
TACAS
Evaluation
Artifact

2020
Accepted

Simple Strategies in Multi-Objective MDPs�

Florent Delgrange1,2,† , Joost-Pieter Katoen1 ,
Tim Quatmann1 , and Mickael Randour2

1 RWTH Aachen University, Aachen, Germany
2 UMONS – Université de Mons, Mons, Belgium

Abstract We consider the verification of multiple expected reward ob-
jectives at once on Markov decision processes (MDPs). This enables a
trade-off analysis among multiple objectives by obtaining a Pareto front.
We focus on strategies that are easy to employ and implement. That is,
strategies that are pure (no randomization) and have bounded memory.
We show that checking whether a point is achievable by a pure stationary
strategy is NP-complete, even for two objectives, and we provide an MILP
encoding to solve the corresponding problem. The bounded memory case
is treated by a product construction. Experimental results using Storm
and Gurobi show the feasibility of our algorithms.

1 Introduction

MDPs. Markov decision processes (MDPs) [4,3] are a key model in stochastic
decision making. The classical setting involves a system subject to a stochastic
model of its environment, and the goal is to synthesize a system controller, repre-
sented as a strategy for the MDP, ensuring a given level of expected performance.
Tools such as Prism [30] and Storm [16] support MDP model checking.
Multi-objective MDPs. MDPs where the goal is to achieve a combination of objec-
tives (rather than just one) are popular in e.g., AI [41] and verification [2]. This is
driven by applications, where controllers have to fulfill multiple, potentially con-
flicting objectives, requiring a trade-off analysis. This includes multi-dimension
MDPs [14,20,40,13] where weight vectors are aggregated at each step and MDPs
where the specification mixes different views (e.g., average and worst case perfor-
mance) of the same weight [11,8]. With multiple objectives, optimal strategies
no longer exist in general: instead, Pareto-optimal strategies are considered. The
Pareto front, i.e., the set of non-dominated achievable value vectors is usually
non-trivial. Elaborate techniques are needed to explore it efficiently, e.g., [23,24].
Simple strategies. Another stumbling block in multi-objective MDPs is the com-
plexity of strategies: Pareto-optimal strategies typically need both memory and
randomization. A simple conjunction of reachability objectives already requires
randomization and exponential memory (in the number of reachability sets) [40].
† currently affiliated with Vrije Universiteit Brussel.
� Research partially supported by F.R.S.-FNRS Grant n◦ F.4520.18 (ManySynth).

Mickael Randour is an F.R.S.-FNRS Research Associate.

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12078, pp. 346–364, 2020.
https://doi.org/10.1007/978-3-030-45190-5_19

http://orcid.org/0000-0003-2254-0596
http://orcid.org/0000-0002-6143-1926
http://orcid.org/0000-0002-2843-5511
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45190-5_19&domain=pdf

Some complex objectives even need infinite memory, e.g., [11,8]. In controller
synthesis, strategies requiring randomization and/or (much) memory may not
be practical. Limited-memory strategies are required on devices with limited re-
sources [7]. Randomization is elegant and powerful from a theoretical view, but
has practical limitations, e.g., it limits reproducibility which complicates debug-
ging. Randomized strategies are also often despised for medical applications [33]
and product design – all products should have the same design, not a random
one. This motivates to consider the analysis of simple strategies, i.e., strategies
using no randomization and a limited amount of memory (given as a parameter).
While most works study the Pareto front among all strategies, we establish ways
to explore efficiently the Pareto front among simple strategies only.
Problem statement. We consider pure (i.e., no randomization) and bounded-
memory strategies and study two problems: (a) achievability queries – is it pos-
sible to achieve a given value vector – and (b) approximation of the Pareto
front. Considering pure, bounded-memory strategies is natural as randomiza-
tion can be traded for memory [12]: without randomization, optimal strategies
may require arbitrarily large memory, (see Ex. 4). We study mixtures of expected
(accumulated) reward objectives, covering various studied settings like reachabil-
ity [20,40], shortest path [39,40,28,9] and total reward objectives [23,24].
Contributions. We first consider the achievability problem for pure stationary
(i.e., memoryless) strategies and show that finding optimal strategies for multi-
objective MDPs is NP-complete, even for two objectives. This contrasts the
case of general strategies, where the problem is polynomial-time if the number
of objectives is fixed [40]. We provide a mixed integer linear program (MILP)
encoding. The crux lies in dealing with end components. The MILP is polynomial
in the input MDP and the number of objectives. Inspired by [22], we give an
alternative MILP encoding which is better suited for total reward objectives. To
approximate the Pareto front under pure stationary strategies, we solve multiple
MILP queries. This iteratively divides the solution space into achievable and
non-achievable regions. Bounded-memory strategies are treated via a product
construction. Our approach works for finite and infinite expected rewards.
Practical evaluation. We successfully compute Pareto fronts for 13 benchmarks
using our implementation in Storm, exploiting the MILP solver Gurobi. Despite
the hard nature of the problem, our experiments show that Pareto fronts for
models with tens of thousands of states can be successfully approximated.
Related work. NP completeness for discounted rewards under pure strategies was
shown in [14]. [19] claims that this generalizes to PCTL objectives but no proof is
given. [42] treats multi-objective bounded MDPs whose transition probabilities
are intervals. A set of Pareto optimal policies is computed using policy iteration
and an efficient heuristic is exploited to compute a set of mutually non-dominated
policies that are likely to be Pareto optimal. Pure stationary Pareto optimal
strategies for discounted rewards are obtained in [44] using value-iteration but is
restricted to small MDPs where all probabilities are 0 or 1. In [34],Tchebycheff-
optimal strategies for discounted rewards are obtained via an LP approach; such
strategies minimize the distance to a reference point and are not always pure.

Simple Strategies in Multi-Objective MDPs 347

2 Preliminaries

For a finite set Ω, let Dist(Ω) =
{
μ : Ω → [0, 1] | ∑ω∈Ω μ(ω) = 1

}
be the set of

probability distributions over Ω with support supp(μ) = {ω ∈ Ω | μ(ω) > 0}. We
write R≥0 = {|x| | x ∈ R} and R∞ = R∪{∞} for the non-negative and extended
real numbers, respectively. 1� = 〈1, . . . , 1〉 denotes the vector of size � ∈ N with
all entries 1. We just write 1 if � is clear. Let p�i� denote the ith entry and p ·p′

the dot product of p,p′ ∈ (R∞)�. p ≤ p′, p + p′, and |p| are entry-wise. For
Boolean expression cond , let [cond] = 1 if cond is true and [cond] = 0 otherwise.

2.1 Markov Decision Processes, Strategies, and End Components

Definition 1 (Markov decision process [36]). A Markov decision process
(MDP) is a tuple M = 〈S,Act ,P, sI 〉 with finite set of states S, initial state
sI ∈ S, finite set of actions Act , and transition function P : S×Act ×S → [0, 1]
with

∑
s′∈S P(s, α, s′) ∈ {0, 1} for all s ∈ S and α ∈ Act .

