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Implicit constitutive theory provides a very general framework for fluid flow models, including both
Newtonian and generalized Newtonian fluids, where the Cauchy stress tensor and the rate of strain
tensor are assumed to be related by an implicit relation associated with a maximal monotone graph. For
incompressible unsteady flows of such fluids, subject to a homogeneous Dirichlet boundary condition on
a Lipschitz polytopal domain Ω ⊂ Rd , d ∈ {2, 3}, we investigate a fully discrete approximation scheme,
using a spatial mixed finite element approximation on general shape-regular simplicial meshes combined
with backward Euler time-stepping. We consider the case when the velocity field belongs to the space of

solenoidal functions contained in L∞(0, T; L2(Ω)d) ∩ Lq(0, T; W1,q
0 (Ω)d) with q ∈ (2d/(d + 2), ∞),

which is the maximal range of q with respect to existence of weak solutions. In order to facilitate passage
to the limit with the discretization parameters for the sub-range q ∈ (2d/(d + 2), (3d + 2)/(d + 2)),
we introduce a regularization of the momentum equation by means of a penalty term, and first
show convergence of a subsequence of approximate solutions to a weak solution of the regularized
problem; we then pass to the limit with the regularization parameter. This is achieved by the use of a
solenoidal parabolic Lipschitz truncation method, a local Minty-type monotonicity result, and various
weak compactness techniques. For q ≥ (3d + 2)/(d + 2) convergence of a subsequence of approximate
solutions to a weak solution can be shown directly, without the regularization term.

Keywords: finite element method; time-stepping; implicit constitutive models; convergence; weak
compactness; Lipschitz truncation method.

1. Introduction

In the mechanics of viscous incompressible fluids, typical constitutive relations relate the shear stress
tensor to the rate of strain tensor through an explicit functional relationship. In the case of a Newtonian
fluid the relationship is linear, and in the case of generalized Newtonian fluids it is usually a power-
law-like nonlinear, but still explicit, functional relation. Implicit constitutive theory was introduced in
order to describe a wide range of non-Newtonian rheology, by admitting implicit and discontinuous
constitutive laws, see Rajagopal (2003, 2008). The existence of weak solutions to mathematical models
of this kind was explored in Bulíček et al. (2009, 2012) for steady and unsteady flows, respectively.
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802 E. SÜLI AND T. TSCHERPEL

The aim of the present paper is to construct a fully discrete numerical approximation scheme, in the
unsteady case, for a class of such implicitly constituted models, where the shear stress and the rate of
strain tensors are related through a (possibly discontinuous) maximal monotone graph. The scheme is
based on a spatial mixed finite element approximation and a backward Euler discretization with respect
to the temporal variable.

We will show weak convergence (up to subsequences) of the sequence of approximate solutions to
a weak solution of the regularized problem, and then weak convergence (up to subsequences) of the
sequence of weak solutions of the regularized problem to a weak solution of the original problem.

The mathematical ideas contained in the paper are motivated by the existence theory formulated, in
the unsteady case, in Bulíček et al. (2012), and the convergence theory for finite element approximations
of steady implicitly constituted fluid flow models developed in Diening et al. (2013).

1.1 Implicit constitutive law

Statement of the problem. Let Ω ⊂ Rd with d ≥ 2 be a bounded Lipschitz domain and denote by
Q = (0, T) × Ω the parabolic cylinder for a given final time T ∈ (0, ∞). Furthermore, let f : Q → Rd

be a given external force and let u0 : Ω → Rd be an initial velocity field. We seek a velocity field
u : Q → Rd, a pressure π : Q → R and a trace-free stress tensor field SSS : Q → Rd×d

sym satisfying the
balance law of linear momentum and the incompressibility condition:

∂tu + div(u ⊗ u) − divSSS = −∇π + f on Q,

div u = 0 on Q,
(1.1)

subject to the following initial condition and no-slip boundary condition:

u(0, ·) = u0(·) in Ω , (1.2)

u = 0 on (0, T) × ∂Ω . (1.3)

In order to close the system we need to impose a relation, the so-called constitutive law,

GGG(·,DDDu,SSS) = 000, (1.4)

between the stress tensor SSS and the symmetric gradient DDDu = 1
2 (∇u + (∇u)�), which represents

the shear rate of the fluid. In the following we will refer to the problem consisting of (1.1)–(1.4)
as (P).

The relation GGG may be fully implicit, and we assume that GGG can be identified with a maximal
monotone graph A(z) ⊂ Rd×d

sym × Rd×d
sym , for z ∈ Q, as

GGG
(
z,DDDu(z),SSS(z)

) = 000 ⇔ (
DDDu(z),SSS(z)

) ∈ A(z),

where A(·) satisfies the following assumption, similarly as in Bulíček et al. (2009, p. 110) and Bulíček
et al. (2012, Sec. 1.2).
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FULLY DISCRETE FINITE ELEMENT APPROXIMATION OF UNSTEADY FLOWS 803

Assumption 1.1 (Properties of A(·)). We assume that the mapping Q 
 z �→ A(z) ⊂ Rd×d
sym × Rd×d

sym
satisfies the following conditions for a.e. z ∈ Q:

(A1) (000,000) ∈ A(z);

(A2) A(z) is a monotone graph, i.e., for all (DDD1,SSS1), (DDD2,SSS2) ∈ A(z),

(DDD1 −DDD2) : (SSS1 −SSS2) ≥ 0;

(A3) A(z) is a maximal monotone graph, i.e., (DDD,SSS) ∈ Rd×d
sym × Rd×d

sym and

(DDD−DDD) : (SSS−SSS) ≥ 0 for all (DDD,SSS) ∈ A(z),

implies that (DDD,SSS) ∈ A(z);

(A4) There exists a constant c∗ > 0, a nonnegative function g ∈ L1(Q) and q ∈ (1, ∞) such that

DDD : SSS ≥ −g(z) + c∗
(|DDD|q + |SSS|q′)

for all (DDD,SSS) ∈ A(z) and for a.e. z ∈ Q,

where q′ is the Hölder conjugate of q.

(A5) For any (DDD,SSS) ∈ A(z) we have that

tr(DDD) = 0 ⇔ tr(SSS) = 0;

(A6) z �→ A(z) is L(Q) − (B(Rd×d
sym ) ⊗ B(Rd×d

sym )) measurable, where L(Q) denotes the set of all

Lebesgue measurable subsets of Q and B(Rd×d
sym ) denotes the set of all Borel subsets of Rd×d

sym .

Remark 1.2 (Properties of A(·)).
(i) In Bulíček et al. (2012) the authors phrase the condition (A4) in the more general context of

Orlicz–Sobolev spaces. Here we will restrict ourselves to the usual Sobolev setting.

(ii) Condition (A5) is added to the list of assumptions contained in Bulíček et al. (2009, 2012),
Diening et al. (2013) and Kreuzer & Süli (2016) to ensure consistency with the thermodynamic
framework for incompressible fluids. If the velocity function u is (pointwise) divergence-free,
then we have that tr(DDDu) = div(u) = 0. Thus, if (DDDu(z),SSS(z)) ∈ A(z) for a.e. z ∈ Q, then
condition (A5) implies that SSS is (pointwise) trace-free and this condition need not be imposed
separately. In the context of finite element approximations, we cannot simply consider A(·) as
subset of the Cartesian product of the linear space of trace-free d × d symmetric matrices with
itself, since the finite element velocity fields need not be exactly divergence-free.

(iii) A sufficient condition for (A6) to be satisfied is given in Bulíček et al. (2009, (A5)(ii), p. 110).

This framework covers explicit relations, including Newtonian fluids, where q = 2, and q-fluids
describing shear-thinning and shear-thickening behaviour, for 1 < q < 2 and q > 2, respectively.
Also, relations, where the stress is a set-valued or discontinuous function of the symmetric gradient,
as for Bingham and Herschel–Bulkley fluids, are included, cf. Bulíček et al. (2012, Lem. 1.1) for A(·)
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804 E. SÜLI AND T. TSCHERPEL

restricted to trace-free matrices. Such an A(·) can be extended to non-trace-free matrices, see Tscherpel
(2018). Furthermore, fully implicitly constituted fluids are covered and the constitutive relation is
allowed to depend on z = (t, x) ∈ Q.

1.2 Overview of the context

The first existence results for explicit constitutive laws were obtained in Ladyženskaja (1969) and Lions
(1969) using monotone operator theory for the range of q, for which weak solutions are admissible test
functions. Subsequently, the range of q was gradually extended by means of truncations, which made
it possible to overcome the admissibility problem for small q caused by the presence of the convective
term: first, an L∞-truncation was developed, see Frehse et al. (1997) and Růžička (1997) for the steady
case, and Wolf (2007) for the unsteady case; then, a refinement of the Lipschitz truncation method,
originating in the work of Acerbi & Fusco (1988), allowed to cover the full range of q ∈ ( 2d

d+2 , ∞)
. The

existence of weak solutions for the whole range was proved in Frehse et al. (2003), in the steady case,
and in Diening et al. (2010), in the unsteady case. The restriction on q is required to ensure compactness
of the embedding W1,q(Ω) ↪→ L2(Ω), which is needed in the convective term for the passage to the
limit in the sequence of approximate solutions. Under suitable conditions, existence of strong solutions
is available for explicit constitutive laws at least for short intervals of time, see Berselli et al. (2010).
Based on regularity results, a number of contributions deal with error estimates for strong solutions, a
recent one of which is Berselli et al. (2015), showing optimal convergence rates for d = 3 and q ∈ ( 3

2 , 2
]
.

For implicitly constituted fluids, the existence of weak solutions for q > 2d
d+2 for steady and unsteady

flows was proved in Bulíček et al. (2009, 2012), generalizing previous results on discontinuous constitu-
tive relations, see Duvaut & Lions (1976), Serëgin (1994), Fuchs & Seregin (2000), Málek et al. (2005)
and Eberlein & Růžička (2012). In Bulíček et al. (2012), a Navier slip boundary condition and C1,1

regularity of ∂Ω were assumed to avoid technicalities related to lack of regularity of the pressure
in the unsteady case. Due to the weak structural assumptions, the existence of short-time strong
solutions and uniqueness cannot be expected to hold in general. The proof in Bulíček et al. (2012)
is constructive and is based on a three-level approximation using finite-dimensional Galerkin subspaces
spanned by eigenfunctions of higher order elliptic operators. These Galerkin spaces are not available
for practical computations, and therefore we take an alternative route in the construction of a
numerical method for the problem and for its convergence analysis. Here we shall consider a mixed
finite element approximation under minimal regularity hypotheses; hence, we can only hope for
qualitative convergence results rather than quantitative error bounds in terms of the spatial and temporal
discretization parameters. The approximation scheme will be constructed for a regularized version of
the equations, including a penalty term, and, after passing to the limit with the discretization parameters,
we shall pass to the limit with the regularization parameter.

Concerning the numerical analysis of implicitly constituted fluid flow models, to the best of our
knowledge, the only results available are those contained in Diening et al. (2013) and Kreuzer & Süli
(2016), which deal with the steady case under the additional assumption that A(·) is (generalized) strictly
monotone. By means of a discrete Lipschitz truncation method and various weak compactness results,
the authors of Diening et al. (2013) prove the convergence of a large class of mixed finite element
methods for q > 2d

d+1 for discretely divergence-free finite element functions for the velocity, and for

q > 2d
d+2 for exactly (i.e., pointwise) divergence-free finite element functions for the velocity field.

In the case of discretely divergence-free mixed finite element approximations, the more demanding
requirement q > 2d

d+1 arises from the (numerical) modification of the trilinear form associated with the
convective term in the weak formulation of the problem. The purpose of this trilinear form is to reinstate
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FULLY DISCRETE FINITE ELEMENT APPROXIMATION OF UNSTEADY FLOWS 805

the skew-symmetry of the trilinear form, lost in the course of the spatial approximation. In Kreuzer
& Süli (2016) an a posteriori analysis is performed for implicitly constituted fluid flow models, using
discretely divergence-free finite element functions also reproving convergence in this case, but under
stronger assumptions on the sequence of graph approximations.

In the unsteady case, no convergence result is available for numerical approximations of implicitly
constituted fluid flow models, and even those contributions that are focussed on qualitative convergence
results for explicit constitutive laws assume additional restrictions on q. In Carelli et al. (2010) conver-
gence to a weak solution of a regularized problem is proved for continuous q(x) and, subsequently, the
regularization limit is taken under the assumption that q is constant and q >

2(d+1)
d+2 , a limitation that

arises from the use of the L∞-truncation developed in Wolf (2007).
For the special cases of Bingham and Herschel–Bulkley fluids, a number of contributions devoted

to numerical simulations are available in the literature, see, for example, Bercovier & Engelman (1980),
Zhang (2010), Faria & Karam-Filho (2013), Moreno et al. (2016), Mahmood et al. (2017) and the
survey article, Dean et al. (2007). We highlight, in particular, the numerical experiments for Bingham
fluids in Hron et al. (2017) by means of various mixed finite element approximations, motivated by
implicit constitutive theory. However, the lack of rigorous numerical analysis in the unsteady case
is apparent. The purpose of the paper is therefore to provide a convergence proof for sequences of
numerical approximations for a large class of unsteady implicitly constituted fluid flow models, which
includes, in particular, the Bingham and Herschel–Bulkley models.

1.3 Aim and main result

Our objective is to establish a convergence result for implicitly constituted fluids in the unsteady case for
the whole range q > 2d

d+2 . The main challenges concern the implicit, possibly discontinuous, relation
between the stress and the shear rate and the lack of admissibility in the convective term for small
exponents q.

Hence, additionally to a fully discrete approximation, we introduce two regularizations: the first
approximates the potentially multi-valued function, the graph of which is A(·), by a sequence of single-
valued functions; the second improves the integrability of the velocity approximations by means of a
penalty term, so that weak solutions of the regularized problem are admissible test functions in the weak
form of the convective term. The use of a penalty term is only required for the sub-range q ∈ ( 2d

d+2 , 3d
d+2

)
.

More specifically, we introduce the following three-level approximation:

k ∈ N: graph approximation;

l, n ∈ N: discretization in space and in time;

m ∈ N: regularization by a penalty term in the equation,

the main technical novelty of the paper being in the passage to the discretization limits l, n → ∞.
The main contribution of the paper is the following. Let Ω be a Lipschitz polytopal domain,

q > 2d
d+2 , and assume that we have a pair of inf-sup stable finite element spaces for the velocity and the

pressure. Also, we assume that a suitable approximation of the graph A is available, examples of which
will be constructed below. Then, a sequence of approximate solutions to the fully discrete problem exists
and the corresponding sequence of finite element approximations converges weakly, up to subsequences,
to a weak solution of problem (P), when first taking the graph approximation limit, then the spatial and
temporal discretization limits, and finally the regularization limit. The precise formulation of this result
is contained in Theorem 4.1, and the notion of weak solution is given in Definition 2.1. Important tools
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806 E. SÜLI AND T. TSCHERPEL

in the proof are a local Minty-type convergence result established in Bulíček et al. (2012) and Bulíček
& Málek (2016), and the solenoidal parabolic Lipschitz truncation constructed in Breit et al. (2013) to
overcome the admissibility problem for small q.

The paper is structured as follows. Section 2 provides the analytical setting, including the graph
approximation and the Lipschitz truncation. Section 3 describes the finite element approximation,
the approximation of the convective term and the time-stepping. In Section 4 we first introduce the
approximation levels in detail before giving the convergence proof.

2. Analytical preliminaries

By Rd×d
sym we denote the set of all real-valued symmetric d × d-matrices and we use : for the Frobenius

scalar product in Rd×d. For ω ⊂ Rd we denote by |ω| the d-dimensional Lebesgue measure of ω. By 1ω

we denote the characteristic function of the set ω. For the (distributional) partial derivatives with respect
to time, we use the shorthand notation ∂t f := ∂f

∂t .
For ω ⊂ Rd open and p ∈ [1, ∞) let (Lp(ω), ||·|| Lp(ω)) be the standard Lebesgue space of

p-integrable functions, and the space of essentially bounded functions when p = ∞. For s ∈ N let
(Ws,p(ω), ||·|| Ws,p(ω)) be the respective Sobolev spaces. For spaces of vector-valued and tensor-valued
functions, we use superscripts d and d × d, respectively (except for in norms). By Lp

0(ω) we denote the
set of functions in Lp(ω) with zero mean integral.

For a general Banach space (X, ||·|| X), the dual space consisting of all continuous linear functionals
on X is denoted by X′, and the dual pairing is denoted by 〈 f , g〉X′,X , if f ∈ X′ and g ∈ X. If X is a space
of functions defined on ω, then we denote the dual pairing by 〈 f , g〉ω := 〈 f , g〉X′,X, in case the space X
is known from the context. We also use this notation for the integral of the scalar product f · g of two
functions f and g, provided that f · g ∈ L1(ω). Furthermore, if ω ⊂ Rd is measurable and 0 < |ω| < ∞,
then we denote

ffl
ω

f (x) dx := 1
|ω|

´
ω

f (x) dx.

For a bounded open domain Ω ⊂ Rd and T ∈ (0, ∞), let Q = (0, T) × Ω . Denote by
C∞

0 (Ω) the set of all smooth and compactly supported functions on Ω and by C∞
0,div(Ω)d the set of

all functions in C∞
0 (Ω)d with vanishing divergence. Analogously, define C∞

0 (Q) and C∞
0,div(Q)d. We

define W1, p
0 (Ω) := C∞

0 (Ω)
||·||W1, p(Ω) , for p ∈ [1, ∞) and W1,∞

0 (Ω) := W1,1
0 (Ω) ∩ W1,∞(Ω). For a

given p ∈ (1, ∞), we let the Hölder exponent p′ be defined by 1
p + 1

p′ = 1. Then, if p ∈ (1, ∞),

Lp′
(Ω) is the dual space of Lp(Ω) and W−1,p′

(Ω) will denote the dual space of W1, p
0 (Ω). Further, we

define the spaces of divergence-free functions: the spaces L2
div(Ω)d and W1, p

0,div(Ω)d, for p ∈ [1, ∞),

are the closures of C∞
0,div(Ω)d with respect to the norms ||·|| L2(Ω) and ||·|| W1, p(Ω), respectively, and let

W1,∞
0,div(Ω)d := W1,1

0,div(Ω)d ∩ W1,∞(Ω)d.

Let C(Ω) be the set of all continuous real-valued functions on Ω . With C([0, T]; X) we denote the
set of all functions defined on [0, T], taking values in a Banach space X, which are continuous (with
respect to the strong topology in X). Similarly, C0,1([0, T]; X) is the space of all Lipschitz continuous
functions defined on [0, T], with values in X. Furthermore, we define the space of weakly continuous
functions with values in X by

Cw([0, T]; X) := {v : [0, T] → X: t �→ 〈w, v(t, ·)〉X′,X ∈ C([0, T]), ∀w ∈ X′}.
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FULLY DISCRETE FINITE ELEMENT APPROXIMATION OF UNSTEADY FLOWS 807

We denote by Lp(0, T; X) the standard Bochner space of p-integrable X-valued functions. We use the
notation ess limt→0+ f (t) to indicate that there exists a zero set N( f ) ⊂ [0, T] such that t ∈ (0, T)\N(f ),
when considering the limit of f (t), as t → 0+.

In the following, c > 0 will denote a generic constant, which can change from line to line and
depends only on the given data unless specified otherwise.

