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Implicit constitutive theory provides a very general framework for fluid flow models, including both
Newtonian and generalized Newtonian fluids, where the Cauchy stress tensor and the rate of strain
tensor are assumed to be related by an implicit relation associated with a maximal monotone graph. For
incompressible unsteady flows of such fluids, subject to a homogeneous Dirichlet boundary condition on
a Lipschitz polytopal domain 2 C RY, d € (2,3}, we investigate a fully discrete approximation scheme,
using a spatial mixed finite element approximation on general shape-regular simplicial meshes combined
with backward Euler time-stepping. We consider the case when the velocity field belongs to the space of
solenoidal functions contained in L% (0, T; L2(£2)%) N L4(0, T; w(‘)’q )% with g € 2d/(d + 2), 00),
which is the maximal range of ¢ with respect to existence of weak solutions. In order to facilitate passage
to the limit with the discretization parameters for the sub-range ¢ € (2d/(d +2),(3d +2)/(d + 2)),
we introduce a regularization of the momentum equation by means of a penalty term, and first
show convergence of a subsequence of approximate solutions to a weak solution of the regularized
problem; we then pass to the limit with the regularization parameter. This is achieved by the use of a
solenoidal parabolic Lipschitz truncation method, a local Minty-type monotonicity result, and various
weak compactness techniques. For ¢ > (3d + 2)/(d + 2) convergence of a subsequence of approximate
solutions to a weak solution can be shown directly, without the regularization term.

Keywords: finite element method; time-stepping; implicit constitutive models; convergence; weak
compactness; Lipschitz truncation method.

1. Introduction

In the mechanics of viscous incompressible fluids, typical constitutive relations relate the shear stress
tensor to the rate of strain tensor through an explicit functional relationship. In the case of a Newtonian
fluid the relationship is linear, and in the case of generalized Newtonian fluids it is usually a power-
law-like nonlinear, but still explicit, functional relation. Implicit constitutive theory was introduced in
order to describe a wide range of non-Newtonian rheology, by admitting implicit and discontinuous
constitutive laws, see Rajagopal (2003, 2008). The existence of weak solutions to mathematical models
of this kind was explored in Bulicek et al. (2009, 2012) for steady and unsteady flows, respectively.

© The Author(s) 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. This is an Open
Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

0202 JoquianoN 0 uo 1senb Aq 1.Z101L£S/108/Z/0/al0nie/eulewl/woo dno olwapese/:sdiy Woly pepeojumod


http://creativecommons.org/licenses/by/4.0/

802 E. SULI AND T. TSCHERPEL

The aim of the present paper is to construct a fully discrete numerical approximation scheme, in the
unsteady case, for a class of such implicitly constituted models, where the shear stress and the rate of
strain tensors are related through a (possibly discontinuous) maximal monotone graph. The scheme is
based on a spatial mixed finite element approximation and a backward Euler discretization with respect
to the temporal variable.

We will show weak convergence (up to subsequences) of the sequence of approximate solutions to
a weak solution of the regularized problem, and then weak convergence (up to subsequences) of the
sequence of weak solutions of the regularized problem to a weak solution of the original problem.

The mathematical ideas contained in the paper are motivated by the existence theory formulated, in
the unsteady case, in Bulicek et al. (2012), and the convergence theory for finite element approximations
of steady implicitly constituted fluid flow models developed in Diening et al. (2013).

1.1 Implicit constitutive law

Statement of the problem. Let 2 C R? with d > 2 be a bounded Lipschitz domain and denote by
0 = (0,T) x $2 the parabolic cylinder for a given final time T € (0, co). Furthermore, letf: Q — R4
be a given external force and let u,: 2 — R be an initial velocity field. We seek a velocity field
u: 0 — R apressure 7: Q — R and a trace-free stress tensor field S: @ — R&: satisfying the
balance law of linear momentum and the incompressibility condition:

du+diviu @u) —divS = -V +f on Q,
(1.1)
divu =0 on Q,
subject to the following initial condition and no-slip boundary condition:
u(0,-) =uy(-) in £2, (1.2)
u=20 on (0,7T) x 052. (1.3)
In order to close the system we need to impose a relation, the so-called constitutive law,
G(-.Du,S) =0, (1.4)
between the stress tensor S and the symmetric gradient Du = %(Vu + (Vu) "), which represents

the shear rate of the fluid. In the following we will refer to the problem consisting of (1.1)—(1.4)
as (P).

The relation G may be fully implicit, and we assume that G can be identified with a maximal
monotone graph A(z) C RI%4 x R4 forz € Q, as

sym sym
G(z,.Du(z).Sz)) =0 < (Du(),Sk)) € A@),

where A(-) satisfies the following assumption, similarly as in Bulicek ef al. (2009, p. 110) and Bulicek
et al. (2012, Sec. 1.2).
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AssumPTION 1.1 (Properties of A(-)). We assume that the mapping Q > z — A(z) C ngfl‘f X Rfyfr‘f
satisfies the following conditions for a.e. z € Q:

(A1) (0,0) € A(z);
(A2) A(z) is a monotone graph, i.e., for all (D, S,), (D,.S,) € A(z),

(Dl - Dz) : (Sl _Sz) > 0;

(A3) A(z) is a maximal monotone graph, i.e., (D,S) € Rfyxn‘f X Rfyxn‘f and

Dd-D):(S—S8)>0 forall(D,S) € A®),

implies that (D, S) € A(z);

(A4) There exists a constant ¢, > 0, a nonnegative function g € L!'(Q) and q € (1,00) such that
D:S>—g@@)+ c*(|D|q + |S|q/) for all (D,S) € A(z) and fora.e.z € Q,

where ¢ is the Holder conjugate of g.

(A5) Forany (D,S) € A(z) we have that
r(D) =0 & w(S) =0;

(A6) z — A(z) is L(Q) — (B(R%*?) @ B(RZxd)) measurable, where £(Q) denotes the set of all

sym sym

Lebesgue measurable subsets of Q and B (Rg;;{f) denotes the set of all Borel subsets of Rfyxrgl.

REMARK 1.2 (Properties of A(-)).

(1) In Bulicek et al. (2012) the authors phrase the condition (A4) in the more general context of
Orlicz—Sobolev spaces. Here we will restrict ourselves to the usual Sobolev setting.

(i) Condition (AS) is added to the list of assumptions contained in Bulicek et al. (2009, 2012),
Diening et al. (2013) and Kreuzer & Siili (2016) to ensure consistency with the thermodynamic
framework for incompressible fluids. If the velocity function u is (pointwise) divergence-free,
then we have that tr(Du) = div(z) = 0. Thus, if (Du(z),S(z)) € A(z) for a.e. z € O, then
condition (A5) implies that S is (pointwise) trace-free and this condition need not be imposed
separately. In the context of finite element approximations, we cannot simply consider A(-) as
subset of the Cartesian product of the linear space of trace-free d x d symmetric matrices with
itself, since the finite element velocity fields need not be exactly divergence-free.

(iii) A sufficient condition for (A6) to be satisfied is given in Bulicek et al. (2009, (AS)(ii), p. 110).

This framework covers explicit relations, including Newtonian fluids, where ¢ = 2, and g-fluids
describing shear-thinning and shear-thickening behaviour, for 1 < ¢ < 2 and ¢ > 2, respectively.
Also, relations, where the stress is a set-valued or discontinuous function of the symmetric gradient,
as for Bingham and Herschel-Bulkley fluids, are included, cf. Bulicek ez al. (2012, Lem. 1.1) for A(-)
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restricted to trace-free matrices. Such an A(-) can be extended to non-trace-free matrices, see Tscherpel
(2018). Furthermore, fully implicitly constituted fluids are covered and the constitutive relation is
allowed to depend onz = (#,x) € Q.

1.2 Overview of the context

The first existence results for explicit constitutive laws were obtained in LadyZenskaja (1969) and Lions
(1969) using monotone operator theory for the range of g, for which weak solutions are admissible test
functions. Subsequently, the range of ¢ was gradually extended by means of truncations, which made
it possible to overcome the admissibility problem for small g caused by the presence of the convective
term: first, an L°°-truncation was developed, see Frehse er al. (1997) and Razic¢ka (1997) for the steady
case, and Wolf (2007) for the unsteady case; then, a refinement of the Lipschitz truncation method,
originating in the work of Acerbi & Fusco (1988), allowed to cover the full range of g € ( %, oo) The
existence of weak solutions for the whole range was proved in Frehse er al. (2003), in the steady case,
and in Diening et al. (2010), in the unsteady case. The restriction on g is required to ensure compactness
of the embedding Whi(2) — L2(£2), which is needed in the convective term for the passage to the
limit in the sequence of approximate solutions. Under suitable conditions, existence of strong solutions
is available for explicit constitutive laws at least for short intervals of time, see Berselli et al. (2010).
Based on regularity results, a number of contributions deal with error estimates for strong solutions, a

recent one of which is Berselli et al. (2015), showing optimal convergence rates ford = 3 and g € (%, 2].

For implicitly constituted fluids, the existence of weak solutions for g > % for steady and unsteady
flows was proved in Bulicek ef al. (2009, 2012), generalizing previous results on discontinuous constitu-
tive relations, see Duvaut & Lions (1976), Serégin (1994), Fuchs & Seregin (2000), Mélek et al. (2005)
and Eberlein & Rizi¢ka (2012). In Bulicek er al. (2012), a Navier slip boundary condition and ch!
regularity of 92 were assumed to avoid technicalities related to lack of regularity of the pressure
in the unsteady case. Due to the weak structural assumptions, the existence of short-time strong
solutions and uniqueness cannot be expected to hold in general. The proof in Bulicek et al. (2012)
is constructive and is based on a three-level approximation using finite-dimensional Galerkin subspaces
spanned by eigenfunctions of higher order elliptic operators. These Galerkin spaces are not available
for practical computations, and therefore we take an alternative route in the construction of a
numerical method for the problem and for its convergence analysis. Here we shall consider a mixed
finite element approximation under minimal regularity hypotheses; hence, we can only hope for
qualitative convergence results rather than quantitative error bounds in terms of the spatial and temporal
discretization parameters. The approximation scheme will be constructed for a regularized version of
the equations, including a penalty term, and, after passing to the limit with the discretization parameters,
we shall pass to the limit with the regularization parameter.

Concerning the numerical analysis of implicitly constituted fluid flow models, to the best of our
knowledge, the only results available are those contained in Diening et al. (2013) and Kreuzer & Siili
(2016), which deal with the steady case under the additional assumption that A(-) is (generalized) strictly
monotone. By means of a discrete Lipschitz truncation method and various weak compactness results,
the authors of Diening et al. (2013) prove the convergence of a large class of mixed finite element

methods for g > % for discretely divergence-free finite element functions for the velocity, and for

q > % for exactly (i.e., pointwise) divergence-free finite element functions for the velocity field.
In the case of discretely divergence-free mixed finite element approximations, the more demanding
requirement g > % arises from the (numerical) modification of the trilinear form associated with the

convective term in the weak formulation of the problem. The purpose of this trilinear form is to reinstate
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the skew-symmetry of the trilinear form, lost in the course of the spatial approximation. In Kreuzer
& Siili (2016) an a posteriori analysis is performed for implicitly constituted fluid flow models, using
discretely divergence-free finite element functions also reproving convergence in this case, but under
stronger assumptions on the sequence of graph approximations.

In the unsteady case, no convergence result is available for numerical approximations of implicitly
constituted fluid flow models, and even those contributions that are focussed on qualitative convergence
results for explicit constitutive laws assume additional restrictions on g. In Carelli et al. (2010) conver-
gence to a weak solution of a regularized problem is proved for continuous g(x) and, subsequently, the
regularization limit is taken under the assumption that ¢ is constant and g > 2([;1:21), a limitation that
arises from the use of the L°°-truncation developed in Wolf (2007).

For the special cases of Bingham and Herschel-Bulkley fluids, a number of contributions devoted
to numerical simulations are available in the literature, see, for example, Bercovier & Engelman (1980),
Zhang (2010), Faria & Karam-Filho (2013), Moreno et al. (2016), Mahmood et al. (2017) and the
survey article, Dean et al. (2007). We highlight, in particular, the numerical experiments for Bingham
fluids in Hron et al. (2017) by means of various mixed finite element approximations, motivated by
implicit constitutive theory. However, the lack of rigorous numerical analysis in the unsteady case
is apparent. The purpose of the paper is therefore to provide a convergence proof for sequences of
numerical approximations for a large class of unsteady implicitly constituted fluid flow models, which
includes, in particular, the Bingham and Herschel-Bulkley models.

1.3 Aim and main result

Our objective is to establish a convergence result for implicitly constituted fluids in the unsteady case for
the whole range g > %. The main challenges concern the implicit, possibly discontinuous, relation
between the stress and the shear rate and the lack of admissibility in the convective term for small
exponents q.

Hence, additionally to a fully discrete approximation, we introduce two regularizations: the first
approximates the potentially multi-valued function, the graph of which is A(-), by a sequence of single-
valued functions; the second improves the integrability of the velocity approximations by means of a
penalty term, so that weak solutions of the regularized problem are admissible test functions in the weak
form of the convective term. The use of a penalty term is only required for the sub-range g € (%, %).
More specifically, we introduce the following three-level approximation:

k € N: graph approximation;
I,n € N: discretization in space and in time;
m € N: regularization by a penalty term in the equation,

the main technical novelty of the paper being in the passage to the discretization limits /,n — oo.

The main contribution of the paper is the following. Let £2 be a Lipschitz polytopal domain,
q > %, and assume that we have a pair of inf-sup stable finite element spaces for the velocity and the
pressure. Also, we assume that a suitable approximation of the graph 4 is available, examples of which
will be constructed below. Then, a sequence of approximate solutions to the fully discrete problem exists
and the corresponding sequence of finite element approximations converges weakly, up to subsequences,
to a weak solution of problem (P), when first taking the graph approximation limit, then the spatial and
temporal discretization limits, and finally the regularization limit. The precise formulation of this result
is contained in Theorem 4.1, and the notion of weak solution is given in Definition 2.1. Important tools
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in the proof are a local Minty-type convergence result established in Bulicek er al. (2012) and Bulicek
& Malek (2016), and the solenoidal parabolic Lipschitz truncation constructed in Breit et al. (2013) to
overcome the admissibility problem for small g.

