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Abstract

We study three aspects of program verification with separation logic:

1. Reasoning about quantitative properties, such as the probability of memory-
safe termination, of randomized heap-manipulating programs.

2. Automated reasoning about the robustness of and entailments between formu-
las in the symbolic heap fragment of separation logic itself.

3. Automated reasoning about pointer programs by combining abstractions
based on separation logic with the above techniques and model checking.

Regarding the first item, we extend separation logic to reason about quantities,
which evaluate to real numbers, instead of predicates, which evaluate to Boolean
values. Based on the resulting quantitative separation logic, we develop a weakest
precondition calculus à la Dijkstra for quantitative reasoning about randomized
heap-manipulating programs. We show that this calculus is a sound and con-
servative extension of both separation logic and McIver and Morgan’s weakest
preexpectations which preserves virtually all properties of classical separation
logic. We demonstrate its applicability by several case studies.

Regarding the second item, we develop an algorithmic framework based on
heap automata to compositionally check robustness properties, e.g., satisfiability
or acyclicity, of symbolic heaps with inductive predicate definitions. We consider
two approaches to discharge entailments for fragments of separation logic. In
particular, this includes a pragmatic decision procedure with nondeterministic
polynomial-time complexity for entailments between graphical symbolic heaps.

Regarding the third item, we introduce Attestor—an automated verification
tool for analyzing Java programs operating on dynamic data structures. The
tool involves the generation of an abstract state space employing inductive
predicate definitions in separation logic. Properties of individual states are
defined by heap automata. LTL model checking is then applied to this state
space, supporting the verification of both structural and functional correctness
properties. Attestor is fully automated, procedure modular, and provides
informative visual feedback including counterexamples for violated properties.
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Kurzfassung

Wir studieren drei Aspekte der Programmverifikation mit Separation Logic (SL):

1. Die Analyse quantitativer Eigenschaften, wie z.B. die Wahrscheinlichkeit
der Terminierung ohne Speicherfehler, von probabilistischen Programmen.

2. Die automatisierte Analyse der Robustheit von und Implikationsbeziehungen
zwischen Formeln im symbolischen Heap-Fragment von Separation Logic.

3. Die automatisierte Analyse von Zeigerprogrammen durch Kombination von
SL-basierten Abstraktionen mit den obigen Techniken und Model Checking.

Bezüglich des ersten Punktes erweitern wir SL zu einer quantitativen Separation
Logic (QSL) zur Analyse von Quantitäten, die zu reellen Zahlen ausgewertet wer-
den, anstelle von Prädikaten, die zu Wahrheitswerten ausgewertet werden. Auf
Grundlage von QSL entwickeln wir einen Kalküls der schwächsten Vorbedin-
gungen à la Dijkstra, der praktisch alle klassichen Eigenschaften beibehält. Wir
zeigen, dass dieser Kalkül eine korrekte und konservative Erweiterung sowohl
von SL als auch der schwächsten Vorerwartungen von McIver and Morgan ist.
Wir demonstrieren seine Anwendbarkeit anhand mehrerer Fallstudien.

Bezüglich des zweiten Punktes entwickeln wir ein algorithmisches Grundgerüst
auf Basis von Heap-Automaten um Robustheitseigenschaften, z.B. Erfüllbarkeit
oder Azyklizität, von symbolischen Heaps mit induktiven Definitionen nach-
zuweisen. Wir betrachten zwei Ansätze um Implikationen in Fragmenten von
SL zu zeigen. Dies umfasst einen Algorithmus für Implikationen zwischen
grafischen symbolischen Heaps, der in nichtdeterministischer Polynomialzeit läuft.

Bezüglich des dritten Punktes, stellen wir Attestor vor - ein Werkzeug zur
automatisierten Analyse von Java Programmen, die mit dynamischen Daten-
strukturen arbeiten. Dies beinhaltet die Generierung eines abstrakten Zus-
tandsraumes unter Verwendung induktiver Definitionen in SL. Eigenschaften
einzelner Zustände werden durch Heap-Automaten beschrieben. Ein Model
Checker ermöglicht dann die Verifikation von struktureller und funktionaler
Korrektheit. Attestor ist vollautomatisch, modular und liefert aussagekräftiges
visuelles Feedback inklusive Gegenbeispielen falls die Verifikation fehlschlägt.
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Chapter 1

Introduction

When we had a few weak computers,
programming became a mild problem,
and now we have gigantic computers,
programming has become an equally
gigantic problem.

Edsger W. Dijkstra,
ACM Turing Award Lecture, 1972.

European regulators often require safety-critical processes, industrial plants, and
consumer goods to comply with the “state of the art” in their respective fields
of engineering.1 However, it appears that software is rarely held accountable to a
strict interpretation of the same standards. This is surprising since software is
nowadays involved in virtually all of the aforementioned items. In fact, failures
of prominent critical systems have frequently been attributed to software issues.
Examples include, but are not limited to, medical devices [LT93], self-driving
cars [Eco18], civil planes [Tra19], military planes [Reg07], airports [BBC17], space
faring rockets [Lio96], university campus management systems [Aac18], and
secure mail for confidential court documents [Leg19].

One explanation for this discrepancy is that software differs significantly
from other engineering artifacts. It is neither subject to physics, e.g., inertia and
material properties, nor inherently continuous: Changing a few bits might lead
to vastly different results. Established methodologies applied by testing engi-
neers in other fields consequently do not yield comparable levels of confidence
in the correctness of software. Dijkstra [Dij72] famously summarized the issue:

“Program testing can be a very effective way to show the presence of bugs,
but is hopelessly inadequate for showing their absence.”

1An explicit reference to the state of the art (“Stand der Technik”) is found, e.g., in §34
of the German product liability law (“Gesetz über die Bereitstellung von Produkten auf dem
Markt”) [Bun15]. Similar statutes are found in the product liability directive of the European Union.

1



2 Chapter 1. Introduction

His remarks continue with a less commonly cited observation:

“The only effective way to raise the confidence level of a program signifi-
cantly is to give a convincing proof of its correctness.”

1.1 Formal Methods

Rather than considering—and evaluating—software as the product of yet another
engineering discipline, formal methods treat the correctness of programs, i.e.,
their compliance with some specification, as mathematical theorems. The goal
is then to derive a mathematical proof of these theorems under some well-
understood baseline assumptions, such as the correctness of the underlying
compiler, operating system, and hardware. Formal methods can prove the
absence of certain errors—at least under the proviso that the error is covered by
the specification and the baseline assumptions are realistic. As such, they yield
far stronger guarantees than testing can provide.

A caveat though is that there are differences between proving theorems in
mathematics and proving the correctness of software. As pointed out by Kurt
Mehlhorn, mathematics has been for many centuries and still is a “complex
social process”.2 That is, apart from proofs written on paper, it requires re-
views, presentations, questioning, revision, and expert discussions until a novel
theorem gains acceptance in the scientific community. It is hard to imagine
that the implementation of an ordinary commercial software product, which is
substantially larger, more detailed, and—to many people—less elegant and less
interesting than a mathematical theorem, will receive the same amount of rigor.

In contrast to mathematics, effective reasoning about the correctness of
programs thus additionally relies on both mechanized and automated tool
support. Ideally, this means that formal methods address the following wishlist:

First, formal methods must be sound in order to raise the confidence level
in software.3 In particular, to avoid being subject to a complex social process,
formal proofs have to provide sufficient details such that their correctness can be
verified automatically. The latter task is considered, for instance, by interactive
theorem provers such as Isabelle/HOL [NPW02] and Coq [BC04; Coq19].

Second, formal methods should be compositional to increase their scalability
and support the reuse of already proven compartmentalized components.

Third, it is desirable that formal methods are amenable to automation as
much as possible. While automation is impossible in general [Tur37], it is a goal
to strive for. Automation, however, provides no relief from the first item. That

2The remark was made during his keynote at MFCS 2019 in Aachen.
3Unsound formal methods are also useful, e.g., for detecting potential flaws and debugging.

However, for the moment, we focus on proving correctness.
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is, rather than stating that a given program is correct, automated tools should
provide machine-checkable evidence for their results.

Fourth, various software products have to interact with an environment
such as noisy sensory data, (unpredictable) human users, or unreliable low-
quality hardware. In these cases, formal methods need to be able to deal with
uncertainty. This includes quantifying the level of confidence we should put in an
implementation. For instance, a typical statement of interest in this context is
“the likelihood of producing the specified result is at least 0.9.”

We will give a more detailed introduction to classical formal methods for
reasoning about the correctness of programs in Part I of this thesis.

1.2 Separation Logic

Many software issues can be traced back to the erroneous usage of dynamically
allocated memory on the heap. This includes, for instance, dereferencing
null pointers, buffer and heap overflows, and accidentally invalidating data
structure invariants. Building on early ideas of Burstall [Bur72], separation
logic [IO01; Rey02; OHe19] is both a logical language and a proof system for
formal reasoning about heap manipulating programs which is quite compliant
with the first three items in the above wishlist for formal methods:

• Being a formal program logic, it is sufficiently precise such that proofs
in separation logic are verifiable by machines. In fact, separation logic
and many of its extensions have been formalized in interactive theorem
provers; for instance, as part of the Iris project [Kre+17; KTB17].

• Its characteristic connective—the separating conjunction ?—intuitively states
that two specifications hold in separate regions of memory; they may thus
be considered and proven in isolation. Compositionality consequently lies
at the heart of formal verification with separation logic.

• As separation logic champions local reasoning, it admits a large degree
of automation for certain correctness properties. Infer, for example, is
capable of proving memory safety, i.e., the absence of illegal pointer
dereferences, fully automatically on industrial codebases [Cal+11; CD11];
as such, it is deployed within large software companies such as Facebook.

Automated reasoning with separation logic about more intricate correctness
properties than memory safety—for instance the restoration of the heap’s initial
shape upon termination—remains an active research area.

We will give a more detailed introduction to separation logic in Chapter 4 of
this thesis. Moreover, automated reasoning will be discussed in Part III.
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1.3 Randomization & Probabilistic Programs

Let us also have a brief look at the last item on our wishlist: Applying formal
methods in uncertain environments. One possible approach for addressing this
task, which has been recently considered in the context of separation logic [1;
TH19; BHL19], is to consider probabilistic programs, i.e., programs with the ability
to sample from probability distributions. Unreliable data or behavior is then
modeled by sampling from an (empirically determined) probability distribution
which takes noise, common user behavior, or the reliability of underlying
hardware components into account. Formal methods in this context aim to
quantify a program property rather than proving its correctness. Examples of
such quantitative properties include the probability of terminating with a correct
result or the expected, i.e., average, value produced by a program.

Probabilistic programs are, however, not limited to modeling uncertainty.
Perhaps the oldest application of probabilistic programs lies in the implementa-
tion of randomized algorithms [Rab76; MR97; MU05]—a well-established branch
of algorithms research which attempts to exploit sampling to improve an al-
gorithm’s performance possibly at the cost of producing wrong results with
a small probability. In this case, sampling from a probabilistic distribution is
not a modeling construct, but an essential programming instruction. Reasoning
about probabilistic programs hence lies at the foundation of understanding the
correctness of randomized algorithms.

More recently, probabilistic programs have received a lot of attention in
the machine learning community as a more expressive alternative to classical
probabilistic graphical models (cf. [GS14; Gor+14b; Car+17; Bin+19]). In this
setting, the main appeal of probabilistic programs is that they decouple writing
probabilistic models from the design of efficient inference algorithms for analyz-
ing these models; they thus enable rapid prototyping for non-experts. Formal
methods for probabilistic programs might thus also contribute to understanding,
debugging, and raising the level of confidence in probabilistic models.

We will give a detailed introduction to probabilistic programs and their
applications in Part II of this thesis.

1.4 Contributions and Synopsis

The goals of this thesis are threefold. First, we give a consistent overview of
the developments of classical program verification techniques which—starting
with Turing, Floyd, Hoare, and Dijkstra [Tur49; Flo67; Hoa69; Dij76]—led to two
advanced formalisms: On the one hand, separation logic has been developed by,
amongst others, Ishtiaq, O’Hearn, Reynolds, and Yang [IO01; ORY01; Rey02],
to reason about heap manipulating programs. On the other hand, the weakest
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preexpectation calculus has been developed by, amongst others, Kozen, McIver, and
Morgan [Koz81; Koz83; MMS96; MM05] to reason about probabilistic programs.

Second, in an attempt to unify both formalisms, we develop a probabilistic
extension of separation logic which broadens separation logic’s applicability to
both uncertain environments and randomized algorithms.

Third, we try to improve automation of formal methods. To this end, we study
decision procedures for reasoning about separation logic and report on a tool for
automated program verification with separation logic.

In summary, the main contributions of this thesis are:

(I) We give a textbook-style survey of classical techniques for reasoning about
imperative programs through their operational semantics and computing
weakest preconditions à la Dijkstra [Dij76]. In particular, we gradually
discuss how recursive procedures, pointers, dynamic memory allocation,
and sampling from probability distributions are incorporated.

(II) We present a novel quantitative separation logic for formal verification of
probabilistic programs. Our logic conservatively extends and preserves
virtually all properties of classical separation logic. Its formulas, however,
evaluate to real numbers rather than Boolean values. This enables reason-
ing about both probabilities and expected values of probabilistic programs.

(III) We demonstrate the applicability of quantitative separation logic in several
case studies. In particular, this includes both probabilistic versions of classi-
cal examples from the separation logic literature and textbook examples
of randomized algorithms, e.g., randomized meldable priority queues.

(IV) We develop an algorithmic framework for automated reasoning about the ro-
bustness of inductive definitions in the popular symbolic heap fragment of
separation logic. In particular, we present a refinement theorem which lies
at the foundation of both asymptotically optimal decision procedures for
robustness and the automated synthesis of robust inductive definitions.

(V) We investigate the entailment problem for the symbolic heap fragment of sep-
aration logic. In particular, we present a pragmatic decision procedure in
nondeterministic polynomial time for certain “graphical” symbolic heaps.

(VI) We report on the implementation of Attestor—a tool for automated
verification of intricate correctness properties of Java pointer programs.

1.4.1 How to Read this Thesis

Before we provide a more detailed synopsis, let us give a few remarks on
reading this thesis. While most chapters should be sufficiently self-contained
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or at least equipped with enough backward references such that they can be
read individually, there are some dependencies. A rough guide respecting the
order induced by these dependencies is illustrated in Figure 1.1, page 7. Here, a
thick arrow between two chapters indicates frequent use of previously defined
concepts; it is thus recommended to have a look at these concepts first. A thin
arrow indicates a local dependency that exists only for a few individual results;
it is thus safe to ignore the dependency and return to it once it is actually
referenced. Furthermore, notice that Parts II and III can be read in arbitrary
order. Each part is equipped with its own introduction, discussion of related
work, and conclusion.

1.4.2 Part I: Foundations of Reasoning about Pointer Programs

The first part of this thesis is a gentle introduction to classical techniques for
reasoning about imperative programming languages, i.e., operational semantics,
program verification with weakest preconditions, and separation logic. Apart from
providing a consistent view on these topics, there are no original contributions.
Rather, Part I provides the foundations for Parts II and III.

A reader familiar with the aforementioned topics might thus want to briefly
skim this part to familiarize herself with our notation.

Chapter 2: Reasoning about Imperative Programs We introduce the syntax
and operational semantics of the simple imperative programming language PL.
This language will be gradually extended by additional features throughout this
thesis. Furthermore, we give a brief tour through two formal methods: Program
analysis using abstraction and Floyd-Hoare style program verification.

Chapter 3: Reasoning about Recursive Procedures We study how procedures
with parameters and return values are incorporated into the programming
language PL; as a result, we obtain the procedural programming language P2L.
Special attention is paid to proof rules for verifying recursive procedures. As long
as one is willing to ignore the treatment of procedures in follow-up chapters as
well, one may safely skip this chapter on a first reading.

Chapter 4: Reasoning about Pointer Programs We extend the language P2L
by pointers and dynamic memory allocation; this yields the procedural pointer
programming language P3L. Moreover, we discuss the challenges faced when
attempting to formally verify P3L programs. After that, we formally define
separation logic both as an assertion language and as a verification system using
weakest preconditions à la Ishtiaq and O’Hearn [IO01]. All remaining chapters
build upon these definitions in one way or another.
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Figure 1.1: A rough guide to reading this thesis. Blue chapters contain original
contributions by the author.
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1.4.3 Part II: Randomization in Separation Logic

In the second part of this thesis, we develop an extension of separation logic—
called quantitative separation logic (QSL)—for quantitative reasoning about proba-
bilistic pointer programs. Part II covers and extends the work published in:

[1] Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph
Matheja, and Thomas Noll. “Quantitative Separation Logic: A Logic for
Reasoning about Probabilistic Pointer Programs”. In: Proceedings of the
ACM on Programming Languages 3.POPL (2019), 34:1–34:29

Chapter 5: Reasoning about Probabilistic Pointer Programs We first give
a more elaborate motivation for considering probabilistic programs and, in
particular, probabilistic pointer programs. We also discuss the relevant literature
related to the development of QSL. We introduce the probabilistic procedural
pointer programming language P4L and define its operational semantics in
terms of Markov decision processes. Finally, we briefly discuss how the operational
semantics enables reasoning about quantitative properties of P4L programs.

Chapter 6: Quantitative Separation Logic: Assertion Language We introduce
expectations that evaluate to real numbers rather than predicates that evaluate to
truth values as the assertion language of QSL. In particular, we define a quantitative
separating conjunction and a quantitative separating implication; we thus lift the
characteristic connectives of separation logic to expectations. We also study
various algebraic properties of expectations and show that virtually all properties
of classical separation logic predicates are preserved by expectations.

Chapter 7: Quantitative Separation Logic: Verification System We develop a
weakest precondition calculus for reasoning about both probabilities and expected
values of probabilistic pointer programs in P4L. Our calculus conservatively
extends both Ishtiaq’s, O’Hearn’s and Reynolds’s separation logic [IO01; Rey02]
for heap manipulating programs as well as Kozen’s [Koz83] / McIver and
Morgan’s [MMS96; MM05] weakest preexpectations for probabilistic programs.
Particular attention is paid to soundness and local reasoning.

Chapter 8: Case Studies We demonstrate the applicability of quantitative
separation logic by means of five case studies. We verify the correctness of
a textbook algorithm for computing random permutations. We use QSL to
analyze the expected performance of a randomized procedure which appears
in efficient implementations of priority queues, namely randomized meldable
heaps [GM98]. Moreover, we consider unreliable variants of classical benchmarks
for program verification with separation logic.
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Chapter 9: Conclusion and Future Work We wrap up our work on quantita-
tive separation logic and discuss possible directions for future work.

1.4.4 Part III: Automated Reasoning

In the third part of this thesis, we consider automated reasoning about heap
manipulating programs using separation logic. This involves the design of
algorithms for both reasoning with separation logic about programs as well as
reasoning about separation logic itself.

Chapter 10: Towards Automated Reasoning We motivate the challenges for
automated reasoning with separation logic. We also discuss the decision prob-
lems arising in this context together with related work. After that, we lay the
groundwork for automated reasoning. We define a formal syntax for separation
logic and, in particular, introduce separation logic’s symbolic heap fragment with
inductive predicate definitions. The latter is considered in all remaining chapters.

Chapter 11: Automated Reasoning about Robustness of Symbolic Heaps
We study the question whether a given symbolic heap is robust, i.e., whether
it satisfies a property of interest such as satisfiability, reachability, or acyclicity.
We develop an algorithmic framework around the notion of heap automata and a
refinement theorem which allows us to synthesize robust inductive definitions. We
consider several examples of robustness properties and show that our algorith-
mic framework yields decision procedures with optimal asymptotic complexity.
Moreover, we briefly report on an implementation of our framework. Chapter 11
is based in part on:

[2] Christina Jansen, Jens Katelaan, Christoph Matheja, Thomas Noll, and
Florian Zuleger. “Unified Reasoning about Robustness Properties of
Symbolic-Heap Separation Logic”. In: European Symposium on Programming
(ESOP). vol. 10201. Lecture Notes in Computer Science. Springer, 2017,
pp. 611–638.

Chapter 12: Automated Reasoning about Entailments We present two at-
tempts for deciding the entailment problem for symbolic heaps, i.e., the question
whether one symbolic heap implies another one. We briefly outline how heap
automata can—in principle—be applied to discharge entailments. Furthermore,
we study the fragment of graphical symbolic heaps. In particular, we present a
pragmatic decision procedure in nondeterministic polynomial time for entailments
between certain graphical symbolic heaps. Although they are put in a different
context, some results in Chapter 12 are based on:
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[3] Hannah Arndt, Christina Jansen, Christoph Matheja, and Thomas Noll.
“Graph-Based Shape Analysis Beyond Context-Freeness”. In: Software
Engineering and Formal Methods (SEFM). vol. 10886. Lecture Notes in
Computer Science. Springer, 2018, pp. 271–286.

Chapter 13: Attestor: Model Checking Java Pointer Programs We report on
the implementation of Attestor—an automated verification tool for reasoning
about Java pointer programs. We describe how Attestor’s underlying abstract
domain can be understood in terms of graphical symbolic heaps. Moreover, we
give a brief tour through Attestor’s features and present experimental results.
Chapter 13 is mainly based on:

[4] Hannah Arndt, Christina Jansen, Joost-Pieter Katoen, Christoph Matheja,
and Thomas Noll. “Let this Graph Be Your Witness! - An Attestor for
Verifying Java Pointer Programs”. In: Computer Aided Verification (CAV),
Part II. vol. 10982. Lecture Notes in Computer Science. Springer, 2018,
pp. 3–11.

Chapter 14: Conclusion and Future Work We conclude our work on auto-
mated reasoning with separation logic and discuss future work.

1.4.5 Part IV: Appendix

We supplement the main part of this thesis by several appendices providing,
amongst others, mathematical preliminaries, omitted proofs, and detailed cal-
culations. More precisely, Appendix A contains basic preliminaries on domain
theory. Appendix B provides detailed calculations for an example presented
in Part I. In Appendix C, we give selected proofs which have been omitted
in Part II. Appendix D is a reference sheet with all proof rules for QSL expec-
tations. Some of these rules can be derived from other ones; the derivations
are found in Appendix E. All calculations required for our case studies on QSL
are collected in Appendix F. Appendix G defines basic notation for multisets.
Finally, in Appendix H, we provide selected proofs omitted in Part III.

1.5 Publications

This section contains a comprehensive list of all peer-reviewed publications
which I coauthored during my time as a PhD student at RWTH Aachen Uni-
versity. For convenience, the list is divided into three categories: First, I list
publications whose contributions are covered by this thesis. Second, I give a list
of publications that are closely related to the topics of this thesis although they
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are not considered in detail. A few results from these publications have been
adapted to fit in the context of this thesis and are cited accordingly. The third
category contains all other publications. A discussion of my own contributions
to the publications covered in this thesis—which I am obliged to provide by the
university’s regulations for doctoral studies—is found on page 451.

1.5.1 Publications Covered in this Thesis

[1] Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph
Matheja, and Thomas Noll. “Quantitative Separation Logic: A Logic for
Reasoning about Probabilistic Pointer Programs”. In: Proceedings of the
ACM on Programming Languages 3.POPL (2019), 34:1–34:29

[4] Hannah Arndt, Christina Jansen, Joost-Pieter Katoen, Christoph Matheja,
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Part II. vol. 10982. Lecture Notes in Computer Science. Springer, 2018,
pp. 3–11

[2] Christina Jansen, Jens Katelaan, Christoph Matheja, Thomas Noll, and
Florian Zuleger. “Unified Reasoning about Robustness Properties of
Symbolic-Heap Separation Logic”. In: European Symposium on Programming
(ESOP). vol. 10201. Lecture Notes in Computer Science. Springer, 2017,
pp. 611–638

1.5.2 Publications Relevant for this Thesis

[5] Jens Katelaan, Christoph Matheja, and Florian Zuleger. “Effective Entail-
ment Checking for Separation Logic with Inductive Definitions”. In: Tools
and Algorithms for the Construction and Analysis of Systems (TACAS), Part II.
vol. 11428. Lecture Notes in Computer Science. Springer, 2019, pp. 319–336

[6] Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and
Federico Olmedo. “Weakest Precondition Reasoning for Expected Run-
times of Randomized Algorithms”. In: Journal of the ACM 65.5 (2018),
30:1–30:68

[3] Hannah Arndt, Christina Jansen, Christoph Matheja, and Thomas Noll.
“Graph-Based Shape Analysis Beyond Context-Freeness”. In: Software
Engineering and Formal Methods (SEFM). vol. 10886. Lecture Notes in
Computer Science. Springer, 2018, pp. 271–286

[7] Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph
Matheja. “How long, O Bayesian network, will I sample thee? - A program
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analysis perspective on expected sampling times”. In: European Symposium
on Programming (ESOP). vol. 10801. Lecture Notes in Computer Science.
Springer, 2018, pp. 186–213
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Chapter 2

Reasoning about Imperative Programs

The demand for reasoning about programs arose simultaneously with the early
development of computers. For instance, in 1949, Alan M. Turing [Tur49] asked:
“How can one check a routine in the sense of making sure that it is right?”

This chapter is a brief tour through fundamental principles for reasoning
about the correctness of programs. By correctness, we mean that a program
has some desirable property—for example, the program computes the intended
output, it eventually terminates, or it never crashes due to a memory error. While
none of the presented techniques are new, we will build upon each of them
in follow-up chapters to reason about more powerful programming languages
and to perform automated reasoning. Furthermore, this chapter serves us to
introduce our notation and compare the main ideas of each approach in a
simplified setting before we move to advanced topics.

Approaches for reasoning about program correctness come in three flavors,
although the division between them is often seamless:

Executing a Program The simplest approach to reason about a program is
to execute it and then check whether the result is consistent with the desired
property. This is also known as testing which is an effective way to show
that a program is incorrect, but inadequate to show that a program satisfies
a property [Dij72]. In Section 2.1, we introduce a bare-bones programming
language that is used throughout this thesis. The meaning of programs is
defined in terms of an operational semantics, which mathematically describes
how programs are executed step-by-step on a conceptual machine. Testing then
corresponds to computing steps in our operational semantics.

Program Analysis The goal of program analysis is to discover approximations
of program behaviors that occur during execution (cf. [NNH99]). Instead of
running a program on a single input, we are thus interested in determining
properties that hold for a large set of or even all possible inputs. These properties
may serve as the basis for optimization or can be used to check correctness.
Program analysis usually performs some kind of abstraction, i.e., computations

17
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take place in an abstract domain instead of on an actual (or conceptual) machine.
Discovered properties then correspond to the results of abstract computations.
In Section 2.2, we discuss how abstraction—in the sense of simulations [Mil71;
BK08]—are applied to perform program analysis. This is a special case of a
general theory for abstraction and designing program analyses which is known
as abstract interpretation [CC77; CC92; CC14].

Program Verification The aim of program verification is to prove that a given
program satisfies a property of interest. To this end, the central notion is a
specification which expresses the properties that we may assume to hold before
and that we have to establish after program execution. Specifications are also
called Floyd-Hoare triples in recognition of the seminal works of Floyd [Flo67]
and Hoare [Hoa69], who developed rules to prove that a specification is correct.
In Section 2.3, we consider Floyd-Hoare triples in detail. Furthermore, we discuss
Dijkstra’s weakest precondition calculus [Dij76] which offers a systematic way
to derive correct specifications.

2.1 The Programming Language

We present techniques for reasoning about programs with respect to a small
programming language which, for lack of a better name, is called The Pro-
gramming Language, PL for short. PL is essentially a stripped-down version
of Dijkstra’s Guarded Command Language [Dij76] with stricter control flow
statements to eliminate nondeterminism. Its syntax roughly corresponds to
both Imp [Win93] and While [NN92]; two simplistic—yet Turing complete—
languages, that support the characteristic features of virtually every imperative
programming language. Throughout this thesis, we will gradually extend PL:

1. In Chapter 3, we add support for recursive procedures; this leads to the
Procedural Programming Language (P2L).

2. In Chapter 4, we extend P2L by instructions to manipulate dynamically
allocated memory via pointers; this leads to the Procedural Pointer Program-
ming Language (P3L).

3. In Chapter 5, we endow P3L programs with instructions to sample from
probability distributions; this leads to the Probabilistic Procedural Pointer
Programming Language (P4L).

For each of the above languages, we discuss both the language’s semantics and
techniques to reason about the correctness of programs.
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2.1.1 Syntax

To conveniently define the syntax of our programming language PL, we adhere
to the following conventions:

• We assume a countably infinite set Vars of program variables. Variables in
Vars are usually denoted by lowercase letters, such as x, y, z, or descriptive
names, such as counter, pivot, etc.

• By E we denote an arithmetic expression over variables in Vars evaluating
to an integer in Z. Instead of defining a concrete syntax for arithmetic
expressions, e.g., basic integer arithmetic as in [Win93, Chapter 2], we are
fairly liberal: Any computable function over variables that evaluates to an
integer may be used as an arithmetic expression.

• By B we denote a Boolean expression—also called a guard—over variables
evaluating to a truth value in T , { true, false }. As for arithmetic expres-
sions, any computable function over variables, which yields a truth value,
is permitted as a Boolean expression. A simple example of a syntax for
guards is found in [Win93, Chapter 2].

• Finally, by C (command), we refer to some program in our language.

With these conventions in mind, the set PL of programs written in The Program-
ming Language is given by the context-free grammar below:

C → skip (effectless program)
| x := E (assignment)
| C ; C (sequential composition)
| if ( B ) {C } else {C } (conditional choice)
| while ( B ) {C } (loop)

The intuitive meaning of each PL statement is straightforward: skip has no effect.
An assignment x := E sets the value of variable x to the value corresponding to
an evaluation of expression E. The sequential composition C1 ; C2 first executes
program C1 and—upon termination of C1—continues by executing program
C2. The conditional choice if ( B ) {C1 } else {C2 } executes program C1 if
guard B is evaluated to true. Otherwise, program C2 is executed. Finally, the
loop while ( B ) {C } immediately terminates without effect if its loop guard B
evaluates to false. Otherwise, we first execute the loop body C and then execute
the whole loop again.
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Example 2.1 Consider the PL program Codd below, where the labels Cloop
and Cif are not part of the program and serve solely to refer to the loop and
the conditional statement, respectively.

y := 0 ;
Cloop : while ( x > 0 ) {

Cif : if ( x mod 2 = 1 ) {
y := y + x

} else {
skip

} ;
x := x− 1

}

Program Codd computes the sum of all odd integers in the interval [0, x].
The result is then stored in variable y. To this end, y is initialized with zero.
After that, the loop Cloop is executed: As long as the value of variable x
is greater than zero, program Cif checks whether the current value of x is
odd, i.e., whether the remainder of dividing x by two yields one. If the
answer is yes, the value of variable x is added to the value of variable y;
otherwise, we execute a skip statement. In both cases, the value of variable
x is decremented before evaluating the loop guard x > 0 again.

To reason about the correctness of programs, e.g., that program Codd in Exam-
ple 2.1 sums up all odd integers between zero and x, we have to be precise on
what it means to execute a PL program. Our next step is thus to develop a
formal semantics for PL.

2.1.2 Semantics

The semantics of a programming language is a mathematical model that specifies
how programs behave. To precisely capture the effect of running a PL program
on a given input, we develop a small-step operational semantics [Plo81; NN92;
Win93] that describes how programs are executed step-by-step on an abstract
machine. The mathematical model underlying our semantics is a transition
system. The following presentation of transition systems and related concepts is
based on [BK08, Chapter 2].
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Figure 2.1: Illustration of a transition system as a directed graph.

Definition 2.2 (Transition System [BK08]) A transition system TS is a tuple

TS , 〈 S, →, S0 〉,

where S is a set of states, S0 ⊆ S is a set of initial states, and

→ ⊆ S× S

is an execution relation. We usually write s → s′ instead of (s, s′) ∈→ to
denote a step of the execution relation.

Example 2.3 Figure 2.1 depicts a transition system TS = 〈 S, →, S0 〉 as a
directed graph. Every node in this graph represents a state, i.e., we have
S = { si | 0 ≤ i ≤ 8 }. Moreover, a directed edge between two states, say s
and s′, corresponds to a step s → s′ in the execution relation. Moreover,
initial states are highlighted by having an incoming edge without a source
node, i.e., the set of initial states is S0 = { s6 }.

Intuitively, the states of a transition system, which models the execution of PL
programs, consist of the program to execute and a stack, i.e., a snapshot of the
current assignment of a value, say an integer in Z, to every program variable in
Vars. We prefer the term “stack” over other terms, such as “program state” or
“store” [NN92; Win93], because “stack” commonly refers to the area of memory
on most computers which keeps track of local variables (cf. [SGG10]). This
description suits our formalization well; in particular, once we add support for
procedures and dynamic memory allocation.
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Assumption 2.4 A naïve definition of stacks takes all functions from the set
Vars of variables into the set of integers Z into account (cf. [NN92, p. 12]),
i.e., one might define the set of stacks as

Stacks , { s : Vars→ Z } .

Unfortunately, this definition leads to technical subtleties: In Chapter 5, we
need a countable set of stacks, whereas the set of all total functions from
Vars into Z is uncountable. Furthermore, to represent a stack on an actual
machine, it is reasonable to consider only evaluations of the finitely many
variables that are actually accessed by a program.

To address these issues, we assume that all variables are initialized with
zero. Since any program can only change finitely many variables, it then
suffices to consider the countable set of stacks in which only finitely many
variables are mapped to integers different from zero.

Alternatively, one might think of stacks as partial functions mapping
from the set of variables accessed by a program into the set of integers.
While this approach also leads to a countable set of stacks, it is inconvenient:
Whenever the program under consideration changes, we might have to
change the domain of stacks.

With these considerations in mind, we formally define stacks as follows:

Definition 2.5 (Stack) The countable set of stacks is defined as

Stacks , {s : Vars→ Z | ∃V ⊆ Vars : |V| < ∞
and ∀x ∈ Vars \V : s(x) = 0}.

Let us also give a precise definition of expressions. An arithmetic expression
E is a (computable) function E : Stacks → Z that assigns an integer to
every stack. Analogously, a Boolean expression B is a (computable) function
B : Stacks→ T that assigns a truth value, i.e., true or false, to every stack.

A step of the execution relation corresponding to a PL program and a stack
is then understood as a transformation of both the stack and the remaining
program. To formalize these transformations, we introduce notation for updating
the values assigned to variables.
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Definition 2.6 (Variable Substitution [Win93, p. 19]) The substitution of a
variable x ∈ Vars by an integer v ∈ Z in a stack s ∈ Stacks is defined as

s [x/v] , λy.

{
v, if y = x
s(y), if y 6= x.

Here, we use λ-expressions to denote functions. That is, function λy. f
applied to an argument u evaluates to f in which every occurrence of y is
replaced by u.

We describe execution relations by inference rules à la Plotkin [Plo81]:

premise
conclusion

name

Here, both premise and conclusion are propositions that are either true or false.
Every rule should be read as an implication: If the premise is true, then we can
infer that the conclusion is also true. In this case, we also say that we applied
rule “name”. If a premise is always true, it is omitted and the rule is called an
axiom. Whenever we state that a set is “determined by inference rules”, we refer
to the smallest set satisfying all conclusions that can be inferred by exhaustive
application of inference rules.

We are now in a position to define a transition system that assigns formal
semantics to PL programs. We first define a single transition system for all PL
programs and all possible inputs. After that, we consider running a single PL
program on a given set of inputs (see Definition 2.12 on page 26).

Definition 2.7 (Operational Semantics of PL Programs [NN92, p. 33]) Let
term be a special symbol indicating successful termination and

〈
sink

〉
be a

dedicated sink state. The operational semantics of PL programs is given by the
transition system oPL , 〈 States,  , States 〉, where both the set of states
and the set of initial states are defined as

States , (( PL ∪ { term } ) × Stacks) ∪
{ 〈

sink
〉 }

.

Moreover, the execution relation

 ⊆ States × States

is determined by the rules in Figure 2.2 on page 24.

Let us briefly go over the rules of our operational semantics in Figure 2.2:
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〈
skip, s

〉
 

〈
term, s

〉 skip
E (s) = v〈

x := E, s
〉
 

〈
term, s [x/v]

〉 assign

〈
C1, s

〉
 

〈
term, s′

〉〈
C1 ; C2, s

〉
 

〈
C2, s′

〉 seq1

〈
C1, s

〉
 

〈
C′1, s′

〉〈
C1 ; C2, s

〉
 

〈
C′1 ; C2, s′

〉 seq2

B (s) = true〈
if ( B ) {C1 } else {C2 } , s

〉
 

〈
C1, s

〉 if-true

B (s) = false〈
if ( B ) {C1 } else {C2 } , s

〉
 

〈
C2, s

〉 if-false

B (s) = true〈
while ( B ) {C } , s

〉
 

〈
C ; while ( B ) {C }, s

〉 while-true

B (s) = false〈
while ( B ) {C } , s

〉
 

〈
term, s

〉 while-false

〈
term, s

〉
 

〈
sink

〉 term 〈
sink

〉
 

〈
sink

〉 sink

Figure 2.2: The rules determining the execution relation of the operational
semantics of PL programs.
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The skip statement terminates without changing the stack. An assignment
x := E also terminates in a single step, but additionally updates the value of x
in stack s to the value v which is obtained by evaluating expression E in s.

There are two cases for the sequential composition C1 ; C2: If program C1
terminates in a single step, we continue by executing program C2. Otherwise, we
execute one step of program C1 and continue with the sequential composition
of the resulting program C′1 and C2.

For the conditional choice if ( B ) {C1 } else {C2 }, execution depends on
the evaluation of guard B in the current stack. If the guard evaluates to true, we
continue by executing the left branch C1. Otherwise, we continue by executing
the right branch C2. Since we assume that evaluating expressions causes no side
effects, the stack remains unchanged in both cases.

Similarly to conditionals, execution of loops while ( B ) {C } depends on the
evaluation of loop guard B. If the loop guard is evaluated to true, we first execute
the loop body C and then continue by executing the loop again. Otherwise, the
loop terminates without effect.

Finally, Figure 2.2 contains two additional rules which ensure that, upon
termination, we move into a dedicated sink state and forever stay in it. The
rules term and sink are not necessary to define the semantics of PL programs.
However, it is convenient to have a dedicated state indicating termination.
Moreover, we occasionally rely on the presence of a sink state with a self-loop.
We thus added both rules for consistency.

The transition system oPL captures the semantics of all PL programs for all
initial stacks. To run a particular program, say C, on a particular stack, say s, it
then suffices to compute the steps of oPL starting in state

〈
C, s

〉
. Sequences of

such steps are called execution fragments.

Definition 2.8 (Execution [BK08, Section 2.1.1]) Let TS = 〈 S, →, S0 〉 be a
transition system. A finite execution fragment is a sequence of states in S

χ = s0s1 . . . sn,

where n ∈N is a natural number indicating the length of execution fragment
χ, and, for all 0 ≤ k < n, we have sk → sk+1.

An infinite execution fragment is an infinite sequence of states in S

χ = s0s1 . . . ,

where, for all natural numbers k ∈N, we have sk → sk+1.
An initial execution fragment is an execution fragment that starts in an

initial state, i.e., s0 ∈ S0. Moreover, a maximal execution fragment is an
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execution fragment which is either infinite or a finite execution fragment
that ends in a state sn such that there exists no state s′ with sn → s′. Finally,
an execution is an execution fragment which is both initial and maximal.

Example 2.9 The sequence s0s2s3s5s0s1s4 is a maximal execution fragment
of the transition system TS depicted in Figure 2.1, but it is not an initial one.
In fact, the infinite sequence s6s7s8s6 . . . is the only execution of TS.

In our operational semantics, running a program C on a stack s amounts to
computing all executions of the transition system oPL in which we change the
set of initial states to

{ 〈
C, s

〉 }
. Moreover, we remark that all executions of oPL

are infinite: Either a program never terminates or it terminates and the execution
loops forever in a dedicated sink state. Usually, only a part of oPL is relevant to
compute these executions. This part is called the reachable fragment.

Definition 2.10 (Reachable Fragment [BK08, p. 26]) Let TS = 〈 S, →, S0 〉
be a transition system. A state s′ ∈ S is reachable in TS from a state s ∈ S,
written s→∗ s′, if and only if there exists a finite execution fragment

s = s0s1 . . . sn = s′.

Let R be the set of all states reachable in TS from some initial state s ∈ S0.
Then the reachable fragment of TS is the transition system

Reach (TS) , 〈 R, → ∩ (R× R), S0 〉.

Example 2.11 The reachable fragment of the transition system in Figure 2.1
contains only the states s6, s7, and s8.

Since we usually reason about the transition system oPL, which determines the
semantics of PL programs, we introduce some convenient notation for dealing
with reachable fragments and executions of oPL.

Definition 2.12 (Notation for Operational Semantics) Let I ⊆ States be a
set of states of the transition system oPL = 〈 States,  , States 〉. Then the
reachable fragment of the operational semantics with respect to I is defined as

oPL (I) , Reach (〈 States,  , I 〉) .

Moreover, the set of executions of a PL program C and a stack s is defined as

Exec[C](s) ,
{

ρ
∣∣ ρ is an execution of oPL

({ 〈
C, s

〉 }) }
.
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It is noteworthy that the set of executions Exec[C](s) is always a singleton
because PL programs are deterministic [NN92, p. 39].

Example 2.13 Recall from Example 2.1, page 20, the program Codd which
computes the sum of all odd integers in the interval [0, x]. and stores the
result in y. Let us test whether Codd indeed computes the desired result
by applying our operational semantics for an initial stack s with s(x) = 3.
That is, we are interested in the set of executions Exec[Codd](s). The only
such execution of the transition system oPL

({ 〈
Codd, s

〉 })
is given by the

following applications of inference rules (whenever possible we tacitly apply
the rules seq1 and seq2 before any other rule):〈

Codd, s
〉

 
〈
Cloop, s[y

/
0]
〉

(by assign)

 
〈
Cif ; x := x− 1 ; Cloop, s [y

/
0]
〉

(by while-true)

 
〈
y := y + x ; x := x− 1 ; Cloop, s [y

/
0]
〉

(by if-true)

 
〈

x := x− 1 ; Cloop, s[y
/

3]
〉

(by assign)

 
〈
Cloop, s [y

/
3] [x/2]

〉
(by assign)

 
〈
Cif ; x := x− 1 ; Cloop, s [y

/
3] [x/2]

〉
(by while-true)

 
〈
skip ; x := x− 1 ; Cloop, s [y

/
3] [x/2]

〉
(by if-false)

 
〈

x := x− 1 ; Cloop, s [y
/

3] [x/2]
〉

(by skip)

 
〈
Cloop, s [y

/
3] [x/1]

〉
(by assign)

 
〈
Cif ; x := x− 1 ; Cloop, s [y

/
3] [x/1]

〉
(by while-true)

 
〈
y := y + x ; x := x− 1 ; Cloop, s [y

/
3] [x/1]

〉
(by if-true)

 
〈

x := x− 1 ; Cloop, s[y
/

4] [x/1]
〉

(by assign)

 
〈
Cloop, s [y

/
4] [x/0]

〉
(by assign)

 
〈
term, s [y

/
4] [x/0]

〉
(by while-false)

 
〈
sink

〉
 

〈
sink

〉
 . . . (by term)

Upon termination, i.e., when reaching a state
〈
term, . . .

〉
, we have

s [y
/

4] [x/0] (y) = 4 = 1 + 3.

Hence, if variable x is initially 3, program Codd indeed computes the sum of
all odd integers between 0 and x and stores the result in y.
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Since the operational semantics of PL programs is close to running programs
step-by-step on an actual machine, its rules (cf. Figure 2.2) match our intuitive
understanding of program statements. It is thus well-suited for understanding
the semantics of PL programs per se.

Our operational semantics is, however, inadequate for reasoning about pro-
grams, i.e., proving that a program has a property of interest: One could, in
principle, compute all executions of a PL program and some initial stacks as
we did in Example 2.13. For each of these executions, one then checks whether
a property holds. This approach amounts to testing. Unfortunately, there are
usually infinitely many possible initial stacks, i.e., we have to compute infinitely
many executions to prove a property. Furthermore, testing fails if some execu-
tions are infinite themselves, i.e., if the program does not terminate. Finally, we
are forced to consider all pedantic details of program executions—even if they
are irrelevant for our property.

In the next sections, we thus consider other techniques for reasoning about
PL programs. While these techniques attempt to avoid the aforementioned
drawbacks, they do not reflect the intuitive behavior of programs as well as
the operational semantics. Therefore, the operational semantics serves as the
reference model for proving these techniques sound.

2.2 Program Analysis with Abstraction

The operational semantics of PL is mainly inadequate for reasoning about
programs because the transition system oPL describes all the gory details of
program executions. This suggests that abstracting from these details improves
our ability to analyze programs. In fact, many successful techniques for au-
tomated reasoning about programs rely on some kind of abstraction [CC14].
Moreover, abstract interpretation [CC77; CC92] provides compelling theoretical
foundations to develop useful program analyses.

In this section, we briefly describe how abstraction supports reasoning about
transition systems. Since the operational semantics oPL is a transition system,
the same techniques apply to PL programs. Our treatment of abstraction
is based on [BK08, Section 7.4], where abstraction is considered in terms of
simulation relations [Mil71]. For a thorough treatment of abstract interpretation
and applications to program analysis, we refer to [CC92; NNH99].

The main idea of abstraction is to represent a concrete transition system by
an abstract transition system such that, for some property P of interest,

1. the abstract transition system is easier to analyze for property P, and

2. if property P holds for the abstract transition system, it also holds for the
concrete transition system.
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〈
sink

〉
〈
Cex, s0

〉 〈
x := −1, s0

〉 〈
term, s0 [x/−1]

〉

〈
Cex, s1

〉 〈
x := −1, s1

〉 〈
term, s1 [x/−1]

〉
...

...
...

Figure 2.3: Illustration of infinite transition system.

Intuitively, this means that every state of the abstract transition system repre-
sents many states of the concrete transition system which share some common
property. Moreover, the execution relation of the abstract transition system must
cover all possible steps of the concrete transition system.

Example 2.14 As a running example, consider the program C below.

Cex : while ( x ≤ 0 ) { skip } ; x := −1

Assume we want to know at every point of execution of Cex whether variable
x is positive or not. Moreover, for simplicity, let x be initially positive. Rea-
soning about program Cex by explicitly applying the operational semantics,
i.e., computing the concrete transition system

oPL
({ 〈

Cex, s
〉 ∣∣ s(x) > 0

})
,

is infeasible, since it has an infinite number of states. A fragment of this
transition system is illustrated in Figure 2.3, page 29. Although the transition
system is infinite, the program behaves very similarly for all considered
initial states. In fact, states executing the same program, i.e., states in the
same colored box, differ only in the values assigned to variables. The
concrete value of variables does, however, not matter for our property which
is only concerned with the sign of variable x. This suggests representing
all states in the same colored box by a single abstract state that stores
whether x is positive or not instead of a concrete stack. We formalize such
an abstraction and argue why the resulting abstract transition system is
sufficient to prove our property in the remainder of this section.
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To construct abstract transition systems, we first need a notion of “properties of
interest”. Thus, we assign labels to every state.

Definition 2.15 (State Labeling [BK08, p. 20]) Let TS = 〈 S, →, S0 〉 be a
transition system. Moreover, let AP be a (possibly infinite) set of atomic
propositions. A state labeling of TS is a function

Lab : S→ 2AP,

where 2AP , { S | S ⊆ AP } denotes the powerset of AP.

Example 2.16 A property of interest in Example 2.14 is whether variable
x is positive. Moreover, we want to keep track of the control flow of our
program. Hence, we choose the set of atomic propositions

AP , { x > 0, x ≤ 0 } ∪ PL ∪ { term } .

We then define the state labeling of our concrete transition system as

Lab (s) ,


{C, x > 0 } , if s =

〈
C, s

〉
and s(x) > 0

{C, x ≤ 0 } , if s =
〈
C, s

〉
and s(x) ≤ 0

∅, otherwise.

Consequently, in our illustration of the concrete transition system, see Fig-
ure 2.3, states with the same label lie in the same colored box.

An abstraction determines the concrete states that are represented by a single
abstract state. Since our goal is to reason about properties expressed in terms of
atomic propositions, abstractions must preserve the state labeling.

Definition 2.17 (Abstraction Function [BK08, p. 499]) Let TS = 〈 S, →, S0 〉
be a (concrete) transition system equipped with a state labeling Lab : S→
2AP. Moreover, let S# be a set of abstract states. Then the function f : S→ S#

is an abstraction function if

∀s, s′ ∈ S : f (s) = f (s′) implies Lab (s) = Lab
(
s′
)

.
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Example 2.18 To reason about the program Cex in Example 2.14, we collapse
all states with the same label into a single abstract state. Hence, the set of
abstract states is defined as

S# ,
{ 〈

Cex, x > 0
〉
,
〈

x := −1, x > 0
〉
,
〈
term, x ≤ 0

〉
,
〈
sink

〉 }
,

where, intuitively, every abstract state collects all states in the same colored
box in Figure 2.3, page 29. Formally, the corresponding abstraction function
with respect to the state labeling considered in Example 2.16 is given by

f (s) ,


〈
Cex, x > 0

〉
, if s =

〈
Cex, s

〉
and s(x) > 0〈

x := −1, x > 0
〉
, if s =

〈
x := −1, s

〉
and s(x) > 0〈

term, x ≤ 0
〉
, if s =

〈
term, s

〉
and s(x) ≤ 0〈

sink
〉
, if s =

〈
sink

〉
.

Once we have chosen an abstraction function, it remains to construct an abstract
transition system which is hopefully easier to analyze. The set of states of the
abstract transition system is already determined by the abstraction function.
Moreover, since all concrete states, which are mapped to the same abstract state,
are labeled with the same atomic propositions, the labeling of abstract states
is straightforward. The execution relation should cover all concrete execution
steps. Hence, for every concrete step, say s→ s′, there must be an abstract step
between the abstract states corresponding to s and s′, respectively. When dealing
with infinite transition systems, covering exactly all concrete executions may be
infeasible—in particular if the only precise way to compute the abstract steps
is to revert to concrete steps. In contrast to [BK08], we thus allow the abstract
execution relation to overapproximate the concrete execution relation.

Definition 2.19 (Abstract Transition System [BK08, p. 500]) For a transi-
tion system TS = 〈 S, →, S0 〉 equipped with a state labeling Lab : S→ 2AP,
let f : S → S# be an abstraction function for some set of abstract states S#.
Then TS f = 〈 S#, →#, S#

0 〉 is an abstract transition system equipped with a
state labeling Lab# : S# → 2AP whenever

• →# ⊇ { ( f (s), f (s′)) | s→ s′ },

• S#
0 = { f (s) | s ∈ S0 }, and

• for all states s ∈ S, Lab# ( f (s)) = Lab (s).
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〈
sink

〉〈
Cex, x > 0

〉 〈
x := −1, x > 0

〉 〈
term, x ≤ 0

〉
Figure 2.4: Abstract transition system.

Example 2.20 The abstract transition system with the smallest execution
relation corresponding to the concrete transition system in Figure 2.3, i.e.,

oPL
({ 〈

Cex, s
〉 ∣∣ s(x) > 0

})
,

and the abstraction function described in Example 2.18 is depicted in Fig-
ure 2.4. In particular, the concrete states in every colored box in Figure 2.3
are collapsed into a single abstract state of the same color.

Remember that our goal in Example 2.14 was to discover whether variable x is
positive for every execution step of the program

Cex : while ( x ≤ 0 ) { skip } ; x := −1

provided that the program starts on a stack, where x is positive. The abstract
transition system in Figure 2.4 obviously stores the relevant information in each
of its states (except for

〈
sink

〉
). For example, one could use this information to

prove that variable x is always negative upon termination. However, what does
this tell us about the concrete transition system, i.e., the reachable fragment of
the operational semantics?

Intuitively, every execution, say s0s1s2 . . ., of the concrete transition sys-
tem has a corresponding execution f (s0) f (s1) f (s2) . . . in the abstract transition
system. In other words, the abstract transition system simulates the concrete
transition system [Mil71; BK08]. This means that proving a property for all
executions of the abstract transition system implies that the same property holds
for all executions of the concrete transition system.

Hence, as long as we are careful about the considered properties, reasoning
by abstraction is sound. A precise characterization is found in [BK08, Chapter
7.5]: Reasoning about a property P in an abstract transition system instead of
a concrete transition system is sound whenever property P can be specified in
the universal fragment of the temporal logic CTL∗.1 This includes all properties
that can be specified in linear temporal logic [Pnu77], such as “x is negative,
whenever we reach a state indicating termination”.

1To be precise, soundness requires that transition systems have no finite maximal execution
fragments. This is ensured in our operational semantics because we added a sink state.
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Abstraction is a compelling approach for reasoning about programs. While
there is a large amount of literature on abstraction techniques and related
theory (cf. [Gru05; CC14] for an incomplete overview), the underlying principles
sketched in this section are fairly simple.

In particular, abstraction offers a clear path towards automation: It suffices
to choose an abstraction function such that (1) the abstract execution relation is
effectively computable and (2) the reachable fragment of the abstract transition
system has only finitely many states for a given set of initial states. With these
properties at hand, we obtain a generic program analysis algorithm:

1. Choose a set of abstract initial states that covers all inputs of interest.

2. Compute the reachable fragment of the abstract transition system with
respect to these initial states.

For automated program verification, the computed (finite) abstract transition sys-
tem is then checked for desired properties. To this end, established techniques,
such as model checking [EC80; BK08; Cla+18], are available. If the property
holds for the abstract transition system, it also holds for the concrete transition
system, i.e., the program we want to verify. Otherwise, we do not know whether
the property is violated or our abstraction is not precise enough. In this case,
we might apply counterexample guided abstraction refinement [Cla+00], i.e.,
exploit the witnesses for property violations, which are provided by the model
checker, to derive a better abstraction. In Chapter 13, we use abstraction and
model checking for automated reasoning about heap manipulating programs.

There are, however, some caveats. The main issue is that designing good
abstractions is hard and requires a lot of creativity. In some sense, coming up
with suitable abstractions for program analysis is even harder than verifying
that a property holds for a given program [CGR18]. Furthermore, finding
an abstraction function is not enough. For example, if the abstract execution
relation cannot be determined without reverting to concrete execution steps,
computing the abstract transition system becomes infeasible.

In the next section, we study an alternative approach, which attempts to
derive formal proofs of properties directly on the program structure without
constructing a transition system at all.

2.3 Program Verification

We now turn to the task of program verification, i.e., proving that a program
satisfies a property. Turing [Tur49] already proposed that a

“programmer should make a number of definite assertions which can be checked
individually, and from which the correctness of the whole program easily follows.”
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This approach is different from the techniques presented in previous sections:
So far, reasoning about programs involved their execution—either on a concrete
machine or in an abstract domain—and then analyzing the observed executions.
In contrast, Turing suggests assembling a proof of correctness compositionally
from already proven properties.

Almost twenty years later, Floyd [Flo67] developed a formal proof technique
to reason about the correctness of flow charts. Hoare [Hoa69] later extended
his approach to programs.2 The central goal of the resulting technique—called
Floyd-Hoare logic—is to prove that a program meets a specification. By specifi-
cation, we mean a Hoare triple of the form〈

precondition
〉

C
〈

postcondition
〉
,

where C is a program, precondition is the set of stacks considered before execution
of C, and postcondition is the set of stacks acceptable after execution of C.

For example, the informal specification “program Cex from Example 2.14
terminates with variable x being less than or equal to zero whenever it is initially
greater than zero” is captured by the Hoare triple〈

{ s ∈ Stacks | s(x) > 0 }
〉

Cex
〈
{ s ∈ Stacks | s(x) ≤ 0 }

〉
.

Program verification then amounts to providing a formal proof that a Hoare
triple is valid, i.e., the specification is correct. Intuitively, a Hoare triple is valid
if every execution of C, which starts on a stack in the precondition, leads to a
stack in the postcondition. The exact notion of validity is, however, more subtle
and depends on the specific flavor of Hoare logic. The meaning of Hoare logic
nowadays depends on three aspects:

1. An assertion language which determines how to represent sets of stacks as
pre- and postconditions.

2. A precise notion of validity of Hoare triples.

3. A proof system to determine whether a Hoare triple is valid.

We briefly explore each of these aspects for reasoning about PL programs.

2There is, however, no historical evidence that either Floyd or Hoare was influenced by Turing’s
publication. In fact, Turing’s paper was hardly readable due to various typesetting errors until it
was reconstructed from the original notes [MJ84].



2.3. Program Verification 35

2.3.1 Assertion Language

Reasoning about Hoare triples requires a finite representation of (infinite) sets
of stacks. Otherwise, just writing down a precondition, for instance the set of
all stacks in which the value of variable x is greater than the value of variable y,
becomes infeasible. We thus represent every set of stacks by a predicate, i.e., a
function mapping every stack to a truth value in T = { true, false }. A predicate
then describes the set of all for which it evaluates to true.

Definition 2.21 (Predicate [NN92, p. 177]) The set of predicates is defined as

Pred , { P : Stacks→ T } .

Moreover, the set of stacks captured by predicate P is defined as

Stacks (P) , { s ∈ Stacks | P(s) = true } .

We write s |= P (read: s satisfies P) as a shortcut for P (s) = true. Analo-
gously, we write s 6|= P (read: s violates P) as a shortcut for P (s) = false.

For example, the set of all stacks in which the value of variable x is greater than
the value of variable y is captured by the predicate x > y.

An assertion language determines the exact set of predicates that are allowed
to occur in Hoare triples. Assertion languages broadly come in two flavors
(cf. [NN92, Chapter 6.2]): The intensional approach provides an explicit syntax
for allowed predicates; this approach is taken in [Win93] and necessary for
automated reasoning. The extensional approach allows us to use any predicate
in Pred; this approach is taken in [NN92; NN07]. Since PL is liberal about the
syntax of both arithmetic and Boolean expressions (cf. Section 2.1.1), we are
also liberal about our assertion language. Hence, we take the second approach.

Let us collect a few examples of common predicates and their captured
sets of stacks. The predicate false , λs. false captures the empty set, i.e.,
Stacks (false) = ∅. Analogously, the set Stacks of all stacks is captured by
the predicate true , λs. true. Moreover, we may use any Boolean expression B
as a predicate. For example, for the predicate x > y, we have

Stacks (x > y) = {s ∈ Stacks | s (x) > s (y)} .

Furthermore, the predicates P ∨Q and P ∧Q capture the union and intersection
of the sets Stacks (P) and Stacks (Q), respectively. The predicate ¬P captures
the set Stacks \ Stacks (P). Finally, the predicate P⇒ Q evaluates to true if and
only if the set Stacks (P) is a subset of the set Stacks (Q).
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P

¬P

Q

¬Q

Figure 2.5: Illustration of possible program executions.

2.3.2 Validity of Hoare Triples

With an assertion language at hand, we now give a precise definition of Hoare
triples: A Hoare triple, or triple for short, is an expression of the form3〈

P
〉

C
〈

Q
〉
,

where P ∈ Pred is a predicate called the precondition, C is a PL program, and
Q ∈ Pred is a predicate called the postcondition.

Whether a Hoare triple
〈

P
〉

C
〈

Q
〉

is valid, i.e., whether program C meets
its specification given by precondition P and postcondition Q, depends on the
class of properties we are interested in. Intuitively, the chosen class of properties
determines which program executions are considered acceptable. Figure 2.5,
page 36, illustrates possible executions of a PL program, say C, on various
initial stacks. On the left-hand side, the set Stacks of all stacks is partitioned
by a precondition P, i.e., we distinguish the sets Stacks (P) and Stacks (¬P).
Analogously, on the right-hand side, the set Stacks is partitioned by some
postcondition Q. Every line illustrates an execution of program C which starts
either in a stack s |= P or a stack s 6|= P. For every execution, there are three
possibilities: It terminates in a stack s′ |= Q, i.e., the line ends in the green area
indicating that the postcondition is satisfied, it terminates in a stack s′ 6|= Q, i.e.,

3see, for example, [Hoa69], [NN92, p. 176], or [Win93, p. 78].
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the line ends in the red area indicating that the postcondition is violated, or the
execution does not terminate at all, i.e., the line ends up in a spiral.

The class of properties under consideration then determines which execu-
tions may and may not exist. For example, the topmost (black) line indicates an
execution which initially satisfies the precondition and terminates in a stack that
satisfies the postcondition. These executions are desirable and are included in
any conceivable class of properties. Conversely, an execution that initially satis-
fies the precondition and terminates in a stack that violates the postcondition is
never desirable. It will thus be forbidden for any conceivable class of properties
(we did not even draw it in Figure 2.5). Furthermore, we do not care about the
dashed lines, i.e., executions that initially violate the precondition and either do
not terminate or violate the postcondition upon termination; these executions
may exist, but are not considered. The remaining possible executions are design
choices. For example, one might allow or forbid nonterminating executions that
initially satisfy the precondition (illustrated by the orange line).

If we allow executions corresponding to the orange line in Figure 2.5, then we
consider partial correctness: The triple

〈
P
〉

C
〈

Q
〉

is valid with respect to partial
correctness if every terminating execution of C on a stack satisfying precondition
P ends up with a stack satisfying postcondition Q. In particular, the triple〈

P
〉
while ( true ) { skip }

〈
Q
〉

is valid with respect to partial correctness for all predicates P, Q ∈ Pred.
If we enforce termination, i.e., we forbid executions corresponding to the

orange line in Figure 2.5, then we consider total correctness. That is, the triple〈
P
〉

C
〈

Q
〉

is valid with respect to total correctness if every execution of C on a
stack satisfying precondition P terminates in a stack that satisfies postcondition
Q. Consequently, regardless of postcondition Q, there is exactly one precondition
P such that the triple 〈

P
〉
while ( true ) { skip }

〈
Q
〉

is valid with respect to total correctness: P = false.
Before we turn to a system for proving Hoare triples valid, let us give precise

definitions of validity in terms of the operational semantics oPL introduced
in Section 2.1.2. To this end, recall that ∗ denotes finitely many steps of the ex-
ecution relation of oPL (cf. Definition 2.10). Moreover, a program execution ter-
minates in our operational semantics if it eventually reaches the sink state

〈
sink

〉
and forever stays in that state. Hence, the set of all infinite sequences of states
that indicate termination is defined as Terminated , States∗

〈
sink

〉ω.4

4States∗ denotes the set of all finite sequences over States. Furthermore, the infinite sequence〈
sink

〉〈
sink

〉
. . . is denoted by

〈
sink

〉ω The set in which every sequence in States∗ is concatenated

with
〈
sink

〉ω is then defined as States∗
〈
sink

〉ω
,
{

ρ
〈
sink

〉ω
∣∣∣ ρ ∈ States∗

}
.
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Definition 2.22 (Validity of Hoare Triples [Hoa69], [NN92, pp. 176, 192])
The Hoare triple

〈
P
〉

C
〈

Q
〉

is valid for partial correctness if and only if

∀s ∈ Stacks (P) ∀s′ ∈ Stacks :
〈
C, s

〉
 ∗

〈
term, s′

〉
implies s′ |= Q.

The Hoare triple
〈

P
〉

C
〈

Q
〉

is valid for total correctness if and only if

•
〈

P
〉

C
〈

Q
〉

is valid for partial correctness, and

• ∀s ∈ Stacks (P) : Exec[C](s) ⊆ Terminated, where

Exec[C](s) is the set of executions of C on s (cf. Definition 2.12, page 26).

All PL programs are deterministic, i.e., the set Exec[C](s) is a singleton. Ex-
ploiting this property leads to a simpler notion of valid Hoare triples: A Hoare
triple

〈
P
〉

C
〈

Q
〉

is valid for total correctness if and only if for every stack s ∈
Stacks (P) there exists a stack s′ ∈ Stacks (Q) such that

〈
C, s

〉
 ∗

〈
term, s′

〉
.

This definition fails, however, if a program admits multiple executions. Since
this is the case in follow-up chapters, e.g., when considering dynamic memory
allocation in Chapter 4, we opted for a more robust definition of validity.

2.3.3 Proof Systems

The last aspect of Hoare logic we examine are proof systems to systematically
derive valid triples. Without such a proof system, we would have to revert to
the operational semantics for proving validity—a clearly undesirable scenario.
Floyd [Flo67] and Hoare [Hoa69] originally developed inference rules—similar
to the rules determining our operational semantics in Definition 2.7—to prove
validity. For example, their rule for sequential composition (for both partial and
total correctness) is defined as follows:〈

P
〉

C1
〈

R
〉 〈

R
〉

C2
〈

Q
〉〈

P
〉

C1 ; C2
〈

Q
〉 seq

Read from top to bottom, the rule assumes that we have shown the validity of
triples for the composed programs C1 and C2, i.e., we know that the triples〈

P
〉

C1
〈

R
〉

and
〈

R
〉

C2
〈

Q
〉

are valid. Since the postcondition of the left triple coincides with the precon-
dition of the right triple, we can then conclude the validity of a triple for the
composed program C1 ; C2. The rule for sequential composition is both intuitive
and flexible. For example, we are allowed to derive the validity of the two triples
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in the premise in an arbitrary order. Furthermore, there are no restrictions
regarding the choice of the intermediate predicate R.

Unfortunately, the same flexibility also exacerbates the systematic derivation
of valid triples: For proving a Hoare triple valid, we read inference rules as
proof obligations, i.e., from bottom to top. Hence, to prove that the triple〈

P
〉

C1 ; C2
〈

Q
〉

is valid, we have to choose a predicate R such that the triples〈
P
〉

C1
〈

R
〉

and
〈

R
〉

C2
〈

Q
〉

are valid. The rule for sequential composition thus requires a creative choice:
Find a suitable predicate from infinitely many possible candidates.

A more systematic approach, which avoids the need for creative choices, has
been proposed by Dijkstra [Dij75]: We fix a program C and a postcondition Q
and determine the weakest precondition WP such that the triple

〈
WP

〉
C
〈

Q
〉

is
valid. Here, the term “weakest” means that WP is logically implied by all other
preconditions leading to a valid triple. Moreover, by the logical equivalence

P⇒ Q iff Stacks (P) ⊆ Stacks (Q) ,

the weakest precondition captures the largest set of stacks on which program
C can be executed such that postcondition Q is satisfied afterward. Intuitively,
this means that executions corresponding to the blue line in Figure 2.5, page 36,
do not exist if P is the weakest precondition.

When computing weakest preconditions, there is in principle no need for
choosing predicates. For example, the intermediate predicate R in the rule for
sequential composition is uniquely determined by the weakest precondition of
program C2 and postcondition Q.

Apart from being more systematic, weakest preconditions have other ad-
vantages: They are used to prove (relative) completeness of proof systems, i.e.,
every correct statement that can be expressed in the assertion language can also
be shown with the proof system [NN92; Win93]. Moreover, since they avoid
ambiguities, weakest preconditions are more natural to formalize. Some for-
malizations of (extensions of) Hoare logic, such as [Kre+17], are thus internally
based on weakest preconditions. We take the same approach and study weakest
preconditions for both total and partial correctness in the next two sections.

Before we consider weakest preconditions in detail, however, let us discuss
why they exist at all. That is, is there a (unique) weakest precondition WP for
every program C and every postcondition Q? To answer this question, we first
make an observation about the structure of the set Pred of predicates.5

5We assume the reader is familiar with basic concepts from domain theory, e.g., complete lattices
and fixed points. A summary of these notions is found in Appendix A.
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Lemma 2.23 ( Pred, ⇒ ) is a complete lattice.

Proof. By Lemma A.5,
(

2Stacks, ⊆
)

is a complete lattice. Furthermore, by
considering the function λP. Stacks (P), it is straightforward to verify that
( Pred, ⇒ ) is isomorphic to

(
2Stacks, ⊆

)
. �

Now, consider the set of predicates

V ,
{

P
∣∣ 〈 P

〉
C
〈

Q
〉

is valid
}

.

By our previous explanation of Dijkstra’s approach, the weakest precondition
WP of program C and postcondition Q has to satisfy two properties:6

WP ∈ V and ∀P ∈ V : P⇒ WP.

In other words, WP is the least upper bound of the set V with respect to the
ordering⇒. By Lemma 2.23, this least upper bound exists, i.e.,

WP = sup
{

P
∣∣ 〈 P

〉
C
〈

Q
〉

is valid
}

is a predicate in Pred. In terms of sets of stacks, the supremum corresponds to
a union over all sets of stacks captured by preconditions. The above equation
serves us a semantic definition of weakest preconditions which is independent
of any precise notion of validity for Hoare triples.

Definition 2.24 (Semantic Weakest Preconditions) The (semantic) weakest
precondition WP of PL program C with respect to postcondition Q ∈ Pred is
defined as the predicate

WP , sup
{

P
∣∣ 〈 P

〉
C
〈

Q
〉

is valid
}

.

In the next sections, we discuss how semantic weakest preconditions are com-
puted systematically by induction on the program structure.

2.3.4 The Weakest Precondition Calculus

Let us first consider how weakest preconditions are computed for total correct-
ness. Hence, a triple is valid if every execution of a program on a stack satisfying
the precondition terminates in a stack that satisfies the postcondition.

To compute weakest preconditions compositionally, i.e., by structural induc-
tion on the syntax of PL programs, we define a predicate transformer

wp [C] : Pred→ Pred
6see also [NN92, p. 187] and [Win93, p. 101].
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〈
wp [if ( B ) {C1 } else {C2 }] (Q)

〉
if ( B ) {C1 } else {C2 }〈

wp [C1] (Q)
〉

C1〈
Q
〉

〈
wp [C2] (Q)

〉
C2〈
Q
〉

Figure 2.6: Illustration of the weakest precondition calculus wp applied to the
program C = if ( B ) {C1 } else {C2 } and postcondition Q. The solid lines
indicate steps in the operational semantics (omitting stacks). The dashed lines
indicate in which order weakest preconditions are calculated.

such that for every PL program C and every postcondition Q, the predicate
wp [C] (Q) coincides with the semantic weakest precondition for total correctness
(cf. Definition 2.24). We refer to the transformer wp as the weakest precondition cal-
culus in order to distinguish it from the semantic notion of weakest preconditions
considered in Definition 2.24.

Since we are initially given a program and a postcondition, wp is a backward
transformer. That is, as illustrated in Figure 2.6 for a conditional statement, we
move backward through the syntax tree of a given program, say C: Starting
at the last program statement of every branch of C, we compute the weakest
precondition with respect to the given postcondition, say Q. The resulting
preconditions then serve as postconditions for the next statement in each branch
until we have computed a precondition for the whole program C.

Definition 2.25 (Weakest Precondition Calculus [Dij75; Dij76]) The weak-
est precondition calculus wp is defined by structural induction on PL programs
according to the rules in Figure 2.7.

Let us go over the individual rules for wp stated in Figure 2.7.

Effectless statements Since skip immediately terminates and does not have
any effect on the stack, a stack s satisfies postcondition Q after execution of
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C wp [C] (Q)

skip Q

x := E Q [x/E]

C1 ; C2 wp [C1] (wp [C2] (Q))

if ( B ) {C1 } else {C2 } (B ∧ wp [C1] (Q)) ∨ (¬B ∧ wp [C2] (Q))

while ( B ) {C′ } lfp (W), where

W , λI. (B ∧ wp [C′] (I)) ∨ (¬B ∧Q)

Figure 2.7: Inductive definition of weakest preconditions. Here, the function
W is called the characteristic function of loop while ( B ) {C′ } with respect to
postcondition Q.

skip, i.e., stack s |= Q, if and only if it also satisfies Q before execution of skip.
Hence, the weakest precondition transformer for skip is

wp [skip] (Q) , Q.

Assignments To formalize the weakest precondition transformer for assign-
ments, we first introduce notation for updating values assigned to variables.
This corresponds to lifting variable substitution for stacks to predicates. Variable
substitution has been introduced in Definition 2.6, page 23, for the same purpose
when considering an operational semantics.

Definition 2.26 (Substitution for Predicates [NN92, p. 178]) The substitu-
tion of variable x ∈ Vars by arithmetic expression E in predicate P ∈ Pred
is defined as

P [x/E] , λs. P(s [x
/

E (s)]).

The weakest precondition transformer for assignments is then defined as

wp [x := E] (Q) , Q [x/E] .

To understand its correctness, consider the execution of an assignment x := E
on a stack s according to our operational semantics (cf. Definition 2.7):〈

x := E, s
〉
 

〈
term, s [x

/
E (s)]

〉
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Now, if the stack obtained after execution of the assignment satisfies our post-
condition Q, we obtain from the definition of substitution for predicates:

s [x
/

E (s)] |= Q

iff Q
(
s [x
/

E (s)]
)
= true

iff Q [x/E](s) = true

iff s |= Q [x/E].

Hence, our initial stack s has to satisfy the proposed weakest precondition.

Sequential composition For the sequential composition C1 ; C2, recall that the
weakest precondition calculus performs backward reasoning. Hence, let us first
consider the weakest precondition of program C2. The predicate wp [C2] (Q)
captures the set all stacks s such that executing C2 on s terminates and leads
to a stack s′ such that s′ |= Q. Consequently, if running program C1 ; C2 on a
stack s terminates with a stack s′ |= Q, then running program C1 on s has to
terminate with a stack s′′ that satisfies wp [C2] (Q). Hence, we determine the
weakest precondition of program C1 with respect to postcondition wp [C2] (Q).
The weakest precondition for sequential composition is thus defined as

wp [C1 ; C2] (Q) , wp [C1] (wp [C2] (Q) ) .

Conditionals For the conditional statement if ( B ) {C1 } else {C2 } the
weakest precondition transformer reflects the case distinction applied in our
operational semantics (Definition 2.7): If the guard B is satisfied in the initial
stack, then program C1 is executed and we compute the weakest precondition
wp [C1] (Q). Otherwise, the program C2 is executed and we compute the weakest
precondition wp [C2] (Q). The weakest precondition of the conditional then
considers both cases, i.e., the union of all captured stacks. Hence, it is defined as

wp [if ( B ) {C1 } else {C2 }] (Q)

, (B ∧ wp [C1] (Q)) ∨ (¬B ∧ wp [C2] (Q)) .

Loops The weakest precondition transformer for loops is more involved. We
first observe that the loop statement while ( B ) {C } exhibits exactly the same
behavior as the program

if ( B ) {C ; while ( B ) {C } } else { skip } .

We may thus use both programs interchangeably. A formal proof of this property
is found in [NN92, Lemma 2.5]. Since both programs are (semantically) identical,
we can derive the following equation:
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wp [while ( B ) {C }] (Q)

= J by the above identity K
wp [if ( B ) {C ; while ( B ) {C } } else { skip }] (Q)

= J by the weakest precondition of conditionals K
(B∧wp [C ; while ( B ) {C }] (Q)) ∨ (¬B∧wp [skip] (Q))

= J by the weakest precondition of sequential composition and skip K
(B ∧ wp [C] (wp [while ( B ) {C }] (Q))) ∨ (¬B ∧Q) .

Substituting the predicate wp [while ( B ) {C }] (Q) by some placeholder, say I,
then yields the equation

I = (B ∧ wp [C] (I)) ∨ (¬B ∧Q)︸ ︷︷ ︸
, W(I)

,

where we call the right-hand side, i.e., W : Pred → Pred,the characteristic
function of the loop while ( B ) {C } with respect to postcondition Q. Since
wp [while ( B ) {C }] (Q) is a solution of the above equation, it is a fixed point of
W. Fixed points of W exist due to the following observation.7

Lemma 2.27 (Monotonicity) For every PL program C, wp [C] is monotone.

Proof. By induction on the structure of PL programs. �

Monotonicity of the characteristic function W then follows from monotonicity
of wp [C], conjunction ∧, and disjunction ∨. Consequently, Tarski and Knaster’s
theorem (Theorem A.11) guarantees that W has a fixed point.

The weakest precondition of loops for total correctness is not an arbitrary
fixed point of the characteristic function, but the least fixed point. Hence, the
weakest precondition of while ( B ) {C } with respect to postcondition Q is

wp [while ( B ) {C }] (Q) , lfp (W) , where

W , λI. (B ∧ wp [C] (I)) ∨ (¬B ∧Q) .

Why do we choose the least fixed point? Consider the never-terminating pro-
gram while ( true ) { skip }. The corresponding characteristic function is

W(I) = (true∧ wp [skip] (I)) ∨ (¬true∧Q) = I.

Hence, every predicate in Pred is a fixed point of W. However, since we consider
total correctness, the only reasonable precondition is false—the least predicate
in the complete lattice ( Pred, ⇒ ).

7see, for example, [Dij76, Property 2, p. 18].
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This concludes the inductive definition of weakest preconditions for PL
programs. We note that the weakest precondition calculus summarized in
Figure 2.7 is sound in the sense that it coincides with our earlier semantic
definition of weakest preconditions introduced in Definition 2.24.

Theorem 2.28 (Soundness of the Weakest Precondition Calculus) Let
wp [C] (Q) be the predicate computed for program C with respect to
postcondition Q ∈ Pred by the transformer defined in Figure 2.7. Then

wp [C] (Q) = sup
{

P
∣∣ 〈 P

〉
C
〈

Q
〉

is valid for total correctness
}

.

Proof. By induction on the structure of PL programs. Details are found,
for example, in [NN92, p. 194]. �

Now that we have rules to compute weakest preconditions, let us apply them to
verify a simple PL program.

Example 2.29 Consider the PL program CabsInc given by

if ( x < 0 ) { x := −x } else { skip } ; y := x + 1.

We would like to show that CabsInc increments the absolute value of vari-
able x and stores the result in variable y. We thus compute the weakest
precondition with respect to postcondition y = |x|+ 1. This involves the
computation steps presented in Figure 2.8. The individual steps are depicted
as source code annotations which are meant to be read from bottom to top.
The lowermost annotation is our chosen postcondition and the uppermost
annotation is our derived precondition. Two predicates with a program in
between represent a valid Hoare triple, i.e., in Figure 2.8, we verify that〈

true
〉

CabsInc
〈

y = |x|+ 1
〉

is valid. For two predicates with an atomic statement in between, e.g., the
last three lines in Figure 2.8, the upper predicate is the weakest precondition
of that statement with respect to the lower predicate. For two predicates with
a comment in between, e.g., the first three lines in Figure 2.8, we prove that
the upper predicate implies the lower one; a justification of that implication
is provided in the comment. To improve readability, we highlight how
predicates have changed in each step and black-75 out the remainder.

Since the computations in Figure 2.8 yield that true implies the weakest
precondition, we conclude that, for every initial stack, the program CabsInc
terminates and stores the absolute value of x plus one in variable y.
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// true

// =⇒ J elementary predicate logic K
// (x < 0∧− x + 1 = | − x|+ 1)∨(x ≥ 0∧x + 1 = |x|+ 1)
if ( x < 0 ) {

// −x + 1 = | − x|+ 1
x := −x
// x + 1 = |x|+ 1

} else {
// x + 1 = |x|+ 1
skip

// x + 1 = |x|+ 1
};
// x + 1 = |x|+ 1
y := x + 1
// y = |x|+ 1

Figure 2.8: Computation of the weakest precondition of the program CabsInc.

2.3.5 Proof Rules for Weakest Preconditions

While the weakest precondition calculus enables us to systematically perform
program verification compositionally on the program structure, proving pro-
grams correct is intricate. In this section, we discuss additional proof rules to
support program verification with weakest preconditions.

Proof Rules for Loops The most involved part of computing weakest precon-
ditions is arguably reasoning about loops because it requires the computation
of least fixed points. To deal with loops, recall the characteristic function W of
loop while ( B ) {C } with respect to some postcondition Q:

W , λI. (B ∧ wp [C] (I)) ∨ (¬B ∧Q) .

We are then concerned with reasoning about the least fixed point of W. A simple
condition on the least fixed point is obtained from a step in Tarski’s proof of the
fixed point theorem which is also known as Park’s Lemma (Corollary A.12):

∀I ∈ Pred : W(I)⇒ I implies wp [while ( B ) {C }] (Q)⇒ I.
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Unfortunately, this rule only provides a necessary condition on the least fixed
point, but not a sufficient one. This means that there is no guarantee that the
predicate I is indeed a precondition such that the Hoare triple〈

I
〉
while ( B ) {C }

〈
Q
〉

is valid for total correctness. To obtain a sufficient rule, we make use of a
stronger fixed point theorem due to Kleene [Kle+52] which relies on the fact
that the weakest precondition calculus is continuous.

Lemma 2.30 ([NN92, p. 129]) The predicate transformer wp [C] is continu-
ous. Moreover, the characteristic function W of loop while ( B ) {C } with
respect to postcondition Q ∈ Pred is continuous.

Proof. Continuity of wp [C] is shown by induction on the structure of PL
programs. The proof for continuity of the characteristic function then follows
from continuity of wp [C], conjunction, and disjunction. �

With continuity at hand, Kleene’s theorem (Theorem A.16) yields the following
characterization of the least fixed point:

wp [while ( B ) {C }] (Q) = lfp (W) = lim
n→∞

Wn (false) .

We may thus attempt to compute the least fixed point by means of a fixed point
iteration. That is, we compute the sequence

W0(false) = false

W1(false) = W(false)

W2(false) = W(W1(false))

...

until, for some natural number n ∈ N, we have Wn(false) = Wn+1(false). In
general, the existence of such a natural number is, however, not guaranteed as
the fixed point iteration may only converge in the limit. Kleene’s theorem still
gives us a proof rule: If we find a sequence { In }n∈N such that

I0 = false and ∀n ∈N : W(In)⇒ In+1 and I = lim
n→∞

In,

then we can conclude that

I ⇒ lfp (W) = wp [while ( B ) {C }] (Q) .
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Example 2.31 Consider the program Cfac below.

x := 10 ;
y := 1 ;

Cloop : while ( x > 0 ) {
y := y · x ;
x := x− 1

}

Let us verify that Cfac always terminates with y = 10!, i.e., variable y is set
to the factorial of ten. We first compute the characteristic function W(R) of
the loop Cloop with respect to postcondition y = 10!:

W(R) = (x ≤ 0∧ y = 10!) ∨
(

x > 0∧ R [x/x− 1] [y
/

y · x]
)

Our next step is to find a predicate I which implies the least fixed point of
characteristic function W. To this end, we propose the sequence { In }n∈N

which is given by:

In ,



false, if n = 0
x ≤ 0∧ y = 10!, if n = 1

(x ≤ 0∧ y = 10!)∨ if n > 1.∧n−1
k=1

(
x = k ∧ y ·∏k−1

`=0(x− `) = 10!
)

,

It is straightforward to verify for all n ∈ N that W(In) = In+1. Then, by
our proof rule based on Kleene’s theorem, the limit of sequence { In }n∈N

implies the weakest precondition of the loop Cloop. Hence,

I = lim
n→∞

In = (x ≤ 0∧ y = 10!) ∨
∧

k∈N

(
x = k ∧ y ·

k−1

∏
`=0

(x− `) = 10!

)
⇒ wp [Cloop] (y = 10!) .

Verifying the whole program Cfac then amounts to applying the rules for
weakest preconditions:

wp [x := 10 ; y := 1 ; Cloop] (y = 10!)
= wp [x := 10 ; y := 1] (wp [Cloop] (y = 10!))
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⇐ wp [x := 10 ; y := 1] (I) (by above rule)

= I [y
/

1] [x/10]

= (10 ≤ 0∧ 1 = 10!) ∨
∧

k∈N

(
10 = k ∧ 1 ·

k−1

∏
`=0

(10− `) = 10!

)

= false∨
9

∏
`=0

(10− l) = 10! = true.

While we did not compute the exact weakest precondition, we verified that
predicate true implies wp [Cfac] (y = 10!). Hence, the triple〈

true
〉

Cfac
〈

y = 10!
〉

is valid. We thus conclude that, regardless of the initial stack, program Cfac
always terminates and stores the factorial of 10 in variable y.

Proof Rules for Compositional Reasoning about Predicates While the weak-
est precondition calculus enables to reason compositionally on the program
structure, the predicates computed along the way quickly become complicated.
It is thus also desirable to reason compositionally about predicates. To this end,
the following rules allow to separate concerns by reasoning individually about
smaller—and hopefully simpler—predicates.

Theorem 2.32 (Compositionality of wp for PL programs [Dij75; Dij76])
For all PL programs C and all predicates Q, R ∈ Pred, we have:

(a) Strictness: wp [C] (false) = false.

(b) Conjunction rule: wp [C] (Q ∧ R) = wp [C] (Q) ∧ wp [C] (R).

(c) Disjunction rule: wp [C] (Q ∨ R) = wp [C] (Q) ∨ wp [C] (R).

Proof. By induction on the structure of PL programs. �

2.3.6 The Weakest Liberal Precondition Calculus

Next, we turn to computing weakest preconditions for partial correctness. Hence,
a triple is valid if every execution on a stack satisfying the precondition either
does not terminate or terminates and satisfies the postcondition.

As for total correctness, we define a predicate transformer by induction on
the structure of PL programs to compute weakest preconditions compositionally.
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C wlp [C] (Q)

skip Q

x := E Q [x/E]

C1 ; C2 wlp [C1] (wlp [C2] (Q))

if ( B ) {C1 } else {C2 } (B ∧ wlp [C1] (Q)) ∨ (¬B ∧ wlp [C2] (Q))

while ( B ) {C′ } gfp (LW), where

LW , λI. (B ∧ wlp [C′] (I)) ∨ (¬B ∧Q)

Figure 2.9: Inductive definition of weakest liberal preconditions. LW is called
the liberal characteristic function of loop while ( B ) {C′ } with respect to Q.

This transformer maps, for every PL program C, postconditions to preconditions,
i.e., it has the form

wlp [C] : Pred→ Pred.

Since nontermination is now allowed, wlp [C] is called the weakest liberal pre-
condition transformer. A summary of the inductive definition of the weakest
liberal precondition calculus wlp is found in Figure 2.9. Let us compare wlp to the
weakest precondition transformer wp for total correctness.

Since both skip and the assignment x := E immediately terminate, their
weakest liberal precondition coincides with their weakest precondition. The
definitions for sequential composition C1 ; C2 and conditionals are also iden-
tical except that we refer to the weakest liberal precondition to deal with the
subprograms C1 and C2.

For loops, by a similar argument as for weakest preconditions, the weakest
liberal precondition of the loop while ( B ) {C } with respect to postcondition Q
is a fixed point of the equation

I = (B ∧ wlp [C] (I)) ∨ (¬B ∧Q)︸ ︷︷ ︸
, LW(I)

,

where we call the right-hand side, i.e.,

LW : Pred→ Pred,

the liberal characteristic function of the loop while ( B ) {C } with respect to post-
condition Q. In contrast to the weakest precondition transformer wp, however,
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we take the greatest fixed point instead of the least fixed point. To understand
why, consider—again— the never terminating program while ( true ) { skip }.
Its characteristic function is

LW(I) = (true∧ wlp [skip] (I)) ∨ (¬true∧Q) = I.

Hence, every predicate in Pred is a fixed point of LW. Since we consider partial
correctness, the only reasonable precondition is true—the largest predicate in
the complete lattice ( Pred, ⇒ ).

As for wp, the existence of fixed points is guaranteed by the Knaster-Tarski
fixed point theorem (Theorem A.11) and the fact, as stated below, that wlp [C]—
and thus also the liberal characteristic function LW—is monotone.

Lemma 2.33 (Monotonicity) For every PL program C, wlp [C] is monotone.

Proof. Analogous to the proof of Lemma 2.27. �

Hence, the weakest liberal precondition of loop while ( B ) {C } with respect to
postcondition Q is defined as

wlp [while ( B ) {C }] (Q) , gfp (LW) , where

LW , λI. (B ∧ wlp [C] (I)) ∨ (¬B ∧Q) .

For the record, let us note that the weakest liberal precondition calculus sum-
marized in Figure 2.9 is sound in the sense that it coincides with our semantic
definition of weakest preconditions introduced in Definition 2.24.

Theorem 2.34 (Soundness of the Weakest Liberal Precondition Calculus)
Let wlp [C] (Q) be the predicate computed for program C with respect to
postcondition Q ∈ Pred as defined in Figure 2.9. Then

wlp [C] (Q) = sup
{

P
∣∣ 〈 P

〉
C
〈

Q
〉

is valid for partial correctness
}

.

Proof. By induction on the structure of PL programs. A formal proof is
found, for example, in [NN92, pp. 184–187]. �

As we will see in the next section, reasoning about partial correctness is often
easier because we have additional proof rules at our disposal.

2.3.7 Proof Rules for Weakest Liberal Preconditions

We now turn to proof rules for reasoning about partial correctness of loops.
Moreover, we collect additional rules to support compositional reasoning.
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Proof Rules for Loops The most intricate part of proving partial correctness
is reasoning about loops because we have to compute fixed points. Let us first
recall the liberal characteristic function LW of loop while ( B ) {C } with respect
to some postcondition Q:

LW , λI. (B ∧ wlp [C] (I)) ∨ (¬B ∧Q) .

In contrast to reasoning about total correctness, Park’s Lemma (cf. Corol-
lary A.12) yields a proof rule that is useful for verification:

Theorem 2.35 (Invariant Rule for wlp)

∀I ∈ Pred : I ⇒ LW(I) implies I ⇒ wlp [while ( B ) {C }] (Q) .

While this rule does not yield the exact weakest liberal precondition of a loop, it
is sufficient to prove validity of the Hoare triple〈

I
〉
while ( B ) {C }

〈
Q
〉
.

Example 2.36 Recall from Example 2.31, page 48, the program Cfac which
computes the factorial of 10 and stores the result in variable y. Let us verify
the same property for partial correctness. The liberal characteristic function
LW(R) of the loop Cloop with respect to postcondition y = 10! is given by

LW(R) = (x ≤ 0∧ y = 10!) ∨
(

x > 0∧ R [x/x− 1] [y
/

y · x]
)

.

In contrast to the total correctness proof in Example 2.31, it suffices to
propose a single suitable invariant, say

I , (x ≤ 0∧ y = 10!) ∨
∧

k∈N

(
x = k ∧ y ·

k−1

∏
`=0

(x− `) = 10!

)
.

Verifying that I is indeed an invariant, i.e., proving that

I ⇒ LW(I),

is straightforward. By Theorem 2.35, we then conclude that

I ⇒ wlp [Cloop] (y = 10!) .

The remaining calculations to verify the whole program Cfac are analogous
to the steps in Example 2.31. Hence, using a different proof rule, we have
verified that

〈
true

〉
Cfac

〈
y = 10!

〉
is valid for partial correctness.
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Furthermore, we notice that greatest fixed points can also be computed iteratively
because the weakest liberal precondition calculus is continuous.

Lemma 2.37 The predicate transformer wlp [C] is continuous.
Moreover, the liberal characteristic function LW of loop while ( B ) {C }

with respect to postcondition Q ∈ Pred is continuous.

Proof. Analogously to the proof of Lemma 2.30. �

Hence, similar to wp, Kleene’s theorem (Theorem A.16) yields the following
characterization of greatest fixed points:

wlp [while ( B ) {C }] (Q) = gfp (LW) = lim
n→∞

LWn (true) .

As for total correctness, computing the greatest fixed point by means of the fixed
point iteration may only converge in the limit.

Proof Rules for Compositional Reasoning about Predicates The weakest lib-
eral precondition calculus enjoys similar compositionality properties as the
weakest precondition calculus.

Theorem 2.38 (Compositionality of wlp for PL programs [Dij75; Dij76])
For all PL programs C and all predicates Q, R ∈ Pred, we have:

(a) Strictness: wlp [C] (true) = true.

(b) Conjunction rule: wlp [C] (Q ∧ R) = wlp [C] (Q) ∧ wlp [C] (R).

(c) Disjunction rule: wlp [C] (Q ∨ R) = wlp [C] (Q) ∨ wlp [C] (R).

Proof. By induction on the structure of PL programs. �

An additional proof rule stems from the observation that some programs C
have no effect on a predicate Q, because C manipulates only variables that are
irrelevant for Q. To make this observation precise, let us first define the set of
variables relevant for the evaluation of an expression. Moreover, for programs,
we consider the set of variables modified by a program, i.e., variables that occur
on the left-hand side of an assignment.

Definition 2.39 (Relevant Variables [7, Def. 4]) The set Vars (E) ⊆ Vars
of variables occurring in an arithmetic expression E is given by

x ∈ Vars (E) iff ∃s ∈ Stacks ∃u, v ∈ Z : E [x/u] (s) 6= E [x/v] (s) .
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C Mod (C)

skip ∅

x := E { x }

C1 ; C2 Mod (C1) ∪Mod (C2)

if ( B ) {C1 } else {C2 } Mod (C1) ∪Mod (C2)

while ( B ) {C′ } Mod (C′)

Figure 2.10: Inductive definition of the variables modified by a PL program C.

The set Vars (P) ⊆ Vars of variables occurring in a predicate P is given by

x ∈ Vars (P) iff ∃s ∈ Stacks ∃u, v ∈ Z : P [x/u] (s) 6= P [x/v] (s) .

Finally, the set Mod (C) of variables modified by PL program C is deter-
mined by the inductive definition in Figure 2.10, page 54.

The above definition mixes a semantic notion of sets of variables (for arithmetic
and Boolean expressions) and a syntactic notion (for PL programs). The reason
for this is that we never introduced an explicit syntax for expressions. We
thus have to fall back to a semantic notion. Once a syntax for expressions is
fixed, however, any sensible practitioner will insist that variables occurring in
expressions must be determined by a syntactic notion that can be easily checked.

Now, if no variable modified by program C is relevant for predicate Q, then
computing the weakest precondition of C has no effect on Q (as long as C
terminates). This is also known as the axiom of invariance.

Theorem 2.40 (Invariance [Apt81]) Let C be a PL program and Q be a
predicate such that Mod (C) ∩Vars (Q) = ∅. Then Q⇒ wlp [C] (Q).

Proof. By induction on the structure of PL programs. �

Unfortunately, the invariance rule does not hold for total correctness. Consider,
for instance, the counterexample

wp [while ( true ) { skip }] (x > 0) = false 6= x > 0.

For terminating programs, however, we have wp [C] (Q) = wlp [C] (Q) = Q.
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Example 2.41 In the annotated program C below, we verify that whenever
C terminates, variable y is equal to one. Hence, our goal is to reason about
the weakest liberal precondition of C for postcondition y = 1. Due the rule
of invariance, this task is straightforward: We have Vars (y = 1) = { y }
and Mod (Cloop) = { x }. Hence, y = 1 implies wlp [Cloop] (y = 1). The
remaining proof then amounts to reasoning about an assignment.

// true

y := 1 ;
// y = 1

Cloop : while ( x 6= 0 ) {
if ( x > 0 ) { x := −x + 13 } else { x := −x− 1 }

}
// y = 1

2.3.8 Hoare Logic

Program verification by means of checking Hoare triples enables proving cor-
rectness compositionally on the program structure. We studied two weakest
precondition calculi—one for total and one for partial correctness—to system-
atically derive correct triples. The main advantage of weakest preconditions is
that they provide solid foundations for program verification: They are based
upon established results from domain theory. This is particularly compelling in
light of the fact that various unsound proof systems for (extensions of) Hoare
logic have been proposed in the past (cf. [Nip02] for an overview). Moreover,
weakest preconditions avoid ambiguous choices during the verification process,
e.g., the need to find suitable intermediate predicates. We consider extensions of
weakest precondition calculi to incorporate procedures in Chapter 3, dynamic
memory allocation in Chapter 4, and probabilistic behavior in Chapter 6.

For practical verification, there are some caveats when using weakest pre-
conditions. In particular, due to backward reasoning, we cannot take an already
known precondition into account. Hence, we are often forced to prove more
general properties than necessary. For example, to reason about the program
below with weakest preconditions, we first have to analyze the loop without
any knowledge about the initial value of variable x.

x := 10 ; while ( x > 0 ) { x := x− 1 },

This justifies to built more flexible rules in the original style of Floyd [Flo67] and
Hoare [Hoa69] on top of weakest preconditions.
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Let us briefly consider how to derive inference rules for partial correctness.
By Definition 2.24, we have〈

wlp [C] (Q)
〉

C
〈

Q
〉

is valid

and P⇒ wlp [C] (Q) implies
〈

P
〉

C
〈

Q
〉

is valid.

Moreover, by monotonicity of weakest liberal preconditions (Lemma 2.33),

Q′ ⇒ Q implies wlp [C]
(
Q′
)
⇒ wlp [C] (Q) .

Hence, if P ⇒ wlp [C] (Q′) and Q′ ⇒ Q, then the triple
〈

P
〉

C
〈

Q
〉

is valid.
This yields the rule of consequence in Hoare logic, i.e.,

P⇒ P′
〈

P′
〉

C
〈

Q′
〉

Q′ ⇒ Q〈
P
〉

C
〈

Q
〉 cons

All other inference rules of Hoare logic for partial correctness, which are found
in Figure 2.11, page 57, are then straightforward to derive from the inductive
definition of weakest liberal preconditions, the rule of consequence and derived
proof rules. Further details on Hoare logic are found, for example, in [Hoa69;
NN92; Win93]. In particular, we refer the reader to [Apt81] for a good overview.

This concludes our tour through fundamental principles for reasoning about
the correctness of programs. In the remaining chapters, we study various
extensions of these approaches with respect to more powerful programming
language constructs and automation.
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〈
P
〉
skip

〈
P
〉 skip 〈

P [x/E]
〉

x := E
〈

P
〉 assign

〈
P
〉

C1
〈

R
〉 〈

R
〉

C2
〈

Q
〉〈

P
〉

C1 ; C2
〈

Q
〉 seq

〈
B ∧ P

〉
C1
〈

Q
〉 〈

¬B ∧ P
〉

C2
〈

Q
〉〈

P
〉
if ( B ) {C1 } else {C2 }

〈
Q
〉 if

〈
B ∧ P

〉
C
〈

P
〉〈

P
〉
while ( B ) {C }

〈
¬B ∧ P

〉 while

P⇒ P′
〈

P′
〉

C
〈

Q′
〉

Q′ ⇒ Q〈
P
〉

C
〈

Q
〉 cons

〈
P
〉

C
〈

Q
〉 〈

R
〉

C
〈

S
〉〈

P ∧ R
〉

C
〈

Q ∧ S
〉 conjunction

Mod (C) ∩Vars (P) = ∅〈
P
〉

C
〈

P
〉 invariance

Figure 2.11: The inference rules that make up the proof system of Hoare logic
for PL programs with respect to partial correctness.





Chapter 3

Reasoning about Recursive Procedures

Many algorithms are recursive in nature. This holds in particular for algorithms
operating on dynamic data structures which are often themselves based on
recursive definitions (cf. [Knu97, Chapter 2]).

Before we consider reasoning about programs that manipulate dynamic data
structures in Chapter 4, we thus extend PL by support for recursive procedures
with call-by-value parameters and return values. This leads to the Procedural
Programming Language, P2L for short.

Outline The syntax of P2L, its scoping model, and its operational semantics are
introduced in Section 3.1. The abstraction techniques presented in Section 2.2 to
design program analyses for PL programs work analogously for P2L programs.
For program verification, however, reasoning about recursive procedure calls
requires a careful extension of the weakest precondition calculi introduced in
Section 2.3. Proof rules for P2L programs are presented in Section 3.2.

3.1 The Procedural Programming Language

The procedural programming language P2L is designed to support common
features of imperative programming languages, such as recursive procedures
with parameters. Since our ultimate goal is formal reasoning about programs,
we attempt to keep the formal semantics as simple as possible. To this end,
P2L contains a few internal statements to simplify the treatment of procedure
parameters and return values. Moreover, the scope of every procedure in P2L
is limited to its parameters and local variables, i.e., a procedure cannot access
any variable from the outside. Consequently, a value can only be passed from a
program to a procedure via one of the procedure’s parameters. Analogously,
a value can only be passed from a procedure to its calling program via the
returned value. The values of all variables which are local to a procedure are
lost upon the procedure’s termination.

59
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3.1.1 Syntax

Let us first extend the syntax of PL by procedure calls and auxiliary statements
to deal with the passing of parameters and return values. In addition to the
conventions introduced in Section 2.1.1, we adhere to the following conventions:

• Let Procs be a finite set of procedure names, such as F, G, or H. With every
procedure name F ∈ Procs, we associate a natural number n ∈ N of
parameters that have to be passed to procedure F.

• We occasionally denote by ~E a sequence E1, . . . , En of length |~E| = n ∈N.

• We assume that the set of variables Vars contains a special variable out
that models the return value of procedures.

With these conventions in mind, the syntax of the procedural programming
language is defined as follows.