For the regularized problem we shall require the following function spaces, with associated norms:

X(Ω) := W1,q
0 (Ω)d ∩ L2q′

(Ω)d, ||·|| X(Ω) := ||·|| W1,q(Ω) + ||·|| L2q′
(Ω)

, (2.1)

X(Q) := Lq(0, T; W1,q
0 (Ω)d) ∩ L2q′

(Q)d, ||·|| X(Q) := ||·|| Lq(0,T;W1,q(Ω)) + ||·|| L2q′
(Q)

, (2.2)

and consider their solenoidal subspaces, denoted by Xdiv(Ω) and Xdiv(Q), respectively. We note in
passing that we shall refer to the sequential version of the Banach–Alaoglu theorem simply as Banach–
Alaoglu theorem.

Weak solutions. In what follows, let Ω ⊂ Rd, with d ∈ {2, 3}, be a bounded Lipschitz domain and
for T ∈ (0, ∞) denote Q = (0, T) × Ω . Furthermore, assume that q ∈ (1, ∞) is given and let A(·) ⊂
Rd×d

sym × Rd×d
sym be a monotone graph satisfying Assumption 1.1 with respect to q.

Definition 2.1 (Weak solution). For a given u0 ∈ L2
div(Ω)d and f ∈ Lq′

(0, T; W−1,q′
(Ω)d), we call

(u,SSS) a weak solution to problem (P) if

u ∈ Lq(0, T; W1,q
0,div(Ω)d) ∩ L∞(

0, T; L2
div(Ω)d), SSS ∈ Lq′

(Q)d×d,

and

− 〈
u, ∂tξ

〉
Q − 〈

u ⊗ u,DDDξ
〉
Q + 〈

SSS,DDDξ
〉
Q

= 〈 f , ξ 〉Q + 〈
u0, ξ(0, ·)〉

Ω
for all ξ ∈ C∞

0,div((−T , T) × Ω)d, (2.3)

(
DDDu(z),SSS(z)

) ∈ A(z) for a.e. z ∈ Q. (2.4)

We choose a pressure-free notion of weak solution, because in the unsteady problem subject to
homogeneous Dirichlet boundary conditions on Lipschitz domains, one can only expect to establish a
distributional (in time) pressure, see Temam (1984, Ch. III, § 3, pp. 307, Rem. 3.5).

2.1 Implicit constitutive laws

Approximation of A. The implicit relation encoded by A can be viewed as a set-valued map. In order
to perform the analysis we require a single-valued map, and thus a measurable selectionSSS� of the graph
A is chosen, which may have discontinuities.
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808 E. SÜLI AND T. TSCHERPEL

Lemma 2.2 (Measurable selection, (Bulíček et al., 2012, Rem. 1.1, Lem. 2.2)). Let the mapping
Q 
 z �→ A ⊂ Rd×d

sym × Rd×d
sym satisfy Assumption 1.1. Then, there exists a measurable selection

SSS� : Q × Rd×d
sym → Rd×d

sym , i.e.,

(
BBB,SSS�

(z,BBB)
) ∈ A(z) for all BBB ∈ Rd×d

sym , for a.e. z ∈ Q, (2.5)

and SSS� is (L(Q) ⊗ B(Rd×d
sym )) − B(Rd×d

sym )-measurable. Furthermore, for a.e. z ∈ Q, one has that

(a1) dom SSS�
(z, ·) = Rd×d

sym ;

(a2) SSS� is monotone, i.e., for all BBB1,BBB2 ∈ Rd×d
sym ,

(SSS�
(z,BBB1) −SSS�

(z,BBB2)) : (BBB1 −BBB2) ≥ 0;

(a3) for any BBB ∈ Rd×d
sym one has that

BBB : SSS�
(z,BBB) ≥ −g(z) + c∗

( ∣∣BBB∣∣ q + ∣∣SSS�
(z,BBB)

∣∣ q′)
;

(a4) Let U be a dense set in Rd×d
sym and let (DDD,SSS) ∈ Rd×d

sym × Rd×d
sym . The following are equivalent:

(i) (SSS−SSS�
(z,BBB)) : (DDD−BBB) ≥ 0 for allBBB ∈ U;

(ii) (DDD,SSS) ∈ A(z);

(a5) SSS� is locally bounded, i.e., for a given r > 0 there exists a constant c = c(r) such that

∣∣SSS�
(z,AAA)

∣∣ ≤ c for all z ∈ Q and for all AAA ∈ Br(000) ⊂ Rd×d
sym .

To show the existence of solutions to the approximate problem considered below, continuity of the
(approximate) stress tensor is required. Hence, we introduce the following assumptions on a sequence
of approximations of the selection SSS�.

Assumption 2.3 (Properties ofSSSk, k ∈ N). Given the selectionSSS� : Q ×Rd×d
sym → Rd×d

sym in Lemma 2.2,

assume that there is a sequence {SSSk}k∈N of Carathéodory functions SSSk : Q × Rd×d
sym → Rd×d

sym such that:

(α1) SSSk
(z, ·) is monotone, i.e., for all AAA1,AAA2 ∈ Rd×d

sym and for a.e. z ∈ Q, we have

(
SSSk

(z,AAA1) −SSSk
(z,AAA2)

)
: (AAA1 −AAA2) ≥ 0.

(α2) There exists a constant c̃∗ > 0 and a nonnegative function g̃ ∈ L1(Q) such that, for all k ∈ N,
for any AAA ∈ Rd×d

sym and for a.e. z ∈ Q, one has that

AAA : SSSk
(z,AAA) ≥ −̃g(z) + c̃∗

(∣∣AAA∣∣ q +
∣∣∣SSSk

(z,AAA)

∣∣∣ q′)
.
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FULLY DISCRETE FINITE ELEMENT APPROXIMATION OF UNSTEADY FLOWS 809

(α3) Let U ⊂ Rd×d
sym be a dense set. For any sequence {DDDk}k∈N bounded in L∞(Q)d×d, for anyBBB ∈ U

and all ϕ ∈ C∞
0 (Q) such that ϕ ≥ 0, we have

lim inf
k→∞

ˆ
Q

(
SSSk

(·,DDDk) −SSS�
(·,BBB)

)
:
(
DDDk −BBB

)
ϕ dz ≥ 0.

In the existence proofs in Bulíček et al. (2009, 2012) and Diening et al. (2013) the approximating
sequenceSSSk is chosen as the convolution of the selectionSSS� in the second argument with a mollification
kernel.

Example 2.4 (Approximation by mollification). Let ρ ∈ C∞
0 (Rd×d

sym ) be a mollification kernel,
i.e., a nonnegative, radially symmetric function, the support of which is contained in the unit ball
B1(000) ⊂ Rd×d

sym and which satisfies
´
Rd×d

sym
ρ(AAA) dAAA = 1. For k ∈ N set ρk(BBB) := kd2

ρ(kBBB) and define the

mollification of SSS� with respect to the last argument by

SSSk
(z,BBB) := (

SSS� ∗ ρk)(z,BBB) =
ˆ
Rd×d

sym

SSS�
(z,AAA)ρk(BBB−AAA) dAAA, z ∈ Q, BBB ∈ Rd×d

sym . (2.6)

Lemma 3.21 in Tscherpel (2018) shows thatSSSk satisfies Assumption 2.3, see also Bulíček et al. (2012).

A possibly more practicable approximation based on a piecewise affine interpolant can be used in
the case of a radially symmetric selection function SSS� under additional regularity assumptions.

Example 2.5 (Approximation by affine interpolation). Assume that S� : Q × R≥0 → R≥0 is a
measurable function with S�(z, 0) = 0, for any z ∈ Q, such that SSS� : Q × Rd×d

sym → Rd×d
sym ,

defined by

SSS�
(z,BBB) =

{
S�

(
z,
∣∣BBB∣∣) BBB|BBB| if BBB �= 000,

000 if BBB = 000,

is a measurable selection of a graph A satisfying Assumption 1.1. Furthermore, we assume that

(i) S�(z, ·) : R≥0 → R≥0 is monotone for a.e. z ∈ Q.

Denote by J� := ⋃
z∈Q J(S�(z, ·)) the overall jump set, where J(S�(z, ·)) is the jump set of S�(z, ·),

which is countable by monotonicity of S�(z, ·) for fixed z ∈ Q, see Alberti & Ambrosio (1999,
Thm. 2.2). Let us assume one of the following:

(iia) The set J� is finite and for a.e. z ∈ Q the function S�(z, ·) is locally Lipschitz continuous on
each connected component of R≥0\J� (the Lipschitz constants are allowed to depend on z ∈ Q).

(iib) The set J� is countable, without accumulation points, the jump-sizes are bounded above by
a constant H > 0, and S�(z, ·) is Lipschitz continuous on each connected component of
R≥0\J�, with Lipschitz constants bounded uniformly in z ∈ Q and independently of the specific
component, say by L > 0.

Then, there exists an index set I (I = {0, . . . , I} for some I ∈ N in case (iia) and I = N0 in case (iib))
and there exists a sequence {ai}i∈I ⊂ R≥0, such that J� ⊂ A := ∪i∈Iai. Without loss of generality,
assume that a0 = 0 and ai−1 < ai for all i ∈ I\{0}.
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810 E. SÜLI AND T. TSCHERPEL

Fig. 1. Schematic representation of the construction of Sk , k ∈ N.

We construct the approximation as follows. There exists a k0 ∈ N such that 2
k0

< infi∈I\{0}(ai−ai−1)

since either A is finite or A does not have any accumulation points. Let k ∈ N, with k ≥ k0 be arbitrary
but fixed. Denote, for i ∈ I,

ak
i,− := ai − 1

k
, ak

i,+ := ai + 1

k
, Ak

i :=
[
ak

i,−, ak
i,+

]
and Ak :=

⋃
i ∈I

Ak
i .

Let z ∈ Q be arbitrary but fixed. First we extend S�(z, ·) as an odd function to [− 1
k , ∞), still denoted by

S�(z, ·). Since the point evaluations S�(z, ak
i,±), for i ∈ I, are well-defined, we can define

S
k
i (z, B) := k

2

(
S�

(
z, ak

i,−
)ak

i,+
ak

i,−
− S�

(
z, ak

i,+
)) (

ak
i,− − B

) + S�
(
z, ak

i,−
) B

ak
i,−

,

Sk(z, B) :=
⎧⎨⎩S

�(z, B) if B /∈ Ak,

S
k
i (z, B) if B ∈ Ak

i , i ∈ I.

(2.7)

On Ak
i the approximation Sk(z, ·) is the affine interpolant between S�(z, ak

i,−) and S�(z, ak
i,+) and

otherwise S�(z, ·) is unchanged, cf. Fig. 1. The resulting approximating sequence SSSk
(z, ·) satisfies

Assumption 2.3, see Corollary 3.24 in Tscherpel (2018).

Minty’s Trick. The following lemma is one of the crucial tools for the identification of the implicit
constitutive law upon passage to the limit.

Lemma 2.6 (Convergence lemma of Minty type, (Bulíček et al., 2012, Lem. 2.4) and (Bulíček & Málek,
2016, Lem. 3.1)). Let Q 
 z �→ A(z) ⊂ Rd×d

sym ×Rd×d
sym satisfy (A2), (A3) in Assumption 1.1 and assume
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FULLY DISCRETE FINITE ELEMENT APPROXIMATION OF UNSTEADY FLOWS 811

that there are sequences {SSS j}j∈N and {DDD j}j∈N, and there is a measurable set Q̃ ⊂ Q and a p ∈ (1, ∞)

such that

(
DDD j(z),SSS j

(z)
) ∈ A(z) for a.e. z ∈ Q̃,

DDDj
⇀ DDD weakly in Lp(Q̃)d×d,

SSSj
⇀ SSS weakly in Lp′

(Q̃)d×d,

lim sup
j→∞

〈
SSS j,DDD j〉

Q̃ ≤ 〈
SSS,DDD

〉
Q̃ .

Then, we have that (DDD(z),SSS(z)) ∈ A(z) for a.e. z ∈ Q̃.

2.2 Lipschitz approximation

For small q ∈ (1, ∞), a weak solution according to Definition 2.1 is not an admissible test function
because of the presence of the convective term. The Lipschitz truncation method helps to identify the
implicit relation despite the lack of admissibility. It first appeared in Acerbi & Fusco (1988), and since
then the method was further developed and refined in a series of papers, see, e.g., Kinnunen & Lewis
(2002), Frehse et al. (2003), Diening et al. (2008, 2010, 2013) and Breit et al. (2012, 2013), to mention
just a few.

For a sequence of solutions to a sequence of divergence-form evolution equations a solenoidal
parabolic Lipschitz truncation was developed in Breit et al. (2013). Note that the sets Bl, j in the
following lemma satisfy Bl, j = Ol, j ∩ Q0, where Ol, j are the ‘bad sets’ in the construction in
Breit et al. (2013).

Lemma 2.7 (Parabolic solenoidal Lipschitz approximation (Breit et al., 2013, Thm. 2.2, Cor. 2.4)). Let
p ∈ (1, ∞), σ ∈ (1, min(p, p′)) and let Q0 = I0 × B0 ⊂ R × Rd be a parabolic cylinder, for d = 3,
for an open interval I0 and an open ball B0. For α > 0 we denote by αQ0 the cylinder with the same
center as Q0, but scaled by α. Let {vl}l∈N be a sequence of (weakly) divergence-free functions, which
is converging to zero weakly in Lp(I0; W1, p(B0)

d), strongly in Lσ (Q0)
d, and is uniformly bounded in

L∞(I0, Lσ (B0)
d). Consider a sequence {GGGl

1}l∈N, converging to zero weakly in Lp′
(Q0)

d×d, and a second
sequence, {GGGl

2}l∈N, converging to zero strongly in Lσ (Q0)
d×d. Furthermore, denoting GGGl := GGGl

1 +GGGl
2,

assume that, for any l ∈ N, the equation

〈
∂tv

l, ξ
〉
Q0

= 〈
GGGl, ∇ξ

〉
Q0

for all ξ ∈ C∞
0,div(Q0)

d (2.8)

is satisfied. Then, there exists a j0 ∈ N,

• a double sequence {λl,j}l,j∈N ⊂ R with λl, j ∈
[
22j

, 22j+1−1
]
, for any l, j ∈ N,

• a double sequence of open sets Bl, j ⊂ Q0, l, j ∈ N,

• a double sequence of functions {vl,j}l,j∈N ⊂ L1(Q0)
d and

• a nonnegative function ζ ∈ C∞
0 ( 1

6 Q0) such that 1 1
8 Q0

≤ ζ ≤ 1 1
6 Q0

,
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812 E. SÜLI AND T. TSCHERPEL

such that

(i) vl, j ∈ Ls( 1
4 I0; W1,s

0,div(
1
6 B0)

d) for all s ∈ [1, ∞) and supp(vl, j) ⊂ 1
6 Q0 for any j ≥ j0 and any

l ∈ N;

(ii) vl, j = vl on 1
8 Q0\Bl, j, i.e., {vl, j �= vl} ∩ 1

8 Q0 ⊂ Bl, j for any j ≥ j0 and any l ∈ N;

(iii) there exists a constant c > 0 such that

lim sup
l→∞

λ
p
l,j

∣∣∣Bl, j

∣∣∣ ≤ c2−j for all j ≥ j0;

(iv) there exists a constant c > 0 such that

∥∥∇vl, j
∥∥

L∞(
1
4 Q0)

≤ cλl,j for all j ≥ j0 and all l ∈ N;

(v) for any fixed j ≥ j0 we have

vl, j → 0 strongly in L∞( 1
4 Q0)

d,

∇vl, j ⇀ 000 weakly in Ls( 1
4 Q0)

d×d for all s ∈ [1, ∞),

as l → ∞;

(vi) there exists a constant c > 0 such that

lim sup
l→∞

∣∣〈GGGl, ∇vl, j〉∣∣ ≤ c2−j for all j ≥ j0;

(vii) there exists a constant c > 0 such that for anyHHH ∈ Lp′
( 1

6 Q0)
d×d, we have that

lim sup
l→∞

∣∣∣〈(GGGl
1 +HHH), ∇vlζ1Bc

l,j

〉∣∣∣ ≤ c2− j
p for all j ≥ j0.

The lemma is stated for d = 3, but according to Breit et al. (2013, Rem. 2.1, p. 2692) the result holds
for all d ≥ 2 with minor modifications of the proof. In the convergence proof we will use the following
corollary, including a lower order term in the equation.

Corollary 2.8 (Lower order term for parabolic solenoidal Lipschitz approximation). Let p ∈ (1, ∞),
σ ∈ (1, min(p, p′)) and let Q0 = I0 × B0 ⊂ R × Rd be a parabolic cylinder, for d ≥ 2, for an open
interval I0 and an open ball B0. Let {vl}l∈N be a sequence of weakly divergence-free functions, which

is converging to zero weakly in Lp(I0; W1, p
0 (B0)

d), strongly in Lσ (Q0)
d and is uniformly bounded in

L∞(I0, Lσ (B0)
d). Consider a sequence, {GGGl

1}l∈N, converging to zero weakly in Lp′
(Q0)

d×d, a second

sequence, {G̃GGl
2}l∈N, converging to zero strongly in Lσ (Q0)

d×d and a third sequence, { f l}l∈N, converging
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FULLY DISCRETE FINITE ELEMENT APPROXIMATION OF UNSTEADY FLOWS 813

to zero strongly in Lσ (Q0)
d. Furthermore, denoting G̃GG

l
:= GGGl

1 + G̃GG
l
2, assume that, for any l ∈ N, the

equation

〈
∂tv

l, ξ
〉
Q0

= 〈
G̃GG

l
, ∇ξ

〉
Q0

+ 〈
f l, ξ

〉
Q0

for all ξ ∈ C∞
0,div(Q0)

d (2.9)

is satisfied. Then, the same statement as in Lemma 2.7 holds with GGGl
2 = G̃GG

l
2 − ∇Δ−1f l, and Δ−1

signifying the inverse Dirichlet Laplacian.

Proof. For a.e. t ∈ I0 we wish to find a gl(t, ·) ∈ W1,σ
0 (B0)

d such that

−
〈
∇gl, ∇v

〉
B0

=
〈

f l(t, ·), v
〉
B0

for all v ∈ C∞
0 (B0)

d. (2.10)

Standard regularity theory for Poisson’s equation (see (Grisvard, 2011, Thm. 2.4.2.5) and (Gilbarg &
Trudinger, 2001, Lem. 9.17)) guarantees the existence of a unique gl(t, ·) ∈ W2,σ (B0)

d ∩ W1,σ
0 (B0)

d

solving (2.10) such that

∥∥gl(t, ·)∥∥W2,σ (B0)
≤ c

∥∥ f l(t, ·)∥∥Lσ (B0)
, (2.11)

since σ ∈ (1, ∞) and ∂B0 is smooth. Viewing gl as a function on Q0 = I0 × B0 by (2.11), one has that

∥∥gl
∥∥

Lσ (I0;W2,σ (B0))
≤ c

∥∥ f l
∥∥

Lσ (Q0)
→ 0, as l → ∞, (2.12)

by assumption. Thus, we have in particular that ∇gl → 000 strongly in Lσ (Q0)
d×d, as l → ∞, and hence

G̃GG
l
2 − ∇gl converges to zero strongly in Lσ (Q0)

d×d, as l → ∞. Applying (2.10) in (2.9) shows that

〈
∂tv

l, ξ
〉
Q0

=
〈
GGGl

1 + G̃GG
l
2 − ∇gl, ∇ξ

〉
Q0

for all ξ ∈ C∞
0,div(Q0)

d,

and thus all assumptions of Lemma 2.7 are satisfied and the claim follows. �

2.3 Compactness in time

Lemma 2.9 (Parabolic interpolation (DiBenedetto, 1993, Ch. I, Prop. 2.3)). Let d ≥ 2, let Ω ⊂ Rd be
a Lipschitz domain, let T ∈ (0, ∞), Q = (0, T) × Ω and let p > 1. Then, there exists a constant c > 0
such that

||v||
L

p(d+2)
d (Q)

≤ c ||v||
d

d+2

Lp(0,T;W1, p(Ω))
||v||

2
d+2

L∞(0,T;L2(Ω))
(2.13)

for all v ∈ Lp(0, T; W1, p(Ω)) ∩ L∞(0, T; L2(Ω)).
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814 E. SÜLI AND T. TSCHERPEL

Lemma 2.10 (Simon, 1987, Thm. 3, p. 80). Let X, B be Banach spaces such that the embedding
X ↪→↪→ B is compact. Let F ⊂ Lp(0, T; B) for some p ∈ [1, ∞) and let

(i) F be bounded in L1
loc(0, T; X),

(ii)
´ T−ε

0 ||f (s + ε, ·) − f (s, ·)|| p
B ds → 0, as ε → 0, uniformly for f ∈ F .

