
Prediction and Parameter Coding for
Non-rectangular Block Partitioning

Von der Fakultät für Elektrotechnik und Informationstechnik
der Rheinisch-Westfälischen Technischen Hochschule Aachen
zur Erlangung des akademischen Grades eines Doktors der

Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Ingenieur

Max Bläser

aus Oberhausen

Berichter:
Univ.-Prof. Dr.-Ing. Jens-Rainer Ohm

Prof. Dr.-Ing. Heiko Schwarz

Tag der mündlichen Prüfung: 29.04.2020





Vorwort

Die vorliegende Doktorarbeit entstand während meiner Tätigkeit als wissenschaftlicher Mit-
arbeiter am Institut für Nachrichtentechnik der Rheinisch-Westfälischen Technischen Hoch-
schule Aachen. Die fast sechs Jahre, die ich am Institut mit Forschung, Lehre, Konferenzreisen
und all den nicht-fachlichen Aktivitäten verbringen durfte, waren eine wunderbare Zeit, an
die ich mich immer gerne zurückerinnern werde. An dieser Stelle möchte ich mich herzlichst
bei allen Menschen bedanken, die auf unterschiedlichste Art und Weise zum Gelingen die-
ser Arbeit beigetragen haben: An erster Stelle danke ich meinem Doktorvater Prof. Dr.-Ing.
Jens-Rainer Ohm für die Betreuung der Arbeit, den stets offenen und freundlichen Austausch
und die vielen hilfreichen Anmerkungen und Ratschläge. Die fachliche Unterstützung und
das freie, wissenschaftliche Arbeiten, bei dem auch das soziale Institutsleben niemals zu kurz
kam, bleiben mir in guter Erinnerung. Des Weiteren danke ich Prof. Dr.-Ing. Heiko Schwarz
für die Übernahme des Zweitgutachtens und die detaillierten Kommentare zur Arbeit.

Mein besonderer Dank gilt außerdem Priv. Doz. Dr.-Ing. habil. Mathias Wien und Dr.-Ing.
Christian Rohlfing für die enge Zusammenarbeit und dafür, dass sie nicht nur viel organisa-
torischen Projekt-Ballast von mir ferngehalten haben, sondern auch stets mit neuen Ideen
und Impulsen diese Arbeit vorangebracht haben. Meinen engsten Kollegen im Video Coding
Team, Jens Schneider und Johannes Sauer danke ich ebenfalls für ihre Hilfe, Expertise, und
den Gemeinschaftssinn. Diese Art der Zusammenarbeit werde ich sicherlich sehr vermissen!
Zuletzt gebührt mein spezieller Dank Clemens Jansen für die Bereitstellung, Wartung und
Pflege der technischen Infrastruktur.

Ich danke allen Kollegen und Studenten für die großartige Arbeitsatmosphäre. Wenn aus
Kollegen Freunde werden, spricht dies sicherlich für sich. Ich freue mich auf die nächsten
Sommerfeste, IENT Movie Nights und LAN Partys mit Euch!

Zu guter Letzt danke ich meiner gesamten Familie, insbesondere meinen Eltern, die mir
diesen Lebensweg erst ermöglicht haben. Mein größter Dank gilt meiner Frau Franziska, die
mich während der Erstellung dieser Arbeit für einige Wochenenden entbehren musste. Ich
danke Dir für die Motivation, die Geduld und die liebevolle Unterstützung während dieser
Zeit.

