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Summary
In this work, modeling of brittle failure of the interface for a linear elastic
material is presented. The idea is to integrate a novel extrinsic cohesive zone
model into the incomplete interior penalty Galerkin variant of the discontinuous
Galerkin (DG) method. As a result, the initial stiffness in the prefailure regime
is omitted without having to remesh the crack path during the crack propaga-
tion. The interface model is used in combination with different discretization
techniques, including matching and nonmatching meshes. This is possible due
to the DG method's weak continuity constraint. Moreover, the locking problem
in the bulk is cured by the application of a reduced Gaussian integration scheme
on the boundary terms. The performance of the new cohesive discontinuous
Galerkin elements with different integration schemes is compared with one of
the standard intrinsic cohesive models. Due to the elimination of locking, crack
initiation at the interface can be realistically displayed.
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1 INTRODUCTION

Failure prediction has become an inevitable part of material modeling in today's engineering world. Different methods
varying from continuum damage mechanics1 to extended finite element methods (XFEM),2 were developed in the last
decades to address a wide range of applications. Among them, the cohesive zone (CZ)3 method has emerged as a successful
approach to predict failure especially at the interfaces. Being introduced in the early 1960s4,5 based on a phenomenological
traction-separation law (TSL), the CZ model is able to predict failure in different types of materials. An example of a
model for ductile fracture with elasto-plasticity is found in Reference 6, whereas failure of a quasi-brittle material, here
concrete under cyclic loading, is discussed in Reference 7. In addition, the simplicity of the implementation as well as
the consistency of the method are important. In many works, the crack path is assumed to be known in advance (eg,
Reference 8). For tracking an arbitrary crack path, more advanced methods such as the combination of a CZ formulation
with XFEM9 were proposed during the last years. Remmers et al10,11 introduced the cohesive segments method to allow
crack nucleation and discontinuous crack growth regardless of the structure of the finite element (FE) mesh.

Application of interface elements to study interface damage usually generates several numerical challenges.12 Among
these are sharp snap-back problems,13 the proper choice of number and location of integration points14 as well as the
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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computation of the material tangent.15 Over the years, several remedies were proposed to overcome these problems.16,17

Apart from the numerical problems, a proper definition of the traction-separation relation plays an important role.18,19

In general, thermodynamical consistency20 and satisfaction of the main balance laws21 have to be guaranteed.
Among the different types of CZ models, two main approaches mainstream this field, namely, the intrinsic and the

extrinsic methods. Although both manifest the idea of the TSL, there are main differences in terms of the form of the TSL
as well as the implementation. In the intrinsic CZ method, elements are inserted between the bulk elements prior to
failure. Consequently, the intrinsic CZ model is ideal for parallel computations due to the uncoupled structure of its
stiffness matrix. Regarding the form of the TSL, an initial elastic regime results in an artificial compliance (see Figure 1A).
Increasing the initial slope may help to reduce this effect. Nonetheless, exaggeerating it can bring about time step problems
and ill-conditioning of the stiffness matrix.22

In contrast, the extrinsic approach (Figure 1B) excludes the initial elastic regime and is thus more robust especially
in dynamic calculations.23 On the other hand, the parallelization of this method remains a cumbersome task since the
mesh structure at the tip of the crack is steadily changing.24 This is due to the fact that extrinsic CZ elements are inserted
into the conforming elements once the failure criterion is met and therefore a remeshing of the fracture process zone is
required.

By use of nonconforming FE methods such as the discontinuous Galerkin method (DG), one can benefit from the
advantages of the aforementioned CZ approaches simultaneously. Most DG methods permit weak discontinuities. Con-
sequently, DG elements no longer share mutual nodes. Hence, the extrinsic CZ elements can be implemented between
the bulk elements prior to the failure and thereafter no regeneration of the mesh is needed. Thanks to the structure of the
DG stiffness matrix, parallelization of the method is no longer an obstacle.

DG methods were first introduced by Reed and Hill25 for the neutron transport problem. A penalty term was added
at the element boundaries to stabilize the solution of the discrete problem (see Nitsche26). After its initialization, the DG
method was used in the context of different types of partial differential equations including hyperbolic, near hyperbolic
and fourth-order problems (see References 27,28). Besides applications in fluid dynamics,29-31 a number of interesting
applications in solid mechanics are found (eg, References 32,33).

One of the first applications of the DG methods in the failure modeling of the interface is seen in the work of Mergheim
et al.34 The hybrid DG/CZ method of Mergheim et al34 was further developed in the context of composite materials by
Prechatel et al35 and Wu et al36 to model the debonding of the matrix-fiber interface. Dynamic fracture and fragmenta-
tion of solids in three dimensions is presented in the work of Radovitzky et al23 by applying the DG/CZ model. A detailed
implementation of this method is discussed by Nguyen22 for both elastic and inelastic solids undergoing finite deforma-
tion. Versino et al37 modeled the failure of the multilayered composite shells applying the DG/CZ method. Shear locking
is alleviated in their work by application of the assumed natural strain and enhanced assumed strain techniques. Never-
theless, a comprehensive study on the effect of both, shear and volumetric locking, on the interface behavior using DG/CZ
method is not conducted in the literature.

DG methods have also been applied in combination with other failure models than CZ approach. For instance, DG
methods show good potential in addressing some stability issues when they are combined with other methods to predict
failure and damage.38 Aduloju and Truster39 developed a DG formulation for modeling dynamic debonding in composite
materials. Ghosh et al40 generalized Nitsche's method to enforce stiff anisotropic cohesive laws. In this way, the problem
of oscillations due to spurious tractions could be overcome. Bird et al41 combined the idea of configurational forces42

with a DG method to predict arbitrary crack propagation. The transition from diffuse damage to sharp discontinuities is
an interesting and challenging topic that helps to model the entire ductile fracture process. Leclerc et al43 combined the

F I G U R E 1 Traction-separation
laws for cohesive zone elements. (A)
intrinsic, (B) extrinsic [Color figure can
be viewed at wileyonlinelibrary.com]
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advantages of a nonlocal damage model with a cohesive model in a DG finite element framework to address this problem.
Furthermore, the simultaneous evolution of plastic deformation and damage has to be considered for a proper ductile
damage model.1,44 DG formulations are also applied to discretize phase-field fracture propagation45 or gradient-enhanced
schemes.46

Conforming methods impose a strong continuity constraint on the discretized body. As a consequence, the meshes
on opposing sides of the crack must be conforming. This leads to unnecessarily high CPU time effort. The application
of the DG method facilitates the incorporation of hanging nodes into the discretization. Nonmatching meshes can be
advantageous when it comes to, for example, heterogeneous interfaces. A novel node to segment/node to surface CZ
element was developed by Paggi and Wriggers47 to address nonmatching meshes at the interface. Nguyen et al48 applied
a similar approach in combination with the DG method.

The coupling of the DG method with the CZ model leads to benefits such as ease of implementation as well as increased
robustness. Nevertheless, the artificial stiffening of the bulk has to be diminished prior to and after the occurrence of
failure. There exist already some variants of the DG methods which do not show locking, for example, an incomplete
interior penalty Galerkin (IIPG) variant combined with a reduced integration scheme can alleviate both volumetric and
shear locking phenomena.49,50 Grieshaber et al51 also showed that, specifically in the case of quadrilateral, bilinear ele-
ments, underintegration of selected edge terms in their new interior penalty method results in elimination of volumetric
locking. Wulfinghoff et al52 introduced a hybrid DG (HDG) method for geometrical nonlinearity which is free of locking
as well. The latter was improved and compared with a locking-free element formulation53 in the work of Reese et al.54 In
Reference 55, the concept of control points was introduced into an HDG method and applied to crystal plasticity.