We fix an MDP M = 〈S,Act ,P, sI 〉. Intuitively, P(s, α, s′) is the probability to
take a transition from s to s′ when choosing action α. An infinite path in M is a
sequence π = s0α1s1α2 · · · ∈ (S×Act)ω with P(si, αi+1, si+1) > 0 for all i ∈ N.
We write π[i] = si for the (i+1)th state visited by π and define the length of π
as |π| = ∞. A finite path is a finite prefix π̂ = s0α1 . . . αnsn of infinite path π,
where last(π̂) = sn ∈ S, |π̂| = n and π̂[i] = si for i ≤ n. The set of finite (infinite)
paths in M is denoted by PathsMfin (PathsMinf). The enabled actions at a state
s ∈ S are given by the set Act(s) = {α ∈ Act | ∃ s′ ∈ S : P(s, α, s′) > 0}. We
assume Act(s)
= ∅ for all s. If |Act(s)| = 1 for all s ∈ S, M is called a Markov
Chain (MC). We write Ms for the MDP obtained by replacing the initial state
of M by s ∈ S. For s ∈ S and α ∈ Act , we define the set of successor states
succ(s, α) = {s′ | P(s, α, s′) > 0}. For s′ ∈ S, the set of predecessor state-action
pairs is given by pre(s′) = {〈s, α〉 | P(s, α, s′) > 0}. For a set E ⊆ S × Act , we
define S�E� = {s ∈ S | ∃α : 〈s, α〉 ∈ E}, Act�E� = {α ∈ Act | ∃ s : 〈s, α〉 ∈ E},
and P�E�(s, α, s′) = [〈s, α〉 ∈ E] · [s′ ∈ S�E�] · P(s, α, s′). We say E is closed for
M if ∀ 〈s, α〉 ∈ E : α ∈ Act(s) and succ(s, α) ⊆ S�E�.

Definition 2 (Sub-MDP). The sub-MDP of M, closed E ⊆ S × Act , and
s ∈ S�E� is given by M�E , s� = 〈S�E�,Act�E�,P�E�, s〉. We also write M�E� for
the sub-MDP M�E , s� and an arbitrary state s ∈ S�E�.

Definition 3 (End Component). A non-empty set E ⊆ S × Act is an end
component (EC) of M if E is closed for M and for each pair of states s, s′ ∈ S�E�
there is a finite path π̂ ∈ Paths

M�E�
fin with π̂[0] = s and last(π̂) = s′. An EC E

is maximal, if there is no other EC E ′ with E � E ′. The set of all maximal end
components of M is MECS (M).

The maximal ECs of a Markov chain are also called bottom strongly connected
components (BSCCs). A strategy resolves nondeterminism in MDPs:

348 F. Delgrange et al.

Definition 4 (Strategy). A (general) strategy for MDP M is a function
σ : PathsMfin → Dist(Act) with supp(σ(π̂)) ⊆ Act(last(π̂)) for all π̂ ∈ PathsMfin .

Let σ be a strategy for M. Intuitively, σ(π̂)(α) is the probability to perform
action α after observing history π̂ ∈ PathsMfin . A strategy is pure if all histories
are mapped to Dirac distributions, i.e., the support is a singleton. A strategy
is stationary if its decisions only depend on the current state, i.e., ∀ π̂, π̂′ ∈
PathsMfin : last(π̂) = last(π̂′) implies σ(π̂) = σ(π̂′). We often assume σ : S →
Dist(Act) for stationary and σ : S → Act for pure stationary strategies σ. Let
ΣM and ΣM

PS be the sets of general and pure stationary strategies, respectively. A
set of paths Π ⊆ PathsMinf is compliant with σ ∈ ΣM if for all π = s0α1s1 · · · ∈ Π
and prefixes π̂ of π satisfy σ(π̂)(α|π̂|+1) > 0. The induced Markov chain of M
and σ ∈ ΣM

PS is given by Mσ = M�Eσ, sI � with Eσ = {〈s, σ(s)〉 | s ∈ S}.
MDP M and strategy σ ∈ ΣM induce a probability measure PrMσ on subsets

Π ⊆ PathsMinf given by a standard cylinder set construction [4,22]. The expected
value of X : PathsMinf → R∞ is EM

σ (X) =
∫
π
X(π) dPrMσ ({π}). For σ ∈ ΣM

PS,
PrMσ and EM

σ coincide with the corresponding measures on MC Mσ.

2.2 Objectives

A reward structure R : S × Act × S → R≥0 assigns non-negative rewards to
transitions. We accumulate rewards on (in)finite paths π = s0α1s1α2 . . . : R(π) =∑|π|

i=1 R(si−1, αi, si). For a set of goal states G ⊆ S, let R♦G(π) = R(π̂), where
π̂ is the smallest prefix of π with last(π̂) ∈ G (or π̂ = π if no such prefix
exists). Intuitively, R♦G(π) is the reward accumulated on π until a state in
G is reached. A (reward) objective has the form E∼(R♦G) for ∼ ∈ {≥,≤}.
We write 〈M, σ, p〉 |= E∼(R♦G) iff EM

σ (R♦G) ∼ p, i.e., for M and σ, the
expected accumulated reward until reaching G is at least (or at most) p ∈ R∞.
We call the objective maximizing if ∼ = ≥ and minimizing otherwise. If G = ∅
(i.e., R♦G(π) = R(π) for all paths π), we call the objective a total reward
objective. Let the reward structure RG be given by R(s, α, s′) = [s′ ∈ G]. Then,
PrMσ (♦G) = EM

σ (RG♦G) for every σ ∈ ΣM, where ♦G ⊆ PathsMinf denotes the
set of paths that visit a state in G. We use P∼(♦G) as a shortened for E∼(RG♦G)
and call such an objective a reachability objective.

Definition 5 (Multi-objective query). For MDP M, an �-dimensional multi-
objective query is a tuple Q = 〈ψ1, . . . , ψ�〉 of � objectives ψj = E∼j

(Rj♦Gj).

Each objective ψj considers a different reward structure Rj . The MDP M,
strategy σ, and point p ∈ (R∞)� satisfy a multi-objective query Q = 〈ψ1, . . . , ψ�〉
(written 〈M, σ,p〉 |= Q) iff ∀ j : 〈M, σ,p�j�〉 |= ψj . Then, we also say σ achieves
p and call p achievable. Let AchM(Q) (AchM

PS(Q)) denote the set of points
achieved by a general (pure stationary) strategy. The closure of a set P ⊆ (R∞)�

with respect to query Q is clQ(P) =
{
p ∈ (R∞)� | ∃p′ ∈ P : ∀ j : p′�j� ∼j p�j�

}
.

For p,p′ ∈ (R∞)�, we say that p dominates p′ if p′ ∈ clQ({p}). In this case,
〈M, σ,p〉 |= Q implies 〈M, σ,p′〉 |= Q for any σ ∈ ΣM. We are interested in the
Pareto front, which is the set of non-dominated achievable points.

Simple Strategies in Multi-Objective MDPs 349

s1

s2

s4

s5

s6

s3α

β

γ

δ

0.3

0.7

0.8

0.2

(a) MDP M with G�= {s4, s6} and G�= {s3}

〈0.7, 0.7〉

〈0, 1〉

〈1, 0〉

〈1, 0.8〉

P≥(♦G�)

P ≥
(♦

G
�
)

(b) AchM(Q) and AchM
PS(Q)

Figure 1: An MDP and a plot of the pure stationary and general Pareto fronts.

Definition 6 (Pareto front). The (general) Pareto front for M and Q is
ParetoM(Q) =

{
p ∈ AchM(Q) | ∀p′ ∈ AchM(Q) : p ∈ clQ({p′}) =⇒ p = p′

}
.

The Pareto front is the smallest set P ⊆ (R∞)� with clQ(P) = AchM(Q). In a
similar way, we define the pure stationary Pareto front ParetoM

PS(Q) which only
consider points in AchM

PS(Q).

Example 1. Let M be the MDP in Fig. 1a and Q = 〈P≥(♦G�),P≥(♦G�)〉. A
pure stationary strategy choosing β at s1 reaches both, s4 ∈ G� and s3 ∈ G�

with probability 0.7 and thus achieves 〈0.7, 0.7〉. Similarly, 〈0, 1〉 and 〈1, 0〉 are
achievable by a pure stationary strategy. Point 〈1, 0.8〉 is achievable by a non-
stationary pure strategy that chooses α at s1, γ at the first visit of s2, and δ
in all other cases. Changing this strategy by picking γ only with probability
0.5 achieves 〈0.5, 0.9〉. Fig. 1b illustrates ParetoM

PS(Q) (dots), AchM
PS(Q) (green

area), ParetoM(Q) (dotted line), and AchM(Q) (blue and green area).

