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Abstract 

 

One of the major challenges in current flood management studies is to include human-
flood interaction in their modeling approach in order to investigate how individuals respond 
to flooding and how their involvement results in a more effective flood risk management 
(FRM).  Furthermore, humans are heterogeneous in their socio-economic attributes as 
well as their risk awareness which result in feedbacks between humans and the 
environment. Therefore, individual adaptation responses, knowledge exchange, flood 
memory, and flood risk perception shape a new mode of interaction and temporal changes 
in exposure and vulnerability. All these factors cause nonlinear behaviors in the 
subsystems exposing the whole system to major changes beyond the scope of traditional 
FRMs. Moreover, there are limitations to the availability of information as well as to the 
processing capacities of decision makers in reality resulting in non-optimizing behaviors 
and bounded-rationality.  Therefore, formalizing the individual adaptive behavior on the 
basis of rational behavior and economic optimizing as well as perfect information has its 
limitations. In addition, FRM studies assume static conditions in which humans and their 
surrounding environment are inactive and their vulnerability is constant.  

Under such assumptions, time dependent features such as interactions, adaptations, and 
technology innovation cannot be incorporated in current models and there is lack of 
modeling approaches to include social aspects of human behavior in FRM. To fill these 
knowledge gaps, interdisciplinary approaches, which allow formulating adaptive individual 
decision-making under uncertainty, are in demand.  More specifically, there is a need to 
a technique that allows us to model social processes and complexities of human behaviors 
from the bottom-up approach and in combination with engineering practices. Agent Based 
Modeling is such an approach that relies on a more realistic set of assumptions. 

This study employs Agent Based Modeling within the framework of FRM, particularly for 
the agricultural sector, and presents an experimental platform to simulate farmers’ 
adaptive strategies in coastal regions. An Agent Based Model (ABM) of farmers’ behaviors 
is developed including three parts: farmers’ decision-making module, flood risk analysis 
module as well as risk perception module. It is then linked to the hydrological module and 
hydrodynamic module designed in the study for this purpose. The coupled model, which 
is called the “Agent Based Model for farmer-flood interaction (ABMFaFo)”, introduces the 
interactions among farmers and includes individual risk judgment in their decision-making. 
Additionally, farmers’ decisions are formulated in the model through bounded-rationality 
theory to consider limited information availability as well as limited information processing 
capacities of people. 
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Pellworm Island in north of Germany is chosen as the virtual study area and the 
established ABMFaFo is applied to 37 semi-hypothetical farmers living on the Island. The 
model is run using a series of in silico experiments to investigate farmers’ decision-making 
in flood-prone areas in response to coastal flooding. More specifically, the effect of flood 
frequency, risk perception, social interaction, past experience, and flood memory are 
examined and discussed. In addition, the interdependencies between vulnerability of the 
agricultural sector at farm-level and regional-level are explored using several macro-
metrics. Every experiment is run for the time horizon 2005-2016, including one year of 
warm up period for the model. 
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Chapter 1 Introduction 

1. Problem statement 

One of the main challenges in current flood risk management (FRM) studies is to include 
individual adaptive strategies in their modeling approach to investigate how individuals 
respond to flooding and how their engagement contributes in FRM. People living in the 
flood prone-areas are exposed to flooding and suffer from that in different ways. Floods 
not only destroy properties and belongings of people but also cause loss of life and 
psychological problems. Even in some less severe floods, inhabitants such as farmers 
lose their expected incomes due to damage to soils and cultivated crops (FAO, 2015) 
which may continue for a number of years. These effects lead to selling farms, migrating 
from the area, and increasing the unemployment (FAO, 2015).  

To reduce the adverse impacts of flooding, it is important to involve the public in FRM (EU, 
2007). Public engagements in FRM include strategies such as households’ self-protection 
measures, self-insurance, and private agricultural adaptation employed by farmers. 
Studies show that people are more motivated to respond to flooding if they are aware of 
the dangers and perceive them (Becker et al., 2015). As a result, individuals employ 
strategies to cope with flooding and reduce their vulnerability, which results in 
communication, human interaction, and adaptation (Becker et al., 2015). In this regard, 
flood memory can increase the resilience of the society for an effective flood risk 
management (Bhattacharya-Mis and Lamond, 2014).  
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Individual adaptive strategies are constrained by their economic situation, demographic 
characteristics, and socio-psychological factors that may decrease or reinforce their 
adaptive capacities (Dang et al., 2012; Unsworth et al., 2013). Furthermore, social 
interaction plays an important role in the degree of individual involvement in FRM 
(Giordano et al., 2017). These all lead to change in vulnerability of people over time as 
well as to heterogeneity in individual decision-making under risk. Moreover, there are 
limitations to the availability of information as well as to the processing capacities of 
decision makers in reality, which result in non-optimizing behaviors and bounded-
rationality (Simon, 1990). 

These aspects related to human-flood interaction are, however, poorly understood in flood 
risk management studies (Nabinejad and Schüttrumpf, 2016). Although, these studies 
have provided decision makers with valuable insights, they fail to address the mentioned 
aspects, which result in possible misapprehension of individual adaptation policies in 
FRM. Therefore, interdisciplinary approaches are in demand that allow the 
implementation of public engagement in FRM, contribute to formulation of adaptive 
individual decision-making under uncertainty, and conceptualize the link between agents’ 
heterogeneity, their social interaction, and adaptation responses. 

Agent Based Modeling is one of such approaches that relies on a more realistic set of 
assumptions. Agent Based Modeling is a style of modeling which allows representing high 
levels of complexity as well as communication among individuals and provides new 
insights into policy analysis and practical applications. It simulates the actions of the 
individuals based on some defined decision-making rules as well as current spatial and 
temporal situation.  

2. Objectives and research questions 

The primary objective of this study is to develop an experimental platform to couple 
farmers’ decision-making and FRM for a population of semi-hypothetical farmers in order 
to (i) include farmers-flood interaction in FRM through private adaptive responses, (ii) 
understand the influence of farmers’ interactions through social networks in their adaptive 
responses, (iii) investigate the relationship between flood risk perception and farmers’ 
adaptive behaviors, (iv) explore the role of flood memory, and (v) model farmers’ adaptive 
decision-making under bounded-rationality. To achieve its objective, the thesis answers 
the following questions: 

1- What are the strengths and weaknesses of previous approaches in FRM studies 
regarding human-flood interaction and individual adaptive behavior? What is the 
suitable approach for this study? 

2- How do individual risk perceptions play role in the adaptive behavior? 
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3- How do farmers adjust their behaviors under the influence of social interactions 
over time?  

4- How do the adaptive behaviors result in changing in flood risk? 
5- How do individuals’ flood memories contribute to their resilience and effective flood 

risk management?  
6- How do individuals make decisions under limited information availability and limited 

information-processing capacities? 

3. Methodology of the research 

To achieve the research goals, this study employs Agent Based Modeling within the 
framework of FRM, particularly for the agricultural sector, and presents an experimental 
platform to simulate farmers’ adaptive behavior patterns in coastal regions. An Agent 
Based Model (ABM) of farmers’ decision-making is developed and linked to the 
hydrological module as well as hydrodynamic module designed for this purpose, to 
examine the change in flood risk and the dynamic of farmers’ behavior under the influence 
of individual risk perception, social interaction, flood memory, and limited access to 
information. The model, which is called the “Agent Based Model for farmer-flood 
interaction (ABMFaFo)”, introduces the interactions among farmers about new coping 
strategies and market opportunities and includes individual perception and assessment of 
flood risk in their decision-making. Additionally, farmers’ decisions are formulated in the 
ABMFaFo through bounded-rationality theory to consider limited information availability 
as well as limited information processing capacities of people in their decision-making 
under uncertainty. 

The ABMFaFo includes the perspectives from engineering and socio-economics with the 
aim of examining the decision-making processes of individuals (farmers) in coasts. In this 
model, the main agents are farmers whose yearly decisions depend on climatic conditions, 
crop yields, costs and prices, flood damage, personal risk perception, and flood memory 
as well as their social interactions. The ABMFaFo consists of five main modules including 
two external and three internal parts.  

Figure 1-1 depicts integration of the five modules and their elements for yearly simulation. 
The hydrological module is used to simulate the annual crop yields at the field-level as the 
result of farmers’ yearly decision-making, which is fed into other modules. This module is 
based on the Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998). In order to 
compute water levels and velocities as well as inundation areas under different flooding 
scenarios, the hydrodynamic module is designed based on Protection Measures against 
Inundation Decision Support (ProMaIDes) (Bachmann, 2012). The ABM platform is then 
established to model annual farmers’ decision-making. For this purpose, farmers’ 
decision-making module, risk perception module, and flood risk analysis module are 
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developed and embedded in the ABM platform which are then linked to the two developed 
external modules. The module of farmers' decision-making is based on socio-economic 
approaches and mathematical programming principles, which is equipped with individual 
risk judgment and adaptive responses in risk perception module. In connection with other 
modules, the flood risk analysis module computes agricultural flood damage and 
associated risks under the given seawater salinity and temperature by means of the 
modeling framework that is developed in the study with the aim of building flood damage 
function of agricultural crops in coasts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2 provides the flow diagram of the developed ABMFaFo in which farmers choose 
yearly crop pattern over the time horizon of 11 years under the influence of crop prices, 
individual experiences and expectations, and observing others’ decision as well as risks 
associated with flood. As seen, climatic condition of the area such as precipitation and 
temperature, soil conditions, topology, and the spatial distribution of farmers’ fields are fed 
into the hydrological module to calculate the annual crop yield of each individual farmer. 

Figure 1-1. Submodels of the ABMFaFo for land use planning in flood management 
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In the next step, the water levels and spatial distribution of inundated lands on the farmers’ 
fields are investigated. For this aim, the hydrodynamic analysis is performed for various 
probable flood scenarios. To explore how flood damage influences farmers’ decision-
making at the micro-level, the generated inundation maps as well as computed crop yields 
are fed into the flood risk analysis module. As a result, the flood damage and associated 
risk experienced by each individual farmer are computed, which are then used in risk 
perception module to define different flood zones for varying levels of danger. 
Consequently, a danger degree is assigned to each defined zone.  

In the last step, farmers observe their crop production and will be aware of their crop yield. 
In addition, they are informed about the actual and potential flood damage in the current 
year. Accordingly, at the end of the year, they choose crops for the next year based on 
their profit. Hence, farmers assess their farm income for the resulted crop yield which are 
used to evaluate the level of farmers’ satisfaction by comparing the actual and potential 
profit as well as their uncertainty in terms of the ratio of the actual to the expected profit 
for the current year. Depending on farmers’ satisfaction and uncertainty level, each farmer 
follows a certain cognitive and behavioral strategy to adapt her/his decision for the next 
year. Farmers, who have high level of satisfaction, will engage in the imitation strategy or 
repeat their previous behavior. In contrast, those, who are dissatisfied with the outcomes 
of their decision in the last year, try to obtain more satisfied outcomes by deliberating or 
engaging in social comparison. Flood memories of dissatisfied farmers play role in their 
objective functions.  

Afterwards, the land use policies adopted by farmers will be fed back into the hydrological 
module to compute crop yields for the next year under the related climatic and topological 
condition of the area. This process will be continued year by year over the time horizon.  

The ABMFaFo is applied to a semi-hypothetical example case of farmers in the Pellworm 
Island in north of Germany. Farm agents are heterogeneous in terms of their field areas, 
crop yields, risk perception, adaptation options, uncertainty, satisfaction, and behavioral 
rules. It should be noted that the model takes advantage of real data in establishing the 
hydrological module, hydrodynamic module, and flood risk analysis module. However, 
due to lack of empirical (behavioral) data, we make assumptions about the require 
parameters of decision-making module as well as risk perception module. Therefore, 
Pellworm Island is used as a virtual Island during the study. Detailed information about 
the activity diagram of the ABMFaFo and its components is provided in chapter 6.  
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Figure 1-2. Flow diagram of the ABMFaFo in each year, the modules, their input data, and their interlinkage 
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4. Study area 

The Pellworm Island is a municipality in the state of the Schleswig-Holstein state and 
bordering on the municipalities of Nordstrand, Hallig islands, and Eiderstedt, as shown in 
Figure 1-3. The total population of the area is 1158 people living on the area of about 37 
𝑘𝑚ଶ. The distance between the northern and southern part is approximately 7 km. Its 
mean height is about 0.23m above sea level, and 28 km of sea dikes up to a height of 
8.80m NHN protect the island. During two devastating floods in 1362 and 1634, in which 
thousands of people died, Pellworm Island was separated from Alt-Nordstrand. In the 
beginning of the 19th century, outer dike was constructed to secure the Island against 
further floods and storm surges. Pellworm is located in mudflats covered with rich soil 
appropriate for growing agricultural crops. The main economic sectors are agriculture and 
tourism and most of the Island’s area is covered by agricultural lands. 

 

Figure 1-3. Pellworm Island in Northern Germany (Google map) 

5. Contributions of the thesis 

This dissertation contributes to the area of human-flood interaction and introduces a novel 
thinking to the flood management, living with water, and the public engagement in FRM. 
The major contribution of the study is to take Agent Based Modeling as a new approach 
to overcome the shortcomings of traditional methods in FRM in addressing individual 
adaptive responses in flood-prone areas. It also contributes to equip the individual 
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decision-making under uncertainty of flood events with a variety of cognitive behaviors 
rather than pure maximization. Another contribution includes the integration of human 
interaction through social networks. The study also contributes to the modeling of 
individual risk perception and its role in adaptive behaviors. In addition, the study takes 
into account individual flood memory and its impact on community resilience. The thesis 
also establishes a modeling framework to formulate agricultural crop failure due to the 
saltwater intrusion from the sea in the hinterland under any level of seawater salinity and 
temperature. Another topic to which the study makes a major contribution is to predict 
annual crop yields on the field-scale to assist individual decision-making and micro 
economic analysis. Finally, it provides a complete representation of the whole system 
through coupling five main modules including hydrological analysis, hydrodynamic 
analysis, flood risk analysis, individual decision-making, and risk perception module in the 
ABM platform. Such an integrated approach provides a feedback mechanism between 
farmers and surrounded environments in flood-prone areas which is useful for normative 
research on FRM on the human-flood interaction. 

6. Thesis outline 

Figure 1-4 shows an overview of the thesis outline including eight chapters. Chapter 1 
presents the problem statement and research objectives, a brief overview of the 
suggested methodology, and thesis outline. Chapter 2 provides background information 
of human-flood interaction and investigates the challenges which form the foundation for 
the proposed method in the next chapters. It also introduces Agent Based Modeling and 
explains its advantages and disadvantages in more details. It is then followed by chapter 
3, which is the first of four chapters outlining the method used in this study. It describes 
how to predict the yearly crop yields on the field-scale as a function of climatic condition 
and geographic characteristics of the area and thus a calibrated-validated hydrological 
module is developed for this aim. Chapter 4 is the second method chapter which describes 
the hydrodynamic module to identify the inundated areas and spatial distribution of hazard 
parameters for the probable flood scenarios. Then in chapter 5, a function-based 
framework for developing flood damage curve of agricultural crops in coasts is presented 
and further applied to perform damage assessment in the flood risk analysis module. In 
chapter 6, the last of the method chapters, a spatial Agent Based Model of farmers’ 
decision-making is established into which the risk perception as well as flood risk analysis 
module are fully integrated. The resulted ABM platform is linked to the hydrological module 
and hydrodynamic module developed in chapter 3 and 4. Chapter 7 presents and 
discusses the simulation results obtained for various scenarios at both micro-and macro-
level. The overall conclusion is provided in chapter 8, which also discusses the ideas and 
the research gaps that should be addressed in the future researches. 
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Chapter 2 Background and state of the art 

1. Introduction 

Lessons learned from the major flood disasters in the past decades showed the limited 
protection of infrastructural measures and thus the need to reduce flood risk using 
adaptation strategies. Public adaptation policies have a long history in flood risk 
management (FRM) practices through structural measures. However, private adaptive 
strategies originating from the paradigm shift in FRM in the recent decades, impose new 
conditions to the system related to the human behavior, risk perception, and social 
interaction. Since the current FRM studies are based on pure economic models, they are 
not able to address those aspects of social behavior patterns. Therefore, current FRM 
models face challenges in including human-flood interaction and the resulted feedbacks 
in the system. A more realistic method, which formulates a system from the perspectives 
of individuals and allows representing human behaviors, is Agent Based Modeling.  

This chapter gives background information on adaptive strategies in FRM in section 2. 
This section firstly sheds light on adaptation to flooding, types of adaptation strategies, 
and the influential factors on adaptation. It is then continued with a brief history of human-
flood interactions and how flood studies deal with such interactions and their 
shortcomings. Section 3 presents information on Agent Based Modeling as a proper 
method to address the challenges regarding the inclusion of human behavior and micro-
level decision-making. It also describes basic terminology used in the Agent Based 
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modeling and the advantages and disadvantages of the method. Then the application 
areas of Agent Based Modeling in various disciplines and more specifically in FRM are 
presented. Section 4 reviews the most common decision-making models under 
uncertainty and their limitations. Then, an alternative decision-making model is 
introduced, which is able to capture the main behavioral aspects and used in this study.  

2. Adaptive strategies in FRM 

In recent years, natural hazards have caused tremendous damage all over the world. 
Among them, floods constitute a large share of the most devastating natural events, which 
are becoming more severe due to climate change and human interferences (IPCC, 2007). 
Recently, significant floods have affected several parts of the world such as East Africa, 
China, Iran, Greece, Germany, South Asia, and America (WMO, 2017). In 2018, Europe 
experienced heavy rainfalls, storm surges, and flash floods with adverse effects on human 
life and socio-economic activities (FloodList, 2018).  

In comparison to a slow-onset event such as drought, which lasts from weeks to even 
years and whose effects are accumulated slowly over time, in a flood water rises quickly, 
moves forward, destroys the elements in its way, and causes instant loss of life, economic 
damage to properties, and socio-psychological problems during or shortly after the 
disaster. Therefore, it is essential to identify the effects of flooding, to assess the damage 
and, to manage the flood risk before, during, and after flooding. 

2.1 Flooding effects  

Flooding affects the environment in different ways. On the one hand, it has negative 
impacts on the economy, industry, agricultural sector, and human population. On the other 
hand, flooding leads to positive long-term impacts such as spreading the nutrients and 
enriching floodplains soil especially in coastal areas. Coasts with easy access to trade 
and transports have been attractive settling grounds for humans as they provide fertile 
soil for agriculture. However, agricultural lands are also threatened by storm surges that 
transport saline seawater into the hinterland. Consequently, the salt-inundated farms may 
not produce crops for a period of more than one year. Therefore, agriculture is particularly 
vulnerable to coastal floods as it is highly exposed to salinity intrusion associated with 
global warming. 

Storm surges can affect the agricultural sector negatively at different levels. They cause 
damage to agricultural crops and the amount depends on hazard parameters, crop 
characteristics, and fertility of the soil. At farm-level, farmers suffer from the negative 
impacts of coastal flooding on crops in various growing stages and lose their income that 
may change their decision-making in the following years. The desire to sell the farms and 
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to migrate grows as well, which causes an increase in unemployment in the area. This will 
be followed by economic shocks to prices, supply, and demand, thus negatively affecting 
peoples’ welfare (Allahyari et al., 2016). As a result, the regional agricultural sector and 
related organizations tackle economic problems, which have originated from the individual 
level, spread around, and then affected the agents at the macro-level. These facts address 
the interconnection between the vulnerability of agricultural agents at different levels, as 
illustrated in Figure 2-1. 

 

 

 

 

 

 

  

 

 

  

 

 

 

 

 

2.2 Adaptation to flooding 

Flood adaptation is crucial to decrease the negative impacts of flooding. In general, 
adaptation refers to the process of change to make the environment more suitable for 
surviving. Flood adaptation is a set of activities to adjust the existing system to the actual 
or expected floods. It includes strategies to reduce the hazard, mitigate vulnerabilities and 
exposures, improve adaptive capacities, and increase the resilience of population. 
Adaptation is a multidimensional concept in which the time when the action is taken 
(before or after flood), the actors by whom the strategy is implemented (public or private), 
and the level of individual risk awareness (low or high) play role (IPCC, 2002).  

Figure 2-1. Various levels in agricultural sector, their interconnection, and the effects of coastal flooding 
on them 
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Figure 2-2 shows different types of adaptation strategies based on the above factors. As 
can be seen, adaptation strategies can be taken by public or private. While governments 
implement public adaptation measures aiming to reduce the flood risk of the whole 
system, individuals such as households, farmers, and private sectors make private 
adaptation to decrease their individual vulnerability, which is a part of individual decision-
making under risk. However, to mitigate the adverse consequences of flooding on 
agricultural sector and its components, flood adaptation in both regional- and farm-level 
is needed. Farmers as the most vulnerable group in farming community need to be 
informed about the flood risk and perceive that which may motivate them to pursue private 
adaptive responses. Therefore, they interact with floods and their decisions before, after, 
and during floods can change the flood risks. Such human-flood interactions contribute to 
FRM at the individual level. It is of high importance since private adaptive behaviors, which 
are taken at the farm-level, play key role in the vulnerability and exposure reduction of the 
individual farmer over time as well as successful promotion of governmental adaptation 
policies.  

 

 

 

 

 

 

 

 

 

 

 

 
Agricultural adaptation polices include strategies such as change in crop patterns 
(cultivating flood-tolerant crops), land management practices (planting dates), and 
livelihood strategies (selling farms or migration) as well as financial supports from 
government and insurance (Allahyari et al., 2016). These policies are influenced by social 
interaction, economic situation, demographics characteristics, and socio-psychological 
factors that may decrease or reinforce farmers’ adaptive capacities (Dang et al., 2012). In 
addition, how farmers perceive the flood risk, update their expectation, and translate the 
perceived risk into decisions are of high importance in developing and implementing 
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individual adaptation policies in FRM. In that case, governments can stimulate people to 
take individual adaptations through public adaptation policies such as financial support 
options, increase in the risk awareness of the public, and provision of information about 
coping strategies (Grothmann and Reusswig, 2006).  

In addition to the influence of private adaptations on the individual level, they play vital 
role in the successful promotion of governmental adaptation measures in FRM due to the 
linkage between vulnerability of the agricultural sector at macro- and micro-level. 
Therefore, individual adaptive responses need to be well understood and included in FRM 
practices. 

2.3 Influential factors on flood adaptive behavior 

Economists often focus on economic features as the most influential factors in adaptation 
(Grothmann and Reusswig, 2006). However, socio-psychological studies provide insights 
into other determinants such as risk perception, coping appraisal, past experience, 
demographic characteristics, and social interaction in addition to the economic variables 
(Dang et al., 2012). These influential factors are unevenly distributed across the 
population causing dissimilarities in their decision-making and policies.    

According to the Protection Motivation Theory (PMT) (Rogers, 1975; Maddux and Rogers, 
1983), one of the major theories in socio-psychological research, protective response 
against a threat is the output of three sequential processes: information observation, threat 
appraisal, and coping appraisal. Figure 2-3 shows the influential factors for the three 
mentioned processes.  
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Various factors influence risk perception since there is a difference between objective 
flood risk, as the product of probability of flood occurrence and associated damage, and 
subjective flood risk, as the individual risk judgment (Tversky and Kahneman, 1973). While 
the former relies exclusively on the expert risk assessment, the latter is influenced by 
individual feelings, previous flood experience, memory, and personality as well as expert 
risk assessment and public adaptation polices. In addition, how well experts and 
governments communicate with people and inform them about flood risk can affect the 
probability judgment of individuals.  

In literature, both socio-economic and psychological factors have been emphasized for 
adaptive responses (Hassan and Nhemachena, 2008; Bryan et al., 2009). Personality, 
belief, level of concern, and fear affect both flood risk perception and coping appraisal 
(Bryan et al., 2009). Demographic and economic criteria such as age, gender, education, 
and income are other underlying factors (Dang et al., 2012). In addition, flood memory 
plays role in fostering resilience and taking affective responses to floods (Garde-Hansen 
et al., 2017) and a number of studies have suggested a link between memories and 
decision-making under risk (Hertwig and Pleskac, 2010; McEwen et al., 2012).  

Social interaction plays an important role in reshaping risk perceptions and adaptation 
strategies over time. Kasperson et al. have found that social interaction amplifies 
individual risk perception, which likely results in behavioral changes (Kasperson et al., 
1988). Farmers exchange the information not only with their friends and relatives but also 
with other farmers located nearby or those with similar farms, crops, or income. In addition, 
farmers are informed about new strategies to cope with climate change and flood through 
social networks, media, and advertisement. In individual decision-making process under 
uncertainty such as flood events, people seek reliable information about the probable 
flood risks and ways to protect themselves and their properties. Therefore, they 
communicate with others, gain new information, and learn about risks and private 
adaptation policies. These factors may lead to dissemination of adaptive policies and new 
strategies. As a result, individual adaptive capacity and behavioral strategies are subject 
to change.  

2.4 Flood risk assessment studies 

Traditionally, FRM practices in Europe have focused on hazard control through flood 
protection measures such as dams and dikes (Sayers et al., 2013). The primary aim at 
designing such physical constructions has been to fully protect the hinterland against 
flooding. On the other hand, structural measures have been costly and they need to be 
financed and implemented by the government. Such public adaptation strategies and the 
related regulations can be considered as the first traces of human interaction with flood 
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where humans influence the system from the outside through measures and policies 
adoption. Such interplay can only be included in flood risk analysis if human agents are 
considered as the boundary conditions of the system and thus their decisions are imposed 
as the external forces. 

For a long time, it was assumed that structural measures provide complete protection 
against flooding.  Lessons learned from the major flood disasters in the past decades 
showed the limitations of infrastructure protection. Therefore, the strategy was changed 
over time from employing the traditional, technical engineering approach to managing the 
flood risk and “living with water” (Begum and Gelder, 2005). This new way of thinking, 
which accepts the limited protection of structural measures, focuses on warning the 
society about probable dangers and the associated socio-economic consequences.  

Meanwhile, integrated flood risk management (IFRM) has been developed as a strategy 
(WMO, 2009) seeking to reduce the damage as well as the probability of flooding through 
adaptation policies. Accordingly, IFRM comprises both structural responses such as 
dikes, reservoirs, and levees (WMO, 2017) and non-structural ones such as legalization, 
land use policies, public engagement, and early warning. 

Recently, IFRM became the basis for the EU Floods Directive through which the shift in 
the EU strategy regarding “living with water” was officially introduced. In 2007, the EU 
Floods Directive defined obligations for all European Member States to approach IFRM 
by coordinated actions at river basin level as well as at coasts in order to reduce the risks 
of floods for people, properties, and the environment (EU, 2007). The Directive particularly 
requires all Member States to carry out preliminary flood risk assessment and identify at-
risk areas, to develop flood risk maps for those areas, and to draw up FRM plans including 
flood prevention, protection, and preparedness. Furthermore, the Directive places great 
emphasis on public participation (Charalambous et al., 2018) involving farming 
communities and residents who contribute to FRM through accepting the most cost-
effective measures as well as displaying individual adaptive behavior. More importantly, it 
is pointed out that the Member States should inform the public about the risk and coping 
strategies to actively involve them in FRM. 

To be in line with EU Flood Directive and follow the new shift toward “living with water”, 
FRM studies started paying attention to humans as components that are exposed and 
vulnerable to flooding. As a result, much progress was made to include exposure analysis 
in FRM to identify the at-risk elements and to estimate the negative impacts of flooding 
(Oumeraci et al., 2012). One of the popular approaches in this domain is the Source-
Pathway-Receptor-Consequences (SPRC) model, which has originated from 
environmental engineering (Sayers et al., 2002). The SPRC model relies on the 
identification of hydro-meteorological events (sources), the connection between the 
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source of hazard and properties (pathways), and the elements at-risk (receptors), which 
are then followed by assessing the negative consequences on receptors such as 
economic, social, or environmental damage. 

In this regard, FRM studies employ economic models to quantify the flood risk, which is 
the most commonly used measure to inform policy makers about their decisions and the 
cost effectiveness of flood reduction strategies. Based on the economic models, flood risk 
is expressed as the expected annual damage (EAD), which is best understood as the 
average of flood damage over years. Due to the uncertain nature of floods, EAD is 
calculated as the product of the probability of flood occurrence and the resulting damage 
after the failure of flood defenses (Ran and Nedovic-Budic, 2016). Consequently, flood 
risk is the function of flood hazard and the exposure of assets as well as their susceptibility.  

Flood risk can be evaluated from two different perspectives: individual perspective and 
societal perspective. While the former quantifies flood risk at the micro-level, the latter is 
based on the macro-economic approaches in which the overall loss in the system is 
computed. Flood studies have been looking mostly at the aggregated flood risk as the 
sum of the associated risk of all subsystems. In such studies, individuals are assumed to 
be rational behaving as economic optimizers. These theoretical assumptions are valid as 
long as the changes in physical attributes or status of the components are small. Under 
these circumstances, the general behavior of the system remains linear and the 
superposition principle (Brillouin, 1946) contributes to the linear combination of individual 
risks. Such micro-economic assumptions on individual decision-making allows 
aggregating the risk from individual to societal level and using the overall risk as the metric 
of the society vulnerability. 

However, humans are heterogeneous in their socio-economic attributes as well as their 
risk awareness (see section 2.2 and 2.3), which results in interactions and feedbacks 
between humans and the environment. Therefore, individual adaptation responses, 
knowledge exchange, flood memory, and flood risk perception shape a new mode of 
interaction and temporal changes in exposure and vulnerability. All these factors cause 
nonlinear behaviors in the subsystems and expose the system to major changes beyond 
the scope of the superposition principle. Moreover, there are limitations to the availability 
of information as well as to the processing capacities of decision makers in reality resulting 
in non-optimizing behaviors and bounded-rationality.   

Therefore, formalizing the individual adaptive behavior on the basis of rational behavior 
and economic optimizing as well as perfect information has its limitations. In addition, FRM 
studies assume static conditions in which humans and their surrounding environment are 
inactive and their vulnerability is constant. Under such assumptions, time dependent 
features such as interactions, adaptations, and technology innovation cannot be 
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incorporated in the current models and there is lack of modeling approaches to include 
social aspects of human behavior in FRM. 

Overall, there is a need to change the perspective in flood risk assessment and 
management from macro- to micro-level and apply an alternative approach that can 
address such aspects. 

To fill this knowledge gap, interdisciplinary approaches, which allow formulating adaptive 
individual decision-making under uncertainty, are in demand.  More specifically, there is 
a need to a technique that allows us to model social processes and complexities of human 
behaviors from the bottom-up approach and in combination with engineering practices.  

3. Human behavior and social processes 

Although the first examples of simulating the social processes date back to the 1960s 
(Gilbert and Troitzsch, 2005), social simulation became widespread in the 1990s after the 
availability of powerful computers. Social simulation introduces a new way of thinking 
about social activities. Moreover, it provides the opportunity to understand complex 
patterns of behavior which may emerge from relatively simple activities (Simon, 1990).   

In general, simulation is classified as one type of modeling which simplifies the real world 
through fewer details and less complexity in order to understand the system in question. 
Attributes and parameters of the system components constitute the inputs for social 
simulation. The output consists of their responses over time under predefined conditions. 
One of the main differences of social simulation from other types of modeling is its ability 
to include human behaviors in the model and formulize them through decision rules. 

According to Gilbert and Troitzsch, social simulation can be used for different purposes 
(Gilbert and Troitzsch, 2005). One classic use is to forecast the changes over time or to 
explore the future states of the system. A second use of the simulation is to gain insights 
into such features of the social system for which responses are observable but the 
underlying behavior of people are not easily recognizable. Another use is for experimental 
purposes, where a model is developed for a hypothetical society to investigate the desired 
social aspects. The main reason that has made the use of computer simulation grow 
increasingly for modeling the social process is, however, its ability to formulize and hence 
help to better understand human behaviors. 

Although mathematics and equation-based modeling are the most traditional ways of 
formulizing the governing rules, they are not sufficient to represent the social processes 
and their complexities, particularly when people are heterogeneous in their attributes and 
decisions (Matthews et al., 2007). 
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3.1 Social simulation techniques 

In order to embed human behaviors in the simulating environment, several social 
techniques are available, each with its own application areas. System Dynamics, Cellular 
Automata, Learning models, Micro-simulation, and Agent Based Modeling are the 
examples of potential social techniques. System Dynamics represents the whole target 
system at the macro-level using differential equations. Cellular Automata models a world 
in which space is represented as a uniform grid, the laws are represented by a uniform 
set of rules, and the interactions are local and only with close neighbors. Learning models 
such as Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are able to 
incorporate learning and are particularly useful for finding optimal solutions. Another 
approach is Micro-simulation based on a large random samples of population using a set 
of transition probabilities. However, the interaction between entities is not modeled.   

