent and sub-file’

Subfigures a-b show the incorrect results on the local replica of the test Rename parent and sub-file
for the corresponding clients.

L

dRenamed: Dir

file: File
"xyz"

new: File
"pqr"

d: Dir

file: File
"abc"

Figure A.10: Incorrect results for test ’Rename parent and update/create sub-file’

Shows the incorrect results on the local replica of the test Rename parent and sub-file for the Drop-
box and Unison clients, which coincidentally produce the same result.

A.8.2 Conflict operations

A.8.2.1 Expected result alternatives

Conflict name Expected result alternatives
Create-Create

• Rename: One of the objects is renamed.

• Merge: only one object remains. In case of
F=directory-directory this means that directory contents are
recursively merged. In case of F=file-file and R=deterministic,
this implies that no data needs to be transmitted over the
network, because the client can detect that file payloads are
equal based on its check sum.
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Conflict name Expected result alternatives
Edit-Edit

• Overwrite: changes of one replica are overwritten by the
changes of the other replica (with a prior back up to avoid
losing changes).

• Merge: only when R=deterministic: the file remains
unchanged, no data is transmitted over the network.

• Duplicate: one of the files is coped to a “conflict” file name
placed next to the original file (e.g. “file” is copied to “file
<hostname>’s conflicting copy”). Only makes sense if the
content of both files is different. Two sub-variants are possible:

– Sync: the conflicting copy is synchronized to all other
users.

– HostOnly: the conflicting copy remains only on the host
where it was created.

Name clash

• Rename: one of the objects is renamed, e.g. by appending a
“conflict” string.

• Merge: only for parameter F=directory-directory. The contents
of both directories are merged.

Edit-Delete of file

• Restore: the edit operation takes precedence and the file is
restored on the replica where it was deleted.

• Delete: the delete operation takes precedence, the edited file is
deleted on all replicas.

• Local, Remote: whichever operation was done on the remote
(or local) replica takes precedence.

Move-Delete

• Restore: the move operation takes precedence and the file (or
directory) is restored on the replica where it was deleted (with
all sub-contents in case of a directory).

• Delete: the delete operation takes precedence, the moved file
or directory is deleted on all replicas.

• Local, Remote: whichever operation was done on the remote
(or local) replica takes precedence.
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Conflict name Expected result alternatives
Move-ParentDeleted

• Restore: the move operation takes precedence. The directory
“test” is recreated to make the move operation possible. Other
sub-objects of “test” (that were not manipulated by the replica
on which the move operation was executed) are deleted.

• Delete: the delete operation takes precedence. The move
operation is first undone, then “test” is deleted.

• Local, Remote: whichever operation was done on the remote
(or local) replica takes precedence.

Create-ParentDeleted

• Restore: see Move-ParentDeleted. Replace “move” with
“create” or “edit” respectively.

• Delete: the delete operation takes precedence. To avoid data
loss, all created objects or updated files are backed up prior to
executing the delete operation.

• Local, Remote: whichever operation was done on the remote
(or local) replica takes precedence.

Move-Move (Source)

• Local: the move operation applied to the local replica takes
precedence.

• Remote: the move operation applied to the remote replica takes
precedence.

• Duplicate: the file or directory is copied, s.t. both “testMoved”
and “testOtherMoved” exist. Note that this is not a favorable
outcome!

Move-Move (Cycle)

• Local: the final file system structure resembles the one of the
local replica. Ideally, the synchronization client undoes the
conflicting move operation detected on the remote replica and
then applies the local replica’s move operation.

• Remote: the final file system structure resembles the one of the
remote replica.

• Duplicate: the directories are copied, s.t. the directories “A”,
“A/B_moved”, “B” and “B/A_moved” exist. Note that this is not
a favorable outcome!

A.8.2.2 Result remarks

• A) “test” is renamed to “test-conflict-<date and time>-<5 random characters>” (our implementa-
tion).
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• B) “test” is renamed to “test (<hostname>’s conflicted copy <date>)” (Dropbox).

• C) “test” is renamed to “test (1)” (Backup and Sync).

• D) “test” is renamed to “test-<hostname>” (OneDrive).

• E) “test” is renamed to “test_conflict-<date and time>” (NextCloud).