3 Deciding Achievability

The achievability problem asks whether a given point is achievable.

General Multi-objective Achievability Problem (GMA)

Input: MDP M, �-dimensional multi-objective query Q, point p ∈ (R∞)�

Output: Yes iff p ∈ AchM(Q) holds

For GMA, the point can be achieved by a general strategy that can potentially
make use of memory and randomization. As discussed earlier, this class of strate-
gies is not suitable for various applications. In this work, we focus on a variant of
the achievability problem that only considers pure stationary strategies. Sect. 5
also addresses pure strategies that can store more information from the history,
e.g., whether a goal state set has been reached already.

Pure Stationary Multi-objective Achievability Problem (PSMA)

Input: MDP M, �-dimensional multi-objective query Q, point p ∈ (R∞)�

Output: Yes iff p ∈ AchM
PS(Q) holds

350 F. Delgrange et al.

3.1 Complexity Results

GMA is PSPACE hard (already with only reachability objectives) [40] and solvable
within exponential runtime [20,23]. To the best of our knowledge, a PSPACE up-
per bound on the complexity of GMA is unknown. This complexity is rooted in the
dimension � of the query Q: for fixed �, the algorithms of [20,23] have polynomial
runtime. In contrast, PSMA is NP-complete, even if restricted to 2 objectives.

Lemma 1. PSMA with only reachability objectives is NP-hard.

Proof. The result follows by a reduction from the subset sum problem. Given
n ∈ N, a ∈ Nn and z ∈ N, the subset sum problem is to decide the existence of
v ∈ {0, 1}n such that v · a = z. This problem is NP-complete [25]. For a given
instance of the subset sum problem, we construct the MDP M� = 〈S,Act ,P, sI 〉
with state space S = {sI , s1, . . . , sn, g1, g2}, actions Act = {α, Y,N}, and for all
i ∈ {1, . . . , n}, P(sI , α, si) =

a�i�
1·a and P(si, Y, g1) = P(si, N, g2) = 1. States g1

and g2 are made absorbing, i.e., P(g1, α, g1) = P(g2, α, g2) = 1.
We claim that the PSMA problem for M�, Q = 〈P≥(♦ {g1}),P≥(♦ {g2})〉,

and p =
(

z
1·a , 1− z

1·a
)

answers “yes” iff there is a vector v satisfying the subset
sum problem for n, a and z. Consider the bijection f : ΣM�

PS → {0, 1}n with
f(σ)�i� = [σ(si)=Y] for all σ ∈ ΣM�

PS and i ∈ {1, . . . , n}. We get PrM
�

σ (♦ {g1}) =∑n
i=1

a�i�
1·a [σ(si)=Y] = f(σ)·a

1·a . Moreover, PrM
�

σ (♦ {g2}) = 1 − PrM
�

σ (♦ {g1}) =

1− f(σ)·a
1·a . It follows that σ achieves p iff f(σ) is a solution to the instance of the

subset sum problem. Our construction is inspired by similar ideas from [14,40].

Lemma 2 ([14]). PSMA with only total reward objectives is NP-hard.

Theorem 1. PSMA is NP-complete.

Proof. Containment follows by guessing a pure stationary strategy and evalu-
ating it on the individual objectives. This can be done in polynomial time [4].
Hardness follows by either Lemma 1 or 2.

Proofs of Lemmas 1 and 2 only consider 2-dimensional multi-objective queries.
Hence, in contrast to GMA, the hardness of PSMA is not due to the size of the query.

Corollary 1. PSMA with only two objectives is NP-complete.

3.2 A Mixed Integer Linear Programming Approach

An MDP M = 〈S,Act ,P, sI 〉 has exactly |ΣM
PS| =

∏
s∈S |Act(s)| many pure

stationary strategies. A simple algorithm for PSMA enumerates all σ ∈ ΣM
PS and

checks whether 〈M, σ,p〉 |= Q holds. In practice, however, such a brute-force
approach is not feasible. For the MDPs that we consider in our experiments in
Sect. 6, the number of pure stationary strategies often exceeds 1010 000. Instead,
our approach is to encode an instance for PSMA as an MILP problem.

Simple Strategies in Multi-Objective MDPs 351

Mixed Integer Linear Programming Problem (MILP)

Input: �,m, n ∈ N, A ∈ Qn×(�+m), b ∈ Qn, c ∈ Q�+m

Output:

{
x ∈ argmaxx∈X cTx if X
= ∅
infeasible if X = ∅ with X = {x ∈ Z� ×Rm | Ax ≤ b}

For an MILP instance as above, each of the n rows of the inequation system
Ax ≤ b represent a constraint that is linear over the � integral and m real-valued
variables given by x. We call the constraints feasible if there is a solution to the
inequation system. The task is to decide whether the constraints are feasible
and if so, find a solution that maximizes a linear optimization function cTx.
The optimization function can be omitted if we are only interested in feasibility.
MILP is NP-complete [35]. However, tools such as Gurobi [27] and SCIP [26]
implement practically efficient algorithms that can solve large instances.

For the rest of this section, let M = 〈S,Act ,P, sI 〉, Q = 〈ψ1, . . . , ψ�〉 with
ψj = E∼j

(Rj♦Gj), and p ∈ (R∞)� be an instance for PSMA. We provide a
translation of the PSMA instance to an instance for MILP that has a feasible
solution iff p ∈ AchM

PS(Q). The MILP encoding considers integer variables to
encode a pure stationary strategy σ ∈ ΣM

PS. The other variables and constraints
encode the expected reward for each objective on the induced MC Mσ.

3.3 Unichain MDP and Finite Rewards

Restriction 1 (Unichain MDP). MDP M has exactly one end component.

Restriction 2 (Reward Finiteness). EMs
σ (Rj♦Gj) < ∞ holds for each ob-

jective ψj = E∼j
(Rj♦Gj), state s, and pure stationary strategy σ.

For simplicity, we first explain our encoding for unichain MDP with finite reward.
Sect. 3.5 lifts Restriction 1 and Sect. 3.6 lifts Restriction 2 with more details given
in [17, App. B]. Sect. 3.4 presents an alternative to the encoding of this section,
which is smaller but restricted to total reward objectives.

Fig. 2 shows the MILP encoding in case Restrictions 1 and 2 hold. We assume
∀ j : p�j�
= ∞ for the point p since (i) EM

σ (Rj♦Gj) ≤ ∞ holds trivially and
(ii) EM

σ (Rj♦Gj) ≥ ∞ will never hold due to Restriction 2. For j ∈ {1, . . . , �},
let Sj

0 = {s ∈ S | ∀σ ∈ ΣM : EM
σ (Rj♦Gj) = 0} and Sj

? = {s ∈ S \ Sj
0 |

s can be reached from sI without visiting a state in Sj
0}. These sets can be ob-

tained a priori by analyzing the graph structure of M [4]. Moreover, we con-
sider upper bounds U j

s ∈ Q for the expected reward at state s ∈ Sj
? such that

U j
s ≥ maxσ∈ΣM EMs

σ (Rj♦Gj). We compute such upper bounds using single-
objective model checking techniques [4,5]. The MILP encoding applies the char-
acterization of expected rewards for MCs as a linear equation system [4].