Social science simulation techniques differ in the level of interaction (individual, society, 
or both), communication among individuals, degree of complexity, and the number of 
modeled agents (Gilbert and Troitzsch, 2005). Table 2-1 illustrates the comparison of 
social simulation techniques with respect to the above-mentioned characteristics (Gilbert 
and Troitzsch, 2005). In this table, the number of level shows whether the technique can 
model individual (number of level = 1), society (number of level = 1), both individual and 
society (number of level = 2), or even their interactions (number of level = 2+). As can be 
seen, most techniques are able to handle much larger number of agents than one would 
expect to find in social simulation. An exception is the System Dynamics method, which 
models the whole system as the one and only agent. However, Agent Based Modeling 
and Cellular Automata are the only techniques capable of modeling the communication 
among agents. 

Table 2-1. Social simulation techniques and their characteristic (Gilbert and Troitzsch, 2005) 

 

As discussed in the previous sections, the focus of our study is to investigate human-flood 
interaction and to incorporate social behaviors in FRM. In such a system, a large number 
of agents (humans as well as institutions) interact with each other resulting in a high level 

Technique Number of level Communication Complexity Number of agents 

System Dynamics 1 No Low 1 

Micro-simulation 2 No High Many 

Learning models 2+ Maybe High Many 

Agent Based Modeling 2+ Yes High Few 

Cellular Automata 2 Yes Low Many 

Multi-level simulation 2+ Maybe Low Many 
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of complexity. Therefore, among the techniques presented in Table 2-1, Agent Based 
Modeling is one of the most appropriate methods due to its ability to model the 
characteristics of the desired system. Furthermore, it provides FRM with new insights into 
policy analysis as well as defined engineering problems.  

3.2 Agent Based Modeling  

Agent Based Modeling1 is a new technique of microscopic modeling for understanding 
how the dynamics of complex systems arise from the characteristics and behaviors of 
autonomous and interacting agents within an environment. In comparison to top-down 
mathematical modeling assuming homogenous agents and aggregating them into a single 
system, Agent Based Modeling preserves the heterogeneity among agents. Accordingly, 
it provides an innovative bottom-up approach, where behaviors and interactions are 
captured at the level of agents, which may generate complex macro-behaviors (Mollona, 
2008). Overall, Agent Based Modeling is a computational method that allows us to build 
models of the real world, analyze them, do experiments, and explore the emergent 
phenomena (Gilbert, 2007). 

3.2.1 Basic terminology in Agent Based Modeling 

Modeling in general and Agent Based Modeling in particular use specialized terminology, 
some of which is presented below. The purpose is to familiarize the readers with basic 
definitions and provide an overview on the subject. 

Top-down and bottom-up approaches 

Top-down and bottom-up approaches are two styles of modeling differing in the direction 
of information flow and ordering of knowledge. In comparison with the top-down approach, 
the bottom-up approach looks into the individuals constituting the whole system and 
models their relationships as well as their decisions.  

Computational methods 

Computational methods are models used to represent the existing processes in the world, 
formulate them as computer programs, and study the system’s behavior under different 
conditions. 

 
1 Agent Based Modeling is the term that is used throughout this thesis. However, there are some other 
words that may be used in literature such as Agent Based Simulation, Multi Agent Simulation, and Agent 
Based Social Simulation.  
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Experiments 

Experiments are scientific procedures established to examine a hypothesis, a 
phenomenon, or the effect of new conditions. Depending on the aim of the research, 
experiments are carried out on the real system or on models to simulate and predict the 
behavior of the components. 

Environment 

The environment is literally speaking any surrounding physical, chemical, social, or natural 
forces.  In Agent Based Modeling, it refers to the world within which the agents live and 
act. The environment can represent the real world as a geographical space and the model 
developed within such an environment is called “spatially explicit”. In these models, agents 
are located in the environment and their interactions or decisions are influenced by the 
characteristics of their location. For instance, agents’ relationships with their neighbors 
are highly parameterized through their locations (Gilbert, 2007). Computing farmers’ crop 
yields or assessing their flood damage, which are related to their proximity to the 
seawater, are other examples of such environments. However, an environment can also 
be virtual and represents the physical features of a city or a group of agents (Gilbert, 
2007). Social spaces, which result from social interaction, are examples of conceptual 
space. From a modeling perspective, an environment can be represented by GIS data, a 
grid of cells, or be composed of attributes in the model. 

Agents 

In the real world, an agent is any actor or policy maker whose states consist of mental 
elements such as beliefs, capabilities, and memories. Individuals, collective entities, a 
group of people, firms, or organizations are examples of agents. In the model, we capture 
agents in the computer code as computational objects that interact within their 
environment. Depending on the modeling purpose and the computer processing power, 
the model can include any number of agents.  

One characteristic of the agents is that they are autonomous decision makers that assess 
their individual situation on one hand and observe the situation of their peers in the 
network on the other hand. Subsequently, they make decisions based on predefined 
behaviors. Their behavior patterns can be based on rationality and profit maximization or 
be more complex and include socio-psychological factors, learning, adaptation, and 
evolving. 

The second characteristic is the agents’ interaction. Agents interact with each other and 
with their environment. This can include interactions such as consuming the supplies in 



 
Background and state of the art  22 
 

 

the environment or indirect ones such as interaction via social networks. Knowledge 
sharing and information transmission are two typical examples of interaction. 

In addition, agents are heterogeneous in their attributes, behavioral rules, and social 
interactions. These micro-level attributes and rules are mostly parameterized on the basis 
of real data, theories, or assumptions.  

Emergent phenomena 

Emergent phenomena refer to how collective properties arise from the properties of 
entities. Such phenomena are often unpredictable due to the interaction among entities, 
nonlinear behaviors of individuals as well as their learning processes and adaptation.     

3.2.2 History of Agent Based Modeling 

Agent Based Modeling was developed as a concept in the late 1940s by John von 
Neumann (Von Neumann, 1966) who designed a self-replicating machine without the use 
of computers. The concept was then used by Stanislaw Ulam as the basis for preliminary 
work in Cellular Automata (CA) (Ulam, 1952). In 1970, the mathematician John Conway 
contributed to the evolution of Agent Based Modeling by developing the Game of Life, 
which consists of a two-dimensional grid of cells and follows simple rules as being dead 
or alive (Gardner, 1970). 

One year later in 1971, Thomas C. Schelling developed a housing segregation model, in 
which the basic characteristics of an agent based model such as autonomous agents, the 
shared environment, interacting behaviors, and emergent outcomes were embedded 
(Schelling, 1971). The model deals with racial dynamics and the preference of the 
individuals to live in a place with neighbors of the same color. Results suggested that high 
segregation patterns could exist among individuals even with a low degree of racial 
intolerance.  

Following the emergence of powerful computers and, more particularly, programming 
languages such as StarLogo in 1990 and other toolkits in the mid of 1990s, Agent Based 
Modeling was applied more extensively and specifically among social scientists. One of 
the most popular models in this domain is Sugerscape developed by Epstein and Axtell, 
which explored given social phenomena such as pollution, combat, and culture (Epstein 
and Axtell, 1996). 

3.2.3 Data gathering for Agent Based Modeling 

Since Agent Based Modeling investigates the world from the individual perspective, a 
large amount of data is required for the model (agents’ attributes and decision rules). 
Depending on the purpose of modeling, various sources of data may be used such as real 
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data, synthetic data, or collected data. Table 2-2 represents the ways in which the required 
data for various stages of model development are collected or generated.  

Table 2-2. Data gathering for Agent Based Modeling 

Data Methods 

Real data sample surveys, participant observation, field and laboratory experiments, GIS 
and remotely sensed spatial data 

Synthetic data random generation of data, using random distribution for parameters 

Data for special purposes surveys, questionnaires, censuses 

3.2.4 Challenges and benefits of Agent Based Modeling 

Challenges  

Some drawbacks are discussed in literature regarding the application of Agent Based 
Modeling (Bonabeau, 2002; Rixon et al., 2005). One main challenge lies in defining the 
behavioral rules due to their complexity. It is not a straightforward task to define the 
heterogeneity in attributes as the required data are mostly not available (Zenobia et al., 
2009). Therefore, the collaboration of researchers from different disciplines as well as 
expert judgments are in demand. Another issue concerns the large amount of data that 
the model needs in development stages. This data-hungry nature of Agent Based 
Modeling also makes the validation and calibration challenging tasks. Lack of standard 
methodology to develop Agent Based Models (ABMs) is another difficulty. Furthermore, 
the developed model is mostly valid for a specific purpose and can be used in similar 
cases only. 

Benefits  

Although Agent Based Modeling faces some challenges, it provides modelers with a 
number of benefits over other modeling approaches which has attracted interest in the 
recent years. Firstly, Agent Based Modeling provides insights into the emergent 
phenomenon- a feature not included in other modeling techniques (Bonabeau, 2002). It 
preserves the agents’ heterogeneity and models the nonlinear behaviors and interactions 
among them.  Secondly, Agent Based Modeling describes the world in a more authentic 
way closer to reality due to its bottom-up approach and individual-based perspective 
(Gilbert and Troitzsch, 2005). Thirdly, it is flexible in defining the behaviors and goals of 
agents, the levels of aggregation and complexity as well as the level of rationality in 
agents. Another advantage is that Agent Based Modeling allows modelers to combine 
psychological concepts with socio-economic approaches and engineering methods.  
Agent Based Modeling is also capable of accommodating dynamic conditions of both 
agents and the environment and tracks their changes over time. Another advantage of 
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Agent Based Modeling is its ability to embed learning and adaptation which can be 
combined with decision-making and heterogeneity of agents.  

3.2.5 Application areas of Agent Based Modeling 

Agent Based Modeling has been applied across a wide range of disciplines such as traffic 
management (Helbing et al., 2005), ecological modeling (Grimm and Railsback, 2005), 
marketing (Palmer et al., 1994), organizational simulation (Prietula et al., 1998), energy 
policy (Wittmann, 2008), and urban development (Batty, 2005). Although the models differ 
in terms of the data applied (real vs. non-real data), involvement of stakeholders, 
governing rules, and calibration process, their domain of application can be generally 
classified into three main groups (Matthews et al., 2007) as follows. 

Agent Based Modeling as an experimental platform 

One of the common uses of Agent Based Modeling is to explore given theories or 
hypotheses. In this way, Agent Based Modeling is an experimental platform by means of 
which modelers implement theories and ideas about behavioral rules and investigate them 
at micro-level. Another example is when there is limited access to the real data or the 
governing behavior patterns and modelers cannot parameterize the model. As a result, 
Agent Based Modeling can be used as a virtual laboratory to develop an explanatory 
model.  

Agent Based Modeling as an empirical platform 

ABMs can be developed based on real data. For this aim, stakeholders or the desired 
agents may be involved in the development process. This can be achieved through 
workshops and questionnaires, which provide stakeholders with a platform to express 
their concerns and exchange their knowledge. Modelers also benefit from such modeling 
approaches since they can simultaneously record their observations, implement them in 
the model, and compare their simulated results with the observations. 

Agent Based Modeling as a policy analysis and planning platform 

Policy analysis and planning platform is another application of Agent Based Modeling to 
explore the effects of existing policies and to anticipate the likely outcomes of potential 
plans as well as innovative strategies. To achieve the goals, Agent Based Modeling is an 
appropriate approach to investigate and analyze the dynamic behavior of the system 
under various scenarios. In the case of real-world polices, the data is usually available for 
calibration and validation. 

Although Agent Based Modeling is an interesting tool, it is important to investigate initially 
if it is really an appropriate method for the desired research questions.  In general, when 
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agents are heterogeneous in their attributes or decision-making with the behaviors 
changing over time, or modelers are interested in the interaction among agents and/or the 
environment, Agent Based Modeling is the potential modeling option since it can capture 
the complexity of the problem (Parker et al., 2003). 

3.2.6 Agent Based Modeling in flood management 

Although the history of Agent Based Modeling is traced back to the 1940s, it is relatively 
a new technique in flood management studies. Maja Bosch et al. focused on the 
institutional dimension of FRM such as the rules, norms, and shared strategies that guide 
decision-making behavior in flood risk response, recovery, mitigation, and preparation 
(Bosch, 2017). They studied the interdependencies and connectivity between institutions 
in the Caribbean island St Maarten. Abebe et al. carried out the institutional analysis for 
flood risk reduction (Abebe et al., 2016). Their results show that an institutional model 
coupled with flood model offers a useful exploratory tool to understand the system as a 
whole and test policy alternatives that match local conditions. Agent Based Modeling has 
been also applied to investigate the role of flood insurance in flood risk reduction 
(Dubbelboer et al., 2017). Filatova et al. designed an ABM to simulate land markets for 
Dutch coastal towns under risk (Filatova et al., 2011). They employed an agent based 
computational economics modeling approach to tackle this problem. Nabinejad and 
Schüttrumpf explained an example of Agent Based Modeling application in coasts to 
represent human-flood interaction (Nabinejad and Schüttrumpf, 2016). 

3.2.7 Toolkit selection for developing ABMs 

There are a number of programmable modelling environments for the agent based 
application. Table 2-3 compares Swarm, Repast, Mason, and NetLogo, as four popular 
toolkits (Salgado and Gilbert, 2013). In our study, NetLogo has been selected as the 
programming language since it is freely available and easy to install. Furthermore, it 
includes a set of libraries as well as a graphical interface (Railsback et al., 2006). NetLogo 
was designed by Uri Wilensky in 1999 and is well-suited for modeling social behaviors in 
terms of turtles, patches, links, the observer, and instructions governing agents’ behaviors 
(Wilensky, 1999). It has been used in different research areas including biology, physics, 
chemistry, mathematics, computer science, and economics. An example of NetLogo 
implementation is wolf-sheep predation model (Wilensky, 1999). Moreover, there are 
applications for household water use (Linkola et al., 2013) and a predator-prey model in 
biology (Wilensky, 1999). Netlogo has been also applied in immunology for formulation 
the disease mechanisms (Chiacchio et al., 2014). 
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Table 2-3. Comparison of toolkits used for developing ABMs (Salgado and Gilbert, 2013) 

 Swarm Repast Mason NetLogo 

Licence General Public 
Licence 

General Public 
Licence 

General Public 
Licence 

Free 

Documentation Patchy Limited limited Good 

Modelling languages Java Java, Python Java NetLogo 

Speed of execution Moderate Fast Fastest Moderate 

Support for graphical user 

interface development 

Limited Good Good Very easy  

 

Ease of learning and 

programming 

Poor Moderate Moderate Good 

Ease of installation Poor Moderate Moderate Good 

Link to geographical information system (GIS) No Yes Yes Yes 

4. Individual adaptive decision-making   

Representation of human behaviors is an important aspect in developing models with 
Agent Based Modeling approach. Literature has generally parameterized decision-making 
rules on the basis of micro-economy assumptions, empirical data, or developed theories 
(Johnson, 2015).  

Decision-making rules based on micro-economy 

Traditionally, economic models are applied to formulize individual decision-making (Von 
Neumann and Morgenstern, 1944). These models assume that people have an objective 
function to be maximized within a set of constraints, and an analytical solution represents 
the final decisions of people for such a mathematical problem. Humans are aggregated 
as a meta-actor and the heterogeneity among population is ignored. One of the primary 
economic theory is expected utility theory (EUT) developed by Neuman and Morgenstern 
(Von Neumann and Morgenstern, 1944). In EUT, actors are rational, fully informed, and 
behave as economic optimizers who choose the strategy with the highest expected utility. 
However, in an empirical study conducted by Kahneman and Tverksy, it was shown that 
individuals are biased in their risk judgment and the level of perceived risk may differ from 
the risk calculated as the product of hazard probability and damage (Tversky and 
Kahneman, 1973).  

Kahneman and Tverksy, therefore, developed Prospect theory as an extension of EUT, 
in which individuals evaluate the utility outcomes of all possible options using objective 
risk instead of subjective risk (Tversky and Kahneman, 1973). Prospect theory describes 
how individuals generally weight the risk based on heuristic and bias, which originates 
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from limited information processing capacities of decision makers and limited information 
availability. Although Prospect theory addresses the limitations of EUT, it still relies on 
maximization of utility functions and does not pay attention to the updating of risk 
perception and the influence of social interaction (Haer et al., 2017). Furthermore, 
Prospect theory lacks a variety of cognitive behaviors for making decisions as mentioned 
by behavioral decision studies.  

Decision-making rules based on empirical data 

Collecting the data of the target population is another way to conceptualize the behavioral 
rules. For this aim, quantitative methods such as field experiments and questionnaires are 
widely applied (see Table 2-2), which can be a good representation of the system under 
study. However, the validity of the provided data is limited since they have been collected 
in the short time under given specific experimental conditions (Jager et al., 2000).  

Decision-making rules based on theories 

The third approach in developing the behavioral rules is using existing or recently 
developed theories that originate from socio-psychological studies. These theories 
provide the modelers with valuable information particularly when there is lack of data or 
the purpose of the study is to explore the individuals’ behavior more generally.  Overall, 
theory-based decision-making rules contribute to a better understanding of how different 
attributes of agents or the environment influence the system and its components. 

One of the most well-known theoretical models used for parameterizing the decision rules 
is Consumat approach developed by Jager et al. (Jager et al., 2000). This conceptual 
model integrates relevant behavioral theories into decision-making under uncertainty. 
Combining the social psychology with economic principles, Consumat approach is based 
on satisfaction outcomes rather than optimized ones. In addition, the model 
conceptualizes learning processes and knowledge exchange through social interaction.  

Table 2-4 compares EUT, Prospect theory, and Consumat approach for individual 
decision-making under uncertainty. Although EUT and Prospect theory provide valuable 
insights, they are not able to represent the individual behavioral aspects such as 
heterogeneity, social interactions, and non-optimizing responses. Therefore, in this study, 
we have chosen Consumat approach as the basic conceptual and theoretical framework 
to deviate from optimization for representing the decision-making of the individual farmers 
in coasts under the influence of peers as well as limited information available to them. In 
comparison with two other approaches, Consumat approach allows agents to switch 
among various behavioral rules over time horizon due to its capability in modeling the 
dynamic in the uncertainty and satisfaction function which shows the spatial as well as 
temporal heterogeneity. 
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Table 2-4. Comparison of EUT, Prospect Theory, and Consumat approach 

Decision-making models  

under uncertainty 
Description 

Expected utility model (EUT) 

1- Individuals follow optimization as behavioral strategy. 

2- Individuals assess the expected utility of various actions based on 

absolute wealth and take the action with highest expected utility. 

3- Expected utility is defined as (objective probability × outcomes). 

4- Utility function is risk averse and loss-aversion cannot be defined. 

5- EUT accounts for rationality in individual processing of probabilities. 

6- Individuals are assumed to be rational, fully informed, and self-interested. 

7- The model assumes homogenous population.  

8-  EUT ignores social interactions. 

Prospect theory model 

1- Individuals follow optimization as behavioral strategy. 

2- Individuals assess gains and losses of various actions based on a 

referenced point and take the action with highest expected utility. 

3- Expected utility is defined as (subjective probability × outcomes). 

4- Utility function is risk averse for gains and loss averse for losses. 

5- Prospect theory accounts for bounded-rationality in individual processing 

of probabilities. 

6- Prospect theory can only model heterogeneity of individual probability 

judgment. 

7- Prospect theory does not include social interaction and its effects. 

Consumat approach 

1- Individuals follow a verity of cognitive processes including imitation, 

repetition, social comparison, or optimizing as behavioral strategies. 

2- Individuals assess the level of their satisfaction and uncertainty and 

engage in one of four cognitive processes. 

3- Consumat approach accounts for bounded-rationality in all stages of 

decision-making. 

4- Individuals are bounded-rational and have limited information as well as 

cognitive ability to analysis information. 

5- Consumat approach can model the heterogeneity of individual risk 

perceptions and adaptive behaviors in terms of influential factors 

discussed in section 2.3. 

6- Social interaction and social networks are taken into account. 

7- Diffusion of adaptive policies and interactive behaviors among people 

and the environment are possible through social networks. 
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4.1 Consumat approach 

Consumat approach has been developed by Jager et al. to explore human behavior and 
decision-making process (Jager et al., 2000). In the approach, agents engage in various 
cognitive individual or social processes depending on the level of their uncertainty and 
satisfaction. Therefore, each agent in the ABM is the consumat who is equipped with 
various needs and she/he consumes opportunities to satisfy her/his needs. Since every 
individual may have her/his own satisfaction and uncertainty level and follows a certain 
heuristic behavior, Agent Based Modeling is suitable technique for the approach. This 
conceptual model of Consumat approach is shown in Figure 2-4 (Jager et al., 2000).  

Consumat approach has been successfully implemented in various systems such as 
drought management (van Duinen et al., 2015), diffusion of green products (Jager and 
Janssen, 2012), and vulnerability assessment of farming communities in the Philippine 
(Acosta-Michlik and Espaldon, 2008). 
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Figure 2-4. The conceptual model in Consumat approach (Jager et al., 2000) 
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4.1.1 Behavioral rules in Consumat approach 

Four cognitive strategies are considered in Consumat approach for the agents’ decision-
making including deliberation, repetition, imitation, and inquiring (social comparison), as 
shown in the Figure 2-5.  

 

 

 

 

 

 

 

 

 

 

 

A satisfied and certain agent (engaging in repetition) 

This agent will repeat her/his previous decision to remain satisfied. Therefore, she/he will 
neither update her/his mental map nor rely on her/his social network. 

A dissatisfied and certain agent (engaging in deliberation) 

This agent will think and assess the possible options to maximize her/his profit. Therefore, 
she/he needs to update her/his mental map in order to gather some information about the 
possibilities. This kind of agent may try the options, which have not been used by other 
agents. 

A satisfied and uncertain agent (engaging in imitation) 

This agent firstly considers all options, which have been performed by those in her/his 
social network with strong links. Then, she/he copies the successful behavior performed 
by the majority in order to reduce uncertainty and remain satisfied. 

Figure 2-5. Behavioral process in Consumat approach based on satisfaction and uncertainty level 
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Yes                                                                    No 
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ሺ𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦௧,௜ ൑
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A dissatisfied and uncertain agent (engaging in inquiring) 

This agent chooses a decision among those of her/his previous one and agents in her/his 
social network (either with strong links or weak links) which results in the higher profit. 

Indeed, social networks play a vital role in decision-making of uncertain agents (Jager et 
al., 2000; Jager and Janssen, 2012). In contrast, dissatisfied agents engage in the 
processes which need more efforts to make them be satisfied in the future (Jager et al., 
2000; Jager and Janssen, 2012).  

4.1.2 Validation of Consumat approach 

As discussed in the section 3.2.4, validation is one of the challenges of Agent Based 
Modeling. Jager et al. validated Consumat approach for micro-level rules as well as the 
dynamics of resulting behaviors. They developed the cognitive processing rules using 
various psychological theories which increase the agent behavioral richness in 
comparison to pure-maximizing decision-making. Regarding validating the dynamics of 
behaviors, they used the approach to check its capacity in replicating empirical findings. 
Their results indicated that there is a good agreement between their findings and those of 
empirical studies (Jager et al., 2000). 

5. Summary 

The traditional methods applied in flood management studies are to impose limitations in 
modeling human-flood interactions. They assume that humans are inactive-exposed 
agents whose vulnerabilities are constant over time. However, dynamic responses of 
people in flood-prone areas prove the need to an alternative method that can address 
such challenges. Agent Based Modeling is a new approach that allows changing the way 
of thinking and including humans in modeling process from the individual perspectives. 
This makes it arguably more realistic as it gives the modeler greater flexibility not to make 
the assumptions of previous methods in this domain. In order to integrate human-flood 
interaction in flood management, individuals’ behavior can be represented through various 
decision-making models. Among them, Consumat approach is a reliable method, which 
allows agents to switch between various behavioral rules over the time horizon due to its 
capability in modeling the dynamic in the uncertainty and satisfaction function.
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Chapter 3 Simulating crop yield on the field-scale 

1. Introduction 

Coastal areas are attractive settling grounds for farmers since they provide farmers with 
fertile lands and soil, which are suitable for crop cultivations and farming. Farmers make 
decisions and select crop patterns for their own field each year and profit from them. The 
more crop yields are produced, the more profits are achieved, and the more pleased 
farmers are with their decision. As crop productivity is an essential input for agricultural 
economic analysis and farmers’ decision-making, it is a key need to estimate the annual 
crop yields for individual farmers in order to compute their yearly profits/losses and to 
model their yearly decision-making.  

Researches in this domain are largely based on crop growth models, which use 
mathematical equations. On the other hand, crop productivity is the outcome of several 
complex phenomena controlled by the climatic condition, soil, timing of management 
practices, and water and nutrient supply. Therefore, some studies have incorporated crop 
growth models into hydrologic simulation tools to provide a more accurate representation 
of crop biomass characteristic. The disadvantage of such models, however, is that they 
simulate crop yields at defined hydrologic units which do not necessarily correspond to 
the farmers’ fields in reality and as a result, they report the crop yields on a more 
aggregated level rather than on the field level.  
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2. Research question and objective 

A suitable way to develop a model to predict crop yields at the field-scale is a hydrological 
module that integrates crop growth sub-models on one hand and connects its defined 
hydrologic units with spatial features of watersheds such as farmers’ fields on the other 
hand. In this way, it is possible to carry out the desired simulations on the field-scale based 
on the hydrological, soil erosion, and nutrient transport processes. In order to be used as 
a practice-oriented tool, such a hydrological module must be able to model farmers’ crop 
yields within the hydrologic process as accurately as possible with the least possible 
calculation effort which will be used further to model farmers’ decision-making. To achieve 
its goal, this chapter answers the following research question: “How can the yearly crop 
yields of individual farmers as a function of climatic condition and geographic 
characteristic of the area be estimated?” 

The main aim of this chapter is to develop a calibrated-validated hydrological module in 
order to predict crop yields at field-scale. To achieve the main goal, several specific 
objectives were identified in designing the proper hydrological model: i) to develop 
uncalibrated baseline scenario, ii) to establish the hydrological calibrated and validated 
baseline scenario, iii) to improve the performance of the model in crop yield prediction, 
and iv) to compute annual crop yields on the field-scale to assist individual decision-
making and micro economic analysis. The hydrological module developed in this chapter 
is applied later in connection with flood risk analysis module and farmers’ decision-making 
module for micro-scale analysis. 

The structure of this chapter is as follows: Section 3 presents the steps for developing the 
hydrological module including software selection, modeling steps, input data, model 
setup, and model calibration. Results and discussion are presented in section 4 followed 
by conclusions and outlook section. 

3. Hydrological modeling  

3.1  Software selection  

In order to simulate crop yields within hydrological models, physically based models are 
paid attention as powerful tools. A wide variety of freely and commercially programs are 
available for this aim. In order to develop such a model, which can be adapted to the 
existing requirements, a freely accessible open source program is used in this study. 
Along with other open source models, Soil and Water Assessment Tool (SWAT) has been 
extensively applied as a suitable one due to its abilities in predicting runoff and crop 
responses under various land management practices. In addition, it can simulate a wide 
range of cropping systems and has a good performance in crop yield estimation without 
the need for crop yield calibration (Neitsch et al., 2011). Besides, SWAT is a public domain 
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software which is supported by United States Department of Agriculture (USDA) and 
constantly modified by users as well.  

3.2 Software explanation and components 

The SWAT is a hydrological watershed model developed by Dr. Jeff Arnold (Arnold et al., 
1998). Its recent graphical user input interface is ArcSWAT 12, which is an ArcGIS-
extension. The software is a continues-time distributed-parameter model that is able to 
predict long-term effects of land management practices, land cover, and land use changes 
on hydrological responses, crop yields, and water quality in large complex watersheds on 
a daily time step (Neitsch et al., 2011).  

In ArcSWAT, a watershed is separated into subbasins that are further subdivided into 
Hydrologic Response Units (HRUs) each presenting a unique combination of soil, slope, 
and land cover in the whole area. The HRUs are the basic computational units for water 
balance in the watershed, which includes hydrological components of precipitation, 
canopy storage, infiltration, redistribution, evapotranspiration, lateral subsurface flow, 
surface runoff, pond storage, tributary channels, and return flow (Neitsch et al., 2011). 

Crop growth in SWAT is based on the Environmental Policy Integrated Climate (EPIC) 
model and simulates crop growth considering heat units accumulation for reaching the 
maturity. In each time step, SWAT calculates the potential crop yields under no water, 
nutrients, and temperature stress that will be then reduced to the actual crop yields due 
to stress factors. Figure 3-1 shows the interconnection among various hydrological and 
crop growth components (NASA, 2019). 

 

Figure 3-1. Hydrological and crop growth components and their interconnections (NASA, 2019) 
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3.3 Overview and modeling steps 

The methodological approach of the chapter, modeling steps, and required data for 
developing the desired hydrological module are illustrated in Figure 3-2.  The simulation 
period is 2005-2016 including one year of warm up period for the model.  

As seen in Figure 3-2, watershed delineation is the first step for model set up. Preparing 
the required data and feeding them into the model, the unique HRUs are created and 
finally the baseline scenario is developed. This uncalibrated baseline scenario describes 
current topographic, climate, and land use situation of a watershed before any calibration. 
The next phase is to improve the prediction efficiencies of the developed hydrological 
module for the baseline scenario. To achieve its goals, a two-stage calibration procedure 
including hydrological calibration and crop yield calibration is established in this chapter. 
The detailed explanation of modeling steps can be found in section 3.4 and 3.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3-2. The methodological approach of the study and the components of the hydrological module  
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3.4 Input data and model setup (step I) 

As a physically based model, SWAT requires various spatial data to develop a reliable 
baseline scenario that can represent the correct hydrological system for the whole 
simulation period. It includes the input data for setup preparation as well as additional data 
for calibration and validation. Thus, data analysis, preparation, and formatting are the 
essential steps to successfully model the watershed and achieve high quality outputs. 
Relevant input data are topographical, meteorological, hydrological, geological, and 
phonological data as well as land use data. The output of the model setup is an 
uncaliberated baseline scenario. 

3.4.1 Topographical data 

The Digital Elevation Model (DEM) of the Pellworm Island was obtained from the State 
Department of Agriculture, Environment and Rural Areas of Schleswig-Holstein 
(Schleswig-Holstein, 2016). The cell size of the provided DEM was 1m in the projected 
coordinated system ‘ETRS_1989_UTM_Zone_32N’. Although such a high-resolution 
DEM results in detailed topographical descriptions, the simulation time is increased. 
Hence, a 2m resolution DEM was created in ArcGIS for this study. In the next step, the 
DEM was used as ArcSWAT input to define the stream network and to compute the slope 
of the watershed. Figure 3-3 illustrates the final DEM and the defined stream network as 
inputs for ArcSWAT.  

3.4.2 Geological data 

The State Department of Agriculture, Environment and Rural Areas of Schleswig-Holstein 
provided a detailed soil map for Pellworm Island differentiating four soil types 
Dwogmarsch, Kalkmarsch, Kleimarsch, Rohmarsch, and an artificial backfill (Schleswig-
Holstein, 2016). However, due to the lack of soil parameters, we extracted a 2 km soil 
map for the area from the public world soil raster map of the Food and Agriculture 
Organization (FAO, 2003) as input data.  

3.4.3 Land use data  

The land use map of the study area was obtained from the State Department of 
Agriculture, Environment and Rural Areas of Schleswig-Holstein with the projected 
coordinated system is ‘ETRS_1989_UTM_Zone_32N’.  The land use map identified 21 
major land use categories, which were then aggregated into eight main classes including 
agricultural land, urban areas, industry, transportation, pasture land, water bodies, and 
orchard land to be correspondent to ArcSWAT database.  
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Figure 3-3. DEM including stream network created in ArcGIS 

Table 3-1. Land use classifications 

Category Area [ha] Area (%) 

Residential  37.61 1.10 

Industrial  4.19 0.12 

Transportation  7.11 0.21 

Water  33.58 0.98 

Commercial 47.14 1.38 

 

 

 

 

Agricultural land 

Spring barley 111.42 3.26 

Barren land 7.58 0.22 

Spring canola 110.65 3.24 

Maise 215.26 6.30 

Winter wheat 250.15 7.32 

Pasture  2593.63 75.87 

Orchard  0.00 0.00 
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According to Schüttrumpf et al., the four most prevalent crops cultivated by farmers in the 
Pellowrm Island have been spring canola, maise, spring barley, and winter wheat 
(Schüttrumpf et al., 2013). Accordingly, we subdivided the agricultural land into those 
crops cultivated. Table 3-1 depicts the land use classifications and their covered areas. 
The final land use map fed into SWAT is presented in Figure 3-4 in which each color 
shows one class of land uses. 

 
Figure 3-4. Land use map in ArcSWAT 

3.4.4 Hydrologic response units (HRUs) 

Preparing DEM, land use map, and soil data, the model setup in ArcSWAT is divided into 
three main steps including watershed delineation, HRU analysis as well as weather and 
land management input generation. After watershed delineation, 527 subbasins were 
created which were further subdivided into HRUs with homogeneous soil, land use, and 
slope characteristics within each subbasin by overlaying land use, soil, and slope maps. 
The slope classes used for this process were 1% to 2%, 2% to 5%, and 5% and above, 
resulting in 6177 HRUs.  