• F) Unison generally does not automatically resolve conflicts. It detects the conflict and prompts
the user for a choice which operation should take precedence in its graphical user interface.

• G) NextCloud does re-download the file from the server replica but then correctly merges the re-
sult. In case of F=dir-dir, the client re-downloads the directory’s sub-files.

• H) The local and remote replica keep their respective file or directory. Windows client does not
show any error message, while the macOS client shows a notification that there are problems with
synchronizing files.

• I) Local client renames one directory to “test (1)” in the local replica. After both local and remote
client have finished synchronizing changes, the directory “test (1)” of the local replica corresponds
to “test” on the remote replica, and “test” of the local replica corresponds to “test (1)” on the remote
replica. Using the Google Drive’s web interface we found that both directories are named “test”,
which clarifies that Google Drive does not follow the same namespace limitation rules as Windows
or macOS disks, where a name may only be used once within a directory.

• J) The local client moves the locally created conflicting object “dest” to “dest_conflict-<date and
time>”. However, the client implementation generally seems to remove all objects that end with
this conflict-pattern from the server and all other client replicas.

• K) Detects the conflict as Create-Create conflict, due to the inability to understand move opera-
tions.

• L) A restart of both clients is required to establish a stable synchronization in case the delete op-
eration is applied to the remote replica. In this case, the entire “test” directory is retransmitted to
the server replica.

• M) Unison detects the conflict as expected. If the user selects the move / content-update operation
to have precedence, the entire “test” directory is retransmitted to the server replica, i.e., Unison
does not just create the missing “test” directory itself but also sub-objects that previously existed
within “test”.

• N) Once our test code established the concurrent changes on the local and server replica and
started the local Backup And Sync client, its GUI immediately shows an error “Can’t sync 1 item”.
In case the delete operation was performed on the local replica, the client immediately recovers
from this error (it disappears) and sends the delete operation to the server replica. But if instead
the delete operation was applied to the remote replica, the error remains until the local client is
restarted manually.

• O) If the local client runs on Windows, the remote move operation takes precedence. If it runs on
macOS, a duplicate is created. This indicates that both implementations are not using the same
code base and have implemented different conflict resolution options.

• P) See figures A.11 and A.12 for more details.

• Q) Unison detects two Create-ParentDelete conflicts and resolves them as chosen by the user, see
remark M.
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1

S

A: Dir

4

subB: File
3

subA: File

2

B: Dir

(a) Initial situation

2

L

B_moved: Dir
3

subA: File

4

subB: File

1

A: Dir

Move: /B

(b) Local replica changes

1

R

A_moved: Dir
4

subB: File

3

subA: File

2

B: Dir

Move: /A

(c) Remote replica changes

Figure A.11: Initial situation for test ’Move-Move Cycle’

Subfigures a-c show the initial file system tree and the concurrent changes made on the local and
remote replica.
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L

a: Dir

subB: File subA: File

B_moved: Dir

B: Dir

A_moved: Dir

R

A: Dir

subB: File subA: File

B_moved: Dir

B: Dir

A_moved: Dir

(a) Dropbox

L

A_moved: Dir

subB: File

subA: File B_moved: Dir

1

23

4

R

B_moved: Dir

subA: File

subB: File A_moved: Dir

2

14

3

(b) Backup and Sync

1

R

A_moved: Dir
4

subB: File

3

subA: File

2

B: Dir

2

L

B_moved: Dir
3

subA: File

4

subB: File

1

A: Dir

(c) NextCloud

Figure A.12: Incorrect results for test ’Move-Move Cycle’

Subfigures a-c show the incorrect results for the respective clients. Dropbox almost achieves consistency
by duplicating the directory structures, but inexplicably uses a lower-case name for the directory “A” on
just one replica. Google’s Backup and Sync never achieves consistency. Its local client keeps retrying an
upload-operation of “B_moved”, which continuously fails. For NextCloud, neither the local nor remote
replica are changed by the respective clients. The local client’s tray icon indicates an error and a brief
error message is shown, indicating that A could not be synchronized due to an error. A also appears
in the UI’s Not synced tab, with “Unknown error” being shown as rationale for not synchronizing the
directory.
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A.8.3 Cross-platform issues