The paper is structured as follows. Section 2 provides the analytical setting, including the graph
approximation and the Lipschitz truncation. Section 3 describes the finite element approximation,
the approximation of the convective term and the time-stepping. In Section 4 we first introduce the
approximation levels in detail before giving the convergence proof.

2. Analytical preliminaries

By R‘Siyﬁl we denote the set of all real-valued symmetric d x d-matrices and we use : for the Frobenius
scalar product in R??_ For v C R? we denote by |w| the d-dimensional Lebesgue measure of w. By 1 w
we denote the characteristic function of the set w. For the (distributional) partial derivatives with respect
to time, we use the shorthand notation 9, f := aal;

For o C R4 open and p € [1,00) let (L’ (w), || Lp(a))) be the standard Lebesgue space of
p-integrable functions, and the space of essentially bounded functions when p = oc. For s € N let
(WP (w), ||| W () be the respective Sobolev spaces. For spaces of vector-valued and tensor-valued
functions, we use superscripts d and d x d, respectively (except for in norms). By Lﬁ (w) we denote the
set of functions in L” (w) with zero mean integral.

For a general Banach space (X, ||| ), the dual space consisting of all continuous linear functionals
on X is denoted by X', and the dual pairing is denoted by {f, gxx-iff € X' and g € X. If X is a space
of functions defined on w, then we denote the dual pairing by (f, g),, := (f, 8)x’ x. in case the space X
is known from the context. We also use this notation for the integral of the scalar product f - g of two
functions f and g, provided that f - ¢ € L!(w). Furthermore, if  C R is measurable and 0 < |w| < 00,
then we denote f f(x)dx == ﬁ [, f(x)dx.

For a bounded open domain 2 C RY and T € (0,00), let 0 = (0,7) x £2. Denote by
C3°(£2) the set of all smooth and compactly supported functions on §2 and by Cgf’div(.Q)d the set of

all functions in Cg° (£2)? with vanishing divergence. Analogously, define C°(Q) and Ciy;, (Q)4. We
define WP(2) = C(82)) W@ for p e [1,00) and W™ (2) = Wh(2) N W (2). For a
given p € (1,00), we let the Holder exponent p’ be defined by [—1) + 1% = 1. Then, if p € (1,00),

LI’,(.Q) is the dual space of L7 (£2) and W_l’p/(.Q) will denote the dual space of W(l)’p(.Q). Further, we

define the spaces of divergence-free functions: the spaces Lgiv (.Q)d and W(])’giv(.Q)d, for p € [1,00),

are the closures of Cg?div(.Q)d with respect to the norms |- | L2(2) and || whr(2) respectively, and let

W ()4 = Wi () n Whe(2).

Let C(£2) be the set of all continuous real-valued functions on $2. With C([0, T]; X) we denote the
set of all functions defined on [0, 7], taking values in a Banach space X, which are continuous (with
respect to the strong topology in X). Similarly, C%! ([0, T]; X) is the space of all Lipschitz continuous
functions defined on [0, 7], with values in X. Furthermore, we define the space of weakly continuous

functions with values in X by

C,(0, T X) == {v: [0,T] = X: t > (w,v(t,))x x € C(0,T]), Vw € X'}.
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We denote by L”(0, T; X) the standard Bochner space of p-integrable X-valued functions. We use the
notation ess limz—>0+ f(?) to indicate that there exists a zero set N(f) C [0, T] such that ¢t € (0, T)\N(f),
when considering the limit of f(¢), ast — 0 .-

In the following, ¢ > 0 will denote a generic constant, which can change from line to line and
depends only on the given data unless specified otherwise.

For the regularized problem we shall require the following function spaces, with associated norms:

1’ /
X(82) = Wyl(2)! nL* (2)°, Il xe2y = Il wiacey + 1120 ()0 2.1)

1, /
X(Q) =LU0, ;W' (@) LY Q% I xg = IMiaorwiay * 2 22

and consider their solenoidal subspaces, denoted by X, (£2) and Xy, (Q), respectively. We note in
passing that we shall refer to the sequential version of the Banach—Alaoglu theorem simply as Banach—
Alaoglu theorem.

Weak solutions. In what follows, let 2 C R, with d € {2, 3}, be a bounded Lipschitz domain and
for T € (0,00) denote Q = (0,7) x £2. Furthermore, assume that ¢ € (1,00) is given and let A(-) C

ngﬁf X ngﬁf be a monotone graph satisfying Assumption 1.1 with respect to g.

DEFINITION 2.1 (Weak solution). For a given u € L2 (£2)¢ and f € LY (0, T; W=7 (2)4), we call
(u,S) a weak solution to problem (P) if

u € L9(0,T; Wo% (2)%) NL=(0.7: L3 (2)%), 8 e L7 (@),

and
— (u, 3t§)Q —u® u,D‘;‘)Q + (S, D§>Q

= (f.£)g + (up.£0, ), forall§ € C (=T, T) x 2)°, 2.3)

(Du(2),8k)) € AR) forae.z € Q. (2.4)

We choose a pressure-free notion of weak solution, because in the unsteady problem subject to
homogeneous Dirichlet boundary conditions on Lipschitz domains, one can only expect to establish a
distributional (in time) pressure, see Temam (1984, Ch. III, § 3, pp. 307, Rem. 3.5).

2.1 Implicit constitutive laws

Approximation of A.  The implicit relation encoded by .4 can be viewed as a set-valued map. In order
to perform the analysis we require a single-valued map, and thus a measurable selection 8* of the graph
A is chosen, which may have discontinuities.
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LEMMA 2.2 (Measurable selection, (Bulicek et al., 2012, Rem. 1.1, Lem. 2.2)). Let the mapping
Q >z A C R x R satisfy Assumption 1.1. Then, there exists a measurable selection

sym sym
§*: 0 x RUY — REXd ie.,
(B,S*(z,B)) € A(z) forall B¢ R‘Siy’;f, forae. z € O, (2.5)
and 8™ is (L(Q) ® B(ngxnfl)) - B(R‘Sjyﬁl)—measurable. Furthermore, for a.e. z € Q, one has that
(al) dom S*(z,-) = ng>fﬁi§

dxd

(a2) S8 is monotone, i.e., for all B;,B, € Rsym ,

(8*(z,B;) —S"(z,B,)) : B, —B,) > 0;

(a3) foranyB e Rfyxn? one has that

B:S"B) > —g@ +c.(|B|? + 8", B)|9);

(a4) Let U be a dense set in R‘Siyxrg and let (D,S) € Rfyfrfl X Rf;}fl. The following are equivalent:

i (8S—S8"@z,B):(D—-B)>0 forallBeUU;
() (D,S) € A(«z);

(a5) S~ is locally bounded, i.e., for a given r > 0 there exists a constant ¢ = ¢(r) such that

‘S*(z,A)] <c forall z € Q and forall A € B,(0) c R%*d

sym *

To show the existence of solutions to the approximate problem considered below, continuity of the
(approximate) stress tensor is required. Hence, we introduce the following assumptions on a sequence
of approximations of the selection S*.

AssUMPTION 2.3 (Properties of S¥, k € N). Given the selection S*: Q x R‘Siyxrg — Rg’;}‘f in Lemma 2.2,

assume that there is a sequence {8}, of Carathéodory functions S*: Q x R& — R such that:

(al) Sk(z, -) is monotone, i.e., for all A;,A, € R4*? and for a.e. z € Q, we have
1-7%2 sym

(Sk(z,Al) - Sk(z,Az)) (A, —Ay >0.

(«2) There exists a constant ¢, > 0 and a nonnegative function g € L'(Q) such that, for all k € N,
for any A € R%? and for a.e. z € Q, one has that

sym

A:S' @A) = 3@ +7, (A7 + [8'aA)| 7).
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(@3) LetU C Rg’de be a dense set. For any sequence {Dk}keN bounded in L>(Q)4*¢, for any B € U

m

and all ¢ € C§°(Q) such that ¢ > 0, we have

k— 00

liminf/ (8(.D*) —S*(,,B)) : (D* —=B)pdz > 0.
0

In the existence proofs in Bulicek ez al. (2009, 2012) and Diening et al. (2013) the approximating
sequence S¥ is chosen as the convolution of the selection S* in the second argument with a mollification
kernel.

EXAMPLE 2.4 (Approximation by mollification). Let p € C{(R&%) be a mollification kernel,

i.e., a nonnegative, radially symmetric function, the support of which is contained in the unit ball

B, (0) C R&! and which satisfies [paxa p(A) dA = 1. For k € N set p¥(B) := k4 p (kB) and define the
sym

mollification of 8* with respect to the last argument by

sym

S"@.B) == (S* * p")e.B) = /R | S'GAYB-AA 0 BeRLY. 26
sym

Lemma 3.21 in Tscherpel (2018) shows that S satisfies Assumption 2.3, see also Bulicek er al. (2012).

A possibly more practicable approximation based on a piecewise affine interpolant can be used in
the case of a radially symmetric selection function 8* under additional regularity assumptions.

EXAMPLE 2.5 (Approximation by affine interpolation). Assume that S*: Q x Ry »> Rypisa

measurable function with S*(z,0) = 0, for any z € Q, such that 8*: Q x Rfyxnf — Rfyﬁi,
defined by

S*(z,IB) &  ifB#£0,
s*(z,B):’ @ [B]) g e
0 if B=0,

is a measurable selection of a graph A4 satisfying Assumption 1.1. Furthermore, we assume that
1) S*Gz,9): Rzo — Rzo is monotone for a.e. z € Q.
Denote by J* = UzeQ J(S*(z,-)) the overall jump set, where J(S*(z,-)) is the jump set of S*(z, -),

which is countable by monotonicity of S*(z,-) for fixed z € Q, see Alberti & Ambrosio (1999,
Thm. 2.2). Let us assume one of the following:

(iia) The set J* is finite and for a.e. z € Q the function S*(z, -) is locally Lipschitz continuous on
each connected component of R, \J* (the Lipschitz constants are allowed to depend onz € Q).

(iib) The set J* is countable, without accumulation points, the jump-sizes are bounded above by
a constant H > 0, and S*(z,-) is Lipschitz continuous on each connected component of
R ¢\J*, with Lipschitz constants bounded uniformly in z € Q and independently of the specific
component, say by L > 0.
Then, there exists an index set Z (Z = {0, ...,I} for some I € N in case (iia) and Z = N, in case (iib))
and there exists a sequence {a;},c.7 C R, such that J* C A := U,.za;. Without loss of generality,
assume that ay = 0 and a;_, < g, for all i € T\{0}.
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810 E. SULI AND T. TSCHERPEL

S*(z,-) ,

FiG. 1. Schematic representation of the construction of sk ,keN.

We construct the approximation as follows. There exists a k, € N such that % <infieq (o (@;—a;_y)
since either A is finite or A does not have any accumulation points. Let k € N, with k > k, be arbitrary
but fixed. Denote, fori € Z,

1
k. k. k .__ k k k. k
a_=a;— -, 4 ._ai—i—%, Aj = [aiﬁ,ai&] and A ._UAl..
iel

Letz € Q be arbitrary but fixed. First we extend S*(z, -) as an odd function to [—%, 00), still denoted by
S*(z, -). Since the point evaluations S*(z,aﬁ 1), for i € Z, are well-defined, we can define

a*

— k ; . . B
Stem=§(s6d )% s ) -0+ sed )

a; _ a;_

27
Sen S*(z,B) if B ¢ Ak, @7

Z, = 1_
Siz.B) if BeAk, ieT.

On Af‘ the approximation S¥(z,-) is the affine interpolant between S*(z, aﬁ_) and S*(z, aﬁ 4) and

otherwise S*(z,-) is unchanged, cf. Fig. 1. The resulting approximating sequence Sk(z, -) satisfies
Assumption 2.3, see Corollary 3.24 in Tscherpel (2018).

Minty’s Trick. The following lemma is one of the crucial tools for the identification of the implicit
constitutive law upon passage to the limit.

LeEmMA 2.6 (Convergence lemma of Minty type, (Bulicek ez al., 2012, Lem. 2.4) and (Bulicek & Milek,
2016, Lem. 3.1)). Let Q 5 z — A(z) C RI%4 x R4%4 satisfy (A2), (A3) in Assumption 1.1 and assume

sym sym
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FULLY DISCRETE FINITE ELEMENT APPROXIMATION OF UNSTEADY FLOWS 811

that there are sequences {Sj }jeN and {Dj }jeN, and there is a measurable set é C Qandap € (1,00)
such that

(Dj(z),Sj(z)) € AR) forae.z € O,
D—~D weakly in L (Q)?*,
s—~8s weakly in L” (0)?*¢,

limsup (8/,D); < (S,D); .

Jj—>00
Then, we have that (D(z),S(z)) € A(z) fora.e.z € Q.

2.2 Lipschitz approximation

For small ¢ € (1,00), a weak solution according to Definition 2.1 is not an admissible test function
because of the presence of the convective term. The Lipschitz truncation method helps to identify the
implicit relation despite the lack of admissibility. It first appeared in Acerbi & Fusco (1988), and since
then the method was further developed and refined in a series of papers, see, e.g., Kinnunen & Lewis
(2002), Frehse et al. (2003), Diening et al. (2008, 2010, 2013) and Breit et al. (2012, 2013), to mention
just a few.

For a sequence of solutions to a sequence of divergence-form evolution equations a solenoidal
parabolic Lipschitz truncation was developed in Breit ef al. (2013). Note that the sets %, j in the
following lemma satisfy %, ; = O;; N Q,, where O, ; are the ‘bad sets’ in the construction in
Breit et al. (2013).