Then, F is relatively compact in Lp(0, T; B).

3. Finite element approximation

3.1 Finite element spaces and assumptions

The setting here is slightly more general than the one in Diening et al. (2013).

Assumption 3.1 (Triangulations {Tn}n∈N). Let us assume that d ≥ 2 and that Ω is a bounded Lipschitz
polytopal domain. Furthermore, assume that {Tn}n∈N is a family of simplicial partitions of Ω (in the
sense of (Ciarlet, 2002, Sec. 2.1, p. 38)) such that the following conditions hold:

(i) Each element K ∈ Tn is affine-equivalent to the closed standard reference simplex, which
is given by K̂ := conv{0, e1, . . . , ed} ⊂ Rd, i.e., there exists an affine invertible function
FFFK : K → K̂;

(ii) {Tn}n∈N is shape-regular, i.e., there exists a constant cr (independent of n ∈ N) such that

hK
ρK

≤ cr for all K ∈ Tn and all n ∈ N,

where hK := diam(K) and ρK := sup{diam(B) : B is a ball contained inK}.
For n ∈ N we denote by hn := max{hK : K ∈ Tn} the spatial grid-size.

Finite element spaces. Let P̂V ⊂ W1,∞(K̂)d and let P̂Q ⊂ L∞(K̂) be finite-dimensional function
spaces on the reference simplex K̂ (with a slight abuse of notation) as in Diening et al. (2013). Further,
let V ⊂ C(Ω)d and let Q ⊂ L∞(Ω). Then we define the conforming finite element spaces Vn and Qn

with respect to Tn by

Vn :=
{

V ∈ V : V|K ◦FFF−1
K ∈ P̂V, K ∈ Tn and V|∂Ω = 0

}
, (3.1)

Qn :=
{

Q ∈ Q : Q|K ◦FFF−1
K ∈ P̂Q, K ∈ Tn

}
. (3.2)

Let us also introduce the subspace of discretely divergence-free functions of Vn and the subspace of
zero integral mean functions of Qn by

Vn
div := {V ∈ Vn : 〈div V, Q〉Ω = 0 for all Q ∈ Qn}, (3.3)

Qn
0 :=

{
Q ∈ Qn :

ˆ
Ω

Q dx = 0

}
. (3.4)

Note that the functions in Vn
div are in general not divergence-free, so in general Vn

div �⊂ W1,∞
0,div(Ω)d.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/40/2/801/5310121 by guest on 02 N
ovem

ber 2020



FULLY DISCRETE FINITE ELEMENT APPROXIMATION OF UNSTEADY FLOWS 815

Assumption 3.2 (Approximability (Diening et al. (2013), Assump. 5)). Assume that for all p ∈ [1, ∞),
we have that

inf
V∈Vn

||v − V|| W1, p(Ω) → 0, as n → ∞ for all v ∈ W1, p
0 (Ω)d, (3.5)

inf
Q∈Qn

||h − Q|| Lp(Ω) → 0, as n → ∞ for all h ∈ Lp
0(Ω). (3.6)

Note that this assumption implies that hn → 0, as n → ∞.

Projectors. For the convergence analysis we use certain projectors to the respective finite element
spaces and we require suitable assumptions on them. Since we do not need local stability of the projector
Πn, we assume less than in Diening et al. (2013).

Assumption 3.3 (Projector Πn). Assume that for each n ∈ N there exists a linear projector
Πn : W1,1

0 (Ω)d → Vn such that:

(i) (preservation of the divergence in (Qn)
′
) for any v ∈ W1,1

0 (Ω)d one has that

〈div v, Q〉Ω = 〈
div Πnv, Q

〉
Ω

for all Q ∈ Qn;

(ii) (W1, p-stability) for any p ∈ (1, ∞) there exists a constant c( p) > 0 (independent of n) such that∣∣∣∣Πnv
∣∣∣∣

W1, p(Ω) ≤ c ||v|| W1, p(Ω) for all v ∈ W1, p
0 (Ω)d and all n ∈ N.

Assumption 3.4 (Projector Πn
Q

). Assume that for each n ∈ N there exists a linear projector

Πn
Q

: L1(Ω) → Qn such that, for any p ∈ (1, ∞), there exists a constant c( p) > 0 such that∥∥Πn
Qh

∥∥
Lp(Ω) ≤ c ||h|| Lp(Ω) for all h ∈ Lp(Ω) and all n ∈ N. (3.7)

Remark 3.5 (Properties of Πn and Πn
Q

).

(i) The stability in Assumption 3.3 (ii) and the approximability in (3.5) yield that∣∣∣∣v − Πnv
∣∣∣∣

W1,p(Ω) → 0, as n → ∞

for all v ∈ W1, p
0 (Ω)d with p ∈ [1, ∞).

(ii) Similarly, the stability in (3.7) and the approximability in (3.6) imply that∥∥h − Πn
Qh

∥∥
Lp(Ω) → 0, as n → ∞

for all h ∈ Lp(Ω) with p ∈ [1, ∞).

(iii) The existence of the Bogovskiı̆ operator, see Bogovskiı̆ (1979) and Diening et al. (2008,
p. 223), implies that the continuous inf-sup condition holds for any p ∈ (1, ∞). With this and
Assumption 3.3 the corresponding discrete inf-sup condition holds uniformly in n ∈ N, cf.
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816 E. SÜLI AND T. TSCHERPEL

Fortin’s Lemma for Banach spaces in Ern & Guermond (2004, Lem. 4.19). This means that
the framework results in an inf-sup stable pair (Vn,Qn).

Example 3.6 (Finite element spaces). The following elements satisfy Assumptions 3.2–3.4:

(i) the P2 − P0 element for d = 2, see Boffi et al. (2013, Sec. 8.4.3), where the projector Πn is
given and Assumption 3.3 (i) is shown; the stability in (ii) can be proved similarly as for the
MINI element, see Belenki et al. (2012, App. A.1) and Diening et al. (2013, pp. 990);

(ii) the conforming Crouzeix–Raviart element, for d = 2, see Boffi et al. (2013, Ex. 8.6.1) and
Crouzeix & Raviart (1973); the projector Πn satisfying Assumption 3.3 (i) is given in Crouzeix
& Raviart (1973, pp. 49) and it can be shown to satisfy Assumption 3.3 (ii), see, for example,
Girault & Scott (2003, Thm. 3.3);

(iii) the Bernardi–Raugel element for d ∈ {2, 3} (polynomial order r = 1) and d = 3 (r = 2),
see Bernardi & Raugel (1985); the construction of Πn satisfying Assumption 3.3 for p = 2 is
contained therein and can be generalized to p ∈ [1, ∞). See also Girault & Lions (2001) for
p ∈ [2, ∞) and r = 1;

(iv) the MINI element for d ∈ {2, 3} (r = 1), see Boffi et al. (2013, Sec. 8.4.2, 8.7.1); the proof that
Assumption 3.3 is satisfied is given in Belenki et al. (2012, App. A.1), see also Girault (2001,
Lem. 4.5) and Diening et al. (2013, pp. 990);

(v) the Taylor–Hood element and its generalizations for d ∈ {2, 3} and r ≥ d, see Boffi et al. (2013,
Sec. 8.8.2); the proof of Assumption 3.3 can be found in Girault & Scott (2003, Thm. 3.1, 3.2).

The following element satisfies Assumption 3.2–3.4 and, additionally, that Vn
div ⊂ W1,∞

0,div(Ω)d:

(vi) the family of Guzmán–Neilan elements for d = 2 (k ≥ 1) and for d = 3 (r = 1), see Guzmán &
Neilan (2014a,b). Therein Assumption 3.3 is shown for p = 2 when d = 2, and for p ∈ [1, ∞)

when d = 3. For stability for general p ∈ [1, ∞) when d = 2 (r = 1), see also Diening et al.
(2013).

L2-Projector to Vn
div. Let us introduce the projector onto Vn

div, given by

Pn
div : L2(Ω)d → Vn

div, and for v ∈ L2(Ω)d,〈
Pn

divv, V
〉
Ω

= (v, V)Ω for all V ∈ Vn
div.

(3.8)

Directly from the definition we have L2-stability, i.e., for v ∈ L2(Ω)d we have

∣∣∣∣Pn
divv

∣∣∣∣
L2(Ω) ≤ ||v|| L2(Ω). (3.9)

By this and an approximation argument using the properties of Πn (see Remark 3.5 (i)), we have that

Pn
divw → w strongly in L2(Ω)d, as n → ∞, (3.10)

for any w ∈ L2
div(Ω)d.
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FULLY DISCRETE FINITE ELEMENT APPROXIMATION OF UNSTEADY FLOWS 817

3.2 Convective term and its numerical approximation

Motivated by the form of the convective term in the conservation of momentum equation, we consider
the trilinear form b defined by

b(u, v, w) := −〈u ⊗ v, ∇w〉Ω = 〈u ⊗ w, ∇v〉Ω − 〈div u, v · w〉Ω , (3.11)

for u, v, w ∈ W1,∞
0 (Ω)d, where the second equality follows by integration by parts. Hence, for

divergence-free functions u, the last term vanishes and b(u, ·, ·) is skew-symmetric, i.e., b(u, v, v) = 0
for any u ∈ W1,∞

0,div(Ω)d and any v ∈ W1,∞
0 (Ω)d.

As in general Vn
div �⊂ W1,∞

0,div(Ω)d, the second term in (3.11) need not vanish for u ∈ Vn
div. To

preserve the skew-symmetry of the trilinear form associated with the convective term, the usual approach
in the numerical analysis literature (see, e.g., (Temam, 1984)) is therefore to consider instead the skew-
symmetric trilinear form

b̃(u, v, w) := 1

2

(〈u ⊗ w, ∇v〉Ω − 〈u ⊗ v, ∇w〉Ω
) = −〈u ⊗ v, ∇w〉Ω + 1

2
〈div u, v · w〉Ω , (3.12)

for u, v, w ∈ W1,∞
0 (Ω)d. Thus, we have that b̃(u, v, v) = 0 regardless of the solenoidality of u. Note that

for divergence-free functions u we have that b(u, ·, ·) = b̃(u, ·, ·).
In the equations the terms appear in the form b(u, u, v) and b̃(u, u, v), for the velocity u and a test

function v. The natural function space for weak solutions of problem (P) is given by L∞(0, T; L2(Ω)d)∩
Lq(0, T; W1,q

0 (Ω)d), which embeds by Lemma 2.9 continuously into L
q(d+2)

d (Q)d. Also, provided that

q ≥ 2d
d+2 , we have that the embedding L

q(d+2)
d (Q)d ↪→ L2(Q)d is continuous, which means that the

expression b(u(t, ·), u(t, ·), v) is integrable on (0, T), for any v ∈ W1,∞(Ω)d. More specifically, with
q̂ := max

(( q(d+2)
2d

)′, q
)

we have that

∣∣〈u(t, ·) ⊗ u(t, ·), ∇v〉Ω
∣∣ ≤ c ||u(t, ·)|| 2

L
q(d+2)

d (Ω)

||v|| W1,q̂(Ω)
, provided that q ≥ 2d

d+2 . (3.13)

On the other hand, for the modification (cf. the first term in (3.12)) of the trilinear form b associated
with the convective term, one obtains

∣∣〈u(t, ·) ⊗ v, ∇u(t, ·)〉Ω
∣∣ ≤ c ||u(t, ·)||

L
q(d+2)

d (Ω)
||v|| W1,q̂(Ω)

||∇u(t, ·)|| Lq(Ω), if q ≥ 2(d+1)
d+2 . (3.14)

Evidently, the source of this more restrictive requirement on q is the modification of the trilinear form
b, introduced to reinstate the skew symmetry of b, lost in the course of approximating the pointwise
divergence-free solution by discretely divergence-free finite element functions. We note in passing that
the restriction q ≥ 2(d+1)

d+2 in the unsteady case corresponds to the restriction q ≥ 2d
d+1 in the steady case

in Diening et al. (2013).
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818 E. SÜLI AND T. TSCHERPEL

Let us motivate the choice of the penalty term that we shall add to the weak form to relax the
excessive restriction q ≥ 2(d+1)

d+2 to the natural restriction on q > 2d
d+2 . We note that by Hölder’s

inequality we have that∣∣∣∣̃b(u, u, v)
∣∣∣∣

L1((0,T)) ≤ ||u|| 2
L2q′

(Q)
||∇v|| Lq(Q) + ||u|| L2q′

(Q)
||v|| L2q′

(Q)
||∇u|| Lq(Q)

≤ c ||u|| 2
X(Q) ||v|| X(Q), (3.15)

for u, v ∈ X(Q) = Lq(0, T; W1,q
0 (Ω)d) ∩ L2q′

(Q)d, see (2.2), without any restrictions on the range of

q, other than q ∈ (1, ∞). This justifies the use of a regularizing term guaranteeing additional L2q′
-

integrability, cf. Section 4.

3.3 Time discretization

For the purpose of time discretization, let l ∈ N and define the time step by δl = T/l → 0, as l → ∞.
For l ∈ N, we shall use the equidistant temporal grid on [0, T] defined by {tli}i∈{0,...,l}, where tli := iδl, for
i ∈ {0, . . . , l}. In the following we will suppress the superscript l and write ti, i ∈ {0, . . . , l}.

For a Banach space X of functions, l ∈ N and a sequence {ϕi}i∈{0,...,l} ⊂ X, we consider the temporal
difference quotient

dtϕi := 1

δl

(
ϕi − ϕi−1

)
for i ∈ {1, . . . , l}. (3.16)

Furthermore, for l ∈ N we denote by Pl
0(0, T; X) the linear space of left-continuous piecewise constant

mappings from (0, T] into X, with respect to the equidistant temporal grid {t0, . . . , tl} ⊂ [0, T] and
by Pl

1(0, T; X) the space of continuous, piecewise affine functions from [0, T] into X, with respect to
the same temporal grid. Let the piecewise constant and the piecewise affine interpolants ϕ and ϕ̃ of
{ϕi}i∈{0,...,l} be defined by

ϕ(t) := ϕi for t ∈ (ti−1, ti], i ∈ {1, . . . , l}, (3.17)

ϕ̃(t) := ϕi
t − ti−1

δl
+ ϕi−1

ti − t

δl
for t ∈ [ti−1, ti], i ∈ {1, . . . , l}, (3.18)

so that ϕ, ϕ̃, ∂tϕ̃ ∈ L∞(0, T; X). Choosing the representative ∂tϕ̃ ∈ Pl
0(0, T; X), for t ∈ (ti−1, ti], we

have ∂tϕ̃(t) = dtϕi and

ϕ(t) − ϕ̃(t) = (ti − t)∂tϕ̃(t). (3.19)

Furthermore, note that one has

||ϕ|| L∞(0,T;X) = max
i∈{1,...,l}

∣∣∣∣ϕi

∣∣∣∣
X, ||ϕ|| p

Lp(0,T;X)
= δl

l∑
i=1

∣∣∣∣ϕi

∣∣∣∣ p
X, for p ∈ [1, ∞), (3.20)
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FULLY DISCRETE FINITE ELEMENT APPROXIMATION OF UNSTEADY FLOWS 819

||ϕ̃|| L∞(0,T;X) = max
i∈{0,...,l}

∣∣∣∣ϕi

∣∣∣∣
X, ||ϕ̃|| p

Lp(0,T;X)
≤ c( p)δl

l∑
i=0

∣∣∣∣ϕi

∣∣∣∣ p
X, for p ∈ [1, ∞), (3.21)

where 0 < c( p) ≤ 1 by the Riesz–Thorin interpolation theorem (cf. (Bergh & Löfström, 1976,
Thm. 1.1.1, p. 2)).

For a Bochner function ψ ∈ Lp(0, T; X), p ∈ [1, ∞), we define the time averages with respect to
the time grid {t0, . . . , tl}, for l ∈ N, by

ψi :=
 ti

ti−1

ψ(t, ·) dt ∈ X, i ∈ {1, . . . , l}. (3.22)

For the piecewise constant interpolant ψ of the set of values {ψi}i∈{1,...,l}, one can show that

∣∣∣∣ψ∣∣∣∣
Lp(0,T;X) ≤ ||ψ || Lp(0,T;X) for all p ∈ [1, ∞], (3.23)

ψ → ψ strongly in Lp(0, T; X), as l → ∞, for any p ∈ [1, ∞). (3.24)

The estimate (3.23) follows by Jensen’s inequality, and the convergence in (3.24) is a consequence of

the inequality ‖ψ − ψ‖Lp(0,T;X) ≤ T
1
p δl‖ψ‖C0,1([0,T];X) for all ψ ∈ C0,1([0, T]; X) and p ∈ [1, ∞], the

density of C0,1([0, T]; X) in Lp(0, T; X) for p ∈ [1, ∞), and (3.23).
To simplify the notation we denote Qt

s := (s, t)×Ω , for 0 ≤ s < t ≤ T , and Qs := Qs
0, for s ∈ (0, T].

Furthermore, let us introduce the notation Qi
i−1 := Qti

ti−1
and Qi := Qti , for i ∈ {1, . . . , l}.

4. Convergence proof

Motivated by the approach in Bulíček et al. (2012, Sec. 3.1), we consider the following levels of
approximation.

k ∈ N: The selection SSS� given in Lemma 2.2 is approximated by a family of Carathéodory functions
{SSSk}k∈N, which satisfy Assumption 2.3. The approximation of the stress is then explicit and
continuous inDDDu.

l ∈ N: A time-stepping based on the implicit Euler method is introduced similarly as, e.g., in Temam
(1984) and Carelli et al. (2010), see Subsection 3.3.

n ∈ N: The velocity u is approximated by a Galerkin approximation in finite element spaces in the
spatial variable, see Section 3.

m ∈ N: The penalty/regularization term 1
m |u| 2q′−2u is added to the equation to gain admissibility of

the approximate solutions in case we have q < 3d+2
d+2 , and to enable us to use the bound on

b̃(·, ·, ·) in (3.15), without imposing the restriction q ≥ 2(d+1)
d+2 .
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820 E. SÜLI AND T. TSCHERPEL

This results in a fully discrete approximation. The limits are taken in the order k → ∞, l, n → ∞, and
then m → ∞, and we can take the limits in l, n → ∞ simultaneously. To simplify the notation we shall
write

vk,l,n,m →
k

→
(l,n)

→
m

v in X, as k → ∞, l, n → ∞, m → ∞, (4.1)

to denote the fact that the limits k, (l, n), m are taken successively in the order of indexing (from left to
right) and the space X describes the weakest topology of the three limits. We will use the analogous
notation for weak and weak* convergence. In each step one has to identify the equation and the implicit
relation, which is the most challenging part. The most significant difference compared to Bulíček et al.
(2012) lies in the passage to the limits l, n → ∞ and the identification of the implicit law.