It should be noted that stream flow, crop yields, and other computed elements by SWAT 
are reported on HRU scale. The more the number of HRUs, the more the computation 
time. It is possible to decrease the simulation time through defining thresholds for land 
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use, soil, or slope classes. However, the main disadvantage of this assumption is not to 
be able to investigate how much yield each farmer can produce within one year since 
there is no access to the spatial distribution of HRUs. To overcome this issue, we 
successfully generated the HRU spatial distribution map by adjusting thresholds for those 
three classes in the overlaying process of ArcSWAT. Then, the group of HRUs comprising 
each field were determined and as a result, crop yields were computed on the field-scale 
which have been not achieved in previous studies. Figure 3-5 illustrates the spatial 
distribution of HRUs in Pellworm Island generated in ArcSWAT. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

3.4.5 Meteorological data 

The Public FTP server (available under: ftp://ftp-cdc.dwd.de/pub/CDC/) of Germany’s 
National Meteorological Service (DWD) provided weather information (CDC, 2016) 
consisting of daily precipitation [mm], max/min temperature [°C], relative humidity [-], solar 
radiation [MJ/m2/d], and wind speed [m/s] data. Since there were no weather stations 
located on the Pellworm Island, the data of four nearest weather stations were used for 
preparing the meteorological data. Figure 3-6 shows the location of those weather 
stations. 

Daily solar radiation data were available only for the weather gages of List on Sylt and St. 
Peter Ording and the weather generators in ArcSWAT replaced missing data during the 

Figure 3-5. HRU spatial distribution map in ArcSWAT 
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model setup. Table 3-2 provides information about the weather gages for the simulation 
period. A summary of the prepared hydrological input data is presented in Table 3-3.  

 
Figure 3-6. Location of selected weather stations created in Google Earth  

Table 3-2. Weather data of selected weather stations 

  

Table 3-3. Summary of the prepared hydrological input data 

Weather 

station 

Distance 
[km] 

Elevation 
[m] 

Available data 

St. Peter-Ording 21.14 5 Rainfall, Temperature, Wind speed, Relative humidity, Solar radiation  

Leck 36.80 7 Rainfall, Temperature, Wind speed, Relative humidity 

List (Sylt) 56.26 26 Rainfall, Temperature, Wind speed, Relative humidity, Solar radiation 

Helgoland 60.93 4 Rainfall, Temperature, Wind speed, Relative humidity 

Topography Land use data Soil data Weather data 

- Cell size: 2 m 

- Area: 37 km2 

 

- Agriculture 

- Gardenland 

- Urban 

- Industrial 

- Transportation 

- Waterbody 

- Others 

- Kleimarsch - Precipitation (mm) 

- Relative humidity 

- Real Evapotranspiration 

- Wind speed (m/s) 

- Min/Max Temp. (C°) 

- Solar radiation  
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3.4.6 Land management data 

In order to simulate crop yields in the study area, detailed information of land management 
practices including crop type, fertilization dates and rates, planting and seeding dates, 
irrigation data, and harvesting dates are required. Seeding and harvesting dates were 
obtained from the agrometeorological section of Germany’s National Meteorological 
Service (DWD). 

3.5 Model assessment and improvement (step II and III) 

The developed baseline scenario is ready to be used for the further analyses. The SWAT 
model has been developed and successfully applied in watersheds with no monitoring 
data. However, watershed models are nowadays highly complex due to the inclusion of 
countless parameters to represent the physical reality of hydrological processes. 
Therefore, it is necessary to assess the structure, predictive accuracy, and precision of 
the created baseline scenario (Van Griensven et al., 2006). To achieve its goal, a two-
stage calibration procedure is established in this study. Hydrological calibration is carried 
out firstly to improve the performance of the model in predicting water budget, after which 
crop yield calibration will be done.  

3.5.1  Hydrological calibration (first stage of calibration) 

Hydrological calibration is the primary step in SWAT watershed applications for which 
annual or monthly streamflow is the most common output used. Sufficiently long, 
sequential, and precise observation data are required to improve the model performance 
significantly (Gassman et al., 2007). Due to the lack of streamflow data for the Pellworm 
Island, evapotranspiration values on a monthly time-step obtained from the DWD were 
applied for calibration and validation processes (Weyer, 2016). The calibration and 
validation period are 2006-2010 and 2011-2016, respectively. The ten biggest subbasins 
from all parts of the Island were chosen for calibration and validation of the model, as 
shown in Figure 3-7. These subbasins include all different land uses and slopes which 
can reflect various characteristics of subbasins.  
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Figure 3-7. Selected subbasins for hydrological calibration and validation procedures 

Sensitivity analysis 

The first step of model calibration is the sensitivity analysis. Sensitivity measures the rate 
of change of an output variable to a change in model input parameters. A great rate of 
change corresponds to a higher sensitivity (Arnold et al., 2012). In simple words, sensitive 
input parameters are able to influence strongly the outputs, so they are often used as input 
for model calibration. Moreover, performing sensitivity analysis reduces the number of 
parameters to be calibrated and non-sensitive parameters can be exempted from 
calibration, which also reduces uncertainties of a model (van Griensven et al., 2006). In 
this research 20 parameters, which may potentially influence evapotranspiration, were 
selected for sensitivity analysis and further for calibration and uncertainty analysis 
according to literature (Arnold et al., 2012; Samadi, 2016), user manuals (Neitsch et al., 
2011; Ashraf Vaghefi et al., 2015), and cognition of the case study Pellworm Island. 

Calibration and validation 

Once sensitive parameters are identified, the baseline scenario can be improved by 
calibration and validation. Generally, optimization of hydrological models is a complex 
step due to missing reliable input data, uncertainties, and the application of hydrological 
processes in a simplified model. Input data for the optimization process is commonly split 
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into two time periods of similar climatic conditions. Both, calibration and validation periods 
should include dry and wet periods (Arnold et al., 2012). During calibration, simulated 
model outputs and observed local data are compared by optimizing the objective function 
(Immerzeel and Droogers, 2008) which consists of a statistical test for this comparison 
(Abbaspour, 2015). The final objective function of calibration process is further used for 
validation to prove if the calibrated parameters achieved from calibration are good enough 
to generate accurate outputs for other simulation periods which are different from that of 
calibration. 

Evaluating the performance of the ArcSWAT predictions 

Finally, the model performance is assessed regarding the calibration process. SUFI-2 
offers a wide range of statistics to evaluate the simulated data by ArcSWAT models. 
According to Gassman et al., 𝑅ଶ and Nash-Sutcliffe (𝑁𝑆) coefficients are widely used for 
the performance assessment of calibration and validation procedures (Gassman et al., 
2007).  

The coefficient 𝑅ଶ is a measure of dispersion around the mean of the observed and 
predicted values. It is defined as the squared value of the coefficient of correlation and 
calculated as: 

𝑅ଶ ൌ  
ൣ∑ ሺ𝑦௧ െ 𝑦തሻ൫𝑓௧ െ 𝑓̅൯்

௧ୀଵ ൧
ଶ

∑ ሺ𝑦௧ െ 𝑦തሻଶ   ∑ ൫𝑓௧ െ 𝑓൯̅
ଶ்

௧ୀଵ
்
௧ୀଵ

 
(3-1) 

 

 

where 𝑦ത and 𝑓 ̅are the mean value of observed and simulated data for the entire evaluation 
period, respectively. The value of 𝑅ଶ ranges between zero and one, describing the 
proportion of total variance in the observed data that can be explained by the model. Thus, 
a value of zero means no correlation at all, whereas one is a perfect correlation between 
observed and simulated data (Krause et al., 2005). For reasonable performance 
assessment, it is essential to use a second statistical method, since 𝑅ଶ only quantifies 
dispersion. Models can achieve high 𝑅ଶ even if all predictions are wrong by systematically 
over- or underpredicting observed values due to a balance. 𝑁𝑆 is the Nash-Sutcliffe 
coefficient defined: 

𝑁𝑆 ൌ  1 െ  ෍
ሺ𝑦௧ െ 𝑓௧ሻଶ

∑ ሺ𝑦௧ െ 𝑦തሻଶ    ்
௧ୀଵ

்

௧ୀଵ
 

(3-2) 
 

 
𝑁𝑆 ranges between minus infinity and one and is applied to evaluate to which degree 
simulation results match the observation data along the regression line with a slope of one 
(Arnold et al., 2012). According to Moriasi et al. 𝑅ଶ values below 0.5 indicate the need for 
calibration procedures (Moriasi et al., 2007). Additionally, they collected data from various 
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SWAT studies and designed a general performance rating according to 𝑁𝑆 values for 
SWAT studies as presented in Table 3-4.  

Table 3-4. Performance rating for 𝑁𝑆 and  𝑅2
coefficient 

Performance rating 𝑵𝑺 coefficient 𝑹𝟐coefficient 

Very good 0.75 < 𝑁𝑆 ≤ 1.00 0.5 < 𝑅ଶ 

Good 0.65 < 𝑁𝑆 ≤ 0.75 0.5 < 𝑅ଶ 

Satisfactory 0.50 < 𝑁𝑆 ≤ 0.65 0.5 < 𝑅ଶ 

Unsatisfactory 𝑁𝑆 ≤ 0.50 𝑅ଶ ≤ 0.50 

The software SWAT-CUP (Calibration and Uncertainty Procedure) (Abbaspour et al., 
2007) was applied for hydrological calibration and validation. It is a standalone program, 
which includes five different calibration procedures. The Sequential Uncertainty Fitting 
program SUFI-2 (Abbaspour et al., 2004) was selected due to its worldwide application 
and high efficiency. SUFI-2 is semi-automated and incorporates sensitivity, calibration, 
validation, and uncertainty analysis. The special feature of SUFI-2 is the intimate 
connection between parameter calibration and uncertainty analysis (Abbaspour, 2015). 
The user can manually adjust parameters after each auto-calibration run (Arnold et al., 
2012). 

3.5.2 Crop yield calibration (second stage of calibration) 

Although most of the studies apply ArcSWAT in crop yield simulation without any further 
calibration, in this research we have carried out the second stage of calibration to improve 
the model performance for crop yields prediction. Key crop parameters were firstly 
identified from literature (Srinivasan, Zhang and Arnold, 2010; Nair et al., 2011; Arnold et 
al., 2012; Duffy and Parajuli, 2014) to be used for crop yield calibration in this study. 
Accordingly, these parameters were adjusted manually to minimize the differences 
between model estimation and crop yield observations. Field measurements of the 
cultivated crops for the calibration period were not available. Thus, simulated yield was 
evaluated against the average reported crop yields between 2006-2008 for the Schleswig-
Holstein state.  

4. Results and discussion 

4.1 Hydrological calibration (first stage of calibration) 

Preparing input data, they were fed into the ArcSWAT to develop baseline scenario over 
the 11-year simulation period in addition to a one-year warm-up to establish reasonable 
initial conditions. The baseline scenario presents current topographic, climatic, and land 
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use condition of the Pellworm Island which is further applied in this study to develop yearly 
land use scenarios under constant topographic and soil condition. 

The performance of the uncalibrated baseline scenario was assessed by comparing the 
simulated evapotranspiration data with those provided by the DWD on a monthly time-
step. Thereafter, the baseline scenario was optimized based on 10 out of 527 subbasins 
of the watershed. Subbasin 128 was selected to portray results due to its representative 
nature.   

4.1.1 Uncalibrated baseline scenario 

Figure 3-8 illustrates the monthly observed and simulated evapotranspiration data 
resulted from uncalibrated SWAT model over the 11-year simulation period in the 
subbasin 128. In this figure, the significant differences between observed and simulated 
evapotranspiration show the necessity of hydrological calibration and validation. 

 
Figure 3-8. Time-series of observed and simulated evapotranspiration (2006-2016) prior to calibration in 

subbasin 128 

In addition, the statistical performance coefficients 𝑅ଶ and 𝑁𝑆 for this subbasin were 
calculated to decide if hydrological calibration is necessary. Comparing the threshold of 
𝑅ଶ and 𝑁𝑆 coefficient (see Table 3-4) and their values in Table 3-5 for three different 
periods indicates the essential need for calibration to improve the performance of the 
model. 
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Table 3-5. Statistical performance assessment prior to calibration 

Period 𝑹𝟐 NS 

2006-2010 0.7 0.42 

2011-2016 0.66 0.27 

2006-2016 0.65 0.44 

4.1.2 Hydrological parameter sensitivity analysis 

Due to the significant differences between observed and simulated evapotranspiration, 
the developed model should be calibrated (Weyer, 2016). The first step is recognizing the 
most sensitive parameters. For this aim, a global sensitivity analysis was performed based 
on 400 simulation runs for the period from 2006 to 2010. This analysis focused on the 
sensitivity of 20 preselected parameters, which influence more the predicted model 
outputs. The statistical coefficients t-stat and p-value were used to assess sensitivity. In 
this regard small p-values and high t-stat values indicate high sensitivity.  

Thereafter, saturated hydraulic conductivity (SOL_K), curve number for moisture condition 
II (CN2), soil evaporation compensation factor (ESCO), plant uptake compensation factor 
(EPCO), Manning’s value for overland flow (OV_N), baseflow alpha factor (ALPHA_BF) 
and, the threshold depth of water in the shallow aquifer required for return flow to occur 
(GWQMN) were identified as the seven most important parameters, which are presented 
in Table 3-6. 

4.1.3 Model calibration and validation 

Once the most sensitive parameters are detected, the model is optimized by calibration 
and validation. The uncalibrated baseline scenario was first calibrated for the observed 
evapotranspiration data on a monthly time-step for the period between 2006 and 2010. 
The model was then validated for the period 2011-2016 to test its prediction ability for 
periods outside the calibration period. The initial and final optimized values of sensitive 
parameters achieved by hydrological calibration are presented in Table 3-6. 
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Table 3-6. Sensitive hydrological parameters in ArcSWAT, their initial and final values 

Rank SWAT parameter Description Initial value Final value 

1 SOL_K Saturated hydraulic conductivity [mm/hr] 22.71 0.04 

2 CN2 SCS runoff CN for moisture condition II [-] 72-92 62.04-79.27 

3 ESCO Soil evaporation compensation factor [-] 0.95 0.80 

4 EPCO Plant uptake compensation factor [-] 1 0.69 

5 OV_N Manning's "n" value for overland flow [-] 0.1-0.15 0.08-0.13 

6 ALPHA_BF Baseflow alpha factor [1/d] 0.01 0.46 

7 GWQMN Threshold depth of water in the shallow aquifer 
required for return flow to occur [mm] 

1000 1183.95 

8 GW_REVAP Groundwater "revap" coefficient [-] 0.02 0.09 

9 CH_N2 Manning's "n" value for the main channel [-] 0.014 0.30 

10 RCHRG_DP Groundwater recharge to deep aquifer fraction [-] 0.05 0.83 

11 HRU_SLP Average slope steepness [m/m] 0.01-0.12 0.01-0.12 

12 REVAPMN Threshold depth of water in the shallow aquifer for 
"revap" to occur [mm] 

750 3.70 

13 EVRCH Reach evaporation adjustment factor [-] 1 0.55 

14 GW_DELAY Groundwater delay [d] 31 466.05 

15 SURLAG Surface runoff lag time coefficient [-] 4 14.95 

16 SHALLST Initial depth of water in the shallow aquifer [mm] 1000 5000 

17 CANMX Maximum canopy storage [mm] 0 0 

18 SOL_BD Moist bulk density [g/cm3] 1.1 0.90 

19 SOL_AWC Available water capacity of the soil layer [mm/mm soil] 0 0 

20 SLSUBBSN Average slope length [m] 60.98-121.95 50.07-100.13 

The optimized parameters are the best simulation values, which increase the performance 
of the model in simulating the ArcSWAT outputs. Figure 3-9 presents simulated and 
observed evapotranspiration after the calibration process in calibration period. The 
comparison of Figure 3-8 and Figure 3-9 demonstrates the effect of calibration and the 
improvement in the performance of the model with new parameters set. 
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Figure 3-9. Time-series of observed and simulated evapotranspiration (2006-2010) after calibration 

The validation was performed after calibration using the same adjusted parameter set 
reported in Table 3-6. The observed and simulated evapotranspiration after validation are 
presented in Figure 3-10. As seen, simulated values are close to the observed data, which 
shows the reasonable prediction of the calibrated model for the whole simulation period. 

 

Figure 3-10. Time-series of observed and simulated evapotranspiration (2011-2016) after validation 

Table 3-7 reports the statistical performance coefficients 𝑅ଶ and 𝑁𝑆 of the model for both 
calibration and validation period on a monthly scale. Comparing their values with their 
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threshold in Table 3-4 shows the good performance of the calibrated model in predicting 
the hydrologic budget. 

Table 3-7. Performance assessment of calibration and validation 

Process Period 𝑹𝟐 NS 

Calibration 2006-2010 0.80 0.78 

Validation  2011-2016 0.80 0.76 

4.1.4 Uncertainty analysis 

Statistical and computational procedures described previously were performed by SUFI-
2 to quantify the uncertainties associated with simulations. The uncertainty analysis was 
implemented in the optimization process and terminated when satisfactory uncertainty 
criteria were achieved. During model optimization, parameter uncertainties were reduced 
in a stepwise approach. Figure 3-11 portrays the 95 % prediction uncertainty range of 
simulated evapotranspiration data for the last calibration iteration as well as corresponding 
observed data.  

 

Figure 3-11. 95% prediction uncertainty interval in the calibration period 

Following, in the validation process, 43 % (P-factor) of the observed evapotranspiration 
data were captured by the 95PPP interval and an R-factor of 0.39 was attained. Figure 
3-12 illustrates the 95PPU interval of the validation period between 2011 and 2016.  
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Figure 3-12. 95% prediction uncertainty interval in the validation period 

4.2 Crop yield calibration (second stage of calibration) 

The hydrological calibrated model achieved in the previous step, was used to investigate 
and to improve the performance of the developed model in predicting crop yields. 

4.2.1 Crop parameter sensitivity analysis 

As other calibration process, the first step is to identify the most sensitive crop parameters. 
According to literature (Faramarzi et al., 2010; Nair et al., 2011), harvest index (HVSTI), 
maximum leaf area index (BLAI), and radiation-use efficiency (BIO_E) are the most 
sensitive crop parameters which were used in this study. Then, these parameters were 
adjusted for the agricultural crops to achieve a good prediction of yield. Table 3-8 
summarizes the selected sensitive crop parameters as well as their default and adjusted 
values. As can be seen, except from the spring barley for which the default values of 
SWAT database have been used, the parameters of maise, spring canola, and winter 
wheat have been adjusted for this aim. 

4.2.2 Model calibration 

Figure 3-13 evaluates the accuracy of the hydrological calibrated model in crop yield 
prediction before and after the second stage of calibration. According to the figure, there 
are differences between the simulated and reported crop yield before the calibration of 
crop growth. However, the model performance has been improved significantly by 
adjusting the sensitive parameters in section 4.2.1 and there is a good agreement 
between the reported and simulated crop yields after second stage of calibration. 
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Table 3-8. Sensitive crop parameters in ArcSWAT, their initial and final values 

SWAT parameter Description 
Initial 
value 

Final 
value 

BIO_E Maise Plant radiation use efficiency for maise [(kg/ha)/(MJ/mଶ)] 39 90 

BIO_E Spring Barley Plant radiation use efficiency for spring barley [(kg/ha)/(MJ/mଶ)] 35 35 

BIO_E Winter Wheat Plant radiation use efficiency for winter wheat [(kg/ha)/(MJ/mଶ)] 30 90 

BIO_E Spring Canola Plant radiation use efficiency for spring canola [(kg/ha)/(MJ/mଶ)] 34 43 

HVSTI Maise Harvest index for maise [(kg/ha)/(kg/ha)] 0.9 1.25 

HVSTI Spring Barley Harvest index for spring barley [(kg/ha)/(kg/ha)] 0.54 0.54 

HVSTI Winter Wheat Harvest index for winter wheat [(kg/ha)/(kg/ha)] 0.4 1.25 

HVSTI Spring Canola Harvest index for spring canola [(kg/ha)/(kg/ha)] 0.3 0.9 

BLAI Maise Maximum leaf area index for maise [mଶ/mଶ] 4 10 

BLAI Spring Barley Maximum leaf area index for spring barley [mଶ/mଶ] 4 4 

BLAI Winter Wheat Maximum leaf area index for winter wheat [mଶ/mଶ] 4 10 

BLAI Spring Canola Maximum leaf area index for spring canola [mଶ/mଶ] 4.5 4.6 

 

 

Figure 3-13. Reported and simulated crop yields in SWAT before and after calibration 

4.3 Crop yield simulation on the field-scale 

Once the developed model is calibrated for both water balance and crop growth 
components, it is ready to be used for further analyses. To the best of the author’ 
knowledge, crop yield on the farmers’ fields has been not explored in the previous studies 
using SWAT. Almost all researches have reported crop yields on HRUs since there is not 
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a good connection between HRUs in SWAT and farmer’s field in reality. We addressed 
this issue by adjusting threshold for land/slope/soil overlaying process which allows us to 
generate HRUs spatial distribution map in ArcSWAT and to identify the group of HRUs 
comprising each farmers’ field. As a result, crop yields can be extracted on HRUs to 
compute the crop productivity of fields. Overall, it enables researchers and decision 
makers to explore any desired outputs on the field-scale and more particularly in this 
research, the model can predict how much yield each farmer can produce within one year.  

According to the telephone talk with one of the farmers living on the Pellworm Island, 
about 37 families earn their living from farming on the Island. Due to lack of data, a semi-
hypothetical population of 37 farmers is investigated. Agricultural lands and crops have 
been randomly distributed among farmers in such a way that the total covered areas of 
crops are fulfilled, as reported in Table 3-1. Figure 3-14 illustrates the spatial distribution 
of cultivated crops in year 2006, as an example. The crop productivity of farmers’ fields is 
shown in Figure 3-15 for the same year, which has been estimated by the 2-stage 
calibrated hydrological module.  

 

 

Figure 3-14. Spatial distribution of cultivated crops on the Pellworm Island in year 2006  
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Figure 3-15. Estimated crop yields on field-scale for each individual farmer in year 2006 

5. Conclusions and outlook 

The purpose of this chapter was to develop a hydrological module to predict crop yields 
on the field-scale. Due to complex interconnection between crop productivity and 
hydrological phenomena, hydrologic simulation tools that include the crop growth model 
are the most appropriate ones. Among them, SWAT was used in this study to develop the 
desired Hydrological Module in connection with other modules. To achieve its goal, firstly 
the baseline scenario was set up by preparing required input data, delineating the 
watershed, overlaying soil/land use/slop map, and creating HRUs.  Since the created 
HRUs map does not match the spatial distribution of land use, it is not possible to make a 
connection between SWAT outputs on the HRUs level and field level in reality. To 
overcome this issue, we adjusted the threshold in overlaying process to generate the 
spatial map of HRUs. Therefore, by identifying HRUs on each individual field, it was 
possible to generate any desired outputs on the field-scale that assist decision makers to 
take agricultural adaptive policies on the field-scale.  

In order to increase the model efficiencies in simulating water budget and crop growth 
components, a 2-stage calibration procedure including hydrological and crop yield 
calibration was established. Results from monthly evapotranspiration calibration and 
validation procedure showed that the hydrological performance of the developed model 
was within acceptable ranges. The hydrological calibrated model could predict the spring 
barley yields wells. However, the model under predicted the yields of other cultivated 
crops which were then improved through manual calibration and parameter adjustment. 
The final crop yield simulation matches closely with those reported in previous studies. 
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Thereafter, the developed hydrological module is used in connection with other modules 
developed in the next chapters of the research to simulate the yearly crop productivity of 
individual farmers under unchanged geological and topographical conditions of the study 
area over the simulation years (see Figure 3-16). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-16. Connection of hydrological module with other modules in each year 
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Chapter 4 Predicting inundated agricultural areas 
and associated water depth  

1. Introduction 

Coasts are fertile agricultural lands, but are also threatened by coastal flooding. Farmers 
who are living in these areas are exposed to storm surges which increase due to climate 
change. In the time of flooding, agricultural lands are inundated with saltwater which 
causes flood-related crop losses. This agricultural economic damage may continue for a 
number of years even after flooding and affects farmers’ decision-making for the following 
years. One key activity to identify areas at-risk of flooding, and subsequently to improve 
flood risk management (FRM) is to assess and map flood hazards. While flood hazard 
assessment predicts flood intensities and characteristics by analyzing probable flood 
scenarios, flood hazard mapping visualizes endangered areas and inundated lands under 
given flood events. Flood hazard assessment and mapping assists land planners and 
local authorities in mitigating potential flood damage. Furthermore, experts and 
governments can communicate with the public using flood hazard maps and inform them 
about their local flood risk which increases the risk perception of people, prepares the 
public for future floods, and motivates individuals to undertake actions. 

2. Research question and objective 

Flood hazard assessment in general focuses on the estimation of the probability of flood 
occurrence, identification of corresponding inundated areas, and computation of hydraulic 
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variables such as water depth, inundation duration, arrival time, and flow velocity. 
Although there are different types of evaluations, approaches, and purposes in flood 
hazard assessment, the framework behind is quite standard (Sy et al., 2019). Analysis of 
flood hazard can be best done using a hydrodynamic model, which allows including 
different flood sources as well as structural measures. Such a model forms the basis for 
hydrodynamic modeling of flood-prone areas and enables modelers to specify a variety 
of boundary conditions to investigate associated flood damage and risk.  

The primary objective of this chapter is to develop a hydrodynamic module to carry out 
coastal hazard assessment and investigate expected extent and depth of flooding in the 
agricultural lands of Pellworm Island under probable flood scenarios. To achieve the main 
goals, following sub-objectives were defined: i) to identify sources of flooding and probable 
flood scenarios, ii) to analyze agricultural inundated areas and calculate specific flood 
parameters, and iii) to create flood inundation and exposure maps for probable flood 
scenarios. The developed hydrodynamic module will be the basis for flood risk analysis 
module. The generated flood hazard maps are also applied in risk perception module to 
establish flood risk awareness among farmers. 

This chapter is organized as follows: section 3 begins with a short presentation of flood 
risk analysis and its components to better understand the chain of causes and effects in 
a flood event. It is then continued with hydrodynamic modeling as well as the software 
used in section 4. Modeling steps and overview of the hydrodynamic modeling are also 
discussed in this section. Results and discussion are presented in section 5, which is 
followed by conclusions and outlook section. 

3. Concepts of flood risk assessment 

3.1 Definition of flood risk 

General definitions 

Risk is applied in different disciplines to present dimensions relating to environmental or 
social issues, economy, and safety (Sayers et al., 2003), and there is no unique definition. 
For instance, in medicine, risk is quantified as the occurrence probability of the side effects 
of drugs. In insurance, risk refers to the financial damage associated with an adverse 
event. Risk has also different definitions from the technical-scientific points of view.  For 
example, in environmental risk assessment, the impact intensity versus sensitivity 
represents the environmental risk, while in hydrology, risk is the likelihood of the discharge 
Q to be more than the designed discharge within the lifetime of a hydraulic structure. 
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International definitions 

There are international-technical definitions for risk such as “The probability of harmful 
consequences, or expected loss of lives, people injured, property, livelihoods, economic 
activity disrupted (or environment damaged) resulting from interactions between natural 
or human induced hazards and vulnerable conditions.” (UNDP - Bureau for Crisis 
Prevention and Recovery, 2004). According to UNISDR, risk is “The combination of the 
probability of an event and its negative consequences.” (UNISDR, 2009). EU Flood 
Directive defines flood risk as the combination of the occurrence probability of flood events 
and potential adverse effects on human health, the environment, cultural heritage, and 
economic activities (EU, 2007).   

Mathematical definitions 

In order to quantify flood risk, there is a key need to a mathematical definition. In literature 
(Blong, 1996; De la Cruz-Reyna, 1996; Helm, 1996; Granger et al., 1999) various 
equations have been used to quantify the risk:     

𝑅𝑖𝑠𝑘 ൌ 𝐻𝑎𝑧𝑎𝑟𝑑 ∗ 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (Blong, 1996) (4-1) 
 

𝑅𝑖𝑠𝑘 ൌ 𝐻𝑎𝑧𝑎𝑟𝑑 ∗ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 ∗ 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (Granger et al., 1999) (4-2) 
 

𝑅𝑖𝑠𝑘 ൌ 𝐻𝑎𝑧𝑎𝑟𝑑 ∗ 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑉𝑎𝑙𝑢𝑒/𝑃𝑟𝑒𝑝𝑎𝑟𝑒𝑑𝑛𝑒𝑠𝑠 (De La Cruz-Reyna, 1996) (4-3) 
 

𝑅𝑖𝑠𝑘 ൌ 𝑃𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 ∗ 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 ሺHelm, 1996) (4-4) 
 

Flood hazard analysis is performed based on hydraulic and hydrologic studies which is 
then combined with socio-economic analysis. The consequences of flooding depend on 
at-risk elements (exposure) as well as their potential to be harmed by flood events 
(vulnerability).  

3.2 Components of flood risk 

Flood risk consists of hazard, vulnerability, exposure, and susceptibility, as illustrated in 
Figure 4-1. According to the UNISDR (UNISDR, 2009), hazard is a physical event, 
phenomenon, or human activity with the potential to result in harm, vulnerability is the 
characteristics and circumstances of a system that makes it susceptible to the damaging 
effects of a hazard, exposure refers to the spatial or temporal overlay of hazard 
characteristics and vulnerable entities such as people and properties, and resilience is the 
ability of a system to recover from adverse effects of the hazard and to cope with that in 
a timely and efficient manner. Susceptibility is understood as the negative consequences 
of lack of resilience (Adger, 2006; Birkmann et al., 2013). 
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3.3 Flood risk analysis 

Flood risk analysis serves to determine the extent of resulting damage from existing or 
potential flooding threats. Risk analysis is an important component of risk management, 
as it uses the results of risk avoidance, mitigation, and limitation (Birkmann et al., 2013). 
The actual risk can be evaluated in the normative terms by quantifying the probability of 
occurrence and the consequences, which are better understood through risk components. 
In this regard, an integrated risk analysis, which combines hazard analysis, reliability 
analysis, hydrodynamic analysis, and consequence analysis, represents one of the most 
appropriate approach. For this aim, identifying the chain of causes and effects is 
beneficial. Source-Pathway-Receptor-Consequences (SPRC) model is a specific form of 
such a chain (Klijn, 2009) which allows distancing between flood hazard (sources), 
pathways (defence structures and flood plains), and receptors (people and properties). 
Figure 4-2 depicts integrated flood risk analysis based on the SPRC model for coastal 
areas. 

 

 

 

 

 

 

 

 

 

 

 

 

4. Hydrodynamic modeling 

4.1 Software selection  

In order to assess flood events and to predict their behavior in the hinterlands, flood 
inundation models have been developed over the decades (Teng et al., 2017). These 
models are extensively used for purposes such as flood risk assessment (Thieken et al., 
2007), flood risk mapping (Sanders, 2007), flood damage analysis (Merz et al., 2010; 
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Figure 4-1. Flood risk and its components 
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Nabinejad and Schüttrumpf, 2018), morphological prediction (Ghani et al., 2016) as well 
as flood forecasting and early warning system (Bevington et al., 2018; Bhola et al., 2019).  
In addition, there is a growing interest toward adaptive FRM under climate change 
(Woodward et al., 2014). Modeling flood insurance policies have also gained attention in 
the recent years (Dubbelboer et al., 2017). 

 

 

 

 

 

 

 

 

 

 

 

Over the past years, empirical models and hydrodynamic models have attracted the most 
attention for flood inundation modeling (Teng et al., 2017). Hydrodynamic modeling serves 
as a practical tool in predicting the behavior of flood events in the hinterland and assists 
to estimate the water depth and flood extent, which are essential for flood risk analysis. 
More specifically, hydrodynamic modeling is a popular method that combines the 
preliminary steps in conducting the FRM. Selecting a suitable model depends on the 
application purpose, the level of accuracy required, the outputs of interest, and the spatial 
and temporal scales (Teng et al., 2017). 

In this study, the software Protection Measures against Inundation Decision Support 
(ProMaIDes) is applied (Bachmann, 2012) for flood inundation modeling since it is freely 
available and comprises all relevant analyses in one package. The software helps user to 
select the most preferred flood protection measure according to risk criteria and 
associated costs for measures’ implementation. Another advantage is that its hydraulic 
model is quite strong and has been calibrated for several case studies. Furthermore, it is 

Figure 4-2. Integrated flood risk analysis and SPRC model in coasts 

Source Pathway Receptor 

Hazard analysis Reliability analysis Hydrodynamic analysis 

Consequence analysis 

Probability of flood 
occurrence 

Failure 
mechanism 

Water depth, velocity, and flood extent 

Consequences and flood damage 



 
Predicting inundated agricultural areas and associated water depth      60 
 

 

possible to connect ProMaIDes with QGIS/PostGreDatabase to visualize the data and 
results for better assessment (Bachmann, 2012). 

4.2 Software components and explanation  

ProMaIDes is a modular DSS primarily developed for flood risk assessment in river basin 
areas at the Institute of Hydraulic Engineering and Water Resources Management (IWW), 
RWTH Aachen University (Bachmann, 2012). The software was, then, adapted for the 
coast specific loads and structure types to be applied for FRM in coastal regions 
(Bachmann et al., 2012). The calculation of flood risk in ProMaIDes is based on three 
basic analyses shown in Figure 4-3. 