Aachen, im Mai 2020

v





Contents

1 Introduction 1

2 Fundamentals 5
2.1 Mathematical Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Signal Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Markov Chains and Autoregressive Modeling . . . . . . . . . . . . . . . 8
2.1.4 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.5 Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.6 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.7 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Video Compression Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Hybrid Video Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Source Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Picture Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Intra-Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.5 Inter-Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.6 Other Compression Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.7 Transform Coding and Quantization . . . . . . . . . . . . . . . . . . . . . 18
2.2.8 Entropy Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.9 Loop Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.10 Rate-Distortion Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Evaluation and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 JVET Common Testing Conditions . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Bjøntegaard Delta Measurements . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 VMAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Overview of Inter-Prediction in Versatile Video Coding . . . . . . . . . . . . . . 28

3 Prior Art of Non-rectangular Partitioning 33
3.1 Shape-adaptive Coding in MPEG-4 . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Geometry-based Partitioning Proposals for AVC and HEVC . . . . . . . . . . . . 34
3.3 Segmentation-based Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Prediction and Parameter Coding for Non-rectangular Block Partitions 41
4.1 General Aspects of Prediction using Non-rectangular Block Partitions . . . . . 42
4.2 Parametrization of Non-rectangular Block Partitions . . . . . . . . . . . . . . . . 44

4.2.1 Geometry-based Partitioning Models . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 Explicit Coding of Geometric Partitioning Parameters . . . . . . . . . . 48
4.2.3 Angle-distance Representation . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.4 Intercept Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

vii



Contents

4.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Prediction and Coding of Geometric Partitioning Side-Information . . . . . . . 63

4.3.1 Entropy Coding for Geometric Partitioning Parameters . . . . . . . . . . 63
4.3.2 Predictive Coding for Geometric Partitioning Parameters . . . . . . . . 67
4.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Inter-prediction Modifications 99
5.1 Motion Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1.1 Discretization of Geometric Partitions and Prediction Blending . . . . . 101
5.1.2 Uni- and bi-directional Motion Compensation . . . . . . . . . . . . . . . 107
5.1.3 Memory Bandwidth Measurements . . . . . . . . . . . . . . . . . . . . . . 109
5.1.4 Restriction to Uni-prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 Motion Estimation for Geometric Partitions . . . . . . . . . . . . . . . . . . . . . 112
5.3 Motion Vector Prediction and Coding . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.4 Motion Vector Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.5 Encoder Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5.1 Partitioning Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Optimizations for VVC Standardization 127
6.1 Geometric Partitioning Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.2 Motion Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3 Adaptive Blending Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3.1 Blending Filter for GEO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.3.2 Blending Filter for TPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.3.3 Combined Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.4 Motion Vector Prediction, Coding and Storage . . . . . . . . . . . . . . . . . . . 137
6.5 Encoder Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.6 Decoder Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.6.1 Integer Approximation for Weight Derivation . . . . . . . . . . . . . . . 143
6.6.2 Chroma Weight Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.7 Overall Coding Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7 Exploration on Transform Coding for Non-rectangular Partitions 149
7.1 Properties of Non-rectangular Prediction Residuals . . . . . . . . . . . . . . . . 152
7.2 Shape-adaptive DCT Coding for GEO . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.3 Transform-skipping for GEO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.4 Encoder-side Transform Optimizations with Decoder-side Masking . . . . . . . 166

7.4.1 Symmetric Extension for TPM . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.4.2 Orthogonal Matching Pursuit (OMP) . . . . . . . . . . . . . . . . . . . . . 170

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8 Summary and Outlook 175

A Appendix 177

Bibliography 227

viii



Abbreviations

AD Angle-distance

ALF Adaptive loop filter

AMP Asymmetric motion partitioning

AMVP Adaptive motion vector prediction

AMT Adaptive multi-core transform

AMVR Adaptive motion vector resolution

AR Autoregressive

ATMVP Alternative temporal motion vector prediction

AVC Advanced Video Coding

BCW Bi-prediction with CU-level weight

BD Bjøntegaard-delta

BDOF Bi-directional optical flow

BI Block boundary-intercept

CABAC Context-adaptive binary arithmetic coding

CB Coding block

CU Coding unit

CBF Coded block flag(s)