Lemma 3. For every σ ∈ ΣM
PS, the following equation system has a unique

solution Φ : {xs | s ∈ S} → R|S| satisfying Φ(xs) = EMs
σ (Rj♦Gj):

∀ s ∈ Sj
0 : xs = 0 ∀ s ∈ Sj

? : xs =
∑
s′∈S

P(s, σ(s), s′) · (xs′ +R(s, σ(s), s′)
)

352 F. Delgrange et al.

∀ s ∈ S : �Select an action at each state
∀α ∈ Act(s) : as,α ∈ {0, 1} (1)∑

α∈Act(s)

as,α = 1 (2)

∀ j ∈ {1, . . . , �} : �Compute expected reward values
∀ s ∈ Sj

0 : xj
s = 0 (3)

If ψj is maximising, ± = + and [min] = 0. Otherwise, ± = − and [min] = 1.
∀ s ∈ Sj

? : ±xj
s ∈ [0, U j

s] (4)

∀α ∈ Act(s) : ±xj
s,α ∈ [0, U j

s] (5)

xj
s,α ≤

∑
s′∈S

P(s, α, s′) ·
(
xj
s′ ±Rj(s, α, s

′)
)

(6)

xj
s,α ≤ U j

s · (as,α − [min]) (7)

xj
s ≤

∑
α∈Act(s)

xj
s,α + [min] · (|Act(s)| − 1) · U j

s (8)

±xj
sI ∼j p�j� �Assert value at initial state (9)

Figure 2: MILP encoding for unichain MDP and finite rewards.

Proof. Since M is unichain and we do not collect infinite reward, the only EC
of M (i.e., the only BSCC of Mσ for any σ) either contains a goal state or only
contains transitions with zero reward. It follows that ∀σ ∈ ΣM

PS : PrMσ (♦Sj
0) = 1.

Lemma 3 follows by standard arguments for MCs with rewards [4, Section 10.5.1].

We discuss the intuition of each constraint in Fig. 2. Let Φ : Var → R be
an assignment of the occurring variables Var to values. Φ is a solution of the
constraints if all (in)equations are satisfied upon replacing all variables v by Φ(v).

Lines 1 and 2 encode a strategy σ ∈ ΣM
PS by considering a binary variable

as,α for each state s and enabled action α such that σ(s)(α) = 1 iff Φ(as,α) = 1
for a solution Φ. Due to Line 2, exactly one action has to be chosen at each state.

Lines 3 to 8 encode for each objective ψj the expected rewards obtained for
the encoded strategy σ. For every s ∈ S, the variable xj

s represents a (lower
or upper) bound on the expected reward at s. Line 3 sets this value for all
s ∈ Sj

0, reflecting the analogous case from Lemma 3. For s ∈ Sj
? , we distinguish

maximizing (∼j = ≥) and minimizing (∼j = ≤) objectives ψj .
For maximizing ψj , we have Φ(xj

s) ≤ EMs
σ (Rj♦Gj) for every solution Φ. This

is achieved by considering a variable xj
s,α for each enabled action α ∈ Act(s). In

Line 6, we use the equation system characterization from Lemma 3 to assert that
the value of xj

s,α can not be greater than the expected reward at s, given that
the encoded strategy σ selects α. If σ does not select α (i.e., Φ(as,α) = 0), Line 7
implies Φ(xj

s,α) = 0. Otherwise, this constraint has no effect. Line 8 ensures that
every solution satisfies Φ(xj

s) ≤ Φ(xj
s,α) ≤ EMs

σ (Rj♦Gj) for α with Φ(as,α) = 1.
For minimizing ψj , we have −Φ(xj

s) ≥ EMs
σ (Rj♦Gj) for every solution Φ,

i.e., we consider the negated reward values. The encoding is as for maximizing

Simple Strategies in Multi-Objective MDPs 353

objectives. However, Line 7 yields Φ(xj
s,α) = −U j

s if α is not selected. Thus, in
Line 8 we add U j

s for each of the (|Act(s)| − 1) non-selected actions.
Line 9 and our observations above yield EMs

σ (Rj♦Gj) ≥ Φ(xj
sI) ≥ p�j� for

maximizing and EMs
σ (Rj♦Gj) ≤ −Φ(xj

sI) ≤ p�j� for minimizing objectives.
Therefore, p is achievable if a solution Φ exists. On the other hand, if p is
achievable by some σ ∈ ΣM

PS, the solution Φ exists with Φ(as,α) = σ(s)(α),
Φ(xj

s) = Φ(xj
s,α) = ±EMs

σ (Rj♦Gj) if α = σ(s), and Φ(v) = 0 for other v ∈ Var .

Theorem 2. For unichain M and finite rewards, the constraints in Fig. 2 are
feasible iff p ∈ AchM

PS(Q).

Proposition 1. The MILP encoding above considers O(|S| · |Act | · �) variables.

3.4 Alternative Encoding for Total Rewards

We now consider PSMA instances where all objectives ψj = E∼j
(Rj♦Gj) are

expected total reward objectives, i.e., Gj = ∅. For such instances, we can employ
an encoding from [23] (restated in Lemma 4) for GMA. In fact, we can often
translate reachability reward objectives to total reward objectives, e.g., if the
set of goal states can not be left or if all objectives consider the same goal states.

Lemma 4 ([23]). For S0 ⊆ S, let Φ : Var → R≥0 be an assignment of variables
Var = {ys,α | s ∈ S \ S0, α ∈ Act(s)} and let σΦ be a stationary strategy satisfy-
ing σΦ(s)(α) = Φ(ys,α)/

∑
β∈Act(s) Φ(ys,β) for all s ∈ S \ S0 and α ∈ Act(s) for

which the denominator is non-zero. Then, Φ is a solution to the equation system

∀ s ∈ S \ S0 :
∑

α∈Act(s)

ys,α = [s = sI] +
∑

〈s′,α′〉∈pre(s)

P(s′, α′, s) · ys′,α′

1 =
∑

ys,α∈Var

ys,α ·
∑
s′∈S0

P(s, α, s′)

iff PrMσΦ
(♦S0) = 1 and ∀ ys,α ∈ Var : Φ(ys,α) = EM

σΦ
(Rs,α♦S0) with reward

structure Rs,α given by Rs,α(ŝ, α̂, s
′) = [ŝ = s and α̂ = α].

In [23], the lemma is applied to decide achievability of multiple total reward ob-
jectives under strategies that are stationary, but not necessarily pure. Intuitively,
EM
σΦ

(Rs,α♦S0) coincides with the expected number of times action α is taken at
state s until S0 is reached. Since this value can be infinite if PrMσΦ

(♦S0) < 1, a
solution Φ can only exist if it induces a strategy that almost surely reaches S0.

The encoding for unichain MDP with finite rewards and total reward objec-
tives is shown in Fig. 3, where S0 =

⋂
j S

j
0 and S? = S \ S0. We consider the

constraints in conjunction with Lines 1 and 2 from Fig. 2. Let Φ be a solution
and let σ be the strategy encoded by such a solution, i.e., σ(s)(α) = Φ(as,α).

Lines 10 to 12 reflect the equations of Lemma 4. Since M is unichain and
we assume finite rewards, there is just one end component in which no reward
can be collected. Hence, S0 is almost surely reached. Line 10 ensures that the

354 F. Delgrange et al.

∀ s ∈ S?, α ∈ Act(s) : ys,α ∈ [0, Vs · as,α] (10)∑
α∈Act(s)

ys,α = [s = sI] +
∑

〈s′,α′〉∈pre(s)

P(s′, α′, s) · ys′,α′ (11)

1 =
∑
s∈S?

∑
α∈Act(s)

ys,α ·
∑

s′∈S0

P(s, α, s′) (12)

∀ j ∈ {1, . . . , �} : xj
sI =

∑
s∈S?