As both the external force f and the approximate stressSSSk will be allowed to be time-dependent, and
the time-dependence is not assumed to be continuous, we shall consider integral-averaged versions in
the approximate problem. Recall the notation in Subsection 3.3 and for f ∈ Lq′

(0, T; W−1,q′
(Ω)d) and

SSSk : Q × Rd×d
sym → Rd×d

sym as in Assumption 2.3, and l ∈ N let us introduce the averages with respect to
the time grid {ti}i∈{0,...,l} defined, for i ∈ {1, . . . , l}, by

f i(x) :=
 ti

ti−1

f (t, x) dt, SSSk
i (x,BBB) :=

 ti

ti−1

SSSk
(t, x,BBB) dt, (4.2)

for x ∈ Ω and BBB ∈ Rd×d
sym . Let the corresponding piecewise constant interpolants f and SSS

k
be defined as

in (3.17). Recall that by (3.23) and (3.24) we have that∣∣∣∣∣∣ f
∣∣∣∣∣∣ Lq′

(0,T;W−1,q′
(Ω))

≤ || f || Lq′
(0,T;W−1,q′

(Ω))
for all l ∈ N, (4.3)

f → f strongly in Lq′
(0, T; W−1,q′

(Ω)d), as l → ∞. (4.4)

For u, v ∈ Vn we introduce

L
k,l,n,m
i [u; v] := − b̃(u, u, v) −

〈
SSSk

i (·,DDDu),DDDv
〉
Ω

− 1

m

〈
|u| 2q′−2u, v

〉
Ω

+ 〈
f i, v

〉
Ω

, (4.5)

for k, l, n, m ∈ N, i ∈ {1, . . . , l} and b̃(·, ·, ·) as defined in (3.12).

Approximate Problem. For k, l, n, m ∈ N find a sequence {Uk,l,n,m
i }i∈{0,...,l} ⊂ Vn

div such that

Uk,l,n,m
0 = Pn

divu0, (4.6)

and for a given Uk,l,n,m
i−1 ∈ Vn

div the approximate solution on the next time level, Uk,l,n,m
i ∈ Vn

div, is defined,
for i ∈ {1, . . . , l}, by 〈

dtU
k,l,n,m
i , W

〉
Ω

= L
k,l,n,m
i

[
Uk,l,n,m

i ; W
]

for all W ∈ Vn
div, (4.7)

where Pn
div is the L2-projector onto Vn

div, defined in (3.8).
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FULLY DISCRETE FINITE ELEMENT APPROXIMATION OF UNSTEADY FLOWS 821

For each i ∈ {1, . . . , l} a fully implicit problem has to be solved, since the numerical solution from
the previous time level only appears in the term involving dtU

k,l,n,m
i , as defined in (3.16).

Theorem 4.1 (Main result). In addition to the assumptions of Definition 2.1, let SSSk satisfy
Assumption 2.3. For the finite element approximation let Assumption 3.1 on the domain and on
the family of simplicial partitions be satisfied. Let Vn and let Vn

div be as introduced in (3.1) and (3.3),
respectively, and assume that Assumptions 3.2, 3.3 and 3.4 hold. Then, for all k, l, n, m ∈ N there exists
a sequence {Uk,l,n,m

i }i∈{0,...,l} ⊂ Vn
div solving (4.6), (4.7). Moreover, if q ∈ ( 2d

d+2 , ∞)
, then there exists

a weak solution (u,SSS) of (P) according to Definition 2.1 and for the piecewise constant interpolant

U
k,l,n,m ∈ Pl

0(0, T;Vn
div), and the continuous, piecewise affine interpolant Ũ

k,l,n,m ∈ Pl
1(0, T;Vn

div) of

{Uk,l,n,m
i }i∈{0,...,l}, and the piecewise constant interpolant SSS

k
(·, ·,DDDU

k,l,n,m
) ∈ Pl

0(0, T; Lq′
(Ω)d×d) of

{SSSk
i (·,DDDU

k,l,n,m
)}i∈{1,...,l} as defined in (3.17) and (3.18) (up to not relabelled subsequences), one has

that

U
k,l,n,m

, Ũ
k,l,n,m →

k
→
(l,n)

→
m

u strongly in Lq(0, T; L2(Ω)d),

U
k,l,n,m

, Ũ
k,l,n,m ∗

⇀
k

∗
⇀
(l,n)

∗
⇀
m

u weakly in L∞(0, T; L2(Ω)d),

U
k,l,n,m

⇀
k

⇀
(l,n)

⇀
m

u weakly in Lq
(

0, T; W1,q
0 (Ω)d

)
,

SSS
k
(·, ·,DDDU

k,l,n,m
), SSSk

(·, ·,DDDU
k,l,n,m

) ⇀
k

⇀
(l,n)

⇀
m
SSS weakly in Lq′

(Q)d×d,

as k → ∞, (l, n) → ∞ (combined) and m → ∞, when taking the limits successively, without
restrictions on the relation between the discretization parameters δl and hn.

Remark 4.2

(i) In the proof of Theorem 4.1 it is essential that the limits are taken in the indicated order.

(ii) If SSS� is a Carathéodory function, then the approximation level corresponding to k ∈ N can be
skipped.

(iii) For Lipschitz polytopal domains, Theorem 4.1 is also a new existence result, since in Bulíček
et al. (2012) a Navier slip boundary condition and ∂Ω ∈ C1,1 are assumed.

(iv) The convergence proof is presented for discretely divergence-free velocity functions. If addition-
ally Vn

div ⊂ W1,∞
0,div(Ω)d, then no modification of the convective term is required and the proof

that um is divergence-free is also simpler.

The rest of this section consists of the proof of Theorem 4.1, which relies on Lemmas 4.3–4.5,
dealing with the existence of the discrete solution, and the limit k → ∞, Lemmas 4.6 and 4.7 covering
the combined limit l, n → ∞, and Lemmas 4.8 and 4.9 the limit m → ∞. Note that Lemma 4.9 contains
stronger statements regarding the weak solution than Definition 2.1.
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822 E. SÜLI AND T. TSCHERPEL

Limit k → ∞
The existence and convergence in Lemmas 4.3 and 4.4 follow by a standard approach presented, e.g.,
in Temam (1984), with minor modifications required to deal with the time-dependence of SSSk. Taking
k → ∞ we remain in the finite-dimensional setting, and hence strong convergence of the sequence of
symmetric gradients follows. Consequently, the identification of the limiting equation is based on the
properties of the sequence {SSSk}k∈N according to Assumption 2.3, cf. Bulíček et al. (2012).

Lemma 4.3 (Existence of approximate solutions and a priori estimates). For each κ := (k, l, n, m) ∈ N4,
there exists a sequence {Uκ

i }i∈{0,...,l} ⊂ Vn
div, which satisfies (4.6) and (4.7). Furthermore, there exists a

constant c > 0 such that for all κ = (k, l, n, m) ∈ N4 one has that

max
j∈{0,...,l}

∣∣∣∣∣∣Uκ
j

∣∣∣∣∣∣ 2
L2(Ω)

+
l∑

j=1

∣∣∣∣∣∣Uκ
j − Uκ

j−1

∣∣∣∣∣∣ 2
L2(Ω)

+ δl

l∑
j=1

∥∥Uκ
j

∥∥q
W1,q(Ω)

+
l∑

j=1

∣∣∣∣∣∣SSSk
(·, ·,DDDUκ

j )

∣∣∣∣∣∣ q′

Lq′
(Qj

j−1)
+ δl

m

l∑
j=1

∥∥Uκ
j

∥∥2q′

L2q′
(Ω)

≤ c. (4.8)

Proof.

Step 1: A priori estimates. The a priori estimates follow from standard arguments, see Temam (1984),
in combination with the estimates for SSSk by Assumption 2.3: testing (4.7) with W = Uκ

i ∈ Vn
div one

obtains

〈
dtU

κ
i , Uκ

i

〉
Ω

+
〈
SSSk

i (·,DDDUκ
i ),DDDUκ

i

〉
Ω

+ 1

m

∣∣∣∣Uκ
i

∣∣∣∣ 2q′

L2q′
(Ω)

= 〈
f i, Uκ

i

〉
Ω

, (4.9)

since the term involving b̃ vanishes by skew-symmetry. By the fact that 2a(a − b) = a2 − b2 + (a − b)2,
for a, b ∈ R and by the definition of dtU

κ
i in (3.16), the first term in (4.9) can be rewritten as

〈
dtU

κ
i , Uκ

i

〉
Ω

= 1

δl

〈
Uκ

i − Uκ
i−1, Uκ

i

〉
Ω

= 1

2δl

(∣∣∣∣Uκ
i

∣∣∣∣ 2
L2(Ω)

− ∣∣∣∣Uκ
i−1

∣∣∣∣ 2
L2(Ω)

+ ∣∣∣∣Uκ
i − Uκ

i−1

∣∣∣∣ 2
L2(Ω)

)
. (4.10)

Using the definition of SSSk
i in (4.2) and Assumption 2.3 (α2), one has that

〈
SSSk

i (·,DDDUκ
i ),DDDUκ

i

〉
Ω

(4.2)=
〈 ti

ti−1

SSSk
(t, ·,DDDUκ

i ) dt,DDDUκ
i

〉
Ω

= 1

δl

〈
SSSk

(·, ·,DDDUκ
i ),DDDUκ

i

〉
Qi

i−1

≥ 1

δl

ˆ
Qi

i−1

− |̃g(·)| + c̃∗
(∣∣DDDUκ

i

∣∣ q +
∣∣∣SSSk

(·, ·,DDDUκ
i )

∣∣∣ q′)
dz

≥ − 1

δl
||̃g|| L1(Qi

i−1)
+ c

∣∣∣∣Uκ
i

∣∣∣∣ q
W1,q(Ω)

+ c̃∗
δl

∣∣∣∣∣∣SSSk
(·, ·,DDDUκ

i )

∣∣∣∣∣∣ q′
Lq′

(Qi
i−1)

, (4.11)
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where the last inequality follows by Korn’s and Poincaré’s inequality. On the term on the right-hand side
of (4.9), by duality of norms and by Young’s inequality with ε > 0, we obtain that

〈
f i, Uκ

i

〉
Ω

≤ ∣∣∣∣ f i

∣∣∣∣
W−1,q′

(Ω)

∣∣∣∣Uκ
i

∣∣∣∣
W1,q(Ω) ≤ c(ε)

∣∣∣∣ f i

∣∣∣∣ q′

W−1,q′
(Ω)

+ ε
∣∣∣∣Uκ

i

∣∣∣∣ q
W1,q(Ω)

≤ c(ε)

δl
|| f || q′

Lq′
(ti−1,ti;W−1,q′

(Ω))
+ ε

∣∣∣∣Uκ
i

∣∣∣∣ q
W1,q(Ω)

, (4.12)

where the last inequality follows by (4.3). Applying the estimates (4.10)–(4.12) in (4.9), after
rearranging, choosing ε > 0 small enough and multiplying by δl, we arrive at

∣∣∣∣Uκ
i

∣∣∣∣ 2
L2(Ω)

− ∣∣∣∣Uκ
i−1

∣∣∣∣ 2
L2(Ω)

+ ∣∣∣∣Uκ
i − Uκ

i−1

∣∣∣∣ 2
L2(Ω)

+ δl

∣∣∣∣Uκ
i

∣∣∣∣ q
W1,q(Ω)

+
∣∣∣∣∣∣SSSk (·, ·,DDDUκ

i

)∣∣∣∣∣∣ q′

Lq′
(Qi

i−1)
+ δl

m

∣∣∣∣Uκ
i

∣∣∣∣ 2q′

L2q′
(Ω)

≤ c

(
|| f || q′

Lq′
(ti−1,ti;W−1, q′

(Ω))
+ ||̃g|| L1(Qi

i−1)

)
. (4.13)

For arbitrary j ∈ {1, . . . , l}, summing over i ∈ {1, . . . , j} yields

∥∥Uκ
j

∥∥2
L2(Ω)

− ∣∣∣∣Uκ
0

∣∣∣∣ 2
L2(Ω)

+
j∑

i=1

∣∣∣∣Uκ
i − Uκ

i−1

∣∣∣∣ 2
L2(Ω)

+ δl

j∑
i=1

∣∣∣∣Uκ
i

∣∣∣∣ q
W1,q(Ω)

+
j∑

i=1

∣∣∣∣∣∣SSSk
(·, ·,DDDUκ

i )

∣∣∣∣∣∣ q′

Lq′
(Qi

i−1)
+ δl

m

j∑
i=1

∣∣∣∣Uκ
i

∣∣∣∣ 2q′

L2q′
(Ω)

≤ c
(
|| f || q′

Lq′
(0,T;W−1,q′

(Ω))
+ ||̃g|| L1(Q)

)
, (4.14)

because of cancellation in the first term. Applying the estimate

∣∣∣∣Uκ
0

∣∣∣∣ 2
L2(Ω)

(4.6)= ∣∣∣∣Pn
divu0

∣∣∣∣ 2
L2(Ω)

(3.9)≤ ∣∣∣∣u0

∣∣∣∣ 2
L2(Ω)

, (4.15)

taking the supremum over all j ∈ {1, . . . , l} in (4.14), and using again (4.15) finishes the proof of (4.8).

Step 2: Existence of {Uκ
i }i∈{0,...,l}. Let κ ∈ N4 be fixed. Since Uκ

0 = Pn
divu0 by (4.6), one only has to

show that for a given Uκ
i−1 ∈ Vn

div, there exists a Uκ
i ∈ Vn

div such that (4.7) is satisfied. Since SSSk
i (z, ·)

is continuous, the existence of such a Uκ
i ∈ Vn

div follows by a standard argument from Brouwer’s fixed
point theorem. For details we refer to Tscherpel (2018). Uniqueness is in general not guaranteed, so we
choose one such sequence for each κ ∈ N4. �
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For t ∈ (0, T], u ∈ Pl
0(0, T;Vn

div) and v ∈ Vn
div we introduce

Lκ [u; v](t) := −̃b(u(t, ·), u(t, ·), v) −
〈
SSS

k
(t, ·,DDDu(t, ·)),DDDv

〉
Ω

− 1

m

〈
|u(t, ·)| 2q′−2u(t, ·), v

〉
Ω

+
〈

f (t, ·), v
〉
Ω

, (4.16)

for κ = (k, l, n, m) ∈ N4 and b̃(·, ·, ·) as defined in (3.12). Recall that f ∈ Pl
0(0, T; W−1,q′

(Ω)d) is
the piecewise constant interpolant of {f i}i∈{1,...,l}, as defined in (3.17) in Subsection 3.3 and, similarly,

SSS
k
(t, ·, ·) = SSSk

i (·, ·), for t ∈ (ti−1, ti], which is piecewise constant with respect to the variable t ∈ (0, T].

Lemma 4.4 (Equation for t ∈ (0, T] and Convergence k → ∞). The functions U
κ ∈ Pl

0(0, T;Vn
div)

and Ũ
κ ∈ Pl

1(0, T;Vn
div) defined as piecewise constant and piecewise affine interpolants of {Uκ

i }i∈{0,...,l}
satisfy

〈
∂tŨ

κ
(t, ·), W

〉
Ω

= Lκ [U
κ
; W](t) for all W ∈ Vn

div, for all t ∈ (0, T], (4.17)

Ũ
κ
(0, ·) = Pn

divu0 in Ω , (4.18)

for any κ = (k, l, n, m) ∈ N4. For each λ := (l, n, m) ∈ N3, i.e., κ = (k, λ), there exists a

sequence {Uλ
i }i∈{0,...,l} ⊂ Vn

div and subsequences such that the interpolants U
λ ∈ Pl

0(0, T;Vn
div), and

Ũ
λ ∈ Pl

1(0, T;Vn
div) of {Uλ

i }i∈{0,...,l}, as defined in (3.17) and (3.18), satisfy

sup
t∈(0,T]

∣∣∣∣∣∣Uk,λ
(t, ·) − U

λ
(t, ·)

∣∣∣∣∣∣ W1,∞(Ω) → 0, (4.19)

sup
t∈[0,T]

∣∣∣∣∣∣Ũk,λ
(t, ·) − Ũ

λ
(t, ·)

∣∣∣∣∣∣ W1,∞(Ω) + sup
t∈(0,T]

∣∣∣∣∣∣∂tŨ
k,λ

(t, ·) − ∂tŨ
λ
(t, ·)

∣∣∣∣∣∣ W1,∞(Ω) → 0, (4.20)

as k → ∞. Furthermore, for each λ ∈ N3 there exist SSSλ ∈ Lq′
(Q)d×d and SSS

λ ∈ Pl
0(0, T; Lq′

(Ω)d×d)

and subsequences such that

SSSk
(·, ·,DDDU

k,λ
) ⇀ SSSλ weakly in Lq′

(Q)d×d, (4.21)

SSS
k
(·, ·,DDDU

k,λ
) ⇀ SSS

λ
weakly in Lq′

(Q)d×d, (4.22)

as k → ∞, where, up to a representative, we have

SSS
λ
(t, ·) = SSSλ

i (·) :=
 ti

ti−1

SSSλ
(t, ·) dt for all t ∈ (ti−1, ti] and all i ∈ {1, . . . , l}. (4.23)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/40/2/801/5310121 by guest on 02 N
ovem

ber 2020



FULLY DISCRETE FINITE ELEMENT APPROXIMATION OF UNSTEADY FLOWS 825

Proof.

Step 1: Identification of the equation. We have that Ũ
κ
(0, ·) = Uκ

0 = Pn
divu0 by definition of Ũ

κ
and by

(4.6), which shows (4.18). The equation (4.17) follows from (4.7) and the fact that for t ∈ (ti−1, ti] we
have that

U
κ
(t, ·) = Uκ

i , ∂tŨ
κ
(t, ·) = dtU

κ
i , f (t, ·) = f i and SSS

k
(t, ·, ·) = SSSk

i (·, ·), i ∈ {1, . . . , l}.