Definition 3.1 (Syntax of the Procedural Programming Language) The set
of programs written in the Procedural Programming Language with Auxiliaries,
denoted P2LA, is given by the context-free grammar below (PL statements
are displayed in black-75):

C → x := F(~E) (procedure call)
| enter (enter scope)
| invoke F (invoke procedure)
| leave (leave scope)

| skip (effectless program)
| x := E (assignment)
| C ; C (sequential composition)
| if ( B ) {C } else {C } (conditional choice)
| while ( B ) {C } , (loop)

where x ∈ Vars is a variable, F ∈ Procs is a procedure name, ~E is a
sequence of arithmetic expressions whose length |~E| matches the number of
parameters associated with procedure F, E is an arithmetic expression, and
B is a Boolean expression. Moreover, the set of programs in the Procedural
Programming Language, denoted P2L, consists of all P2LA programs, which
contain neither enter nor invoke F nor leave statements.
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Intuitively, a procedure call x := F(~E) executes the program corresponding to
procedure F. The values of its parameters are determined by evaluating the
arithmetic expressions in ~E on invoking F. The return value assigned to variable
x upon termination is determined by the last value assigned to variable out.
To be precise about what “the program corresponding to procedure F” means,
every P2L program must be accompanied by procedure declarations.

Definition 3.2 (Procedure Declaration) A procedure declaration F(~x) {C }
consists of a procedure name F ∈ Procs, a sequence ~x of pairwise distinct
variables in Vars, which are called the parameters of F, and a P2L program C,
which is called the procedure body. Moreover, to ensure that the return value
of every procedure is well-defined, the last statement of every execution of
procedure body C must be an assignment to variable out.

For every P2L program, we assume the presence of two functions

body : Procs→ P2L and param : Procs→ Vars∗

that, for every procedure name F ∈ Procs, yield the procedure body and
the sequence of parameters of F’s declaration, respectively.

The set Procs of procedure names under consideration is usually defined im-
plicitly by the set of all procedure names that are declared alongside a given
P2L program. The same holds for the functions body and param.

Example 3.3 Consider the following declaration of a procedure mult:

mult(x, y) {
Cbody : if ( y > 0 ) {

z := mult(x, y− 1) ;
out := x + z

} else {
out := 0

}
}

The procedure body of mult is body (mult) = Cbody. Its arguments are
param (mult) = (x, y). Intuitively, mult takes two parameters x and y and—
if y is non-negative—returns the product of x and y. This is achieved by
adding up x recursively y times. Otherwise, the procedure returns zero.
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Assumption 3.4 We use a special variable void to indicate that we are not
interested in the value returned by a procedure. By convention, we require
that a program never reads the value of void. That is, apart from the left-
hand side of assignments, void occurs nowhere in programs. For obvious
reasons, void must not occur in any property we would like to reason about.

3.1.2 Scoping

In order to assign semantics to procedure calls, we first discuss the scope
of variables, which determines the variables that can be accessed within a
procedure’s body. To this end, let � be a special scope symbol. Intuitively,
variable names prefixed with a scope symbol are out of scope. These variables
correspond to local variables of other procedures. They thus cannot be accessed
by the currently executed procedure. Conversely, variables without a scope
symbol are within scope. These variables correspond to the local variables of the
current procedure. They thus can be accessed. The number of scope symbols in
front of a variable name, say �� x, reflects the nesting of depth of procedure
calls, i.e., how many nested procedure calls have to terminate until the variable
is within scope again.

Assumption 3.5 To prevent programmers with ill intent from circumventing
the scoping system, we assume a syntactic check that forbids usage of the
scope symbol, i.e., programs may not contain statements of the form �x := E
or �y > 0. The same condition does, of course, not apply internally, i.e., we
will use such statements in our semantics.

Moreover, we assume that every variable can be prefixed by a scope
symbol arbitrarily often. That is, if x is a variable name in Vars, then �x is
a variable name in Vars as well.

How does entering a new scope and leaving the current scope affect the stack?1

Whenever we enter a new scope, e.g., due to a procedure call, we add a scope
symbol � to the front of every variable name. Hence, after entering a scope, the
value of variable x in the original stack is stored in variable �x. What is then the
value of variable x in the stack after entering a new scope? Variable x is a local
variable that does not store any value of the original stack. We thus initialize
it with zero. In other words, entering a new scope intuitively corresponds to
simultaneously performing infinitely many assignments of the form

x := 0 � x := x ��x := �x . . .

1We remind the reader that we use the term “stack” to refer to an evaluation of variables and
not in the sense of a “call stack”. The latter is encoded in the names of variables.
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s [−�] s s [+�]

x 7 3 0

�x 11 7 3

�� x 13 11 7

���x
... 13 11

���� x
... 13

Figure 3.1: The effect of scope increment s [+�] and scope decrement s [−�] on
the evaluation of variable x (at different scoping levels) in a stack s.

Conversely, whenever we leave the current scope, e.g., because a procedure
terminates, we remove one scope symbol from every variable name. Hence,
after leaving the scope, the value of variable �x is now stored in variable x.
The original value of variable x, which was local to the scope we just left, is
lost. In other words, leaving a scope intuitively corresponds to simultaneously
performing infinitely many assignments of the form

x := �x � x := �� x ��x := ���x . . .

We formally capture the effect of entering and leaving scopes on a stack by two
operations that are called scope increment and scope decrement.

Definition 3.6 (Scope Increment and Decrement) The scope increment of a
stack s ∈ Stacks is defined as the stack

s [+�] , λx.

{
s(y), if x = �y
0, otherwise.

The scope decrement of a stack s ∈ Stacks is defined as the stack

s [−�] , λx. s(�x).

Moreover, the scope increment E [+�] and the scope decrement E [−�] of
an arithmetic expression E are defined as

E [+�] , λs. E (s [+�]) and E [−�] , λs. E (s [−�]) .
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Example 3.7 Figure 3.1 illustrates the effect of applying scope increment
and scope decrement to a stack s and a variable x at different scoping levels.
In particular, we observe that the value s(x) = 3 is lost when applying the
scope decrement operation. Moreover, for the same stack s in Figure 3.1, an
evaluation of the expression (x + 17) [−�] in s yields

(x + 17) [−�] (s)
= (x + 17) (s [−�])
= s [−�] (x) + 17
= s (�x) + 17
= 11 + 17 = 28.

Before we consider the operational semantics of P2L programs, let us collect a
few useful properties of scope increments and scope decrements.

Lemma 3.8 (Properties of Scope Increment and Decrement) The scope in-
crement s [+�] and the scope decrement s [−�] of a stack s ∈ Stacks satisfy
the following properties:

1. Incrementing and then decrementing the scope does not affect the
stack, i.e., s [+�] [−�] = s. The converse does, however, not hold.

2. Both scope increment and scope decrement are monotone, i.e., for all
stacks s, s′ ∈ Stacks, we have:

• ∀x : s (x) ≤ s′ (x) implies ∀x : s [+�] (x) ≤ s′ [+�] (x), and

• ∀x : s (x) ≤ s′ (x) implies ∀x : s [−�] (x) ≤ s′ [−�] (x).

Proof. To prove the first property, consider the following:

s [+�] [−�] (x) = s [+�] (�x) = s(x).

Moreover, monotonicity follows directly from applying the definition of
scope increment and scope decrement to a fixed variable x ∈ Vars. �

The above properties ensure that we never accidentally lose the value of a
variable due to scope changes as long as every scope decrement is preceded by
a scope increment. This property is guaranteed for all P2L programs.

3.1.3 Semantics

We now extend the operational semantics of PL programs to P2LA programs.
To this end, recall from Definition 2.7 the transition system oPL in which states
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are of the form
〈
C, s

〉
, where s is a stack in Stacks and C is either a program

or a special symbol term indicating termination. Before we assign semantics to
procedure calls, we consider the statements enter, leave, and invoke F.

The statement enter causes the execution to enter a new scope, i.e., stack s
is transformed into the stack s [+�]. This corresponds to the following rule:〈

enter, s
〉
 

〈
term, s [+�]

〉 enter

Similarly, the statement leave is used to leave the current scope, i.e., stack s is
transformed into the stack s [−�]. This corresponds to the following rule:〈

leave, s
〉
 

〈
term, s [−�]

〉 leave

Furthermore, the statement invoke F executes the body of procedure F:

C = body (F)〈
invoke F, s

〉
 

〈
C, s

〉 invoke

Towards a complete definition of the operational semantics of P2LA programs,
it remains to assign semantics to procedure calls. Intuitively, the execution of a
call statement x := F(~E) consists of five steps:

1. To ensure that (initially) no variable is accessible by the called procedure,
we enter a new scope. This is modeled by the auxiliary statement enter.

2. The expressions ~E passed to the procedure are evaluated in the original
stack. The resulting values are then stored in local variables, which
correspond to the procedure’s parameters param (F). This is modeled
using one assignment for each parameter, where the assigned expressions
are evaluated in the previous, i.e., decremented, scope.

3. The body of procedure F, which is determined by its declaration, is
executed. This is modeled by the auxiliary statement invoke F.

4. After termination of the procedure body, the return value is, by Defini-
tion 3.2, stored in variable out. It is then stored in variable x of the original
stack. This is modeled by the assignment �x := out.

5. Finally, we leave the current scope. The values of all local variables are
lost in the process. This is modeled by the auxiliary statement leave.

Towards a formal definition of the semantics of procedure calls, we implement
the above five steps as a P2LA program.2

2Throughout this thesis, we only consider sequential programs. In a concurrent setting, one
would additionally have to ensure that the first three steps are performed atomically.
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Definition 3.9 (Implementation of Procedure Calls) The implementation of
a procedure call x := F(E1, . . . , En), where the parameters of procedure F
are param (F) = (x1, . . . , xn), and the procedure body is body (F), is given
by the P2LA program impl (x := F(E1, . . . , En)) provided below:

enter ; (1. enter new scope)
x1 := E1 [−�] ; . . . ; xn := En [−�] ; (2. assign parameters)
invoke F ; (3. invoke procedure)
� x := out ; (4. store return value)
leave. (5. leave scope)

The semantics of a procedure call then amounts to executing its implementation.
The operational semantics of P2L programs is then formalized as a transition
system, which covers all possible program executions.

Definition 3.10 (Operational Semantics of P2L Programs) Let term be a
special symbol indicating successful termination and

〈
sink

〉
be a dedicated

sink state. The operational semantics of P2L programs is the transition system
oP2L , 〈 States,  , States 〉, where both the set of states and the set of
initial states are defined as

States ,
((

P2LA ∪ { term }
)
× Stacks

)
∪
{ 〈

sink
〉 }

.

Moreover, the execution relation

 ⊆ States × States

is the smallest relation induced by the rules in Figure 3.2 on page 67.
As for PL programs, we define the reachable fragment of oP2L with respect

to the set of initial states I as

oP2L (I) , Reach (〈 States,  , I 〉) .

Finally, the set of executions of program C and stack s is defined as

Exec[C](s) ,
{

ρ
∣∣∣ ρ is an execution of oP2L

({ 〈
C, s

〉 }) }
.
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C = impl (x := Proc(E1, . . . , En))〈
x := Proc(E1, . . . , En), s

〉
 

〈
C, s

〉 call

〈
enter, s

〉
 

〈
term, s [+�]

〉 enter 〈
leave, s

〉
 

〈
term, s [−�]

〉 leave

C = body (F)〈
invoke F, s

〉
 

〈
C, s

〉 invoke

〈
skip, s

〉
 

〈
term, s

〉 skip
E (s) = v〈

x := E, s
〉
 

〈
term, s [x/v]

〉 assign

〈
C1, s

〉
 

〈
term, s′

〉〈
C1 ; C2, s

〉
 

〈
C2, s′

〉 seq1

〈
C1, s

〉
 

〈
C′1, s′

〉〈
C1 ; C2, s

〉
 

〈
C′1 ; C2, s′

〉 seq2

B (s) = true〈
if ( B ) {C1 } else {C2 } , s

〉
 

〈
C1, s

〉 if-true

B (s) = false〈
if ( B ) {C1 } else {C2 } , s

〉
 

〈
C2, s

〉 if-false

B (s) = true〈
while ( B ) {C } , s

〉
 

〈
C ; while ( B ) {C }, s

〉 while-true

B (s) = false〈
while ( B ) {C } , s

〉
 

〈
term, s

〉 while-false

〈
term, s

〉
 

〈
sink

〉 term 〈
sink

〉
 

〈
sink

〉 sink

Figure 3.2: The rules determining the operational semantics of P2L programs.
Rules depicted in black-75 are identical to the rules for PL programs (see Defini-
tion 2.7). The program representing the implementation of procedure calls, i.e.,
impl (x := F(E1, . . . , En)), is found in Definition 3.9.
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Example 3.11 Let us consider the execution of a simple non-recursive pro-
cedure F, which is given by the declaration

F(x, y) { out := x · y }.

Moreover, let s be a stack with s(y) = 2 and s(z) = 4. To run the program

x := F(y + 1, z)

on stack s, we compute the only execution of the transition system

oP2L
({ 〈

x := F(y + 1, z), s
〉 })

.

This involves the following execution steps:〈
x := F(y + 1, z), s

〉
 
〈
enter ; x := (y + 1) [−�] ; y := z [−�] ; (by call)

invoke F ; �x := out ; leave, s
〉

 
〈

x := (y + 1) [−�] ; y := z [−�] ; (by enter)

invoke F ; �x := out ; leave, s [+�]
〉

 
〈
y := z [−�] ; (by assign)

invoke F ; �x := out ; leave, s [+�] [x/3]
〉

 
〈
invoke F ; �x := out ; leave, (by assign)

s [+�] [x/3] [y
/

4]
〉

 
〈
out := x · y ; �x := out ; leave, (by invoke)

s [+�] [x/3] [y
/

4]
〉

 
〈
� x := out ; leave, (by assign)

s [+�] [x/3] [y
/

4] [out/12]
〉

 
〈
leave, (by assign)

s [+�] [x/3] [y
/

4] [out/12] [�x/12]
〉

 
〈
term, (by leave scope)

s [+�] [x/3] [y
/

4] [out/12] [�x/12] [−�]
〉

 
〈
sink

〉
 . . .
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C Mod (C)

skip ∅

x := E { x }

C1 ; C2 Mod (C1) ∪Mod (C2)

if ( B ) {C1 } else {C2 } Mod (C1) ∪Mod (C2)

while ( B ) {C′ } Mod (C′)

x := F(E1, . . . , En) { x }

Figure 3.3: Inductive definition of the set Mod (C) of variables modified by a P2L
program C. The definitions for PL programs (in black-75) remain unchanged.

A closer look at the final stack, i.e., the stack reached upon termination
indicated by the special symbol term, then reveals that

s [+�] [x/3] [y
/

4] [out/12] [�x/12] [−�] = s [x/12] .

Hence, the procedure call sets x to the product of the supplied parameters.

Although the step-by-step calculations in Example 3.11 are very tedious, they
reveal the effects of entering and leaving scopes. In particular, every variable is
technically both accessed and modified by a change of scope. After execution of
the whole procedure call, however, we obtain the same stack as before in which
only the variable storing the procedure’s return value is changed. Formally,

Lemma 3.12 For every procedure declaration, the execution〈
x := F(~E), s

〉
 ∗

〈
term, s′

〉
implies that for all variables y 6= x, we have s(y) = s′(y).

Proof. By induction on the number of rules applied until a state indicating
termination is reached. �

By Lemma 3.12, x is the only variable that is modified by the procedure call
x := F(~E). Hence, we extend the set Mod (C) of variables modified by program
C (see Figure 2.10) to cover P2L programs as summarized in Figure 3.3.
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3.2 Program Verification

Running a P2L program with procedures requires a lot of tedious computation
steps that distract a programmer from understanding a program’s behavior. For
instance, the execution of the trivial program in Example 3.11 already consists
of nine individual steps. It is thus desirable to reason about the correctness of
procedures by means of formal verification on the program structure as we did
for PL programs in Section 2.3.

Proof rules for recursive procedures are among the first extensions that
have been proposed after the publication of the seminal papers on verification
by Floyd [Flo67] and Hoare [Hoa69]. For instance, Hoare [Hoa71] introduced
a set of inference rules for reasoning about partial correctness of recursive
procedures with both call-by-reference and call-by-value parameters as well as
local variables. Moreover, proof rules for total correctness based on weakest
preconditions have been studied by Hesselink [Hes93].

In our operational semantics, we used auxiliary statements to split the seman-
tics of procedure calls into smaller digestible parts, i.e., entering a new scope,
parameter assignment, procedure invocation, assignment of the return value,
and leaving the scope again. We could use the same auxiliary statements for
program verification. However, this would require us to rewrite P2L programs
into P2LA programs before verification—a step that goes against the spirit of
reasoning compositionally on the program structure. Hence, all of the above
steps are covered by the weakest precondition transformer for procedure calls.

Since this transformer is rather involved, we derive it step-by-step: We first
consider wp transformers for auxiliary statements in P2LA. After that, we
combine these transformers to define the weakest precondition transformer
for procedure calls. In particular, we use the same scoping system as in our
operational semantics. This is different from Hoare’s approach, which relies
on additional proof rules, such as the rule of adaption, for renaming variables
if necessary. Alternative sets of rules to deal with scoping exist, e.g., the rules
of conjunction, invariance, and specialized substitution rules; see [Apt81] for
a survey. To get a feeling for the complexity of the involved rules, we remark
that it took almost ten years to understand which sets of auxiliary rules lead
to complete inference systems [Old83]. Furthermore, several proposals turned
out to be either incomplete or incorrect along the way [Nip02]. To avoid these
issues, we prefer an explicit scoping scheme for procedure calls that does not
rely on additional rules for on-the-fly variable renaming.

The remainder of this section covers program verification for P2L programs.
We first lift the relevant notions from Section 2.3, such as Hoare triples and
weakest (liberal) preconditions, from PL programs to P2L programs. After that,
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we discuss how valid triples are derived for procedure calls. In particular, we
study proof rules for reasoning about partial correctness of recursive procedures.

3.2.1 Hoare triples for P2L

The foundations of program verification by means of deriving valid Hoare triples
for PL programs have been presented in detail in Section 2.3. Let us briefly
discuss how these foundations are adapted to reason about P2L programs.

Our assertion language remains unchanged, i.e., we allow all predicates in
Pred to serve as pre- and postconditions. Moreover, Hoare triples for P2L
programs are defined mutatis mutandis as for PL programs (cf. Section 2.3.2).
That is, a Hoare triple is an expression of the form〈

P
〉

C
〈

Q
〉
,

where C is a P2L program and both P and Q are predicates in Pred. To formalize
the validity of Hoare triples (cf. Definition 2.22, page 38), it suffices to replace
the operational semantics of PL programs by the semantics of P2L programs.
That is, the triple

〈
P
〉

C
〈

Q
〉

is valid for partial correctness if and only if

∀s ∈ Stacks (P) ∀s′ ∈ Stacks :
〈
C, s

〉
 ∗

〈
term, s′

〉
implies s′ |= Q.

Furthermore, the triple
〈

P
〉

C
〈

Q
〉

is valid for total correctness if and only if it is
valid for partial correctness and

∀s ∈ Stacks (P) : Exec[C](s) ⊆ Terminated.

The semantic definition of weakest preconditions—as introduced in Defini-
tion 2.24, page 40—remains unchanged: The weakest precondition WP of a P2L
program C with respect to postcondition Q ∈ Pred is the predicate

WP , sup
{

P
∣∣ 〈 P

〉
C
〈

Q
〉

is valid for total correctness
}

.

Analogously, the weakest liberal precondition WLP of a P2L program C with respect
to postcondition Q ∈ Pred is defined as the predicate

WLP , sup
{

P
∣∣ 〈 P

〉
C
〈

Q
〉

is valid for partial correctness
}

.

While the semantic foundations of triples and weakest preconditions for P2L
programs are virtually the same as for PL programs, developing proof systems for
deriving valid triples requires more work. To avoid getting trapped in technical
details, we consider only a restricted set of recursive procedures.
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Assumption 3.13 Throughout this thesis, we restrict ourselves to direct
recursion. That is, if procedure F calls procedure G, then either G coincides
with F or neither G nor any procedure called by G calls F again.

It is possible, however, to incorporate mutually recursive procedures into all
definitions presented in the following.

3.2.2 The Weakest Precondition Calculus for P2L

We now extend the weakest precondition calculus by rules for recursive proce-
dures. To this end, recall from Section 2.3.4 the predicate transformer

wp [C] : Pred→ Pred,

which determines the weakest precondition of PL program C with respect to
postcondition Q. To extend this transformer to P2L programs, we have to
develop a rule to compute the weakest precondition of a procedure call

x := F(~E).

As in our operational semantics, the behavior of procedure call x := F(~E) is
determined by its implementation, i.e., a program that enters a new scope, assigns
the values of arguments ~E to local variables, invokes the body of procedure F,
assigns the return value to variable x, and leaves the scope again. Hence, the
weakest precondition transformer for procedure calls satisfies the equation

wp
[

x := F(~E)
]
(Q) = wp

[
impl

(
x := F(~E)

)]
(Q) ,

where the implementation of procedure calls is found in Definition 3.9, page 66.
Notice that the equation’s right-hand side is not entirely well-defined, because
implementations use the auxiliary statements enter, leave, and invoke F.
Hence, the implementation is a P2LA program but not a P2L program.

In order to develop the weakest precondition transformer for procedure calls,
let us—for the moment—allow the P2LA auxiliary statements enter, leave, and
invoke F in wp: We first consider weakest precondition transformers for these
auxiliary statements. Since a procedure implementation is a sequential composi-
tion of P2LA programs, this enables us to compute the weakest precondition
of procedure implementations step-by-step. Finally, we collapse all of these
steps into a single rule that determines the weakest precondition transformer
for procedure calls without referring to P2LA programs.

To capture the weakest precondition of enter and leave, we first lift the
scope increment and decrement operations (cf. Definition 3.6) to predicates.
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Definition 3.14 (Scoping for Predicates) The scope increment P [+�] and
scope decrement P [−�] of a predicate P ∈ Pred are defined as

P [+�] , λs. P(s [+�]) and P [−�] , λs. P(s [−�]).

Intuitively, changing the scope of a stack corresponds to a simultaneous assign-
ment to every variable in Vars. Hence, the rationale underlying the weakest
precondition transformer for entering a new scope is similar to the rationale
underlying the rule for assignments. That is, to execute the statement enter on a
stack s, we apply the following rule of our operational semantics (cf. Figure 3.2):

〈
enter, s

〉
 

〈
term, s [+�]

〉 enter
.

Now, if s [+�] satisfies postcondition Q, we have

s [+�] |= Q
iff Q(s [+�]) = true

iff Q [+�] (s) = true

iff s |= Q [+�] .

Hence, the weakest precondition transformer of enter is defined as

wp [enter] (Q) , Q [+�] .

Furthermore, by an analogous argument, the weakest precondition transformer
of leave, which leaves the current scope, is defined as

wp [leave] (Q) , Q [−�] .

The last P2LA statement we have to consider is the procedure invocation
invoke F. The procedure invocation executes—operationally speaking—the
body of F after entering a new scope and passing parameter values. Hence, the
weakest precondition of invoke F has to coincide with the weakest precondition
of body (F). Thus, for every postcondition Q, we have

wp [invoke F] (Q) = wp [body (F)] (Q) .

In fact, defining the weakest precondition transformer of procedure invocations
by the above equation is well-defined as long as the body of procedure F
does not contain recursive procedure calls (and thus also no invocations of F).
However, if the body of F contains recursive calls, then the situation is more
involved because the weakest precondition transformer of body (F) depends on
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wp [invoke F] again. Hence, similarly to our treatment of loops in Section 2.3.4,
the weakest precondition of procedure invocations is determined by a fixed
point. This time, however, the fixed point is not a predicate in Pred, but a
predicate transformer

wp [invoke F] : Pred→ Pred.

In other words, we have to consider higher-order fixed points. To formally reason
about the desired fixed point, we define an auxiliary transformer

wpF
θ [C] : Pred→ Pred,

that is defined mutatis mutandis as wp [C] except for the rule for invocations of
procedure F. The behavior of invoke F is captured by the attached predicate
transformer θ : Pred→ Pred, i.e.,

wpF
θ [invoke F] , θ.

The transformer wp [invoke F] is then a fixed point of the following equation:

θ , λθ.wpF
θ [body (F)] .

Why do suitable fixed points exist? To answer this question, we first lift our
ordering on predicates, i.e., implication, to predicate transformers by pointwise
application. That is, for two predicate transformers θ, θ′, we have

θ ⇒ θ′ iff ∀P ∈ Pred : θ(P)⇒ θ′(P).

Next, we observe that the set of all (monotone) predicate transformers together
with ordering ⇒ forms a complete lattice. Moreover, the higher-order trans-
former wpF

θ is monotone for every monotone predicate transformer θ. This is a
direct consequence of monotonicity of wp for PL programs and monotonicity of
wp for enter and leave (see Lemma 3.8). In particular, the function

λθ.wpF
θ [body (F)]

is monotone. Existence of fixed points is then guaranteed by the Knaster-Tarski
fixed point theorem (cf. Theorem A.11). In fact, as we will in detail discuss for
procedure calls, we take the least fixed point.

Now that we have a weakest precondition transformer for P2LA auxiliary
statements, we can—in principle—compute the weakest precondition of proce-
dure calls due to the identity

wp
[

x := F(~E)
]
(Q) = wp

[
impl

(
x := F(~E)

)]
(Q) .

That is, we first replace every procedure call by its implementation and then
compute its weakest precondition.
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Example 3.15 Recall from Example 3.11 the non-recursive procedure F,
which is given by the declaration

F(x, y) { out := x · y }.

Let us prove that calling F with parameters y + 3 and z computes their
product and assigns the result to variable x. Hence, our goal is to compute

wp [x := F(y + 3, z)] (x = (y + 3) · z) .

This amounts to computing the weakest precondition of the call’s implemen-
tation. To this end, consider the following computation (read from bottom
to top as in Example 2.29):

// true

// =⇒ J elementary predicate logic K
// (y + 3) · z = (y + 3) · z
enter ;
// (�y + 3) ·�z = (�y + 3) ·�z
x := �y + 3 ;
// x ·�z = (�y + 3) ·�z
y := �z ;
// x · y = (�y + 3) ·�z
invoke F ; (wp [invoke F] is discussed below)
// out = (�y + 3) ·�z
� x := out ;
// �x = (�y + 3) ·�z
leave

// x = (y + 3) · z

The weakest precondition of invoke F is the least fixed point of the equation

θ = wpF
θ [body (F)] = wpF

θ [out := x · y] .

Since the body of procedure F contains no recursive calls, the least fixed
point is given by the weakest precondition of the procedure’s body, i.e.,

θ(Q) = wp [out := x · y] (Q) = Q [out
/

x · y] .
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This justifies the tagged step in the above proof, i.e.,

wp [invoke F] (out = (�y + 3) ·�z) = (x · y = (�y + 3) ·�z) .

We now develop a dedicated rule to compute the weakest precondition of
procedure calls without referring to P2LA auxiliary statements. Consider the
call x := F(E1, . . . , En) of a procedure F with parameters are x1, . . . , xn. Since
procedure calls are semantically equivalent to their implementation, we have

wp [x := F(E1, . . . , En)] (Q) = wp [impl (x := F(E1, . . . , En))] (Q) .

Let us thus compute the weakest precondition of the procedure’s implementation
with respect to postcondition Q (read from bottom to top as in Example 2.29):

// wp [body (F)] (Q [−�] [�x/out]) [x1
/

E1 [−�]] . . . [xn
/

En [−�]] [+�]
enter

// wp [body (F)] (Q [−�] [�x/out]) [x1
/

E1 [−�]] . . . [xn
/

En [−�]]
x1 := E1 [−�] ; . . . ; xn := En [−�] ;
// wp [body (F)] (Q [−�] [�x/out] )
body (F) ;
// Q [−�] [�x/out]
� x := out ;
// Q[−�]
leave

// Q

Hence, the weakest precondition of procedure calls must satisfy the equation

wp [x := F(E1, . . . , En)] (Q)

= wp [body (F)] (Q [−�] [�x/out]) [x1
/

E1 [−�]] . . . [xn
/

En [−�]] [+�] .

If the body of procedure F contains no recursive calls, this rule is sufficient.
Otherwise, we have to determine a fixed point of the above equation. This fixed
point is not a predicate in Pred, but a predicate transformer

wp [x := F(E1, . . . , En)] : Pred→ Pred.

Similar to our treatment of the auxiliary statement invoke F, we characterize
this fixed point by means of a higher-order predicate transformer

wpF
θ [C] : Pred→ Pred,



3.2. Program Verification 77

C wpF
θ [C] (Q)

skip Q

x := E Q [x/E]

C1 ; C2 wpF
θ [C1]

(
wpF

θ [C2] (Q)
)

if ( B ) {C1 } else {C2 }
(

B ∧ wpF
θ [C1] (Q)

)
∨
(
¬B ∧ wpF

θ [C2] (Q)
)

while ( B ) {C′ } lfp (W), where

W , λI.
(

B ∧ wpF
θ [C

′] (I)
)
∨ (¬B ∧Q)

x := F(E1, . . . , En) θ (x)(E1,. . . ,En)(Q)

x := G(E1, . . . , Em) lfp (PG) (x)(E1, . . . , Em)(Q)

Figure 3.4: Inductive definition of the auxiliary weakest precondition transformer
wpF

θ [C] that depends on the transformer θ to resolve calls of procedure F. Here,
G is a procedure name in Procs \ {F}. Moreover, the parameters of F and G
are given by param (F) = (x1, . . . , xn) and param (G) = (x1, . . . , xm), respectively.
Notice that—by Assumption 3.13—procedure G does not call procedure F.
Hence, the characteristic function PG (see Figure 3.5) is independent of F.

where the attached transformer θ captures the behavior of calls of procedure F.
In contrast to invoke F, however, procedure calls—and thus also the attached
transformer θ—additionally depend on the variable x storing the return value
and the arguments E1, . . . , En that are passed to the procedure. Thus, if AE
denotes the set of arithmetic expressions, the transformer θ is of the form

θ : Vars→ AEn → (Pred→ Pred).

Our higher-order predicate transformer then resolves calls of procedure F by
referring to the attached transformer θ. That is, we define

wpF
θ [x := F(E1, . . . , En)] (Q) , θ(x)(E1, . . . , En)(Q).

A complete definition of wpF
θ [C] is found in Figure 3.4. The weakest precondition

transformer for the procedure call x := F(E1, . . . , En) is then a fixed point of the
call’s characteristic function PF , which is given by

PF , λθλx′λ(E′1, . . . , E′n)λQ′.

wpF
θ [body (F)]

(
Q′ [−�]

[
�x′

/
out
]) [

x1
/

E′1 [−�]
]

. . .
[
xn
/

E′n [−�]
]
[+�] ,
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where n = |param (F) | is the number of parameters of procedure F. Analo-
gously to invoke F, the set of all monotone higher-order transformers θ forms a
complete lattice, where the ordering is (pointwise) implication⇒.

Lemma 3.16 (Monotonicity) For every P2L program C and monotone trans-
former θ, the predicate transformers wpF

θ [C] and wp [C] are monotone.

Proof. By induction on the structure of P2L programs. �

As a consequence of Lemmas 3.8 and 3.16, the characteristic function PF is itself
monotone. The existence of fixed points is then guaranteed by the Knaster-
Tarski fixed point theorem (Theorem A.11). Since there might exist multiple
fixed points, we take the least fixed point. This is justified because we consider
total correctness: The procedure F without parameters and with procedure body

body (F) , out := F()

obviously never terminates. Moreover, its characteristic function is given by

PF = λθλx′λQ′. θ(x′)(Q′ [−�]
[
�x′

/
out
]
) [+�] .

This characteristic function has infinitely many fixed points θ. However, the
only reasonable choice for θ is λx′λQ′. false—the least element of the complete
lattice of monotone predicate transformers.

This concludes the development of a rule for procedure calls. We summarize
the weakest precondition calculus for P2L below.

Definition 3.17 (Weakest Precondition Calculus) The weakest precondition
wp [C] (Q) of P2L program C with respect to postcondition Q ∈ Pred is
defined by structural induction as shown in Figure 3.5, page 79.

All properties of the weakest preconditions calculus for PL are preserved when
considering P2L programs instead. The proofs are similar to the ones for PL
and thus omitted. We already mentioned that both the transformer wp and
the characteristic function PF are monotone. They are even continuous—thus
Lemma 2.30 can be lifted to P2L—if transformers for resolving procedure calls
are restricted to continuous functions.

Furthermore, the weakest precondition calculus for P2L is sound with respect
to the semantic notion of weakest preconditions.
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C wp [C] (Q)

skip Q

x := E Q [x/E]

C1 ; C2 wp [C1] (wp [C2] (Q))

if ( B ) {C1 } else {C2 } (B ∧ wp [C1] (Q)) ∨ (¬B ∧ wp [C2] (Q))

while ( B ) {C′ } lfp (W), where

W , λI. (B ∧ wp [C′] (I)) ∨ (¬B ∧Q)

x := F(E1, . . . , En) lfp (PF) (x)(E1, . . . , En)(Q), where

PF , λθλx′λ(E′1, . . . , E′n)λQ′.

wpF
θ [body (F)]

(
Q′ [−�] [�x′

/
out]

) [
x1
/

E′1 [−�]
]

. . . [xn
/

E′n [−�]] [+�]

Figure 3.5: Inductive definition of the weakest precondition calculus for P2L
programs. Here, PF is the characteristic function of procedure F with parameters
param (F) = (x1, . . . , xn). The auxiliary transformer wpF

θ is found in Figure 3.4.

Theorem 3.18 (Soundness of the Weakest Precondition Calculus)
Let wp [C] (Q) be the predicate computed for P2L program C with respect
to postcondition Q ∈ Pred by the transformer defined in Figure 3.5. Then

wp [C] (Q) = sup
{

P
∣∣ 〈 P

〉
C
〈

Q
〉

is valid for total correctness
}

.

Finally, the proof rules presented for PL programs in Theorem 2.32 hold for P2L
programs as well.

Theorem 3.19 (Compositionality of wp for P2L programs) For every pro-
gram C in P2L and all predicates Q, R, we have:

(a) Strictness: wp [C] (false) = false.

(b) Conjunction rule: wp [C] (Q ∧ R) = wp [C] (Q) ∧ wp [C] (R).

(c) Disjunction rule: wp [C] (Q ∨ R) = wp [C] (Q) ∨ wp [C] (R).

Proof. By induction on the program structure. �
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3.2.3 The Weakest Liberal Precondition Calculus for P2L

Let us briefly consider how P2L programs are verified with respect to par-
tial correctness. We thus incorporate procedure calls into the weakest liberal
precondition calculus, i.e., the predicate transformer

wlp [C] : Pred→ Pred

A summary of the weakest liberal precondition calculus for P2L programs is
found in Figure 3.6, page 84. The rules for PL programs, which we discussed in
detail in Section 2.3.6, remain unchanged. The rationale underlying procedure
calls is the same as in the weakest precondition calculus for total correctness
that we developed in the previous section. That is, the weakest precondition of
a procedure call must satisfy the equation

wlp [x := F(E1, . . . , En)] = wlp [impl (x := F(E1, . . . , En))] .

The solution of this equation is characterized as a fixed point using a higher-
order predicate transformer wlpF

θ , where the attached transformer θ captures the
behavior of procedure calls. This transformer is defined analogously to auxiliary
calculus for total correctness (cf. Figure 3.4) except for using wlp instead of wp.
A formal definition of the rules of wlpF

θ is found in Figure 3.7, page 85. The
weakest liberal precondition transformer of a procedure call x := F(E1, . . . , En)
is then a fixed point of the liberal characteristic function LPF that is defined as

LPF , λθλx′λ(E′1, . . . , E′n)λQ′.

wlpF
θ [body (F)]

(
Q′ [−�]

[
�x′

/
out
]) [

x1
/

E′1 [−�]
]

. . .
[
xn
/

E′n [−�]
]
[+�] ,

where n = |param (F) | is the number of parameters of procedure F. Analogously
to weakest preconditions for total correctness, the existence of fixed points
is guaranteed (for monotone transformers θ) by Theorem A.11 because the
characteristic function LPF is monotone (cf. Lemma 3.16 and Section 3.2.2).

In contrast to total correctness, however, we take the greatest fixed point of
the liberal characteristic function LPF. This is justified because we consider
partial correctness: The procedure F without parameters and procedure body

body (F) , out := F()

obviously never terminates. Every pair of pre-and postconditions thus leads
to a valid Hoare triple. Hence, the only reasonable choice for our higher-order
fixed point is the transformer λx′λQ′. true—the greatest element of the complete
lattice of monotone predicate transformers.

As for PL programs, the weakest liberal precondition calculus coincides
with the semantic definition of weakest preconditions for partial correctness
introduced in Section 3.2.1.
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Theorem 3.20 (Soundness of the Weakest Liberal Precondition Calculus)
Let wlp [C] (Q) be the predicate computed for P2L program C with respect
to postcondition Q as defined in Figure 3.6. Then

wlp [C] (Q) = sup
{

P
∣∣ 〈 P

〉
C
〈

Q
〉

is valid for partial correctness
}

.

Furthermore, the proof rules for weakest liberal preconditions studied in Sec-
tion 2.3.7 also apply to the weakest liberal precondition calculus for P2L.

Theorem 3.21 (Proof Rules for P2L programs) For every P2L program C
and all predicates Q, R ∈ Pred, we have:

(a) Strictness: wlp [C] (true) = true.

(b) Conjunction rule: wlp [C] (Q ∧ R) = wlp [C] (Q) ∧ wlp [C] (R).

(c) Disjunction rule: wlp [C] (Q ∨ R) = wlp [C] (Q) ∨ wlp [C] (R).

(d) Invariance: If Mod (C) ∩Vars (Q) = ∅ then Q⇒ wlp [C] (Q).

Finally, reasoning about partial correctness admits a simple, invariant-based
proof rule for reasoning about recursive procedures.

Theorem 3.22 (Proof rule for recursive procedures) Let LPF be the liberal
characteristic function of a procedure F. Then, for all transformers θ:

θ ⇒ LPF(θ) implies θ(x)(~E) ⇒ wlp
[

x := F(~E)
]

.

Proof. Assume θ ⇒ LPF(θ). By Park’s lemma (Corollary A.12), we have

θ ⇒ gfp (LPF) .

By Figure 3.6, this means that

θ(x)(~E) ⇒ gfp (LPF) (x)(~E) = wlp
[

x := F(~E)
]

. �

Theorem 3.22 enables reasoning about recursive procedures by providing a
higher-order invariant ρ . In general, finding a suitable ρ is very difficult because
we have to capture the behavior of a procedure with respect to all possible
postconditions. To avoid this daring task, it is convenient to first fix a set
of postconditions, say Pred′ ⊆ Pred, and then construct a transformer that
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captures only the behavior for the chosen postconditions. That is, we construct
a transformer ρ′ such that

∀x ∀~E ∀Q ∈ Pred′ : ρ′(x)(~E)(Q)⇒
(
LPF(ρ

′)
)
(x)(~E)(Q).

The predicate transformer ρ′ is then extended to an invariant ρ in the sense of
Theorem 3.22 by choosing the exact fixed point for all other postconditions:

ρ(x)(~E)(Q) ,

{
ρ′(x)(~E)(Q), if Q ∈ Pred′

gfp (LPF) (x)(~E)(Q), otherwise.

Of course, this approach is only worthwhile if the chosen set of postconditions
Pred′ covers all postconditions encountered in procedure calls when checking
whether ρ′ implies LPF(ρ

′).
To conclude this chapter, let us apply the above proof rule to reason about a

recursive P2L program.

Example 3.23 Recall from Example 3.3, the following declaration of a recur-
sive procedure mult with two parameters:

mult(x, y) {
if ( y > 0 ) {

z := mult(x, y− 1) ;
out := x + z

} else {
out := 0

}
}

Let us verify that this procedure returns the product of its parameters if
parameter y is initially greater than or equal to zero. Hence, our goal is to
determine (an approximation of) the weakest liberal precondition

wlp [z := mult(x, y)] (y ≥ 0∧ z = x · y) .

To this end, we propose the higher-order invariant

θ , λx′λ(E, E′)λQ.
(
E′ > 0∧Q

[
x′
/

E · E′
])
∨
(
E′ ≤ 0∧Q

[
x′
/

0
])

.
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Assuming θ is a suitable invariant in the sense of Theorem 3.22, we obtain

wlp [z := mult(x, y)] (y ≥ 0∧ z = x · y)
⇐ θ(z)(x, y)(y ≥ 0∧ z = x · y)
= (y > 0∧ y ≥ 0∧ x = x · y) ∨ (y ≤ 0∧ y ≥ 0∧ 0 = x · y)
= y ≥ 0∧ x = x · y.

In words, whenever y is initially greater or equal than zero, procedure
mult will compute the product of x and y. It then remains to verify that
θ is indeed a correct invariant in the sense of Theorem 3.22. To this end,
consider the proof further below (cf. Example 2.29 for an explanation of
program annotations). We performed a few simplifications along the way
to improve readability. Furthermore, according to the definition of liberal
characteristic functions, we have to apply a few transformations before and
after computing wlp of the procedure body to account for scoping, return
value, and parameters. These transformations are performed when leaving
and entering the procedure body, respectively.

//
(
E′ > 0∧Q

[
x′
/

E · E′
])
∨
(
E′ < 0∧Q

[
x′
/

0
])

mult(x, y) {
// (y > 0∧Q [−�]

[
�x′

/
x · y

]
) ∨ (y < 0∧Q [−�]

[
�x′

/
0
]
)

if ( y > 0 ) {
// (y− 1 > 0∧Q [−�]

[
�x′

/
x · y

]
)

// ∨ (y− 1 ≤ 0∧Q [−�]
[
�x′

/
x
]
)

z := mult(x, y− 1) ;

// Q [−�]
[
�x′

/
x + z

]
out := x + z

// Q [−�]
[
�x′

/
out
]

} else {
// Q [−�]

[
�x′

/
0
]

out := 0

// Q [−�]
[
�x′

/
out
]

} // Q[−�]
[
�x′

/
out
]

} // Q
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C wlp [C] (Q)

skip Q

x := E Q [x/E]

C1 ; C2 wlp [C1] (wlp [C2] (Q))

if ( B ) {C1 } else {C2 } (B ∧ wlp [C1] (Q)) ∨ (¬B ∧ wlp [C2] (Q))

while ( B ) {C′ } gfp (LW), where

LW , λI. (B ∧ wlp [C′] (I)) ∨ (¬B ∧Q)

x := F(E1, . . . , En) gfp (LPF) (x)(E1, . . . , En)(Q), where

LPF , λθλx′λ(E′1, . . . , E′n)λQ′.

wlpF
θ [body (F)]

(
Q′ [−�] [�x′

/
out]

) [
x1
/

E′1 [−�]
]

. . . [xn
/

E′n [−�]] [+�]

Figure 3.6: Inductive definition of the weakest liberal precondition calculus for
P2L programs. Here, LPF is the liberal characteristic function of procedure F.
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C wlpF
θ [C] (Q)

skip Q

x := E Q [x/E]

C1 ; C2 wlpF
θ [C1]

(
wlpF

θ [C2] (Q)
)

if ( B ) {C1 } else {C2 }
(

B ∧ wlpF
θ [C1] (Q)

)
∨
(
¬B ∧ wlpF

θ [C2] (Q)
)

while ( B ) {C′ } gfp (LW), where

LW , λI.
(

B ∧ wlpF
θ [C

′] (I)
)
∨ (¬B ∧Q)

x := F(E1, . . . , En) θ (x)(E1,. . . ,En)(Q)

x := G(E1, . . . , Em) gfp (LPG) (x)(E1, . . . , Em)(Q)

Figure 3.7: Inductive definition of the auxiliary weakest liberal precondition
transformer wlpF

θ [C]. Here, G is a procedure name in Procs \ {F}. Moreover, we
assume that the parameters of procedures F and G are param (F) = (x1, . . . , xn)
and param (G) = (x1, . . . , xm), respectively. Notice that—by Assumption 3.13—
procedure G does not call procedure F.





Chapter 4

Reasoning about Pointer Programs

Pointers constitute an essential concept in computer programming that is “key
to the representation of complex structures” [Knu97, p. 214]. Examples of such
structures include linked lists, trees, graphs, etc. As most efficient algorithms
rely on efficient data structures, this means that pointers are at the foundation
of both programming and algorithm design.

Theoretical models of computation that support pointers can be traced
back to Kolmogorov [Kol53]. He proposed a model which is similar to Tur-
ing machines but operates on graphs instead of an infinite tape. However,
“contrary to Turing’s tape whose topology is fixed, Kolmogorov’s “tape” is
reconfigurable” [BG03, p. 10]. Kolmogorov’s “pointer machine” reveals another
important feature of data structures based on pointers: Their structure can
be mutated at runtime; in particular, they can grow or shrink in size. Data
structures with this feature are thus called dynamic data structures.

The first implementation of pointers in a programming language is due to
Lawson [Law67]. His design principles are still present in modern languages,
such as C, C++, and (to a lesser extent) Java: The available memory is split
into a stack and a heap.1 The stack takes care of the assignment of values to
local variables—just like the notion of stacks used in previous chapters; see
Definition 2.5. It is managed by the program environment. For example,
Figure 4.1, page 88, depicts a stack which assigns the values 12, 9, and 4 to
the variables x, y, and z, respectively. In contrast, the heap is a large array of
memory that is shared amongst programs. It is under direct control of the
programmer. Every element of the heap is a single value that is referenced by
its address, i.e., its position in the array. Since multiple programs may wish to
operate on the heap, each program first has to allocate addresses such that it is
safe to access and manipulate them. Analogously, addresses that are not needed
anymore must be deallocated before they are available to other programs again.
Consequently, the heap accessible by a given program does not necessarily
consist of a consecutive block of addresses. For instance, the heap in Figure 4.1

1Lawson originally called the heap a table, but the term heap has become prevalent (cf. [SGG10]).
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stack
x

12
y
9

z
4

heap
7
0

8
19

9
17

10
42

17
7

18
23

Figure 4.1: A stack and a heap of a program.

contains 6 addresses—7, 8, 9, 10, 17, and 18—that are allocated. The value at
each address is provided in the memory cell below the address. For example,
the value at address 18 is 23. A pointer variable, say x, is a variable that stores
an address. The actual value which the variable “points to” is then obtained
by dereferencing x, i.e., determining the value at the stored address; we denote
this value by <x>. If we interpret variable y in Figure 4.1 as a pointer variable,
for instance, then the value given by <y> is the value at address 9, i.e., 17.
Since 17 is an allocated address itself, we may also dereference it, which leads
to the value 7. This way, the heap in Figure 4.1 encodes a singly-linked list:
Variable y points to the head of the list. The list is terminated by a null reference,
i.e., a pointer to 0, which is by definition not a valid address. Moreover, every
list element stores a value at the address that is its immediate successor. An
illustration of the encoded list is found below:

9
•

10
42

17
•

18
23

7
•

8
19

0y→

While pointers are important to implement dynamic data structures, the above
example also hints at a potential risk: If we attempt to traverse the list by itera-
tively dereferencing addresses, we might eventually dereference 0 (or another
address that is not allocated). In this case, we encounter a memory fault; its
consequences are implementation-specific, but the program will most likely
crash. This behavior is different from PL and P2L programs considered in
previous chapters: While a P2L program may produce the wrong result or
not terminate at all, it is never the case that a P2L program suddenly aborts
execution. Even worse, memory faults due to incorrect pointer usage are a
common source of errors. Considering just properly handling the null reference,
Hoare [Hoa09] stated that “this has led to innumerable errors, vulnerabilities,
and system crashes, which have probably caused a billion dollars of pain and
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damage in the last forty years”. It is thus desirable to reason about pointer pro-
grams, i.e., programs that allow to access and manipulate the heap via pointers.
At least, one would like to formally guarantee the absence of memory faults.
Although there have been early attempts to prove pointer programs correct,
e.g., by Burstall [Bur72], developing a reasonable Floyd-Hoare style verification
system for pointer programs was long regarded as an unsolved challenge for
program verification. The solution to this challenge was developed in a series
of papers by O’Hearn, Reynolds, Yang, and others [IO01; ORY01; Rey02; YO02;
OHe19]: Separation logic is an extension of Hoare logic that allows to write ele-
gant proofs about pointer programs. In particular, separation logic champions
compositional reasoning. As a consequence, it is suitable for automated verification,
which sparked the development of various program analysis and verification
tools based on separation logic, e.g., [BCO05a; Yan+08; DP08; VLC10; BCI11;
DPV11; Cal+11; CD11; Chi+12].

In this chapter, we give an introduction to reasoning about pointer programs
with separation logic. We first endow P2L with statements to access and mutate
the heap. This results in the procedural pointer programming language, P3L for
short, which is presented in Section 4.1. In Section 4.2, we briefly discuss the
challenges for program verification when dealing with pointer programs. The
assertion language of separation logic is studied in Section 4.3. Finally, in
Section 4.4, we use separation logic to perform Floyd-Hoare style verification of
P3L programs by means of computing weakest preconditions.

We build upon the foundations of separation logic presented in this chapter
in the remainder of this thesis. In particular, we consider an extension of
separation logic for reasoning about probabilistic pointer programs in Part II.
Moreover, we turn to automated reasoning about pointer programs in Part III.

4.1 The Procedural Pointer Programming Language

In order to support dynamic data structures in our programming language, we
extend the procedural programming language P2L by statements to mutate the
heap via pointers. This results in the procedural pointer programming language,
P3L for short. After introducing the syntax of P3L, we formalize the notion of
heaps. Finally, we present the operational semantics of P3L programs.

Support for pointers in P3L is inspired by the C programming lan-
guage [KR88]. Let us briefly elaborate on this design choice. The under-
lying memory model is close to the original proposal by Lawson [Law67]: It
is rather low-level, it supports accessing single addresses, and it allows for
pointer arithmetic. Our choice of this memory model is mainly motivated
by its (conceptual) simplicity: To understand the exact semantics of pointer
manipulations, we believe it is best to first consider a model that is close to an
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actual implementation. Furthermore, other memory models, e.g., the Java object
model [AGH05], can be implemented in terms of the low-level P3L statements.

In Part III, we consider a more high-level memory model in the context of
automated program verification.

4.1.1 Syntax

We extend the syntax of P2L by statements for allocation of new addresses,
deallocation of an address, and pointer dereferences. By <E> we denote the value
at the address given by an evaluation of expression E. We require that both
arithmetic and Boolean expressions are evaluated over variables, i.e., expressions
depend on the stack only. Furthermore, we use pointer dereferences in two
idiomatic forms: First, a lookup is an assignment that dereferences a given
address and stores the result in a variable. Second, a mutation sets the value
at a given address to the value obtained from evaluating an expression. Other
pointer manipulations can be implemented using multiple lookup and mutation
statements.

Definition 4.1 (Syntax of the Procedural Pointer Programming Language)
The set of programs written in the Procedural Pointer Programming Language
with Auxiliaries, denoted P3LA, is given by the context-free grammar below
(P2LA statements are displayed in black-75):

C → x := alloc(~E) (allocation)
| free(E) (deallocation)
| x := <E> (lookup)

| <E> := E′ (mutation)

| skip (effectless program)
| x := E (assignment)
| C ; C (sequential composition)
| if ( B ) {C } else {C } (conditional choice)
| while ( B ) {C } (loop)

| x := F(~E) (procedure call)

| enter (enter scope)
| invoke F (invoke procedure)
| leave, (leave scope)
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where x ∈ Vars is a variable and F ∈ Procs is a procedure name. Moreover,
~E is a sequence of arithmetic expressions, E and E′ are arithmetic expres-
sions, and B is a Boolean expression. All expressions are over variables,
i.e., arithmetic expressions are of the form E : Stacks → Z and Boolean
expressions are of the form B : Stacks→ T, respectively.

Moreover, the set of programs in the Procedural Pointer Programming
Language, denoted P3L , consists of all P3LA programs which contain neither
enter nor invoke F nor leave statements.

Intuitively, the statement x := alloc(~E) allocates |~E| fresh addresses whose
initial values are given by the arithmetic expressions ~E. Conversely, the statement
free(E) deallocates the address given by E. The lookup statement x := <E>
stores the value at address E in variable x. Moreover, the mutation statement
<E> := E′ sets the value at address E to the value given by expression E′.

Example 4.2 Assume that a variable head initially points to the head of a
singly-linked list, where every list element consists of two addresses: The
first address stores the next list element’s address and the second address
stores a value. The last list element is indicated by a null pointer, i.e., the last
list element stores 0 as the address of the next element. An example of such
a list is depicted below:

9
•

10
3

7
•

8
11

0head→

Now, consider the following P3L program Csum operating on lists:

x := 0 ;
while ( head 6= 0 ) {

y := <head + 1> ;
x := x + y ;
z := <head> ;
free(head) ;
free(head + 1) ;
head := z

}
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7
0

8
19

9
17

10
42

17
7

18
23

9
•

10
42

17
•

18
23

7
•

8
19

0

Figure 4.2: Two graphical representations of the same heap.

Program Csum traverses the list until the end of the list is reached, i.e., until
head = 0 holds, and computes the sum of all values stored in the list. The
traversal is performed by setting variable head to its successor in the list, i.e.,
<head>. Moreover, after determining the value of a list element, which is
given by <head + 1>, the list element is deleted. This means that both the
address head and the address head + 1 are deallocated. Hence, for the heap
from above, program Csum terminates with an empty heap, where head is
equal to zero and x is equal to 14.

4.1.2 Heaps

The heaps considered so far were represented by pictures. For example, Fig-
ure 4.2 depicts two graphical representations of the same heap. The topmost
picture represents the intuitive notion of heaps: A heap consists of a bunch of
“memory cells”, where each memory cell has an address and contains a value.
The picture below stresses how linked data structures are constructed. We will
continue to use such pictures to illustrate heaps. To assign formal semantics to
P3L programs, however, we need a precise definition of heaps.

Mathematically speaking, a heap is a function from a finite set of allocated
addresses, which we represent by natural numbers, to values, which we represent
by integers. Although the number of allocated addresses must be finite, we
impose no further restrictions on the available amount of memory. Hence, it is
always possible to allocate additional addresses. Furthermore, the value 0 is not
admitted as an address, because it serves as a null reference.

Definition 4.3 (Heap [Rey02; 1]) The set of heaps is defined as

Heaps , { h | h : N → Z, N ⊆N>0, |N| < ∞ } .

Moreover, for a given heap h : N → Z, we denote by dom(h) its domain N.
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Example 4.4 The heap illustrated in Figure 4.2 is given by the function

h : { 7, 8, 9, 10, 17, 18 }︸ ︷︷ ︸
= dom(h)

→ Z, where

h(7) = 0 h(8) = 19 h(9) = 17
h(10) = 42 h(17) = 7 h(18) = 23.

Let us consider a few common heaps. By h∅ , we denote the empty heap with
dom(h∅) = ∅, i.e., no address is allocated in h∅. We write { u :: v1, . . . , vn } as
a shorthand for a consecutive block of addresses with values v1,. . . ,vn starting at
address u. Formally, { u :: v1, . . . , vn } is defined as the heap h given by

dom(h) = { u, u + 1, . . . , u + n− 1 } , and
h(u + k) = vk+1 ∀k ∈ { 0, 1, . . . , n− 1 } .

It is convenient to construct larger heaps from existing ones. To this end, we
define a union operation for heaps that is well-defined as long as the domains
of the combined heaps do not overlap.

Definition 4.5 (Disjoint Union [IO01]) The heaps h1 and h2 are disjoint,
denoted h1 # h2 , if and only if dom(h1) ∩ dom(h2) = ∅.

For disjoint heaps h1 and h2 with domains dom(h1) = N1 and dom(h2) =
N2, the disjoint union of h1 and h2 is defined as

h1 ] h2 : N1 ∪ N2 → Z, (h1 ] h2) (`) ,

{
h1(`), if ` ∈ N1

h2(`), if ` ∈ N2.

Otherwise, i.e., if h1 and h2 are not disjoint, h1 ] h2 is undefined.

For example, the heap h depicted in Figure 4.2 can be concisely defined as

h , { 7 :: 0, 19, 17, 42 } ] { 17 :: 7, 23 } .

The disjoint union above partitions the addresses, i.e., the memory cells depicted
in Figure 4.2, of heap h into two parts. An overlap between the domains of the
resulting two heaps is thus not permitted—even if the overlapping addresses are
mapped to the same value. The values in one part of h may, however, coincide
with addresses of the other part. In the alternative graphical representation
in Figure 4.2 (lowermost), this corresponds to a partitioning of the edges. The
disjoint union of heaps is quite well-behaved as the set Heaps of all heaps with
the disjoint union operator ] and the empty heap h∅ as a neutral element forms
a (partial) commutative monoid [COY07, Sec. 2]. In particular, this means that
heaps can be composed in any order and without brackets.
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The disjoint union also induces a useful notion of heap inclusion:

h1 ⊆ h2 iff ∃h′ : h1 ] h′ = h2.

In other words, a heap h1 is included in another heap h2 if all of its addresses are
mapped to the same value by the heap h2. To conclude this section, we introduce
notation for updating the value at a given address in a heap. This is similar to
the substitution mechanism for stacks introduced in Definition 2.6.

Definition 4.6 (Heap Update [Rey02, p. 3]) The update of the value at ad-
dress u by an integer value v in a heap h ∈ Heaps is defined as

h [u/v] , λ`.


v, if ` ∈ dom(h) and ` = u
h(`), if ` ∈ dom(h) and ` 6= u
undefined, otherwise.

4.1.3 Semantics

Similar to PL and P2L programs, the operational semantics of P3L (and P3LA)
programs is defined as a transition system. However, there are subtle differences
between the transition system for P2L and the transition system for P3L. A
technical difference is that every state has to be equipped with a heap in addition
to a stack. We thus consider stack-heap pairs (cf. [IO01, Section 3.1]):

Definition 4.7 (Stack-Heap Pair) The set of stack-heap pairs is defined as

SHPairs , { (s, h) | s ∈ Stacks, h ∈ Heaps } .

Program executions may fail, e.g., due to dereferencing a null pointer. We use a
dedicated sink state

〈
fault

〉
which indicates that program execution has been

aborted due to a failure;
〈
fault

〉
thus represents unsuccessful termination. The

set of states of the operational semantics of P3L programs is then defined as

States ,
((

P3LA ∪ { term }
)
× SHPairs

)
∪
{ 〈

sink
〉
,
〈
fault

〉 }
.

To define the execution relation of the transition system for P3L programs, i.e.,

 ⊆ States× States,

we rely on the fact that all pointer dereferences are explicitly captured by the
lookup statement statement x := <E> and the mutation statement <E> := E′.
This is guaranteed because expressions depend on the stack only.
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Let us first consider the rules for P3L statements that actually access the heap.
These rules are—with minor modifications to match our notation—identical to
the operational semantics proposed by Yang and O’Hearn [YO02].

The statement x := alloc(E1, . . . , En) allocates a consecutive block of n
addresses and stores the first allocated address, say u, in variable x. The allocated
addresses are initialized with the values given by the arithmetic expressions
E1, . . . , En. Hence, if we are initially given a stack-heap pair (s, h), the stack is
updated to s [x/u]. Moreover, the heap is extended to

h ] { u :: E1 (s) , . . . , En (s) } .

How is the newly allocated address u determined? We first notice that allocation
never fails because we assume an infinite amount of available memory (every
natural number except for 0 is a potential address). The exact choice of address
u depends on the implementation of the memory allocator which may vary for
different machines. To abstract from these implementation details, we select
address u nondeterministically. In contrast to our previous semantics, a state
might admit multiple executions. In fact, since we may choose any natural
number (except for finitely many already allocated ones) for address u, there
are countably infinite many executions for every allocation statement. Formally,
the rule for allocations is defined as follows:

u, u + 1, . . . , u + n− 1 ∈N>0 \ dom(h) E1 (s) = v1, . . . , En (s) = vn〈
x := alloc(E1, . . . , En), s, h

〉
 

〈
term, s [x/u] , h ] { u :: v1, . . . , vn }

〉 alloc

To improve readability, we omit brackets around stack-heap pairs in all rules.
The statement free(E) disposes the memory cell at the address given by

expression E if it is present. This is reflected by the following rule:

E (s) = u〈
free(E), s, h ] { u :: v }

〉
 

〈
term, s, h

〉 free

If expression E does not evaluate to an allocated address, however, we encounter
a memory error and the execution fails:

E (s) /∈ dom(h)〈
free(E), s, h

〉
 

〈
fault

〉 free-fail

The lookup statement x := <E> determines the value at address E and stores
it in variable x. Hence, only the stack is modified. Again, execution fails if E
does not evaluate to an allocated address. The semantics of lookups is thus
determined by the following two rules:

E (s) = u ∈ dom(h) h (u) = v〈
x := <E>, s, h

〉
 

〈
term, s [x/v] , h

〉 lookup
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E (s) /∈ dom(h)〈
x := <E>, s, h

〉
 

〈
fault

〉 lookup-fail

Finally, the mutation statement <E> := E′ updates the value at address E to
the value of expression E′ if E is evaluated to an allocated address; otherwise,
it fails. Hence, only the heap is modified. The semantics of mutations is thus
formalized by the following two rules:

E (s) = u ∈ dom(h) E′ (s) = v〈
<E> := E′, s, h

〉
 

〈
term, s, h [u/v]

〉 mutation

E (s) /∈ dom(h)〈
<E> := E′, s, h

〉
 

〈
fault

〉 mutation-fail

Towards a complete definition of the operational semantics of P3LA programs,
we also have to provide rules for statements that do not access the heap, i.e., all
P2LA statements. The remaining rules are found in Figure 4.3, page 98. Except
for the additional heap component, these rules are identical to the rules that
determine the semantics of P2LA programs (cf. Definition 3.10). However, we
added a third rule for sequential composition to account for previous memory
failures. In this case, program execution is aborted:〈

C1, s, h
〉
 

〈
fault

〉〈
C1 ; C2, s, h

〉
 

〈
fault

〉 seq3

Furthermore, to ensure that every terminating execution eventually ends up in
the sink state, we added a rule to move from failure states to

〈
sink

〉
.

Let us summarize the formal definition of the transition system that specifies
the operational semantics of P3L programs.

Definition 4.8 (Operational Semantics of P3L Programs) Let term be a spe-
cial symbol indicating successful termination. Moreover, let

〈
sink

〉
be a

dedicated sink state and
〈
fault

〉
be a state indicating unsuccessful termina-

tion. The operational semantics of P3LA programs is given by the transition
system oP3L , 〈 States,  , States 〉, where both the set of states and the
set of initial states is defined as

States ,
((

P3LA ∪ { term }
)
× SHPairs

)
∪
{ 〈

sink
〉
,
〈
fault

〉 }
.
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Moreover, the execution relation

 ⊆ States × States

is the smallest relation induced by the rules in Figure 4.3, page 98, and
Figure 4.4, page 99. As for PL programs, we define the reachable fragment of
oP3L with respect to the set of initial states I as

oP3L (I) , Reach (〈 States,  , I 〉) .

The set of executions of a P3L program C and a stack-heap pair (s, h) is

Exec[C](s, h) ,
{

ρ
∣∣∣ ρ is an execution of oP3L

({ 〈
C, s, h

〉 }) }
.

We conclude this section with an example. Since the allocation statement allows
nondeterministic behavior, let us implement a P3L program that “guesses” two
positive natural numbers and then adds them to the value stored at address
17. This program is, of course, very silly. On an actual machine, the memory
allocator would probably produce the same numbers most of the time. However,
it illustrates potential pitfalls when programming with pointers. In particular,
we may encounter failures or accidentally delete data.

Example 4.9 Consider the P3L program Cnum below:

x := alloc(0) ;
y := alloc(0) ;
z := <17> ;
<17> := x + y + z ;
free(x) ; free(y)

We compute two executions of Cnum on the stack-heap pair (s, h), where s
initially evaluates every variable to zero and h = h∅ is the empty heap.

For the first execution, assume that the memory allocator chooses two
distinct addresses u 6= v in the two allocation statements such that neither u
nor v equals 17. This yields the following execution:〈

Cnum, s, h∅
〉

 
〈
y := alloc(0) ; z := <17> ; . . . , s [x/u], { u :: 0 }

〉
 
〈
z := <17> ; . . . , s [x/u] [y

/
v], { u :: 0 } ]{ v :: 0 }

〉
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〈
skip, s, h

〉
 

〈
term, s, h

〉 skip
E (s) = v〈

x := E, s, h
〉
 

〈
term, s [x/v] , h

〉 assign

〈
C1, s, h

〉
 

〈
term, s′, h′

〉〈
C1 ; C2, s, h

〉
 

〈
C2, s′, h′

〉 seq1

〈
C1, s, h

〉
 

〈
C′1, s′, h′

〉〈
C1 ; C2, s, h

〉
 

〈
C′1 ; C2, s′, h′

〉 seq2

〈
C1, s, h

〉
 

〈
fault

〉〈
C1 ; C2, s, h

〉
 

〈
fault

〉 seq3 〈
fault

〉
 

〈
fault

〉 fault

B (s) = true〈
if ( B ) {C1 } else {C2 } , s, h

〉
 

〈
C1, s, h

〉 if-true

B (s) = false〈
if ( B ) {C1 } else {C2 } , s, h

〉
 

〈
C2, s, h

〉 if-false

B (s) = true〈
while ( B ) {C } , s, h

〉
 

〈
C ; while ( B ) {C }, s, h

〉 while-true

B (s) = false〈
while ( B ) {C } , s, h

〉
 

〈
term, s, h

〉 while-false

〈
term, s, h

〉
 

〈
sink

〉 term 〈
sink

〉
 

〈
sink

〉 sink

C = impl (x := Proc(E1, . . . , En))〈
x := Proc(E1, . . . , En), s, h

〉
 

〈
C, s, h

〉 call

〈
enter, s, h

〉
 

〈
term, s [+�] , h

〉 enter-scope

〈
leave, s, h

〉
 

〈
term, s [−�] , h

〉 leave

C = body (F)〈
invoke F, s, h

〉
 

〈
C, s, h

〉 invoke

Figure 4.3: Adaption of the rules for P2LA programs presented in Defini-
tion 3.10 to account for heaps and potential memory faults.
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u, u + 1, . . . , u + n− 1 ∈N>0 \ dom(h) E1 (s) = v1, . . . , En (s) = vn〈
x := alloc(E1, . . . , En), s, h

〉
 

〈
term, s [x/u] , h ] { u :: v1, . . . , vn }

〉 alloc

E (s) = u〈
free(E), s, h ] { u :: v }

〉
 

〈
term, s, h

〉 free

E (s) /∈ dom(h)〈
free(E), s, h

〉
 

〈
fault

〉 free-fail

E (s) = u ∈ dom(h) h (u) = v〈
x := <E>, s, h

〉
 

〈
term, s [x/v] , h

〉 lookup

E (s) /∈ dom(h)〈
x := <E>, s, h

〉
 

〈
fault

〉 lookup-fail

E (s) = u ∈ dom(h) E′ (s) = v〈
<E> := E′, s, h

〉
 

〈
term, s, h [u/v]

〉 mutation

E (s) /∈ dom(h)〈
<E> := E′, s, h

〉
 

〈
fault

〉 mutation-fail

Figure 4.4: The rules that determine the execution relation of the operational
semantics of P3LA program for statements that access the heap.
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〈
fault

〉
 

〈
fault

〉
 . . . (u 6= 17 6= v)

Hence, as expected, the execution is prematurely aborted because we attempt
to dereference address 17 although it is not allocated. For the second
execution, we assume that the memory allocator chooses address 17 for
the first allocation statement. In this case, the execution of program Cnum
terminates successfully, but the result is lost:〈

Cnum, s, h∅
〉

 ∗
〈
z := <17> ; <17> := x + y + z ; free(x) ; free(y), (as above)

s[x/17] [y
/

v], { 17 :: 0 } ] { v :: 0 }
〉

 
〈
<17> := x + y + z ; free(x) ; free(y),

s [x/17] [y
/

v] [z/0], { 17 :: 0 } ] { v :: 0 }
〉

 
〈
free(x) ; free(y), s [x/17] [y

/
v] [z/0] , { 17 :: 17 + v } ] { v :: 0 }

〉
 

〈
free(y), s [x/17] [y

/
v] [z/0] , { v :: 0 }

〉
 

〈
term, s [x/17] [y

/
v] [z/0] , h∅

〉
 

〈
sink

〉
 . . .

4.1.4 Data Structures in P3L

Programming with pointers requires caution to avoid unexpected behavior. Let
us briefly discuss a few idioms for implementing dynamic data structures in P3L.
Furthermore, we introduce auxiliary notation for conveniently manipulating
these data structures as in popular programming languages such as C or Java.

Arrays An array is a collection of values such that every element can be
accessed via an index, i.e., a natural number ranging from 0 to the number of
elements in the array (minus one). Arrays in P3L are implemented as in the
C programming language [KR88]. That is, an array is a consecutive block of n
allocated addresses. For example, the P3L statement x := alloc(0, 0, 0) creates
a new array consisting of three memory cells that are initialized with zero.
Moreover, the first address of the array is assigned to variable x. Consequently,
each element of the array can be accessed trough x: <x + 0> denotes the first
value stored in the array, <x + 1> its second value, and <x + 2> its third,
respectively. The more common notation x [ i ] , which refers to the i-th element
of the array given by variable x, is thus syntactic sugar for <x + i>. We remark
that—as in the C programming language—no range checks are performed when
attempting to access an array element. Hence, statements like y := x [ i ] may fail
or access memory cells outside of the array. Furthermore, the length of an array
cannot be reconstructed from the array itself. It must thus be stored in a separate
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sumAndDelete(array, length) {
x := 0 ; y := 0 ;
while ( x < length ) {

y := y + array [ x ] ;
free(array + x) ;
x := x + 1

}
out := y

}

Figure 4.5: A procedure declaration in P3L that operates on arrays.

variable. As an example, consider the P3L procedure sumAndDelete(array,
length) in Figure 4.5. This procedure takes an array and its length as an input
and returns the sum of all (length) values stored in the array. In addition to that,
the array is deleted.

Linked data structures Linked data structures, such as lists and trees, consist
of multiple elements that reference each other via pointers. Elements of a data
structure are usually represented by objects (Java), structs (C), or records (Pascal)
that encapsulate all members of an element which can then be accessed through
a single variable. For instance, every element of a singly-linked list, say x,
consists of two members: A pointer to the next element and some payload
data. The members of an element are then accessible via selectors, e.g., x.next
for the next pointer and x.val for the payload. To model objects in P3L, let
Sel , (sel0, . . . , seln−1) be a fixed sequence of n ∈ N selectors. Then, similarly
to structs in C, an object in P3L is a consecutive block of n allocated memory
cells.2 Analogously to array variables, an object variable, say x, stores the first
address in such a block. The statement x := alloc(v1, . . . , vn) thus creates a new
object in which the i-th member is initialized with the value vi. Consequently, the
value of the i-th selector of the object referenced by x is given by <x + i>. For
convenience, we write x.seli instead of <x + i>. Coming back to our example of

2For simplicity, we assume that all objects use the same selectors. Otherwise, we would also
have to store additional information such as the object’s type or its number of selectors. Moreover,
we remark that the usage of “objects” in P3L relies on conventions. Nothing prevents us from
manipulating or deleting the memory cells that make up an object.
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Creverse : while ( cur 6= 0 ) {
Cbody : y := cur.next ;

cur.next := rev ;
rev := cur ;
cur := y

}

Figure 4.6: A P3L program manipulating a singly-linked list with head x.

singly-linked lists, we choose the sequence of selectors Sel = (next, val). Hence,
the first address of every list object stores a pointer to the next list object and the
second address stores the payload. In the stack-heap pair (s, h) depicted below,
x.val then refers to the value 3 at address 10. Analogously, x.next.val refers to
the value 11 at address 8:

9
•

10
3

7
•

8
11

0 ← revx, cur→

We conclude this section with an example program that manipulates lists.

Example 4.10 Let us execute the P3L program Creverse in Figure 4.6 on the
above stack-heap pair (s, h). Since variable cur initially stores address 9, i.e.,
s(cur) = 9, the first steps of an execution of Creverse on (s, h) are as follows:〈

Creverse, s, h
〉

 
〈
Cbody ; Creverse, s, h

〉
 ∗

〈
Creverse, s[y

/
7] [rev/9] [cur/7], h[9/0]

〉
,

where the last stack-heap pair is illustrated below:

9
•

10
3

7
•

8
11

0x, rev→ y, cur→
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In this stack-heap pair, variable cur is still not equal to 0. Hence, we enter
the loop body once more and the execution proceeds as follows:〈

Creverse, s [y
/

7] [rev/9] [cur/7] , h [9/0]
〉

 
〈
Cbody ; Creverse, s [y

/
7] [rev/9] [cur/7] , h [9/0]

〉
 ∗

〈
Creverse, s[y

/
0] [rev/7] [cur/0] , h [9/0] [7/9]

〉
 

〈
term, s [y

/
0] [rev/7] [cur/0] , h [9/0] [7/9]

〉
 

〈
sink

〉
 . . .

To understand the effect of program Creverse on the initial stack-heap pair
(s, h), consider the stack-heap pair reached upon termination:

7
•

8
11

9
•

10
3

0 ← y, currev→ x →

The value of variable x remains unchanged. The list itself, however, has
been reversed. Moreover, variable rev points to the head of the reversed list.

4.2 Hurdles for Program Verification

Pointer programs are at the foundation of many efficient algorithms and enable
the implementation of dynamic data structures. This makes pointers—at least at
some level of abstraction—an indispensable part of programming. Unfortunately,
programming with pointers is also highly error-prone: More than a decade after
the release of the first language with support for pointers [Law67], pointer
manipulation was (and still is) regarded as “one of the trickiest operations in
programming and [. . . ] a major source of programming errors” [Suz80].

All of the above aspects of pointer programs justify why their formal verifi-
cation is desirable. However, like programming with pointers, reasoning about
pointer operations is challenging: While extensions of Floyd-Hoare logic [Flo67;
Hoa69] for reasoning about both pointer programs [Bur72] and recursive proce-
dures [Hoa71] have been proposed at roughly the same time, there is a stark
difference: The rule proposed in [Hoa71] is an elegant solution for proving
partial correctness of procedures (cf. Chapter 3). In contrast, various Hoare
logics for pointer programs have been proposed, e.g., [HW73; LS79; Bij89], and
dismissed. Almost thirty years later, Bornat [Bor00] adequately summarized the
situation up until year 2000: “It is possible, but difficult, to reason in Hoare logic
about programs which address and modify data structures defined by pointers.
[. . . ] Hoare logic isn’t widely used to verify pointer programs”.
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In this section, we briefly examine the challenges faced when reasoning
about pointer programs with Hoare logic. After that, we study separation logic,
which is an extension of Hoare logic that addresses these challenges.

No immediate technical difficulties arise when incorporating pointers and
dynamic memory allocation into Hoare logic. In fact, in comparison to previous
chapters, only a few changes of the foundations of Hoare logic—predicates,
triples, validity, and semantic weakest preconditions—are needed. First, to
express properties of the heap, we extend the set Pred of predicates.

Definition 4.11 (Predicate over Stack-Heap Pairs) The set of predicates over
stack-heap pairs is defined as

Pred , { P : SHPairs→ T } .

Moreover, the set of stack-heap pairs captured by predicate P is defined as

SHPairs (P) , { (s, h) ∈ SHPairs | P(s, h) = true } .

We write s, h |= P (read: (s, h) satisfies P) as a shortcut for P (s, h) = true.
Analogously, we write s, h 6|= P (read: (s, h) violates P) for P (s, h) = false.

Every predicate considered in previous chapters, e.g., x > 0, is also a predicate
over stack-heap pairs. Throughout the remainder of this thesis, we always
consider predicates over stack-heap pairs. Hence, we use the terms “predicate”
and “predicate over stack-heap pairs” synonymously. Furthermore, for our
extended set of predicates Pred, ( Pred, ⇒ ) remains a complete lattice, where
the logical implication⇒ is given by

P ⇒ Q iff SHPairs (P) ⊆ SHPairs (Q) .

The proof is analogous to the proof of Lemma 2.23.
Hoare triples for P3L are defined mutatis mutandis as for PL programs. That

is, a Hoare triple
〈

P
〉

C
〈

Q
〉

consists of a precondition P ∈ Pred, a P3L
program C, and a postcondition Q ∈ Pred. The question whether a Hoare triple
is valid or not, however, is more subtle. Consider, for example, the P3L program

free(x) ; free(x).

Regardless of the initial stack-heap pair, this program will always lead to a
memory failure: If the address stored in variable x is initially not allocated,
then we immediately fail. Otherwise, the same address will not be allocated
after execution of free(x). Hence, we fail when trying to execute free(x) again.
Every execution of our operational semantics is thus of the form〈

free(x) ; free(x), s, h
〉
 ∗

〈
fault

〉
 . . .
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In particular, no execution ever reaches a state
〈
term, s′, h′

〉
indicating successful

termination. This means that—if we do not change our definition of validity
introduced in Definition 2.22—the Hoare triple〈

true
〉
free(x) ; free(x)

〈
true

〉
is valid with respect to partial correctness. It is even valid for total correctness
because every execution eventually terminates, i.e., reaches the sink state. In
both cases, however, every execution terminates unsuccessfully with a failure.
This is clearly undesirable. If we are able to prove a Hoare triple valid, i.e., show
that a program meets its specification, then this should rule out the possibility of
encountering a failure. Ishtiaq and O’Hearn [IO01] gave an adequate summary
of this situation: “Well-specified programs don’t go wrong.” This is formalized
by considering memory safe Hoare triples [YO02, Section 3].

Definition 4.12 (Memory Safe Hoare Triple) The Hoare triple
〈

P
〉

C
〈

Q
〉

is memory safe if and only if

∀(s, h) ∈ SHPairs (P) ¬∃(s′, h′) ∈ SHPairs :
〈
C, s, h

〉
 ∗

〈
fault

〉
.

From now on, we require that a Hoare triple is memory safe in order to be
valid. That is,

〈
P
〉

C
〈

Q
〉

is valid for partial correctness if and only if it is
memory safe and valid for partial correctness in the sense of Definition 2.22.
Analogously,

〈
P
〉

C
〈

Q
〉

is valid for total correctness if and only if it is
memory safe and valid for total correctness in the sense of Definition 2.22.

Since failures in P3L are caused by illegal attempts to access the heap, all Hoare
triples considered for PL and P2L programs are automatically memory safe.

Apart from using memory safe Hoare triples under the hood, the definition
of (semantic) weakest preconditions remains unchanged (cf. Definition 2.24,
page 40). That is, for both total and partial correctness, the semantic weakest
precondition WP of P3L program C with respect to postcondition Q ∈ Pred is

WP , sup
{

P
∣∣ 〈 P

〉
C
〈

Q
〉

is valid
}

.

Why is reasoning about pointer programs more challenging? While we had to
slightly change the notion of valid Hoare triples, our formalization of Hoare logic
and (semantic) weakest preconditions for P3L has barely changed if compared
to the definitions for PL and P2L programs. The difficulties thus do not lie in the
underlying formalization, but in the way weakest preconditions are computed.
O’Hearn, Reynolds, and Yang [ORY01] got to the heart of the issue: “The main
difficulty is not one of finding an in-principle adequate axiomatization of pointer
operations; rather, there is a mismatch between simple intuitions about the way
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that pointer operations work and the complexity of their axiomatic treatments”.
In other words, the main challenge is to find inference rules for P3L programs
that preserve the compelling aspects of Hoare logic. So what makes Hoare
logic compelling? Hoare logic is a systematic approach for reasoning about
programs that facilitates local reasoning: For proving a program correct, it suffices
to consider only the aspects relevant for the program’s correctness instead of
all pedantic details of program executions. This is exactly the reason we gave
when introducing Hoare logic in Section 2.3. From a technical perspective, local
reasoning is enabled by the rule for assignments, i.e.,

wlp [x := E] (Q) , Q [x/E] .3

An assignment to variable x thus amounts to a purely syntactic substitution of
all (free) occurrences of x by the assigned expression E. Consequently, exactly
those parts of postcondition Q for which variable x is relevant are changed. In
particular, if x does not occur in Q, then the assignment has no effect on it. The
same principle permeates Hoare logic as a whole: It shows up in the rule of
invariance, which we derived for weakest liberal preconditions in Theorem 2.40:

Q⇒ wlp [C] (Q) if Mod (C) ∩Vars (Q) = ∅.

Furthermore, the rule of invariance (or a similar notion from which it can be
derived) is necessary for the completeness of Hoare logic in the presence of
recursive procedures [Apt81; Old83]. A concise formalization of local reasoning
is obtained when combining the rule of invariance with the rule of conjunction
(Theorem 2.38): If Mod (C) ∩Vars (R) = ∅, then

wlp [C] (Q) ∧ R
⇒ wlp [C] (Q) ∧ wlp [C] (R) (Theorem 2.40)
= wlp [C] (Q ∧ R) . (Theorem 2.38)

Hence, it suffices to reason only about the aspects of a predicate that are relevant
to a program. Other parts, i.e., the predicate R in the above equality, do not have
to be considered when computing weakest (liberal) preconditions. In Hoare
logic, this also known as the rule of constancy [Rey81; Rey02]:〈

P
〉

C
〈

Q
〉

Mod (C) ∩Vars (R) = ∅〈
P ∧ R

〉
C
〈

Q ∧ R
〉 constancy

3For the sake of the argument, we ignore the distracting possibility of nontermination and
restrict ourselves to reasoning about partial correctness.
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Unfortunately, incorporating pointers into Hoare logic inflicts causalities to all
of the above aspects of local reasoning: For example, consider the P3L program

<x> := 3 ; <y> := 17 ; z := <x>.

It is tempting to conclude that this program terminates with z = 3. In fact,
a naïve application of the weakest liberal precondition calculus from previ-
ous chapters seems to confirm this hypothesis (read from bottom to top as
in Example 2.29):

// 3 = 3 (assuming standard rule for assignments)
<x> := 3 ;
// <x> = 3 (assuming rule of invariance)
<y> := 17 ;
// <x> = 3 (assuming standard rule for assignments)
z := <x>
// z = 3

This “proof”, however, ignores the possibility that variables x and y could be
aliases, i.e., store the same address. As the following execution of the above
program on a stack-heap pair (s, h) with s(x) = s(y) = 2 demonstrates, we
indeed obtain a different result—z = 17—for this corner case:〈

<x> := 3 ; <y> := 17 ; z := <x>, s, h
〉

 
〈
<y> := 17 ; z := <x>, s, h[2/3]

〉
 
〈
z := <x>, s, h[2/17]

〉
 
〈
term, s[z/17], h [2/17]

〉
 
〈
sink

〉
 
〈
sink

〉
 . . .

Hence, the rule of invariance is unsound in the presence of pointer manipulations.
Furthermore, it is unsound to use a purely syntactic substitution to deal with
assignments because substituting every occurrence of <y> in <x> = 3 by 17
would have led to the same result. Similar counterexamples exist to prove that
the rule of constancy is unsound in the presence of aliasing [Rey02].

We might get away with a semantic substitution for assignments, i.e., sub-
stitute all addresses equal to <y> by 17 in the above example. However, such
rules enforce global rather than local reasoning: We would have to constantly
check whether variables are aliases or not; thus blowing up predicates with
case distinctions. Even worse, these checks have to performed for all variables—
including variables that do not occur in a predicate. Other approaches suffer
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from the same problem: For instance, the rule for assignments in [LS79] adds a
global condition that requires the non-existence of other pointers to the same
address. Similarly, [Bur72] introduced rules that rely on universal quantifiers
over all possible addresses to avoid aliasing.

To sum up, the main challenge when incorporating pointers in Hoare logic is to
present sound and complete rules that recover local reasoning as much as possible.

A satisfactory solution of this challenge was developed in a series of papers
by O’Hearn, Reynolds, Yang, and others [IO01; ORY01; YO02; Rey02]. The key
idea lies in two novel connectives between predicates—the separating conjunction
? and the separating implication −−? —that keep segments of the heap separate
and thus prevent unintended aliasing. Burstall [Bur72] already stressed the
importance of separation for reasoning about pointer programs. In particular,
he introduced “distinct non-repeating list systems” for reasoning about linked
lists. While his approach is tailored to lists and trees, it significantly simplifies
Floyd-Hoare style proofs. We encourage the reader to compare his proof of a list
reversal algorithm with and without exploiting separation [Bur72, pages 31–33].
Separation logic builds on his ideas to achieve local reasoning.

The remainder of this chapter is an introduction to separation logic. First,
we study separation logic’s assertion language, i.e., its characteristic predicates
and connectives. We then present rules for computing weakest preconditions
within this language. Finally, we discuss proof rules and local reasoning.

4.3 Separation Logic Assertions

Although the assertion language of separation logic is usually defined following
an intensional approach, i.e., by providing an explicit syntax [IO01; Rey02], we
adhere to an extensional approach as in previous chapters. An explicit syntax
for a fragment of the assertion language is considered in Chapter 10. Recall
from Definition 4.11 that our assertion language consists of all predicates

P : SHPairs→ T

mapping stack-heap pairs to either true or false. Every predicate P : Stacks→ T

considered in previous chapters can be written as such a predicate, namely

λ(s, h). P (s) .

Moreover, we use the same connectives as in Section 2.3.1 to compose predicates.
That is, P ∧ Q and P ∨ Q denote predicates that capture the intersection and
the union of the sets SHPairs (P) and SHPairs (Q), respectively. Furthermore,
¬P captures the set of all stack heap pairs in SHPairs that are not contained in
SHPairs (P). Since the heap is not concerned with variables, we lift our auxiliary
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definitions for manipulating variables, i.e., variable substitution (Definition 2.26),
scope increment, and scope decrement (Definition 3.14) to predicates over stack-
heap pairs by applying them to the stack component only:

• P [x/E] , λ(s, h). P
(
s [x
/

E (s)] , h
)
,

• P [+�] , λ(s, h). P (s [+�] , h), and

• P [−�] , λ(s, h). P (s [−�] , h).

Finally, analogously to Definition 2.39, the set Vars (P) ⊆ Vars of variables
occurring in predicate P is given by:

x ∈ Vars (P) iff ∃(s, h) ∈ SHPairs ∃u, v ∈ Z : P [x/u] (s, h) 6= P [x/v] (s, h) .

4.3.1 The Atoms of Separation Logic

Let us take a look at predicates that actually depend on the heap. To this end,
the atomic formulas of separation logic, which have been originally presented
in [IO01; Rey02], serve us as a source of examples.

The empty-heap predicate emp captures all stack-heap pairs in which the
heap is empty. Formally, it is defined as:

emp , λ(s, h).

{
true, if dom(h) = ∅
false, otherwise.

The points-to predicate E 7→ E′ evaluates to true if and only if the heap consists
of exactly one memory cell whose address is given by expression E and whose
content is given by expression E′, respectively:

E 7→ E′ , λ(s, h).

{
true, if h = { E (s) :: E′ (s) }
false, otherwise,

where { E (s) :: E′ (s) } is our shorthand notation for heaps introduced in Sec-
tion 4.1.2. Furthermore, the predicate E 7→ E1, . . . , En specifies a consecutive
block of n memory cells:

E 7→ E1, . . . , En , λ(s, h).

{
true, if h = { E (s) :: E1 (s) , . . . , En (s) }
false, otherwise,
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5
3

5 7→ 3
5 7→ −
5 ↪→ 3

5
8

5 7→ −

5
3

6
0

7
6

5 7→ 3, 0, 6
5 ↪→ 3

1
11

5
3

17
1

5 ↪→ 3

Figure 4.7: A collection of four heaps and four predicates. If a heap satisfies a
predicate (for an arbitrary stack) it is provided below the respective heap.

Sometimes, we only care about the fact that an address is allocated rather than
what value is stored at that address. In this case, we use the allocated pointer
predicate E 7→ − which is defined as:

E 7→ − , λ(s, h).

{
true, if dom(h) = { E (s) }
false, otherwise.

All of the above predicates are precise in the sense that they specify exactly the
addresses the heap must consist of. A more relaxed notion is the contains-pointer
predicate E ↪→ E′ , which evaluates to true if and only if the heap contains a
memory cell with address E and value E′:

E ↪→ E′ , λ(s, h).

{
true, if { E (s) :: E′ (s) } ⊆ h

false, otherwise,

where ⊆ denotes heap inclusion as introduced in Section 4.1.2.

Example 4.13 Consider the following four predicates:

5 7→ 3 5 7→ 3, 0, 6 5 7→ − 5 ↪→ 3.

Since none of these predicates contain any variables, their captured stack-
heap pairs depend on the heap only. Figure 4.7 illustrates four different
heaps and, for each of these heaps h, collects which of the above predicates
are satisfied by h (and an arbitrary stack).

4.3.2 Separating Conjunction and Separating Implication

We now turn to the two prominent connectives of separation logic: separating
conjunction and separating implication. The key idea is to treat the heap as a
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resource that is modified prior to evaluation; the separating conjunction cuts off
a part of the heap whereas the separating implication extends it (cf. [IO01]).

Separating Conjunction In contrast to the standard conjunction P ∧ Q, the
separating conjunction P ? Q of two predicates P and Q first partitions the heap
into two pieces and evaluates each conjunct in one piece.

Definition 4.14 (Separating Conjunction [IO01; Rey02]) The separating con-
junction P ? Q of two predicates P and Q is given by

s, h |= P ? Q iff ∃h1, h2 : h = h1 ] h2 and s, h1 |= P and s, h2 |= Q.

Intuitively, the separating conjunction P ?Q cuts off a heap specified by predicate
P before evaluating Q. For example, the predicate 4 7→ 7 ?Q cuts off the memory
cell { 4 :: 7 } and evaluates Q in the remaining heap. Consequently, for the heap
h depicted below and an arbitrary stack s, we have s, h |= 4 7→ 7 ? 7 7→ 4.

h = { 4 :: 7 } ] { 7 :: 4 }

4
•

7
•

Separating Implication The separating implication P −−? Q of two predicates P
and Q first extends the heap as specified by predicate P (and disjoint from the
original heap) and then evaluates Q in the extended heap.

Definition 4.15 (Separating Implication [IO01; Rey02]) Given two predi-
cates P and Q, the separating implication P −−? Q is given by

s, h |= P −−? Q iff ∀h′ :
(
h # h′ and s, h′ |= P

)
implies s, h ] h′ |= Q.

For example, consider the contains-pointer predicate 7 ↪→ 4 as well as the heap
h = { 4 :: 7 } ] { 7 :: 4 } from above. Clearly, for every stack s, we have

s, { 4 :: 7 } 6|= 7 ↪→ 4 and s, { 4 :: 7 } ] { 7 :: 4 } |= 7 ↪→ 4.

Moreover, there exists exactly one heap, namely { 7 :: 4 }, such that the points-to
predicate 7 7→ 4 is satisfied. Consequently, it holds that

s, { 4 :: 7 } |= 7 7→ 4 −−? 7 ↪→ 4

iff ∀h′ :
(
{ 4 :: 7 } # h′ and s, h′ |= 7 7→ 4

)
implies s, { 4 :: 7 } ] h′ |= 7 ↪→ 4

iff s, { 4 :: 7 } ] { 7 :: 4 } |= 7 ↪→ 4

which is valid by definition of 7 ↪→ 4.
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Example 4.16 Let us consider a few more examples to compare the separat-
ing connectives ? and −−? with the standard connectives ∧ and⇒. We have
already discussed that, for an arbitrary stack s, it holds

s, { 4 :: 7 } ] { 7 :: 4 } |= 4 7→ 7 ? 7 7→ 4.

This is not true for a standard conjunction, i.e.,

s, { 4 :: 7 } ] { 7 :: 4 } 6|= 4 7→ 7∧ 7 7→ 4

as { 4 :: 7 } ] { 7 :: 4 } is not a single memory cell. Conversely, it clearly
holds that s, { 4 :: 7 } |= 4 7→ 7 ∧ 4 7→ 7. If we replace the conjunction by a
separating one, however, the predicate is violated:

s, { 4 :: 7 } 6|= 4 7→ 7 ? 4 7→ 7.

What about separating implication and standard implication? The predicate
4 7→ 7 −−? 4 7→ 7 and the predicate 4 7→ 7⇒ 4 7→ 7 are both satisfied by the
stack-heap pair (s, h∅). If we consider another heap, however, we have

s, { 4 :: 7 } 6|= 4 7→ 7 −−? 4 7→ 7 and s, { 4 :: 7 } |= 4 7→ 7⇒ 4 7→ 7.

What about combinations of ? and −−? ? The predicate

4 7→ 7 ? (4 7→ 2 −−? 4 ↪→ x)

updates the value stored at address 4 to 2 before evaluating 4 ↪→ x. To this
end, we first cut off the heap { 4 :: 7 }, then insert the heap { 4 :: 2 }, and
finally evaluate 4 ↪→ x in the result. Hence, for every stack s such that

s, { 4 :: 7 } |= 4 7→ 7 ? (4 7→ 2 −−? 4 ↪→ x)

holds, we have s (x) = 2. Furthermore, if we cut off a heap and then insert
the same heap again, the result is evaluated in the original heap. Hence,

s, h |= 4 7→ 7 ? (4 7→ 7 −−? 4 ↪→ 7) iff s, h |= 4 ↪→ 7.

An immediate benefit of the separating conjunction is that it prevents unintended
aliasing effects: For instance, consider the predicate x 7→ E ? y 7→ E. Is it possible
that x and y are aliases, i.e., they store the same address? For any (s, h), we have

s, h |= x 7→ E ? y 7→ E
iff ∃h1, h2 : h1 ] h2 and s, h1 |= x 7→ E and s, h2 |= y 7→ E
iff ∃h1, h2 : h1 ] h2 and h1 = { s (x) :: E } and h2 = { s (y) :: E } .



4.3. Separation Logic Assertions 113

Now, the disjoint union h1 ] h2 is defined if and only if h1 # h2 holds, i.e., the
heaps h1 and h2 have disjoint domains. Hence,

h1 # h2

iff dom(h1) ∩ dom(h2) = ∅
iff { s (x) } ∩ { s (y) } = ∅ (by definition of h1, h2 from above)
iff s (x) 6= s (y) .

In other words, if x 7→ E ? y 7→ E holds, then the variables x and y are not
aliases. A direct consequence of this observation is that predicates of the form

E 7→ E′ ? E 7→ E′′

cannot be satisfied by any stack-heap pair.

Properties of Separating Conjunction and Implication Let us collect a few
algebraic properties of the separating connectives ? and −−? ; all of which are
taken from [IO01; Rey02].

First, we may omit brackets, add and remove the predicate emp and reorder
the conjuncts of ? due to the underlying monoidal structure.

Theorem 4.17 (Monoidicity of ? [IO01]) (Pred, ?, emp) is a commutative
monoid, i.e., for all predicates P, Q, R ∈ Pred, we have:

(a) Associativity: P ? (Q ? R) = (P ? Q) ? R.

(b) Neutrality of emp : P ? emp = emp ? P = P.

(c) Commutativity: P ? Q = Q ? P.

Furthermore, the separating conjunction is a monotone connective:

Theorem 4.18 (Monotonicity of ? [Rey02]) For all predicates P, Q, R ∈ Pred:

P⇒ R implies (P ? Q)⇒ (R ? Q).

The separating conjunction ? behaves similarly to the standard conjunction ∧.
In particular, it satisfies the same (at least in one direction) distributivity laws
for disjunction, conjunction, and quantifiers.4

4Since we do not have an explicit syntax for predicates, let us briefly give an extensional
definition of the sets of stack-heap pairs captured by quantifiers: For the existential quantification,
we define this set as SHPairs (∃x : P) ,

⋃
v∈Z SHPairs (P [x/v]). Analogously, for the universal

quantification, we define SHPairs (∀x : P) ,
⋂

v∈Z SHPairs (P [x/v]).
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Theorem 4.19 ((Sub)distributivity Laws [Rey02]) For all P, Q, R ∈ Pred:

(a) (P ∨Q) ? R = (P ? R) ∨ (Q ? R),

(b) ((P ∧Q) ? R) ⇒ (P ? R) ∧ (Q ? R),

(c) if x /∈ Vars (P), then P ? (∃x : Q) = ∃x : (P ? Q), and

(d) if x /∈ Vars (P), then (P ? (∀x : Q)) ⇒ ∀x : (P ? Q).

We previously used ? to shrink the heap and −−? to enlarge the heap prior to
further evaluating a predicate. This suggests a relationship between ? and −−?
which is similar to the relationship a + b ≤ c iff b ≤ c − a for addition and
subtraction. In fact, ? and −−? are adjoint:

Theorem 4.20 (Adjointness [IO01]) For all predicates P, Q, R ∈ Pred:

(P ? Q)⇒ R iff Q⇒ (P −−? R).

In particular, by considering (P −−? Q) ⇒ (P −−? Q), adjointness clarifies the
effect of first cutting off a heap and then inserting the same heap again:

Corollary 4.21 (Modus Ponens [Rey02]) For all predicates P, Q ∈ Pred:

P ? (P −−? Q)⇒ Q.

Finally, we notice that the predicates E 7→ −, E ↪→ E′, and E 7→ E1, . . . , En are
“syntactic sugar” as they can be expressed in terms of E 7→ E′, ?, and existential
quantifiers. That is, the following equalities hold:

E 7→ − = ∃x : E 7→ x

E ↪→ E′ = E 7→ E′ ? true
E 7→ E1, . . . , En = E 7→ E1 ? E + 1 7→ E2 ? . . . ? E + n− 1 7→ En

4.3.3 Fragments of Predicates

Before we move on to reason about programs with separation logic, we study
a few fragments of predicates, where separating conjunction and separating
implication enjoy additional properties.

4.3.3.1 Pure Predicates

A predicate P is pure if it does not depend on the heap, i.e.,

∀s ∈ Stacks ∀h, h′ ∈ Heaps : P(s, h) = P(s, h′).
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In particular, all predicates considered in previous chapters, e.g., z = x · y,
are pure. Since the heap does not matter for pure predicates, the separating
connectives coincide with the standard ones for pure predicates.

Theorem 4.22 (Algebraic Laws for ? and −−? under Purity [Rey02]) Let P
be a pure predicate. Moreover, let Q and R be predicates. Then:

(a) (P ∧Q) ⇒ (P ? Q),

(b) (P ∧Q) ? R = P ∧ (Q ? R), and

(c) (P −−? Q) ⇒ (P⇒ Q).

Moreover, if both P and Q are pure, then:

(d) P ? Q = P ∧Q, and

(e) P −−? Q = P⇒ Q.

4.3.3.2 Domain-exact Predicates

A predicate P is domain-exact if and only if

∀s ∈ Stacks ∀h, h′ ∈ Heaps : (s, h |= P and s, h′ |= P)

implies dom(h) = dom(h′).

In other words, after evaluation of variables, there is a fixed set of addresses
that must be allocated in the heap in order to satisfy a domain-exact predicate
P. For example, the predicates emp, x 7→ y, z, and E 7→ − are all domain-exact
whereas the predicates true and x ↪→ E are not. Moreover, if the predicates P
and Q are domain-exact, then the predicate P ? Q is domain-exact as well. For
domain-exact predicates, the separating conjunction is fully distributive:

Theorem 4.23 (Distributivity Laws for Domain-Exact Predicates [Rey02])
Let P, Q, R ∈ Pred be predicates and let R be domain-exact. Then:

(a) (P ∧Q) ? R = (P ? R) ∧ (Q ? R), and

(b) if x /∈ Vars (R), then (∀x : P) ? R = ∀x : (P ? R).

4.3.3.3 Intuitionistic Predicates

A predicate P is intuitionistic if and only if

∀s ∈ Stacks ∀h, h′ ∈ Heaps : (h ⊆ h′ and s, h |= P) implies s, h′ |= P.
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In words, as long as the heap grows, an intuitionistic predicate only becomes
“more true”. For instance, both the predicate true and the predicate E ↪→ E′ are
intuitionistic. We could have alternatively defined the latter predicate as

E ↪→ E′ , E 7→ E′ ? true.

In fact, there is a general approach to construct intuitionistic predicates:

Theorem 4.24 (Tightest Intuitionistic Predicates [Rey02]) Let P ∈ Pred
be a predicate. Then the predicate P ? true is the strongest intuitionistic
predicate that is weaker than P. That is,

• P ? true is intuitionistic,

• P⇒ (P ? true), and

• for all intuitionistic predicates Q with P⇒ Q, we have (P ? true)⇒ Q.

Furthermore, the predicate true−−? P is the weakest intuitionistic predicate
that is stronger than P. That is,

• true−−? P is intuitionistic,

• (true−−? P)⇒ P, and

• for all intuitionistic predicates Q that satisfy Q ⇒ P, the predicate
Q⇒ (true−−? P) holds.

The intuitionistic predicate E ↪→ E′ is a compact way to express that the value at
address E is given by expression E′. As the following lemma shows, we could
have expressed the same without intuitionistic predicates by first cutting off the
memory cell E 7→ E′ and then inserting the same cell again.

Lemma 4.25 ([Rey02]) For all expressions E, E′ and predicates Q, we have:

E ↪→ E′ ∧Q = E 7→ E′ ? (E 7→ E′−−? Q).

4.3.4 Recursive Data Structures

A motivation for introducing pointers is to support dynamic data structures,
such as linked lists and binary trees. How do we specify data structures
systematically in separation logic? For every data structure, we define a predicate
P(~E), where ~E is a sequence of parameters passed to the predicate, e.g., the
head of a list. These predicates are defined by means of a recursive equation

P(~v) = Φ(P)(~v),
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where, for some natural number n = |~v|, Φ is a monotone function of the form

Φ : (Zn → Pred)→ (Zn → Pred).