In the present work, a novel extrinsic CZ model with contact, viscosity as well as cyclic loading formulations is inte-
grated into the IIPG version of the DG method. Based on Reference 23, a simple implementation of the cohesive DG
method (CDG) is applied. The discretization in case of matching meshes is performed by means of four-node elements.
Hanging nodes (nonmatching meshes) have been treated by the application of three-node elements from References 47,48.
In addition, the influence of locking on the fracture behavior of the material is studied. To the best of the authors'
knowledge, it is the first time that this issue is investigated. The problem is cured by the new locking-free CDG method.

This paper is structured as follows: First, the mathematical background of the model including the strong form, weak
form, and discretization is clarified. Later, different numerical integration schemes are illustrated. Several validation tests
in addition to five benchmark examples are considered to investigate the performance of the CDG method. Finally, the
work is summarized as well as conclusions are drawn.

2 FORMULATIONS

Within this section, the unsymmetric IIPG variant of the DG methods as well as our new CZ model are presented. In
the following, the strong form along with its unified weak form of the linear momentum balance is introduced, followed
by the discretization techniques for matching and nonmatching meshes. Next, the linearization of the residuals will be
explained. Finally, numerical integration schemes are clarified and discussed.

2.1 Strong form

The body Ω with the outer boundary 𝜕Ω is considered as shown in Figure 2. The outer boundary 𝜕Ω is divided into 𝜕Ωt
and 𝜕Ωu with the prescribed traction tp and the prescribed displacement up acting on them, respectively. In general, the
relations 𝜕Ωu ∪ 𝜕Ωt = 𝜕Ω and 𝜕Ωu ∩ 𝜕Ωt = 0 hold for 𝜕Ω. Within the body Ω, the discontinuities Γ divide the body into
a finite number Ne of subdomains Ωe. The relations Ω = ∪Ne

e=1Ωe and Γ = ∪Ne
e=1𝜕Ωe hold for the union of the subdomains

and their boundaries, where e is the subdomain index. On each side of the discontinuity Γ, the subdomains are expressed
by − and + with their corresponding outer normal vectors n− and n+, respectively. In case of weak discontinuities, in
order to simplify, we define the unique normal vector

n = n− = −n+ (1)

pointing from the negative to the positive side. This does not hold in the presence of the strong discontinuities since the
direction of the normal vectors may not be necessarily the same. Weak discontinuities denote the discretization error
in the DG method and not any physical cracks. This is due to the fact that continuity constraint in most DG methods
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F I G U R E 2 Body Ω with boundary
conditions. (A) Weak discontinuity, (B)
strong discontinuity [Color figure can be
viewed at wileyonlinelibrary.com]

is fulfilled only in a weak sense. On the contrary, strong discontinuities represent a physical interface (see for instance
Reference 34). In Figure 2, the tractions are drawn only at a point (later known as integration point) for the sake of simple
illustration. Obviously, tractions exist on the entire interface. The equilibrium of the inner and outer forces obtained from
the quasi-static linear momentum balance along with its boundary conditions reads as follows:

div(𝝈) + f = 0, (2)

u = up on 𝜕Ωu,

𝝈 n = tp on 𝜕Ωt. (3)

In the given strong form, 𝝈 represents the Cauchy stress tensor and f the body force vector. Note that in case of weak
discontinuities (prefailure), the continuity condition of the displacements and the tractions on the inner borders of the
subdomains is satisfied in the continuous solution

[[u]] = 0 on Γ,
[[𝝈]] n = 0 on Γ. (4)

A detailed definition of the boundary conditions is described in Reference 54.
It is necessary to differentiate between the negative and positive quantities on the sides of the discontinuities Γ. To

this end, the average and jump operators are defined below

[[•]] = (•+|Γ − •−|Γ),
{•} = 1

2
(•+|Γ + •−|Γ). (5)

In contrast, in case of strong discontinuities, the displacement jumps are allowed. Nevertheless, the continuity of the
tractions remains valid. Note that these assumptions hold for “cohesive interface models." For more information, refer to
Reference 56. At the interface, the tractions are a function of the displacement jump:

[[u]] ≠ 0 on Γ,
t− = −t+ = t([[u]]) on Γ. (6)

More details regarding the interface model will be given later.
This work is restricted to linear elasticity. Hooke's law is given by

𝝈 = C ∶ 𝜺, (7)

where C represents the fourth-order elasticity tensor and 𝜺 is the infinitesimal strain tensor defined by

𝜺(x) = sym(grad(u)), (8)

where x is the material position vector.

http://wileyonlinelibrary.com
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2.2 Weak form

By the use of the Gauss theorem and considering the symmetry property of the Cauchy stress, we obtain the weak form
for the standard continuous Galerkin method

∫Ω
𝝈 ∶ 𝛿𝜺 dV = ∫𝜕Ωt

𝝈 n ⋅ 𝛿u dA + ∫Ω
f ⋅ 𝛿u dV , (9)

where no internal boundaries exist. In the present context, the surface integral must not only be applied to the outer
boundaries 𝜕Ω with prescribed tractions tp, but also to the inner boundaries Γ with t+ and t−. Since the inner boundaries
differ based on the existence of either the weak or the strong discontinuity, the formulation of the weak form varies
accordingly.

2.2.1 Weak discontinuities

Taking the weak discontinuities first into consideration, the final weak form for the DG method is given by

∫Ω
𝝈 ∶ 𝛿𝜺 dV − ∫Γ+

𝝈+ n+ ⋅ 𝛿u+ dΓ − ∫Γ−
𝝈− n− ⋅ 𝛿u− dΓ = ∫𝜕Ωt

tp ⋅ 𝛿u dA + ∫Ω
f ⋅ 𝛿u dV . (10)

Recalling Equations (1) and ( 5), the weak form is further simplified to

∫Ω
𝝈 ∶ 𝛿𝜺 dV + ∫Γ

[[𝛿u ⋅ 𝝈]]n dΓ = ∫𝜕Ωt

tp ⋅ 𝛿u dA + ∫Ω
f ⋅ 𝛿u dV . (11)

Applying the relation34

[[𝛿u ⋅ 𝝈]] = [[𝛿u]] ⋅ {𝝈} + {𝛿u} ⋅ [[𝝈]], (12)

and by considering the traction continuity condition (see Equation (4)), the final weak form of the DG is given by

∫Ω
𝝈 ∶ 𝛿𝜺 dV + ∫Γ

[[𝛿u]] ⋅ {𝝈} ⋅ n dΓ = ∫𝜕Ωt

tp ⋅ 𝛿u dA + ∫Ω
f ⋅ 𝛿u dV . (13)

In order to obtain a stable solution, a penalty term is added in the spirit of Nitsche's method.26 Please note that the addi-
tion of this term does not violate the consistency of the weak form with the strong form since the jump of the displacement
field in the exact solution vanishes. Consequently, one obtains

∫Ω
𝝈 ∶ 𝛿𝜺 dV + ∫Γ

[[𝛿u]] ⋅ {𝝈} ⋅ n dΓ + ∫Γ
𝜃 [[𝛿u]] ⋅ [[u]] dΓ = ∫𝜕Ωt

tp ⋅ 𝛿u dA + ∫Ω
f ⋅ 𝛿u dV , (14)

where 𝜃 = 𝜗E∕h[N∕m3] is a penalty parameter and depends on Young's modulus E, the mesh size h and a sufficiently
large positive value 𝜗.50,57

2.2.2 Strong discontinuities

Once failure occurs, strong discontinuities take place and the DG method cannot be applied any more as displacement
jumps occur in the continuous solution. Instead, a CZ model is applied to prescribe the tractions t as a function of
displacement jumps [[u]] on the discontinuities Γ.