Reliability analysis 

The goal of the reliability analysis is to evaluate the performance of flood defence 
structures under varying load conditions. It can be performed based on breach 
development or fragility curves and reflects the reliability of a structure conditioned on the 
water level (Bachmann et al., 2012). More information regarding the reliability analysis in 
ProMaIDes can be found in (Bachmann, 2012). 

Hydrodynamic analysis 

In this sub-process, a numerical flooding simulation is carried out in the study area. The 
hydrodynamic analysis computes the water level as well as flow velocity of the inundated 
areas for each flood event after failure of defence structures or overflowing. The 
hydrodynamic analysis in ProMaIDes is based on the finite difference approach 
discretizing the diffusive wave (Tsai, 2003), in which the hinterland is represented by a 2D 
grid in the model.  

Analysis of consequences 

On the basis of the calculated hydraulic variables, the expected damage is determined in 
the last basic analysis of the flood risk calculation. Finally, the whole region is considered 
as one system and the total flood risk is computed by combining the results of three sub-
modules.  
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Figure 4-3. Modular program package ProMaIDes  
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4.3 Overview and modeling steps  

The methodological approach and required input data for establishing the hydrodynamic 
module is depicted in Figure 4-4. Although ProMaIDes has been developed to perform a 
complete flood risk analysis, it is used in this study only for the purpose of flood inundation 
modeling to calculate flood submerged areas and water depth for probable storm surge 
scenarios. Flood risk analysis is, therefore, carried out through the internally developed 
module “flood risk analysis module” which is explained later in chapter 6 as an integrated 
part of the ABM platform (see chapter 6 for details). There are two reasons for that. Firstly, 
it allows gaining advantages of coupling human behavior and flood risk assessment in 
one platform. Secondly, it enables us to calculate the flood risk at any desired level (e.g. 
the micro-level) comparing to other models such as ProMaIDes that computes the risk of 
the whole area.  

 

 

 

 

 

 

 

 

 

 

 

 

4.4 Input data  

As shown in Figure 4-4, each analysis requires various input data that should be prepared 
and converted to the appropriate format for ProMaIDes. Geometry and material of flood 
protection measures are the most important inputs for reliability analysis. Hydrodynamic 
analysis is done based on flood scenarios data and topography as well as performance 
of flood protection measures evaluated in reliability analysis. 
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Figure 4-4. The methodological approach and components of the hydrodynamic module 
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4.4.1 Topographical data 

The Digital Elevation Model (DEM) provided for the hydrological module (see Figure 3-3), 
is used as the topographical data for the hydrodynamic module. The cell size of the 
provided DEM was 1m, which was interpolated to a 50m resolution DEM in ArcGIS. The 
new DEM was then converted to the text file to be readable by ProMaIDes. 

4.4.2 Geometry and material of flood protection measures 

In order to perform reliability analysis, properties of flood defence structures such as 
height of the sea dike and its resistance play important role. For this aim, detailed data 
including absolute height of the crest and waterside base of the dike, Poleni-factor as well 
as the resistance in various segments of the flood protection structure are fed into 
ProMaIDes, as can be seen in Figure 4-5.  

 

Figure 4-5. Geometry and material of the sea dike fed into ProMaIDes 
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Due to the lack of data for Monte Carlo analysis, the failure mechanism of the dike is 
modeled based on the breach development. Dike breaches are selected according to the 
vulnerable sections of the coastal defense line on Pellworm (LKN, 2012). Accordingly, 
three breaches were defined in distance of 160m (Westerkoog at the south-west coast), 
205m (Alter Koog at the west coast), and 239m (Johann-Heimreichs-Koog at the north 
coast) from the initial point, as illustrated in Figure 4-6. Breach development is 
implemented in ProMaIDes initiated at the water level 3m (NN) with the maximum possible 
breach width 150m.  

 

 

Figure 4-6. Breach locations defined in the failure mechanism of the dike in Pellworm Island 

4.4.3 Storm surge hydrograph 

Three storm surge hydrographs with the 100-year, 200-year, 1000-year return period are 
considered as the hypothetical flooding events along the coast for the hydrodynamic 
simulation (see Figure 4-7). These three hydrographs were created based on historical 
data and are used further for the flood risk analysis in chapter 6 and 7. 

0 4,0002,000 Meters

±    Breach Location  
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Figure 4-7. Hypothetical flood events 

4.4.4 Land use data 

To perform agricultural exposure analysis, agricultural land use map is prepared based 
on the land use map provided by the State Department of Agriculture, Environment and 
Rural Areas of Schleswig-Holstein (see chapter 3). Figure 4-8 illustrates the distribution 
of agricultural lands on Pellworm Island.  

 

Figure 4-8. Agricultural land map on Pellworm Island 
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4.4.5 Hazard scenarios 

Based on three flood hydrographs, three hazard scenarios are developed in this study for 
the hydrodynamic modeling, in all of which three breaches are assumed to occur in the 
dike due to weak spots along the defence lines.  

5. Results and discussion 

Preparing the required input data, the hydrodynamic analysis was performed using 
ProMaIDes for the study area to predict inundated areas and water depths on the Island. 
Overlying maps of agricultural land and flood inundation, exposure maps are generated 
which enable us to identify the agricultural farms at the risk of flooding. Figure 4-9, Figure 
4-10, and Figure 4-11 illustrate exposure maps and flood-affected farmlands under 100-
year, 200-year, and 1000-year flood scenario, respectively.  

Table 4-1 compares inundated areas and depth of water for three hazard scenarios. As 
can be seen, under the 100-year flood event, 24.3 𝑘𝑚ଶ of the total area of the Pellworm 
Island is flooded with the mean water depth 0.7 m while the maximum water depth on the 
flood plain is about 4.86 m. Under the 200-year flood event, inundated area, mean and 
maximum water depth are computed as 27.82𝑘𝑚ଶ, 0.84 m, and 5.31 m, respectively. As 
expected, the inundated area in scenario 3 (1000-year flood event) is increased to 33.28 
𝑘𝑚ଶ with the maximum water depth 5.9 m and average water depth 1.6 m on the flood 
plain. 

Table 4-1. Inundated areas as well as maximum and mean water depth under various hazard scenarios 

 100-year flood 200-year flood 1000-year flood 

Mean water depth [m] 0.7 0.84 1.6 

Max water depth [m] 4.86 5.31 5.9 

Inundated areas [𝑘𝑚ଶ] 24.3 27.82 33.28 

It is worth noting that more than 59 percent of the farmlands are exposed to 100-year flood 
event representing 4.27 𝑘𝑚ଶ of the agricultural areas. This percentage increases to 75 
and 95 percent under the 200-year and 1000-year flood event, respectively, which is 
equivalent to 5.42 𝑘𝑚ଶ and 6.81 𝑘𝑚ଶ of the agricultural lands.  
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Figure 4-9. Inundated agricultural areas and water depth under 100-year flood in Pellworm Island 

 

Figure 4-10. Inundated agricultural areas and water depth under 200-year flood in Pellworm Island 
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Figure 4-11. Inundated agricultural areas and water depth under 1000-year flood in Pellworm Island 

6. Conclusions and outlook 

The purpose of this chapter was to develop a hydrodynamic module to estimate the flood 
extent and water level for the whole area and more particularly for the agricultural lands. 
ProMaIDes was selected to be used for the flood inundation modeling. After identifying 
the sources of flood hazard in the area, the reliability analysis was performed based on 
the breach development in the sea dike to model defence stability against the existing 
loads. In the next step, flooded areas were identified and hydraulic variables such as water 
depth, velocity, and duration were calculated. Then, the inundation and agricultural 
exposure maps were generated to visualize the information and make them 
understandable for various users. 

The achieved results and created maps are used in the next chapters in connection with 
the farmers’ decision-making module, flood analysis module, and risk perception module 
integrated in the ABM platform to calculate yearly flood damage and risk, and to establish 
the risk perception of farmers over the simulation period (see Figure 4-12)  
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Figure 4-12. Connection of hydrodynamic module with other modules in each year 
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Chapter 5 Developing damage function for 
agricultural crops under coastal flooding 

1. Introduction 

Due to flood events with devastating damage to agriculture, many models have been 
prepared to deal with the economic impacts of flooding to the agricultural sector. In this 
regard, there are models differentiating only between damage to arable land and to 
grassland, whereas other models assess damage to crops under flood hazard parameter 
(Merz et al., 2010). For example, Förster et al. applied the empirical data gathered by 
surveys and expert knowledge to evaluate the damage to crops depending on month of 
flooding and inundation duration for the detention area of Elbe River (Förster et al., 2008). 
Dutta et al. investigated flood negative impacts to agricultural crops in Ichinomiya river 
basin based on data from the Japanese Ministry of construction. In their study, inundation 
duration and depth of flooding were the dominant factors (Dutta et al., 2003). Some other 
studies prepared a set of duration-damage functions for various crops to represent the 
relation between crop damage and inundation duration for the riverine flooding (Maroof, 
2016). Shrestha et al. used both flood depth and inundation as key hazard parameters in 
assessing flood damage to plants in Indus River basin in Pakistan (Shrestha et al., 2018). 

In coastal areas, however, seawater salinity is the main damage influential factor to 
agricultural crops and the loss depends on salt-tolerance of crops. Despite its importance, 
studies have not paid much attention to crop failure due to the inundation of farmlands 
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with saltwater flooding (Haque, 2006) and there are no wide-ranging approaches in this 
regard. 

2. Research question and objective 

An appropriate approach to estimate flood economic damage to crops is establishing flood 
damage functions. Such functions allow us to investigate crop failure due to saltwater 
intrusion from the sea in the hinterland. In order to be used as a practical framework, the 
function must be able to model flood damage to crops under coastal flood and crop 
characteristics. To achieve its goal, this chapter answers the following research question: 
“How much is the relative damage to agricultural crops due to storm surge flooding? “  

The main aim of this chapter is to develop flood damage curves for agricultural crops and 
to represent the mathematical relationships between salinity (𝑆) and temperature (𝑇) of 
seawater, resistance of crops (𝑅௖௥௢௣), and the amount of resulting damage (𝑌𝐷), in the 

form of 𝑓 ሺ𝑆,𝑇,𝑅௖௥௢௣,𝑌𝐷ሻ. To achieve the main goal, the chapter specifies following 

objectives: i) to provide an overview of the flood damage influencing factors on agriculture, 
ii) to determine the dominant hazard parameter for coastal flooding, iii) to identify the flood 
resistance parameters of agricultural crops, and iv) to build the crop damage function in 
order to estimate the crop yield reduction under various levels of salinity and water 
temperature. The damage function of crops developed in this chapter is applied later in 
flood risk analysis module in the ABM platform to compute flood risk and inform farmers 
about their decisions.  

The structure of this chapter is as follows: section 3 provides information about flood 
damage categories and importance of temporal and spatial scale in damage assessment. 
Economic flood damage to agriculture is presented in section 4 continued by factors 
affecting vulnerability of agricultural crops as well as their relevant indicators.  Section 5 
discusses the effects of seawater salinity, as the main influential factor on crops in coasts, 
and crop yield response to such a threat. Results and discussion are presented in section 
6 followed by conclusions and outlook section. 

3. Concepts of flood damage assessment 

Damage assessment is an important instrument in decision support and policy 
development of flood risk management as it provides essential information for optimal 
decisions on flood mitigation. Furthermore, possible flood damage is dependent on the 
vulnerability of elements at-risk, which can be reduced through appropriate measures. 
The evaluation of flood damage is also of high importance for the insurance since the 
expected extent of economic damage as well as probable maximum loss have to be 
calculated (Merz et al., 2010) to assess if currently applied steps are cost-effective.  
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3.1 Flood damage classification 

According to literature, flood damage can be classified into tangible and intangible 
damage depending on whether or not they can be evaluated in monetary values (Parker, 
1995). Another distinction is commonly made between direct and indirect damage 
representing the spatial distinction. According to Jonkman et al., direct damage results 
from physical contact of floodwater with the elements at-risk, whereas indirect damage 
corresponds to the damage occurring outside of inundated areas (Jonkman et al., 2008). 
Third category is about temporal distinction of flood losses where primary damage occurs 
during or immediately after flooding and secondary damage occurs later in time (Merz et 
al., 2010). Figure 5-1 illustrates the flood damage categories. 

 

 

 

 

 

 

 

 

 

3.2 Spatial and temporal scale 

Apart from the spatial and temporal extent of damage classification (see section 3.1), there 
is a methodological distinction in this regard. Concerning the temporal extent, flood may 
cause long-term consequences such as crop yield reduction for a couple of years, which 
are not considered if the damage analysis is performed for a shorter time horizon (Merz 
et al., 2010). Concerning the spatial scale, flood damage assessment can be differentiated 
into micro, meso-, and macro-scale analysis (Kutschera, 2010). Modeling scale depends 
on the spatial extent of the study area and flood impacts, aim and demands for precision 
as well as availability of data. It should be noted that there are different interpretations of 
the terms micro, meso and macro. However, the main differences lie in the spatial extent 
of the study area, accuracy or level of details and associated effort.  
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Figure 5-1. Flood damage categories 
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In the micro-scale modeling, the exposure and vulnerability assessment are performed at 
the object level where each individual receptor is modelled (Merz et al., 2010). Meso-scale 
analysis corresponds to a scale between micro and macro where a group of flood 
receptors are lumped together (Klijn, 2009). In the macro-scale modeling, the differences 
among objects are supposed to be small. Accordingly, elements are lumped together, 
which results in the less-detailed representation of the study area.  

4. Flood damage assessment of agricultural sector 

4.1 Tangible agricultural damage 

Based on the damage categories discussed in section 3.1, economic damage to the 
agriculture is classified into four main groups. An example is crop yield loss occurring in 
the first year (primary direct flood damage), which may last for a number of years 
(secondary damage). The crop loss causes reduction in farmers’ profit (primary indirect 
damage), selling the farmlands as well as farmers’ migration from the area (secondary 
indirect damage). Therefore, agricultural damage classes are interdependent and 
influence each other. Further examples of tangible agricultural damage are reported in 
Table 5-1. 

Table 5-1. Classification of tangible agricultural damage 

             Primary             Secondary  

Direct  - Crop loss and yield reduction 
- Livestock fatalities 
- Loss of livestock products (e.g. milk) 
- Damage to perennial plant material 
- Damage to soil 
- Damage to buildings 
- Damage to machinery 
- Damage to stored inputs 
- Damage to infrastructure (e.g. roads) 

- Loss of added value due to the loss of yield in the 
first years after replanting perennial plant material 
(orchards, vineyard) or reseeding grass 

- Loss of added value due to unavailability of 
production factors (machinery, inputs, etc.) 

- Cost of relocation of premature sales of livestock 
- Cost of additional food for livestock 

 

Indirect  - Increase in travel time due to the damage to 
infrastructure 

- Delay or cancellation of supply from the 
flooded area (inputs, machinery, etc.) 

- Reduction in farmers’ income 

- Loss of added value outside the flooded area due to 
business interruption of assets in the flooded area 

- Loss of added value outside the flooded area due to 
damage to infrastructure 

- Selling farmlands 
- Farmers’ migration 

4.2 Damage influencing factors 

Within the scope of flood damage assessment, agriculture is mostly modelled as a whole. 
However, various spatial boundaries such as plot, farmland, groups of farmlands, and 
agricultural sector can be studied, with its own components exposed to flooding. For 
example, at the plot level, crops, soils, buildings, machineries, cattle, and infrastructures 
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can be negatively affected. Apart from that, farmers living in the flood-prone areas suffer 
from the agricultural flood damage due to the reduction in their profits or the economic 
shocks at national- or regional-level. Therefore, spatial extent of the flooded area and 
chosen boundaries play crucial role in identifying at-risk elements within the boundaries. 

In general, agricultural flood vulnerability is a function of flood hazard parameters, degree 
of exposure, and resistance (Jose et al., 2017). Whereas hazard parameters depend on 
the magnitude and intensity of flooding, two other parameters depend on the 
characteristics of at-risk objects. Although human response and flood adaptation play key 
role in reducing the damage and associated risk (see section 2.3 in chapter 2), current 
flood risk analysis methods do not pay attention to the adaptive capacity of the people 
subjected to flooding. To address this aspect, we propose a forth parameter called 
“adaptive behaviour” as an external parameter, which may affect the damage influential 
factors positively. This parameter will be discussed with more details in the next chapters 
and will be embedded in the relevant modules in the ABM platform (see chapter 6) 

4.2.1 Hazard parameters 

Hazard parameters reflect the specific characteristics of flood events that cause negative 
impacts on exposed objects. Compared to residential or industrial sectors for which water 
depth is the main hazard parameter in establishing the damage functions, flood damage 
to agricultural sector depends on several hazard parameters as follows. 

Time of flood occurrence 

One of the major differences in damage evaluation of agricultural sector is the importance 
of the time of flood occurrence respecting crop growth stages and land management 
activities (Thorne et al., 2007). For example, flooding in July can cause higher damage to 
the crops that should be harvested in August than those whose harvesting time is in 
October. Given that vegetative cycle of crops depends on climatic conditions, the relation 
between time of flooding and crop damage is case specific (Brémond et al., 2013). To 
consider the seasonality as an essential parameter, studies define various crop damage 
coefficients linked to seasons of the year (Brémond et al., 2009; Brémond et al., 2013). 
The temperature of floodwater is another important feature that is related to the time of 
flooding. It is particularly important in the coastal zones where seawater salinity varies 
under different temperatures.  

Flood duration 

Along with the period of occurrence, duration of flooding is a substantial aspect (Lotsch et 
al., 2010) in estimating the required time for the soil to be dried (Brémond et al., 2013).   
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Water depth 

Depth of the floodwater contributes to the physical damage to agricultural components 
(Lotsch et al., 2010). Similar to other sectors, water depth is probably the main hazard 
parameter to evaluate the flood damage to farm buildings, machineries, plant materials, 
and soils (Hoes and Schuurmans, 2006; Jonkman et al., 2008). 

Velocity 

Water velocity is of high importance in flash flood where the flow velocity destroys the 
plant materials and leads to soil erosion (Kato and Torii, 2002; Tsakiris et al., 2009). 

Silt and salinity 

Transportation of silt and salinity from the sea into the hinterland causes negative impacts 
on crops. Depending on the crop type, salinity causes different levels of crop damage. For 
instance, vegetables such as tomatoes are very sensitive to salinity whereas grain crops 
such as barley are more tolerant towards salt (FAO, 2005). Therefore, salt-tolerance of 
crops is of high importance in evaluation of potential flood damage. Along with the crop 
type, fertility and texture of saline soil play role in agricultural damage assessment (Haque, 
2006).  

Type of flooding 

Depending on the flood type, different type and amount of damage may occur (Kron, 2013) 
due to different flood origins and characteristics. For instance, flash flood has a higher 
flow velocity leading to soil degradation. Coastal flooding carries salinity into the 
hinterland, which has long-term impacts on crops. Comparing to others, fluvial flooding 
gives more time to farmers to take appropriate actions such as early harvest (Mao et al., 
2016). 

4.2.2 Exposure 

Flood exposure is the degree to which the components are subject to flooding. In 
literature, exposure refers to the location of the elements within flood-prone areas. 

4.2.3 Resistance 

Resistance expresses the capability of at-risk elements to resist to the hazard. Resistance 
is the opposite of sensitivity, which can be distinguished into biophysical sensitivity (e.g. 
sensitivity to salt) and socio-economic sensitivity (e.g. sensitivity to price change) (Förster 
et al., 2008). In the agricultural sector, typical biophysical resistance parameters are the 
type, height, susceptibility to flooding, and growth stage of crops (Lotsch et al., 2010), 
while field parameters such as soil structure are also crucial.  
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4.2.4 Adaptive behaviours 

Farmers are one of the most vulnerable social groups (Jamshidi et al., 2018) whose 
vulnerability should be considered in the flood damage assessment of agricultural sector. 
As discussed in section 2.3 in chapter 2, determinants such as socio-economic factors, 
psychological characteristics, and social interaction influence human adaptive behaviours 
and shape the adaptive capacity of farmers exposed to flooding. In general, adaptive 
capacity is a social and technical skill of individuals to adjust to the environmental changes 
such as flood or drought and to cope with the negative impacts (Jose et al., 2017). 
Although it is not possible to mitigate hazard parameters directly through adaption, it has 
influences on resistance factors and exposure (Merz et al., 2010). For instance, farmers 
may sell their farmland and move to the out of flooded area, which leads to reduction in 
the exposure of crops and machineries. Changing the crops to the flood-tolerant ones is 
an example of human adaptation which results in increasing the resistance of at-risk 
objects. The detailed information about adaptive behaviours and their influential factors 
can be found in section 2.3 in chapter 2.  

4.2.5 Agricultural flood vulnerability indictors 

Identification of indicators helps to understand the agricultural vulnerability in flood events. 
In this regard, a wide range of indicators may contribute to the damaging factors. However, 
each study area has certain characteristics making some indicators more relevant than 
others in vulnerability assessment. Table 5-2 shows a list of the indicators related to the 
influencing factors on crops, discussed in the previous sections.  

Table 5-2. Indictors of flood damage influential factors on agriculture 

Damage 
influencing 

factors 
Hazard parameters Exposure Resistance Flood adaptive behaviour 

Indicators 

- Period of occurrence 
- Duration of flooding 
- Depth of water 
- Flow velocity 
- Silt and salinity 
- Type of flood 

- Location of 
at-risk 
elements 

- Crop type 
- Topography 
- Growth stage 
- Height of crop 
- Soil structure 
- Market price 
- Size/structure  

of buildings 

- Socio-economic factors 
- Demographic characteristics 
- Social interaction 
- Psychological factors 
- Risk perception 
- Trust in expert risk assessment 

The level of details in flood damage analysis highly depends on the methodological scales 
(see section 3.2).  Table 5-3 compares micro- and macro-scale approaches in agricultural 
damage assessment in terms of the at-risk elements, damage functions, and individual 
adaptive behaviour.   
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Table 5-3.Comparison of micro-and macro-scale approaches in agricultural damage assessment 

Due to the interdependency of flood adaptive behavior and other influential factors, a 
multi-criteria evaluation is essential. However, there is a lack of research to include 
individual adaptive behavior in flood damage and risk analysis. One reason is the limited 
knowledge about its importance and effects. More importantly, the complexity and 
difficulty in predicting and modeling the interactions between human behavior and other 
influential factors result in neglecting such dynamic factors.  

To address the issue, in this study, first three damage influential factors are included in 
flood damage curve of crops developed in this chapter. The forth-introduced parameter-
human adaptive behavior- will be modeled later in the chapter 6, in risk perception module 
within ABM platform which will be in connection with flood risk analysis and decision-
making module. Such an alternative approach reinforces standard flood risk models by 
including different dimensions of vulnerability and their interactions. 

5. Salinity and damage to agricultural crops in coasts 

Flow velocity and water depth play role in crop yield losses in flood events. In coastal 
areas, however, salinity of the seawater is the major limiting factor since salt will 
accumulate in the rooting depth to damaging concentration and if it becomes excessive, 
losses in crop yield will be resulted (Brémond et al., 2013). Salinity affects crop growth by 
reducing its ability to absorb water. Due to the exposure of the study area (Pellworm 
Island) to the coastal flooding, the focus of the rest of the chapter is mainly on the salinity 
and resulting economic damage to crops. To achieve its objectives, our research is based 
on the micro-scale analysis for which farmlands are chosen as the research unit and 
agricultural crops are the main components in the damage analysis. Besides, losses are 

Methodological 
scale 

Spatial scale At-risk 
elements 
(receptors) 

Individual 
adaptive 
behaviour? 

Damage 
function 

Level of 
aggregation 

Micro-scale 
approach 

- Farm level - Crops  
- Machenieries 
- Soil 
- Plant materials 
- Individual 

farmers 

- Yes  
- Social 

intercation 
- Socio-

phsycological 
factors 

- Risk perception 

Using 
individual 
damage 
function for 
each at-risk 
element 

Aggregating one or 
a few number of 
farmlands/farmers 

Macro-scale 
approach 

- Agricultural 
sector 

- A group of crops 
and properties 

- Whole 
agricultural 
sector 

-  No  Using one 
damage 
function for 
the whole 
agricultural 
sector 

Aggreagting 
several 
farmlands/farmers 
to one 
repensetitive 
farmland/farmer 
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limited to the tangible damage due to lack of required data as well as the complexity 
involved in modelling of intangible damage. 

5.1 Salinity 

Salinity (S) is the number of grams of dissolved solids in one kilogram of typical seawater 
(g/kg) and indicates the salt concentration. This quantity is usually expressed as the 
measure of parts salt per thousand parts seawater (ppt or ‰) (Baker et al., 2007). In 
addition to hydrogen and oxygen atoms, seawater in the ocean has many elements 
dissolved in it but only eleven make more than 99% of all the dissolved salts (Sverdrup et 
al., 1942). The relative proportions of the eleven ions are nearly constant across all seas, 
which are reported in Table 5-4. 

Table 5-4. Major constituents of seawater (Sverdrup et al., 1942) 

Substance Weight in the seawater [‰] Weight in the seawater [%] 

Chloride (Cl-) 18.980 55.04 

Sodium (Na+) 10.556 30.61 

Sulfate (SO4
2-) 2.649 7.68 

Magnesium (Mg2+) 1.272 3.69 

Calcium (Ca2+) 0.400 1.16 

Potassium (K+) 0.380 1.10 

Bicarbonate (HCO3
-) 0.140 0.41 

Bromide (Br -) 0.065 0.19 

Borid acid (H3BO3) 0.026 0.07 

Strontium (Sr2+) 0.013 0.04 

Fluoride (F-) 0.001 0.00 

Total 34.482  99.99 

5.2 Effects of salinity  

The salt content in the water has various negative and positive effects. For instance, slight 
changes in salinity in high latitude have large influences on the thermohaline circulation 
(Wunsch, 2002). The salinity and temperature work as a global conveyer, connect the five 
oceans, and transport mass and thermal energy, which increases the water density (Talley 
et al., 2011). In addition, salinity affects some main physical properties of water as 
presented in Table 5-5. 

Rising the salinity leads to an increase in the electrical conductivity of water, which is in 
connection with the percentage of the damage to the cultivated plants caused by contact 
with salty water (Maas and Hoffman, 1977). Thus, it is of high importance to investigate 
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the relation between salinity, water electrical conductivity, and the extent of damage to 
crops.  

Table 5-5. Effects of salinity on the physical properties of water (Talley et al., 2011) 

Increase of salinity 

Increasing effect Decreasing effect 

Electrical conductivity Freezing point 

Density Temperature of maximum density 

Refractive index Compressibility 

Speed of sound Specific heat 

Surface tension Solubility of non-reacting gases 

5.3 Crop yield response to salinity 

Response of plants to salinity is influenced by three factors: soil factor, plant factor, and 
environmental factor (Maas and Hoffman, 1977). The soil quality and proper use of 
fertilizer can have positive impacts.  Temperature, humidity, and air pollution are the 
environmental factors that change the crop response to salinity. The resistance of crops 
against salty water, however, is an important parameter resulting in different responses at 
the same level of salinity. For example, onion is more vulnerable to salty water than sugar 
beet. In this regard, growth stage of plants plays a crucial role, as some plants are more 
sensitive to salinity in their early growth phase (Förster et al., 2008).   

One of the most common approaches to represent response of crops to salty water is the 
Maas-Hoffman model (Maas and Hoffman, 1977). In the model, the salt-tolerance of crops 
is described by two parameters: slope and threshold salinity. The salinity below the 
threshold will not affect the crop yield. Exceeding the threshold salinity, the reduction in 
relative crop yield is started, which is shown by slope. The relative crop yield can be 
estimated by the following equation (Maas and Hoffman, 1977): 

𝑌௥ ൌ 100 െ 𝑏 ∗ ሺ𝐸𝐶௘ െ 𝑎ሻ  (5-1) 
 

where 𝑌௥  is the relative yield in percent, 𝑎 is the salinity threshold in deci siemens per 
meter (dS/m), 𝑏 is the slope experessed in percent yield decrease per unit increase ሺ% 
per dS/m), and 𝐸𝐶௘ presents the mean electrical conductivity of a saturated paste of the 
soil in the root zone. 

𝐸𝐶௘ is the traditional soil salinity measurement expressed in dS/m. The higher the 
electrical conductivity of the soil, the higher the level of salts in the water, the more difficult 
the plant growth, and the more the reduction in the crop yield. Salinity threshold presents 
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the highest level of salinity tolerable by the plant without any yield loss. Slope is the 
decrease in the crop yield at the soil salinity above the threshold. 

5.3.1 Salinity tolerance of crops 

Salt-tolerance of crops is the maximum salinity level crops tolerate without any reduction 
in their productivity.  Concerning the salt-tolerance, agricultural crops are classified into 
sensitive, moderately sensitive, moderately tolerant, and tolerant for the soil electrical 
conductivity in the range of 0-32 dS/m (Maas and Hoffman, 1977). In 2006, Schleiff 
introduced the fifth category as very tolerant crops which are resistant toward very salty 
soil with the electrical conductivity up to 42.5 dS/m (Schleiff, 2006). Table 5-6 presents a 
list of crops and their salinity tolerance (Tanji and Kielne, 2002). It should be noted that 
the salt-tolerance characteristics in Table 5-6 are valid in the soils that chloride is the 
predominant anion (Tanji and Kielne, 2002). 

Apart from the salt-tolerant crops listed in Table 5-6, quinoa is slowly establishing itself in 
Germany as it tolerates dry periods as well as frost (Illner, 2017). In Germany, about 100 
hectares of the farmlands are planted with quinoa (Illner, 2017). The crop is frequently 
examined, whereby no clear salinity thresholds and limit values are fixed yet. Literature 
reports a possible threshold value of 6 dS/m and a yield reduction of 50 % at a 
concentration of 40 dS/m (Hamdy, 2016). Regarding the salt problem of farmers in coastal 
areas, the plant represents a great potential for improvement if further progress is made. 

5.3.2 Electrical conductivity of the soil (𝐸𝐶௘) 

After each irrigation or coastal flooding, the soil becomes saltier and if the salts are 
accumulated in the rooting depth, crop yield will be reduced. By applying sufficient water, 
a portion of the salt may be leached from the root zone to the lower layers and thus the 
amount of salts in the root zone will be reduced. The fraction of applied water leached 
below the root zone is called leaching fraction (𝐿𝐹). The higher the 𝐿𝐹, the less the salt 
accumulation in the root zone. The salinity of the drainage water is estimated as (Tanji 
and Kielne, 2002): 

𝐸𝐶ௗ௪ ൌ  
𝐸𝐶௪
𝐿𝐹

 
 (5-2) 

 

where 𝐸𝐶ௗ௪ and 𝐸𝐶௪ are the drainage water salinity moving to lower layers below the root 
zone and the applied water salinity, respectively. Soil salinity is often measured on the 
saturation extract of the soil and at 𝐿𝐹 equal to 15-20 percent. 
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Table 5-6. Salt-tolerance of crops (FAO, 2002) 

Crop Salinity threshold (a) [dS/m] Slope (b) [ % per dS/m] 

Sensitive crops 
Bean 
Carrot 

Strawberry 
Onion 

Blackberry/ Boysenberry 
Plum: prune 

Apricot 
Orange 
Peach 

Grapefruit 

 
1.0 
1.0 
1.0 
1.2 
1.5 
1.5 
1.6 
1.7 
1.7 
1.8 

 
19 
14 
33 
16 
22 
18 
24 
16 
21 
16 

Moderately sensitive crops 
Turnip 
Radish 
Lettuce 
Pepper 

Sweet potato 
Corn/ Flax/ Potato 

Sugarcane 
Cabbage 

Celery 
Spinach 

Cucumber 
Tomato 
Broccoli 

Paddy rice 

 
0.9 
1.2 
1.3 
1.5 
1.5 
1.7 
1.7 
1.8 
1.8 
2.0 
2.5 
2.5 
2.8 
3.0 

 
9.0 
13 
13 
14 
11 
12 
5.9 
9.7 
6.2 
7.6 
13 
9.9 
9.2 
12 

Moderately tolerant crops 
Wildrye, beardless 

Wheatgrass 
Beet, red 

Squash, zucchini 
Cowpea 
Soybean 

Ryegrass, perennial 
Wheat, durum 
Barley (forage) 

Wheat 
Sorghum 

 
2.7 
3.5 
4.0 
4.7 
4.9 
5.0 
5.6 
5.7 
6.0 
6.0 
6.8 

 
6.0 
4.0 
9.0 
9.4 
12 
20 
7.6 
5.4 
7.1 
7.1 
16 

Tolerant crops 
Date palm 

Bermudagrass 
Sugar beet 

Wheatgrass, fairway crested 
Wheatgrass, tall 

Cotton 
  Barley 

 
4.0 
6.9 
7.0 
7.5 
7.5 
7.7 
8.0 

 
3.6 
6.4 
5.9 
6.9 
4.2 
5.2 
5.0 

As a result, the following equations are achieved governing the general relationship 
between electrical conductivity of water (𝐸𝐶௪), of drainage water (𝐸𝐶ௗ௪), and of soil (𝐸𝐶௘) 
(Tanji and Kielne, 2002):  
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𝐸𝐶ௗ௪ ൌ 3 ∗ 𝐸𝐶௪  (5-3) 
 

𝐸𝐶௘ ൌ 1.5 ∗ 𝐸𝐶௪  (5-4) 
 

𝐸𝐶ௗ௪ ൌ 2 ∗ 𝐸𝐶௘  (5-5) 
 

Above equations are based on the 𝐿𝐹 in arid areas where the crops are irrigated 
continuously with saline water. However, flooding by storm surges is less frequent than 
irrigating with salty water in the arid areas. Moreover, in the coasts especially in the 
northern Germany, higher precipitation is expected (Wetterdienst, 2017), which results in 
greater leaching than assumed.  By an increase of 30 percent in the 𝐿𝐹 in arid areas 
(Schüttrumpf et al., 2013), the soil salinity along coastal regions can be estimated as: 

𝐸𝐶௘ ൌ 0.8 ∗ 𝐸𝐶௪  (5-6) 
 

5.3.3 Electrical conductivity of the water (𝐸𝐶௪) 

Water electrical conductivity (𝐸𝐶௪) is the water capability to pass the electrical flow. As a 
result, electrical conductivity is a measure of saltiness of the water and is closely related 
to the salt concentration, temperature, mobility of ions, and valence of ions (Weyl, 1964). 
To estimate the 𝐸𝐶௪ under various ranges of seawater salinity and temperature, two 
approaches are commonly used in literature: 

First approach: water electrical conductivity as a function of the chloride 

In 1964, Weyl developed an empirical equation to calculate the electrical conductivity of 
water as a function of two variables: chlorinity and temperature (Weyl, 1964): 

𝐿𝑜𝑔 𝐸𝐶௪,்  ൌ  0.57627 ൅  0.892 ∗  𝑙𝑜𝑔 𝐶𝑙 െ  10 െ 4 ∗  𝜏
∗  ሾ88.3 ൅  0.55 ∗  𝜏 ൅  0.0107 ∗  𝜏ଶ െ  𝐶𝑙   
∗  ሺ0.145 –  0.002 ∗  𝜏 ൅  0.0002 ∗  𝜏ଶሻሿ 

 
 

 (5-7) 
 

𝜏 ൌ  25 –  𝑇         (5-8) 
 

where 𝐶𝑙 is the chlorinity in ‰, 𝑇 is the temperature in °C, and 𝐸𝐶௪,் is the water electrical 

conductivity in mho/cm. This equation can be applied over chlorinity range 17-20 ‰ and 
temperature range 0-25 °C.  