The predicate P(E1, . . . , En) is then given by the least fixed point of Φ, i.e.,

s, h |= P(E1, . . . , En) iff s, h |= lfp (Φ) (E1 (s) , . . . , En (s)).

Since Φ is monotone and the set of all functions P : Zn → Pred form a complete
lattice with respect to ⇒ (applied pointwise), the existence of the least fixed
point is guaranteed by the Knaster-Tarski fixed point theorem (Theorem A.11).
While it is technically not required, for practical purposes, it is desirable that
Φ is not only monotone, but continuous. In this case, the predicate is already
captured by the limit of its finite unrollings (cf. Theorem A.16). All recursive
equations considered throughout this thesis are also continuous.

Example 4.26 Consider the following recursive equation:

sll(u, v) = ( u = v ∧ emp ) ∨
(
∃u′ : u 7→ u′ ? sll(u′, v)

)︸ ︷︷ ︸
= Φ(sll)(u,v)

This equation defines a predicate sll(u, v) that captures singly-linked list
segments from address u to address v. Each list element consists only of
a pointer to the next element, i.e., the list stores no data. To sharpen our
intuition, let us compute the first few steps of the fixed point iteration that
determines the precise semantics of predicate sll(u, v). That is, we compute
Φ0(false), Φ1(false), Φ2(false), and Φ3(false), where false , λ(u, v). false is
the least element of our underlying complete lattice.

For the first step, we have Φ0(false) = false. The next iteration yields

Φ1(false) = λ(u, v). u = v ∧ emp.

Thus, the predicate sll(u, v) is satisfied if the heap is empty and its parame-
ters are identical, i.e., if u is the head of a list segment from u to v of length
zero. After one more iteration, we have

Φ2(false) = λ(u, v). ( u = v ∧ emp )

∨
(
∃u′ : u 7→ u′ ? Φ1(false)(u′, v)

)
= λ(u, v). ( u = v ∧ emp )

∨
(
∃u′ : u 7→ u′ ? (u′ = v ∧ emp)

)
= λ(u, v). ( u = v ∧ emp ) ∨ u 7→ v.
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Hence, sll(u, v) is also satisfied if u points to v, i.e., if u is the head of a list
segment from u to v of length one. By a similar computation, we obtain

Φ3(false) = λ(u, v). ( u = v ∧ emp )

∨ u 7→ v

∨ ∃u′ : u 7→ u′ ? u′ 7→ v.

In other words, sll(u, v) is also satisfied if u is the head of a list segment
from u to v of length two. In general, the predicate sll(u, v) captures all
stack-heap pairs in which u is the head of a list segment from u to v.

As discussed in Section 4.1.4, the organization and usage of dynamic data struc-
tures relies—at least in our low-level memory model—heavily on conventions.
For example, before we define a predicate that specifies binary trees, we have
to agree how we refer to the left and the right child of a node, respectively. If
we agree that the first address of a node points to the node’s left child and the
next address points to the node’s right child, then a predicate tree(u) specifying
binary trees with root u is given by the equation

tree(u) = ( u = 0∧ emp ) ∨ ( ∃v, w : u 7→ v, w ? tree(v) ? tree(w) )

This definition requires us to keep in mind that address u stores the left child
and u + 1 stores the right child of node u. Let us introduce a more convenient
notation to describe members of a data structure element which is similar to the
notation in Section 4.1.4 used for implementing data structures in P3L: For an a
priori fixed sequence of pairwise different selectors

Sel = ( sel0, sel1, . . . , seln−1) ,

we write u.seli 7→ v to denote the points-to predicate u + i 7→ v. For instance,
when dealing with binary trees, we might choose selectors left and right to denote
the left and right child of a node, respectively. Hence, we have Sel = (left, right).
An equivalent definition of the predicate tree(u) is then the following:

tree(u) = ( u = 0∧ emp )

∨ ( ∃v, w : u.left 7→ v ? u.right 7→ w ? tree(v) ? tree(w) )

A binary tree captured by the predicate tree(u) is illustrated in Figure 4.8.
It is noteworthy that there are various notions of recursive predicate def-

initions in the separation logic literature, e.g., [IO01; Rey02; Bro07; BDP11;
IRS13; Ant+14; Bro+14; 2]. A key difference between most of these notions is
the underlying definition of heaps. For example, for automated verification
approaches, it is often convenient to assume that the heap consists of objects, i.e.,
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Figure 4.8: Illustration of a heap that (for some stack s) satisfies tree(u).

every address is mapped to a tuple of values that make up the members of an
object (cf. [IRS13; Bro+14]). In particular, this approach ensures that we always
specify all members of an object. Following Reynolds [Rey02], we use a low-level
definition of heaps (cf. Definition 4.3) instead. This enables us to access and
manipulate individual memory cells. While our memory model subsumes more
high-level definitions of heaps, some discipline is required when manipulating
objects, i.e., consecutive blocks of memory of a fixed length. In particular, our
low-level memory model allows us to specify “partial” data structures, i.e., data
structures in which some objects lack a pointer.

Example 4.27 Let us consider two definitions of doubly-linked list segments.
To this end, we use the selectors Sel = (p, n), where p is the previous list
element and n is the next list element, respectively. A partial specification of
doubly-linked list segments from u to v of length at least two is given by
the following equation:

pdll(u, v) = ( u.n 7→ v ? v.p 7→ u )

∨ ( ∃w : u.n 7→ w ? w.p 7→ u ? pdll(w, v) )

The definition is partial because two memory cells are missing: the pointer
to the previous element u′ of u and the pointer to the next element v′ of v.
A complete specification of doubly-linked list segments is then obtained by
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Figure 4.9: Illustration of doubly-linked list segments captured by dll(u′, u, v, v′).

(1) adding the two missing pointers for lists of length greater or equal to
two and (2) adding cases for lists of length zero and length one:

dll(u′, u, v, v′) = emp

∨
(

u = v ∧ u.p 7→ u′ ? u.n 7→ v′
)

∨
(

u.p 7→ u′ ? pdll(u, v) ? v.n 7→ v′
)

Figure 4.9 illustrates a doubly-linked list segment that is captured by the
above predicate. An alternative specification of doubly-linked list segments
that does not rely on a partial specification—and is compatible with more
high-level definitions of heaps [BDP11; IRS13]—is found below:

dll(u′, u, v, v′) =
(

u = v′ ∧ u′ = v ∧ emp
)

∨
(
∃w : u.p 7→ u′ ? u.n 7→ w ? dll(u, w, v, v′)

)
Both definitions only differ for empty list segments: The first specification
requires that the heap is empty, whereas the second specification additionally
imposes a condition on the parameters.

Reasoning about recursive data structure specifications in separation logic
is a challenging task—in particular in the context of automated program
verification—that has received much attention in the literature, e.g., [BDP11;
IRS13; IRV14; Bro+14; Bro+16; 2]. We consider automated reasoning about
(fragments of) recursive data structure specifications in detail in Chapter 11.

4.4 Program Verification with Separation Logic

We now turn to Floyd-Hoare style verification of P3L programs with separation
logic by means of computing weakest preconditions. To this end, we proceed as
for PL programs (cf. Section 2.3.4). That is, we employ a predicate transformer

wp [C] : Pred→ Pred
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which is defined by induction on the structure of P3L programs. For all state-
ments that do not access the heap, the rules of the resulting weakest precondition
calculus are identical to the rules presented for P2L programs in Section 3.2.2.

Let us consequently focus on the rules for computing weakest preconditions
of the novel statements introduced in P3L, i.e., allocation x := alloc(~E), deallo-
cation free(E), mutation <E> := E′, and lookup x := <E>. All of the above
statements immediately terminate either successfully or due to a memory fault.
Hence, their weakest precondition transformers for total and partial correct-
ness coincide. We thus consider only the case of total correctness. The rules
presented in the following correspond to Ishtiaq’s and O’Hearn’s backward
reasoning rules [IO01; Rey02]. A summary of all inference rules for computing
both weakest preconditions and weakest liberal preconditions of P3L programs
is found at the end of this section in Figure 4.11 and Figure 4.12, respectively.

Allocation The program x := alloc(E1, . . . , En) allocates a consecutive block
of n memory cells that are initialized with E1, . . . , En. Moreover, the first address
of the allocated block, say v, is stored in variable x. The allocated addresses—in
particular the value v—are chosen nondeterministically to abstract from specific
implementations of the memory allocator. In our operational semantics, this
means that executing an allocation yields infinitely many successor states:

〈
x := alloc(E1, . . . , En), s, h

〉
〈
term, s [x/v1] , h ] { v1 :: E1 (s) , . . . , En (s) }

〉

〈
term, s [x/v2] , h ] { v2 :: E1 (s) , . . . , En (s) }

〉
...

Now, let Q be a postcondition. Since a valid Hoare triple must cover all possible
executions, the weakest precondition of x := alloc(E1, . . . , En) evaluates to true
(for the initial stack-heap pair (s, h)) if and only if Q evaluates to true for all
stack-heap pairs (s′, h′) reached upon termination. Consequently, the weakest
precondition of x := alloc(~E) with respect to Q has to account for all changes
of the initial stack-heap pair (s, h) by any execution of the allocation statement.
So what are these changes? Once the first address of the newly allocated block
of memory, say v, is known, it is stored in variable x. We account for this change
as for a standard assignment x := v. This leads us to the predicate

Q [x/v] .
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In addition to updating variable x, we have to allocate a consecutive block of
n memory cells with first address v. The values of these memory cells are
determined by the expressions E1, . . . En. In other words, we extend the original
heap h by the heap { v :: s (E1) , . . . , s (En) }, which is captured by the predicate
v 7→ E1, . . . , En. Moreover, extending a heap before the evaluation of a predicate
is precisely what the separating implication does. We thus compute the predicate

v 7→ E1, . . . , En −−? Q [x/v] .

Finally, we have to account for the fact that the first allocated address v is chosen
nondeterministically, i.e., we consider all possible values v instead of a fixed one.
Hence, the weakest precondition transformer for allocations is defined as

wp [x := alloc(E1, . . . , En)] (Q) , ∀v : v 7→ E1, . . . , En −−? Q [x/v] .

Deallocation The program free(E) attempts to deallocate the memory cell at
address E. If address E is not allocated, then we encounter a memory failure.
Consequently, there are two mutually exclusive executions:〈

free(E), s, h ] { E (s) :: v }
〉 〈

term, s, h
〉

〈
free(E), s, h

〉 〈
fault

〉
The weakest precondition of free(E) with respect to postcondition Q has to
account for the changes of the heap in both cases. So what are these changes? If
address E is allocated in the original heap, then the corresponding memory cell,
say { E (s) :: v }, is removed prior to evaluation of postcondition Q. Cutting off
a heap before evaluating a predicate in the remaining heap is precisely what
the separating conjunction does. Since the value v at address E is irrelevant,
the removed heap is captured by the predicate E 7→ −. Hence, the weakest
precondition transformer for allocations is defined as

wp [free(E)] (Q) , E 7→ − ? Q.

Notice that the predicate E 7→ − evaluates to false if address E is initially not
allocated. Thus, if the deallocation of address E leads to an error, the weakest
precondition of free(E) evaluates to false.

Lookup The program x := <E> attempts to assign the value at address E to
variable x. As in previous cases, we encounter a memory failure if address E is
not allocated. This means there are two mutually exclusive executions:
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〈
x := <E>, s, h ] { E (s) :: v }

〉 〈
term, s [x/v] , h ] { E (s) :: v }

〉
〈

x := <E>, s, h
〉 〈

fault
〉

The weakest precondition of x := <E> with respect to postcondition Q has to
account for the changes of the original stack-heap pair in both cases. So what
are these changes? The heap is accessed to determine the value at address E, say
v, but remains unchanged. The stack is updated such that variable x evaluates
to v. This is analogous to the assignment x := v, i.e., we compute the predicate

Q [x/v] .

Before updating the stack, however, we have to determine the value v stored at
address E. This is conveniently achieved by the intuitionistic predicate E ↪→ v.
If E is not allocated, this predicate evaluates to false. Otherwise, it evaluates to
true if and only if v is the value stored at address E. Consequently, the weakest
precondition of a lookup is given by the predicate

∃v : E ↪→ v ∧Q [x/v] .

By Lemma 4.25, the same predicate can also be expressed with separating
connectives only. The weakest precondition of a lookup is then defined as

wp [x := <E>] (Q) , ∃v : E 7→ v ? (E 7→ v −−? Q [x/v]) .

Mutation The program <E> := E′ attempts to set the value stored at address
E to E′. If address E is not allocated, then we encounter a memory failure. This
means there are two mutually exclusive executions:〈

<E> := E′, s, h ] { E (s) :: v }
〉 〈

term, s, h ] { E (s) :: E′ (s) }
〉

〈
<E> := E′, s, h

〉 〈
fault

〉
The weakest precondition of <E> := E′ with respect to postcondition Q has to
account for the changes of the heap in both cases. So what are these changes?
Assuming that address E is allocated, we update the value stored at that address.
Intuitively, this corresponds to first deallocating the memory cell at address E
and then allocating a cell at the same address that stores the updated value.
Consequently, we first use a separating conjunction to deallocate the old memory
cell, which is captured by the predicate E 7→ −. This leads to the predicate

E 7→ − ? Q.
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This predicate evaluates to false whenever E is not allocated, i.e., if execution of
<E> := E′ fails. After removing the original memory cell, we use a separating
implication to allocate the updated one, which is captured by the predicate
E 7→ E′. Hence, the weakest precondition transformer for mutations is

wp
[
<E> := E′

]
(Q) , E 7→ − ?

(
E 7→ E′−−? Q

)
.

Let us conclude our discussion of rules for computing weakest preconditions of
P3L programs with a summary of all involved inference rules.

Definition 4.28 (Weakest (Liberal) Precondition Calculus for P3L[IO01; 1])
The weakest precondition calculus wp is defined by structural induction on
P3L programs according to the rules in Figure 4.11, page 132. Moreover, the
weakest liberal precondition calculus wlp is defined by structural induction on
P3L programs according to the rules in Figure 4.12, page 133.

Theorem 4.29 (Soundness of wp and wlp Calculi for P3L [IO01; 1]) For ev-
ery P3L program C and every predicate Q ∈ Pred, we have:

(a) wp [C] (Q)=sup
{

P
∣∣ 〈 P

〉
C
〈

Q
〉

is valid for total correctness
}

, and

(b) wlp [C] (Q) = sup
{

P
∣∣ 〈 P

〉
C
〈

Q
〉

is valid for partial correctness
}

.

4.4.1 Proof Rules

In Sections 2.3.5, 2.3.7, 3.2.2 and 3.2.3 we discussed proof rules for weakest
precondition reasoning about both total and partial correctness. Which of these
rules remain valid in the presence of pointers and dynamic memory allocation?

Let us first consider monotonicity of wp and wlp (Lemmas 2.27, 2.33 and 3.16).
Monotonicity is essential such that the rules for loops and procedure calls are
well-defined: It ensures that the characteristic functions of loops and procedures
are themselves monotone and thus—by Theorem A.11—least and greatest fixed
points exist. Fortunately, monotonicity is preserved by P3L programs.

Lemma 4.30 (Monotonicity) For all P3L programs C, the predicate trans-
formers wp [C] and wlp [C] are monotone.

Proof. By induction on the structure of P3L programs. �

In particular, this means that the invariant-based proof rules for partial correct-
ness, i.e., Theorem 2.35 and Theorem 3.22, also work for reasoning about P3L
programs. Unfortunately, this does not hold for the proof rule for reasoning
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about total correctness presented in Section 2.3.5. The underlying reason is that
this rule depends on the continuity of wp (Lemma 2.30). However, the infinite
nondeterminism introduced by the allocation statement destroys continuity.

Lemma 4.31 (Non-Continuity [AP86; 1]) There exist P3L programs C such
that neither wp [C] nor wlp [C] are continuous.

Proof. Consider the set of predicates X = { 1 ≤ x ≤ n | n ∈N }. Clearly,
sup X = (1 ≤ x). Then, for some stack s and the empty heap h∅, we have

s, h∅ |= wp [x := alloc(0)] (sup X)
iff s, h∅ |= ∀v : v 7→ 0 −−? (1 ≤ x) [x/v]
iff s, h∅ |= ∀v : v 7→ 0 −−? true

iff true.

However, if we consider a single predicate (1 ≤ x ≤ n) ∈ X, we have

s, h∅ |= wp [x := alloc(0)] (1 ≤ x ≤ n)
iff s, h∅ |= ∀v : v 7→ 0 −−? (1 ≤ x ≤ n) [x/v]
iff s, h∅ |= ∀v : v 7→ 0 −−? v ≤ n
iff false. (choose v > n)

This yields a contradiction to wp [x := alloc(0)] being continuous:

wp [x := alloc(0)] (sup X) (s, h∅) = true, but
sup {wp [x := alloc(0)] (1 ≤ x ≤ n) (s, h∅) | n ∈N } = false.

By an analogous argument, wlp [x := alloc(0)] is not continuous. �

For programs that contain no allocation statements, however, continuity is
restored. It might thus be tempting to search for an alternative semantics
of allocations. However, without severe restrictions, e.g., imposing an upper
bound on the available amount of memory, there is little hope to obtain a
continuous predicate transformer: Yang and O’Hearn [YO02, Section 4.1] argue
that nondeterministic allocation is essential to enable local reasoning which was
our main motivation for considering separation logic. In particular, they note
that always choosing the smallest available address is incompatible with local
reasoning, because “adding memory would change what this new address was,
and the difference could be detected with address arithmentic”. Furthermore,
Apt and Plotkin [AP86] showed that it is impossible to define a (fully abstract)
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continuous least fixed point semantics, such as wp, that exhibits countably
infinite nondeterministic assignments.

We summarize other properties that have been considered in Sections 2.3.5,
2.3.7, 3.2.2 and 3.2.3 and that remain correct for P3L programs below.

Theorem 4.32 (Compositionality of wp and wlp for P3L programs) For ev-
ery P3L program C and all predicates Q, R ∈ Pred, we have:

(a) Strictness: wp [C] (false) = false.

(b) Conjunction rule: wp [C] (Q ∧ R)⇒ wp [C] (Q) ∧ wp [C] (R).
If C contains no allocation, an equality holds. The same holds for wlp.

(c) Disjunction rule: wp [C] (Q ∨ R)⇒ wp [C] (Q) ∨ wp [C] (R).
If C contains no allocation, an equality holds. The same holds for wlp.

Proof. By induction on the structure of P3L programs. �

Note that—in contrast to P2L programs—strictness does not hold for weakest lib-
eral preconditions. That is, wlp [C] (true) = true does not hold for P3L programs
in general due to the possibility of encountering a memory fault, e.g.,

wlp [free(x)] (true) = x 7→ − ? true = x ↪→ − 6= true.

4.4.2 Local Reasoning

While the rules of separation logic for computing weakest preconditions are
both sound and complete (cf. Theorem 4.29), our main motivation was to recover
local reasoning for P3L programs. Does separation logic achieve this?

On the level of rules for P3L programs, this is the case: Changes of the stack
are expressed by syntactic substitutions of the form Q [x/E] as it is the case
for standard assignments in Hoare logic. Moreover, the heap is accessed and
manipulated through syntactic operations: We either cut off memory cells with a
separating conjunction ? or we add memory cells to the heap with a separating
implication −−? . In particular, all predicates used to specify which memory cells
are added or removed are domain-exact. That is, they capture precisely those
memory cells that are actually accessed by a program.

What about aliasing? We have already shown that the separating conjunction
prevents aliasing in predicates, i.e., x 7→ E ? y 7→ E′ implies that x 6= y. When
computing weakest preconditions, it also rules out aliasing effects that would
invalidate a property. For example, recall the P3L program

<x> := 3 ; <y> := 17 ; z := <x>.
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We discussed in Section 4.2 that a naïve approach to compute the weakest
precondition of this program with respect to postcondition z = 3 fails to account
for the possibility that x and y are aliases. As demonstrated below, this is not the
case when using separation logic (read from bottom to top as in Example 2.29):

// x 7→ − ? y 7→ − ? true

// =⇒ J algebra (see Appendix B.1 for details) K
// x 7→ − ? (x 7→ 3 −−? ( y 7→ − ? (y 7→ 17 −−? x ↪→ 3)))
<x> := 3 ;
// y 7→ − ? (y 7→ 17−−? x ↪→ 3)
<y> := 17 ;
// x ↪→ 3
// =⇒ J elementary predicate logic K
// ∃v : x ↪→ v∧ v = 3
// =⇒ J Lemma 4.25 K
// ∃v : x 7→ v ? (x 7→ v −−? v = 3)
z := <x>
// z = 3

Our computed precondition thus states that the above program terminates with
z = 3 if both x and y store allocated addresses which are not aliases.

There is one more issue faced when reasoning about pointer programs
that we discussed in Section 4.2: The rules of invariance and constancy, which
embody local reasoning, are unsound. Before we discuss both rules in the context
of separation logic, we extend the inductive definition of the set Mod (C) of
variables modified by program C to cover P3L programs:

Mod
(

x := alloc(~E)
)
, { x } Mod (free(E)) , ∅

Mod (x := <E>) , { x } Mod
(
<E> := E′

)
, ∅

Notice that deallocation and mutation affect the heap, but not the stack. A full
definition of Mod (C) for P3L programs is found in Figure 4.13, page 134.

With this notion at hand, O’Hearn showed that the rule of constancy, which
embodies local reasoning (cf. Section 4.2), can be recovered in separation logic as
long as we use separation conjunctions rather than standard conjunctions:
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Theorem 4.33 (Frame Rule [IO01; Yan01; YO02]) Let C be a P3L program
and R be a predicate such that Mod (C) ∩Vars (R) = ∅. Then:

(a) wp [C] (Q) ? R⇒ wp [C] (Q ? R), and

(b) wlp [C] (Q) ? R⇒ wlp [C] (Q ? R).

Proof. By induction on the structure of P3L programs. �

A reader familiar with separation logic might know the frame rule in a different
form as it is usually presented as an inference rule for Hoare logic:〈

P
〉

C
〈

Q
〉

Mod (C) ∩Vars (R) = ∅〈
P ? R

〉
C
〈

Q ? R
〉 frame

Let us thus briefly verify that both versions are equivalent for total correctness.
The proof for partial correctness is analogous. To this end, let C be a P3L
program and R be a predicate such that Mod (C) ∩Vars (R) = ∅. Moreover,
recall that the triple

〈
P
〉

C
〈

Q
〉

is valid for total correctness if and only if
P⇒ wp [C] (Q) holds. Then the above inference rule is equivalent to

(P ⇒ wp [C] (Q)) ⇒ (P ? R ⇒ wp [C] (Q ? R)) .

For P = wp [C] (Q), the above statement yields

(wp [C] (Q)⇒ wp [C] (Q))︸ ︷︷ ︸
= true

⇒ (wp [C] (Q) ? R ⇒ wp [C] (Q ? R)) ,

which is logically equivalent to the statement in Theorem 4.33, i.e.,

wp [C] (Q) ? R ⇒ wp [C] (Q ? R) .

Conversely, assume that P⇒ wp [C] (Q) holds. Then:

P ? R
⇒ wp [C] (Q) ? R (Monotonicity of ?, see Theorem 4.18)
⇒ wp [C] (Q ? R) . (Theorem 4.33)

Consequently, P ⇒ wp [C] (Q) implies P ? R ⇒ wp [C] (Q ? R). Both formula-
tions of the frame rule are thus equivalent.

We conclude this chapter with an example that demonstrates the usefulness
of the frame rule for program verification.
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Example 4.34 Let us consider a classical example by O’Hearn [OHe12, p.
4–5]. The P3L procedure delete(x), which is depicted in Figure 4.10, takes a
binary tree with root x as an input. If the tree is not empty, i.e., x is not 0,
then the procedure first deletes both subtrees of x and finally the root of the
tree itself. Our goal is to prove that delete(x) successfully deletes the whole
tree, i.e., the Hoare triple〈

tree(x)
〉

y := delete(x)
〈

emp
〉

is valid for partial correctness, where—as discussed in Section 4.3.4—the
predicate tree(x), which specifies binary trees with root x, is given by

tree(u) = ( u = 0∧ emp )

∨ ( ∃v, w : u 7→ v, w ? tree(v) ? tree(w) ) .

To deal with recursive procedure calls, we show that

tree(E)⇒ wlp [body (delete(x))] (emp [−�] [�z/out]) [x
/

x [−�]] [+�]
= wlp [body (delete(x))] (emp) [x

/
x [−�]] [+�]

holds under the assumption that, for all E and z,

tree(E)⇒ wlp [z := delete(E)] (emp) .

Theorem 3.22 then yields

tree(x)⇒ wlp [y := delete(x)] (emp) .

Hence, the Hoare triple
〈

tree(x)
〉

y := delete(x)
〈

emp
〉

is valid for partial
correctness. The essential steps of the proof are provided in Figure 4.10. In
particular, notice that we apply the frame rule prior to the two recursive
calls. This is crucial in order to obtain a postcondition that allows us to
apply our assumption for procedure calls. For instance, for the recursive
call out := delete(right), we have

wlp [out := delete(right)] (x 7→ − ? x + 1 7→ − ? emp)
⇐ wlp [out := delete(right)] (emp) ? x 7→ − ? x + 1 7→ − (frame rule)
⇐ tree(right) ? x 7→ − ? x + 1 7→ − (assumption)
= x 7→ − ? x + 1 7→ − ? tree(right) ? emp. (Theorem 4.17)
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As a final remark, we observe that the most difficult aspects of writing proofs
in separation logic are twofold: First, as usual in Hoare logic, we have to
find suitable invariants for loops and procedures. Second, reasoning about
entailments between predicates, i.e., proving that P⇒ Q holds for two predicates
P and Q, is more complicated (or at least less standard) if P and Q may contain
separating connectives and recursive predicates that specify data structures. In
fact, proving entailments has received a lot of attention in the separation logic
literature, e.g., [BCO04; BDP11; Chi+12; IRS13; IRV14; Ant+14; LP14; Ta+16;
Ene+17a; Le+17; Ta+18]. We will consider the entailment problem in more detail
in Chapter 12.



4.4. Program Verification with Separation Logic 131

// tree(x)
// =⇒ J By definition of scoping (Definition 3.6) K
// tree(�x) [+�]
delete(x) {

// tree(x)
// =⇒ J By definition of tree(x), emp⇒ tree(x); elementary predicate logic K
// (x 6= 0∧ tree(x)) ∨ (x = 0∧ emp)
if ( x 6= 0 ) {

// tree(x)
// =⇒ J as in previous step; elementary logic; definition of tree(x) K
// ∃u : x ↪→ u∧∃v : x 7→ − ? x + 1 7→ v ? tree(v) ? tree(u)
left := <x> ;
// ∃v : x 7→ − ? x + 1 7→ v ? tree(v) ? tree(left)

// =⇒
q

using E 7→ E′ ⇒ E ↪→ E′ ∧ E 7→ −
y

// ∃v : x + 1 ↪→ v∧ x 7→ − ? x + 1 7→ − ? tree(v) ? tree(left)

right := <x + 1> ;
// x 7→ − ? x + 1 7→ − ? tree(right) ? tree(left)

void := delete(left) ;
// x 7→ − ? x + 1 7→ − ? tree(right) ? emp
// =⇒ J Theorem 4.17 K
// x 7→ − ? x + 1 7→ − ? tree(right)

void := delete(right) ;
// x 7→ − ? x + 1 7→ − ? emp
free(x) ;
// x + 1 7→ − ? emp
free(x + 1)
// emp

} else { // emp
skip

// emp
} ; // emp
out := 0
// emp

} // emp

Figure 4.10: Correctness proof of a tree deletion procedure.
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C wp [C] (Q)

skip Q

x := E Q [x/E]

x := alloc(E1, . . . , En) ∀v : v 7→ E1, . . . , En −−? Q [x/v]

free(E) E 7→ − ? Q

x := <E> ∃v : E 7→ v ? (E 7→ v −−? Q [x/v])

<E> := E′ E 7→ − ? (E 7→ E′−−? Q)

C1 ; C2 wp [C1] (wp [C2] (Q))

if ( B ) {C1 } else {C2 } (B ∧ wp [C1] (Q)) ∨ (¬B ∧ wp [C2] (Q))

while ( B ) {C′ } lfp (W), where

W , λI. (B ∧ wp [C′] (I)) ∨ (¬B ∧Q)

x := F(E1, . . . , En) lfp (PF) (x)(E1, . . . , En)(Q), where

PF , λθλx′λ(E′1, . . . , E′n)λQ′.

wpF
θ [body (F)]

(
Q′ [−�] [�x′

/
out]

) [
x1
/

E′1 [−�]
]

. . . [xn
/

E′n [−�]] [+�]

Figure 4.11: Rules of the weakest precondition calculus for P3L programs. The
auxiliary transformer wpF

θ is found in Figure 3.4, page 77. It is extended to cover
the novel P3L statements using the same rules as above.
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C wlp [C] (Q)

skip Q

x := E Q [x/E]

x := alloc(E1, . . . , En) ∀v : v 7→ E1, . . . , En −−? Q [x/v]

free(E) E 7→ − ? Q

x := <E> ∃v : E 7→ v ? (E 7→ v −−? Q [x/v])

<E> := E′ E 7→ − ? (E 7→ E′−−? Q)

C1 ; C2 wlp [C1] (wlp [C2] (Q))

if ( B ) {C1 } else {C2 } (B ∧ wlp [C1] (Q)) ∨ (¬B ∧ wlp [C2] (Q))

while ( B ) {C′ } gfp (LW), where

LW , λI. (B ∧ wlp [C′] (I)) ∨ (¬B ∧Q)

x := F(E1, . . . , En) gfp (LPF) (x)(E1, . . . , En)(Q), where

LPF , λθλx′λ(E′1, . . . , E′n)λQ′.

wlpF
θ [body (F)]

(
Q′ [−�] [�x′

/
out]

) [
x1
/

E′1 [−�]
]

. . . [xn
/

E′n [−�]] [+�]

Figure 4.12: Rules of the weakest liberal precondition calculus for P3L programs.
The auxiliary transformer wlpF

θ is found in Figure 3.7, page 85. It is extended to
cover the novel P3L statements using the same rules as above.
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C Mod (C)

skip ∅

x := E { x }

x := alloc(E1, . . . , En) { x }

free(E) ∅

x := <E> { x }

<E> := E′ ∅

C1 ; C2 Mod (C1) ∪Mod (C2)

if ( B ) {C1 } else {C2 } Mod (C1) ∪Mod (C2)

while ( B ) {C′ } Mod (C′)

x := F(E1, . . . , En) { x }

Figure 4.13: Definition of the set of variables modified by a P3L program.
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Chapter 5

Reasoning about Probabilistic Pointer Programs

This chapter is based on prior publications, namely [1; 18; 10; 6], which are presented,
discussed, and extended in the broader context of this thesis.

Probabilistic programs are ordinary programs with the ability to sample values
from a probability distribution (cf. [Gor+14b; Kat+15]). Since their execution
may depend on sampled values, their behavior can be summarized as follows:

When running a probabilistic program repeatedly on a given input,
we obtain a probability distribution of outputs.

As a first example of probabilistic programs, consider the procedure geometric
in Figure 5.1 (next page). This program flips a fair coin that yields either
heads (0) or tails (1). If the coin flip yields heads, the procedure returns zero.
Otherwise, it returns one plus the result of a recursive call. When running
geometric repeatedly, its return value is distributed as illustrated in Figure 5.2.

The above summary describes the behavior of probabilistic programs from
the perspective of running them on an actual machine. This is why we stress the
word repeatedly: Running a probabilistic program once on an input yields one
result whose probability can be quantified. From a program analysis perspective,
however, the following characterization is more convenient:

For every given input, a probabilistic program computes a probability distribution of
executions (and thus also a probability distribution of outputs).

Intuitively, we may thus think of the distribution sketched in Figure 5.2 as the
output of procedure geometric.

Probabilistic programs inject randomization into computations. Randomiza-
tion is a fundamental concept in computer science. It is an important tool for the
design and analysis of efficient algorithms [MR97; Cor+09]. Further applications
include approximate computing, security, and artificial intelligence.

Before we have a closer look at applications of probabilistic programs, we
observe that—since the probability of executions can be quantified—probabilistic
programs offer a more fine-grained view on a program’s behavior than arbitrary

137
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geometric() {
coin := flip() ;
if ( coin = 0 ) {

out := 0
} else {

x := geometric() ;
out := 1 + x

}
}

Figure 5.1: A recursive proba-
bilistic program.
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Figure 5.2: The probability distribu-
tion computed by geometric.

nondeterministic programs. A nondeterministic program chooses one out of
potentially infinitely many possible executions for a given input. There is,
however, no way to determine the likelihood of any execution. In fact, it is
perfectly conceivable that running a nondeterministic program repeatedly on
the same input always results in the same execution.

In contrast, Figure 5.2 indicates that repeatedly flipping a fair coin and
always seeing tails is highly unlikely. Understanding probabilistic programs
thus requires us to consider all possible executions and take their probabilities
into account. There are two approaches:

1. We attempt to determine the precise probability distribution over all
executions of a probabilistic program for a given input. Further properties
of interest, such as the probability of terminating with variable x being
positive or the probability that the program’s runtime is linear in the
size of the input, can then be derived from this distribution. Intuitively,
this means we have to compute the plot in Figure 5.2 to understand
the program in Figure 5.1. Broadly speaking, this approach is taken by,
amongst others, Kozen [Koz81], Karp [Kar91; Kar94], Monniaux [Mon01],
den Hartog and de Vink [HV02], and Tassarotti and Harper [TH18].

2. A less precise, but often more convenient, approach is to study a proba-
bilistic program’s expected behavior. That is, we consider the mean over all
executions weighted according to the probability of each execution. For
instance, the expected return value of the program in Figure 5.1 is one as
indicated by the dashed green line in the plot.
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A common expected value of interest is the expected runtime: It is defined
as the weighted average ∑i pi · ti over all executions, where pi is the proba-
bility of an execution and ti is its time until termination. This approach
is taken, for example, by Kozen [Koz83; Koz85], Jones [Jon90], McIver &
Morgan [MMS96; MM05], Chatterjee et al. [CNZ17; CF17; Cha+18], Ngo
et al. [NCH18], Kaminski [Kam19] as well as in [10; 15; 16; 6; 1].

Outline of Part II The second part of this thesis is concerned with formal
verification of probabilistic pointer programs by means of a quantitative separation
logic (QSL for short). To this end, we take the second approach to understanding
probabilistic programs from above. That is, we extend the techniques of McIver
& Morgan [MM05] to reason about expected values of probabilistic pointer
programs in a weakest precondition style calculus. We show that both the
assertion language as well as the verification system of QSL is a conservative
extension of classical separation logic as introduced in Chapter 4.

The remainder of this part is structured as follows. Section 5.1 motivates
the need for reasoning about probabilistic pointer programs. Related work is
discussed in Section 5.2. In Section 5.3, we present the programming language
P4L—a probabilistic extension of programming languages considered in Part I.
The assertion language of QSL is introduced in Chapter 6. The corresponding
verification system is developed in Chapter 7. Chapter 8 applies QSL to several
case studies. Finally, Chapter 9 concludes and discusses future work.

5.1 Why Probabilistic Pointer Programs?

In this section, we briefly walk through a few applications of probabilistic
programs. Furthermore, in Section 5.1.2, we argue why reasoning about proba-
bilistic pointer programs is desirable.

5.1.1 Applications of Probabilistic Programs

Let us have a closer look at one classical application of probabilistic programs—
randomized algorithms—and two more recently emerging fields: probabilistic
programming, which is a discipline in statistics and machine learning, and
approximate computing, which poses novel challenges for program verification.

Randomized Algorithms Injecting randomization into an algorithm often
enables significant speed-ups—in expectation—over deterministic approaches.
These speed-ups are usually obtained with rather little implementation effort.
Both observations motivate the study of randomized algorithms—a field that
dates back to 1976: In his seminal paper, Rabin [Rab76] proposed an approach
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to solve the closest-pair problem in computational geometry in expected linear
time whereas a naïve deterministic algorithm requires quadratic time. Although
by a smaller margin, Rabin’s randomized algorithm still outperforms the best
known deterministic solution of the closest-pair problem [FH79; Cla83] which
runs in O (n · log log n) in the same computation model.

Randomized algorithms are implemented by probabilistic programs. They
can be roughly divided into two flavors (cf. [MR97, Chapter 1.2]):

A Las Vegas algorithm always computes the correct solution, but its runtime
may vary due to sampling from a probability distribution. A prime example
is Hoare’s randomized quicksort [Hoa62]. Randomized quicksort is identical
to standard quicksort except that a single line is changed: The pivot element is
chosen at random. Since quicksort computes the correct result for any chosen
pivot element, this change does not affect the algorithm’s correctness. It does,
however, have significant consequences on the runtime: While quicksort with a
deterministic pivot selection has a worst-case runtime of O

(
n2), randomized

quicksort has a worst-case expected runtime of O (n · log n).
In contrast, a Monte Carlo algorithm may produce an incorrect result with

some probability, but its runtime does (usually) not vary. A prominent example
is Freivalds’ approach to solve the matrix product verification problem: Given
three n× n matrices A B, and C, does A · B = C hold? A naïve solution of this
problem would compute the product of A and B and compare the result with
C. Using the best known algorithm for matrix multiplication, this approach
leads to a worst-case runtime of O(n2.3729) (cf. [Wil12]). In contrast, Freivalds’
randomized algorithm requires only quadratic time, but may yield the wrong
result: For every constant k ∈N>0, his algorithm runs in O(k · n2) but produces
a wrong result with probability at most 2−k [Fre79].

Probabilistic Programming Probabilistic programs are a powerful modeling
formalism that is not limited to randomized algorithms. For example, there is a
large number of probabilistic programming languages, such as Figaro [Pfe09],
WebPPL [GS14], Tabular [Gor+14a], Anglican [WMM14], and Stan [Car+17],
which are designed for applications in machine learning and artificial intelli-
gence. Programs written in these languages are not intended to be executed in
the classical sense; rather, they serve as probabilistic models.

There is a vast amount of literature on classical probabilistic graphical models
(cf. [Bis07; KF09; Dar09]), such as Bayesian networks, Hidden Markov Mod-
els, etc. For example, since their invention by Pearl in 1985 [Pea85], Bayesian
networks have been intensively studied and applied in a wide range of do-
mains including machine learning [Hec08], speech recognition [ZR98], sports
betting [CFN12], medical diagnosis [JC10], and finance [NJ10]. Why are proba-
bilistic programs preferable to such well-established models? Given a Bayesian
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network, the problem of interest is probabilistic inference, i.e., determine the prob-
ability of an event given observed evidence. This problem has been studied for
over three decades. In particular, it has been shown that both exact as well as
approximate inference to arbitrary precision are NP-hard [Coo90; DL93]. For
a long time, it was thus considered folklore that inference algorithms must be
manually tailored to individual probabilistic models.

A key feature of probabilistic programming languages is that inference
algorithms can be selected and optimized automatically at compile time (cf.
[MW08; Gor+14b; MW19]). Hence, the implementation of inference techniques
is decoupled from writing probabilistic models. This obviates the need to
manually tweak inference techniques while still achieving reasonably well
performance. Consequently, probabilistic programming languages enable rapid
prototyping. Furthermore, engineers need less theoretical background to apply
probabilistic modeling to a concrete problem; rather, it suffices that experts focus
on optimizing general purpose inference algorithms. Probabilistic programming
languages are thus more accessible to practitioners.

Finally, probabilistic programming languages are not limited to Bayesian
networks. In fact, there is a trend towards ever more expressiveness. For exam-
ple, Edward [Tra+16; Tra+17] supports neural networks and implicit generative
models. Moreover, Pyro [Bin+19] is a “universal” probabilistic programming
language that can represent any computable probability distribution.

Approximate Computing A recent application of probabilistic programs lies
in approximate computing, i.e., understanding programs where some instructions
occasionally produce incorrect results. One possible reason for such behavior
is that programs are running on unreliable hardware [CMR16]. Unreliable
statements are naturally modeled by probability distributions that govern how
often and to what degree noisy results instead of correct ones are returned.

Apart from economic considerations to use cheaper and less reliable hard-
ware, it might seem undesirable to expose programs to unreliable hardware.
There is, however, a trend to reduce power usage on mobile devices when-
ever possible. This might lead to occasional computation errors but is deemed
acceptable for some applications, such as video decoding [Dor+19].

Approximate computing also poses a challenge for program verification:
Since incorrect results are unavoidable when running a program on unreliable
hardware, the notion of a program’s correctness becomes blurred: That is,
quantifying—and subsequently minimizing—the probability of encountering a
failure or the expected error of a program becomes paramount. The need for
quantitative reasoning is also stressed by Henzinger [Hen13] who argues (more
generally for hybrid systems) that:
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“the Boolean partition of software into correct and incorrect programs falls short of the
practical need to asses the behavior of software in a more nuanced fashion [...].”

5.1.2 Reasoning about Probabilistic Pointer Programs

Formal verification of probabilistic programs is desirable due to their manifold—
and occasionally safety-critical—applications. Furthermore, as argued at the end
of the previous section, verification techniques must be quantitative in nature:
Rather than proving that a specification is always satisfied, we need to reason
about both the probability that a specification holds and the expected behavior
of a program. Suitable program logics have been studied since 1983 (cf. [Koz83])
for probabilistic versions of simple programming languages that are similar to
the language PL considered in Chapter 2.

Why, however, is there a need to study probabilistic pointer programs?

Let us briefly answer this question by revisiting the applications listed in the
previous section in reverse order:

Approximate computing is typically concerned with rather low-level programs
or software for embedded systems, e.g., device drivers or video decoding. Due to
the prevalence of the C programming languages in systems-level code, pointers
are a commonly encountered feature in such software. For example, device
drivers contain many intricate list-like structures (cf. [Ber+07]).

A reader with a background in probabilistic programming might be particularly
skeptical: If probabilistic programs serve as a concise formalism for probabilistic
models, should they support complicated features such as pointers, dynamic
data structures, and memory allocation? Since there is an ever-growing trend
towards more expressive probabilistic programming languages—Microsoft’s In-
fer.net [MW19] started as a convenient interface for Bayesian networks whereas
Uber’s Pyro [Bin+19] is a “universal probabilistic programming language”—it
is conceivable that these features will eventually be supported. In fact, in 2014,
Ruttenberg and Pfeffer [RP14] stated that “decisions are often made based on
complex data structures, such as social networks and protein sequences, and rich
processes involving those structures.” They consequently studied probabilistic
models described by programs with “complex data structures and control flow”.

Finally, data structures are omnipresent in randomized algorithms: The very
first chapter on applications of randomized algorithms of Motwani and Ragha-
van’s classical textbook [MR97, Chapter 8] is called “Data Structures”. It presents
randomized algorithms processing arrays, trees, graphs, etc. Similarly, all exam-
ples of randomized algorithms considered previously in this chapter operate on
arrays or linked data structures.
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In summary, there are plenty of applications that rely on pointers, data
structures and sampling from a probability distribution. This justifies our study
of probabilistic pointer programs.

5.2 Related Work

Throughout Part II, we develop a quantitative separation logic [1], QSL for short,
that enables formal verification of programs that employ both probabilistic
sampling and dynamic data structures implemented via pointers. Let us briefly
discuss work related to QSL. Further references will be given where appropriate.

Technically, QSL is a marriage between classical separation logic—as pre-
sented in the seminal papers by Ishtiaq, O’Hearn, and Reynolds [IO01; Rey02]—
and weakest preexpectations à la McIver & Morgan [MMS96; MM05]. We thus
first consider these two aspects in isolation.

Classical Separation Logic A detailed discussion of separation logic is found
in Chapter 4. Regarding its influence on QSL, our rules for computing the weak-
est preexpectation of heap manipulating statements coincide with the backward
reasoning rules of Ishtiaq and O’Hearn [IO01]. However, all underlying logical
connectives are interpreted differently, i.e., in a quantitative setting. Furthermore,
QSL’s assertion language is designed to broadly adhere to the same algebraic
properties, which have been collected by Reynolds [Rey02], as separation logic.

Jones [Jon90] demonstrated that reasoning about expected values of
probabilistic programs in a strongest postcondition style is not possible.
Hence, we stick to a weakest precondition style calculus. As pointed out
by O’Hearn [OHe19], program verification with separation logic is rarely
performed with weakest preconditions due to the need for using separating
implications. An exception is work by Krebbers et al. [Kre+17] which uses
weakest preconditions internally to formalize (concurrent) separation logics.
Brotherston et al. [BBC08] incorporate the separating implication in a proof
system for verifying program termination. However, they rely on an oracle to
discharge implications between formulas.

Weakest Preexpectations Seminal work on formal reasoning about expected
values of probabilistic programs is due to Kozen [Koz85]. McIver & Mor-
gan [MMS96; MM05] built on his approach and domain theoretic foundations
by Jones [Jon90] to reason about both probabilistic and nondeterministic state-
ments within a single weakest precondition style calculus. They also coined
the term “expectation” for random variables, which take the role of predicates
in classical Floyd-Hoare style program verification. Hence, their verification
system is known as the weakest preexpectation calculus.
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If we disregard heap manipulating statements, QSL essentially coincides
with weakest preexpectations. However, the underlying domain is different in
two aspects: First, we allow for unbounded random variables; our domain is thus
a complete lattice. Second, we incorporate a heap component into expectations.

The first soundness proof of weakest preexpectations with respect to an
operational semantics is due to Gretz, Katoen, and McIver [GKM14; Gre16].
Similar to their approach, we show that QSL’s verification system is sound with
respect to an operational semantics that is formalized as a Markov decision
process. However, their approach heavily relies on (1) continuity of weakest
preexpectations and (2) that the involved Markov decision processes are finitely
branching. These two properties allow reasoning about loops in terms of
their finite unfoldings. Since continuity breaks for QSL (cf. Section 4.4) and
our operational model requires infinite branching in the presence of dynamic
memory allocation (cf. Section 4.1.3), our proof strategy is different: Similarly
to Apt and Plotkin’s [AP86] soundness proofs for programs with countable
nondeterminism, we show that both weakest preexpectations and the operational
semantics can be described as the solution of a system of Bellman equations.
After that, we verify that both solutions coincide.

Verification of Randomized Algorithms Although various algorithms rely on
randomized data structures, formal reasoning about probabilistic programs that
mutate memory has—at least until 2018—received scarce attention. Apart from
QSL, there are several recent works addressing this task:

In [15], the expected runtime of a (recursive) randomized binary search
is analyzed by means of a weakest-precondition style calculus (cf. [10; 6]).
However, the involved data structures are addressed in an ad-hoc fashion; they
are not formalized in the underlying program logic.

Chatterjee, Fu, and Murhekar [CFM17] developed a method for solving
recurrence relations that often appear in the analysis of expected runtimes of
randomized algorithms, e.g., randomized quicksort or the Coupon’s collector
problem (cf. [10]). However, similar to most textbook proofs, they do not
consider how these recurrences are formally derived from a given program.

Eberl, Haslbeck, and Nipkow [EHN18] presented a case study that verifies
properties of various probabilistic algorithms, such as the expected number of
comparisons in randomized quicksort, in the theorem prover Isabelle/HOL.
They express randomized algorithms in an existing formalization of probability
theory (cf. [EHN15]) based on the Giry monad [FP10]. Their approach is not
based on a program logic, such as Hoare logic or weakest preexpectations.
Rather than reasoning directly on the program structure, some of their proofs
involve gradually refining an encoded program and then formalizing textbook-
style correctness proofs. Memory safety is not considered.
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Tassarotti and Harper [TH19] provided a Coq formalization of a separation
logic—called Polaris—to reason about randomized concurrent programs. Their
work is most closely related to QSL and has been developed simultaneously and
independently.1 Apart from concurrency, which is not supported by QSL, there
are a few notable differences:

First, Polaris is a combination of concurrent separation logic and probabilistic
relational Hoare logic [BGB12]. Verification is thus understood as establishing
a relation between a program to be analyzed and a program that is known to
be well-behaved. In contrast, QSL attempts to directly measure a quantitative
program property on the source code of a single given program.

Second, Polaris requires programs to certainly terminate. That is, there must
be an exact number of steps after which every execution on a given initial state
halts. Hence, almost-surely terminating programs, i.e., programs that admit
infinite executions, but only with probability zero, are outside of the scope of
their approach; at least outside of their current soundness results (cf. [TH19,
Theorem 3.1]). QSL requires no such restriction. In fact, QSL can be used to
compute the exact probability that a program terminates. It thus allows proving
almost-sure termination.

Third, Polaris is limited to bounded expectations. Hence, it is unclear, whether
the approach of Tassarotti and Harper can be extended to reason about expected
values in general. It is noteworthy that this includes reasoning about expected
runtimes because probabilistic programs might terminate with probability one,
but have an unbounded expected runtime (cf. [10]).

Quantitative Aspects of Separation Logic Quantitative aspects of separation
logic have been considered independently of randomization. In this case, “quan-
titative” is understood as reasoning about properties of recursively defined data
structures, e.g., the length of linked lists, the height of trees, etc. For example,
Bozga, Iosif, and Perarnau [BIP10] presented a decidable fragment of separation
logic that contains predicates for singly-linked lists of a specified length. Fur-
thermore, Chin et al. [Chi+12] applied fold/unfold reasoning to automatically
verify shape-numeric properties, such as the balancedness of binary trees.

Atkey [Atk11] applied separation logic to amortized resource analysis à la
Hofmann and Jost [HJ03]. In particular, he added an operation for consumable
resources into the logic and extends the logical connectives of separation logic to
treat resources similar to the heap. This enables reasoning about quantities that
appears to be similar to QSL in some cases. For instance, one might reason about
the amount of time required to traverse a list. Moreover, Atkey’s logic, which
simultaneously deals with different resources, e.g., heap and time, suggests

1In fact, both papers were presented within 36 minutes in the same session at the same
conference.
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that QSL might be applied to achieve local reasoning about other kinds of
consumable resources, such as access to I/O devices. However, Atkey considers
neither probabilistic programs nor programs in which resources do not solely
depend on the heap, e.g., numerically bounded loops.

Finally, various notions of permissions [Boy03; Bor+05] have been proposed
on top of separation logic to reason about concurrent programs. Intuitively, a
permission models the amount of ownership, e.g., read or write access, a thread
has for a given memory cell. In this sense, permissions can be thought of as a
quantitative aspect of separation logic as well. We refer to [DHA09; DLL17] for
a discussion of various permission theories.

5.3 The Probabilistic Procedural Pointer Programming
Language

We now endow the procedural pointer programming language P3L considered
in Chapter 4 with instructions to sample from probability distributions. This re-
sults in the probabilistic procedural pointer programming language, P4L for short.
First, we introduce the syntax of P4L and discuss how probability distributions
are incorporated. Since transition systems, which are at the foundation of the
operational semantics presented in Chapters 2 to 4, do not take probabilities into
account, we present the operational semantics of P4L in terms of Markov Deci-
sion Processes [BK08; Put05]—an established model for probabilistic systems.
Finally, we discuss operational reasoning about expected values.

5.3.1 Syntax of P4L

We extend the syntax of P3L by two probabilistic statements:
First, the probabilistic choice {C1 } [ p ] {C2 } flips a coin with bias p. If the

coin shows heads, we execute program C1. Otherwise, i.e., if the coin shows
tails, we execute program C2. For example, a fair choice between assigning
either 0 or 1 to variable x is modeled by the program { x := 0 } [ 1/2 ] { x := 1 }.

Second, the probabilistic assignment x :≈ µ samples a value from a probability
distribution specified by distribution expression µ and then assigns it to variable x.
We assume distribution expressions to represent discrete probability distributions
over the set of integers with possibly infinite support. Moreover, we denote by

p1 · 〈v1〉+ p2 · 〈v2〉+ . . . + pn · 〈n〉
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the distribution expression that assigns probability pi to value vi; all values not
explicitly listed in the above sum have probability 0. Since many randomized
algorithms employ uniform distributions over some interval, we denote by

uniform (n, m) ,
m−n

∑
k=0

1
m− n + 1

· 〈n + k〉

the distribution expression that assigns the same probability to every integer
ranging from n to m. Hence, the following programs have the same effect:

• x :≈ 1/2 · 〈0〉+ 1/2 · 〈1〉,

• x :≈ uniform (0, 1), and

• { x := 0 } [ 1/2 ] { x := 1 }.

Definition 5.1 (Syntax of P4L [1]) The set of programs in the Probabilistic
Procedural Pointer Programming Language with Auxiliaries, denoted P4LA, is
given by the context-free grammar below (P3LA statements are black-75):

C → {C1 } [ p ] {C2 } (probabilistic choice)
| x :≈ µ (probabilistic assignment)

| x := alloc(~E) (allocation)
| free(E) (deallocation)
| x := <E> (lookup)

| <E> := E′ (mutation)
| skip (effectless program)
| x := E (assignment)
| C ; C (sequential composition)
| if ( B ) {C } else {C } (conditional choice)
| while ( B ) {C } (loop)

| x := F(~E) (procedure call)
| enter (enter scope)
| invoke F (invoke procedure)
| leave, (leave scope)
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where p ∈ Q∩ [0, 1] is a rational probability, x ∈ Vars is a variable, and µ is
a distribution expression. Furthermore, F ∈ Procs is a procedure name, ~E is
a sequence of arithmetic expressions, E and E′ are arithmetic expressions,
and B is a Boolean expression. All involved expressions are evaluated over
variables, i.e., independent of the heap.

Moreover, the set of programs in the Probabilistic Procedural Pointer Pro-
gramming Language, denoted P4L , consists of all P4LA programs, which
contain neither enter nor invoke F nor leave statements.

Before we assign formal semantics to P4L programs, let us consider an example
of a randomized algorithm implemented in P4L . A popular scheme to design
randomized algorithms consists of two steps (cf. [Cor+09, Chapter 5.1]): First,
compute a random permutation of the input and then apply a deterministic
algorithm to solve the actual problem. The intuition behind this approach is
that—provided the deterministic algorithm performs badly on a few worst-case
instances only—we reduce the risk of bad performance because it is unlikely that
a random permutation of the input coincides with a worst-case instance. By the
same argument, however, we also reduce the chance of encountering a best-case
instance on which the algorithm is particularly fast. Randomized algorithms that
aim to improve the (expected) worst-case performance at the cost of worsening
best-case performance are also known as “Sherwood algorithms”.2

Example 5.2 Sherwood algorithms require a reliable technique to compute
random permutations of a given input, say an array consisting of n elements.
Cormen et al. [Cor+09, Chapter 5.3] discuss several approaches to address
this problem. The P4L procedure below implements one of them:

randomize(array, n) { swap(array, i, j) {
i := 0 ; y := array [ i ] ;
while ( 0 ≤ i < n ) { z := array [ j ] ;

j :≈ uniform (i, n− 1) ; array [ i ] := z ;
void := swap(array, i, j) ; array [ j ] := y ;
i := i + 1 out := 0

} ; }
out := 0

}

2The phrase is a reference to Sherwood forests famous resident Robin Hood, who takes from
the rich (best-case instances) and gives to the poor (worst-case instances) [BB96, Chapter 10.7].



5.3. The Probabilistic Procedural Pointer Programming Language 149

Procedure randomize permutes its input—an array of length n—in-place:
In the i-th iteration, the i-th array element is swapped with some element
from array [ i ] to array [ n− 1 ]. After that, the element’s position in the array
is fixed, i.e., it is not swapped with some other element again. We will
show in Section 8.4 that procedure randomize is correct in the sense that it
produces every possible permutation of array with probability 1/n!.

5.3.2 Semantics of P4L

Similarly to the operational semantics of PL, P2L, and P3L programs considered
in Chapters 2 to 4, we define the operational semantics of P4L programs in
terms of a transition system. However, there are now two possible causes for a
program to admit multiple executions: On the one hand, both the probabilistic
choice and the probabilistic assignment admit multiple steps, but the probability
of each step can be precisely quantified. On the other hand, we assume that the
allocation statement is truly nondeterministic, i.e., we cannot assign a probability
to any particular value chosen by the memory allocator.3

To incorporate both features in our operational semantics, we attach two
labels to the underlying transition system’s execution relation:

1. We endow every step with the probability of its execution.

2. Whenever a step represents a choice between values, e.g., due to sampling
or memory allocation, we label it with the chosen value.

Formally, we add a set Act of actions to transition systems (cf. Definition 2.2):
Hence, throughout the remainder of Part II, a transition system TS is a tuple

TS , 〈 S, →, S0 〉,

where S is a set of states, S0 ⊆ S is a set of initial states, and

→ ⊆ S×Act× S

is an execution relation. We usually write s a−→ s′ instead of (s, a, s′) ∈→ to denote
a step of the execution relation. Moreover, the transition system (without actions)
underlying TS is defined as TS′ = 〈 S, →′, S0 〉, where

s→′ s′ iff ∃a ∈ Act : s a−→ s′.

3While one could fix a probability distribution that governs memory allocation, such a distribu-
tion would surely depend on in-depth knowledge about a specific hardware platform. In general,
we consider it more sensible to assume no prior knowledge about the internals of the memory
allocator.
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All previous notions considered for transition systems in Definitions 2.8 and 2.10,
e.g., executions and reachable states, are defined analogously for transition
systems with actions. In particular, if R is the set of all states reachable in TS
from some initial state s ∈ S0, then the reachable fragment of TS is defined as

Reach (TS) , 〈 R, → ∩ (R×Act× R), S0 〉.

Towards a transition system with actions that determines the operational seman-
tics of P4L programs, we choose the set of actions

Act , Q∩ [0, 1]︸ ︷︷ ︸
“probability of a step”

× Z︸︷︷︸
“value chosen during a step”

.

Moreover, similarly to the operational semantics of P3L programs introduced in
Definition 4.8, the set of states is defined as

States ,
((

P4LA ∪ { term }
)
× SHPairs

)
∪
{ 〈

sink
〉
,
〈
fault

〉 }
,

where term indicates successful termination, SHPairs is the set of all stack-
heap pairs,

〈
sink

〉
is a dedicated sink state, and

〈
fault

〉
is a state indicating

unsuccessful termination due to a memory fault. The execution relation of the
operational semantics is thus of the form

 ⊆ States × Act × States.

We usually write
〈
C, s, h

〉 p

v

〈
C′, s′, h′

〉
instead of the more cumbersome

((C, (s, h)), p, v, (C′, (s′, h′))) ∈ .

Most P4L statements neither perform sampling nor admit multiple executions
due to memory allocation. In this case, their steps coincide with the operational
semantics of P3L programs except that we have to provide an action. To this
end, we set the probability of a deterministic step to one and fix value zero for
the action’s second component. For example, the rule for assignments in P4L is:

E (s) = v〈
x := E, s, h

〉 1

0

〈
term, s [x/v] , h

〉 assign

For the memory allocation x := alloc(E1, . . . , En), the value chosen during a
step coincides with the first address that is allocated. Since this value is chosen
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truly nondeterministically, we assign a probability of one to each possible step.
This leads to the following rule:

u, u + 1, . . . , u + n− 1 ∈N>0 \ dom(h) E1 (s) = v1, . . . , En (s) = vn〈
x := alloc(E1, . . . , En), s, h

〉 1

u

〈
term, s [x/u] , h ] { u :: v1, . . . , vn }

〉 alloc

The probabilistic choice {C1 } [ p ] {C2 } flips a coin with bias p. With probability
p, the coin yields heads, which we identify with value 0, and we execute program
C1. With probability 1− p, the coin yields tails, which we identify with value
1, and we execute program C2. Hence, the execution relation for probabilistic
choices is determined by the following two rules:

〈
{C1 } [ p ] {C2 } , s, h

〉 p

0

〈
C1, s, h

〉 pchoice-h

〈
{C1 } [ p ] {C2 } , s, h

〉 1−p

1

〈
C2, s, h

〉 pchoice-t

Notice that it is important to attach the result of the coin flip, i.e., the value 0 or
1, to the execution relation. For instance, the program C given by

{ x := 17 } [ 1/2 ] { x := 17 }

flips a fair coin and assigns 17 to variable x. The probability that x is equal to 17
after execution is thus, intuitively, one. In fact, if we fix some stack-heap pair
(s, h), there are two possible steps whose attached probabilities add up to one:

〈
C, s, h

〉 1/2

0

〈
x := 17, s, h

〉
and

〈
C, s, h

〉 1/2

1

〈
x := 17, s, h

〉
Without the attached values 0 and 1, however, both steps are indistinguishable.
If we omit them, the execution relation contains only one step, i.e., it would
seem that the probability that variable x equals 17 is 1/2 instead of 1.

For the probabilistic assignment x :≈ µ, let us first be precise about the
meaning of distribution expressions: A distribution expression µ is a function

µ : Stacks→ Dist (Z) ,

where Dist (Z) is the set of discrete probability distributions that assign a
rational probability to every integer. That is,

Dist (Z) ,

{
f : Z→ Q∩ [0, 1]

∣∣∣∣∣ ∑
v∈Z

f (v) = 1

}
.
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Hence, µ(s)(v) denotes the probability of sampling value v from the distribution
given by evaluating expression µ in stack s. Once we fix a sampled value v and
its probability p, the rule for probabilistic assignments is analogous to standard
assignments. It is thus defined as:

µ(s)(v) = p > 0〈
x :≈ µ, s, h

〉 p

v

〈
term, s [x/v] , h

〉 passign

Finally, the sequential composition C1 ; C2 has to account for the fact that it may
contain memory allocations, probabilistic choice, or probabilistic assignment. Its
action thus coincides with the action taken when executing program C1.

We summarize the full definition of P4L’s operational semantics below.

Definition 5.3 (Operational Semantics of P4L Programs) Let term be a spe-
cial symbol indicating successful termination. Moreover, let

〈
sink

〉
be a

sink state and
〈
fault

〉
be a state indicating unsuccessful termination due to

a memory failure. The operational semantics of P4LA programs is given by the
transition system oP4L , 〈 States,  , States 〉, where both the set of states
and the set of initial states are defined as

States ,
((

P4LA ∪ { term }
)
× SHPairs

)
∪
{ 〈

sink
〉
,
〈
fault

〉 }
.

Furthermore, the execution relation

 ⊆ States × N × Q∩ [0, 1] × States

is the smallest relation induced by the rules in Figure 5.6, page 163, and
Figure 5.7, page 164 (the semantics of P3L programs is displayed in black-
75).

The reachable fragment of oP4L with respect to the set of initial states
I ⊆ States is

oP4L (I) , Reach (〈 States,  , I 〉) .

Example 5.4 Consider the following P4L C:

x :≈ 2/3 · 〈x + 1〉+ 1/3 · 〈7〉 ; while ( x is odd ) { skip }︸ ︷︷ ︸
= C′
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〈
C, s, h

〉
〈
C′, s [x/2], h

〉 〈
term, s [x/2] , h

〉 〈
sink

〉

〈
C′, s [x/7], h

〉 〈
skip ; C′, s [x/7] , h

〉

2/3

2

1/3

7

1
0

1
0

1 0

1
0

1
0

Figure 5.3: Illustration of oP4L
({ 〈

C, s, h
〉 })

. Probabilities are colored orange
and chosen values are colored black-75, respectively.

This program first flips a biased coin; with probability 2/3 it increments the
value of variable x. Otherwise, it assigns 7 to x. After that, the program
loops forever if x is odd or immediately terminates if x is even.
Figure 5.3 on page 153 depicts the transition system oP4L

({ 〈
C, s, h

〉 })
,

where (s, h) is a stack-heap pair with s(x) = 1. We observe that there
is exactly one execution that terminates, i.e., reaches the sink state. Its
probability, which, intuitively, corresponds to the product of all probabilities
along that execution, is 2/3.

5.3.3 Operational Reasoning about P4L Programs

The transition system oP4L precisely defines the set of all executions for every
P4L program and every stack-heap pair. Furthermore, whenever a value is
chosen probabilistically, the chosen value and its probability are made explicit.
This allows us to analyze single executions as we did in Example 5.4. When
reasoning about probabilistic programs, however, we are interested in properties
quantified over all executions. Consider, for example, the P4L program C below:

x := 1 ;
y := 0 ;
while ( x 6= 0 ) {

{ x := 0 } [ 1/2 ] { y := y + 1 }
}

This program keeps flipping a fair coin. As long as it hits tails, it increments
variable y. Once it hits heads, it sets variable x to zero and terminates.

Asking whether there exists an execution such that, upon termination, vari-
able y is either less than, equal to, or greater than some natural number does
not make much sense; the answer is always yes. Similarly, asking whether every
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execution terminates with variable y being either less than, equal to, or greater
than some natural number does not make much sense; the answer is always no.
In fact, C does not even always terminates, because the coin flip might yield tails
all the time. Still, there are sensible questions that contribute to understanding
the behavior of program C. For instance:

• What is the probability that C terminates?

• What is the probability that C terminates and variable y is at most 7?

• What is the expected value of variable y upon termination of C?

In this section, we consider how the operational semantics of P4L can be applied
to answer such questions. Since reasoning about probabilistic programs is full
of subtleties, we first take a brief excursion on a well-established mathematical
model for probabilistic systems: Markov decision processes (MDPs for short). After
that, we show that, for every initial state

〈
C, s, h

〉
and every property of interest,

the transition system oP4L
({ 〈

C, s, h
〉 })

describes an MDP. Hence, reasoning
about P4L programs amounts to reasoning about the underlying MDP.

While our presentation is roughly based on the textbook by Baier and
Katoen [BK08, Chapter 10], some definitions have been simplified with reasoning
about P4L in mind. For example, we consider reachability probabilities with
respect to a single fixed goal state. Puterman’s reference book [Put05] provides
a comprehensive discussion of MDPs in general.

We assume the reader is familiar with basic concepts of discrete probability
theory; a gentle introduction is provided, for example, by Graham, Knuth, and
Patashnik [GKP94, Chapter 8]. Furthermore, we refer to [BK08, pp. 754–759, p.
845] for a detailed discussion of the probability spaces underlying MDPs.

Intuitively, an MDP is a transition system that assigns to every state one
or more probability distributions over all states; each of these distributions is
identified by an action. For every MDP, we would like to reach a fixed goal state
from the initial state. Moreover, whenever we leave a state, we collect a reward.

Definition 5.5 (Markov Decision Process (MDP) [BK08, p. 833]) A Markov
Decision Process is a tupleM = 〈 S, Act,Prob, s0, sG , rew 〉, where

• S is a countable set of states,

• Act is a countable set of actions,
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• Prob : S×Act× S→ Q∩ [0, 1] is the transition probability function such
that, for all states s ∈ S and actions a ∈ Act, we have

∑
s′∈S

Prob
(
s, a, s′

)
= 0 or ∑

s′∈S
Prob

(
s, a, s′

)
= 1,

where we call action a enabled in state s in the latter case,

• s0 ∈ S is the initial state,

• sG ∈ S is the goal state, and

• rew : S → R∞
≥0 is the reward function that assigns a non-negative real

number or infinity to every state.

We denote by Act (s) the set of actions enabled in state s. For every state
s ∈ S it is required that Act (s) 6= ∅ holds.

Example 5.6 Apart from the reward function rew, all components of an
MDPM = 〈 S, Act,Prob, s0, s4, rew 〉 are depicted in Figure 5.4: M consists
of five states, i.e., S = { s0, s1, s2, s3, s4 }, and two actions, i.e., Act = { a, b }.
Moreover, the initial state s0 is marked with an incoming edge without a
source. The goal state s4 is highlighted by a box drawn around it. The
transition probability function Prob is given by the edges labeled with
an action and the assigned probability. For instance, if we choose action
b the probability to move from state s1 to s4 is Prob (s1, b, s4) = 1/2. A
missing edge for two states and some action indicates that Prob assigns zero
probability to a transition between these states for the chosen action. Hence,
for action a, we have Prob (s1, a, s4) = 0. Furthermore, notice that the initial
state s0 is the only state in which both actions a and b are enabled.

We are concerned with two questions when reasoning about MDPs:

1. What is the probability to reach goal state sG from initial state s0?

2. What is the total expected reward collected along all paths reaching goal
state sG from initial state s0?

Both of these questions only make sense in the absence of nondeterminism.
After all, if multiple actions are enabled in a state, this state admits a choice
between the probability distributions that govern how to move to the next state.
To resolve nondeterministic choices, we employ a scheduler, i.e., a function

S : S+ → Dist (Act)
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s0

s1 s2

s3s4

b, 2/3 b, 1/3

a, 1b, 1/2

b, 1/2

b, 1

a, 3/5a, 2/5
a, 1

Figure 5.4: Illustration of an MDP with initial state s0 and goal state s4.

mapping a non-empty sequence of previously visited states (including the
current state) to a probability distribution over the set of actions enabled in the
current state. Intuitively, S(s0 . . . sk)(a) denotes the probability that the next
chosen action is a. Notice that, from a theoretical perspective, it suffices to
consider Markovian schedulers, i.e., schedulers that only depend on the current
state [Put05, Proposition 7.1.1]. However, it is often more convenient to work
with schedulers that do depend on the history of all previously visited states
rather than encoding the same behavior in a probability distribution.

Once we have fixed a scheduler S, we only consider executions from the
initial state to the goal state that are consistent with the actions chosen by S.
Formally, let M = 〈 S, Act,Prob, s0, sG , rew 〉 be an MDP. Then the set of all
(finite) paths ofM induced by scheduler S that eventually reach goal state sG
from initial state s0 is defined as

PathsM(S) , {s0 . . . sn | sn = sG and ∀k ∈ [0, n− 1] : sk 6= sG and ∃a ∈ Act :
S(s0 . . . sk)(a) > 0 and Prob (sk, a, sk+1) > 0}.

The probability of reaching the goal state from the initial state then amounts
to the sum of the probabilities of all paths in PathsM(S), where—for a fixed
sequence of actions chosen by scheduler S—the probability of a path s0 . . . sn ∈
PathsM(S) is the product of its transition probabilities. That is,

ProbM(s0 . . . sn) , ∑
a0,...,an−1∈Act

∏
0≤k<n

S(s0 . . . sk)(ak) · Prob (sk, ak, sk+1) .

To answer the second question, we additionally have to account for the reward
collected whenever we leave a state. The cumulative reward collected along a
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path s0 . . . sn amounts to the sum of all rewards assigned to states on that path
apart from the last one (which is not left), i.e.,

rewM(s0 . . . sn) ,
n−1

∑
k=0

rew(sk).

Finally, we sum up the probabilities of all paths eventually reaching the goal
state sG from the initial state s0 weighted according to the cumulative reward
collected along the way. Consequently, the expected reward of MDPM collected
by the scheduler S is

∑
s0 ...sn ∈ PathsM(S)

ProbM(s0 . . . sn) · rewM(s0 . . . sn).

Notice that reasoning about the probability to reach the goal state is a special
case of expected rewards in which rewM(s0 . . . sn) equals one for every path.
Since we often do not know precisely which scheduler is used—just as we do not
know the behavior of the memory allocator in Chapter 4—we either compute the
minimal or the maximal expected reward over all schedulers. Throughout this
thesis, we usually compute minimal expected rewards. Unless stated otherwise
“expected reward” thus always refers to the minimal expected reward over all
schedulers. Formally, the expected reward of MDPM is defined as

ExpRew (M) , inf
S

∑
s0 ...sn ∈ PathsM(S)

ProbM(s0 . . . sn) · rewM(s0 . . . sn).

The underlying rationale is that minimal expected rewards correspond to a
demonic interpretation of nondeterminism. That is, no matter how nondeter-
minism is resolved, we can guarantee a lower bound on the expected reward.
The same scenario is considered by McIver & Morgan [MM05].

Example 5.7 Consider, again, the MDP M from Example 5.7 which is
depicted in Figure 5.4. Since s0 is the only state in which two actions are
enabled and that state is never visited again, every scheduler represents
a probabilistic choice between actions a and b. Let us consider the two
schedulers that assign all probability mass to a single action: Sa initially
chooses action a whereas scheduler Sb initially chooses action b, respectively.

For scheduler Sa, there is exactly one path from initial state s0 to the
goal state s4, namely s0s3s4; its probability is 2/5.

For scheduler Sb, however, there are infinitely many paths from s0 to s4.
More precisely, if sk

1 denotes k repetitions of state s1, then

PathsM(Sb) =
{

s0sk
1s4

∣∣∣ k ≥ 1
}

.



158 Chapter 5. Reasoning about Probabilistic Pointer Programs

The probability to reach goal state s4 from initial state s0 is then given by:

∑
s′0 ...s′n∈PathsM(Sb)

ProbM(s′0 . . . s′n) =
∞

∑
k=1

ProbM(s0sk
1s4) =

∞

∑
k=1

2/3 · 1/2k = 2/3.

For minimizing the probability to reach state s4 over all schedulers, we
have to determine a value p ∈ [0, 1] that minimizes the convex sum of the
reachability probabilities induced by schedulers Sa and Sb, i.e.,

p · 2/5 + (1− p) · 2/3.

The desired minimum is attained for p = 1. Hence, always choosing
action a yields the minimal expected reward. Notice that the corresponding
scheduler Sa is both Markovian and deterministic, i.e., it neither depends
on previously visited states nor assigns probabilities different from zero and
one to any action. This is not a coincidence: For every MDP with finitely
many states and actions, there exists a deterministic Markovian scheduler
which induces the minimal expected reward [Put05, Theorem 6.2.10].

For later reference, notice that expected rewards can be understood as a (not
necessarily unique) solution of a set of optimality equations that are commonly
known as Bellman equations [Bel57]. Formally, let us denote byMs the MDP
M in which the initial state is set to s. Then:

Theorem 5.8 For every MDPM = 〈 S, Act,Prob, s0, sG , rew 〉 and every state
s ∈ S, we have

ExpRew (Ms) = inf
a∈Act(s)

∑
Prob(s,a,s′)=p>0

rew(s′) + p · ExpRew (Ms′) .

Proof. The claim is dual to [Put05, Theorem 7.1.3]. A detailed proof is
found in Appendix C.1. �

Let us now return to reasoning about P4L programs. Essentially, the transition
system oP4L already describes an MDP once we fix an initial state, a goal state,
and a reward function. The main difference is that we interpret the execution
relation as a transition probability function: Whenever a state represents a
probabilistic choice or a probabilistic assignment, we combine all steps into a
single distribution for default action 0. Otherwise, a transition Prob (s, a, s′) is
performed with probability one for the indicated chosen value if and only if

there is a corresponding step s
1

a
s′; if no such step exists, then we assign the
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transition probability zero. Furthermore, the unique sink state
〈
sink

〉
, which

is entered after successful termination, serves us as the goal state. In particular,
notice that

〈
sink

〉
is not reached when encountering a memory fault.

The reward function determines the property we would like to reason about.
More precisely, it is given by a random variable of the form

X: SHPairs→ R∞
≥0

that measures our property of interest in every state
〈
term, s, h

〉
indicating

successful termination; we assign zero reward to all other states. For instance,
to measure the probability of termination, we choose a random variable X
mapping every stack-heap pair to one. To measure the expected absolute value
of variable y, X maps every stack-heap pair (s, h) to |s(y)|. We use the Iverson
bracket [GKP94, p. 24] notation [P] to map a predicate P to zero or one. That is,

[P] ,

{
1, if P evaluates to true

0, if P evaluates to false.

The property that y is at most seven then corresponds to the random variable X
mapping every stack-heap pair (s, h) to [s (y) ≤ 7].

Formally, the MDPs for reasoning about P4L programs induced by our
operational semantics are defined as follows (cf. [1, Section 2.3]):

Definition 5.9 (MDP Semantics for Reasoning about P4L Programs) Let

oP4L
(〈

C, s, h
〉)

=
〈

S,→, {
〈
C, s, h

〉
}
〉

be the reachable fragment of the operational semantics for P4L program
C and stack-heap pair (s, h). Then the MDP induced by program C, stack-
heap pair (s, h), and random variable X : SHPairs → R∞

≥0 is defined as
M , 〈 S, Z,Prob, s0, sG , rew 〉, where

• the initial state is s0 ,
〈
C, s, h

〉
,

• the goal state is sG ,
〈
sink

〉
,

• the reward function is defined as

rew(s) ,

{
X(s′, h′), if s =

〈
term, s′, h′

〉
0, otherwise, and

• the transition probability function Prob is determined by two cases:
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1. If s =
〈
{C1 } [ p ] {C2 } , s′, h′

〉
or s =

〈
x :≈ µ, s′, h′

〉
, then

Prob
(
s, v, s′

)
, [v = 0] · ∑

s
q−→
v

s′

q.

2. For all other states s ∈ S, we set Prob (s, v, s′) ,
[
s 1−→

v
s′
]
.

We denote by ExpRew[X] (C, s, h) the expected reward of the MDP M in-
duced by P4L program C, stack-heap pair (s, h), and random variable X.

Example 5.10 Recall the P4L program below that counts in variable y the
number of fair coin flips in which we see tails until we first hit heads:

while : while ( x 6= 0 ) {
[1/2] : { x := 0 } [ 1/2 ] { y := y + 1 } }

Here, both while and [1/2] are shortcuts for the loop and the probabilistic
choice, respectively. Assume that we execute program while on a stack-heap
pair (s, h) with s(x) = 1 and s(y) = 0. Then, apart from the reward function,
the MDPM corresponding to the transition system oP4L

({ 〈
while, s, h

〉 })
is illustrated in Figure 5.5, page 162. Since only the values of variables x
and y are relevant, we provide their evaluation in every state instead of all
updates of the stack and the heap.

In every state, exactly one action, namely 0, is enabled. Hence, there is
only one scheduler S to consider. Furthermore, we observe that, for every
natural number n, there is exactly one path reaching the goal state

〈
sink

〉
:

This path first reaches the state 〈 term, 0, n 〉 and then moves on to
〈
sink

〉
; its

probability is 1/2n+1. Let us applyM to answer the three questions raised
at the beginning of this section:

First, what is the probability that while terminates on (s, h)? In this case,
we compute the expected reward of M, where the underlying random
variable X maps every stack-heap pair to one. That is,

ExpRew[X] (while, s, h) =
∞

∑
n=0

1/2n+1 · 1 = 1.

Hence, our program terminates almost-surely on (s, h).
Second, what is the probability that y < 7 holds? In this case, the under-

lying random variable X maps every stack-heap pair (s′, h′) to [s′(y) < 7],



5.3. The Probabilistic Procedural Pointer Programming Language 161

i.e., the reward is one if we terminate and y < 7 holds. Otherwise, it is zero.
The expected reward ofM and thus the desired probability is then given by

ExpRew[X] (while, s, h) =
∞

∑
n=0

1/2n+1 · [n < 7] =
127
128

≈ 0.99212.

Finally, what is the expected value of y upon termination? In this case, the
underlying random variable X maps every stack-heap pair (s′, h′) to the
(absolute) value of y, i.e., |s′(y)|. The expected value of y is then given by
the expected reward ofM, i.e.,

ExpRew[X] (while, s, h) =
∞

∑
n=0

1/2n+1 · n = 1

Hence, we can expect P4L program while to terminate with y being one, i.e.,
after two coin flips.
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〈while, 1, 0〉 〈[1/2] ; while, 1, 0〉

〈x := 0 ; while, 1, 0〉〈y := y + 1 ; while, 1, 0〉

〈while, 0, 0〉

〈term, 0, 0〉
〈
sink

〉

〈while, 1, 1〉 〈[1/2] ; while, 1, 1〉

〈x := 0 ; while, 1, 1〉〈y := y + 1 ; while, 1, 1〉

〈while, 0, 1〉

〈term, 0, 1〉

〈while, 1, 2〉 〈[1/2] ; while, 1, 2〉

〈x := 0 ; while, 1, 2〉〈y := y + 1 ; while, 1, 2〉

〈while, 0, 2〉

〈term, 0, 2〉

...

1

1/2
1/2

1
1

1

1
1

1/2
1/2

1
1

1

1
1

1/2
1/2

1
1

1

1

1

Figure 5.5: Illustration of the MDP corresponding to oP4L
({ 〈

while, s, h
〉 })

considered in Example 5.10. For simplicity, we denote each state by a triple
〈C, u, v 〉, where C is the program to execute, u is the value of variable x, and v
is the value of variable y, respectively. Since every edge is labeled with action 0,
we omit actions to improve readability.
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〈
{C1 } [ p ] {C2 } , s, h

〉 p

0

〈
C1, s, h

〉 pchoice-h

〈
{C1 } [ p ] {C2 } , s, h

〉 1−p

1

〈
C2, s, h

〉 pchoice-t

µ(s)(v) = p > 0〈
x :≈ µ, s, h

〉 p

v

〈
term, s [x/v] , h

〉 passign

u, u + 1, . . . , u + n− 1 ∈N>0 \ dom(h) E1 (s) = v1, . . . , En (s) = vn〈
x := alloc(E1, . . . , En), s, h

〉 1

u

〈
term, s [x/u] , h ] { u :: v1, . . . , vn }

〉 alloc

E (s) = u〈
free(E), s, h ] { u :: v }

〉 1

0

〈
term, s, h

〉 free

E (s) /∈ dom(h)〈
free(E), s, h

〉 1

0

〈
fault

〉 free-fail

E (s) = u ∈ dom(h) h (u) = v〈
x := <E>, s, h

〉 1

0

〈
term, s [x/v] , h

〉 lookup

E (s) /∈ dom(h)〈
x := <E>, s, h

〉 1

0

〈
fault

〉 lookup-fail

E (s) = u ∈ dom(h) E′ (s) = v〈
<E> := E′, s, h

〉 1

0

〈
term, s, h [u/v]

〉 mutation

E (s) /∈ dom(h)〈
<E> := E′, s, h

〉 1

0

〈
fault

〉 mutation-fail

Figure 5.6: The rules for probabilistic and heap manipulating statements that
determine the execution relation of the operational semantics of P4LA programs.
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〈
skip, s, h

〉 1

0

〈
term, s, h

〉 skip
E (s) = v〈

x := E, s, h
〉 1

0

〈
term, s [x/v] , h

〉 assign

〈
C1, s, h

〉 p

a

〈
term, s′, h′

〉
〈
C1 ; C2, s, h

〉 p

a

〈
C2, s′, h′

〉 seq1

〈
C1, s, h

〉 p

a

〈
C′1, s′, h′

〉
〈
C1 ; C2, s, h

〉 p

a

〈
C′1 ; C2, s′, h′

〉 seq2

〈
C1, s, h

〉 p

a

〈
fault

〉
〈
C1 ; C2, s, h

〉 p

a

〈
fault

〉 seq3 〈
fault

〉 1

0

〈
fault

〉 fault

B (s) = true〈
if ( B ) {C1 } else {C2 } , s, h

〉 1

0

〈
C1, s, h

〉 if-true

B (s) = false〈
if ( B ) {C1 } else {C2 } , s, h

〉 1

0

〈
C2, s, h

〉 if-false

B (s) = true〈
while ( B ) {C } , s, h

〉 1

0

〈
C ; while ( B ) {C }, s, h

〉 while-true

B (s) = false〈
while ( B ) {C } , s, h

〉 1

0

〈
term, s, h

〉 while-false

〈
term, s, h

〉 1

0

〈
sink

〉 term 〈
sink

〉 1

0

〈
sink

〉 sink

C = impl (x := Proc(E1, . . . , En))〈
x := Proc(E1, . . . , En), s, h

〉 1

0

〈
C, s, h

〉 call
C = body (F)〈

invoke F, s, h
〉 1

0

〈
C, s, h

〉 invoke

〈
enter, s, h

〉 1

0

〈
term, s [+�] , h

〉 enter 〈
leave, s, h

〉 1

0

〈
term, s [−�] , h

〉 leave

Figure 5.7: The remaining rules for P4LA statements that determine the execu-
tion relation of the operational semantics of P4LA programs.



Chapter 6

Quantitative Separation Logic: Assertion Language

This chapter is based on prior publications, namely [1; 18], which are presented,
discussed, and extended in the broader context of this thesis.

It is—in principle at least—possible to reason about the expected behavior of P4L
programs through a careful analysis of the Markov decision processes induced
by their operational semantics. However, as demonstrated in Section 5.3.3, the
involved MDPs typically consist of infinitely many states and might even require
infinitely many actions. Computing expected values by considering every single
state is thus infeasible in general.

This motivates our study of classical program verification techniques in the
context of formal reasoning about the expected behavior of probabilistic pointer
programs. Similarly to the weakest precondition calculi studied in Sections 2.3,
3.2 and 4.4, our goal is to compute the expected value of a random variable
after program execution compositionally on the program structure. Moreover, each
individual computation step should amount to simple, i.e., mostly syntactic,
operations that facilitate local reasoning (cf. Section 4.4.2). To this end, we develop
a quantitative separation logic (QSL for short). Its distinguished features are:

1. QSL is quantitative: It evaluates to a real number instead of a Boolean
value. It is thus capable of specifying quantities such as values of program
variables, heap sizes, list lengths, etc.

2. QSL is probabilistic: It enables reasoning about total correctness of proba-
bilistic programs. This includes the probability of memory safe termination
with a correct result as well as the expected size of heap fragments, e.g., the
expected length of a path from the root to a leaf in a tree.

3. QSL is a separation logic: It conservatively extends classical separation
logic à la Ishtiaq, Reynolds, and O’Hearn [IO01; Rey02]. In particular,
we present quantitative analogs of separation logic’s key operators, i.e.,
separating conjunction ? and separating implication −−? , and show that
they preserve virtually all properties of their Boolean counterparts.

165
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On a technical level, QSL is a marriage of separation logic and McIver and
Morgan’s weakest preexpectation calculus [MM05]. In fact, it conservatively
extends both approaches: For programs that never access the heap, we obtain
the calculus by McIver and Morgan. Conversely, for Boolean properties of
non-probabilistic programs, we recover the weakest precondition calculus for
classical separation logic considered in Section 4.4.

As it is common for program logics (cf. Sections 2.3 and 4.4 for two examples),
QSL refers to both an assertion language and a verification system.

QSL’s assertion language consists of random variables rather than Boolean
predicates. The underlying rationale is to combine concepts from two worlds:

1. From separation logic: separating conjunction and separating implication.

2. From verification of probabilistic programs: expectations.

As discussed in Sections 4.2 to 4.4, separating conjunction and separating
implication are the two distinguished logical connectives of separation logic.

Expectations [MM05] on the other hand take over the role of predicates when
performing quantitative reasoning about probabilistic programs.

Throughout this chapter, we gradually develop both a quantitative separating
conjunction and a quantitative separating implication which each connect expec-
tations instead of predicates. Furthermore, we consider various proof rules to
discharge “quantitative entailments”, i.e., relationships between expectations.
These rules are crucial because—as we have observed in previous chapters—
Floyd-Hoare style verification boils down to three tasks: Finding suitable in-
variants, deriving valid triples, e.g., by computing weakest preconditions, and
proving all entailments, i.e., logical implications, encountered along the way. The
rules presented in this chapter form the foundation for a proof system to deal
with the last task in a quantitative setting.

Most theorems presented in this chapter are proven by a careful application
of their definition, elementary algebra, and predicate logic. We thus omit proofs
that—in the author’s opinion—do not improve the intuition underlying QSL.
Moreover, in cooperation with Max Haslbeck from Technical University Munich,
the key theorems have been verified in the theorem prover Isabelle/HOL; the
formalization is available online.1

We address the other tasks, i.e., invariants and weakest precondition style
reasoning about expected values, in Chapter 7 alongside QSL’s verification system.

1https://github.com/maxhaslbeck/QuantSepCon

https://github.com/maxhaslbeck/QuantSepCon
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6.1 Expectations

Floyd-Hoare logic [Flo67; Hoa69] as well as Dijkstra’s weakest precondition
calculus [Dij76] employ predicates for reasoning about the correctness of pro-
grams. In the intensional approach, a popular language to specify predicates is
first-order logic. In the extensional approach, which we took in Chapters 2 to 4,
we admit every computable predicate.

For probabilistic programs, Kozen [Koz83] was the first to generalize from
predicates to measurable functions or, alternatively, arbitrary random variables.
Later, McIver and Morgan [MMS96; MM05] coined the term expectation for such
functions. While we adhere to this terminology, we remind the reader that
expectations should not be confused with expected values, i.e., the mean of a
random variable; rather, expectations are the quantitative analog to predicates.

Throughout this thesis, we study two classes of expectations: The set of
expectations E enables measuring arbitrary properties of interest, such as the
value of a variable, the size of the heap, etc. Moreover, the subset of one-bounded
expectations E≤1 is sufficient to reason about the probability of events, e.g., the
probability of terminating without dereferencing a null pointer.

Definition 6.1 (Expectations [MM05, p. 16], [1]) The set E of expectations is

E ,
{

X
∣∣ X: SHPairs→ R∞

≥0
}

.

Moreover, the set E≤1 of one-bounded expectations is defined as

E≤1 , {Y | Y: SHPairs→ [0, 1] } .

An expectation thus maps every stack-heap pair to a non-negative real num-
ber or infinity whereas a one-bounded expectation maps to reals within [0, 1].
Analogously to predicates (cf. Section 4.3), we lift substitution (Definition 2.6),
scoping (Definition 3.6), and the set of relevant variables (Definition 2.39) to
expectations. That is, we define:

• X [x/E] , λ(s, h). X
(
s [x
/

E (s)] , h
)
,

• X [+�] , λ(s, h). X (s [+�] , h),

• X [−�] , λ(s, h). X (s [−�] , h), and

• Vars (X) , { x ∈ Vars | ∃ (s, h) ∃ u, v : X(s [x/u] , h) 6= X(s [x/v] , h) }.
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Example 6.2 Let us consider a few examples of common expectations:

• For every real number v ∈ R∞
≥0, the constant function

λ(s, h). v

is an expectation in E, but not necessarily in E≤1. By slight abuse of
notation, we often identify an expectation with the expression that is
evaluated in a given stack-heap pair to compute its value. For instance,
we write v instead of λ(s, h). v.

• The heap size quantity size , which measures the number of allocated
memory cells, is an expectation. It is defined as

size , λ(s, h). |dom(h)|,

where |dom(h)| denotes the cardinality of the domain of heap h.

• The absolute value of any variable, say x, i.e., the function

|x| , λ(s, h). |s (x) |,

is an expectation. The same holds for the function

x2 + 2 · x · y + y2 = (x + y)2 , λ(s, h). (s (x) + s (y))2.

• The function x , λ(s, h). s (x) is not an expectation, because variable
x might evaluate to a negative number. Since we often consider
programs in which variables are assigned non-negative values only, it
is convenient to use x as if it were an expectation. While it is possible to
reason about mixed-sign expectations, it requires more heavy technical
machinery [KK17].

• Expectations may depend on both the stack and the heap. For example,
an expectation that measures the number of variables representing
pointers to null is given by:

# 7→0 , λ(s, h). | { x ∈ Vars | s (x) ∈ dom(h) and h(s (x)) = 0 } |.

Both E and E≤1 form a partial order where the ordering � amounts to pointwise
application of the canonical ordering ≤ on real numbers with infinity, i.e.,

X � Y iff ∀(s, h) ∈ SHPairs : X(s, h) ≤ Y(s, h).
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In contrast to McIver and Morgan [MM05], our expectations are not bounded by
an arbitrary real number. Consequently,

Lemma 6.3 ([1]) Both 〈E,� 〉 and 〈E≤1,� 〉 are complete lattices with least
element 0 and greatest element ∞ and 1, respectively.

Proof. Clearly, 〈E,� 〉 is a partial order. For every S ⊆ E, the least upper
bound of S is then given by the expectation λ(s, h). sup {X(s, h) | X ∈ S }.
The least element of E is the least upper bound of ∅, i.e., λ(s, h). sup ∅ = 0.
Moreover, the greatest element of E is the least upper bound of E, i.e., ∞.
The proof for one-bounded expectations 〈E≤1,� 〉 is analogous. �

In the context of program verification, we are often tasked with discharging
quantitative entailments, i.e., inequalities between expectations of the form X � Y.
Clearly, it is neither feasible nor desirable to verify the inequality X � Y by
explicitly proving that X(s, h) ≤ Y(s, h) holds for every stack-heap pair (s, h).
Throughout the remainder of this chapter, we thus study various algebraic prop-
erties of expectations and their connectives. Apart from elementary facts about
first-order logic and real-valued functions, which are both well-established in
mathematics and supported by common theorem provers, these properties form
the foundation of a sound proof system that allows us to establish quantitative
entailments step by step through syntactic manipulations of expectations rather
than reverting to the underlying formal definitions.

We present most of our results with respect to the domain 〈E, � 〉. That is,
we develop a logic for reasoning about expected values. A logic for reasoning
about probabilities of events can be constructed analogously by considering the
complete lattice 〈E≤1,� 〉, which covers a subset of 〈E,� 〉, instead.

6.2 Predicates & Separation Logic Atoms

We regularly use the Iverson bracket [GKP94, p. 24] notation [P] to associate a
predicate P : SHPairs→ { true, false } with its indicator function. Formally, [P]
is defined as the function

[P] : SHPairs→ { 0, 1 } , [P] (s, h) ,

{
1, if P (s, h) = true

0, if P (s, h) = false.

Every predicate P is a (one-bounded) expectation, namely its Iverson bracket
[P], that maps only to the set { 0, 1 }. The expectation [x 6= y] thus evaluates to
one iff variable x is evaluated to a different value than y. Let us take the atoms
of separation logic introduced in Section 4.3.1 as a source of further examples:
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The empty-heap predicate [emp] evaluates to 1 iff the heap is empty, i.e.,

[emp] , λ(s, h).

{
1, if dom(h) = ∅
0, otherwise.

Moreover, the points-to predicate [E 7→ E′], which evaluates to 1 iff the heap
consists of exactly one memory cell with address E and content E′, is defined as

[
E 7→ E′

]
, λ(s, h).

{
1, if h = { E (s) :: E′ (s) }
0, otherwise,

where { E (s) :: E′ (s) } is our notation for heaps introduced in Section 4.1.2.
Since an expectation is a random variable, the expected value of [P] corresponds
to the probability that predicate P is evaluated to true. Hence, for every expecta-
tion X ∈ E≤1, we interpret X(s, h) = 0 = [false] (s, h) as “X is violated in (s, h)”.
Moreover, X(s, h) > 0 means that “X is satisfied in (s, h) to some degree”.

There are multiple ways to model standard logical connectives between
predicates as arithmetic operations on expectations. For instance, we interpret a
standard disjunction P ∨Q between two predicates as the pointwise maximum
between their Iverson brackets. This is backward compatible because

[P ∨Q] = max { [P], [Q] } ,

where the maximum of two expectations X and Y is defined as

max {X, Y } , λ(s, h). max {X(s, h), Y(s, h) } .

Notice that we neither claim nor attempt to define a reasonable notion of
disjunction for arbitrary expectations X, Y ∈ E. One should thus not read
max{X, Y} as a disjunction. After all, what is the disjunction between constant
values 4 and 17 supposed to mean? While it is an interesting research direction to
develop suitable generalizations of logical operators in the realm of expectations,
they are not needed for reasoning about probabilistic pointer programs.

We model standard conjunction P ∧Q as the pointwise product between their
Iverson brackets.2 Again, this is backward compatible because

[P ∧Q] = [P] · [Q] ,

where the multiplication of expectations X and Y is defined as

X · Y , λ(s, h). X(s, h) · Y(s, h).
2A reader familiar with algebra might be reminded of the Viterbi semiring ([0, 1], max, ·) in

which disjunction is interpreted as maximum and conjunction is interpreted as multiplication
(cf. [Kui97]).
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We could alternatively have chosen to compute a minimum instead of a product.
For reasoning about probabilistic programs, however, we often reason about
weighted sums in which multiplication is more natural. In particular, there is a
useful interpretation of products if one factor is an arbitrary expectation, e.g.,
[P] · X: We measure the value of random variable X in stack-heap pair (s, h)
if and only if (s, h) satisfies predicate P. Otherwise, we measure value 0. For
instance, the expectation [x 6= 0] · size measures the size of the heap if and only
if variable x is not equal to 0. More generally, we obtain a first batch of simple
rules for reasoning about the expectations emp, [E 7→ E′], and size:

Theorem 6.4 (Conjunction Laws for Atoms) The following properties hold:

(a) [emp] · size = 0,

(b) [E 7→ E′] · size = [E 7→ E′] = [E 6= 0] · [E 7→ E′], and

(c) [E1 7→ E2] · [E3 7→ E4] = [E1 = E3] · [E2 = E4] · [E1 7→ E2].

Law 6.4 (a) states that the size of the empty heap is zero. Similarly, Theo-
rem 6.4 (b) states that the size of a single memory cell is one and an allocated
address is not equal to null. Put together, both rules yield that [emp] and
[E 7→ E′] cannot be satisfied simultaneously:

[emp] ·
[
E 7→ E′

]
= J Theorem 6.4 (b) K

[emp] · (
[
E 7→ E′

]
· size)

= J elementary algebra (associativity of ·) K
([emp] · size) ·

[
E 7→ E′

]
= J Theorem 6.4 (a) K

0 ·
[
E 7→ E′

]
= J elementary algebra K

0.

Theorem 6.4 (c) expresses that two specifications of the same memory cell refer
to the same addresses and values.

Furthermore, given a one-bounded expectation Z ∈ E≤1, we often consider
convex sums of the form

Z · X + (1− Z) · Y , λ(s, h). Z(s, h) · X(s, h) + (1− Z(s, h)) · Y(s, h).

In particular, if Z is a predicate, i.e., Z maps to { 0, 1 }, then the above sum
represents a choice between two mutually exclusive expectations: We either
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have Z(s, h) = 1 and measure X(s, h) or 1− Z(s, h) = 1 and measure Y(s, h). In
this case, the convex sum coincides with a maximum:

Lemma 6.5 For all expectations X and Y with X · Y = 0, we have

max {X, Y } = X + Y.

We do not explicitly list other standard facts about arithmetic operations on
expectations such as distributivity of multiplication and addition.

6.3 Separating Connectives between Expectations

We now develop quantitative versions of separating conjunction and implication.

6.3.1 Quantitative Separating Conjunction

Let us first recall the classical case: For two predicates P and Q, their separating
conjunction P ? Q is given by

s, h |= P ? Q iff ∃h1, h2 : h = h1 ] h2 and s, h1 |= P and s, h2 |= Q.

In words, a state (s, h) satisfies P ? Q iff there exists a partition of the heap h
into two heaps h1 and h2 such that the stack s together with heap h1 satisfies P,
and s together with h2 satisfies Q.

How should we connect two expectations X and Y in a similar fashion? As
standard conjunction corresponds to multiplication, we need to find a partition
of the heap h into h1 ] h2, measure X in h1, measure Y in h2, and finally multiply
these two measured quantities. The naïve approach, i.e.,(

X ? Y
)
(s, h) = ∃ h1, h2 : [h = h1 ] h2] · X(s, h1) · Y(s, h2),

is not meaningful. At the very least, it is ill-typed. Moreover, what precisely
determined quantity would the above express? After all, the existentially
quantified partition of h need not be unique.

Our key redemptive insight here is that existential quantification (∃) should
correspond to max. From an algebraic perspective, this corresponds to the
usual interpretation of existential quantifiers in a complete Heyting algebra or
Boolean algebra as a disjunction (cf. [Sco08] for an overview) which—at least
for predicates—we interpreted as a maximum in the realm of expectations.

In first-order logic, the effect of the quantified predicate ∃v : P(v) is so-to-
speak to “maximize the truth of P(v)” by a suitable choice of v. In QSL, instead
of truth, we maximize a quantity: Out of all partitions of the heap h = h1 ] h2,
we choose one—out of finitely many for any given h—that maximizes the
product X(s, h1) · Y(s, h2). We thus define the quantitative ? as follows:



6.3. Separating Connectives between Expectations 173

Definition 6.6 (Quantitative Separating Conjunction [1]) The quantitative
separating conjunction X ? Y of two expectations X, Y ∈ E is defined as

X ? Y , λ(s, h). max
{

X(s, h1) · Y(s, h2)
∣∣ h = h1 ] h2

}
.

As a first sanity check, we observe that the quantitative separating conjunction
still prevents unintended aliasing (see also Section 4.3.2):

Theorem 6.7 (Alias-Prevention) [E 7→ E′] ? [E 7→ E′′] = 0.

Example 6.8 Recall from Example 6.2 the expectations size and # 7→0 measur-
ing the number of allocated addresses and the number of variables storing
the address of a null pointer, respectively. To sharpen our intuition, let us
evaluate the quantitative separating conjunction # 7→0 ? size in a concrete
stack heap pair (s, h): s is given by s(x) = s(y) = 4 and s(z) = 7; all other
variables are evaluated to zero. Moreover, h is defined as

h , { 1 :: 3 } ] { 4 :: 0 } ] { 7 :: 0 }.

By definition of the quantitative separating conjunction, we have

(# 7→0 ? size) (s, h) = max { # 7→0(s, h1) · size(s, h2) | h = h1 ] h2 } .

Figure 6.1, page 174, depicts the evaluation of the above product for every
possible partitioning of h into heaps h1 and h2. In particular, the maximum
is attained for h1 = { 4 :: 0 } and h2 = { 1 :: 3 } ] { 7 :: 0 }. Hence,

(# 7→0 ? size) (s, h) = 4.