LeEmMA 2.7 (Parabolic solenoidal Lipschitz approximation (Breit et al., 2013, Thm. 2.2, Cor. 2.4)). Let
p € (1,00), 0 € (1,min(p,p’)) and let O, = I, x By C R x R? be a parabolic cylinder, for d = 3,
for an open interval / and an open ball B,. For @ > 0 we denote by aQ, the cylinder with the same
center as O, but scaled by «. Let wh 1en be a sequence of (weakly) divergence-free functions, which
is converging to zero weakly in L (IO;WI’P(BO)‘J), strongly in L? (Qy)¢, and is uniformly bounded in
L*>(,,L? (Bo)d). Consider a sequence {Gll }1en» converging to zero weakly in L (QO)dXd, and a second
sequence, {Glz} JeN» converging to zero strongly in L (Qo)dx‘i. Furthermore, denoting G = Gll +Gb,
assume that, for any / € N, the equation

(0',8),, = (G, V&), forall & e Ciyy(Qp) (2.8)

is satisfied. Then, there exists a j, € N,
* adouble sequence {AZJ}IJeN C R with )‘l,j € [22j, 22j+1’1], forany [,j € N,
* adouble sequence of open sets 531, iC 0o, l,j €N,
* adouble sequence of functions v h jeN C L! (Qo)d and

* anonnegative function ¢ € CSO(%QO) suchthat1; <¢<1, ,
g% 590
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812 E. SULI AND T. TSCHERPEL

such that

i vhioe L“(%{IO;W(I):(SHV(%BO)‘{) for all s € [1,00) and supp(v™/) C %Qo for any j > j, and any
leN;

(i) v =vlon g0\ %, . ie., (W' £V} N 50, C B foranyj > jyand any [ € N;

(iii) there exists a constant ¢ > 0 such that

lim sup )‘Z/ ‘Q%’l’j‘ <27 forall j = j;
— o0

(iv) there exists a constant ¢ > 0 such that

”Vvl’j”L”(%QO) <cky forall j>j, andall /€ N;

(v) for any fixed j > j, we have

v/ — 0 strongly in Loo(};Qo)d’

Vvl —~ 0 weakly in L*($0)?*¢  forall s € [1,00),

as | — oo;

(vi) there exists a constant ¢ > 0 such that

lim sup |(G1,Vvl’j)| <27 forall j > j;

[—00

(vii) there exists a constant ¢ > 0 such that for any H € Lp/(%QO)d *d e have that

tim sup [{(@] +H), Vel )| < 27 forall j> jy,
J

l— 00

The lemma is stated for d = 3, but according to Breit ef al. (2013, Rem. 2.1, p. 2692) the result holds
for all d > 2 with minor modifications of the proof. In the convergence proof we will use the following
corollary, including a lower order term in the equation.

COROLLARY 2.8 (Lower order term for parabolic solenoidal Lipschitz approximation). Let p € (1, 00),
o € (1,min(p, p’)) and let Qg =1y xBy C Rx RY be a parabolic cylinder, for d > 2, for an open
interval /; and an open ball B,. Let ! len be a sequence of weakly divergence-free functions, which

is converging to zero weakly in L (1; W(l)’p (Bo)d), strongly in L7 (Qo)d and is uniformly bounded in

)dxd

L*°(,,L° (Bo)d). Consider a sequence, {Gll} JeN»> converging to zero weakly in L”,(QO , a second

)dxd

~! . . . .
sequence, {G,};. converging to zero strongly in L7 (Q, and a third sequence, {f'} JeN, converging
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. . =!I =1
to zero strongly in L“(Qo)d. Furthermore, denoting G := Gll + G,, assume that, for any / € N, the
equation

(0. 8)y, = (G VE), +(f8),, forall & e C3y Q)" 2.9)

. - . . ~
is satisfied. Then, the same statement as in Lemma 2.7 holds with Glz =G, - VA~lfl and A~
signifying the inverse Dirichlet Laplacian.

Proof. Fora.e.t € I, we wish to find a gl (t,") e W(l)’g (Bo)d such that

—<Vgl,Vv>B = <f’(t,-),v>B for all v € C3°(By)". (2.10)

0 0

Standard regularity theory for Poisson’s equation (see (Grisvard, 2011, Thm. 2.4.2.5) and (Gilbarg &
Trudinger, 2001, Lem. 9.17)) guarantees the existence of a unique g'(z,-) € w2 (Bo)d N Wé’a (Bo)d
solving (2.10) such that

||gl(”‘)||w20(30) < el 1@ Lo sy (2.11)
since o € (1,00) and 9B, is smooth. Viewing g as a function on Qg =1y x By by (2.11), one has that
18" Lo tyewe sy =< €l Looey = 0. as 1 — oo, (2.12)

y4xd a5 | — 00, and hence

by assumption. Thus, we have in particular that Vg’ — 0 strongly in L’ (o
G — Vg! converges to zero strongly in L°(Q, y4%d as | — 0o. Applying (2.10) in (2.9) shows that

~!
(0,.8),, = <Gl1 +G, - Vgl,V§>QO forall & € C3% (Qp),

and thus all assumptions of Lemma 2.7 are satisfied and the claim follows. O

2.3 Compactness in time

LeEmMA 2.9 (Parabolic interpolation (DiBenedetto, 1993, Ch. I, Prop. 2.3)). Let d > 2, let £2 C R be
a Lipschitz domain, let T € (0,00), Q = (0,7) x £2 and let p > 1. Then, there exists a constant ¢ > 0
such that

d 2
a+2 a+2
Lp(O,T;Wl’p(Q)) ||V| (213)

<
”V" L[’(dj’z) ©) =c ||V| LOO(O,T,LZ(.Q))

forall v € LP(0, T; WP (£2)) NL>(0, T; L%(£2)).
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814 E. SULI AND T. TSCHERPEL

LEMMA 2.10 (Simon, 1987, Thm. 3, p. 80). Let X, B be Banach spaces such that the embedding
X << Bis compact. Let 7 C L”(0, T; B) for some p € [1,00) and let

(i) F be bounded in L\ (0,T;X),

loc

(ii) fOT% If(s+e,)—f(s, -)||';ds — 0, ase — 0, uniformly for f € F.
Then, F is relatively compact in L”(0, T'; B).

3. Finite element approximation
3.1 Finite element spaces and assumptions
The setting here is slightly more general than the one in Diening er al. (2013).

AssumpTION 3.1 (Triangulations {7,},cn). Let us assume that d > 2 and that §2 is a boundedkipschitz
polytopal domain. Furthermore, assume that {7}, is a family of simplicial partitions of §2 (in the
sense of (Ciarlet, 2002, Sec. 2.1, p. 38)) such that the following conditions hold:

(i) Each element K € 7, is affine-equivalent to the closed standard reference simplex, which
is given by K := conv{0,e,...,e;} C R4, i.e., there exists an affine invertible function

(i) {7,},ey is shape-regular, i.e., there exists a constant ¢, (independent of n € N) such that

hg <c¢, forallKe7,andallneN,
oK

where hg = diam(K) and pg := sup{diam(B): B is a ball contained inK}.
For n € N we denote by h, := max{hg: K € 7,} the spatial grid-size.

Finite element spaces. Let @V c Wb (E)d and let @Q C L*® (f) be finite-dimensional function

spaces on the reference simplex K (with a slight abuse of notation) as in Diening et al. (2013). Further,
let V. c C(£22)¢ and let Q C L*°(£2). Then we define the conforming finite element spaces V" and Q"
with respect to 7, by

vi={VeV: VigoFg' ey KeT, and Viyg =0}, 3.1
Q" = {Qe@: Ol o F¢! G@Q,KGE}. 3.2)

Let us also introduce the subspace of discretely divergence-free functions of V" and the subspace of
zero integral mean functions of Q" by

Giv ={VeV": (divV,Q), =0 forall Q € Q"}, (3.3)
Qp = [QEQ": /QdezO}. (3.4)

Note that the functions in V7, are in general not divergence-free, so in general V¢ W(l)zgfv(ﬂ)d.
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ASSUMPTION 3.2 (Approximability (Diening ef al. (2013), Assump. 5)). Assume that for all p € [1, 00),
we have that

Jnf Iy =Vl = 0. asn—oco forallve Wy ()4, (3.5)
6 n

Qiné lh— O] @ >0, asn— o0 forall h € Lg(.Q). (3.6)
e n

Note that this assumption implies that s, — 0, as n — oo.
Projectors.  For the convergence analysis we use certain projectors to the respective finite element

spaces and we require suitable assumptions on them. Since we do not need local stability of the projector
IT", we assume less than in Diening ef al. (2013).

AssumPTION 3.3 (Projector [1"). Assume that for each n € N there exists a linear projector
It W(l)’l(.Q)d — V" such that:

(i) (preservation of the divergence in (Q”)/) foranyv € W(l)’1 (£2)4 one has that
(divv, Q) = (div IT"v, Q) forall Q € Q"
(i) (Wl"’ -stability) for any p € (1, 0o) there exists a constant c(p) > 0 (independent of n) such that

|| wiroy < c Wl wingg, forallv e WyP(2)? andall n e N,

ASSUMPTION 3.4 (Projector H&). Assume that for each n € N there exists a linear projector
H&: L!'(£2) — Q" such that, for any p € (1, 00), there exists a constant c¢(p) > 0 such that

||17(5h||u,(m <clhlypz forallhel”(£2) andall neN. 3.7

REMARK 3.5 (Properties of I7" and 1'[6).
(i) The stability in Assumption 3.3 (ii) and the approximability in (3.5) yield that

v — ™| wir = 0, asn— oo
forall v € Wy”(22)? with p € [1, 00).
(i) Similarly, the stability in (3.7) and the approximability in (3.6) imply that
|h = 1gh| ) — 0, as n— oo

for all h € LP(§2) with p € [1, 00).

(iii) The existence of the Bogovskii operator, see Bogovskii (1979) and Diening et al. (2008,
p. 223), implies that the continuous inf-sup condition holds for any p € (1, 00). With this and
Assumption 3.3 the corresponding discrete inf-sup condition holds uniformly in n € N, cf.
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816 E. SULI AND T. TSCHERPEL

Fortin’s Lemma for Banach spaces in Ern & Guermond (2004, Lem. 4.19). This means that
the framework results in an inf-sup stable pair (V”, Q").

ExampLE 3.6 (Finite element spaces). The following elements satisfy Assumptions 3.2-3.4:

(i) the P, — [P, element for d = 2, see Boffi et al. (2013, Sec. 8.4.3), where the projector 1" is
given and Assumption 3.3 (i) is shown; the stability in (ii) can be proved similarly as for the
MINI element, see Belenki et al. (2012, App. A.1) and Diening et al. (2013, pp. 990);

(i1) the conforming Crouzeix—Raviart element, for d = 2, see Boffi er al. (2013, Ex. 8.6.1) and
Crouzeix & Raviart (1973); the projector 7" satisfying Assumption 3.3 (i) is given in Crouzeix
& Raviart (1973, pp. 49) and it can be shown to satisfy Assumption 3.3 (ii), see, for example,
Girault & Scott (2003, Thm. 3.3);

(iii) the Bernardi—Raugel element for d € {2,3} (polynomial order »r = 1) and d = 3 (r = 2),
see Bernardi & Raugel (1985); the construction of I1" satisfying Assumption 3.3 for p = 2 is
contained therein and can be generalized to p € [1,00). See also Girault & Lions (2001) for
pel2,00)and r = 1;

(iv) the MINI element for d € {2,3} (r = 1), see Boffi ef al. (2013, Sec. 8.4.2, 8.7.1); the proof that
Assumption 3.3 is satisfied is given in Belenki ef al. (2012, App. A.1), see also Girault (2001,
Lem. 4.5) and Diening et al. (2013, pp. 990);

(v) the Taylor—-Hood element and its generalizations for d € {2,3} and r > d, see Boffi et al. (2013,
Sec. 8.8.2); the proof of Assumption 3.3 can be found in Girault & Scott (2003, Thm. 3.1, 3.2).
The following element satisfies Assumption 3.2-3.4 and, additionally, that Vi, C W(l)’giov(ﬂ)d:

(vi) the family of Guzman—Neilan elements for d = 2 (k > 1) and for d = 3 (r = 1), see Guzman &
Neilan (2014a,b). Therein Assumption 3.3 is shown for p = 2 when d = 2, and for p € [1, 00)
when d = 3. For stability for general p € [1,00) when d = 2 (r = 1), see also Diening et al.
(2013).

L2-Projector to Viiv-  Let us introduce the projector onto Vi, , given by

PL o L2 (2)¢ —> v and for v € L?(£2),

div * div? (3.8)
(PGv. V) = 0. V) forall Ve Vi,
Directly from the definition we have Lz—stability, i.e., forv e L2 (.Q)d we have
PG| 22 = Wl (3.9)

By this and an approximation argument using the properties of /7" (see Remark 3.5 (i)), we have that
Piw— w  strongly in L*(2)%,as n — o, (3.10)

forany w € thv(.Q)d.
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3.2 Convective term and its numerical approximation

Motivated by the form of the convective term in the conservation of momentum equation, we consider
the trilinear form b defined by

bu,v,w) =—uv,Vw)o = u@w,Vv)o — (divu,v - w) o, (3.11)

for u,v,w € W(l)’oo(.Q)d, where the second equality follows by integration by parts. Hence, for
divergence- free functions u, the last term vanishes and b(u, -, -) is skew-symmetric, i.e., b(u,v,v) = 0
forany u € WO dlv(Q)d and any v € W )4

As in general Vi, ¢ W0 dw(.Q)d the second term in (3.11) need not vanish for u € Vg, . T
preserve the skew-symmetry of the trilinear form associated with the convective term, the usual approach
in the numerical analysis literature (see, e.g., (Temam, 1984)) is therefore to consider instead the skew-
symmetric trilinear form

- 1
b,v,w) = ((u®w,VV>g—(u®v,VW)g)=—(u®v,VW>g+§<divu,V~W>g, (3.12)

N =

foru,v,w € W(l)’oo(.Q)d. Thus, we have that Z(u, v,v) = 0 regardless of the solenoidality of u. Note that
for divergence-free functions u we have that b(u, -,-) = b(u, -, -).~

In the equations the terms appear in the form b(u,u,v) and b(u,u,v), for the velocity u and a test
function v. The natural function space for weak solutions of problem (P) is given by L>(0, T; L2(2)HNn
L0, T, W1 7(£2)4), which embeds by Lemma 2.9 continuously into L (Q)d Also, provided that

q=> 7 fz’ we have that the embedding L (Q)d < L2 (Q)d is continuous, which means that the
expression b(u(r, ), u(t,-),v) is integrable on (0,7), for any v € WH(£2)?. More specifically, with

§ = max ((q(g}-z) ), q) we have that

[0t ) @) Vgl <t ) s Whyragy providedthatg = 7. (.13)

On the other hand, for the modification (cf. the first term in (3.12)) of the trilinear form b associated
with the convective term, one obtains

|mmo®mVMu»d5cwmo“Wﬁ(|MWMQJVMrwum,ﬁq>ﬂ“”.<&M>

Evidently, the source of this more restrictive requirement on g is the modification of the trilinear form
b, introduced to reinstate the skew symmetry of b, lost in the course of approximating the pointwise
divergence-free solution by discretely divergence-free finite element functions. We note in passing that
the restriction g > %:21) in the unsteady case corresponds to the restriction ¢ > =5 +1 in the steady case

in Diening et al. (2013).
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Let us motivate the choice of the penalty term that we shall add to the weak form to relax the

. .. 2(d+1 .. 2d .. s
excessive restriction g > (d +2) to the natural restriction on ¢ > 7 =5. We note that by Holder’s

inequality we have that

”FB(W u,v) ” L'(0,T))

112, gy 19¥1 ) + Tl 20 ) W20 gy IVl Lo

IA

¢ lul %) I x(0)- (3.15)

for u,v € X(Q) = L0, T; W(l)"’(.Q)d) N L% (Q)?, see (2.2), without any restrictions on the range of
g, other than ¢ € (1,00). This justifies the use of a regularizing term guaranteeing additional L% -
integrability, cf. Section 4.