A.8.3.1 Result remarks

• Remote rename: here the remote client automatically applies move operations that rename ob-
jects. In the event of a case-sensitivity or Unicode normalization clash this means that one of the
objects keeps the name that the user intended it to have, while the other(s) are renamed by the
remote client. In the event of reserved characters or names, the objects are renamed to replace
invalid with valid characters or names. The advantage of this approach is that both the local and
remote replica finally contain an equal set of files and directories. The disadvantage is that this
approach assumes the lowest common feature set of all potentially existing replicas. For instance,
Dropbox and our implementation assumes that file systems are case-insensitive in general, only
because there may be Windows clients where this is the case. If all replicas, however, were installed
on a case-sensitive macOS disk volume, these rename operations would have been inadequate.

• Unchanged / No conflict: All objects are transmitted from the remote to the local replica as they
are. No automatic renaming or omission of objects is applied. This is only possible if all replicas
have equal capabilities, e.g. when both local and remote replica are on the same operating system.

• SFN = Short File Name.

• A) The configuration assistant of the macOS OneDrive client does not allow to choose a directory
on a case-sensitive disk volume.

• B) Unisons remote client skips the synchronization of both the upper- and lower-case object. The
following message is shown: “Two or more files on a case-sensitive system have names identical
except for case. They cannot be synchronized to a case-insensitive file system. No updates to
propagate”. Given that server replica is on a case-sensitive Linux disk volume, this behavior is
sub-optimal.

• C) The object using upper-case on macOS (“FILE”, “DIR”) is named “FILE (1)”, “DIR (1)” on the
local replica on Windows.

• D) The remote client uploads both objects to the server replica. The local client downloads the
lower-case object and then fails to download the upper-case object. The client’s tray icon briefly
indicates an error, and the user can inspect the error details in the UI (“Not synced” tab).

• E) The object using lower-case on macOS (“file”) is named “file (1)” on the local replica on Win-
dows.

• F) The local client on Windows does not detect the conflict. The client’s tray icon and UI show the
same behavior as in remark D.

• G) Unison generally does not automatically resolve conflicts. The local client detects the conflict
and prompts the user for a choice which operation should take precedence in its graphical user
interface.

• H) Only the file encoded using the NFC-normalization is sent to the server replica and downloaded
to the local replica. No notification is shown to the user.

• I) Like in remark B, the remote client skips the synchronization of both “ä” files. It also shows the
exact same error message, which is obviously incorrect, because the files do not differ by case but
by Unicode normalization.

• J) On the remote replica, both files keep their name. On the local replica the client creates files “ä”
and “ä (1)”, where the latter corresponds to the NFC-normalized file on the remote replica.

• K) The file is automatically renamed by the remote client to NFC normalization on the remote
replica. Consequently, it is also created using NFC normalization on the local replica.
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Figure A.13: OneDrive macOS client cross-platform issues information

Information window shown by the OneDrive client on macOS while running the test Reserved char-
acters and names. Assuming that these hints are given to achieve compatibility with Windows, sev-
eral hints are incorrect. (1) Windows does allow files to begin with spaces (but they may not end
with them). (2) Windows files may begin with “..” as long as there are valid follow-up characters.
For instance, “..test” is a valid name. However, “..” is not.

• L) The file “ä” keeps the NFD normalization on the remote replica but is converted to NFC nor-
malization on the local replica.

• M) This leads to problems in practice. A Windows user can concurrently create a file “ä” which
leads to having two files whose name look exactly equal in the Windows file manager. Users of an
early BSync version (which did not handle this case yet) were confronted with this issue.

• N) The remote client renames the file “b “ to “b” on the remote replica, but keeps the names of all
other files. After the rename operation, the client synchronizes all files to the server replica. If the
local client is on macOS, all files are downloaded to the local replica.

• O) The remote client synchronizes files with reserved names (“LPT1”, “LPT1.foo.bar”) to the server
replica, but skips synchronization for the three files we created whose names contain reserved
characters (or end with spaces and “.”). The remote client notifies the user that these files were not
synchronized and how she can rename them herself to make them synchronizable. Interestingly,
some of that advice is technically incorrect. See figure A.13 for more details. If the local replica
is on Windows, files with reserved name (that do exist on the server replica) are not downloaded,
without any notification shown to the user. If the local replica is on macOS, these files are down-
loaded.