Notice, however, that the maximum is in general not attained for a unique
partitioning of h into heaps h1 and h2. The expectation 3 ? 7, for instance,
evaluates to 21 for any partition of the heap.

Furthermore, for predicates, the quantitative separating conjunction is compati-
ble with the classical separating conjunction.

Theorem 6.9 (Backward Compatibility of ? [1]) For all predicates P, Q ∈
Pred and stack-heap pairs (s, h) ∈ SHPairs, we have:

(a) ([P] ? [Q]) (s, h) ∈ {0, 1}, and

(b) ([P] ? [Q]) (s, h) = 1 holds in QSL iff s, h |= P ? Q holds.
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dom(h1) dom(h2) # 7→0(s, h1) size(s, h2) # 7→0(s, h1) · size(s, h2)

∅ { 1, 4, 7 } 0 3 0

{ 1 } { 4, 7 } 0 2 0

{ 4 } { 1, 7 } 2 2 4

{ 7 } { 1, 4 } 1 2 2

{ 1, 4 } { 7 } 2 1 2

{ 1, 7 } { 4 } 1 1 1

{ 4, 7 } { 1 } 3 1 3

{ 1, 4, 7 } ∅ 3 0 0

Figure 6.1: Evaluation of # 7→0(s, h1) · size(s, h2) for all partitions h = h1 ] h2 of
the heap h = { 1 :: 3 } ] { 4 :: 0 } ] { 7 :: 0 }. Moreover, the stack s is given by
s(x) = s(y) = 4 and s(z) = 7.

Proof. To show 6.9 (a), consider the following:(
[P] ? [Q]

)
(s, h) = max

{
[P] (s, h1)︸ ︷︷ ︸
∈{0, 1}

· [Q] (s, h2)︸ ︷︷ ︸
∈{0, 1}︸ ︷︷ ︸

∈{0, 1}

∣∣ h = h1 ] h2
}

︸ ︷︷ ︸
∈2{0, 1}\{∅ }︸ ︷︷ ︸
∈{0, 1}

∈ {0, 1}.

Moreover, to prove 6.9 (b), consider the following:

s, h |= P ? Q
iff J Definition of ? in classical separation logic K
∃h1, h2 : h = h1 ] h2 and s, h1 |= P and s, h2 |= Q

iff J Definition of Iverson bracket K
∃h1, h2 : h = h1 ] h2 and [P] (s, h1) = 1 and [Q] (s, h2) = 1

iff J [P] (s, h1), [Q] (s, h2) ∈ { 0, 1 } K
∃h1, h2 : h = h1 ] h2 and [P] (s, h1) · [Q] (s, h2) = 1

iff J there exist only finitely many partitions of h into h1 ] h2 K
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max { [P] (s, h1) · [Q] (s, h2) | h = h1 ] h2 } = 1
iff J Definition of ? in QSL K

([P] ? [Q]) (s, h) = 1.

Hence, the quantitative separating conjunction is backward compatible. �

6.3.2 Quantitative Separating Implication

Recall from Definition 4.15 the definition of separating implication of two
predicates P and Q in classical separation logic:

s, h |= P −−? Q iff ∀h′ :
(
h # h′ and s, h′ |= P

)
implies s, h ] h′ |= Q,

where h # h′ denotes that the domains of h and h′ are disjoint. So (s, h) satisfies
P −−? Q iff the following holds: Whenever we can find a heap h′ disjoint from
h such that stack s together with heap h′ satisfies P, then s together with the
conjoined heap h ] h′ must satisfy Q. In other words: We measure the truth of
Q in extended heaps h ] h′ given that h′ satisfies P. That is, every heap extension
is conditioned on the truth value of satisfying P.

How should we connect expectations X and Y in a similar fashion? Since the
least element of our complete lattice, i.e. 0, corresponds to false when evaluating
a predicate, we interpret satisfying an expectation X as measuring some positive
quantity, i.e. X(s, h) > 0. Intuitively, X −−? Y then intends to measure Y in
extended heaps conditioned on “how much” the extensions satisfy X.

As for the universal quantifier, our key insight is now that—dually to ∃
corresponding to max—∀ should correspond to min: Whereas in first-order
logic the predicate ∀v : P(v) “minimizes the truth of P(v)” by requiring that
P(v) must be true for all choices of v, in QSL we minimize a quantity: Out
of all heap extensions h′ disjoint from h that satisfy expectation X, we choose
an extension h′ that minimizes the quantity Y(s, h ] h′) weighted by “how
much” X is satisfied. Since, for a given expectation X and heap h, there may be
infinitely many (or no) admissible choices of heaps h′, we define the quantitative
separating implication by an infimum:

Definition 6.10 (Quantitative Separating Implication) The quantitative sep-
arating implication X −−? Y of expectations X, Y ∈ E is defined as

λ(s, h). inf
{

Y(s, h ] h′)

X(s, h′)

∣∣∣∣ h # h′ and X(s, h′) > 0
and ( X(s, h′) < ∞ or Y(s, h ] h′) < ∞ )

}
,

where, for all r ∈ R≥0, we set r/∞ = 0 and ∞/r = ∞.
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The constraints on X and Y are needed to avoid the corner case ∞/∞. Alterna-
tively, one could define ∞/∞ = ∞: If all choices for h′ yield both X(s, h′) = ∞
and Y(s, h ] h′) = ∞, then we take an infimum over the empty set; this results
in ∞. Since it is common in probability theory, we assume that 0 ·∞ = ∞ · 0 = 0.
Hence, no additional constraint to cover this case is necessary.

Notice that our quantitative interpretation of the separating implication
is also sensible from an algebraic perspective: As in the classical case (cf.
Theorem 4.20), the quantitative separating implication can alternatively be
characterized as the adjoint of the quantitative separating conjunction. Further
details are discussed in Section 6.3.3 alongside other properties of ? and −−? .

We often use predicates on the left-hand side of separating implications, i.e.,
we consider [P]−−? X. In this case, the quantitative version of −−? has a simpler
interpretation which served as a definition of −−? in [1]: We measure X in the
smallest extension of the heap that is compatible with predicate P.

Theorem 6.11 (Guarded Quantitative Separating Implication) For all pred-
icates P ∈ Pred and expectations X ∈ E, we have

[P]−−? X = λ(s, h). inf
{

X(s, h ] h′)
∣∣ h # h′ and s, h′ |= P

}
.

Proof. For every predicate P, we have

[P]−−? X
= J Definition of −−? K

λ(s, h). inf
{

X(s, h ] h′)

[P] (s, h′)

∣∣∣∣ h # h′ and [P] (s, h′) > 0
and ([P] (s, h′) < ∞ or X(s, h ] h′) < ∞)

}
=

q
[P] (s, h′) ∈ {0, 1} < ∞

y

λ(s, h). inf
{

X(s, h ] h′)

[P] (s, h′)

∣∣∣∣ h # h′ and [P] (s, h′) = 1
}

= J Definition of Iverson bracket; elementary algebra K

λ(s, h). inf
{

X(s, h ] h′)
∣∣ h # h′ and s, h′ |= P

}
. �

Example 6.12 Let s be an arbitrary stack. Moreover, let

h , { 1 :: 3 } ] { 4 :: 0 } ] { 7 :: 0 }.

The expectation [5 7→ 17]−−? size first extends the heap by the unique heap
captured by [5 7→ 17] and then measures the size of the extended heap.
Hence, the measured size is one plus the heap’s original size:
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([5 7→ 17]−−? size)(s, h)
= J Theorem 6.11 K

inf
{

size(s, h ] h′)
∣∣ h # h′ and s, h′ |= [5 7→ 17]

}
= J Definition of [5 7→ 17] K

inf { size(s, h ] { 5 :: 17 }) | h # { 5 :: 17 } }
= J Definition of h; elementary algebra K

size(s, { 1 :: 3 } ] { 4 :: 0 } ] { 7 :: 0 } ] { 5 :: 17 })
= J Definition of size K

4
= J size(s, h) = 3; elementary algebra K

1 + size(s, h).

As a second example, we evaluate the expectation

(2 · size)−−? size

in the same stack-heap pair (s, h). Notice that neither the left-hand side
nor the right-hand side of the above quantitative separating implication is a
predicate. We thus evaluate this expectation by applying Definition 6.10:

((2 · size)−−? size) (s, h)
= J Definition 6.10 K

inf

 size(s, h ] h′)

(2 · size)(s, h′)

∣∣∣∣∣∣
h # h′ and (2 · size)(s, h′) > 0
and

(
(2 · size)(s, h′) < ∞

or size(s, h ] h′) < ∞
)


= J Definition of size; elementary algebra K

inf
{
|dom(h ] h′)|
2 · |dom(h′)|

∣∣∣∣ h # h′ and 2 · |dom(h′)| > 0
}

= J Definition of h; elementary algebra K

inf
{

3 + |dom(h′)|
2 · |dom(h′)|

∣∣∣∣ 1, 4, 7 /∈ dom(h′) and 2 · |dom(h′)| > 0
}

= J substitute |dom(h)| by n ∈N K
inf { 3+n/2·n | n ∈N>0 }

= J elementary algebra K
inf { 1/2 + 3/2·n | n ∈N>0 } = 1/2.
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Unfortunately, backward compatibility for quantitative separating implication
comes with certain reservations: Suppose for a particular stack-heap pair (s, h)
that there exists no heap h′ such that s, h′ |= P. Then the set{

X(s, h ] h′)
∣∣ h # h′ and s, h′ |= P

}
is empty, and the greatest lower bound (within our domain E) of the empty set is
∞ and not 1. In particular, false−−? Q = true holds in classical separation logic,
but 0 −−? [Q] = ∞ holds in QSL. Since 0 = [false], but ∞ 6= [true], backward
compatibility of −−? breaks for arbitrary expectations.

As a silver lining, true is the greatest element in the complete lattice of
predicates and correspondingly ∞ is the greatest element in E. In this light, the
above is not surprising. In fact, if we restrict ourselves to the domain 〈E≤1,� 〉,
which is used to reason about probabilities, we achieve full compatibility with
the classical separating implication.

Theorem 6.13 (Backward Compatibility of −−? [1]) In the domain 〈E≤1,� 〉
of one-bounded expectations, it holds that, for all predicates P, Q ∈ Pred
and stack-heap pairs (s, h) ∈ SHPairs, we have:

(a) ([P]−−? [Q]) (s, h) ∈ {0, 1}, and

(b) ([P]−−? [Q]) (s, h) = 1 holds in QSL iff s, h |= P −−? Q holds.

Proof. For proving 6.13 (a), consider the following:

([P]−−? [Q]) (s, h)
= J Theorem 6.11 K

inf {[Q] (s, h ] h′)︸ ︷︷ ︸
∈{0,1}

| h # h′ and s, h′ |= P}

︸ ︷︷ ︸
∈2{0,1}

∈ J The domain is restricted to E≤1, i.e. inf ∅ = 1 K
{0, 1}.

Moreover, for proving 6.13 (b), consider the following:

([P]−−? [Q]) (s, h) = 1
iff J Theorem 6.11 K

inf
{
[Q] (s, h ] h′)

∣∣ h # h′ and s, h′ |= P
}︸ ︷︷ ︸

= X

= 1
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iff
q

X = 0 iff exists h′ such that h # h′ and s, h |= P and s, h ] h′ 6|= Q
y

¬∃h′ : h # h′ and s, h |= P and s, h ] h′ 6|= Q
iff J Pushing negation inside K

∀h′ : ¬h # h′ or s, h 6|= P or s, h ] h′ |= Q
iff J First-order logic K

∀h′ : (h # h′ and s, h |= P) implies s, h ] h′ |= Q
iff J Definition of −−? in classical separation logic K

s, h |= P −−? Q. �

6.3.3 Properties of Quantitative Separating Connectives

Besides backward compatibility, the quantitative separating connectives of QSL
are well-behaved in the sense that they satisfy most properties of their classical
counterparts. To justify this claim, let us revisit the properties of separating con-
junction and implication studied in Section 4.3.2. First, the monoidal structure
underlying the classical separating conjunction with emp as neutral element re-
mains unchanged. Hence, we obtain the following analog to Theorem 4.17:

Theorem 6.14 (Monoidicity of ? [1]) (E, ?, [emp]) is a commutative monoid.
That is, for all expectations X, Y, Z ∈ E, the following holds:

(a) Associativity: X ? (Y ? Z) = (X ? Y) ? Z.

(b) Neutrality of [emp]: X ? [emp] = [emp] ? X = X.

(c) Commutativity: X ? Y = Y ? X.

Furthermore, the quantitative separating conjunction remains monotone:

Theorem 6.15 (Monotonicity of ? [1]) For all expectations X, Y, Z ∈ E:

X � Z implies X ? Y � Z ? Y.

Proof. Assume that X � Z. Then, for every stack-heap pair (s, h), we have:(
X ? Y

)
(s, h)

= J Definition of ? K
max {X(s, h1) · Y(s, h2) | h = h1 ] h2 }

≤ J by premise (X � Z) and monotonicity of · K
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max {Z(s, h1) · Y(s, h2) | h = h1 ] h2 }
= J Definition of ? K(

Z ? Y
)
(s, h). �

Similarly, most subdistributivity laws (cf. Theorem 4.19) are valid in the quan-
titative case. The only exception is subdistributivity between separating and
standard conjunction: For a stack-heap pair (s, h) with |dom(h)| = 2, we have

(size ? (1 · 1))(s, h) = 2 6= 4 = ((size ? 1) · (size ? 1)) (s, h).

To restore subdistributivity between ? and ·, it suffices to require that the
separating conjunction’s left-hand side is a predicate.

Theorem 6.16 ((Sub)distributivity of ? [1]) For all expectations X, Y, Z ∈ E

and predicates P ∈ Pred, we have:

(a) X ? max {Y, Z } = max {X ? Y, X ? Z },

(b) X ? min {Y, Z } � min {X ? Y, X ? Z },

(c) X ? (Y + Z) � (X ? Y) + (X ? Z),

(d) [P] ? (Y · Z) �
(
[P] ? Y

)
·
(
[P] ? Z

)
,

(e) if x /∈ Vars (X), then X ? supv∈Z Y [x/v] = supv∈Z(X ? Y) [x/v], and

(f) if x /∈ Vars (X), then X ? infv∈Z Y [x/v] � infv∈Z(X ? Y) [x/v].

As in the classical case, most operations are only subdistributive over ? because
there is in general no unique partitioning of the heap. For example, evaluating
the expectation X , 1 ? ([1 7→ 2] + [2 7→ 3]) in a stack-heap pair (s, h), where s
is an arbitrary stack and h = { 1 :: 2, 3 }, yields

X(s, h) = max { 1(s, h1) · ([1 7→ 2](s, h2) + [2 7→ 3](s, h2)) | h = h1 ] h2 } = 1,

because we have to choose either h2 = { 1 :: 2 } or h2 = { 2 :: 3 } such that
the maximum is attained. However, if we evaluate the expanded expectation
Y , (1 ? [1 7→ 2]) + (1 ? [2 7→ 3]) in the same stack-heap pair (s, h), we obtain

Y(s, h) = max { 1(s, h1) · [1 7→ 2](s, h2) | h = h1 ] h2 }︸ ︷︷ ︸
= 1 (choose h2={ 1::2 })

+ max { 1(s, h1) · [2 7→ 3](s, h2) | h = h1 ] h2 }︸ ︷︷ ︸
= 1 (choose h2={ 2::3 })

= 2.
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Unfortunately, multiplication is general not subdistributive with respect to the
quantitative separating conjunction, i.e., there is no law for expectations of the
form Z · (X ? Y). We thus present specialized rules for the cases in which Z
coincides with one of the atomic expectations [emp], [E 7→ E′], or size:

Theorem 6.17 ((Sub)distributivity of · for Atomic Expectations) For all ex-
pectations X, Y ∈ E, we have:

(a) [emp] · (X ? Y) = ([emp] · X) ? ([emp] · Y),

(b) [E 7→ E′] · (X ? Y) = max{([E 7→ E′] · X) ? ([emp] · Y),
([emp] · X) ? ([E 7→ E′] · Y)}, and

(c) size · (X ? Y) � ((size · X) ? Y) + (X ? (size · Y)).

Rule 6.17 (c) intuitively states that the size of the heap captured by X ?Y coincides
with the sum of the size of the heaps captured by X, i.e., X · size, and Y, i.e.,
Y · size. However, we have to account for parts of the heap whose size is not
measured, i.e., Y if we measure the size of X and vice versa. These parts are
“absorbed” by an additional separating conjunction with Y and X, respectively.

Returning to properties of classical separation logic, adjointness of ? and −−?
is preserved as well. Hence, the following variant of Theorem 4.20 holds:

Theorem 6.18 (Adjointness) For all expectations X, Y, Z ∈ E, we have

X ? Y � Z iff X � Y −−? Z.

Proof. A detailed proof is found in Appendix C.2. �

A quantitative variant of modus ponens (cf. Corollary 4.21) then immediately
holds because it is a special case of adjointness:

Corollary 6.19 (Modus Ponens) X ?
(
X −−? Y

)
� Y.

Proof. Let X and Y be expectations in E. Then, consider the following:

X ? (X −−? Y) � Y
iff J Theorem 6.14 (c) K

(X −−? Y) ? X � Y
iff J Theorem 6.18 with X being X −−? Y, Y being X, and Z being Y K

X −−? Y � X−−? Y. �
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Furthermore, adjointness allows us to derive laws for the separating implication.
For example, we can derive a monotonicity property if we fix either the left-hand
side or the right-hand side of −−? :

Theorem 6.20 (Monotonicity of −−? ) For all expectations X, Y, X′, Y′ ∈ E,
the quantitative separating implication is:

(a) monotone with respect to its right-hand side, i.e.,

Y � Y′ implies X −−? Y � X −−? Y′, and

(b) antitone with respect to its left-hand side, i.e.,

X � X′ implies X′−−? Y � X −−? Y.

Proof. For Theorem 6.20 (a), assume Y � Y′ and consider the following:

X −−? Y � X −−? Y′

iff J Theorem 6.18 K

(X −−? Y) ?X � Y′

iff J Theorem 6.14 (c); Corollary 6.19 K

Y � Y′,

where the last line holds by assumption.
For Theorem 6.20 (b), assume X � X′ and consider the following:

X′−−? Y � X −−? Y
iff J Theorem 6.18 K

(X′−−? Y) ?X � Y
iff J by assumption and Theorem 6.15 K

(X′−−? Y) ? X′ � Y
iff J Theorem 6.14 (c); Corollary 6.19 K

Y � Y,

where the last line holds trivially. �

Finally, we collect superdistributivity laws for the quantitative separating im-
plication. Most of these laws are shown using adjointness between ? and −−?
and the subdistributivity laws for ? presented in Theorem 6.16. The equalities
presented below, however, require additional work.



6.4. Fragments of Expectations 183

Theorem 6.21 ((Super)distributivity of −−? ) For all expectations X, Y, Z ∈
E and predicates P ∈ Pred, we have:

(a) X −−? max {Y, Z } � max {X −−? Y, X −−? Z },

(b) X −−? min {Y, Z } = min {X −−? Y, X −−? Z },

(c) X −−? (Y + Z) � (X −−? Y) + (Y −−? Z),

(d) [P]−−? (Y · Z) � ([P]−−? Y) · ([P] · Z),

(e) if x /∈ Vars (X), then

X −−? (sup
v∈Z

Y [x/v]) � sup
v∈Z

(X −−? Y) [x/v] , and

(f) if x /∈ Vars (X), then

X −−? inf
v∈Z

Y [x/v] = inf
v∈Z

(X ? Y) [x/v] .

Proof. Apart from the two equalities, each property can be proven by
exploiting adjointness of the quantitative separating conjunction and the
quantitative separating implication. The proof of the two equalities is
analogous to the proof of Theorem 6.16. �

6.4 Fragments of Expectations

To effectively reason about expectations, let us study a few fragments of ex-
pectations in which quantitative separating conjunction and implication enjoy
additional properties. Most of these fragments have already been considered for
classical separation logic in Section 4.3.3.

6.4.1 Pure Expectations

Recall that a predicate is pure iff its truth does not depend on the heap but only
on the stack. Analogously, we call an expectation X pure iff

∀ s ∀ h1 ∀ h2 : X(s, h1) = X(s, h2).

Examples of pure expectations include constant expectations, e.g., 0 or 1, and
expectations over program variables, e.g., x2 or [x = y + 2]. For pure expecta-
tions, the quantitative separating connectives are compliant with the algebraic
rules for pure predicates which we presented in Theorem 4.22:
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Theorem 6.22 (Laws for Pure Expectations [1]) Let X ∈ E be a pure expec-
tation. Moreover, let Y, Z ∈ E be arbitrary expectations. Then:

(a) X · Y � X ? Y,

(b) (X · Y) ? Z = X · (Y ? Z), and

(c) X −−? Y � [X = 0] ·∞ + [X 6= 0] · Y/X.

Moreover, if both X and Y are pure expectations, then:

(d) X · Y = X ? Y, and

(e) X −−? Y = [X = 0] ·∞ + [X 6= 0] · Y/X.

When considering one-bounded expectations rather than general ones, the same
rules apply if ∞ is replaced by 1, i.e., the greatest element of E≤1. Rules 6.22 (c)
and 6.22 (e) might seem unintuitive at first. It is thus noteworthy that, for one-
bounded expectations, [X = 0] · 1 + [X 6= 0] · Y/X is backward compatible to the
standard notion of logical implication. That is, for all predicates P and Q and
all stack-heap pairs (s, h), we have:

s, h |= P⇒ Q
iff J elementary logic K

s, h |= ¬P ∨Q
iff J backward compatibility of maximum and Iverson bracket K

max { [¬P], [Q] } (s, h) = 1
iff J elementary algebra K

max { [¬P], [P] · [Q]/[P] } (s, h) = 1
iff J Lemma 6.5 K

([¬P] + [P] · [Q]/[P]) (s, h) = 1
iff J elementary algebra K

([[P] = 0] · 1 + [[P] 6= 0] · [Q]/[P]) (s, h) = 1.

6.4.2 Precise Expectations

Analogously to classical separation logic, we call an expectation X ∈ E domain-
exact iff for all stacks s ∈ Stacks and heaps h, h′ ∈ Heaps,(

X(s, h) > 0 and X(s, h′) > 0
)

implies dom(h) = dom(h′).

As presented in Theorem 4.23, Reynolds [Rey02] showed that full distributivity
of the separating conjunction is achieved for domain-exact predicates. O’Hearn,
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Yang, and Reynolds later proved that the more general set of “precise” predi-
cates characterizes all predicates such that separating and standard conjunction
distribute (cf. [OYR09; OYR04, Definition 5]). For expectations, it is convenient
to consider a similar notion:

Definition 6.23 (Precise Expectations) An expectation X ∈ E is precise iff

∀s ∀h : |
{
h′ ∈ Heaps

∣∣ h′ ⊆ h and X(s, h′) > 0
}
| ≤ 1.

In other words, for every stack-heap pair (s, h), there is at most one heap h′

included in h such that X(s, h′) does not vanish. Notice that the expectation

[x = 0] · [emp] + [x 6= 0] · [1 7→ 2]

is precise, but not domain-exact. The converse direction, however, holds:

Lemma 6.24 Every domain-exact expectation is precise.

Proof. Let X ∈ E be domain-exact. Moreover, fix some stack-heap pair
(s, h). Towards a contradiction, let us assume that

|
{
h′ ∈ Heaps

∣∣ h′ ⊆ h and X(s, h′) > 0
}
| > 1.

Then, there exist two distinct heaps h′, h′′ ⊆ h such that X(s, h′) > 0 and
X(s, h′′) > 0. Since X is domain-exact, we have dom(h′) = dom(h′′).

Both heaps are obtained by restricting the domain of h to dom(h′) and
dom(h′′), respectively. Hence, we have h′ = h′′. However, this contradicts
our assumption that h′ and h′′ are distinct heaps. �

Consequently, the expectations 0, [emp], and [E 7→ E′] are precise whereas 1,
∞, and [x 6= y] are not. Furthermore, precise expectations can be conveniently
constructed from existing ones according to the following rules:

• If X and Y are precise expectations, then X ? Y is a precise expectation.

• If X and Y are precise expectations, then X · Y is a precise expectation.

• If X and Y are precise expectations and Q is a pure predicate, then the
convex sum [Q] · X + [¬Q] · Y is a precise expectation.

Similar results have been shown for precise predicates in [OYR09]. For precise
expectations, the quantitative separating conjunction becomes fully distributive
analogously to domain-exact predicates (cf. Theorem 4.23).
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Theorem 6.25 (Distributivity of ? for Precise Expectations) Let X ∈ E be
a precise expectation and P ∈ Pred be a precise predicate. Then, for all
expectations Y, Z ∈ E, we have:

(a) X ? min {Y, Z } = min {X ? Y, X ? Z },

(b) X ? (Y + Z) = (X ? Y) + (X ? Z),

(c) [P] ? (Y · Z) =
(
[P] ? Y

)
·
(
[P] ? Z

)
, and

(d) if x /∈ Vars (X), then X ? infv∈Z Y [x/v] = infv∈Z(X ? Y) [x/v].

Analogously, multiplication with size becomes fully distributive:

Theorem 6.26 (Distributivity of · for size) For all precise expectations X ∈
E and expectations Y ∈ E, we have

size · (X ? Y) = ((size · X) ? Y) + (X ? (size · Y)).

6.4.3 Strictly-Exact Expectations

Unfortunately, neither preciseness nor domain-exactness yields full distributivity
of the quantitative separating implication. For example, consider the allocated
pointer predicate [E 7→ −] which states that exactly address E is allocated on the
heap. Formally, it is syntactic sugar for supv∈Z [E 7→ v], i.e.,

[E 7→ −] , sup
v∈Z

[E 7→ v] = λ(s, h).

{
1, if dom(h) = { E (s) }
0, otherwise.

Clearly, [E 7→ −] is domain-exact. Now, consider the expectation

X , [1 7→ −]−−?
(

sup
u∈Z

[u 6= 2] · [1 7→ u] · 4 + [1 7→ 2] · 3
)
.

Then, for any stack s and the empty heap h∅, we have X(s, h∅) = 3 as extending
the heap by { 1 :: 2 } minimizes the total measured value. However, if we extend
the heap by { 1 :: 2 }, we obtain(

[1 7→ −]−−?
(

sup
u∈Z

[u 6= 2] · [1 7→ u] · 4
))
(s, h∅) = 0.

Analogously, by extending the heap by { 1 :: 1 }, we obtain(
[1 7→ −]−−?

(
[1 7→ 2] · 3

)(
s, h∅) = 0.

Hence, −−? does not distributive over +. To achieve full distributivity of −−? ,
we consider a more restricted fragment (cf. [Yan01, Section 7.4]):
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Definition 6.27 (Strictly-exact Expectations) We call an expectation X ∈ E

strictly-exact iff

∀s : | { h ∈ Heaps | X(s, h) > 0 } | ≤ 1.

In other words, for every stack, there is at most one heap such that a strictly-
exact expectation does not vanish. For example, the points-to predicate [E 7→ E′]
is strictly-exact whereas the predicate [E 7→ −] is not. Moreover, the separating
conjunction of two strictly-exact expectations is strictly-exact as well. Hence,
consecutive blocks of memory as specified by

[E 7→ E1, E2, . . . , En] , [E 7→ E1] ? [E + 1 7→ E2] ? . . . ? [E + n− 1 7→ En]

= λ(s, h).

{
1, if h = { E (s) :: E1 (s) , E2 (s) , . . . , En (s) }
0, otherwise.

are strictly-exact. Intuitively, for strictly-exact expectations, the quantitative
separating implication becomes fully distributive because all possible extensions
of the heap are uniquely determined.

Theorem 6.28 (Distributivity of −−? for strictly-exact Expectations) Let X
be a strictly-exact expectation and P ∈ Pred be a strictly-exact predicate.
Then, for all expectations Y, Z ∈ E, we have:

(a) X −−? max {Y, Z } = max {X −−? Y, X −−? Z },

(b) X −−? (Y + Z) = (X −−? Y) + (X −−? Z),

(c) [P]−−? (Y · Z) = ([P]−−? Y) · ([P]−−? Z), and

(d) if x /∈ Vars (X), then X −−? (supv∈Z Y [x/v]) = supv∈Z(X −−? Y) [x/v] .

6.4.4 Intuitionistic Expectations

Recall from Section 4.3.3.3 that a predicate P is intuitionistic iff

∀s ∈ Stacks ∀h, h′ ∈ Heaps : (h ⊆ h′ and s, h |= P) implies s, h′ |= P.

So as we extend the heap from h to h′, an intuitionistic predicate can only
get “more true”. Analogously, in QSL, as we extend the heap from h to h′, the
quantity measured by an intuitionistic expectation can only increase. Formally, an
expectation X is called intuitionistic iff

∀s ∈ Stacks ∀h, h′ ∈ Heaps : h ⊆ h′ implies X(s, h) ≤ X(s, h′).
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A natural example of an intuitionistic expectation is the heap size quantity

size = λ(s, h). |dom(h)|.

As presented in Theorem 4.24, Reynolds [Rey02] provided a systematic way to
construct intuitionistic predicates: For any predicate P,

1. P ? true is the strongest intuitionistic predicate weaker than P, and

2. true−−? P is the weakest intuitionistic predicate stronger than P.

In QSL, we obtain an analogous result for arbitrary expectations:

Theorem 6.29 (Tightest Intuitionistic Expectations [1]) For every expecta-
tion X ∈ E, the following holds:

(a) X ? 1 is the smallest intuitionistic expectation that is at least X, i.e.,

• X ? 1 is intuitionistic,

• X � X ? 1, and

• for all intuitionistic Y satisfying X � Y, we have X ? 1 � Y.

(b) 1 −−? X is the greatest intuitionistic expectation that is at most X, i.e.,

• 1 −−? X is intuitionistic,

• 1 −−? X � X, and

• for all intuitionistic Y satisfying Y � X, we have Y � 1 −−? X.

The previous theorem allows us to formalize two additional proof rules to deal
with quantitative separating implications:

Theorem 6.30 (Intuitionistic Resolution of −−? ) Let P ∈ Pred be a strictly-
exact predicate. For all (not necessarily intuitionistic) predicates Q ∈ Pred
and expectations X ∈ E, we have:

(a) [P] ? ([P]−−? X) = ([P] ? 1) · X, and

(b) [Q]−−? X = [Q]−−? (([Q] ? 1) · X).

Intuitively, 6.30 (a) is an exact version of modus ponens (Corollary 6.19), i.e.,
X ? (X −−? Y) � Y. That is, carving out the heap h specified by predicate P
and then inserting the same heap again before evaluating X is equivalent to
evaluating X provided that h is included in the original heap. Rule 6.30 (b) states
that, as long as the left-hand side of −−? is a predicate, an intuitionistic version
of the same predicate also holds on the right-hand side of −−? .
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We frequently use an intuitionistic version of the points-to predicate [E 7→ E′].
Hence, as in classical separation logic, we define the contains-pointer predicate
[E ↪→ E′] as syntactic sugar for [E 7→ E′] ? 1, i.e.,

[
E ↪→ E′

]
,
[
E 7→ E′

]
? 1 = λ(s, h).

{
1, if { E (s) :: E′ (s) } ⊆ h

0, otherwise.

Analogously, [E ↪→ −] is syntactic sugar for [E 7→ −] ? 1, i.e.,

[E ↪→ −] , [E 7→ −] ? 1 = λ(s, h).

{
1, if { E (s) } ∈ dom(h)

0, otherwise.

The contains-pointer predicate allows us to conveniently state additional proof
rules for reasoning about −−? and the size quantity:

Theorem 6.31 (Contains-Pointer Laws) For all expectations X, Y ∈ E:

(a) [E 7→ E′] ? size = [E ↪→ E′] · (size− 1),

(b) [E 7→ E′]−−? size = 1 + size + [E ↪→ −] ·∞,

(c) [E 7→ E′]−−? ([E 7→ E′] ? X) = X + [E ↪→ −] ·∞, and

(d) [E ↪→ E′] · (X ? Y) = max { ([E ↪→ E′] · X) ? Y, X ? ([E ↪→ E′] · Y) }.

The first two rules illustrate the role of the quantitative separating connectives
? and −−? : The quantitative separating conjunction ? removes a part of the
heap before its size is measured and consequently decreases the size of the
remaining heap. Dually, the quantitative separating implication −−? extends the
heap and hence increases its size. If the heap cannot be extended appropriately,
the infimum in the definition of −−? yields ∞.

To understand Theorem 6.31 (c), let us consider a special case of adjointness
(cf. Theorem 6.18), i.e., for all X, Y ∈ E,

Y ? (Y ? X) � X.

Intuitively, this means that extending the heap according to Y and then immedi-
ately disposing the extension again before evaluating X is greater than or equal
to evaluating X in the original heap. Rule 6.31 (c) then explains what is missing
on the right-hand side of the above inequality: If the heap cannot be extended
as specified by Y, then the quantitative separating implication evaluates to ∞.

Finally, Theorem 6.31 (d) lifts the property in Theorem 6.17 (b) from points-to
predicates to contains-pointer predicates.
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Example 6.32 The rules collected throughout this chapter provide us with
a small proof system for reasoning about expectations. Let us apply these
rules to derive another rule which will turn out convenient for reasoning
about pointer programs: For all expectations X ∈ E, we have

[E 7→ E1] ? ([E 7→ E2]−−? ([E 7→ E2] ? X)) = [E 7→ E1] ? X.

Intuitively, this rule captures a typical scenario for pointer programs: Ini-
tially, address E is allocated and stores value E1. This value is updated to E2
by removing the memory cell described by [E 7→ E1] and then inserting a
new memory cell [E 7→ E2]. Finally, to avoid memory leaks, address E is dis-
posed, i.e., we remove the memory cell [E 7→ E2] again. Our proof rule then
states that measuring X in the remaining heap coincides with measuring X
in the initial heap after removing memory cell [E 7→ E1]. We thus avoid the
heap update formalized by the quantitative separating implication. Now, to
formally prove that the above rule is correct, consider the following:

[E 7→ E1] ? ([E 7→ E2]−−? ([E 7→ E2] ? X))
= J Theorem 6.31 (c) K

[E 7→ E1] ? (X + [E ↪→ −] ·∞)

= J Theorem 6.25 (b) K
([E 7→ E1] ?X) + ([E 7→ E1] ? ([E ↪→ −] ·∞))

= J Theorem 6.14 (c) K
([E 7→ E1] ? X) + (([E ↪→ −] ·∞) ? [E 7→ E1])

= J elementary algebra (distributivity of ·) K
([E 7→ E1] ? X) + ((∞ · [E ↪→ −]) ? [E 7→ E1])

= J Theorem 6.22 (b) K
([E 7→ E1] ? X) + ∞· ([E ↪→ −] ? [E 7→ E1])

= J By definition of [E ↪→ −] K
([E 7→ E1] ? X) + ∞ · ([E 7→ −] ? 1 ? [E 7→ E1])

= J Theorem 6.14 (c) K
([E 7→ E1] ? X) + ∞ · ([E 7→ E1] ? [E 7→ −] ? 1)

= J By definition of [E 7→ −] K
([E 7→ E1] ? X) + ∞ · ([E 7→ E1] ? (sup

v∈Z

[E 7→ v]) ? 1)

= J Theorem 6.14 (a) K
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([E 7→ E1] ? X) + ∞ · (( [E 7→ E1] ? (sup
v∈Z

[E 7→ v])) ? 1)

= J introduce fresh variable y for v K

([E 7→ E1] ? X) + ∞ · (([E 7→ E1] ? (sup
v∈Z

[E 7→ y] [y
/

v])) ? 1)

= J Theorem 6.16 (e) K

([E 7→ E1] ? X) + ∞ · ((sup
v∈Z

([E 7→ E1] ? [E 7→ y]) [y
/

v]) ? 1)

= J Theorem 6.7 K

([E 7→ E1] ? X) + ∞ · ((sup
v∈Z

0 [y
/

v]) ? 1)

= J apply substitution K
([E 7→ E1] ? X) + ∞ · ((sup

v∈Z

0) ? 1)

= J elementary algebra K
([E 7→ E1] ? X) + ∞ · (0 ? 1)

= J Theorem 6.22 (d) K
([E 7→ E1] ? X) + ∞ · (0 · 1)

= J elementary algebra (assuming 0 ·∞ = 0) K
[E 7→ E1] ? X.

Hence, our proposed proof rule is sound.

To reason effectively about expectations, it is convenient to consider further
proof rules that reflect common idioms encountered when reasoning about
pointer programs. These rules are collected and verified in Appendix E; all
of them are derived from the rules presented in this chapter. Furthermore, a
compact reference sheet with all proof rules is found in Appendix D. A reader
might find it convenient to consult this sheet while reading formal proofs.

6.5 Conservativity of QSL as an Assertion Language

The assertion language of QSL conservatively extends the assertion language of
classical separation logic. As long as we adhere to the extensional approach this
is immediate: For every separation logic predicate P it suffices to compute the
(one-bounded) expectation [P]. Then, by definition of Iverson brackets, it holds
for all stack-heap pairs (s, h) that

• [P] (s, h) ∈ { 0, 1 }, and

• [P] (s, h) = 1 iff s, h |= P.
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Predicate P in separation logic Expectation qslJPK in QSL

P (atomic formula) [P]
Q[x/E] qslJQK[x/E]
Q [+�] qslJQK [+�]
Q [−�] qslJQK [−�]
¬Q 1− qslJQK
∃x Q supv∈Z qslJQK [x/v]
∀x Q infv∈Z qslJQK [x/v]
Q ∧ R qslJQK · qslJRK
Q ? R qslJQK ? qslJRK
Q ∨ R max { qslJQK, qslJRK }
Q −−? R qslJQK−−? qslJRK

Table 6.1: Embedding of common separation logic connectives into QSL.

In this section, we briefly argue that an explicit embedding of classical separation
logic into QSL can be defined compositionally for most common logical con-
nectives. It then suffices to apply the Iverson bracket to atomic separation logic
formulas, such as emp, E 7→ E′, x = y, etc. For every logical connective, we then
use its quantitative analog in QSL. This suggests that we could also construct
QSL as a conservative extension of separation logic if we take the intensional
approach and fix a concrete syntax. An explicit embedding of separation logic
formulas into QSL is given by the function

qsl : Pred→ E≤1

mapping predicates to one-bounded expectations as defined in Table 6.1. Assum-
ing that the syntax of separation logic predicates is—apart from atomic formulas
and derived connectives—covered by Table 6.1, we obtain the following:

Theorem 6.33 (Conservativity of QSL as an Assertion Language [1]) For ev-
ery predicate P and every stack-heap pair (s, h), we have

(a) qslJPK(s, h) ∈ {0, 1}, and

(b) s, h |= P iff qslJPK(s, h) = 1.
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Proof. For (atomic) predicates, the claim is immediate by definition of
Iverson brackets. The cases for separating conjunction and separating
implication have already been considered in Theorem 6.9 and Theorem 6.13.
The remaining cases are proven similarly. �

Conservativity for the expectation domain (E,�) is achieved analogously except
that the embedding of separating implication is defined as

qslJQ −−? RK , min { 1, qslJQK−−? qslJRK } .

6.6 Recursive Expectation Definitions

As discussed in Section 4.3.4, classical separation logic relies on recursive predi-
cate definitions to describe unbounded data structures, such as lists or trees. The
same mechanism is supported in QSL: Quantitative properties of unbounded
data structures are specified by recursive equations of the form

X(~v) = Φ(X)(~v),

where ~v ∈ Zn is a sequence of n ∈ N values passed to the parameterized
expectation X: Zn → E. Moreover, Φ is a monotone transformer of the form

Φ : (Zn → E)→ (Zn → E).

The expectation X(E1, . . . , En) is then given by the least fixed point of Φ, i.e.,

X(E1, . . . , En)(s, h) = lfp (Φ) (E1 (s) , . . . , En (s))(s, h).

Since Φ is monotone and the set of all functions X : Zn → E form a complete
lattice with respect to our ordering on expectations � (applied pointwise), the
existence of the least fixed point is guaranteed by the Knaster-Tarski fixed point
theorem (Theorem A.11). In fact, all recursively defined expectations in this
thesis are continuous. Hence, by Kleene’s fixed point theorem (Theorem A.16)
the least fixed point is given by the limit of all finite unfoldings of Φ.

Example 6.34 Every recursively defined separation logic predicate can be
interpreted as a recursively defined expectation in QSL by applying the
embedding introduced in Section 6.5. For instance, recall from Example 4.26
the definition of a recursive predicate specifying singly-linked list segments
with head u and tail u:

sll(u, v) , ( u = v ∧ emp ) ∨
(
∃u′ : u 7→ u′ ? sll(u′, v)

)
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The corresponding expectation in QSL is provided below, where we ap-
plied Lemma 6.5 to replace the maximum corresponding to ∨ by a sum:

[sll (u, v)] , [u = v] · [emp] + [u 6= v] · sup
u′∈Z

[
u 7→ u′

]
?
[
sll
(
u′, v

)]
︸ ︷︷ ︸

= Φ([sll(.,.)])(u,v)

.

The predicate [sll (E, E′)] (s, h) evaluates to one if and only if the heap h
consists exactly of a singly-linked list with head E (s) and tail E′ (s).

For quantitative reasoning, recursively defined predicates are particularly useful
in combination with the expectation size: To quantify, for example, the length
of a singly-linked list segment, we first state that the heap is a singly-linked list
segment and then measure the size of the heap. Hence, the length of a singly-
linked list segment from E to E′ is given by [sll (E, E′)] · size. Furthermore, to
measure the length of such a list segment contained in some larger heap, we
transform this expectation into an intuitionistic one. That is, by Theorem 6.29, it
suffices to consider 1 ? ([sll (E, E′)] · size).

Recursive definitions in QSL are, however, not limited to predicates. For
instance, the length of a singly-linked list segment can be specified without size:

len (u, v) , [u 6= v] · sup
w∈Z

[u 7→ w] ? ([sll (w, v)] + len (w, v))

If the heap exclusively consists of a singly-linked list from u to v, then the
expectation len (u, v) evaluates to the length of that list. Otherwise, it evaluates
to zero. As the following lemma shows, our recursive definition of list lengths
coincides with the previous definition based on the size quantity. Moreover, we
show that singly-linked list segments can be split into multiple smaller ones. In
particular, this means that the expectation [sll (E, E′)] is not precise.

Lemma 6.35 (Properties of List Segments [1]) For the singly-linked list
predicate [sll (u, v)] and the list length quantity len (u, v), we have:

(a) len (E, E′) = [sll (E, E′)] · size, and

(b) [sll (E, E′)] = supu∈Z [sll (E, u)] ? [sll (u, E′)].

The list-length quantity len actually serves two purposes: It ensures that the
heap is a list and if so determines the longest path through the heap. The latter
part can be generalized to other data structures. To this end, assume the heap
is organized into fixed-size, successive blocks of memory representing records,
for example the left and right pointer of a binary tree. If the size of records is
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u

v1

v2

v3

v4

[tree (u)] (s, h) = 0,
pathJ2K (u) (s, h) = 5

u

0 v1

0v2 = 0

[tree (u)] (s, h) = 1,
pathJ2K (u) (s, h) = 2

Figure 6.2: Evaluation of [tree (u)] and pathJ2K (u) in two heaps h depicted as
directed graphs. An edge `→ `′ denotes either h(`) = `′ or h(`+ 1) = `′.

a constant n ∈ N, then the longest path through these records starting in u is
given by the following quantity:

pathJnK (u) , sup
v∈Z

(
max

0≤k<n
[u + k 7→ v]

)
? (1 + pathJnK (v))

Intuitively, pathJnK (u) always selects the successor address v among the possible
pointers in the record belonging to u which is the source of the longest path
through the remaining heap. Notice that no explicit base case is needed, because
the length of empty paths is zero. Moreover, the use of the separating conjunction
prevents selecting the same pointer twice. The quantity path is more liberal
than len in the sense that heaps may contain pointers that do not lie on the
specified path. Similar to size, we may refine the set of possible paths under
consideration via additional data structure specifications.

Example 6.36 Let us apply the expectation path to quantify the height of a
binary tree with root u. To this end, we first consider a recursive predicate
specifying binary trees:

[tree (u)] , [u = 0] · [emp] + sup
v,w∈Z

[u 7→ v, w] ? [tree (v)] ? [tree (w)] .

By convention, every node in a tree consists of two pointers: The first
refers to the left child and the second refers to the right child, respectively.
[tree (u)] is a precise expectation: It specifies the largest tree with root u in
which every leaf is equipped with two pointers to 0. To measure the height
of a tree, we then combine [tree (u)] with pathJ2K (u) as follows:

treeHeight(u) , [tree (u)] · pathJ2K (u) .
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Two evaluations of treeHeight(u) in some stack-heap pair (s, h) are illustrated
in Figure 6.2: First, assume heap h is given by the graph on the left-hand
side. This graph does not constitute a binary tree, because it contains a
cycle. Hence, [tree (u)] (s, h) = 0. The longest path through the graph is
uv1v2uv3v4, i.e., pathJ2K (u) (s, h) = 5. Put together, this yields

treeHeight(u)(s, h) = [tree (u)] (s, h) · pathJ2K (u) (s, h) = 0 · 5 = 0.

Second, assume heap h is described by the graph on the right-hand side.
This graph is a binary tree with root u, i.e., we have [tree (u)] (s, h) = 1.
The longest path through this heap is of length two, e.g., uv1v2. Hence,
pathJ2K (u) (s, h) = 2. Put together, this yields

treeHeight(u)(s, h) = [tree (u)] (s, h) · pathJ2K (u) (s, h) = 1 · 2 = 2.



Chapter 7

Quantitative Separation Logic: Verification System

This chapter is based on prior publications, namely [1; 18], which are presented,
discussed, and extended in the broader context of this thesis.

We now move from QSL as an assertion language to program verification.
In Chapters 2 to 4, we considered program verification through the lens of prov-
ing that a Hoare triple is valid. This approach allows to conveniently address
most common questions about the correctness of programs. For example:

• The triple
〈

x > 0
〉

C
〈
true

〉
is valid for total correctness iff program C

terminates on all inputs in which variable x is positive.

• The triple
〈
true

〉
C
〈

x = 1
〉

is valid for total correctness iff program C
terminates with variable x being equal to one.

• The triple
〈

tree(x)
〉

C
〈

emp
〉

is valid for total correctness iff the P3L pro-
gram C terminates without a memory fault with an empty heap whenever
it is executed on a binary tree with root x.

Den Hartog [Har02; HV02] extended this approach to the verification of prob-
abilistic programs by allowing predicates to refer to the probability that a
predicate holds. For instance, his flavor of Hoare logic enables verifying that

{ x := 0 } [ 1/2 ] { x := 1 }

models a fair coin flip. The precondition of a suitable Hoare triple is true.
Moreover, the postcondition states that the probability of x = 0 being satisfied is
1/2 and the probability of x = 1 being satisfied is 1/2, respectively. This approach
requires some knowledge of the probabilities that a predicate of interest holds.

When reasoning about probabilistic programs, however, such knowledge is
typically not available a priori. Rather, most common questions are concerned
with quantifying the behavior of a program. For example:

• What is the probability that x = 1 holds after execution of program C?

197
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• What is the probability that program C terminates on all inputs?

• What is the expected value of x after execution of program C?

Answering any of the above questions amounts to a special case of the central
task of quantitative reasoning for probabilistic programs:

Given a P4L program C and an expectation X ∈ E, determine, for every initial
stack-heap pair (s, h), the expected value of X after execution of C on (s, h).

The desired expected value is given by the expected reward ExpRew[X] (C, s, h)
introduced in Section 5.3.3 as part of the operational semantics of P4L programs.
It thus only accounts for both terminating and memory safe executions. More-
over, nondeterminism is resolved by a scheduler that attempts to minimize the
overall expected value. In Section 5.3.3, we approached this task by applying
the operational semantics of P4L: For any initial stack-heap pair (s, h), we run
program C on (s, h). This yields all stack-heap pairs (s1, h1), (s2, h2), . . . and
probabilities p1, p2, . . . such that program C terminates successfully on (s, h) with
probability pk in final stack-heap pair (sk, hk). After that, we determine the
expected value of C with respect to expectation X and (s, h), i.e.,

ExpRew[X] (C, s, h) =
∞

∑
k=1

pk · X(sk, hk).

How do we apply program verification techniques to perform quantitative
reasoning compositionally on the structure of P4L programs?

Let us first observe that the function mapping stack-heap pairs (s, h) to the
expected value of X after execution of C on (s, h), i.e., λ(s, h).ExpRew[X] (C, s, h),
is itself an expectation. This leads to a more concise formulation of our task:

Given a P4L program C and an expectation X ∈ E, determine the expectation
λ(s, h).ExpRew[X] (C, s, h) ∈ E.

The above task suggests to reason on the level of expectations. Kozen [Koz83]
was the first to realize close similarities between expected values and weakest
preconditions: Expectations take the role of predicates. Moreover, expected
values take the role of weakest preconditions. In fact, we show in Section 7.4 that
both notions coincide for non-probabilistic programs C and predicates X = [Q].
In the remainder of this section, we study how weakest precondition reasoning
can be applied to compute expected values.

Before we proceed, let us briefly argue why we prefer weakest preconditions
over Hoare triples when reasoning about expected values. For Hoare triples,
there are essentially two approaches to prove their validity: We either apply
forward reasoning, i.e., we start at the precondition and derive a predicate
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implied by the strongest postcondition, or backward reasoning, i.e., we start at
the postcondition and derive a predicate implying the weakest precondition.
Unfortunately, as argued by Jones [Jon90, p. 135], the former approach is
unsound for reasoning about expected values on the level of expectations.
Hence, we are forced to apply backward reasoning. We thus avoid any notion
of Hoare triples which might suggest otherwise. This also justifies our need
for the separating implication which—in classical forward-directed approaches
based on separation logic—is frequently omitted. Rather, one employs a forward
transformer that overapproximates the strongest postcondition, i.e. completeness
is sacrificed for simplicity.1

7.1 The Weakest Preexpectation Calculus

Towards a calculus for formal reasoning about expected values of P4L programs,
our goal is to compute the expectation

λ(s, h).ExpRew[X] (C, s, h) ,

where ExpRew[X] (C, s, h) denotes the (least) expected value of expectation X ∈ E

after successful termination of P4L program C on (s, h) (cf. Definition 5.9). To
this end, we employ a continuation-passing style expectation transformer

wp [C] : E→ E

that determines the above expectation through (mostly syntactic) manipulations
of the provided postexpectation X. Due to similarities between wp [C] and
predicate transformers used to compute weakest preconditions (cf. Chapters 2
and 4), McIver and Morgan [MM05] coined the term weakest preexpectation
transformer Consequently, we refer to wp as the weakest preexpectation calculus.

Definition 7.1 (Weakest Preexpectation Calculus for P4L [1]) The weakest
preexpectation calculus wp is defined by structural induction on P4L programs
according to the rules in Figure 7.1, page 200.

The weakest preexpectation of most P4L statements is defined analogously to the
weakest precondition of P3L statements as discussed in Section 4.4. However, we
have to account for the fact that wp transforms expectations rather than predicates.
Moreover, we added rules for probabilistic choice and probabilistic assignment.
Let us thus briefly go over the rules for wp stated in Figure 7.1.

1Nonetheless, it is possible to define the exact strongest postcondition in classical separation
logic using the so-called septraction, i.e., ¬(P −−? ¬Q). Intuitively, the septraction states that there
exists an extension of the heap satisfying P such that the entire heap satisfies Q.
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C wp [C] (X)

skip X

x := E X [x/E]

x :≈ µ λ(s, h). ∑v∈Z µ(s)(v) · X [x/v] (s, h)

x := alloc(E1, . . . , En) infv∈Z [v 7→ E1, . . . , En]−−? X [x/v]

free(E) [E 7→ −] ? X

x := <E> supv∈Z [E 7→ v] ? ([E 7→ v]−−? X [x/v])

<E> := E′ [E 7→ −] ? ([E 7→ E′]−−? X)

C1 ; C2 wp [C1] (wp [C2] (X))

if ( B ) {C1 } else {C2 } [B] · wp [C1] (X) + [¬B] · wp [C2] (X)

{C1 } [ p ] {C2 } p · wp [C1] (X) + (1− p) · wp [C2] (X)

while ( B ) {C′ } lfp (W), where

W , λI. [B] · wp [C′] (I) + [¬B] · X

x := F(E1, . . . , En) lfp (PF) (x)(E1, . . . , En)(X), where

PF , λθλx′λ(E′1, . . . , E′n)λX′.

wpF
θ [body (F)]

(
X′ [−�] [�x′

/
out]

) [
x1
/

E′1 [−�]
]

. . . [xn
/

E′n [−�]] [+�]

Figure 7.1: Rules of the weakest preexpectation calculus for P4L programs.
Here, µ(s)(v) denotes the probability that distribution expression µ evaluates to
integer value v for stack s. Apart from procedure calls, the auxiliary weakest
preexpectation calculus wpF

θ is defined analogously. A formal definition is found
in Figure 7.5, page 228.

Since skip modifies neither the stack nor the heap, the expected value of
expectation X remains unchanged. Hence, wp [skip] is the identity.

For the assignment, wp [x := E] (X) yields X [x/E], i.e., we syntactically sub-
stitute variable x by expression E in expectation X (cf. Section 6.5).

The rule for sequential composition is the same as for weakest preconditions:
wp [C1 ; C2] (X) obtains a preexpectation of the program C1 ; C2 by applying
wp [C1] to the intermediate expectation obtained from wp [C2] (X).
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For the conditional choice, there are two approaches: First, analogously to
classical weakest preconditions, wp [if ( B ) {C1 } else {C2 }] (X) selects either
wp [C1] (X) if condition B evaluates to true or wp [C2] (X) if condition B evaluates
to false (cf. Section 2.3.4). Since—at least as long as predicates are involved—we
interpret standard conjunction as pointwise multiplication and disjunction as
pointwise maximum (cf. Section 6.2), a translation of the weakest precondition
of conditional choice into the realm of expectations yields

max {[B] · wp [C1] (X) , [¬B] · wp [C2] (X)} .

Second, we may interpret condition B as a degenerate distribution expression
that assigns all probability mass either to wp [C1] (X) or to wp [C2] (X). Hence,
the expected value of X after execution of a conditional choice is given by the
convex sum of the expectations wp [C1] (X) and wp [C2] (X) weighted by their
probabilities, i.e., [B] and 1− [B] = [¬B]. This yields the following rule:

wp [if ( B ) {C1 } else {C2 }] (X) , [B] · wp [C1] (X) + [¬B] · wp [C2] (X) .

In fact, both interpretations are equivalent due to Lemma 6.5. We prefer the
latter one as it highlights that we intend to compute expected values.

The expected value of expectation X after execution of a probabilistic choice
{C1 } [ p ] {C2 } is given by a convex sum that weighs wp [C1] (X) and wp [C2] (X)
by probabilities p and (1− p), respectively.

For the probabilistic assignment, the weakest preexpectation wp [x :≈ µ] (X)
is the expected value of X with respect to distribution expression µ. Since µ
depends on the stack, let us fix a stack-heap pair (s, h). We then compute the
convex sum over all possible assignments of integer v to variable x weighted by
the probability µ(s)(v) of sampling v, i.e.,

wp [x :≈ µ] (X) , λ(s, h). ∑
v∈Z

µ(s)(v) · wp [x := v] (X)

= λ(s, h). ∑
v∈Z

µ(s)(v) · X [x/v] .

For loops, wp [while ( B ) {C′ }] (X) is characterized as the least fixed point of
loop unrollings (cf. Sections 2.3.4 and 4.4). We take a closer look at weakest
preexpectations of loops in Section 7.2.1.

Further details regarding weakest preexpectations of the above statements
are found in the textbook of McIver and Morgan [MM05].

Our treatment of procedure calls is completely analogous to weakest precon-
ditions (cf. Section 3.2.2). That is, wp [x := F(E1, . . . , En)] (X) is characterized as
the least higher-order fixed point of executing the procedure body after taking
scoping, parameter assignment, and the return value into account. To deal with



202 Chapter 7. Quantitative Separation Logic: Verification System

recursion, we employ a monotone auxiliary transformer wpF
θ that resolves calls

of procedure F by applying the (monotone) expectation transformer

θ : Vars→ AEn → (E→ E).

Formally, the higher-order expectation transformer wpF
θ is given by the rules

in Figure 7.5 at the end of this chapter. We discuss reasoning about weakest
preexpectations of procedure calls in Section 7.2.2.

It remains to consider the heap manipulating statements, i.e., allocation,
deallocation, lookup, and mutation. The rules for computing their weakest
preexpectations are adaptions of the backward reasoning rules for classical
separation logic (cf. Section 4.4). However, we use the quantitative separating
connectives of QSL instead of standard separating conjunction and implication.
Furthermore, every separation logic predicate, e.g., the points-to predicate
E 7→ E′, is replaced by its Iverson bracket, e.g., [E 7→ E′].

More precisely, for the allocation, wp [x := alloc(E1, . . . , En)] (X) extends the
heap by a consecutive block of n addresses with first address v before measuring
the updated expectation X [x/v] in the extended heap. As in the classical case,
we assume that address v is chosen nondeterministically. Throughout this thesis,
we resolve nondeterminism by a “demonic” scheduler that attempts to minimize
the expected value. Hence, we take the infimum over all possible integers v ∈ Z.
Notice that any value v ≤ 0 leads to the case

[v 7→ E1, . . . , En]−−? X [x/v] = 0 −−? X [x/v] = ∞.

Since we assume an infinite amount of available addresses, it is thus guaranteed—
unless X already equals infinity—that a valid address v > 0 is chosen.

We remark that our resolution of nondeterminism is a design choice that is
compatible with classical separation logic, where all addresses are considered
for allocation. However, other choices are possible. For example, one might
attempt to maximize the expected value or fix a possibly randomized scheduler
governing memory allocation. To ensure that memory allocation never fails, one
might have to restrict v to addresses that have not already been allocated. Such
a restriction is not required for our demonic scheduler:

Theorem 7.2 (Safe Demonic Allocation) Let addr , λ(s, h). N>0 \ dom(h)
be the set of all addresses that are not allocated. Then, for all X ∈ E:

(a) infv∈Z [v 7→ E]−−? X = infv∈addr [v 7→ E]−−? X, and

(b) infv∈addr [v ↪→ −] ·∞ + (1− [v ↪→ −]) · X = infv∈addr X.

For the memory deallocation, wp [free(E)] (X) measures the expectation X in a
heap in which address E has been disposed. To this end, we first separate the
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memory cell captured by [E 7→ −] from the rest of the heap and then measure X
in that rest. In particular, if [E 7→ −] evaluates to zero, then the expected value
of X after successful termination of free(E) is zero as well. This reflects the fact
that free(E) crashed by attempting to dispose an address that is not allocated.

For the lookup, wp [x := <E>] (X) measures the expectation X after sub-
stituting variable x by the value at address E. If address E is not allocated,
the program crashes and we measure zero. We use the intuitionistic predicate
[E ↪→ v] to express that E points to v in a possibly larger heap:

wp [x := <E>] (X) , sup
v∈Z

[E ↪→ v] · X [x/v]

= J Theorem 6.30 (a) K
sup
v∈Z

[E 7→ v] ? ([E 7→ v]−−?X [x/v]) .

We prefer the second version of the above rule because it precisely captures the
memory cells touched by a lookup statement. It is noteworthy that the value v at
address E is selected rather than maximized by the supremum supv∈Z, because
either address E is not allocated, i.e., [E ↪→ v] evaluates to zero for every choice
of v, or there is a unique value v at address E which is chosen. The supremum
thus takes the role of an existential quantifier.

Finally, for the mutation, wp [<E> := E′] (X) measures expectation X after
updating the value at address E to E′. To this end, we first carve out the original
pointer [E 7→ −] using a separating conjunction. This also guarantees that we
measure zero if address E is not allocated. After that, we extend the address
by the updated pointer [E 7→ E′] using a separating implication and measure X.
Hence, the weakest preexpectation of mutations is defined as

wp
[
<E> := E′

]
(X) , [E 7→ −] ?

([
E 7→ E′

]
−−? X

)
.

Example 7.3 Let us consider a few examples that highlight the features of
weakest preexpectations with QSL.

The P4L program { skip } [ 1/3 ] { free(x) ; free(x) } flips a biased coin
and either immediately terminates or encounters a memory fault because it
attempts to dispose the same memory cell twice. Intuitively, this program
terminates successfully with probability 1/3. To confirm this hypothesis, we
compute the weakest preexpectation with respect to postexpectation 1:

wp [{ skip } [ 1/3 ] { free(x) ; free(x) }] (1)
= 1/3 · 1 + 2/3 · wp [free(x) ; free(x)] (1)
= 1/3 + 2/3 · ([x 7→ −] ? [x 7→ −]︸ ︷︷ ︸

= 0

?1) = 1/3.
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In contrast to classical separation logic, where memory safety of all execu-
tions is built into the definition of Hoare triples (cf. Definition 4.12), QSL
thus enables us to quantify “how memory safe” a program is.

Similarly, we can reason about the probability of leaking memory: To
determine the probability of successfully terminating with an empty heap, it
suffices to choose [emp] as a postexpectation. For instance, for the program
{ x := alloc(0) } [ 1/2 ] { free(x) }, we have:

wp [{ x := alloc(0) } [ 1/2 ] { free(x) }] ([emp])
= 1/2 · inf

v∈Z
[x 7→ v]−−? [emp]︸ ︷︷ ︸

= 0 using Theorem 6.30 (a)

+1/2 · ([x 7→ −] ? [emp])︸ ︷︷ ︸
= [x 7→−] by Theorem 6.14

= 1/2 · [x 7→ −] .

Hence, the probability that the above program terminates successfully with-
out leaking memory is 1/2 if exactly the memory cell at address x is initially
allocated. Otherwise, it is zero. By choosing the postexpectation size, it also
possible to determine how much memory is leaked:

wp [{ x := alloc(0) } [ 1/2 ] { free(x) }] (size)
= 1/2 · inf

v∈Z
[x 7→ v]−−? size︸ ︷︷ ︸

= 1+size using Theorem 6.31 (b)

+1/2 · ([x 7→ −] ? size)︸ ︷︷ ︸
= [x↪→−]·(size−1) by Theorem 6.31 (a)

= 1/2 · (1 + size) + 1/2 · [x ↪→ −]︸ ︷︷ ︸
� 1

·(size− 1) � size.

In other words, the above program leaks—in expectation—at most all mem-
ory cells that have been initially allocated. Finally, consider the P4L program

C : x := alloc(0) ; y :≈ uniform (1, x) ; free(x).

This program first allocates an address and stores it in variable x. After that,
it samples an integer between one and x and stores the result in variable
y. To compute the expected value of variable y, we proceed as illustrated
in Figure 7.2 (read from bottom to top as in Example 2.29). Hence, the
expected value of variable y after successful termination of C is the mean
value of all integers between 1 and the first address v that is not already
allocated. This is caused by our choice of a “demonic” scheduler that
minimizes expectations. Other resolutions of the nondeterministic choice of
address v lead to dramatically different results. A scheduler that maximizes
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// inf
v∈Z

[v 7→ 0]−−?
(
[v 7→ −] ? v + 1

2

)
x := alloc(0) ;

// [x 7→ −] ? x + 1
2

// algebra

// [x 7→ −] ?
x−1

∑
k=0

1
x
· 〈1 + k〉

y :≈ uniform (1, x) ;
// [x 7→ −] ? y
free(x)
// y

Figure 7.2: Computation of wp [C] (y).

expectations, for instance, yields in an infinite expected value—even if it
is forbidden to choose already allocated addresses. It is thus important to
evaluate whether the chosen interpretation of nondeterminism is sensible
for the application at hand.

7.2 Proof Rules

Since weakest preexpectations—just like weakest preconditions—have to ac-
count for all possible program executions, they quickly tend to yield large
expressions that are hardly human-readable. Moreover, in the presence of loops
and recursion, they are often infeasible to compute. In previous chapters, we
often settled for proving that a conceptually simpler precondition, say P, is
covered by the weakest precondition of a program, say wp [C] (Q). That is, we
proved that P implies wp [C] (Q). Here, the implication serves as the ordering of
the complete lattice 〈 Pred,⇒〉 underlying our notion of weakest preconditions.
Whenever we discharged that P⇒ wp [C] (Q) holds, we thus actually showed
that P is a lower bound of wp [C] (Q) in the complete lattice of predicates.

In the realm of expectations, we consider the complete lattices 〈E,� 〉 and
〈E≤1,� 〉, where � is the canonical ordering on real numbers applied pointwise.
Applying the same principle as for weakest preconditions, it is reasonable to
prove that an expectation is a lower bound (with respect to �) of the weak-
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est preexpectation of a program. This allows, for example, to test whether a
program’s probability of termination is at least 1/2. In contrast to weakest pre-
conditions, however, upper bounds on weakest preexpectations are of interest as
well: We have, for instance, computed an upper bound on the expected number
of memory cells leaked by a probabilistic pointer program in Example 7.3.

In this section, we collect proof rules for computing both upper and lower
bounds on weakest preexpectations. These rules are applied afterward in the
case studies presented in Chapter 8. Let us begin with a few basic properties:

Theorem 7.4 (Basic Properties of wp [1]) For all P4L-programs C, expecta-
tions X, Y ∈ E, predicates P and constants k ∈ R≥0, we have:

(a) Monotonicity: X � Y implies wp [C] (X) � wp [C] (Y).

(b) Super–linearity: wp [C] (k · X + Y) � k · wp [C] (X) + wp [C] (Y).

(c) Strictness: wp [C] (0) = 0.

(d) 1-Boundedness of Predicates: wp [C] ([P]) � 1.

Additionally, if C contains no allocation statements x := alloc(~E), we have:

(e) ω-continuity: For every increasing ω-chain X1 � X2 � . . . in E,

supn wp [C] (Xn) = wp [C] (supn Xn) .

(f) Linearity: wp [C] (k · X + Y) = k · wp [C] (X) + wp [C] (Y).

Proof. Monotonicity, (super-)linearity, and ω-continuity are shown by in-
duction on the program structure; see [1] for details. Since the constant
function 0 is the least element of the complete lattice (E,�), strictness
follows directly from super-linearity:

wp [C] (0) = wp [C] (0 · 0) � 0 · wp [c] (0) = 0.

For 1-Boundedness, a straightforward induction on the program structure
yields that wp [C] (1) � 1. By monotonicity of wp and the fact [P] ≤ 1, we
then conclude that wp [C] ([P]) � 1. �

Monotonicity is a fundamental property that ensures well-definedness of the
rules for weakest preexpectations of loops and recursive procedure calls. More-
over, (super-)linearity allows considering sums of expectations independently.
Similarly to Theorem 4.32, it thus facilitates compositional reasoning. For weak-
est preexpectations, the constant function 0 indicates a failure, e.g., a predicate
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is violated, nontermination, or a memory fault. Strictness then guarantees that
we cannot miraculously recover from the occurrence of a failure. We have
occasionally stated that choosing a predicate as a postexpectation allows us
to reason about the probability of that predicate being satisfied after program
execution. Due to 1-Boundedness, the weakest preexpectation of a predicate
is indeed a probability, i.e., a real number in the interval [0, 1]. As discussed
in Lemma 4.31 for classical separation logic, wp is not continuous in general.
However, continuity is restored for programs that do not allocate memory.

The same properties also hold for the higher-order expectation transformer
wpF

θ [C] as long as the expectation transformer θ is itself monotone (or continuous
when showing ω-continuity). The proofs are completely analogous.

7.2.1 Proof Rules for Loops

We now turn to reasoning about weakest preexpectations of loops. Similarly to
weakest preconditions (cf. Section 2.3.4), the weakest preexpectation of loop
while ( B ) {C } with respect to postexpectation X ∈ E is defined as the least
fixed point of its characteristic function

W , λI. [B] · wp [C] (I) + [¬B] · X.

Due to monotonicity of wp (by Theorem 7.4 (a)), addition, and multiplication,
the characteristic function W is monotone as well. Furthermore, 〈E,� 〉 is
a complete lattice as shown in Lemma 6.3. In addition to guaranteeing the
existence of the least fixed point of W, a constructive version of Tarski’s and
Knaster’s fixed point theorem (cf. Theorem A.11) then allows us to iteratively
compute the least fixed point of characteristic function W:

Theorem 7.5 ([1]) For every loop while ( B ) {C } and expectation X ∈ E

with characteristic function W, there exists an ordinal α such that

wp [while ( B ) {C }] (X) = lfp (W) = Wα(0).

Unfortunately, since the weakest preexpectation calculus is not continuous in
general (see Lemma 4.31 for a counterexample), the fixed point iteration is not
guaranteed to converge in the limit. We might thus have to take multiple limits
until finding a suitable ordinal α such that W coincides with the least fixed point.
Consequently, it is often infeasible to compute the exact weakest preexpectation
of loops by fixed point iteration. If no memory is allocated within the body of a
loop, however, the corresponding point iteration converges in the limit:
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Theorem 7.6 Let C be a P4L program that contains no allocation state-
ments. Then, for every loop while ( B ) {C } and expectation X ∈ E with
characteristic function W, we have

wp [while ( B ) {C }] (X) = lfp (W) = lim
n→∞

Wn(0).

Proof. Since C contains no allocation statements, the characteristic function
wp [while ( B ) {C }] (X) is continuous. The claim then follows immediately
from Theorem 7.5 and Kleene’s fixed point theorem (Theorem A.16). �

The above theorem suggests a scheme for reasoning about the weakest preex-
pectations of the loop while ( B ) {C } with respect to expectation X ∈ E: Let
./∈ {�,�,=} be a relation indicating whether we want to reason about upper
bounds (�), lower bounds (�) or exact weakest preexpectations (=). Moreover,
let I ∈ E be an expectation. To show that

wp [while ( B ) {C }] (X) ./ I

holds, it suffices to find a family of expectations (In)n∈N such that

• I0 ./ 0,

• In+1 ./ W(In) for all n ∈N, and

• I ./ limn→∞ In.

What about weakest preexpectations of general loops? As long as we reason
about upper bounds, we are equipped with a convenient invariant-based rule:

Theorem 7.7 ([1]) Let I ∈ E be an expectation. For every loop while ( B ) {C }
and expectation X ∈ E with characteristic function W, we have

W(I) � I implies wp [while ( B ) {C }] (X) � I.

In this case, we call I an (upper) invariant of W.

Proof. By Theorem A.11, lfp (W) is the smallest pre-fixed point of W. It
is thus the smallest expectation I satisfying W(I) � I. Consequently, by
Theorem 7.5, wp [while ( B ) {C }] (X) = lfp (W) � I. �

It is noteworthy that a similar rule is available when reasoning about total cor-
rectness of pointer programs with weakest preconditions in classical separation
logic (cf. Section 4.4). In contrast to reasoning about expected values, however,
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proving upper rather than lower bounds on predicates, i.e., reasoning about
necessary conditions instead of sufficient ones, is usually not of interest.

Frohn et al. [Fro+17], show that the converse direction of the above rule
enables reasoning about termination of deterministic programs. For quantitative
reasoning about lower bounds, however, the converse direction of our invariant-
based rule is unsound. That is, even for deterministic programs, W(I) � I,
does not imply that I is a lower bound on the weakest preexpectation of loop
while ( B ) {C } with respect to postexpectation X.

Consider, for instance, the loop while ( x > 0 ) { skip }. For postexpectation
X = 0 and invariant I = [x > 0] ·∞, we have

W(I) = [x > 0] · I + [x ≤ 0] · 0 = [x > 0] ·∞ = I.

However, by Theorem 7.4 (c), we know that the exact weakest preexpectation is

wp [while ( x > 0 ) { skip }] (0) = 0 6� I = [x > 0] ·∞.

Hence, I is not a correct lower bound. The search for easy-to-apply proof rules
to derive lower bounds on weakest preexpectations for total correctness is an
interesting direction for future research.

A promising starting point is a rule recently proposed by Hark et al. [Har+19]
which allows reasoning about lower bounds on weakest preexpectations of
probabilistic programs as long as the program in question terminates almost-
surely. Furthermore, McIver and Morgan [MM05] considered proof rules in the
alternative domain 〈E≤1,� 〉. Finally, Chatterjee and Fu [CF17] presented a rule
for deriving lower bounds on expected runtimes.

7.2.2 Proof Rules for Procedure Calls

Weakest preexpectation reasoning about recursive procedures is mostly analo-
gous to classical weakest precondition reasoning. We thus only briefly highlight
differences and present key theorems. An in-depth discussion of reasoning
about recursive procedures is found in Chapter 3.

The rationale underlying weakest preexpectation reasoning about recursive
procedures is similar to reasoning about loops. That is, least fixed points exist
and can—in principle—be computed by iterative application of the procedure’s
characteristic function due to the monotonicity of wp and the Tarski-Knaster
fixed point theorem (cf. Theorem A.11). Moreover, as long as all involved
procedures do not allocate memory, the fixed point iteration converges in the
limit. In contrast to reasoning about loops, however, the characteristic function of
procedure calls does not transform expectations. Rather, it transforms monotone
expectation transformers of the form

θ : Vars→ AEn → (E→ E).
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Here, the first argument represents the variable storing the procedure’s return
value upon termination. The second argument consists of n arithmetic expres-
sions which are passed as parameters to an expectation transformer capturing
the procedure’s effect. By slight abuse of notation, we denote the constant
function λxλ 〈 E1, . . . , En 〉 λX. 0 by 0.

Formally, the characteristic function PF of procedure call x := F(E1, . . . , En)
with respect to transformer θ is defined as

PF(θ) , λx′ λ(E′1, . . . , E′n) λX′.

wpF
θ [body (F)]

(
X′ [−�]

[
�x′

/
out
]) [

x1
/

E′1 [−�]
]

. . .
[
xn
/

E′n [−�]
]
[+�] .

The higher-order transformer wpF
θ is the same as wp except that calls of procedure

F are resolved by applying function θ. That is,

wpF
θ [x := F(E1, . . . , En)] (X) = θ(x)(E1, . . . , En)(X).

The complete definition of wpF
θ is found in Figure 7.5, page 228.

Intuitively, the characteristic function PF applies all steps involved in execut-
ing a procedure call in reverse order: We first leave the scope by transforming
postexpectation X to X [−�]. After that, we account for the return value repre-
sented by variable out; this yields the actual postexpectation X [−�][�x′

/
out].

We then compute the weakest preexpectation of the procedure body. Finally, we
assign each parameter the value of the expression passed to procedure F and
account for entering a new scope.

In summary, we obtain the following theorem for reasoning about weakest
preexpectations of procedure calls:

Theorem 7.8 For every procedure call x := F(E1, . . . , En) with characteristic
function PF, there exists an ordinal α such that

wp [x := F(E1, . . . , En)] = lfp (PF) (x)(E1, . . . , En)

= Pα
F(0)(x)(E1, . . . , En).

Moreover, if no procedure body called by procedure F (including the body
of F itself) contains an allocation statement, we have

wp [x := F(E1, . . . , En)] = lim
k→∞

Pk
F(0)(x)(E1, . . . , En).

Proof. Clearly, the constant expectation transformer

0 , λxλ 〈 E1, . . . , En 〉 λX. 0
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is both monotone and continuous. Furthermore, we notice that the sets

• { θ | θ : Vars→ AEn → (E→ E) monotone } and

• { θ | θ : Vars→ AEn → (E→ E) continuous }

of monotone and continuous expectation transformers form complete lattices
with respect to the ordering � of expectations applied pointwise, i.e.,

θ � ρ iff ∀x∀E1, . . . , En∀X: θ(x)(E1, . . . , En)(X) � ρ(x)(E1, . . . , En)(X).

To prove the first claim, we notice that—for monotone θ—the characteristic
function PF is monotone due to monotonicity of wpF

θ (by Theorem 7.4 (a)),
and the fact that scoping and substitution preserve monotonicity. Then:

wp [x := F(E1, . . . , En)]

= J Figure 7.1 K
lfp (PF) (x)(E1, . . . , En)

= J Theorem A.11 (Tarski-Knaster) for a suitable ordinal α K
Pα

F(0)(x)(E1, . . . , En).

To prove the second claim, we notice that—for continuous θ—the characteris-
tic function PF is continuous due to continuity of wpF

θ (by Theorem 7.4 (e)),
and the fact that scoping and substitution preserve continuity. Then:

wp [x := F(E1, . . . , En)]

= J Figure 7.1 K
lfp (PF) (x)(E1, . . . , En)

= J Theorem A.16 (Kleene) K

lim
k→∞

Pk
F(0)(x)(E1, . . . , En). �

Analogously to our proof rules for loops, we can also derive an invariant-based
rule for reasoning about upper bounds of weakest preexpectations:

Theorem 7.9 For every procedure call x := F(E1, . . . , En) with characteris-
tic function PF and every monotone expectation transformer of the form
ρ : Vars→ AEn → (E→ E), we have

PF(ρ) � ρ implies wp [x := F(E1, . . . , En)] � θ(x)(E1, . . . , En).
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Proof. By the Tarski and Knaster fixed point theorem (cf. Theorem A.11),
the least fixed point of PF is the smallest pre-fixed point of PF. That is, θ is
the smallest transformer satisfying PF(θ) � θ. Then, consider the following:

wp [x := F(E1, . . . , En)]

= J Figure 7.1 K
lfp (PF) (x)(E1, . . . , En)

= J lfp (PF) is the as smallest pre-fixed point θ of PF K
θ(x)(E1, . . . , En)

� J ρ is some pre-fixed point of PF K
ρ(x)(E1, . . . , En). �

7.2.3 The Quantitative Frame Rule

As discussed in Sections 4.2 and 4.4.2, classical separation logic is designed to
facilitate local reasoning about the heap. This is reflected by two facts:

First, every rule only refers to precisely those memory cells that are accessed
by a program. The same holds for our weakest preexpectation calculus.

Second, the frame rule allows us to ignore memory cells that are captured
by a postcondition but not modified by a program. This raises the question
whether the frame rule remains valid for weakest preexpectations.

Recall from Theorem 4.33 the classical frame rule for separation logic formu-
lated in terms of weakest preconditions: For all P3L programs C and predicates
Q, R with Mod (C) ∩Vars (R) = ∅, we have

wp [C] (Q) ? R ⇒ wp [C] (Q ? R) .

Towards a frame rule for quantitative separation logic, let us first extend the set
Mod (C) of variables updated by program C to P4L programs:

Mod ({C1 } [ p ] {C2 }) ,Mod (C1) ∪Mod (C2) and Mod (x :≈ µ) , { x } .

A complete definition of Mod (C) for P4L programs is found in Figure 7.3,
page 226. Now, in the realm of expectations, logical implications corresponds to
the ordering �. Then the frame rule for QSL reads as follows:
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Theorem 7.10 (Quantitative Frame Rule [1]) For all P4L programs C and
expectations X, Y ∈ E with Mod (C) ∩Vars (Y) = ∅, we have

wp [C] (X) ? Y � wp [C] (X ? Y) .

Proof. By induction on the structure of P4L programs. For loops and
procedure calls, we apply Theorems 7.5 and 7.8 and then show by transfinite
induction that the frame rule holds for any ordinal number of applications
of the characteristic function. Details are found in Appendix C.3. �

The quantitative frame rule enables us to push parts of the postexpectation
outside of the weakest preexpectation as long as we are reasoning about lower
bounds. Does the frame rule also hold for upper bounds? Unfortunately, the
answer is no for multiple reasons: The frame rule breaks in the quantitative
case for probabilistic choice because separating conjunction and addition do not
distribute in general (cf. Theorem 6.16). We can resolve this issue by restricting
ourselves to precise expectations. However, the “converse frame rule” even
breaks in the qualitative case for deterministic programs. Consider, for example,
the weakest preexpectation of program C , <x> := 0 with respect to [emp]:

wp [<x> := 0] ([emp]) = [x 7→ −] ? ([x 7→ 0]−−? [emp]) = 0.

Moreover, for Y = [x ↪→ 0], we have Mod (C) ∩Vars(Y) = ∅. Then:

wp [<x> := 0] ([emp] ? [x ↪→ 0]) = [x 7→ −] ? ([x 7→ 0]−−? ([emp] ? [x ↪→ 0]))
= [x ↪→ −] .

Put together, we obtain a counterexample to the converse frame rule:

wp [<x> := 0] ([emp]) ? [x ↪→ 0] 6� wp [<x> := 0] ([emp] ? [x ↪→ 0]) .

Similar counterexamples can be constructed using any heap manipulating
statement except deallocation. Hence, the frame rule is not available when
reasoning about upper bounds on weakest preexpectations.

As a silver lining, we rarely need the frame rule for weakest preexpectation
reasoning because locality is already built into the rules of wp. In fact, the frame
rule is mainly needed to discharge invariants in the sense of Theorem 7.9 for
recursive procedures: If our proposed invariant provides us with the weakest
preexpectation of a procedure call with respect to postexpectation X and—during
its verification—we have to compute the weakest preexpectation of a call of
the same procedure with respect to postexpectation X ? Y, then the frame rule
would allow us to push Y out and apply our invariant.
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In the above scenario, the lack of the frame rule can often be compensated
by strengthening invariants: We propose a template of invariants that allows us to
verify the original invariant and the frame rule for our particular case in parallel.
That is, rather than proposing an invariant for a single postexpectation, say

ρ(x)(~E)(X) � X′,

we propose a template of invariants, say

ρ(x)(~E)(X ? Y) � X′ ? Y,

for all expectations of the form X ? Y such that Mod (C) ∩ Vars (Y) = ∅; we
may also impose additional restrictions on Y, e.g., preciseness or purity. By The-
orem 7.9, it then suffices to verify our proposed template for an arbitrary, but
fixed, expectation Y that is compliant with our imposed restrictions. While
discharging this proof obligation, we may apply our template to any procedure
call with respect to any postexpectation of the form X ? Z as long as Z satisfies
the imposed restrictions. Hence, at the cost of a slightly more complex proof
obligation, it is possible to reason about recursive procedures as if the frame
rule was available. We take the previously outlined approach when reasoning
about randomized meldable heaps in Section 8.5.

7.2.4 Other Proof Rules

To conclude our collection of proof rules, we discuss a few less prominent rules.

The Conjunction Rule First, let us revisit the conjunction rule for weakest
preconditions (cf. Theorems 2.32, 3.19 and 4.32), i.e.,

wp [C] (Q ∧ R) = wp [C] (Q) ∧ wp [C] (R) .

Unfortunately, the quantitative analog to the conjunction rule, i.e.,

wp [C] (X · Y) = wp [C] (X) · wp [C] (Y) ,

does not hold in general. Towards a counterexample, consider the P4L program

C : { x := 1 } [ 1/3 ] { skip } .
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Moreover, we choose the postexpectations X = Y = |x|. Then:

wp [C] (X · Y)

=
r

X · Y = |x|2
z

wp [C]
(
|x|2

)
= J Definition of wp (Figure 7.1) K

1/3 · |1|2 + 2/3 · |x|2

= J elementary algebra K
1/3 + 2/3 · |x|2.

wp [C] (X) · wp [C] (Y)
= J X = Y = |x| K

wp [C] (|x|)2

= J Definition of wp (Figure 7.1) K

(1/3 · |1|+ 2/3 · |x|)2

= J elementary algebra K
1/9 + 4/9 · |x|+ 4/9 · |x|2.

Hence, the quantitative conjunction rule is unsound for weakest preexpectations
because wp [C] (X · Y) 6= wp [C] (X) · wp [C] (Y).

Weak Rules of Constancy As discussed in Section 4.2, one of the prime mo-
tivations for developing separation logic is to recover Reynolds’ rule of con-
stancy [Rey81] when reasoning about pointer programs, i.e.,

wp [C] (Q) ∧ R⇒ wp [C] (Q ∧ R) if Mod (C) ∩Vars (R) = ∅.

In separation logic, the frame rule, in which standard conjunction is replaced
by separating conjunction, takes over the role of the rule of constancy. In
fact, the rule of constancy can be derived from the frame rule as long as the
provided postconditions are pure. The same holds in the quantitative case: Let
C be a P4L program. Moreover, let X and Y be pure expectations such that
Mod (C) ∩Vars (Y) = ∅. We then obtain a quantitative rule of constancy:

wp [C] (X · Y)
= J Theorem 6.22 (d) K

wp [C] (X ? Y)
� J Theorem 7.10 K

wp [C] (X) ? Y
� J Theorem 6.22 (a) K

wp [C] (X) · Y.

In the realm of expectations, we are interested in approximating weakest preex-
pectations from both below and above. Although the quantitative frame rule
holds for lower bounds only (cf. Theorem 7.10), the rule of constancy—for a
pure postexpectation Y—is applicable in both directions.
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Theorem 7.11 (Pure Rule of Constancy [18]) For all P4L programs C and
expectations X, Y such that Y is pure and Mod (C) ∩Vars (Y) = ∅, we have

wp [C] (X · Y) = wp [C] (X) · Y.

Proof. By induction on the structure of P4L programs. �

Another version of the rule of constancy, which imposes no further restrictions
on postexpectations, is obtained for programs that do not modify the heap.

Theorem 7.12 (Weak Rule of Constancy [18]) For every P4L program
C that contains neither allocation, deallocation, nor mutation statements
and expectations X, Y ∈ E with Mod (C) ∩Vars (Y) = ∅, we have

wp [C] (X · Y) = wp [C] (X) · Y.

Proof. By induction on the structure of P4L programs. Since we do not
have to consider cases for allocation, deallocation, and mutation by the
theorem’s premise, lookups are the only statements that access the heap. In
this case, the proof proceeds as follows:

wp [x := <E>] (X · Y)
= J Figure 7.1 K

sup
v∈Z

[E 7→ v] ?([E 7→ v]−−? (X · Y)[x/v])

= J Theorem 6.30 (a) K
sup
v∈Z

[E ↪→ v] · (X · Y) [x/v])

= J x /∈ Vars (Y) as x ∈ Mod (x := <E>) K
sup
v∈Z

[E ↪→ v] · X [x/v] · Y

= J v does not occur in Y K(
sup
v∈Z

[E ↪→ v] · X [x/v]
)
· Y

= J Theorem 6.30 (a) K(
sup
v∈Z

[E 7→ v] ?([E 7→ v]−−?X [x/v])
)
· Y

= J Figure 7.1 K
wp [x := <E>] (X) · Y. �
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7.3 Soundness of Weakest Preexpectations

In order to justify that the weakest preexpectation wp [C] (X) (evaluated in initial
states) captures the expected value of X (evaluated in final states) after successful
termination of P4L program C, we show that the weakest preexpectation calculus
is sound with respect to the operational semantics based on Markov decision
processes presented in Section 5.3.3. Formally, our goal is to prove that2

∀(s, h) ∈ SHPairs : wp [C] (X) (s, h) = ExpRew[X] (C, s, h) .

Before we present a formal proof, a few preparatory definitions are needed to
set the stage: First, an expectation calculus is a function

ec : P4L→ (E→ E)

mapping P4L programs to expectation transformers. We are concerned with
two particular expectation calculi: The weakest preexpectation calculus

wp : P4L→ (E→ E), wp , λC λX λ(s, h).wp [C] (X) (s, h)

and the operational expectation calculus

op : P4L→ (E→ E), op , λC λX λ(s, h).ExpRew[X] (C, s, h) ,

where the expected reward ExpRew[X] (C, s, h) determined by our operational
semantics has been introduced in Definition 5.9.

Second, the termination completion dece of expectation calculus ec is obtained
by additionally assigning the identity function to the symbol term indicating
successful termination and the function λX. 0 to the symbol

〈
fault

〉
indicating

unsuccessful termination due to a memory fault, respectively. Formally, the
termination completion dece is defined as the function

dece : P4L ∪
{
term,

〈
fault

〉 }
→ (E→ E),

dece[C](X) ,


X, if C = term

0, if C =
〈
fault

〉
ec[C](X), otherwise.

Third, an expectation calculus ec is Bellman compliant if and only if for all P4L
programs C, expectations X ∈ E, and stack-heap pairs (s, h) ∈ SHPairs, we
have

dece[C](X)(s, h) = inf
a∈Act

(〈
C, s,h

〉) ∑〈
C, s,h

〉 a

p

〈
C′ , s′ ,h′

〉 p · dece[C′](X)(s′, h′).

2We give a more detailed and cleaned up version of the original soundness proof in [1; 18].
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Here, Act
(〈

C, s, h
〉)

denotes the set of all actions enabled in the state
〈
C, s, h

〉
of the transition system oP4L that determines the operational semantics of P4L
programs (cf. Section 5.3.3). Moreover, as introduced in Definition 5.3, we write

〈
C, s, h

〉 a

p

〈
C′, s′, h′

〉
to denote a step of oP4L that is performed with action a and probability p.

The term “Bellman compliant” is a reference to Richard Bellman who de-
veloped the optimality equations commonly used for reasoning about Markov
decision processes [Bel57]. It is thus not surprising that

Lemma 7.13 The operational expectation calculus op is Bellman compliant.

Proof. Since the operational expectation calculus is defined as

op , λC λX λ(s, h).ExpRew[X] (C, s, h) ,

this follows immediately from Theorem 5.8. �

In fact, as shown below, op is the least Bellman compliant expectation calculus
with respect to the ordering � on expectations applied pointwise:

Lemma 7.14 op is the least Bellman compliant expectation calculus.

Proof. Let ec be a Bellman compliant expectation calculus. Moreover, let
oP4L

(〈
C, s, h

〉)
be the reachable fragment of the operational semantics of

P4L for some fixed program C and stack-heap pair (s, h) (cf. Definition 5.3).
We denote by R the set of all executions that eventually reach a state
indicating successful termination. That is,

R ,
{

s0 . . . sn ∈ Exec[C](s, h)
∣∣ ∃k ∈ { 0, . . . , n } : sk =

〈
term, . . .

〉 }
By construction of the reward function of the MDP induced by initial state〈

C, s, h
〉

(cf. Definition 5.9), only states of the form
〈
term, . . .

〉
are assigned

non-zero rewards. Hence, any path that is not also an execution in R
contributes zero reward; it thus does not affect the value of op[C](s, h). It
then suffices to show that, for every expectation X ∈ E, we have

dope[C](X)(s, h) ≤ dece[C](X)(s, h)
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if the execution relation of oP4L
(〈

C, s, h
〉)

is restricted to states belong-
ing to some execution in R. To this end, we first notice that this restriction
results in a well-founded relation with

〈
C, s, h

〉
as least element. We then

proceed by well-founded induction on this relation.
There are two cases in which  is applied at most once (to move to

the sink state
〈
sink

〉
): term and

〈
fault

〉
. Both cases are straightforward by

definition of termination completion, i.e.,

dope[term](X)(s, h) = X(s, h) = dece[term](X)(s, h),

dope[
〈
fault

〉
](X)(s, h) = 0 = dece[

〈
fault

〉
](X)(s, h).

Furthermore, for the single case in which the execution relation is applied
more than once, consider the following:

dope[C](X)(s, h)
= J Lemma 7.13 K

inf
a∈Act

(〈
C, s,h

〉) ∑〈
C, s,h

〉 a

p

〈
C′ , s′ ,h′

〉 p · dope[C′](X)(s′, h′)

≤ J I.H. K

inf
a∈Act

(〈
C, s,h

〉) ∑〈
C, s,h

〉 a

p

〈
C′ , s′ ,h′

〉 p · dece[C′](X)(s′, h′)

= J ec is Bellman compliant K
dece[C](X)(s, h).

Hence, op is the least Bellman compliant expectation calculus. �

We are now in a position to prove that our weakest preexpectation calculus is
sound with respect to the operational semantics presented in Chapter 5:

Theorem 7.15 (Soundness of Weakest Preexpectation Calculus [1]) For all
P4L programs C, expectations X ∈ E, and stack-heap pairs (s, h), we have

wp [C] (X) (s, h) = ExpRew[X] (C, s, h) .
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Proof. By definition of the weakest preexpectation calculus wp and the
operational expectation calculus, i.e.,

op , λC λX λ(s, h).ExpRew[X] (C, s, h) ,

our proof obligation can be conveniently restated as wp = op.
We first show by induction on the structure of P4L programs that wp is

Bellman compliant.
By Lemma 7.14, this immediately yields op � wp because op is the least

Bellman compliant expectation transformer.
The converse direction, i.e., wp � op, is shown directly by induction on

the structure of P4L programs. �

7.4 Conservativity of QSL as a Verification System

Quantitative separation logic is a conservative extension of both the weakest
preexpectation calculus of McIver & Morgan [MM05] and classical separation
logic à la O’Hearn and Reynolds [IO01; Rey02]. Since, for programs that never
access the heap, we use the same rules as McIver & Morgan, it is immediate that
QSL conservatively extends weakest preexpectations.

In this section, we show that QSL also conservatively extends separation
logic. To this end, recall from Section 6.5 the embedding qslJ.K of predicates in
classical separation logic into expectations in QSL. We first notice that, for all
non-probabilistic programs, computing the weakest preexpectation with respect
to a predicate Q embedded into QSL coincides with embedding the weakest
precondition (cf. Definition 4.28) with respect to Q into QSL:

Lemma 7.16 For all programs C ∈ P3L and predicates Q ∈ Pred, we have

wp [C] (qslJQK)︸ ︷︷ ︸
∈ E

= qslJwp [C] (Q)︸ ︷︷ ︸
∈ Pred

K.

Proof. By induction on the structure of P3L programs. �

Our quantitative separation logic is then a conservative extension of classical
separation logic in the following sense:
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Theorem 7.17 (Conservativity of QSL as a Verification System [1]) For all
P3L programs C and predicates P, Q ∈ Pred, we have〈

P
〉

C
〈

Q
〉

is valid for total correctness iff qslJPK � wp [C] (qslJQK) .

Proof. Recall from Theorem 4.29 that the Hoare triple
〈

P
〉

C
〈

Q
〉

is valid
for total correctness if and only if P implies wp [C] (Q). It thus suffices to
show that, for all stack-heap pairs (s, h), we have

s, h |= P ⇒ wp [C] (Q) iff qslJPK(s, h) ≤ wp [C] (qslJQK) (s, h).

We distinguish two cases. First, assume that s, h |= P holds. Then:

(s, h) |= P ⇒ wp [C] (Q)

iff J assumption: s, h |= P K
s, h |= wp [C] (Q)

iff J Theorem 6.33 K
qslJwp [C] (Q)K(s, h) = 1

iff J Lemma 7.16 K
wp [C] (qslJQK) (s, h) = 1

iff J Theorem 7.4 (d) K
1 ≤ wp [C] (qslJQK) (s, h)

iff J assumption: s, h |= P; Theorem 6.33 K
qslJPK(s, h) ≤ wp [C] (qslJQK) (s, h).

Conversely, assume that s, h 6|= P holds. In this case, we have

(s, h) |= P ⇒ wp [C] (Q)

iff J assumption: s, h 6|= P; false⇒ . . . = true K
true

iff J 0 is the least element of both E and E≤1 K
0 ≤ wp [C] (qslJQK) (s, h)

iff J assumption: s, h 6|= P; Theorem 6.33 K
qslJPK(s, h) ≤ wp [C] (qslJQK) (s, h). �

A key principle underlying separation logic is that correct programs are memory
safe [YO02], i.e., no program execution on a stack-heap pair satisfying the
precondition leads to a memory fault. By the conservativity theorem, the same
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holds for weakest preexpectations when considering non-probabilistic programs
with respect to predicates.

For probabilistic programs, however, we get a more fine-grained view in
which the probability of encountering an error can be quantified. This allows to
evaluate programs if failures are unavoidable, e.g., due to unreliable hardware.
In particular, the weakest preexpectation wp [C] (1) measures the probability
that program C terminates without a memory fault. For example,

wp [{ skip } [ 1/2 ] { free(0) }] (1) = 1/2 · (1 + [0 7→ −]︸ ︷︷ ︸
= 0

) = 1/2.

Hence, the above program terminates successfully with probability one half.
This situation is similar to termination. Weakest preexpectations can be

used to prove that a program terminates almost-surely, i.e., with probability one.
However, there might be non-terminating executions that occur with probability
zero. In fact, weakest preexpectations are unable to prove certain termination, i.e.,
that there exists no non-terminating execution. This is not specific to QSL but
already holds for McIver & Morgan’s weakest preexpectation calculus [MM05].

One might suspect that the same holds when considering memory safety
instead of termination. In other words, is it possible that weakest preexpectations
can prove that a program is almost-surely memory safe, but not that it is certainly
memory safe? Fortunately, the answer to this question is no: Assume there is
some execution of a program C on an initial stack-heap pair (s, h) that encounters
a memory fault. By Theorem 7.15, this means that there is a finite path from〈

C, s, h
〉

to some error state
〈
fault

〉
indicating unsuccessful termination. Since

this path is finite, it has a positive probability. Consequently, the probability that
program C encounters a memory error is positive. In other words:

Corollary 7.18 (Qualitative Memory Safety [1]) A P4L program is almost-
surely memory safe if and only if it is certainly memory safe.

7.5 Weakest Liberal Preexpectations

The weakest preexpectation wp [C] (X) (s, h) is the (minimal) expected value
of random variable X after successful termination of program C on initial state
(s, h). It is thus—as shown in Theorem 7.17—an extension of classical weakest
preconditions for reasoning about total correctness. In this section, we briefly
introduce weakest liberal preexpectations, which is an extension of classical
weakest preconditions for reasoning about partial correctness (cf. Section 4.4).
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7.5.1 Reasoning about Expectations

It is, unfortunately, unclear what partial correctness means within the realm
of potentially unbounded expectations. As we already observed in previous
chapters, the difference between weakest liberal preconditions and weakest
preconditions is that the former includes initial states on which a given program
does not terminate. In terms of computing weakest liberal preconditions, this
difference is reflected by considering greatest rather than least fixed points. We
might thus expect the same for reasoning about expected values with weakest
liberal preexpectations. However, consider the program

C : while ( x = 1 ) { { y := y + 1 } [ 1/2 ] { x := 0 } } .

Program C terminates almost-surely because incrementing y in every iteration
has probability zero. Since weakest preexpectations cannot distinguish between
certain termination and almost-sure termination, there should be no difference
between the weakest liberal preexpectation with respect to postexpectation y and
wp [C] (y). Hence, the least and greatest fixed points of the loop’s characteristic
function W should coincide. This is not the case:

lfp (W) = [x 6= 1] · y 6= [x 6= 1] · y + [x = 1] ·∞ = gfp (W) .

Notice that program C never accesses the heap. The underlying issue is thus
not specific to QSL, but applies to weakest preexpectation calculi à la McIver
& Morgan [MM05] in general. To the best of our knowledge, it remains an
open question how to develop expectation transformers for reasoning about
potentially unbounded expected values in a partial correctness setting.

7.5.2 Reasoning about Probabilities

If we choose E≤1 as our underlying domain instead of E, we reason about
probabilities rather than expected values. That is, the weakest preexpectation
wp [C] (X) (s, h) is the (minimal) probability that X holds after successful termi-
nation of program C on initial state (s, h).

When reasoning about probabilities, there is a useful notion of partial cor-
rectness: The weakest liberal preexpectation wlp [C] (X) (s, h) coincides with the
probability wp [C] (X) (s, h) that program C terminates successfully on initial
state (s, h) plus the probability pdiverge that C does not terminate on (s, h), i.e.,

wlp [C] (X) (s, h) = wp [C] (X) (s, h) + pdiverge.

In this section, we briefly summarize how a weakest liberal preexpectation
calculus for P4L programs differs from the calculus in Chapter 7. Following
McIver & Morgan [MM05], the weakest liberal preexpectation transformer

wlp [C] : E≤1 → E≤1
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is defined analogously to the weakest preexpectation transformer wp [C] (cf.
Definition 7.1) with two exceptions:

1. we compute greatest fixed points instead of least fixed points, and

2. we substitute every occurrence of wp by wlp.

In particular, the rules of wlp for loops and procedure calls are

wlp
[
while ( B )

{
C′
}]

(X) , gfp (LW) and

wlp [x := F(E1, . . . , En)] (X) , gfp (LPF) (x)(E1, . . . , En)(X),

where the liberal characteristic function LW of loop while ( B ) {C′ } is

LW , [¬B] · X + [B] · wlp
[
C′
]
(Y)

and the liberal characteristic function LPF of procedure F is defined as

LPF(θ) , λx′ λ(E′1, . . . , E′n) λX′.

wlpθ
F [body (F)]

(
X′ [−�]

[
�x′

/
out
]) [

x1
/

E′1 [−�]
]

. . .
[
xn
/

E′n [−�]
]
[+�] .

A complete definition of the rules that determine the weakest liberal preexpecta-
tion calculus wlp is found in Figure 7.4. Most properties of weakest preexpec-
tations considered in Chapter 7 also hold for weakest liberal preexpectations.
However, we occasionally have to dualize theorems to account for taking greatest
rather than least fixed points. We briefly list the most important properties of
wlp; the proofs are analogous to the theorems presented in Chapter 7.