3.3 Time discretization

For the purpose of time discretization, let / € N and define the time step by §, = T/l — 0, as | — oo.
For [ € N, we shall use the equidistant temporal grid on [0, T'] defined by {tf} ie0,...)1» Where tf = i6,, for
i € {0,...,1}. In the following we will suppress the superscript / and write ;, i € {0, ..., [}.

.....

difference quotient
1 :
dy; = 5 (ﬁ"i - goi_l) for ie{l,...,1}. (3.16)
!

Furthermore, for / € N we denote by IP’(Z)(O, T; X) the linear space of left-continuous piecewise constant
mappings from (0, 7] into X, with respect to the equidistant temporal grid {zy,...,#} C [0,T] and
by IP’I] (0, T; X) the space of continuous, piecewise affine functions from [0, 7] into X, with respect to
the same temporal grid. Let the piecewise constant and the piecewise affine interpolants ¢ and ¢ of

.....

o) = ¢; forte (t_,t;l,iefl,.... 10, 3.17)

— i f;
+o
(S[ Y1

_ t —1

o) =g 3 forte[t_y, 4], ie{l,....1}, (3.18)
1

so that @, ®,9,¢ € L°°(0,T;X). Choosing the representative 9,¢ € IP’f)(O, T;X), fort € (t,_y,t], we

have 3,¢(f) = d,p; and

o) — o) = (t; —D0,p(1). (3.19)

Furthermore, note that one has

!
191 L~ 0.7:x) = e o]l - 121 p 070 = 512 leill%  forp €1, 00), (3.20)
i=1
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/

1210 = max, o] x. 18177070 < €08 D Jeill%  forpell,o0), (321
""" i=0

where 0 < c¢(p) < 1 by the Riesz—Thorin interpolation theorem (cf. (Bergh & Lofstrom, 1976,
Thm. 1.1.1, p. 2)).

For a Bochner function ¥ € 1L7(0,T;X), p € [1,00), we define the time averages with respect to
the time grid {#,, ..., %}, for/ € N, by

t
w,.:=][ v, )dreX, ie{l,....l}. (3.22)
ti—1

.....

V| vorx < IWlporx — forallpe[l,00], (3.23)

U= strongly in LP(0,T;X), asl— oo, foranyp € [l,00). (3.24)

The estimate (3.23) follows by Jensen’s inequality, and the convergence in (3.24) is a consequence of
— 1
the inequality | — ¥l porx) <77 SZHI//”CO"([O,T];X) for all ¢ € %1 ([0, 71; X) and p € [1, 00], the
density of %1 ([0, T1; X) in L?(0, T; X) for p € [1,00), and (3.23).
To simplify the notation we denote Qé. =(s,H)x2,for0 <s<t<T,andQ, = QB, fors € (0,T].

Furthermore, let us introduce the notation Q;f 1= QZ_] and Q; = Q,,fori e {l,...,1}.

4. Convergence proof

Motivated by the approach in Bulicek er al. (2012, Sec. 3.1), we consider the following levels of
approximation.

k € N: The selection 8* given in Lemma 2.2 is approximated by a family of Carathéodory functions
{Sk} reN» Which satisfy Assumption 2.3. The approximation of the stress is then explicit and
continuous in Du.

l € N: A time-stepping based on the implicit Euler method is introduced similarly as, e.g., in Temam
(1984) and Carelli et al. (2010), see Subsection 3.3.

n € N: The velocity u is approximated by a Galerkin approximation in finite element spaces in the
spatial variable, see Section 3.

m € N: The penalty/regularization term % || 24 ~2u is added to the equation to gain admissibility of
the approximate solutions in case we have g < %, and to enable us to use the bound on

Z(~, -,+) in (3.15), without imposing the restriction g > 25;1:21) .
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820 E. SULI AND T. TSCHERPEL

This results in a fully discrete approximation. The limits are taken in the order k — oo, ,n — 00, and
then m — oo, and we can take the limits in /,n — oo simultaneously. To simplify the notation we shall
write

phbom ooy inX, ask— oo, ,n— 0o, m — 00, “.1)

to denote the fact that the limits &, (/, n), m are taken successively in the order of indexing (from left to
right) and the space X describes the weakest topology of the three limits. We will use the analogous
notation for weak and weak* convergence. In each step one has to identify the equation and the implicit
relation, which is the most challenging part. The most significant difference compared to Bulicek ef al.
(2012) lies in the passage to the limits /,n — oo and the identification of the implicit law.

As both the external force f and the approximate stress S* will be allowed to be time-dependent, and
the time-dependence is not assumed to be continuous, we shall consider integral-averaged versions in
the approximate problem. Recall the notation in Subsection 3.3 and for f € LY 0, T; W_l’q,(.Q)d ) and
s 0 x Rgfyﬁf — ngxn‘f as in Assumption 2.3, and / € N let us introduce the averages with respect to

the time grid {;},¢(o_.. ; defined, fori € {1,...,1}, by
1 K i K
fix) :=]t[ f(t,x)dt, S;(x,B) :=]{ S'(1,x,B) dr, 4.2)
i—1 i—1

- =k
forx € 2 andB € Rfyxn‘f. Let the corresponding piecewise constant interpolants f and 8 be defined as
in (3.17). Recall that by (3.23) and (3.24) we have that

g

f— strongly in LY , T, ~Lq , asl— oo. .
glyinL? (0, T; WM (2)%), as! (4.4)

Loty < Il Le 0w oy forall L€ N, 43)

For u,v € V" we introduce

~ 1 /
klnme 1. k 24’2
S v = = Blaw,y) — (SF.Dw).Dy) = — (] Puy) 4 {fir)g. @)
fork,l,n,meN,ie{l,...,[} and 5(-, -,+) as defined in (3.12).
Approximate Problem. For k,[,n,m € N find a sequence {U P m}ie 0,..y C Vgiv such that
Ukt = P, (4.6)

and for a given Uf_lln " € V1 the approximate solution on the next time level, Uf’[’” e Vi, is defined,
forie{l,...,I}, by

(d U W) = S UE W] forall We V @.7)

i i div>

where Py, is the L2-projector onto Viiy» defined in (3.8).
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FULLY DISCRETE FINITE ELEMENT APPROXIMATION OF UNSTEADY FLOWS 821

For each i € {1,...,/} a fully implicit problem has to be solved, since the numerical solution from
the previous time level only appears in the term involving dth’l’”’m, as defined in (3.16).

THEOREM 4.1 (Main result). In addition to the assumptions of Definition 2.1, let sk satisfy
Assumption 2.3. For the finite element approximation let Assumption 3.1 on the domain and on
the family of simplicial partitions be satisfied. Let V" and let V7, be as introduced in (3.1) and (3.3),
respectively, and assume that Assumptions 3.2, 3.3 and 3.4 hold. Then, for all k,/,n,m € N there exists
a sequence (UF"""}ic 24, 00), then there exists
a weak solution (u#,S) of (P) according to Definition 2.1 and for the piecewise constant interpolant
ﬁk’l’"’m € Pé(O, T;VY.,), and the continuous, piecewise affine interpolant l7k’l’"’m € IP’ll (0, T;Vﬁiv) of

—k p— /
{U]."l’"’m}ie{0 )» and the piecewise constant interpolant ' (., ~,DUk’l’n’m) e PL0,T; L (2)9?) of