Step 2: Estimates. Let λ = (l, n, m) ∈ N3 be arbitrary, but fixed. From the a priori estimate (4.8) it
follows directly that ∣∣∣∣∣∣SSSk(·, ·,DDDU

k,λ)∣∣∣∣∣∣ q′
Lq′

(Q)
≤ c for all k ∈ N. (4.24)

By the definition of SSSk
i in (4.2), we have that

∣∣∣∣∣∣SSSk
(·, ·,DDDU

k,λ
)

∣∣∣∣∣∣ q′

Lq′
(Q)

=
l∑

i=1

∣∣∣∣∣∣SSSk
i

(·,DDDUk,λ
i

)∣∣∣∣∣∣ q′

Lq′
(Qi

i−1)
=

l∑
i=1

δl

∣∣∣∣∣∣SSSk
i

(·,DDDUk,λ
i

)∣∣∣∣∣∣ q′

Lq′
(Ω)

(3.23)≤
l∑

i=1

∣∣∣∣∣∣SSSk(·, ·,DDDUk,λ
i

)∣∣∣∣∣∣ q′
Lq′

(Qi
i−1)

=
∣∣∣∣∣∣SSSk

(·, ·,DDDU
k,λ

)

∣∣∣∣∣∣ q′
Lq′

(Q)

(4.24)≤ c (4.25)

for all k ∈ N. This also shows that∣∣∣∣∣∣SSSk
i

(·,DDDUk,λ
i

)∣∣∣∣∣∣ q′
Lq′

(Ω)
≤ c

δl
≤ c(l) for any k ∈ N and any i ∈ {1, . . . , l}. (4.26)

Step 3: Convergence as k → ∞. By the a priori estimate (4.8), the sequences {Uk,λ}k∈N ⊂
Pl

0(0, T;Vn
div) ⊂ L∞(0, T; W1,∞

0 (Ω)d) and {Ũk,λ}k∈N ⊂ Pl
1(0, T;Vn

div) ⊂ W1,∞(0, T; W1,∞
0 (Ω)d) are

bounded in the space L∞(0, T; L2(Ω)d). Since Pl
0(0, T;Vn

div) and Pl
1(0, T;Vn

div) are finite-dimensional
function spaces, all norms on them are equivalent. Furthermore, any bounded sequence has a

subsequence converging strongly in the respective norm. Hence, there exist U
λ ∈ Pl

0(0, T;Vn
div), Ũ

λ ∈
Pl

1(0, T;Vn
div) and subsequences such that (4.19) and (4.20) are satisfied. Further, since the convergence

is pointwise in time and Ũ
k,λ

(ti, ·) = U
k,λ

(ti, ·) = Uk,λ
i for all i ∈ {1, . . . , l} and Ũ

k,λ
(0, ·) = Pn

divu0, it

follows that Ũ
λ
(ti, ·) = U

λ
(ti, ·) =: Uλ

i for all i ∈ {1, . . . , l} and Ũ
λ
(0, ·) = Pn

divu0 =: Uλ
0. Consequently,

U
λ

and Ũ
λ

are the respective interpolants of {Uλ
i }i∈{0,...,l} ⊂ Vn

div. By the Banach–Alaoglu theorem,

(4.24)–(4.26) imply that there exist SSSλ,SSS
λ ∈ Lq′

(Q)d×d and SSSλ
i ∈ Lq′

(Ω)d×d for i ∈ {1, . . . , l}, and
subsequences such that

SSSk
(·, ·,DDDU

k,λ
) ⇀ SSSλ weakly in Lq′

(Q)d×d, (4.27)
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826 E. SÜLI AND T. TSCHERPEL

SSS
k
(·, ·,DDDU

k,λ
) ⇀ SSS

λ
weakly in Lq′

(Q)d×d, (4.28)

SSSk
i

(·,DDDUk,λ
i

)
⇀ SSSλ

i weakly in Lq′
(Ω)d×d, for i ∈ {1, . . . , l}, (4.29)

as k → ∞. It remains to show the identification of SSSλ, SSS
λ

and {SSSλ
i }i∈{1,...,l}. Let i ∈ {1, . . . , l} be

arbitrary, but fixed. First let ϕ ∈ C∞
0 ((ti−1, ti)) and vvv ∈ C∞

0 (Ω)d×d. On the one hand, by (4.28) we have〈
SSS

k
(·, ·,DDDU

k,λ
), ϕvvv

〉
Qi

i−1

→
〈
SSS

λ
, ϕvvv

〉
Qi

i−1

, as k → ∞. (4.30)

On the other hand, by the definition of SSS
k
(·, ·,DDDU

k,λ
) as piecewise constant interpolant of the sequence

{SSSk
i (·,DDDUk,λ

i )}i∈{1,...,l} and by (4.29), we have〈
SSS

k
(·, ·,DDDU

k,λ
), ϕvvv

〉
Qi

i−1

=
〈〈
SSSk

i

(·,DDDUk,λ
i

)
,vvv

〉
Ω

ϕ
〉
(ti−1,ti)

= 〈1, ϕ〉(ti−1,ti)

〈
SSSk

i

(·,DDDUk,λ
i

)
,vvv

〉
Ω

→ 〈1, ϕ〉(ti−1,ti)

〈
SSSλ

i ,vvv
〉
Ω

= 〈
SSSλ

i ,vvvϕ
〉
Qi

i−1
, as k → ∞. (4.31)

Now, (4.30) and (4.31) imply, by the uniqueness of the limit, thatSSS
λ
(t, x) = SSSλ

i (x) for a.e. (t, x) ∈ Qi
i−1,

i.e., SSS
λ

is piecewise constant in t and we can choose the representative in Pl
0(0, T; Lq′

(Ω)d×d). Again,
for vvv ∈ C∞

0 (Ω)d×d we have by (4.29) that〈
SSSk

i

(·,DDDUk,λ
i

)
,vvv

〉
Ω

→ 〈
SSSλ

i ,vvv
〉
Ω

, as k → ∞. (4.32)

On the other hand, by the definition of SSSk
i (·,DDDUk,λ

i ) in (4.2) and by (4.27), we obtain that

〈
SSSk

i

(·,DDDUk,λ
i

)
,vvv

〉
Ω

=
〈 ti

ti−1

SSSk(t, ·,DDDUk,λ
i

)
dt,vvv

〉
Ω

= 1

δl

〈
SSSk(·, ·,DDDU

k,λ)
,1(ti−1,ti)vvv

〉
Q

→ 1

δl

〈
SSSλ,1(ti−1,ti)vvv

〉
Q

=
〈 ti

ti−1

SSSλ
(t, ·) dt,vvv

〉
Ω

, as k → ∞, (4.33)

so by the uniqueness of limits, we conclude from (4.32) and (4.33), thatSSSλ
i (x) = ffl ti

ti−1
SSSλ

(t, x) dt for a.e.
x ∈ Ω , which completes the proof. �

For λ = (l, n, m) ∈ N3, t ∈ (0, T], u ∈ Pl
0(0, T;Vn) and v ∈ Vn, let us introduce

Lλ[u; v](t) := − b̃(u(t, ·), u(t, ·), v) −
〈
SSS

λ
(t, ·),DDDv

〉
Ω

− 1

m

〈
|u(t, ·)| 2q′−2u(t, ·), v

〉
Ω

+
〈

f (t, ·), v
〉
Ω

, (4.34)

where SSS
λ ∈ Pl

0(0, T; Lq′
(Ω)d×d) is given in Lemma 4.4.
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Lemma 4.5 (Identification of the PDE as k → ∞). The functions U
λ ∈ Pl

0(0, T;Vn
div), Ũ

λ ∈
Pl

1(0, T;Vn
div) and SSSλ ∈ Lq′

(Q)d×d given in Lemma 4.4 satisfy

〈
∂tŨ

λ
(t, ·), W

〉
Ω

= Lλ[U
λ
; W](t) for all W ∈ Vn

div, for all t ∈ (0, T], (4.35)

Ũ
λ
(0, ·) = Pn

divu0(·) in Ω , (4.36)

(DDDU
λ
(z),SSSλ

(z)) ∈ A(z) for a.e. z ∈ Q, (4.37)

for all λ = (l, n, m) ∈ N3, where Lλ[·; ·](·) is defined by (4.34), using SSS
λ ∈ Pl

0(0, T; Lq′
(Ω)d×d) given

by (4.23) in Lemma 4.4.

Proof. Let λ = (l, n, m) ∈ N3 be arbitrary but fixed. The fact that the initial condition (4.36) is satisfied
follows directly by (4.18) and (4.20).

Step 1: Identification of the limiting equation. Let W ∈ Vn
div be arbitrary but fixed. With the convergence

of ∂tŨ
k,λ

in (4.20), it follows that

〈
∂tŨ

k,λ
(t, ·), W

〉
Ω

→
〈
∂tŨ

λ
(t, ·), W

〉
Ω

, as k → ∞, (4.38)

for all t ∈ (0, T]. Further, by the strong convergence (4.19) and (4.20), it is straightforward to show that

〈
Lk,λ[Uk,λ

, W
]
(t),

〉
(0,T)

→
〈
Lλ

[
U

λ
, W

]
(t),

〉
(0,T)

, as k → ∞, (4.39)

for all t ∈ (0, T]. In particular, the strong convergence in (4.19) allows us to take the limit in the
numerical convective term without any restriction. Finally, (4.38) and (4.39) applied in (4.17) imply that
(4.35) holds for all t ∈ (0, T].

Step 2: Identification of the implicit relation. The proof of the implicit relation (4.37) relies on the strong

convergence of {DDDU
k,λ}k∈N and the properties of SSSk stated in Assumption 2.3. By the property (α3) in

Assumption 2.3 onSSSk and the boundedness of {DDDU
k,λ}k∈N in L∞(Q)d×d resulting from (4.19), we have

0 ≤ lim inf
k→∞

〈
SSSk(·,DDDU

k,λ) −SSS�
(·,BBB),

(
DDDU

k,λ −BBB
)
ϕ
〉
Q

(4.40)

for all ϕ ∈ C∞
0 (Q) such that ϕ ≥ 0 and for all matrices BBB ∈ U, for the dense set U ⊂ Rd×d

sym given

in the assumption. Then, by the strong convergence of DDDU
k,λ

in (4.19) and the weak convergence of

SSSk
(·, ·,DDDU

k,λ
) in (4.21), we obtain

0 ≤ lim inf
k→∞

〈
SSSk(·,DDDU

k,λ) −SSS�
(·,BBB),

(
DDDU

k,λ −BBB
)
ϕ
〉
Q

=
〈
SSSλ −SSS�

(·,BBB),
(
DDDU

λ −BBB
)
ϕ
〉
Q

(4.41)
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828 E. SÜLI AND T. TSCHERPEL

for all ϕ ∈ C∞
0 (Q) such that ϕ ≥ 0 and for all matrices BBB ∈ U. By Lemma 2.2 (a4) this allows us to

conclude that (
DDDU

λ
(z),SSSλ

(z)
) ∈ A(z) for a.e. z ∈ Q,

so (4.37) is shown. �

Limit l, n → ∞
We are taking the limits l, n → ∞ simultaneously without imposing any condition on δl and hn. The
condition q > 2d

d+2 is required to gain compactness. Two additional difficulties, compared to Bulíček
et al. (2012), arise from the discretization. The first is that in order to prove a uniform bound on the
sequence of approximations to the time derivative, one would require the stability of the L2-projector
onto Vn

div in Sobolev norms, which would impose stronger requirements on the finite element partition of
Ω . To avoid this, instead of the Aubin–Lions lemma we shall employ an alternative compactness result
due to Simon (cf. Lemma 2.10), which requires convergence properties of time-increments. The second
difficulty is that, in the identification of the implicit relation, we have to deal with the discrepancy

between SSS
λ

and SSSλ, since SSS
λ

appears in the equation (4.35) and SSSλ satisfies the implicit relation
in (4.37).

Lemma 4.6 (Convergence as l, n → ∞). Let the functions U
l,n,m ∈ Pl

0(0, T;Vn
div), Ũ

l,n,m ∈
Pl

1(0, T;Vn
div), SSS

l,n,m ∈ Lq′
(Q)d×d and SSS

l,n,m ∈ Pl
0(0, T; Lq′

(Ω)d×d) satisfy (4.35)–(4.37), for any

l, n, m ∈ N, by Lemma 4.5. Further, let η := max
(
2q′, q(d+2)

d

)
> 2. For any 0 ≤ s0 < s ≤ T and

all λ = (l, n, m) ∈ N3, one has that

1

2

∣∣∣∣∣∣Ũλ
(s, ·)

∣∣∣∣∣∣ 2
L2(Ω)

+
〈
SSS

λ
,DDDU

λ
〉
Qs

s0

+ 1

m

∣∣∣∣∣∣Uλ
∣∣∣∣∣∣ 2q′

L2q′
(Qs

s0
)
≤ 〈

f , U
λ〉

Qs
s0

+ 1

2

∣∣∣∣∣∣Ũλ
(s0, ·)

∣∣∣∣∣∣ 2
L2(Ω)

. (4.42)

Furthermore, for each m ∈ N there exists a um ∈ L∞(0, T; L2
div(Ω)d) ∩ Xdiv(Q), SSSm ∈ Lq′

(Q)d×d and
subsequences such that, as l, n → ∞,

Ũ
l,n,m → um strongly in Lp(0, T; L2(Ω)d) for all p ∈ [1, ∞), (4.43)

Ũ
l,n,m

(s, ·) → um(s, ·) strongly in L2(Ω)d for a.e. s ∈ (0, T), (4.44)

Ũ
l,n,m

(0, ·) → u0 strongly in L2(Ω)d, (4.45)

Ũ
l,n,m

, U
l,n,m ∗

⇀ um weakly* in L∞(0, T; L2(Ω)d), (4.46)

U
l,n,m → um strongly in Lp(0, T; L2(Ω)d) ∩ Lr(Q)d (4.47)

for all p ∈ [1, ∞) and all r ∈ [1, η),

U
l,n,m

(s, ·) → um(s, ·) strongly in L2(Ω)d for a.e. s ∈ (0, T), (4.48)

U
l,n,m

⇀ um weakly in Lq
(

0, T; W1,q
0 (Ω)d

)
∩ Lη(Q)d, (4.49)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/40/2/801/5310121 by guest on 02 N
ovem

ber 2020



FULLY DISCRETE FINITE ELEMENT APPROXIMATION OF UNSTEADY FLOWS 829

∣∣Ul,n,m∣∣2q′−2U
l,n,m

⇀
∣∣um

∣∣2q′−2um weakly in L(2q′)′(Q)d, (4.50)

SSS
l,n,m

⇀ SSSm weakly in Lq′
(Q)d×d, (4.51)

SSSl,n,m
⇀ SSSm weakly in Lq′

(Q)d×d. (4.52)

Proof.

Step 1: Energy inequality. Let λ = (l, n, m) ∈ N3, i ∈ {1, . . . , l} and let t ∈ (ti−1, ti]. In (4.35) we

test with W = U
λ
(t, ·) ∈ Vn

div. For the first term adding and subtracting Ũ
λ
(t, ·) with (3.19) we obtain

〈
∂tŨ

λ
(t, ·), U

λ
(t, ·)

〉
Ω

=
〈
∂tŨ

λ
(t, ·), Ũ

λ
(t, ·)

〉
Ω

+
〈
∂tŨ

λ
(t, ·), U

λ
(t, ·) − Ũ

λ
(t, ·)

〉
Ω

= 1

2

d

dt

∣∣∣∣∣∣Ũλ
(t, ·)

∣∣∣∣∣∣ 2
L2(Ω)

+ (ti − t)
∣∣∣∣∣∣∂tŨ

λ
(t, ·)

∣∣∣∣∣∣ 2
L2(Ω)

≥ 1

2

d

dt

∣∣∣∣∣∣Ũλ
(t, ·)

∣∣∣∣∣∣ 2
L2(Ω)

,

(4.53)

since t ≤ ti. By the continuity of Ũ
λ
, upon integration over (s0, s), for 0 ≤ s0 < s ≤ T , this yields

ˆ s

s0

〈
∂tŨ

λ
(t, ·), U

λ
(t, ·)

〉
Ω

≥ 1

2

∣∣∣∣∣∣Ũλ
(s, ·)

∣∣∣∣∣∣ 2
L2(Ω)

− 1

2

∣∣∣∣∣∣Ũλ
(s0, ·)

∣∣∣∣∣∣ 2
L2(Ω)

. (4.54)

The other terms follow immediately and (4.42) is proved.

Step 2: Estimates. By the weak convergence in (4.21) and (4.22), the estimates (4.24) and (4.25)
uniformly in λ = (l, n, m) ∈ N3, and the lower semicontinuity of the norms with respect to weak
convergence, we obtain

∥∥SSSλ∥∥q′
Lq′

(Q)
+ ∥∥SSSλ

∥∥q′
Lq′

(Q)
≤ c for all λ ∈ N3. (4.55)

By (4.20) we have in particular that Uk,λ
i → Uλ

i strongly in W1,∞
0 (Ω)d, as k → ∞ for any i ∈ {1, . . . , l}.

By the lower semicontinuity of the norm function with respect to the convergence in the respective norm
we deduce from (4.8), which is uniform in λ = (l, n, m) ∈ N3, that

max
j∈{0,...,l}

∥∥Uλ
j

∥∥2
L2(Ω)

+
l∑

j=1

∥∥Uλ
j − Uλ

j−1

∥∥2
L2(Ω)

+ δl

l∑
j=1

∥∥Uλ
j

∥∥q
W1,q(Ω)

+ δl

m

l∑
j=1

∥∥Uλ
j

∥∥2q′
L2q′

(Ω)
≤ c, (4.56)
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830 E. SÜLI AND T. TSCHERPEL

for all λ = (l, n, m) ∈ N3. By the definition of the piecewise constant interpolant according to (3.17), it
follows from the discrete estimate that

∣∣∣∣∣∣Uλ
∣∣∣∣∣∣ L∞(0,T;L2(Ω)) +

∣∣∣∣∣∣Uλ
∣∣∣∣∣∣ q

Lq(0,T;W1,q(Ω))
+ 1

m

∣∣∣∣∣∣Uλ
∣∣∣∣∣∣ 2q′

L2q′
(Q)

(4.56)≤ c, (4.57)

for all λ = (l, n, m) ∈ N3. With this and the parabolic interpolation from Lemma 2.9, we have that

∣∣∣∣∣∣Uλ
∣∣∣∣∣∣

L
q(d+2)

d (Q)
≤ c for all λ = (l, n, m) ∈ N3. (4.58)

For the estimates of the continuous, piecewise affine interpolant Ũ
λ

according to (3.18), one also has to
estimate the corresponding norms of Uλ

0. In the L2(Ω)d norm this is given by (4.56), and hence we have
that

∣∣∣∣∣∣Ũλ
∣∣∣∣∣∣ L∞(0,T;L2(Ω))

(4.56)≤ c for all λ ∈ N3. (4.59)

Since for smaller function spaces on Ω the corresponding estimate is not available, for the compactness

argument we consider, instead, Û
λ ∈ C([0, T];Vn

div) defined by

Û
λ
(t, ·) :=

{
Ũ

λ
(t, ·) if t ∈ (δl, T],

U
λ
(t, ·) = Uλ

1(·) if t ∈ [0, δl].
(4.60)

This function is constant on [0, δl] and satisfies for r ∈ [1, ∞) and a normed space X the bound

∣∣∣∣∣∣Ûλ
∣∣∣∣∣∣ r

Lr(0,T;X) ≤ cδl

l∑
i=1

∣∣∣∣Uλ
i

∣∣∣∣ r
Lr(0,T;X) = c

∣∣∣∣∣∣Uλ
∣∣∣∣∣∣ r

Lr(0,T;X), (4.61)

and an analogous estimate holds for r = ∞. Then, by (4.57) it follows that

∣∣∣∣∣∣Ûλ
∣∣∣∣∣∣ L∞(0,T;L2(Ω)) +

∣∣∣∣∣∣Ûλ
∣∣∣∣∣∣ q

Lq(0,T;W1,q(Ω))
+ 1

m

∣∣∣∣∣∣Ûλ
∣∣∣∣∣∣ 2q′

L2q′
(Q)

≤ c for all λ = (l, n, m) ∈ N3. (4.62)