Let us first collect basic properties of wlp (cf. Theorem 7.4):

Theorem 7.19 (Basic Properties of wlp [1]) For all P4L-programs C, expec-
tations X, Y ∈ E≤1, predicates P and constants k ∈ R≥0, we have:

(a) Monotonicity: X � Y implies wlp [C] (X) � wlp [C] (Y).

Additionally, if C contains no allocation statements, we have:

(b) ω-continuity: For every increasing ω-chain X1 � X2 � . . . in E,

supn wlp [C] (Xn) = wlp [C] (supn Xn) , and

(c) Sub–Linearity: wlp [C] (k · X + Y) � k · wlp [C] (X) + wlp [C] (Y).

Moreover, the weakest liberal preexpectation of loops is well-defined and can be
characterized by fixed point iteration (cf. Theorem 7.5):
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Theorem 7.20 For every loop while ( B ) {C } and expectation X ∈ E≤1
with liberal characteristic function LW, there exists an ordinal α such that

wlp [while ( B ) {C }] (X) = gfp (LW) = LWα(1).

We then obtain a proof rule dual to Theorem 7.7 for reasoning about lower bounds
on weakest liberal preexpectations of loops:

Theorem 7.21 For every loop while ( B ) {C } and expectations X, I ∈ E≤1
with liberal characteristic function LW, we have

LW(I) � I implies wlp [while ( B ) {C }] (X) � I.

In this case, we call I a (lower) invariant of while ( B ) {C } and X.

Analogously, we obtain the following dual versions of Theorems 7.8 and 7.9 for
reasoning about procedures calls:

Theorem 7.22 For every call x := F(E1, . . . , En) and expectation X ∈ E≤1
with liberal characteristic function LPF, there exists an ordinal α such that

wlp [x := F(E1, . . . , En)] (X) = gfp (LPF) (x)(E1, . . . , En)(X)
= LPα

F(0)(x)(E1, . . . , En)(X).

Theorem 7.23 ([1]) For every call x := F(E1, . . . , En), expectation X ∈ E≤1,
and monotone transformer θ : Vars→ AEn → (E≤1 → E≤1), we have

LPF(θ) � θ implies wlp [x := F(E1, . . . , En)] (X) � θ(x)(E1, . . . , En)(X).

Finally, the quantitative frame rule, which has been discussed in detail for wp in
Theorem 7.10, applies to weakest liberal preexpectations as well.

Theorem 7.24 (Quantitative Frame Rule for wlp [1]) For every P4L-program
C and expectations X, Y ∈ E≤1 with Mod (C) ∩Vars(Y) = ∅, we have

wlp [C] (X) ? Y � wlp [C] (X ? Y) .
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C Mod (C)

{C1 } [ p ] {C2 } Mod (C1) ∪Mod (C2)

x :≈ µ { x }

skip ∅

x := E { x }

x := alloc(E1, . . . , En) { x }

free(E) ∅

x := E { x }

<E> := E′ ∅

C1 ; C2 Mod (C1) ∪Mod (C2)

if ( B ) {C1 } else {C2 } Mod (C1) ∪Mod (C2)

while ( B ) {C′ } Mod (C′)

x := F(E1, . . . , En) { x }

Figure 7.3: Inductive definition of Mod (C) for P4L programs.
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C wlp [C] (X)

skip X

x := E X [x/E]

x :≈ µ λ(s, h). ∑v∈Z µ(s)(v) · X [x/v] (s, h)

x := alloc(E1, . . . , En) infv∈Z [v 7→ E1, . . . , En]−−? X [x/v]

free(E) [E 7→ −] ? X

x := <E> supv∈Z [E 7→ v] ? ([E 7→ v]−−? X [x/v])

<E> := E′ [E 7→ −] ? ([E 7→ E′]−−? X)

C1 ; C2 wlp [C1] (wlp [C2] (X))

if ( B ) {C1 } else {C2 } [B] · wlp [C1] (X) + [¬B] · wlp [C2] (X)

{C1 } [ p ] {C2 } p · wlp [C1] (X) + (1− p) · wlp [C2] (X)

while ( B ) {C′ } gfp (LW), where

LW , λI. [B] · wlp [C′] (I) + [¬B] · X

x := F(E1, . . . , En) gfp (LPF) (x)(E1, . . . , En)(X), where

LPF , λθλx′λ(E′1, . . . , E′n)λX′.

wlpF
θ [body (F)]

(
X′ [−�] [�x′

/
out]

) [
x1
/

E′1 [−�]
]

. . . [xn
/

E′n [−�]] [+�]

Figure 7.4: Rules of the weakest liberal preexpectation transformer wlp [C]
for P4L programs. The higher-order transformer wlpF

θ [C] is found in Fig-
ure 7.6, page 229.
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C wpF
θ [C] (X)

skip X

x := E X [x/E]

x :≈ µ λ(s, h). ∑v∈Z µ(s)(v) · X [x/v] (s, h)

x := alloc(E1, . . . , En) infv∈Z [v 7→ E1, . . . , En]−−? X [x/v]

free(E) [E 7→ −] ? X

x := <E> supv∈Z [E 7→ v] ? ([E 7→ v]−−? X [x/v])

<E> := E′ [E 7→ −] ? ([E 7→ E′]−−? X)

C1 ; C2 wpF
θ [C1]

(
wpF

θ [C2] (X)
)

if ( B ) {C1 } else {C2 } [B] · wpF
θ [C1] (X) + [¬B] · wpF

θ [C2] (X)

{C1 } [ p ] {C2 } p · wpF
θ [C1] (X) + (1− p) · wpF

θ [C2] (X)

while ( B ) {C′ } lfp (W), where

W , λI. [B] · wpF
θ [C

′] (I) + [¬B] · X

x := F(E1, . . . , En) θ (x)(E1,. . . ,En)(X)

x := G(E1, . . . , Em) lfp (PG) (x)(E1, . . . , Em)(X), where

PG , λθλx′λ(E′1, . . . , E′m)λX′.

wpG
θ [body (G)]

(
X′ [−�] [�x′

/
out]

) [
x1
/

E′1 [−�]
]

. . . [xm
/

E′m [−�]] [+�]

Figure 7.5: Rules of the higher-order weakest preexpectation transformer wpF
θ [C]

that depends on the transformer θ to resolve calls of procedure F.
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C wlpF
θ [C] (X)

skip X

x := E X [x/E]

x :≈ µ λ(s, h). ∑v∈Z µ(s)(v) · X [x/v] (s, h)

x := alloc(E1, . . . , En) infv∈Z [v 7→ E1, . . . , En]−−? X [x/v]

free(E) [E 7→ −] ? X

x := <E> supv∈Z [E 7→ v] ? ([E 7→ v]−−? X [x/v])

<E> := E′ [E 7→ −] ? ([E 7→ E′]−−? X)

C1 ; C2 wlpF
θ [C1]

(
wlpF

θ [C2] (X)
)

if ( B ) {C1 } else {C2 } [B] · wlpF
θ [C1] (X) + [¬B] · wlpF

θ [C2] (X)

{C1 } [ p ] {C2 } p · wlpF
θ [C1] (X) + (1− p) · wlpF

θ [C2] (X)

while ( B ) {C′ } gfp (LW), where

LW , λI. [B] · wlpF
θ [C

′] (I) + [¬B] · X

x := F(E1, . . . , En) θ (x)(E1,. . . ,En)(X)

x := G(E1, . . . , Em) gfp (LPG) (x)(E1, . . . , Em)(X), where

LPG , λθλx′λ(E′1, . . . , E′m)λX′.

wlpG
θ [body (G)]

(
X′ [−�] [�x′

/
out]

) [
x1
/

E′1 [−�]
]

. . . [xm
/

E′m [−�]] [+�]

Figure 7.6: Rules of the higher-order weakest liberal preexpectation transformer
wlpF

θ [C] that depends on the transformer θ to resolve calls of procedure F.





Chapter 8

Case Studies

This chapter is based on prior publications, namely [1; 18], which are presented,
discussed, and extended in the broader context of this thesis.

In this chapter, we demonstrate how quantitative separation logic enables formal
reasoning about both expected values and probabilities of probabilistic pointer
programs. To this end, we apply the weakest preexpectation calculi introduced
in the previous chapter to five case studies:

First, in Section 8.1 we consider a simple randomized algorithm that extends
a given list. This example is sufficiently small such that we can discuss all
involved calculations in detail. After that, we analyze randomized variants of
two classical examples from the separation logic literature (cf. [Bor00; Rey02;
OHe12; KTB17]): In Section 8.2, we reason about a lossy list reversal algorithm.
Moreover, in Section 8.3, we study a faulty version of the garbage collection
procedure presented in Example 4.34. Section 8.4 is concerned with a recurring
problem in the design of randomized algorithms: How do we randomize a
given input? More precisely, we prove the correctness of a textbook algorithm,
which is taken from [Cor+09], for computing random permutations of arrays.
Finally, in Section 8.5, we formally verify a complexity result by Gambin and
Malinowski [GM98] on randomized meldable priority queues.

Each of our case studies roughly follows the same structure:

1. We briefly motivate the P4L program under consideration and explain its
usage of randomization (cf. Section 5.1.1).

2. We outline the property that is analyzed and explain how it is formalized
as a (post)expectation. Occasionally, this involves the introduction of
specialized expectations, such as a recursive definition.

3. We discuss all invariants required to approximate weakest (liberal) preex-
pectations of loops and recursive procedure calls.

4. We compute either an upper or a lower bound on the weakest (liberal)
preexpectation of the program in question with respect to the chosen

231
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postexpectation. The computation is presented in an annotation style on
source code level as introduced in Example 2.29, page 45.

5. Finally, we apply the proof rules presented in Chapter 6 (as well as
elementary facts on predicate logic and real-valued functions) to discharge
all quantitative entailments that arise during the computation.

To enable reading proofs in a top-down style, we present technical lemmas after
the first proof in which they have been applied. In order to understand the
main idea, it is thus safe to skip proofs at the end of each section. Apart from
exemplary excerpts, the detailed (and rather tedious) calculations required to
verify quantitative entailments are found in Appendix F. A reader might find the
succinct collection of proof rules in Appendix D—to which we refer whenever a
rule is applied—a helpful companion while reading formal proofs.

Assumption 8.1 To avoid brackets and keep expectations readable, let us
agree on the following order of precedence� for most common operators:

[x/E] , [+�] , [−�] � ? � · � −−? � +,− � inf
v∈Z

, sup
v∈Z

.

Hence, the expectation

sup
v∈Z

[x 6= v] · X [x/3] [+�] ? [z 7→ 0] + size ? [v 7→ −]−−? emp

is meant to be read as

sup
v∈Z

(([x 6= v] · (((X [x/3]) [+�]) ? [z 7→ 0])) + ((size ? [v 7→ −])−−? emp)) .

8.1 Randomized List Extension

Let us begin with a toy example that is simple enough such that we can discuss
its verification in full detail. We consider a randomized algorithm that takes a
null-terminated singly-linked list with head hd and produces a list with head hd
which has been extended by a random number of elements. An implementation
of this algorithm is given by the P4L program Cextend in Figure 8.1. Intuitively,
Cextend keeps flipping a fair coin. As long as the coin flip yields heads, i.e.,
coin = 1 holds, we allocate a new address, say v, point it to the current head of
the list, i.e., the address stored in variable hd, and assign v to hd afterward. Once
a coin flip yields tails, i.e., coin 6= 1 holds, the program terminates. Notice that
program Cextend does not certainly terminate, because the coin flip might yield
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coin := 1 ;
while ( coin = 1 ) {
{

coin := 0
Cbody : } [ 1/2 ] {

hd := alloc(hd)

}
}

Figure 8.1: P4L program Cextend.

heads all the time. It does, however, terminate almost-surely as the probability of
seeing heads all the time is zero. Furthermore, we observe that Cextend produces
a list whose length is an arbitrary natural number greater than or equal to the
length of the original list. How large is the mean of this natural number?

Our goal is to determine an upper bound on the expected length of the list
with head hd produced by program Cextend. Hence, we have to compute the
weakest preexpectation of Cextend with respect to postexpectation

X , len (hd, 0) ,

where len (hd, 0) measures the length of a singly-linked list with head hd and
tail 0. Formally, as discussed in Section 6.6, the quantity len (u, v) is given by

len (u, v) , [u 6= v] · sup
w∈Z

[u 7→ w] ? ([sll (w, v)] + len (w, v)) .

To reason about the loop in program Cextend, we propose the invariant

I , len (hd, 0) + [coin = 1] .

In other words the length of the list is increased, on average, by one if variable
coin equals one. Let us assume, for the moment, that I is a suitable upper
invariant in the sense of Theorem 7.7. That is, we are equipped with the
following lemma:

Lemma 8.2 ([18]) wp [while ( coin = 1 ) {Cbody }] (len (hd, 0)) � I.
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With this loop variant at hand, the computation of an upper bound on the
weakest preexpectation wp [Cextend] (X) proceeds as follows:

// len (hd, 0) + 1
// � J elementary algebra K
// len (hd, 0) + [1 = 1]
coin := 1 ;
// len (hd, 0) + [coin = 1]
// � J Lemma 8.2 K
// wp [while ( coin = 1 ) {Cbody }] (len (hd, 0) )
while ( coin = 1 ) {Cbody }
// len (hd, 0) = X

Hence, the expected length of the list after execution of program Cextend is at most one
plus its original length. To complete our analysis of program Cextend, it remains to
verify that I is indeed an invariant, i.e., we have to prove Lemma 8.2.

Proof (of Lemma 8.2). Let us denote by W the characteristic function of
loop while ( coin = 1 ) {Cbody } with respect to postexpectation len (hd, 0).
By Theorem 7.7, it suffices to verify that W(I) � I holds to conclude that

wp [while ( coin = 1 ) {Cbody }] (len (hd, 0)) � I.

To this end, consider the following calculations:

W(I)
= J Definition of characteristic function W(I) K

[coin = 1] · wp [Cbody] (I) + [coin 6= 1] · len (hd, 0)

=
q

Computation of wp [Cbody] (I) in Figure 8.2 (page 235)
y

[coin = 1] · (1/2 · len (hd, 0)
+ 1/2 · inf

v∈Z
[v 7→ hd]−−? (len (v, 0) + [coin = 1]))

+ [coin 6= 1] · len (hd, 0)
� J D.6.1; D.1.5 K

[coin = 1] · (1/2 · len (hd, 0) + 1/2 · inf
v∈Z

[v 7→ hd]−−? (len (v, 0) + 1))

+ [coin 6= 1] · len (hd, 0)
� J Lemma 8.3 (page 235) K
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// 1/2 · len (hd, 0)
// + 1/2 · inf

v∈Z
[v 7→ hd]−−? (len (v, 0) + [coin = 1])

{
// len (hd, 0)
// � J elementary algebra K
// len (hd, 0) + [0 = 1]
coin := 0
// len (hd, 0) + [coin = 1]

} [ 1/2 ] {
// inf

v∈Z
[v 7→ hd]−−? (len (v, 0) + [coin = 1] )

hd := alloc(hd)

// len (hd, 0) + [coin = 1]
}
// len (hd, 0) + [coin = 1] = I

Figure 8.2: Computation of wp [Cbody] (I).

[coin = 1] · (1/2 · len (hd, 0) + 1/2 · (len (hd, 0) + 2))
+ [coin 6= 1] · len (hd, 0)

= J elementary algebra K
[coin = 1] · len (hd, 0) + [coin 6= 1] · len (hd, 0) + [coin = 1]

= J D.6.4 K
len (hd, 0) + [coin = 1]

= J Definition of I K
I. �

Our last proof obligation is to verify all quantitative entailments which we
previously exploited without providing a proof. In this case study, we deferred
one such inequality to a separate lemma (in the fourth step of the above proof).

Lemma 8.3 ([18]) infv∈Z [v 7→ hd]−−? (len (v, 0) + 1) � len (hd, 0) + 2.
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Proof. Consider the following:

inf
v∈Z

[v 7→ hd]−−? (len (v, 0) + 1)

= J Definition of len (hd, 0) K
inf
v∈Z

[v 7→ hd]−−? ([v 6= 0]· sup
w∈Z

[v 7→ w] ? ([sll (w, 0)]+len (w, 0)) + 1)

� J D.1.4; D.1.5; D.6.1 K
inf
v∈Z

[v 7→ hd]−−? (1 · sup
w∈Z

[v 7→ w] ? (1 + len (w, 0)) + 1)

= J D.1.26 K
inf
v∈Z

[v 7→ hd]−−? ([v ↪→ hd] ·1 · sup
w∈Z

[v 7→ w] ? (1 + len (w, 0)) + 1)

= J introduce fresh variable z for w K
inf
v∈Z

[v 7→ hd]−−? (

[v ↪→ hd] · sup
w∈Z

( [v 7→ z] ? (1 + len (z, 0)) + 1) [z/w])

= J D.6.10 K
inf
v∈Z

[v 7→ hd]−−? (

sup
w∈Z

([v ↪→ hd] · [v 7→ z] ? (1 + len (z, 0)) + 1) [z/w])

= J D.7.7 K
inf
v∈Z

[v 7→ hd]−−? (

sup
w∈Z

([hd = z] · [v 7→ z] ? (1 + len (z, 0)) + 1) [z/w])

= J D.6.11 K
inf
v∈Z

[v 7→ hd]−−? ([v 7→ hd] ? (1 + len (hd, 0)) + 1)

= J D.5.10 K
inf

v∈addr
[v 7→ hd]−−? ([v 7→ hd] ? (1 + len (hd, 0)) + 1)

= J D.4.2 K
inf

v∈addr
[v 7→ hd]−−? [v 7→ hd] ? (1 + len (hd, 0)) + [v 7→ hd]−−? 1

= J D.7.9 K
inf

v∈addr
[v 7→ hd]−−? [v 7→ hd] ? (1 + len (hd, 0))
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+ [v ↪→ −] ·∞ + (1− [v ↪→ −]) · 1
= J D.1.26 K

inf
v∈addr

[v ↪→ −] ·∞ + (1− [v ↪→ −]) · (1 + len (hd, 0))

+ [v ↪→ −] ·∞ + (1− [v ↪→ −]) · 1
= J elementary algebra (notice that ∞ + ∞ = ∞) K

inf
v∈addr

[v ↪→ −] ·∞ + (1− [v ↪→ −]) · (2 + len (hd, 0))

= J D.5.11 K
inf

v∈addr
2 + len (hd, 0)

= J elementary algebra K
len (hd, 0) +2. �

8.2 Lossy List Reversal

List reversal algorithms are a prominent class of benchmarks when analyzing
heap manipulating programs (cf. [Bor00; Rey02; Mag+06; BIP10; Atk11; KTB17]).
The P4L program Clrev below models a lossy list reversal that is performed in-
place, i.e., the input list is reversed without copying elements:

rv := 0 ;
while ( hd 6= 0 ) {

x := hd.n ;
{

hd.n := rv ;
rv := hd

Cbody : } [ 1/2 ] {
free(hd)

} ;
hd := x

}

Program Clrev traverses a list with head hd and attempts to move each element to
the front of an initially empty list with head rv. Consequently, variable rv points
to the head of a reversed list upon termination. However, during each iteration,
another behavior is possible: Rather than moving an element from the initial
list to the reversed list, the current element might be dropped with probability
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1/2. Notice that dropping an element is not necessarily caused by a hardware
failure. For example, it is conceivable that another process running in parallel to
a standard list reversal algorithm occasionally consumes a list element.

The lossy list reversal raises several questions which we could attempt to ver-
ify using weakest preexpectations: Does Clrev encounter a memory failure with
some probability? What is the probability that Clrev returns a reversed version of
the original list without dropping any elements? What is the expected length of
the reversed list upon termination of Clrev? In this section, we concentrate on the
last question. That is, our goal is to compute an upper bound on the weakest
preexpectation of Clrev with respect to postexpectation X , len (rv, 0) , where the
length len (u, v) of a list segment with head u and tail v is given by

len (u, v) , [u 6= v] · sup
w∈Z

[u 7→ w] ? ([sll (w, v)] + len (w, v))

as introduced in Section 6.6. To this end, we propose the loop invariant:

I , len (rv, 0) ? [sll (hd, 0)] + 1/2 · [hd 6= 0] · len (hd, 0) ? [sll (rv, 0)] .

Intuitively, program Clrev manages two lists with heads rv and hd, respectively.
The list with head rv consists of all list elements which have already been
reversed. Moreover, the list with head hd consists of the remaining elements
of the original list. Invariant I then states that during each loop iteration, the
expected length of the reversed list is its current length len (rv, 0) plus half the
length of the remaining list. Furthermore, we added predicates [sll (hd, 0)] and
[sll (rv, 0)] to account for the exact layout of the heap. Let us assume, for the
moment, that I is an invariant in the sense of Theorem 7.7. That is,

Lemma 8.4 ([18]) wp [while ( coin = 1 ) {Cbody }] (len (rv, 0)) � I.

The calculations below then yield our desired upper bound on wp [Clrev] (X):

// 1/2 · [hd 6= 0] · len (hd, 0)
// � J Lemma 8.5; D.7.2; Lemma 8.6; D.1.2 K
// len (0, 0) ? [sll (hd, 0)] + 1/2 · [hd 6= 0] · len (hd, 0) ? [sll (0, 0)]
rv := 0 ;
// len (rv, 0) ? [sll (hd, 0)] + 1/2 · [hd 6= 0] · len (hd, 0) ? [sll (rv, 0)]
// � J Lemma 8.4 K
// wp [while ( hd 6= 0 ) {Cbody }] (len (rv, 0) )
while ( hd 6= 0 ) {Cbody }
// len (rv, 0) = X
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Hence, in expectation, the reversed list produced by program Clrev is at most half as
long as the original one. Apart from applying invariant I, we used two lemmas
which state that the list from 0 to 0 is empty and thus has length zero:

Lemma 8.5 ([18]) len (0, 0) = 0.

Proof.

len (0, 0)
= J Definition of len (0, 0) K

[0 6= 0]︸ ︷︷ ︸
= 0

· sup
v∈Z

[0 7→ v] ? ([sll (v, 0)] + len (v, 0))

= J elementary algebra K
0. �

Lemma 8.6 ([18]) [sll (0, 0)] = [emp].

Proof.

[sll (0, 0)]
= J Definition of [sll (0, 0)] K

[0 = 0]︸ ︷︷ ︸
= 1

· [emp] + [0 6= 0]︸ ︷︷ ︸
= 0

· sup
v∈Z

[0 7→ v] ? [sll (v, 0)]

= J elementary algebra K
[emp]. �

It remains to verify our proposed invariant.

Proof (of Lemma 8.4). By Theorem 7.7, it suffices to prove for the character-
istic function W of the above loop with respect to postexpectation len (rv, 0)
that W(I) � I holds. To this end, consider the following:

W(I)
= J Definition of characteristic function W(I) K

[hd = 0] · len (rv, 0) + [hd 6= 0] · wp [Cbody] (I)

=
q

Computation of wp [Cbody] (I) in Figure 8.3, page 243
y

[hd = 0] · len (rv, 0) + [hd 6= 0] · sup
v∈Z

[hd 7→ v] ?
(
[hd 7→ v]−−?

(
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1/2 · [hd 7→ −] ? ([hd 7→ rv]−−? I [hd/x] [rv/hd] [x/v])

+1/2 · [hd 7→ −] ? I [hd/x] [x/v]
))

= J D.4.5 K

[hd = 0] · len (rv, 0) + [hd 6= 0] · sup
v∈Z

[hd ↪→ v] ·
(

1/2 · [hd 7→ −] ? ([hd 7→ rv]−−? I [hd/x] [rv/hd] [x/v])

+ 1/2 · [hd 7→ −] ? I [hd/x] [x/v]
)

= J elementary algebra (factor out 1/2) K

[hd = 0] · len (rv, 0) + 1/2 · [hd 6= 0] · sup
v∈Z

[hd ↪→ v] ·
(

[hd 7→ −] ? ([hd 7→ rv]−−? I [hd/x] [rv/hd] [x/v])

+ [hd 7→ −] ? I [hd/x] [x/v]
)

= J D.3.2 K

[hd = 0] · len (rv, 0) + 1/2 · [hd 6= 0] · sup
v∈Z

[hd ↪→ v] · [hd 7→ −] ?
(

[hd 7→ rv]−−? I [hd/x] [rv/hd] [x/v] + I [hd/x] [x/v]
)

= J D.7.8 K

[hd = 0] · len (rv, 0) + 1/2 · [hd 6= 0] · sup
v∈Z

[hd 7→ v] ?
(

[hd 7→ rv]−−? I [hd/x] [rv/hd] [x/v] + I [hd/x] [x/v]
)

= J D.3.2 K
[hd = 0] · len (rv, 0) + 1/2 · [hd 6= 0] · sup

v∈Z

[hd 7→ v] ? ([hd 7→ rv]−−? I [hd/x] [rv/hd] [x/v])
+ [hd 7→ v] ? I [hd/x] [x/v]

� J D.6.12 K

[hd = 0] · len (rv, 0) + 1/2 · [hd 6= 0] ·
(

sup
v∈Z

[hd 7→ v] ? ([hd 7→ rv]−−? I [hd/x] [rv/hd] [x/v])

+ sup
v∈Z

[hd 7→ v] ? I [hd/x] [x/v]
)

= J elementary algebra (notice that [P] = [P] · [P]) K
[hd = 0] · len (rv, 0) + 1/2 · [hd 6= 0] ·

(
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[hd 6= 0] · sup
v∈Z

[hd 7→ v] ? ([hd 7→ rv]−−? I [hd/x] [rv/hd] [x/v])

+ [hd 6= 0] · sup
v∈Z

[hd 7→ v] ? I [hd/x] [x/v]
)

� J Lemma 8.7; Lemma 8.8 K

[hd = 0] · len (rv, 0) + 1/2 · [hd 6= 0] ·
(

len (rv, 0) ? [sll (hd, 0)]
+1/2 · [sll (rv, 0)] ? (len (hd, 0) + [sll (hd, 0)])

+ len (rv, 0) ? [sll (hd, 0)]

+1/2 · [sll (rv, 0)] ? (len (hd, 0)− [sll (hd, 0)])
)

= J elementary algebra; D.3.2 K

[hd = 0] · len (rv, 0) + 1/2 · [hd 6= 0] ·
(

2 · len (rv, 0) ? [sll (hd, 0)] + 1/2 · [sll (rv, 0)] ? (2 · len (hd, 0))
)

= J D.1.2; elementary algebra K
[hd = 0] · len (rv, 0) ? [emp] + [hd 6= 0] · len (rv, 0) ? [sll (hd, 0)]

+ 1/2 · [hd 6= 0] · [sll (rv, 0)] ? len (hd, 0)
= J Lemma 8.6; D.1.3 K

[hd = 0] · len (rv, 0) ? [sll (hd, 0)] + [hd 6= 0] · len (rv, 0) ? [sll (hd, 0)]
+ 1/2 · [hd 6= 0] · len (hd, 0) ? [sll (rv, 0)]

= J D.6.4 K
len (rv, 0) ? [sll (hd, 0)] + 1/2 · [hd 6= 0] · len (hd, 0) ? [sll (rv, 0)]

= J Definition of I K
I. �

To complete this section, let us provide the missing quantitative entailments that
we applied during verification of our invariant.

Lemma 8.7 ([18])

[hd 6= 0] · sup
v∈Z

[hd 7→ v] ? ([hd 7→ rv]−−? I [hd/x] [rv/hd] [x/v])

� len (rv, 0) ? [sll (hd, 0)] + 1/2 · [sll (rv, 0)] ? (len (hd, 0) + [sll (hd, 0)]).

Proof. See Appendix F.1.1, page 403. �
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Lemma 8.8 ([18])

[hd 6= 0] · sup
v∈Z

[hd 7→ v] ? I [hd/x] [x/v]

� len (rv, 0) ? [sll (hd, 0)] + 1/2 · [sll (rv, 0)] ? (len (hd, 0)− [sll (hd, 0)]).

Proof. See Appendix F.1.2, page 406. �

8.3 Faulty Garbage Collector

Recall from Example 4.34 the procedure delete which takes a binary tree with
root x as an input and—if x is not a null pointer—recursively deletes all elements
in the tree. In this case study, we consider a faulty variant of this garbage
collection procedure. That is, with some positive probability p, we assume that
the test x 6= 0 evaluates to false although x is not a null pointer. This scenario is
modeled by the P4L program in Figure 8.4: In contrast to the original garbage
collection procedure, we introduced a fresh variable fail that evaluates to true
with probability p. Moreover, we require that both x 6= 0 and fail = false hold
before we delete the remaining tree with root x.

In this case study, our goal is to establish a lower bound on the probability
that the faulty procedure delete successfully deletes the whole tree. More
precisely, we approximate from below the weakest liberal preexpectation of the
procedure call void := delete(x) with respect to postexpectation

X , [emp] .

To this end, we claim that

wlp [void := delete(x)] ([emp]) � [tree (x)] · (1− p)1/2·size,

where [tree (u)] is a recursive predicate specifying binary trees with root u, i.e.,

[tree (u)] , [u = 0] · [emp] + sup
v,w∈Z

[u 7→ v, w] ? [tree (v)] ? [tree (w)] .

Moreover, for every probability q ∈ [0, 1] and expectation Y ∈ E, we define the
one-bounded expectation

qY , λ(s, h). qY(s,h).

Intuitively, our claim then states that whenever x is initially the root of a binary tree
with n nodes—the probability that procedure delete successfully deletes the whole tree
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// sup
v∈Z

[hd 7→ v] ? ([hd 7→ v]−−?
(

// 1/2 · [hd 7→ −] ? ([hd 7→ rv]−−? I [hd/x] [rv/hd] [x/v])

// +1/2 · [hd 7→ −] ? I [hd/x] [x/v]
)

x := hd.n ;
// 1/2 · [hd 7→ −] ? ([hd 7→ rv]−−? I [hd/x] [rv/hd])

// +1/2 · [hd 7→ −] ? I [hd/x]
{

// [hd 7→ −] ? ([hd 7→ rv]−−? I [hd/x] [rv/hd] )

hd.n := rv ;
// I [hd/x] [rv/hd]

rv := hd

// I [hd/x]
} [ 1/2 ] {

// [hd 7→ −] ? I [hd/x]
free(hd)

// I [hd/x]
} ;
// I[hd/x]
hd := x
// I

Figure 8.3: Computation of wp [Cbody] (I).
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delete(x) {
fail :≈ p · 〈true〉+ (1− p) · 〈false〉 ;
if ( x 6= 0 and fail = false ) {

left := <x> ;
right := <x + 1> ;
void := delete(left) ;
void := delete(right) ;
free(x) ;
free(x + 1)

} else {
skip

} ;
out := 0

}

Figure 8.4: A P4L procedure modeling a faulty garbage collector.

is at least (1− p)n. Notice that our model of binary trees uses two memory cells
for each node. Hence, the number of nodes coincides with half the number of
addresses allocated on the heap, i.e., 1/2 · size.

In order to formally verify our claim, we propose the following higher-order
invariant in the sense of Theorem 7.23:

ρ , λyλEλY.

{
[tree (E)] · (1− p)1/2·size, if y = void and Y = [emp]
gfp (LPdelete) (y)(E)(Y), otherwise.

Two cases arise: First, we assume that our claim holds for all calls of the
form void := delete(E). Second, since we never encounter calls with respect
to postexpectations different from [emp], we assign the exact semantics of
procedure calls to all other cases. That is, as discussed in Section 7.5.2, our
invariant evaluates to gfp (LPdelete) (y)(E)(Y), where the liberal characteristic
function LPdelete of procedure delete is given by:

LPdelete , λθλyλEλY.

wlpdelete
θ [body (delete)]

(
Y [−�] [�y

/
out]

)
[x
/

E [−�]] [+�] .
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By Theorem 7.23, it then suffices to show that LPdelete(ρ) � ρ to conclude that

wlp [void := delete(x)] ([emp]) � [tree (x)] · (1− p)1/2·size.

Figures 8.5 and 8.6 on pages 247 and 248 depict a proof that LPdelete(ρ) � ρ
holds for the first case in the definition of ρ, i.e., for all procedure calls of the
form void := delete(E) and postexpectation [emp]. We briefly comment on the
involved lemmas at the end of this section. Furthermore, LPdelete(ρ) � ρ holds
trivially for the second case in which ρ is the greatest fixed point of LPdelete.

Hence, our claim indeed yields a lower bound on the probability that proce-
dure delete successfully deletes a binary tree.

Notice that establishing an upper bound is more involved because procedure
delete is capable of successfully deleting more general graph structures than
trees with some positive probability. In particular, cyclic structures can be deleted
without encountering a memory fault if a coin flip sets fail to true whenever a
pointer has already been disposed in a previous invocation of delete.

Quantitative Entailments Our proof in Figures 8.5 and 8.6 relies on the fol-
lowing two quantitative entailments that are proven separately:

Lemma 8.9 ([18])

p · [emp] + (1− p) · ([x 6= 0] · (1− p)1/2·size−1 ·
sup

u,v∈Z

[x 7→ u, v] ? [tree (u)] ? [tree (v)] + [x = 0] · [emp])

� (1− p)1/2·size · [tree (x)] .

Proof. See Appendix F.2.1, page 408. �

Lemma 8.10 ([18])

sup
u∈Z

[x 7→ u] ? ([x 7→ u]−−? sup
v∈Z

[x + 1 7→ v] ? ([x + 1 7→ v]−−?

[x 7→ −] ? [x + 1 7→ −] ?
([tree (v)] · (1− p)1/2·size) ? ([tree (u)] · (1− p)1/2·size)))

= (1− p)1/2·size−1 · sup
u,v∈Z

[x 7→ u, v] ? [tree (u)] ? [tree (v)] .

Proof. See Appendix F.2.2, page 409. �

Moreover, to verify these inequalities, we added three rules to our proof system
in order to reason about the novel expectation qY = λ(s, h). qY(s,h):
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Lemma 8.11 ([18]) For all v ∈ R≥0, p ∈ [0, 1], and expectations Y, Z ∈ E≤1,

(Y ? Z) · pv·size =
(

Y · pv·size
)
?
(

Z · pv·size
)

.

Proof. See Appendix F.2.3, page 411. �

Lemma 8.12 ([18]) For all v ∈ R≥0 and p ∈ [0, 1], we have

[E 7→ E1, . . . , En] · pv·size = [E 7→ E1, . . . , En] · pv·n.

Proof. See Appendix F.2.4, page 412. �

Lemma 8.13 ([18]) For all p ∈ [0, 1], we have [emp] = [emp] · psize.

Proof. See Appendix F.2.5, page 412. �

8.4 Array Randomization

A common approach for designing randomized algorithms is to first compute a
random permutation of the input and then apply a deterministic algorithm to
solve the actual problem. This approach relies on algorithms that produce every
possible permutation of an input with the same probability. In this section, we
verify that an algorithm for computing random permutations of arrays satisfies
this property. This algorithm is taken from [Cor+09, Chapter 5.3] and has been
briefly considered in Example 5.2.

More precisely, our goal is to prove that the P4L procedure randomize
depicted in Figure 8.7 computes a uniform distribution over all permutations of
its input. In other words, it produces every permutation of the provided input
array of length n with probability at most 1/n!, where n! denotes the factorial of
n. Since there are exactly n! possible permutations of an array consisting of n
elements, this means that each permutation is produced with probability 1/n!.

How do we verify this property with our weakest preexpectation calculus?
We first introduce some convenient notation to describe arrays whose length
is determined by an expression rather than a constant. Similar to notation for
sums, e.g., ∑n

k=1 ak, the iterated separating conjunction [Rey02] is defined as:

E′

F
k=E

Xk , λ(s, h).

{(
Xu ? Xu+1 ? . . . ? Xv

)
(s, h), if u = E (s) ≤ E′ (s) = v

[emp] (s, h), otherwise.
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// (1− p)1/2·size · [tree (E)]
delete(x) { // enter scope & set parameters

// (1− p)1/2·size · [tree (x)]
// � J Lemma 8.9 K

// p · [emp] + (1− p) · ( [x 6= 0] · (1− p)1/2·size−1 ·
// sup

u,v∈Z

[x 7→ u, v] ? [tree (u)] ? [tree (v)] + [x = 0] · [emp])

fail :≈ p · 〈true〉+ (1− p) · 〈false〉 ;

// [x 6= 0∧ fail = false] · (1− p)1/2·size−1 ·
// sup

u,v∈Z

[x 7→ u, v] ? [tree (u)] ? [tree (v)]

// + [¬(x 6= 0∧ fail = false)] · [emp]
if ( x 6= 0 and fail = false ) {

// (1− p)1/2·size−1 · sup
u,v∈Z

[x 7→ u, v] ? [tree (u)] ? [tree (v)]

// � J Figure 8.6 K
// wlp [. . .] ( [emp] )
left := <x> ; right := <x + 1> ;
void := delete(left) ; void := delete(right) ;
free(x) ; free(x + 1)
// [emp]

} else {
// [emp]
skip

// [emp]
} ;
// [emp]
out := 0
// [emp]

} // set return value & leave scope
// [emp] = X

Figure 8.5: Proof of LPdelete(ρ)(void)(E)([emp]) � ρ(void)(E)([emp]).
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// (1− p)1/2·size−1 · sup
u,v∈Z

[x 7→ u, v] ? [tree (u)] ? [tree (v)]

// � J Lemma 8.10 K
// sup

u∈Z

[x 7→ u] ? ([x 7→ u]−−? sup
v∈Z

[x + 1 7→ v] ? ([x + 1 7→ v]−−?

// [x 7→ −] ? [x + 1 7→ −] ? ([tree (v)] · (1− p)1/2·size) ?

// ([tree (u)] · (1− p)1/2·size)))

left := <x> ;
// sup

v∈Z

[x + 1 7→ v] ? ([x + 1 7→ v]−−? [x 7→ −] ? [x + 1 7→ −] ?

// ([tree (v)] · (1− p)1/2·size) ? ([tree (left)] · (1− p)1/2·size))

right := <x + 1> ;

// [x 7→ −] ? [x + 1 7→ −] ? ([tree (right)] · (1− p)1/2·size) ?

// ([tree (left)] · (1− p)1/2·size)

// � J apply invariant ρ K

// [x 7→ −] ? [x + 1 7→ −] ? ([tree (right)] · (1− p)1/2·size) ?

// wlp [void := delete(right)] ([emp])
// � J D.1.2; Theorem 7.24 (frame rule) K
// wlp [void := delete(left)] ( . . . )
void := delete(left) ;

// [x 7→ −] ? [x + 1 7→ −] ? ([tree (right)] · (1− p)1/2·size)

// � J apply invariant ρ K
// [x 7→ −] ? [x + 1 7→ −] ?wlp [void := delete(right)] ([emp])
// � J D.1.3; Theorem 7.24 (frame rule) K
// wlp [void := delete(right)] ( [x 7→ −] ? [x + 1 7→ −] ? [emp] )
void := delete(right) ;
// [x 7→ −] ? [x + 1 7→ −] ? [emp]
free(x) ;
// [x + 1 7→ −] ? [emp]
free(x + 1)
// [emp]

Figure 8.6: Proof for the branch x 6= 0 and fail = false.
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randomize(array, n) { swap(array, i, j) {
i := 0 ; y := array [ i ] ;
while ( 0 ≤ i < n ) { z := array [ j ] ;

Cbody : j :≈ uniform (i, n− 1) ; array [ i ] := z ;
void := swap(array, i, j) ; array [ j ] := y ;
i := i + 1 out := 0

} ; }
out := 0

}

Figure 8.7: A P4L program that computes random array permutations.

With this notation at hand, we choose a postexpectation X that specifies an
arbitrary, but fixed, permutation of the input array, i.e.,

X ,
n−1
F

m=0
[array + m 7→ am] ,

where a0, a1, a2, . . . is a sequence of fixed integers. The weakest preexpectation

wp [void := randomize(array, n)] (X)

then maps every stack-heap pair to the probability that procedure randomize
produces the a priori fixed permutation described by X upon termination.

Before we proceed, some notation is needed. A permutation π over a finite
set S is a bijective function π : S → S. Given two integers u and v, we denote
by Perm(u, v) the set of all permutations over the set { u, u + 1, . . . , v }. In
particular, Perm(u, v) is the empty set if u > v. Analogously, we define the set
of permutations determined by expressions E and E′ as follows:

Perm(E, E′) , λ(s, h).Perm(E (s) , E′ (s)).

Now, to compute an upper bound on the desired weakest preexpectation, we
propose the following invariant to deal with the loop in procedure randomize:
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I , [¬(0 ≤ i < n)] ·
n−1
F

m=0
[array + m 7→ am] +

[0 ≤ i < n]
(n− i)!

·

∑
π∈Perm(i,n−1)

i−1
F

m=0
[array + m 7→ am] ?

n−1
F

m=i

[
array + m 7→ aπ(m)

]
︸ ︷︷ ︸

, Zi
π

Intuitively, due to backward reasoning, I measures the probability of producing
the fixed permutation captured by postexpectation X for i remaining loop itera-
tions: All but the first i array elements have already been swapped consistently
with X. In our preexpectation, these n− i array elements are thus arbitrarily per-
muted. Moreover, the probability of hitting exactly the permutation consistent
with postexpectation X is 1/(n−i)!. Since the remaining i iterations still have to
be executed, the first i array elements coincide with our postexpectation.

Lemma 8.14 ([18])

wp [while ( 0 ≤ i < n ) {Cbody }]
(

n−1
F

m=0
[array + m 7→ am]

)
� I.

Proof. A detailed proof that I is an invariant in the sense of Theorem 7.7 is
found in Appendix F.3. This includes an analysis of the procedure swap. �

The remaining computation of wp [void := randomize(array, n)] (X) is found
in Figure 8.8, page 253. Two aspects deserve special attention:

First, the resulting upper bound, i.e.,

[0 ≤ n] · 1
n!
· ∑

π∈Perm(0,n−1)

n−1
F
k=0

[
array + k 7→ aπ(k)

]
,

confirms that the probability of satisfying postexpectation X is at most 1/n!

if the input array is an arbitrary permutation of the fixed array specified by
X. Otherwise, it is 0. Hence, procedure randomize indeed computes a uniform
distributions over all permutations of the input array.

Second, we cannot immediately apply our loop invariant, because the vari-
ables array and n are out of scope. To address this issue, we perform a case
distinction on whether �array and array as well as �n and n coincide or not.
We then apply linearity of weakest preexpectations to consider both cases sep-
arately. If both variables coincide with their unscoped versions, our invariant
is applicable. Otherwise, we show that the remaining weakest preexpectation
vanishes as we continue with the proof in Figure 8.8. Formally:
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Lemma 8.15 ([18]) Let C , while ( 0 ≤ i < n ) {Cbody }. Moreover, let

Y , wp [C]
(

�n−1
F

m=0
[�array + m 7→ am]

)
.

Then:

Y � [�array = array∧�n = n] · I + [¬(�array = array∧�n = n)] · Y.

Proof. Let P , [�array = array∧�n = n]. Then, consider the following:

Y
= J Definition of Y K

wp [C]
(

�n−1
F

m=0
[�array + m 7→ am]

)
= J D.6.4; D.6.2 K

wp [C]
(
[P] · [P] ·

�n−1
F

m=0
[�array + m 7→ am]

+ [¬P] ·
�n−1
F

m=0
[�array + m 7→ am]

)
= J Theorem 7.4 (f) K

wp [C]
(
[P] · [P] ·

�n−1
F

m=0
[�array + m 7→ am]

)
+wp [C]

(
[¬P] ·

�n−1
F

m=0
[�array + m 7→ am]

)
= J Theorem 7.11 K

[P] · wp [C]
(
[P] ·

�n−1
F

m=0
[�array + m 7→ am]

)
+ [¬P] · wp [C]

(�n−1
F

m=0
[�array + m 7→ am]

)
� J Theorem 7.4 (a); elementary algebra; D.6.1 K

[P] · wp [C]
(n−1
F

m=0
[array + m 7→ am]

)
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+ [¬P] · wp [C]
(�n−1
F

m=0
[�array + m 7→ am]

)
� J Lemma 8.14 K

[P] · I + [¬P] · wp [C]
(�n−1
F

m=0
[�array + m 7→ am]

)
= J Definition of P and Y K

[�array = array∧�n = n] · I
+ [¬(�array = array∧�n = n)] · Y. �

8.5 Randomized Meldable Heaps

Meldable heaps are priority queues with a dedicated operation meld to combine
two disjoint queues into a single one [MT90]. Their implementation is usually
based on max-heaps, i.e. binary trees in which the priority of every node is
greater than or equal to all of its children.

Gambin and Malinowski [GM98] proposed an efficient randomized imple-
mentation of meldable heaps: While many deterministic implementations, such
as [ST86; Dri+88; Knu98], require additional bookkeeping such that the un-
derlying trees remain somewhat balanced for efficiency reasons, randomized
meldable heaps work on standard binary trees; they are thus simple to im-
plement and space efficient. Moreover, the worst-case execution time of each
individual operation on a randomized meldable heap is—with high probability—
at most logarithmic in the size of the underlying tree.

Various operations on randomized meldable heaps are expressed in terms of
the meld operation which is performed along a randomly chosen path, say π,
from the root to some leaf. Consequently, the complexity of meld depends on
the expected length of π. In fact, the central theorem of Gambin and Malinowski
states that the expected length of a randomly chosen path π is at most logarithmic in
the total number of nodes of the underlying tree [GM98, Theorem 1].

Let us apply QSL to verify their result.1 To this end, consider the recursive
procedure rleaf(root) depicted in Figure 8.9 which models a random walk
through a binary tree with root root. Procedure rleaf first determines the left
child l and the right child r of root. If both children are equal to 0, then we have
hit a leaf and return it. Otherwise, we flip a fair coin to decide whether we
continue our walk on a subtree with root l or r, respectively. For simplicity, we
assume that the initial tree is non-empty and that every node has exactly two
children. Consequently, we omitted conditionals that check whether root = 0

1The same result has been previously verified with QSL in [Arn19]. However, the proof uses a
different invariant which considers the whole tree in each step.
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// [0 ≤ n] · 1
n!
· ∑

π∈Perm(0,n−1)

n−1
F
k=0

[
array + k 7→ aπ(k)

]
// � J elementary algebra; D.1.2 K

// [¬(0 ≤ 0 < n)] ·
n−1
F

m=0
[array + m 7→ am] +

[0 ≤ 0 < n]
(n− 0)!

·

// ∑
π∈Perm(0,n−1)

0−1
F

m=0
[array + m 7→ am] ?

n−1
F

m=0

[
array + m 7→ aπ(m)

]
// � J Definition of I; apply substitution; apply scoping K
// I [i/0] [array/�array] [n/�n] [+�]
// � J elementary algebra K
// [array = array∧ n = n] · I [i/0] [array/�array] [n/�n] [+�]
// + [¬(array = array∧ n = n)] · Y [i/0] [array/�array] [n/�n] [+�]
randomize(array, n) { // enter scope & set parameters

// [�array = array∧�n = n] · I[i/0] + [¬(�array = array∧�n = n)] · Y[i/0]
i := 0 ;
// [�array = array∧�n = n] · I + [¬(�array = array∧�n = n)] ·Y
// � J Lemma 8.15 K

// wp [while ( 0 ≤ i < n ) {Cbody }]
(�n−1
F

m=0
[�array + m 7→ am]

)
︸ ︷︷ ︸

, Y

while ( 0 ≤ i < n ) {
j :≈ uniform (i, n− 1) ; void := swap(array, i, j) ; i := i + 1

} ;

//
�n−1
F

m=0
[�array + m 7→ am]

out := 0

//
�n−1
F

m=0
[�array + m 7→ am]

} // leave procedure scope & set return value

//
n−1
F

m=0
[array + m 7→ am] = X

Figure 8.8: Approximation of wp [void := randomize(array, n)] (X).
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rleaf(root) {
l := <root> ;
r := <root + 1> ;
if ( l = 0 and r = 0 ) {

out := root

} else {
n :≈ 1/2 · 〈l〉+ 1/2 · 〈r〉 ;
out := rleaf(n)

}
}

Figure 8.9: A procedure im-
plementing a random walk
through a binary tree in which
every node has two children.

top

result

Figure 8.10: Illustration of a
heap in which expectation X =
[tree (top)] · 1 ? ([path (top, result)] ·
1/2 · size) evaluates to 3.

holds and that prevent the random assignment from selecting a child equal to 0.
If one of the above assumptions is violated, procedure rleaf(root) will encounter
a memory fault.

In order to apply weakest preexpectations to reason about the procedure call
result := rleaf(top), where variable result stores the returned leaf and top is the
root of the whole tree, we have to find a suitable postexpectation X ∈ E that
measures the length of a path from top to result. The following two recursively
defined predicates enable us to concisely formalize this quantity:

[tree (u)] , [u = 0] · [emp] + sup
v,w∈Z

[u 7→ v, w] ? [tree (v)] ? [tree (w)] , and

[path (u, v)] , [u = v] · [u 7→ 0, 0]

+ sup
w,w′∈Z

[
u 7→ w, w′

]
? max

{
[path (w, v)] ,

[
path

(
w′, v

)] }
.

The first predicate specifies binary trees as introduced in Section 6.6. The second
predicate specifies the longest path from node u to node v. Every node consists of
two memory cells and a path may choose either of these two cells to determine
the next element in a path. In particular, notice that [path (u, v)] does not
admit the heap to contain any memory cells that do not belong to a node on the
specified path. Its length is given by the expectation [path (u, v)] · 1/2 · size, where
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the factor 1/2 accounts for the fact that every node consists of two memory cells.
To describe the length of a path in some larger heap, we use the intuitionistic
expectation 1 ? ([path (u, v)] · 1/2 · size).

Our postexpectation then measures the length of a path from the root top to
the leaf result in a binary tree. Hence, it is defined as

X , [tree (top)] · 1 ? ([path (top, result)] · 1/2 · size),

where ? takes precendence over · due to Assumption 8.1. Figure 8.10 illustrates
the evaluation of X on a stack-heap pair (s, h). Clearly, (s, h) represents a binary
tree with root top; it thus satisfies [tree (top)]. The blue edges highlight the part
of the heap captured by [path (top, result)]. The length, i.e. the number of edges,
of the unique path from top to result is 3. Hence, X(s, h) = 3.

Our goal is to show that the expected length of a path chosen by procedure
rleaf(root) is at most logarithmic in the size of the initially provided tree, i.e.,

wp [result := rleaf(top)] (X) � [top 6= 0] · [tree (top)] · log (1 + 1/2 · size) ,

where we take the logarithm with respect to base two. Recall from Section 7.2.2,
that the weakest preexpectation of procedure call result := rleaf(top) with respect
to postexpectation X is defined in terms of the least fixed point of procedure
rleaf’s characteristic function Prleaf:

wp [result := rleaf(top)] (X) = lfp (Prleaf) (result)(top)(X).

To verify our desired upper bound, we propose an invariant ρ and then show
for all variables result, top ∈ Vars and expectations Z that:

Prleaf(ρ)(result)(top)(Z)

= wprleaf
ρ [body (rleaf)] (Z [−�] [�result/out]) [root/�top]

� ρ(result)(top)(Z).

Our invariant-based proof rule, i.e. Theorem 7.9, then yields

wp [result := rleaf(top)] (X) � ρ(result)(top)(Z).

So how do we choose invariant ρ? We consider four distinct cases:

1. For Z = Y ? ([tree (top)] · 1 ? ([path (top, result)] · 1/2 · size)), where Y is a
precise expectation satisfying result /∈ Vars(Y), we define

ρ(result)(top)(Z) , Y ? ([top 6= 0] · [tree (top)] · log (1 + 1/2 · size)).

In this case, Z generalizes postexpectation X. In contrast to X, it admits
additional memory cells that are captured by the precise expectation Y.
Intuitively, Y specifies all parts of the initially provided tree that do not
belong to the subtree processed by the currently executed recursive call.
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2. For Z = [tree (top)] ? ([result ↪→ −] ·∞), we set ρ(result)(top)(Z) , 0. This
case is an auxiliary that is applied during the verification of the first case.
It states that procedure rleaf never returns an address outside of the binary
tree passed via its parameter.

3. For Z ∈ E with result /∈ Vars(Z), we set ρ(result)(top)(Z) , Z · [top 6= 0].
This case is an auxiliary that is applied during the verification of the first
case. It states that procedure rleaf does not change the heap and crashes if
top = 0.

4. Since no other possibility for Z is encountered during the verification of
the first three cases, we set ρ(result)(top)(Z) to the exact fixed point in all
other cases. This trivially satisfies the premise of Theorem 7.9.

It remains to verify that ρ is an invariant in the sense of Theorem 7.9: A proof
of the first case is provided in Figure 8.11. Moreover, we present a detailed
treatment of the recursive call and the probabilistic assignment in Figure 8.12.
This requires a few case distinctions on the values of local variables n, l, and
r. The most relevant case, i.e. n = l, is analyzed in Figure 8.13. The case n = r
is symmetric. Detailed calculations of all involved quantitative entailments are
referenced within the proofs and are found in Appendix F.4. The same holds
for proofs of the remaining cases and a verification of the second and third case
of our proposed invariant ρ. With invariant ρ at hand, we then conclude that

wp [result := rleaf(top)] (X)
= J Definition of X K

wp [result := rleaf(top)] ([tree (top)] · 1 ? ([path (top, result)] · 1/2 · size))
� J Theorem 7.9 K

ρ(result)(top)([tree (top)] · 1 ? ([path (top, result)] · 1/2 · size))
= J invariant case (1) with Y = [emp] K

[top 6= 0] · [tree (top)] · log (1 + 1/2 · size).

Hence, the expected length of a path from root top to the returned leaf result is
indeed at most logarithmic in the number of nodes contained in the tree.
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// Y ? ([top 6= 0] · [tree (top)] · log (1 + 1/2 · size))
// � J apply [Q] · X + [¬Q] · X = X; [top ↪→ u, v] � 1; elementary algebra K

// sup
u,v∈Z

[top ↪→ u, v] ·
(
[u = 0∧ v = 0] · Y ? ([top 6= 0] · [tree (top)] · log (1 + 1/2 · size))

// + [u 6= 0∨ v 6= 0] · Y ? ([top 6= 0] · [tree (top)] · log (1 + 1/2 · size))
)

// � J Lemma F.15; Lemma F.16 K

// sup
u,v∈Z

[top ↪→ u, v] ·
(
[u = 0∧ v = 0] · Xif [r/v] [l/u] [root/�top] [+�]

// + [u 6= 0∨ v 6= 0] · Xelse [r/v] [l/u] [root/�top] [+�]
)

rleaf(root) { // enter scope & set parameters

// sup
u,v∈Z

[root ↪→ u, v] ·
(
[u = 0∧ v = 0] · Xif [r/v] [l/u] + [u 6= 0∨ v 6= 0] · Xelse [r/v] [l/u]

)
l := <root> ;

// sup
v∈Z

[root + 1 ↪→ v] ·
(
[l = 0∧ v = 0] · Xif[r/v] + [l 6= 0∨ v 6= 0] · Xelse[r/v]

)
r := <root + 1> ; // use alternative lookup rule (D.4.5)
// [l = 0∧ r = 0] · Xif + [l 6= 0∨ r 6= 0] · Xelse

if ( l = 0 and r = 0 ) {
// Y [−�] [out/root] ? ([tree (�top)] · 1 ? ([path (�top, root)] · 1/2 · size))︸ ︷︷ ︸

, Xif

out := root

// Y [−�] ? ([tree (�top)] · 1 ? ([path (�top, out)] · 1/2 · size))
} else {

// 1/2 · [l 6= r] · Y [−�] [n/l] ? [�top 7→ l, r] ? [tree (r)]
// ? ([l 6= 0] · [tree (l)] · (1 + log (1 + 1/2 · size)))
// + 1/2 · [l 6= r] · Y [−�] [n/r] ? [�top 7→ l, r] ? [tree (l)]
// ? ([r 6= 0] · [tree (r)] · (1 + log (1 + 1/2 · size)))
// + [l = 0∧ r = 0] ·∞
// + [¬� top ↪→ l, r] · wprleaf

ρ [n :≈ 1/2 · . . . ; out := rleaf(n)] (. . .)︸ ︷︷ ︸
, Xelse

// � J Figure 8.12 K

// wprleaf
ρ [n :≈ 1/2 · . . . ; out := rleaf(n)] ( . . . )

n :≈ 1/2 · 〈 l 〉+ 1/2 · 〈 r 〉 ;
out := rleaf(n)
// Y [−�] ? ([tree (�top)] · 1 ? ([path (�top, out)] · 1/2 · size))

}
// Y [−�] ? ([tree (�top)] · 1 ? ([path (�top, out)] · 1/2 · size))

} // set return value & leave scope
// Y ? ([tree (top)] · 1 ? ([path (top, result)] · 1/2 · size))

Figure 8.11: Proof of invariant case (1)
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// 1/2 · [l 6= r] · Y [−�] [n/l] ? [�top 7→ l, r] ? [tree (r)]
// ? ([l 6= 0] · [tree (l)] · (1 + log (1 + 1/2 · size)))
// + 1/2 · [l 6= r] · Y [−�] [n/r] ? [�top 7→ l, r] ? [tree (l)]
// ? ([r 6= 0] · [tree (r)] · (1 + log (1 + 1/2 · size)))
// + 0
// + [l = 0∧ r = 0] ·∞
// + [¬� top ↪→ l, r] · wprleaf

ρ [n :≈ 1/2 · . . . ; out := rleaf(n)] (X1)

// � J Figures 8.13, F.3 and F.4 + Figure 8.13 (symmetric case) + Theorem 7.12 K

// wprleaf
ρ [n :≈ 1/2 · . . . ; out := rleaf(n)]([�top ↪→ l, r] · [n = l] · [n 6= r] · X1)

// + wprleaf
ρ [n :≈ 1/2 · . . . ; out := rleaf(n)]([�top ↪→ l, r] · [n 6= l] · [n = r] · X1)

// + wprleaf
ρ [n :≈ 1/2 · . . . ; out := rleaf(n)]([�top ↪→ l, r] · [n 6= l] · [n 6= r] · X1)

// + wprleaf
ρ [n :≈ 1/2 · . . . ; out := rleaf(n)]([�top ↪→ l, r] · [n = l] · [n = r] · X1)

// + wprleaf
ρ [n :≈ 1/2 · . . . ; out := rleaf(n)]([¬� top ↪→ l, r] · X1)

// � J Linearity of weakest preexpectations (Theorem 7.4 (f)) K

// wprleaf
ρ [n :≈ 1/2 · . . . ; out := rleaf(n)](X2)

n :≈ 1/2 · 〈 l 〉+ 1/2 · 〈 r 〉 ;
out := rleaf(n)
// [�top ↪→ l, r] · [n = l] · [n 6= r] · X1

// + [�top ↪→ l, r] · [n 6= l] · [n = r] · X1

// + [�top ↪→ l, r] · [n = l] · [n = r] · X1

// + [�top ↪→ l, r] · [n 6= l] · [n 6= r] · X1

// + [¬� top ↪→ l, r] · X1︸ ︷︷ ︸
, X2

// � J Case distinction on [�top ↪→ l, r], [n = l], [n = r] K
// Y [−�] ? ([tree (�top)] · 1 ? ([path (�top, out)] · 1/2 · size))︸ ︷︷ ︸

, X1

Figure 8.12: Proof of the else branch of invariant case (1)
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// 1/2 · [l 6= r] · Y [−�] [n/l] ? [�top 7→ l, r] ? [tree (r)]
// ?([l 6= 0] · [tree (l)] · (1 + log (1 + 1/2 · size)))
// � J D.3.2; elementary algebra K
// 1/2 · [l 6= r] · Y [−�] [n/l] ? [�top 7→ l, r] ? [tree (r)] ? ([l 6= 0] · [tree (l)])
// + 1/2 · [l 6= r] · Y [−�] [n/l] ? [�top 7→ l, r] ? [tree (r)]
// ? ([l 6= 0] · [tree (l)] · log (1 + 1/2 · size))
n :≈ 1/2 · 〈 l 〉+ 1/2 · 〈 r 〉 ;
// [n = l] · [n 6= r] · Y [−�] ? [�top 7→ n, r] ? [tree (r)] ? ([n 6= 0] · [tree (n)])
// + [n = l] · [n 6= r] · Y [−�] ? [�top 7→ n, r] ? [tree (r)]
// ? ([n 6= 0] · [tree (n)] · log (1 + 1/2 · size))
// + 0
// � J Apply invariant ρ to each summand K

// wprleaf
ρ [out := rleaf(n)] (Y1 ? [tree (n)] )

// + wprleaf
ρ [out := rleaf(n)] (Y2 ? ([tree (n)] · 1 ? ([path (n, out)] · 1/2 · size)))

// + wprleaf
ρ [out := rleaf(n)] ([tree (n)] ? ([out ↪→ 0, 0] ·∞))

// � J Linearity of weakest preexpectations (Theorem 7.4 (f)) K

// wprleaf
ρ [out := rleaf(n)] ( . . . )

out := rleaf(n)
// [n = l] · [n 6= r] · Y [−�] ? [�top 7→ n, r] ? [tree (r)]︸ ︷︷ ︸

= Y1

? [tree (n)]

// + [n = l] · [n 6= r] · Y [−�] ? [�top 7→ n, r] ? [tree (r)]︸ ︷︷ ︸
= Y2

// ?([tree (n)] · 1 ? ([path (n, out)] · 1/2 · size))
// + [n = l] · [n 6= r] · [tree (l)]︸ ︷︷ ︸

� [tree(n)]

?([out ↪→ 0, 0] ·∞)

// � J Lemma F.10; elementary algebra (n = l; l 6= r) K

// [�top ↪→ l, r] · [n = l] · [n 6= r] ·
(

// Y [−�] ? ([tree (�top)] · 1 ? ([path (�top, out)] · 1/2 · size))
)

Figure 8.13: Proof of the else branch of invariant case (1) for n = l. The case
n = r is symmetric.





Chapter 9

Conclusion and Future Work

We developed QSL—a quantitative variant of separation logic—which serves as
both an assertion language that evaluates to real numbers instead of truth values
and a verification system for reasoning about probabilistic pointer programs.

Regarding QSL as an assertion language, expectations replace predicates as
the main object of interest. We introduced quantitative analogs to separating
conjunction and separating implication and showed that they enjoy virtually the
same properties as the classical separating connectives. Moreover, we studied
various rules for reasoning about QSL formulas which have been formalized in
the theorem prover Isabelle/HOL.1

Regarding QSL as a verification system, we developed a weakest preexpec-
tation calculus for reasoning about total correctness of probabilistic pointer
programs that conservatively extends both classical weakest preconditions based
on separation logic and McIver and Morgan’s weakest preexpectation calcu-
lus. We proved the soundness of QSL with respect to the operational model
introduced in Chapter 5. Our calculus facilitates local reasoning in a similar
fashion to separation logic. In particular, all rules only touch parts of the heap
actually accessed by a program. Furthermore, the frame rule is preserved by
QSL. Finally, we presented a liberal version of QSL that enables reasoning about
probabilities in a partial correctness setting. We demonstrated that QSL provides
a foundation for formal reasoning about randomized algorithms manipulating
dynamic data structures on source code level.

9.1 Future Work

An interesting direction for future research is to extend the expected runtime
calculus developed in [10; 6] to reason about probabilistic pointer programs. Let
us briefly sketch one possible approach: Since we reason about runtimes, we flip
the ordering underlying our domain of expectations. Hence, while the weakest

1In cooperation with Max Haslbeck from TU Munich; further details are available online at
https://github.com/maxhaslbeck/QuantSepCon.
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preexpectation of a nonterminating program is zero, its expected runtime is
infinite. Analogously, since a memory failure leads to undefined behavior,
programs encountering a memory failure are assigned infinite expected runtime.
Instead of the quantitative separating conjunction, which attempts to maximize
the expected value of a product over all partitions of the heap, we then interpret
the separating conjunction as an addition. That is, we define

X ? Y , λ(s, h). inf {X(s, h1) + X(s, h2) | h = h1 ] h2 } .

This notion of separating conjunction—provided it leads to a reasonable no-
tion of separation logic—would enable us to reason compositionally about the
runtime of randomized divide-and-conquer algorithms, such as randomized
quicksort. In particular, a frame rule for the above “separating addition” would
support compositional reasoning about expected runtimes in the sense that
we only have to consider those parts of the heap on which a program actually
operates. The technical details, however, have not been worked out yet.

More generally, the above alternative definition of a quantitative separating
conjunction raises another question: What are the minimal requirements that
have to be imposed to obtain a sensible calculus that retains the key properties of
separation logic, i.e., local reasoning, the frame rule, etc. In the qualitative setting
this question has been answered by Calcagno, O’Hearn, and Yang [COY07].
They introduced the notion of separation algebras, i.e., cancellative, partial
commutative monoids, and proved that, for any separation algebra, one can
derive a separating conjunction between predicates that admits local reasoning
for common programming language statements. It would be interesting to
derive similar general results in a quantitative setting, i.e., for expectations and
probabilistic programs.

Other future work includes developing a richer set of rules for discharging
quantitative entailments and investigating syntactical fragments of expectations
that are suitable for automated reasoning. Moreover, it remains unclear how to
reason about potentially unbounded expectations in a partial correctness setting.



Part III

Automated Reasoning

Part I

Part II Part III

Chapter 2
Foundations

Chapter 3
Procedures

Chapter 4
Separation

Logic

Chapter 5
Probabilistic

Programs

Chapter 6
Expectations

Chapter 7
Weakest

Preexpectations

Chapter 8
Case Studies

Chapter 9
Conclusion

Chapter 10
Symbolic

Heaps

Chapter 11
Proving

Robustness

Chapter 12
Proving

Entailments

Chapter 13
Attestor

Chapter 14
Conclusion

263





Chapter 10

Towards Automated Reasoning

Throughout Parts I and II, we studied reasoning about programs featuring recur-
sion, pointers, and sampling from probability distributions. Broadly speaking,
the presented techniques boil down to either program analysis or Floyd-Hoare style
verification. Let us briefly summarize the essential tasks of both approaches:

• For program analysis, we consider properties of program executions. Prov-
ing a property involves the overapproximation of the reachable fragment
of the operational semantics for a given program and a set of initial states
followed by an exhaustive state space exploration.

• For Floyd-Hoare style verification, a specification consists of a pre- and a post-
condition. Proving it involves the computation of the weakest precondition
of a given program with respect to the postcondition. The specification
then holds iff the precondition entails the weakest precondition.

At first glance, both approaches largely amount to the mechanical application
of inference rules; this suggests that they are amenable to automation. In fact,
provided that applying the operational semantics yields a finite transition system
and that we can decide for every state which atomic propositions hold, model
checking enables us to automatically reason about a large class of properties (cf.
[BK08]). Furthermore, provided that we are equipped with suitable invariants,
weakest preconditions can be computed automatically.

However, both program analysis and program verification are undecidable
in general [Tur37; Ric53; CGR18]. Every attempt to automate formal reasoning
about a sufficiently expressive class of programs and specifications is thus either
unsound, i.e., we might encounter a wrong result, or incomplete, i.e., we may
not encounter a result at all. In particular, we face the following challenges:

• The reachable fragment of the operational semantics for a given program
and a set of initial states is typically infinite; it thus cannot be computed.
This may be caused by certain program features, such as loops, recursion,
or even memory allocation. Alternatively, we might be interested in an
infinite set of initial states. As discussed in Section 2.2, we are thus forced
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to apply some kind of abstraction to determine a finite overapproximation
of the transition system induced by the operational semantics.

• We have to decide the state-labeling problem, i.e., does a given state in a
transition system satisfy an atomic proposition? When reasoning about
heap manipulating programs, sensible atomic propositions include aliasing
and reachability conditions, e.g., the heap contains no garbage, or the heap
is acyclic. In fact, we might want to use any separation logic formula as an
atomic proposition. Without abstraction, solving the state-labeling problem
then amounts to solving the model-checking problem for separation logic.
The situation becomes even more involved in the presence of abstraction
because we have to check the same properties for abstract states that
capture potentially infinite sets of concrete states.

• We have to decide the entailment problem, i.e., the satisfiability of logical
implications between predicates. This problem is essential when apply-
ing Floyd-Hoare style verification because we have to check whether our
precondition entails the previously determined weakest precondition. Fur-
thermore, it is needed to discharge verification conditions which arise
when applying invariants. If we use predicates for abstraction, then the
entailment problem is also relevant for program analysis. More precisely,
we have to solve entailments whenever we check whether an abstract state
is already covered by an existing one.

• We have to synthesize suitable invariants. For program analysis, we auto-
matically obtain invariants provided that our abstraction is strong enough
to yield a finite transition system. However, this shifts the task to finding
suitable abstractions. Depending on the desired degree of automation, in-
variants or abstractions may be supplied by the user or have to be inferred
automatically from a given program and the specification.

Goal of Part III & Outline The goal of this part is to advance automated rea-
soning about (non-probabilistic) heap manipulating programs with separation logic by
addressing the aforementioned challenges. This involves both reasoning about
programs with separation logic and reasoning about separation logic itself.

More precisely, we focus on the popular symbolic heap fragment of separa-
tion logic with user-defined inductive definitions (SHSL for short). To pin down
SHSL in the vast landscape of separation logic fragments investigated in the
literature, we first give a brief overview in Section 10.1. The decidability status
of various of its fragments is discussed alongside related work in Section 10.2.

In Chapter 11, we consider reasoning about separation logic. To this end,
we develop a framework based on heap automata to decide common robustness
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properties of SHSL [2], e.g., SHSL-satisfiability, reachability, etc. Apart from
decision procedures, our framework supports debugging of inductive definitions:
If an SHSL formula is not robust, a counterexample is generated. Furthermore,
one can synthesize robust inductive definitions through refinement. Heap
automata can also be applied to discharge entailments. We take a closer look at
decision procedures for the entailment problem in Chapter 12. In particular, we
present a pragmatic decision procedure in NP for a fragment of symbolic heaps
with user-supplied inductive definitions.

In Chapter 13, we consider reasoning about programs with separation logic.
To this end, we describe the implementation of the model checker Attestor [4].
Attestor attempts to check whether a formula in linear temporal logic (cf.
[Pnu77; BK08]) with heap-specific atomic propositions holds for an abstract
transition system that overapproximates the operational semantics of a given
Java program. In particular, abstraction is guided by inductive definitions in
SHSL and heap automata are applied to deal with the state-labeling problem.

Finally, Chapter 14 concludes and presents future work.

10.1 A Syntax for Separation Logic

In previous chapters, we took the extensional approach to program semantics by
admitting any computable predicate as an assertion. While this is convenient for
studying weakest precondition calculi, it is inadequate for automated reasoning.
Let us thus switch to the intensional approach and fix an explicit syntax for
fully-fledged separation logic. We then derive the fragment of symbolic heap
separation logic which is considered throughout the remaining chapters. We
first introduce a syntax for expressions that may occur in assertions.

Definition 10.1 (Syntax of Expressions) From now on, the syntax of expres-
sions E is given by the following context-free grammar:

E → 0 | 1 | x | E + E | E · E,

where x ∈ Vars is a variable.

Furthermore, let us fix some notation for predicates representing recursively
defined data structures (Section 4.3.4).

Definition 10.2 (Predicate Symbols) Let PSym be a set of predicate symbols
which is equipped with a function param : PSym → N assigning to each
predicate symbol its number of parameters.

A predicate call is then a term of the form P(E1, . . . , En),where P ∈ PSym,
param(P) = n, and E1, . . . , En are expressions.
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We are now in a position to define the syntax of separation logic assertions. Even
without predicate symbols, these assertions are expressive enough such that
every precondition of an assertion (without predicate symbols) can be written
as an assertion again [TC14; TCA19].

Definition 10.3 (Syntax of Separation Logic Assertions) The set of syntac-
tic separation logic assertions is given by the following context-free grammar:

ϕ → false | true | E = E | E 6= E | E < E (pure atoms)

| emp | E 7→ E | P(~E) (spatial atoms)
| ϕ ? ϕ | ϕ −−? ϕ (separating connectives)
| ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x : ϕ | ∀x : ϕ, (first-order logic)

where x is a variable, E is an expression, and P(~E) is a predicate call.

Every syntactic assertion specifies a predicate. We thus adopt most notions
introduced for separation logic predicates in Section 4.3. In particular:

• Vars (ϕ) denotes the set of all free variables in assertion ϕ, i.e., all variables
that are not bound by a quantifier.

• ϕ [x/E] is the assertion obtained by substituting every free occurrence of
variable x in assertion ϕ by expression E.

• The semantics of a syntactic assertion is determined by the semantics
of the corresponding predicate. That is, for every syntactic assertion ϕ
and every stack-heap pair (s, h), we have s, h |= ϕ iff (s, h) satisfies the
predicate given by ϕ (cf. Definition 4.11).

Formal definitions by structural induction of both the semantics (apart from
predicate calls) and the set of free variables of syntactic assertions are found
in Figure 10.1. The semantics of predicate calls is identical to the least fixed
point semantics considered in Section 4.3.4. We will address the semantics of
predicate calls for a fragment of separation logic assertions in Section 10.1.2.

Other notation for expressions and assertions used in previous chapters is
definable in our syntax; it is thus considered syntactic sugar. For example:

• For every n ∈N>0, we write n rather than 1 + 1 + . . . + 1 (n times).

• The points-to assertion E 7→ E1, E2, . . . , En is defined as

E 7→ E1 ? E + 1 7→ E2 ? . . . ? E + n− 1 7→ En.

• The contains-pointer assertion E ↪→ E′ is a shortcut for E 7→ E′ ? true.
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E E (s) Vars (E)

0 0 ∅

1 1 ∅

x s (x) { x }

E1 + E2 E1 (s) + E2 (s) Vars (E1) ∪Vars (E2)

E1 · E2 E1 (s) · E2 (s) Vars (E1) ∪Vars (E2)

ϕ s, h |= ϕ iff Vars (ϕ)

false never ∅

true always ∅

E1 = E2 E1 (s) = E2 (s) Vars (E1) ∪Vars (E2)

E1 6= E2 E1 (s) 6= E2 (s) Vars (E1) ∪Vars (E2)

E1 < E2 E1 (s) < E2 (s) Vars (E1) ∪Vars (E2)

emp dom(h) = ∅ ∅

E1 7→ E2 h = { E1 (s) :: E2 (s) } Vars (E1) ∪Vars (E2)

P (E1, . . . , En) see Section 10.1.2
⋃n

k=1 Vars (Ek)

ψ ? ϑ ∃h1, h2 : h = h1 ] h2 Vars (ψ) ∪Vars (ϑ)

and s, h1 |= ψ and s, h2 |= ϑ

ψ −−? ϑ ∀h′ : (h # h′ and s, h |= ψ) Vars (ψ) ∪Vars (ϑ)

implies s, h ] h′ |= ϑ

¬ψ not s, h |= ψ Vars (ψ)

ψ ∧ ϑ s, h |= ψ and s, h |= ϑ Vars (ψ) ∪Vars (ϑ)

ψ ∨ ϑ s, h |= ψ or s, h |= ϑ Vars (ψ) ∪Vars (ϑ)

∃x : ψ ∃v ∈ Z : s [x/v] , h |= ψ Vars (ψ) \ { x }

∀x : ψ ∀v ∈ Z : s [x/v] , h |= ψ Vars (ψ) \ { x }

Figure 10.1: Inductive definitions of both the semantics and the set of free
variables of expressions and separation logic assertions.
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• Given a finite sequence of selectors Sel = 〈 sel0, . . . , seln 〉, we denote by
x.seli 7→ E the points-to assertion x + i 7→ E.

Assumption 10.4 We assume the reader is familiar with standard results
from computability and complexity theory, e.g., (polynomial time) reduc-
tions and the complexity classes NP, coNP, and ExpTime. A comprehensive
introduction of these topics is found, for example, in [Pap07; AB09].

Furthermore, when reasoning about the complexity of decision proce-
dures, we frequently refer to the size of mathematical objects, e.g., assertions,
sets, tuples, etc. Rather than explicitly encoding these objects as bitstrings,
we assume the presence of a function ‖.‖ which assigns a sensible notion of
size to a given object. For instance, if S is a finite set, ‖S‖ could be defined
as the product of the cardinality of S and the size of its largest element.

Any attempt towards automated reasoning with separation logic requires tech-
niques to discharge one or more decision problems about assertions. Let us col-
lect the most prominent ones. Apart from expressiveness, the presence and com-
plexity of (semi-)decision procedures for these problems serves as a criterion for
choosing a fragment of separation logic which is amenable to automation.

Definition 10.5 (Decision Problems for Separation Logic) We define the
following decision problems for separation logic assertions:

(a) The model-checking problem: Given an assertion ϕ and a stack-heap pair
(s, h), does s, h |= ϕ hold?

(b) The satisfiability problem: Given an assertion ϕ, does there exist a
stack-heap pair (s, h) such that s, h |= ϕ holds?

(c) The entailment problem: Given assertions ϕ and ψ, does ϕ |= ψ, i.e., for
all stack-heap pairs (s, h), we have s, h |= ϕ implies s, h |= ψ, hold?

For example, as discussed initially, we encounter the model-checking problem as
an instance of the state-labeling problem. Moreover, it is encountered in runtime
verification and software testing [Bro+16]. The satisfiability problem allows us
to check whether a specification or an automatically computed abstract state
is sensible. We have already observed throughout previous chapters that the
entailment problem is essential for Floyd-Hoare style verification.

Unfortunately, none of the above decision problems is decidable for general
separation logic assertions. This is hardly surprising. After all, our syntax
for assertions covers all formulas in first-order logic. Undecidability of the
satisfiability problem is thus immediate (cf. [Tur37]). Furthermore, by exploiting
the separating implication and closure under Boolean operations, undecidability
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of the remaining decision problems can be reduced to the undecidability of the
satisfiability problem. It is noteworthy that the undecidability of separation
logic assertions is more deeply rooted than one might expect. In fact, there is
an ongoing quest for identifying smaller and smaller undecidable fragments
of separation logic, e.g., by restricting the number of variables in assertions
(cf. [DD15; Dem+17]). In particular, Calcagno, Yang, and O’Hearn proved that
satisfiability remains undecidable if we only admit contains-pointer assertions
(for records of size at least five), equality, false, standard implication, and
universal quantifiers [CYO01, Theorem 1]. The same holds for standard contains-
pointer assertions E ↪→ E′ and at most two variables [DD16, Corollary 5.15].
Similarly, Echenim, Iosif, and Peltier showed that satisfiability is undecidable
if we restrict formulas in the above fragment to prenex normal form with an
∃∗∀∗-prefix, but admit the separating connectives [EIP19, Theorem 1]. Finally,
Demri, Lozes, and Mansutti showed that combining −−? with a predicate
for singly-linked list segments—and allowing E = E′, emp, E ↪→ E′, and ?,
but no quantifiers—leads to a separation logic fragment with an undecidable
satisfiability problem [DLM18, Theorem 1].

10.1.1 The Symbolic Heap Fragment

Separation logic assertions are in general too expressive to allow for effective
decision procedures. However, reasoning about many programs does not
require the full expressive power of separation logic. In particular, symbolic heaps
emerged as an idiomatic form of assertions that occur naturally in hand-written
proofs [ORY01; BCO05b; BCO05a]. Intuitively, every concrete heap, say

h , { 1 :: 6 } ] { 6 :: 0, 17 } ,

can be characterized by a separation logic assertion using only points-to asser-
tions and separating conjunctions. For example, the formula

ϕ , 1 7→ 6 ? 6 7→ 0, 17

is satisfied iff the heap coincides with h. When reasoning about programs, we
rarely refer to concrete addresses. Rather, memory cells are accessed through
variables, e.g., <x + 1> or x.next. A symbolic heap thus abstracts from concrete
addresses by substituting every address by a (not necessarily free) variable or
the constant 0 which represents a value that cannot serve as an address itself.
For instance, a symbolic heap corresponding to the assertion ϕ from above is

ψ , ∃z : x 7→ y ? y 7→ 0, z.

In contrast to ϕ, the symbolic heap ψ is satisfied by multiple stack-heap pairs
as we may choose different evaluations of the variables x, y, and z. These
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1
•

6
•

7
17

0

s (x) = 1 s (y) = 6

Figure 10.2: A stack-
heap pair satisfying
ϕ, ψ, and ϑ.

4
•

8
•

9
13

0

s (x) = 4 s (y) = 8

Figure 10.3: A stack-
heap pair satisfying
ψ and ϑ, but not ϕ.

2
•

7
•

8
•

0

s (x) = 2 s (y) = 7

Figure 10.4: A stack-
heap pair satisfying
ψ, but not ϕ, ϑ.

stack-heap pairs do not necessarily have the same shape due to aliasing. For
example, three stack-heap pairs satisfying ψ are depicted in Figures 10.2 to 10.4.
Figure 10.2 illustrates the heap h; it thus also satisfies assertion ϕ. The heap
in Figure 10.3 has the same shape as h, but uses different addresses and values;
it thus violates ϕ. Finally, in Figure 10.4, variables x and z are aliases which
leads to a cycle that is not present in h. To prevent aliasing in ψ, it suffices to
add pure formulas. This leads to the following symbolic heap which is satisfied
for the heaps in Figures 10.2 and 10.3, but not for the heap in Figure 10.4:

ϑ , ∃z : x 7→ y ? y 7→ 0, z ? (emp∧ x 6= z ∧ y 6= z).

Notice that pure formulas are guarded by the empty-heap predicate emp. Oth-
erwise, assertion ϑ would become intuitionistic. This would again admit heaps
whose shape differs from h. Consequently, the number of addresses allocated in
any heap satisfying the symbolic heaps ψ and ϑ is fixed. Since this is inadequate
for reasoning about programs manipulating unbounded linked data structures,
such as lists or trees, we also allow symbolic heaps to contain predicate calls.
We now formally introduce the symbolic heap fragment of separation logic.

Definition 10.6 (Syntax of Symbolic Heaps) From now on, let E be an ex-
pression that is either the constant 0 or a variable in Vars. Moreover, let
Sel = 〈 sel0, . . . , seln 〉 be a fixed sequence of selectors. Then the set SHSL
of symbolic heaps is given by the following context-free grammar:

ϕ → x.sel 7→ E | emp∧ E = E′ | emp∧ E 6= E′ | P(~E) | ϕ ? ϕ | ∃x : ϕ,

where x is a variable, sel is a selector, and P(~E) is a predicate call.

Since symbolic heaps are a syntactic fragment of separation logic assertions, their
semantics is determined by the semantics of general assertions (see Figure 10.1).
We write emp and false as shortcuts for emp∧ 0 = 0 and emp∧ 0 6= 0, respec-
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tively. There is, however, no symbolic heap which is equivalent to true. In fact,
every symbolic heap containing no predicate calls is precise (cf. Definition 6.23).

A reader familiar with separation logic might notice that our points-to
assertions differ slightly from various common definitions of symbolic heaps (cf.
[IRS13; Ant+14; Bro+14]): Rather than having points-to assertions for fixed-size
records, e.g., x 7→ y, z, 0, we allow to specify points-to assertions for single
selectors, e.g., x.sel0 7→ y. This notion is slightly more liberal. While complete
records can always be defined by providing a points-to assertion for every
selector, our notion also enables us to define incomplete records. For example,

x.sel0 7→ y ? x.sel2 7→ z

specifies a record in which the selector sel1 is missing. We will exploit this ability
in Chapter 13 in order to efficiently discharge certain entailments.

Example 10.7 In Section 4.3, we have already encountered various separa-
tion logic predicates which can be written as symbolic heaps:

• A symbolic heap specifying a singly-linked list segment from x to y of
length at least two (cf. Example 4.26) is given by:

ϕ , ∃z : ∃z′ : x.n 7→ z ? z.n 7→ z′ ? sll(z′, y).

• Since variable y might alias with x, z, or z′, some stack-heap pairs
satisfying ϕ contain cycles. For example, the following symbolic heap
specifies a “lasso”, i.e., a list that ends in a cycle.

ψ , ∃z : ∃z′ : x.n 7→ z ? z.n 7→ z′ ? sll(z′, y)︸ ︷︷ ︸
= ϕ

? (emp∧ y = z).

• To prevent cycles, we could, for example, require that the list is null-
terminated:

ϑ , ∃z : ∃z′ : x.n 7→ z ? z.n 7→ z′ ? sll(z′, y) ? (emp∧ y = 0).

Variables x and z are not aliases, because both variables are allocated,
i.e., occur on the left-hand side of a points-to assertion. Moreover, z
and z′ are not aliases, because either z′ = 0 or z′ is allocated.
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• Finally, the symbolic heap below specifies doubly-linked lists of length
two (cf. Example 4.27):

η , ∃x : ∃y : ∃z : x.p 7→ 0 ? x.n 7→ z
? z.p 7→ x ? z.n 7→ y ? y.p 7→ z ? y.n 7→ 0.

When working with symbolic heaps, it is convenient to assume that formulas are
in prenex normal form. Moreover, due to associativity and commutativity of the
separating conjunction (see Theorem 4.17), we may collect points-to assertions,
predicate calls, equalities, and inequalities in separate blocks.

Definition 10.8 (Normal Form) A symbolic heap ϕ is in normal form if and
only if it adheres to the following context-free grammar:

ϕ → ∃x : ϕ | Ptr ? Call ? Eq ? Ineq
Ptr → emp | x.sel 7→ E ? Ptr

Call → emp | P(~E) ? Call

Eq → emp | (emp∧ E = E′) ? Eq

Ineq → emp | (emp∧ E 6= E′) ? Ineq.

Every variable that appears in a symbolic heap ϕ in normal form is either free
or existentially quantified. Similarly to the set Vars (ϕ) of free variables of ϕ,
we denote by BV(ϕ) the set of all variables that are bound by a quantifier in ϕ.

All symbolic heaps in Example 10.7 are almost in normal form. In fact, each
symbolic heap misses a few emp predicates which—since emp is the neutral
element of ?—can be added or removed at will. The following lemma justifies
that we focus on symbolic heaps in normal form:

Lemma 10.9 For every symbolic heap ϕ there is a symbolic heap ψ in
normal form such that, for all stack-heap pairs (s, h), we have

s, h |= ϕ iff s, h |= ψ.

Proof. By structural induction on the syntax of symbolic heaps. �

While it is useful to assume that a symbolic heap is in normal form, the exact
syntax of our normal form is a bit clumsy. For instance, transforming the
symbolic heap emp∧ x = 0 into normal form yields

emp ? emp ? (emp∧ x = 0) ? emp.

This motivates the introduction of more compact notation for symbolic heaps
in normal form in which pure formulas are collected in sets and both points-to
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assertions and predicate calls are collected in multisets.1 To this end, let us first
introduce some convenient notation for variables and predicate calls:

Assumption 10.10 We assume an arbitrary, but fixed, total order 4 on the
set of all variables in Vars and on the (surely disjoint) set of all predicate
calls P(~E), where P ∈ PSym is a predicate symbol and ~E is a sequence of
expressions of length param(P).

Moreover, we denote by Vars4(ϕ) the ordered sequence of free variables of
symbolic heap ϕ with respect to 4. That is, if Vars (ϕ) = { x1, x2, . . . , xn }
and x1 4 x2 4 . . . 4 xn, then Vars4(ϕ) , 〈 x1, x2, . . . , xn 〉.

We occasionally write ϕ(~x) to highlight that the ordered sequence of free
variables of symbolic heap ϕ is ~x = Vars4(ϕ).

Similar to [BCO05b], we omit both separating and standard conjunctions and
denote symbolic heaps in normal form by their individual components; each
component is separated by the symbol −− . Formally, we denote symbolic heaps
in normal form as follows:

Definition 10.11 (Multiset Notation for Symbolic Heaps) We identify ev-
ery symbolic heap ϕ in normal form with a symbolic heap in multiset notation

M(ϕ) , Vars4(ϕ) −−PT(ϕ) −−PC(ϕ) −−EQ(ϕ) −−NE(ϕ),

where each individual component is defined as follows:

• The sequence Vars4(ϕ) collects all free variables of ϕ arranged in
ascending order with respect to the total order 4.

• The multiset PT(ϕ) consists of all points-to assertions in ϕ.

• The multiset PC(ϕ) consists of all predicate calls in ϕ.

• The set EQ(ϕ) consists of all equalities in ϕ.

• The set NE(ϕ) consists of all inequalities in ϕ.

Formally, each of the above components is defined by structural induction
on the syntax of symbolic heaps in normal form as shown in Figure 10.5.

Furthermore, we denote by PC4(ϕ) the sequence consisting of all predi-
cate calls in PC(ϕ) in ascending order with respect to 4.

1We write {{ a, a, b, c }} to represent a finite multiset with elements a, a, b, and c. We denote by
MdM′ the union between multisets M and M′. Moreover, we denote by M \\ M′ the removal of all
elements in multiset M′ from multiset M. Formal definitions are found in Appendix G.
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ϕ PT(ϕ) PC(ϕ) EQ(ϕ) NE(ϕ)

∃x : ψ PT(ψ) PC (ψ) EQ(ψ) NE(ψ)

Ptr ? Call ? Eq ? Ineq PT(Ptr) PC(Call) EQ(Eq) NE(Ineq)

Ptr / Call / Eq / Ineq PT(Ptr) / PC(Call) / EQ(Eq) / NE(Ineq)

emp ∅

x.sel 7→ E ? ψ {{ x.sel 7→ E }} d PT(ψ)

P(~E) ? ψ {{P(~E) }} d PC(ψ)

(emp∧ E = E′) ? ψ { E = E′ } ∪ EQ(ψ)

(emp∧ E 6= E′) ? ψ { E 6= E′ } ∪ NE(ψ)

Figure 10.5: Inductive definitions of the (multi-)sets PT(ϕ), PC(ϕ), EQ(ϕ), and
NE(ϕ) for a given symbolic heap ϕ in normal form.

It is straightforward to construct a (unique up to commutativity and associativity
of the separating conjunction) symbolic heap in normal form for any given
symbolic heap in multiset notation: Intuitively, it suffices to apply the inductive
definitions in Figure 10.5 backward. In particular, all variables which are not
explicitly listed in the sequence of free variables are existentially quantified.
Consequently, we adopt all notions defined for symbolic heaps, e.g., substitution
of variables by expressions or the set of free variables of an assertion, by applying
them to the underlying symbolic heap.

To improve readability, we omit brackets indicating tuples, multisets, and
sets because the type of each component of a symbolic in multiset notation is
clear by Definition 10.11. Moreover, as long as it is clear from the context that we
use multiset notation, we often omit empty components rather than explicitly
writing ε for the empty sequence or ∅ for the empty (multi-)set.

Example 10.12 Recall from Example 10.7 the symbolic heaps ϕ, ψ, ϑ, and
η. Apart from missing emp formulas, these symbolic heaps are already in
normal form. Their representation in multiset notation is shown below:

• M(ϕ) = x, y −−x.n 7→ z, z.n 7→ z′ −−sll(z′, y),
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E/ ϕ f ( . )

0 0
x f (x) if x ∈ BV(ϕ)

x x if x /∈ BV(ϕ)

x.sel 7→ E f (x).sel 7→ f (E)
emp∧ E = E′ emp∧ f (E) = f (E′)
emp∧ E 6= E′ emp∧ f (E) 6= f (E′)
P(E1, . . . , En) P( f (E1), . . . , f (En))

ψ ? ϑ f (ψ) ? f (ϑ)
∃x : ψ ∃ f (x) : f (ψ)

Figure 10.6: Inductive definition of the variable renaming f (ϕ).

• M(ψ) = x, y −−x.n 7→ z, z.n 7→ z′ −−sll(z′, y) −−y = z,

• M(ϑ) = x, y −−x.n 7→ z, z.n 7→ z′ −−sll(z′, y) −−y 6= x, y 6= z, y 6= z′, and

• M(η) = x.p 7→ 0, x.n 7→ z, z.p 7→ x, z.n 7→ y, y.p 7→ z, y.n 7→ 0.

Before we consider predicate calls, we remark that our results are up to iso-
morphism of symbolic heaps, i.e., up to reordering of separating conjunctions,
renaming of existentially quantified variables, and adding or removing emp.
Since free variables are understood as program variables, however, they may not
be renamed: A list from x to y is different from a list from y to x.

Definition 10.13 (Symbolic Heap Isomorphism) Two symbolic heaps ϕ
and ψ are isomorphic, written ϕ ∼= ψ, iff there exists a bijective function

f : BV(ϕ)→ BV(ψ)

such that M( f (ϕ)) = M(ψ), where f (ϕ) denotes the application of function
f to every occurrence of a quantified variable in symbolic heap ϕ; a formal
definition is found in Figure 10.6.

Lemma 10.14 For all symbolic heaps ϕ, ψ, we have

ϕ ∼= ψ implies ∀(s, h) : s, h |= ϕ iff s, h |= ψ.
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Proof. By structural induction on the syntax of symbolic heaps. �

The converse direction does not hold in general, because symbolic heaps might
contain redundant pure formulas which are not taken into account by our notion
of isomorphic symbolic heaps. Lemma 10.14 justifies the following assumption:

Assumption 10.15 Throughout the remainder of this thesis, we do not distin-
guish between isomorphic symbolic heaps. Since all symbolic heaps ϕ with the
same multiset notation M(ϕ) are isomorphic (choose f as the identity), we
also do not distinguish between symbolic heaps and their representation in multiset
notation. We will thus use both notations interchangeably.

10.1.2 Inductive Predicate Definitions

In Section 4.3.4, we formalized the semantics of a predicate call, say P(~E), by
means of a recursive equation of the form

P(~v) = Φ(P)(~v),

where Φ is a monotone predicate transformer. Similarly, to deal with multiple
predicate symbols, it suffices to consider a system of recursive equations. The
semantics of P(~E) is then defined as the least fixed point of Φ.

The same approach remains adequate for reasoning about symbolic heaps.
However, now that we have an explicit syntax, we would like to reuse the same
syntax for defining suitable monotone—and in fact even continuous—predicate
transformers Φ rather than reverting to arbitrary predicates. To this end, we
consider systems of inductive definitions in SHSL:

Definition 10.16 (Systems of Inductive Definitions [Bro+14]) A system of
inductive definitions Ψ (SID for short) is a finite set of rules of the form

P ⇐ ϕ,

where P ∈ PSym, ϕ ∈ SHSL, and param(P) = |Vars (ϕ) |.
We denote by Ψ(P) the set of all symbolic heaps appearing on the

right-hand side of a rule in Ψ with left-hand side P, i.e.,

Ψ(P) , { ϕ | (P ⇐ ϕ) ∈ Ψ } .

Moreover, the set PSym(Ψ) collects all left-hand sides of rules in Ψ, i.e.,

PSym(Ψ) , {P ∈ PSym | Ψ(P) 6= ∅ } .
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How do SIDs specify the semantics of predicate calls? Intuitively, every SID
Ψ describes a system of equations, where, for every predicate symbol P ∈
PSym(Ψ), we introduce the following equation:

P(v1, . . . , vn) ,
∨

ϕ(x1,...,xn)∈Ψ(P)

ϕ [x1/v1] . . . [xn/vn] .

The resulting equation system yields a monotone and continuous predicate
transformer Φ which, for every predicate symbol P, is of the form

Φ(P) : (Zparam(P) → Pred) → (Zparam(P) → Pred).

To determine the semantics of symbolic heaps with respect to Φ, we introduce a
dedicated satisfaction relation |=Φ. Apart from predicate calls, |=Φ is defined
analogously to the semantics of assertions introduced in Figure 10.1, page 269.
Moreover, for predicate calls P(E1, . . . , En), it is defined as

s, h |=Φ P(E1, . . . , En) iff s, h |= lfp (Φ) (P)(E1 (s) , . . . , En (s)).

Example 10.17 Let us define SIDs resulting in the same semantics for list
and tree predicates as the recursive definitions in Section 4.3.4:

• An SID Ψsll for singly-linked segments is given by the rules

sll ⇐ x, y −−x = y, sll ⇐ x, y −−x.next 7→ z −−sll(z, y).

• An SID Ψtree for binary trees is given by the rules

tree ⇐ x −−x = 0, tree ⇐ x −−x.left 7→ y, x.right 7→ z −−tree(y), tree(z).

• An SID Ψdll for doubly-linked list segments is given by the rules

dll ⇐ x′, x, y, y′ −−x = y′, y = x′,

dll ⇐ x′, x, y, y′ −−x.prev 7→ x′, x.next 7→ z −−dll(x, z, y, y′).

Unfortunately, the least fixed point of a predicate transformer Φ is, in general,
not a symbolic heap. In fact, it is not even a syntactic separation logic assertion.
For example, the least fixed point characterized by each of the above SIDs is an
infinite disjunction of symbolic heaps.

However, a single disjunct suffices in order to prove that a predicate call is
satisfied by a given stack-heap pair. To conclude this section, let us thus briefly
consider an alternative semantics that stays within the realm of symbolic heaps.
This semantics is based on the notion of iteratively substituting predicate calls
by symbolic heaps according to the rules of an SID.
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Definition 10.18 (Predicate Substitution) Let ϕ be a symbolic heap con-
taining a predicate call P(E1, . . . , En) ∈ PC(ϕ). Moreover, let ψ(x1, . . . , xn)
be a symbolic heap such that BV(ϕ) ∩ BV(ψ) = ∅. Then the substitution of
predicate call P(E1, . . . , En) by symbolic heap ψ in ϕ is defined as

ϕ [P(E1, . . . , En)
/

ψ] , Vars4(ϕ) −−PT −−PC −−EQ −−NE,

where, for ϑ , ψ [x1/E1] . . . [xn/En], the individual components are:

• PT , PT(ϕ)d PT(ϑ),

• PC , (PC(ϕ) \\ {{P(E1, . . . , En) }})d PC(ϑ),

• EQ = EQ(ϕ) ∪ EQ(ϑ), and

• NE = NE(ϕ) ∪NE(ϑ).

Example 10.19 Consider the following three symbolic heaps ϕ, ψ, and ϑ:

ϕ , x′.prev 7→ 0, x′.next 7→ x, y′.prev 7→ y, y′.next 7→ 0 −−dll(x′, x, y, y′),

ψ , x′, x, y, y′ −−x.prev 7→ x′, x.next 7→ z −−dll(x, z, y, y′), and

ϑ , x′, x, y, y′ −−x = y′, y = x′,

where ψ and ϑ correspond to rules of the SID Ψdll in Example 10.17. Then
the symbolic heap η , ϕ [dll(x′, x, y, y′)

/
ψ] is given by:

x′.prev 7→ 0, x′.next 7→ x, y′.prev 7→ y, y′.next 7→ 0,

x.prev 7→ x′, x.next 7→ z −−dll(x, z, y, y′).

Moreover, the symbolic heap η′ , η [dll(x, z, y, y′)
/

ϑ] is given by:

x′.prev 7→ 0, x′.next 7→ x, y′.prev 7→ y, y′.next 7→ 0,

x.prev 7→ x′, x.next 7→ z −−z = y′, y = x.

As illustrated below, η′ specifies doubly-linked lists of length three:

x′

0 •
x=y
• •

z=y′

• 0

Intuitively, an unfolding step then amounts to the substitution of a predicate
call by a symbolic heap.
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Definition 10.20 (Folding and Unfolding Steps) Let Ψ be an SID. An un-
folding step of symbolic heap ϕ with respect to Ψ yields the symbolic heap
ψ iff there exists a predicate call P(~E) ∈ PC(ϕ), a symbolic heap ϑ ∈ Ψ(P),
and a symbolic heap η ∼= ϑ such that ψ ∼= ϕ

[
P(~E)

/
η
]
. In this case, we

write ϕ⇐=
Ψ

ψ. We denote by ∗⇐=
Ψ

the reflexive and transitive closure of⇐=
Ψ

.

Moreover, we frequently write ϕ =⇒
Ψ

ψ instead of ψ ⇐=
Ψ

ϕ to denote a

folding step starting with symbolic heap ψ. Analogously, ∗=⇒
Ψ

denotes the

reflexive and transitive closure of =⇒
Ψ

.

For instance, for the symbolic heaps ϕ and η′ in Example 10.19, we have

ϕ
∗⇐==

Ψdll
η′.

Here, the symbolic heap η′ contains no predicate calls itself. We call such a
symbolic heap an unfolding of ϕ.

Definition 10.21 (Unfoldings) The set UnfΨ(ϕ) of unfoldings of symbolic
heap ϕ with respect to SID Ψ is defined as the set of symbolic heaps

UnfΨ(ϕ) ,
{

ψ

∣∣∣∣ ϕ
∗⇐=
Ψ

ψ and PC(ψ) = ∅
}

.

Assumption 10.22 Without loss of generality, we assume that all rules of
any SID Ψ considered in this thesis are productive, i.e., for all rules (P ⇐
ϕ) ∈ Ψ, we have UnfΨ(ϕ) 6= ∅. This can always be achieved by iteratively
removing unproductive rules.

To determine whether a stack-heap pair (s, h) satisfies a predicate call P(~E) with
respect to SID Ψ, it suffices to check whether there exists some unfolding of that
predicate call which is satisfied by (s, h). Formally, we define the alternative
semantics of predicate calls as

s, h |=Ψ P(~E) iff ∃ψ ∈ UnfΨ(P(~E)) : s, h |= ψ.