i Ji€{o....,

,,,,,

that

ﬁk’l’n’m, o s o strongly in LY(0, T; L?(£2)%),
k (In) m

T T AL Xy weakly in LO(0, T3 LA(2)%),
k (Ln) m

~~~u weaklyinL? (0, T w(‘)’q(fz)d) ,

s'.,..oT" "™, sk, .. DT =S weaklyin LY ()<,
,n) m

as k — oo, (,n) — oo (combined) and m — oo, when taking the limits successively, without
restrictions on the relation between the discretization parameters §; and 4,,.

REMARK 4.2

(i) In the proof of Theorem 4.1 it is essential that the limits are taken in the indicated order.

(i) If 8* is a Carathéodory function, then the approximation level corresponding to k € N can be
skipped.

(i) For Lipschitz polytopal domains, Theorem 4.1 is also a new existence result, since in Bulicek
et al. (2012) a Navier slip boundary condition and 82 € C"! are assumed.

(iv) The convergence proof is presented for discretely divergence-free velocity functions. If addition-
ally Vi, C Wéﬁi(ﬁ)d, then no modification of the convective term is required and the proof
that ™ is divergence-free is also simpler.

The rest of this section consists of the proof of Theorem 4.1, which relies on Lemmas 4.3—4.5,
dealing with the existence of the discrete solution, and the limit k — oco, Lemmas 4.6 and 4.7 covering
the combined limit /, » — 00, and Lemmas 4.8 and 4.9 the limit m — o0. Note that Lemma 4.9 contains
stronger statements regarding the weak solution than Definition 2.1.
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822 E. SULI AND T. TSCHERPEL

Limit k — oo

The existence and convergence in Lemmas 4.3 and 4.4 follow by a standard approach presented e.g.,
in Temam (1984), with minor modifications required to deal with the time-dependence of sk, Taking
k — oo we remain in the finite-dimensional setting, and hence strong convergence of the sequence of
symmetric gradients follows. Consequently, the identification of the limiting equation is based on the
properties of the sequence {Sk}keN according to Assumption 2.3, cf. Bulicek ef al. (2012).

LEMMA 4 3 (Existence of approximate solutions and a priori estimates). For each k := (k,l,n,m) € N4,

.....

constant ¢ > 0 such that for allk = (k,1,n, m) € N* one has that

! I
o) HUﬂ D T 22 HUf - Uf—l‘ ey 8 2 U [
j=1 j=1
k 8
+ Z s“c..oun]?, (Q ZZ U512, 0, < 4.8)

Proof.
Step 1: A priori estimates. The a priori estimates follow from standard arguments, see Temam (1984),

in combination with the estimates for S* by Assumption 2.3: testing (4.7) with W = U; e V7] one
obtains

(@05 Us) + (85C.DU0.DUS)_+ US|, o = (£ V) (4.9)

L% (2)

since the term involving b vanishes by skew-symmetry. By the fact that 2a(a — b) = a> — b+ (a — b)?,
for a,b € R and by the definition of d, U in (3.16), the first term in (4.9) can be rewritten as

(umwp=§w—w¢wp
(HU" | B20) = MUt oy + 105 = U 22 ) - (4.10)

Using the definition of Si-‘ in (4.2) and Assumption 2.3 («2), one has that
<S§‘(.,DU;‘),DU'{>Q 2 <]{”1 s“q, ~,DU§‘)dt,DU§‘> = %(Sk(., .,Duf),DU§>Qi

Q l
q’) dz

sk(,.,DU9| 4

i—1

v

l ~ ~
170,

v

@.11)

I
_5_1 I8l L' p +c ||U;( || 3&11»4(9) 5_* L7 Qi)
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FULLY DISCRETE FINITE ELEMENT APPROXIMATION OF UNSTEADY FLOWS 823

where the last inequality follows by Korn’s and Poincaré’s inequality. On the term on the right-hand side
of (4.9), by duality of norms and by Young’s inequality with ¢ > 0, we obtain that

iU = 1l v o 0 D iaiar = @ DD oy + 105 iy
c(e)
= = ”f" ‘[]ﬂ (ti1,tW ™ Lq' (£2)) te HU;C ” zvl,q(g)’ (4‘12)

where the last inequality follows by (4.3). Applying the estimates (4.10)—(4.12) in (4.9), after
rearranging, choosing & > 0 small enough and multiplying by §;, we arrive at

”UK ” L2(2) ”U 1 ” L2(£2) + ”U;( —1 ” L2(£2)
1)
+ Sl ||UK || WUI(_Q) + Hsk " ’DUK) Lq (QL _l || || L2q (2)
<c (Ilfll i iy T 1B LI(Q;;_l)) : (4.13)
For arbitrary j € {1,...,I}, summing over i € {1,...,j} yields

H U}( ”52(9) |UK ” L%(2) + Z ”UK i ]}(Q)

+ 812 ”UK || qu(g) + z Hsk " ’DUK)

Lq (Ql z ” ” L2q (£2)

=< (1017, vy + B @) “.14)

because of cancellation in the first term. Applying the estimate

(4.6) (3 9)

”UK” L%2(2) — ”Pdlvuo” L2(2) — ”uOH L2(2)’ (4.15)

taking the supremum over all j € {1,...,[} in (4.14), and using again (4.15) finishes the proof of (4.8).

,,,,,

show that for a given U;'i] € Vdiv, there exists a Uf € Vﬁiv such that (4.7) is satlsfled. Since S,- (z,-)
is continuous, the existence of such a U € V7, follows by a standard argument from Brouwer’s fixed
point theorem. For details we refer to Tscherpel (2018). Uniqueness is in general not guaranteed, so we
choose one such sequence for each x € N*. O
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824 E. SULI AND T. TSCHERPEL

Forte (0,T],u € ]P’f) (0,T;V},) and v € Vi, we introduce
ST vl(t) = —b(u(t, ), ut, ), v) — <§"(r, ., Du, ), Dv)Q
1 s _
- E<|u(z,-)| 92y, -),v>9 +<f(t, -),v>9, (4.16)

for k = (k,l,n,m) € N* and b(-,-,-) as defined in (3.12). Recall that f € P4(0,7; W=7 (22)?) is
the piecewise constant interpolant of {f;};c(; 5. as defined in (3.17) in Subsection 3.3 and, similarly,

—k
St-,)= Sf-((~, -), for t € (t,_;,;], which is piecewise constant with respect to the variable ¢t € (0, T'].
LEMMA 4.4 (Equation for ¢ € (0,T] and Convergence k — o). The functions U e ]P’é(O, T; V)

and U" e IP’ll (0,T; Vy;,) defined as piecewise constant and piecewise affine interpolants of {U} };c(0. 5
satisfy

(0,0 ., W>Q = ST W) forall W e V", forallr € (0,71, 4.17)
U (0,) = P u, in £2, (4.18)
for any « = (k,l,n,m) € N*. For each A = (L,n,m) € N3, ie., k = (k, ), there exists a

sequence {U?\}ie{o,..‘,l} C Vj,, and subsequences such that the interpolants U < IPf)(O, T; Vi), and

.....

sup |0 6,) =T (1) | ooy = 0. (4.19)
te(0,T]

sup H’[]k’k(ta ) - ﬁk(ts )H WLOO(_Q) + sup
1€[0,T] 1€(0,7]

0.0 (1) = 300wy > 0. (420)

! _k /
as k — oo. Furthermore, for each & € N° there exist $* € LY (0)" and S~ € ]P’é(O, T; L9 (£2)7%9)
and subsequences such that

8*(,.DU"") — 8* weakly in L (Q)?*“, 4.21)
§k(', DU ~ § weakly in LY (Q)4*, (4.22)

as k — oo, where, up to a representative, we have

— fi
S'(t,) =80 :=][ S*(t,)dt forallte (r,_,,t;]andalli € {1,...,1}. (4.23)
ti—1
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Proof.
Step 1: Identification of the equation. We have that U* (0,) = Uy = Py, uq by definition of U" and by

(4.6), which shows (4.18). The equation (4.17) follows from (4.7) and the fact that for r € (7,_;, ;] we
have that

U =Uf o0°()=dUS, F.)=f and 8 (1) =S, ie{l...I)

Step 2: Estimates. Let A = (,n,m) € N> be arbitrary, but fixed. From the a priori estimate (4.8) it
follows directly that

Hsk(., .,D(—]"’*)‘ ¢ <¢ forallkeN. (4.24)
L7 (Q)
By the definition of S¥ in (4.2), we have that
ok kA _ kA
HS (.-.DU" )) o (-.DUY )’ L, 23, ( -, DU} )’ .
3. 2%) 4.24)
Z Hs" DU, =8¢, DT| ¢ ‘e @)
LY Q) LY (Q)
for all k € N. This also shows that
HSk ,DU k}‘)‘ < < <c(l) foranyk e Nandanyi e {1 I} (4.26)
1 Lq (.Q) 81 — 9o ooy . .

Step 3: Convergence as k — oo. By the a priori estimate (4.8), the sequences {ﬁk’k}keN C
PLO, T; V% ) © L0, T; W™ (£2)%) and ({0 Yiew € PLO.T; VI ) € W2 (0, T; Wy ($2)7) are
bounded in the space L*°(0, T; L%(£2)%). Since IP’I 0, T; de) and ]P’l (0,T;Vy,,) are finite-dimensional
function spaces, all norms on them are equlvalent Furthermore any bounded sequence has a

subsequence converging strongly in the respective norm. Hence, there exist U € IP’Z 0,T;V3,), U e
IP’I (0,T;Vyg,,) and subsequences such that (4.19) and (4.20) are satisfied. Further, since the convergence
is pointwise in time and I~Jk’}‘(ti, ) = Uk’)"(ti, D) = Uf’)‘ foralli € {1,...,I} and l~]k’)”(0 ) = Py U, it
follows that v, )_l_ﬂ(rl, )= U’ foralli € {1 L lyand U"(0,-) = P uy =: Uj. Consequently,
By the Banach—Alaoglu theorem,

..... d1v

(4.24)~(4.26) imply that there exist §*,8 ¢ L7 (Q)dXd and S8 € L7 ()™ fori e {1,...,1}, and
subsequences such that

k,.DU"") =~ 8*  weakly in LY (0)?*“, 4.27)
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826 E. SULI AND T. TSCHERPEL

=k — = /
S (,DU") ~ 8" weakly in LY (Q)"", (4.28)
SY(,DU) —~ 8! weakly in LY ()9, forie {1,...,1}, (4.29)
as k — oo. It remains to show the identification of S, §A and {Sik}ie{l,...,l}- Leti € {I,...,1} be

arbitrary, but fixed. First let ¢ € C°((t,_;,1;)) and vV € Cg° (£2)?*4_On the one hand, by (4.28) we have

—k — —A

<S Coe DUk’A), ¢V>Qf — <S ,(pv>Qi , ask — oo. (4.30)

i—1 i—1
—k .

On the other hand, by the definition of S (-, -, DUk ’A) as piecewise constant interpolant of the sequence

<§k(., . DUk’A), ¢V>Qi

i—1

- <<Sf(’ DU?A)’V>Q (p> = (L)1) <Sf(" DU?A)’V)Q

(ti—1,t1)

> (Lo 1 (87V) = (8 Vgl . ask— oo “.31)

Now, (4.30) and (4.31) imply, by the uniqueness of the limit, that S (z,x) = Sik(x) forae. (t,x) € Q!_,,

i.e., S is piecewise constant in ¢ and we can choose the representative in ]P’f)(O, T; L"/(.Q)dXd). Again,
for v € C5°(£2)4*? we have by (4.29) that

(SH(-DUI).v)_ — (8.v)g.  ask— oo (4.32)
On the other hand, by the definition of Sé‘(-, DUf”\) in (4.2) and by (4.27), we obtain that

1 1 _
k kA _ k(. koA _ 2lek( . A
<Si (-.DU; )v>9 _<]t[ S*(r,-,DU; )dt,v> =3 <S (-, .DT* ),ﬂ(,i_l’ti)v>Q

i—1 1

2
1 e "

- (81 V) =(f Seodv) . askooo,  @33)
81 i—1s4 Q fio o

i

so by the uniqueness of limits, we conclude from (4.32) and (4.33), that S?‘ (x) = t?_n s* (t,x) dr for a.e.
x € §2, which completes the proof. O

Forx = (I,n,m) e N3, t € (0,T), u € }P{)(O, T;V") and v € V", let us introduce
~ —A
CHuv](1) = — bu(t, ), ult,-),v) — <S , -),Dv>9
1 s _
-= <|u(t, NEET -),v>Q + <f(t, ~),v>9, (4.34)

=\ )
where 8§ ¢ ]P’é(O, T; L9 (£2)4%9) is given in Lemma 4.4.
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LemMaA 4.5 (Identification of the PDE as k — o0). The functions ﬁk € IP’(Z)(O, TV, INJA €
]P’ll (0,T;Vy;,) and S ¢ Lq,(Q)dXd given in Lemma 4.4 satisfy

(0,0 .0, W>Q = eMT"WI()  forall W e V" . forallr € (0,71, (4.35)
U0, ) = Pl ug() in £, (4.36)
(DU (2),8" @) € Az)  forae.z €O, (4.37)

for all A = (I,n,m) € N, where £*[-;-](-) is defined by (4.34), using § ¢ P4 (0, T; LY (2)4%4) given
by (4.23) in Lemma 4.4.

Proof. LetA = (I,n,m) € N 3 be arbitrary but fixed. The fact that the initial condition (4.36) is satisfied
follows directly by (4.18) and (4.20).

Step 1: Identification of the limiting equation. Let W € Vg, be arbitrary but fixed. With the convergence
of 8,0 in (4.20), it follows that

<a,l7"’*(z,-),w>9 N <a,l71(r,-),w>9, as k — 00, (4.38)

for all ¢ € (0, T]. Further, by the strong convergence (4.19) and (4.20), it is straightforward to show that

<£“ [T, W, >

_><2*[ﬁk,w](z),> . ask — oo, (4.39)

0,7) 0,7)

for all + € (0,T]. In particular, the strong convergence in (4.19) allows us to take the limit in the
numerical convective term without any restriction. Finally, (4.38) and (4.39) applied in (4.17) imply that
(4.35) holds for all r € (0, T].

Step 2: Identification of the implicit relation. The proof of the implicit relation (4.37) relies on the strong
convergence of {Dﬁk’k} ten and the properties of S¥ stated in Assumption 2.3. By the property («3) in
Assumption 2.3 on S* and the boundedness of {Dﬁk’k} keN In L>®(Q)4*4 resulting from (4.19), we have

0 < liminf (§*(.DU"") — §*(.B), (DU - B)¢>Q (4.40)

for all ¢ € C{°(Q) such that ¢ > 0 and for all matrices B € U, for the dense set U C Rg;;r‘l] given
in the assumption. Then, by the strong convergence of Dﬁk’k in (4.19) and the weak convergence of

Sk(.,..DU") in (4.21), we obtain

0 < liminf(8*(.DU"") — §*(.B), (DU - B)w)Q = (8" —8*(.B),(DU" - B)¢>Q (4.41)
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828 E. SULI AND T. TSCHERPEL

for all ¢ € C3°(Q) such that ¢ > 0 and for all matrices B € U. By Lemma 2.2 (a4) this allows us to
conclude that

(Dﬁx(z),SA @) € A@z) forae.ze€Q,
so (4.37) is shown. O

Limitl,n — o0

We are taking the limits /,n — oo simultaneously without imposing any condition on §; and &,. The
condition g > % is required to gain compactness. Two additional difficulties, compared to Bulicek
et al. (2012), arise from the discretization. The first is that in order to prove a uniform bound on the