CCLM Cross-component linear model

CE Core Experiment

CIIP Combined inter and intra-prediction

CSG Coefficient sub-group

CTB Coding tree block

CTC Common test conditions

CTU Coding tree unit

ix



Contents

DCT Discrete cosine transform

DF Deblocking filter

DFT Discrete Fourier transform

DMVR Decoder-side motion vector refinement

DST Discrete sine transform

EMT Explicit multiple-core transform

FIR Finite impulse response

GEO Geometric Block Partitioning

GMP Geometric Motion Partitioning

GIP Geometric Inter-Prediction

GOP Group of Pictures

GOPs Groups of Pictures

HD High definition

HEVC High Efficiency Video Coding

HMVP History-based MVP

IBC Intra block copy

ISP Intra sub-partitions

ITU International Telecommunication Union

JEM Joint exploration model

JVET Joint Video Experts Team

KLT Karhunen-Loève transform

LBT Large block transforms

LDB Low-delay B

LDP Low-delay P

LFNST Low-frequency non-separable transform

LMCS Luma mapping and chroma scaling

LTI Linear time-invariant

M4V MPEG-4 Part 2: Visual

x



Contents

MB Macroblock

MCP Motion-compensated prediction

MDDT Mode dependent directional transform

MDNSST Mode dependent non-separable secondary transform

MIP Matrix weighted intra-prediction

MMVD Merge mode with motion vector difference

MPEG Moving picture experts group

MRL Multiple reference line intra prediction

MSE Mean squared error

MTS Multiple transform selection

MTT Multi-type tree

MV-HEVC Multiview High Efficiency Video Coding

MVP Motion vector predictor

MVD Motion vector difference

OBMC Overlapped block motion compensation

OMP Orthogonal matching pursuit

PB Prediction block

PDF Probability density function

PDPC Position dependent (intra) prediction combination

PMF Probability mass function

POC Picture order count

PSNR Peak Signal-To-Noise Ratio

PU Prediction unit

QP Quantization parameter

QTBT Quadtree binary tree

QTBTTT Quadtree binary tree ternary tree

QT Quadtree

BT Binary tree

xi



Contents

TT Ternary tree

RA Random access

RD Rate-distortion

RDO Rate-distortion optimization

RDOQ Rate-distortion optimized quantization

RDPCM Residual differential pulse coded modulation

RExt HEVC Format Range Extension

RQT Residual quadtree

SAD Sum of absolute differences

SADCT Shape-adaptive DCT

SAO Sample-adaptive offset

SATD Sum of absolute transform differences

SBP Segmentation-based block partitioning

SBT Sub-block transform

SbTMVP Sub-block temporal motion vector prediction

SCC Screen Content Coding

SHVC Scalable High Efficiency Video Coding

SIMD Single instruction, multiple data

SMVD Symmetric motion vector difference

SPS Sequence parameter set

SSE Streaming SIMD Extensions

SSD Sum of squared differences

SSIM Structural Similarity

TB Transform block

TGM Text and graphics with motion

TMVP Temporal motion vector prediction

TPM Triangular prediction mode

TS Transform-skip

xii



Contents

TSQ Transform and quantization bypass

TU Transform unit

UHD Ultra high definition

URQ Uniform reconstruction quantizer

VCEG Visual coding experts group

VMAF Video Multi-Method Assessment Fusion

VTM VVC Test Model

VVC Versatile Video Coding

WSS Wide-sense stationary

3D-HEVC 3D High Efficiency Video Coding

xiii





xv



Contents

Notation

Mathematical Definitions and Operators

N,Z,R,C Set of natural, integer, real, and complex numbers, respectively

[·]T Matrix/vector transpose

[·]∗ Complex conjugate

a = [a0, . . . , an−1]T n-vector

A=
�

Amn

�

m× n matrix

A ◦ B Hadamard product / element-wise product

A⊕ B Hadamard sum / direct sum

a(x) 1D signal or function

a(x , y) 2D signal or function

x = (x0, x1)T ∈ Z2 Pixel position 2-vector

f = ( f0, f1)T ∈ R2 Fourier domain 2-vector

j=
p−1 Complex unit

e(·), exp(·) Element-wise natural exponentiation, s.t. ex = (ex0 , ex1)T

ln(·) Element-wise natural logarithm

arg(·) Argument (phase) of a complex number or 2-vector

s ∗ h 2D convolution

δ(x ) = δ(x0)δ(x1) Kronecker delta

P(·) Probability

p(·) Probability density or probability mass

p(· | ·) Conditional probability density

E {·} Expectation

Re{·} Real part

Im{·} Imaginary part