By the fact that ∂tŨ
λ
(t, ·) = dtU

λ
i , for t ∈ (ti−1, ti], i ∈ {1, . . . , l}, and by (4.56) we obtain

δl

∣∣∣∣∣∣∂tŨ
λ
∣∣∣∣∣∣ 2

L2(Q)
= δl

l∑
i=1

∣∣∣∣∣∣∣∣ 1

δl
(Uλ

i − Uλ
i−1)

∣∣∣∣∣∣∣∣ 2
L2(Qi

i−1)
=

l∑
i=1

∣∣∣∣Uλ
i − Uλ

i−1

∣∣∣∣ 2
L2(Ω)

(4.56)≤ c (4.63)

for all λ ∈ N3.
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Finally, we also estimate Lλ[u; v](t), as defined in (4.34): by (3.15), duality of norms and Hölder’s
and Poincaré’s inequality, we obtain

ˆ b

a
Lλ[u; v](t) dt = 〈̃

b(u(t, ·), u(t, ·), v)
〉
(a,b)

−
〈
SSS

λ
(t, ·),DDDv

〉
Qb

a

− 1

m

〈
|u(t, ·)| 2q′−2u(t, ·), v

〉
Qb

a

+
〈

f (t, ·), v
〉
Qb

a

≤ ||u|| 2
L2q′

(Qb
a)

||∇v|| Lq(Qb
a)

+ ||u|| L2q′
(Qb

a)
||∇u|| Lq(Qb

a)
||v|| L2q′

(Qb
a)

+
∣∣∣∣∣∣SSSλ

∣∣∣∣∣∣ Lq′
(Qb

a)

∣∣∣∣DDDv
∣∣∣∣

Lq(Qb
a)

+ 1

m
||u|| 2q′−1

L2q′
(Qb

a)
||v|| L2q′

(Qb
a)

+
∣∣∣∣∣∣ f

∣∣∣∣∣∣ Lq′
(a,b;W−1,q′

(Ω))
||v|| Lq(a,b;W1,q(Ω))

≤ c

(
1 + ||u|| 2

L2q′
(Qb

a)

)
||∇v|| Lq(Qb

a)

+ c

(
||u|| L2q′

(Qb
a)

||∇u|| Lq(Qb
a)

+ 1

m
||u|| 2q′−1

L2q′
(Qb

a)

)
||v|| L2q′

(Qb
a)

, (4.64)

for 0 ≤ a < b ≤ T , for any λ = (l, n, m) ∈ N3, where we have used the estimate (4.55) on SSS
λ

and (4.3)

on f . With the estimates on U
λ

in (4.57) this yields

ˆ b

a
Lλ[U

λ
; v](t) dt

(4.64)≤ c

(
1 +

∣∣∣∣∣∣Uλ
∣∣∣∣∣∣ 2

L2q′
(Qb

a)

)
||∇v|| Lq(Qb

a)

+ c

(∣∣∣∣∣∣Uλ
∣∣∣∣∣∣ L2q′

(Qb
a)

∣∣∣∣∣∣∇U
λ
∣∣∣∣∣∣ Lq(Qb

a)
+ 1

m

∣∣∣∣∣∣Uλ
∣∣∣∣∣∣ 2q′−1

L2q′
(Qb

a)

)
||v|| L2q′

(Qb
a)

(4.57)≤ c(m)
(
||∇v|| Lq(Qb

a)
+ ||v|| L2q′

(Qb
a)

)
, (4.65)

for 0 ≤ a < b ≤ T and any λ = (l, n, m) ∈ N3.

Step 3: Convergence of the time increments (cf. Carelli et al., (2010, pp. 174). Instead of applying the
Aubin–Lions lemma, as in Bulíček et al. (2012), here we apply the compactness result due to Simon,
stated in Lemma 2.10. This means that we do not need uniform bounds on the time derivatives, but only
convergence properties for time increments, which avoids the use of stability results in Sobolev norms

for the L2-projector onto Vn
div. We wish to apply Lemma 2.10 to the sequence {Ûl,n,m}l,n∈N, for fixed

m ∈ N, with X = W1,q(Ω)d, B = L2(Ω)d and p = 2. Let us show that

ˆ T−ε

0

∣∣∣∣∣∣Ûλ
(s + ε, ·) − Û

λ
(s, ·)

∣∣∣∣∣∣ 2
L2(Ω)

ds → 0, as ε → 0, uniformly for l, n ∈ N. (4.66)
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832 E. SÜLI AND T. TSCHERPEL

Consider the term
〈
Û

λ
(s + ε, ·)− Û

λ
(s, ·), W

〉
Ω

, for W ∈ Vn
div, s ∈ (0, T) and ε > 0 such that s + ε < T .

If s + ε ≤ δl, then we have Û
λ
(s + ε) = Û

λ
(s) = Uλ

1, so the term vanishes. Now let s + ε > δl. By the

definition of Û
λ

in (4.60) we have that Û
λ
(s, ·) = Û

λ
(max(s, δl), ·). By the continuity of Û

λ
and since

∂tÛ
λ

is integrable, we obtain

〈
Û

λ
(s + ε, ·) − Û

λ
(s, ·), W

〉
Ω

=
ˆ s+ε

max(s,δl)

〈
∂tÛ

λ
(t, ·), W

〉
Ω

dt =
ˆ s+ε

max(s,δl)

〈
∂tŨ

λ
(t, ·), W

〉
Ω

dt, (4.67)

where in the last line we have used that Û
λ
(t, ·) and Ũ

λ
(t, ·) coincide on (max(s, δl), s + ε) ⊂ [δl, T].

Applying the equation (4.35) for a.e. t ∈ (max(s, δl), s + ε), integrating and applying the bounds in
(4.65) yields

ˆ s+ε

max(s,δl)

〈
∂tŨ

λ
(t, ·), W

〉
Ω

dt =
ˆ s+ε

max(s,δl)

Lλ[U
λ
; W](t) dt

(4.65)≤ c(m)

(
||∇W||

Lq
(

Qs+ε
max(s,δl)

) + ||W||
L2q′(

Qs+ε
max(s,δl)

))
= c(m)

(
ε

1
q + ε

1
2q′

)
||W|| X(Ω), (4.68)

since W is constant in time and the length of the time interval is bounded by ε.

For all s ∈ (0, T) and ε > 0 such that s + ε < T , we have that Û
λ
(s + ε, ·), Û

λ
(s, ·) ∈ Vn

div; applying

(4.67) and (4.68) with W = Û
λ
(s + ε, ·) − Û

λ
(s, ·), which is piecewise constant in time, shows that

∣∣∣∣∣∣Ûλ
(s + ε, ·) − Û

λ
(s, ·)

∣∣∣∣∣∣ 2
L2(Ω)

≤ c(m)

(
ε

1
q + ε

1
2q′

) ∣∣∣∣∣∣Ûλ
(s + ε, ·) − Û

λ
(s, ·)

∣∣∣∣∣∣ X(Ω). (4.69)

Integrating over (0, T − ε), using the triangle inequality, Hölder’s inequality and the estimate in (4.62)
yields

ˆ T−ε

0

∣∣∣∣∣∣Ûλ
(s + ε, ·) − Û

λ
(s, ·)

∣∣∣∣∣∣ 2
L2(Ω)

ds

(4.69)≤ c(m)

(
ε

1
q + ε

1
2q′

) ˆ T−ε

0

(∣∣∣∣∣∣Ûλ
(s + ε, ·)

∣∣∣∣∣∣ X(Ω) +
∣∣∣∣∣∣Ûλ

(s, ·)
∣∣∣∣∣∣ X(Ω)

)
ds

≤ c(m)

(
ε

1
q + ε

1
2q′

) ∣∣∣∣∣∣Ûλ
∣∣∣∣∣∣ X(Q)

(4.62)≤ c(m)(ε
1
q + ε

1
2q′ ) → 0, (4.70)

as ε → 0 uniformly in l, n ∈ N, where λ = (l, n, m) ∈ N3. This proves (4.66).

Step 4: Convergence as l, n → ∞. Recall that we have λ = (l, n, m) ∈ N3 and let m ∈ N be fixed. By

estimate (4.62) we have that {Ûl,n,m}l,n∈N is bounded in particular in L2(Q)d and L1(0, T; W1,q(Ω)d).

By the condition that q > 2d
d+2 , the embedding W1,q(Ω) ↪→↪→ L2(Ω) is compact and with (4.66) all
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the assumptions in Lemma 2.10 are satisfied for X = W1,q(Ω)d, B = L2(Ω)d and p = 2. Hence, there
exists um ∈ L2(Q)d and a subsequence such that

Û
l,n,m → um strongly in L2(Q)d, as l, n → ∞. (4.71)

By the definition of Û
l,n,m

in (4.60) and the property (3.19) of the interpolants defined in (3.17) and
(3.18), we have that∣∣∣∣∣∣Ûl,n,m − Ũ

l,n,m
∣∣∣∣∣∣ 2

L2(Q)
=

∣∣∣∣∣∣Ul,n,m − Ũ
l,n,m

∣∣∣∣∣∣ 2
L2(0,δl;L2(Ω))

(3.19)≤
∣∣∣∣∣∣(δl − t)∂tŨ

l,n,m
∣∣∣∣∣∣ 2

L2(0,δl;L2(Ω))
≤ δ2

l

∣∣∣∣∣∣∂tŨ
l,n,m

∣∣∣∣∣∣ 2
L2(0,δl;L2(Ω))

(4.63)≤ cδl → 0, as l → ∞. (4.72)

With (4.71) it follows that Ũ
l,n,m → um strongly in L2(Q)d, as l, n → ∞. By the boundedness in

L∞(0, T; L2(Ω)d) in (4.59) and interpolation, this implies that

Ũ
l,n,m → um strongly in Lp(0, T; L2(Ω)d), as l, n → ∞, (4.73)

for any p ∈ [1, ∞). Similarly, by (3.19) we have that

∣∣∣∣∣∣Ul,n,m − Ũ
l,n,m

∣∣∣∣∣∣ 2
L2(Q)

(3.19)=
l∑

i=1

∣∣∣∣∣∣(ti − t)∂tŨ
l,n,m

∣∣∣∣∣∣ 2
L2(Qi

i−1)

≤ δ2
l

∣∣∣∣∣∣∂tŨ
l,n,m

∣∣∣∣∣∣ 2
L2(Q)

(4.63)≤ cδl → 0, as l → ∞. (4.74)

Consequently, with (4.73) it follows that U
l,n,m → um strongly in L2(Q)d, as l, n → ∞. In particular,

t �→ ‖U
l,n,m

(t, ·)− um(t, ·)‖L2(Ω) converges to zero strongly in L2(0, T), as l, n → ∞. Thus, there exists

a subsequence such that t �→ ‖U
l,n,m

(t, ·) − um(t, ·)‖L2(Ω) converges to zero a.e. in (0, T), as l, n → ∞,

which implies (4.48). Analogously, (4.45) follows from the strong convergence of Ũ
l,n,m

in (4.73).
The uniform bounds in L∞(0, T; L2(Ω)d) and Lη(Q)d, with η = max

(
2q′, q(d+2)

d

)
, by (4.57) and

(4.58), and the strong convergence in L2(Q)d, yield by interpolation, that

U
l,n,m → um strongly in Lp(0, T; L2(Ω)d) ∩ Lr(Q)d, as l, n → ∞, (4.75)

for any p ∈ [1, ∞) and any r ∈ [1, η). By the uniform bounds in (4.57), (4.58) and (4.59), and the
Banach–Alaoglu theorem, up to subsequences, we have that

Ũ
l,n,m

, U
l,n,m ∗

⇀ um weakly* in L∞(0, T; L2(Ω)d), (4.76)

U
l,n,m

⇀ um weakly in Lq(0, T; W1,q
0 (Ω)d) ∩ Lη(Q)d, (4.77)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/40/2/801/5310121 by guest on 02 N
ovem

ber 2020



834 E. SÜLI AND T. TSCHERPEL

as l, n → ∞, and the identification of the limiting functions follows by the strong convergence
in (4.75).

The argument that um is divergence-free follows as in Diening et al. (2013, p. 1001): let h ∈ Lq′
(Ω)

and note that by the Assumption 3.4 on the projector Πn
Q

, we have that Πn
Q

h → h in particular in Lq′
(Ω),

as n → ∞, compare Remark 3.5 (ii). Also, let ϕ ∈ C∞
0 (0, T). By (4.77) we have that div U

l,n,m
⇀ div um

weakly in Lq(Q), and hence〈
div U

l,n,m
, ϕΠn

Qh
〉
Q

→ 〈
div um, ϕh

〉
Q , as l, n → ∞. (4.78)

Since U
l,n,m ∈ Pl

0(0, T;Vn
div), the left-hand side vanishes for all l, n ∈ N, and hence we have

〈div um, hϕ〉Q = 0 for all h ∈ Lq′
(Ω) and all ϕ ∈ C∞(0, T), so by density um is (weakly)

divergence-free.

By (4.57) with (2q′)′(2q′ − 1) = 2q′ it follows that {|Ul,n,m|2q′−2 U
l,n,m}l,n∈N is bounded in

L(2q′)′(Q)d and thus, by the Banach–Alaoglu theorem there exists a subsequence and ψm ∈ L(2q′)′(Q)d

such that ∣∣∣Ul,n,m
∣∣∣ 2q′−2U

l,n,m
⇀ ψm weakly in L(2q′)′(Q)d, as l, n → ∞. (4.79)

By the strong convergence in (4.75), there exists a subsequence, which converges a.e. in Q, and hence
we can identify ψm = |um| 2q′−2um, which shows (4.50).

Because Ũ
l,n,m

(0, ·) = Pn
divu0 by (4.36), with (3.10) it follows that

Ũ
l,n,m

(0, ·) = Pn
divu0 → u0 strongly in L2(Ω)d, as n → ∞, (4.80)

so (4.45) is proven.
The uniform estimates in (4.55) and the Banach–Alaoglu theorem imply that there exist SSS

m
,

SSSm ∈ Lq′
(Q)d×d such that

SSS
l,n,m

⇀ SSS
m

weakly in Lq′
(Q)d×d, (4.81)

SSSl,n,m
⇀ SSSm weakly in Lq′

(Q)d×d, (4.82)

as l, n → ∞. It remains to show that SSS
m = SSSm; to this end, let BBB ∈ C∞

0 (Q)d×d be arbitrary but fixed.
On the one hand, the weak convergence in (4.81) shows that

〈
SSS

l,n,m
,BBB

〉
Q

→
〈
SSS

m
,BBB

〉
Q

, as l, n → ∞. (4.83)

On the other hand, by the relation between SSS
l,n,m

and SSSl,n,m according to (4.23), one can show that〈
SSS

l,n,m
,BBB

〉
Q = 〈

SSSl,n,m,BBB
〉
Q. By (3.24) we have thatBBB → BBB strongly in Lq(Q)d×d, as l → ∞, so that with
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the convergence in (4.82) it follows that〈
SSS

l,n,m
,BBB

〉
Q

=
〈
SSSl,n,m,BBB

〉
Q

→ 〈
SSSm,BBB

〉
Q , as l, n → ∞. (4.84)

By (4.83) and (4.84), the uniqueness of limits implies that SSS
m = SSSm a.e. in Q. �

For m ∈ N, t ∈ (0, T), u ∈ L2q′
(Q)d and v ∈ X(Ω) let us introduce

Lm[u; v](t) := − b(u(t, ·), u(t, ·), v) − 〈
SSSm

(t, ·),DDDv
〉
Ω

− 1

m

〈
|u(t, ·)| 2q′−2u(t, ·), v

〉
Ω

+ 〈 f (t, ·), v〉Ω , (4.85)

where SSSm is given by Lemma 4.6 and b(·, ·, ·) is defined in (3.11).

Lemma 4.7 (Identification of the PDE as l, n → ∞). The functions um ∈ L∞(0, T; L2
div(Ω)d)∩Xdiv(Q)

given in Lemma 4.6 satisfy that ∂tu
m ∈ Lτ (0, T; (Xdiv(Ω))′), with τ := min(q′, (2q′)′) > 1, and

Xdiv(Ω) defined in (2.1). (Up to a representative) we have that um ∈ Cw([0, T], L2
div(Ω)d) for all m ∈ N.

Furthermore, for each m ∈ N the functions um and SSSm ∈ Lq′
(Q)d×d from Lemma 4.6 satisfy〈

∂tu
m(t, ·), w

〉
Ω

= Lm[um; w](t) for all w ∈ C∞
0,div(Ω)d for a.e. t ∈ (0, T), (4.86)

(DDDum(z),SSSm
(z)) ∈ A(z) for a.e. z ∈ Q, (4.87)

ess limt→0+
∣∣∣∣um(t, ·) − u0

∣∣∣∣
L2(Ω) = 0. (4.88)

Proof. Let m ∈ N be arbitrary but fixed.

Step 1: Identification of the limiting equation. For λ = (l, n, m) ∈ N3 multiplying (4.35) by a function
ϕ ∈ C∞

0 ((−T , T)) and integrating over (0, T) yields〈
∂tŨ

λ
, Wϕ

〉
Q

(4.35)=
〈
Lλ[U

λ
, W], ϕ

〉
(0,T)

for any W ∈ Vn
div. (4.89)

Then, by integration by parts and the fact that Ũ
λ ∈ C([0, T]; L2(Ω)d), it follows that

−
〈
Ũ

λ
, W∂tϕ

〉
Q

=
〈
Ũ

λ
(0, ·), ϕ(0)W

〉
Ω

+
〈
Lλ[U

λ
, W], ϕ

〉
(0,T)

(4.90)

for all W ∈ Vn
div and all ϕ ∈ C∞

0 ((−T , T)) and λ = (l, n, m) ∈ N3.
Now let w ∈ C∞

0,div(Ω)d and ϕ ∈ C∞
0 ((−T , T)) be arbitrary. Recall that by Remark 3.5 for

w ∈ C∞
0,div(Ω)d, we have that

Vn
div 
 Πnw → w strongly in W1,s

0 (Ω)d, as n → ∞, for any s ∈ [1, ∞). (4.91)
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836 E. SÜLI AND T. TSCHERPEL

In order to deduce the limiting equation for um we consider (4.90) term by term, as l, n → ∞: let
s ∈ [1, ∞) be large enough that the embedding W1,s(Ω)d ↪→ L2(Ω)d is continuous. By the strong

convergence of Ũ
l,n,m

in Lp(0, T; L2(Ω)d), for p ∈ [1, ∞) by (4.43), with (4.91) we obtain that

−
〈
Ũ

l,n,m
, Πn(w)∂tϕ

〉
Q

→ − 〈
um, w∂tϕ

〉
Q , as l, n → ∞. (4.92)

Similarly, the strong convergence of Ũ
l,n,m

(0, ·) → u0 in L2(Ω)d in (4.45) yields that〈
Ũ

l,n,m
(0, ·), ϕ(0)Πnw

〉
Ω

→ 〈
u0, ϕ(0)w

〉
Ω

, as l, n → ∞. (4.93)

By the fact that U
l,n,m → um strongly in Lr(Q)d for all r ∈ [1, η), as l, n → ∞, by (4.47), it follows

that U
l,n,m ⊗ U

l,n,m → um ⊗ um strongly in Lp(Q)d×d for all p ∈ [
1, η

2

)
. Such a p > 1 exists, since

η = max
(
2q′, q(d+2)

d

)
> 2. With (4.91) applied for s = p′ < ∞, we obtain that ϕ∇Πnw → ϕ∇w

strongly in Lp′
(Q)d×d. Together these imply that〈

U
l,n,m ⊗ U

l,n,m
, ϕ∇Πnw

〉
Q

→ 〈
um ⊗ um, ϕ∇w

〉
Q , as l, n → ∞. (4.94)

For the modification of the convective term, note first that by (4.49) we have weak convergence of

∇U
l,n,m

⇀ ∇um in Lq(Q)d×d. By (4.47) we have in particular that U
l,n,m → um strongly in Lq′

(Q)d, as
l, n → ∞ since q′ < 2q′ ≤ η. For s > d, the embedding W1,s(Ω) ↪→ L∞(Ω) is continuous, and hence
we have ϕΠnw → ϕw strongly in L∞(Q)d. Together, this yields that〈

U
l,n,m ⊗ ϕΠnw, ∇U

l,n,m
〉
Q

→ 〈
um ⊗ ϕw, ∇um〉

Q , as l, n → ∞. (4.95)

By (4.91) we have that ϕDDDΠnw → ϕDDDw strongly in Lq(Q)d×d and by (4.51) that SSS
l,n,m

⇀ SSSm weakly
in Lq′

(Q)d×d. Thus, it follows that〈
SSS

l,n,m
, ϕDDDΠnw

〉
Q

→ 〈
SSSm, ϕDDDw

〉
Q , as l, n → ∞. (4.96)

Since |Ul,n,m|2q′−2U
l,n,m

⇀ |um| 2q′−2um weakly in L(2q′)′(Q)d by (4.50) and ϕΠnw → ϕw, in particular
in L2q′

(Q)d, we obtain

1

m

〈∣∣∣Ul,n,m
∣∣∣ 2q′−2U

l,n,m
, ϕΠnw

〉
Q

→ 1

m

〈∣∣um
∣∣ 2q′−2um, ϕw

〉
Q

, as l, n → ∞. (4.97)

Finally, with the strong convergence f → f in Lq′
(0, T; W−1,q′

(Ω)d) by (4.4) and with (4.91), we have
that 〈

f , ϕΠnw
〉
Q

→ 〈 f , ϕw〉Q , as l, n → ∞. (4.98)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/40/2/801/5310121 by guest on 02 N
ovem

ber 2020
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By the fact that um is divergence-free, it follows that b̃(um, um, ϕw) = b(um, um, ϕw). So with Ll,n,m and
Lm as defined in (4.34) and (4.85), respectively, the convergence results (4.94)–(4.98) yield that

〈
Ll,n,m[U

l,n,m
, Πnw], ϕ

〉
(0,T)

→ 〈
Lm[um, w], ϕ

〉
(0,T)

, as l, n → ∞. (4.99)

Now, from (4.90), using (4.92), (4.93) and (4.99), as l, n → ∞, we have that

− 〈
um, w∂tϕ

〉
Q = 〈

u0, ϕ(0)w
〉
Ω

+ 〈
Lm[um, w], ϕ

〉
(0,T)

(4.100)

for all w ∈ C∞
0,div(Ω)d and all ϕ ∈ C∞

0 ((−T , T)).