The theorem below states that the set of unfoldings of a predicate call with
respect to an SID Ψ collects exactly the disjuncts of the corresponding trans-
former’s least fixed point. Consequently, both semantics coincide.
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Theorem 10.23 (Equivalence of SHSL Semantics) Let Ψ be an SID. More-
over, let Φ be the predicate transformer corresponding to Ψ. Then:

(a) lfp (Φ) (P)(v1, . . . , vn) =
∨

ϕ∈UnfΨ(P(x1,...,xn)) ϕ [x1/v1] . . . [xn/vn], and

(b) for all symbolic heaps ϕ, we have s, h |=Ψ ϕ iff s, h |=Φ ϕ.

Proof (Sketch). To prove Theorem 10.23 (a), notice that the predicate

Q , lfp (Φ) (P)(v1, . . . , vn) = lim
n→∞

Φn(λQ. false)

can be written as a potentially infinite disjunction of (satisfiable) asser-
tions by construction of Φ. We then have to show that for each disjunct
ψ of Q there is an unfolding ϕ ∈ UnfΨ(P(x1, . . . , xn)) such that ψ and
ϕ [x1/v1] . . . [xn/vn] are equivalent and vice versa.

We show that for each disjunction there exists an unfolding by complete
induction on the number n of fixed point iterations. The converse direction
is shown by complete induction on the number of unfolding steps applied
to derive an unfolding ϕ ∈ UnfΨ(P(x1, . . . , xn)).

To prove Theorem 10.23 (b), we first observe that—due to Theo-
rem 10.23 (a) and the semantics of disjunctions ∨—for all predicate calls
P(~E), we have

s, h |=Ψ P(~E) iff s, h |=Φ P(~E).

Since both semantics coincide except for predicate calls, the claim then
follows by structural induction on the syntax of symbolic heaps. �

Finally, we remark that the order in which predicates are unfolded is irrelevant.
In particular, this means that—to decide whether a stack-heap pair satisfies a
given symbolic heap ϕ—it suffices to consider an unfolding of ϕ rather than
individual unfoldings of its predicate calls:

Lemma 10.24 For all SIDs Ψ and symbolic heaps ϕ, we have:

s, h |=Ψ ϕ iff ∃ϑ ∈ UnfΨ(ϕ) : s, h |= ϑ.

Proof. By structural induction on the syntax of symbolic heaps. �



10.2. Related Work 283

10.2 Related Work

A detailed discussion of separation logic in general is found in Chapter 4. In
this section, we focus on work related to automated reasoning with separation
logic; in particular its symbolic heap fragment. However, there exist other logics
for reasoning about heap manipulating programs (cf. [DKR04; MPQ11; Qiu+13;
PQM14]). Further related work will be discussed where appropriate.

10.2.1 Reasoning about Symbolic Heaps

Although symbolic heaps have been extensively studied in the literature, there
is not a single symbolic heap fragment. In particular, definitions of symbolic
heaps differ in the following aspects:

• the exact form of points-to assertions (for example, compare [BCO05b;
BDP11; Coo+11; JGN14]),

• the form and treatment of predicate calls (for example, compare [BCO04;
Ber+07; BDP11; IRS13; IRV14; TK15]),

• the usage of existential quantifiers in assertions and inductive definitions
(for example, compare [BCO04; IRS13; Bro+14; Ant+14]),

• closure under (possibly restricted) Boolean operations (for example, com-
pare [BCO04; Coo+11; IRS13; IRV14]), and

• whether intuitionistic assertions are definable (compare [BDP11; Bro+14]).

To the best of the author’s knowledge, the term symbolic heap itself was—
at least in the context of separation logic—coined by Berdine, Calcagno,
and O’Hearn [BCO05b]; the same fragment is, however, already considered
in [BCO04]. It is restricted to fixed predicates for singly-linked lists (and later
also binary trees) rather than allowing user-supplied SIDs. Apart from that,
their fragment coincides with our notion of symbolic heaps. In particular, they
also use selector-based points-to assertions. Furthermore, our multiset notation
(see Definition 10.11) is inspired by their notation for symbolic heaps. Regarding
decidability, the same authors show in [BCO04, Lemma 1, Proposition 16]
that model checking is decidable in linear time and entailment is decidable in
coNP. For singly-linked list predicates, it is noteworthy that the entailment
problem becomes polynomial if points-to assertions are additionally restricted to
a single selector [Coo+11]. The situation changes dramatically once one admits
user-supplied SIDs: Antonopoulos et al. [Ant+14] showed that the entailment
problem for symbolic heaps with user-supplied SIDs is undecidable. Their
fragment also admits defining intuitionistic assertions. Still, the entailment



284 Chapter 10. Towards Automated Reasoning

problem remains undecidable for our fragment This can be shown by reducing
the undecidable inclusion problem for context-free grammars (cf. [BPS64]) to
the entailment problem (see [IRV14, Theorem 2] or Appendix H.3).

Since our fragment of symbolic heaps is not closed under Boolean operations,
the entailment problem does not reduce to the satisfiability problem. In fact,
Brotherston et al. [Bro+14; Bro+16] proved that both satisfiability and model
checking are decidable even for user-defined SIDs. Moreover, they showed that
both problems are ExpTime-complete unless further restrictions are imposed.
Their fragment of symbolic heaps is comparable to ours with two exceptions:
First, they allow existential quantifiers in SIDs but not in assertions. Second,
points-to assertions have to specify complete records, i.e., are of the form E 7→
E1, . . . , En. The approach underlying their decision procedures can be considered
a special case of our framework for reasoning about robustness of SIDs presented
in Chapter 11 (cf. [2; 19]). Their base-pair construction to prove satisfiability is
similar to our construction of a suitable heap automaton. However, they do not
consider refinement of SIDs. We use their results for analyzing the complexity
of deciding robustness properties.

While the entailment problem is undecidable for arbitrary SIDs, various de-
cidable fragments have been identified. Iosif, Rogalewicz, and Simacek [IRS13]
study symbolic heaps (with closure under Boolean operations) for a restricted
class of user-supplied SIDs such that every assertion can be defined in monadic
second-order logic over graphs of bounded tree width (cf. [CE12]). As a con-
sequence, both satisfiability and entailment are decidable with non-elementary
complexity. Moreover, the entailment problem for this fragment is ExpTime-
hard (cf. [Ant+14, Theorem 5] and [IRV14, Theorem 3]). If inequalities are
removed from symbolic heaps and SIDs are further restricted to “local edges”,
which in effect ensures that all models are tree-shaped if read as undirected
graphs, the entailment problem becomes ExpTime-complete [IRV14, Theorem
3]. Similar reductions to monadic second-order logic over graphs of bounded
tree width have been used to prove decidability of the entailment problem for
variations of their fragment [17; TK15]. We consider one of their restrictions on
SIDs—called establishment—as an example of a robustness property.

Apart from decision procedures, a pragmatic approach is taken by Brother-
ston, Distefano, and Petersen [BDP11]: They present a sound, but incomplete
cyclic proof system to discharge entailments between symbolic heaps with arbi-
trary user-supplied inductive predicate definitions. Their approach has recently
been extended to a complete proof system for a restricted set of user-defined
inductive predicates by Iosif and Serban [IS18]. Furthermore, in [BG14], cyclic
provers are used to automatically infer SIDs from programs which then serve
as preconditions. We use these automatically generated SIDs to evaluate our
framework for reasoning about robustness properties.
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Finally, we remark that other fragments than symbolic heaps have been
studied in the literature. This includes combining fragments of separation logic
with theories to reason about data stored in dynamic data structures [PWZ13;
PWZ14; GCW16; LSC16; Le+17; KJW18; LSQ18]. In particular, Le et al. [LSC16;
Le+17] present a decision procedure for satisfiability of symbolic heaps extended
by data constraints in Presburger arithmetic; their approach can be considered as
an extension of our decision procedure for satisfiability based on heap automata.

10.2.2 Automated Verification Tools

In Chapter 13, we present a model checker for Java pointer programs called
Attestor [4; 3]. Let us briefly discuss how Attestor relates to other verifica-
tion tools. There exists a landscape of tools for analyzing heap manipulating
programs based on different paradigms such as separation logic, automata or
graph transformations. These tools differ heavily in their input, the degree of
automation, the properties they allow to establish about pointer programs, and
their presentation of results. In the following, we thus restrict ourselves to a
choice of tools that are similar to Attestor in more than one of these categories.

Juggrnaut Juggrnaut [HNR10; Hei+15; Hei15] is a tool for analyzing heap
manipulating programs using the abstraction mechanism based on hyperedge
replacement grammars (HRG for short) proposed by Rieger and Noll [RN08].
Tree grammars were already applied by Lee, Yang, and Yi [LYY05]. HRGs,
however, allow to specify richer classes of data structures.

Attestor can be seen as the successor of Juggrnaut. It remains based on
abstractions guided by HRGs. The computation of these abstractions, however, is
different and imposes fewer constraints on the form of grammars. Furthermore,
Attestor improves on Juggrnaut in the following points:

• It supports verification of a rich set of properties that are specified in
linear temporal logic with properties of heaps, e.g., reachability between
locations, as atomic propositions. These properties are checked using heap
automata [2] and tableau-based model checking [CGH94; CGH97].

• It is able to generate concrete, non-spurious counterexamples for debug-
ging purposes whenever a safety property is violated.

• It implements a contract-based, procedure modular approach to verify
recursive programs (cf. [JGN14]).

• It ships with a graphical frontend to allow for manual exploration of
generated abstract state spaces and counterexamples.
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• It supports a fragment of symbolic heap separation logic as an alternative
input format to graphs and HRGs.

• It is equipped with a decision procedure for proving that the abstraction in-
duced by a given HRG is confluent—a key property to ensure decidability
of the language inclusion (think: entailment) problem.

The precise relationship between HRGs and symbolic heap separation logic has
been worked out by Dodds [Dod08a; Dod08b] and Jansen et al. [JGN14; Jan17].
Intuitively, one can think of an HRG as an SID whose unfoldings are satisfied by
exactly one canonical stack-heap pair up to renaming of locations and aliasing of
free variables. In Section 12.3, we study the set of graphical symbolic heaps which
is equivalent to the set of graphs captured by HRGs considered in Attestor.

It is noteworthy that the notion of robustness properties (cf. [2]) was origi-
nally motivated by this close relationship. In fact, the refinement theorem for
symbolic heaps can be considered as the analog to the filter theorem in the
realm of HRGs [Hab92, Theorem 5.1].

Separation Logic Tools Various automated verification tools for pointer
programs either perform a symbolic execution [BCO05b] or a shape analy-
sis [Ber+07] with symbolic heap separation logic as its underlying domain.

Early tools based on separation logic, such as Smallfoot [BCO05a], SpaceIn-
vader [DOY06], and jStar [DP08], relied on specialized syntactic rewrite rules
to normalize symbolic heaps and resolve entailments for a fixed set of predicate
symbols modeling singly-linked lists and binary trees.

Similarly, Attestor’s abstraction mechanism is based on systematic rewriting.
However, since its rewriting rules are based on a dedicated and well-established
formalism for (graph) rewriting, namely HRGs [Hab92], it appears to be more
natural. In particular, various concepts, such as confluence or termination of
abstraction, are readily available. Furthermore, all rewrite steps are inherently
up to isomorphism of the underlying graphs. Berdine, Cook, and Ishtiaq noted
later that “syntactic variable occurrence conditions [...] proved too fragile when
using a more general assertion logic” [BCI11, p. 182]. They thus proposed to
take formulas “modulo provable equality” into account which appears in part
to be an axiomatization of isomorphism.

While rewriting has a less prominent rule in modern tools for reasoning
about separation logic—which rely more heavily on SMT solvers (see, e.g.,
[PR13; GCW16; Ta+16; Ene+17b; IS18; LSQ18])—it appears in proof systems
in the form of fold and unfold rules to deal with inductive predicates (cf. for
instance, [BDP11; Chi+12]).

The Infer [CD11; Cal+11] static analyzer is perhaps the most prominent tool
using separation logic for automatic verification. It automatically synthesizes
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specifications in order to prove memory safety on industrial codebases in a fully
automatic fashion. However, it does not support reasoning about the kind of
temporal specifications considered by Attestor, such as “every element of a
doubly-linked list has been accessed upon termination”.

Forester Forester [Hol+13] is a shape analysis tool for C programs, that oper-
ates on the domain of generalized tree automata. It combines the local reasoning
aspects of separation logic with abstract regular tree model checking [Bou+12].
The tool is fully automatic. In contrast to Attestor, it tries to detect the data
structures emerging from the analyzed programs. Although the theoretical
approach would allow for richer properties, Forester is limited to checking
memory safety only. Forester is a long-term participant in the heap-related cat-
egories of SV-COMP and comes with a library of benchmarks. After transferring
these benchmarks to Java, Attestor was not only able to cover large amounts
of them, but also showing additionally shape and reachability properties.

TVLA The Three-Valued-Logic Analyzer (Tvla) [Bog+07] implements a pop-
ular abstraction technique for pointer programs, namely parametric shape
analysis [SRW99; SRW02]. It is capable of proving memory safety, shape proper-
ties, reachability properties, and sortedness of data structures. Most of these are
derivable from Attestor’s heap representation. Tvla relies on user-supplied
instrumentation predicates to improve the analysis, in particular to refine the
abstract heap representation. For example, to verify Lindstrom’s algorithm,
24 predicates were used [LRS06]. A key difference is that Attestor’s heap
representation is not tailored to a specific property. Rather, the graph grammars
guiding abstraction are applicable to a wide range of properties.

Groove The Groove tool [Gha+12] implements a technique for verifying graph
transformation systems based on model checking. While it supports an au-
tomatic state space generation, the integration of abstraction mechanisms is
still ongoing. As already noted in [Hei+15], Groove is capable of simulating
Attestor’s abstraction mechanism by manually encoding it in graph transfor-
mation systems. This manual approach allowed us to verify a non-recursive
list reversal in a reasonable amount of time. However, we were unable to apply
Groove to more complicated case studies, such as Lindstrom’s algorithm.2

2The encoding was developed together with Victor Lanvin from ENS Cachan during his time as
an intern at RWTH Aachen and Christina Jansen.





Chapter 11

Automated Reasoning about Robustness of Symbolic Heaps

This chapter is based on prior publications, namely [2; 19; 9], which are presented,
discussed, and extended in the broader context of this thesis.

To handle a wide range of data structures in separation logic assertions, there is
an ongoing trend to support custom systems of inductive definitions (SID for
short, see Definition 10.16) that are either defined manually [Jac+11; Chi+12]
or inferred automatically [BG14]. Allowing for arbitrary SIDs, however, raises
questions about their robustness. A user-supplied or automatically generated SID
might, for example, be inconsistent, introduce unallocated logical variables, specify
data structures that contain undesired cycles, or produce garbage, i.e., parts of
the heap that are unreachable from any program variable.

The above issues can harm the performance, completeness, and even sound-
ness of verification algorithms:

• Brotherston et al. [Bro+14] point out that tools might waste time on incon-
sistent scenarios due to the unsatisfiability of specifications.

• The absence of unallocated logical variables, also known as establishment, is
required by the approach of Iosif et al. [IRS13; IRV14] to obtain a decidable
fragment of symbolic heaps.

• Other verification approaches, such as [Hab+11; Hab+12], assume that no
garbage is introduced by data structure specifications.

• Zanardini and Genaim [ZG14] argue that acyclicity of the heap is crucial in
automated termination proofs.

• More generally, Berdine, Calcagno, and O’Hearn [BCO04] notice that
“one of the most treacherous passes in pointer verification and analysis
is reachability. To describe common loop invariants, and even some pre-
and postconditions, one needs to be able to assert that there is a path in
the heap from one value to another; a fragment that cannot account for
reachability in some way will be of very limited use”.

289
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Being able to check whether an SID is robust in the above sense is thus crucial for
debugging specifications prior to verification and during the verification process
itself. While individual robustness properties have been studied in detail, e.g.,
satisfiability [Bro+14], other properties, such as establishment [IRS13], have been
addressed with ad-hoc solutions whenever they arose.

Motivating Example Let us consider the problem of acyclicity. That is, we
would like to decide whether all stack-heap pairs satisfying a symbolic heap
ϕ—whose predicate calls are determined by the SID Ψasll below—are acyclic.

Ψasll , { asll ⇐ x, y −−x = y, asll ⇐ x, y −−x.next 7→ z −−asll(z, y) −−x 6= y }

Intuitively, Ψasll specifies acyclic singly-linked lists with head x and tail y, where
the inequality x 6= y ensures acyclicity. Now, assume we have to decide whether

ϕ , z.next 7→ y −−asll(x, z), asll(y, x)

is acyclic as well. We can do so by inductive reasoning as follows:

• We first analyze the predicate call asll(x, z). If it is unfolded according
to the first rule of Ψasll, then there is no cycle in asll(x, z). Moreover, we
notice that z is reachable from x.

• If we already know for some predicate call asll(x′, z) that all stack-heap
pairs satisfying it are acyclic and that z is reachable from x′, then z is also
reachable from x in the symbolic heap

ψ , x, z −−x.next 7→ x′ −−asll(x′, z) −−x 6= z

obtained by unfolding the predicate call asll(x, z) according to the second
rule of Ψasll. Furthermore, we notice that ψ is acyclic.

• By induction, asll(x, z) is thus acyclic and z is reachable from x.

• Likewise, asll(y, x) is acyclic and x is reachable from y.

• Now, based on this information, we examine the symbolic heap ϕ and
conclude that it is cyclic because z is reachable from x, y is reachable from
z, and x is reachable from y.

In summary, we examine how a symbolic heap is unfolded with respect to an
SID bottom-up, starting from the non-recursive base-case. At each stage of this
analysis, we remember only a fixed amount of information—namely what we
discovered about acyclicity and reachability between parameters so far—which
is then available at the next stage.
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Other questions arise for the above example. For instance, how does a
stack-heap pair serving as a counterexample to acyclicity look like? How do
we obtain a new SID that does guarantee acyclicity? A systematic treatment of
robustness properties should cover these tasks in general, not just for acyclicity.

Problem Statement We are confronted with the following challenges:

1. Decision procedures for robustness properties. SIDs specify potentially un-
bounded data structures; typically, they thus specify infinitely many stack-
heap pairs. Our decision procedures need to be able to decide whether all,
or some, of these stack-heap pairs satisfy a given robustness property.

2. Generation of counterexamples that violate a desired robustness property.

3. Refinement of SIDs. Whenever an SID violates a robustness property, it
should be possible to synthesize a new SID that respects it.

To address these tasks, we develop an algorithmic framework around the notion
of heap automata—a special kind of tree automata [Com+07] running on infinite
alphabets—that traverses symbolic heaps as they are unfolded according to the
rules of an SID. Intuitively, heap automata exploit the inductive structure inher-
ent to SIDs in order to compositionally recognize robustness properties. We then
derive suitable decision and refinement procedures from their properties, e.g.,
closure under Boolean operations and decidability of the emptiness problem.

Outline We study heap automata and their properties in Section 11.1. From
these properties, we then derive decision procedures and analyze their com-
plexity. The resulting algorithmic framework is applied to the aforementioned
robustness properties in Section 11.2. Finally, we briefly report on a prototypical
implementation of our framework in Section 11.3.

11.1 An Algorithmic Framework for Robustness Properties

In this section, we study reasoning about robustness properties. By robustness
property, we mean any set of symbolic heaps which is accepted by a heap
automaton, i.e., a device that recognizes symbolic heaps as they are unfolded.

11.1.1 Unfolding Trees

Towards a precise definition of heap automata, we first arrange the unfolding
steps (see Definition 10.20) applied to derive an unfolding from a symbolic
heap in unfolding trees. To this end, a few preliminaries regarding labeled trees
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are needed. Our presentation of these preliminaries is roughly based on the
standard textbook on tree automata by Comon et al. [Com+07].

A ranked alphabet is a (possibly infinite) set RA with an associated function

rank : RA→N

that assigns a rank to each symbol in RA. For every n ∈N, we denote by RAn

the set of all symbols of rank n, i.e., RAn , { a ∈ RA | rank(a) = n }.
We consider the set SHSL of all symbolic heaps as a ranked alphabet, where

rank(ϕ) is the rank of the symbolic heap ϕ is given by its number of predicate
calls. That is, rank(ϕ) , |PC(ϕ)|. Consequently, the set SHSL0 collects all
symbolic heaps that contain no predicate calls and thus cannot be further
unfolded by applying SID rules. We arrange symbols over a ranked alphabet in
trees, where a symbol’s rank determines its number of children. Formally:

Definition 11.1 (Trees [Com+07, pp. 15–17]) Let RA be a ranked alphabet.

(a) A tree over RA is a partial function t : N∗ → RA such that

• dom(t) is non-empty,

• dom(t) is prefix-closed, i.e., if uv ∈ dom(t), then u ∈ dom(t), and

• ∀u : t(u) ∈ RAn implies { i ∈N | ui ∈ dom(t) } = { 1, . . . , n }.

(b) We denote by Trees(RA) the set of all trees over RA.

(c) The subtree t|u of tree t with root u ∈ dom(t) is defined as

dom(t|u) , { v | u v ∈ dom(t) } , t|u(v) , t(uv).

(d) The height h(t) of a tree t ∈ Trees(RA) is given by

h(t) ,

{
1, if rank(t(ε)) = 0
1 + max { h(t|1), . . . , h(t|n) } , if rank(t(ε)) = n > 0.

(e) For each a ∈ RA0, we identify a with the tree t given by t(ε) = a.

(f) Analogously, for each n > 0, a ∈ RAn, and t1, . . . , tn ∈ Trees(RA), we
identify the term a(t1, . . . , tn) with the tree t given by

t(ε) = a, t|1 = t1, . . . , t|n = tn.
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Figure 11.1: Illustration of trees t1 and t2 and their domains.

Example 11.2 As a running example, let us consider trees over the ranked
alphabet SHSL. To this end, we define the following symbolic heaps:

• ϕ , x, y −−z.next 7→ z′ −−asll(x, z), asll(z′, y) ∈ SHSL2,

• ψ , x, y −−x.next 7→ z −−asll(z, y) −−x 6= y ∈ SHSL1,

• ϑ , x −−x.left 7→ 0, x.right 7→ 0 ∈ SHSL0, and

• η , x, y −−x = y ∈ SHSL0.

Figure 11.1 depicts two trees t1, t2 over SHSL together with their domains.
In our alternative notation for trees, these correspond to:

t1 = ϕ(ψ(ϑ), ϕ(ψ(η), ψ(η))) and
t2 = ϕ(ψ(η), ψ(η)).

Furthermore, notice that t2 is a subtree of t1, namely t2 = t1|2.

Our primary motivation for introducing trees over SHSL is to systematically
describe the unfolding steps applied to derive an unfolding of a symbolic heap,
say ϕ, with respect to an SID, say Ψ (cf. Definitions 10.20 and 10.21). Intuitively,
such a tree t has ϕ at its root, i.e., t(ε) = ϕ. Moreover, every child corresponds
to the right-hand side of a rule of Ψ which is used to unfold a predicate call of
ϕ. Their children, in turn, are used to unfold predicate calls introduced through
previous rule applications. We call trees with this property unfolding trees.
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Definition 11.3 (Unfolding Trees [2]) Let Ψ be an SID and ϕ be a symbolic
heap. Then the set TreesΨ(ϕ) of unfolding trees of ϕ with respect to Ψ is the
least set of trees in Trees(SHSL) defined by:

• if PC(ϕ) = ∅, then ϕ ∈ TreesΨ(ϕ), and

• if PC4(ϕ) =
〈

P1(~E1), . . . , Pn(~En)
〉

and, for each i ∈ [1, n], we have
ψi ∈ Ψ(Pi) and ti ∈ TreesΨ(ψi), then ϕ(t1, . . . , tn) ∈ TreesΨ(ϕ).

Example 11.4 Recall from Example 11.2 the symbolic heaps ϕ, ψ, ϑ, and η.
Then the tree t2 in Figure 11.1 is an unfolding tree of ϕ with respect to the
SID Ψasll consisting of the rules below:

asll ⇐ x, y −−x = y︸ ︷︷ ︸
= η

and asll ⇐ x, y −−x.next 7→ z −−asll(z, y) −−x 6= y︸ ︷︷ ︸
= ψ

.

The tree t1 in Figure 11.1, however, is not an unfolding tree for any SID,
because it contains ψ(ϑ) as a subtree: The predicate call asll(z, y) in ψ
contains two parameters. In contrast, the symbolic heap ϑ has only a single
free variable. It thus cannot be an unfolding tree of asll(z, y).

Every unfolding tree describes a unique (up to isomorphism) unfolding which is
obtained by recursively substituting predicate calls by the unfoldings specified
by its subtrees:1

Definition 11.5 (Composition of Unfolding Trees [2]) Let ϕ be a symbolic
heap with PC4(ϕ) =

〈
P1(~E1), . . . , Pn(~En)

〉
for some n ≥ 0. Then the

composition JtK of unfolding tree t ∈ TreesΨ(ϕ) is the symbolic heap

JtK ,

{
ϕ, if t = ϕ

ϕ
[
P1(~E1)

/
Jt1K

]
. . .
[
Pn(~En)

/
JtnK

]
, if t = ϕ(t1, . . . , tn).

Example 11.6 The composition Jt2K of the unfolding tree t2 considered
in Example 11.4 is computed as follows:

Jt2K
= J Definition 11.5 K

1We can safely assume that existentially quantified variables are renamed before applying
predicate substitution to avoid name clashes due to Assumption 10.15.
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Figure 11.2: Illustration of a context t and the substitution by the tree t2.

ϕ [asll(x, z)
/
Jψ(η)K]

[
asll(z′, y)

/
Jψ(η)K

]
= J Definition 11.5 K

ϕ
[
asll(x, z)

/
ψ [asll(z, y)

/
JηK]

] [
asll(z′, y)

/
ψ [asll(z, y)

/
JηK]

]
= J Definition 11.5 (JηK = η) K

ϕ
[
asll(x, z)

/
ψ [asll(z, y)

/
η]
] [

asll(z′, y)
/

ψ [asll(z, y)
/

η]
]

=
q

Definition 10.18 (ψ [asll(z, y)
/

η] = x, y −−x.next 7→ z −−z = y −−x 6= y)
y

x, y −−z.next 7→ z′, x.next 7→ z′′, z′.next 7→ z′′′ −−z′′ = z, z′′′ = y −−x 6= z, z′ 6= y

=
q

Remove quantified variables z′′ and z′′; reorder points-to assertions
y

x, y −−x.next 7→ z, z.next 7→ z′, z′.next 7→ y −−x 6= z, z′ 6= y.

Recall from Definitions 10.20 and 10.21 that the set UnfΨ(ϕ) of unfoldings of
symbolic heap ϕ with respect to SID Ψ is obtained by exhaustive application
of unfolding steps. A more structured alternative to characterize the same set
is to compute the composition of all unfolding trees in TreesΨ(ϕ). In fact, the
semantics of symbolic heaps is occasionally defined via unfolding trees in the
literature, e.g., in [IRS13; IRV14; 2]. This is justified by the lemma below.

Lemma 11.7 ([2]) For every SID Ψ and every symbolic heap ϕ, we have

UnfΨ(ϕ) = { JtK | t ∈ TreesΨ(ϕ) }

Proof. The inclusion “⊆” is shown by complete induction on the length of
the number of unfolding steps.

The inclusion “⊇” is proven similarly by induction on the height of
unfolding trees. �
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Finally, it is convenient to extend a given tree such that the original tree is as a
subtree of the extended one. To this end, a context is a tree with a “hole”, i.e., a
symbol ♦ of rank zero, at which some subtree may be inserted. Formally:

Definition 11.8 (Contexts [Com+07, p. 17]) Let RA be a ranked alphabet.
Moreover, let ♦ be a special symbol of rank zero which is not in RA.

(a) A (linear) context over RA is a tree t ∈ Trees(RA ∪ {♦ }) such that
there exists exactly one u ∈ dom(t) with t(u) = ♦.

(b) We denote by t [♦
/

t′] the substitution of ♦ by the tree t′ ∈ Trees(RA)
in context t. That is, if t(u) = ♦, then we define:

dom(t
[
♦
/

t′
]
) , dom(t) ∪

{
uv
∣∣ v ∈ dom(t′)

}
,

t
[
♦
/

t′
]
(v) ,

{
t(v), if v ∈ dom(t) \ { u }
t′(w), if v = uw.

Example 11.9 Recall from Example 11.2 the trees t1 and t2 over the symbolic
heaps ϕ, ψ, ϑ, and η. As illustrated in Figure 11.2, there is a context t such
that the tree t1 results from substituting the symbol ♦ by the tree t2 in t.

11.1.2 Heap Automata

A heap automaton is a device that traverses an unfolding tree in order to check
whether its composition satisfies a property of interest. As such it is a special
kind of (bottom-up) tree automaton (cf. [Com+07, Section 1.1]) running on an
infinite ranked alphabet. Let us thus briefly consider tree automata first:

Definition 11.10 (Tree Automata [Com+07]) A tree automaton A is a tuple

A , 〈 Q, RA,F , ∆ 〉 ,

where Q is a finite ranked alphabet of states of rank zero, RA is a ranked
alphabet which is disjoint from Q, F ⊆ Q is a set of final states, and ∆ is a
(decidable) set of transition rules of the form

a(q1, . . . , qn)→ q,

where a ∈ RA with rank(a) = n ≥ 0, and q, q1, . . . , qn ∈ Q.

Notice that the ranked alphabet RA is in general not finite. To discharge whether
a transition rule is possible, we thus assume that the set ∆ is characterized by
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ϕ
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η
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qsll

ϕ

qsll qsll qϕ ∈ F

Figure 11.3: Illustration of the moves proving that t ∗−→A qϕ.

a decidable predicate. Intuitively, a tree automaton rewrites a given tree by
iteratively applying its transition rules. That is, it first substitutes every symbol
of rank zero, say b, by one of its states, say q, provided that it contains a
transition rule b → q. After that, the automaton keeps replacing subtrees of
the form a(q1, . . . , qn) according to its transition rules until either only a tree
consisting of a single state q ∈ Q remains or no further rule is applicable.

Definition 11.11 (Moves and Languages [Com+07]) LetA , 〈 Q, RA,F , ∆ 〉
be a tree automaton. Moreover, let t, t′ ∈ Trees(RA ∪Q) be trees over RA
and Q. Then A may perform a move t →A t′ from t to t′ iff there exists a
context t′′ over RA and a transition rule a(q1, . . . , qn)→ q ∈ ∆ such that

• t = t′′ [♦
/

a(q1, . . . , qn)], and

• t′ = t′′ [♦
/

q].

We denote by ∗−→A the reflexive, and transitive closure of move relation→A.
Furthermore, the language L(A) of tree automaton A consists of all trees
accepted by A, i.e., all trees such that A can eventually move to a final state:

L(A) ,
{

t ∈ Trees(RA)
∣∣∣ ∃q ∈ F : t ∗−→A q

}
.

Example 11.12 Recall from Example 11.2 the symbolic heaps ϕ, ψ, η. More-
over, consider the tree automaton A = 〈 Q, SHSL,F , ∆ 〉 given by:

• the set of states Q ,
{

qsll, qϕ

}
, the set of final states F ,

{
qϕ

}
, and

• the transition rules ∆ ,
{

η → qsll, ψ(qsll)→ qsll, ϕ(qsll, qsll)→ qϕ

}
.

Figure 11.3 illustrates how A moves through the unfolding tree t2 ∈
TreesΨasll(ϕ) from Example 11.4 to the final state qϕ. Hence, t2 ∈ L(A). In
fact, the language of A consists of all unfolding trees of ϕ with respect to
SID Ψasll, i.e., L(A) = TreesΨasll(ϕ).
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More generally, for every SID Ψ and every symbolic heap ϕ, it is possible to
construct a tree automaton A = 〈 Q, SHSL,F , ∆ 〉 whose language L(A) is the
set TreesΨ(ϕ) of unfolding trees of ϕ with respect to Ψ: Its set of states consists
of all predicate symbols of SID Ψ and a dedicated state corresponding to ϕ, i.e.,

Q , PSym(Ψ) ∪
{

qϕ

}
.

Furthermore, its set of final states is F =
{

qϕ

}
. Finally, its set of transition

rules ∆ is the least set determined by:

• if PC4(ϕ) =
〈

P1(~E1), . . . , Pn(~En)
〉

, then ∆ contains the transition rule
ϕ(P1, . . . , Pn)→ qϕ, and

• if ψ ∈ SHSLn with PC4(ψ) =
〈

P1(~E1), . . . , Pn(~En)
〉

and there exists a
rule (P ⇐ ψ) ∈ Ψ, then ∆ contains the transition rule ψ(P1, . . . , Pn)→ P.

In the above construction, we introduced one transition rule per rule of SID Ψ.
Moreover, we added a single rule to move to the unique final state. Consequently,
the size ‖A‖ (cf. Assumption 10.4) of the resulting tree automaton is linear in
the size of Ψ and ϕ. Since the emptiness problem for (finite) tree automata is
decidable in linear time (cf. [Com+07, Theorem 1.7.4]), we conclude that:

Lemma 11.13 For every SID Ψ and every symbolic heap ϕ, it is decidable
in O (‖Ψ‖+ ‖ϕ‖) whether TreesΨ(ϕ) = ∅ holds.

Our ultimate goal is to reason about properties of symbolic heaps rather than their
unfolding trees. Tree automata are in general not suited to describe properties
of symbolic heaps. After all, there might be two different unfolding trees, say
t1 and t2, with respect to different SIDs whose composition leads to the same
symbolic heap ψ, i.e., ψ ∼= Jt1K ∼= Jt2K. Now, if a tree automaton A accepts
t1, but not t2, does this mean that the symbolic heap ψ satisfies the property
specified by A? To circumvent such phenomena, one could restrict the SIDs
under consideration: If no SID admits the unfolding tree t2, it seems reasonable
to conclude that ψ satisfies the property specified by tree automaton A.

Definition 11.14 (Unfoldable Symbolic Heaps) For a set C of SIDs, we de-
note by SHC the set of all symbolic heaps that can be obtained via unfolding
with respect to some SID in C. That is,

SHC ,
{

ϕ

∣∣∣∣ ∃Ψ ∈ C ∃P(~E) : P ∈ PSym(Ψ) and P(~E) ∗⇐=
Ψ

ϕ

}
.
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For example, we often consider the set FV≤k of all SIDs in which the number of
free variables in all rules is bounded by some natural number k.

Unfortunately, even if we take only a single SID into account, we encounter
undesirable phenomena: Recall from Example 11.12 the tree automaton A
accepting all unfolding trees of symbolic heap ϕ with respect to the SID Ψasll.
We may conceive A as a tree automaton over the ranked alphabet SH {Ψasll }.
Moreover, as illustrated in Figure 11.3, there is a tree t2 accepted by A. We have
already computed the composition Jt2K of t2 in Example 11.6. Clearly, Jt2K is a
symbolic heap of rank zero in SH {Ψasll }; in particular, we may use it as a tree
itself. However, the tree given by Jt2K is not accepted by A. In other words, we
still have to reason about unfolding trees rather than symbolic heaps. The same
issue propagates to subtrees of unfolding trees: If the tree ϕ(t, t′) is accepted by
A, this does not guarantee that the tree ϕ(JtK, Jt′K) is accepted by A as well.

To reason about properties of symbolic heaps, we thus restrict ourselves
to tree automata that do not discriminate between unfolding trees and their
composed symbolic heaps. We call such devices heap automata:

Definition 11.15 (Heap Automata and Robustness Properties) Let C be a
set of SIDs. A heap automaton over C is a tree automaton

A , 〈 Q, SHC,F , ∆ 〉

that additionally satisfies the following compositionality property:

∀Ψ ∈ C ∀t ∈ TreesΨ(SHC) ∀q ∈ Q : t ∗−→A q iff JtK→A q.

Furthermore, the robustness property JL(A)K specified by heap automaton A
consists of all compositions of trees in the language of A, i.e.,

JL(A)K , { JtK | t ∈ L(A) } .

The compositionality property automatically holds for every tree t of height
zero because JtK coincides with t. In fact, a simple induction on the height of
unfolding trees reveals that it suffices to consider trees of height one in order to
check whether the compositionality property holds. This leads to the equivalent,
but less readable, notion of the compositionality property originally presented
in [2; 19, Definition 6].
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t2 =

ϕ

ψ

η

ψ

η

∗−→A
∗−→A

∗−→A

ϕ

ψ

0

ψ

0

ϕ

1 1 1

Figure 11.4: Illustration of the moves proving that t2
∗−→A 1.

Example 11.16 Let us construct a heap automaton A which checks whether
a symbolic heap contains points-to assertions. To this end, let C be the set
of all SIDs, i.e., SHC = SHSL. The heap automaton A is then defined as

A , 〈 { 0, 1 } , SHSL, { 1 } , ∆ 〉 ,

where the state 0 indicates that a symbolic heap contains no and the state
1 indicates that a symbolic heap contains at least one points-to assertion,
respectively. Moreover, the set ∆ of transition rules is given by:

ψ(q1, . . . , qn)→ q iff q =

{
1, if |PT(ψ)|+ ∑n

i=1 qi > 0
0, otherwise.

While A is a toy example, it illustrates the compositionality property. After
all, some symbolic heap in an unfolding tree contains a points-to assertion
iff the tree’s composition contains a points-to assertion as well.

More concretely, recall from Examples 11.2 and 11.6 the unfolding tree
t2 and its composition Jt2K. Clearly, Jt2K →A 1. Moreover, as illustrated
in Figure 11.4, page 300, we have t2

∗−→A 1.

11.1.3 Reasoning about Robustness Properties

Our main application of heap automata is to reason about robustness properties,
i.e., infinite sets of symbolic heaps. Given a heap automaton A, symbolic heap ϕ,
and SID Ψ, we would thus like to answer the following questions:

1. Does there exist an unfolding of ϕ with respect to Ψ that is accepted by A?

2. Are all unfoldings of ϕ with respect to Ψ accepted by A?

To answer these questions, let us begin with a special case of the first question
in which ϕ is a single predicate call. The key idea behind our corresponding
decision procedure is to refine the SID Ψ in a way such that all unfoldings which
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are not accepted by A are filtered out. The theorem below guarantees that such a
refinement is always computable (cf. [2, Theorem 1]).

Theorem 11.17 (Refinement Theorem [2]) Let A be a heap automaton over
the set of SIDs C. Moreover, let Ψ ∈ C. Then one can effectively construct a
refined SID Γ such that, for each predicate symbol P ∈ PSym(Ψ), we have

UnfΓ(P(~x)) = UnfΨ(P(~x)) ∩ JL(A)K.

Proof. We construct the SID Γ as follows: For every rule (P ⇐ ϕ ∈ Ψ) and
every transition rule ϕ(q1, . . . , qn)→ q of heap automaton A with

PC4(ϕ) =
〈

P1(~E1), . . . , Pn(~En)
〉

,

we add a rule 〈P, q 〉 ⇐ ψ to Γ, where the symbolic heap ψ coincides with
ϕ except that its predicate calls are given by:

PC4(ψ) =
〈
〈P1, q1 〉 (~E1), . . . , 〈Pn, qn 〉 (~En)

〉
.

Furthermore, for each final state q of heap automaton A, we add a rule
P ⇐ 〈P, q 〉 (~x) to Γ. To show that our construction of Γ is correct, it suffices
to prove by induction on the height of unfolding trees that, for all predicate
symbols P ∈ PSym(Ψ) and states q of heap automaton A, we have:

ϕ ∈ UnfΓ(P(~x)) iff ϕ ∈ UnfΨ(P(~x)) and ϕ ∈ JL(A)K.

A detailed proof is found in [19, Lemma 14]. �

Example 11.18 Applying the refinement theorem to the heap automaton A
and the SID Ψasll in Examples 11.4 and 11.16 yields the refined SID Γ below,
where asll specifies all non-empty acyclic singly-linked list segments.

asll ⇐ x, y −− 〈 asll, 1 〉 (x, y)
〈 asll, 0 〉 ⇐ x, y −−x = y
〈 asll, 1 〉 ⇐ x, y −−x.next 7→ z −− 〈 asll, 0 〉 (z, y) −−x 6= y
〈 asll, 1 〉 ⇐ x, y −−x.next 7→ z −− 〈 asll, 1 〉 (z, y) −−x 6= y

To answer the first question raised at the beginning of this section, it then suffices
to refine a given SID and subsequently check whether its set of unfolding trees
is non-empty. By Theorem 11.17, we can always compute a suitable refined SID.
Moreover, by Lemma 11.13, the last step is decidable. Hence, the first question
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Input: SID Ψ, P ∈ PSym(Ψ), and heap automaton A = 〈 Q, SHC,F , ∆ 〉
Output: yes iff UnfΨ(P(~x)) ∩ JL(A)K = ∅

reachable := ∅ ; // set of reachable refined states

repeat {
if ( reachable ∩ ({P } × F ) 6= ∅ ) { return no } ;
pick a state q in Q ; pick a rule R ⇐ ψ in Ψ ;
states := ε ; // empty list of states

for P′(~E) in PC4(ψ) { // base case if PC4(ψ) = ε

pick 〈P′, p 〉 in reachable ;
states := states · p // append p to states

} ;
if (ψ(states)→ q in ∆ ) {

reachable := reachable∪ { 〈Q, q 〉 } ;
}

} until reachable reaches a fixed point (w.r.t. all choices of rules);
return yes

Algorithm 1: On-the-fly construction of a refined SID with emptiness check.

is decidable. To extend this result from unfoldings of single predicate calls to
unfoldings of arbitrary symbolic heaps ϕ, we just add a rule P ⇐ ϕ to our SID,
where P is a fresh predicate symbol, and proceed as before. In summary:

Corollary 11.19 (Decidability of Existence of Robust Unfoldings [2]) LetA
be a heap automaton over a set of SIDs C and Ψ ∈ C. Then, for each sym-
bolic heap ϕ ∈ SHC, it is decidable whether there exists an unfolding
ψ ∈ UnfΨ(ϕ) such that ψ ∈ JL(A)K.

The refinement and emptiness check can also be integrated: Algorithm 1 displays
a procedure that constructs the refined SID Γ from Theorem 11.17 on-the-fly
while checking whether its set of unfoldings is empty for a given predicate
symbol. Termination is guaranteed because the size of the set reachable increases
in every iteration and is bounded by the finite number of predicate symbols and
the finite number of states of the supplied heap automaton.

Regarding complexity, the size of a refined SID Γ obtained from Ψ and a
heap automaton A is bounded by ‖Ψ‖ · ‖QA‖m+1, where m is the maximal
number of predicate calls occurring in any rule of Ψ. Consequently, if we denote
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by ‖∆A‖ the complexity of deciding whether a given transition rule belongs to
the set of transition rules of heap automaton A, then Algorithm 1 runs in time

O
(
‖Ψ‖ · ‖QA‖m+1 · ‖∆A‖

)
.

While we do not give a lower complexity bound, we show in Section 11.2 that
the above problem is ExpTime-complete for various fixed heap automata.

Example 11.20 Let us apply Algorithm 1 to check whether all unfoldings
of the predicate asll defined in Example 11.4 contain no points-to assertions.
That is, for the heap automaton A in Example 11.16, we decide whether

UnfΨasll(asll(x, y)) ∩ JL(A)K = ∅.

Algorithm 1 first picks the rule asll ⇐ η, where the symbolic heap η =
x, y −−x = y contains no points-to assertions. It consequently adds the
predicate symbol 〈 asll, 0 〉 to the set reachable of reachable predicate-state
pairs. In the next iteration, it picks the rule

asll ⇐ ψ , x, y −−x.next 7→ z −−asll(z, y) −−x 6= y.

Since 〈 asll, 0 〉 ∈ reachable, the sequence states is set to 0 in the for loop.
After that, we conclude that ψ(states) → 1 is a transition rule in ∆. Next,
the refined predicate symbol 〈 asll, 1 〉 is added to the set reachable. Finally,
no is returned because 1 is a final state of A, i.e.,

〈 asll, 1 〉 ∈ reachable∩ ({ asll } × F ) 6= ∅.

Consequently, some unfolding of asll is accepted by A.

We now revisit the second question raised at the beginning of this section: Are
all unfoldings of a symbolic ϕ heap with respect to an SID Ψ accepted by a given
heap automaton? To answer this question, we first observe that heap automata
enjoy the same closure properties as standard finite tree automata.

Theorem 11.21 (Closure Properties [2]) For all heap automata A, B over C,
we can construct heap automata C∪, C∩, and C\ over C such that:

(a) JL(C∪)K = JL(A)K∪ JL(B)K,

(b) JL(C∩)K = JL(A)K∩ JL(B)K, and

(c) JL(C\)K = SHC \ JL(A)K.
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Proof. The construction of suitable heap automata is analogous to standard
constructions for finite tree automata (over finite alphabets). Notice, however,
that the correctness of these constructions depends on the fact that we
consider heap automata rather than arbitrary tree automata over infinite
alphabets. In particular, to prove that the constructed automata yield the
required robustness property, it suffices to consider symbolic heaps of rank
zero due to the compositionality property. Detailed constructions as well as
correctness proofs are found in [19, Theorem 2]. �

Then, by the equivalence X ⊆ Y iff X ∩ (SHC \Y) = ∅ and Corollary 11.19, it
is also decidable whether all unfoldings of a symbolic heap with respect to a
given SID are accepted by a heap automaton. Hence:

Corollary 11.22 (Decidability of Robust Unfolding Inclusion [2]) LetA be
a heap automaton over a set of SIDs C and Ψ ∈ C. Then, for each symbolic
heap ϕ ∈ SHC, it is decidable whether UnfΨ(ϕ) ⊆ JL(A)K holds.

Note that complementation of heap automata in general requires a determiniza-
tion step which results in an exponentially larger state space and an exponen-
tially higher complexity of evaluating whether a transition rule belongs to ∆A.
Thus, the question whether UnfΨ(ϕ) ⊆ JL(A)K holds is decidable in time

O
(
(‖ϕ‖+ ‖Ψ‖) · ‖2QA‖2·(m+1) · ‖∆A‖

)
,

where, again, m denotes the maximal number of predicate calls in both ϕ and
all rules in Ψ. In many cases, however, it is possible to directly construct smaller
heap automata for the complement to obtain more efficient decision procedures.
For example, this is the case for most heap automata considered in Section 11.2.
We do not provide a precise lower complexity bound which depends on the form
of (infinite) sets of transition rules admitted in the definition of heap automata.
However, we show in Section 11.2 that the above problem is ExpTime-complete
for various fixed instances of heap automata.

Apart from decision procedures, Theorem 11.17 enables systematic refine-
ment of SIDs in order to establish a robustness property of interest. For instance,
in Section 11.2.2 we will construct a heap automaton accepting all satisfiable
symbolic heaps. Consequently, it is possible to construct a refined SID in which
every unfolding is satisfiable. If a robustness property is violated, a counterex-
ample is obtained by constructing the refined SID of the complement of its
corresponding heap automaton. In this sense, heap automata also support
debugging of SIDs that are manually written as data structure specifications or
automatically generated.
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11.2 A Zoo of Robustness Properties

Heap automata are widely applicable to both decide and establish common
properties of SIDs. To justify this claim, we construct heap automata for the
robustness properties informally presented at the beginning of this chapter:
satisfiability, establishment, reachability, garbage-freedom, and acyclicity.

Assumption 11.23 All of our heap automata are constructed over the set
FV≤k of SIDs in which, for some arbitrary, but fixed constant k ∈ N, the
number of free variables in all symbolic heaps is bounded by k. To simplify
notation, we additionally fix the names of these free variables. That is, we
assume for every symbolic heap ϕ that Vars (ϕ) ⊆ Varsk , { x1, . . . , xk }
and BV(ϕ) ∩ Varsk = ∅. Furthermore, given a set of equalities EQ, we
denote by EQk, the set of equalities over variables in Varsk or 0, i.e.,

EQk ,
{
(E = E′) ∈ EQ

∣∣ E, E′ ∈ Varsk ∪ { 0 }
}

.

Analogously, NEk denotes the same restriction for a set of inequalities NE.

11.2.1 Tracking Pure Formulas and Allocation

Consider the symbolic heap

ϕ , x1, x2 −−P(x1, x2), Q(x2, z) −−x1 = z.

Clearly, ϕ is unsatisfiable if x1 = x2 holds for every unfolding of P(x1, x2) and
x2 6= z holds for every unfolding of Q(x2, z). Moreover, ϕ is unsatisfiable if
variable x1 is allocated, i.e., appears on the left-hand side of a points-to assertion,
in every unfolding of P(x1, x2) and variable z is allocated in every unfolding of
Q(x2, z): ϕ requires that x1 = z, but x1 7→ − ? z 7→ − implies x1 6= z.

The above example illustrates that reasoning about the satisfiability of sym-
bolic heaps requires detailed knowledge about the relationships between pa-
rameters for all unfoldings of predicate calls. We thus first construct a heap
automaton which keeps track of these relationships. This automaton is also a
useful building block when considering other robustness properties.

We begin with symbolic heaps in SHFV≤k
0 , i.e., symbolic heaps ϕ with at

most k free variables and no predicate calls (rank(ϕ) = 0). In this case, all
relationships between variables of a symbolic heap ϕ are discovered as follows:

First, observe that every points-to assertion x.sel 7→ E implies x 6= 0. Further-
more, every separating conjunction of points-to assertions x.sel 7→ E ? y.sel 7→ E′

implies x 6= y. After adding these inequalities to the set of inequalities NE(ϕ),
we compute the reflexive, symmetric, and transitive closure of its set of equalities
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EQ(ϕ). Finally, we compute the symmetric closure of the set of inequalities
NE(ϕ) to which we additionally add an inequality E 6= E′ whenever the previ-
ously computed set of equalities contains E = E1 and E′ = E2 such that E1 6= E2
is in NE(ϕ). We call the resulting symbolic heap the closure of ϕ:

Definition 11.24 (Closure of Rank-Zero Symbolic Heaps) The closure

ϕ , Vars4(ϕ) −−PT(ϕ) −−EQ −−NE

of a symbolic heap ϕ of rank zero is given by the smallest (with respect to
set inclusion ⊆) sets EQ and NE satisfying the following rules:

• EQ(ϕ) ⊆ EQ and NE(ϕ) ⊆ NE,

• if x.sel 7→ E ∈ PT(ϕ), then x 6= 0 ∈ NE,

• if {{ x.sel 7→ E, y.sel 7→ E′ }} ⊆ PT, then x 6= y ∈ NE,

• if E ∈ Vars (ϕ) ∪ BV(ϕ) ∪ { 0 }, then E = E ∈ EQ,

• if E = E′ ∈ EQ and E′ 6= E′′ ∈ NE, then E 6= E′′ ∈ NE,

• if E = E′, E′ = E′′ ∈ EQ, then E = E′′ ∈ EQ,

• if E = E′ ∈ EQ, then E′ = E ∈ EQ,

• if E 6= E′ ∈ NE, then E′ 6= E ∈ NE, and

• if E 6= E ∈ NE, then E′ = E′′ ∈ EQ and E′ 6= E′′ ∈ NE for all E′, E′′.

Moreover, we denote by alloc(ϕ) the set of allocated variables in ϕ, i.e.,

alloc(ϕ) , { x | ∃(y.sel 7→ E) ∈ PT(ϕ) : (x = y) ∈ EQ(ϕ) } .

The set of all free allocated variables is allock(ϕ) , alloc(ϕ) ∩Varsk.

The last rule intuitively states that an inconsistent inequality leads to an unsatis-
fiable symbolic heap; we may thus add all possible pure formulas at once.

Example 11.25 The closure of x1, x2 −−x1.sel 7→ 0, z.sel 7→ 0 −−x1 = x2 is

x1, x2 −−x1.sel 7→ 0, z.sel 7→ 0 −−0 = 0, x1 = x1, x2 = x2, z = z, x1 = x2, x2 = x1

−−x1 6= 0, 0 6= x1, x2 6= 0, 0 6= x2, z 6= 0, 0 6= z, x1 6= z, z 6= x1.

Notice that the closure of a symbolic heap can be computed in polynomial time
by successively applying the above rules until a fixed point is reached. Since
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there are at most quadratically many equalities and inequalities between the
variables occurring in a symbolic heap (and 0), the fixed point is attained after a
polynomial number of iterations. Furthermore, all rules applied to determine
the closure of a symbolic heap lead to equivalent symbolic heaps.

Lemma 11.26 For all symbolic heaps ϕ of rank zero, we have:

∀(s, h) : s, h |= ϕ iff s, h |= ϕ.

Provided that a symbolic heap ϕ is satisfiable at all, its closure ϕ explicitly
collects all equalities and inequalities that hold for all stack-heap pairs satisfying
ϕ.2 Our first robustness property then checks whether the closure of a symbolic
heap is consistent with a given set of equalities, inequalities, and allocated
variables. We formalize this property in terms of “tracking sets”:

Definition 11.27 (Tracking Sets) Let V ⊆ Varsk be a set of free variables.
Moreover, let EQ and NE be sets of equalities and inequalities over Varsk ∪
{ 0 }, respectively. Then the tracking set Trackk(V, EQ, NE) is defined as{

ϕ ∈ SHFV≤k
0

∣∣∣ allock(ϕ) = V, EQk(ϕ) = EQ, NEk(ϕ) = NE
}

.

How do we construct a heap automaton A which accepts tracking sets? Intu-
itively, A stores in its state space which free variables are equal, unequal, and
allocated. Its transition relation then enforces that the stored information is
correct, i.e., assuming correctness of the information assigned to predicate calls,
we verify correctness of the information assigned to the whole symbolic heap.

Towards a formal construction, we fix a symbolic heap for every tracking set
encoding all required relationships between free variables:

Definition 11.28 (Kernel) Let Trackk(V, EQ, NE) be a tracking set. More-
over, let U =

{
xi ∈ V

∣∣ ¬∃xj ∈ V : j < i
}

be the set of minimal allo-
cated free variables and sel be a fixed selector. Then the kernel of
Trackk(V, EQ, NE) is defined as the symbolic heap (which is itself contained
in Trackk(V, EQ, NE))

ϕ , Vars4(ϕ) −− {{ x.sel 7→ 0 | x ∈ U }} −−EQ −−NE.

Notice that we have to take the minimal (with respect to their index) set of
allocated free variables because introducing a points-to assertion for every
variable in V might lead to unsatisfiable kernels due to points-to assertions with
equal left-hand sides. There are at most 22·(k+1)2+k tracking sets. Since there is a

2This approach is taken in [2] rather than providing a syntactic definition of the closure.
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one-to-one correspondence between tracking sets and their kernels, we use the
set of all kernels as the set of states of a heap automaton.

Definition 11.29 (Tracking Automaton) The tracking automaton of a track-
ing set Trackk(V, EQ, NE) is defined as Atrack ,

〈
Q, FV≤k,F , ∆

〉
, where

• the set of states is Q , { ϕ | ϕ is the kernel of a tracking set },

• the set of final states is F , Q∩ Trackk(V, EQ, NE), and

• the transition relation ∆ is given by

ϕ(ψ1, . . . , ψn)→ ψ iff Jϕ(ψ1, . . . , ψn)K ∈ Trackk(alloc(ψ), EQ(ψ), NE(ψ)).

A detailed proof that Atrack satisfies the compositionality property and thus is
indeed a heap automaton is found in [19, Lemma 17]. Furthermore, since for
every symbolic heap ϕ of rank zero, we have JϕK = ϕ (cf. Definition 11.5), it
follows immediately that JL(Atrack)K = Trackk(V, EQ, NE). In summary:

Lemma 11.30 For all k ∈N and all tracking sets Trackk(V, EQ, NE), there
exists a heap automaton Atrack over FV≤k with at most 22·(k+1)2+k states
such that JL(Atrack)K = Trackk(V, EQ, NE).

We remind the reader that robustness properties, such as JL(Atrack)K, are defined
as subsets of SHFV≤k

0 , i.e., they consist of symbolic heaps without predicate calls.
We thus reason about unfoldings of symbolic heaps. This is not a restriction due to
the compositionality property of heap automata (Definition 11.15). In particular,
Corollary 11.22 enables us to prove that a symbolic heap with predicate calls is
robust in the sense that all of its unfoldings are robust.

11.2.2 Satisfiability

Next, we address the satisfiability problem for symbolic heaps (see Defini-
tion 10.5). Let us first observe that a symbolic heap ϕ of rank zero is unsatisfiable
if and only if its closure ϕ contains an inconsistent inequality of the form E 6= E;
by Definition 11.24, it even contains the inequality 0 6= 0. The set of all of these
symbolic heaps can be characterized by a heap automaton. In fact, it suffices to
employ the tracking automaton Atrack introduced in Definition 11.29 except that
the set F of final states is set to

F ,
{

ϕ ∈ QAtrack

∣∣ (0 6= 0) ∈ NE(ϕ)
}

.
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A heap automaton accepting the complement is constructed analogously by
choosing all states that do not contain the inequality 0 6= 0. Consequently:

Theorem 11.31 ([2; 19, Theorem 3]) For all k ∈ N, there exists a heap au-
tomaton Asat over FV≤k with at most 22·(k+1)2+k states such that

JL(Asat)K =
{

ϕ ∈ SHFV≤k
0

∣∣∣ ϕ is satisfiable
}

.

By putting Asat together with Corollary 11.19, we immediately obtain a decision
procedure for the satisfiability problem: To decide whether the symbolic heap
ϕ is satisfiable with respect to SID Ψ, it suffices to apply Algorithm 1 to the
SID Ψ ∪ {P ⇐ ϕ }, the fresh predicate symbol P, and the heap automaton Asat.
Regarding complexity, the heap automaton Asat has at most 22·(k+1)2+k many
states. Hence, Algorithm 1 runs on the provided input in time

O
(
(‖ϕ‖+ ‖Ψ‖) · 2(2·k2+k)m+1 · ‖∆Asat

‖
)

,

where membership in ∆Asat
is decidable in polynomial time as it amounts to

computing the closure of a symbolic heap of rank zero and comparing the
resulting sets of allocated variables, equalities, and inequalities. Overall, we
thus obtain an exponential-time decision procedure.

In fact, if the number of free variables k is bounded by a constant, we also
obtain a decision procedure in NP: It suffices to guess an unfolding tree t of
height at most ‖QAsat

‖—which is now a constant—and then check whether Asat

accepts t.3 This is in line with results by Brotherston et al. [Bro+14], where the
satisfiability problem for symbolic heaps is shown to be ExpTime-complete in
general and NP-complete if the number of free variables k is bounded. In fact,
their complexity results even hold for the following special case:

Definition 11.32 (Restricted Satisfiability Problem (RSH-SAT) [Bro+16])
Given an SID Ψ in which no rule contains points-to assertions and a predi-
cate call P(~x), is P(~x) satisfiable?

11.2.3 Establishment

A symbolic heap ϕ is established [IRS13, Definition 5] if every existentially quanti-
fied variable is “eventually allocated”. That is, every variable of every unfolding
ψ of ϕ is either equal to 0, equal to a free variable in Vars (ψ), or contained
in alloc(ψ). Establishment is a natural property of symbolic heaps that specify

3A proof is found in [19, Lemma 24]; the approach is similar to the proof of Lemma 11.34.
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data structures. For instance, all unfoldings of the SID Ψasll in Example 11.4 are
established. Similarly, all SIDs considered in Example 10.17 describe established
symbolic heaps. Furthermore, establishment is occasionally required to obtain
fragments of symbolic heaps with a decidable entailment problem [IRS13; IRV14;
17; TK15] (see also Section 12.3). Iosif, Rogalewicz, and Simacek [IRS13] already
sketched a decision procedure for establishment.

In this section, we show that establishment can be checked with heap au-
tomata and analyze its complexity.

Theorem 11.33 ([2; 19, Theorem 4]) For all k ∈ N, there exists a heap au-
tomaton Aest over FV≤k with at most 22·(k+1)2+k+1 states such that

JL(Aest)K =
{

ϕ ∈ SHFV≤k
0

∣∣∣ ϕ is established
}

.

Proof. For a symbolic heap ϕ of rank zero, we write est(ϕ) if ϕ is estab-
lished. That is, est(ϕ) holds if and only if

∀y ∈ BV(ϕ) : y ∈ allock(ϕ) or ∃E ∈ Vars (ϕ) ∪ { 0 } : (y = E) ∈ EQ(ϕ).

The main idea for constructing a suitable heap automaton Aest is to verify
establishment of symbolic heaps while running the tracking automaton
Atrack (cf. Definition 11.29) in parallel to account for relationships between
parameters of predicate calls. To this end, an additional flag p ∈ { false, true }
is attached to each state of Atrack. This flag indicates whether the establish-
ment condition is known to be violated by some unfolding of a predicate call
(p = false) or holds in all unfoldings considered so far (p = true). Formally,

we define the automaton Aest ,
〈
Q, FV≤k,F , ∆

〉
, where

• the set of states is Q , QAtrack
× { false, true },

• the set of final states is F , QAtrack
× { true }, and

• the set of transition rules ∆ is given by:

ϕ(〈 q1, p1 〉 , . . . , 〈 qn, pn 〉)→ 〈 q, p 〉
iff ϕ(q1, . . . , qn)→ q ∈ ∆Atrack

and p = p1 ∧ . . . ∧ pn ∧ est(Jϕ(q1, . . . , qn)K).
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A formal correctness proof of this construction is found in [19, Lemma 26
and Lemma 27]. Regarding the number of states, we have

‖Q‖ ≤ 2 · ‖QAtrack
‖ ≤ 22·(k+1)2+k+1. �

As for the tracking automaton, it suffices to swap the final and non-final states
of Aest to obtain a heap automaton accepting the complement of JL(Aest)K.
Consequently, by Corollary 11.19, we obtain an ExpTime decision procedure for
the establishment problem (SH-EST for short): Given an SID Ψ and a symbolic
heap ϕ, decide whether every unfolding ψ ∈ UnfΨ(ϕ) is established. The
complexity can be improved if the number k of free variables is bounded:

Lemma 11.34 ([2; 19, Lemma 5]) The decision problem SH-EST is in coNP
if the maximal number k of free variables is bounded.

Proof. Let (Ψ, ϕ) be an instance of the establishment problem. Moreover,
let n = ‖Ψ‖+ ‖ϕ‖. Clearly, the maximal number m of predicate calls in ϕ
and Ψ is bounded by n, i.e., m ≤ n. Furthermore, let

c , ‖QAest
‖ ≤ 22·(k+1)2+k+1.

be the number of states of the heap automaton Aest (see Theorem 11.33).
Since the number of free variables k is bounded, c is a constant.

Now, let us denote by TreesΨ(ϕ)≤c the set of all unfolding trees of ϕ
with respect to SID Ψ of height at most c. Each of these trees t is of size

‖t‖ ≤ mc ≤ nc

That is, the size of t is polynomial in n. To prove membership of SH-EST
in coNP we claim that:

1. (Ψ, ϕ) ∈ SH-EST iff ∀t ∈ TreesΨ(ϕ)≤c : t ∈ JL(Aest)K, and

2. it is decidable in polynomial time whether t ∈ JL(Aest)K holds.

To prove the first claim, consider the following:

• If (Ψ, ϕ) ∈ SH-EST, then, for every unfolding tree t ∈ TreesΨ(ϕ),
its composition JtK is established. By Theorem 11.33, we have t ∈
JL(Aest)K. In particular, this holds for all

t ∈ TreesΨ(ϕ)≤c ⊆ TreesΨ(ϕ).
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• Towards a contradiction, assume (Ψ, ϕ) /∈ SH-EST, but t ∈ JL(Aest)K
holds for all t ∈ TreesΨ(ϕ)≤c. Then there exist unfolding trees in
t ∈ TreesΨ(ϕ), of height larger than c such that JtK is not established.
By Theorem 11.33, we have t /∈ JL(Aest)K. Let t be a minimal (with
respect to the number of elements |dom(t)|) such tree. By a standard
pumping argument, there exists a position v ∈ t and a prefix u of v
which are assigned the same state by heap automaton Aest. However,
this means that the tree t′ obtained from substituting at position u the
subtree t|u by t|v is an even smaller unfolding tree in TreesΨ(ϕ) with
t′ /∈ JL(Aest)K. This contradicts the minimality of t.

To prove the second claim, notice that we can verify whether t ∈ JL(Aest)K
as follows: For every function ρ : dom(t) → QAest

mapping each node of
tree t to a state of heap automaton Aest and every position u ∈ dom(t) with
rank(t(u)) = `, we check whether

t(u)(ρ(u 1), . . . , ρ(u `))→ ρ(u) ∈ ∆Aest
.

Since the size of ρ is polynomial in n, namely ‖ρ‖ ≤ c · nc, this procedure
can be performed in polynomial time; as such in

O
(

c · n2c · ‖∆Aest
‖
)

. �

In fact, both complexity bounds are asymptotically optimal.

Theorem 11.35 (Complexity of Establishment [2; 19, Theorem 5]) The deci-
sion problem SH-EST is ExpTime-complete in general and coNP-complete
if the maximal number k of free variables is bounded.

Proof. We have already described decision procedures for SH-EST which
yield upper complexity bounds in ExpTime and coNP, respectively.

To derive the corresponding lower bounds, we reduce the complement
RSH-SAT of the restricted satisfiability problem (Definition 11.32) to SH-EST.
Given an instance 〈Ψ, P(~y) 〉 of RSH-SAT, we define an instance (Ψ, ϕ) of
SH-EST, where, for some fresh variable z, the symbolic heap ϕ is given by

ϕ , x1 −−P(~y) −−x1 = 0 −−z 6= 0.

Variable z is neither allocated nor occurs in P(~y). Consequently, ϕ is estab-
lished iff z = x1 holds in every unfolding of ϕ. We then have:
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Figure 11.5: A heap h in which location 11 is reachable from location 7.

〈Ψ, ϕ 〉 ∈ SH-EST

iff J Definition of SH-EST K
∀ψ ∈ UnfΨ(ϕ) : ψ is established

iff J By construction of ϕ K

∀ψ ∈ UnfΨ(ϕ) : (z = x1) ∈ ψ

iff J Definition 11.24 K

∀ψ ∈ UnfΨ(ϕ) : (0 6= 0) ∈ ψ

iff J Lemma 11.26 K
∀ψ ∈ UnfΨ(ϕ) : ψ is unsatisfiable

iff
q

Definition of RSH-SAT
y

〈Ψ, P(~y) 〉 ∈ RSH-SAT.

Since the restricted satisfiability problem for symbolic heaps is ExpTime-
complete in general, we conclude that the establishment problem is ExpTime-
hard. Analogously, since the former problem is NP-complete for a bounded
number k of free variables, we conclude that the establishment problem is
coNP-hard for bounded k. �

11.2.4 Reachability

Another family of robustness properties is concerned with reachability problems
which have been characterized as “one of the most treacherous passes in pointer
verification” [BCO04]. For example, common questions include “is a specified
heap free of garbage, i.e., is every location of every unfolding of a symbolic
heap reachable from a location assigned to a program variable?” or “is every
unfolding of a symbolic heap acyclic?” Intuitively, a location ` is reachable from
a location s in a heap h if the directed graph underlying h contains a path from `
to s. In this graph, all locations corresponding to the same record are considered
as a single node. Hence, in Figure 11.5, both location 10 and 11 are reachable
from locations 7 and 8 if we assume that every record has two selectors.
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In the above questions, however, we ask for reachability in all unfoldings of a
symbolic heap. Hence, we express reachability syntactically in terms of a path of
points-to assertions in an assertion rather than a path of edges in a graph:

Definition 11.36 (Definite Reachability) Let ϕ be a symbolic heap of rank
zero. Then E2 is definitely reachable from E1 in ϕ, written E1  ϕ E2, iff there
exist expressions E′, E′′ and a selector sel such that (E1 = E′) ∈ EQ(ϕ) and

• (E2 = E′′) ∈ EQ(ϕ) and E′.sel 7→ E′′ ∈ PT(ϕ), or

• E′.sel 7→ E′′ and E′′  ϕ E2.

Notice that the definite reachability relation is transitive, but not reflexive. That
is, for two expressions to be reachable from one another, there must be at least
one pointer between them. Consequently, for the symbolic heap

ϕ , x1, x2 −−x1.sel 7→ x1, x2.sel 7→ y, y.sel 7→ z,

we have both x2  ϕ z and x1  ϕ x1. Furthermore, x2 is reachable from itself
for some stack-heap pairs (s, h), e.g., if s (z) = s (x2). However, this is not the
case for all stack-heap pairs satisfying ϕ; in fact, x2  ϕ x2 does not hold. While
reachability introduced through unallocated variables, such as z in the above
example, is not detected, the absence (or existence) of such variables can be
checked due to Theorem 11.33.

For any fixed constant k ∈ N, let us denote by  ϕ
k the restriction of the

definite reachability relation to free variables in Varsk and 0, i.e.,

 ϕ
k ,  

ϕ ∩ ((Varsk ∪ { 0 })× (Varsk ∪ { 0 })) .

Definite reachability is a robustness property:

Theorem 11.37 ([2; 19, Theorem 6]) Let k ∈N. Moreover, let

R ⊆ (Varsk ∪ { 0 })× (Varsk ∪ { 0 })

be a binary relation capturing reachability relationships between free vari-
ables and 0. Then there exists a heap automaton Areach over FV≤k with at
most 23·k2+k states such that

JL(Areach)K =
{

ϕ ∈ SHFV≤k
0

∣∣∣ ϕ
k = R

}
.
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Proof. The main idea is to extend the heap automaton Atrack (cf. Defini-
tion 11.29) such that it additionally stores reachability information. In fact,
it suffices to enrich tracking sets (Definition 11.27) by relations

S ⊆ (Varsk ∪ { 0 })× (Varsk ∪ { 0 })

which collect all reachability relationships between free variables and 0.
Moreover, we have to update the symbolic heap representing the kernel of
a tracking set (Definition 11.27). Apart from the final states, Areach is then
constructed analogously to Atrack.

More precisely, given a relation S as above, the reachability sensitive
tracking set Trackk(S, V, EQ, NE) is defined as{

ϕ ∈ SHFV≤k
0

∣∣∣ ϕ ∈ Trackk(V, EQ, NE) and  ϕ
k = S

}
.

To extend the kernel ϕ of a tracking set Trackk(V, EQ, NE) to a kernel of a
reachability sensitive tracking set Trackk(S, V, EQ, NE), let us assume that
there are additional selectors sel1, . . . , selk+1 (as long as there are at least two
selectors, we can alternatively encode these as a linked list). It then suffices
to add a points-to assertion xi.selj 7→ xj whenever

〈
xi, xj

〉
∈ S. Moreover,

if 〈 xi, 0 〉 ∈ S, we add the points-to assertion xi.selk+1 7→ 0. Hence, our
updated kernel is given by the closure of the symbolic heap

ψ , Vars4(ϕ) −−PT(ϕ)d {{ xi.selj 7→ xj |
〈

xi, xj
〉
∈ S }}

d {{ xi.selk+1 7→ 0 | 〈 xi, 0 〉 ∈ S }} −−EQ(ϕ) −−NE(ϕ).

To define the heap automaton Areach ,
〈
Q, FV≤k,F , ∆

〉
, we then choose

the set of states Q as the set of all kernels of reachability sensitive tracking
sets. The set of final states is F , Q ∩ Trackk(R, _, _, _), i.e., it consists
all kernels of reachability sensitive tracking sets over the fixed relation R.
Finally, the transition relation ∆ is given by ϕ(ψ1, . . . , ψn)→ ψ iff

Jϕ(ψ1, . . . , ψn)K ∈ Trackk( 
ψ
k , alloc(ψ), EQ(ψ), NE(ψ)).

A formal correctness proof is found in [19, Appendix A.15]. Since we
effectively added another binary relation over Varsk ∪ { 0 } to the notion of
tracking sets, the number of states in Q is bounded by:

‖Q‖ ≤ 2(k+1)2 · ‖QAtrack
‖ ≤ 23·(k+1)2+k. �
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Now that we have a heap automaton to check reachability relationships, let us
consider the related reachability problem for symbolic heaps (SH-Reach for short):
Given an SID Ψ, a symbolic heap ϕ, and expressions E1, E2, decide whether, for
all ψ ∈ UnfΨ(ϕ), we have E1  ψ E2.

Theorem 11.38 (Complexity of Reachability [2; 19, Theorem 7]) The deci-
sion problem SH-Reach is ExpTime-complete in general and coNP-complete
if the number k of free variables is bounded.

Proof. We first observe that—as all other heap automata presented in this
section—the complement of heap automaton Areach can be computed by
swapping final and non-final states. Membership in ExpTime then follows
from the upper complexity bound for Algorithm 1, the size of the state space
of Areach (see Theorem 11.37), and the fact that membership in a tracking
set is decidable in polynomial time. Membership in coNP for bounded k
is shown analogously to Lemma 11.34. To prove both lower bounds, we
reduce the complement RSH-SAT of the restricted satisfiability problem to
SH-REACH. Formally, let 〈Ψ, P(~y1) 〉 be an instance of RSH-SAT. Moreover,
let Sel = sel1, . . . , seln be the sequence of selectors under consideration. We
then define an instance 〈Ψ, ϕ, x1, x2 〉 of SH-REACH as follows:

ϕ , x1, x2 −−x1.sel1 7→ 0, . . . , x1.seln 7→ 0 −−P(~y) −−x2 6= 0.

Assume that 〈Ψ, ϕ, x1, x2 〉 ∈ SH-REACH. Then, for every unfolding ψ of ϕ,
we have x1  ψ x2. We distinguish two cases: First, if ψ contains more than
n points-to assertions with x1 on the left-hand side, then ψ is immediately
unsatisfiable due to double allocation. Second, if ψ contains exactly n
such points to assertions, namely the ones in ϕ, then, by definition of ψ

(see Definition 11.36), two cases are possible:

1. (x2 = 0) ∈ EQ(ψ). Then ψ is unsatisfiable as (x2 6= 0) ∈ EQ(ϕ).

2. There exists a variable z such that (z = 0) ∈ EQ(ψ) and z ψ x2. In
this case, z is both equal to 0 and allocated as it occurs on the left-hand
side of a points-to assertion. Thus, ψ is unsatisfiable.

In total, every unfolding ψ of ϕ is unsatisfiable. Hence, ϕ is unsatisfiable.
Conversely, if ϕ is unsatisfiable, then every unfolding ψ of ϕ is unsat-

isfiable. Consequently, ψ contains some inconsistent inequality E 6= E.
By Definition 11.24, we have (x2 = 0) ∈ EQ(ψ). By Definition 11.36,
this means that, for every unfolding ψ of ϕ, we have x1  ψ x2. Hence,
〈Ψ, ϕ, x1, x2 〉 ∈ SH-REACH. �
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11.2.5 Garbage-Freedom

Similar to the tracking automaton Atrack, the heap automaton Areach is a useful
ingredient for reasoning about robustness properties. For instance, it can easily
be modified to check whether a symbolic heap is garbage-free. As it is common in
programming languages such as Java, we consider the heap to be garbage-free if
every allocated location is reachable from some program variable. For symbolic
heaps, we usually identify program variables with free variables.

Hence, a symbolic heap ϕ of rank zero is garbage-free, written gfree(ϕ), iff

∀y ∈ BV(ϕ) : ∃x ∈ Vars (ϕ) : (x = y) ∈ EQ(ϕ) or x ϕ y.

For instance, recall from Example 11.6 the symbolic heap

ϕ = x, y −−x.next 7→ z, z.next 7→ z′, z′.next 7→ y −−x 6= z, z′ 6= y.

Since both x ϕ z and x ϕ z′ hold, ϕ is garbage-free, i.e., gfree(ϕ) holds.

Theorem 11.39 ([2; 19, Lemma 6]) For all k ∈ N, there exists a heap au-
tomaton Agfree over FV≤k with at most 23·(k+1)2+k+1 states such that

JL(Agfree)K =
{

ϕ ∈ SHFV≤k
0

∣∣∣ gfree(ϕ)
}

.

Proof. Agfree is constructed analogously to the automaton Aest in the proof
of Theorem 11.33. However, rather than running the tracking automaton
Atrack and checking whether est(ϕ) holds in parallel, we use the heap
automaton Areach (cf. Theorem 11.37) and check whether gfree(ϕ) holds.
For further details, see [19, Appendix A.16]. �

To check whether a symbolic heap contains garbage, we have to discharge the
garbage-freedom problem (SH-Gfree for short): Given an SID Ψ and a symbolic
heap ϕ, decide whether every unfolding ψ ∈ UnfΦ(ϕ) is garbage-free.

Theorem 11.40 (Complexity of Garbage-Freedom [2; 19, Theorem 8]) The
decision problem SH-Gfree is ExpTime-complete in general and in coNP-
complete if the number of free variables is bounded.

Proof. Analogous to Theorem 11.35. �

11.2.6 Acyclicity

Automatic termination proofs frequently rely on the acyclicity of data structures
employed by a program. That is, they assume that no variable is reachable from
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itself. In fact, Zanardini and Genaim [ZG14] claim that “proving termination
needs acyclicity, unless program-specific or non-automated reasoning is per-
formed.” Our last example of robustness properties is thus concerned with
proving acyclicity of symbolic heaps. Formally, a symbolic heap ϕ of rank zero
is weakly acyclic, written acyclic(ϕ), iff

∀x ∈ (Vars (ϕ) ∪ BV(ϕ)) : ¬(x ϕ x).

The above notion of acyclicity is weak in the sense that some stack-heap pairs
satisfying a symbolic heap might still contain cycles. For example,

ϕ , x −−x.sel 7→ y

is weakly acyclic, but admits cyclic stack-heap pairs if x and y are aliases.
However, weak acyclicity successfully prevents cycles in the absence of dan-
gling pointers. In particular, this is the case for established symbolic heaps—a
robustness property which we considered in Section 11.2.3.

Theorem 11.41 ([2; 19, Lemma 7]) For all k ∈ N, there exists a heap au-
tomaton Aacyclic over FV≤k with at most 23·(k+1)2+k+1 states such that

JL(Aacyclic)K =
{

ϕ ∈ SHFV≤k
0

∣∣∣ acyclic(ϕ)
}

Proof. Aacyclic is constructed analogously to the automatonAest in the proof
of Theorem 11.33. However, rather than running the tracking automaton
Atrack and checking whether est(ϕ) holds in parallel, we use the heap
automaton Areach (cf. Theorem 11.37) and check whether acyclic(ϕ) holds.
For further details, see [19, Appendix A.19]. �

To check whether a symbolic heap is (weakly) acyclic, we have to discharge the
acyclicity problem (SH-AC for short): Given an SID Ψ and a symbolic heap ϕ,
decide whether every unfolding ψ ∈ UnfΦ(ϕ) is weakly acyclic.

Theorem 11.42 (Complexity of Weak Acyclicity [2; 19, Theorem 9]) The
decision problem SH-AC is ExpTime-complete in general and in coNP-
complete if the number of free variables is bounded.

Proof. Analogous to Theorem 11.35. �

11.2.7 Overview

To conclude, Table 11.1 summarizes the decision problems considered through-
out this section together with their complexity in general and if the number of
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Decision Problem Description Complexity for SHFV≤k

RSH-SAT (restricted) satisfiability ExpTime NP

SH-EST establishment ExpTime coNP

SH-Reach reachability ExpTime coNP

SH-Gfree garbage-freedom ExpTime coNP

SH-AC (weak) acyclicity ExpTime coNP

Table 11.1: Summary of the complexity of deciding robustness properties.

free variables k is bounded. While all of the decision problems turned out to
be ExpTime-complete in general, the complexity for a bounded number of free
variables depends on the robustness property in question: If the existence of
one suitable unfolding suffices to satisfy a given property, the corresponding
decision problem becomes NP-complete. Conversely, if all unfoldings have to
satisfy a property, the corresponding decision problem becomes coNP-complete.

11.3 Implementation

Our algorithmic framework has been implemented in a tool called Heap Automata
for Reasoning about Robustness of Symbolic Heaps (Harrsh for short) in cooperation
with Jens Katelaan and Florian Zuleger at the Technical University of Vienna.
The tool, its source code, and all experiments are available under MIT license on
GitHub.4 At the moment of writing this thesis,5 the implementation consists of
roughly 13000 lines of Scala code.

Harrsh implements both refinement of SIDs in the sense of Theorem 11.17
as well as the decision procedure via on-the-fly refinement with an integrated
emptiness check presented in Algorithm 1. Whenever checking a robustness
property yields that an SID is not robust, it is also able to generate a witness,
i.e., a concrete unfolding, for the property violation.

Each of the aforementioned algorithms is implemented with respect to a
generic interface for heap automata. Adding a decision procedure for a new
robustness property thus only requires a definition of the corresponding heap

4https://github.com/katelaan/harrsh/
5i.e., commit be8fbf6354c786d13c357c87b9a717d96458279b on 04.05.2019.

https://github.com/katelaan/harrsh/
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automaton. In particular, heap automata for all robustness properties and their
complements presented in Section 11.2 are already defined in Harrsh.

Harrsh accepts SIDs either in its own input format, the input format of the
separation logic prover Cyclist [Bro+14], or an extension of the SMT-LIB format
to account for separation logic (cf. [Ios+]). The latter also serves as the input
format of the separation logic competition SL-COMP6 in which Harrsh has
participated since 2018. In the satisfiability checking category with user-supplied
SIDs, i.e., qf_shid_sat, the generic approach based on heap automata imple-
mented in Harrsh turned out to be competitive with dedicated state-of-the-art
satisfiability checkers, such as Cyclist [Bro+14], Songbird [Ta+16; Ta+19], or
Sleek [CDG11]. In particular, in the 2018 edition of SL-COMP, it was the
fastest tool for satisfiability checking which did not produce any wrong results.7

Moreover, since 2019, Harrsh is also capable of deciding entailments (see Sec-
tion 12.1). In its first participation in the entailment checking category in the
2019 edition of SL-COMP [13] for symbolic heaps with user-supplied SIDs, i.e.,
qf_shid_entl, Harrsh competed successfully among the top three tools (out
of seven tools in total over both runs) with respect to both runtime and number
of solved entailment queries.

To evaluate the performance of Harrsh with respect to deciding the ro-
bustness properties in Section 11.2, which—apart from satisfiability—are not
supported by other tools, we considered a large collection of benchmarks that is
distributed with Cyclist. This collection includes the following problem sets:

1. A set of handwritten data structure specifications compiled from the
separation logic literature.

2. 45945 problem instances that have been automatically generated from
source code by the specification inference tool Caber [BG14].

All experiments reported below were performed on an Intel Core i5-3317U at
1.70GHz with 4GB of RAM.

For the standard specifications in the first problem set, Harrsh runs in
approximately 300ms to check all robustness properties on all specifications, i.e.,
a total of 45 problem instances. This is not a surprise, because the SIDs under
consideration have been carefully handcrafted. They are thus expected to be
robust. For the more realistic set of automatically inferred SIDs in the second
problem set, Table 11.2 on page 321 shows the accumulated runtime of Harrsh

on all instances for each robustness property. In each case, Harrsh finished
reasoning below 20 seconds in total. This demonstrates the applicability of the
heap automaton approach for reasoning about SIDs that occur in practice.

6https://sl-comp.github.io/
7https://www.irif.fr/~sighirea/sl-comp/18/qf_shid_sat.html

https://sl-comp.github.io/
https://www.irif.fr/~sighirea/sl-comp/18/qf_shid_sat.html
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Robustness Property Definition Analysis Time (ms)

No points-to asssertions Example 11.16 7230

Tracking property Section 11.2.1 11459

Satisfiability Section 11.2.2 12460

Complement of satisfiability Section 11.2.2 11980

Establishment Section 11.2.3 18055

Complement of establishment Section 11.2.3 17272

Reachability Section 11.2.4 14897

Garbage-Freedom Section 11.2.5 18192

Weak acyclicity Section 11.2.6 18505

Table 11.2: Total analysis time for checking the robustness properties presented
in this chapter on the second set of problem instances [2].





Chapter 12

Automated Reasoning about Entailments

This chapter is based on prior publications, namely [17; 3; 20], which are presented,
discussed, and extended in the broader context of this thesis.

The most prominent decision problem in the context of separation logic is the
entailment problem (cf. Definition 10.5 (c)) which is key to Floyd-Hoare style
verification techniques. As such, it has been characterized as being “at the
foundation of automatic verification based on separation logic” [BDP11]. In fact,
all examples on weakest preconditions (or weakest preexpectations) presented
in this thesis, e.g., the case studies in Chapter 8, involve solving entailments in
order to prove that a proposed invariant is correct or to discharge that a given
precondition is covered by the computed weakest precondition.

For symbolic heaps (cf. Section 10.1.1), the entailment problem is the follow-
ing question: Given an SID Ψ and symbolic heaps ϕ and ψ, does ϕ |=Ψ ψ hold,
i.e., does every stack-heap pair satisfying ϕ also satisfy ψ? Formally, that is

ϕ |=Ψ ψ iff ∀(s, h) : s, h |=Ψ ϕ implies s, h |=Ψ ψ.

Notice that the entailment problem for symbolic heaps cannot be reduced to the
satisfiability problem because symbolic heaps are not closed under negation; a
logical implication is thus not definable (cf. Definition 10.6). Furthermore, we
remark that every attempt to automatically discharge entailments is necessarily
unsound or incomplete because the entailment problem for symbolic heaps with
user-supplied SIDs is undecidable in general [Ant+14].

In this chapter, we explore two approaches to discharge entailments for frag-
ments of symbolic heaps. First, in Section 12.1, we consider entailments as robust-
ness properties in the sense of Definition 11.15 and sketch how heap automata
are applicable to the entailment problem. Second, in Section 12.2, we discuss
how entailments are discharged by syntactic rewriting which is commonly
known as fold/unfold reasoning (cf. , for example, [BCO05b; BDP11; Chi+12]).
In particular, in Section 12.3, we study the fragment of graphical symbolic heaps
and present a pragmatic decision procedure that is complete for all entailments
encountered by the software model checker Attestor (see Chapter 13).

323
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12.1 Entailments as Robustness Properties

Recall from Lemma 10.24 that a stack-heap pair (s, h) satisfies a symbolic heap
ϕ with respect to an SID Ψ iff (s, h) satisfies some unfolding ϑ of ϕ. That is,

s, h |=Ψ ϕ iff ∃ϑ ∈ UnfΨ(ϕ) : s, h |= ϑ.

To discharge an entailment of the form ϕ |=Ψ ψ, we can—in principle—attempt
to construct a heap automaton Aψ which accepts all unfoldings with respect to
Ψ that entail some unfolding of ψ. That is, Aψ accepts the robustness property

JL(Aψ)K = { ϑ ∈ SHC0 | ϑ |=Ψ ψ }

for some reasonable set of SIDs C including Ψ. Notice that the entailment
ϑ |=Ψ ψ in the above robustness property is conceptually simpler than a general
entailment because its left-hand side is of rank zero; it thus has exactly one
unfolding, namely itself. By Corollary 11.22, it is then decidable whether all
unfoldings of the symbolic heap ϕ ∈ SHC are accepted by Aψ, i.e., whether
UnfΨ(ϕ) ⊆ JL(Aψ)K holds. This property is equivalent to checking the entail-
ment ϕ |=Ψ ψ:

ϕ |=Ψ ψ

iff J Definition of entailments K
∀(s, h) : s, h |=Ψ ϕ implies s, h |=Ψ ψ

iff J Definition of logical implication K
∀(s, h) : ¬(s, h |=Ψ ϕ) or s, h |=Ψ ψ

iff J Lemma 10.24 K
∀(s, h) : ¬(∃ϑ ∈ UnfΨ(ϕ) : s, h |= ϑ) or s, h |=Ψ ψ

iff J Elementary first-order logic K
∀ϑ ∈ UnfΨ(ϕ) : ∀(s, h) : s, h |= ϑ implies s, h |=Ψ ψ

iff J Since ϑ contains no predicate calls, we have s, h |= ϑ iff s, h |=Ψ ϑ K
∀ϑ ∈ UnfΨ(ϕ) : ∀(s, h) : s, h |=Ψ ϑ implies s, h |=Ψ ψ

iff J Definition of entailments K
∀ϑ ∈ UnfΨ(ϕ) : ϑ |=Ψ ψ

iff
q

Definition of JL(Aψ)K
y

∀ϑ ∈ UnfΨ(ϕ) : ϑ ∈ JL(Aψ)K

iff J Elementary first-order logic K
UnfΨ(ϕ) ⊆ JL(Aψ)K.

Hence, we can discharge entailments as long as we find suitable heap automata.
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Example 12.1 Consider the SID Ψ below which specifies non-empty, null-
terminated singly-linked lists with head x:

Ψ , { sll0 ⇐ x −−x.next 7→ 0, sll0 ⇐ x −−x.next 7→ z −−sll0(z) }

Let us construct a heap automaton Asll0 ,
〈
Q, SHFV≤1,F , ∆

〉
over all

SIDs in which symbolic heaps have at most one free variable which accepts
all symbolic heaps entailing the predicate call sll0(x). That is,

JL(Asll0)K =
{

ϑ ∈ SHFV≤1
0

∣∣∣ ϑ |=Ψ sll0(x)
}

.

Intuitively, Asll0 assigns a state to every symbolic heap ϑ ∈ SHFV≤1
0 of rank

zero according to the following two criteria:

1. Does ϑ |=Ψ sll0(x) hold? For instance, this is the case for ϑ =
x −−x.next 7→ 0, but neither for ϑ = x −−x 6= 0 nor ϑ = x −−z.next 7→ z.

2. Does ϑ ? x.next 7→ 0 |=Ψ sll0(x) hold, i.e., can every stack-heap pair
satisfying ϑ be extended such that it satisfies sll0(x)? For instance,
this is the case for ϑ = x −−x.next 7→ 0 (as ϑ becomes unsatisfiable) and
ϑ = x −−x 6= 0, but not for ϑ = x −−z.next 7→ z.

Since it is impossible to meet the first, but not the second criterion, the above
criteria partition all symbolic heaps in SHFV≤1

0 into three equivalence
classes. The state space of Asll0 then consists of a representative of each
equivalence class. Hence, we define the set of states as

Q , { x1 −−x1.n 7→ 0, x1 −−x1 6= 0, x −−z.next 7→ z } .

Moreover, the set F of final states consists of all states which meet the first
criterion, i.e., F , { x1 −−x1.n 7→ 0 }. Finally, the transition rules in ∆ are
given by all rules of the form ϕ(ψ1, . . . , ψm) → ψ iff ϑ = Jϕ(ψ1, . . . , ψm)K,
where ψ is the symbolic heap determined by the table below:

ψ ϑ |=Ψ sll0(x)? ϑ ? x.next 7→ 0 |=Ψ sll0(x)?

x −−x.next 7→ 0 yes yes

x −−x 6= 0 no yes

x −−z.next 7→ z no no
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In fact, it suffices to construct heap automata to discharge entailments with single
predicate calls on the right-hand side. As shown in [2, Theorem 10], one can
always construct suitable heap automata for single points-to assertions x.sel 7→ y
as well as pure formulas emp∧ E = E′ and emp∧ E 6= E′. Furthermore, if we
already know suitable heap automata for the symbolic heaps ϕ and ψ, then we
can also construct one for the symbolic heap ϕ ? ψ.

Consequently, whenever we find heap automata over SIDs in C for all
predicate symbols specified by the SID Ψ, it is decidable whether ϕ |=Ψ ψ
holds for all symbolic heaps ϕ, ψ ∈ SHC that contain no existentially quantified
variables. For instance, the heap automaton Asll0 in Example 12.1 allows us to
discharge entailments between symbolic heaps with at most one (free) variable
that may contain predicate calls of the form sll0(E). The construction of the
heap automaton Asll0 can be generalized to construct heap automata A over a
set of SIDs C such that, for some fixed Ψ ∈ C and a predicate symbol P, we have

JL(A)K = { ϑ ∈ SHC0 | ϑ |=Ψ ψ } .

Similar to the Myhill-Nerode construction for finite automata over words (cf.
[HMU07, Section 3.15]), this amounts to finding a decidable equivalence relation

≡ ⊆ SHC× SHC

with finitely many equivalence classes such that ϕ ≡ ψ holds iff

∀ϑ ∈ SHC1 : Jϑ(ϕ)K |=Ψ P(~x) iff Jϑ(ψ)K |=Ψ P(~x).

Given such an equivalence relation ≡, it suffices to pick one symbolic heap of
rank zero out of every equivalence class of ≡ to determine the set of states QA
of heap automaton A. The set of final states then consists of all states that entail
P(~x), i.e., FA , {ψ ∈ Q | ψ |=Ψ P(~x) }. Finally, the transition rules of A first
compose a given symbolic heap with the states assigned to each of its predicate
calls and then determine its equivalence class. Hence, ∆A is given by

ϕ(ψ1, . . . , ψn)→ ψ iff Jϕ(ψ1, . . . , ψn)K ≡ ψ.

Notice that—due to undecidability of the entailment problem for symbolic heaps
in general [Ant+14]—there do not always exist suitable heap automata covering
all symbolic heaps entailing a given predicate call. Unfortunately, even if such
automata exist, their construction quickly becomes fairly complex. For example,
extending the heap automaton in Example 12.1 to more than one free variable
immediately leads to an explosion of the state space.

Nonetheless, the author conjectures that heap automata allow to derive
decision procedures for large fragments of symbolic heap separation logic.
Further details will be found in the forthcoming PhD thesis of Jens Katelaan at
the Technical University of Vienna.



12.2. Deciding Entailments through Folding 327

12.2 Deciding Entailments through Folding

We previously reduced the entailment problem to the question whether all
unfoldings of a symbolic heap are covered by the robustness property of a heap
automaton. Unfortunately, constructing suitable heap automata is quite complex.
As an alternative, we might thus syntactically analyze unfoldings. That is, to
verify the entailment ϕ |=Ψ ψ, we attempt to prove that every unfolding of ϕ is
included in the set of unfoldings of ψ with respect to Ψ.

Lemma 12.2 For all SIDs Ψ and symbolic heaps ϕ, ψ ∈ SHSL, we have

UnfΨ(ϕ) ⊆ UnfΨ(ψ) implies ϕ |=Ψ ψ.

Proof. Let (s, h) be an arbitrary, but fixed stack-heap pair. Then:

s, h |=Ψ ϕ

iff J Lemma 10.24 K
∃ϑ ∈ UnfΨ(ϕ) : s, h |= ϑ

implies J Premise: UnfΨ(ϕ) ⊆ UnfΨ(ψ) K
∃ϑ ∈ UnfΨ(ψ) : s, h |= ϑ

iff J Lemma 10.24 K
s, h |=Ψ ψ �

Reasoning about unfoldings is, in fact, commonly found in (semi-)decision
procedures for separation logic, such as [BCO05b; BDP11; Chi+12], where it
appears in the form of rules for folding and unfolding symbolic heaps. In this
section, we briefly discuss the rationale underlying these rules.

Example 12.3 As a running example, we consider an SID Ψpdll specifying
non-empty partial doubly-linked list segments between head x and tail
y, where the predecessor of x and the successor of y are unspecified (cf.
Example 4.27, page 119). To this end, we fix selectors for the previous and
the next element, i.e., Sel , 〈 prev, next 〉. The SID Ψpdll is then given by:

Ψpdll ,
{

pdll ⇐ x, y −−y.prev 7→ x, x.next 7→ y,

pdll ⇐ x, y −−z.prev 7→ x, x.next 7→ z −−pdll(z, y)︸ ︷︷ ︸
= ϕ

,

pdll ⇐ x, y −−pdll(x, z), pdll(z, y)︸ ︷︷ ︸
= ψ

}
.
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Intuitively, every unfolding of the symbolic heap ϕ is also an unfolding of
ψ because we obtain ϕ from ψ by unfolding the predicate call pdll(x, z) ac-
cording to the first rule of Ψpdll. Hence, we have UnfΨpdll(ϕ) ⊆ UnfΨpdll(ψ).
By Lemma 12.2, this means that ϕ |=Ψpdll ψ holds.

Example 12.3 indicates a simple—yet incomplete—approach to check inclusions
between unfoldings: Whenever the symbolic heap ϕ can be folded into the
symbolic heap ψ by means of applying the folding relation ∗

=⇒
Ψ

introduced

in Definition 10.20, then the inclusion UnfΨ(ϕ) ⊆ UnfΨ(ψ) holds.

Lemma 12.4 For all SIDs Ψ and symbolic heaps ϕ, ψ ∈ SHSL, we have

ϕ
∗
=⇒
Ψ

ψ implies UnfΨ(ϕ) ⊆ UnfΨ(ψ).

Proof. By complete induction on the number of folding steps. �

The entailment ϕ |=Ψpdll ψ considered in Example 12.3 then follows from Lem-
mas 12.2 and 12.4 and the fact

ϕ
∗

==⇒
Ψpdll

ψ.

To automatically check whether a symbolic heap can be folded into another
one, we restrict ourselves to SIDs in which every rule maps more than a single
predicate call to a predicate symbol.

Definition 12.5 (Shrinking SID) An SID Ψ is shrinking if and only if

∀(P ⇐ ϕ) ∈ Ψ :

{
|PT(ϕ)|+ |EQ(ϕ)|+ |NE(ϕ)| > 0, or
|PC(ϕ)| > 1.

For instance, the SID Ψpdll in Example 12.3 is shrinking. Moreover, notice that
every SID can be transformed into a shrinking one by adding rules in which all
rules consisting of nothing but a single predicate call have already been applied.

Intuitively, folding a symbolic heap ϕ with respect to a shrinking SID reduces
the size of ϕ in each step. Consequently, the length of any sequence of folding
steps starting in ϕ is bounded by 2 · ‖ϕ‖, where the factor two stems from the
fact that every separation logic atom might first be folded into a predicate call.

This property can be exploited to decide whether ϕ
∗
=⇒
Ψ

ψ holds: Starting with

the symbolic heap ψ, Algorithm 2 iteratively guesses up to 2 · ‖ϕ‖ unfolding
steps and computes the resulting symbolic heap ϑ via predicate substitution
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(Definition 10.18). After that, it checks whether ϕ and ϑ are isomorphic by
guessing a possible isomorphism and applying Definition 10.13.

Notice that the size of each guess is at most polynomial in the size of the
algorithm’s input, i.e., n = ‖Ψ‖+ ‖ϕ‖+ ‖ϑ‖. Apart from the nondeterministic
guesses, every step of Algorithm 2—including predicate unfolding and comput-
ing the multiset notation of a symbolic heap—can be performed in polynomial
time. In particular, variables can be renamed prior to predicate unfolding with-
out an isomorphism check. Hence, ϕ

∗
=⇒
Ψ

ψ is decidable in NP. In fact, we cannot

expect to obtain a more efficient algorithm:

Theorem 12.6 (Decidability of Folding) Given a shrinking SID Ψ and sym-
bolic heaps ϕ and ψ, deciding whether ϕ

∗
=⇒
Ψ

ψ holds is NP-complete.

Proof. Algorithm 2 is a nondeterministic algorithm deciding ϕ
∗
=⇒
Ψ

ψ in

polynomial time; it thus proves membership in NP.
NP-hardness is shown by a polynomial-time reduction from the NP-

complete 3-Partition problem [GJ75] to the question whether ϕ
∗
=⇒
Ψ

ψ holds.

The reduction is inspired by [ARE86, Theorem 1]. A detailed proof is
found in Appendix H.1. �

Example 12.7 Resuming our running Example 12.3 involving the SID Ψpdll,
let us apply Algorithm 2 to check whether the symbolic heap

ϕ , x, y −−z1.prev 7→ 0, z1.next 7→ z2, z2.prev 7→ z1, z2.next 7→ z3,
z3.prev 7→ z2, z3.next 7→ z4, z4.prev 7→ z3, z4.next 7→ 0

−−x = z1, y = z3, x 6= 0, y 6= 0, x 6= y, y 6= x

entails the symbolic heap

ψ , x, y −−z1.prev 7→ 0, z3.next 7→ 0 −−pdll(z1, z2), pdll(z2, z3)

−−x = z1, y = z2, x 6= 0, y 6= 0, x 6= y, y 6= x.

To verify this entailment, Algorithm 2 guesses that three unfolding steps are
required. The computation of symbolic heap ϑ then proceeds as follows:

ψ

⇐==
Ψpdll

J apply first rule to pdll(z2, z3) K
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Input: A growing SID Ψ, symbolic heaps ϕ and ψ.
Output: yes iff ϕ

∗
=⇒
Ψ

ψ holds.