Pursuing Equation (9) in view of its corresponding boundary conditions (Equation (6)), the weak form of the CZ
becomes

∫Ω
𝝈 ∶ 𝛿𝜺 dV − ∫Γ+

t+ ⋅ 𝛿u+ dΓ − ∫Γ−
t− ⋅ 𝛿u− dΓ = ∫𝜕Ωt

tp ⋅ 𝛿u dA + ∫Ω
f ⋅ 𝛿u dV . (15)
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In analogy to the derivation of the weak form in DG (Equation (11)), we obtain the final weak form of the CZ as
follows:

∫Ω
𝝈 ∶ 𝛿𝜺 dV + ∫Γ

[[𝛿u]] ⋅ t([[u]]) dΓ = ∫𝜕Ωt

tp ⋅ 𝛿u dA + ∫Ω
f ⋅ 𝛿u dV . (16)

2.2.3 Unified weak form

Here, in order to incorporate the strong discontinuities into the DG framework, the parameter 𝛼 is utilized to specify
which weak form is active. Inserting the CZ term into the DG weak form, one obtains

∫Ω
𝝈 ∶ 𝛿𝜺 dV + ∫Γ

(1 − 𝛼) [[𝛿u]] ⋅ {𝝈} ⋅ n dΓ + ∫Γ
(1 − 𝛼) 𝜃 [[𝛿u]] ⋅ [[u]] dΓ

+ ∫Γ
𝛼 [[𝛿u]] ⋅ t([[u]]) dΓ = ∫𝜕Ωt

tp ⋅ 𝛿u dA + ∫Ω
f ⋅ 𝛿u dV , (17)

where 𝛼 = 0 denotes the prefailure as default. Once the failure criterion is met, 𝛼 = 1 is set and remains as a history
variable at the integration point of the interface element. The failure criterion as well as the choice of 𝛼 are clarified in
the next section.

2.3 CZ model

The interface behavior, introduced in the CZ model, is described by means of a traction-separation relation. In this work,
isothermal and isotropic interface behavior is assumed. Furthermore, it is well-known to introduce a local coordinate
system at the interface to differentiate between the normal and shear directions. To this end, displacement jumps [[u]],
defined on global coordinates, are substituted by the gap vector

g =
[

gs
gn

]
, (18)

which are computed of the crack tip. Here, gs and gn are the gap components in the shear and normal directions, respec-
tively. Clearly, they are orthogonal to each other. Unlike the weak discontinuity in linear elasticity, the opposing sides of
the CZ may not stay parallel to each other during separation. Therefore, a mid-plane is defined in the case of a four-node
element, with respect to which the shear and normal directions are defined (Figure 3B).

Denoting the angle between the local and global coordinates as 𝜙 and defining the rotation matrix

R =
[

cos𝜙 sin𝜙
−sin𝜙 cos𝜙

]
, (19)

F I G U R E 3 Cohesive zone elements with respect to global (x, y)
and local (s,n) coordinates. (A) three-node element; (B) four-node
element [Color figure can be viewed at wileyonlinelibrary.com]
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we can compute the gap vector based on the displacement jumps as follows:

g(u) = R [[u]]. (20)

In order to differentiate between an opening and a closure of the crack especially in the case of contact, we define the
effective quantities by the use of the Macaulay brackets

⟨•⟩ = (| • | + •)∕2 . (21)

Accordingly, the effective gap vector, as well as the effective traction vector, read as follows:

geff =
[
𝛽gs⟨gn⟩

]
, (22)

teff =
[

ts⟨tn⟩
]
. (23)

Here, 𝛽 assigns different weights to the normal and tangent separations. The effective separation and the effective
traction values are given by

𝜆 = ||geff|| = √⟨gn⟩2 + 𝛽2g2
s ,

teff = ||teff|| , (24)

respectively. Finally, we define the TSL

tcz(g) = t0
geff

𝜆

(
𝜆f − 𝜆max

𝜆f

)m
𝜆

𝜆max
− 𝜃

[
0⟨−gn⟩n

]
+ 𝜂 ġ , (25)

where 𝜆max represents the maximum separation that the interface has reached so far and 𝜆f is the elongation at full failure.
In addition, the maximum strength of the interface is denoted by t0. The power m is a material parameter that controls
the convexity of the drop of the cohesive tractions whereas the power n is mainly introduced to obtain numerical stability
in case of contact. The penalty term includes the contact force (see, eg, Reference 58) to avoid penetration while the last
term represents a viscous force with the viscosity parameter 𝜂. The latter has been introduced to consider viscous effects
at the interface as well as to avoid possible numerical instabilities such as snap-back (refer to References 15,59). For the
contact force, the same penalty values as for the DG part is used.

Note that 𝜆max is an internal variable at each integration point and can be related to a scalar damage parameter D. In
fact, the relation

𝜆f − 𝜆max

𝜆f
= 1 − D (26)

holds with D = 𝜆max∕𝜆f . Nonetheless, we derive our equations applying the notation 𝜆max in the following.
On the local coordinates, once the effective tractions teff resulting from the DG part tDG = {𝝈}n on Γ reach the maxi-

mum strength t0, the cohesive traction comes into play and depending on the separation and its history, different forms of
cohesive tractions are applied. In other words, in case teffDG > t0, the traction vector will take one of the following forms:

tcz(g) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

t0
geff
𝜆

(
𝜆f −𝜆
𝜆f

)m
− 𝜃

[
0⟨−gn⟩n

]
+ 𝜂 ġ if 𝜆max < 𝜆f ς 𝜆 = 𝜆max ,

t0
geff
𝜆max

(
𝜆f −𝜆max

𝜆f

)m
− 𝜃

[
0⟨−gn⟩n

]
+ 𝜂 ġ if 𝜆max < 𝜆f ς 𝜆 < 𝜆max ,

−𝜃

[
0⟨−gn⟩n

]
if 𝜆max ≥ 𝜆f .

(27)
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F I G U R E 4 Traction-separation laws for extrinsic
cohesive discontinuous Galerkin with over-magnified
initial slopes. (A) mode I; (B) mode II [Color figure can
be viewed at wileyonlinelibrary.com]

Bear in mind that the first case shows the loading case whereas the second one could be either unloading or reloading
up to 𝜆max. In contrast, the last case serves as the ultimate failure with no cohesive tractions. In all three cases, as soon
as the normal separation begins to obtain negative values, it gets penalized via the contact contribution 𝜃⟨−gn⟩. This is
done in a similar manner to the DG penalty term with the same penalty parameter. Nevertheless, the shear contribution
remains unpenalized.

Two different two-dimensional (2D) fracture modes, namely I and II, are illustrated in Figure 4 for the extrinsic
CDG TSL. Note that in the following figures, the initial slope is plotted in an over-magnified manner to demonstrate the
presence of the DG in the pre-failure regime.

2.4 Discretization

In this section, we only consider the terms on the discontinuity (interface) Γ and the rest of the terms in the bulk and
on the Neumann boundaries are treated in a standard approach. Furthermore, the quantities are transferred into Voigt
notation due to the symmetric structure of the Cauchy stresses. The 2D discretized form of the unified CDG weak form
is derived for two different linear elements, namely the four-node quadrilateral and the three-node triangular elements.
The former is applied on matching meshes while the latter is exploited in the presence of hanging nodes.

On each discontinuity (interface) element Γe, the element position xh, displacement uh, test function 𝛿uh, as well as
the stresses 𝝈h, are interpolated from their nodal values (denoted in capital letters) by the use of linear shape functions N.
These quantities read as

x(𝜉) =
nen∑
I=1

NI(𝜉) X I ,

u(𝜉) =
nen∑
I=1

NI(𝜉) U I ,

𝛿u(𝜉) =
nen∑
I=1

NI(𝜉) 𝛿U I ,

𝝈(𝜉) =
nen∑
I=1

NI(𝜉) 𝜮I , (28)

where nen is the number of nodes per element and 𝜉 is the reference element coordinate. Note that the nodal stressesΣ onΓ
are directly imported from the neighboring bulk elements. Henceforth, we neglect the superscript h in the approximated
quantities. Depending on the type of element, nen can vary between 3 and 4.