sequence of approximations to the time derivative, one would require the stability of the L2-projector
onto Vg, in Sobolev norms, which would impose stronger requirements on the finite element partition of
£2. To avoid this, instead of the Aubin-Lions lemma we shall employ an alternative compactness result
due to Simon (cf. Lemma 2.10), which requires convergence properties of time-increments. The second

difficulty is that, in the identification of the implicit relation, we have to deal with the discrepancy
— —

between S and S*, since S appears in the equation (4.35) and S* satisfies the implicit relation
in (4.37).

LEMMA 4.6 (Convergence as /,n — o00). Let the functions ﬁl’n’m € JP’f)(O, T;Vi)s l~]l’n’m €

’ —l, N / .

PL(0,T; V%), 8" e L)% and ™" € PL(0,T; L7 (2)*?) satisty (4.35)~(4.37), for any
l,n,m € N, by Lemma 4.5. Further, let n := max (2q’, @)
all A = (I,n,m) € N3, one has that

> 2. Forany 0 < 55 < s < T and

b+ 800 + ] e < e, 517 o
Lz(Q)Jr<S,DU> +—H ‘qu,(Q%)S(f,U)QgO—‘rzU(so,.)

@, m

‘ﬁ*(s, -))

1 2
> ‘ Loy (442)

Furthermore, for each m € N there exists a u™ € L*°(0, T, LﬁiV(Q)d) N X4y (), 8™ € L‘/(Q)dXd and
subsequences such that, as [,n — oo,

U™ —u"  swongly in1P(0, T;L2(2)9) for all p € [1, 00), (4.43)
f]l’n’m(s, ) — u"(s,-) strongly in L2(.Q)d fora.e.s € (0,7), (4.44)
f]l’"’m(O, D = ug strongly in L?(£2)¢, (4.45)

g g weakly* in L(0, T; L?(£2)%), (4.46)

[T strongly in L7 (0, T; L>(£2)4) N L"(Q)¢ (4.47)

forall p € [1,00) and all r € [1, 1),
—lnm m . 2 d
U " (s,-) = u"(s,-) strongly in L*(22)¢ fora.e.s € (0,7), (4.48)
7"~ a" weaklyin L4 (0.7 Wy (2)!) n L)Y, (4.49)
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[T 24 20" w24 2™ weakly in L2 Q)¢ (4.50)
—In, . ’
RN weakly in LY (Q)%*¢, 4.51)
ghmm . gm weakly in LY (Q)4*. (4.52)

Proof.
Step 1: Energy inequality. Let A = (I,n,m) € N3, ie{l,....,0}and letr € (t,_1,1;]. In (4.35) we
test with W = ﬁk (t,-) € Vi, . For the first term adding and subtracting 4 (¢, ) with (3.19) we obtain

(00" .. T, -)>Q - <8tl~])“(t, )T, ~)>Q +(0,0" ). T ) - T, -)>Q

~2dr HU @] 39

el

Loy T~ 12(2)

v

T eI

LZ(Q),

. .. ~% . . .
since t < t;. By the continuity of U™, upon integration over (s, s), for 0 < 55 < s < 7, this yields

(4.54)

1 l’}k 2
2@ " 3 H (5o, ')‘ 12

[[bF e, = Heel:
0

The other terms follow immediately and (4.42) is proved.

Step 2: Estimates. By the weak convergence in (4.21) and (4.22), the estimates (4.24) and (4.25)
uniformly in A = (I,n,m) € N3, and the lower semicontinuity of the norms with respect to weak
convergence, we obtain

IS 17, +[S*7, <c forallxeN. (4.55)

L7 Q) L7 ~

By (4.20) we have in particular that Ui.(’)" — Ul?‘ strongly in W(l)’oo(.Q)d, ask — ooforanyi e {1,...,1}.
By the lower semicontinuity of the norm function with respect to the convergence in the respective norm
we deduce from (4.8), which is uniform in A = (I,n,m) € N3, that

1 1
je{O ” U)L HLZ(_Q) + Z ” U)L U)L 1”]_2(9) + 812 “ UA ”wlvq(g) l Z H }”qu @) — =c (4 56)

.....
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830 E. SULI AND T. TSCHERPEL

for all A = (I,n,m) € N°. By the definition of the piecewise constant interpolant according to (3.17), it
follows from the discrete estimate that

2 (4.56)

4.57
g = © (4.57)

| -y
q _
L9(0,T;Wh4(£2)) + m HU |

—A —A
|7~ razian + [
for all A = (I,n,m) € N>. With this and the parabolic interpolation from Lemma 2.9, we have that

HI_JAH qavn  <c forall A= (I,n,m) e N°. (4.58)
LY )

For the estimates of the continuous, piecewise affine interpolant v according to (3.18), one also has to
estimate the corresponding norms of Ué. In the L?(£2)? norm this is given by (4.56), and hence we have
that

v ‘e foralli e’ 459
LOO(O,T,LZ(Q)) = C or a (S . ( . )

Since for smaller function spaces on §2 the corresponding estimate is not available, for the compactness
. . =) .
argument we consider, instead, U~ € C([0, T];Vgiv) defined by

—~5 '
T5 U t7 ° f 1 e 8 N T N
Uy =17 &) L 0. T] (4.60)
U't,) = UM() if 1€0.5].
This function is constant on [0, §;] and satisfies for r € [1, c0) and a normed space X the bound
78 ! 2
~ N .
HU ‘ £’(O,T;X) = C‘Slz ”Ui | Irf((),T;X) =c HU ‘ £r(0,T;X), 4.61)
i=1

and an analogous estimate holds for r = oco. Then, by (4.57) it follows that

24

~A . 3
)U ‘ M S ¢ forallh=(nm) e N, (462)

q 1
+ J—
LI0.T;WH(R2) T gy ‘

=~ =~
7] oz + [T
By the fact that atﬁk(t, )= dtU?‘, fort e (t,_;,4;1,i € {1,...,1}, and by (4.56) we obtain

(4.56)

[
’ v =2 M0 =V, = ¢ @63
i=1

0,0

l
1
S 3|
i=1

for all A € N3.
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FULLY DISCRETE FINITE ELEMENT APPROXIMATION OF UNSTEADY FLOWS 831

Finally, we also estimate £*[u;v](¢), as defined in (4.34): by (3.15), duality of norms and Holder’s
and Poincaré’s inequality, we obtain

b

b o~ —
/ )0 dt = (b, ).ue.),),, — (8¢ -),Dv>Q
I i _
ol a4 (F60),

< lul izq/ ") Vv L4(Qb) + lul 127 (Qb) IVul L4(Qb) vl L2 (Qb)

i 1 g
+ 8" g 19Vl gny + o Tl 247 0 90 2
+ Hf | L @b 2y Wl pwiae)

<c (1 + |u| izq/(Q,,)) Vv LY(QD)

1 2/ —1
+ Cc ("u” LZq/ (QZ) ”Vu ” Lq(QZ) + Z ”u” qu/ (QZ) ”v” L2£1/ (QZ)’ (464)

=X
forO <a<b<T,forany A = (I,n,m) € N3, where we have used the estimate (4.55)0on S and (4.3)
on f. With the estimates on ﬁk in (4.57) this yields

/b ST v 2 (1 + HEA(

+c(Hw

2
1.24 (QZ)) Vvl L1(Q%)

24 —1

| -y
e T, HU ‘Lz‘/(QZ) P20 s

v7

L2 (0b)

(4.57)
=" com) (199 Loy + W1 20 ) (4.65)

for0 <a <b <Tandany X = (I,n,m) e N3.

Step 3: Convergence of the time increments (cf. Carelli et al., (2010, pp. 174). Instead of applying the
Aubin-Lions lemma, as in Bulicek ez al. (2012), here we apply the compactness result due to Simon,
stated in Lemma 2.10. This means that we do not need uniform bounds on the time derivatives, but only
convergence properties for time increments, which avoids the use of stability results in Sobolev norms

for the L2-projector onto Viiy- We wish to apply Lemma 2.10 to the sequence {ﬁl’n’m} 1neNs for fixed
m e N, with X = Wh(2)? B = L?(£2)? and p = 2. Let us show that

iz(ﬂ) ds —> 0, ase — 0, uniformly forl,ne N. (4.66)

U's+e,) —ﬁ*(s,-)(

T—e
/0
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832 E. SULI AND T. TSCHERPEL
Consider the term (Ul(s +e,)— Ux(s, ), W) for W e ng, s€ (0, T)ande > Osuchthats+¢e < T.
If s + & < §,, then we have v (s+¢e) = 74 (s) = U?, so the term vanishes. Now let s + ¢ > §,;. By the
definition of Uk in (4.60) we have that UA (s,-) = Ux (max(s, §;), -). By the continuity of UA and since
3IUA is integrable, we obtain

s+¢ s+

<Uk(s+€,-) — U, -),W>Q =/ <a,ﬁ*(t, -),W>Q dr =/

max(s,5;) max(s,0;)

<8tl~]'\ ), W>Q dr, (4.67)

where in the last line we have used that U)L (t,-) and U)L (t,-) coincide on (max(s,§;),s + &) C [6;, T].
Applying the equation (4.35) for a.e. t € (max(s,d;),s + ¢), integrating and applying the bounds in
(4.65) yields

s+¢& < ~1 s+& e
/ 8,0 (1, -),W>Q d =/ U W) dr

max(s,8;) max(s,8;)

(4.65)
= c(m) (IIVWII sve T AW oy ¢ poe )
LY (Qm-:x(s,él)> qu (Qm-:x(s,ril))
1 €1
= c(m) (sq + 524’) Wl x2)» (4.68)
since W is constant in time and the length of the time interval is bounded by e.

Forall s € (0,7) and ¢ > O such that s + ¢ < T, we have that U (s+e,-), U (s,-) € Vi, ; applying
(4.67) and (4.68) with W = U (s+e,-)— U (s, ), which is piecewise constant in time, shows that

HU (s+e)—0UG, )‘

2, gy < €lm) (gq +e3 ) [0 6+e) -0 )| xe @69

Integrating over (0, T — ¢), using the triangle inequality, Holder’s inequality and the estimate in (4.62)
yields

U'(s+e-) -0, )‘LZ(Q)

/T—s )
0

(4.69) 1 1 T—e ~
< c(m) (8" + qu’) / (HUA(S +e, )H x@) T HUX(S, )H X(.Q)) ds
0

1 €1 ~A (4.62) 1
< c(m) (sq +qu’) HU H x@ < cm(st + ey = 0, (4.70)

as ¢ — O uniformly in /,n € N, where A = (I,n,m) € N3. This proves (4.66).

Step 4: Convergence as I,n — oo. Recall that we have A = (I,n,m) € N3 and let m € N be fixed. By
estimate (4.62) we have that {Ul’n’m} I.neN 18 bounded in particular in L2(Q)? and L' (0, T; WH4(2)%).
By the condition that g > (12_+d2’ the embedding W (2) > L2(2) is compact and with (4.66) all
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FULLY DISCRETE FINITE ELEMENT APPROXIMATION OF UNSTEADY FLOWS 833

the assumptions in Lemma 2.10 are satisfied for X = Wh4(£2)4, B = L?(£2)? and p = 2. Hence, there
exists ™ € L2(Q)? and a subsequence such that

=lnm

U"" - u™ strongly in L>(Q)?, as I,n — oo. (4.71)

By the definition of f]l’n’m in (4.60) and the property (3.19) of the interpolants defined in (3.17) and
(3.18), we have that

=ln =lnm —lnm ~lnm
HU - ‘ L2 - HU - ) L2(0.8:L2(2))
‘) ~Inm ~lnm
H(‘Sl — DU ‘ L208:L2(2) = ‘ L2(08:L2(2)
(4.63)
< ¢§;,— 0, asl— oo 4.72)

With (4.71) it follows that f]l’n’m — u™ strongly in L2(Q)d, as I,n — oo. By the boundedness in
L2°(0, T; L%(£2)?) in (4.59) and interpolation, this implies that
=~Ilnm

U™ - u™ strongly in L?(0, T;L*(2)%), asln— oo, (4.73)

for any p € [1, 00). Similarly, by (3.19) we have that

H—lnm ~lnm 2 lnm‘
2o B/
(4.63)
< 51 lnm‘ 20 < ¢6;,— 0, asl— oo. “4.74)

. . —l,n, . .
Consequently, with (4.73) it follows that U s strongly in L2(Q)?, as [,n — oo. In particular,
—1 . :
t— U ’n’m(t, S —u"(t,-) ”LZ(Q) converges to zero strongly in L2 (0,7), as I,n — oo. Thus, there exists
—ln, .
a subsequence such that r — ||U 8 m(t, D —u"(t,-) ||Lz(9) converges to zero a.e. in (0,7), as ,n — oo,

which implies (4.48). Analogously, (4.45) follows from the strong convergence of U i (4.73).
The uniform bounds in L (0, 7; L?(£2)4) and L"(Q)?, with n = max (2¢, 242), by (4.57) and
(4.58), and the strong convergence in L?(Q)?, yield by interpolation, that

—lnm

U™ > u™ strongly in L?(0, T; L2(2)Y) NL"(Q)¢, asl,n— oo, (4.75)

for any p € [1,00) and any r € [1,n). By the uniform bounds in (4.57), (4.58) and (4.59), and the
Banach—Alaoglu theorem, up to subsequences, we have that

~Ilnm —=lnm

o T S wm weakly* in L0, T; L2(£2)9), (4.76)

—lnm
U

— " weakly in L9(0, T; Wy?(2)%) N L7(Q)°, 4.77)
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834 E. SULI AND T. TSCHERPEL

as I,n — oo, and the identification of the limiting functions follows by the strong convergence
in (4.75).

The argument that ™ is divergence-free follows as in Diening et al. (2013, p. 1001): let & € L‘/(Q)
and note that by the Assumption 3.4 on the projector I, we have that H&h — hin particular in LY (£2),

asn — oo, compare Remark 3.5 (ii). Also, let ¢ € C3°(0, T). By (4.77) we have that div ﬁl'n’m — divu™
weakly in L7(Q), and hence

<divvl’n’m,¢176h>g — (divu", gh),. asln— co. (4.78)

Since Ul’n’m € Pf)(O, T;Vy,,), the left-hand side vanishes for all /,n € N, and hence we have
(divum,hq))Q = 0 for all h € Lq,(.Q) and all ¢ € C%(0,7), so by density u™ is (weakly)
divergence-free.

By (4.57) with (2¢)'(2¢ — 1) = 24 it follows that {|l7””””|2q’—2(7”””"},,"eN is bounded in
L(zq/)/(Q)d and thus, by the Banach—Alaoglu theorem there exists a subsequence and ¥ € L@ Q)¢
such that

‘—l,n,m

T 202G g weakly in L (), as n — oo, “79)

By the strong convergence in (4.75), there exists a subsequence, which converges a.e. in Q, and hence
we can identify ¥ = |u"| 24 =2ym which shows (4.50).
Because U™ (0, ) = Pl u by (4.36), with (3.10) it follows that
U0, = P uy — u,  strongly in L2(2), asn — oo, (4.80)
so (4.45) is proven.

The uniform estimates in (4.55) and the Banach—Alaoglu theorem imply that there exist §m,
S” e L1 (Q)?*4 such that

—lnm

§"" 8" weakly in LY (Q)¥*4, 4.81)
SHM . 8" weakly in LY (Q)4%¢, (4.82)

as I,n — oo. It remains to show that §m = 8™ to this end, let B € C8°(Q)d><d be arbitrary but fixed.
On the one hand, the weak convergence in (4.81) shows that

<§”"’m,B> —><§m,B)Q, as I,n — oo (4.83)

0

—In, .
On the other hand, by the relation between S nm and Shm according to (4.23), one can show that

ol = = . .
(S e B)Q = (Sl’"’m, B)Q. By (3.24) we have that B — B strongly in LY(Q)?*¢, as | — o0, so that with
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FULLY DISCRETE FINITE ELEMENT APPROXIMATION OF UNSTEADY FLOWS 835

the convergence in (4.82) it follows that

<§l,n,m’ B>Q _ <Sl,n,m’§>Q N (Sm, B)Q , asl,n— oo. (4.84)

By (4.83) and (4.84), the uniqueness of limits implies that S" =8"ae.in 0. ([l