Assuming that Chloride is the main component of salty seawater, UNESCO defined the 
following relationship between chlorinity and salinity (UNESCO, 1981): 

𝐶𝑙  ൌ  𝑆/1.80655  (5-9) 
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where 𝑆  is the seawater salinity expressed in ‰. The above equation is valid over a 
salinity range 30-35 ppt. 

Second approach: water electrical conductivity as a function of water salinity  

Kramer et al. defined three water categories including freshwater, brackish-water, and 
saltwater depending on the salinity level (Kramer et al., 1994). Later, Hockensmith 
proposed Figure 5-2 to relate water salinity with water electrical conductivity of three 
categories at 25 °C (Hockensmith, 2004). As can be seen, the diagram can be used for a 
wide range of salinity from 0 to 40 ppt to determine the 𝐸𝐶௪ at 25 °C. Since the 𝐸𝐶௪ varies 
with temperature, Hayashi developed the following equation to calculate water electrical 
conductivity at any desired temperature in the range of 0-30 °C (Hayashi, 2004):  

𝐸𝐶ௐ,் ൌ  𝐸𝐶ௐ,ଶହ ∗  ሾ1 ൅  𝛼 ∗  ሺ𝑇  െ  25ሻሿ    (5-10) 

 
𝐸𝐶ௐ,ଶହ  and  𝐸𝐶ௐ,் indicate water electrical conductivity in dS/m at 25 °C and temperature 

𝑇 in °C, respectively. 𝛼 is a constant parameter in 1/°C varying from 0.0184 to 0.0189 for 

the water salinity in the range of 0 to 40 ppt. To make a simplification, this parameter can 
be determined as its mean value, 0.0187, with error less than 2.4 % (Hayashi, 2004).  

 

Figure 5-2. Correlation between salinity and water electrical conductivity (at 25 °C) (Hockensmith, 2004) 
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6. Results and discussion 

6.1 Damage function of agricultural crops 

To develop flood damage curve for agricultural crops in coasts, we take the following 
steps: formulating agricultural crop failure, determining flood characteristics, specifying 
crop characteristics, estimating soli electrical conductivity, and establishing the crop 
damage function.  

As discussed in the previous sections, the dominant hazard parameter for coastal flooding 
contributing to the physical damage to agricultural crops is seawater salinity (section 5.3) 
that varies with water temperature. Crop resistance to flooding is another important factor 
determining the flood damage ratio of crops. Accordingly, the flood damage function of 
agricultural crops should provide a mathematical relationship between crop 
characteristics, flood hazard parameters, and flood damage ratio. Therefore, we formulate 
agricultural crop failure (𝑌𝐷) due to the saltwater intrusion from the sea in the hinterland 
as: 

𝑌𝐷 ൌ  𝑔ሺ𝑐𝑟𝑜𝑝 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠, 𝑓𝑙𝑜𝑜𝑑 ℎ𝑎𝑧𝑎𝑟𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠ሻ  (5-11) 

 
In which crop characteristics are governed by the decrease in yield at the soil salinity 
above the threshold (𝑏 in percent per dS/m) and by maximum soil salinity without yield 
loss (𝑎 in percent per dS/m) (see also section 5.3): 

𝐶𝑟𝑜𝑝 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠 ൌ 𝑅௖௥௢௣ ൌ ℎሺ𝑎, 𝑏ሻ  (5-12) 

 
The primary hazard parameters that control crop damage under the coastal flooding are 
salinity (𝑆 in ppt) and temperature (𝑇 in °C) of seawater:  

𝐹𝑙𝑜𝑜𝑑 ℎ𝑎𝑧𝑎𝑟𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ൌ 𝑘ሺ𝑆,𝑇ሻ  (5-13) 

 
As a result, the agricultural crop failure due to coastal flooding is a function of all above 
variables: 

𝑌𝐷 ൌ  𝑔ሺℎሺ𝑎, 𝑏ሻ, 𝑘ሺ𝑆,𝑇ሻሻ  (5-14) 

 
On the other hand, crop yield response to the salinity can be best modeled with a linear 
relationship between salt-tolerance of crops and soil electrical conductivity (see section 
5.3). Taking the discussed linear relationship between the two parameters (see section 5-
3), we propose the following crop damage function as an appropriate equation for 
estimating the damage ratio of flood affected crops in coasts: 
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𝑌𝐷 ൌ 𝑏 ∗ ሺ𝐸𝐶௘ െ 𝑎ሻ ൌ  𝑏 ∗ ሺ0.8 ∗ 𝐸𝐶௪ െ 𝑎ሻ  (5-15) 

 
Since 𝐸𝐶௪ is a nonlinear function of seawater salinity and temperature (see also section 
5.3.3), Eq. (5-15) represents a nonlinear function, as well. Replacing 𝐸𝐶௪ by function 
𝑙ሺ𝑇, 𝑆ሻ for the simplification, the proposed crop damage function can be formulated as: 

𝑌𝐷 ൌ 𝑏 ∗ ሺ0.8 ∗ 𝑙ሺ𝑇, 𝑆ሻ െ 𝑎ሻ  (5-16) 

 
Eq. (5-16) indicates the nonlinear relationship among all mentioned variables. Under the 
specified level of salinity and temperature, the proposed crop damage function has a linear 
relationship with crop characteristics. 

6.2 Modeling framework for crop damage function in coasts 

Modeling framework and required data for establishing crop damage function under 
coastal floods are illustrated in Figure 5-3. As can be seen, flood and crop characteristics 
should be first identified for the study area after which the temperature and salinity of 
seawater are estimated. Next, soil electrical conductivity will be calculated, which can be 
done in two different ways depending on the range of seawater salinity (see section 5.3.2). 
In the last step, damage curve of crops will be generated as a function of salinity tolerance 
of crops and soil salinity. The presented framework is applied in the next sections to 
construct flood damage function of agricultural crops in the Pellworm Island.   

 

 

 

 

 

 

 

 

 

 
Figure 5-3. Modeling steps for establishing crop damage function under coastal flooding 
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6.3 Input data and model setup 

In order to build the flood damage function of agricultural crops, a number of flood and 
crop data are required to calculate soil electrical conductivity as well as crop damage 
factor. Relevant inputs are seasonality and type of flooding, key flood hazard parameter(s) 
as well as salinity tolerance of crops and their sowing/harvesting cycle. 

6.3.1 Flood characteristics 

Pellworm Island is threatened by storm surge flooding in the winter when the water 
temperature is relatively low. Since the hinterland is flooded by the salty seawater, salinity 
is the most influential factor governing damage characteristics.  Schaber et al. carried out 
a study to compare the salinity between the North Sea and Baltic Sea. They found out 
that salinities in the Wadden Sea region of the North Sea are lower than in open seas due 
to the freshwater from rivers such as Weser, Elbe, and Eider (Schaber et al., 2011). 
According to their research, average summer sea surface salinity around Pellworm Island 
is 28 ppt (see Figure 5-4). As the salinity in Wadden Sea decreases in the early spring-
February to May- (Voynova et al., 2018), assuming the seawater salinity equal to 28 ppt 
in February for this study could be a good estimation.  

Another important input is the seawater temperature in flooding time around the Pellworm 
Island. The Weather Spark has recorded water temperature around the Island in February 
in the range of 1 - 6 °C with the average 3 °C (Weather Spark, 2019). In our study, the 
seawater temperature is assumed to be 3 °C for further analysis.  

6.3.2 Crop characteristics  

Table 5-7 provides salt-tolerance of crops that are cultivated in Germany and thus can 
grow on the Pellworm Island. The traditional crops cultivated in the Pellworm are bolded 
in the table.  

In addition to salt-tolerance of crops, the crop yield loss depends on the growing stage of 
plants at the time of flooding (see Figure 5-3). In comparison to flooding with fresh water 
occurring throughout the whole year, the German North Sea coasts have been highly 
exposed to storm surges between November to February. During this period, some 
agricultural crops such as winter crops are at an early stage of growth or in the winter rest. 
A number of fruits such as potato and sugar beet have been harvested and the grassland 
has been cut or used for grazing. In addition, the majority of operational expenses such 
as fertilization, plant protection, labor, or ordering the crops for summer cultivation have 
been not expensed by February and will be paid after, if there is no flooding.  
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Figure 5-4. Average summer sea surface salinity of Wadden Sea region of North Sea (Schaber et al., 
2011) 

Table 5-7. Salt-tolerance of crops in Germany (FAO, 2002) 

Crops Salt-Tolerance  Salinity threshold [dS/m] Slope [% per dS/m] 

Rye Tolerant 11.4 10.8 

Rye for forage Tolerant 7.6 4.9 

Spring barley Tolerant 8 5 

Triticale Tolerant 6.1 2.5 

Asparagus Tolerant 4.1 2 

Sugar-beet Tolerant 7 5.9 

Wheatgrass, tall Tolerant 8,6 3 

Ryegrass Moderate tolerant 5.6 7.6 

Spring canola Moderate tolerant 11 13 

Winter wheat Moderate tolerant 6 7.1 

Maize  Moderate sensitive 1.7 9.6 

Corn silage Moderate sensitive 1.7 12 

Potato Moderate sensitive 1.7 12 

Clover red Moderate sensitive 1.5 12 
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6.4 Soil electrical conductivity in Pellworm Island 

To calculate the electrical conductivity of soil, it is first needed to extract the water 
electrical conductivity. This parameter can be estimated in two ways (see section 5.3.3 
and Figure 5-3) depending on the range of seawater salinity. Table 5-8 presents soil and 
water electrical conductivity in the Pellworm Island calculated with two approaches 
discussed before. As can be seen, both methods give very similar results and the 
difference is less than 2 % since the salinity in the seawater is close to 30 ppt. As 
expected, water and soil electrical conductivity in winter (temperature 3 °C) are much 
lower than those in summer (temperature 25 °C). Monthly variation of water and soil 
electrical conductivity are depicted in Figure 5-5. The higher the temperature, the more 
the water and soil electrical conductivity, and the more the flood damage to agricultural 
crops.  

Table 5-8. Soil and water electrical conductivity of Pellworm Island under coastal flooding 

 Approach 1: 

𝐄𝐂𝐖 as a function of Cl 
Approach 2: 

𝐄𝐂𝐖 as a function of S 

Seawater temperature (T) in winter 3 °C 3 °C 

Seawater salinity (S) 28 ppt 28 ppt 

Chloride (Cl) 15.49 ppt - 

Water electrical conductivity at 25 °C (𝐄𝐂𝐖) - 43.45 dS/m 

Water electrical conductivity at 3 °C (𝐄𝐂𝐖) 25.06 dS/m 25.57 dS/m 

Soil electrical conductivity at 25 °C (𝐄𝐂𝐞) 34.76 dS/m 34.76 dS/m 

Soil electrical conductivity at 3 °C (𝐄𝐂𝐞) 20.05 dS/m 20.46 dS/m 

Figure 5-5. Monthly variations of temperature as well soil and water electrical conductivity in Pellworm 
Island 
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6.5 Crop damage function 

Figure 5-6 illustrates the developed salinity-damage curves for agricultural crops based 
on the crop salt-tolerance data provided by FAO and those of spring barley, wheat, and 
maize, as examples (Tanji and Kielne, 2002). Given the salt-tolerance of crop, flood 
damage curve is a linear function of soil electrical conductivity lying in one of the five 
shaded regions in the figure. Table 5-9 reports the range of soil electrical conductivity in 
which crops experience no damage. In comparison to very tolerant crops, sensitive crops 
lose their yield under very low salinity level. 

 

 

 

 

 

 

 

 

  

 

 

Table 5-9. Tolerated soil electrical conductivity at zero damage level 

Salt-tolerance of crop Tolerated ECe (dS/m) 

Sensitive  0 - 1 

Moderately sensitive 1- 3 

Moderately tolerant 3 - 7 

Tolerant 7 - 9 

Very Tolerant 9-35 

 

Damage factor of crops varies by seawater temperature due to the change in soil electrical 
conductivity. Table 5-10 compares crop yield loss in the Island in winter (temperature 3 
°C) and summer (temperature 25 °C). In comparison to summer in which all crops are 
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Figure 5-6. Salinity-damage function for agricultural crops under different salt-tolerance characteristics 
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damaged completely, in winter only sensitive and moderately sensitive crops will be 
completely destroyed, and moderately tolerant crops lose 70 to 100 percentage of their 
yield. As seen, cultivating very tolerant crops reduces yield loss to less than 50%.  

Table 5-10. Calculated crop yield loss in Pellworm Island in winter and summer 

Salt-tolerance of crops 
Damage factor [%] 

Summer (25 °C) Winter (3 °C) 

Sensitive 100 100 

Moderately sensitive 100 100 

Moderately tolerant 100 70-100 

Tolerant 100 50-70 

Very tolerant 100 0-50 

Figure 5-7 shows depth-damage curve of crops under the salinity of Wadden Sea around 
Pellworm. Solid lines represent damage functions of crops cultivated traditionally on the 
Island while dashed lines are related to the crops that can grow in the area because of 
the proper climatic condition. As can be seen, except for spring barley, other three 
traditional crops are damaged completely once their farmlands are inundated by salty 
seawater. Among other crops, asparagus and triticale are resistant to the salinity, as 
expected from their slope and salinity threshold in Table 5-7. Since salinity is the main 
influential damage factor in the coasts, flood depth plays no important role in this case. 

 
Figure 5-7. Depth-damage function of crops under salinity of Wadden Sea around Pellworm Island in 
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7. Conclusions and outlook 

In coastal regions, storm surges transport salinity into the hinterland, which negatively 
affects the crop production.  The more the salt content of the water, the more probable 
the crop failure. Although salinity is the key underlying parameter that limits plant 
productivity, other factors such as time of flooding, seawater temperature, growth stage 
of plant, crop type, and crop characteristics also determine the amount of damage to the 
crops. So, there is an essential need to a comprehensive function-based framework to 
integrate all above-mentioned parameters. This allows assessing flood damage to crops 
under any range of seawater salinity and temperature as well as different levels of crop 
salt-resistance.  

This chapter aimed to establish such a flood damage function of agricultural crops when 
the farmlands are inundated by seawater. Identifying type of flooding and its seasonality 
in the study area, seawater temperature and salinity were extracted from literature. Given 
the crop salt-resistance, a linear function governs the relationship between soil electrical 
conductivity and the crop yield reduction. Under the specified seawater salinity and 
temperature, water and soil electrical conductivity were calculated for the study area, 
which were further used to estimate the damage factor for crops. Subsequently, we could 
present the salinity-damage curve of crops as well as their depth-damage curve per 
salinity level. Both developed curves are used in the next chapters to perform flood 
damage assessment as the core of the flood risk analysis module (see Figure 5-8). 

 

 

 

 

 

 

 

 

 

 

 



 
Developing damage function for agricultural crops under coastal flooding                   91 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-8. Connection of crop response to saline water sub-module with other modules in each year 

ABM platform: Flood risk analysis module 
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Chapter 6 Modeling farmers’ decision-making in 
response to flood under the influence of social 
interaction, individual risk perception, flood 
memory, and limited information 

1. Introduction 

Farmers living in flood prone-areas are exposed to flooding and suffer from that. Even in 
some less severe floods, they lose their expected incomes due to the soil erosion as well 
as crop yield reduction which may continue for a number of years. These negative 
consequences result in selling farms, migrating from the area, and increasing the 
unemployment (FAO, 2015). 

To reduce the adverse impacts, farmers may employ strategies to cope with flooding and 
reduce their vulnerability (Becker et al., 2015). Research shows a close relation between 
individual risk awareness and motivation to respond to flooding (Becker et al., 2015), 
which are influenced by individuals’ observations, expectations, and experiences. These 
all lead to heterogeneity in farmers’ decision-making under risk and change in their 
vulnerability over time. Moreover, limitations to the availability of information as well as to 
the processing capacities of farmers result in non-optimizing behaviors and bounded-
rationality (Simon, 1990).  In this regard, social networks play crucial role in information 
exchange about individual decisions and adaptive behaviors.  
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These aspects of humans (farmers)-flood interaction are, however, poorly understood in 
both flood risk management (FRM) and farmers’ decision-making studies. Thus, there is 
a need to change the perspective from macro- to micro-level and apply an interdisciplinary 
approach that can address the mentioned aspects on one hand and integrate both 
disciplines on the other hand as none of them are capable of dealing with such issues 
alone. 

2. Research question and objective 

Agent Based Modeling is an interdisciplinary approach and a new style of modeling to 
present social processes and complexities of human behaviors from the bottom-up and in 
combination with engineering practices. In this study, we establish an ABM platform to link 
individual adaptive decision-making under risk and FRM in which decision-making 
module, flood risk analysis module, and individual risk perception module are being 
developed and connected together. It allows gaining advantages of coupling human 
behavior and flood risk assessment in one platform. More importantly, it enables us to 
simulate the interaction and behavior of humans and their changing risk environment that 
results in a more holistic flood risk assessment approach. To fulfill the purposes, this 
chapter seeks to address “how do farmers in the coastal areas make yearly decisions in 
the context of flood risk management and how do individual risk perception, social 
interaction, bounded-rationality, flood memory, and diversity amongst people play role in 
this regard?” 

The primary objective of this chapter is to develop an experimental platform to link farmers’ 
decision-making and FRM for a population of semi-hypothetical farmers in order to (i) 
include farmers-flood interaction in FRM, (ii) understand the influence of farmers’ 
interactions through social networks, (iii) investigate the relationship between flood risk 
perception and private adaptive behaviors, (iv) explore the role of flood memory, and (v) 
model farmers’ adaptive decision-making under bounded-rationality. The ABM platform 
developed in this chapter is connected with the modules established in the previous 
chapters to present an Agent Based Model for farmer-flood interaction, called ABMFaFo. 

The structure of this chapter is as follows: an overview of the model is provided in section 
3 followed by a brief explanation of overall flow as well as model parameters and data. 
Section 4 presents the development of the flood risk analysis module within the ABM 
platform. Section 5 provides a step-by-step approach to develop individual decision-
making under the influence of social interactions and flood memory within the ABM 
platform. This section also includes the non-rational behavior as well as cognitive 
strategies and presents their implementation in the decision-making module. The role of 
individual risk perception is discussed in section 6 and a rule-based procedure is 
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presented to formulate risk perception in individual decision-making. The main 
conclusions are summarized in section 7.   

3. Overview of the model 

The main aim of the study is accomplished by linking the individual adaptive decision-
making in flood-prone areas within an ABM platform (presented in this chapter), 
hydrological module (see chapter 3), and hydrodynamic module (see chapter 4). The 
platform consists of three parts including farmers’ decision-making, flood risk analysis as 
well as risk perception and adaptive behavior. The ABM platform is implemented in 
Netlogo version 5.2.1 and is spatially explicit for farmlands location, cultivated crops, crop 
distribution, and inundated areas.  

The agent classes of the model are farmers, farmlands, crops, and social networks. A 
population of 37 semi-hypothetical farmers are the central decision-makers in the model. 
The population size is in accordance with the farmers’ number in the Pellworm Island and 
is based on the telephone talk with one of the farmers of the area. Crop cultivation is the 
main economic activity farm agents do in the model to earn money and their decision for 
the next year affects their farm profit. Farm agents make yearly decisions as they update 
their knowledge about crop yields, market prices, climate, and flood characteristics. They 
gain information from personal experience, interaction with others, the physical 
environment, and publicly available data. Social networks of each farm agent are 
characterized by the degree of proximity and farm-size similarity based on the homophiliy 
principle (McPherson et al., 2001).  

Farm agents are heterogeneous in their behavioral rules and interaction groups. They are 
also unique in terms of farm-size, income, and exposure to flooding. Other factors 
differentiating one farmer from another are risk perception and personal characteristics 
such as risk tolerance, satisfaction threshold, and uncertainty threshold. Crop yields can 
also vary from farmer to farmer if there are any differences in the soil type or land 
management practices, and from year to year due to differences in the weather.  Some 
farm agents’ attributes such as farm-size, farm-position, satisfaction threshold, and 
uncertainty threshold as well as risk tolerance are not changed during the simulation 
whereas economic attributes (income) and decision-making attributes (satisfaction, 
uncertainty, and behavioral types) change over time. 

Agent classes are connected within the physical and social environment. The physical 
environment consists of crops, soil, farmlands, climate, flood protection structures, and 
the surrounding sea. It provides farm agents with new information about the crop 
productivity as well as flood situation and characteristics in the following year. For this 
aim, our ABM platform is linked to the hydrological and hydrodynamic modules developed 
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externally (see chapter 3 and chapter 4). The social environment includes farm agents 
and their interacting groups and is represented explicitly in our study through establishing 
the social networks. It is worth nothing that the whole physical environment is 
parameterized based on the real data of Pellworm Island (see chapter 1, 3, 4, and 5). Due 
to lack of empirical data, however, we made assumptions about the social environment 
which are explained in more details in the following sections. 

The simulations are carried out for the period 2005-2016. For the purpose of this study, 
we hypothesize that three “200-year flood” occur in the simulation period on the Island. 
Based on the survey questionnaire conducted in the HoRisK project (Schüttrumpf et al., 
2013), farmers believe that their crop productivity decreases by 25% in the following year 
after flooding. Therefore, such a crop yield reduction has been considered in the study. 
Figure 6-1 shows the hypothetical timeline of the flood events. 

 

 

 

 

 

A yearly time step is assumed for farmers’ decision-making, which is consistent with the 
yearly modification of crop composition by farmers in reality. The smallest unit considered 
in the ABM platform is one cell in a grid, which represents 31m * 31m. The model is run 
at the spatial scale of a farmland comprising a number of cells.  

Figure 6-2 provides a schematic of the ABMFaFo activity diagram. More information 
regarding the interlinkage of modules and their input data can be found in chapter 1. At 
the beginning of the simulation, before the start of the first year in the simulation period, 
farmers’ satisfaction threshold, uncertainty threshold, flood memory, and risk tolerance 
are set. In the next step, two interacting groups are defined for each farmer: neighbors 
within the specified radius and neighbors with similar farm-size. Simulations are then 
carried out iteratively, year by year through which farmers choose yearly crop pattern 
under the influence of crop prices, individual experiences and expectations, and observing 
others’ decision as well as their perceived risk of floods. 

Within each year, a sequence of activities takes place in the order. At the start of each 
year, flood hazard assessment is carried out using the hydrodynamic module to determine 

Figure 6-1. Assumed flood events in the simulation period 
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the extent of agricultural land inundation under probable flood scenarios. As a result, 
inundation and flood hazard maps are created for the study area, which are then assessed 
to define different flood zones for varying levels of flood danger. Subsequently, a degree 
of danger is assigned to each defined zone in the way that is understandable to the public. 
In the next step, the decrease in crop yields of flooded agricultural lands is calculated 
using the flood risk analysis module to estimate the damage to agricultural crops under 
seawater salinity. At the end of the growing season, climatic and soil conditions as well as 
the topology of the area are fed into the hydrological module to compute the productivity 
of cultivated crops.   

Then, farm agents will update their knowledge about the weather, flooding situation, and 
crops in the market as well as prices and associated costs. Observing their crop 
production, farmers will be aware of their crop yield in the current year. They will also 
become conscious of their crop yield reduction due to saline seawater. Meanwhile, 
farmers’ perception of flood danger is shaped. Hence, the rational farmer assesses the 
level of danger and decides to deal with flood risk through or without adaptation strategies 
in her/his decision-making.  

At the end of each year, farm agents make their decision and choose crops for the next 
year. For this aim, farmers estimate their farm income, evaluate their satisfaction by 
comparing the actual profit and potential profit, and assess their uncertainty in terms of 
the ratio of actual to expected profit for this year. Depending on her/his satisfaction and 
uncertainty level, each farmer follows a certain behavioral strategy to take her/his decision 
for the next year. For instance, uncertain farmers consult their peers in the social network 
to update their information about others’ decisions and adaptive responses. Farmers, who 
have high level of satisfaction, will engage in the imitation or repeat their previous 
behavior. In contrast, those who are dissatisfied with the outcomes of their decision in the 
current year, try to obtain more satisfied outcomes by deliberating or engaging in social 
comparison. Flood memories of dissatisfied farmers play role in their objective function. 
While farmers with long-lasting flood memory aim to minimize their expected flood 
damage, farmers with short-term flood memory select the crop with highest expected 
profit.  

After farmers’ decision-making is completed, it is considered to be the end of the year. At 
this point, decisions taken by farmers will be fed back into the developed modules and the 
explained process will be continued year by year over the time horizon as the result of 
feedback between ABM platform and other modules.  

It should be noted that updating of crop data perceptions such as crops in the market and 
yields as well as prices and associated costs is only carried out by specified farm agents. 
The kind and amount of information each farmer has access to, depends on her/his 
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behavioral strategy in the current year and her/his interacting groups, which also 
determines farmer’ perception of the crop data. Indeed, it is assumed that not all crop data 
are readily available to all farmers, but only to those who follow certain cognitive 
strategies. For example, a farmer who deliberates, assesses the consequences of all 
possible decisions in order to optimize her/his output. Such a farmer accesses to complete 
information and is capable of processing it. She/he is aware of all crops in the market, 
their yields, and costs as well as their resistance to saline seawater in the current year. In 
comparison, the farmer who engages in the social comparison, only has access to the 
data of those crops that have been cultivated in the current year by her/himself or one of 
the peers in her/his social networks. 

 

 

 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 6-2. Activity diagram of the ABMFaFo 
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As can be seen in Figure 6-2, the model simulates both spatial and temporal dynamics in 
farmers’ decision-making and consists of two loops: an outer loop for time (year) 
incrementation and an inner loop for agent (farmer) incrementation. The outer loop 
includes updating farmers’ perception of weather, flooding situation, crop data, and crop 
damage due to salinity. It also contains calling all modules including hydrodynamic module 
to create flood map, flood risk perception module to assign the degree of danger to flood 
zones, flood risk analysis module to compute crop yield reduction, and hydrological 
module to estimate crop yield. For each iteration of the outer loop, the inner loop is 
repeated 37 times to shape the risk perception of farm agents and simulate their decision-
making process for the following year. 

3.1 Model parameters and data 

The model makes use of rich empirical data. Firstly, we use GIS files such as land use 
map and farmland spatial distribution, based on which the physical environment is 
initialized. Secondly, climate scenarios and characteristics of hypothetical flood events are 
obtained from the empirical observations and historical data. Thirdly, crop data such as 
sale prices and costs as well as land management practices come from the real data. 
Finally, attributes of farm agents including population size and their initial cropping pattern 
are assigned based on the real data. Due to lack of data, however, we make assumptions 
about farmers’ location, behavioral factors, and parameters of social networks. 

4. ABM platform: Flood risk analysis module 

To model human-flood interactions and their changes, we develop the flood risk analysis 
module within the ABM platform, which is then integrated into the decision-making 
module. Such a model is capable of including complex human behaviors in the FRM 
resulting in a more holistic flood risk assessment approach. It also enables us to calculate 
the flood risk at the micro-level comparing to other softwares such as ProMaIDes in which 
the risk is computed for the whole area.  

Modeling steps and required data for developing the flood risk analysis module in the ABM 
platform are presented in Figure 6-3.  In order to calculate the expected damage for any 
flood event, the most common approach is to combine flood hazard characteristics, the 
degree of exposure of at-risk elements, and their resistance or susceptibility to the 
particular hazard (see chapter 5). In the first step, flood damage functions are established 
to estimate how susceptible at-risk elements are to the given flood hazards.  Identifying 
the most influential hazard parameter in the area, exposure maps are generated by 
overlaying the flood inundation maps (see chapter 4) and land use maps. Finally, 
calculated flood damage is combined with the occurrence probability of such events to 
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estimate the associated flood risk (Ward et al., 2011). Following sections present more 
details regarding two modeling steps of flood risk analysis module. 

4.1 Crop yield response to saline seawater (step I) 

The first step is to establish crop damage functions under coastal flooding, for which the 
required data should be prepared (see chapter 5) and fed into the platform via the 
graphical user interface (GUI) of Netlogo. As a result, the salinity- and depth-damage 
functions of crops are generated. These damage functions describe yield response of 
plants to the seawater salinity under the given temperature. Subsequently, it is possible 
to compute the yield reduction of crops under any desired water salinity and temperature. 
Detailed information regarding the required data, modeling steps, and established 
damage function for crops can be found in chapter 5.  

 

 

 

 

 

 

 

 

 

 

 

4.2 Flood risk calculation (step II) 

The next step is to compute the agricultural crop damage and associated risk. So, 
simulated annual crop yield (see chapter 3) as well as computed submerged areas and 
water depths of three flood scenarios (see chapter 4) are fed into the model. Other 
required inputs such as flood hydrographs, exposure maps of farmlands, and time series 
of crop prices and costs are exogenous to the model. The risk is, then, approximated as 
the area under the plotted probability-damage curve or as the sum over the product of 
probability and negative consequences of floods of several return period: 
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Figure 6-3. Modeling steps and components of the flood risk analysis module in the ABM platform 
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𝑅 ൌ 𝐸𝐴𝐷 ሺ𝑥ሻ ൌ  න𝑓ሺ𝑥ሻ ∗ 𝐷ሺ𝑥ሻ ∗ 𝑑𝑥 ≅  ෍𝑝௜ ∗ 𝐷௜ 
 (6-1) 

 

where 𝑅 is the flood risk, 𝑓ሺ𝑥ሻ defines the probability density function of the flood event 𝑥,  
and 𝐷ሺ𝑥ሻ is the consequences function due to the flood event 𝑥. In the case that the 
random variable 𝑥 is a countable set of probable flood events with negative 
consequences 𝐷௜ and occurrence probability of 𝑝௜, the discrete sum represents the 
associated flood risk.   

One way to derive the occurrence probability of the given flood events is to define a 
number of event classes, each includes flood hazards of several return periods 
(Bachmann, 2012). The assumptions made are: 1) the occurrence probability of each 
class is the difference between the upper bound and lower bound likelihood, 2) the 
damage is constant for the floods belonging to that event class and is equal to the damage 
of the given flooding lying in that class, 3) the damage is zero for the events with the 
exceedance probability higher than the last class, and 4) the associated damage of less 
frequent flood is equal to that of the first class. 

In our study, 100-, 200-, and 1000-year flood constitute the hypothetical set of probable 
flood events (see chapter 4), based on which the probability-damage curve is generated, 
as illustrated in Figure 6-4. The occurrence probability and flood damage of event classes 
are reported in Table 6-1. As can be seen, several state variables are required to be 
identified in order to compute the flood damage and associated risk in the flood risk 
analysis module, which are summarized in Table 6-2. 