∑
α∈Act(s)

ys,α ·
∑
s′∈S

(
P(s, α, s′) ·Rj(s, α, s

′)
)

(13)

xj
sI ∼j p�j� (14)

Figure 3: MILP encoding for total reward objectives.

strategy in Lemma 4 coincides with the encoded pure strategy σ. We write Vs

for an upper bound of the value a solution can possibly assign to ys,α, i.e.,
∀σ ∈ ΣM

PS : Vs ≥ EM
σ (Rs,α♦S0). Such an upper bound can be computed based

on ideas of [5]. More details are given in [17, App. A].
With Lemma 4 we get that Φ(ys,σ(s)) is the expected number of times state s

is visited under strategy σ. Therefore, in Line 13 we sum up for each state s ∈ S?

the expected amount of reward collected at s. This yields Φ(xj
sI) = EM

σ (Rj♦Gj).
Finally, Line 14 asserts that the resulting values exceed the thresholds given by p.

Theorem 3. For unichain M, finite rewards, and total reward objectives, the
constraints in Fig. 3 and Lines 1 and 2 of Fig. 2 are feasible iff p ∈ AchM

PS(Q).

Proposition 2. The MILP encoding above considers O(|S| · |Act |+ �) variables.

The encoding for total reward objectives considers fewer variables compared
to the encoding of Sect. 3.3 (cf. Proposition 1). In practice, this often leads to
faster solving times as we will see in Sect. 6.

3.5 Extension to Multichain MDP

We now lift the restriction to unichain MDP, i.e., we consider multichain MDP
with finite rewards. We focus on the encoding of Sect. 3.3. Details for the ap-
proach of Sect. 3.4 are in [17, App. C]. The key challenge is that the equation
system in Lemma 3 does not yield a unique solution for multichain MDP.

Example 2. For the multichain MDP in Fig. 5a with G = {s1} we have S0 = {s1}
and S? = {s0} (the superscript j is omitted as there is only one objective). For
σ with σ(s0) = α we get EM

σ (R♦G) = 0, but every Φ :
{
xs0 , xs1

} → R× {0} is
a solution for the equation system in Lemma 3.

For multichain MDP it can be the case that for some strategy σ the set Sj
0 is

not reached with probability 1, i.e., there is a positive probability to stay in the
set Sj

? forever. For the induced Markov chain Mσ, this means that there is a
reachable BSCC consisting only of states in Sj

? . Since BSCCs of Mσ coincide
with end components of M, we need to inspect the ECs of M that only consist of

Simple Strategies in Multi-Objective MDPs 355

∀ j ∈ {1, . . . , �} , E ∈ MECS (M�E j
?�) : �Detect states with zero reward

∀ s ∈ S�E� : ±xj
s ≤ U j

s · (1− ejs) (15)

∀ 〈s, α〉 ∈ E : ejs,α ∈ {0, as,α} (16)

∀ s′ ∈ succ(s, α) : ejs,α ≤ ejs′ (17)

∀ s ∈ S�E� : ejs =
∑

α∈Act(s)

[〈s, α〉 ∈ E] · ejs,α (18)

∀α ∈ Act(s) : zjs,α ∈ [0, Vs · as,α] (19)

zjs,⊥ ∈ [0, Vs · ejs] (20)

zjs,⊥ +
∑

α∈Act(s)

zjs,α =
1

|S�E�| +
∑

〈s′,α′〉∈pre(s)∩E
P(s′, α′, s) · zjs′,α′ (21)

1 =
∑

s∈S�E�

(
z
ψj

s,⊥ +
∑

α∈Act(s)

[〈s, α〉 /∈ E] · zjs,α
)

(22)

Figure 4: MILP encoding for detection of end components.

Sj
? -states. These ECs correspond to the ECs of the sub-MDP M�Ej

? �, where Ej
? is

the largest subset of Sj
?×Act that is closed for M. For each E ∈ MECS (M�E j

?�),
we need to detect whether the encoded strategy induces a BSCC E ′ ⊆ E .

To cope with multiple ECs, we consider the constraints from Fig. 2 in con-
junction with the constraints from Fig. 4. Let Φ be a solution to these constraints
and let σ be the encoded strategy σ with σ(s)(α) = Φ(as,α). For each objective
ψj and state s, a binary variable ejs is set to 1 if s lies on a BSCC of the induced
MC Mσ. We only need to consider states s ∈ S�E� for E ∈ MECS (M�E j

?�).
Line 15 ensures that the value of xj

s is set to 0 if s lies on a BSCC of Mσ.
Lines 16 to 18 introduce binary variables ejs,α for each state-action pair in the EC
such that any solution Φ satisfies Φ(ejs,α) = 1 iff Φ(ejs) = Φ(as,α) = 1. Line 17
yields that Φ(ejs,α) = 1 implies Φ(ejs′) = 1 for all successors s′ of s and the
selected action α. Hence, for all s with Φ(ejs) = 1 and for all s′ reachable from s
in Mσ, we have Φ(ejs′) = 1 and 〈s′, σ(s′)〉 ∈ E . Therefore, we can only set ejs to 1
if there is a BSCC E ′ ⊆ E that either contains s or that is almost surely reached
from s without leaving E . As finite rewards are assumed, E can not contain a
transition with positive reward, yielding EM

σ (Rj♦Gj) = 0 if Φ(ejs) = 1.
An assignment that sets all variables ejs and ejs,α to 0 trivially satisfies the

constraints in Lines 15 to 18. In Lines 19 to 22 we therefore ensure that if a BSCC
E ′ ⊆ E exists in Mσ, Φ(ejs) = 1 holds for at least one s ∈ S�E ′�. The idea is based
on the observation that if a BSCC E ′ ⊆ E exists, there is a state s ∈ S�E� that
does not reach the set S \S�E� almost surely. We consider the MDP ME , a mild
extension of M�E� given by ME = (S�E� � {

sEI , s
E
⊥
}
,Act � {αI ,⊥} ,PE , sEI),

where PE extends P�E� such that PE(sE⊥,⊥, sE⊥) = 1 and ∀ s ∈ S�E� :
– PE(sEI , αI , s) = 1/|S�E�|, PE(s,⊥, sE⊥) = 1, and
– ∀α ∈ {α̂ ∈ Act(s) | 〈s, α̂〉 /∈ E} : PE(s, α, sE⊥) = 1.
Lines 21 and 22 reflect the equation system from Lemma 4 for MDP ME and
S0 = {s⊥}. Additionally, Lines 19 and 20 exclude negative solutions and assert

356 F. Delgrange et al.

s0 s1
β : 1

α : 0

(a) Multichain MDP

s1 s2 s3 s4

α

β

0.5

0.5

(b) MDP with nontrivial memory requirements

Figure 5: MDPs referenced in Examples 2 and 4.

Φ(zjs,α) = 0 if Φ(as,α) = 0 and Φ(z
ψj

s,⊥) = 0 if Φ(ejs) = 0 for any solution Φ. Hence,
for states s ∈ S�E� where Φ(ejs) = 0, the strategy σ encoded by the variables
as,α coincides with the strategy considered in Lemma 4. Assume that solution
Φ yields a BSCC within the states of E in Mσ and therefore also a BSCC in
(ME)σ. Since sE⊥ has to be reached almost surely in ME (cf. Lemma 4), the
BSCC has to contain at least one state s with Φ(ejs) = 1.

In summary, Lines 19 to 22 imply that every BSCC E ′ ⊆ E of Mσ contains at
least one state s with Φ(ejs) = 1. Then, with Lines 16 to 18 we get that Φ(ejs′) = 1

has to hold for all s′ ∈ S�E ′�. In Mσ, the set Sj
0 ∪ {

s | Φ(ejs) = 1
}

is therefore
reached almost surely and all the states in this set get assigned value 0. In this
case, the solution of the equation system from Lemma 3 becomes unique again.

Theorem 4. For finite rewards, the constraints in Figs. 2 and 4 are feasible iff
p ∈ AchM

PS(Q).