FormeN,t e (0,T),u € Lz‘f/(Q)d and v € X(£2) let us introduce

L7 v](t) = — bu(t,-),u(t,-),v) — (8" (,-),Dv),

1 !
(e )12 2uie, )v) + (£ ) ) g (4.85)

m
where 8" is given by Lemma 4.6 and b(-, -, -) is defined in (3.11).

LeMmMA 4.7 (Identification of the PDE as [,n — 00). The functions u™ € L*°(0, T Lgiv(.Q)d) NXgiv (@)
given in Lemma 4.6 satisfy that d,u™ € L*(0,T; (X4, (£2))), with  := min(¢’, 2¢')") > 1, and
Xgiv(§2) defined in (2.1). (Up to a representative) we have thatu™ e C, ([0, T, L(2iiv (£2)?) forallm € N.
Furthermore, for each m € N the functions u” and 8™ € LY (0)?*4 from Lemma 4.6 satisfy

(ou™(t, ), W)y = £"[u";w](t) forallw e Cgfdiv(sz)d fora.e.t e (0,T), (4.86)
(Du"(z),8"(z)) € A(z) forae.z € Q, (4.87)
esslim,_ o, ™, ) —uy| L@ =0 (4.88)

Proof. Let m € N be arbitrary but fixed.

Step 1: Identification of the limiting equation. For A = (I,n,m) € N3 multiplying (4.35) by a function
¢ € C{°((=T,T)) and integrating over (0, T) yields

=) 35) | ap 3t n
(0,0 ,W¢>Q = (ehu ,W],¢>(O’T) for any W e V" . (4.89)

Then, by integration by parts and the fact that ﬁk e C([0,T]; LZ(Q)d), it follows that

_ <17A, W8,¢>Q - (fﬂ 0., (p(O)W>Q n <£k o, w, go)((m (4.90)

forall W e V§, and all ¢ € C3°((—=7,7)) and A = (I,n,m) € N3.
Now let w € Cgf’div(&?)d and ¢ € C3°((—T,T)) be arbitrary. Recall that by Remark 3.5 for
we Cgf’div (£2)4, we have that

%y O M"w — w  strongly in W(l)’s(.Q)d, asn — oo, foranys € [l,00). 4.91)
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836 E. SULI AND T. TSCHERPEL

In order to deduce the limiting equation for u” we consider (4.90) term by term, as ,n — oo: let
s € [1,00) be large enough that the embedding W'*(£22)¢ < L2(£2)“ is continuous. By the strong

convergence of ﬁl’”’m inl”(0,T; Lz(.Q)d), for p € [1, 00) by (4.43), with (4.91) we obtain that

_<l7””"”,17"(w)at¢>g — — (" wig),. asln— oo (4.92)

Similarly, the strong convergence of I~Jl’n’m 0,-) = uyin Lz(.Q)d in (4.45) yields that

<l71’"’m(0, .),<p(0)17"w>9 — (g p(OW),,. asln— oo. (4.93)

By the fact that l_]l’n’m — u'" strongly in L (Q)? for all r € [1,n), as ,n — o0, by (4.47), it follows
that ﬁl’n’m ® ﬁl’n’m — u" @ u" strongly in L”(Q)?*? for all p € [1, %) Such a p > 1 exists, since
n = max (2¢/, L42) > 2. With (4.91) applied for s = p/ < oo, we obtain that gVII"w — @Vw

strongly in LY (Q)dxd. Together these imply that

<—l,n,m

U ® ﬁl’"’m, (pVI'[”w>Q - [W" @u", pVw) as I,n — oo. (4.94)

Q b
For the modification of the convective term, note first that by (4.49) we have weak convergence of
VU™ — Vu™ in L9(Q)44. By (4.47) we have in particular that """ o strongly in LY (Q)9, as

I,n — oo since ¢ < 2q' < n. Fors > d, the embedding W“(.Q) < L%°(£2) is continuous, and hence
we have ¢ IT"w — @w strongly in L% (Q)?. Together, this yields that

<_”"”” asl,n — 00 (4.95)

U ®oellw, VUZ’"’m>Q = (u" @ ow, Vum)Q,

albn
By (4.91) we have that gDIT"w — ¢Dw strongly in LY(Q)4*? and by (4.51) that 8" — S weakly
in L7 (Q)?*4. Thus, it follows that

<§l n,m

,(pDH"w>Q — (8".¢Dw),. asln— oo. (4.96)

Since |ﬁl’n’m |2‘1/_2l_]l’n’m — |u™| 24 =2ym weakly in L4 (0)¢ by (4.50) and @ I1"w — ¢@w, in particular
in L?4 (0)4, we obtain

1 /1= /2= 1 /
— <‘Ul’n’m‘ 2q _2Ul’n’m, go]'[”w> — — <|um’ 2= 2ym, gow> , asln— oo. 4.97)
m (o} m Qo

Finally, with the strong convergence f — f in L7 (0, T; W= (£2)4) by (4.4) and with (4.91), we have
that

<f, (pH”w>Q — (f.w)g, aslin— oo, (4.98)
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FULLY DISCRETE FINITE ELEMENT APPROXIMATION OF UNSTEADY FLOWS 837

By the fact that #™ is divergence-free, it follows that Z(u’", u™, ow) = bW, u", pw). So with ghnm and
£" as defined in (4.34) and (4.85), respectively, the convergence results (4.94)—(4.98) yield that

— (£"u", w], p) asl,n — oo. (4.99)

Ln,m =ln.m n
(ehmm @™, ¢ o

0,7)

Now, from (4.90), using (4.92), (4.93) and (4.99), as [,n — oo, we have that
— (" wd ), = (ug, 9Ow)g, + ("™, W), 0) o 1, (4.100)

forallw € CS?diV(Q)d and all ¢ € C5°((=T,T)).

Step 2: Bound on the time-derivative. The distributional derivative of u™ satisfies, by definition and
using (4.100), that

(B we), = — " wiig), =" (£"1u", wl. ) (4.101)

o 0,7)
forallw € Cg?div(SZ)d and all ¢ € C3°((0,7)), since suppg C (0,7). Using this equation we wish
to show that d,u™ € L (0, T; (X4, (§2))") (not uniformly in m € N), for t := min(q, 2¢')") > 1 and
X4, (£2) as in (2.1). For £ as defined in (4.85), using the fact that u” € L24 (Q)? and 8™ e L7 (Q)?*,
similarly as in (4.64) we can estimate

\(sm[um, wl, go)((m| < "2 ) 1€9% 1 L0+ 18" 1o ) 9P L0

1 2 —1
+ Z Hum H qu/ ©) ”(pw” LZq/ () + ”f” Lq/ (O’T;Wfl,q/ (£2)) ”‘pW" LQ(O,T;WL‘I(Q))

< com) (191 Looiry + 101 2001y ) (WD wisy + 191 20 )

< cm) 19l o, W] x(2) (4.102)

forall ¢ € C3°((0,7)) and all w € Cgf’div(.Q)d, since T/ = max(2¢/, g). By the density of the respective

test function spaces, (£"[u™,-], ") (1) Tepresents a bounded linear functional on Lf/(O, T; X4, (£2)),
and thus we have that 3,u™ € L7 (0, T; (Xy;,(§2))) by (4.101) and by reflexivity of the function space.
Consequently, (E)tum,w>_(2 is integrable for w € Cgf’div(Q)d, and thus we can rephrase (4.101) by the
fundamental lemma of calculus of variations in the pointwise sense in time, so (4.86) is proved.

Step 3: Identification of the initial condition. Since the arguments are standard, let us only give an
outline and refer to Tscherpel (2018) for additional details. Using the function spaces which #™ and 9,u™
are contained in, one can show thatu™ € C, ([0, T'[; Lﬁiv(ﬂ)d), see Temam (1984, Lem. 1.1, 1.4, Ch. III,
§ 1). Then, by use of the equation and integration by parts, one can identify u™(0,-) = u, € Lﬁiv(ﬁ)d.
Finally, by the strong convergence in (4.44) and (4.45), and also applying the energy inequality (4.42),
the proof of (4.88) can be concluded.
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838 E. SULI AND T. TSCHERPEL

Step 4: Energy identity. Let us recall that u™ € X4, (Q) — Lmin(@:24) (0, T, X4y (£2)%) and that
du™ € L7 (0,T; (X4,(£2))), where T = min(q/, (2¢')), and equation (4.86) is satisfied. Because of
the lack of integrability in time, an approximation argument by means of mollification in time can be
applied to show the energy identity

1 1 / 1
3 Ju™(s. )] {2 ) + (8" D)y, + ~ lwm) %, ={f. u"), + 5 o220, (4.103)

L) s
fora.e. s € (0, T). The proof follows by a standard procedure and we therefore omit the details, see, e.g.,
Lions (1969, Ch. 2.5). Let us note, however, that the identity can be obtained only for a.e. s € (0,7),
since the limit can be taken only for Lebesgue points of the function t +— |u™(z,-)| 12}( Q) Also, the
attainment of the initial datum in the sense of (4.88) is used.

Step 5: Identification of the implicit relation. Recall that we have by the assertion (4.37) that the
inclusion (Dl_]l’n’m(z),Sl’"’m(z)) € A(z) holds for a.e. z € Q. Furthermore, by (4.49) we have that

DU — Du" weakly in L4(Q)?*4 and by (4.52) that S — 8™ weakly in LY (Q)4*, as I,n — o0.

By Lemma 2.6 it suffices to show that

lim sup <S””””, fo”””} <(8".Du"), . (4.104)

Ln—00 Os

in order to obtain (Du™(z),S8"(z)) € A(z) for a.e. z € Q,. Then we can exhaust Q by letting s — 7.
We can only show (4.104) for a.e. s € (0, T) since the energy identity (4.103) is available only for a.e.
s € (0,7), and some of the arguments used to show (4.104) are only available for a.e. s € (0, 7).

<bnm —lnm

Let us add and subtract the term (S8~ ,DU ) g, to obtain

<Sl,n,m’ Dﬁl,",Wl)Q _ <§l,n,m’ Dvl,n,m> I <Sl’n’m B §l,n,m

Os

,Dﬁ”””")Q —T411, (4.105)

where the first term appears in the equation (4.35) for the approximate solutions and the second term
has to be shown to vanish. The energy inequality (4.42) yields that

<lnm —lnm “42) 1 || ~1nm 2 T 2
1=(s"".0U >Qx = _EHU (S")‘L2<9>+§HU 020,
— —lnm 1 —lnm| 24
U > ——HU ‘ ‘. 4106
+<f o, m L% (Qy) ( )

For the second term in (4.105), for / € Nletj € {1,...,[} be such that s € (tj_l,tj], i.e., j depends on s
and on [. By the relation (4.23) we have that

—Ilnm

t _ _
<S”"”" -S ,Dﬁ”"”") = < / shmm sy df — 5181’””",DUZ’””"> —0 (4.107)
ti 2

i—1 i—1
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forany i € {1,...,1}. So for II we obtain that

Ln,m

I = <Sl’"’m -8 , Dvl’n’m> _ <Sl,n,m _ § DUlnm>

Qtj s

l,n,m l,n,m

(427) 0— <Sl’n’m,Dl_]l’n’m> ;

4[5 00 < (8

§

" (4.108)

: Dl_ll’”’m>Q,.

where the inequality follows since .A(-) is monotone a.e. in Q, (0,0) € A(-) a.e. in Q, and by the fact
that (DT, 8™y ¢ A(-) a.e. in Q by (4.37). For the remaining term we use again (4.42) on (s, 7.),
noting that the term 1nV01V1ng is nonnegative, which yields

<lnm _—Ilnm - —lnm 2
<S ,DU” >Qg = <f’ v >Q5 2 HU f )) ety HU "G )‘ 12y (4.109)
By the duality of norms, the estimate (4.57) and by (4.3), we obtain
Uln m —l n,m
70"y = |7t [ | oormaan
< C(m) ”f” Lq/(tjfl,lj;Wfl’q/(.Q)) =< C(m) ”f" Lq’ (S*(Sl,s+51;W71’ql(.Q))' (4110)
Furthermore, we have f/[’n’m(t-, D)= ﬁl’n’m(r, D) = (s -), since s € (t 14l and hence
(4.108),(4.109) | — —1pm Lnum Lnm 5
= <f’ v >Q; HU . )’ L@ T3 HU (s, ')) (@)

1=~
2 »1m 2
Lo t3 HU (s, -)‘ 2oy (@11D)

(4.110) —lnm
= Uy gpmw-i oy — 5 |06

Now applying lim SUP; s 00 O (I4-1I) with (4.106) and (4.111), noting that the term involving l~]l’”’m(s, 2
drops out, we obtain

1 _ 1
limsup (+1D) <~ lim HU””’”’(s,-))2 += lim HU "0, )‘

Ln—00 Ln—00 L2(92) 2 In—o00 L2(£2)
| —lnm —lnm
B Z]szzllf?ofHU ‘ 127 Q) +lr}1noo<f v >QS
+elm) Bm 1 fl g s, orsow—1e ()
=5 ”u (s, )” LZ(Q) HuOH L2(2) ., || m” 124 (0,) (f’ um)Qs’ (4.112)

where the last inequality is based on the following arguments. By (4.48) we have the convergence

lnm(s ) — u"(s, ) strongly in Lz(.Q)d as [, n — 00, for a.e. s € (0, 7). The second term converges

to 5 ||u0|| since by (4.45) we have that U (O, ) = ug strongly in L2(£2)?. For the third term

L%(£2)’
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840 E. SULI AND T. TSCHERPEL

we use weak lower semicontinuity with respect to the weak convergence in qu/(QS)d and (4.49). For
the fourth term we have convergence, since ﬁl’"’m — u™ weakly in L(0, T; wha(2)9) by (4.49) and
f — f strongly in LY (0, T} w4 (.Q)d) by (4.4), as I,n — oo. The last term vanishes by the absolute
continuity of the integral, as / — oo. Finally, returning to (4.105), applying lim sup; ,,_, ., and the energy
identity (4.103) for a.e. s € (0,7), yields

_ (4.105)
lim sup <Sl’"’m, DU l’n’m> < limsup (I +1II)
l,n—00 s l,n— o0
(4. |12)
= T 5 “um(s )” LZ(Q) ” 0” L2y ” m” 127 (0,) <f,um)Qs
(4.103)
=" (8".Du"), (4.113)
for a.e. s € (0, T). This proves the claim in (4.104) and completes the proof. O

Limit m — oo

In this step we lose the admissibility of the solution as a test function, and we have to use Lipschitz
truncation to identify the implicit relation. The availability of the solenoidal Lipschitz truncation allows
to simplify the arguments in Bulicek ef al. (2012), since no pressure has to be reconstructed.

For g € (%, oo) let us denote

d+2)Y d+2
g ‘= max ((%) ,q) = max ((](‘ji_ﬁ,q) <00, V:!=max (@,Zq’) < oo, (4.114)

and note that ¢ = ¢, if ¢ > w

LEMMA 4.8 (Convergence m — o0). For m € N let u™ € L*(0,T; de(.Q)d) N X4y (Q) be such

that d,u™ € L7(0,T; (X4, (£2))) and let 8" € Lq/(Q)dXd be a solution to (4.86)—(4.88). Further, let
q,v € (1,00) be defined as in (4.114). Then, there exists a constant ¢ > 0 such that, for all m € N, we
have that

2
" + ||u’”||

Ja + 18",

(0,T5L*(£2)) LI(0,T;W"4(£2)) L7 (Q)

(4.115)

H m” 124 (0) + HumH L@(Q) =ec

Furthermore, there exists a function u € L*°(0, T; de(.Q)d )NLY0,T; WO dlv(.Q)d) such that we have
that du € L oO,T, (W0 le(.Q)d) ),anS € LY (Q)dXd and subsequences such that, as m — oo,

u" > u strongly in LY(0, T; L, (2)) N L (Q)%, vr € [1, 4442, (4.116)

u(s,) — u(s,-) strongly in de(.Q)d fora.e.s € (0,7), “4.117)
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u" —u weakly in LY(0, T; Wo le(.Q) )N (4.118)

w" Su weakly* in L0, T; L2 (2)9), (4.119)

du™ — du  weakly inL” (0, T; (W% (), (4.120)

S" -8 weakly in LY ()%, (4.121)

% ]um| 2/ =2ym _, g strongly in L(zq/)/(Q)d. (4.122)

Proof.

Ym0 L0, T L2(82)%) N LY(0, T; w})’q 2)%,