As shown in Figure 2A, the normal vector to the weak discontinuity Γ (prefailure regime) is given in a matrix form as
follows:

n =
[

nx 0 ny
0 ny nx

]
. (29)

In the following, the quantities which differ based on the type of discretization, are presented separately.

http://wileyonlinelibrary.com
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2.4.1 Four-node quadrilateral element (matching meshes)

Recalling nen = 4, the discretized forms of the displacement jumps and stress averages on Γ read as

[[u]] = −
2∑

I=1
NI(𝜉) U I +

4∑
I=3

NI(𝜉) U I = NJ U ,

{𝝈} = 1
2

[ 2∑
I=1

NI(𝜉) 𝜮I +
4∑

I=3
NI(𝜉) 𝜮I

]
= NA 𝜮, (30)

where the indices 1 and 2 refer to the negative side of the discontinuity/interface while 3 and 4 refer to its positive side.
In addition, NJ and NA are the matrices of all shape functions for the jump and average operators, correspondingly. For
a detailed definition of the above-mentioned matrices, please refer to Appendix A1.

2.4.2 Three-node triangular element (nonmatching meshes)

For this element with nen = 3, the discretized forms of the jump and average terms read as

[[u]] = −
2∑

I=1
NI(𝜉)U I + U3 = NJ U ,

{𝝈} = 1
2

[ 2∑
I=1

NI(𝜉)𝜮I +𝜮3

]
= NA 𝜮. (31)

As it is seen, the interpolation takes place only between the nodes 1 and 2. More details will be given in Section 2.6.

2.5 Linearization

Once the spatial quantities are discretized, the final discretized weak form regarding only the terms on Γ on the element
level can be written as

𝛿UT∫Γe

(1 − 𝛼) NT
J n NA 𝜮 dΓ + 𝛿UT∫Γe

(1 − 𝛼) 𝜃 NT
J NJ U dΓ + 𝛿UT∫Γe

𝛼 NT
J RT tcz dΓ . (32)

Here, remember that the gap and its variational form are already expressed in terms of the jump as follows:

g = R NJ U ,

𝛿g = R NJ 𝛿U . (33)

Due to the arbitrariness of 𝛿U , the residual forces for the terms on Γ are given as follows:

RΓ = ∫Γe

(1 − 𝛼) NT
J n NA 𝜮 dΓ + ∫Γe

(1 − 𝛼) 𝜃 NT
J NJ U dΓ

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
RDG

+ ∫Γe

𝛼 NT
J RT tcz dΓ

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Rcz

. (34)

Prior to the failure teffDG ≤ t0, that is, 𝛼 = 0, the residual forces consist of only the DG terms. The linearization of them
leads to the DG stiffness matrix

RDG = ∫Γe

NT
J n NA 𝜮 dΓ + ∫Γe

𝜃 NT
J NJ U dΓ

KDG = 𝜕RΓ

𝜕U
= 0 + ∫Γe

𝜃 NT
J NJ dΓ , (35)
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where the linearization of the first DG internal residual force is neglected, based on the work of Reference 22. As a result,
the cumbersome implementation of the DG contribution is reduced. Moreover, the neighboring bulk elements do not need
to be evaluated in the discontinuous element. Nonetheless, the contribution of the bulk elements have to be computed
prior to that of the DG elements. For a detailed assembly process, refer to Reference 22.

As soon as the failure initiates teffDG > t0, that is, 𝛼 = 1, the residual forces and the stiffness matrices will solely result
from the cohesive tractions of Equation (27)

Rcz = ∫Γe

NT
J RT tcz dΓ,

Kcz =
𝜕Rcz

𝜕g
𝜕g
𝜕U

= ∫Γe

NT
J RT K R NJ dΓ , (36)

where K is the 2 × 2 cohesive stiffness matrix. As a remark, 𝜂 ġ in the discrete form is given by 𝜂Δg∕Δt with Δt being
the size of the time step for the corresponding increment Δg = gtn

− gtn−1
. Accordingly, after a lengthy but straightforward

derivation, we obtain the stiffness matrices K for different cases based on the state of the effective separation consistent
with Equation (27).

We have to differentiate between the two regimes. The first regime (𝜆max < 𝜆f ) represents the TSL prior to the full
failure. The second regime (𝜆max ≥ 𝜆f ) represents the full failure, where no tractions exist anymore.

• Regime one (before full failure) 𝜆max < 𝜆f : Within this regime, again two different cases can show up depending on
either the system is been loaded (case a) or unloaded/reloaded (case b).
– Case a: during loading 𝜆 = 𝜆max:

Kcz =
t0

𝜆

(
𝜆f − 𝜆

𝜆f

)m

([
𝛽 0
0 1∕2 (1 + sgn(gn))

]
−

𝜆f + 𝜆 (m − 1)
𝜆2 (𝜆f − 𝜆)

[
𝛽3 g2

s 𝛽gs⟨−gn⟩
𝛽2 gs⟨−gn⟩ ⟨−gn⟩2

])
+ 𝜃

[
0 0
0 2−n n (|gn| − gn)n∕|gn|

]
+ 𝜂

Δt
I , (37)

where I is the identity matrix of second-order and sgn(x) is the sign function, which extracts the sign of the real
number x.

– Case b: during un- and reloading 𝜆 < 𝜆max:

Kcz =
t0

𝜆max

(
𝜆f − 𝜆max

𝜆f

)m [
𝛽 0
0 1∕2 (1 + sgn(gn))

]
+ 𝜃

[
0 0
0 2−n n (|gn| − gn)n∕|gn|

]
+ 𝜂

Δt
I , (38)

• Regime two (after the full failure) 𝜆max ≥ 𝜆f :

Kcz = +𝜃
[

0 0
0 2−n n (|gn| − gn)n∕|gn|

]
. (39)

2.6 Numerical integration

The integrals of the weak form (Equation (17)) are evaluated numerically by application of the quadrature points. Taking
only the left-hand side of this equation into account, one denotes the bulk and the discontinuity Γ terms as surface and
line integrals in a 2D configuration, respectively. The first term is fully integrated on the surface using four Gaussian
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F I G U R E 5 Different integration schemes on the Q1 and cohesive
discontinuous Galerkin element [Color figure can be viewed at
wileyonlinelibrary.com]

quadrature points with linear shape functions in a quadrilateral element (Q1). The rest of the terms are integrated on Γ
in the form of four- and three-node elements explained in the following.

2.6.1 Four-node quadrilateral element (matching meshes)

For matching meshes, we consider a four-node element with two line-integrals for each side of the discontinuity. They
are integrated using three different integration schemes, namely nodal, full and reduced Gaussian (see Figure 5).

The idea of the application of reduced integration was investigated in the work of Reference 60. In case of plasticity,
spurious penetration modes were observed for the interface element between two quadratic tetrahedra when they were
under-integrated. In the present work, this problem did not occur in the context of linear elasticity. However, the solution
to this problem when it comes to plastic deformations could be achieved by the use of a mixed (selective) integration
of the interface/boundary terms (see Bayat et al50). In the aforementioned paper, the penalty term was fully integrated
while the other boundary term (“DG term") was under-integrated. This possible remedy for the aforementioned unstable
modes in plasticity remains to be shown and is not investigated in the context of this paper.

2.6.2 Three-node triangular element (nonmatching meshes)

In contrast, there is only one integration point located at 𝜉p in the local coordinates in the presence of hanging nodes (see
Figure 6). The corresponding tractions and displacements are interpolated on 𝜉p using the information of the neighboring
nodes 1 and 2

X3′ = N1(𝜉p) X1 + N2(𝜉p) X2 , (40)

where N1 = 1∕2 (1 − 𝜉) and N2 = 1∕2 (1 + 𝜉) are the linear shape functions on Γ−. Thereafter, the displacement jump [[u]]
(or the gap g in CZ) and average tractions {t} (or the prescribed tractions tcz in CZ) between node 3 and X3′ are evaluated.