|a|=paTa∗ Real/complex/vector magnitude

‖a‖p Lp-norm

|·| Absolute value

b·c Round to lower integer value

d·e Round to upper integer value

sgn(·) Signum function

% Modulo operator

& Bit-wise and

| Bit-wise or

» Bit-shift to the right

« Bit-shift to the left

xvi



1 Introduction

In the first half of 2019, digital video data was reported to make up 60% of the total down-
stream volume of traffic on the internet [San]. With new, bandwidth-intensive video appli-
cations on the rise, such as immersive video or cloud-based gaming, and established appli-
cations with increased spatial and temporal resolution to be expected, the need to compress
the data with higher efficiency is evident.

The principle technology used for video compression since the last 30 years is based on
the hybrid video coding scheme: Using a combination of prediction, transform coding, and
quantization of the data, the spatial and temporal redundancy of the video is exploited,
and less information is needed for transmission from the encoder to the receiving decoder.
Typically, a lossy representation of the original video is reconstructed by the decoder. The
performance – or coding efficiency – of a video coding scheme can be assessed by measuring
the objective distortion of the reconstructed video for a given data rate.

The objective of this thesis is to improve the inter-picture prediction and coding process
for a hybrid video coding scheme such that higher coding efficiency can be obtained. A
fundamental principle in modern video coding is the segmentation of every picture into
rectangular blocks of pixels. This is visualized in Figure 1.1a. The available methods of pre-
diction and coding, also termed the coding tools, of a video coding scheme are then applied
to these blocks individually. Static areas or areas with homogeneous motion of the video can
be efficiently coded using large blocks and motion compensated prediction, whereas areas
of high spatio-temporal activity typically require a fine block partitioning granularity, pre-
diction error coding, and hence, more data rate. Especially moving natural objects, such as
people, trees, or cars can be difficult to approximate using rectangular block partitioning,
due to their smooth and curved object boundaries. At low data rates, the rectangular block
partitioning can further result in block artifacts, subjectively perceived as poor video quality
by human viewers.

This thesis proposes non-rectangular block partitioning as an additional coding tool, to bet-
ter adapt to the signal characteristics. A specific variant of non-rectangular block partitioning
is called geometric block partitioning. In this scheme, a rectangular block is partitioned by
a straight line into two segments. This method is visualized in Figure 1.1b. The pixels asso-
ciated with each segment are then predicted using motion compensation techniques. This
idea is not new but has not been adopted into established video coding standards, due to
the algorithmic complexity of the involved processes, which is a relevant factor for software
or hardware implementations of encoders and decoders.

The main contribution is a fully developed, geometric block partitioning coding tool that
provides up to 1% of improved bitrate saving on top of the state-of-the-art without signifi-
cantly increasing the decoding run time. This is achieved through novel methods of predic-
tion and coding of the inter-prediction side information of geometrically partitioned blocks.
Furthermore, methods are demonstrated on how an encoder can estimate the optimal coding
parameters of the proposed tool with 6% increased encoding run time. This work has been

1



1 Introduction

(a) Rectangular block partitioning (b) Geometric block partitioning

Figure 1.1 Visualization of block partitioning methods in hybrid video coding schemes.

presented to the Joint Video Experts Team (JVET) of ISO/IEC JTC1/SC29/WG11 (MPEG)
and ITU-T SG 16 (VCEG), the leading standardization group for video coding technology,
and has been adopted into the working draft of the newest video coding standard in devel-
opment, Versatile Video Coding (VVC).