 

 

 

 

 

 

 

 

 

 

Figure 6-4. Probability-damage curve based on three flood events 
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Table 6-1. Occurrence probability and associated damage of flood event classes 

Flood event class Occurrence probability Flood damage 

Class 1 0.003 𝐷ଵ଴଴଴ 

Class 2 0.0045 𝐷ଶ଴଴ 

Class 3 0.0125 𝐷ଵ଴଴ 

 

Table 6-2. State variables of flood risk analysis module 

5. ABM platform: Decision-making module 

In the next step, farmers choose their cropping pattern for the following year. Factors such 
as risk perception, social interaction, flood memory, and economic status influence 
farmers’ decision-making under risk (see chapter 2). Furthermore, the uneven distribution 
of such influential factors across the population causes dissimilarities in choosing the 
behavioral strategy. To meet the objectives, we develop the decision-making module in 
combination with the flood risk analysis module within the ABM platform. A multi-stage 
process is designed and at each stage, the mentioned influential factors are added to the 
model as new features. This multi-stage process includes building the base farmers’ 
decision-making model, creating geographically explicit decision-making, integrating 
human interactions, including flood memories, and incorporating principles of bounded-
rationality into the model. Figure 6-5 illustrates the modeling steps and required data for 
developing the decision-making module in the ABM platform. 

State variable Implementation  Source Value 

Seawater salinity global External source  28 ppt 

Temperature global External source 3 °C 

Salt-tolerance of crops global External source Table 5-7  

Soil electrical conductivity Eq. (5-2) to Eq. (5-6) Endogenous Table 5-8  

Water electrical conductivity Eq. (5-7) to Eq. (5-10) Endogenous Table 5-8  

Crop damage function Eq. (5-11) to Eq. (5-16) Endogenous Figure 5-7  

Time series of crop yield global Hydrological module Final results 

Flood hydrographs global External source Figure 4-7  

Exposure map of farmlands global External source Figure 4-8  

Inundated areas  global Hydrodynamic module Figure 4-9, Figure 4-10, and 
Figure 4-11  

Probability-damage curve of floods global Endogenous Figure 6-4 
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Figure 6-5. Modeling steps and required data for developing the decision-making module in the ABM platform 
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5.1 Establishing the base farmers’ decision-making model (step I) 

We start to formulate farmers’ decision-making under uncertainty based on the standard 
agricultural economic models, in which farmers optimize their goal (Toft and O’Hanlon, 
1979; Benli and Kodal, 2003). The rationale behind is that 1) people have access to 
complete and accurate information, 2) they are capable of using and processing the 
information, and 3) they look for the most optimal solution among all alternatives. In the 
light of such an optimization-based approach, farmers behave as economic optimizers 
and choose the crops that result in highest profit or lowest loss under the weather 
condition of the area and the market prices. Therefore, the model at this stage is applied 
to study the yearly economic decisions of rational farmers under the flood risk.  

In this step, the physical environment is set up and matched to the predefined world in the 
Netlogo as a set of grids. The population of farm agents are then created and the 
farmlands are randomly assigned to them. The cultivated crops in the first year are 
distributed among farm agents in such a way that the total covered areas of crops are 
fulfilled (see Figure 3-14). The crop set in the first year includes spring canola, winter 
wheat, maise, and spring barley (see chapter 3). 

Farmers’ profit 

Flood damage to agricultural crops causes income loss of farmers even for a number of 
years. After the flood occurrence, expenses like costs of fertilizer, plant protection, and 
harvesting will be saved. However, some additional costs should be spent to improve the 
soil structure since remedial application of gypsum to neutralize saline soils may be 
required. Regardless of flooding, fixed costs such as regular labor, machinery, buildings, 
and land remain unchanged and should be spent. 

Literature presents various economic indicators to evaluate flood damage to farmers. A 
majority of studies rely on the percentage of crop yield loss due to the flood hazard 
(Pierson et al., 1994; Satrapa et al., 2012). Other researches have used the reduction in 
gross product as the monetary value of crop yield loss (Dutta et al., 2003; Förster et al., 
2008). Gross margin has been also chosen as the damage proxy calculated by reducing 
variable production costs from the income of a farm (van Duinen et al., 2015). According 
to Lacewell and Eidman, a suitable proxy is the net margin providing an estimate of 
average annual profit after subtracting the fixed costs from gross margin (Lacewell and 
Eidman, 1972). In their updated study, they included additional costs such as treatment 
and tillage in the net margin calculation (Lacewell et al., 2006).  

In our study, we use net margin as the economic indicator, assuming that farm agents 
observe flood-induced crop loss, perceive the flood damage as the net margin, and decide 
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based on this information.  The income of farmer 𝑖 for the crop 𝑥 in year 𝑡, 𝐼௜ሺ𝑥, 𝑡ሻ, is then 
equal to: 

𝐼௜ሺ𝑥, 𝑡ሻ ൌ ෍𝑌௞ሺ𝑥, 𝑡ሻ ∗ 𝑃௞ሺ𝑥, 𝑡ሻ ∗ 𝐴ሺ𝑘ሻ

ே೔

௞ୀଵ

 
 (6-2) 

 

where 𝑁௜ is the number of cells constituting the farmland of farmer 𝑖 and 𝐴ሺ𝑘ሻ presents 
the area of cell 𝑘. 𝑌௞ሺ𝑥, 𝑡ሻ  and 𝑃௞ሺ𝑥, 𝑡ሻ refer to yield and sell price of cultivated crop 𝑥 on 
cell 𝑘 in year 𝑡, respectively. The economic damage caused by flood event 𝑗 to the 
farmland 𝑖 with the cultivated crop 𝑥, 𝐷௝,௜ሺ𝑥, 𝑡ሻ, is estimated as: 

𝐷௝,௜ሺ𝑥, 𝑡ሻ ൌ ෍𝑌௞ሺ𝑥, 𝑡ሻ ∗ 𝑃௞ሺ𝑥, 𝑡ሻ ∗ 𝐴ሺ𝑘ሻ

ே೔

௞ୀଵ

∗ 𝑌𝐷ሺ𝑥, 𝑗ሻ 

 (6-3) 

 

where 𝑌𝐷ሺ𝑥, 𝑗ሻ is damage function of crop 𝑥 under flood event 𝑗 (see chapter 5). The total 
costs, 𝑇𝐶௝ሺ𝑥, 𝑡ሻ, vary depending on the flood situation in the current year:  

𝑇𝐶௝ሺ𝑥, 𝑡ሻ ൌ ∑ ሺ𝑉𝐶 ௞,ଵሺ𝑥, 𝑡ሻ ൅ 𝑉𝐶 ௞,ଶሺ𝑥, 𝑡ሻ ൅ 𝐹𝐶 ௞ሺ𝑥, 𝑡ሻ ൅ 𝐴𝐶 ௞ሺ𝑥, 𝑡ሻே೔
௞ୀଵ )   (6-4) 

 

where 𝐹𝐶 ௞ሺ𝑥, 𝑡ሻ denotes the sum of the fixed costs for crop 𝑥 in year 𝑡. 𝑉𝐶 ௞,ଵሺ𝑥, 𝑡ሻ are the 

expenditures spent before flood occurrence while 𝑉𝐶 ௞,ଶሺ𝑥, 𝑡ሻ refers to the cost for the rest 

of growing cycle of crop 𝑥 only if there is no flooding in the year 𝑡. 𝐴𝐶 ௞ሺ𝑥, 𝑡ሻ represents 
the additional costs required after the flood occurrence to improve the soil condition. The 
fixed costs are calculated on the per year basis while the variable costs are calculated on 
the per event basis as a part of the costs are avoided if no flood event occurs. The sale 
prices and management costs are obtained from (KTBL(a), 2019; KTBL(b), 2019), 
respectively. Figure 6-6 shows the sale prices of crops in the period 2005-2016.  

Due to the uncertainty associated with flood events, the expected utility function plays role 
in decision-making under risk. If there is any flood insurance2 that farmers can buy to 
compensate the flood damage to their crops, the expected profit of farmer 𝑖, 𝑒𝑥𝑝_𝑃𝑅௜ሺ𝑥, 𝑡ሻ, 
is calculated as3: 

 
2 As there is no insurance policy in Germany for farmers against storm surge, the relevant variables are 
assumed to be zero in the model. As a result, no flood insurance scenario can be investigated in our study.  
3 In general, the function of expected profit can be written as: 

𝑓ሺ𝑥, 𝑡ሻ ൌ 𝑒𝑥𝑝_𝑃𝑅ሺ𝑥, 𝑡ሻ ൌ 𝐼ሺ𝑥, 𝑡ሻ െ෍ሺሺ𝑉𝐶 ௞,ଵሺ𝑥, 𝑡ሻ ൅ 𝐹𝐶 ௞ሺ𝑥, 𝑡ሻሻ

ே೔

௞ୀଵ

െ෍𝑃௝ ∗ 𝐷௝ሺ𝑥, 𝑡ሻ

ேೕ

௝ୀଵ

െ෍𝑃௝ ∗ 𝐴𝐶௝ሺ𝑥, 𝑡ሻ െ 𝐼௣ሺ𝑡ሻ ൅  𝐼௔௩௘௥௔௚௘ሺ𝑗ሻ

ேೕ

௝ୀଵ
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𝑒𝑥𝑝_𝑃𝑅௜ሺ𝑥, 𝑡ሻ ൌ 𝐼௜ሺ𝑥, 𝑡ሻ െ ∑ ሺሺ𝑉𝐶 ௞,ଵሺ𝑥, 𝑡ሻ ൅ 𝐹𝐶 ௞ሺ𝑥, 𝑡ሻሻே೔
௞ୀଵ െ ∑ 𝑃௝ ∗ 𝐷௝,

ேೕ
௝ୀଵ

∑ 𝑃௝ ∗ 𝐴𝐶௝ሺ𝑥, 𝑡ሻ െ 𝐼௜,௣ሺ𝑡ሻ ൅  𝐼௜,௔௩௘௥௔௚௘ሺ𝑗ሻ
ேೕ
௝ୀଵ   

 (6-5) 
 

where 𝑃௝ presents the occurrence probability of flood event 𝑗 (see section 4.2), 𝐼௣ denotes 

the annual insurance premium paid by farmers, and 𝐼௜,௔௩௘௥௔௚௘ is the cost paid to farmers 

after flood event 𝑗. Accordingly, the expected flood damage to farmer 𝑖, 𝑒𝑥𝑝_𝐷௜ሺ𝑥, 𝑡ሻ, is: 

𝑒𝑥𝑝_𝐷௜ሺ𝑥, 𝑡ሻ ൌ෍𝑃௝ ∗ 𝐷௝,௜ሺ𝑥, 𝑡ሻ

ேೕ

௝ୀଵ

 

 (6-6) 

 

 
Figure 6-6. Sale price of crops (KTBL(b), 2019) 

5.2 Creating spatially-explicit decision-making model (step II) 

As discussed, farmers are heterogeneous in their attributes. Furthermore, they tend to 
interact with people who are living in neighborhoods or are similar in dimensions such as 
farm-size or age. This space-dependency of model properties demands a spatially-explicit 
decision-making module. Therefore, the spatial data achieved from the detailed GIS 
mapping are further integrated into the initial model. As a result, the real data can be 
assigned to the farmlands. In addition, it allows adding more layers to the model regarding 
the spatial distribution of farmers and the cultivated crops as well as the inundation areas 
under various flood scenarios.  Such an explicit space representation assists in defining 
and visualizing spatial heterogeneity among farm agents. Figure 6-7 depicts the 
established spatially-explicit decision-making model which is further applied to develop 
human interactions within social networks. 
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Figure 6-7. Spatially-explicit decision-making model in Netlogo 

5.3 Integrating human interaction (social networks) (step III) 

People do not make decisions in isolation, rather others influence them (Bougheas, 
Nieboer and Sefton, 2013; Le Dang et al., 2014). Social networks have a significant effect 
on the individual decision-making since they enable people to be informed of new 
technologies and products in their communities. Based on the information exchange, 
individuals become aware of risks and adaptive strategies which may change their risk 
perception and cause them to rely on others in taking the decisions. Research has also 
shown how flood risk communication can propagate through social networks (Haer et al., 
2016). 

To address human interactions, we construct the social networks and integrate them into 
the model. Farmers are connected by network links. It gives the possibility to explore the 
influence of social networks in the diffusion of individual decision-making over time. 
Whether or not the opinion and decision of neighboring farmer is influential at a given time, 
depends on the similarity between farmers. It should be noted that the constructed 
networks are unidirectional, only allow data to pass from one member to another, and not 
the other way around. As a result, farmers are unique in their social networks.  

The topology of the social networks relies on the homophily principle, where the degree 
of similarity structures the desired networks (McPherson et al., 2001). Similarity in farm-
size and farm proximity are chosen as proxies in this study to explore the interaction of 

Farm agent 

Farmland 

Virtual Island  
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each farmer in his/her social networks. These are the parameters of the model and can 
be set directly by the user through the GUI of Netlogo. While the former shows how the 
similarity in the characteristics of two individuals may connect them, the latter represents 
the interaction of the people in close proximity. As a result, two social networks have 
influences on the decision-making process of farmer 𝑖: network of similar farmers (𝑁𝑊௜,௦) 

and network of nearest neighbors (𝑁𝑊௜,௡). For each farmer 𝑖, the social network size is 

dependent on the networks’ parameters.  

Due to lack of empirical data, we make assumptions about the two network parameters. 
It is also supposed that all farmers have the same degree of farm-size similarity and 
proximity. Table 6-3 reports assumed parameters to build the networks of farmers. Figure 
6-8 shows similar farmers (green links) as well as neighboring farmers (red links) in social 
networks, represented in the GUI of Netlogo.  

Table 6-3. Parameters of farmers' social network 

Social network 
Farm-size similarity Proximity 

0.2 30 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6-8. Networks of similar farmers (𝑵𝑾𝒔) and of nearest neighbors (𝑵𝑾𝒏) in Netlogo 
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5.4 Introducing bounded-rationality (step IV) 

Limitations to the availability of information as well as to the processing capacities of 
humans in reality (see chapter 2) indicate the primary drawbacks of the rational decision-
making. To get closer to the real, some unrealistic assumptions of the standard economic 
approaches are relaxed in this stage to equip the model with bounded-rationality principle. 
For this aim, Consumat approach (see chapter 2) is applied which is capable of 
addressing various decision strategies rather than pure optimization. Such an alternative 
approach allows for simulating a number of key processes especially in the situations, 
where people select a behavior from a set of options. Another advantage is the possibility 
to study the effects of different cognitive processes on individual decision-making over 
time. In Consumat approach, agents are equipped explicitly with the behavioral rules that 
are dependent on the information gained from the environment as well as their individual 
expectation. As a result, individual decision-making deviates from the objective risk 
perception and is influenced by social interactions.   

Farmer need, satisfaction, and uncertainty 

According to Consumat approach, each agent has three main needs including existence, 
social, and personality need, which can be satisfied by performing a behavior (Jager and 
Janssen, 2012). As crop cultivation is the main economic and profitable activity of farmers, 
behaviors such as crop pattern selection refer to economical dimensions of existence and 
satisfy the income need of farmers.  

Farmer 𝑖’ income satisfaction at time 𝑡, 𝑆௜ሺ𝑡ሻ, is formulated as the ratio of her/his actual 
profit to her/his potential profit: 

𝑆௜ሺ𝑡ሻ ൌ

⎩
⎨

⎧
𝑎𝑐𝑡_𝑃𝑅௜ሺ𝑥, 𝑡ሻ
𝑝𝑜𝑡_𝑃𝑅௜ሺ𝑥, 𝑡ሻ

, 0 ൏ 𝑎𝑐𝑡_𝑃𝑅௜ሺ𝑥, 𝑡ሻ ൏ 𝑝𝑜𝑡_𝑃𝑅௜ሺ𝑥, 𝑡ሻ

1, 0 ൏ 𝑝𝑜𝑡_𝑃𝑅௜ሺ𝑥, 𝑡ሻ ൑ 𝑎𝑐𝑡_𝑃𝑅௜ሺ𝑥, 𝑡ሻ
  0,          𝑎𝑐𝑡_𝑃𝑅௜ሺ𝑥, 𝑡ሻ ൑ 0

 

 (6-7) 

 

while the actual profit of farmer 𝑖, 𝑎𝑐𝑡_𝑃𝑅௜ሺ𝑥, 𝑡ሻ, is calculated as follows: 

𝑎𝑐𝑡_𝑃𝑅௜ሺ𝑥, 𝑡ሻ ൌ 𝐼௜ሺ𝑥, 𝑡ሻ െ 𝑇𝐶௝ሺ𝑥, 𝑡ሻ െ 𝐷௝,௜ሺ𝑥, 𝑡ሻ െ 𝐼௜,௣ሺ𝑡ሻ ൅  𝐼௜,௔௩௘௥௔௚௘ሺ𝑗ሻ 
 (6-8) 

 

The potential profit, 𝑝𝑜𝑡_𝑃𝑅௜ሺ𝑥, 𝑡ሻ, refers to the highest profit, a farmer can earn, which is 
equal to the farmers’ profit in no flood occurrence situation: 
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𝑝𝑜𝑡_𝑃𝑅௜ሺ𝑥, 𝑡ሻ ൌ 𝐼௜ሺ𝑥, 𝑡ሻ െ෍ሺ𝑉𝐶 ௞,ଵሺ𝑥, 𝑡ሻ ൅ 𝑉𝐶 ௞,ଶሺ𝑥, 𝑡ሻ ൅ 𝐹𝐶 ௞ሺ𝑥, 𝑡ሻ

ே೔

௞ୀଵ

ሻ െ 𝐼௜,௣ሺ𝑡ሻ 
 (6-9) 

 

To distinguish between negative and positive experience, the uncertainty of farmer 𝑖 at 
time 𝑡 (𝑈𝐶௜ሺ𝑡ሻ) is formulated as the conditional function in which only the negative 
experience results in the uncertainty level equaling to the ratio of the absolute difference 
between her/his expected profit and the actual profit, to the expected profit: 

𝑈𝐶௜ሺ𝑡ሻ ൌ

⎩
⎨

⎧
|𝑒𝑥𝑝_𝑃𝑅௜ሺ𝑥, 𝑡ሻ െ 𝑎𝑐𝑡_𝑃𝑅௜ሺ𝑥, 𝑡ሻ|

|𝑒𝑥𝑝_𝑃𝑅௜ሺ𝑥, 𝑡ሻ|
, 0 ൏ 𝑎𝑐𝑡_𝑃𝑅௜ሺ𝑥, 𝑡ሻ ൏ 𝑒𝑥𝑝_𝑃𝑅௜ሺ𝑥, 𝑡ሻ

0, 0 ൏ 𝑒𝑥𝑝_𝑃𝑅௜ሺ𝑥, 𝑡ሻ ൑ 𝑎𝑐𝑡_𝑃𝑅௜ሺ𝑥, 𝑡ሻ
1,          𝑎𝑐𝑡_𝑃𝑅௜ሺ𝑥, 𝑡ሻ ൑ 0

 

 (6-10) 

 

As 𝑆௜ሺ𝑡ሻ and 𝑈𝐶௜ሺ𝑡ሻ vary between zero and one, dissatisfaction (𝐷𝑆௜ሺ𝑡ሻ) and certainty level 
(𝐶௜ሺ𝑡ሻ) of farmer 𝑖 can be calculated as the complimentary item of her/his satisfaction and 
uncertainty, respectively: 

𝐷𝑆௜ሺ𝑡ሻ ൌ 1 െ 𝑆௜ሺ𝑡ሻ  (6-11) 
 

𝐶௜ሺ𝑡ሻ ൌ 1 െ 𝑈𝐶௜ሺ𝑡ሻ  (6-12) 
 

𝐷𝑆௜ሺ𝑡ሻ shows to what extent farmer 𝑖 is dissatisfied with her/his actual profit in comparison 
to her/his potential profit. 𝐶௜ሺ𝑡ሻ depicts certainly level of farmer 𝑖 as the ratio of her/his 
actual profit to the expected profit. Farmers’ minimum satisfaction level (𝑆௜,௠௜௡) and 

maximum uncertainty level (𝑈𝐶௜,௠௔௫) are model parameters assumed to be normally 

distributed across farmers with N (0.5, 0.16). Accordingly, farmers are heterogeneous in 
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Figure 6-9. Satisfaction and uncertainty threshold of farm agents 
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their satisfaction as well as uncertainty tolerance. Figure 6-9 shows the assumed 
satisfaction and uncertainty threshold of farmers. 

Behavioral options 

Figure 6-10 illustrates the four cognitive decision-making strategies in Consumat 
approach (see also chapter 2). Depending on their level of need satisfaction and 
uncertainty, farmers engage in different cognitive processes to choose a behavior that 
make them feel more satisfied and certain. While satisfied farmers rely on strategies with 
less cognitive efforts such as repetition and imitation, dissatisfied farmers engage in 
reasoned behaviors (deliberation and inquiring) to increase their level of satisfaction. 
Uncertain farmers tend to become more certain by gaining more information about flood 
risk and others’ decisions under risk. As a result, they are involved in social processing 
such as inquiring and imitation. Only the certain and satisfied farmer follows the habitual 
behavior and repeats the previous strategy.   

Repetition 

Repetition refers to the classical condition theory assuming that satisfying outcome 
reinforces the behavior (Skinner, 1938). Farmer 𝑖 engages in the repetition strategy at the 
time 𝑡 when she/he is certain (𝑈𝐶௜,௧ ൏ 𝑈𝐶௜,௠௔௫) and satisfy (𝑆௜,௧ ൐ 𝑆௜,௠௜௡). As a result, she/he 

will repeat her/his behavior 𝑋 in the previous time step to remain satisfied: 

𝑋ሺ𝑖, 𝑡ሻ ൌ 𝑋ሺ𝑖, 𝑡 െ 1ሻ  (6-13) 
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Figure 6-10. Consumat strategies depending on satisfaction and uncertainty level 
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Imitation 

Imitation is related to the social leaning theory and theory of normative conduct (Cialdini 
et al., 1991), based on which an agent imitates others if she/he is satisfied (𝑆௜,௧ ൐ 𝑆௜,௠௜௡) 

but uncertain (𝑈𝐶௜,௧ ൐ 𝑈𝐶௜,௠௔௫). Subsequently, farmer 𝑖 considers the previous behavioral 

options of all farmers who are similar to her/him in terms of the farm-size. Then, she/he 
imitates the successful strategy implemented by the majority: 

𝑋ሺ𝑖, 𝑡ሻ ൌ 𝑋ሺ… , 𝑡 െ 1ሻ of the majority ∈ 𝑁𝑊௜,௦ 
 (6-14) 

 

Therefore, social network is considered enormously important to provide individuals with 
information about the behaviors of other. 

Deliberation 

Deliberation is governed by the standard economic theory for decision-making. 
Accordingly, when farmers are dissatisfied (𝑆௜,௧ ൏ 𝑆௜,௠௜௡) and certain (𝑈𝐶௜,௧ ൏ 𝑈𝐶௜,௠௔௫), they 

assess all options and choose the one that optimizes (maximize or minimize) their 
expected outcome (expected profit, expected damage, and etc.). Indeed, social networks 
do not play any special roles in optimizing decision-making as it is assumed that 
individuals access to the detailed and complete information about all behavioral options. 

𝑋ሺ𝑖, 𝑡ሻ ൌ  𝑓ିଵሺoptimize ሾ𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒௜ሺ𝑥, 𝑡 െ 1ሻሿሻ  (6-15) 
 

Inquiring 

According to the social comparison theory and theory of reasoned action (Fishbein and 
Ajzen, 1975), an agent engages in the inquiring if she/he is dissatisfied (𝑆௜,௧ ൏ 𝑆௜,௠௜௡) and 

uncertain (𝑈𝐶௜,௧ ൐ 𝑈𝐶௜,௠௔௫).  Farmer 𝑖 observes the previous behavioral options of all 

farmers who are similar to her/him or located nearby. Then, she/he seeks the successful 
strategy adopted by the majority and updates her/his mental map. Finally, she/he 
compares the expected outcome of that behavioral option with her/his own previous 
behavior and chooses the one that optimizes her/his expected outcome in the current time 
step: 

𝑋ଵሺ𝑖, 𝑡ሻ ൌ 𝑋ሺ… , 𝑡 െ 1ሻ of the majority ∈ 𝑁𝑊௜,௦ ∪ 𝑁𝑊௜,௡ (6-16) 

𝑋ଶሺ𝑖, 𝑡ሻ ൌ 𝑋ሺ𝑖, 𝑡 െ 1ሻ (6-17) 

𝑋ሺ𝑖, 𝑡ሻ ൌ  𝑓ିଵ൫optimize ሾ𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒௜൫𝑋ଵሺ𝑖, 𝑡ሻ൯, 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑜𝑢𝑡𝑐𝑜𝑚𝑒௜൫𝑋ଶሺ𝑖, 𝑡ሻ൯ሿ൯ 
(6-18) 
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It should be noted that data and information regarding the behavioral options of others are 
only accessible by farmers over their social network. 

5.5 Including flood memory (step V) 

Past flood experiences can affect the individual decision-making and responsive 
behaviors if the person has not forgotten the event. As a result, such a flood memory 
provides a platform for increasing the individual adaptive capacity and flood resilience. 
According to the decay theory, memory weakens as more time passes resulting in less 
availability of information for later recovery (Thorndike, 1913). Memory strength can vary 
from second to a life time (McGaugh, 2000), as represented in Figure 6-11. While some 
events can be remembered even after long periods, some are forgotten immediately.    

To explore the role of flood remembrance, we include the individuals’ flood memory in the 
decision-making process and connect that with their objective function.  For the purpose 
of the study, three flood memory scenarios are developed differing in the duration of 
individuals’ flood memory as well as their yearly objective functions.  

Table 6-4 summarizes the assumed flood memory scenarios. In the scenario that 
individuals have long-lasting memory, they will never forget flooding. Accordingly, they are 
assumed to minimize their expected damage in the rational behaviors. On the contrary, 
when people forget the flood event immediately, such a flood experience will not influence 
their actual and future decisions. Therefore, an economic optimizer chooses the crop with 
the highest expected profit. However, scenario with the long-term flood memory leads to 
remembering the flooding only for a limited number of years after the event. Here, we 
assume that farmers will forget flooding after two years. As a result, in the first two years 
after flood occurrence, their goal is to minimize their expected damage in their rational 
behaviors, while in the following years rational farmers try to earn the highest expected 
profit.  
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Figure 6-11. Memory consolidation phases (adapted from McGaugh, 2000) 
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Table 6-4. Flood memory scenarios and their assumptions 

Flood memory 
scenario 

Flood memory 
Yearly objective function 

of rational farmers 

Scenario 1 
Short-term flood memory 

(Forgetting flood in a very short time)  
max ሾ𝑒𝑥𝑝_𝑃𝑅௜ሺ𝑥, 𝑡ሻሿ 

Scenario 2 
Long-lasting flood memory 

(remembering flood for the whole life) 
min ሾ𝑒𝑥𝑝_𝐷௜ሺ𝑥, 𝑡ሻሿ 

Scenario 3 
Long-term flood memory  

(remembering flood only for the first two years after flooding) 

min ሾ𝑒𝑥𝑝 _𝐷௜ሺ𝑥, 𝑡ሻሿ  or 

max ሾ𝑒𝑥𝑝_𝑃𝑅௜ሺ𝑥, 𝑡ሻሿ 

As can be seen, decision-making module makes use of several state variables from other 
modules as well as the external sources. Table 6-5 reports the state variables of decision-
making module. 

Table 6-5. State variables of decision-making module 

State variable Implementation  Source Value 

Time series of crop yield global Hydrological module Final results 

Time series of crop prices global External source Figure 6-6 

Farmland spatial distribution global External source Figure 4-8  

Flood inundation maps  global Hydrodynamic module Figure 4-9, Figure 4-10, 
and Figure 4-11  

Damage spatial distribution global Flood risk analysis module Final results 

Actual flood damage to farmers Eq. (6-3) Endogenous Final results 

Flood events in the simulation period - Assumption Figure 6-1 

Farm-size similarity  global Assumption Table 6-3 

Proximity  global Assumption Table 6-3 

Farmers’ satisfaction threshold random Assumption Figure 6-9 

Farmers’ uncertainty threshold random Assumption Figure 6-9 

Actual profit of farmers Eq. (6-8) Endogenous Final results 

Potential profit of farmers Eq. (6-9) Endogenous Final results 

Expected profit of farmers Eq. (6-5) Endogenous Final results 

Expected damage of farmers Eq. (6-6) Endogenous Final results 

Satisfaction level of farmers Eq. (6-7) Endogenous Final results 

Uncertainty level of farmers Eq. (6-10) Endogenous Final results 

Decision mode of farmers Eq. (6-13) to Eq. (6-18) Endogenous Final results 

Farmers’ flood memory Table 6-4 Assumption  Table 6-4 and Figure 
6-11 

List of crops global External source Winter wheat, Maize, 
Spring barley, and Spring 
canola 
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6. ABM platform: Risk perception module  

To mitigate the flood damage and associated risk, engagement of individuals in FRM plays 
a crucial role. Farmers as the most vulnerable group in farming community need to be 
informed about the flood risk, which may motivate them to pursue private adaptive 
responses. Risk perception “denotes the process of collecting, selecting, and interpreting 
signals about uncertain impacts of events” (Wachinger et al., 2013). Therefore, it is the 
individual interpretation of flood hazards and needs to be incorporated into the decision-
making process (Plattner et al., 2006). However, risk perception has a complex framework 
influenced by factors such as individual feelings and previous flood experience (see 
chapter 2). Understanding the flood risk is also associated with the effective risk 
communication (Soane et al., 2010; Meyer et al., 2012; Bubeck et al., 2013). On the other 
hand, socio-economic status of individuals and social networks play crucial role (Kreibich 
et al., 2011).  

Despite its importance, risk perception is rarely considered in the decision-making models 
due to its complexity and there is no standard approach in this domain. Particularly, when 
the focus shifts to the FRM, the role of risk perception is often ignored or under-developed 
and attempts to incorporate risk perception into flood management are limited to 
approaches such as expected utility theory (EUT) or Prospect theory. These two theories 
account for early variable-based approaches that quantify the flood risk based on the 
characteristics of risk itself and express that in the form of “Expected annual damage 
(EAD)” variable. Although both theories rely on a coherent set of economic assumptions, 
they are different in determining the individual risk judgment. While in EUT, risk is 
formulated as an objective property of an object or a situation and relies exclusively on 
the expert assessment, in the Prospect theory, risk is regarded as a subjective mental 
construction based on personal feelings and beliefs about the hazard occurrence or 
outcomes. Another example to represent the risk perception as a variable is the Bayesian 
Prospect theory (Haer et al., 2017). Some studies determine the individual attitude toward 
uncertainty as the risk aversion variable and include that in the objective function (Ng et 
al., 2011; Kind et al., 2017). 

Empirical research in the area of FRM and behavioral economics shows, however, the 
shortcomings of variable-based approaches. One challenge relates to the issue of 
modeling the risk perception as a variable that complies with the behavioral characteristics 
of individuals. Furthermore, determining a proper value that reflects aspects of individual 
risk judgment is not an easy task. Key findings in recent scientific advances in flood risk 
assessment also reveal that individual perceptions of the flood risk are largely shaped by 
thinking processes (Botzen and van den Bergh, 2012) and not only by a particular variable 
such as the likelihood occurrence of probable flood events.  
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According to Kunreuther, simple rules can sometimes better explain why people interpret 
a risky event as “a zero chance of occurrence” event to them (Kunreuther, 1996). 
Therefore, rule-based procedure is a more suitable approach within which a set of rules 
or heuristics are defined to formulate the individual risk perception (Abdulkareem et al., 
2018). Some studies develop a topology for flood hazards based on individual judgments 
about risk characteristics (Raaijmakers et al., 2008; Altarawneh et al., 2016). Another 
approach applied in the FRM, is the "as low as reasonably practicable" (ALARP) principle 
(FLOODsite, 2009). Such rule-based methods replace the risk perception variable with a 
procedure that is capable of incorporating the influential factors of risk perception in its 
formulation, particularly when empirical studies are conducted by social scientists to verify 
the process. 

To investigate the role of individual risk judgment in adaptive behaviors, we equip our 
decision-making module with risk perception. Namely, we extend the spatially-explicit 
decision-making model established in section 5 to make a link between individual risk 
awareness, decision-making, and adaptive responses. To achieve the goals, a rule-based 
model of risk perception is developed to explore how individual adaptive behaviors are 
connected with the risk perception of flood hazards. Our risk perception model consists of 
three sequential steps including expert danger assessment, individual understanding of 
flood danger, and adoption of coping strategies, as depicted in Figure 6-12. Detailed 
information regarding risk perception and the influential factors can be found in chapter 2. 

6.1 Assessing the danger of flood by experts (step I) 

Flood risk communication plays a crucial role in risk management as it provides 
information that influences individual risk perception (Kellens et al., 2009; Minano and 
Peddle, 2018). Furthermore, an effective flood risk communication can stimulate people 
to take informed decisions to protect themselves and their assets (Haer et al., 2016). 
Commonly, governments are responsible for such a risk communication and information 
dissemination through guidelines, media, or internet websites.  