In the reference configuration, one obtains the position of 𝜉p as

𝜉p = x3 − xc

Γ∕2
, (41)

where xc = (x1 + x2)∕2 is the x coordinate in the middle of the nodes 1 and 2 and Γ represents the length of the side of the
triangle, lying on the discontinuity.

For the three-node CDG element, the definite integrals on Γ of the residual and stiffness matrices are computed
numerically as follows:

∫Γe

f (u) dΓ = f (u)|𝜉p ⋅ lel , (42)

where lel is the area of the contribution of node 3 on the finer mesh (see Reference 47). This area can be calculated
depending on whether the discretized bodies are meshed regularly as pictured in Figure 7.

For regular meshes, lel = l∕n is used for the inner nodes whereas lel = l∕2n is used for the outer nodes. Here, n refers
to the number of elements on the finer mesh. In the case of irregular mesh, lel = (b + c)∕2 holds for the inner nodes

http://wileyonlinelibrary.com
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F I G U R E 6 Integration point on the nonmatching
mesh for (A) undeformed and (B) deformed
configurations [Color figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 7 Area, lel of the contribution of
node 3 of the interface elements (colorful) in the
absence of the discontinuities in the upper and
lower bulk elements for (A) regular and (B)
irregular meshes [Color figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 8 Area, lel of the contribution of
node 3 of the interface elements (colorful) in the
presence of the discontinuities (colorful
rectangular elements) in the upper and lower
bulk elements for (A) regular and (B) irregular
meshes [Color figure can be viewed at
wileyonlinelibrary.com]

whereas lel = a∕2 is applied for the outer nodes. Nonetheless, once the DG elements are inserted within the lower and
upper elements as well, the area lel will be simply half of the length of each element, that is, for the regular mesh lel = l∕2n
whereas in case of irregular mesh, for example, here lel = a∕2, lel = b∕2, and lel = c∕2 (see Figure 8).

3 IMPLEMENTATION

In the assembly, the bulk elements are prior to the CDG elements since the stresses from the bulk should be transferred to
the elements on Γ. To this end, the stresses (𝜎xx, 𝜎yy, and 𝜎xy) at the Gauss points of the bulk elements are first extrapolated
to the nodes and stored in a global matrix. During the assembly of the interface elements, the stresses from the adjacent
nodes are called and interpolated at the integration points of the CDG. This is shown in Figure 9. The implementation of
the CDG element is clarified in Algorithm 1. Due to the fact that the TSL is evaluated at each integration point, also the
failure is evaluated on the level of integration point. This means that within an element, one integration point may not
have experienced failure while the other one has already failed, see Equation (17).

Note that we neglect the separation 𝜆0 at the maximum strength t0 due to its insignificant contribution. These gaps
result from the permissible displacement jumps in DG prior to the failure. Furthermore, 𝜆max as well as 𝛼 (both initially
set to zero) are variables to be stored at the integration point in order to differentiate between loading and un- or reloading
and the state of failure, respectively.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 9 Extrapolation of the stresses from bulk Gauss points to the
mutual nodes as well as interpolation of them on Γ [Color figure can be viewed
at wileyonlinelibrary.com]

The mesh for both the three- and the four-node elements (CDG) as well as the bulk elements (Q1) are generated using
MATLAB. In the case of matching meshes, first the bulk elements are generated and then the four-node CDG elements
are placed between all adjacent volume elements in a straight forward manner.

Algorithm 1: CDG element subroutine.
Data: displacement u
Result: DG traction tDG and cohesive traction tCZ
while within the CDG element do

for iqp = 1 to nqp do {loop over quadrature points}
call nodal stresses → form stress average {𝝈}

read nodal displacements → form displacement jumps [[u]]
(Equations (30), (31))

if teffDG ≤ t0 and 𝛼 = 0 then {pre-failure}
compute RDG

compute KDG
(Equation (35))

else if teffDG > t0 or 𝛼 = 1 then {postfailure}
compute 𝜆

if 𝜆>𝜆max then
𝜆max = 𝜆 update 𝜆max

else
do not update 𝜆max

end
if 𝜆max < 𝜆f then {prefracture}

if 𝜆>𝜆max then {loading}
compute RCZ (Equation (36))

compute KCZ (Equation (37))
else {unloading - reloading}

compute RCZ (Equation (36))
compute KCZ (Equation (38))

end
else {postfracture}

compute RCZ (Equation (36))
compute KCZ (Equation (39))

end
else

error calculating teffDG

end
end
RΓ = RDG + RCZ and KΓ = KDG + KCZ

end

http://wileyonlinelibrary.com
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As clarified before, the placement of the three-node elements depends on whether the bulk is discontinuous or con-
forming. In the case of a continuous bulk, each node of the triangular elements on the finer side of the mesh is checked
to find its two directly neighboring nodes on the coarser side.47 Thereafter, the triangular element is constructed using
these three nodes. If a node on the finer mesh coincides with that of the coarser mesh, it will be connected to both the
left and right nodes of the coarser mesh to make two triangles. This is illustrated in Figure 7.

In contrast, once the bulk is nonconforming, there will be double nodes at the same point (in the reference configu-
ration). The mutual overlying nodes of the finer mesh will be connected to the closest nodes of the coarser mesh making
two overlapping triangular elements. Those two nodes of the finer mesh which coincide with the other two nodes of the
coarser mesh make two nonoverlapping triangles on each side for the coarser mesh as illustrated in Figure 8.

4 NUMERICAL EXAMPLES

Unless otherwise stated, a geometrically linear formulation as well as the extrinsic CZ approach without viscosity (𝜂 = 0)
are used. The Finite Element Analysis Program61 is utilized for the computations whereas the mesh is generated separately
using a user-defined code in MATLAB.

First, a 2D example is given to verify different aspects of the new formulation. Afterward, five benchmark problems
are considered, three of which are chosen to investigate the locking behavior whereas the rest exemplifies the application
of nonmatching meshes. The above-mentioned examples are as follows:

• peeling test: mode I delamination (matching meshes),
• peeling test: mixed-mode delamination (nonmatching meshes),
• mode II delamination: end notched flexure test (matching meshes),
• single-edge notched specimen (matching meshes),
• fiber pull-out in composite structures (nonmatching meshes).

4.1 Two-dimensional validation test

In order to validate the performance of the new formulation, we test it for different loading cases in two simple examples,
namely, modes I and II separations. The tractions, as well as the reaction forces for unloading and reloading including
contact as well as the damage power (m), are illustrated. In the end, a comparison of the three-node vs four-node element
formulations is carried out.

4.1.1 Four-node quadrilateral element (matching meshes)

Normal separation
A rectangular block (1 × 2 mm) is fixed on its lower edge in y-direction while being pulled on its upper edge in y-direction
as pictured in Figure 10A. To avoid rigid body motions, both left corners are fixed in x-direction additionally. The cor-
responding parameters are shown in Table 1. The problem is displacement driven (u = 5 mm) and the response of the
reaction forces as well as the traction separation diagram (for an integration point) are plotted in Figure 11, respectively.

The elements at the interface plotted in Figure 10C and d do not represent any material at the interface.

Shear separation
The same block from the above example is considered here with different boundary conditions. At the bottom, it is com-
pletely fixed in both directions while at the top only the y-direction is constrained. A horizontal displacement is applied
to the upper nodes (see Figure 10B) and the response of the reactions and tractions for different damage powers (m) is
illustrated in Figure 12. Note that m is a material parameter depending on how the material behaves during failure. The
parameters are found in Table 1.