First, fundamental topics of signal processing and video coding are briefly introduced in
Chapter 2. This is followed by a review of prior art in the field of non-rectangular block
partitioning in Chapter 3.

The main body of the thesis is structured into four chapters, covering the topics of rep-
resentation, quantization, prediction, and coding of geometric partitioning parameters, re-
quired modifications to the inter-prediction process, algorithmic simplifications relevant for
standardization, and lastly an exploration into methods of transform coding for geometric
partitions.

In Chapter 4, two different mathematical representations for geometric block partitioning
are studied. Since a block can be partitioned by a straight line in theoretically infinite ways
using continuous modeling, quantization is required to be applied to the model parameters
that describe the partitioning for discrete blocks. These parameters are signaled to the de-
coder as additional side-information. A finer quantization may lead to better adaptivity to
the video characteristics but also requires more side-information to be signaled. Further-
more, the parameter space that needs to be searched by an encoder is increased. A novel
quantization scheme is therefore experimentally derived that maximizes coding efficiency
and balances this trade-off for the application of geometric partitioning to blocks resulting
from a Multi-type tree (MTT) partitioning. In the second part of the chapter, entropy coding
methods to signal the side-information are evaluated. Known methods of spatial prediction
of the geometric partitioning parameters are systematically investigated and an improved
method of temporal prediction is presented, which can further increase coding efficiency.

In Chapter 5, all adaptations to the inter-prediction scheme for geometric block partitions
are presented and optimized. The two predicted geometric segments are combined into a
rectangular block for further processing. This is performed using a blending filter, which
provides a smooth transition between the two segments. The size of the transition zone
affects the coding efficiency and is experimentally optimized. The new insights gained from
these contributions lead to the development of a variant of geometric partitioning which
is specifically suited for the efficient coding of screen content. Furthermore, differences

2



between uni- and bi-directional motion compensation and the effects on coding efficiency
and memory bandwidth are analyzed. Lastly, motion vector coding and storage approaches
based on existing methods in VVC are adapted for geometric partitioning.

In Chapter 6, simplifications of the previous developed methods are presented. These
simplifications are a necessity for the practical application and standardization of such a
coding tool and are in many cases mandated by the JVET standardization group. Methods
are derived on how the proposed scheme can be performed with low-complexity integer
arithmetic. An encoder strategy is presented that demonstrates how the optimal partitioning
parameters can be determined for the first time with reasonable additional encoding time
while still performing a nearly exhaustive search.

In Chapter 7, alternative methods to linear block transforms for transform coding of the
prediction error are briefly explored. The Shape-adaptive DCT is adapted for VVC and other
potential methods, such as transform-skipping and symmetric extension of the prediction
error in combination with regular DCT coding are investigated.

In the last Chapter 8, the main findings of the thesis are summarized and an outlook for
potential future research is given.

3





2 Fundamentals

In the following sections, fundamentals topics are introduced that are the foundation of
subsequent chapters. First, mathematical concepts are introduced in Section 2.1, followed
by the basics of video coding relevant for this thesis in Section 2.2. Since much of the
terminology used is coming from High Efficiency Video Coding (HEVC) and also used for its
successor VVC, fundamental aspects of video coding are explained in close alignment with
these two standards. The experimental setup used for the evaluation of developed algorithms
is detailed in Section 2.3. At last, an introduction into the specific inter-prediction coding
tools of VVC is given in Section 2.4. Where applicable, the origin and relation of such coding
tools to HEVC and the interim Joint exploration model (JEM) is pointed out.