ϑ := ψ ;
pick a number steps ∈ { 0, 1, . . . , 2 · ‖ψ‖ };
// guess symbolic heap ϑ with ϑ

steps
==⇒

Ψ
ψ

while ( steps > 0 ) {
pick a predicate call P(~E) ∈ PC(ϑ) ;
pick a rule P ⇐ η in Ψ ;
rename η such that ϑ and η have no common variables ;

ϑ := ϑ
[
P(~E)

/
η
]

;

steps := steps− 1
} ;
// return yes iff ϕ ∼= ϑ holds

if ( |BV(ϕ)| = |BV(ϑ)| ) {
// guess potential isomorphism

pick a bijective function f : BV(ϕ)→ BV(ϑ) ;
// verify isomorphism by comparing multiset notation

if (M( f (ϕ)) = M(ϑ) ) { out := yes } else { out := no }
} else {

out := no
}

Algorithm 2: Nondeterministic decision procedure for the folding problem.
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x, y −−z1.prev 7→ 0, z3.next 7→ 0, z3.prev 7→ z2, z2.next 7→ z3︸ ︷︷ ︸
added through unfolding

−−pdll(z1, z2)

−−x = z1, y = z2, x 6= 0, y 6= 0, x 6= y, y 6= x
⇐==
Ψpdll

J apply second rule to pdll(z1, z2) K

x, y −−z1.prev 7→ 0, z3.next 7→ 0, z3.prev 7→ z2, z2.next 7→ z3,
z4.prev 7→ z1, z1.next 7→ z4, −−pdll(z4, z2)︸ ︷︷ ︸

added through unfolding

−−x = z1, y = z2, x 6= 0, y 6= 0, x 6= y, y 6= x
⇐==
Ψpdll

J apply first rule to pdll(z4, z2) K

x, y −−z1.prev 7→ 0, z3.next 7→ 0, z3.prev 7→ z2, z2.next 7→ z3,
z4.prev 7→ z1, z1.next 7→ z4, z2.prev 7→ z4, z4.next 7→ z2,︸ ︷︷ ︸

added through unfolding

−−x = z1, y = z2, x 6= 0, y 6= 0, x 6= y, y 6= x.

The last symbolic heap is isomorphic to ϕ as witnessed by the function

f : { z1, z2, z3, z4 } → { z1, z2, z3, z4 } , z1 7→ z1, z2 7→ z4, z3 7→ z2, z4 7→ z3.

We remark that purely syntactical reasoning by means of folding symbolic heaps
is, in general, highly incomplete. Redundant pure formulas, e.g., x 6= 0 if x
appears on the left-hand side of a points-to assertion, for instance, are not taken
into account unless a normal form is imposed or additional proof rules are
provided. Furthermore, it is possible that an inclusion UnfΨ(ϕ) ⊆ UnfΨ(ψ)
holds although ϕ cannot be folded into ψ.

Example 12.8 Consider the SID Ψ given by the following rules:

P ⇐ x1, x2 −−x1.sel 7→ x2,
P ⇐ x1, x2 −−x1.sel 7→ z −−P(z, x2), and
Q ⇐ x1, x2 −−x1.sel 7→ x2.

Moreover, consider the symbolic heaps ϕ and ψ below:

ϕ , y −−z′.sel 7→ z′′, z.sel 7→ z′′ −−Q(y, z), and

ψ , y −−z′.sel 7→ z −−P(y, z).
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Clearly, ϕ
∗
=⇒
Ψ

ψ does not hold. However, the single unfolding of ϕ, namely

ϑ , y −−z′.sel 7→ z′′, z.sel 7→ z′′, y.sel 7→ z,

can be folded into ψ. Hence, we have UnfΨ(ϕ) ⊆ UnfΨ(ψ).

In the previous example, we reasoned by first unfolding the symbolic heap ϕ in
all possible ways before folding each of the resulting heaps into ψ again. This
argument is indeed sound as justified by the following lemma:

Lemma 12.9 For all SIDs Ψ and symbolic heaps ϕ ∈ SHSL, we have

UnfΨ(ϕ) =

{
{ ϕ } , if PC(ϕ) = ∅⋃

ϕ⇐=
Ψ

ψ UnfΨ(ψ), otherwise.

Proof. Similar to [20, Theorem 1.2]. Details are found in Appendix H.2. �

12.3 A Decision Procedure for Graphical Symbolic Heaps

In this section, we present a pragmatic decision procedure for entailments which
are actually encountered while running the software model checker Attestor

(see Chapter 13). Intuitively, Attestor’s abstraction mechanism involves folding
symbolic heaps as much as possible. Its state space thus consists of symbolic
heaps which are (maximally) folded in the following sense:

Definition 12.10 (Folding Sets) The folding set FoldΨ(ϕ) of a symbolic heap
ϕ with respect to SID Ψ is defined as

FoldΨ(ϕ) ,
{

ψ

∣∣∣∣ ϕ
∗
=⇒
Ψ

ψ and ¬∃ϑ : ψ =⇒
Ψ

ϑ

}
.

We call the symbolic heap ϕ folded with respect to Ψ iff FoldΨ(ϕ) = { ϕ }.

We are then not concerned with arbitrary entailments. Rather, the right-hand side
of every entailment which arises within Attestor is always a folded symbolic
heap. Moreover, both sides of every entailment have the same free variables.
Our goal is thus to decide the following restricted entailment problem:
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Figure 12.1: A con-
crete heap h.
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Figure 12.2: A symbolic
heap ϕ.
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Figure 12.3: A con-
crete heap h′.

Definition 12.11 (The Folded Entailment Problem) Given an SID Ψ, a
symbolic heap ϕ, and a folded symbolic heap ψ with Vars (ϕ) = Vars (ψ),
decide whether the entailment ϕ |=Ψ ψ holds.

Notice that the undecidability proof by Antonopoulos et al. [Ant+14, Theorem
3] considers an instance of the folded entailment problem. Hence, the above
problem is just as undecidable as its unrestricted version. Attestor thus
employs a restricted fragment of symbolic heaps in which entailments can be
verified by syntactically folding symbolic heaps as presented in Section 12.2.

As a first step towards this fragment, we impose a normal form on symbolic
heaps without predicate calls. To this end, recall from Section 10.1.1 that
symbolic heaps are intuitively obtained from a single heap, say h, by substituting
all of its addresses and values by variables. Analogously to the illustration of
the heap h in Figure 12.1, we might thus want to draw the symbolic heap

ϕ , x, y −−x.next 7→ y, y.next 7→ 0, y.sel 7→ z

as a graph consisting of memory cells as shown in Figure 12.2. In fact, for
a stack s mapping variables x and y to addresses 3 and 7, respectively, we
have s, h |= ϕ. As already mentioned in Section 10.1.1, however, drawing such
graphs is somewhat deceiving: For example, the shape of the heap h′ depicted
in Figure 12.3 is different from h. In particular, if we consider addresses 7
and 8 as a single memory block, then it contains a cycle which is not shown
in Figure 12.2. Nonetheless, s, h′ |= ϕ holds. To avoid such hidden aliasing, we
restrict ourselves to established symbolic heaps (cf. Section 11.2.3). Consequently,
potential aliases are restricted to the free variables of symbolic heaps.

Assumption 12.12 From now on, we require that all unfoldings of all symbolic
heaps under consideration are both satisfiable and established. That is, every
unfolding of a symbolic heap is satisfied by at least one stack-heap pair and
every existentially quantified variable is allocated or equal to a free variable
or 0. Both properties can be checked automatically for a given symbolic
heap and enforced for a given SID by applying Corollaries 11.19 and 11.22
and Theorem 11.17 for the heap automata in Sections 11.2.2 and 11.2.3.
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Attestor imposes strict syntactic restrictions such that symbolic heaps can be
unambiguously represented by directed graphs, where addresses correspond to
nodes and pointers correspond to labeled edges, respectively. In particular, dis-
tinct nodes in these graphs represent distinct addresses and values. We thus refer
to the resulting fragment of separation logic as graphical symbolic heaps.

Definition 12.13 (Graphical Symbolic Heaps) A symbolic heap ϕ is graph-
ical if and only if it has the following properties:

• points-to assertions and predicate calls contain no free variables, i.e.,

∀ψ ∈ (PT(ϕ) ∪ PC(ϕ)) : Vars (ψ) ⊆ BV(ϕ),

• every free variable is either equal to 0 or a quantified variable, i.e.,

∀x ∈ Vars (x) ∃E ∈ (BV(ϕ) ∪ { 0 }) : (x = E) ∈ EQ(ϕ),

• ϕ contains no other equalities, i.e., |EQ(ϕ)| = |Vars (ϕ) |, and

• NE(ϕ) is the least set satisfying the following rules:

– for all x ∈ Vars (ϕ), if x = 0 /∈ EQ(ϕ), then x 6= 0 ∈ NE(ϕ), and

– for all x, y ∈ Vars (ϕ), if there is no E ∈ (BV(ϕ)∪ { 0 }) such that
x = E, y = E ∈ EQ(ϕ), then x 6= y, y 6= x ∈ NE(ϕ).

It is noteworthy that the free variables of a graphical symbolic heap, say ϕ, have
no effect on the shape of heaps h specified by ϕ. Their sole purpose is to describe
which stacks s are admitted such that s, h |= ϕ holds.

Example 12.14 A key property of graphical symbolic heaps is that they can
be unambiguously represented as a graph. For instance, the symbolic heap
ϕ below, which already appeared in Example 12.7, is graphical.

ϕ , x, y −−z1.prev 7→ 0, z1.next 7→ z2, z2.prev 7→ z1, z2.next 7→ z3,
z3.prev 7→ z2, z3.next 7→ z4, z4.prev 7→ z3, z4.next 7→ 0

−−x = z1, y = z3, x 6= 0, y 6= 0, x 6= y, y 6= x

ϕ is precisely captured by the directed graph in Figure 12.4: Every exis-
tentially quantified variable z1, . . . , z4 as well as the constant 0 is drawn
as a circle. The free variables x and y are drawn as boxes with a single
edge to the node representing the expression they are equal to according
to the equalities x = z1 and y = z3, respectively. Moreover, every points-to
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z1 z2 z3 z4 0

x y

Figure 12.4: Illustration of the graphical symbolic heap in Example 12.14.

z1

0 •
z2
• •

z3
• •

z4
• 0

Figure 12.5: Illustration of all heaps satisfying the graphical symbolic heap ϕ
in Example 12.14 for some stack.

assertion corresponds to a directed edge whose color indicates the selector.
All inequalities are implicit because two distinct nodes are guaranteed to
represent distinct addresses and values. Moreover, Figure 12.5 illustrates
the shape of all heaps satisfying ϕ for some stack.

Formally, “having no effect on the shape of the heap” means that two graphi-
cal symbolic heaps without predicate calls are isomorphic whenever they are
satisfied by some common stack-heap pair.

Lemma 12.15 For all graphical symbolic heaps ϕ, ψ of rank zero over the
same set of free variables, i.e., Vars (ϕ) = Vars (ψ), we have:

(∃(s, h) : s, h |= ϕ and s, h |= ψ) implies ϕ ∼= ψ.

Proof. We first observe that ϕ and ψ are not satisfied by a common stack-
heap pair (s, h) unless both contain the same number of points-to assertions.
The claim is then shown by complete induction on the number of free
variables and points-to assertions in ϕ and ψ. �

Since the converse direction holds for arbitrary satisfiable symbolic heaps due
to Lemma 10.14, it follows immediately that an entailment ϕ |= ψ between graphical
symbolic heaps of rank zero (over the same free variables) holds iff ϕ and ψ are isomorphic.
To reason about graphical symbolic heaps with predicate calls, we would like to
preserve this property. Hence, we also impose syntactic restrictions on the SIDs
admitted to determine the semantics of predicate calls.
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z1 pdll z2 pdll z3 0

x y

1 2 1 2

Figure 12.6: Illustration of the graphical symbolic heap ψ in Example 12.17.

Definition 12.16 (Graphical Systems of Inductive Definitions) An SID Ψ
is graphical iff it is shrinking and, for every rule (P ⇐ ϕ) ∈ Ψ, the symbolic
heap ϕ contains no pure formulas, i.e., EQ(ϕ) = NE(ϕ) = ∅.

The rules of a graphical SID do not map to graphical symbolic heaps because the
role of free variables is different. For graphical symbolic heaps, free variables
are used to specify the stack, i.e., the values assigned to program variables. In
contrast, for rules of graphical SIDs, free variables represent the parameters of
predicate calls. Since a variable might occur twice as a parameter of the same
call, e.g., P(z, z), aliasing between free variables is explicitly permitted.

Example 12.17 Recall from Example 12.3 the SID Ψpdll

Ψpdll ,
{

pdll ⇐ x, y −−y.prev 7→ x, x.next 7→ y,

pdll ⇐ x, y −−z.prev 7→ x, x.next 7→ z −−pdll(z, y),

pdll ⇐ x, y −−pdll(x, z), pdll(z, y)
}

.

Ψpdll is graphical. Moreover, the symbolic heap ψ below, which is taken
from Example 12.7, is graphical as well.

ψ , x, y −−z1.prev 7→ 0, z3.next 7→ 0 −−pdll(z1, z2), pdll(z2, z3)

−−x = z1, y = z2, x 6= 0, y 6= 0, x 6= y, y 6= x.

Figure 12.6 depicts the graph associated with ψ, where predicate calls are
drawn as labeled boxes. The parameters are indicated by numbered edges.

Intuitively, a graphical symbolic heap associates every stack-heap pair with at
most one of its unfoldings. As a consequence, entailment checking for graphical
symbolic heaps is equivalent to inclusion-checking for their unfoldings.
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Lemma 12.18 For all graphical SIDs Ψ and graphical symbolic heaps ϕ and
ψ with Vars (ϕ) = Vars (ψ), we have

ϕ |=Ψ ψ iff UnfΨ(ϕ) ⊆ UnfΨ(ψ).

Proof. If UnfΨ(ϕ) ⊆ UnfΨ(ψ) holds, then ϕ |=Ψ ψ holds due to Lemma 12.2.
For the converse direction, consider the following:

ϕ |=Ψ ψ

implies J Lemma 10.24 K
∀(s, h) : (∃ϑ ∈ UnfΨ(ϕ) : s, h |= ϑ)

implies ∃η ∈ UnfΨ(ψ) : s, h |= η

implies J Elementary first-order logic K
∀(s, h) : ∀ϑ ∈ UnfΨ(ϕ) :

s, h |= ϑ implies ∃η ∈ UnfΨ(ψ) : s, h |= η

implies J Lemma 12.15 K
∀(s, h) : ∀ϑ ∈ UnfΨ(ϕ) :

s, h |= ϑ implies ∃η ∈ UnfΨ(ψ) : ϑ ∼= η

implies J Every unfolding is satisfiable due to Assumption 12.12 K
∀ϑ ∈ UnfΨ(ϕ) : ∃η ∈ UnfΨ(ψ) : ϑ ∼= η

implies J Elementary first-order logic K
UnfΨ(ϕ) ⊆ UnfΨ(ψ). �

Unfortunately, the folded entailment problem remains undecidable for graphical
SIDs and graphical symbolic heaps. This can be shown, for instance, by reducing
the undecidable inclusion problem for context-free string grammars (cf. [BPS64;
Gre68]) to the question whether UnfΨ(ϕ) ⊆ UnfΨ(ψ) holds for a graphical
SID Ψ and graphical symbolic heaps ϕ and ψ. A detailed proof is found
in Appendix H.3. To obtain a decidable fragment, we additionally require that
the graphical SID underlying an entailment query is confluent, i.e., the folding
set of any graphical symbolic heap is a singleton. Formally:

Definition 12.19 (Confluent Graphical SIDs) A graphical SID Ψ is conflu-
ent iff for all graphical symbolic heaps ϕ, we have |FoldΨ(ϕ)| = 1.

Confluence is, admittedly, not a syntactic restriction of SIDs. However, it can
be checked automatically. In particular, a suitable decision procedure has been
implemented in Attestor.
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Theorem 12.20 (Decidability of Confluence [Plu10], [Hei15, p. 30]) It is
decidable whether a given graphical SID is confluent.

Proof. A concrete decision procedure for deciding this property for hyper-
edge replacement grammars (HRG for short) rather than graphical SIDs is
found in [Sch19] (notice that folding corresponds to applying HRG deriva-
tions backward). This procedure is based on more general results for
deciding confluence of (coverable) graph transformation systems (cf. [Plu10,
Corollary 1] and [Hri18, pp. 43–46]) by checking strong joinability of critical
pairs. The claim then follows from the close relationship between graphical
SIDs and HRGs. Details are found in [JGN14] and [Jan17, Proposition 6.1],
where graphical SIDs are included in the considered fragment of SIDs. �

Confluence is also practically motivated: Program verification tools, such as
Attestor, frequently have to fold and unfold symbolic heaps. If an SID is
confluent, then these tools do not have to consider all possible ways in which
a symbolic heap can be folded; rather it suffices to fold symbolic heaps in an
arbitrary order until no further folding step is possible.

Example 12.21 The SID Ψpdll in Examples 12.3 and 12.17 is confluent.
Hence, exhaustively folding the symbolic heap ϕ with respect to Ψpdll
always leads to the symbolic heap ψ as demonstrated in Example 12.7. No-
tice that all rules of Ψpdll are needed to ensure confluence. As demonstrated
on the next page, omitting the third rule, for example, admits another
folding of ϕ.

ϕ = x, y −−z1.prev 7→ 0, z1.next 7→ z2, z2.prev 7→ z1, z2.next 7→ z3,
z3.prev 7→ z2, z3.next 7→ z4, z4.prev 7→ z3,︸ ︷︷ ︸

removed through folding

z4.next 7→ 0

−−x = z1, y = z3, x 6= 0, y 6= 0, x 6= y, y 6= x
==⇒
Ψpdll

J fold according to the first rule K

x, y −−z1.prev 7→ 0, z1.next 7→ z2, z2.prev 7→ z1,︸ ︷︷ ︸
removed through folding

z2.next 7→ z3,

z3.prev 7→ z2, z4.next 7→ 0 −−pdll(z3, z4)

−−x = z1, y = z3, x 6= 0, y 6= 0, x 6= y, y 6= x
==⇒
Ψpdll

J fold according to the first rule K
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x, y −−z1.prev 7→ 0, z2.next 7→ z3, z3.prev 7→ z2,︸ ︷︷ ︸
removed through folding

z4.next 7→ 0

−−pdll(z3, z4), pdll(z1, z2)

−−x = z1, y = z3, x 6= 0, y 6= 0, x 6= y, y 6= x
==⇒
Ψpdll

J fold according to the first rule K

x, y −−z1.prev 7→ 0, z4.next 7→ 0

−−pdll(z3, z4), pdll(z1, z2), pdll(z2, z3)

−−x = z1, y = z3, x 6= 0, y 6= 0, x 6= y, y 6= x.

Hence, the third rule of Ψpdll is necessary to ensure confluence.

We remark that finding confluent SIDs is nontrivial and depends on the number
of free variables. For example, only three rules are needed to define a confluent
SID for (partial) doubly-linked list segments with two free variables; the third
rule intuitively states that two concatenated doubly-linked list segments specify
a doubly-linked list segment as well. However, the same approach does not
work to obtain a confluent SID for (complete) doubly-linked list segments with
four free variables (cf. Example 4.27, page 119). It is also noteworthy that
confluence is indeed a restriction of SIDs.

Theorem 12.22 (Expressiveness of Confluent SIDs) There exists a graph-
ical SID Ψ and a predicate symbol P such that the set of unfoldings
UnfΨ(P(~x)) cannot be captured by a confluent graphical SID.

Proof. The construction is similar to [20, Theorem 6]. Let Sel = 〈 a, b 〉 be a
sequence of selectors. Moreover, let Ψ be the graphical SID given by:

P ⇐ x, y −−x.a 7→ y,
P ⇐ x, y −−x.b 7→ y, and
P ⇐ x, y −−x.a 7→ z −−P(z, y)

Towards a contradiction, assume that there exists a confluent graphical
SID Γ such that UnfΨ(P(x, y)) = UnfΓ(P(x, y)). Then, since each of the
three symbolic heaps below is in UnfΨ(P(x, y)), the following foldings are
possible with respect to Γ:

1. x, y −−x.a 7→ z ∗
=⇒
Γ

x, y −−P(x, y),
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2. x, y −−x.a 7→ z, z.a 7→ y ∗
=⇒
Γ

x, y −−P(x, y), and

3. x, y −−x.a 7→ z, z.b 7→ y ∗
=⇒
Γ

x, y −−P(x, y).

Now, Γ is confluent by assumption. Hence, by applying either the first
folding from above twice or the second folding once, the following folding
is possible as well:

x, y −−x.a 7→ z, z.a 7→ y ∗
=⇒
Γ

x, y −−P(x, z), P(z, y) ∗
=⇒
Γ

x, y −−P(x, y)

By applying the third folding from above twice, this means that we can also
perform the following folding:

x, y −−x.a 7→ z1, z1.b 7→ z2, z2.a 7→ z3, z3.b 7→ y︸ ︷︷ ︸
= ϕ

∗
=⇒
Γ

x, y −−P(x, z), P(z, y) ∗
=⇒
Γ

x, y −−P(x, y)

Consequently, we have ϕ ∈ UnfΓ(P(x, y)). However, this contradicts our
assumption because ϕ /∈ UnfΨ(P(x, y)). �

We now show that the folded entailment problem is decidable for confluent
graphical SIDs. The key idea is to extend Lemma 12.15 such that two graphical
symbolic heaps are isomorphic whenever they share a common unfolding.

Lemma 12.23 Let Ψ be a confluent graphical SID. Moreover, let ϕ and ψ be
folded graphical symbolic heaps with Vars (ϕ) = Vars (ψ). Then, we have

UnfΨ(ϕ) ∩UnfΨ(ψ) 6= ∅ iff ϕ ∼= ψ.

Proof. The proof is similar to [20, Theorem 7]. More precisely, we have:

UnfΨ(ϕ) ∩UnfΨ(ψ) 6= ∅
iff J Definition 10.21 K

∃ϑ ∈ UnfΨ(ϕ) : ϕ
∗⇐=
Ψ

ϑ and ψ
∗⇐=
Ψ

ϑ

iff J Definition 10.20; ϕ and ψ are folded (Definition 12.10) K
∃ϑ ∈ UnfΨ(ϕ) : ϕ ∈ FoldΨ(ϑ) and ψ ∈ FoldΨ(ϑ)

iff J Ψ is confluent and productive (Assumption 12.12) K
ϕ ∼= ψ. �
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Folding symbolic heaps and checking for isomorphism, i.e., applying Algo-
rithm 2, then yields a complete decision procedure.

Theorem 12.24 (Complexity of the Folded Entailment Problem) The folded
entailment problem for confluent graphical SIDs and graphical symbolic
heaps is decidable in NP.

Proof. Let Ψ be a confluent graphical SID Ψ. Moreover, let ϕ be a graphical
symbolic heap and ψ be a folded graphical symbolic heap. Our goal is to
decide the folded entailment ϕ |=Ψ ψ. To this end, we claim that

ϕ |=Ψ ψ iff ϕ
∗
=⇒
Ψ

ψ.

Decidability in NP then follows immediately from NP-completeness of the
latter problem (see Theorem 12.6).

To verify our claim, let us first assume that ϕ
∗
=⇒
Ψ

ψ does hold. Then

ϕ |=Ψ ψ holds as well due to Lemma 12.4.
Conversely, assume that ϕ

∗
=⇒
Ψ

ψ does not hold. Since ψ is folded, we

have FoldΨ(ψ) = {ψ }. Furthermore, since Ψ is confluent, there exists a
graphical symbolic heap ϑ such that FoldΨ(ϕ) = { ϑ }. By assumption, ψ
and ϑ are not isomorphic.

We then proceed as follows:

ψ 6∼= ϑ

implies J Lemma 12.23 K
UnfΨ(ϑ) ∩UnfΨ(ψ) = ∅

implies J Lemma 12.4 K
UnfΨ(ϕ) ∩UnfΨ(ψ) = ∅

implies J elementary algebra; Assumption 12.12 K
UnfΨ(ϕ) 6⊆ UnfΨ(ψ)

implies J Lemma 12.18 K
ϕ |=Ψ ψ does not hold.

Hence, the folded entailment problem is in NP. �

It remains an open problem whether the folded entailment problem for confluent
graphical SIDs is NP-complete. The main difficulty is to construct a suitable
confluent SID when attempting to prove NP-hardness. In particular, the SID in
the hardness proof of Theorem 12.6 is graphical, but not confluent. While we
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were unable to show NP-completeness, we notice that the empty SID is both
confluent and graphical. Hence, given two (folded) graphical symbolic heaps
ϕ,ψ without predicate calls, we have

ϕ |=∅ ψ iff ϕ ∼= ψ.

Due to the close relationship between directed graphs and graphical symbolic
heaps (cf. Example 12.14) it is then straightforward to show that the folded
entailment problem is at least as hard as the graph isomorphism problem (cf.
[ZKT85, Section 15]). Since it is a longstanding open problem whether the graph
isomorphism problem is decidable in polynomial time or NP-complete, we did
not further explore whether folded entailments can be solved in polynomial
time. Furthermore, we remark that a confluent SID might be exponentially
larger than a non-confluent one specifying the same set of unfoldings. If we
start with an arbitrary SID and attempt to make it confluent first, we thus do
not necessarily obtain an efficient decision procedure.

To conclude this section, we observe that—despite the previous remarks—
folded entailments can be solved rather efficiently in practice as SIDs tend to be
rather small. For example, Attestor was able to solve all 88326 instances of the
folded entailment problem which arose when running its benchmark suite (cf.
Chapter 13) in roughly 35.424 seconds.



Chapter 13

Attestor: Model Checking Java Pointer Programs

This chapter is based on prior publications, namely [4; 3], which are presented,
discussed, and extended in the broader context of this thesis.

In this chapter, we give a brief tour through Attestor—an automated verifi-
cation tool for reasoning about Java pointer programs.1 The tool, its source
code, documentation, and all experiments are open-source and available un-
der GPL 3.0 license on both GitHub2 and the Maven central repository.3 In a
nutshell, Attestor takes a Java program and attempts to verify a specification
in linear temporal logic [Pnu77; BK08] (LTL) with support for pointer-specific
properties, such as reachability, for all executions which initially satisfy a given
precondition. To this end, it proceeds along the line of most program analyses
as described in Chapter 2 (Section 2.2, pages 28 to 33). That is, it applies the
program’s operational semantics to generate a transition system that is subject
to further analysis. Since programs manipulating unbounded dynamic data
structures typically lead to infinite state spaces, Attestor performs abstraction
to compute a finite overapproximation of all possible executions. The abstraction
is derived automatically from a user-supplied specification of the involved data
structures. The resulting finite abstract transition system is then passed to an
integrated LTL model checker which—provided that the abstraction mechanism
is strong enough—either confirms that the specification is satisfied or provides a
counterexample in terms of the program’s concrete operational semantics. Both
counterexamples and the full abstract state space can be explored graphically.

Although we will describe Attestor in terms of graphical symbolic heaps
and SIDs (cf. Section 12.3), its internal representation uses the equivalent notions
of hypergraphs and context-free graph grammars which have originally been
proposed as a formalism for heap abstraction by Rieger and Noll [RN08]. A
detailed account of the theoretical underpinnings is found in [Hei+15; 3].

1The name is a reference to the tool’s ability to generate counterexamples. If one insists on a
meaningful acronym, it is a bizarre abbreviation for “AuTomaTEd analysiS of poinTer prOgRams”.

2https://moves-rwth.github.io/attestor/
3https://mvnrepository.com/artifact/de.rwth.i2/attestor
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In summary, Attestor’s main features can be characterized as follows:

• Once supplied with a graphical SID or a context-free graph grammar
that specifies the data structures accessed by a program, it automatically
derives implicit abstract semantics.

• Apart from SIDs or graph grammars to guide abstraction, the analysis is
fully automated. In particular, no program annotations are required.

• Specifications are given by LTL formulas that support a rich set of program
properties, ranging from memory safety over shape, reachability or bal-
ancedness (for an extension of graphical SIDs [3]) to temporal properties
such as full traversal or preservation of the exact heap structure.

• Modular reasoning is supported in the form of contracts that summarize
the effect of executing (recursive) procedures. These contracts can be
automatically derived or manually specified.

• Valuable feedback is provided through a comprehensive report including
non-spurious counterexamples in case of property violations.

• It allows for graphical exploration of state spaces and counterexamples.

13.1 Attestor’s Abstraction

Attestor performs a program analysis with abstraction as discussed in Sec-
tion 2.2. As such, it generates a labeled abstract transition system which is
then explored by a model checker. Before we describe the implementation of
Attestor, let us briefly summarize the abstractions involved in this process.

Concrete Semantics Conceptually, states of the concrete transition system con-
sist of a program and a stack-heap pair; an example is illustrated in Figure 13.1
(topmost). The concrete program semantics is similar in spirit to the operational
semantics of P3L programs presented in Section 4.1.3. Since pointer arithmetic
is not supported by the Java programming language, we assume that the heap
is accessed through selectors (cf. Section 4.1.4).

Symbolic Heap Abstraction Attestor concentrates on reasoning about the
heap. Primitive data types—except from finitely many literal constants, e.g.,
0—are not supported. We thus drop the values of all variables on the stack
which do not represent pointers or one of the aforementioned literals. The
resulting stack-heap pairs are then abstracted to graphical symbolic heaps (cf.
Definition 12.13) of rank zero, i.e., without any predicate calls. In other words,
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stack-heap
pair

rank-zero
graphical
symbolic

heap

folded
graphical
symbolic

heap

symbolic heap
abstraction

guided folding
abstraction

s : x 7→ 7, y 7→ 13

h : 7 7→ 0, 8 7→ 13, 13 7→ 7, 14 7→ 23,

23 7→ 13, 24 7→ 42, 42 7→ 23, 43 7→ 0

7
0 •

13
• •

23
• •

42
• 0

x y

x, y −−z1.prev 7→ 0, z1.next 7→ z2, z2.prev 7→ z1,

z3.prev 7→ z2, z3.next 7→ z4, z4.prev 7→ z3, z4.next 7→ 0

−−x = z1, y = z3, x 6= 0, y 6= 0, x 6= y, y 6= x

z1 pdll z2 pdll z3 0

x y

1 2 1 2

z1 z2 z3 z4 0

x y

x, y −−z1.prev 7→ 0, z3.next 7→ 0 −−pdll(z1, z2), pdll(z2, z3)

−−x = z1, y = z2, x 6= 0, y 6= 0, x 6= y, y 6= x

Figure 13.1: Example of Attestor’s abstraction.
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we abstract from concrete addresses and values. More precisely, the involved
abstraction function maps every concrete state

〈
C, s, h

〉
to the state

〈
C, ϕ

〉
,

where ϕ is the graphical symbolic heap such that (s, h) satisfies ϕ, i.e., s, h |= ϕ.
Notice that, by Lemma 12.15, ϕ is uniquely determined up to isomorphism.
Figure 13.1 (middle) depicts an example of a graphical symbolic heap of rank
zero obtained from abstracting a given stack-heap pair.

Regarding the computation of the abstract transition relation, moving from
stack-heap pairs to graphical symbolic heaps of rank zero preserves all informa-
tion about both the shape of the heap and variables storing pointers to memory
cells. Hence, the semantics of heap manipulating statements, i.e., lookup, muta-
tion, allocation, and deallocation, is easily lifted to graphical symbolic heaps of
rank zero. The semantics of statements involving arithmetic, such as evaluating
conditionals and loop guards, is overapproximated by nondeterministically
considering all possible executions. Further details are found in [Hei+15, Section
3.3] and [20, Appendix A.3].

Guided Folding Abstraction To obtain a finite abstract state space, another
abstraction is applied on top of the previous one. This abstraction is guided by
a user-supplied graphical system of inductive definitions (cf. Definition 12.16),
say Ψ. We assume that Ψ is confluent (see Definition 12.19). While this assump-
tion is technically not required to obtain a sound analysis, confluence ensures
decidability of the folded entailment problem (Theorem 12.24) and simplifies
computing abstractions. Intuitively, the abstraction function determined by Ψ
folds a given graphical symbolic heap ϕ as much as possible; it thus maps ϕ to
the single graphical symbolic heap (of arbitrary rank) in its folding set FoldΨ(ϕ)
(Definition 12.10). This is exemplified in Figure 13.1 (lowermost), where the
underlying SID Ψ models partial doubly-linked list segments (see Example 12.3).

Before we apply this abstraction function, however, we have to ensure that
it respects the atomic propositions required for checking our specification. In
Attestor, a specification is an LTL formula over a finite set of robustness
properties (cf. Chapter 11) which serve as atomic propositions. Consequently,
every atomic proposition is a property of graphical symbolic heaps of rank zero
that (1) corresponds to a state of and (2) can be checked by a heap automaton, say
A. Examples of properties include simple equalities and points-to relationships
between program variables as well as reachability conditions. To guarantee
that these properties are preserved by the abstraction, we first refine our SID
Ψ according to the heap automaton A. Our actual abstraction function is then
determined by the resulting refined SID.4

4Notice that the resulting SID remains confluent provided that A is deterministic, i.e., their
move relation is a function, and we remove predicate symbols which are not decorated with an
automaton state. In particular, all heap automata considered in Section 11.2 are deterministic.
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To effectively compute the abstract transition relation, we adhere to a stan-
dard pattern in shape analysis [WRS02; RSW07]. That is, for every state

〈
C, ϕ

〉
,

we compute its successor states as follows:

1. We first materialize the graphical symbolic heap ϕ, i.e., we apply unfolding
steps until no selectors accessed by the semantics of C are hidden within a
predicate symbol.

2. We execute the (concrete) semantics of C on all graphical symbolic heaps
obtained from materialization as if they would have rank zero.

3. We check whether the obtained graphical symbolic heaps entail a previ-
ously computed one. To this end, we canonicalize them, i.e., fold them
as much as possible, and then search for isomorphic graphical symbolic
heaps which are already part of the abstract transition system. This is in
line with the decision procedure discussed in Section 12.3.

13.2 The Attestor Tool

Attestor is implemented in Java and consists of about 37,000 LOC (excluding
comments and benchmarks). An architectural overview is depicted in Figure 13.2.
It shows the tool’s inputs (left), its outputs (right), and the main phases of its
execution (middle). Moreover, a separate frontend allows to graphically navigate
through the produced outputs. These elements are discussed in detail below.

13.2.1 Input

As shown in Figure 13.2 (left), a verification task passed to Attestor consists of
two obligatory (solid boxes) and up to three optional (dashed boxes) inputs.

Program First, Attestor accepts both Java and Java Bytecode, where the
former is translated to the latter prior to the analysis.

Data Structure Specification Second, Attestor requires a specification of the
dynamic data structures employed by the given program to guide its abstrac-
tion. In order to obtain a finite abstract transition system, this specification
is supposed to cover the data structures emerging during program execution.
The user may choose from a fixed set of predefined specifications for standard
data structures, such as singly- and doubly-linked lists and binary trees. Al-
ternatively, a specification may be supplied manually either as a context-free
graph grammar in a json-style graph format or as a graphical SID. For instance,
Figure 13.3 depicts a graphical SID with three rules specifying singly-linked list
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Attestor BackendInput Output
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Confluence Checking
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Figure 13.2: The architecture of Attestor.

segments. In contrast to our multiset notation for symbolic heaps introduced
in Definition 10.11, the free variables of each rule are provided as parameters of
a rule’s left-hand side, i.e., to the left of the first “<=”. A list of the existentially
quantified variables is provided as the first component of each rule’s right-hand
side, i.e., immediately after “<=”. Moreover, notice that every variable is addi-
tionally annotated with a type (here: List) in curly brackets. This information
corresponds to the class of Java objects referenced by a variable. As such, it
determines the possible selectors that can be used together with a variable.

Precondition By default, Attestor attempts to overapproximate all program
executions starting with an empty heap. Alternatively, a graphical symbolic
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sll(x{List}, y{List})
<= x.next -> y
<= z{List} | x.next -> z * sll(z,y)
<= z{List} | sll(x,z) * sll(z,y);

Figure 13.3: A graphical SID for singly-linked lists in Attestor’s syntax.

heap ϕ may be supplied as a precondition. Attestor will then assume that all
program executions start in a stack-heap pair satisfying ϕ.

LTL Specification Attestor always checks memory safety while generating an
abstract transition system. To verify more involved properties, an LTL formula
over heap-specific atomic propositions has to be provided. The latter comprise,
for example, shape properties, (in)equalities between variables, and reachability
of objects identified by program variables. For instance, the LTL formula below
shows a possible specification for reversing doubly linked lists:

G (X {terminated} -> (

{isReachable(head,tail,[next])}

& {isReachable(tail,head,[prev])})

)

Intuitively, it states that a doubly-linked list with head head and tail tail has
been reversed, i.e., head is reachable from tail using prev-pointers only and
tail is reachable from head using next-pointers only, whenever we terminate
in the next state (in which the garbage collector kicks in and cleans up the heap).
Further examples of specifications are briefly discussed in Section 13.3 alongside
our experimental evaluation.

Options Finally, it is possible to provide additional options to control, amongst
others, the garbage collection behavior, the re-use of results from previous
analyses in the form of procedure contracts, or the granularity of abstraction. A
detailed account of all options is provided as part of Attestor’s documentation.

13.2.2 Phases

Attestor attempts to verify a specification for a given program in eight phases
as illustrated in Figure 13.2 (middle).
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Phase 1: Parser All provided inputs are parsed and preprocessed. In particular,
the input program is read and—if necessary—transformed to Java Bytecode. The
resulting Java Bytecode program is then translated into the Jimple intermediate
language (cf. [Val+99]) using the Soot framework5 to reduce the instruction
set which must be supported by our operational semantics. Moreover, data
structure specifications are internally represented as a graph grammar regardless
of whether they have been provided as one or as a graphical SID.

Phase 2: Confluence Checking While confluence (see Definition 12.19) is not
required for the soundness of Attestor’s analysis, it significantly improves
both precision and performance. If enabled, the provided data structure specifi-
cation is thus checked for confluence prior to the actual analysis. To this end,
all possible critical pairs, i.e., overlappings of SID rules which enable distinct
folding steps, are enumerated and checked for joinability, i.e., whether exhaus-
tively folding them leads to isomorphic symbolic heaps. A detailed account of
Attestor’s decision procedure for confluence is found in [Sch19]. In particular,
we remark that Attestor was capable to decide for various graphical SIDs, e.g.,
singly-linked list segments, doubly-linked list with two or four free variables,
binary trees, in-trees, and binary trees with linked leaves, whether they are
confluent within at most 500ms each. Apart from the graphical SID for doubly-
linked lists with four free variables, all of the aforementioned SIDs are confluent.
This demonstrates an advantage of partial data structure specifications: While
it is simple to define a confluent SID for doubly-linked lists with two missing
pointers, constructing one for complete doubly-linked lists is non-trivial.

Phase 3: Marking Generation Depending on the provided LTL specification,
additional markings [Hei+15, Section 6], i.e., artificial program variables, are
added to the graphical symbolic heap determining the initial state. Markings
are never modified by the program and prevent abstractions of the marked Java
object. As such, they allow tracking object identities during program execution
which is required, for instance, to validate that every initially allocated object is
eventually accessed by a program. Intuitively, the marking generation algorithm
simulates the execution of a simple data structure traversal algorithm. The
result of this simulation is an abstract state space in which the marking has been
placed on any possible object in the given data structure. The states in which
the simulated traversal terminated then serve as initial states of the transition
system considered in the remaining phases.

Phase 4: Abstraction Preprocessing Before the actual state space genera-
tion, the user-supplied graphical SID guiding abstraction is refined (cf. Theo-
rem 11.17) to respect the atomic propositions appearing in LTL specifications (if

5http://sable.github.io/soot/

http://sable.github.io/soot/
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Figure 13.4: Main steps of the state space generation loop.

any is provided). Furthermore, various optimizations—some of which depend
on user-defined options—are applied to improve the performance of abstraction
and materialization. In particular, this involves precomputing the rules required
for materialization of every program statement. Moreover, to reduce the number
of expensive operations, such as abstraction and entailment checking, Attestor

identifies chains of straight-line code (excluding function calls) which are then
treated as a single program statement; they are thus abstracted only once and
no intermediate entailment checks are performed. Other optimizations include
the removal of dead variables, garbage collection, and placing artificial program
variables on the successors of every program variable to prevent abstraction of
points-to assertions which are likely to be needed soon for program execution.

Phase 5: State Space Generation The core module of Attestor is the gen-
eration of an abstract transition system according to the algorithm illustrated
in Figure 13.4. It is provided with a set of initial states which each consist of
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a program and a graphical symbolic heap. From these, Attestor picks a state
and applies the abstract semantics of the next statement to execute until no
new states can be generated, i.e., a fixed point has been reached. First, the
graphical symbolic heap contained in the state is materialized such that all selec-
tors required by the statement are accessible. Each of the resulting formulas is
then modified according to the concrete operational semantics of the statement;
possible null pointer dereferences are automatically detected and reported at
this stage. In the rectification step, a graphical symbolic heap is cleaned from
dead variables and garbage (unless specified otherwise in the provided options).
After that, it is folded as much as possible in the canonicalization step and
labeled with atomic propositions by passing it to a suitable heap automaton
(see Section 11.1.2). Finally, we check whether the state consisting of the current
program and the obtained graphical symbolic heap is covered by one already
contained in the state space. That is, we search for a state with the same program
whose graphical symbolic heap is entailed by the current one.

Phases 6 and 7: Model Checking & Counterexample Generation Once an
abstract transition system has been generated, Attestor checks whether it is
satisfied by the provided LTL specification. To this end, Attestor uses an
off-the-shelf tableau-based LTL model checking algorithm [BCG95]. There is,
however, also prototypical support for both on-the-fly model checking during
state space generation and hierarchical model checking in the sense of [AY01] to
avoid reasoning about procedure calls twice (cf. [Cha19] for details). Regardless
of the chosen model checking algorithm, the following outcomes are possible:

1. The model checker proves that the specification is satisfied. Then the
specified property holds for all program executions starting in a stack-
heap pair satisfying the precondition.

2. The model checker proves that the specification is violated. As long as the
specification in question is a safety-property [BK08, Chapter 4.2], Attestor

computes a “bad prefix” of a path in the abstract transition system which
serves as a counterexample. After that, it checks whether the counterex-
ample is realizable by an actual program execution or spurious. To this
end, the path is replayed according to the concrete program semantics:

a) If Attestor manages to replay the execution, it confirms that the
specification is violated. Furthermore, it computes a concrete initial
state causing the property violation.

b) Otherwise, a warning is issued and the result is changed to unknown.

3. For large abstract transition systems, the model checker might run out of
memory and thus returns unknown.
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Phase 8: Export Finally, the generated abstract state space, the model checking
results, and possibly generated counterexamples are exported into json files
which can be imported by the Attestor frontend for graphical exploration.

13.2.3 Output

As shown in Figure 13.2 (right), we obtain three main outputs once the analysis
is completed: the computed abstract transition system, the derived procedure
contracts, i.e., pairs of pre- and postconditions for each encountered function,
and the model checking results. For each provided LTL formula, results comprise
the possible answers satisfied, violated, and unknown obtained in Phase 6. In
the latter two cases, Attestor might additionally provide a (non-spurious)
counterexample and a concrete initial state causing the property violation for
further testing and debugging.

13.2.4 Frontend

Attestor features a graphical frontend that visualizes inputs as well as results.
In particular, it enables graphical exploration of state spaces, counterexamples,
procedure contracts, and abstraction rules (as rules of graph grammars). Fig-
ure 13.5, page 357, depicts a screenshot of the graphical state space exploration
component. The topmost pane allows switching to the general report and to
search for particular states, e.g., all states in which execution has terminated.
The pane below contains information about the currently selected state, such as
the program statement which is executed next and the atomic propositions it
satisfies. The graphical symbolic heap corresponding to the currently selected
state is illustrated in the right pane below (our graphical notation is explained
in Section 12.3). Finally, the left pane shows an excerpt from the generated
abstract transition system and allows navigating through it. All graphs are
rendered using the JavaScript library cytoscape.js.6

13.3 Evaluation

We conclude this chapter with an experimental evaluation of Attestor against
common algorithms on various dynamic data structures and specifications.

Tool comparison While there exists a plethora of verification tools for pointer
programs, such as Forester [Hol+13], Groove [Gha+12], Tvla [Bog+07],
Juggrnaut [HNR10; Hei+15], and Hip/Sleek [CDG11; Chi+12], these tools
differ in multiple aspects:

6http://js.cytoscape.org/

http://js.cytoscape.org/
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• Input languages range from C code without recursion (Forester) and Java-
like pseudo-code (Hip/Sleek) over Java/Java Bytecode (Juggrnaut) to
assembly code (Tvla) and graph transformation systems (Groove).

• The degree of automation differs heavily: Forester only requires source
code. Hip/Sleek and Juggrnaut additionally expect general data structure
specifications in the form of graph grammars or SIDs. Moreover, Tvla

requires additional program-dependent instrumentation predicates.

• Verifiable properties cover at least memory safety. Apart from Forester, the
aforementioned tools are additionally capable of identifying the shape of
the heap. Furthermore, Hip/Sleek is able to reason about shape-numeric
properties, e.g. lengths of lists, if a suitable specification is provided.
While these properties are not supported by Tvla, it is possible to verify
reachability properties. Moreover, Juggrnaut can reason about properties
specified in linear temporal logic.

Benchmarks Due to the large degree of diversity outlined above there is
no publicly available and representative set of standardized benchmarks to
compare the aforementioned tools [Abd+16]. We thus evaluated Attestor

on a collection of challenging, pointer intensive algorithms compiled from the
literature [Bog+07; Bou+06; Hol+13; LRS06]. The aforementioned algorithms
are examples of successful applications of program verification. To assess our
counterexample generation, we also considered invalid specifications, e.g., that a
reversed list is the same list as the input list. Furthermore, we injected faults
into our examples by swapping and deleting statements.

Properties Memory safety (M) is always checked during state space generation.
In addition to that, we considered five classes of properties which have been
verified by the built-in LTL model checker:

• The shape property (S) establishes that the heap is of a specified shape, e.g.
a doubly-linked list or a (balanced) tree (for balancedness an extended
notion of graphical SIDs is required; see [3]).

• The reachability property (R) checks whether some variable is reachable
from another one via specified selectors.

• The visit property (V) verifies whether every element of the input is accessed
by a specified variable.

• The neighborhood property (N) checks whether the input data structure
coincides with the output data structure upon termination.



13.3. Evaluation 355

• Finally, we consider other functional correctness properties (C), e.g., the
return value is not null upon termination.

Moreover, we occasionally injected errors in the considered programs and
checked whether Attestor is capable of finding non-spurious counterexamples.
These benchmarks are marked with an (X).

Experiments We conducted experiments on an Intel Core i7-7500U CPU at
2.70GHz with 16GB of RAM with the Java virtual machine (OpenJDK version
1.8.0_151) limited to its default setting of 2GB of RAM. All experiments were run
using the Java benchmarking harness jmh.7 An excerpt from our experimental
results is shown in Table 13.1. All provided runtimes are in seconds. Since
the total runtime includes starting the Java runtime environment, we also
provide the runtimes for abstract state space generation and verification (which
includes the former). Additionally, for comparison purposes, we considered
Java implementations of benchmarks that have been previously analyzed for
memory safety by Forester [Hol+13]; the results are found in Table 13.2.

The full benchmark collection together with its documentation and all scripts
to reproduce our results is available online.8

Our experiments demonstrate that both memory safety (M) and shape (S) are
efficiently processed with regard to both state space size and runtime. This is not
surprising as these properties are directly handled by the state space generation
engine. The most challenging tasks are the visit (V) and neighborhood (N)
properties as they require to track objects across program executions by means
of markings. The latter have a similar impact as program variables: Increasing
their number impedes abstraction as larger parts of the heap have to be kept
concrete. This effect can especially be observed for the Lindstrom tree traversal
procedure where adding one (V) and three markings (N) both increase the
verification effort by an order of magnitude.

7https://openjdk.java.net/projects/code-tools/jmh/
8https://github.com/moves-rwth/attestor-examples

https://openjdk.java.net/projects/code-tools/jmh/
https://github.com/moves-rwth/attestor-examples
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Benchmark Number of States Verification Time (s)

SLL.bubblesort 287 0.134

SLL.deleteElement 152 0.096

SLLHeadPtr (traverse) 111 0.095

SLL.insertsort 369 0.147

ListOfCyclicLists 313 0.153

DLL.insert 379 0.207

DLL.insertsort1 4302 1.467

DLL.insertsort2 1332 0.514

DLL.buildAndReverse 277 0.164

CyclicDLL (traverse) 104 0.108

Tree.construct 44 0.062

Tree.constructAndDSW 1334 0.365

SkipList.insert 302 0.160

SkipList.build 330 0.173

Table 13.2: Attestor’s performance on Forester’s benchmarks [4, Table 2].



Chapter 14

Conclusion and Future Work

We studied aspects of automated reasoning with and about the symbolic heap
fragment of separation logic with user-defined inductive predicate definitions.

For reasoning about separation logic, we considered a class of robustness
properties and the entailment problem in particular.

For reasoning with separation logic, we briefly reported on the implementa-
tion of Attestor—a model checker for Java pointer programs.

Robustness Properties We developed an algorithmic framework to decide
whether a given system of inductive definitions (SID) satisfies a robustness
property, e.g., satisfiability, reachability, or establishment. Our approach is based
on the notion of heap automata—a specialized kind of tree automaton that is
tailored towards reasoning about unfoldings of symbolic heaps. Apart from
decision procedures, heap automata also enable systematic refinement of SIDs to
guarantee that all of their (remaining) unfoldings are robust. They thus support
both debugging and optimizing SIDs before the actual verification process.

We presented several case studies—ranging from the satisfiability problem
to reachability problems—that demonstrate the applicability of heap automata.
A prototypical implementation of our framework indicates that the decision
procedures derived from heap automata are competitive with dedicated decision
procedures for, e.g., satisfiability of symbolic heaps.

Furthermore, heap automata are applied within the Attestor tool to dis-
charge the state labeling problem. That is, they decide whether an abstract state,
i.e., a graphical symbolic heap, satisfies an atomic proposition.

The entailment problem We outlined how heap automata can be applied to
discharge entailments. Moreover, we considered the folded entailment problem.
While this problem is undecidable in general, we presented a pragmatic decision
procedure for the folded entailment problem for graphical symbolic heaps
and confluent graphical SIDs. This decision procedure covers all entailments
encountered by the Attestor tool. Moreover, it lies in the complexity class
NP and is at least as hard as the well-known graph isomorphism problem.
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Although we have been unable to prove a tight lower bound, we conjecture that
the aforementioned problem is NP-complete.

Attestor We briefly reported on the key features and the implementation of
Attestor. In a nutshell, Attestor takes a Java pointer program and attempts to
verify specifications in linear temporal logic with dedicated atomic propositions
for describing properties of the heap. To this end, it applies abstraction which
is guided by a graphical SID. Our experiments demonstrate that Attestor is
capable of proving complex properties of pointer intensive algorithms including
preservation of the original input by the Lindstrom tree traversal algorithm.

14.1 Future Work

An obvious task is to clarify the exact complexity of the folded entailment prob-
lem for confluent graphical SIDs. In this context, it would also be desirable to
obtain a mathematical characterization of the kind of data structures that can be
specified by confluent SIDs. We list other directions for future work below.

Confluent SIDs We have shown in Theorem 12.22 that there exist graphical
SIDs which specify sets of unfoldings that cannot be captured by a confluent
graphical SID. At the same time, for every k ≥ 1, there exists an SID specifying
the set of all symbolic heaps without predicate calls and with at most k free
variables. While such an SID is useless for both abstraction and discharging
folded entailments—after all, everything is folded into a single predicate call—it
shows that every graphical SID can be extended to a confluent graphical SID
describing a potentially larger set of unfoldings. This raises the question of
how confluent SIDs which only slightly increase the set of unfoldings described
by an originally provided SID can be learned automatically. Another question
is whether and how the knowledge of having a confluent SID is beneficial for
the performance of other proof systems. For instance, a common example for
cyclic proof systems (cf. [BDP11, Example 3]) is their capability of proving that
two suitably connected singly-linked list segments entail a single list segment.
This fact is immediate for confluent SIDs: Constructing a confluent SID for
singly-linked list segments forces us to add a rule which makes this fact explicit:

sll ⇐ x, y −−sll(x, z), sll(z, y).

Biabduction with Heap Automata An important decision problem for sepa-
ration logic, which we did not cover in this thesis, is the biabduction problem:
Given assertions ϕ and ψ, find assertions ϑ and η such that ϕ ? ϑ |=Ψ ψ ? η
and ϕ ? ϑ is satisfiable. This problem arises when aiming for full automation,
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i.e., even specifications should be inferred automatically (cf. [Cal+11; GKO11;
BG14]). In this context, it has been identified as “key to automatic specification
inference at industrial scale” [BGK17]. An interesting aspect of using heap
automata for solving entailments (see Section 12.1) is that they typically capture
how an unfolding must be extended such that it entails a given symbolic heap.
This suggests applying heap automata to the biabduction problem, where every
possible extension of a symbolic heap is a potential solution.

Support for Data in Attestor The abstraction techniques employed by At-
testor presented in Chapter 13 provide no support for payload data stored
within dynamic data structures. While there exist extensions to deal with a few
shape-numeric properties, such as balancedness [3], it would be interesting to
investigate whether the syntactic rewriting approach taken by Attestor works
well in the presence of richer data theories.
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Appendix A

Domain Theory

We collect a few essential definitions and results from domain theory, in par-
ticular complete lattices and various fixed point theorems, which are used
throughout this thesis. A more thorough introduction to domain theory is found
in various textbooks, such as [Bir40; Win93].

A.1 Partial Orders and Complete Lattices

Definition A.1 (Partial Order) A partial order 〈D,v〉 consists of a set D and
a binary relation v⊆ D× D such that v is

• reflexive, i.e., ∀r ∈ D ∈ D : r v r,

• antisymmetric, i.e., ∀r, s ∈ D : r v s and s v r implies r = s, and

• transitive, i.e., ∀r, s, t ∈ D : r v s and s v t implies r v t.

We write d @ d′ as a shortcut for d v d′ and d′ 6= d.

Definition A.2 (Order Isomorphism) Two partial orders 〈D,v〉 and 〈A,≤〉
are isomorphic iff there exists a bijective function f : D → A such that

∀r, s ∈ D : r v s iff f (r) ≤ f (s).

We do not distinguish between isomorphic partial orders.

Definition A.3 (Upper and Lower Bounds) Let 〈D,v〉 be a partial order
and S ⊆ D be a subset of D.

Then u ∈ D is an upper bound of S if and only if for all s ∈ S, we have
s v u. Moreover, u is the least upper bound of S if and only if

• u is an upper bound of S, and
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• for every upper bound u′ of S, we have u v u′.

If the least upper bound, which we also call the supremum,of S exists, we
denote it by sup S. Furthermore, if sup S ∈ S, then sup S is called the greatest
element, or maximum, of S.

Analogously, l ∈ D is a lower bound of S if and only if for all s ∈ S, we
have l v s. Moreover, l is the greatest lower bound of S if and only if

• l is a lower bound of S, and

• for every lower bound l′ of S, we have l′ v l.

If the greatest lower bound, which we also call the infimum, of S exists, we
denote it by inf S. Furthermore, if inf S ∈ S, then inf S is called the least
element, or minimum, of S.

Definition A.4 (Complete Lattice) A partial order 〈D,v〉 is a complete lat-
tice if every subset S ⊆ D has a least upper bound.

Lemma A.5 For every set S,
(

2S, ⊆
)

is a complete lattice.

Lemma A.6 ([Bir40, Chapter 4]) For every complete lattice 〈D,v〉:

• Every subset S ⊆ D has a greatest lower bound.

• The least element of D is ⊥ , sup ∅ = inf D.

• The greatest element of D is > , sup D = inf ∅.

A.2 Transfinite Induction

The following presentation is based on [Bir40, Chapter 3].

Definition A.7 A partial order 〈D,v〉 is well-ordered if and only if every
non-empty subset of D has a least element. Let 0 be the least element of D.

Then 0 6= α ∈ D is called a limit ordinal if and only if

∀β : β @ α implies ∃γ : β @ γ @ α.

Otherwise, i.e., if there exists a largest β ∈ D such that β @ α, we call α a
successor ordinal and denote it by β + 1.
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Theorem A.8 (Principle of Transfinite Induction) Let 〈 {Pα}, @ 〉 be a well-
ordered set of propositions with least element P0. Then all propositions Pα

are true whenever

(a) (induction base) P0 is true,

(b) (induction step) if Pα is true, then Pα+1 is true, and

(c) (limit step) if α is a limit ordinal and, for all β @ α, Pβ is true, then Pα

is true.

In particular, the simplest infinite well-ordered set is given by 〈N,≤〉, i.e., the
set of natural numbers N with the canonical ordering ≤. Since this well-ordered
set contains no limit ordinals, applying the principle of transfinite induction to
a countable set is identical to the principle of complete induction.

A.3 Fixed Points

A total function f with domain A and image B is denoted by f : A→ B.

Definition A.9 (Fixed Points) Let 〈D,v〉 be a partial order. Moreover, let
f : D → D be a function. Then d ∈ D is

• a prefixed point if f (d) v d,

• a postfixed point if d v f (d), and

• a fixed point if f (d) = d.

Definition A.10 (Monotone Function) Let 〈D,v〉 be a partial order. A
function f : D → D is monotone if and only if for all r, s ∈ D, we have

r v s implies f (r) v f (s).

Theorem A.11 (Knaster-Tarski [Kna28; Tar+55]) For a complete lattice
〈D,v〉 and a monotone function f : D → D, the set { d | f (d) = d } of fixed
points of f is a complete lattice with ordering v.

In particular, the least fixed point lfp ( f ) and the greatest fixed point
gfp ( f ) are given by

lfp ( f ) = inf { d | f (d) v d } and gfp ( f ) = sup { d | d v f (d) } .
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Corollary A.12 (Park [Par69]) For a complete lattice 〈D,v〉 and a mono-
tone function f : D → D, we have:

∀d ∈ D : f (d) v d implies lfp ( f ) v d
∀d ∈ D : d v f (d) implies d v gfp ( f )

Definition A.13 (Function Composition) Let 〈D,v〉 be a complete lattice
and α be some ordinal number. The α-fold application of a function f : D →
D is defined as

f α ,


λd. d , if α = 0
f ( f β) , if α = β + 1 is a successor ordinal
sup

{
f β
∣∣ β @ α

}
, if α is a limit ordinal.

Theorem A.14 (Cousot and Cousot [CC79]) For a complete lattice 〈D,v〉
and a monotone function f : D → D, the least fixed point of f is given by

lfp ( f ) = sup { f α(⊥) | α is an ordinal number } .

In particular, the supremum is attained for some ordinal number.
Moreover, the greatest fixed point of f is given by

gfp ( f ) = inf { f α(>) | α is an ordinal number } .

In particular, the infimum is attained for some ordinal number.

For a set D, let 2D , { S | S ⊆ D } denote its powerset. Function f is lifted to a
function on sets, i.e., f : 2D → 2D, by pointwise application:

∀S ∈ 2D : f (S) , { f (s) | s ∈ S } .

Definition A.15 (Continuous Function) Let 〈D,v〉 be a complete lattice. A
function f : D → D is continuous if and only if

∀S ∈ 2D : sup f (S) = f (sup S).

Theorem A.16 (Kleene [Kle+52]) For a complete lattice 〈D,v〉 and a con-
tinuous function f : D → D, the least fixed point of f is given by

lfp ( f ) = sup { f n(⊥) | n ∈N } .



A.3. Fixed Points 369

Moreover, the greatest fixed point of f is given by

gfp ( f ) = inf { f n(>) | n ∈N } .





Appendix B

Omitted Calculations in Part I

B.1 Proof of the Entailment in Section 4.4.2

Our goal is to show that

x 7→ − ? y 7→ − ? true

implies

x 7→ − ? (x 7→ 3 −−? (y 7→ − ? (y 7→ 17 −−? x ↪→ 3))).

To this end, consider the following:

x 7→ − ? y 7→ − ? true

// =⇒ J Lemma E.6 K
x 7→ − ? (x 7→ 3 −−? (x 7→ 3 ? y 7→ − ? true))

// =⇒ J Theorem 4.17 (c) K
x 7→ − ? (x 7→ 3 −−? (y 7→ − ? x 7→ 3 ? true))
// =⇒ J Lemma E.6 K
x 7→ − ? (x 7→ 3 −−? (y 7→ − ? (y 7→ 17 −−? y 7→ 17 ? x 7→ 3 ? true)))
// =⇒ J Theorem 6.30 (b), elementary algebra K
x 7→ − ? (x 7→ 3 −−? (y 7→ − ? (y 7→ 17 −−? true ? x 7→ 3 ? true)))
// =⇒ J elementary algebra, Definition of x ↪→ 3 K
x 7→ − ? (x 7→ 3 −−? (y 7→ − ? (y 7→ 17 −−? x ↪→ 3)))
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Selected Proofs Omitted in Part II

C.1 Proof of Theorem 5.8

We have to show that, for every MDPM = 〈 S, Act,Prob, s0, sG , rew 〉 and every
state s ∈ S, we have

ExpRew (Ms) = inf
a∈Act(s)

∑
Prob(s,a,s′)=p>0

rew(s′) + p · ExpRew (Ms′) .

Proof. The claim is dual to a well-established result for Markov decision
processes that is found in [Put05, Theorem 7.1.3]: Assume that all rewards
assigned to states are either non-negative or non-positive. Moreover, let
ExpRew (M) denote the maximal expected reward of MDPM, i.e.,

ExpRew (M) , sup
S

∑
s0 ...sn ∈ PathsM(S)

ProbM(s0 . . . sn) · rewM(s0 . . . sn).

Then, for every state s ∈ S, we have

ExpRew (Ms) = sup
a∈Act(s)

∑
Prob(s,a,s′)=p>0

rew(s′) + p · ExpRew (Ms′).

Now, letM′ be the same MDP asM except that we multiply every reward
assigned to a state with minus one. Then, we have

ExpRew (M′)

= J By definition of maximal expected rewards K

sup
S

∑
s0 ...sn ∈ PathsM′ (S)

ProbM′(s0 . . . sn) · rewM′(s0 . . . sn)

=
q

By definition ofM′ y

373
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sup
S

∑
s0 ...sn ∈ PathsM(S)

ProbM(s0 . . . sn) · −1 · rewM(s0 . . . sn)

= J factor out −1; sup− f = − inf f K

− inf
S

∑
s0 ...sn ∈ PathsM(S)

ProbM(s0 . . . sn) · rewM(s0 . . . sn)

= J By definition of minimal expected rewards K
− ExpRew (M) .

Hence, for every state s ∈ S, we have ExpRew (Ms) = −ExpRew (M′
s). To

conclude the proof, we then proceed as follows:

ExpRew (Ms)

= J By the previously shown equality K

− ExpRew (M′
s)

=
q

By [Put05, Theorem 7.1.3] and definition ofM′ y

− sup
a∈Act(s)

∑
Prob(s,a,s′)=p>0

−rew(s′) + p · ExpRew
(
M′

s′
)

= J By the previously shown equality K

− sup
a∈Act(s)

∑
Prob(s,a,s′)=p>0

−rew(s′) + p · −ExpRew (Ms′)

= J factor out −1; sup− f = − inf f ; algebra K

inf
a∈Act(s)

∑
Prob(s,a,s′)=p>0

rew(s′) + p · ExpRew (Ms′) . �

C.2 Proof of Theorem 6.18 (adjointness)

Our goal is to show that, for all expectations X, Y, Z ∈ E, we have

X ? Y � Z iff X � Y −−? Z.

The proof relies on the following auxiliary result:

Lemma C.1 Let X, Y, Z ∈ E be expectations. Then, for all stacks s and heaps
h, h1,h2 with h = h1 ] h2, Y(s, h2) > 0, and (Y(s, h2) < ∞ or Z(s, h) < ∞):

X(s, h1) �
Z(s, h)
Y(s, h2)

iff X(s, h1) · Y(s, h2) � Z(s, h).
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Proof. We distinguish three cases:

1. Y(s, h2) < ∞ and Z(s, h) < ∞. By standard arithmetic, we have:

X(s, h1) �
Z(s, h)
Y(s, h2)

iff X(s, h1) · Y(s, h2) � Z(s, h).

2. Y(s, h2) = ∞ and Z(s, h) < ∞. Then:

X(s, h1) �
Z(s, h)
Y(s, h2)

iff J by assumption; ∀u ∈N>0 : u/∞ = 0 K
X(s, h1) ≤ 0

iff J by assumption: Y(s, h2) = ∞ K
X(s, h1) ·Y(s, h2) ≤ 0

iff J by assumption: 0 � Z(s, h) � ∞ K
X(s, h1) · Y(s, h2) � Z(s, h).

3. Y(s, h2) < ∞ and Z(s, h) = ∞. Then:

X(s, h1) �
Z(s, h)
Y(s, h2)

iff J by assumption; ∀u ∈N>0 : ∞/u = ∞ K
X(s, h1) � ∞

iff J by assumption: Y(s, h2) < ∞, Z(s, h) = ∞ K
X(s, h1) ·Y(s, h2) � Z(s, h). �

Proof (of Theorem 6.18). Let X, Y, Z ∈ E. Then consider the following:

X � Y −−? Z
iff J Definition of � K
∀s∀h : X(s, h) � (Y −−? Z)(s, h)

iff J Definition of −−? K

∀s∀h : X(s, h) � inf

 Z(s, h ] h′)

Y(s, h′)

∣∣∣∣∣∣
h # h′ and Y(s, h′) > 0
and

(
Y(s, h′) < ∞
or Z(s, h ] h′) < ∞

)

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iff J X(s, h) is a lower bound of inf { . . . }; thus all elements of . . . are K

∀s∀h∀h′ :
h # h′ and Y(s, h′) > 0
and

(
Y(s, h′) < ∞

or Z(s, h ] h′) < ∞
) implies X(s, h) � Z(s, h ] h′)

Y(s, h′)

iff
q

Rename h to h1, h′ to h2, and h1 ] h2 to h
y

∀s∀h1∀h2∀h :
h = h1 ] h2 and Y(s, h2) > 0
and

(
Y(s, h2) < ∞ or Z(s, h) < ∞

)
implies X(s, h1) �

Z(s, h)
Y(s, h2)

iff J Lemma C.1 K

∀s∀h1∀h2∀h :
h = h1 ] h2 and Y(s, h2) > 0
and

(
Y(s, h2) < ∞ or Z(s, h) < ∞

)
implies X(s, h1) ·Y(s, h2) � Z(s, h)

iff J X(s, h1) · Y(s, h2) � Z(s, h) satisfied for Y(s, h2) = Z(s, h) ·∞ K
∀s∀h1∀h2∀h : h = h1 ] h2 and Y(s, h2) > 0

implies X(s, h1) · Y(s, h2) � Z(s, h)
iff J X(s, h1) · Y(s, h2) � Z(s, h) trivially satisfied for Y(s, h2) = 0 K
∀s∀h1∀h2∀h : h = h1 ] h2 implies X(s, h1) · Y(s, h2) � Z(s, h)

iff J swap quantifiers K
∀s∀h∀h1∀h2 : h = h1 ] h2 implies X(s, h1) · Y(s, h2) � Z(s, h)

iff J Z(s, h) is an upper bound of X(s, h1) · Y(s, h2) for all h = h1 ] h2 K
∀s∀h : sup {X(s, h1) · Y(s, h2) | h = h1 ] h2 } � Z(s, h)

iff J Definition of ? K
∀s∀h : (X ? Y)(s, h) � Z(s, h)

iff J Definition of � K
X ? Y � Z. �

C.3 Proof of Theorem 7.10 (Quantitative Frame Rule)

Proof. By induction on the structure of P4L programs.
The case skip.

wp [skip] (X) ? Y
= J Figure 7.1 K
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X ? Y
= J Figure 7.1 K

wp [skip] (X ? Y).

The case x := E.

wp [x := E] (X) ? Y
= J Figure 7.1 K

X [x/E] ? Y
= J x ∈ Mod (x := E). Hence, x /∈ Vars (Y) K

X [x/E] ? Y [x/E]
= J elementary algebra K

(X ? Y) [x/E]
= J Figure 7.1 K

wp [x := E] (X ? Y).

The case x :≈ µ.

wp [x :≈ µ] (X ? Y)
= J Figure 7.1 K

λ(s, h). ∑
v∈Z

µ(s)(v) · (X ? Y) [x/v] (s, h)

= J substitution distributes; x /∈ Vars (Y) K

λ(s, h). ∑
v∈Z

µ(s)(v) · (X [x/v] ? Y)(s, h)

= J Theorem 6.22 (b) K

λ(s, h). ∑
v∈Z

((µ(s)(v) · X [x/v]) ? Y)(s, h)

= J Theorem 6.14 (c) K

λ(s, h). ∑
v∈Z

(Y ? (µ(s)(v) · X [x/v]))(s, h)

� J Theorem 6.16 (c) K

Y ?

(
λ(s, h). ∑

v∈Z

?(µ(s)(v) · X [x/v])(s, h)

)
= J Figure 7.1 K
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Y ? wp [x :≈ µ] (X)
= J Theorem 6.14 (c) K

wp [x :≈ µ] (X) ?Y.

The case x := <E>.

wp [x := <E>] (X ? Y)
= J Figure 7.1 K

sup
v∈Z

[E 7→ v] ? ([E 7→ v]−−? (X ? Y) [x/v])

= J x /∈ Vars (Y) K
sup
v∈Z

[E 7→ v] ? ([E 7→ v]−−? (X [x/v] ? Y))

= J Theorem 6.30 (a) K
sup
v∈Z

[E ↪→ v] · (X [x/v] ? Y)

= J Definition of ?; elementary algebra K
λ(s, h). sup

v∈Z

max

{ [E ↪→ v] (s, h) · (X [x/v] (s, h1) · Y(s, h2)) | h = h1 ] h2 }
= J elementary algebra K

λ(s, h). sup
v∈Z

max

{ ([E ↪→ v] (s, h) · X [x/v] (s, h1)) · Y(s, h2) | h = h1 ] h2 }
� J take subset in which [E ↪→ v] is evaluated in h1 instead of h K

λ(s, h). sup
v∈Z

max

{ ([E ↪→ v] (s, h1) · X [x/v] (s, h1)) · Y(s, h2) | h = h1 ] h2 }
= J Definition of ? K

sup
v∈Z

([E ↪→ v] · X [x/v]) ? Y

= J v fresh, does not occur in Y K(
sup
v∈Z

E ↪→ v · X [x/v]

)
?Y

= J Figure 7.1 K
wp [x := <E>] (X) ? Y.
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The case <E> := E′.

wp
[
<E> := E′

]
(X ? Y)

= J Figure 7.1 K

[E 7→ −] ? (
[
E 7→ E′

]
−−? (X ? Y))

= J elementary algebra K

[E 7→ −] ? λ(s, h). (
[
E 7→ E′

]
−−? (X ? Y))(s, h)

= J Theorem 6.11 K

[E 7→ −] ? λ(s, h). inf
{
(X ? Y)(s, h ] h′)

∣∣ h # h′, s, h′ |=
[
E 7→ E′

] }
= J Definition of ? K

[E 7→ −] ? λ(s, h). inf{
max

{
X(s, h1) · Y(s, h2)

∣∣ h ] h′ = h1 ] h2
}

| h # h′, s, h′ |=
[
E 7→ E′

]
}

= J replace max by sup for non-empty finite set K
[E 7→ −] ? λ(s, h). inf{

sup
{

X(s, h1) · Y(s, h2)
∣∣ h ] h′ = h1 ] h2

}
| h # h′, s, h′ |=

[
E 7→ E′

]
}

�
q

choose h′ ⊆ h1
y

[E 7→ −] ? λ(s, h). inf{
sup

{
X(s, h1 ? h

′) · Y(s, h2)
∣∣ h = h1 ] h2

}
| h # h′, s, h′ |=

[
E 7→ E′

]
}

�
t

inf
a∈A

sup
b∈B

f (a, b) ≥ sup
b∈B

inf
a∈A

f (a, b)

|

[E 7→ −] ? λ(s, h). sup{
inf
{

X(s, h1 ? h
′) · Y(s, h2)

∣∣ h # h′, s, h′ |=
[
E 7→ E′

] }
| h = h1 ] h2}

=
q

elementary algebra (Y does not depend on h′)
y

[E 7→ −] ? λ(s, h). sup{
inf
{

X(s, h1 ? h
′)
∣∣ h # h′, s, h′ |=

[
E 7→ E′

] }
·Y(s, h2)

| h = h1 ] h2}
= J Theorem 6.11 K
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[E 7→ −] ? λ(s, h). sup{
(
[
E 7→ E′

]
−−? X)(s, h1) · Y(s, h2)

| h = h1 ] h2}
= J the set of partitions of h is non-empty and finite K

[E 7→ −] ? λ(s, h). max{
(
[
E 7→ E′

]
−−? X)(s, h1) · Y(s, h2)

| h = h1 ] h2}
= J Definition of ? K

[E 7→ −] ? (
[
E 7→ E′

]
−−? X) ? Y

= J Figure 7.1 K

wp
[
<E> := E′

]
(X) ? Y.

The case x := alloc(~E).

wp
[

x := alloc(~E)
]
(X ? Y)

= J Figure 7.1 K

inf
v∈Z

[
v 7→ ~E

]
−−? (X ? Y) [x/v]

= J x ∈ Vars (Y) K

inf
v∈Z

[
v 7→ ~E

]
−−? (X [x/v] ? Y)

= J Theorem 6.11 K

λ(s, h). inf
v∈Z

inf{(X [x/v] ? Y)(s, h ] h′) | h # h′ and s, h′ |=
[
v 7→ ~E

]
}

= J Definition of ? K
λ(s, h). inf

v∈Z
inf{

max
{

X [x/v] (s, h1) · Y(s, h2)
∣∣ h ] h′ = h1 ] h2

}
| h # h′ and s, h′ |=

[
v 7→ ~E

]
}

�
q

choose h′ ⊆ h1
y

λ(s, h). inf
v∈Z

inf{

max
{

X [x/v] (s, h1 ] h′) · Y(s, h2)
∣∣ h = h1 ] h2

}
| h # h′ and s, h′ |=

[
v 7→ ~E

]
}
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= J replace max by sup for non-empty finite set K
λ(s, h). inf

v∈Z
inf{

sup
{

X [x/v] (s, h1 ] h′) · Y(s, h2)
∣∣ h = h1 ] h2

}
| h # h′ and s, h′ |=

[
v 7→ ~E

]
}

�
t

inf
a∈A

sup
b∈B

f (a, b) ≥ sup
b∈B

inf
a∈A

f (a, b) twice

|

λ(s, h). sup{ inf
v∈Z

inf
{

X [x/v] (s, h1 ] h′) · Y(s, h2)
∣∣∣ h # h′ and s, h′ |=

[
v 7→ ~E

] }
| h = h1 ] h2}

=
q

elementary algebra (Y does not depend on h′)
y

λ(s, h). sup{ inf
v∈Z

inf
{

X [x/v] (s, h1 ] h′)
∣∣∣ h # h′ and s, h′ |=

[
v 7→ ~E

] }
·Y(s, h2)

| h = h1 ] h2}
= J Theorem 6.11 K

λ(s, h). sup{

inf
v∈Z

([
v 7→ ~E

]
−−? X [x/v]

)
(s, h1) · Y(s, h2)

| h = h1 ] h2}
= J Definition of ? K(

inf
v∈Z

[
v 7→ ~E

]
−−? X [x/v]

)
?Y

= J Figure 7.1 K

wp
[

x := alloc(~E)
]
(X) ? Y.

The case free(E).

wp [free(E)] (X) ? Y
= J Figure 7.1 K

([E 7→ −] ? X) ? Y
= J Theorem 6.14 (a) K
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[E 7→ −] ? (X ? Y)
= J Figure 7.1 K

wp [free(E)] (X ? Y).

The case C1 ; C2.

wp [C1 ; C2] (X) ? Y
= J Figure 7.1 K

wp [C1] (wp [C2] (X)) ? Y
� J I.H. on C1 K

wp [C1] (wp [C2] (X) ? Y)
� J I.H. on C2 K

wp [C1] (wp [C2] (X ? Y))
= J Figure 7.1 K

wp [C1 ; C2] (X ? Y).

The case {C1 } [ p ] {C2 }.

wp [{C1 } [ p ] {C2 }] (X) ? Y
= J Figure 7.1 K

(p · wp [C1] (X) + (1− p) · wp [C2] (X)) ? Y
� J Theorem 6.16 (c) K

(p · wp [C1] (X)) ?Y + ((1− p) · wp [C2] (X)) ?Y
= J Theorem 6.22 (b) K

p · (wp [C1] (X) ? Y) + (1− p) · (wp [C2] (X) ? Y)
� J I.H. for C1 and C2 K

p · wp [C1] (X ? Y) + (1− p) · wp [C2] (X ? Y)
= J Figure 7.1 K

wp [{C1 } [ p ] {C2 }] (X ? Y).

The case if ( B ) {C1 } else {C2 }.

wp [if ( B ) {C1 } else {C2 }] (X) ? Y
= J Figure 7.1 K

([B] · wp [C1] (X) + [¬B] · wp [C2] (X)) ? Y
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� J Theorem 6.16 (c) K
([B] · wp [C1] (X)) ?Y + ([¬B] · wp [C2] (X)) ?Y

= J Theorem 6.22 (b) K
[B] · (wp [C1] (X) ? Y) + [¬B] · (wp [C2] (X) ? Y)

� J I.H. for C1 and C2 K
[B] · wp [C1] (X ? Y) + [¬B] · wp [C2] (X ? Y)

= J Figure 7.1 K
wp [if ( B ) {C1 } else {C2 }] (X ? Y).

The case while ( B ) {C }. Recall from Section 7.2.1 the characteristic function
W of loop while ( B ) {C } with respect to postexpectation Z:

WZ , λI. [B] · wp [C] (I) + [¬B] · Z.

By Figure 7.1 and Theorem 7.5, there is some ordinal β such that

wp [while ( B ) {C }] (X ? Y) = lfp (WX?Y) = W
β
X?Y(0).

To complete the proof, we show by transfinite induction (see Appendix A.2)
that, for all ordinals α, we have:

Wα
X?Y(0) � Wα

X(0) ? Y.

The claim then follows for α = β.
The case α = 0 is trivial. For α = 1, consider the following:

WX?Y(0)
= J Definition of characteristic function K

[B] · wp [C] (0) + [¬B] · (X ? Y)
= J Theorem 7.4 (c) K

[¬B] · (X ? Y)
= J Theorem 6.22 (b) K

([¬B] · X) ? Y
= J Definition of characteristic function K

WX(0) ? Y.
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For successor ordinals, assume that Wα
X?Y(0) �Wα

X(0) ? Y. Then, consider
the following:

Wα+1
X?Y(0)

= J Definition A.13 K
WX?Y(W

α
X?Y(0))

= J Definition of characteristic function K
[B] · wp [C] (Wα

X?Y(0)) + [¬B] · (X ? Y)
� J I.H. K

[B] · wp [C] (Wα
X(0) ? Y) + [¬B] · (X ? Y)

� J I.H. of outer induction K
[B] · (wp [C] (Wα

X(0)) ?Y) + [¬B] · (X ? Y)
= J Theorem 6.22 (b) K

([B] · wp [C] (Wα
X(0))) ? Y + ([¬B] · X) ? Y

� J Theorem 6.16 (c) K
([B] · wp [C] (Wα

X(0)) + [¬B] · X) ?Y
= J Definition of characteristic function K

WX(W
α
X(0)) ? Y

= J Definition A.13 K

Wα+1
X (0) ? Y.

Finally, let α be a limit ordinal and assume, for all γ @ α, that Wγ
X?Y(0) �

W
γ
X(0) ? Y. Then consider the following:

Wα
X?Y(0)

= J Definition A.13 for limit ordinal α K

sup
{
W

γ
X?Y(0)

∣∣ γ @ α
}

� J I.H. K

sup
{
W

γ
X(0) ?Y

∣∣ γ @ α
}

= J elementary algebra K

λ(s, h).
(
sup

{
W

γ
X(0) ? Y

∣∣ γ @ α
})

(s, h)
= J Definition of ? K

λ(s, h). sup
{

max
{
W

γ
X(0)(s, h1) · Y(s, h2)

∣∣ h = h1 ] h2
} ∣∣ γ @ α

}
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= J replace max by sup for non-empty finite set K

λ(s, h). sup
{

sup
{
W

γ
X(0)(s, h1) · Y(s, h2)

∣∣ h = h1 ] h2
} ∣∣ γ @ α

}
= J elementary algebra (commute suprema) K

λ(s, h). sup
{

sup
{
W

γ
X(0)(s, h1) · Y(s, h2)

∣∣ γ @ α
} ∣∣ h = h1 ] h2

}
= J elementary algebra (Y does not depend on γ K

λ(s, h). sup
{

sup
{
W

γ
X(0)(s, h1)

∣∣ γ @ α
}
·Y(s, h2)

∣∣ h = h1 ] h2
}

= J Definition A.13 for limit ordinal α K
λ(s, h). sup {Wα

X(0)(s, h1) · Y(s, h2) | h = h1 ] h2 }
= J the set of partitions of h is non-empty and finite K

λ(s, h). max {Wα
X(0)(s, h1) · Y(s, h2) | h = h1 ] h2 }

= J Definition of ? K
Wα

X(0) ? Y.

The case x := F(~E). Let ~E = (E1, . . . , En) for some natural number n. Recall
from Section 7.2.2 the characteristic function PF of procedure F:

PF(θ) , λx′ λ(E′1, . . . , E′n) λX′.

wpF
θ [body (F)]

(
X′ [−�]

[
�x′

/
out
])[

x1
/

E′1 [−�]
]

. . .
[
xn
/

E′n [−�]
]
[+�] .

By Figure 7.1 and Theorem 7.8, there exists an ordinal β such that

wp [x := F(E1, . . . , En)] = lfp (PF) (x)(E1, . . . , En)

= P
β
F(0)(x)(E1, . . . , En).

Similarly to our treatment of loops, we show by transfinite induction on α
that, for every ordinal α, we have:

Pα
F(0)(x)(E1, . . . , En)(X ? Y) � Pα

F(0)(x)(E1, . . . , En)(X) ? Y.

As shown below, the case α = 0 is straightforward:

P0
F(0)(x)(E1, . . . , En)(X ? Y)

= J Definition A.13 K
0

= J D.7.2 K
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0 ?Y
= J Definition A.13 K

P0
F(0)(x)(E1, . . . , En)(X) ? Y.

For a successor ordinal α + 1, consider the following:

Pα+1
F (0)(x)(E1, . . . , En)(X ? Y)

= J Definition A.13; Definition of PF K

wpF
Pα

F
[body (F)] ((X ? Y) [−�] [�x/out])

[x1
/

E1 [−�]] . . . [xn
/

En [−�]] [+�]
= J Scoping and substitution distribute K

wpF
Pα

F
[body (F)] (X [−�] [�x/out] ? Y [−�] [�x/out])

[x1
/

E1 [−�]] . . . [xn
/

En [−�]] [+�]
= J �x /∈ Vars (Y [−�]) K

wpF
Pα

F
[body (F)] (X [−�] [�x/out] ? Y [−�])

[x1
/

E1 [−�]] . . . [xn
/

En [−�]] [+�]
� J I.H. (inner for calls, outer for other statements) K

wpF
Pα

F
[body (F)] (X [−�] [�x/out]) [x1

/
E1 [−�]] . . . [xn

/
En [−�]] [+�]

?Y [−�] [x1
/

E1 [−�]] . . . [xn
/

En [−�]] [+�]
= J elementary algebra (apply scoping and substitution) K

wpF
Pα

F
[body (F)] (X [−�] [�x/out]) [x1

/
E1 [−�]] . . . [xn

/
En [−�]] [+�]

? Y
= J Definition A.13; Definition of PF K

Pα+1
F (0)(x)(E1, . . . , En)(X) ? Y.

Finally, for a limit ordinal α, consider the following:

Pα
F(0)(x)(E1, . . . , En)(X ? Y)

= J Definition A.13 for α limit ordinal K

sup
{
P

γ
F(0)(x)(E1, . . . , En)(X ? Y)

∣∣ γ v α
}

� J I.H. K

sup
{
P

γ
F(0)(x)(E1, . . . , En)(X) ?Y

∣∣ γ v α
}
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= J elementary algebra K

sup
{
P

γ
F(0)(x)(E1, . . . , En)(X)

∣∣ γ v α
}
?Y

= J Definition A.13 for α limit ordinal K
Pα

F(0)(x)(E1, . . . , En)(X) ? Y. �





Appendix D

Reference Sheet for QSL Rules

We adhere to the notational conventions in Assumption 8.1.
Then, for all expectations X, Y, Z, X′, Y′, precise expectations XT , pure expectations,

XP, YP, strictly-exact expectations, XC, YC, predicates Q, precise predicates QT , strictly-
exact predicates QC, variables x, integers v, natural numbers n, and expressions E, E′,
E′′, E1, E2, etc., the following (in)equalities hold:

D.1 Proof Rules for General Expectations

D.1.1 X ? (Y ? Z) = (X ? Y) ? Z [Theorem 6.14 (a)]

D.1.2 X ? [emp] = [emp] ? X = X [Theorem 6.14 (b)]

D.1.3 X ? Y = Y ? X [Theorem 6.14 (c)]

D.1.4 X � Z implies X ? Y � Z ? Y [Theorem 6.15]

D.1.5 Y � Y′ implies X −−? Y � X −−? Y′ [Theorem 6.20]

D.1.6 X � X′ implies X′−−? Y � X −−? Y [Theorem 6.20]

D.1.7 X ? max {Y, Z } = max {X ? Y, X ? Z } [Theorem 6.16 (a)]

D.1.8 X ? min {Y, Z } � min {X ? Y, X ? Z } [Theorem 6.16 (b)]

D.1.9 X ? (Y + Z) � (X ? Y) + (X ? Z) [Theorem 6.16 (c)]

D.1.10 [Q] ? (Y · Z) �
(
[Q] ? Y

)
·
(
[Q] ? Z

)
[Theorem 6.16 (d)]

D.1.11 x /∈ Vars (X) implies [Theorem 6.16 (e)]

X ? supv∈Z Y [x/v] = supv∈Z(X ? Y) [x/v]

D.1.12 x /∈ Vars (X) implies [Theorem 6.16 (f)]

X ? infv∈Z Y [x/v] � infv∈Z(X ? Y) [x/v]

D.1.13 [emp] · (X ? Y) = ([emp] · X) ? ([emp] · Y) [Theorem 6.17 (a)]

389
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D.1.14 [E 7→ E′] · (X ? Y) = max{([E 7→ E′] · X) ? ([emp] · Y), [Theorem 6.17 (b)]

([emp] · X) ? ([E 7→ E′] · Y)}

D.1.15 size · (X ? Y) � ((size · X) ? Y) + (X ? (size · Y)) [Theorem 6.17 (c)]

D.1.16 X ? Y � Z iff X � Y −−? Z [Theorem 6.18]

D.1.17 X ?
(
X −−? Y

)
� Y [Corollary 6.19]

D.1.18 X −−? max {Y, Z } � max {X −−? Y, X −−? Z } [Theorem 6.21 (a)]

D.1.19 X −−? min {Y, Z } = min {X −−? Y, X −−? Z } [Theorem 6.21 (b)]

D.1.20 X −−? (Y + Z) � (X −−? Y) + (X −−? Z) [Theorem 6.21 (c)]

D.1.21 [Q]−−? (Y · Z) � ([Q]−−? Y) · ([Q] · Z) [Theorem 6.21 (d)]

D.1.22 x /∈ Vars (X) implies [Theorem 6.21 (e)]

X −−? (supv∈Z Y [x/v]) � supv∈Z(X −−? Y) [x/v]

D.1.23 x /∈ Vars (X) implies [Theorem 6.21 (f)]

X −−? infv∈Z Y [x/v] = infv∈Z(X ? Y) [x/v]

D.1.24 X � X ? 1 [Theorem 6.29 (a)]

D.1.25 1 −−? X � X [Theorem 6.29 (b)]

D.1.26 [Q]−−? X = [Q]−−? (([Q] ? 1) · X) [Theorem 6.30 (b)]

D.2 Proof Rules for Pure Expectations

D.2.1 XP · Y � XP ? Y [Theorem 6.22 (a)]

D.2.2 (XP · Y) ? Z = XP · (Y ? Z) [Theorem 6.22 (b)]

D.2.3 XP −−? Y � [XP = 0] ·∞ + [XP 6= 0] · Y/XP. [Theorem 6.22 (c)]

D.2.4 XP · YP = XP ? YP [Theorem 6.22 (d)]

D.2.5 XP −−? YP = [XP = 0] ·∞ + [XP 6= 0] · YP/XP [Theorem 6.22 (e)]
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D.3 Proof Rules for Precise Expectations

D.3.1 XT ? min {Y, Z } = min {XT ? Y, XT ? Z } [Theorem 6.25 (a)]

D.3.2 XT ? (Y + Z) = (XT ? Y) + (XT ? Z) [Theorem 6.25 (b)]

D.3.3 [QT ] ? (Y · Z) =
(
[QT ] ? Y

)
·
(
[QT ] ? Z

)
[Theorem 6.25 (c)]

D.3.4 x /∈ Vars (XT) implies [Theorem 6.25 (d)]

XT ? infv∈Z Y [x/v] = infv∈Z(XT ? Y) [x/v]

D.3.5 size · (XT ? Y) = ((size · XT) ? Y) + (XT ? (size · Y)) [Theorem 6.26]

D.4 Proof Rules for Strictly-Exact Expectations

D.4.1 XC −−? max {Y, Z } = max {XC −−? Y, XC −−? Z } [Theorem 6.28 (a)]

D.4.2 XC −−? (Y + Z) = (XC −−? Y) + (XC −−? Z) [Theorem 6.28 (b)]

D.4.3 [PC]−−? (Y · Z) = ([PC]−−? Y) · ([PC]−−? Z) [Theorem 6.28 (c)]

D.4.4 x /∈ Vars (XC) implies [Theorem 6.28 (d)]

XC −−? (supv∈Z Y [x/v]) = supv∈Z(XC −−? Y) [x/v]

D.4.5 [PC] ? ([PC]−−? X) = ([PC] ? 1) · X [Theorem 6.30 (a)]

D.5 Proof Rules for Atomic Expectations

D.5.1 [emp] · size = 0 [Theorem 6.4 (a)]

D.5.2 [E 7→ E′] · size = [E 7→ E′] [Theorem 6.4 (b)]

D.5.3 [E 7→ E′] = [E 6= 0] · [E 7→ E′] [Theorem 6.4 (b)]

D.5.4 [E1 7→ E2] · [E3 7→ E4] = [E1 = E3] · [E2 = E4] · [E1 7→ E2] [Theorem 6.4 (c)]

D.5.5 [E 7→ E′] ? [E 7→ E′′] = 0 [Theorem 6.7]

D.5.6 [E 7→ E′] ? size = [E ↪→ E′] · (size− 1) [Theorem 6.31 (a)]

D.5.7 [E 7→ E′]−−? size = 1 + size + [E ↪→ −] ·∞ [Theorem 6.31 (b)]

D.5.8 [E 7→ E′]−−? ([E 7→ E′] ? X) = X + [E ↪→ −] ·∞ [Theorem 6.31 (c)]

D.5.9 [E ↪→ E′] · (X ? Y) [Theorem 6.31 (d)]

= max { ([E ↪→ E′] · X) ? Y, X ? ([E ↪→ E′] · Y) }

D.5.10 infv∈Z [v 7→ E]−−? X = infv∈addr [v 7→ E]−−? X [Theorem 7.2 (a)]

D.5.11 infv∈addr [v ↪→ −] ·∞ + (1− [v ↪→ −]) · X = infv∈addr X [Theorem 7.2 (b)]
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D.6 Facts on Expectations from Calculus and Logic

D.6.1 [Q] ∈ { 0, 1 }

D.6.2 [Q] · [Q] = [Q]

D.6.3 [Q] · [¬Q] = 0

D.6.4 [Q] · X + [¬Q] · X = X

D.6.5 0 � X � ∞

D.6.6 n > 1 implies [By definition]

[E 7→ E1, . . . , En] = [E 7→ E1] ? [E + 1 7→ E2, . . . , En]

D.6.7 [E ↪→ E′] = [E 7→ E′] ? 1 [By definition]

D.6.8 [E 7→ −] = supv∈Z [E 7→ v] [By definition]

D.6.9 X · Y = 0 implies max {X, Y } = X + Y [Lemma 6.5]

D.6.10 x /∈ Vars (X) implies X · supv∈Z Y [x/v] = supv∈Z(X · Y) [x/v]

D.6.11 supv∈Z([E = v] · X) [x/v] = X [x/E]

D.6.12 supv∈Z(X + Y) � (supv∈Z X) + (supv∈Z Y)

D.7 Derived Proof Rules

All rules listed below can be derived using the rules presented so far. The
corresponding proofs are provided in Appendix E as indicated for each rule.
Their purpose is to enable more high-level proofs as they reflect common idioms
encountered while reasoning about programs.

D.7.1 [E 7→ E′] ? ([E 7→ E′′]−−? ([E 7→ E′′] ? X)) = [E 7→ E′] ? X [Example 6.32]

D.7.2 0 ? X = 0 [Lemma E.1]

D.7.3 XP · (Y ? Z) = (XP · Y) ? Z = Y ? (XP · Z) [Lemma E.2]

D.7.4 [E 7→ −] ? ([E 7→ E′′]−−? ([E 7→ E′′′] ? X)) [Lemma E.6]

= [E′′ = E′′′] · [E 7→ −] ? X

D.7.5 [E ↪→ E′] · [E 7→ E′′] = [E′ = E′′] · [E 7→ E′′] [Lemma E.4]

D.7.6 [E ↪→ E′] · [emp] = 0 [Lemma E.7]

D.7.7 [E ↪→ E′] · ([E 7→ E′′] ? X) = [E′ = E′′] · ([E 7→ E′′] ? X) [Lemma E.5]
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D.7.8 [E ↪→ E′] · ([E 7→ −] ? X) = [E 7→ E′] ? X [Lemma E.8]

D.7.9 [E 7→ E′]−−? XP = [E ↪→ −] ·∞ + (1− [E ↪→ −]) · XP [Lemma E.9]

D.7.10 n ≥ 1 implies [Lemma E.10]

[E 7→ E1, . . . , En] · size = [E 7→ E1, . . . , En] · n





Appendix E

Derived Proof Rules for Expectations in QSL

We show the correctness of proof rules for quantitative entailments that are
derived from the existing proof rules studied in Chapter 6. Throughout this
appendix, we fix expectations X, Y, Z, precise expectations XT , pure expectations,
XP, YP, predicates Q, precise predicates QT , variables x, integers v, natural numbers n,
and expressions E, E′, etc.

Moreover, we adhere to the notational conventions in Assumption 8.1.

Lemma E.1 0 ? X = 0.

Proof.

0 ? X
= J elementary algebra K

[0] ? (X · 1)
= J D.3.3 K

([0] ? X) · ([0] ? 1)
= J D.2.4 K

([0] ? X) · ([0] · 1)
= J elementary algebra K

([0] ? X) · 0
= J elementary algebra K

0. �

Lemma E.2 XP · (Y ? Z) = (XP · Y) ? Z = Y ? (XP · Z).

Proof.

(XP · Y) ? Z

395
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= J D.2.2 K
XP · (Y ? Z)

= J D.1.3 K
XP · (Z ? Y)

= J D.2.2 K
(XP · Z) ? Y

= J D.1.3 K
Y ? (XP · Z). �

Lemma E.3 [E 7→ E′] ? ([E ↪→ E′′] · X) = 0.

Proof. [
E 7→ E′

]
? (
[
E ↪→ E′′

]
· X)

= J D.3.3 K

(
[
E 7→ E′

]
?
[
E ↪→ E′′

]
) · (
[
E 7→ E′

]
? X)

= J D.6.7 K

(
[
E 7→ E′

]
? (
[
E 7→ E′′

]
? 1)) · (

[
E 7→ E′

]
? X)

= J D.1.1 K

((
[
E 7→ E′

]
?
[
E 7→ E′′

]
) ? 1) · (

[
E 7→ E′

]
? X)

= J D.5.5 K

(0 ? 1) · (
[
E 7→ E′

]
? X)

= J Lemma E.1; elementary algebra K
0. �

Lemma E.4 [E ↪→ E′] · [E 7→ E′′] = [E′ = E′′] · [E 7→ E′′].

Proof. [
E ↪→ E′

]
·
[
E 7→ E′′

]
= J D.6.7 K

(
[
E 7→ E′

]
? 1) ·

[
E 7→ E′′

]
= J elementary algebra K[

E 7→ E′′
]
· (
[
E 7→ E′

]
? 1)
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= J D.1.14 K

max{(
[
E 7→ E′′

]
·
[
E 7→ E′

]
) ? ([emp] · 1),

([emp] ·
[
E 7→ E′

]
) ? (

[
E 7→ E′′

]
· 1)}

= J elementary algebra; D.5.5; D.1.2 K

max
{ [

E 7→ E′′
]
·
[
E 7→ E′

]
, 0
}

= J elementary algebra; D.6.5 K[
E 7→ E′′

]
·
[
E 7→ E′

]
= J D.5.4 K

[E = E] ·
[
E′′ = E′

]
·
[
E 7→ E′′

]
= J elementary algebra K[

E′ = E′′
]
·
[
E 7→ E′′

]
. �

Lemma E.5 [E ↪→ E′] · ([E 7→ E′′] ? X) = [E′ = E′′] · ([E 7→ E′′] ? X).

Proof. [
E ↪→ E′

]
· (
[
E 7→ E′′

]
? X)

= J D.5.9 K

max
{
(
[
E ↪→ E′

]
·
[
E 7→ E′′

]
) ? X,

[
E 7→ E′′

]
? (
[
E ↪→ E′

]
· X)

}
= J Lemma E.4 K

max
{
(
[
E′ = E′′

]
·
[
E 7→ E′′

]
) ? X,

[
E 7→ E′′

]
? (
[
E ↪→ E′

]
· X)

}
= J Lemma E.2 K

max
{ [

E′ = E′′
]
·
[
E 7→ E′′

]
? X,

[
E 7→ E′′

]
? (
[
E ↪→ E′

]
· X)

}
= J Lemma E.3 K

max
{ [

E′ = E′′
]
·
[
E 7→ E′′

]
? X, 0

}
= J D.6.5; elementary algebra K[

E′ = E′′
]
· (
[
E 7→ E′′

]
? X). �

Lemma E.6 [E 7→ −] ? ([E 7→ E′′]−−? ([E 7→ E′′′] ? X))
= [E′′ = E′′′] · [E 7→ −] ? X.

Proof.

[E 7→ −] ? (
[
E 7→ E′′

]
−−? (

[
E 7→ E′′′

]
? X))



398 Appendix E. Derived Proof Rules for Expectations in QSL

= J D.1.26 K

[E 7→ −] ? (
[
E 7→ E′′

]
−−? ((

[
E 7→ E′′

]
? 1) ·

[
E 7→ E′′′

]
? X))

= J D.6.7 K

[E 7→ −] ? (
[
E 7→ E′′

]
−−? (

[
E ↪→ E′′

]
·
[
E 7→ E′′′

]
? X))

= J Lemma E.5 K

[E 7→ −] ? (
[
E 7→ E′′

]
−−? (

[
E′′ = E′′′

]
·
[
E 7→ E′′′

]
? X))

= J elementary algebra K

[E 7→ −] ? (
[
E 7→ E′′

]
−−? (

[
E′′ = E′′′

]
·
[
E 7→ E′′

]
? X))

= J Lemma E.2 K

[E 7→ −] ? (
[
E 7→ E′′

]
−−? (

[
E 7→ E′′

]
? (
[
E′′ = E′′′

]
· X)))

= J D.5.8 K

[E 7→ −] ? ((
[
E′′ = E′′′

]
· X) + [E ↪→ −] ·∞)

= J D.3.2 K

[E 7→ −] ? (
[
E′′ = E′′′

]
· X) + [E 7→ −] ? ([E ↪→ −] ·∞)

= J Lemma E.2 K[
E′′ = E′′′

]
· [E 7→ −] ? X + [E 7→ −] ? ([E ↪→ −] ·∞)

= J D.6.8; elementary algebra (y,z fresh) K[
E′′ = E′′′

]
· [E 7→ −] ? X

+ sup
u∈Z

[E 7→ y] [y
/

u] ? (sup
v∈Z

[E ↪→ z] [z/v] ·∞)

= J D.6.10; D.1.11 K[
E′′ = E′′′

]
· [E 7→ −] ? X

+ sup
u∈Z

sup
v∈Z

[E 7→ y] [y
/

u] ? ([E ↪→ z] [z/v] ·∞)

= J elementary algebra K[
E′′ = E′′′

]
· [E 7→ −] ? X

+ sup
u∈Z

sup
v∈Z

[E 7→ u] ? ([E ↪→ v] ·∞)

= J Lemma E.3 K[
E′′ = E′′′

]
· [E 7→ −] ? X + sup

u∈Z

sup
v∈Z

0

= J elementary algebra K[
E′′ = E′′′

]
· [E 7→ −] ? X. �
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Lemma E.7 [E ↪→ E′] · [emp] = 0.