4.1.2 Three-node triangular element (nonmatching meshes)

The same block with the very same parameters is investigated using the three-node elements (see Figure 10D). The trac-
tion separation diagrams for both modes I and II are plotted in Figure 13. It is noticeable that the performance of the
three-node elements is the same as that of the four-node elements.
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F I G U R E 10 Geometry, boundary conditions
and discretization of the block for mode I (A) and
mode II (B) separations. Stress distribution for normal
separation, (C) one 4-node cohesive discontinuous
Galerkin (CDG) element on the interface, (D) two
3-node CDG elements on the interface [Color figure
can be viewed at wileyonlinelibrary.com]
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T A B L E 1 Parameters for
the 2D validation tests

cases E (MPa) 𝝂 𝝑 𝝀f (mm) 𝜷 𝜼 t0 (MPa) n m

Normal separation 102 0.3 103 0.4 1.0 0.0 3.0 2.0 1.0

Shear separation 102 0.499 103 0.4 1.0 0.0 1.0 2.0 1.0, 1.5, 2.0

F I G U R E 11 Block under normal
separation during loading and unloading
with contact included—Four-node
interface element, (A) the relation
between reaction force and displacement
on top of the block, (B) the relation
between traction and separation at a
Gauss point of the interface [Color figure
can be viewed at wileyonlinelibrary.com] (A) (B)

http://wileyonlinelibrary.com
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(A) (B)

F I G U R E 12 Block under shear
separation during loading and unloading
with different damage
powers (m)—Four-node interface
element, (A) the relation between
reaction force and displacement on top
of the block, (B) the relation between
traction and separation at a Gauss point
of the interface [Color figure can be
viewed at wileyonlinelibrary.com]

(A) (B)

F I G U R E 13 Traction separation
of the left triangular element of the
block during loading and
unloading—Three-node interface
element, (A) mode I separation with
contact included, (B) mode II
separation with different damage
powers [Color figure can be viewed at
wileyonlinelibrary.com]

4.2 Peeling test

A benchmark problem of the peeling test is considered in this part for matching and nonmatching meshes. The former
is used for the mode I fracture while the latter is applied to capture mixed-mode behavior. Firstly, for a single beam, we
demonstrate a mesh convergence study with different element formulations applying only the DG part of the formula-
tions. Afterward, the cohesive behavior of the peel test is studied in terms of mesh convergence and numerical integration
schemes.

4.2.1 Mode I delamination (matching meshes)

A structure consisting of two beams with adhesive in between is fixed at its left end while being pulled apart in y-direction
at its right end. A precrack on the right-hand side of the beam is considered for the initiation of the crack. The geometry, as
well as the boundary conditions, are given in Figure 14. The discretization of each beam is carried out in the same manner
simultaneously with the following meshes 2 × 10, 4 × 20, 8 × 40, etc. Material parameters exemplify a harder bulk, here
steel, with a weaker adhesive in between as in composites to model delamination between the laminae. The material
parameters are given in Table 2. In this example, the mode I fracture is illustrated to study the behavior of the cohesive
model. A constant element aspect ratio of 10 ∶ 1 is set. This is of interest to show that shear locking can be overcome.50

Artificial stiffening or the so-called locking phenomenon can lead to incorrect reaction forces and thus an unrealistic
behavior of not only the prefailure regime49,50 but also the failure regime. The former is investigated by considering only
the upper beam whereas for the latter, the entire geometry is taken into account. Different discretization levels as well as
different element formulations are compared.

In order to apply the DG method in the prefailure regime, the correct 𝜃 parameter, introduced in Section 14, is specified
for each numerical integration scheme. A single force 10−4 N acts on the upper right corner of the upper single beam.
The corresponding vertical displacement of the same corner is investigated for different levels of mesh refinements. The
standard four-node linear rectangular Q1 is used for the bulk in combination with our 4-node DG elements utilized with
full and reduced Gaussian integration schemes as defined in Figure 5. Note that the DG elements are spread out between

http://wileyonlinelibrary.com
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F I G U R E 14 Peeling test, (A) geometry and
boundary conditions, (B) discretization and stress state
[Color figure can be viewed at wileyonlinelibrary.com]
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T A B L E 2 Peel test
parameters—Matching meshes

Formulation E (MPa) 𝝂 𝝑 𝝀0 (mm) 𝝀f (mm) 𝜷 𝜼 t0 (MPa) n m

Extrinsic CDG 200 × 103 0.3 100 —– 0.5 1.0 0.0 1.0 1.1 1.0

Intrinsic CZ15 200 × 103 0.3 —– 10−4 0.5 1.0 0.0 1.0 1.1 1.0

Abbreviations: CDG, cohesive discontinuous Galerkin; CZ, cohesive zone.

(A) (B)

F I G U R E 15 Intact single beam—Convergence of the the relative displacement of the upper right corner of the beam in the y-direction
with respect to (A) number of elements in y-direction and (B) total number of degrees of freedom, for different element formulations [Color
figure can be viewed at wileyonlinelibrary.com]

all adjacent Q1 elements. Moreover, a Q1 element with the element aspect ratio of 1 ∶ 1 is considered as a reference
solution. The relative vertical displacement (uy,relative) of the upper right corner of the beam with respect to the number of
elements in y-direction and additionally once with respect to the total number of degrees of freedom is given in Figure 15.
It is clearly seen that the DG method with reduced integration overcomes locking whereas the full integration does not
eliminate the influence of the artificial stiffening.

In addition, the influence of the stabilization (penalty) parameter on the convergence of the DG elements is studied in
Figure 16. The relative vertical displacement (uy,relative) of the upper right corner of the beam is plotted with respect to the
penalty parameter 𝜗. Two different mesh refinement levels for both cases of reduced as well as full integration schemes
are considered. By varying 𝜗 (see Equation (14)) from very small to very large values, the response of the elements varies

http://wileyonlinelibrary.com
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F I G U R E 16 Effect of the choice of the penalty parameter on
the convergence rate of discontinuous Galerkin elements (with
aspect ratio of 10:1 in combination with Q1 elements) with reduced
and full integration schemes [Color figure can be viewed at
wileyonlinelibrary.com]

(A) (B)

(C) (D)

F I G U R E 17 Convergence rate of
different cohesive zone (CZ)
formulations for the peel test in terms of
reaction force-displacement with
different mesh refinements. (A)
extrinsic cohesive discontinuous
Galerkin (CDG) with full
integration (𝜗 = 100), (B) extrinsic CDG
with reduced integration (𝜗 = 100), (C)
intrinsic CZ with full integration,15 (D)
comparison of the converged solutions
[Color figure can be viewed at
wileyonlinelibrary.com]

from too soft to converged and later to unrealistic slightly stiffer values. Choosing too high values for 𝜗 results in numerical
instabilities.

Within the failure regime, the application of the DG elements in the bulk and CDG elements at the interface with
different integration schemes similar to the previous example is studied. To better illustrate the differences in the perfor-
mance of the element formulations in the presence of shear locking, an additional intrinsic CZ model from Reference 15
is employed in combination with Q1 elements. In this variant, no DG elements are introduced in the bulk and the CZ
elements are evaluated by a Gaussian full integration scheme.

Figure 17 shows the convergence rate of the aforementioned elements in terms of the reaction force-displacement
curve. Note that the number of elements in the graph refers to the upper beam of the peel test for a better comparison
with the intact beam example. Obviously, the complete peel needs twice the number of elements.

As clearly seen in Figure 17, the application of the reduced integration scheme in the CDG formulations results in real-
istic (here, lower) reaction forces. On the other hand, the false (here higher) reaction forces will bring about a premature
tearing of the interface.