EU Flood Directive encourages the member states to use flood maps to communicate 
flood risks to the public (Kellens et al., 2009; Haer et al., 2016). Flood maps are often 
recognized as a clear communication tool to inform people about the flood danger and to 
raise their awareness (Minano and Peddle, 2018).  Obviously, maps need to be easily 
understandable by the public and accompanied with simple explanations (Kellens et al., 
2009). Furthermore, danger perception of people is correlated with the expert danger 
assessment (Siegrist and Gutscher, 2006) and, maps are more likely to be effective when 
the public trusts experts and governments (Meyer et al., 2012).  
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Flood maps are presented in different forms, but in general, it is distinguished between 
flood hazard and flood risk maps. While the former provides information about the 
occurrence probability of various flood events and the associated inundated areas, the 
latter contains additional information about the consequences such as economic damage 
and number of fatalities.  

For the purpose of this study, we use the flood hazard map as a tool to communicate with 
farmers and to define flood zones since such maps account for effective risk mitigation 
measures (Kellens et al., 2009) and are widely applied in Germany (Meon et al., 2006). 
Using hydrodynamic module, flood hazard maps are generated and analyzed. Next, 
different flood zones are defined for varying levels of flood danger. Areas that will be 
inundated by the flood event having a 1-percent annual chance occurrence in any given 
year are labeled as high hazard zones. Moderate and low hazard zones are the areas 
flooded between the limits of the 100- and 200-year flood, and 200- and 1000-year flood, 
respectively. The areas outside the inundated lands of 1000-year flood are labels as very 
low hazard zones. Subsequently, four zones are identified in our study ranging from high 
to very low hazard zones. Then, a degree of danger is assigned to each flood zone, as 
presented in Table 6-6. Finally, the flood hazard map is generated that contains 
information about flood zones and their danger level (𝐷) and is understandable to public 
(see Figure 6-13).
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Figure 6-12. Modeling steps and components of individual cognition of the flood risk in the ABM platform 
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Table 6-6. Classified flood zones and defined danger levels 

Zone Hazard zone Description Degree of danger 

Zone 1 High hazard Flood at least once in 100 years 6 

Zone 2 Moderate hazard Flood at least once in 100-200 years 5 

Zone 3 Low hazard Flood at least once in 200-1000 years 4 

Zone 4 Very low hazard Flood rare than once in 1000 years or never 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zone 1) Danger level: 6 
Zone 2) Danger level: 5 
Zone 3) Danger level: 4 
Zone 4) Danger level: 3 

Zone 2 

Zone 4 

Zone 3 

Zone 1 

Figure 6-13. Flood hazard map showing hazard zones with four danger levels 
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6.2 Perceiving the flood danger by individuals (step II) 

Using the flood hazard map as an aid for the effective communication of flood risk, farmers 
get informed about flood hazards and obtain information about the probable flood events. 
Assuming that farmers trust the flood hazard map provided by experts and published by 
the government, each individual perceives the flood danger (𝑃𝐷௜) of the area she/he is 
living in, equivalent to the level of danger ሺ𝐷௜ሻ provided by experts in the maps: 

𝑃𝐷௜ ൌ  𝐷௜ 
 (6-19) 

 

Figure 6-14 indicates the level of flood danger that farmers perceive depending on the 
zone they are living in. The danger level varies from very low to high among farmers 
illustrated by four color codes. It can be observed that farmers who are living in the 
northeast of the Island, perceive the flood danger at a low level due to the lower exposure 
of their farmland to probable flood events.  

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6-14. Flood risk perception of farm agents (illustrated in Netlogo) 
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6.3 Assessing the flood danger by individuals and taking adaptation 
responses (step III) 

In the last step, individuals relate their danger perception (PD) to their risk tolerance (RT). 
The risk tolerance is the individual willingness to avoid or accept risk. So, the perceived 
risk below the risk tolerance is regarded as insignificant and further effort is not likely to 
be required to reduce the damage and associated risk. This is in accordance with the 
ALARP principle, which is widely accepted across most disciplines for the evaluation of 
tolerable risk (Sayers et al., 2003). 

For the purpose of this study, three farm populations are defined differing in the level of 
risk tolerance: risk-averse, risk-taker, and mix population. The risk tolerance is assigned 
to farm agents at random ranging from 0-2 to risk-averse farm population, 7-9 to risk-taker 
farm population, and 0-9 to the mix farm population. Figure 6-15 indicates the risk 
tolerance of three groups as well as their risk perception (see also Figure 6-14). Risk-
averse farm population consists of the most cautious farm agents who are more likely to 
choose risk mitigation strategies. Each farmer compares her/his danger perception 
shaped after observing the flood hazard maps (see section 6.2) with her/his risk tolerance 
and therefore, pays less attention to the flood if her/his perception is below her/his risk 
tolerance. Accordingly, such a farmer does not consider adaptation responses but rather 
he manages the risk by employing existing strategies in her/his individual decision-
making. 

 

Figure 6-15. Risk tolerance of farm populations 
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According to a survey questionnaire conducted in the HoRisK project (Schüttrumpf et al., 
2013), farmers living in the coastal zones of the North Sea, are aware of salinity issues 
and damage to crops due to saline seawater. Hence, agricultural adaptation policies such 
as insurance and changing crop pattern as well as cultivating salt-tolerant crops can help 
farmers to mitigate their crop damage or compensate a part of their economic loss.  

In Germany, however, no flood insurance is available to help farmers recover after storm 
surge floods and there is lack of data in this regard. Consequently, we have implemented 
two adaptation options in the model: changing crop pattern and cultivating salt-tolerant 
crops in the region. To meet the objectives, a number of salt-tolerant crops are introduced 
at the beginning of the simulation for sustainable management of flood in agriculture. A 
list of salt-tolerant crops in Germany is presented in Table 5-7. The state variables of three 
steps of the risk perception module are reported in Table 6-7. 

Table 6-7. State variables of risk perception module 

State variable Implementation  Source Value 

Farmland spatial distribution global External source Figure 4-8  

Flood inundation maps  global Hydrodynamic module Figure 4-9, Figure 4-10, and 
Figure 4-11  

Damage spatial distribution global Flood risk analysis module Final results 

Flood plain zoning - Endogenous Figure 6-13 

Danger degree of flood zones global Endogenous Table 6-6 

Farmers’ risk perception Eq. (6-19) Endogenous Figure 6-14 

Farmers’ risk tolerance random Assumption  Figure 6-15 

Existing strategies global External source Choosing among traditional 
crops: Winter wheat, Maize, 
Spring barley, and Spring canola 

Adaptation strategies global External source Changing crop pattern/using 
salt-tolerant crops  

List of salt-tolerant crops global External source Table 5-7: Rye, Sugar beet, and 
Triticale 

 

7. Conclusions and outlook 

The purpose of this chapter was to develop an experimental platform to simulate farmers’ 
decision-making in response to flood under the influence of social interaction, individual 
risk perception, flood memory, and limited access to information. Due to the complexities 
of human behaviors in the social environment, interdisciplinary approaches that can 
address the above aspects are the most appropriate ones. Among them, Agent Based 
Modeling is used in this study to integrate FRM and individual adaptive decision-making 
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under risk for a semi-hypothetical farm population living in the coastal region. This new 
style of modeling allows us to include complexities of human behaviors in the social 
environment, on one hand, and steps of flood management process, on the other hand. 
Such an experimental platform also provides us with the possibility to simulate the human 
interactions and changing environment resulting in a more holistic flood risk assessment 
approach. More specifically, we established the ABM platform in a way to be used as a 
basis for all desired modules.  

To achieve the goals, firstly, the flood risk analysis module was developed to perform flood 
risk assessment within the ABM platform. Connecting with the hydrological module and 
hydrodynamic module, crop yield response to saline water was modeled which was then 
used to calculate the flood risk at the micro-level. In combination with the flood risk 
analysis module, the base farmers’ decision-making model was established to study the 
annual economic decisions of rational farm agents under risk of flooding. Due to space-
dependency of model properties, spatial features were added and the spatial-explicit 
decision-making model was developed. Since people do not make their decisions in 
isolation, we then equipped our farm agents with social interactions through two social 
networks: network of similar farmers and network of nearest neighbors. As there are 
limitations to the availability of information as well as to the processing capabilities of 
humans in reality, some unrealistic assumptions of economic approaches were relaxed in 
the next step to allow farm agents to make decisions under bounded-rationality principles. 
In order to explore the role of flood remembrance in farmers’ response, individuals’ flood 
memory was included in the decision-making process. Finally, the developed decision-
making module was extended to make a link between risk awareness, decision-making, 
and adaptive responses. For this aim, a 3-step rule-based model of risk perception was 
developed which enables farm agents to engage in private adaptive responses in FRM.  

It should be noted that the model takes advantage of real data (of Pellworm Island) in 
establishing the hydrological module, hydrodynamic module, and flood risk analysis 
module. However, due to lack of empirical data, we made assumptions about the required 
parameters of decision-making module as well as risk perception module. Figure 6-16 
provides an interface of the established ABM platform in GUI of Netlogo. A part of the 
implemented codes is presented in Figure 6-17.  The established ABM platform, called 
ABMFaFo, is used in the next chapter (in connection with other modules developed in the 
previous chapters of the research) to simulate yearly farmers’ decision-making in 
response to flood under the influence of social behaviors (see Figure 6-18).  
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Figure 6-16. The interface of the established ABM platform in GUI of Netlogo 
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Figure 6-17. A part of the implemented codes of the ABM platform in Netlogo 
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Figure 6-18. Flow diagram of the ABMFaFo in each year, the modules, and their connections 
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Chapter 7 Results and discussion 

1. Simulation experiments 

The “Agent Based Model for farmer-flood interaction (ABMFaFo)” described in the 
previous chapters is run to study farmers’ decision-making in response to flood under the 
influence of individual flood risk perception, social interaction, flood memory, and limited 
information. To achieve the goals, the following questions are addressed: (i) how flood 
occurrence changes the farmers’ decision-making, (ii) how individual risk perception 
influences adaptive behaviors, (iii) how farmers adjust their behaviors over time under the 
influence of social interactions, and (iv) how past flood experiences and flood memory 
play role.  

Table 7-1 presents the simulation scenarios that are conducted in the study. As seen, the 
experiments differ in flood risk perception and flood memory of the farm agents 
constituting the population. They also vary in the frequency of “200-year flood” in the 
simulation period. To answer the research questions, we compare a set of simulation 
scenarios which are different only in one aspect. Such a comparison allows us to 
investigate the impacts of the desired feature at a time.   

Note that farm agents in all scenarios are bounded-rational and make their decision based 
on the heuristic rules in Consumat approach. Every experiment is run for the time horizon 
2005-2016, including one year of warm up period for the model. Initial cropping pattern at 



 
Results and discussion 127 
 

 

the start of all simulations consists of winter wheat, spring barley, maize, and spring 
canola. Figure 7-1 illustrates areas of cultivated crops on the Pellworm Island in year 2006. 

Table 7-1. Simulation scenarios 

Experiment Flood risk perception 
Flood 

memory 
Flood frequency 

Exp1 A Population of 37 risk-averse farmers Long-lasting  200-year flood in year 2006,2010, 2014 

Exp2 A Population of 37 risk-averse farmers Long-term  200-year flood in year 2006,2010, 2014 

Exp3 A Population of 37 risk-taker farmers Long-lasting  200-year flood in year 2006,2010, 2014 

Exp4 A Population of 37 risk-taker farmers Long-term  200-year flood in year 2006,2010, 2014 

Exp5 A Population of 37 risk-taker farmers Short-term  200-year flood in year 2006,2010, 2014 

Exp6 A population of risk-taker and risk-averse farmers Long-term  200-year flood in year 2006,2010, 2014 

Exp7 A Population of 37 risk-averse farmers Long-lasting  No flood in the simulation period 

Exp8 A Population of 37 risk-taker farmers Long-lasting  No flood in the simulation period 

Exp9 A Population of 37 risk-taker farmers Short-term  No flood in the simulation period 

Exp10 A population of risk-taker and risk-averse farmers Short-term  No flood in the simulation period 

 

 

 

 

 

Except for farmers’ risk perception, flood memory, and flood frequency, same land 
management practices as well as time series of crop prices, costs, and weather variables 
are applied across all simulations. In addition, farmers’ uncertainty threshold, farmers’ 
satisfaction threshold, farmers’ risk tolerance, farm-size similarity and proximity, farmland 
distribution and size, and danger degree of flood zones remain unchanged over time and 
experiments.  

2. Results 

2.1 Role of flood frequency 

We explore the influence of flood frequency on system dynamics, in particular on farmers’ 
behaviors over time. For this aim, two experiments Exp1 and Exp7 are run to compare 

winter 
wheat
35%

spring 
barley
16%

maise
33%

spring 
canola
16%

Figure 7-1. Agricultural land use area [%] in year 2006 
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the decision-making of risk-averse farmers with long-lasting flood memory under two flood 
scenarios: 1) occurrence of three “200-year flood” and 2) no flood occurrence in the 
simulation period. Note that although in the latter scenario no flood occurs in the simulation 
period, there is still the risk of flooding and farm agents are aware of that.   

Figure 7-2 depicts actual agricultural flood damage of the region when three “200-year 
flood” strike the area in the simulation period. As can be seen, shortly after the disaster, 
flooding causes extensive (agricultural) economic damage because of sudden onset of 
the event.  It is in contrast with slow-onset events such as drought which lasts from weeks 
to years and whose effects are accumulated slowly over time.  

 
Figure 7-2. Actual agricultural flood damage at the regional-level over years for the risk-averse farm 
population with long-lasting flood memory when 200-year flood occurs in year 2006, 2010, and 2014 

(Exp1) and when no flood occurs in the simulation period (Exp7) 

In this manner, flooding impacts actual profits of the farm agents whose farmland is 
exposed to the 200-year flood. The more inundated the farmland, the more sensitive the 
farmer to the flood.  Figure 7-3 compares regional agricultural profit under the two flood 
frequency scenarios. From the figure it is apparent that farmers’ profit is always positive 
when no flood occurs in the simulation period. According to the figure, flood occurrence 
causes income loss of the regional system over the whole simulation period. It can be 
observed that in year 2006, flooding acts as a shock and reduces actual profits of 
endangered farmers in such a strong way that the regional actual profit turns negative. 
However, the regional profit gets positive again in the following year because of 
maintenance practices such as improvement in the soil structure. The figure shows that 
impacts of flooding diminish progressively over time. The reason is that farmers have long-
lasting flood memory with adaptive learning. Note that annual variability of the weather 
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condition as well as prices and crop yields lead to fluctuations in the actual profits in both 
scenarios.  

 
Figure 7-3. Actual agricultural profit at the regional-level for the risk-averse farm population with long-

lasting flood memory when 200-year flood occurs in year 2006, 2010, and 2014 (Exp1) and when no flood 
occurs in the simulation period(Exp7) 

To investigate responses of farmers under various flood scenarios, Figure 7-4 and Figure 
7-5 compare the percentage of farm agents cultivating each crop over the simulation 
period in no flood occurrence and three “200-year flood” occurrences scenario, 
respectively. As risk-averse farmers with long-lasting flood memory constitute the farm 
populations in both scenarios, it is a trend to take adaptive strategies and to select the 
more resistant crop to saline seawater (see Figure 5-7). Therefore, year 2007 sees a 
significant growth in cultivation of triticale in both scenarios.  

The results, however, show the larger share of farm agents in adoption of triticale in year 
2007 under no flood occurrence scenario. It is due to the fact that triticale is new to local 
farmers and only those who deliberate, access to complete information of the crop. 
Subsequently, cultivation of triticale should be started up by economic optimizing agents. 
In this manner, the more the number of farmers deliberating, the more the popularity of 
this new crop. To compare the number of deliberators under both scenarios, Figure 7-6 
and Figure 7-7 show how risk-averse farmers with long-lasting flood memory switch 
between the four behavioral strategies in Consumat approach in the two flood frequency 
scenarios. In the beginning of Exp1, a 200-year flood happens and most farmers face 
sudden loss of income even to negative values (see Figure 7-3). Such a shock event 
causes the majority (81%) of farmers engage in inquiring (see Figure 7-7), which in turn 
decreases the number of economic optimizing farmers to 8 %. In contrast, when no flood 
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occurs in the beginning, 18% of the farm population engage in the deliberation. As a result, 
more farmers grow triticale in the region in year 2007 under no flood occurrence scenario.  

 
Figure 7-4. Dynamics of share of risk-averse farm agents with long-lasting memory in cultivating crops 

when no flood occurs in the simulation period (Exp7) 

 
Figure 7-5. Dynamics of share of risk-averse farm agents with long-lasting memory in cultivating crops 

when 200-year flood occurs in year 2006, 2010, and 2014 (Exp1)  

It can be seen in Figure 7-4 and Figure 7-5 that over the next three years (2008, 2009, 
and 2010), there is a steady increase in adopting triticale by farmers in both scenarios 
which makes the crop relatively popular. However, flood occurrence in year 2010 in Exp1 
causes a large number of farm agents engage again in the inquiring (see Figure 7-7). 
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Since triticale is now popular enough among farmers, it is adopted by the majority (up to 
70% of farmers). Its adoption then rises for the consecutive years reaching to 80% in year 
2016 (see Figure 7-5). In contrast, in no flood occurrence scenario, there is no shock of 
flooding and thus, percentage of farmers cultivating triticale increases slightly reaching 
only to 35 % in year 2016. Meanwhile, the cultivation of other crops drops in both scenarios 
(see Figure 7-4 and Figure 7-5).  

Comparing the dynamics of cognitive strategies in two flood scenarios also reveals that 
flood occurrence in year 2006, 2010, and 2014 affects the actual and expected profit of 
farmers in a way that most of them feel dissatisfied and uncertain and tend to inquire in 
those years. However, if no flood happens, the majority of farmers repeat their behavior 
in the previous year to remain satisfied. Overall, a smooth transition is observable in the 
dynamics of cognitive strategy and share of farmers cultivating crops in Exp7 comparing 
to those of Exp1. This raises the question of how no flood occurrence for relatively long 
time can result in such different individual behaviors. The answer is that flood has been a 
part of everyday life for the farmers, as the inhabitants of the region, which appears to 
remove much of worry. This observation highlights that living in flood-prone areas is not 
enough to be well-prepared to cope with flooding and lack of flood experience may pose 
serious threads for future. These findings are also consistent with discussions in other 
studies (Raaijmakers et al., 2008; Scolobig et al., 2012). 

 
Figure 7-6. Dynamics of cognitive strategy of the risk-averse farm agents with long-lasting memory when 

no flood occurs in the simulation period (Exp7) 

To investigate the influence of flood frequency on the spatial distribution of crops, Figure 
7-8 illustrates cropping pattern under the two flood frequency scenarios in year 2008 and 
2015, as examples. As can be seen, there is a growing interest among farmers to change 
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their crop pattern over years to more salt-tolerant crops. Taking a closer look 
demonstrates when no flood happens in the simulation period, most of the farmlands are 
cultivated with winter wheat and maise in year 2008, a part of which are then replaced by 
triticale in year 2015. Under flood occurrence scenario, however, a different cropping 
pattern is observable. While in year 2008 four major crops including winter wheat, maise, 
spring barley, and triticale are identifiable, in year 2015, triticale is the most common crop 
grown in the region.  

 
Figure 7-7. Dynamics of cognitive strategy of the risk-averse farm agents with long-lasting memory when 

200-year flood occurs in year 2006, 2010, and 2014 (Exp1) 

Figure 7-9 shows the sum of agricultural flood risk over time at the micro (farm)-level under 
the two flood scenarios. It can be seen that farmers experience less total flood risk when 
flood happens in the simulation period. An explanation for this is that farm agents learn 
about the risks and adaptation options over time which changes their behavioral strategy 
and improves the adaptive capacity. Furthermore, flooding is a rapid-onset event with 
tremendous damage in very short time and acts as a shock to the society. As a result, 
when farmers are exposed to frequent flood events (here three 200-year flood events), 
they learn from their experiences, form their expectation based on the observed damage 
in past years, and prepare themselves to cope with flooding. This interesting phenomenon 
shows how frequent floods have positive effects on farm agents’ preparedness and 
involvement in precautionary measures to reduce their vulnerability which agree with 
observations and discussions in literature (Barendrecht et al., 2017; Fuchs et al., 2017). 
The higher rate of adopter in Exp1 also confirms the findings.  
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Figure 7-8. Crop patterns in year 2006, 2008, and 2015 in no flood occurrence (right) and 
three flood occurrence (left) scenarios 
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To explore the interdependencies between flood vulnerability of agricultural sector at farm-
level and regional-level, Figure 7-10 and Figure 7-11 compare the two flood scenarios in 
terms of yearly regional agricultural flood risk and expected profit, respectively. According 
to Figure 7-10, the region faces more agricultural flood risk over years when no flood 
occurs in the simulation period, reaching a peak of 20261 € in year 2012. This observation 
is consistent with the flood risk at the individual level (see Figure 7-9) and indicates how 
the vulnerability of agricultural agents at the farm-level affects the vulnerability of the whole 
region. It is an evidence on how the economic problems that the regional agricultural 
sector tackles can originate from the individual level (see also Figure 2-1).  

Comparing total agricultural expected profit of both scenarios in Figure 7-11 depicts that 
more regional agricultural expected profit is achieved over years when no flood occurs in 
the simulation periods. Higher expected profit in this flood scenario is the result of not 
being suffered by flooding on one hand, and cultivating more profitable crops over years, 
on the other hand. 
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Figure 7-9. Spatial distribution of agricultural flood risk at the farm-level when 200-year flood occurs in 
year 2006, 2010, and 2014 (Exp1) and when no flood occurs in the simulation period (Exp7) 
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Figure 7-10. Agricultural flood risk at the regional-level over years for risk-averse farmers with long-lasting 
flood memory when 200-year flood occurs in year 2006, 2010, and 2014 (Exp1) and when no flood occurs 

in the simulation period (Exp7) 

 
Figure 7-11. Agricultural expected profit at the regional-level over years for risk-averse farmers with long-
lasting flood memory when 200-year flood occurs in year 2006, 2010, and 2014 (Exp1) and when no flood 

occurs in the simulation period (Exp7) 
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2.2 Role of flood risk perception 

We explore the role of individual flood risk perception in FRM when the 200-year flood hits 
the region in year 2006, 2010, and 2014.  For this purpose, behaviors of two farm 
populations that differ in the level of risk tolerance are compared: a population of 37 risk-
averse farmers (Exp1) and a population of 37 risk-taker farmers (Exp3). More information 
regarding risk tolerance and its connection to adaptive behavior and decision-making can 
be found in section 6 of chapter 6.  

Figure 7-12 and Figure 7-13 provide information on the fraction of the area in various 
agricultural crops over time for above flood risk perception scenarios. A closer look at 
Figure 7-12 shows that risk-taker farmers would consider only existing traditional crops 
even though other choices such as salt-tolerant crops are introduced to them at the 
beginning of the simulation. According to the figure, there is one dominant crop (here 
spring barley) over years whose cultivation has a steady growth till year 2010 followed by 
a sharp rise of 33% in year 2011. Then, its acreage remains unchanged over years until 
it reaches its highest value in year 2016 (89%). At the same time, fraction of the area in 
winter wheat, spring canola, and maise decreases slowly to a low of only 3% in the last 
simulation year. 

 
Figure 7-12. Proportion of crops over years for risk-taker farmers with long-lasting flood memory (Exp3) 

when 200-year flood occurs in year 2006, 2010, and 2014 

A similar pattern is observable for the population of risk-averse farmers in Figure 7-13 in 
which farmlands are dominated by one major crop (here triticale). The dynamics of 
strategies helps in explanation of such a pattern (see Figure 7-7). In year 2006, a 200-
year flood occurs causing dissatisfied farmers in the population (Exp3) adopt triticale as 
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the most salt-resistant crop among all crop choices in the market. In the next three years, 
there is no flooding; however, due to interactions within the networks, information on the 
cultivation of triticale spreads around leading to rises in the share of farmers growing the 
crop. In year 2010, the 200-year flood hits the region again which results in a sudden 
reduction in farmer’ profit. Therefore, the number of dissatisfied and uncertain farm agents 
increases abruptly (up to 81%) which causes them rely on the strategies involving social 
interactions. As during the years, more farmers tend to adopt triticale, the crop is more 
likely to be the most successful practice in farmers’ networks and thus year 2010 sees a 
significant growth in the acreage of the dominant crop.  

Comparing Figure 7-12 and Figure 7-13 shows, however, a steady fall in cultivation of 
spring barley over years in Exp1 reaching its lowest point in year 2016. Instead, triticale 
becomes the dominant crop over years. We observe this dynamic because risk tolerance 
of risk-averse farmers is always equal or lower than their perceived flood risk (see Figure 
6-15). Even, those who live in the zone 4 with the minimum level of flood danger (see 
Figure 6-13 and Table 6-6), will not ignore the risk and tend to engage in FRM by pursuing 
private adaptive responses such as changing crop pattern and cultivating salt-tolerant 
crops. Therefore, they choose triticale, as the most salt-tolerant crop among both 
traditional and new crops, and start to grow that from a very early period (year 2007). Such 
a different tendency of the two farm populations in growing the crops reveals that risk-
averse farmers are adaptive and more likely to be involved in private adaptation strategies. 
It can be an evidence on how the success of a salt-tolerant crop program depends on the 
risk perception and individual adaptive behaviors of the local farmers.  

 
Figure 7-13. Proportion of crops over years for risk-averse farmers with long-lasting flood memory (Exp1) 

when 200-year flood occurs in year 2006, 2010, and 2014 
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Another interesting aspect that emerges from the comparison of two figures is that in 
contrast with the dominant crop of Exp3 (spring barley) whose cultivation area sees a 
steady growth to 30%, 50%, and 90% in year 2007, 2010, and 2016, respectively, the 
coverage area of the dominant crop in Exp1 (triticale) rises only to 10%, 30%, and 80% in 
those years. Such a difference depicts that the rate of adoption of the dominant crop in 
Exp3 is quicker than in Exp1 and farm population in Exp1 is relatively slow to adjust their 
decisions. This observation shows that taking flood adaption strategies do not occur 
suddenly and take several simulation periods. There are two reasons for this. Firstly, 
cultivating salt-tolerant crops such as triticale is a new practice with which local farmers 
have no prior experience at the start of the simulation (year 2006). So, they have high 
hesitation in triticale cultivation at the beginning. Secondly, limitations to the availability of 
information as well as to the processing capacity of farmers result in not all crop data be 
readily available to all farmers but only to the economic optimizers at that time step.  

Therefore, taking such new practices should be initiated by the few farmers who engage 
in deliberation in the current year. Once deliberators select that new practice (because it 
optimizes her/his outcomes), it is observed by farm agents who rely on their social 
network, and as a result, non-deliberators are willing to adopt that. Such a decision is 
propagated from one farm agent to another through social interactions and finally includes 
almost the whole population (up to 80% in year 2016). Thus, it takes time for non-
deliberators to interact and learn from agents belonging to their social networks. 
Accordingly, interactions involve exchange of information and knowledge on (new) 
adaptive strategies such as salt-tolerant crops, their yield, and costs. As is shown in Figure 
7-13, farmers’ adoption of the new practice forms an S-shape curve over time which 
agrees with the prediction of Bass model in new production diffusion as well as empirical 
stylized facts of diffusion (Bass, 1969; Rogers, 2004). 

To shed light on the effect of farmers’ interaction, Figure 7-14 provides the evidence on 
the role of social interaction in adoption of adaptation strategies in the risk context. The 
figure illustrates share of risk-averse farmers engaging in each cognitive strategy as well 
as their share in cultivating crops, in year 2007, 2010, and 2016, when they have long-
lasting flood memory. In year 2007 (the following year after the first 200-year flood), only 
8% of farmers are certain and dissatisfied with their decision in the previous year. This 
leads this small share of farmers to assess all options and choose triticale with the lowest 
expected damage. This notion is supported by the percentage of farmers growing triticale 
in year 2007 (8%). In year 2010, more farmers tend to adopt triticale (up to 32%), although 
the share of deliberators remains unchanged (8%). Even in year 2016, triticale becomes 
the most cultivated crops among farm agents (up to 81%) while only 19 % of the population 
engages in the deliberation. This nonuniform increase in the rate of adopters over time, 
on one hand, and its incompatibility with the percentage of deliberators, on the other hand, 
demonstrates how social interaction plays crucial role in information dissemination about 
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decisions and adaptive behaviors. This highlights the importance of exchange of 
information and knowledge which leads to learning at the micro-level and emergent 
phenomena at macro-level (regional-level).                                                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-14. Share of risk-averse farmers with long-lasting memory (Exp1) in cognitive 
strategies (left) and cultivated crops (right) in year 2007, 2010, and 2016 
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Figure 7-15. Diffusion of adaptive policies through social interactions in the population of risk-averse farmers (Exp1) 

Year 2007                                                            Year 2010                                                              Year 2016   
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Figure 7-15 indicates how social interaction results in farmers’ behavioral change in the 
population of 37 risk-averse farmers in year 2007, 2010, and 2016. The figure visualizes 
the interconnections between farm agents and maps the information dissemination over 
time through green links (network of similar farmers) and red links (network of nearest 
neighbors). It can be observed that triticale cultivation spreads around making this new 
crop the most common private adaptation strategy among farm agents in year 2016.  In 
fact, farmers search for reliable information about the probable flood risks and ways to 
reduce the adverse impacts of flooding. Thus, they communicate with others to be 
informed about new strategies and private adaptive policies. In this manner, social 
networks play key role in information exchange and dissemination of adaptive policies 
over time.  

Figure 7-16 sheds light on the agricultural flood risk at the micro-level for both flood risk 
perception scenarios. The results clearly show remarkable differences in vulnerability of 
farm agents in both farm populations. More importantly, it can be seen that individual risk 
perception changes the dynamic of farm agent’ behavior in such a way that the individual 
flood risk is mitigated. Such a significant reduction in sums of expected damage of farm 
agents shows the effectiveness of individual risk awareness and responses.  

To explore the effect of private adaptive responses on the micro-level outcomes, Figure 
7-17 compares agricultural flood risk of two individual farmers over time. In this figure, the 
adaptive farmer is an agent who employs adaptive strategies (here salt-tolerant crops) 
very quickly (from the second simulation year) to cope with flood while the non-adaptive 
farmer does not adapt to flood over the simulation years.  It should be noted that both 
farmers belong to the risk-averse farm population and are similar in their farm-size and 
initial crop pattern. In addition, the degree of exposure of their farmlands to probable flood 
scenarios is the same. The figure illustrates a significant difference between agricultural 
flood risk of two farm agents over time. As it is observed, in comparison with the non-
adaptive farmer, the adaptive farmer mitigates her/his individual flood risk from 100 € in 
year 2006 to 30 € in the last simulation year.  

Such a different trend in agricultural flood risk arises from the heterogeneity of behavioral 
properties between the two farmers. Their attributes such as uncertainty and satisfaction 
threshold as well as their interaction groups play key role in this regard causing 
dissimilarity in their behavioral characteristics and making different choices. These results 
demonstrate the significance of private adaptive response in reducing the individual 
vulnerability to flood over years.  
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Figure 7-17. Time variation of agricultural flood risk for adaptive and non-adaptive agent in the population 

of risk-averse farmers (Exp1) 
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Figure 7-16. Spatial distribution of agricultural flood risk at the farm-level for the risk-taker farm population 
(Exp3) and risk-averse farm population (Exp1) 
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To examine how individual risk perception and adaptive behavior contribute to FRM, 
Figure 7-18 compares agricultural flood risk of the whole region for the two farm 
populations. As can be observed, even though adaptation takes place from the beginning 
of Exp1, it is not enough to offset the impact of flood occurrence, and regional flood risk 
of two scenarios is almost close to each other in the first simulation years. This observation 
arises from the slow adaptation process which causes a large share of farm agents not 
still employ private adaptive strategies to cope with flooding in year 2009. However, results 
show that reduction in the regional vulnerability increases over time for risk-averse farm 
population, which highlights the importance of continues adaptation of farm agents over 
time to achieve lower regional flood risk. It also demonstrates how private adaptation 
strategies such as salt-tolerant crops at the micro-level can change the vulnerability of 
agricultural sector at the macro-level. Such a link between adaptation on the individual-
scale and vulnerability on the macro-scale confirms the effects of individual behaviors on 
emergent phenomena and their significance in large-scale decision-makings.   

 
Figure 7-18. Agricultural flood risk at the regional-level over years for two flood risk perception scenarios 

Annual agricultural expected profit of the whole region is depicted for both experiments in 
Figure 7-19. It can be seen that in total, regional agricultural sector achieves more 
expected profit over years if the farm population consists of risk-taker farmers. This arises 
from higher sale-price as well as productivity of crops that are adopted by risk-taker 
farmers during the simulation.  
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Figure 7-19. Agricultural expected profit at the regional-level over years for two flood risk perception 

scenarios 

2.3 Role of flood memory 

We examine the impact of flood memory on two groups of farmers: a population of 37 risk-
averse farmers and a population of 37 risk-taker farmers. In both sets of experiments, it is 
assumed that the 200-year flood event strikes the study area in year 2006, 2010, and 
2014 (see Figure 6-1).  