3.6 Extension to Infinite Rewards

Our approach can be modified to allow PSMA instances where infinite expected
reward can be collected, i.e., where Restriction 2 does not hold. Infinite reward
can be collected if we cycle through an EC of M that contains a transition with
positive reward. Such instances are of practical interest as this often corresponds
to strategies that do not accomplish a certain goal (e.g., a robot that stands still
and therefore requires infinite time to finish its task).

We sketch the necessary modifications. More details are in [17, App. B]. Let
S∞ be the set of states where every pure strategy induces infinite reward for
at least one minimizing objective. To ensure that the MILP instance has a (real-
valued) solution, we consider the sub-MDP of M obtained by removing S∞.

If infinite reward can be collected in an EC, it should not be considered
in Fig. 4. We therefore let E range over maximal ECs that only consist of (a)
states in Sj

? and (b) transitions with reward 0.
The upper bounds U j

s for the maximal expected rewards at each state can
not be set to ∞. However, for the encoding it suffices to compute values that are
sufficiently large. However, we remark that in practice our approach from [17,
App. B] can lead to very large values, yielding numerical instabilities.

For maximizing objectives, we introduce one additional objective which, in a
nutshell, checks that the probability to reach a 0-reward BSCC is below 1. If this
is the case, there is a positive probability to reach a BSCC in which infinitely
many reward can be collected.

Simple Strategies in Multi-Objective MDPs 357

4 Computing the Pareto Front

Our next goal is to compute the pure stationary Pareto front ParetoM
PS(Q) for

MDP M and multi-objective query Q. This set can be very large, in particular if
the objectives are strongly conflicting with many different tradeoffs. In the worst
case, every pure stationary strategy induces a point p ∈ ParetoM

PS(Q) (e.g., for
Q = 〈E≤(R♦G),E≥(R♦G)〉). We try to find an approximation of ParetoM

PS(Q).

Definition 7. Let ε ∈ (R>0)
�. An ε-approximation of P ⊆ (R∞)� is a pair

〈L,U〉 with L ⊆ P ⊆ U and ∀p ∈ P : ∃p′ ∈ L ∪ ((R∞)� \ U) : |p− p′| ≤ ε.

Pure Stationary Pareto Approximation Problem (PSP ≈)

Input: MDP M, �-dimensional multi-objective query Q, precision ε ∈ (R>0)
�

such that ParetoM
PS(Q) ⊆ R�

Output: An ε-approximation of clQ(ParetoM
PS(Q))

For simplicity, we only consider inputs that satisfy restriction Restriction 2, i.e.,
for ψj = E∼j

(Rj♦Gj) there is U j
= ∞ such that ∀σ ∈ ΣM
PS : U j ≥ EM

σ (Rj♦Gj).
Ideas of Sect. 3.6 can be used for some other inputs. An all-embracing treatment
of infinite rewards, in particular for maximizing ψj , is subject to future work.

Our approach for PSP≈ successively divides the solution space into candidate
regions. For each region R (initially, let R = [0, U1] × · · · × [0, U �]), we use
the MILP encoding from Sect. 3 with an optimization function to find a point
p ∈ R ∩ ParetoM

PS(Q) (or find out that no such point exists). The region R is
divided into (i) an achievable region RA ⊆ AchM

PS(Q), (ii) an unachievable region
RU ⊆ R�\AchM

PS(Q), (iii) further candidate regions R1, . . . ,Rn that are analyzed
subsequently, and (iv) the remaining area R\ (RA ∪RU ∪R1 ∪ · · · ∪Rn) which
does not require further analysis as we are only interested in an ε-approximation.
The procedure stops as soon as no more candidate regions are found.

Example 3. Fig. 6 sketches the approach for an MDP M and a query Q with two
maximizing objectives. We maintain a set of achievable points (light green) and
a set of unachievable points (red). Initially, our candidate region corresponds to
R1 = [0, U1]×[0, U2] given by the white area in Fig. 6a. We consider the direction
vector w1 which is orthogonal to the line connecting

〈
U1, 0

〉
and

〈
0, U2

〉
. To

find some point p ∈ ParetoM
PS(Q) ∩ R1, we solve the MILP resulting from the

constraints as in Sect. 3, the constraint
〈
x1
sI , x

2
sI

〉 ∈ R1, and the optimization
function w1 ·

〈
x1
sI , x

2
sI

〉
. Fig. 6b shows the obtained point p1 ∈ R1. Since p1 is

achievable, we know that any point in clQ({p1}) has to be achievable as well.
Moreover, the set {p ∈ R1 | w1 · p > w1 · p1} indicated by the area above the
diagonal line in Fig. 6b can not contain an achievable point. The gray areas do
not have to be checked in order to obtain an ε-approximation. We continue with
R2 indicated by the white area and the direction vector w2, orthogonal to the line
connecting

〈
0, U2

〉
and p1. As before, we solve an MILP now yielding the point

p2 in Fig. 6c. We find achievable points clQ({p2}) but no further unachievable
points. The next iteration considers candidate region R3 and direction vector

358 F. Delgrange et al.

〈
U1, 0

〉

〈
0, U2

〉

R1

w1

(a)

p1

R2

w1

w2

(b)

p1

p2

R3

w1

(c)

p1

p2

p3

R4

w1

(d)

Figure 6: Example exploration of achievable points.

w1, yielding point p3 shown in Fig. 6d. The trapezoidal area is added to the
unachievable points whereas clQ({p3}) is achievable. Finally, we check R4 for
which the corresponding MILP instance is infeasible, i.e., R4 is unachievable.

The ideas sketched above can be lifted to � > 2 objectives. Inspired by [24,
Alg. 4], we choose direction vectors that are orthogonal to the convex hull of
the achievable points found so far. In fact, for total reward objectives we can
apply the approach of [24] to compute the points in ParetoM

PS(Q)∩ParetoM(Q)
first and only perform MILP-solving for the remaining regions. As the distance
between two found points p,p′ is at least |p − p′| ≥ ε, we can show that our
approach terminates after finding at most

∏
j U

j/ε�j� points. Other strategies
for choosing direction vectors are possible and can strongly impact performance.

5 Bounded Memory

For GMA, it is necessary and sufficient to consider strategies that require memory
exponential in the number of objectives [20,24,40] by storing which goal state
set has been reached already. In contrast, restricting to pure (but not necessarily
stationary) strategies imposes nontrivial memory requirements that do not only
depend on the number of objectives, but also on the point that is to be achieved.

Example 4. Let M be the MDP in Fig. 5b and Q = 〈P≥ (♦G�) ,P≥ (♦G�)〉. The
point pk =

〈
0.5k, 1−0.5k

〉
for k ∈ N is achievable by taking α with probability

0.5k. pk is also achievable with the pure strategy σk where σk(π̂) = α iff |π̂| ≥ k.
σk uses k memory states. Pure strategies with fewer memory states do not suffice.

We search for pure strategies with bounded memory. For an MDP M and K > 0,
let ΣM

P,K denote the set of pure K-memory strategies, i.e., any σ ∈ ΣM
P,K can be

represented by a Mealy machine using up to K states (c.f. [17, App. D]). For a
query Q, let AchM

P,K(Q) be the set of points achievable by some σ ∈ ΣM
P,K .