In the case of crack propagation of the brittle materials, depending on the material as well as the interface properties
such as fracture energy, there need to be enough integration points on the crack path, leading to a smaller distance between
the adjacent integration points. This is better seen in Figure 18 for the mesh of 2 × 10 elements. However, by refining
the mesh only one level higher (4 × 20 elements), a smooth force-displacement curve is obtained. The same converged
solution in the case of full integration is obtained at the earliest with 128 × 640 elements (see Figure 17A). Therefore,

http://wileyonlinelibrary.com
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F I G U R E 18 Convergence rate of extrinsic cohesive
discontinuous Galerkin with reduced integration for the peel test in
terms of reaction force-displacement with magnified y-axis [Color
figure can be viewed at wileyonlinelibrary.com]

F I G U R E 19 Geometry and boundary conditions of the peeling test [Color
figure can be viewed at wileyonlinelibrary.com]

under-integration outperforms full integration in terms of computation cost as well as representation of a realistic crack
propagation behavior.

4.2.2 Mixed-mode delamination (nonmatching meshes)

Peeling can very often occur when one layer is considerably thicker/stiffer than the other layer. As a result, discretization
of the two layers with the same mesh refinement level is computationally unnecessarily costly. Here, we consider a peeling
example in which the stiffer layer possesses a higher thickness than the softer material. This implies that the stiffer bulk
does not necessitate a fine mesh. Thus, the three-node CDG elements are applied.

The geometry along with the boundary conditions is depicted in Figure 19. The stress states 𝜎yy for the matching as
well as the nonmatching meshes for different time steps are plotted in Figure 20 against each other for a better visual
comparison. The corresponding parameters are shown in Table 3 for the lower, upper, and middle layers. The introduction
of the DG elements within the bulk is possible as explained in Figures 7 and 8.

It must be noted that unlike other matching discretization techniques, the level of the refinement in this type of the
nonmatching discretization47 must be adequate on both sides of the interface. Otherwise, an unsymmetric stress pattern
is observed at the interface. In Figure 20, this discretization error is because the coarse mesh is not fine enough.

The reaction force displacement of the upper-right edge of the geometry is plotted in Figure 21 for both meshes once
with and once without the DG elements in the bulk. The converged response is obtained with much less number of
elements in the nonmatching meshes.

4.3 Mode II delamination: End notched flexure test (matching meshes)

In order to investigate the response of the model for the mode II delamination, a beam (see Figure 22) with a notch on its
right end similar to the DIN ENF 6034 standard is considered. Geometry, boundary conditions, and the given displacement

http://wileyonlinelibrary.com
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(A) t = 0.005 s (B) t = 0.005 s

(C) t = 0.025 s (D) t = 0.25 s

(E) t = 0.5 s (F) t = 0.5 s

(G) t = 1.0 s (H) t = 1.0 s

10
+

E0
9.

4-

10
+

E4
7.

3-

10
+

E 8
5.

2-

10
+

E2
4.

1 -

00
+

E0
6.

2-

00
+

E0
0.

9

22

(I) Stress spectrum

F I G U R E 20 Contour of the
stress 𝜎22 for both matching (A, C, E, G)
and nonmatching (B, D, F, H) meshes at
the same times [Color figure can be
viewed at wileyonlinelibrary.com]

are shown in Figure 22A. In addition, the discretization scheme and the distribution of the stress (𝜎22) are depicted in
Figure 22B. The element ratio is fixed to 1 ∶ 10, that is, the geometry is discretized by 4 × 10, 8 × 20, 16 × 40,…, 256 × 640
elements to assure the occurrence of shear locking.

The parameters for the extrinsic CDG as well as the intrinsic CZ15 elements are listed in Table 4. It is noticeable that
due to the existence of the contact algorithm, the intrinsic CZ model needs a penalty value 𝜃 to be defined. In this way,
the extrinsic CDG benefits from a fewer number of parameters.

The reaction force-displacement response of the specimen on its upper mid-point is shown in Figure 23. The
aforementioned mesh refinement levels are compared for the upper beam of the specimen in the vertical direction.

The CDG elements with reduced integration scheme result in an astonishingly fast convergence rate in terms of
the number of elements in the vertical direction (only eight elements). At this level of mesh refinement, other element
formulations show over 30% error.

http://wileyonlinelibrary.com


BAYAT et al. 21

T A B L E 3 Peel test
parameters—Nonmatching meshes

Layer E (MPa) 𝝂 𝝑 𝝀f [mm] 𝜷 𝜼 t0 (MPa) n m

Upper bulk 105 0.3 5.0 - - - - - -

CDG mid-layer (105 + 108)∕2 - 5.0 0.5 1.0 0.0 5.0 1.3 1.2

Lower bulk 108 0.3 5.0 - - - - - -

Abbreviation: CDG, cohesive discontinuous Galerkin.

F I G U R E 21 Comparison of the reaction force-displacement for the upper
right corner for the matching and nonmatching mesh in the absence and
presence of discontinuous Galerkin in the bulk (with full integration) [Color
figure can be viewed at wileyonlinelibrary.com]

F I G U R E 22 Single-edge notched specimen, (A)
geometry and boundary conditions, (B) discretization
and stress contour, 𝜎22 in y-direction [Color figure can
be viewed at wileyonlinelibrary.com]

(A)

-3.78E+00
-3.18E+00
-2.57E+00
-1.96E+00
-1.35E+00
-7.42E-01
-1.34E-01
4.75E-01
1.08E+00
1.69E+00
2.30E+00

-4.39E+00

2.91E+00

STRESS 2

(B)

T A B L E 4 Parameters of
the end notched flexure test

Formulation E (MPa) 𝝂 𝜽 𝝀0 (mm) 𝝀f (mm) 𝜷 𝜼 t0 (MPa) n m

Extrinsic CDG 200 × 103 0.3 100E∕h —– 0.004 1.0 0.0 2.0 2.0 1.0

Intrinsic CZ15 200 × 103 0.3 105 10−4 0.004 1.0 0.0 2.0 2.0 1.0

Abbreviations: CDG, cohesive discontinuous Galerkin; CZ, cohesive zone.

4.4 Single-edge notched specimen (matching meshes)

A 2D plane strain specimen with a zero-thickness notch is considered here. It is pulled apart in y-direction on its upper
edge while being fixed at the bottom. The geometry, boundary conditions, loading as well as the discretization are
given in Figure 24. Additionally, a cohesive layer is laid along the notch direction for the evolution of the crack. Differ-
ent discretization levels are exploited to investigate the convergence behavior of the specimen in the presence of near
incomprehensibility. The corresponding parameters are given in Table 5.

In order to investigate the influence of volumetric locking on the convergence rate of the block without any notches,
an intact specimen is considered first (see Figure 25). Two different discretization schemes, namely continuous with
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(A) (B)

(C) (D)

F I G U R E 23 Convergence rate of
different cohesive zone (CZ)
formulations for the flexure test in terms
of reaction force-displacement, (A)
extrinsic cohesive discontinuous
Galerkin (CDG) with full integration, (B)
extrinsic CDG with reduced integration,
(C) intrinsic CZ with full integration, (D)
comparison with the same discretization
(eight elements) [Color figure can be
viewed at wileyonlinelibrary.com]

(A)

000.00E

1.35E-03

4.70E-03

8.05E-03

1.14E-02

1.48E-02

1.81E-02

2.15E-02

2.48E-02

2.82E-02

3.15E-02

3.94E-02

DISPLACEMENT2

(B)

F I G U R E 24 Single-edge notched
specimen. (A) Geometry and boundary
conditions; (B) A sample mesh with
displacement contour in y-direction
[Color figure can be viewed at
wileyonlinelibrary.com]

only Q1 elements and discontinuous with DG elements among bulk elements (Q1) are utilized. The latter is exploited in
two variants, that is, reduced and full integration on Γ.

As clearly seen in Figure 25, the converged reaction forces are obtained with a considerably less number of
elements/degrees of freedom once employing DG elements with reduced integration.