Proof. [
E ↪→ E′

]
· [emp]

= J D.6.7 K

(
[
E 7→ E′

]
? 1) · [emp]

= J elementary algebra; D.1.13 K

([emp] ·
[
E 7→ E′

]
) ? ([emp] · 1)

= J elementary algebra; D.1.2 K

[emp] ·
[
E 7→ E′

]
= J D.5.2 K

[emp] · (
[
E 7→ E′

]
· size)

= J elementary algebra K

([emp] · size) ·
[
E 7→ E′

]
= J D.5.1 K

0 ·
[
E 7→ E′

]
= J elementary algebra K

0. �

Lemma E.8 [E ↪→ E′] · ([E 7→ −] ? X) = [E 7→ E′] ? X.

Proof. [
E ↪→ E′

]
· ([E 7→ −] ? X)

= J D.5.9 K

max
{
(
[
E ↪→ E′

]
· [E 7→ −]) ? X, [E 7→ −] ? (

[
E ↪→ E′

]
· X)

}
= J D.6.8; elementary algebra; D.1.11 K

max

{
(
[
E ↪→ E′

]
· [E 7→ −]) ? X, sup

v∈Z

[E 7→ v] ? (
[
E ↪→ E′

]
· X)

}
= J Lemma E.3 K

max

{
(
[
E ↪→ E′

]
· [E 7→ −]) ? X, sup

v∈Z

0

}
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= J elementary algebra; D.6.5 K

(
[
E ↪→ E′

]
· [E 7→ −]) ? X

= J D.6.8; elementary algebra; D.6.10 K

(sup
v∈Z

[
E ↪→ E′

]
· [E 7→ v]) ? X

= J Lemma E.4 K

(sup
v∈Z

[
E′ = v

]
· [E 7→ v]) ? X

= J D.6.11; elementary algebra K[
E 7→ E′

]
? X. �

Lemma E.9 [E 7→ E′]−−? XP = [E ↪→ −] ·∞ + (1− [E ↪→ −]) · XP.

Proof. [
E 7→ E′

]
−−? XP

= J D.1.26; Lemma E.2; elementary algebra K[
E 7→ E′

]
−−?

[
E 7→ E′

]
? XP

= J D.5.8 K
XP + [E ↪→ −] ·∞

= J elementary algebra K
([E ↪→ −] + 1− [E ↪→ −]) · XP + [E ↪→ −] ·∞

= J elementary algebra K
[E ↪→ −] ·∞ + (1− [E ↪→ −]) · XP. �

Lemma E.10 n ≥ 1 implies

[E 7→ E1, . . . , En] · size = [E 7→ E1, . . . , En] · n.

Proof. We first show by induction on the length m of blocks that, for all
1 ≤ u ≤ v with m = v− u, we have:

[E 7→ Eu, . . . , Ev] · size = [E 7→ Eu, . . . , Ev] · (v− u + 1).

For m = 0, we have u = v. Then consider the following:

[E 7→ Eu] · size
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= J D.5.2; elementary algebra K
[E 7→ Eu] · (v− u + 1).

For m > 0, we have u < v. Then consider the following:

[E 7→ Eu, . . . , Ev] · size
= J D.6.6 K

([E 7→ Eu] ? [E + 1 7→ Eu+1, . . . , Ev]) · size
= J elementary algebra; D.3.5 K

(size · [E 7→ Eu]) ? [E + 1 7→ Eu+1, . . . , Ev])

+ [E 7→ Eu] ? (size · [E + 1 7→ Eu+1, . . . , Ev])

= J D.5.2 K
[E 7→ Eu] ? [E + 1 7→ Eu+1, . . . , Ev]

+ [E 7→ Eu] ? (size · [E + 1 7→ Eu+1, . . . , Ev])

= J D.6.6 K
[E 7→ Eu, . . . , Ev]

+ [E 7→ Eu] ? (size · [E + 1 7→ Eu+1, . . . , Ev])

= J elementary algebra; I.H. K
[E 7→ Eu, . . . , Ev]

+ [E 7→ Eu] ? [E + 1 7→ Eu+1, . . . , Ev] · (v− (u + 1) + 1)
= J elementary algebra; Lemma E.2; D.6.6 K

[E 7→ Eu, . . . , Ev] + [E 7→ Eu, . . . , Ev] · (v− u)
= J elementary algebra K

[E 7→ Eu, . . . , Ev]) · (v− u + 1).

The claim then follows immediately for u = 1 and v = n. �





Appendix F

Omitted Calculations in Chapter 8

F.1 Omitted Calculations in Section 8.2

F.1.1 Proof of Lemma 8.7

We have to show that

[hd 6= 0] · sup
v∈Z

[hd 7→ v] ? ([hd 7→ rv]−−? I [hd/x] [rv/hd] [x/v])

� len (rv, 0) ? [sll (hd, 0)] + 1/2 · [sll (rv, 0)] ? (len (hd, 0) + [sll (hd, 0)]).

Proof.

[hd 6= 0] · sup
v∈Z

[hd 7→ v] ? ([hd 7→ rv]−−? I [hd/x] [rv/hd] [x/v])

= J Definition of I; apply substitution K

[hd 6= 0] · sup
v∈Z

[hd 7→ v] ? ([hd 7→ rv]−−?
(

len (hd, 0) ? [sll (v, 0)] + 1/2· [v 6= 0]︸ ︷︷ ︸
� 1

·len (v, 0) ? [sll (hd, 0)]
)
)

� J Theorem 6.35 (a); D.6.1; D.1.4; D.1.5 K

[hd 6= 0] · sup
v∈Z

[hd 7→ v] ? ([hd 7→ rv]−−?
(

([sll (hd, 0)] · size) ? [sll (v, 0)]

+ 1/2 · ([sll (v, 0)] · size) ? [sll (hd, 0)]
)
)

� J D.1.26; D.1.10; D.6.1; D.1.4; D.1.5 K

[hd 6= 0] · sup
v∈Z

[hd 7→ v] ? ([hd 7→ rv]−−?
(

(([hd ↪→ rv] · [sll (hd, 0)]) · size) ? [sll (v, 0)]

403
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+ 1/2 · ([sll (v, 0)] · size) ? ([hd ↪→ rv] · [sll (hd, 0)])
)
)

= J Lemma F.1 K

[hd 6= 0] · sup
v∈Z

[hd 7→ v] ? ([hd 7→ rv]−−?
(

(([hd 7→ rv] ? [sll (rv, 0)]) · size) ? [sll (v, 0)]

+ 1/2 · ([sll (v, 0)] · size) ? [hd 7→ rv] ? [sll (rv, 0)]
)
)

= J D.3.5; D.5.2; D.3.2 K

[hd 6= 0] · sup
v∈Z

[hd 7→ v] ? ([hd 7→ rv]−−?
(

[hd 7→ rv] ? [sll (rv, 0)] ? [sll (v, 0)]
+ [hd 7→ rv] ? ([sll (rv, 0)] · size) ? [sll (v, 0)]

+ 1/2 · ([sll (v, 0)] · size) ? [hd 7→ rv] ? [sll (rv, 0)]
)
)

= J D.1.3; D.3.2 K

[hd 6= 0] · sup
v∈Z

[hd 7→ v] ? ([hd 7→ rv]−−?
(
[hd 7→ rv] ? (

[sll (rv, 0)] ? [sll (v, 0)] + ([sll (rv, 0)] · size) ? [sll (v, 0)]

+ 1/2 · ([sll (v, 0)] · size) ? [sll (rv, 0)] )
)
)

= J D.7.1 K
[hd 6= 0] · sup

v∈Z

[hd 7→ v] ? (

[sll (rv, 0)] ? [sll (v, 0)] + ([sll (rv, 0)] · size) ? [sll (v, 0)]
+ 1/2 · ([sll (v, 0)] · size) ? [sll (rv, 0)])

= J D.1.3; D.3.2 K
[hd 6= 0] · sup

v∈Z

[sll (rv, 0)] ? [hd 7→ v] ? [sll (v, 0)]

+ ([sll (rv, 0)] · size) ? [hd 7→ v] ? [sll (v, 0)]
+ 1/2 · [hd 7→ v] ? ([sll (v, 0)] · size) ? [sll (rv, 0)]

= J D.3.5; D.5.2 K
[hd 6= 0] · sup

v∈Z

[sll (rv, 0)] ? [hd 7→ v] ? [sll (v, 0)]

+ ([sll (rv, 0)] · size) ? [hd 7→ v] ? [sll (v, 0)]
+ 1/2 · ([hd 7→ v] ? [sll (v, 0)] · size

− [hd 7→ v] ? [sll (v, 0)]) ? [sll (rv, 0)]
= J D.1.3; D.3.2; elementary algebra K
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[hd 6= 0] · sup
v∈Z

[sll (rv, 0)] ? [hd 7→ v] ? [sll (v, 0)]

+ ([sll (rv, 0)] · size) ? [hd 7→ v] ? [sll (v, 0)]
+ 1/2 · ([hd 7→ v] ? [sll (v, 0)] · size) ? [sll (rv, 0)]
− 1/2 · [sll (rv, 0)] ? [hd 7→ v] ? [sll (v, 0)]

� J D.6.12; elementary algebra K
1/2 · [hd 6= 0] · sup

v∈Z

[sll (rv, 0)] ? [hd 7→ v] ? [sll (v, 0)]

+ [hd 6= 0] · sup
v∈Z

([sll (rv, 0)] · size) ? [hd 7→ v] ? [sll (v, 0)]

+ 1/2 · [hd 6= 0] · sup
v∈Z

([hd 7→ v] ? [sll (v, 0)] · size) ? [sll (rv, 0)]

= J introduce fresh variable z for v ; D.1.3 K
1/2 · [hd 6= 0] · sup

v∈Z

([sll (rv, 0)] ? [hd 7→ z] ? [sll (z, 0)])[z/v]

+ [hd 6= 0] · sup
v∈Z

(([sll (rv, 0)] · size) ? [hd 7→ z] ? [sll (z, 0)])[z/v]

+ 1/2 · [hd 6= 0] · sup
v∈Z

([sll (rv, 0)] ? ([hd 7→ z] ? [sll (z, 0)] · size))[z/v]

= J D.1.11; D.7.3; apply substitution; D.6.10 K
1/2 · [sll (rv, 0)] ? ([hd 6= 0] · sup

v∈Z

[hd 7→ v] ? [sll (v, 0)])

+ ([sll (rv, 0)] · size) ? ([hd 6= 0] · sup
v∈Z

[hd 7→ v] ? [sll (v, 0)] )

+ 1/2 · [sll (rv, 0)] ? (size · [hd 6= 0] · sup
v∈Z

[hd 7→ v] ? [sll (v, 0)] )

� J Definition of [sll (hd, 0)] K
1/2 · [sll (rv, 0)] ? [sll (hd, 0)] + ([sll (rv, 0)] · size) ? [sll (hd, 0)]
+ 1/2 · [sll (rv, 0)] ? (size · [sll (hd, 0)])

= J Theorem 6.35 (a) K
1/2 · [sll (rv, 0)] ? [sll (hd, 0)] + len (rv, 0) ? [sll (hd, 0)]
+ 1/2 · [sll (rv, 0)] ? len (hd, 0)

= J elementary algebra; D.3.2 K
len (rv, 0) ? [sll (hd, 0)]
+ 1/2 · [sll (rv, 0)] ? (len (hd, 0) + [sll (hd, 0)]). �

Lemma F.1 [hd ↪→ rv] · [sll (hd, 0)] = [hd 7→ rv] ? [sll (rv, 0)].
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Proof.

[hd ↪→ rv] · [sll (hd, 0)]
= J Definition of [sll (hd, 0)] K

[hd ↪→ rv] · ([hd = 0] · [emp] + [hd 6= 0] · sup
v∈Z

[hd 7→ v] ? [sll (v, 0)])

= J elementary algebra; introduce fresh variable z for v K
[hd = 0] · [hd ↪→ rv] · [emp]

+ [hd 6= 0] · [hd ↪→ rv] · sup
v∈Z

([hd 7→ z] ? [sll (z, 0)])[z/v]

= J D.7.6; D.6.10 K
[hd = 0] · 0 + [hd 6= 0] · sup

v∈Z

([hd ↪→ rv] · [hd 7→ z] ? [sll (z, 0)]) [z/v]

= J elementary algebra; D.7.7 K
[hd 6= 0] · sup

v∈Z

([rv = z] · [hd 7→ z] ? [sll (z, 0)]) [z/v]

= J apply substitution K
[hd 6= 0] · sup

v∈Z

[hd 7→ rv] ? [sll (rv, 0)]

= J elementary algebra K
[hd 6= 0] · [hd 7→ rv] ? [sll (rv, 0)]

= J D.7.8; D.5.3 K
[hd 7→ rv] ? [sll (rv, 0)]. �

F.1.2 Proof of Lemma 8.8

We have to show that

[hd 6= 0] · sup
v∈Z

[hd 7→ v] ? I [hd/x] [x/v]

� len (rv, 0) ? [sll (hd, 0)] + 1/2 · [sll (rv, 0)] ? (len (hd, 0)− [sll (hd, 0)]).

Proof.

[hd 6= 0] · sup
v∈Z

[hd 7→ v] ? I [hd/x] [x/v]

= J Definition of I; apply substitution K
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[hd 6= 0] · sup
v∈Z

[hd 7→ v] ?(
len (rv, 0) ? [sll (v, 0)] + 1/2 · [v 6= 0] · len (v, 0) ? [sll (rv, 0)]

)
� J D.4.2; Theorem 6.25 (b); D.6.10 K

[hd 6= 0] ·
(

sup
v∈Z

[hd 7→ v] ? len (rv, 0) ? [sll (v, 0)]

+ sup
v∈Z

1/2· [v 6= 0]︸ ︷︷ ︸
� 1

· [hd 7→ v] ? len (v, 0) ? [sll (rv, 0)]
)

� J D.1.3; D.6.1; D.1.4; introduce fresh variable z for v K
[hd 6= 0] · sup

v∈Z

len (rv, 0) ? ( [hd 7→ z] ? [sll (z, 0)] ) [z/v]

+ 1/2 · [hd 6= 0] · sup
v∈Z

[sll (rv, 0)] ? ( [hd 7→ z] ? len (z, 0) ) [z/v]

= J D.1.11; apply substitution; D.7.3 K
len (rv, 0) ? ([hd 6= 0] · sup

v∈Z

[hd 7→ v] ? [sll (v, 0)] )

+ 1/2 · [sll (rv, 0)] ? ([hd 6= 0] · sup
v∈Z

[hd 7→ v] ? len (v, 0) )

= J Theorem 6.35 (a) K
len (rv, 0) ? ([hd 6= 0] · sup

v∈Z

[hd 7→ v] ? [sll (v, 0)])

+ 1/2 · [sll (rv, 0)] ? ([hd 6= 0] · sup
v∈Z

[hd 7→ v] ? ([sll (v, 0)] · size))

= J D.1.15 ([hd 7→ v] is precise) K
len (rv, 0) ? ([hd 6= 0] · sup

v∈Z

[hd 7→ v] ? [sll (v, 0)])

+ 1/2 · [sll (rv, 0)] ? ([hd 6= 0] · sup
v∈Z

[hd 7→ v] ? [sll (v, 0)] · size− ([hd 7→ v] · size) ? [sll (v, 0)])
� J D.5.2; elementary algebra; D.6.10 K

len (rv, 0) ? ([hd 6= 0] · sup
v∈Z

[hd 7→ v] ? [sll (v, 0)]) + 1/2 · [sll (rv, 0)] ? (

size · [hd 6= 0] · sup
v∈Z

[hd 7→ v] ? [sll (v, 0)]

− [hd 6= 0] · sup
v∈Z

[hd 7→ v] ? [sll (v, 0)])

� J Definition of [sll (hd, 0)] K
len (rv, 0) ? [sll (hd, 0)]
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+ 1/2 · [sll (rv, 0)] ? (size · [sll (hd, 0)]− [sll (hd, 0)])
= J Theorem 6.35 (a) K

len (rv, 0) ? [sll (hd, 0)]
+ 1/2 · [sll (rv, 0)] ? (len (hd, 0)− [sll (hd, 0)]). �

F.2 Omitted Calculations in Section 8.3

F.2.1 Proof of Lemma 8.9

We have to show that

p · [emp] + (1− p) · ([x 6= 0] · (1− p)1/2·size−1 ·
sup

u,v∈Z

[x 7→ u, v] ? [tree (u)] ? [tree (v)] + [x = 0] · [emp])

� (1− p)1/2·size · [tree (x)] .

Proof.

p · [emp] + (1− p) · ([x 6= 0] · (1− p)1/2·size−1 ·
sup

u,v∈Z

[x 7→ u, v] ? [tree (u)] ? [tree (v)] + [x = 0] · [emp])

= J elementary algebra K

p · [emp] + (1− p) · [x 6= 0] · (1− p)1/2·size−1 ·
sup

u,v∈Z

[x 7→ u, v] ? [tree (u)] ? [tree (v)] + (1− p) · [x = 0] · [emp]

� J D.6.1 K

p · [x = 0] · [emp] + (1− p) · [x 6= 0] · (1− p)1/2·size−1 ·
sup

u,v∈Z

[x 7→ u, v] ? [tree (u)] ? [tree (v)] + (1− p) · [x = 0] · [emp]

= J elementary algebra K

[x = 0] · [emp] + (1− p) · [x 6= 0] · (1− p)1/2·size−1 ·
sup

u,v∈Z

[x 7→ u, v] ? [tree (u)] ? [tree (v)]

= J elementary algebra K

[x = 0] · [emp] + (1− p)1/2·size · [x 6= 0] ·
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sup
u,v∈Z

[x 7→ u, v] ? [tree (u)] ? [tree (v)]

� J Lemma 8.13; D.6.1 K

(1− p)1/2·size · [x = 0] · [emp] + (1− p)1/2·size · [x 6= 0] ·
sup

u,v∈Z

[x 7→ u, v] ? [tree (u)] ? [tree (v)]

= J elementary algebra K

(1− p)1/2·size ·
(
[x = 0] · [emp] + [x 6= 0] ·

sup
u,v∈Z

[x 7→ u, v] ? [tree (u)] ? [tree (v)]
)

= J Definition of [tree (x)] K

(1− p)1/2·size · [tree (x)]. �

F.2.2 Proof of Lemma 8.10

We have to show that

sup
u∈Z

[x 7→ u] ? ([x 7→ u]−−? sup
v∈Z

[x + 1 7→ v] ? ([x + 1 7→ v]−−?

[x 7→ −] ? [x + 1 7→ −] ?
([tree (v)] · (1− p)1/2·size) ? ([tree (u)] · (1− p)1/2·size)))

= (1− p)1/2·size−1 · sup
u,v∈Z

[x 7→ u, v] ? [tree (u)] ? [tree (v)] .

Proof.

sup
u∈Z

[x 7→ u] ? ([x 7→ u]−−? sup
v∈Z

[x + 1 7→ v] ? ([x + 1 7→ v]−−?

[x 7→ −] ? [x + 1 7→ −] ?
([tree (v)] · (1− p)1/2·size) ? ([tree (u)] · (1− p)1/2·size)))

= J D.4.5 K
sup
u∈Z

[x 7→ u] ? ([x 7→ u]−−? sup
v∈Z

[x + 1 ↪→ v]·

[x 7→ −] ? [x + 1 7→ −] ?
([tree (v)] · (1− p)1/2·size) ? ([tree (u)] · (1− p)1/2·size))

= J D.1.3; D.7.8 K
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sup
u∈Z

[x 7→ u] ? ([x 7→ u]−−? sup
v∈Z

[x + 1 7→ v] ? [x 7→ −] ?

([tree (v)] · (1− p)1/2·size) ? ([tree (u)] · (1− p)1/2·size))

= J D.1.3; introduce fresh variable y for v K

sup
u∈Z

[x 7→ u] ? ([x 7→ u]−−? sup
v∈Z

(
[x 7→ −] ? [x + 1 7→ y] ?

([tree (y)] · (1− p)1/2·size) ? ([tree (u)] · (1− p)1/2·size))
)
[y
/

v]

= J D.1.11; apply substitution K
sup
u∈Z

[x 7→ u] ? ([x 7→ u]−−? [x 7→ −] ? sup
v∈Z

[x + 1 7→ v] ?

([tree (v)] · (1− p)1/2·size) ? ([tree (u)] · (1− p)1/2·size))

= J D.4.5 K
sup
u∈Z

[x ↪→ u] · [x 7→ −] ? sup
v∈Z

[x + 1 7→ v] ?

([tree (v)] · (1− p)1/2·size) ? ([tree (u)] · (1− p)1/2·size))

= J D.7.8 K
sup
u∈Z

[x 7→ u] ? sup
v∈Z

[x + 1 7→ v] ?

([tree (v)] · (1− p)1/2·size) ? ([tree (u)] · (1− p)1/2·size))

= J introduce fresh variable y for v D.1.11; apply substitution K
sup
u∈Z

sup
v∈Z

[x 7→ u] ? [x + 1 7→ v] ?

([tree (v)] · (1− p)1/2·size) ? ([tree (u)] · (1− p)1/2·size))

= J elementary algebra; D.6.6 K
sup

u,v∈Z

[x 7→ u, v] ?

([tree (v)] · (1− p)1/2·size) ? ([tree (u)] · (1− p)1/2·size))

= J Lemma 8.11 K

sup
u,v∈Z

[x 7→ u, v] ?
(
[tree (v)] ? [tree (u)] · (1− p)1/2·size)

= J elementary algebra K

sup
u,v∈Z

([x 7→ u, v] · 1−p/1−p) ?
(
[tree (v)] ? [tree (u)] · (1− p)1/2·size)

= J elementary algebra; D.7.3 K
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1/(1−p) · sup
u,v∈Z

([x 7→ u, v] · (1− p)) ?(
[tree (v)] ? [tree (u)] · (1− p)1/2·size)

= J Lemma 8.12 K
1/(1−p) · sup

u,v∈Z

([x 7→ u, v] · (1− p)1/2·size) ?(
[tree (v)] ? [tree (u)] · (1− p)1/2·size)

= J Lemma 8.11; elementary algebra K
1/(1−p) · sup

u,v∈Z

(1− p)1/2·size · [x 7→ u, v] ? [tree (v)] ? [tree (u)]

= J elementary algebra K

(1− p)1/2·size−1 · sup
u,v∈Z

[x 7→ u, v] ? [tree (u)] ? [tree (v)] . �

F.2.3 Proof of Lemma 8.11

We have to show that, for all v ∈ R≥0, p ∈ [0, 1], and expectations Y, Z ∈ E≤1,

(Y ? Z) · pv·size =
(

Y · pv·size
)
?
(

Z · pv·size
)

.

Proof. For any stack-heap pair (s, h), consider the following:(
(Y ? Z) · pv·size

)
(s, h)

= J elementary algebra K

(Y ? Z) (s, h) · pv·size(s, h)
= J Definition 6.6 K

max {Y(s, h1) · Z(s, h2) | h = h1 ] h2 } · pv·size(s, h)
= J elementary algebra K

max
{

Y(s, h1) · Z(s, h2) · pv·size(s, h)
∣∣∣ h = h1 ] h2

}
= J Definition of size(s, h): |dom(h)| = |dom(h1)|+ |dom(h2)| K

max
{

Y(s, h1) · Z(s, h2) · pv·(|dom(h1)|+|dom(h2)|)
∣∣∣ h = h1 ] h2

}
= J elementary algebra K
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max
{

Y(s, h1) · pv·|dom(h1)| · Z(s, h2) · pv·|dom(h2)|
∣∣∣ h = h1 ] h2

}
= J Definition 6.6 K((

Y · pv·size
)
?
(

Z · pv·size
))

(s, h). �

F.2.4 Proof of Lemma 8.12

We have to show that, for all v ∈ R≥0 and p ∈ [0, 1], we have

[E 7→ E1, . . . , En] · pv·size = [E 7→ E1, . . . , En] · pv·n.

Proof. For any stack-heap pair (s, h), consider the following:(
[E 7→ E1, . . . , En] · pv·size

)
(s, h)

=
r

elementary algebra; Definition of pY
z

[E 7→ E1, . . . , En] (s, h) · pv·size(s,h)

= J Definition of size K

[E 7→ E1, . . . , En] (s, h) · pv·|dom(h)|

= J if dom(h) 6= n then [E 7→ E1, . . . , En] (s, h) = 0 K
[E 7→ E1, . . . , En] (s, h) · pv·n

= J elementary algebra K(
[E 7→ E1, . . . , En] · pv·n)(s, h). �

F.2.5 Proof of Lemma 8.13

We have to show that, for all p ∈ [0, 1], we have [emp] = [emp] · psize.

Proof. For any stack-heap pair (s, h), consider the following:(
[emp] · psize

)
(s, h)

= J elementary algebra K

[emp] (s, h) · psize(s, h)

=
r

Definition of psize
z



F.3. Omitted Calculations in Section 8.4 413

[emp] (s, h) · psize(s,h)

= J Definition of size K

[emp] (s, h) · p|dom(h)|

= J [emp] (s, h) = 1 iff dom(h) = ∅ and [emp] (s, h) = 0 otherwise K

[emp] (s, h) · p0

= J elementary algebra K
[emp] (s, h). �

F.3 Omitted Calculations in Section 8.4

Before we verify the proposed invariant I, let us introduce a convenient fact
on permutations. For every permutation π ∈ Perm(u + 1, v) and every integer
k ∈ { 0, 1, . . . , v− u }, we denote by πk the permutation in Perm(u, v) which is
defined as π except that u is mapped to π(u + k) and u + k is mapped to u,
respectively. Formally, the permutation πk is given by:

πk(w) ,


π(u + k), if w = u
u, if w = u + k
π(w), otherwise.

Furthermore, we exploit the following fact on permutations:

Lemma F.2 For all integers u, v ∈ Z with u < v, we have

Perm(u, v) =
⋃

π∈Perm(u+1,v)

{πk | 0 ≤ k ≤ v− u } .

Proof. By complete induction on m = v− u ≥ 1. �

We are now in a position to show that I is indeed an invariant.

Proof (Lemma 8.14). By Theorem 7.7, it suffices to prove for the character-
istic function W of the above loop with respect to postexpectation

X =
n−1
F

m=0
[array + m 7→ am]

that W(I) � I holds. To this end, consider the following:

W(I)
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= J Definition of characteristic function W K
[0 ≤ i < n] · wp [Cbody] (I)

+ [¬(0 ≤ i < n)] ·
n−1
F

m=0
[array + m 7→ am]

= J D.6.9 K
max{ [0 ≤ i < n] · wp [Cbody] (I) ,

[¬(0 ≤ i < n)] ·
n−1
F

m=0
[array + m 7→ am] }

� J Lemma F.3 K
max { [0 ≤ i < n] · wp [Cbody] (I) , I }

� J Lemma F.4 K
max { I, I }

= J elementary algebra K
I. �

Lemma F.3 [¬(0 ≤ i < n)] ·
n−1
F

m=0
[array + m 7→ am] � I.

Proof.

[¬(0 ≤ i < n)] ·
n−1
F

m=0
[array + m 7→ am]

� J elementary algebra (0 � Z for all Z ∈ E) K

[¬(0 ≤ i < n)] ·
n−1
F

m=0
[array + m 7→ am]

+
[0 ≤ i < n]
(n− i)!

· ∑
π∈Perm(i,n−1)

Zi
π

= J Definition of I K
I. �

Lemma F.4 [0 ≤ i < n] · wp [Cbody] (I) � I.
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Proof.

[0 ≤ i < n] · wp [Cbody] (I)
= J D.6.2; Theorem 7.11 K

[0 ≤ i < n] · wp [Cbody] ([0 ≤ i < n] · I)
= J Definition of I K

[0 ≤ i < n] · wp [Cbody]
(
[0 ≤ i < n] ·

(
[¬(0 ≤ i < n)] ·

n−1
F

m=0
[array + m 7→ am]

+
[0 ≤ i < n]
(n− i)!

· ∑
π∈Perm(i,n−1)

Zi
π))

= J elementary algebra; D.6.3 K

[0 ≤ i < n] · wp [Cbody]

 ∑
π∈Perm(i,n−1)

[0 ≤ i < n]
(n− i)!

· Zi
π


�

r
Figure F.1 (page 436) ; apply substitution

(
j /∈ Vars

(
Zi+1

π

)) z
[0 ≤ i < n] ·

n−1−i

∑
k=0

1
n− i

·

sup
u∈Z

[array + i 7→ u] ?
(
[array + i 7→ u]−−?

sup
v∈Z

[array + i + k 7→ v] ?
(
[array + i + k 7→ v]−−?

[array + i 7→ −] ?
(
[array + i 7→ v]−−?

[array + i + k 7→ −] ?
(
[array + i + k 7→ u]−−?

∑
π∈Perm(i+1,n−1)

[0 ≤ i + 1 < n]
(n− (i + 1))!

· Zi+1
π

))))
� J notice Perm(., .) is finite; repeatedly apply D.4.2; D.3.2; D.6.12 K

[0 ≤ i < n] ·
n−1−i

∑
k=0

1
n− i ∑

π∈Perm(i+1,n−1)

sup
u∈Z

[array + i 7→ u] ?
(
[array + i 7→ u]−−?
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sup
v∈Z

[array + i + k 7→ v] ?
(
[array + i + k 7→ v]−−?

[array + i 7→ −] ?
(
[array + i 7→ v]−−?

[array + i + k 7→ −] ?
(
[array + i + k 7→ u]−−?

[0 ≤ i + 1 < n]
(n− (i + 1))!

· Zi+1
π

))))
= J Figure F.1 (page 436); elementary algebra (swap finite sums) K

[0 ≤ i < n] · ∑
π∈Perm(i+1,n−1)

n−1−i

∑
k=0

1
n− i

·

wp [void := swap(array, i, j)]
(
[0 ≤ i + 1 < n]
(n− (i + 1))!

· Zi+1
π

)
[j
/

i + k]

= J Theorem 7.11; apply substitution K

[0 ≤ i < n] · ∑
π∈Perm(i+1,n−1)

n−1−i

∑
k=0

1
n− i

· [0 ≤ i + 1 < n]
(n− (i + 1))!

·

wp [void := swap(array, i, j)]
(

Zi+1
π

)
[j
/

i + k]

= J elementary algebra K

[0 ≤ i < n] · [0 ≤ i + 1 < n]
(n− i)!

· ∑
π∈Perm(i+1,n−1)

n−1−i

∑
k=0

wp [void := swap(array, i, j)]
(

Zi+1
π

)
[j
/

i + k]

� J elementary algebra (0 ≤ i < n ∧ 0 ≤ i + 1 < n⇒ 0 ≤ i < n) K

[0 ≤ i < n]
(n− i)!

· ∑
π∈Perm(i+1,n−1)

n−1−i

∑
k=0

wp [void := swap(array, i, j)]
(

Zi+1
π

)
[j
/

i + k]

= J Lemma F.5; Lemma F.6 K

[0 ≤ i < n]
(n− i)!

· ∑
π∈Perm(i+1,n−1)

n−1−i

∑
k=0

Zi
πk

= J Lemma F.9 K
[0 ≤ i < n]
(n− i)!

· ∑
π∈Perm(i,n−1)

Zi
π
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� J elementary algebra (0 � Z for all Z ∈ E) K
[0 ≤ i < n]
(n− i)!

· ∑
π∈Perm(i,n−1)

Zi
π

+ [¬(0 ≤ i < n)] ·
n−1
F

m=0
[array + m 7→ am]

= J Definition of I K
I. �

Lemma F.5 wp [void := swap(array, i, j)]
(
Zi+1

π

)
[j
/

i] = Zi+1
π0

.

Proof. First, consider the following:

Zi+1
π

=
r

Definition of Zi+1
π

z

i
F

m=0
[array + m 7→ am] ?

n−1
F

m=i+1

[
array + m 7→ aπ(m)

]
=

s
Definition ofF; D.1.3; D.1.1

{

[array + i 7→ ai]?(
i−1
F

m=0
[array + m 7→ am] ?

n−1
F

m=i+1

[
array + m 7→ aπ(m)

])
︸ ︷︷ ︸

, Z

= J Definition of π0 K[
array + i 7→ aπ0(i)

]
?(

i−1
F

m=0
[array + m 7→ am] ?

n−1
F

m=i+1

[
array + m 7→ aπ0(m)

])
= J D.1.3; D.1.1 K

i−1
F

m=0
[array + m 7→ am] ?([

array + i 7→ aπ0(i)

]
?

n−1
F

m=i+1

[
array + m 7→ aπ0(m)

])
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=

s
Definition ofF

{

i−1
F

m=0
[array + m 7→ am] ?

n−1
F

m=i

[
array + m 7→ aπ0(m)

]
=

r
Definition of Zi

π0

z

Zi
π0

.

With these calculations at hand, we proceed as follows:

wp [void := swap(array, i, j)]
(

Zi+1
π

)
[j
/

i]

= J Calculations from above K

wp [void := swap(array, i, j)] (Z) [j
/

i]
= J Lemma F.7 K

Z
= J Calculations from above K

Zi
π0

. �

Lemma F.6 For 0 < k ≤ n− 1− i, we have:

wp [void := swap(array, i, j)]
(

Zi+1
π

)
[j
/

i + k] = Zi
πk

.

Proof. First, consider the following:

Zi+1
π

=
r

Definition of Zi+1
π

z

i
F

m=0
[array + m 7→ am] ?

n−1
F

m=i+1

[
array + m 7→ aπ(m)

]
=

s
Definition ofF; elementary algebra

{

i
F

m=0
[array + m 7→ am] ?

(
i+k−1
F

m=i+1

[
array + m 7→ aπ(m)

])
?

[
array + i + k 7→ aπ(i+k)

]
?

(
n−1
F

m=i+k+1

[
array + m 7→ aπ(m)

])
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=

s
Definition ofF; D.1.3

{

[array + i 7→ ai] ?
[
array + i + k 7→ aπ(i+k)

]
?

i−1
F

m=0
[array + m 7→ am] ?

i+k−1
F

m=i+1

[
array + m 7→ aπ(m)

]
?

n−1
F

m=i+k+1

[
array + m 7→ aπ(m)

]
Let us denote by Z the last two lines of the above expectation. We then
proceed as follows:

wp [void := swap(array, i, j)]
(

Zi+1
π

)
[j
/

i + k]

= J Calculations from above K
wp [void := swap(array, i, j)] (

[array + i 7→ ai] ?
[
array + i + k 7→ aπ(i+k)

]
? Z

) [j
/

i + k]
= J Lemma F.8 K[

array + i 7→ aπ(i+k)

]
? [array + i + k 7→ ai] ? Z

= J Definition of Z K[
array + i 7→ aπ(i+k)

]
? [array + i + k 7→ ai] ?

i−1
F

m=0
[array + m 7→ am] ?

i+k−1
F

m=i+1

[
array + m 7→ aπ(m)

]
?

n−1
F

m=i+k+1

[
array + m 7→ aπ(m)

]
= J D.1.3; Definition of πk K(

i−1
F

m=0
[array + m 7→ am]

)
?[

array + i 7→ aπk(i)

]
?

(
i+k−1
F

m=i+1

[
array + m 7→ aπk(m)

])
?

[
array + i + k 7→ aπk(i+k)

]
?

(
n−1
F

m=i+k+1

[
array + m 7→ aπk(m)

])
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=

s
Definition ofF

{

(
i−1
F

m=0
[array + m 7→ am]

)
?

(
n−1
F

m=i

[
array + m 7→ aπk(m)

])
=

r
Definition of Zi

πk

z

Zi
πk

. �

Lemma F.7 For every precise expectation Z with j /∈ Vars (Z):

wp [void := swap(array, i, j)] ([array + i 7→ w] ? Z) [j
/

i]
� [array + i 7→ w] ? Z.

Proof.

wp [void := swap(array, i, j)] ([array + i 7→ w] ? Z) [j
/

i]
= J Figure F.2 (page 437); apply substitution (j /∈ Vars (Z)) K

sup
u∈Z

[array + i 7→ u] ?
(
[array + i 7→ u]−−?

sup
v∈Z

[array + i 7→ v] ?
(
[array + i 7→ v]−−?

[array + i 7→ −] ?
(
[array + i 7→ v]−−?

[array + i 7→ −] ?
(
[array + i 7→ u]−−?

[array + i 7→ w] ? Z
))))

= J D.1.3; D.7.4 K

sup
u∈Z

[array + i 7→ u] ?
(
[array + i 7→ u]−−?

sup
v∈Z

[array + i 7→ v] ?
(
[array + i 7→ v]−−?

[array + i 7→ −] ?
(
[array + i 7→ v]−−?

[u = w] · [array + i 7→ −] ? Z
)))

= J D.7.3; D.1.26; D.7.8 K

sup
u∈Z

[array + i 7→ u] ?
(
[array + i 7→ u]−−?

sup
v∈Z

[array + i 7→ v] ?
(
[array + i 7→ v]−−?
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[array + i 7→ −] ?
(
[array + i 7→ v]−−?

[array + i 7→ v] ? ([u = w] · Z)
)))

= J D.7.1 K

sup
u∈Z

[array + i 7→ u] ?
(
[array + i 7→ u]−−?

sup
v∈Z

[array + i 7→ v] ?
(
[array + i 7→ v]−−?

[array + i 7→ −] ? ([u = w] · Z)
))

= J D.1.26; D.7.8 K

sup
u∈Z

[array + i 7→ u] ?
(
[array + i 7→ u]−−?

sup
v∈Z

[array + i 7→ v] ?
(
[array + i 7→ v]−−?

[array + i 7→ v] ? ([u = w] · Z)
))

= J D.7.1 K

sup
u∈Z

[array + i 7→ u] ?
(
[array + i 7→ u]−−?

sup
v∈Z

[array + i 7→ v] ? ([u = w] · Z)
)

= J D.1.26; D.7.8; introduce fresh variable y for v ; D.6.11 K

sup
u∈Z

[array + i 7→ u] ?
(
[array + i 7→ u]−−?

sup
v∈Z

([u = v] · [array + i 7→ y] ? ([u = w] · Z)) [y
/

v]
)

= J D.6.11; apply substitution K

sup
u∈Z

[array + i 7→ u] ?
(
[array + i 7→ u]−−?

[array + i 7→ u] ? ([u = w] · Z)
)

= J D.7.1 K
sup
u∈Z

[array + i 7→ u] ? ([u = w] · Z)

= J D.7.3 K
sup
u∈Z

[u = w] · [array + i 7→ u] ? Z

= J introduce fresh variable y for u K
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sup
u∈Z

([u = w] · [array + i 7→ y] ? Z) [y
/

u]

= J D.6.11; apply substitution K
[array + i 7→ w] ? Z. �

Lemma F.8 For every precise expectation Z with j /∈ Vars (Z) and k > 0:

wp [void := swap(array, i, j)]
([

array + i 7→ u′
]
?
[
array + j 7→ v′

]
? Z
)
[j
/

i + k]

=
[
array + i 7→ v′

]
?
[
array + i + k 7→ u′

]
? Z.

Proof.

wp [void := swap(array, i, j)]
([

array + i 7→ u′
]
?
[
array + j 7→ v′

]
? Z
)
[j
/

i + k]

= J Figure F.2 (page 437); apply substitution (void, j /∈ Vars (Z)) K

sup
u∈Z

[array + i 7→ u] ?
(
[array + i 7→ u]−−?

sup
v∈Z

[array + i + k 7→ v] ?
(
[array + i + k 7→ v]−−?

[array + i 7→ −] ?
(
[array + i 7→ v]−−?

[array + i + k 7→ −] ?
(
[array + i + k 7→ u]−−?[

array + i 7→ u′
]
?
[
array + i + k 7→ v′

]
? Z
))))

= J D.1.3; D.7.4 K

sup
u∈Z

[array + i 7→ u] ?
(
[array + i 7→ u]−−?

sup
v∈Z

[array + i + k 7→ v] ?
(
[array + i + k 7→ v]−−?

[array + i 7→ −] ?
(
[array + i 7→ v]−−?[

u = v′
]
· [array + i + k 7→ −] ?

[
array + i 7→ u′

]
? Z
)))

= J D.7.3; D.1.3; D.7.4 K

sup
u∈Z

[array + i 7→ u] ?
(
[array + i 7→ u]−−?

sup
v∈Z

[array + i + k 7→ v] ?
(
[array + i + k 7→ v]−−?[

v = u′
]
· [array + i 7→ −] ? [array + i + k 7→ −] ? (

[
u = v′

]
· Z)

))
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= J D.7.3; D.1.3; D.1.26; D.7.8 K

sup
u∈Z

[array + i 7→ u] ?
(
[array + i 7→ u]−−?

sup
v∈Z

[array + i + k 7→ v] ?
(
[array + i + k 7→ v]−−?

[array + i + k 7→ v] ? [array + i 7→ −] ? (
[
v = u′

]
·
[
u = v′

]
· Z)

))
= J D.7.1 K

sup
u∈Z

[array + i 7→ u] ?
(
[array + i 7→ u]−−?

sup
v∈Z

[array + i + k 7→ v] ? [array + i 7→ −] ? (
[
v = u′

]
·
[
u = v′

]
· Z)

)
= J D.1.11; D.1.3; D.1.26; D.7.8 K

sup
u∈Z

[array + i 7→ u] ?
(
[array + i 7→ u]−−?

[array + i 7→ u] ? sup
v∈Z

[array + i + k 7→ v] ? (
[
v = u′

]
·
[
u = v′

]
· Z)

)
= J D.7.1 K

sup
u∈Z

[array + i 7→ u] ? sup
v∈Z

[array + i + k 7→ v] ? (
[
v = u′

]
·
[
u = v′

]
· Z)

= J D.7.3; D.6.11; elementary algebra K

sup
u∈Z

[array + i 7→ u] ?
[
array + i + k 7→ u′

]
? (
[
u = v′

]
· Z)

= J D.7.3; D.6.11; elementary algebra K[
array + i 7→ v′

]
?
[
array + i + k 7→ u′

]
? Z. �

Lemma F.9

∑
π∈Perm(i+1,n−1)

n−1−i

∑
k=0

Zi
πk
� ∑

π∈Perm(i,n−1)
Zi

π .

Proof. We first notice that ∑π∈∅ . . . = 0. Furthermore, we have 1 =
[i < n− 1] + [i ≥ n− 1]. We consider both cases separately:

1. If [i < n− 1] holds, we have

∑
π∈Perm(i,n−1)

Zi
π

= J Lemma F.2 K
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∑
π∈⋃π′∈Perm(i,n−1){π′k | 0≤k≤n−1−i}

Zi
π

= J elementary algebra K

∑
π∈Perm(i,n−1)

n−1−i

∑
k=0

Zi
πk

.

2. If [i ≥ n− 1] holds, we have Perm(i + 1, n− 1) = ∅. Hence,

∑
π∈Perm(i+1,n−1)

n−1−i

∑
k=0

Zi
πk

= J By assumption K

∑
π∈∅

n−1−i

∑
k=0

Zi
πk

= J elementary algebra K
0

� J 0 is least element of E K

∑
π∈Perm(i,n−1)

Zi
π . �

F.4 Omitted Calculations in Section 8.5

All involved quantitative entailments are proven in separate lemmas below.
Furthermore, the missing cases to verify our invariant are provided at the end
of this section: Figures F.3 and F.4 contain the two missing cases considered in
the else branch when verifying case (1) of our proposed invariant. Case (2) of
our proposed invariant is verified in Figures F.5 and F.6. Finally, case (3) of our
invariant is considered in Figure F.7.

Lemma F.10 For every precise expectation Y′, we have

[�top ↪→ l, r] · Y′ ? ([tree (�top)] · 1 ? ([path (l, out)] · 1/2 · size))

� Y′ ? [�top 7→ l, r] ? [tree (l)] ? [tree (r)]

+Y′ ? [�top 7→ l, r] ? ([tree (l)] · 1 ? ([path (l, out)] · 1/2 · size)) ? [tree (r)]
+ [l = 0] · [r = 0] ·∞ + [tree (l)] ? [out ↪→ 0, 0] ·∞.
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Proof.

[�top ↪→ l, r] · Y′ ?
(
[tree (�top)] · 1 ? ([path (�top, out)] · 1/2 · size)

)
= J Def. of [tree (�top)]; D.6.2; D.7.3; D.6.6; D.7.5; elem. algebra K

[�top ↪→ l, r] · Y′ ?
(
[�top 7→ l, r] ? [tree (l)] ? [tree (r)] · 1?

([path (�top, out)] · 1/2 · size)
)

= J Def. of [path (�top, out)]; D.6.2; D.7.3; D.6.6; D.7.5; elem. algebra K

[�top ↪→ l, r] · Y′ ?
(
[�top 7→ l, r] ? [tree (l)] ? [tree (r)] · 1

?
(
([�top = out] · [�top 7→ 0, 0]

+ [�top 6= out] · [�top 7→ l, r]

?max{[path (l, out)] , [path (r, out)]}) · 1/2 · size
))

= J elementary algebra K

[�top ↪→ l, r] · Y′ ?
(
[�top 7→ l, r] ? [tree (l)] ? [tree (r)] ·

1 ? (1/2 · size· [�top = out] · [�top 7→ 0, 0]
+ 1/2 · size· [�top 6= out] ·

[�top 7→ l, r] ? max { [path (l, out)] , [path (r, out)] })
)

= J elementary algebra; D.3.2 K

[�top ↪→ l, r] · Y′ ?
(
[�top 7→ l, r] ? [tree (l)] ? [tree (r)] ·

1 ? (1/2 · size · [�top = out] · [�top 7→ 0, 0])
)

+ [�top ↪→ l, r] · Y′ ?
(
[�top 7→ l, r] ? [tree (l)] ? [tree (r)] ·

1 ? (1/2 · size · [�top 6= out] ·
[�top 7→ l, r] ? max{[path (l, out)] , [path (r, out)]})

)
� J D.7.3; D.7.5; D.6.1; D.6.5; elementary algebra K

[l = 0] · [r = 0] ·∞
+ Y′ ?

(
[�top 7→ l, r] ? [tree (l)] ? [tree (r)] ·

1 ? (1/2 · size · [�top 6= out] ·
[�top 7→ l, r] ? max{[path (l, out)] , [path (r, out)]})

)
= J elementary algebra (max distributes over +, ·); D.1.7 K

[l = 0] · [r = 0] ·∞ + max
{

Y′ ?
(
[�top 7→ l, r] ? [tree (l)] ? [tree (r)] ·
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1 ? (1/2 · size · [�top 7→ l, r] ? [path (l,�top)])
)
,

Y′ ?
(
[�top 7→ l, r] ? [tree (l)] ? [tree (r)] ·
1 ? (1/2 · size · [�top 7→ l, r] ? [path (r, out)])

)}
� J Lemma F.11 (twice) K

[l = 0] · [r = 0] ·∞ + max
{

Y′ ? [�top 7→ l, r] ? [tree (l)] ? [tree (r)]

+Y′ ? [�top 7→ l, r] ?

([tree (l)] · 1 ? ([path (l, out)] · 1/2 · size)) ? [tree (r)],

Y′ ? [�top 7→ l, r] ? [tree (l)] ? [tree (r)]

+Y′ ? [�top 7→ l, r] ?

([tree (l)] · 1 ? ([path (r, out)] · 1/2 · size)) ? [tree (r)]
}

= J elementary algebra (max{A + B, A + C} = A + max{B, C}) K
[l = 0] · [r = 0] ·∞ + Y′ ? [�top 7→ l, r] ? [tree (l)] ? [tree (r)] + max

{
Y′ ? [�top 7→ l, r] ?

([tree (l)] · 1 ? ([path (l, out)] · 1/2 · size)) ? [tree (r)] ,

Y′ ? [�top 7→ l, r] ?

([tree (l)] · 1 ? ([path (r, out)] · 1/2 · size)) ? [tree (r)]
}

� J max{A, B} ≤ A + B for A, B ≥ 0 K

[l = 0] · [r = 0] ·∞ + Y′ ? [�top 7→ l, r] ? [tree (l)] ? [tree (r)]

+Y′ ? [�top 7→ l, r] ?

([tree (l)] · 1 ? ([path (l, out)] · 1/2 · size)) ? [tree (r)]

+Y′ ? [�top 7→ l, r] ?

([tree (l)] · 1 ? ([path (r, out)] · 1/2 · size)) ? [tree (r)]
}

� J Lemma F.13 K

[l = 0] · [r = 0] ·∞ + Y′ ? [�top 7→ l, r] ? [tree (l)] ? [tree (r)]

+ Y′ ? [�top 7→ l, r] ?

([tree (l)] · 1 ? ([path (l, out)] · 1/2 · size)) ? [tree (r)]

+ Y′︸︷︷︸
�∞

? [�top 7→ l, r]︸ ︷︷ ︸
�1

?
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(
[tree (l)] · 1 ? ([out ↪→ 0, 0] · 1/2 · size)

)︸ ︷︷ ︸
�[out↪→0,0]·∞

? [tree (r)]︸ ︷︷ ︸
�1

� J elementary algebra; 1 ? [x ↪→ 0, 0] = [x ↪→ 0, 0] K

[l = 0] · [r = 0] ·∞ + Y′ ? [�top 7→ l, r] ? [tree (l)] ? [tree (r)]

+ Y′ ? [�top 7→ l, r] ?

([tree (l)] · 1 ? ([path (l, out)] · 1/2 · size)) ? [tree (r)]
+ [tree (l)] ? [out ↪→ 0, 0] ·∞

= J algebra (rearranging terms) K

Y′ ? [�top 7→ l, r] ? [tree (l)] ? [tree (r)]

+Y′ ? [�top 7→ l, r] ? ([tree (l)] · 1 ? ([path (l, out)] · 1/2 · size)) ? [tree (r)]
+ [l = 0] · [r = 0] ·∞ + [tree (l)] ? [out ↪→ 0, 0] ·∞. �

Lemma F.11 For every precise expectation Y′, we have

Y′ ?
(
[�top 7→ l, r] ? [tree (l)] ? [tree (r)] ·
1 ? (1/2 · size · [�top 7→ l, r] ? [path (l,�top)])

)
� Y′ ? [�top 7→ l, r] ? [tree (l)] ? [tree (r)] + Y′ ? [�top 7→ l, r] ?

([tree (l)] · 1 ? ([path (l, out)] · 1/2 · size)) ? [tree (r)] .

Proof.

Y′ ?
(
[�top 7→ l, r] ? [tree (l)] ? [tree (r)] ·
1 ? (1/2 · size · [�top 7→ l, r] ? [path (l,�top)])

)
= J D.3.5 K

Y′ ?
(
[�top 7→ l, r] ? [tree (l)] ? [tree (r)] ·

1 ?
(
(1/2 · size · [�top 7→ l, r]) ? [path (l, out)]

+ [�top 7→ l, r] ? (1/2 · size · [path (l, r)])
))

= J D.6.6; elementary algebra K

Y′ ?
(
[�top 7→ l, r] ? [tree (l)] ? [tree (r)] ·

1 ?
(
[�top 7→ l, r] ? [path (l, out)]

+ [�top 7→ l, r] ? (1/2 · size · [path (l, r)])
))

� J D.1.9 K
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Y′ ?
(
[�top 7→ l, r] ? [tree (l)] ? [tree (r)] ·

(
1 ? [�top 7→ l, r] ? [path (l, out)]

+ 1 ? [�top 7→ l, r] ? (1/2 · size · [path (l, r)])
))

� J D.6.1 (1 ? [�top 7→ l, r] � 1; [path (l, out)] � 1) K

Y′ ?
(
[�top 7→ l, r] ? [tree (l)] ? [tree (r)] ·

(
1 + 1 ? (1/2 · size · [path (l, r)])

))
Y′ ?

(
[�top 7→ l, r] ? [tree (l)] ? [tree (r)] ·

(
1 + 1 ? (1/2 · size · [path (l, r)])

))
= J elementary algebra (distributivity of · and +); D.3.2 K

Y′ ? [�top 7→ l, r] ? [tree (l)] ? [tree (r)]

+Y′ ?
(
[�top 7→ l, r] ? [tree (l)] ? [tree (r)] · 1 ? (1/2 · size · [path (l, r)])

)
= J Lemma F.12 K

Y′ ? [�top 7→ l, r] ? [tree (l)] ? [tree (r)] + Y′ ? [�top 7→ l, r] ?(
[tree (l)] · 1 ? (1/2 · size · [path (l, r)])

)
? [tree (r)] . �

Lemma F.12 For every precise expectation Y′, we have

Y′ ?
(
[�top 7→ l, r] ? [tree (l)] ? [tree (r)] · 1 ? (1/2 · size · [path (l, r)])

)
= Y′ ? [�top 7→ l, r] ?

(
[tree (l)] · 1 ? (1/2 · size · [path (l, r)])

)
? [tree (r)] .

Proof. Let (s, h) be a stack-heap pair such that

(Y′ ? [�top 7→ l, r] ? [tree (l)] ? [tree (r)])(s, h) = 1.

For every other stack-heap pair, the first expectation evaluations to 0 and
the claim is trivially satisfied. Now, since Y′, [�top 7→ l, r], [tree (l)], and
[tree (r)] are precise expectations, there exists exactly one partition h = h1 ?
h2 ? h3 ? h4 with Y′(s, h1) = 1, [�top 7→ l, r] (s, h2) = 1, [tree (l)] (s, h3) = 1,
[tree (r)] (s, h4) = 1. It then remains to show that

(1 ? ([path (l, out)] · 1/2 · size))(s, h2 ? h3 ? h4)

= J Definition of ? for 1 ? . . . K

max{([path (l, out)] · 1/2 · size)(s, h′) | h′ ⊆ h2 ? h3 ? h4}
= J shown further below K
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max{([path (l, out)] · 1/2 · size)(s, h′) | h′ ⊆ h3}
= J Definition of ? for 1 ? . . . K

(1 ? [path (l, out)] · 1/2 · size)(s, h3).

To complete the proof, we now show that for every h′ ⊆ h2 ? h3 ? h4

([path (l, out)] · 1/2 · size)(s, h′) > 0 implies h′ ⊆ h3. (F.1)

First recall that

[tree (l)] , [l = 0] · emp + sup
u,v∈Z

[l 7→ u, v] ? [tree (u)] ? [tree (v)] .

By D.5.3, [l 7→ u, v ∈ Z] implies [l 6= 0].
We proceed by induction on the number of unfoldings of [path (l, out)].
If [path (l, out)] is unrolled once, we have

([path (l, out)] · 1/2 · size)(s, h′) > 0
iff J Unroll [path (l, out)] exactly once K

([l = out] · [l 7→ 0, 0] · 1/2 · size︸ ︷︷ ︸
= 1

)(s, h′) > 0

iff J Definition of involved expectations K

s(l) = s(out) and h′ = { s(l) :: 0, 0 } .

The last equation from above implies s(l) 6= 0. Then, since [tree (l)] (s, h3) =
1 holds by assumption, we have h′ ⊆ h3.

If [path (l, out)] is unrolled more than once, we have

([path (l, out)] · 1/2 · size)(s, h′) > 0
iff J Unroll [path (l, out)] at least twice K

([l 6= out] · sup
u,v∈Z

[l 7→ u, v] ?

max{[path (u, out)] , [path (v, out)]} · 1/2 · size)(s, h′) > 0.

Now, by definition of ?, we have h′ = { s(l) :: u, v } ? h′′. Furthermore,
since [tree (l)] (s, h3) = 1 holds by assumption, we have { s(l) :: u, v } ⊆ h3.
Moreover, by I.H., we have h′′ ⊆ h3. Hence h′ ⊆ h3. �

Lemma F.13 [path (�top, l)] � [l ↪→ 0, 0].
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Proof. By induction on the number of unrollings of [path (�top, l)].
For exactly one unrolling, we have

[path (�top, l)]

= J Definition of [path (�top, l)] for exactly one unrolling K
[�top = l] · [�top 7→ 0, 0]

� J elementary algebra; D.2.2 K
[�top = l] ? [l 7→ 0, 0]

� J D.6.1; D.6.7 K
[l ↪→ 0, 0].

For more than one unrolling, we have

[path (�top, l)]

= J Definition of [path (�top, l)] for more than one unrolling K
[�top 6= l] · sup

u,v∈Z

[�top 7→ u, v] ?

max{[path (u, l)] , [path (v, l)]}
� J I.H. K

[�top 6= l]︸ ︷︷ ︸
� 1

· sup
u,v∈Z

[�top 7→ u, v]︸ ︷︷ ︸
� 1

?max{[l ↪→ 0, 0], [l ↪→ 0, 0]}

� J D.6.1; elementary algebra K
1 ? [l ↪→ 0, 0]

= J D.6.7; elementary algebra K
[l ↪→ 0, 0] . �

Lemma F.14 For every precise expectation Y′, we have

[�top ↪→ l, r] · [n = l] · [n = r] · Y′?(
[tree (�top)] · 1 ? (1/2 · size · [path (�top, out)])

)
� [l = 0] · [r = 0] ·∞.

Proof.

[�top ↪→ l, r] · [n = l] · [n = r] · Y′?(
[tree (�top)] · 1 ? (1/2 · size · [path (�top, out)])

)
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= J Def. of [tree (�top)]; D.6.2; D.7.3; D.6.6; D.7.5; elem. algebra K

[�top ↪→ l, r] · [n = l] · [n = r] · Y′?(
[�top 7→ l, r] ? [tree (l)] ? [tree (r)] ·

1 ? (1/2 · size · [path (�top, out)])
)

= J elementary algebra K

[�top ↪→ l, r]︸ ︷︷ ︸
� 1

· [n = l] · [n = r] · Y′︸︷︷︸
� ∞

?

(
[�top 7→ l, r]︸ ︷︷ ︸

� 1

? [tree (l)] ? [tree (l)]) ·

1 ? (1/2 · size · [path (�top, out)])︸ ︷︷ ︸
� ∞

)
� J D.6.1; D.6.5; D.1.3 K

[n = l] · [n = r] ·∞ ? [tree (l)] ? [tree (l)]
= J Definition of [tree (v)] (twice) K

[n = l] · [n = r] ·∞
?
(
[l = 0] · emp+ sup

u,v∈Z

[l 7→ u, v] ? [tree (u)] ? [tree (v)]
)

︸ ︷︷ ︸
= Z′

?
(
[l = 0] · emp + sup

u,v∈Z

[l 7→ u, v] ? [tree (u)] ? [tree (v)]
)

=
q

D.3.2; Z′ ? Z′ = 0; Z′ ? ([l = 0] · emp) = 0; elementary algebra
y

[n = l] · [l = r] ·∞ ? ([l = 0] · emp)
= J D.2.2; D.1.2; D.1.3 K

[n = l] · [n = r] · [l = 0] ·∞
� J elementary algebra K

[l = 0] · [r = 0] ·∞. �

Lemma F.15 Let Xif be defined as in Abbildung 8.11. Then

[top ↪→ u, v] · [u = 0∧ v = 0] · Xif [r/v] [l/u] [root/�top] [+�]
� [top ↪→ u, v] · [u = 0∧ v = 0] ·

Y ? ([top 6= 0] · [tree (top)] · log (1 + 1/2 · size)) .
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Proof.

[top ↪→ u, v] · [u = 0∧ v = 0] · Xif [r/v] [l/u] [root/�top] [+�]
= J Definition of Xif as in Abbildung 8.11 K

[top ↪→ u, v] · [u = 0∧ v = 0] ·
Y [−�] [out/root] [r/v] [l/u] [root/�top] [+�]︸ ︷︷ ︸

= Y

? ([tree (top)] · 1 ? ( [path (top, top)]︸ ︷︷ ︸
= [top 7→0,0]

·1/2 · size)))

= J Apply above equalities; 1 ? ([top 7→ 0, 0] · 1/2 · size) = [top ↪→ 0, 0] K
[top ↪→ u, v] · [u = 0∧ v = 0] · Y ? ([tree (top)] · [top ↪→ 0, 0]︸ ︷︷ ︸

= [top 7→0,0]

)

= J Definition of [tree (top)] K
[top ↪→ u, v] · [u = 0∧ v = 0] · Y ? [top 7→ 0, 0]

= J [top 7→ 0, 0] · log (1 + 1/2 · size) = [top 7→ 0, 0] K
[top ↪→ u, v] · [u = 0∧ v = 0] · Y ? ([top 7→ 0, 0] · log (1 + 1/2 · size))

= J D.5.3 K
[top ↪→ u, v] · [u = 0∧ v = 0] ·

Y ? ([top 6= 0] · [top 7→ 0, 0] · log (1 + 1/2 · size)). �

Lemma F.16 Let Xelse be defined as in Abbildung 8.11. Then

[top ↪→ u, v] · [u 6= 0∨ v 6= 0] · Xelse [r/v] [l/u] [root/�top] [+�]
� [top ↪→ u, v] · [u 6= 0∨ v 6= 0] ·

Y ? ([top 6= 0] · [tree (top)] · log (1 + 1/2 · size)) .

Proof.

[top ↪→ u, v] · [u 6= 0∨ v 6= 0] · Xelse [r/v] [l/u] [root/�top] [+�]
= J Definition of Xelse as in Abbildung 8.11 K

[top ↪→ u, v] · [u 6= 0∨ v 6= 0] ·
(

1/2 · [u 6= v]︸ ︷︷ ︸
� 1

·Y [−�] [n/l] [r/v] [l/u] [root/�top] [+�]︸ ︷︷ ︸
= Y

? [top 7→ u, v] ? [tree (v)] ?



F.4. Omitted Calculations in Section 8.5 433

([u 6= 0] · [tree (u)] · (1 + log (1 + 1/2 · size)))
+ 1/2 · [u 6= v]︸ ︷︷ ︸

� 1

·Y [−�] [n/r] [r/v] [l/u] [root/�top] [+�]︸ ︷︷ ︸
= Y

? [top 7→ u, v] ? [tree (u)] ?
([v 6= 0] · [tree (v)] · (1 + log (1 + 1/2 · size)))

+ [u = 0∧ v = 0]︸ ︷︷ ︸
= 0

·∞ + [¬top ↪→ u, v]︸ ︷︷ ︸
= 0

·

wprleaf
ρ [n :≈ 1/2 · . . . ; out := rleaf(n)] (. . .)

[r/v] [l/u] [root/�top] [+�])
� J apply the (in)equalities indicated above K

[top ↪→ u, v] · [u 6= 0∨ v 6= 0] ·
(

1/2 · Y ? [top 7→ u, v] ? [tree (v)] ?
([u 6= 0] · [tree (u)] · (1 + log (1 + 1/2 · size)))

+ 1/2 · Y ? [top 7→ u, v] ? [tree (u)] ?
([v 6= 0] · [tree (v)] · (1 + log (1 + 1/2 · size))))

= J Y and [tree (. . .)] are precise; D.3.2 K

[top ↪→ u, v] · [u 6= 0∨ v 6= 0] · Y ?
(

1/2 · [top 7→ u, v] ? [tree (v)] ?
([u 6= 0] · [tree (u)] · (1 + log (1 + 1/2 · size)))

+ 1/2 · [top 7→ u, v] ? [tree (u)] ?
([v 6= 0] · [tree (v)] · (1 + log (1 + 1/2 · size))))

� J Lemma F.17 K
[top ↪→ u, v] · [u 6= 0∨ v 6= 0] ·

Y ? ([top 6= 0] · [tree (top)] · log (1 + 1/2 · size)). �

Lemma F.17

1/2 · [top 7→ u, v] ? [tree (v)] ?
([u 6= 0] · [tree (u)] · (1 + log (1 + 1/2 · size)))
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+ 1/2 · [top 7→ u, v] ? [tree (u)] ?
([v 6= 0] · [tree (v)] · (1 + log (1 + 1/2 · size)))

� [top 6= 0] · [tree (top)] · log (1 + 1/2 · size) .

Proof. Let X be defined as

1/2 · [top 7→ u, v] ? [tree (v)] ?
([u 6= 0] · [tree (u)] · (1 + log (1 + 1/2 · size)))

+ 1/2 · [top 7→ u, v] ? [tree (u)] ?
([v 6= 0] · [tree (v)] · (1 + log (1 + 1/2 · size))).

Moreover, let (s, h) be a stack-heap pair with X(s, h) > 0 (for all other stack
heap pairs the inequality 0 � . . . holds trivially). Since [top 7→ u, v],
[tree (u)], and [tree (v)] are precise expectations, there exists exactly
one partition, say h = h1 ? h2 ? h3, such that [top 7→ u, v] (s, h1) > 0,
[tree (u)] (s, h2) > 0 and [tree (v)] (s, h3) > 0. With this in mind, consider
the following:

X(s, h)
= J Definition of X; Definition of ?; Definition of size K

max
{

1/2 · [top 7→ u, v] (s, h′1) · [tree (v)] (s, h′3)

· [tree (u)] (s, h′2) · (1 + log
(
1 + 1/2 · |dom(h′2)|

)
)∣∣ h = h′1 ? h

′
2 ? h

′
3
}

+ max
{

1/2 · [top 7→ u, v] (s, h′1) · [tree (u)] (s, h′2)

· [tree (v)] (s, h′3) · (1 + log
(
1 + 1/2 · |dom(h′3)|

)
)∣∣ h = h′1 ? h

′
2 ? h

′
3
}

= J h = h1 ? h2 ? h3 is the only partition leading to evaluations > 0 K
1/2 · [top 7→ u, v] (s, h1) · [tree (v)] (s, h3)·

[tree (u)] (s, h2) · (1 + log (1 + 1/2 · |dom(h2)|))
+ 1/2 · [top 7→ u, v] (s, h1) · [tree (u)] (s, h2)·

[tree (v)] (s, h3) · (1 + log (1 + 1/2 · |dom(h3)|))
= J elementary algebra K

[top 7→ u, v] (s, h1) · [tree (u)] (s, h2) · [tree (v)] (s, h3)

· (1 + 1/2 · (log (1 + 1/2 · |dom(h2)|) + log (1 + 1/2 · |dom(h3)|)))
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≤ J Lemma F.18 with n1 = 1/2 · |dom(h2)| and n2 = 1/2 · |dom(h3)| K
[top 7→ u, v] (s, h1) · [tree (u)] (s, h2) · [tree (v)] (s, h3)

· log (1/2 · |dom(h2)|+ 1/2 · |dom(h3)|+ 2)
= J |dom(h1)| = 2 K

[top 7→ u, v] (s, h1) · [tree (u)] (s, h2) · [tree (v)] (s, h3)

· log (1/2 · |dom(h2)|+ 1/2 · |dom(h3)|+ 1/2 · |dom(h1)|+ 1)
= J (|dom(h)| = |dom(h1)|+ |dom(h2)|+ |dom(h3)| K

[top 7→ u, v] (s, h1) · [tree (u)] (s, h2) · [tree (v)] (s, h3)·
log (1 + |dom(h)|)

= J h = h1 ? h2 ? h3 is the only partition leading to evaluations > 0 K

max{ [top 7→ u, v] (s, h′1) · [tree (u)] (s, h′2) · [tree (v)] (s, h′3)·
log (1 + |dom(h)|) | h = h′1 ? h

′
2 ? h

′
3}

= J Definition of ?; Definition of size K(
[top 7→ u, v] ? [tree (u)] ? [tree (v)]︸ ︷︷ ︸

� [top 6=0]·[tree(top)]

· log (1 + size)
)
(s, h)

� J Definition of [tree (top)] K
([top 6= 0] · [tree (top)] · log (1 + size)) (s, h). �

Lemma F.18 For natural numbers n1, n2 ∈N, we have

1 + 1/2 · log (1 + n1) + 1/2 · log (1 + n2) ≤ log (n1 + n2 + 2) .

Proof. The following calculations are taken from the proof of Theorem 1
in [GM98]:

1 + 1/2 · log (1 + n1) + 1/2 · log (1 + n2)

= J elementary algebra (logarithm laws) K

log
(

2 ·
√
(n1 + 1)(n2 + 1)

)
≤ J elementary algebra K

log
(

2 · (n1 + 1) + (n2 + 1)
2

)
= J elementary algebra K

log (n1 + n2 + 2) . �
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//
n−1−i

∑
k=0

1
n− i

· sup
u∈Z

[array + i 7→ u] ?
(
[array + i 7→ u]−−?

// sup
v∈Z

[array + i + k 7→ v] ?
(
[array + i + k 7→ v]−−?

// [array + i 7→ −] ?
(
[array + i 7→ v]−−?

// [array + i + k 7→ −] ?
(
[array + i + k 7→ u]−−?

// Z [i/i + 1] [−�] [�x/out] [out/0] [z/v] [y
/

u]

// [array/�array] [i/�i] [j
/
�j] [+�] [j

/
i + k]

))))
// � J Figure F.2 (page 437) K

//
n−1−i

∑
k=0

1
n− i

· wp [void := swap(array, i, j)] (Z [i/i + 1]) [j
/

i + k]

j :≈ uniform (i, n− 1) ;
// wp [void := swap(array, i, j)] (Z [i/i + 1] )
void := swap(array, i, j) ;
// Z [i/i + 1]
i := i + 1
// Z

Figure F.1: Computation of wp [Cbody] (Z) for every Z ∈ E.
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// sup
u∈Z

[array + i 7→ u] ?
(
[array + i 7→ u]−−?

// sup
v∈Z

[array + j 7→ v] ?
(
[array + j 7→ v]−−?

// [array + i 7→ −] ?
(
[array + i 7→ v]−−?

// [array + j 7→ −] ?
(
[array + j 7→ u]−−?

// Z [−�] [�x/out] [out/0] [z/v] [y
/

u]

// [array/�array] [i/�i] [j
/
�j] [+�]

))))
swap(array, i, j) { // enter scope & set parameters

// sup
u∈Z

[array + i 7→ u] ?
(
[array + i 7→ u]−−?

// sup
v∈Z

[array + j 7→ v] ?
(
[array + j 7→ v]−−?

// [array + i 7→ −] ?
(
[array + i 7→ v]−−?

// [array + j 7→ −] ?
(
[array + j 7→ u]−−?

// Z [−�] [�x/out] [out/0] [z/v] [y
/

u]
))))

y := array [ i ] ;

// sup
v∈Z

[array + j 7→ v] ?
(
[array + j 7→ v]−−?

// [array + i 7→ −] ?
(
[array + i 7→ v]−−?

// [array + j 7→ −] ?
(
[array + j 7→ y]−−? Z [−�] [�x/out] [out/0] [z/v]

)))
z := array [ j ] ;

// [array + i 7→ −] ?
(
[array + i 7→ z]−−?

// [array + j 7→ −] ?
(
[array + j 7→ y]−−? Z [−�] [�x/out] [out/0]

))
array [ i ] := z ;

// [array + j 7→ −] ? ([array + j 7→ y]−−?Z [−�] [�x/out] [out/0]
)

array [ j ] := y ;
// Z [−�] [�x/out] [out/0]
out := 0
// Z[−�] [�x/out]

} // leave scope & set return value
// Z

Figure F.2: Computation of wp [void := swap(array, i, j)] (Z) for any Z ∈ E.
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// 0
// � J elementary algebra K

// 1/2 · 0 · [l 6= r] · wprleaf
ρ [out := rleaf(n)] (�top ↪→ l, r · X1)

// + 1/2 · [r 6= l] · 0 · wprleaf
ρ [out := rleaf(n)] (�top ↪→ l, r · X1)

n :≈ 1/2 · 〈 l 〉+ 1/2 · 〈 r 〉 ;

// [n 6= l] · [n 6= r] ·wprleaf
ρ [out := rleaf(n)] ([�top ↪→ l, r] · X1)

// � J Theorem 7.11 K

// wprleaf
ρ [out := rleaf(n)]([�top ↪→ l, r] · [n 6= l] · [n 6= r] · X1)

out := rleaf(n)
// [�top ↪→ l, r] · [n 6= l] · [n 6= r]

// ·Y [−�] ? ([tree (�top)] · 1 ? ([path (�top, out)] · 1/2 · size))︸ ︷︷ ︸
, X1

Figure F.3: Proof of the else branch of invariant case (1) for n 6= l and n 6= r.
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// [l = 0∧ r = 0] ·∞
// � J elementary algebra K
// [l = 0] · [r = 0] ·∞
n :≈ 1/2 · 〈 l 〉+ 1/2 · 〈 r 〉 ;
// [l = 0] · [r = 0] ·∞
// � J Theorem 7.11; D.6.5 K

// wprleaf
ρ [out := rleaf(n)]([l = 0] · [r = 0] ·∞)

out := rleaf(n)
// [l = 0] · [r = 0] ·∞
// � J Lemma F.14 K
// [�top ↪→ l, r] · [n = l] · [n = r]

// ·Y [−�] ? ([tree (�top)] · 1 ? ([path (�top, out)] · 1/2 · size))︸ ︷︷ ︸
, X1

Figure F.4: Proof of the else branch of invariant case (1) for n = l and n = r.
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// 0
// � J [top ↪→ u, v] · [tree (top)] = [top 7→ u, v] ? [tree (u)] ? [tree (v)]; D.6.7; D.5.4 K
// sup

u,v∈Z

[top ↪→ u, v] · (

// [u = 0∧ v = 0] · [tree (top)] ? ([top ↪→ −] ·∞) + [u 6= 0∨ v 6= 0] · (
// [¬top ↪→ u ∧ ¬top + 1 ↪→ u] ·∞ + [¬top ↪→ v ∧ ¬top + 1 ↪→ v] ·∞))

rleaf(root) { // enter scope & set parameters
// sup

u,v∈Z

[root ↪→ u, v] · (

// [u = 0∧ v = 0] · [tree (�top)] ? ([root ↪→ −] ·∞) + [u 6= 0∨ v 6= 0] · (
// [¬� top ↪→ u ∧ ¬� top + 1 ↪→ u] ·∞ + [¬� top ↪→ v ∧ ¬� top + 1 ↪→ v] ·∞))

l := <root> ;
// sup

v∈Z

[root + 1 ↪→ v] · (

// [l = 0∧ v = 0] · ([tree (�top)] ? [root ↪→ −] ·∞) + [l 6= 0∨ v 6= 0] · (
// [¬� top ↪→ l∧ ¬� top + 1 ↪→ l] ·∞ + [¬� top ↪→ v ∧ ¬� top + 1 ↪→ v] ·∞))

r := <root + 1> ; // use alternative lookup rule (D.4.5)
// [l = 0∧ r = 0] · ( [tree (�top)] ? ([root ↪→ −] ·∞)) + [l 6= 0∨ r 6= 0] · (
// [¬� top ↪→ l∧ ¬� top + 1 ↪→ l] ·∞ + [¬� top ↪→ r∧ ¬� top + 1 ↪→ r] ·∞)

if ( l = 0 and r = 0 ) {
// [tree (�top)] ? ([root ↪→ −] ·∞)

out := root

// [tree (�top)] ? ([out ↪→ −] ·∞)

} else {
// [¬� top ↪→ l∧ ¬� top + 1 ↪→ l] ·∞ + [¬� top ↪→ r∧ ¬� top + 1 ↪→ r] ·∞
n :≈ 1/2 · 〈 l 〉+ 1/2 · 〈 r 〉 ;
// [¬� top ↪→ n∧ ¬� top + 1 ↪→ n] ·∞
// � J Figure F.6 K

// wprleaf
ρ [out := rleaf(n)] ( [tree (�top)] ? [out ↪→ −] ·∞)

out := rleaf(n)
// [tree (�top)] ? ([out ↪→ −] ·∞)

}
// [tree (�top)] ? ([out ↪→ −] ·∞)

} // set return value & leave scope
// [tree (top)] ? ([result ↪→ −] ·∞)

Figure F.5: Proof of invariant case (2)
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// [¬� top ↪→ n∧ ¬� top + 1 ↪→ n] ·∞
// � J elementary algebra K

// 2 · 0 + [¬� top ↪→ n∧ ¬� top + 1 ↪→ n] · wprleaf
ρ [out := rleaf(n)] (∞)︸ ︷︷ ︸

� ∞

// � J Apply invariant ρ; Theorem 7.12 K

// 2 · wprleaf
ρ [out := rleaf(n)] ([tree (n)] ? ([out ↪→ −] ·∞))

// + wprleaf
ρ [out := rleaf(n)] ([¬� top ↪→ n∧ ¬� top + 1 ↪→ n] ·∞)

// � J Linearity of weakest preexpectations (Theorem 7.4 (f)) K

// wprleaf
ρ [out := rleaf(n)] (X1)

out := rleaf(n)
// 2 · [tree (n)] ? ([out ↪→ −] ·∞) + [¬� top ↪→ n∧ ¬� top + 1 ↪→ n] ·∞︸ ︷︷ ︸

, X1

// � J elementary algebra; 1 ? [�top ↪→ x] = [�top ↪→ x] K
// [�top ↪→ n] · [tree (�top)]︸ ︷︷ ︸

� [tree(n)]?1

?([out ↪→ −] ·∞)

// + [�top + 1 ↪→ n] · [tree (�top)]︸ ︷︷ ︸
� [tree(n)]?1

?([out ↪→ −] ·∞)

// + [¬� top ↪→ n∧ ¬� top + 1 ↪→ n] · [tree (�top)]︸ ︷︷ ︸
� 1

?([out ↪→ −] ·∞)

// � J elementary algebra ([P ∨Q] � [P] + [Q]) K
// [�top ↪→ n∨�top + 1 ↪→ n] · [tree (�top)] ? [out ↪→ −] ·∞
// + [¬� top ↪→ n∧ ¬� top + 1 ↪→ n] · [tree (�top)] ? [out ↪→ −] ·∞
// � J Case distinction on [�top ↪→ n∨�top + 1 ↪→ n] K
// [tree (�top)] ? ([out ↪→ −] ·∞)

Figure F.6: wprleaf
ρ [leaf := rleaf(top)] ([tree (�top)] ? ([leaf ↪→ −] ·∞))
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// [top 6= 0] · Z
// � J elementary algebra K

// sup
u,v∈Z

[top ↪→ u, v]︸ ︷︷ ︸
� [top 6=0]

·
(
[u = 0∧ v = 0] · Z [−�] [out/root] [r/v] [l/u] [root/�top] [+�]︸ ︷︷ ︸

� Z

// + [u 6= 0∨ v 6= 0] ·
(

1/2 · Z [−�] [n/l] [r/v] [l/u] [root/�top] [+�]︸ ︷︷ ︸
� Z

// +1/2 · Z [−�] [n/r] [r/v] [l/u] [root/�top] [+�]︸ ︷︷ ︸
� Z

))
rleaf(root) { // enter scope & set parameters

// sup
u,v∈Z

[root ↪→ u, v] ·
(
[u = 0∧ v = 0] · Z [−�] [out/root] [r/v] [l/u]

// + [u 6= 0∨ v 6= 0] ·
(

1/2 · Z [−�] [n/l] [r/v] [l/u] + 1/2 · Z [−�] [n/r] [r/v] [l/u]
))

l := <root> ;

// sup
v∈Z

[root + 1 ↪→ v] ·
(
[l = 0∧ v = 0] · Z [−�] [out/root] [r/v]

// + [l 6= 0∨ v 6= 0] ·
(

1/2 · Z [−�] [n/l] [r/v] + 1/2 · Z [−�] [n/r] [r/v]
))

r := <root + 1> ; // use alternative lookup rule (D.4.5)
// [l = 0∧ r = 0] · Z [−�] [out/root]

// + [l 6= 0∨ r 6= 0] ·
(

1/2 · Z [−�] [n/l] + 1/2 · Z [−�] [n/r]
)

if ( l = 0 and r = 0 ) {
// Z [−�] [out/root]

out := root

// Z [−�]
} else {

// 1/2 · Z [−�] [n/l] + 1/2 · Z [−�] [n/r]

n :≈ 1/2 · 〈 l 〉+ 1/2 · 〈 r 〉 ;
// Z [−�]
// � J Apply invariant ρ; D.6.1 K

// wprleaf
ρ [out := rleaf(n)] (Z [−�])

out := rleaf(n)
// Z [−�]

}
// Z [−�]
// � J elementary algebra (out /∈ Vars (Z)) K
// Z [−�] [�out/out]

} // set return value & leave scope
// Z

Figure F.7: Proof of invariant case (3)



Appendix G

Notation for Multisets

Let S = { s1, . . . , sn } be a finite set. A multiset M over S is a function

M : S→N,

mapping each element in S to its multiplicity. We denote by ∅ the empty multiset,
i.e., the function λs. 0. Furthermore, we often write

{{ s1, . . . , s1︸ ︷︷ ︸
k1 times

, . . . , sn, . . . , sn︸ ︷︷ ︸
kn times

}}

to denote the multiset

M : S→N, M(si) = ki, i ∈ { 1, . . . , n } .

Finally, we define the following operators for multisets:

• We say that s is an element of multiset M, written s ∈ M, iff M(s) > 0.

• The union M1 dM2 of two multisets M1 and M2 is defined as

M1 dM2 : S→N, (M1 dM2)(s) , M1(s) + M2(s).

• The difference M1 \\ M2 of multisets M1 and M2 is defined as

M1 \\ M2 : S→N, (M1 \\ M2)(s) , max { 0, M1(s)−M2(s) } .
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Appendix H

Selected Proofs Omitted in Part III

H.1 Proof of Theorem 12.6 (NP-hardness)

Our goal is to show that folding problem defined below is NP-hard.

Definition H.1 (Folding Problem) The folding problem for symbolic heaps SH-
Fold amounts to the following question: Given a shrinking SID Ψ and
symbolic heaps ϕ and ψ, does ϕ

∗
=⇒
Ψ

ψ hold?

The proof is inspired by a similar proof for regular DNLC graph grammars by
Aalbersberg, Rozenberg, and Ehrenfeucht [ARE86, Theorem 1]. Before we turn
to the actual hardness proof, some preparation is needed.

First, we fix the sequence of selectors Sel , 〈 a, b 〉 and the set of predicate
symbols PSym , {P }. Furthermore, let ψ , ∃y : ∃z : P(y, z), where P is
determined by the SID Ψ defined below:

Ψ , { P ⇐ x1, x2 −−x1.b 7→ 0, x2.a 7→ 0,
P ⇐ x1, x2 −−x1.b 7→ y, x2.a 7→ z −−P(y, z),
P ⇐ x1, x2 −−x1.b 7→ 0, x2.a 7→ 0 −−P(y, z),
P ⇐ x1, x2 −−x1.b 7→ y, x2.a 7→ 0 −−P(y, z) }.

Intuitively, every unfolding ϑ ∈ UnfΨ(ψ) consists of sets of points-to assertions
which describe singly-linked lists, where every list contains either only selector
a or selector b. We refer to a list containing only a’s as an “a-path”; analogously,
a “b-path” is a list containing only b’s. For any a-path or b-path P, we write |P|
to denote its length, i.e., the number points-to assertions that belong to P.

More precisely, Ψ always specifies one a-labeled and one b-labeled path in
parallel. During unfolding P, Ψ may nondeterministically decide to “terminate”
a path by pointing to 0 and start a new one under the proviso that terminating
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a b-path implies terminating the corresponding a-path we well. An example of
an unfolding ϑ ∈ UnfΨ(ψ) is depicted below:

ϑ = ε −− y1.a 7→ y2, y2.a 7→ y3, y4.a 7→ 0,︸ ︷︷ ︸
a-path of length 3

y5.a 7→ 0,︸ ︷︷ ︸
a-path of length 1

y6.a 7→ 0,︸ ︷︷ ︸
a-path of length 1

z1.b 7→ z2, z2.b 7→ z3, z3.b 7→ z4, z4.b 7→ 0,︸ ︷︷ ︸
b-path of length 4

z5.b 7→ 0︸ ︷︷ ︸
b-path of length 1

By construction of Ψ, we observe that the set of unfoldings UnfΨ(ψ) can be
characterized as follows (cf. [ARE86, Lemma 1]):

Lemma H.2 Let ϑ ∈ SHSL0 be a graphical symbolic heap with Vars (ϑ) =
∅ which is a non-empty union of a-paths and b-paths. Moreover, let Sb =
{ B1, . . . , Bm } be the set of disjoint b-paths in ϑ; analogously, let Sa be the
set of disjoint a-paths in ϑ. Then ϑ ∈ UnfΨ(ψ) iff there exists a partition〈

Sa
1, . . . , Sa

m
〉

of Sa such that

∀i ∈ { 1, . . . , m } : |Bi| = ∑
A∈Sa

i

|A|.

We are now in a position to prove that SH-Fold is NP-hard.

Proof (Proof of Theorem 12.6). We construct a polynomial-time reduction
of the well-known NP-complete 3-Partition problem to the SH-Fold prob-
lem. Formally, the 3-Partition is defined as follows (cf. [GJ75]): An instance
of 3-Partition is a tuple 〈 S, n, k, f 〉, where

• n ≥ 1 is a natural number,

• S is a finite set consisting of 3n elements,

• k is a positive integer, and

• f : S → N is a function mapping each element of S to a natural
number such that, for every s ∈ S, we have k/4 < f (s) < k/2, and
∑s∈S f (s) = k · n.

The 3-Partition problem then asks whether S can be partitioned into sets
S1, . . . , Sn such that, for every 1 ≤ i ≤ n, we have ∑s∈Si

f (s) = k.
Now, let 〈 S, n, k, f 〉 be an instance of the 3-Partition problem. We then

define the graphical symbolic heap ϕ (without free variables) as follows:

• for every 1 ≤ i ≤ n, ϕ contains a b-path of length k, and



H.1. Proof of Theorem 12.6 (NP-hardness) 447

• for every s ∈ S, ϕ contains an a-path of length f (s).

Clearly, ϕ can be computed in polynomial time in the size of 〈 S, n, k, f 〉.
Moreover, both Ψ and ψ can be computed in constant time since neither
depends on 〈 S, n, k, f 〉. Hence, the instance 〈Ψ, ϕ, ψ 〉 of the SH-Fold

problem can be constructed in polynomial time.
We then claim that 〈 S, n, k, f 〉 satisfies the 3-Partition problem if and

only if 〈Ψ, ϕ, ψ 〉 satisfies the SH-Fold problem.
Let us first assume that 〈 S, n, k, f 〉 satisfies the 3-Partition problem.

Then consider the following:

• By definition, this means that S can be partitioned into sets S1, . . . , Sn
such that, for every 1 ≤ i ≤ n, we have ∑s∈Si

f (s) = k.

• Since n ≥ 1, ϕ contains at least one a-path and one b-path.

• Let Sa be the set of disjoint a-paths in ϕ. By construction, there is a
one-to-one correspondence between elements of S and a-paths in Sa.

• We can thus partition Sa into Sa
1, . . . , Sa

n in the same way as we parti-
tioned S into S1, . . . , Sn such that s ∈ Si iff the corresponding a-path is
in Sa

i for all i ∈ { 1, . . . , n }.

• Let Sb = {B1, . . . , Bn} be the set of disjoint b-paths in ϕ. By construc-
tion, there are exactly n such paths—each having length k.

• Consequently, we have:

∀i ∈ { 1, . . . , n } : |Bi| = k = ∑
s∈Si

f (s) = ∑
A∈Sa

i

|A|.

• By Lemma H.2 this means that ϕ ∈ UnfΨ(ψ) and thus also ϕ
∗
=⇒
Ψ

ψ.

• Hence, 〈Ψ, ϕ, ψ 〉 satisfies SH-Fold.

Now, assume 〈Ψ, ϕ, ψ 〉 satisfies SH-Fold and consider the following:

• By definition, ϕ
∗
=⇒
Ψ

ψ. In particular, since ϕ contains no predicate calls

by construction, we have ϕ ∈ UnfΨ(ψ).

• Let Sb = {B1, . . . , Bn} be the set of disjoint b-paths in ϕ. By construc-
tion, there are exactly n such paths—each having length k.
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• By Lemma H.2 the set Sa of a-paths in ϕ can be partitioned into〈
Sa

1, . . . , Sa
n
〉

such that

∀i ∈ { 1, . . . , n } : k = |Bi| = ∑
A∈Sa

i

|A|.

• Since there is a one-to-one correspondence between elements of S and
a-paths in Sa, S can be partitioned in the same way as Sa.

• Then there is a partition 〈 S1, . . . , Sn 〉 of S such that, for every 1 ≤ i ≤
n, we have ∑s∈Si

f (s) = k.

• Hence, 〈 S, n, k, f 〉 satisfies the 3-Partition problem.

Since the 3-Partition problem is (strongly) NP-complete, it follows that
SH-Fold is NP-hard. �

H.2 Proof of Lemma 12.9

Our goal is to show that, for all SIDs Ψ and symbolic heaps ϕ ∈ SHSL, we have

UnfΨ(ϕ) =

{
{ ϕ } , if PC(ϕ) = ∅⋃

ϕ⇐=
Ψ

ψ UnfΨ(ψ), otherwise.

Proof. We distinguish two cases: PC(ϕ) = ∅ and PC(ϕ) 6= ∅.
For the case PC(ϕ) = ∅, consider the following:

UnfΨ(ϕ)

= J Definition 10.21 K{
ϑ

∣∣∣∣ ϕ
∗⇐=
Ψ

ϑ and PC(ϑ) = ∅
}

= J Since PC(ϕ) = ∅, we have ϑ ∼= ϕ K
{ ϕ } .

For the case PC(ϕ) 6= ∅, consider the following:

UnfΨ(ϕ)

= J Definition 10.21 K
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{
ϑ

∣∣∣∣ ϕ
∗⇐=
Ψ

ϑ and PC(ϑ) = ∅
}

= J PC(ϕ) 6= ∅ implies ϕ /∈ UnfΨ(ϕ) K{
ϑ

∣∣∣∣ ∃ψ : ϕ⇐=
Ψ

ψ
∗⇐=
Ψ

ϑ and PC(ϑ) = ∅
}

= J elementary algebra K⋃
ϕ⇐=

Ψ
ψ

{
ϑ

∣∣∣∣ ψ
∗⇐=
Ψ

ϑ and PC(ϑ) = ∅
}

= J Definition 10.21 K⋃
ϕ⇐=

Ψ
ψ

UnfΨ(ψ). �

H.3 Undecidability of the Entailment Problem

Our goal is to show that the question whether

UnfΨ(ϕ) ⊆ UnfΨ(ψ)

holds for an SID Ψ and symbolic heaps ϕ and ψ is undecidable.
In particular, we show that this even holds if Ψ, ϕ, and ψ are graphical.

Moreover, we construct ψ such that it is folded.

Proof (Sketch). We reduce the undecidable inclusion problem for context-
free string grammars (cf. [BPS64; Gre68]) to the above question. To this end,
for i ∈ { 1, 2 }, let Gi = 〈Ni, T, Pi, Si 〉 be a context-free grammar with set of
nonterminals Ni, set of terminals T, set of production rules Pi, and starting
symbol Si. Without loss of generality, assume that N1 ∩ N2. Moreover, we
assume that both grammars do no generate the empty word and that all
production rules are in Greibach normal form, i.e., they are either of the
form X → a or X → aYZ, where a ∈ T and X, Y, Z ∈ Ni for i ∈ { 1, 2 }.

To prove undecidability of the unfolding inclusion problem, we define
an SID Ψ and predicate calls P(x1, x2), Q(x1, x2) such that

UnfΨ(P(x1, x2)) ⊆ UnfΨ(Q(x1, x2)) iff L(G1) ⊆ L(G2),

where L(Gi) denotes the language generated by grammar Gi.
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Let Sel be a total ordering of the set of terminal symbols T. Moreover, we
choose N1 ∪ N2 as the set of predicate symbols; each symbol being assigned
rank two. We then define the SID Ψ as follows:

Ψ , {X ⇐ x1, x2 −−x1.a 7→ x2 | X → a ∈ Pi, i ∈ { 1, 2 } }
∪ {X ⇐ x1, x2 −−x1.a 7→ y −−Y(y, z), Z(z, x2) | X → aYZ ∈ Pi, i ∈ { 1, 2 } }

Moreover, we choose the starting symbols Si for the top-level predicate calls,
i.e., we set P(x1, x2) = S1(x1, x2) and Q(x1, x2) = S2(x1, x2). �
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Symbols

//, see program annotation
_ ; _, see sequential composition
Φ, see recursive equation in

separation logic
�, read as “ordering of

expectations”
〈_, _〉, ( _, _ ), see tuple
〈_〉 _ 〈_〉, see Hoare triple
d_e, see termination completion
J_K, see composition of unfolding

trees
_ := <_>, see lookup
−−→, see execution relation with

actions
→#, see abstract execution relation
_ [ _ ], see array notation
_ := _(_), see procedure call
_(_) { _ }, see procedure declaration
_→_ _, see move of an automaton
<_> := _, see mutation
|~_|, see length of a sequence
−
− , see execution relation of

operational MDP
_ :≈ _, see probabilistic assignment
{ _ } [ _ ] { _ }, see probabilistic

choice
 , see execution relation of

operational semantics

 ∗, see execution relation of
operational semantics

_ ∼= _, see isomorphic symbolic
heaps

_ 6∼= _, see isomorphic symbolic
heaps

_._ 7→ _, see points-to predicate
_ ⇐ _, see rule of SID
_|_, see subtree
_._, see selector access
~_, see sequence
→, see execution relation
_ ↪→ _, see contains pointer

predicate
<_>, see pointer dereference
_ # _, see disjointness of heaps
v, see partial order
], see disjoint union of heaps
⊆, see heap inclusion
[_], see Iverson bracket
d, see union of multisets
\\, see difference of multisets
{{ _ }}, see multiset
_ 7→ _, see points-to predicate
{ _ }, see set
{ _ :: _ }, see single memory cell
4, read as “ordering of predicate

calls and variables”
[_/_], see substitution
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_ 7→ −, see allocated pointer
predicate

0, see oP4L (action)
0, see constant expectation, see null

pointer
_∗, see Kleene star
2−, see powerset

a,b, see actions
A,B,C, see heap automata, see tree

automata
α,β,γ, see limit ordinal, successor

ordinal
Act, see actions, set of
Act (_), see enabled actions, set of
AE, see arithmetic expressions, set

of
_ := alloc(_), see allocation
∧, see predicate conjunction
AP, see atomic propositions, set of
_ := _, see assignment

B, see Boolean expression
body (_), see procedure body
�, see scope
[−�], see scope decrement
[+�], see scope increment
BV(_), see bound variables, set of

C, see SID, class of
C, see program
χ, see execution fragment

D, see domain theory
,, read as “is defined as”
∆, see transition rules of automaton
♦, see context over a ranked

alphabet
Dist (_), see probability

distributions over a set, set
of

dom(_), see domain of function

E, see expectations, set of
E, see arithmetic expression
ec[_](_), see expectation calculus
emp∧ _ = _, see normal form of

symbolic heaps
emp∧ _ 6= _, see normal form of

symbolic heaps
emp, see empty-heap predicate
enter, see enter scope
E≤1, see one-bounded expectations,

set of
EQ, see equalities component
Exec[_](_), see executions, set of
∃, see existential quantifier
ExpRew (_), see expected reward
ExpRew[_] (_, _), see expected

reward of P4L program

F , see final states of automaton, set
of

false, see truth value〈
fault

〉
, see memory fault, state

F,G,H, see procedure names
Fold_(_), see folding set
∀, see universal quantifier
free(_), see deallocation
FV≤_, see SID with bounded free

variables, set of

sG , see goal state
gfp (_), see greatest fixed point

h, see heap
Heaps, see heaps, set of

I, see initial states of operational
semantics, set of

I, see expectations, invariant
if ( _ ) { _ } else { _ }, see

conditional choice
impl (_ := _(_)), see implementation

of procedure call
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inf, read as “infimum”
Z, read as “set of integers”
invoke _, see invoke procedure

JL(_)K, see robustness property
L(_), see language of an automaton
Lab, see state labeling function
Lab#, see abstract state labeling

function
λ_. _, see lambda expressions
leave, see leave scope
lfp (_), see least fixed point
LP_, see liberal characteristic

function of procedure calls
LW, see liberal characteristic

function of loops

M, see multiset notation for
symbolic heaps

M, see Markov decision process
max, read as “maximum”
min, read as “minimum”
Mod (_), see modified variables, set

of
_ |= _, see satisfaction relation
_ 6|= _, see satisfaction relation
MonoTrans, see monotononicity of

P2L programs
µ, see distribution expression

N, read as “set of natural numbers”
N>0, read as “set of positive natural

numbers”
NE, see inequalities component

op[_](_), see operational expectation
calculus

oP3L, see operational semantics of
P3L

oP3L (_), see reachable fragment of
operational semantics

oPL, see operational semantics of
PL

oPL (_), see reachable fragment of
operational semantics

oP2L, see operational semantics of
P2L

oP2L (_), see reachable fragment of
operational semantics

oP4L, see operational semantics of
P4L

oP4L (_), see reachable fragment of
operational semantics

∨, see predicate disjunction
out, see output variable

P_, see characteristic function of
procedures

param (_), see parameters of
procedure

param(_), see parameters of
predicate symbol

Prob−(_), see probability of a path
Paths−(_), see paths, set of
PC, see predicate call component
PC4, see predicate call component,

ordered sequence of
ϕ,ψ,ϑ,η, see separation logic

assertions
PL, see programming language
P2L, see procedural programming

language
P2LA, see procedural programming

language with auxiliaries
P3L, see procedural pointer

programming language
P3LA, see procedural pointer

programming language
with auxiliaries

P4L, see probabilistic procedural
pointer programming
language
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P4LA, see probabilistic procedural
pointer programming
language with auxiliaries

p,q, see state of automaton
p,q, see probability
P,Q,R, see predicate
P,Q,R, see predicate symbols
Pred, see predicates, set of
Prob (_, _, _), see transition

probability function
Procs, see procedure names, set of
Ψ,Γ, see system of inductive

definitions
PSym, see predicate symbols, set of
PT, see points-to component

Q, see states of automaton, set of
Q, read as “set of rational numbers”
Q∩ [0, 1], read as “set of rational

probabilities”
Q∩ (0, 1], read as “set of positive

rational probabilities”
QSL, see quantitative separation

logic
qslJ_K, see embedding of SL into

QSL

R, read as “set of real numbers”
RA, see ranked alphabet
rank_, see rank of a symbol
Reach (_), see reachable fragment
rew, see reward function
R≥0, read as “set of non-negative

real numbers”
ρ, see higher-order invariant
⇒, see predicate, order
R∞
≥0, read as “set of extended

non-negative real
numbers”

S, see states of transition system, set
of

S, see scheduler
s, see stack
S0, see initial states, set of
Sel, see selectors, sequence of
sel, next, see selector
?, see separating conjunction
−−? , see separating implication
(s, h), see stack-heap pairs
SH_, see symbolic heaps, set of
SHPairs, see stack-heap pairs, set of
SHPairs (_), see stack-heap pairs

captured by predicate, set
of

SHSL, see symbolic heaps, set of
s, see state〈
sink

〉
, see sink state

size, see heap size quantity
skip, see effectless program
SL, see separation logic
S#, see abstract states, set of
S#

0, see abstract initial states, set of
Stacks, see stacks, set of
Stacks (_), see stacks captured by

predicate
States, see states of operational

semantics, set of
sup, read as “supremum”

t, see tree over a ranked alphabet
term, see successful termination

indicator
Terminated, see terminating

executions, set of
θ, see higher-order predicate

transformer
TS, see transition system
Trees(_), see trees, set of
Trees_(_), see unfolding trees, set of
true, see truth value
T, see truth values, set of
TS−, see abstract transition system
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Unf_(_), see unfolding of symbolic
heap

uniform (_, _), see uniform
distribution

u, v, w, i, j, k, m, n, `, read as
“number”

Vars, see variables, set of
Vars4(_), see ordered free variables,

sequence of
Vars (_), see free variables, set of
‖_‖, see size of

W, see characteristic function of
loops

while ( _ ) { _ }, see loop
wlp_

_ [_] (_), see higher-order
predicate transformer

wlp [_] (_), see weakest liberal
precondition

wp_
_ [_] (_), see higher-order

predicate transformer
wp [_] (_), see weakest precondition

X,Y,Z, see expectation
x, y, z, foo, see variable





Index

1-Boundedness of wp for P4L
programs, 206

abstract
execution relation, 31
initial states, set of, 31
interpretation, 18, 28
semantics, 344
state labeling function, 31
states, set of, 30
transition relation, 346
transition system, 31

abstraction, 266
for program analysis, 28
function, 30
refinement, 33
soundness, 32

acceptance of an automaton, 297
actions, set of, 149, 154
acyclicity of symbolic heaps, 289,

290, 317
address, 87
adjointness of separating

connectives
for expectations, 181
for predicates, 114

algebraic laws for pure
expectations, 184
predicates, 115

algorithmic framework for
robustness properties, 291

alias-prevention, 173
aliasing, 107, 112, 173
allocated

address, 92
pointer predicate, 110
variables, set of, 306

allocated pointer predicate, 186
allocation, 90
almost-sure termination, 222, 233
Anglican, 140
approximate computing, 141
arithmetic expression, 19

extensional definition, 22
arithmetic expressions, set of, 77
array, 100

notation, 100
randomization, 246

assertion language, 34, 35, 71
extensional approach, 35
of quantitative separation logic,
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for domain-exact predicates,
115

for expectations, 180, 181, 183,
186

for precise expectations, 186
for predicates, 114
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intuitionistic, 187
of a predicate, 169
of a separation logic atom, 169
precise, 185
pure, 183
strictly-exact, 186, 187
transformer, 199, 209

expectations, set of, 167
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rule of constancy, 216

Pyro, 141, 142

qualitative memory safety, 222
quantifying program behavior, 197
quantitative
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