Pure Bounded Multi-objective Achievability Problem (PBMA)

Input: MDP M, multi-objective query Q, memory bound K, point p ∈ (R∞)�

Output: Yes iff p ∈ AchM
P,K(Q)

Simple Strategies in Multi-Objective MDPs 359

Table 1: Results for stationary strategies.
Bench- Instance 1 ε=0.01 ε=0.001 Instance 2 ε=0.01 ε=0.001

mark � Par. |S| %E Act Time |P | Time |P | Par. |S| %E Act Time |P | Time |P |
dpm 2∗ 2 1272 32 3.2 17 37 315 377 3 1696 30 3.2 82 30 TO
eajs 2∗ 2-3 689 0 1.2 5 23 45 202 3-6 2·104 0 1.2 201 52 3787 375
jobs 3∗ 3-2 17 0 1.1 3 3 2 3 5-2 117 0 1.5 2042 76 TO
mutex 3∗ 1 1795 36 2.2 TO TO 2 1·104 33 2.3 TO TO
polling 2 2-2 233 86 1.5 6 5 23 6 3-2 990 84 1.8 299 5 TO
rg 2∗ 2-1-20 2173 14 2.9 5 5 12 5 5-2-50 3·104 5 3.1 496 27 TO
rover 2∗ 2500 2·104 0 1.2 110 47 417 251 5000 4·104 0 1.2 258 47 3105 472
serv 2∗ 5·104 93 1.9 1828 38 TO
str 2∗ 30 1426 0 1.3 11 21 822 218 500 4·105 0 1.3 2428 17 TO
team2 2∗ 2 1847 24 1.2 2 5 2 5 3 1·104 21 1.2 18 43 MO
team3 3∗ 2 1847 24 1.2 165 15 166 15 3 1·104 21 1.2 TO TO
uav 2∗ 750 2·105 29 1.6 400 39 5799 332 1000 4·105 31 1.8 3546 36 TO
wlan 2∗ 0 2954 0 1.3 160 16 TO 2 3·104 0 1.3 6728 23 TO

The pure bounded Pareto approximation problem is defined similarly. We reduce
a PBMA instance to an instance for PSMA. The idea is to incorporate a memory
structure of size K into M and then construct a pure stationary strategy in this
product MDP (see, e.g., [29] for a similar construction). The set of strategies
can be further refined by considering e.g., a memory structure that only allows
counting or that only remembers visits of goal states. See [17, App. D] for details.

6 Evaluation

We implemented our approach for PSP≈ in the model checker Storm [16] using
Gurobi [27] as back end for MILP-solving. The implementation takes an MDP
(e.g., in Prism syntax), a multi-objective query, and a precision ε > 0 as input
and computes an ε-approximation of the Pareto front. Here, we set ε�j� = ε · δj ,
where δj is the difference between the maximal and minimal achievable value for
objective ψj . We also support reward objectives for Markov automata via [38].
The computations within Gurobi might suffer from numerical instabilities. To
diminish their impact, we use the exact engine of Storm to confirm for each
MILP solution that the encoded strategy achieves the encoded point. However,
sub-optimal solutions returned by Gurobi may still yield inaccurate results.

We evaluate our approach on 13 multi-objective benchmarks from [24,28,38],
each considering one or two parameter instantiations. Application areas range
over scheduling (dpm [37], eajs [1], jobs [10], polling [43]), planning (rg [6], rover [28],
serv [32], uav [21]), and protocols (mutex [38], str [38], team [15], wlan [31]).

The results for pure stationary strategies are summarized in Table 1. For each
benchmark we denote the number of objectives � and whether the alternative
encoding from Sect. 3.4 has been applied (∗). For each parameter instantiation
(Par.), the number of states (|S|), the percentage of the states that are contained
in an end component (%E), and the average number of available actions at each
state (Act) are given. For each precision ε ∈ {0.01, 0.001}, we then depict the

360 F. Delgrange et al.

1 6 60 600

6000

1

6

60

600

6000

TO/MO
N

/S

TO/MO

ε=0.01 ε=0.001

(a) Alt. (x) vs. original (y) encoding.

0.17 0.18 0.19 0.2

0.17

0.18

Gen
PM2

PMG

PS

(b) Pareto fronts for restricted strategies.

Figure 7: Comparison of the two encodings (left) and impact of memory (right).

runtime of Storm and the number of points on the computed approximation
of the Pareto front. TO denotes that the approach did not terminate within 2
hours, MO denotes insufficient memory (16 GB). All experiments used 8 cores of
an Intel R© Xeon R© Platinum 8160 Processor.

Storm is often able to compute pure stationary Pareto fronts, even for mod-
els with over 100 000 states (e.g., uav). However, the model structure strongly
affects the performance. For example, the second instance of jobs is challenging
although it only considers 117 states, a low degree of nondeterminism, and no
(non-trivial) end components. Small increments in the model size can increase
runtimes significantly (e.g., dpm or uav). If a higher precision is requested, much
more points need to be found, which often leads to timeouts. Similarly, for more
than 2 objectives the desired accuracy can often not be achieved within the time
limit. The approach can be stopped at any time to report on the current ap-
proximation, e.g., after 2 hours Storm found 65 points for Instance 1 of mutex.

For almost all benchmarks, the objectives could be transformed to total re-
ward objectives, making the more efficient encoding form Sect. 3.4 applicable.
We plot the runtimes of the two encoding in Fig. 7a. The alternative encoding
is superior for almost every benchmark. In fact, the original encoding timed out
for many models as indicated at the horizontal line at the top of the figure.

In Fig. 7b we plot the Pareto front for the first polling instance under general
strategies (Gen), pure 2-memory strategies that can change the memory state
exactly once (PM2), pure strategies that observe which goal state set Gj has
been visited already (PMG), and pure stationary strategies (PS). Adding simple
memory structures already leads to noticeable improvements in the quality of
strategies. In particular, PM2 strategies perform quite well, and even outperform
PMG strategies (which would be optimal if randomization were allowed).

Data availability. The artifact [18] accompanying this paper contains source code,
benchmark files, and replication scripts for our experiments.

Acknowledgments. The authors thank Sebastian Junges for his valuable contri-
butions during early stages of this work.

Simple Strategies in Multi-Objective MDPs 361

References

1. Baier, C., Daum, M., Dubslaff, C., Klein, J., Klüppelholz, S.: Energy-
utility quantiles. In: NASA Formal Methods, NFM. pp. 285–299 (2014).
https://doi.org/10.1007/978-3-319-06200-6_24

2. Baier, C., Dubslaff, C., Klüppelholz, S.: Trade-off analysis meets probabilistic
model checking. In: CSL-LICS. pp. 1:1–1:10. ACM (2014)

3. Baier, C., Hermanns, H., Katoen, J.: The 10, 000 facets of MDP model checking.
In: Computing and Software Science, LNCS, vol. 10000, pp. 420–451. Springer
(2019)

4. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)
5. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the relia-

bility of your model checker: Interval iteration for Markov decision processes. In:
CAV (1). LNCS, vol. 10426, pp. 160–180. Springer (2017)

6. Barrett, L., Narayanan, S.: Learning all optimal policies with multiple criteria. In:
(ICML). pp. 41–47 (2008)

7. Benini, L., Bogliolo, A., Paleologo, G.A., De Micheli, G.: Policy optimization for
dynamic power management. Trans. Comp.-Aided Des. Integ. Cir. Sys. 18(6), 813–
833 (2006). https://doi.org/10.1109/43.766730

8. Berthon, R., Randour, M., Raskin, J.: Threshold constraints with guarantees for
parity objectives in Markov decision processes. In: ICALP. LIPIcs, vol. 80, pp.
121:1–121:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

9. Bouyer, P., González, M., Markey, N., Randour, M.: Multi-weighted Markov de-
cision processes with reachability objectives. In: GandALF. EPTCS, vol. 277, pp.
250–264 (2018)

10. Bruno, J.L., Downey, P.J., Frederickson, G.N.: Sequencing tasks with exponential
service times to minimize the expected flow time or makespan. J. ACM 28(1),
100–113 (1981). https://doi.org/10.1145/322234.322242

11. Bruyère, V., Filiot, E., Randour, M., Raskin, J.: Meet your expectations with
guarantees: Beyond worst-case synthesis in quantitative games. Inf. Comput. 254,
259–295 (2017)

12. Chatterjee, K., de Alfaro, L., Henzinger, T.A.: Trading memory for randomness.
In: QEST. pp. 206–217. IEEE Computer Society (2004)