2.3.1 Impact on risk-averse farmers 

To study the role of flood remembrance in risky-choices of risk-averse farmers, we make 
a comparison between risk-averse farmers with long-lasting flood memory (Exp1) and 
long-term flood memory (Exp2). Such a comparison sheds light on differences in farmers’ 
decisions when they never forget flooding and when they forget the event after some 
years. Under these circumstances, dissatisfied farmers with long-lasting memory 
remember flooding for their whole life and always choose the adaptive strategy with the 
lowest expected damage, whereas, those with long-term flood memory minimize their 
expected damage in the first couple of years after flooding (here two years). Then, they 
will forget that in the following years which results in seeking the best option with the 
highest expected profit (see also Table 6-4).  

Figure 7-20 and Figure 7-21 depict the time variation of total crop production of risk-averse 
farmers with long-lasting flood memory and long-term memory, respectively. As expected, 
it is seen that risk-averse farmers choose among salt-tolerant crops in addition to the 
traditional crops as their risk tolerance is below their perceived risk leading to risk 
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management through adaptation strategies. Variability in meteorological patterns 
presents significant challenges to crop production and causes fluctuation in crop yields in 
both scenarios. Comparison of two figures shows that the type of flood memory has a 
considerable influence on farmers’ decision-making over time, as dissatisfied farmers that 
forget the occurred flood after two years, start to choose sugar beet with the yield up to a 
yearly average of 68.5 𝑡 ℎ𝑎⁄  which is much higher than others, even though its flood 
damage factor is relatively high. In contrast, farmers with long-lasting flood memory never 
choose such a crop with high flood damage factor (see Figure 5-7) due to its potentiality 
for extensive flood damage. 

 
Figure 7-20. Annual yields of cultivated crops of the study area when risk-averse farmers have long-

lasting flood memory and the 200-year flood occurs in year 2006, 2010, and 2014 

 
Figure 7-21. Annual yields of cultivated crops of the study area when risk-averse farmers have long-term 

flood memory and the 200-year flood occurs in year 2006, 2010, and 2014 
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Figure 7-22 compares cropping pattern in the study area over time as the result of 
decisions of risk-averse farmers with long-lasting memory versus those with long-term 
memory. In the first three years of simulation, the cultivated areas of all crops are equal 
between two scenarios. The reason is that farmers with long-term flood memory have not 
forgotten the flood event yet and behave similar to farmers with long-lasting memory. As 
can be observed in the figure, triticale becomes slowly popular among farmers and the 
proportion of area under triticale increases to 22% in year 2008 for both scenarios.  

However, in year 2009, the cropping pattern starts to change. Farmers with long-lasting 
flood memory continue to adopt triticale over years as it results in the lowest amount of 
agricultural expected damage. Subsequently, triticale becomes the dominant crop over 
time in Exp1 and takes up almost 68% and 81% of the farmlands in year 2012 and 2016, 
respectively. Meanwhile, planted area of other crops such as winter wheat, maise, spring 
canola, and spring barley, which are cultivated traditionally by the local farmers, 
decreases year by year. In contrast, farm population with long-term memory switch from 
triticale to sugar beet in the third and fourth year after every flood occurrence (for example 
in year 2009 and 2010). Such a transition process in Exp2, leads to the diversity in the 
crops adopted by farmers and almost all crops are cultivated with the relative equal 
acreage in year 2016. 
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Figure 7-22. Proportion of crops over years for risk-averse farmers with long-lasting flood memory (Exp1) 

and long-term flood memory (Exp2) when 200-year flood occurs in year 2006, 2010, and 2014 
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Figure 7-23 compares the regional agricultural flood risk over time for the population of 
risk-averse farmers with two types of flood memory. As can be seen in the figure, total 
agricultural flood risk is the same in year 2006, 2007, and 2008 under both scenarios and 
is independent of types of farmers’ flood memory. It is due to the fact that dissatisfied 
farmers with long-term memory are also strongly influenced by occurred flood in the first 
two years and try to minimize their expected flood damage. As the initial crop patterns are 
similar for both farm populations, their total agricultural flood risk is equal in the two 
following years (2007 and 2008).  

The first differences in the flood risk appear in fourth year of simulation (year 2009), where 
dissatisfied farmers with long-term flood memory forget flooding and set their goal to 
maximize the profit. Subsequently, the total agricultural flood risk for the farm population 
with long-term memory is much higher than that with long-lasting memory, indicating an 
increase in risk of 16%-65% over simulation years. This observation demonstrates the 
significance of individual flood memory in the flood risk that the whole region faces.  

 
Figure 7-23. Agricultural flood risk at the regional-level over years for risk-averse farmers with long-lasting 
flood memory (Exp1) and long-term flood memory (Exp2) when 200-year flood occurs in year 2006, 2010, 

and 2014	

To evaluate the temporal changes in expected profit at the regional-level, Figure 7-24 
shows sum of agricultural expected profits over years under both scenarios. It can be seen 
that risk-averse farmers with long-term memory achieve more expected profits. The 
reason is that they forget flooding after two years which results in choosing the crop with 
the highest profit if farm agents feel dissatisfied with their previous decision. Once such a 
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crop is cultivated in the area, it has a chance to be adopted by other farm agents and 
spread around. Subsequently, the regional expected profit grows over years. 

 
Figure 7-24. Agricultural expected profit at the regional-level over years for risk-averse farmers with long-

lasting flood memory (Exp1) and long-term flood memory (Exp2) when 200-year flood occurs in year 
2006, 2010, and 2014 

To explore the potential changes in risk at the micro-scale under the influence of flood 
memory, Figure 7-25 illustrates the spatial distribution of agricultural flood risk mitigation 
in year 2009, 2010, 2013, and 2014, when moving from scenario with long-term flood 
memory to scenario with long-lasting flood memory (farmers are risk-averse in both 
cases). The model results show that farm agents whose flood memory lasts for their whole 
life instead of just two years after the event, experience less flood risk in all four simulation 
years. The contribution of long-lasting flood memory in risk mitigation is especially visible 
for the southern and central parts of the Island where the flood risk decreases by 743.5-
996.5 € in year 2014. However, the reduction in flood risks of farmers that live in the 
northeastern part of the Island is not as much as others. The reason is that they have less 
flood exposures and their fields are inundated only by 1000-year flood (see Figure 4-9, 
Figure 4-10, and Figure 4-11). These results emphasize the importance of long-lasting 
flood memory especially in risk mitigation of flood-prone regions. Figure 7-25 also depicts 
that over time more flood risk reduction is achieved by farmers with long-lasting memory 
which is an evidence on how farmers’ deep-rooted memory can help them to reduce their 
vulnerability to flooding with time.  
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Figure 7-25. Reduction in agricultural flood risk in year 2009, 2010, 2013, and 2014 by moving from 
scenario with long-term flood memory to scenario with long-lasting flood memory 
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2.3.2 Impact on risk-taker farmers 

To investigate the effect of flood memory on the decisions of risk-taker farmers, three farm 
populations are considered differing in the duration of flood memory: long-lasting flood 
memory (Exp3), long-term flood memory (Exp4), and short-term flood memory (Exp5). In 
comparison to Exp3 and Exp4 in which farm agents remember the occurred flood at least 
for two years, in Exp5, the duration of farmers’ memory is short and they forget the event 
immediately. Subsequently, risk-taker farmers with short-term flood memory always 
choose the crops with the highest expected profits to cultivate in the following year, if they 
are dissatisfied with their outputs in the current year.  

Figure 7-26 and Figure 7-27 show the aggregates of farmers’ crop for the risk-taker farm 
population with long-term flood memory and with short-term flood memory, respectively. 
The results are presented as time series of fractions of the total farmlands on the Island 
in winter wheat, spring canola, maise, and spring barley. Cropping pattern of the risk-taker 
farm population with long-lasting flood memory is illustrated in Figure 7-12.   

Comparing three experiments indicates that different assumptions of farmers’ flood 
memory lead to very different cropping patterns. It is also apparent that proportion of crops 
varies among farm populations in terms of stability of individual decision-making. Time 
series of fraction of the region in various crops tend to be more stable with time for farmers 
with long-lasting memory. The reason is that they never forget the flood and always will 
to avoid more crop losses. In this manner, farmers’ decisions are more stable over time 
and ensure greater consistency.   

According to Figure 7-26, risk-taker farmers with short-term memory have no tendency to 
grow spring barley on their farmland in spite of its low crop loss. Here, farmers’ personality 
in forgetting the flood plays a crucial role as they always tend to maximize their expected 
profit if they feel dissatisfied and uncertain. Such a tendency is disseminated across 
farmers’ networks causing none of them cultivate the crop over time. Annual variability of 
the weather condition as well as prices and crop yields lead to fluctuations in crops’ profits 
and in turn their adoption. These observations are in contrast to the behavioral patterns 
of risk-taker farmers with long-lasting flood memory where more farmers are willing to 
commit their farmland to the spring barley leading to increases in the cultivation area of 
spring barley over time (see Figure 7-12).  

Cropping pattern of risk-taker farmers with long-term flood memory (see Figure 7-27) 
shows a combined behavior of two previous farm populations. To explain the observation, 
consider for example proportion of crops in year 2006-2008 in which spring barley 
becomes the most common crop in the region covering 45 % of the agricultural lands in 
year 2008. In contrast, in the two consecutive years from 2008 to 2010, its acreage falls 
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and reaches to a low of 27% in year 2010. Such a regular upward and downward trend, 
which is also observable in the next following years, shows how decisions of farmers with 
long-term memory vary in the years that they remember flooding and years that they forget 
the event.  

 
Figure 7-26. Proportion of crops over years for risk-taker farmers with short-term flood memory (Exp5) 

when 200-year flood occurs in year 2006, 2010, 2014 

	
Figure 7-27. Proportion of crops over years for risk-taker farmers with long-term flood memory (Exp4) 

when 200-year flood occurs in year 2006, 2010, 2014 
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Figure 7-28 shows the significance of flood memory in spatial representation of 
agricultural expected damage and expected profit of each individual farmer in two 
simulation years 2010 and 2014. According to the figure, in total, farmers achieve more 
expected profit when they have shorter flood memory. 
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Figure 7-28. Agricultural flood risk (left) and expected profit (right) at the individual level in year 2010 and 
2014 for risk-taker farmer with long-lasting flood memory (Exp3), long-term flood memory (Exp4), and short-

term flood memory (Exp5) when 200-year flood occurs in year 2006, 2010, and 2014 
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As can be observed in the figure, on the micro-level, the behaviors of the majority of 
farmers lead to less individual agricultural flood risk when they have longer duration of 
flood memory. In year 2010, however, a few farmers are exposed to more flood risk when 
their memory is long-lasting. Having a closer look at the behavioral strategies of these 
farmers with long-lasting flood memory reveals that they rely on the strategies involving 
social interaction (imitation or social comparison) and thus, functioning of social networks 
is the key to explain this observation. The model results show, however, that the effect of 
flood memories on risk reduction is larger than social networks in such a way that all most 
all farmers face less risk in 2014 when they have long-lasting memory.  

Figure 7-28 also indicates that farmers living in the northeastern part of the Island face 
very low expected flood damage in comparison to others. Spatial exposure analysis 
supports this phenomenon depicting that these farmers are less exposed to the probable 
flood events (see also Figure 4-9, Figure 4-10, and Figure 4-11).  

Figure 7-29 and Figure 7-30 illustrate macro-level effects of individual flood memory and 
decision-making on regional agricultural flood risk and expected profit, respectively. 
According to Figure 7-29, the longer the duration of flood memory of individual farmers, 
the less the regional agricultural flood risk. This finding highlights the linkage between the 
vulnerability of the agricultural sector at micro-and macro-level. It can be observed in 
Figure 7-30 that total expected profit of agricultural sector also depends on the flood 
memory. In particular, agricultural sector makes more expected profits when the farm 
population consists of farm agents with shorter flood memory.  

 
Figure 7-29. Agricultural flood risk at the regional-level over years for risk-taker farmers with long-lasting 
flood memory (Exp3), long-term flood memory (Exp4), and short-term flood memory (Exp5) when 200-

year flood occurs in year 2006, 2010, and 2014 
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Figure 7-30. Agricultural expected profit at the regional-level over years for risk-taker farmers with long-
lasting flood memory (Exp3), long-term flood memory (Exp4), and short-term flood memory (Exp5) when 

200-year flood occurs in year 2006, 2010, and 2014 
 

2.4 Conclusions and discussion 

The ABMFaFo developed in the previous chapters was applied in this chapter to 
investigate farmers-flood interaction and its contribution to FRM at the individual level. 
More specifically, series of in silico experiments were run to examine the influence of flood 
frequency, individual flood memory, individual risk perception, and social interaction, on 
the regional dynamics. All simulations were carried out for the period 2005-2016 to explore 
the trend in micro-and macro-level outcomes. The same land management practices as 
well as time series of crop prices, costs, and weather variables were applied across all 
simulations. Farm populations were supposed to be similar in initial cropping pattern as 
well as in their attributes such as uncertainty threshold, satisfaction threshold, risk 
tolerance, farm-size similarity and proximity, farmland distribution, and farm-size. The 
impacts of the influential factors on farmers’ decision-making and regional outcomes were 
quantified through the application of developed ABMFaFo for exploring farmers-flood 
interaction in coasts. For this aim, Pellworm Island in Germany was chosen as the virtual 
island which gives the opportunity to develop the physical environment of the ABMFaFo 
based on the real data.   

The role of flood frequency was first evaluated with respect to the behavior of risk-averse 
farm population with long-lasting flood memory in two different flood scenarios: three “200-
year flood” scenario and no flood occurrence scenario. The results indicate that flood 
vulnerability of the regional agricultural sector is significantly mitigated (6%-65%) when 
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farm agents experience flooding in the simulation period. The remarkable increase (by 
37.8 % in year 2013 and by 46.6 % in year 2016) in the percentage of farmers taking the 
private adaptive strategy when three “200-year flood” occur, shows also the positive 
influence of “flood experience”. These findings highlight that once individuals are directly 
affected by the hazard, flood damage is no longer hypothetical, but actual. Thus, they 
make more effort to prepare themselves to cope with flooding. In contrast, when flood 
disaster does not occur in the region for a long time, individuals experience no hazardous 
event and they use to live with flood. Such a lack of experience is likely to result in a lack 
of individual preparedness. As a result, farm agents face more expected flood damage at 
the micro-level which in turn causes regional agricultural sector tackle more economic 
problems. Empirical studies conducted by Harries and Penning-Rowsell (Harries and 
Penning-Rowsell, 2011), Bubeck et al. (Kreibich et al., 2017), and Kienzler et al. (Kienzler 
et al., 2015) confirm the findings.  

In the next step, the influence of risk perception was examined on two farm populations 
that only differ in their level of risk tolerance. It was assumed that both populations are 
subject to the regular flooding (three “200-year flood”). In addition, possible private 
adaptive strategies were introduced at the beginning of the simulations. The results reveal 
that taking private adaptive responses and being involved in FRM can outweigh the effect 
of flooding at both individual and regional-level. Although the farm agents were not familiar 
with salt-tolerant crops before, existing a small share of rational optimizers were enough 
to help the whole population to be aware of such new practices over time and choose 
them as best practices. This newness of adaptation strategy, however, caused the slow 
adoption of the adaptive responses across the population indicating the need for 
continues engagement of farmers in FRM. The findings also demonstrate that social 
interaction plays an important role in the diffusion of information and the degree of 
individual involvement in FRM.  

To study the role of flood remembrance in risky-choices of farm agents, two sets of 
experiments were conducted, each investigated the farmers’ responses to flood under 
different flood memory assumptions. It is obvious from the results that when individuals 
forget the flood event immediately, such a flood experience does not influence their actual 
and future decisions which causes more income loss comparing to the farm populations 
with longer flood memory. The results also demonstrate that farmers with long-lasting 
flood memory show more stability in their decisions and responses to flooding over time. 
Finally, the findings emphasize the importance of longer (stronger) flood memory in flood 
risk mitigation of individual farmers as well as that of the regional agricultural sector. 

Overall, the results shed light that differences in flood risk dynamics of agricultural sector 
at regional-level highly depend on the behaviors of farm agents at the micro-level. It could 
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be observed how collective properties arise from the properties of entities. From the 
results presented in this chapter, it can be also seen that different influential factors are 
not equal in their effectiveness in vulnerability reduction at both farm- and regional-level. 
For the particular scenarios examined in this study, it can be concluded that probably the 
most effective combination of factors in achieving the highest reduction in regional 
agricultural flood risk is to have farm agents who are risk-averse, have flood experience, 
and never forget flooding in their life time.  
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Chapter 8 Summary and outlook  

1. Summary 

The study investigates farmers’ decision-making in response to flood under the influence 
of individual risk perception, social interaction, flood memory, and limited access to 
information. For this aim, the study employs “Agent Based Modeling” within the framework 
of flood risk management (FRM) and presents an experimental platform to simulate 
farmers’ adaptive behavior patterns in coastal regions. To the best of author’s knowledge, 
this research is one of the first attempts to take such a bottom-up approach in flood studies 
in order to include social aspects of human-flood interaction in FRM. 

Agent Based Modeling is relatively a new style of modeling in flood management studies 
where the overall flood loss in the system is traditionally computed as the metric of the 
society vulnerability to be further managed through risk reduction strategies. This macro-
scale perspective in flood management is valid only under specific assumptions: at-risk 
individuals (and their surrounding environment) are inactive, they are homogenous in their 
socio-economic attributes, they access to complete information, they behave as economic 
optimizers and rational agents, and their vulnerability is constant over time. However, 
social aspects of human behavior such as individual adaptation responses, knowledge 
exchange, flood memory, and flood risk perception cause temporal changes in exposure 
as well as in vulnerability and shape a new mode of human-flood interaction. 
Subsequently, new conditions are imposed to the system that cannot be addressed by 
traditional FRM models. Agent Based Modeling provides an innovative approach to 
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formulate the system from the perspectives of individuals, preserves the heterogeneity 
among agents, and allows modeling social aspects and complexities of human behaviors 
in FRM and in combination with engineering practices. 

To achieve the goals, an Agent Based Model (ABM) platform of farmers’ decision-making 
is developed and linked to the hydrological module as well as hydrodynamic module 
designed for this purpose, to examine the change in flood risk and dynamic of farmers’ 
behavior. The coupled model, which is called “Agent Based Model for farmer-flood 
interaction (ABMFaFo)”, introduces the interactions among farmers about new coping 
strategies and market opportunities and includes flood memory as well as individual 
perception and assessment of flood risk in farmers’ decision-making under uncertainty. 
Additionally, farmers’ decisions are formulated in the ABMFaFo through bounded-
rationality theory to consider limited information availability as well as limited information 
processing capacities of people.  

The ABMFaFo takes an integrated modeling approach and consists of five main modules 
including two external and three internal parts. The hydrological module is based on the 
Soil and Water Assessment Tool (SWAT) to predict crop productivity. In order to increase 
the model efficiencies in simulating water budget and crop growth components, a 2-stage 
calibration procedure including hydrological and crop yield calibration is established. The 
calibrated-validated hydrological module is then used to simulate annual crop yield on the 
field-scale as the result of farmers’ yearly decision-making. Another external part is the 
hydrodynamic module which is designed based on Protection Measures against 
Inundation Decision Support (ProMaIDes) in order to compute water levels and velocities 
as well as inundation areas under different flooding scenarios. Finally, the ABM platform 
is established to model farmers’ decision-making in response to flood. For this purpose, 
three modules including farmers’ decision-making module, risk perception module, and 
flood risk analysis module are developed and embedded in the ABM platform which is 
then linked to the two external modules. The module of farmers' decision-making is based 
on socio-economic approaches and mathematical programming principles equipped with 
individual risk judgment and adaptive responses in risk perception module. The flood risk 
analysis module is coupled with the established modules to compute agricultural flood 
damage and associated risks in coasts based on the developed modeling framework for 
flood damage function of crops. 

Pellworm Island in north of Germany is chosen as the virtual study area and the 
established ABMFaFo is applied to 37 semi-hypothetical farmers living on the Island. The 
agent classes of the ABMFaFo are farmers, farmlands, crops, and social networks. Crop 
cultivation is the main economic activity farm agents do in the model to earn money and 
their decision for the next year affects their farm profit. Farm agents are heterogeneous in 
their behavioral rules and interaction groups. They are also heterogeneous in terms of 
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farm-size, income, and exposure to flooding. Other factors differentiating one farmer from 
another are risk perception and personal characteristics such as risk tolerance, 
satisfaction threshold, and uncertainty threshold. Crop productivities can also vary from 
farmer to farmer if there are any differences in the soil type or land management practices, 
and from year to year due to differences in the weather.   

In the ABMFaFo, agent classes are connected within the physical and social environment. 
The physical environment comprises crops, soil, farmlands, climate, flood protection 
structures, and the surrounding sea and is parameterized based on the real data of 
Pellworm Island. The social environment consists of farm agents and their social 
networks. Due to lack of empirical data, assumptions are made about the required 
parameters of the social environment. 

At the end of the year, each farmer has to choose the suitable crop for cultivation in the 
next year. For this aim, farmers estimate their farm income and evaluate their satisfaction 
and uncertainty in the current year. Depending on her/his satisfaction and uncertainty 
level, each farmer follows a certain behavioral strategy to take her/his decision for the next 
year. Uncertain farmers consult their peers in the social network to update their 
information about others’ decisions and adaptive responses. Farmers, who have high 
level of satisfaction, will engage in the imitation or repeat their previous behavior. In 
contrast, dissatisfied farmers try to obtain more satisfied outcomes by deliberating or 
engaging in social comparison. Flood memory of these farmers plays a crucial role in their 
objective function. While long-lasting flood memory causes farmers minimize their 
expected flood damage, short-term flood memory results in selecting the crop with highest 
expected profit.  

Farmers’ knowledge of the weather, flooding situation, and crops in the market as well as 
prices and associated costs are updated during each simulation year. Computing the crop 
production on the field-scale by hydrological module, each individual farmer will be aware 
of her/his crop yield in the current year. She/he will also become conscious of the potential 
damage to agricultural crops due to the coastal flooding. Meanwhile, farmers’ perception 
of flood danger is shaped. Hence, the rational farmer assesses the level of danger and 
decides to deal with flood risk through or without adaptation strategies in her/his decision-
making. Due to lack of empirical data, it is not possible to know the value for risk tolerance. 
Therefore, three farm populations are defined differing in their risk tolerance: risk-averse, 
risk-taker, and mix farm population. The risk tolerance ranges from 0-2, 7-9, and 0-9 for 
risk-averse farm population, risk-taker farm population, and mix farm population, 
respectively.  

After farmers’ decision-making is completed, it is considered to be the end of the year. At 
this point, decisions taken by farmers will be fed back into the developed modules and the 
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explained process will be continued year by year over the time horizon as the result of 
feedback between ABM platform and other modules. 

The established ABMFaFo is run using a series of in silico experiments to investigate 
farmers’ decision-making in flood-prone areas in response to coastal flooding. More 
specifically, the effect of flood frequency, risk perception, social interaction, past 
experience, and flood memory are examined and discussed. In addition, the 
interdependencies between agricultural sector at farm-level and regional-level are 
explored using several macro-metrics. Farm agents in all scenarios are bounded-rational 
and make their decision based on the heuristic rules in Consumat approach. Every 
experiment is run for the time horizon 2005-2016, including one year of warm up period 
for the model.  

2. Major findings 

The results of hydrological module indicate its potential in predicting annual crop 
productivity of individual farmers in order to model their yearly decision-making. The 
established hydrological module provides a basis for simulating any desired outputs on 
the field-scale. The implication of the findings is in the micro economic analysis where 
behaviors of individual farmers are the key components of decision-making process.  

The results of flood damage assessment of agricultural sector highlight the contribution of 
a wide range of factors to crop damage under coastal flooding. Although seawater salinity 
is the major underlying parameter, other influential factors such as time of flooding, 
seawater temperature, growth stage of plant, crop type, and crop characteristics also play 
vital role in this regard. The study presents the nonlinear mathematical equation which 
governs the relationship between above-mentioned factors and agricultural crop failure 
due to coastal flooding. To estimate the flood damage to crop, a function-based framework 
is proposed and integrated in the flood risk analysis module.  

The results of agricultural flood damage assessment reveal that salinity-damage curve of 
crops is a linear function of soil salinity. In comparison to very tolerant crops, sensitive 
crops lose their yield even under very low soil electrical conductivity (1 dS/m). The 
outcomes also confirm the significance of time of flooding on the amount of damage to 
crops as it plays role in seawater temperature as well as salinity. According to the results, 
coastal flooding in summer damages all crops completely, whereas winter flooding 
destroys only sensitive and moderately sensitive crops severely. As Pellworm Island is 
threatened by storm surge flooding in winter, except for barely, all traditional crops are 
damaged completely once their farmlands are inundated by salty seawater in winter. The 
implication of the results is that a salt-tolerant crop program can help farmers in the coasts, 
to mitigate their crop yield loss and in turn their individual vulnerability to flooding. Such 
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loss reduction strategies at farm-level promote not only the well-being of individual farmers 
but also improve the performance of agricultural sector at regional-level.  

The results of the ABMFaFo show the positive side of frequent flooding which is relatively 
unfamiliar. Although three “200-year flood” occurrence causes extensive actual flood 
damage to the agricultural sector (400000€ to 800000€), the resulting regional agricultural 
flood risk under this scenario is 6%-65% less than the total agricultural flood risk when no 
flood occurs in the simulation period. Such a “flood experience” effect is also observable 
in the expected flood damage of individual farmers under the two flood frequency 
scenarios. According to the findings, share of risk-averse farmers who have experienced 
flood events in the simulation period, in cultivating salt-tolerant crops in year 2016 is 2.3 
times than that of without direct experience. These results emphasize the positive 
influence of flood experience on the preparedness of farmers in terms of adaptive 
responses.  Another important implication is that living in flood-prone areas may not be 
enough to be well-prepared to cope with flooding as lack of flood experience results in 
lack of individual preparedness which may pose serious threads for future at both farm- 
and regional level.  

The findings indicate that flood experience is more effective when farm agents have longer 
flood memory. It is also striking that farmers with long-lasting flood memory show more 
stability in their decisions and responses to flooding. The broad implication of the present 
results is how memory of flood events plays a crucial role in the individual’s sense of 
preparedness. To ensure the longer flood memory, it is, therefore, essential for 
governments and policy makers to strengthen the public memory by embedding symbols 
in the landscape (such as flood marks and flood gauges) and materialization (such as 
photographs and stories). Posting photos and events on social media can also improve 
the memory of certain events.  

Comparing the behaviour of risk-averse farm population and risk-taker farm population 
indicates that different risk tolerances lead to different individual responses to flooding. 
While risk-takers manage the flood risk through existing crops, risk-averse farm agents 
engage in FRM by adaptive strategies such as changing their cropping pattern and 
employing salt-tolerant crops. It is observed that risk-averse farmers are reluctant at the 
beginning of the simulation to adopt the new practice as they are unfamiliar with that. They 
also show slow adjustment in their decisions. Here, social interaction plays a crucial role 
in diffusion of information and dissemination of this new strategy as well as adaptive 
policies. It can be also seen that adaptation is more effective in reducing the flood 
vulnerability of agricultural sector when at least a few numbers of risk-averse farmers start 
to engage in private adaptation strategies from the very beginning and continue their 
adaptation over time. Such a contribution in FRM at the individual level leads to the 
remarkable reduction in the vulnerability of agricultural sector especially in the last years 
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of simulation (up to 60% in year 2015) which sheds light on the interconnection of various 
levels in agricultural sector. These highlight the importance of “Adaptation” effect in 
outweighing the effect of flooding at both individual and regional-level. The implication of 
the results is that a salt-tolerant crop program (or more generally adaptation policies) may 
not be completely effective in achieving it goals; in order to increase the chance of 
succeed, governments should raise the risk awareness of people to ensure their continues 
involvement. It is also essential to communicate flood risk to individuals in the way that it 
is understandable and provide them with sufficient information about coping strategies.  

It should be noted that different determinants are not equal in their effectiveness in the 
flood vulnerability reduction. For the particular scenarios examined in this study, it can be 
concluded that probably the most effective combination of factors in achieving the highest 
reduction in regional agricultural flood risk is to have farm agents who are risk-averse, 
have flood experience, and never forget flooding in their life time. In addition, due to 
nonlinear behaviors in such a coupled human-natural system, there is a tradeoff among 
different influential factors of which policy makers should be aware.   

Overall, the results shed light on how Agent Based Modelling improves our understanding 
about human-flood interactions and how the approach incorporates such social 
phenomena into engineering practices. They also highlight the potential of Agent Based 
Modelling in capturing the complexities of social behaviour patterns and its contribution in 
representing the interactive entities of the system. The results also demonstrate the ability 
of the approach in addressing the challenges regarding micro-level decision-making. 
Another promising finding is the usefulness of the integrated approach taken to establish 
the ABMFaFo in incorporating the characteristics of such an interdisciplinary problem. 
More specifically, the proposed framework couples a set of processes representing the 
complete flood risk chain for the desired problem: hydrologic-agronomic process, 
hydrodynamic process, flood damage assessment and analysis, and social behavior 
model. Subsequently, this integrated model provides a feedback mechanism between 
farm agents as well as the physical and social environment in flood-prone areas through 
linking the five modules designed for this purpose. 

3. Limitations and future work 

The results indicate the capability of established model in capturing complexities of human 
behaviors and including them in FRM. However, there are several limitations that could 
be addressed in future research. The first is the parameterization which is a challenge in 
any simulation model, and especially in ABMs due to their bottom-up approach and multi-
level structures (Zenobia et al., 2009; Kasaie and Kelton, 2015). In the present work, 
assumptions were made regarding some attributes of farmers such as satisfaction, 
uncertainty, risk tolerance threshold, and social networks which can be improved by real 
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data to enrich the model for developing more realistic rules. This is primarily because of 
lack of empirical data on the behavioral characteristics of local farmers living on the Island. 
Therefore, for the purpose of this study, these attributes were quantified based on random 
values which can be the reason why in reality, less farmers (than expected) may have 
tendency to engage in private adaptive policies.  

The second limitation concerns the constant flood risk perception of farm agents, which 
may be not entirely realistic. Risk perception is not only an individual but also a social 
phenomenon that may change over time in response to fluctuations in problem severity. 
While studies provide evidence on the dynamic process in risk perception (Loewenstein 
and Mather, 1990; Moussaïd, Brighton and Gaissmaier, 2015), there is little empirical 
research to show how risk perception changes over time and which factors influence such 
a dynamic. In the present work, static condition was assumed for individual judgment of 
flood danger as no empirical study is available that can be used to define an updating 
procedure for flood danger perception over the simulation period.  

In addition, there may be relationships between past experience, risk perception, and 
personal characteristic resulting in tradeoffs between influential factors. Such 
interlinkages lead to complexities in human behavior and individual decision-making in 
the risk context. It is not also an easy task to include their interdependencies in the model 
without conduction of socio-physiological studies, collaboration of relevant experts, and 
access to rich empirical data. Due to the above-mentioned reasons, current study includes 
these variables independently in the model to take some first steps toward addressing the 
crucial roles of these determinants. 

Hence, it is worthwhile in future attempts to gather empirical data about attributes and 
behaviors of farmers living on the Island through experimentation and observation. It is 
very much the key component to conduct surveys, questionnaires, and interviews with 
local farmers to enrich the model with more real data. To achieve the goals, collaboration 
of researchers from different disciplines as well as expert judgments are in demand. Such 
an interdisciplinary work provides engineers, economists, and sociologists with the 
opportunity for open discussion across various disciplines to overcome the 
interdisciplinary challenges. Field survey and observation data are also beneficial to 
compare the outputs of the model with those in reality and improve the model 
performance.  

Future research could include other possible private adaptation strategies of farmers living 
in flood-prone areas. In this regard, collaboration of local farmers and experts in the field 
of agriculture are useful. It would be also interesting to examine the role of external 
incentives, such as financial support provided by governments or flood insurance policy, 
in individuals’ engagement in FRM. It should be noted that such policy instruments 
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demand long-term impact assessment in addition to the short one to identify their effects 
on the decision-making at the micro-scale.  

It may be also the question of future research to explore the changes at the regional 
agriculture driven by behavioral micro-foundations under various climate change 
scenarios. The current study does not consider future climatic condition as it was not 
within the scope of research. Nevertheless, it can be of future interest to address such an 
issue, as flood events are expected to occur more frequently and become more severe 
due to climate change. Therefore, future studies could explore individual responses to 
flood under climate change scenarios and identify agents that are not able to adapt. This 
provides a good starting point for discussion about mechanisms and policies that can 
stimulate these farmers to take loss-reduction strategies under future climatic condition. 

For future work, it would be meaningful to conduct the research for other study areas, as 
the results are case-specific and subject to change if the area under study is dissimilar in 
the physical and social environment.  
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