Step 2: Bound on the time-derivative. The distributional derivative of um satisfies, by definition and
using (4.100), that

〈
∂tu

m, wϕ
〉
Q = − 〈

um, w∂tϕ
〉
Q

(4.100)= 〈
Lm[um, w], ϕ

〉
(0,T)

(4.101)

for all w ∈ C∞
0,div(Ω)d and all ϕ ∈ C∞

0 ((0, T)), since supp ϕ ⊂ (0, T). Using this equation we wish
to show that ∂tu

m ∈ Lτ (0, T; (Xdiv(Ω))′) (not uniformly in m ∈ N), for τ := min(q′, (2q′)′) > 1 and
Xdiv(Ω) as in (2.1). For Lm as defined in (4.85), using the fact that um ∈ L2q′

(Q)d andSSSm ∈ Lq′
(Q)d×d,

similarly as in (4.64) we can estimate

∣∣∣〈Lm[um, w], ϕ
〉
(0,T)

∣∣∣ ≤ ∣∣∣∣um
∣∣∣∣ 2

L2q′
(Q)

||ϕ∇w|| Lq(Q)+
∣∣∣∣SSSm∣∣∣∣

Lq′
(Q)

∣∣∣∣ϕDDDw
∣∣∣∣

Lq(Q)

+ 1

m

∣∣∣∣um
∣∣∣∣ 2q′−1

L2q′
(Q)

||ϕw|| L2q′
(Q)

+ || f || Lq′
(0,T;W−1,q′

(Ω))
||ϕw|| Lq(0,T;W1,q(Ω))

≤ c(m)
(
||ϕ|| Lq(0,T) + ||ϕ|| L2q′

(0,T)

) (
||w|| W1,q(Ω) + ||w|| L2q′

(Ω)

)
≤ c(m) ||ϕ|| Lτ ′

(0,T)
||w|| X(Ω) (4.102)

for all ϕ ∈ C∞
0 ((0, T)) and all w ∈ C∞

0,div(Ω)d, since τ ′ = max(2q′, q). By the density of the respective

test function spaces, 〈Lm[um, ·], ·〉(0,T) represents a bounded linear functional on Lτ ′
(0, T; Xdiv(Ω)),

and thus we have that ∂tu
m ∈ Lτ (0, T; (Xdiv(Ω))′) by (4.101) and by reflexivity of the function space.

Consequently,
〈
∂tu

m, w
〉
Ω

is integrable for w ∈ C∞
0,div(Ω)d, and thus we can rephrase (4.101) by the

fundamental lemma of calculus of variations in the pointwise sense in time, so (4.86) is proved.

Step 3: Identification of the initial condition. Since the arguments are standard, let us only give an
outline and refer to Tscherpel (2018) for additional details. Using the function spaces which um and ∂tu

m

are contained in, one can show that um ∈ Cw([0, T]; L2
div(Ω)d), see Temam (1984, Lem. 1.1, 1.4, Ch. III,

§ 1). Then, by use of the equation and integration by parts, one can identify um(0, ·) = u0 ∈ L2
div(Ω)d.

Finally, by the strong convergence in (4.44) and (4.45), and also applying the energy inequality (4.42),
the proof of (4.88) can be concluded.
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838 E. SÜLI AND T. TSCHERPEL

Step 4: Energy identity. Let us recall that um ∈ Xdiv(Q) ↪→ Lmin(q,2q′)(0, T; Xdiv(Ω)d) and that
∂tu

m ∈ Lτ (0, T; (Xdiv(Ω))′), where τ = min(q′, (2q′)′), and equation (4.86) is satisfied. Because of
the lack of integrability in time, an approximation argument by means of mollification in time can be
applied to show the energy identity

1

2

∣∣∣∣um(s, ·)∣∣∣∣ 2
L2(Ω)

+ 〈
SSSm,DDDum〉

Qs
+ 1

m

∣∣∣∣um
∣∣∣∣ 2q′

L2q′
(Qs)

= 〈
f , um〉

Qs
+ 1

2

∣∣∣∣u0

∣∣∣∣ 2
L2(Ω)

(4.103)

for a.e. s ∈ (0, T). The proof follows by a standard procedure and we therefore omit the details, see, e.g.,
Lions (1969, Ch. 2.5). Let us note, however, that the identity can be obtained only for a.e. s ∈ (0, T),
since the limit can be taken only for Lebesgue points of the function t �→ ||um(t, ·)|| 2

L2(Ω)
. Also, the

attainment of the initial datum in the sense of (4.88) is used.

Step 5: Identification of the implicit relation. Recall that we have by the assertion (4.37) that the

inclusion (DDDU
l,n,m

(z),SSSl,n,m
(z)) ∈ A(z) holds for a.e. z ∈ Q. Furthermore, by (4.49) we have that

DDDU
l,n,m

⇀ DDDum weakly in Lq(Q)d×d and by (4.52) thatSSSl,n,m
⇀ SSSm weakly in Lq′

(Q)d×d, as l, n → ∞.
By Lemma 2.6 it suffices to show that

lim sup
l,n→∞

〈
SSSl,n,m,DDDU

l,n,m
〉
Qs

≤ 〈
SSSm,DDDum〉

Qs
, (4.104)

in order to obtain (DDDum(z),SSSm
(z)) ∈ A(z) for a.e. z ∈ Qs. Then we can exhaust Q by letting s → T .

We can only show (4.104) for a.e. s ∈ (0, T) since the energy identity (4.103) is available only for a.e.
s ∈ (0, T), and some of the arguments used to show (4.104) are only available for a.e. s ∈ (0, T).

Let us add and subtract the term 〈SSSl,n,m
,DDDU

l,n,m〉Qs
to obtain

〈
SSSl,n,m,DDDU

l,n,m
〉
Qs

=
〈
SSS

l,n,m
,DDDU

l,n,m
〉
Qs

+
〈
SSSl,n,m −SSS

l,n,m
,DDDU

l,n,m
〉
Qs

=: I + II, (4.105)

where the first term appears in the equation (4.35) for the approximate solutions and the second term
has to be shown to vanish. The energy inequality (4.42) yields that

I =
〈
SSS

l,n,m
,DDDU

l,n,m
〉
Qs

(4.42)≤ −1

2

∣∣∣∣∣∣Ũl,n,m
(s, ·)

∣∣∣∣∣∣ 2
L2(Ω)

+ 1

2

∣∣∣∣∣∣Ũl,n,m
(0, ·)

∣∣∣∣∣∣ 2
L2(Ω)

+
〈

f , U
l,n,m

〉
Qs

− 1

m

∣∣∣∣∣∣Ul,n,m
∣∣∣∣∣∣ 2q′

L2q′
(Qs)

. (4.106)

For the second term in (4.105), for l ∈ N let j ∈ {1, . . . , l} be such that s ∈ (tj−1, tj], i.e., j depends on s
and on l. By the relation (4.23) we have that

〈
SSSl,n,m −SSS

l,n,m
,DDDU

l,n,m
〉
Qi

i−1

=
〈ˆ ti

ti−1

SSSl,n,m
(t, ·) dt − δlSSS

l,n,m
,DDDU

l,n,m
〉
Ω

= 0 (4.107)
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for any i ∈ {1, . . . , l}. So for II we obtain that

II =
〈
SSSl,n,m −SSS

l,n,m
,DDDU

l,n,m
〉
Qtj

−
〈
SSSl,n,m −SSS

l,n,m
,DDDU

l,n,m
〉
Q

tj
s

(4.107)= 0 −
〈
SSSl,n,m,DDDU

l,n,m
〉
Q

tj
s

+
〈
SSS

l,n,m
,DDDU

l,n,m
〉
Q

tj
s

≤
〈
SSS

l,n,m
,DDDU

l,n,m
〉
Q

tj
s
, (4.108)

where the inequality follows since A(·) is monotone a.e. in Q, (000,000) ∈ A(·) a.e. in Q, and by the fact

that (DDDU
l,n,m

,SSSl,n,m
) ∈ A(·) a.e. in Q by (4.37). For the remaining term we use again (4.42) on (s, tj),

noting that the term involving 1
m is nonnegative, which yields

〈
SSS

l,n,m
,DDDU

l,n,m
〉
Q

tj
s

≤
〈

f , U
l,n,m

〉
Q

tj
s

− 1

2

∣∣∣∣∣∣Ũl,n,m
(tj, ·)

∣∣∣∣∣∣ 2
L2(Ω)

+ 1

2

∣∣∣∣∣∣Ũl,n,m
(s, ·)

∣∣∣∣∣∣ 2
L2(Ω)

. (4.109)

By the duality of norms, the estimate (4.57) and by (4.3), we obtain〈
f , U

l,n,m
〉
Q

tj
s

≤
∣∣∣∣∣∣ f

∣∣∣∣∣∣ Lq′
(s,tj;W−1,q′

(Ω))

∣∣∣∣∣∣Ul,n,m
∣∣∣∣∣∣ Lq(0,T;W1,q(Ω))

≤ c(m) || f || Lq′
(tj−1,tj;W−1,q′

(Ω))
≤ c(m) || f || Lq′

(s−δl,s+δl;W−1,q′
(Ω))

. (4.110)

Furthermore, we have Ũ
l,n,m

(tj, ·) = U
l,n,m

(tj, ·) = U
l,n,m

(s, ·), since s ∈ (tj−1, tj], and hence

II
(4.108),(4.109)≤

〈
f , U

l,n,m
〉
Q

tj
s

− 1

2

∣∣∣∣∣∣Ũl,n,m
(tj, ·)

∣∣∣∣∣∣ 2
L2(Ω)

+ 1

2

∣∣∣∣∣∣Ũl,n,m
(s, ·)

∣∣∣∣∣∣ 2
L2(Ω)

(4.110)≤ c(m) || f || Lq′
(s−δl,s+δl;W−1,q′

(Ω))
− 1

2

∣∣∣∣∣∣Ul,n,m
(s, ·)

∣∣∣∣∣∣ 2
L2(Ω)

+ 1

2

∣∣∣∣∣∣Ũl,n,m
(s, ·)

∣∣∣∣∣∣ 2
L2(Ω)

. (4.111)

Now applying lim supl,n→∞ to (I+II) with (4.106) and (4.111), noting that the term involving Ũ
l,n,m

(s, ·)
drops out, we obtain

lim sup
l,n→∞

(I + II) ≤ −1

2
lim

l,n→∞

∣∣∣∣∣∣Ul,n,m
(s, ·)

∣∣∣∣∣∣ 2
L2(Ω)

+ 1

2
lim

l,n→∞

∣∣∣∣∣∣Ũl,n,m
(0, ·)

∣∣∣∣∣∣ 2
L2(Ω)

− 1

m
lim inf
l,n→∞

∣∣∣∣∣∣Ul,n,m
∣∣∣∣∣∣ 2q′

L2q′
(Qs)

+ lim
l,n→∞

〈
f , U

l,n,m
〉
Qs

+ c(m) lim
l→∞ || f || Lq′

(s−δl,s+δl;W−1,q′
(Ω))

≤ −1

2

∣∣∣∣um(s, ·)∣∣∣∣ 2
L2(Ω)

+ 1

2

∣∣∣∣u0

∣∣∣∣ 2
L2(Ω)

− 1

m

∣∣∣∣um
∣∣∣∣ 2q′

L2q′
(Qs)

+ 〈
f , um〉

Qs
, (4.112)

where the last inequality is based on the following arguments. By (4.48) we have the convergence

U
l,n,m

(s, ·) → um(s, ·) strongly in L2(Ω)d, as l, n → ∞, for a.e. s ∈ (0, T). The second term converges

to 1
2‖u0‖2

L2(Ω)
, since by (4.45) we have that Ũ

l,n,m
(0, ·) → u0 strongly in L2(Ω)d. For the third term

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/40/2/801/5310121 by guest on 02 N
ovem

ber 2020



840 E. SÜLI AND T. TSCHERPEL

we use weak lower semicontinuity with respect to the weak convergence in L2q′
(Qs)

d and (4.49). For

the fourth term we have convergence, since U
l,n,m

⇀ um weakly in Lq(0, T; W1,q(Ω)d) by (4.49) and
f → f strongly in Lq′

(0, T; W−1,q′
(Ω)d) by (4.4), as l, n → ∞. The last term vanishes by the absolute

continuity of the integral, as l → ∞. Finally, returning to (4.105), applying lim supl,n→∞ and the energy
identity (4.103) for a.e. s ∈ (0, T), yields

lim sup
l,n→∞

〈
SSSl,n,m,DDDU

l,n,m
〉
Qs

(4.105)≤ lim sup
l,n→∞

(I + II)

(4.112)≤ −1

2

∣∣∣∣um(s, ·)∣∣∣∣ 2
L2(Ω)

+ 1

2

∣∣∣∣u0

∣∣∣∣ 2
L2(Ω)

− 1

m

∣∣∣∣um
∣∣∣∣ 2q′

L2q′
(Qs)

+ 〈
f , um〉

Qs

(4.103)= 〈
SSSm,DDDum〉

Qs
(4.113)

for a.e. s ∈ (0, T). This proves the claim in (4.104) and completes the proof. �

Limit m → ∞
In this step we lose the admissibility of the solution as a test function, and we have to use Lipschitz
truncation to identify the implicit relation. The availability of the solenoidal Lipschitz truncation allows
to simplify the arguments in Bulíček et al. (2012), since no pressure has to be reconstructed.

For q ∈
(

2d
d+2 , ∞

)
let us denote

q̂ := max

((
q(d + 2)

2d

)′
, q

)
= max

(
q(d + 2)

q(d + 2) − 2d
, q

)
< ∞, ν := max

(
q̂, 2q′) < ∞, (4.114)

and note that q̂ = q, if q ≥ 3d+2
d+2 .

Lemma 4.8 (Convergence m → ∞). For m ∈ N let um ∈ L∞(0, T; L2
div(Ω)d) ∩ Xdiv(Q) be such

that ∂tu
m ∈ Lτ (0, T; (Xdiv(Ω))′) and let SSSm ∈ Lq′

(Q)d×d be a solution to (4.86)–(4.88). Further, let
q̂, ν ∈ (1, ∞) be defined as in (4.114). Then, there exists a constant c > 0 such that, for all m ∈ N, we
have that ∣∣∣∣um

∣∣∣∣ 2
L∞(0,T;L2(Ω))

+ ∣∣∣∣um
∣∣∣∣ q

Lq(0,T;W1,q(Ω))
+ ∣∣∣∣SSSm∣∣∣∣ q′

Lq′
(Q)

+ 1

m

∣∣∣∣um
∣∣∣∣ 2q′

L2q′
(Q)

+ ∣∣∣∣um
∣∣∣∣

L
q(d+2)

d (Q)
≤ c.

(4.115)

Furthermore, there exists a function u ∈ L∞(0, T; L2
div(Ω)d) ∩ Lq(0, T; W1,q

0,div(Ω)d) such that we have

that ∂tu ∈ Lν′
(0, T; (W1,q̂

0,div(Ω)d)′), an SSS ∈ Lq′
(Q)d×d and subsequences such that, as m → ∞,

um → u strongly in Lq(0, T; L2
div(Ω)d) ∩ Lr(Q)d, ∀r ∈ [

1, q(d+2)
d

)
, (4.116)

um(s, ·) → u(s, ·) strongly in L2
div(Ω)d for a.e. s ∈ (0, T), (4.117)
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um ⇀ u weakly in Lq(0, T; W1,q
0,div(Ω)d) ∩ L

q(d+2)
d (Q)d, (4.118)

um ∗
⇀ u weakly* in L∞(0, T; L2

div(Ω)d), (4.119)

∂tu
m ⇀ ∂tu weakly in Lν′

(0, T; (W1,q̂
0,div(Ω)d)′), (4.120)

SSSm
⇀ SSS weakly in Lq′

(Q)d×d, (4.121)

1

m

∣∣um
∣∣ 2q′−2um → 0 strongly in L(2q′)′(Q)d. (4.122)

Proof.

Step 1: Estimates. Recall that the bounds on {Ul,n,m}l,n,m in L∞(0, T; L2(Ω)d) ∩ Lq(0, T; W1,q
0 (Ω)d),

on {m− 1
2q′ U

l,n,m
in L2q′

(Q)d by (4.57) and on {SSSl,n,m}l,n,m in Lq′
(Q)d×d by (4.55) are uniform in

m ∈ N. Hence, by the weak* and weak convergence in (4.46), (4.49) and (4.52), and the weak(*) lower
semicontinuity of the norm, the estimate (4.115) follows.