2.1 Mathematical Fundamentals

In this section, mathematical fundamentals are briefly introduced that help in the under-
standing of this thesis. Since video coding is a field where numerous concepts from signal
and image processing, modeling, prediction and entropy coding are being combined, this
brief overview cannot claim to be comprehensive. For more details, the reader is referred to
[Ohm15], [GW08] or [OS09] for in-depth fundamentals in discrete-time signal processing.

2.1.1 Signal Representation

The predominant types of signals considered in this thesis are two-dimensional digital images
and image sequences, i.e. videos. An image or picture in the context of this thesis is a
sampled, discrete, digital representation, captured by a camera or computer-generated. It
may be defined by a two-dimensional function s(x , y), where x and y are spatial coordinates
and s being the amplitude of the image at that point. An element of this two-dimensional
field is referred to as a sample or a picture element, in short, a pel. The picture of size M×N ,
in terms of width and height, can be represented as a matrix S:

S =







s(0, 0) · · · s(M − 1,0)
...

. . .
...

s(0, N − 1) · · · s(M − 1, N − 1)






(2.1)

It is sometimes beneficial to interpret the picture as a single row vector sr or column
vector sc = sT

r . These representations can be generated by row- or column-wise scanning of
the image S, obtained by the concatenation of rows of columns into a single vector.

A picture is typically composed of multiple color-channels unless it is a monochromatic
picture or video. Depending on the given color model, the color components span a color
space. The most relevant color spaces for video coding are the Y CBCR and RGB color spaces
that can be easily converted into one another. The Y CBCR color space consists of one luma

5



2 Fundamentals

component Y and two chroma components CB and CR, which are the gamma-encoded ver-
sions of the luminance and chrominance. An image SYCbCr given in this color space could
also be thought of as a tensor composed of three planes, e.g. SYCbCr = [ SY, SCb, SCr] ,
making the image effectively a three-dimensional signal. In video coding however, it is
much more common to regard time as the third signal dimension. Therefore, a video can
be thought of as a signal S(x , y, t) with t being the discrete time variable. Unless other-
wise stated, S often implicitly refers to the luminance component only. An entire video SV

with T pictures can now be expressed as the concatenation of T luminance pictures, e.g.
SV = [ S0, S1, · · · , St , · · · , ST−1] .

2.1.2 Random Variables

In signal processing and its applications, it is often the case to model a specific source signal as
a stochastic process using random variables. For image and video sources this is necessitated
by the fact that these signals most often do not fulfill ideal properties of stationarity, meaning
that their statistical properties can vary greatly over time and space. However, methods
of statistical analysis can be applied to local groups of samples for which stationarity is
assumed. In the field of video coding, statistical analysis plays a crucial role in the design
of compression tools: After all, it is the high spatial and temporal redundancy of a video
source, quantifiable through statistical properties, that is exploited for compression. These
statistics are often measured over a given test set, for specific pictures, or individual blocks.

Sample statistics can be measured for continuous or discrete signals. An important statis-
tical measure for a continuous random process x is the distribution of amplitudes. This is
described by the probability density function (PDF) p(x), fulfilling the properties of being a
real-valued function for a real-valued process, i.e. p : R → R, non-negativity for all x , i.e.
p(x) ≥ 0, and being normalized in the sense of having unit area, i.e.

´∞
−∞ p(x)dx = 1. The

PDF for an interval [a, b] over x defines a probability measure P(x), expressing that x takes
on values in the range between a and b with the given probability:

P([a, b]) =
ˆ b

a
p(x)dx (2.2)

The PDF of a signal or process can be used to derive further statistical properties that
characterize it. This is possible in the most general terms using the expected value operator
E{·}, defined as:

E{ f (x)}=
∞̂

−∞
f (x)p(x)dx

Intuitively, this can be thought of as a dense summation of probabilities using a weighting
function f (x). If f (x) = x , the expected value is the mean value, also denoted as µx and is
given by:

µx = E{x}=
∞̂

−∞
x p(x)dx (2.3)