Next, the reaction forces are plotted against the prescribed displacements once the notch and the cohesive layer exist
(see Figure 26). For the same mesh, the maximum reaction forces are reached at much lower displacements (around
20%) in the CDG element with reduced integration scheme compared to other element formulations. This is due to the
elimination of the volumetric locking.

In this example, the reaction force-displacement response of the extrinsic CDG with nodal integration scheme for the
mesh of 32 elements is shown in Figure 26D. In comparison to the choice of reduced integration in the DG elements,

Layer E (MPa) 𝝂 𝝑 𝝀f (mm) 𝜷 𝜼 t0 (MPa) n m

Bulk 105 0.4999 104 - - - - - -

CDG mid-layer 105 0.4999 104 0.1 1.0 0.0 102 1.5 1.0

Abbreviation: CDG, cohesive discontinuous Galerkin.

T A B L E 5 Parameters of the
notched specimen
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(A) (B)

F I G U R E 25 Intact notched specimen—Convergence of the relative sum of the reaction forces in y-direction on the top with respect to
(A) the number of elements in each direction, (B) the total number of degrees of freedom, for different element formulations [Color figure
can be viewed at wileyonlinelibrary.com]

F I G U R E 26 Notched
specimen—Convergence rate of
different cohesive zone (CZ)
formulations in terms of reaction
force-displacement evaluated on the
upper side. (A) Extrinsic cohesive
discontinuous Galerkin (CDG) with
full integration (𝜗 = 104). (B) extrinsic
CDG with reduced
integration (𝜗 = 104), (C) intrinsic CZ15

with full integration, (D) comparison
with the same discretization (32
elements) [Color figure can be viewed
at wileyonlinelibrary.com]

(A) (B)

(C) (D)

the application of the nodal integration does not improve the convergence rate of the elements with respect to the mesh
refinement.

4.5 Fiber pull-out in composite structures (nonmatching meshes)

The final example demonstrates the benefit of the application of the nonmatching meshes in composite structures. A
notorious instance of failure is observed once the fibers undergo deformation and are finally pulled out. Depending on

T A B L E 6 Parameters of the fiber pull-out test

Layer E (MPa) 𝝂 𝝑 𝝀f (mm) 𝜷 𝜼 t0 (MPa) n m

Upper bulk 21 × 102 0.22 102 - - - - - -

CDG in the upper bulk 21 × 102 - 102 0.5 1.0 0.0 2.0 1.3 1.0

CDG on interface 21×102+380×103

2
- 102 0.5 1.0 0.0 10 1.3 1.0

Lower bulk 380 × 103 0.17 102 - - - - - -

Abbreviation: CDG, cohesive discontinuous Galerkin.
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(A)

(B) (C)

F I G U R E 27 Fiber pull-out test.
(A) Geometry and boundary conditions.
Coarsest discretizations for the half
geometry; (B) matching meshes; (C)
nonmatching meshes [Color figure can
be viewed at wileyonlinelibrary.com]

the interface properties, they may fail after the matrix does. In this example, due to a precrack in the matrix, once the
fibers are pulled, the notch in the matrix propagates and reaches the interface. Thereafter, due to the fixation of the matrix
on the left-hand side, the failure starts at the interface. It is noticeable that due to the material properties of the bulk (see
Table 6), a fine mesh for the fiber is redundant.

Geometry, boundary conditions, and loading are given in Figure 27A. Furthermore, the discretization for both
matching and nonmatching meshes are provided in Figure 27B.

For the same time, the stress contour of the matching and nonmatching meshes look alike (see Figure 28). Thus, the
application of the nonmatching CZ interface, denoted by red line in Figure 27A on the mid-layer saves a considerable
amount of computation time.

In order to shed more light on the differences between these two discretization schemes, the reaction
force-displacement response of the structure is plotted in Figure 29. To this end, the reaction forces on the right-hand
side of the fiber are plotted against the displacement on the lower-left corner of the specimen. As illustrated, the non-
matching mesh delivers the same behavior as that of the meshing meshes. In addition, by the use of reduced integration,
a smoother transition of the pre- to postfailure regimes is observed.

5 CONCLUSION

A novel extrinsic cohesive formulation was embedded in the framework of the IIPG variant of the DG method. The
method was applied in the framework of 2D linear elasticity to model material brittle failure. In addition, two different
discretization techniques, namely a four-node quadrilateral element formulation and a three-node rectangular element
formulation were exploited to account for matching as well as nonmatching meshes, respectively. In order to circum-
vent the artificial stiffening within the bulk and to obtain realistic interface behavior, a reduced integration scheme was
employed on the boundary terms. A series of validation tests were run to evaluate the performance of the CDG method.
Furthermore, mode I, mode II and mixed-mode delamination tests along with a single-edge notched specimen and a
fiber pull-out test were investigated to convey a study on the influence of locking on the interface behavior as well as the
application of nonmatching meshes. It was found that not only shear locking but also volumetric locking effects were
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F I G U R E 28 Contour of the
stress 𝜎22 for both matching (A, C, E)
and nonmatching (B, D, F) meshes at the
same times [Color figure can be viewed
at wileyonlinelibrary.com]
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(I) Stress spectrum

minimized. Thanks to the inherent nonconforming characteristic of DG methods, hanging nodes could be tackled on
the discontinuities/interfaces. as a result, the calculation cost was reduced. In addition, the choice of such an extrinsic
formulation of the CZ model allowed to avoid unrealistic compliance at the interface. Unlike the conventional extrinsic
methods, our CDG method does not require a remeshing of the structure at the interface by virtue of the existence of the
DG framework.

Determination of the crack path only by means of CZ methods remains debatable. CZ models are able to qualitatively
specify the crack path (see Reference 62). This is due to the fact that these methods impose the requirement that the
crack path is biased by the direction of the mesh lines.63 Therefore, a combination of the CZ models with other methods
such as nonlocal damage models can capture arbitrary crack paths (eg, refer to References 43,64). However, performing
such simulations lies beyond the scope of the current work and will be considered in a forthcoming paper. In addition,
it is planned to extend the model for ductile fracture especially in a three-dimensional setting. Furthermore, the use
of a locking-free formulation for the bulk is expected to improve the performance of the method in problems prone to
locking.
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(A) (B)

(C) (D)

F I G U R E 29 Reaction
force-displacement response of the
composite, (A) nonmatching mesh
with full integration, (B) nonmatching
mesh with reduced integration, (C)
matching mesh with reduced
integration, (D) matching vs
nonmatching meshes [Color figure
can be viewed at
wileyonlinelibrary.com]
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A. MATRIX DEFINITION
The nodal displacement vector reads as

UT =
[
(U1)x (U1)y (U2)x (U2)y · · · (Unen)x (Unen)y

]
nen

(A1)

Analogously, the nodal position vector X as well as the nodal test function vector 𝛿U are derived. Similarly, the nodal
stress vector is defined as

𝜮T =
[
(Σ1)xx (Σ1)yy (Σ1)xy (Σ2)xx (Σ2)yy (Σ2)xy … (Σnen )xx (Σnen)yy (Σnen)xy

]
3nen

(A2)
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The jump and the average shape function operators for the four-node elements are given as:

NJ =
[
−N1 0 −N2 0 +N3 0 +N4 0

0 −N1 0 −N2 0 +N3 0 +N4

]
2×8

, (A3)

NA = 1
2

[N1 0 0 N2 0 0 … N4 0 0
0 N1 0 0 N2 0 0 … N4 0
0 0 N1 0 0 N2 0 0 … N4

]
3×12

, (A4)

whereas the aforementioned operators for the three-node element are given by

NJ =
[
−N1 0 −N2 0 +1 0

0 −N1 0 −N2 0 +1

]
2×6

, (A5)

NA = 1
2

[N1 0 0 N2 0 0 1 0 0
0 N1 0 0 N2 0 0 1 0
0 0 N1 0 0 N2 0 0 1

]
3×9

. (A6)