13. Chatterjee, K., Kretínská, Z., Kretínský, J.: Unifying two views on multiple mean-
payoff objectives in markov decision processes. LMCS 13(2) (2017)

14. Chatterjee, K., Majumdar, R., Henzinger, T.A.: Markov decision processes with
multiple objectives. In: STACS. LNCS, vol. 3884, pp. 325–336. Springer (2006)

15. Chen, T., Kwiatkowska, M.Z., Parker, D., Simaitis, A.: Verifying team formation
protocols with probabilistic model checking. In: CLIMA. pp. 190–207 (2011)

16. Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A Storm is coming: A modern
probabilistic model checker. In: CAV. LNCS, vol. 10427. Springer (2017)

17. Delgrange, F., Katoen, J.P., Quatmann, T., Randour, M.: Simple strategies in
multi-objective MDPs (technical report). CoRR abs//1910.11024 (2019), http:
//arxiv.org/abs/1910.11024

18. Delgrange, F., Katoen, J.P., Quatmann, T., Randour, M.: Evaluated artifact for
this paper. figshare (2020). https://doi.org/10.6084/m9.figshare.11569485

19. von Essen, C., Giannakopoulou, D.: Probabilistic verification and synthesis of the
next generation airborne collision avoidance system. STTT 18(2), 227–243 (2016)

20. Etessami, K., Kwiatkowska, M.Z., Vardi, M.Y., Yannakakis, M.: Multi-objective
model checking of Markov decision processes. Logical Methods in Computer Science
4(4) (2008). https://doi.org/10.2168/LMCS-4(4:8)2008

362 F. Delgrange et al.

https://doi.org/10.1007/978-3-319-06200-6_24
https://doi.org/10.1109/43.766730
https://doi.org/10.1145/322234.322242
http://arxiv.org/abs/1910.11024
http://arxiv.org/abs/1910.11024
https://doi.org/10.6084/m9.figshare.11569485
https://doi.org/10.2168/LMCS-4(4:8)2008

21. Feng, L., Wiltsche, C., Humphrey, L.R., Topcu, U.: Controller synthesis for au-
tonomous systems interacting with human operators. In: ICCPS. pp. 70–79. ACM
(2015)

22. Forejt, V., Kwiatkowska, M.Z., Norman, G., Parker, D.: Automated verifica-
tion techniques for probabilistic systems. In: SFM. LNCS, vol. 6659, pp. 53–113.
Springer (2011)

23. Forejt, V., Kwiatkowska, M.Z., Norman, G., Parker, D., Qu, H.: Quantitative multi-
objective verification for probabilistic systems. In: TACAS. LNCS, vol. 6605, pp.
112–127. Springer (2011)

24. Forejt, V., Kwiatkowska, M.Z., Parker, D.: Pareto curves for probabilistic model
checking. In: ATVA. LNCS, vol. 7561, pp. 317–332. Springer (2012)

25. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1979)

26. Gleixner, A., Bastubbe, M., Eifler, L., Gally, T., Gamrath, G., Gottwald, R.L.,
Hendel, G., Hojny, C., Koch, T., Lübbecke, M.E., Maher, S.J., Miltenberger, M.,
Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schlösser, F., Schubert, C.,
Serrano, F., Shinano, Y., Viernickel, J.M., Walter, M., Wegscheider, F., Witt, J.T.,
Witzig, J.: The SCIP Optimization Suite 6.0. Technical report, Optimization On-
line (July 2018), http://www.optimization-online.org/DB_HTML/2018/07/6692.
html

27. Gurobi Optimization, L.: Gurobi optimizer reference manual (2019), http://www.
gurobi.com

28. Hartmanns, A., Junges, S., Katoen, J., Quatmann, T.: Multi-cost bounded reach-
ability in MDP. In: TACAS (2). LNCS, vol. 10806, pp. 320–339. Springer (2018)

29. Junges, S., Jansen, N., Wimmer, R., Quatmann, T., Winterer, L., Katoen, J.,
Becker, B.: Finite-state controllers of POMDPs using parameter synthesis. In: UAI.
pp. 519–529. AUAI Press (2018)

30. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proc. 23rd Interna-
tional Conference on Computer Aided Verification (CAV’11). LNCS, vol. 6806, pp.
585–591. Springer (2011)

31. Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite. In:
QEST. pp. 203–204 (2012). https://doi.org/10.1109/QEST.2012.14

32. Lacerda, B., Parker, D., Hawes, N.: Multi-objective policy generation for mo-
bile robots under probabilistic time-bounded guarantees. In: ICAPS. pp. 504–512.
AAAI Press (2017)

33. Lizotte, D.J., Bowling, M., Murphy, S.A.: Linear fitted-Q iteration with multiple
reward functions. J. Mach. Learn. Res. 13, 3253–3295 (2012)

34. Perny, P., Weng, P.: On finding compromise solutions in multiobjective Markov
decision processes. In: ECAI. FAIA, vol. 215, pp. 969–970. IOS Press (2010)

35. Pia, A.D., Dey, S.S., Molinaro, M.: Mixed-integer quadratic programming is in NP.
Math. Program. 162(1-2), 225–240 (2017)

36. Puterman, M.L.: Markov Decision Processes. John Wiley and Sons (1994)
37. Qiu, Q., Wu, Q., Pedram, M.: Stochastic modeling of a power-managed system:

Construction and optimization. In: ISLPED. pp. 194–199. ACM (1999)
38. Quatmann, T., Junges, S., Katoen, J.: Markov automata with multiple objectives.

In: CAV (1). LNCS, vol. 10426, pp. 140–159. Springer (2017)
39. Randour, M., Raskin, J., Sankur, O.: Variations on the stochastic shortest path

problem. In: VMCAI. Lecture Notes in Computer Science, vol. 8931, pp. 1–18.
Springer (2015)

Simple Strategies in Multi-Objective MDPs 363

http://www.optimization-online.org/DB_HTML/2018/07/6692.html
http://www.optimization-online.org/DB_HTML/2018/07/6692.html
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1109/QEST.2012.14

40. Randour, M., Raskin, J., Sankur, O.: Percentile queries in multi-dimensional
Markov decision processes. FMSD 50(2-3), 207–248 (2017)

41. Roijers, D.M., Vamplew, P., Whiteson, S., Dazeley, R.: A survey of multi-objective
sequential decision-making. JAIR 48, 67–113 (2013)

42. Scheftelowitsch, D., Buchholz, P., Hashemi, V., Hermanns, H.: Multi-objective ap-
proaches to Markov decision processes with uncertain transition parameters. In:
VALUETOOLS. pp. 44–51. ACM (2017)

43. Srinivasan, M.: Nondeterministic polling systems. Management Science 37(6), 667–
681 (1991). https://doi.org/10.1287/mnsc.37.6.667

44. Wiering, M.A., de Jong, E.D.: Computing optimal stationary policies for
multi-objective Markov decision processes. In: ADPRL. pp. 158–165 (2007).
https://doi.org/10.1109/ADPRL.2007.368183

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

364 F. Delgrange et al.

https://doi.org/10.1287/mnsc.37.6.667
https://doi.org/10.1109/ADPRL.2007.368183
http://creativecommons.org/licenses/by/4.0/

	19 Simple Strategies in Multi-Objective MDPs
	1 Introduction
	2 Preliminaries
	2.1 Markov Decision Processes, Strategies, and End Components
	2.2 Objectives

	3 Deciding Achievability
	3.1 Complexity Results
	3.2 A Mixed Integer Linear Programming Approach
	3.3 Unichain MDP and Finite Rewards
	3.4 Alternative Encoding for Total Rewards
	3.5 Extension to Multichain MDP
	3.6 Extension to Infinite Rewards

	4 Computing the Pareto Front
	5 Bounded Memory
	6 Evaluation
	References