• P) None of the files that have reserved characters or names are downloaded to the local replica by
the Windows client. The user is not notified. Dropbox offers a Check bad files tool10, a web site that
allows Windows users to inspect the list of files that exist on the server but cannot be synchronized
to their Windows machine.

10See https://www.dropbox.com/bad_files_check, retrieved July 21, 2019.

https://www.dropbox.com/bad_files_check


A.8. FILE SYNCHRONIZER COMPARATIVE TEST DETAILS 237

• Q) The remote client synchronizes all files to the server replica. The local client on Windows auto-
matically renames files that contain reserved characters by replacing special characters with “_”,
or renaming files that end with space or “.” s.t. they end with “_” on the local replica. For reserved
names, the Windows client uses the UNC path technique11 to create those files anyway! This is
problematic, because such files and directories cannot be opened, moved or deleted by the user
using Windows explorer. Special tools or expert command-line knowledge is required to delete
these objects. Interestingly, the Backup and Sync Windows client does not seem to use UNC paths
when deleting objects. Consequently, the user cannot remove such files by removing them on
Google Drive (or any macOS client), because the file will still remain on the Windows machine.

• R) The remote client transmits all files to the server replica. The local client in turn does not down-
load any of the files that contain reserved characters or names.

• S) The synchronization fails silently, causing both the local and remote replica to remain un-
changed.

• T) After the synchronization finished, both files exist on both replicas, but with different names.
Each replica keeps its originally created file at the original path. On the local replica, the remotely
created file is found with name “a....a (1)” (length of 255 characters), i.e. the client applies name
truncation. On the remote replica, the locally created file is found with name “a...a” with an inex-
plicable length of 224 characters.

• U) If our test performs the operations on the remote replica while the remote client is offline, then
the remote client hangs after starting it, showing the status as “synchronizing” for an indefinite
time period. If our test instead performs the operations while the remote client is online, the
operations are successfully synchronized with the server replica. In this case the local client hangs
indefinitely.

• V) The remote client automatically renames the file on the remote replica, replacing the “~” char-
acter with “-”.

• W) The local client does not recognize the issue that the short file name cannot be created dur-
ing update detection, but only recognizes this during propagation. It displays an incorrect error
message “Destination updated during synchronization: The file aaaaaa~1 has been created”. The
local client most likely assumes that the file with the short name really exists and that it was cre-
ated after the update detection phase had finished.

11While Windows APIs forbid operations such as CreateFile(“C:\LPT1”), it does permit CreateFile(“\\?\C:\LPT1”). The UNC
name prefix [Mic18b] disables any parsing of the path, making such operations possible.
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Figure A.14: Results for Windows 8.3 file names - distributed creation

Subfigure a shows the initial situation created by the test. Subfigures b-d show the final file system struc-
ture once each implementation has completed the synchronization procedure. Note the replacement
of “~” with “-” in subfigure d. Regarding subfigure b, we should point out that Windows’ file system API
only forbids the operation sequence CreateFile(“aaaaaaaaaa”) + CreateFile(“aaaaaa~1”), but allows Cre-
ateFile(“aaaaaa~1”) + CreateFile(“aaaaaaaaaa”). Consequently, the remote replica can have both files.
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Figure A.15: Results for Windows 8.3 file names - macOS clash

Subfigure a shows the initial situation created by the test, as well as the move operation applied on
the remote replica. Subfigures b-f show the final file system structure once each implementation has
completed the synchronization procedure. Note that in subfigure e the original file “aaaaaaaaaa” with
ID=1 has been completely removed from all replicas unexpectedly. We observed that the local client first
deleted the file “aaaaaaaaaa”, followed by executing a Move(b, aaaaaaaaaa) operation. The local client
showed a confusing (and obviously incorrect) error message: “You now have two copies of a file; We
couldn’t merge the changes in aaaaaa~1-<local-host-hame> so we created another copy of it.”. Because
the delete and move operations are synchronized to all other replicas, this leads to the complete loss of
the file with the long name (ID=1).
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