In order to derive a uniform bound on the time derivative, let us estimate Lm[um; v]. Since no uniform
bounds on ||um|| L2q′

(Q)
are available at this point, we use the bound (3.13) on the convective term, with

q̂ as defined in (4.114), to deduce that∣∣〈u(t, ·) ⊗ u(t, ·), ∇v〉Ω
∣∣ ≤ c

∥∥u(t, ·)∥∥2

L
q(d+2)

d (Ω)

||∇v|| Lq̂(Ω)
,

which holds, since q ≥ 2d
d+2 . Note that the embedding W1,q̂(Ω) ↪→ W1,q(Ω) ∩ L2q′

(Ω) is continuous

for q̂ as in (4.114). Also, we have for ν as defined in (4.114) that the embedding Lν(Ω) ↪→ Lq̂(Ω) ∩
Lq(Ω) ∩ L2q′

(Ω) is continuous. With this, similarly as in (4.102) applying the uniform estimates in
(4.115), one has that∣∣∣〈Lm[um, w], ϕ

〉
(0,T)

∣∣∣ ≤ ∣∣∣∣um
∣∣∣∣ 2

L
q(d+2)

d (Q)

||ϕ∇w|| Lq̂(Q)
+ ∣∣∣∣SSSm∣∣∣∣

Lq′
(Q)

∣∣∣∣ϕDDDw
∣∣∣∣

Lq(Q)

+ 1

m

∣∣∣∣um
∣∣∣∣ 2q′−1

L2q′
(Q)

||ϕw|| L2q′
(Q)

+ || f || Lq′
(0,T;W−1,q′

(Ω))
||ϕw|| Lq(0,T;W1,q(Ω))

≤ c ||ϕ|| Lν (0,T) ||w|| W1,q̂(Ω)
(4.123)

for all ϕ ∈ C∞
0 ((0, T)), all w ∈ C∞

0,div(Ω)d and all m ∈ N. With (4.86) and using the fact that ν < ∞,

and hence the space Lν(0, T; W1,q̂
0,div(Ω)d) is reflexive, this shows that {∂tu

m}m∈N is bounded in

Lν′
(0, T; (W1,q̂

0,div(Ω)d)′).

Step 2: Convergence as m → ∞. Since q > 2d
d+2 , the embedding W1,q

0,div(Ω)d ↪→↪→ L2
div(Ω)d

is compact. Because q̂ ≥ q > 2d
d+2 , the embedding W1,q̂

0,div(Ω) ↪→ L2
div(Ω)d is in particular

continuous and dense, which implies that (L2
div(Ω)d) ↪→ (W1,q̂

0,div(Ω))′. Combined with the embedding
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842 E. SÜLI AND T. TSCHERPEL

L2
div(Ω)d ↪→ (L2

div(Ω)d)′, this yields that the embedding L2
div(Ω)d ↪→ (W1,q̂

0,div(Ω))′ is continuous.
Hence, the Aubin–Lions compactness lemma implies that the embedding

{
v ∈ Lq(0, T; W1,q

0,div(Ω)d) : ∂tv ∈ Lν′
(0, T; (W1,q̂

0,div(Ω))′)
}

↪→↪→ Lq(0, T , L2
div(Ω)d)

is compact, see, for example, Roubíček (2013, Lem. 7.7). The fact that by (4.115) the sequence {um}m∈N
is bounded in Lq(0, T; W1,q

0,div(Ω)d) and that {∂tu
m}m∈N is bounded in Lν′

(0, T; (W1,q̂
0,div(Ω)d)′), then

ensures the existence of a subsequence such that

um → u strongly in Lq(0, T; L2
div(Ω)d), as m → ∞. (4.124)

By the estimates in (4.115), the uniform bound on {∂tu
m}m∈N in Lν′

(0, T; (W1,q̂
0,div(Ω)d)′) and the

Banach–Alaoglu theorem, there exists a subsequence such that (4.118)–(4.121) holds, where the limits
can be identified with the help of (4.124).

The strong convergence in Lr(Q)d for all r ∈ [
1, q(d+2)

d

)
asserted in (4.116) follows from the

strong convergence in L1(Q)d by (4.124), and the boundedness in L
q(d+2)

d (Q)d by (4.115) by means of
interpolation. The convergence (4.117) is deduced analogously to the proof of (4.44) by the arguments
following (4.74). By the estimate (4.115) we have with (2q′)′ = 2q′

2q′−1 > 1 that

∣∣∣∣∣∣∣∣ 1

m

∣∣um
∣∣ 2q′−2um

∣∣∣∣∣∣∣∣ (2q′)′
L(2q′)′ (Q)

≤ m−(2q′)′
ˆ

Q

∣∣um
∣∣ 2q′

dz = m1−(2q′)′ 1

m

∣∣∣∣um
∣∣∣∣ 2q′

L2q′
(Q)

(4.115)≤ cm1−(2q′)′ → 0,

as m → ∞, so (4.122) follows. �
For t ∈ (0, T), u ∈ L

q(d+2)
d (Q)d and v ∈ W1,q̂

0 (Ω)d with q̂ defined in (4.114), let us introduce

L[u; v](t) := − b(u(t, ·), u(t, ·), v) − 〈
SSS(t, ·),DDDv

〉
Ω

+ 〈 f (t, ·), v〉Ω , (4.125)

where SSS ∈ Lq′
(Q)d×d is the limiting function introduced in Lemma 4.8.

Lemma 4.9 (Identification of the PDE as m → ∞). The function u ∈ L∞(0, T; L2
div(Ω)d) ∩

Lq(0, T; W1,q
0,div(Ω)d) from Lemma 4.8 satisfies that ∂tu ∈ Lq̂′

(0, T; (W1,q̂
0,div(Ω)d)′), with q̂ defined in

(4.114). (Up to a representative) we have that u ∈ Cw([0, T], L2
div(Ω)d). Furthermore, the functions u

and SSS ∈ Lq′
(Q)d×d from Lemma 4.8 satisfy〈

∂tu(t, ·), w
〉
Ω

= L[u; w](t) for all w ∈ C∞
0,div(Ω)d, for a.e. t ∈ (0, T), (4.126)

(DDDu(z),SSS(z)) ∈ A(z) for a.e. z ∈ Q, (4.127)

ess limt→0+
∣∣∣∣u(t, ·) − u0

∣∣∣∣
L2(Ω) = 0, (4.128)

i.e., (u,SSS) is in particular a weak solution according to Definition 2.1.
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Proof.

Step 1: Identification of the limiting equation. Let w ∈ C∞
0,div(Ω)d, let ϕ ∈ C∞

0 ((0, T)) and let us
consider each of the terms in (4.86) and (4.126). By the weak convergence in (4.120) and (4.121), we
have that 〈

∂tu
m, ϕw

〉
Q → 〈

∂tu, ϕw
〉
Q, (4.129)〈

SSSm, ϕDDDw
〉
Q → 〈

SSS, ϕDDDw
〉
Q, (4.130)

as m → ∞. Since by (4.116) we have that um → u in Lr(Q)d×d for all r ∈ [
1, q(d+2)

d

)
, it follows that

um ⊗ um → u ⊗ u in Lr(Q)d×d for all r ∈ [
1, q(d+2)

2d

)
. Since q > 2d

d+2 , this set is nonempty and the

convergence holds in particular in L1(Q)d×d; hence, we have that〈
um ⊗ um, ϕ∇w

〉
Q → 〈u ⊗ u, ϕ∇w〉Q , as m → ∞. (4.131)

Taking the results in (4.129)–(4.131) and (4.122) shows that (4.86) implies (4.126).

Step 2: Identification of the initial condition. With similar arguments as in the proof of Lemma 4.7,
Step 3, it follows that u ∈ Cw([0, T]; L2

div(Ω)d), that u0 = u(0, ·) ∈ L2
div(Ω)d and that the initial datum

is attained in the sense of (4.128).

Step 3: Higher integrability of the time derivative. As in Step 2 in the proof of Lemma 4.6, we can
improve the integrability of ∂tu using the fact that (4.126) is satisfied. This yields that we have that

∂tu ∈ Lq̂′
(0, T; (W1,q̂

0,div(Ω)d)′), for q̂ as defined in (4.114).

Step 4: Identification of the implicit relation (cf. Bulíček et al., (2012) and Breit et al., (2013, Sec. 3)).
Recall that DDDum ⇀ DDDu weakly in Lq(Q)d×d by (4.118), that SSSm

⇀ SSS weakly in Lq′
(Q)d×d by (4.121)

and that we have that (DDDum(z),SSSm
(z)) ∈ A(z) for a.e. z ∈ Q by (4.87). Hence, by Lemma 2.6, it suffices

to show that

lim sup
m→∞

〈
SSSm,DDDum〉

Q̃ ≤ 〈
SSS,DDDu

〉
Q̃, (4.132)

for a set Q̃ ⊂ Q, to identify the implicit relation (DDDu,SSS) ∈ A(·) a.e. on Q̃.
Since there is no energy identity available for u, in order to identify the implicit relation, one has

to truncate the elements of the approximating sequence of velocity fields suitably so as to be able to
use them as test functions. In contrast with Bulíček et al. (2012), we will not use a parabolic Lipschitz
truncation after locally reconstructing the approximations to the pressure, but work with the solenoidal
Lipschitz truncation introduced subsequently in Breit et al. (2013) and stated in Lemma 2.7, as the
argument is then more direct.

We wish to truncate vm := um − u, which satisfies, for all ξ ∈ C∞
0,div(Q)d, that

〈
∂tv

m, ξ
〉
Q = 〈

um ⊗ um − u ⊗ u, ∇ξ
〉
Q − 〈

SSSm −SSS,DDDξ
〉
Q − 1

m

〈∣∣um
∣∣ 2q′−2um, ξ

〉
Q

, (4.133)
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by (4.86) and (4.126) and by the density of C∞
0 (0, T) × C∞

0,div(Ω)d in C∞
0,div(Q)d. Due to the (lower

order) regularizing term we aim to apply Corollary 2.8 instead of Lemma 2.7 with p = q ∈ (1, ∞) and
σ such that

1 < σ < min

(
2, q, q′, q(d + 2)

2d
, (2q′)′

)
= min

(
q′, q(d + 2)

2d
, (2q′)′

)
. (4.134)

Such a σ exists, since we have by assumption that q > 2d
d+2 . Let Q0 = I0 × B0 ⊂⊂ Q be a parabolic

cylinder. First note that u and um are (weakly) divergence-free, and so is vm, and vm ⇀ 0 weakly in
Lq(I0; W1,q(B0)

d), as m → ∞ by (4.118). Since um → u strongly in Lp(Q) for p ∈ [
1, q(d+2)

d

)
by

(4.116) and σ <
q(d+2)

d , we have that vm → 0 strongly in Lσ (Q0)
d, as m → ∞. Furthermore, since

{um}m∈N is bounded in L∞(0, T; L2(Ω)d) by (4.115), we have with σ < 2 that {vm}m∈N is bounded in
L∞(0, T; Lσ (Ω)d). Now we set

GGGm
1 := SSS−SSSm, G̃GG

m
2 := um ⊗ um − u ⊗ u and f m := − 1

m

∣∣um
∣∣ 2q′−2um.

Note thatGGGm
1 ⇀ 000 weakly in Lq′

(Q0)
d×d by (4.121). By (4.116) we have that um → u in Lr(Q)d for all

r ∈ [
1, q(d+2)

d

)
, and thus, um ⊗ um → u ⊗ u in Lr(Q)d×d for all r ∈ [

1, q(d+2)
2d

)
. This holds in particular

for r = σ <
q(d+2)

2d . Furthermore, by (4.122) we have that f m → 0 strongly in L(2q′)′(Q)d, as m → ∞,
and hence also strongly in Lσ (Q0)

d. This means that all the assumptions of Corollary 2.8 are satisfied,
and hence the statement of Lemma 2.7 is available withGGGm

2 := G̃GG
m
2 − ∇Δ−1f m.

With the aid of the parabolic solenoidal Lipschitz truncation, we show that

lim
m→∞

ˆ
1
8 Q0

[(
SSSm −SSS�

(·,DDDu)
)

:
(
DDDum −DDDu

)] 1
2 dz = 0, (4.135)

where the exponent 1
2 is used to control the size of the set, where vm = um − u and its truncation do not

coincide. By the monotonicity of A and the fact that (DDDu,SSS�
(·,DDDu)) ∈ A(·) and (DDDum,SSSm

) ∈ A(·) a.e.
in Q by (4.87), it follows that the lim infm→∞ of the above is nonnegative. To show the other direction,
denote Hm := (

SSSm −SSS�
(·,DDDu)

)
:
(
DDDum −DDDu

) ≥ 0, and let j ≥ j0, Bm,j ⊂ Q0 and vm,j be given by

Lemma 2.7 applied on Q0, and by (ii) we have that vm = vm,j on 1
8 Q0\Bm,j. Dividing the domain into

1
8 Q0 ∩ Bm,j and 1

8 Q0\Bm,j, by Hölder’s inequality, we obtain

ˆ
1
8 Q0

(Hm)
1
2 dz =

ˆ
1
8 Q0∩Bm,j

(Hm)
1
2 dz +

ˆ
1
8 Q0\Bm,j

(Hm)
1
2 dz

≤
∣∣∣ 1

8 Q0 ∩ Bm,j

∣∣∣ 1
2

(ˆ
1
8 Q0∩Bm,j

Hm dz

) 1
2

+
∣∣∣ 1

8 Q0\Bm,j

∣∣∣ 1
2

(ˆ
1
8 Q0\Bm,j

Hm dz

) 1
2

≤
∣∣∣Bm,j

∣∣∣ 1
2

(ˆ
Q

Hm dz
) 1

2 + |Q| 1
2

(ˆ
1
8 Q0\Bm,j

Hm dz

) 1
2

, (4.136)
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where we have used the nonnegativity of Hm in the first term. Since Hm is bounded in L1(Q) by the a
priori estimate in (4.115), one has that

ˆ
1
8 Q0

(Hm)
1
2 dz ≤ c

∣∣∣Bm,j

∣∣∣ 1
2 + c

(ˆ
1
8 Q0\Bm,j

Hm dz

) 1
2

. (4.137)

By Lemma 2.7 (iii) we have that

lim sup
m→∞

∣∣∣Bm,j

∣∣∣ 1
2 ≤ lim sup

m→∞

(
λ

q
m,j

∣∣∣Bm,j

∣∣∣) 1
2 ≤ c2− j

2 . (4.138)

Let ζ ∈ C∞
0 ( 1

6 B0) be the nonnegative function given by Lemma 2.7 such that ζ | 1
8 B0

≡ 1. In the second

term in (4.137), we can use the nonnegativity of Hm, the definition of Hm and vm and, finally, the
definition ofGGGm

1 in order to find that SSSm = SSS−GGGm
1 , and we obtain

ˆ
1
8 Q0\Bm,j

Hm dz =
ˆ

1
8 Q0\Bm,j

Hm ζ dz =
ˆ

1
8 Q0

Hm ζ 1Bc
m,j

dz

≤
ˆ

Hm ζ 1Bc
m,j

dz =
ˆ (

SSSm −SSS�
(·,DDDu)

)
: DDDvm ζ 1Bc

m,j
dz

= −
ˆ (

GGGm
1 −SSS+SSS�

(·,DDDu)
)

: ∇vm ζ 1Bc
m,j

dz. (4.139)

Since SSS−SSS�
(·,DDDu) ∈ Lq′

(Q)d×d, we can use Lemma 2.7 (vii). Applying lim supm→∞ we find that

lim sup
m→∞

ˆ
1
8 Q0\Bm,j

Hm dz
(4.139)≤ lim sup

m→∞

∣∣∣∣ˆ (
GGGm

1 −SSS+SSS�
(·,DDDu)

)
: ∇vm ζ 1Bc

m,j
dz

∣∣∣∣ ≤ c2− j
q . (4.140)

Using (4.138) and (4.140) in (4.137) yields

lim sup
m→∞

ˆ
1
8 Q0

[(
SSSm −SSS�

(·,DDDu)
)

:
(
DDDum −DDDu

)] 1
2 dz = lim sup

m→∞

ˆ
1
8 Q0

(Hm)
1
2 dz

(4.137)≤ c lim sup
m→∞

∣∣∣Bm,j

∣∣∣ 1
2 + c lim sup

m→∞

(ˆ
1
8 Q0\Bm,j

Hm dz

) 1
2

(4.138),(4.140)≤ c(2− j
2 + 2− j

2q ). (4.141)

Then taking j → ∞ gives the claim and (4.135) is proved.

This means that (Hm)
1
2 → 0 strongly in L1( 1

8 Q0), as m → ∞. However, to show (4.132) we need

L1-convergence of Hm at least on suitable subdomains. The L1-convergence implies that (Hm)
1
2 → 0

a.e. in 1
8 Q0, and hence Hm → 0 a.e. in 1

8 Q0. Egorov’s theorem implies that there exists a nonincreasing
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sequence of measurable subsets Ei ⊂ 1
8 Q0, i ∈ N, with

∣∣Ei

∣∣ → 0 as i → ∞, such that Hm → 0
uniformly on 1

8 Q0\Ei, as m → ∞, for any fixed i ∈ N. In particular, we have that Hm → 0 in
L1( 1

8 Q0\Ei), as m → ∞, for any fixed i ∈ N, i.e.,〈
SSSm −SSS�

(·,DDDu),DDDum −DDDu
〉

1
8 Q0\Ei

→ 0, as m → ∞, (4.142)

for any fixed i ∈ N. With the weak convergence of SSSm
⇀ SSS in Lq′

(Q)d×d by (4.121) and the weak
convergence ofDDDum ⇀ DDDu in Lq(Q)d×d following from (4.119), we thus deduce that

lim
m→∞

〈
SSSm,DDDum〉

1
8 Q0\Ei

= 〈
SSS,DDDu

〉
1
8 Q0\Ei

for all i ∈ N.

This shows (4.132) for Q̃ = 1
8 Q0\Ei, and thus we find that (DDDu(z),SSS(z)) ∈ A(z) for a.e. z ∈ 1

8 Q0\Ei.
Since

∣∣Ei

∣∣ → 0, as i → ∞, we have that (DDDu(z),SSS(z)) ∈ A(z) for a.e. z ∈ 1
8 Q0.

Finally, let us consider a cover of Q consisting of (open) parabolic cylinders Qj = Ij × Bj, j ∈ J, for
an index set J such that Q = ⋃

j∈J
1
8 Qj. This can be, for example, chosen as a Whitney-type cover, cf.

Diening et al. (2010). Then we can identify the implicit relation a.e. on 1
8 Qj for all j ∈ J by the above,

and thus have that (DDDu(z),SSS(z)) ∈ A(z) for a.e. z ∈ Q, which proves (4.127). �
Remark 4.10 As an alternative to the fully implicit approximate problem in (4.6), (4.7) with (4.5), one
can consider the semi-implicit scheme by replacing b̃(u, u, v) by b̃(Uκ

i−1, u, v), for κ = (k, l, n, m) ∈ N4.
Since this represents a linearization of the problem, the approximate solutions exist and are unique. To
show uniform estimates for the shifted interpolant, one has to estimate Un

0, which is the value taken on
[0, δl]. This can be done by assuming one of the following:

(1) Assume that {Tn}n∈N is quasiuniform and, if q < 2 and Vn
div, consists of discretely divergence-

free finite element functions, assume additionally that there exist constants c > 0 and ε > 0
such that

δl ≤ ch
d
2 (

2−q
q−1 )+ε

n for all l, n ∈ N.

(2) Or assume that u0 ∈ W1,q
0,div(Ω)d and replace (4.6) by Un

0 = Πnu0.
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