on {m*z%/ﬁ”””" in L24'(0)? by (4.57) and on {8"""},,,, in LY (Q)?*¢ by (4.55) are uniform in
m € N. Hence, by the weak* and weak convergence in (4.46), (4.49) and (4.52), and the weak(*) lower
semicontinuity of the norm, the estimate (4.115) follows.

In order to derive a uniform bound on the time derivative, let us estimate £”[u; v]. Since no uniform
bounds on |u™| 124 () &re available at this point, we use the bound (3.13) on the convective term, with

q as defined in (4.114), to deduce that

Step 1: Estimates. Recall that the bounds on {I_Jl’n’m

[, -) ®@u,), Vv)o| < clu, J”i#«» V¥l o),

which holds, since g > m Note that the embedding Whi(Q) < Wh(2) N L2 (£2) is continuous

for g as in (4.114). Also, we have for v as defined in (4.114) that the embedding L"(£2) < Lq(.Q) N
L4(£2) N L% (£2) is continuous. With this, similarly as in (4.102) applying the uniform estimates in
(4.115), one has that

’(2’"[u’”,w],<p)(o’n‘ = ”um” i@(g) leVw] Li(Q) + ”Sm” LY (Q) ”<pr|| L7(0)

1 2/ —1
+ — ” m” qu/(Q) ”(ﬂw” L2q/(Q) + ”f" Lq/ (O,T;Wfl‘q/(ﬂ)) ||¢W|| LCI(()’T;WUI(_Q))

<c "(p” LY(0,T) ”w” WI’ZI(Q) (4 123)
forall ¢ € C3°((0,7)), allw € Cgodw(.Q)d and all m € N. With (4.86) and using the fact that v < oo,

and hence the space L"(0,T; WO dw(!?)d) is reflexive, this shows that {d,u™}
LY (0.T: (W (D).

meN 18 bounded in

Step 2: Convergence as m — oo. Since q > the embeddmg WOdV(.Q)d > LSW(Q)”I

d+2’
is compact. Because ¢ > ¢q > dzfz’ the embedding Wo le(.{2) — de(.Q)d is in particular

continuous and dense, which implies that (Ldlv (£2)%) — (WO dw(Q))/ . Combined with the embedding
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842 E. SULI AND T. TSCHERPEL

L3, (2)? — (L3, (£2)?), this yields that the embedding L3 (£2)? — (WO dw(.Q))’ is continuous.
Hence, the Aubin—Lions compactness lemma implies that the embedding

{v € LU0, T; Wy (@)D : 8y € L (0, T (Wy'h (2)))} <> L9(0, T, L], (2)7)

is compact, see, for example Roubicek (2013, Lem. 7.7). The fact that by (4.115) the sequence {u™}

is bounded in L9(0,T; W% (2)%) and that {3,u™)
ensures the existence of a subsequence such that

meN

is bounded in LY (0, T; (W%, (2)%)), then

meN

u™ — u strongly in LY(0, T; de(.Q)d), as m — 0o. (4.124)

By the estimates in (4.115), the uniform bound on {9,u™}, .y in LY O, T; (W0 dw(.Q)d)’ ) and the
Banach—Alaoglu theorem, there exists a subsequence such that (4.118)—(4.121) holds, where the limits
can be identified with the help of (4.124).

The strong convergence in L"(Q)? for all r € [1, @)
strong convergence in L!(Q)? by (4.124), and the boundedness in Lw (0)? by (4.115) by means of
interpolation. The convergence (4.117) is deduced analogously to the proof of (4.44) by the arguments

asserted in (4.116) follows from the

following (4.74). By the estimate (4.115) we have with (2¢’)’ = ﬁ > 1 that
1 / / ’ 1 (4.115) N
— |um’ 2q9'=2..m (2(121 )), —(2q) / |um‘ 24 dz = ml Qg = H m” ! < cml—(Zq) — 0’
m L/ (Q) L (Q)

as m — 00, so (4.122) follows. O

andv € W(l)’é(.Q)d with g defined in (4.114), let us introduce

Fort e (0,T),u €
Llu;vl(®) == — b(u(t,-),u(t,-),v) — (S(t, -),Dv)Q +{(ft ).V g, (4.125)

where S € L7 (Q)?* is the limiting function introduced in Lemma 4.8.

LEmMA 4.9 (Identification of the PDE as m — o0). The function u € L*(0,T; de(.Q)d) N
L9(0,T; Wo dlv('Q)d) from Lemma 4.8 satisfies that d,u € LY O, T; (VV0 div (&)%), with § q defined in
4.114). (Up to a representative) we have thatu € C ([0, T],L
and S € L7 (0)9%4 from Lemma 4.8 satisfy

%, (§2)%). Furthermore, the functions u

(atu(t, -),w)Q = Llu;, wl(t) forallw e Cgfdiv([))d, forae.t € (0,7), (4.126)
(Du(z),Sk)) € A®) forae.z € Q, (4.127)
esslim_o. |u(t,) —up| 20 =0, (4.128)

i.e., (u,8) is in particular a weak solution according to Definition 2.1.
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Proof.

Step 1: Identification of the limiting equation. Let w € Cgf’div(ﬂ)d, let ¢ € C3°((0,7)) and let us
consider each of the terms in (4.86) and (4.126). By the weak convergence in (4.120) and (4.121), we
have that

(0", ow), — (0, ow),, (4.129)
(S™,¢Dw), — (S, ¢Dw),, (4.130)
as m — oc. Since by (4.116) we have that u™ — u in L"(Q)?*¢ for all r € [1, q(djz)), it follows that

u" @u" — uQuin L"(Q)?* for all r € [1, %). Since g > dz—fz, this set is nonempty and the
convergence holds in particular in L' (Q)?*?; hence, we have that

(um®um,<pr)Q—> (@ @u,pVw),, asm— oo, (4.131)
Taking the results in (4.129)—(4.131) and (4.122) shows that (4.86) implies (4.126).

Step 2: Identification of the initial condition. With similar arguments as in the proof of Lemma 4.7,
Step 3, it follows that u € C,, ([0, T1; L3, (£2)9), that uy = u(0, ) € L3, ($2)? and that the initial datum
is attained in the sense of (4.128).

Step 3: Higher integrability of the time derivative. As in Step 2 in the proof of Lemma 4.6, we can
improve the integrability of d,u using the fact that (4.126) is satisfied. This yields that we have that

du € LY O, T, (W(l):giv(f))d)’), for g as defined in (4.114).

Step 4: Identification of the implicit relation (cf. Bulicek et al., (2012) and Breit et al., (2013, Sec. 3)).
Recall that Du™ — Du weakly in L4(Q)4*9 by (4.118), that 8" — S weakly in LY (Q)4*9 by (4.121)
and that we have that (Du"(z),S™ (z)) € A(z) fora.e.z € Q by (4.87). Hence, by Lemma 2.6, it suffices
to show that

lim sup (Sm, Dum)é < <S, Du)é, (4.132)

m— 00

for a set é C 0, to identify the implicit relation (Du,S) € A(-) a.e. on é

Since there is no energy identity available for u, in order to identify the implicit relation, one has
to truncate the elements of the approximating sequence of velocity fields suitably so as to be able to
use them as test functions. In contrast with Bulicek et al. (2012), we will not use a parabolic Lipschitz
truncation after locally reconstructing the approximations to the pressure, but work with the solenoidal
Lipschitz truncation introduced subsequently in Breit er al. (2013) and stated in Lemma 2.7, as the
argument is then more direct.

We wish to truncate v"" := u™ — u, which satisfies, for all & € CS?diV(Q)d, that

(85", 8)p = (" @ u" —u @ u, VE), — (8" — 8.DE), — % (Jum 202, ¢) (4.133)

Q’

0202 JoquianoN 0 uo 1senb Aq 1.Z101L£S/108/Z/0/al0nie/eulewl/woo dno olwapese/:sdiy Woly pepeojumod



844 E. SULI AND T. TSCHERPEL

by (4.86) and (4.126) and by the density of C3°(0,T) x C(C;?div ($2) in Cgfjdiv (0)“. Due to the (lower
order) regularizing term we aim to apply Corollary 2.8 instead of Lemma 2.7 with p = g € (1, 00) and
o such that

1<0<m1n(2 q,q’,q(d+2) g )) i (/q( 2 o4 )) (4.134)

Such a o exists, since we have by assumption that g > d—+2 Let Qg = Iy x By CC Q be a parabolic
cylinder. First note that u and u™ are (weakly) divergence-free, and so is v, and v — 0 weakly in
Lq(IO;Wl’q(BO)d), as m — oo by (4.118). Since ™ — u strongly in LP(Q) forp € [l, @) by
(4.116) and o0 < &3’2), we have that v — 0 strongly in L? (Qo)d, as m — o0. Furthermore, since
{t"},,cn 1s bounded in L*°(0, T L2(2)%) by (4.115), we have with o < 2 that {v"*}
L>®(0, T;L° (£2)4). Now we set

meN 18 bounded in

A 1 /
G'=8-8", G, =u"Q®u"—u®u and f"i=—— |um‘2q “2ym.
m

Note that Gf' — 0 weakly in L (Q,)?*“ by (4.121). By (4.116) we have that u” — u in L’ (Q)“ for all
relt, @), and thus, u" @ u™ — u @u in L"(Q)*? for all r € [1, q(d+2)) This holds in particular
forr=0 < q(d+2) . Furthermore, by (4.122) we have that f" — 0 strongly in L) (0)4, as m — o0,
and hence also strongly in L? (Qo)d This means that all the assumptlons of Corollary 2.8 are satisfied,

and hence the statement of Lemma 2.7 is available with G}’ = G2 va~lm,
With the aid of the parabolic solenoidal Lipschitz truncation, we show that

lim [(8" —8*(-.Du)) : (Du" — Du)]% dz = 0, (4.135)

m—0Q ng

where the exponent % is used to control the size of the set, where v" = u™ — u and its truncation do not
coincide. By the monotonicity of A and the fact that (Du, S*(-,Du)) € A(-) and (Du™,S™) € A(-) a.e.

in Q by (4.87), it follows that the lim 1nfm_)Oo of the above is nonnegative. To show the other direction,

denote H™ := (8" — 8*(-,Du)) : (Du™ —Du) > 0, and let j > j, PBj C Qp and v"™ be given by
Lemma 2.7 applied on Q, and by (ii) we have that v = V"™ on %QO\%m j- Dividing the domain into
3 QO naA, and §00\%,, ;. by Holder’s inequality, we obtain

/1 (H™)? dz = / (H™)? dz + / (H™)? dz
QO Qom%m/ QO\ﬂm/
: | :

: ﬁ H’"dz) + |500\# z(ﬁ H’"dz)

g Q0NBin,j 320\ B,

1 3

%(/ H’"dz) +10]? /1 H"dz ) | (4.136)

[¢) gQO\«%m,j

lggomﬁ

< |2,
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where we have used the nonnegativity of H” in the first term. Since H™ is bounded in L!(Q) by the a
priori estimate in (4.115), one has that

1

2
LIPS /1 H"dz ) . (4.137)
300\ B,

1
| wmiascla,,
g%
By Lemma 2.7 (iii) we have that

1 .
3 < limsup (AZ“. ‘«@m,/‘)z <2 b, (4.138)

m—00

lim sup ‘%’m j

m—00

Let¢ € Cf° (éBo) be the nonnegative function given by Lemma 2.7 such that ¢ | 1 = 1. In the second
50

term in (4.137), we can use the nonnegativity of H™, the definition of H™ and v™ and, finally, the
definition of G in order to find that 8" = 8 — GY", and we obtain

/1 H’"dz:/l H"tdz= [ H"¢lg dz
300\ Bun,j 590\ Bun,j ) "
< /H’”g“ 1y dz= / (Sm —S*(.,Du)) DV ¢y dz
myj mj
=— / (GI' =S +S8"(.Du)) : V" ¢ Ly dz. (4.139)
myj
Since S — S*(-,Du) € LY (0)?*4, we can use Lemma 2.7 (vii). Applying limsup,,_, . we find that

(4.139) i
lim sup/1 H™dz < limsup <c2 ‘. (4.140)
§Q0\%m,j

m— 00 m— 00

/ (@) 8 +8°(.Dw): V"¢l

Using (4.138) and (4.140) in (4.137) yields

lim sup/; [(8" —8*(-.Du)) : (Du" — Du)]% dz = limsup/1 (Hm)% dz
L)

m—>00 m—00 J g0y

1
2

(4.137) . 1 .

< chmsup‘%’ml- 2 4 clim sup / H™dz

m—> 00 ' m—00 %Qo\@m,j
(4.138),(4.140) j g
< e 427 %), (4.141)

Then taking j — oo gives the claim and (4.135) is proved.
This means that (H’”)% — 0 strongly in L! (%Qo)’ as m — 00. However, to show (4.132) we need

. . . . 1
L!-convergence of H™ at least on suitable subdomains. The L'-convergence implies that (H™)2 — 0
a.e.in %Qo, and hence H" — 0 a.e. in %Qo- Egorov’s theorem implies that there exists a nonincreasing
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sequence of measurable subsets E; C %Qo’ i € N, with |E1| — 0 asi — oo, such that H™ — 0
uniformly on %QO\EI-, as m — oo, for any fixed i € N. In particular, we have that /" — 0 in
L! (%QO\Ei)’ as m — oo, for any fixed i € N, i.e.,

(8™ —8*(-,Du),Du" — Du)%QO\E. — 0, asm — 0o, (4.142)

for any fixed i € N. With the weak convergence of 8" — S in Lq/(Q)dXd by (4.121) and the weak
convergence of Du™ — Du in Lq(Q)dXd following from (4.119), we thus deduce that

lim (Sm, Dum) 1

m—090 §QO\E,- = <S9 Du>l foralli € N.

g Qo\Ei

This shows (4.132) for é = %QO\Ei, and thus we find that (Du(z),S(z)) € A(z) for a.e.z € %Qo\Ez*
Since |E1| — 0, as i — 00, we have that (Du(z),S(z)) € A(z) forae.z € %Qo-

Finally, let us consider a cover of Q consisting of (open) parabolic cylinders O = F x B, j € J, for
an index set J such that 0 = = %Q/ . This can be, for example, chosen as a Whitney-type cover, cf.

Diening et al. (2010). Then we can identify the implicit relation a.e. on %Q’ for all j € J by the above,
and thus have that (Du(z),S(z)) € A(z) for a.e. z € Q, which proves (4.127). O

REMARK 4.10 As an alternative to the fully 1mphclt approx1mate problem in (4.6), (4.7) with (4.5), one
can consider the semi-implicit scheme by replacing b(u u,v) by b(Ul ), fork = (k,l,n,m) € N4,
Since this represents a linearization of the problem, the approximate solutions exist and are unique. To
show uniform estimates for the shifted interpolant, one has to estimate Ug, which is the value taken on
[0, 6;]. This can be done by assuming one of the following:

(1) Assume that {7,},y is quasiuniform and, if ¢ < 2 and Vj; , consists of discretely divergence-
free finite element functions, assume additionally that there exist constants ¢ > 0 and ¢ > 0
such that

$G=h+
§,<chi " foralll,n e N.

(2) Or assume thatu; WOdV(Q)d and replace (4.6) by U} = IT"u,,.
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