6



2.1 Mathematical Fundamentals

In general terminology, this is denoted as the first order moment of the PDF. Higher, n-th
order moments of the PDF can be computed accordingly:

E{xn}=
∞̂

−∞
xnp(x)dx (2.4)

By subtracting the mean from the weighting function, the so-called central moments can
be computed. The n-th order central moment is given by:

E{(x −µx)
n}=

∞̂

−∞
(x −µx)

np(x)dx (2.5)

Most importantly, the second order central moment is given by the variance of the signal,
denoted as σ2

x .
Since all signal sources considered in this thesis are discrete in both space and time, only

the discrete statistical equivalents are relevant. If x(n) is now a discrete random process,
then the equivalents to the above equations are given by:

µx = E{x(n)}=
∑

n

x(n) · p (x(n)) (2.6)

σ2
x = E{(x(n)−µx)

2}=
∑

n

(x(n)−µx)
2 · p (x(n)) (2.7)

Since the PDF is now a function of the underlying discrete process x , it is also discrete
in nature and therefore termed the probability mass function (PMF) or the discrete density
function. The true PDF of a process x remains unknown, but from the observed, discrete
realizations of x , the PMF can be estimated by counting the amplitude observations. This
results in a so-called histogram of x . A parameter that controls the resolution and therefore
visual appearance of the histogram, is the binning of the range of values. It is often unprac-
tical to count every single possible amplitude occurrence of x . Therefore, the entire range
of values is subdivided into a series of intervals ∆xk = [xa,k, xb,k]. Typically, these intervals
are non-overlapping and of equal size, e.g. xb,0 − xa,0 = xb,1 − xa,1 = . . . = xb,k − xa,k, but
this is not a strict requirement. Using the following notation for counting if the amplitude
of x falls into the interval ∆x ,

c∆x(x) :=

¨

1 if x ∈∆x
0 otherwise

(2.8)

the histogram pH as a function of the bins ∆xk is given by:

pH(∆xk) =
∑

n

c∆xk
(x(n)) (2.9)

For simplicity and if equal binning is used, this can also be shortened to pH(k),where k
denotes a bin index.

Another important statistical measure for video compression applications is the covari-
ance. The covariance measures the joint variability of two random variables. Specifically, it
measures the linear relationship between these two variables.

7



2 Fundamentals

The covariance of two discrete random processes x(n) and y(n) is given by:

σ2
x ,y = E{(x −µx)(y −µy)} (2.10)

This can be extended to define the covariance between any number of sequences or pro-
cesses. It is specifically interesting to apply the covariance for analysis of the inter-sample
relationship that exist within multiple images or a single image. For this purpose, defining
a covariance function µx ,y(k) is helpful:

µx ,y(k) = E{(x(n)−µx)(y(n+ k)−µy)} (2.11)

For the special case x(n) = y(n), Equation 2.11 becomes the autocovariance function.
Considering a maximum of K sequences that were extracted from the same sequence x(n),
the resulting covariances can be arranged into a symmetric autocovariance matrix Cx x :

Cx x =













µx ,x(0) µx ,x(1) · · · µx ,x(K − 1)

µx ,x(1) µx ,x(0)
. . .

...
...

. . . . . . µx ,x(1)
µx ,x(K − 1) · · · µx ,x(1) µx ,x(0)













= σ2
x













1 ρx ,x(1) · · · ρx ,x(K − 1)

ρx ,x(1) 1
...

...
...

. . . . . . ρx ,x(1)
ρx ,x(K − 1) · · · ρx ,x(1) 1













(2.12)

Since covariances and autocovariances can be difficult to interpret in absolute numbers,
due to the dependence on the underlying processes and signal amplitudes, a normalized
version of the covariance is often used, termed the correlation coefficient. Here, in Equa-
tion (2.12), ρx x(k) = µx x (k)/µx x (0) = µx x (k)/σ2

x are the autocorrelation coefficients of x(n). The
covariance matrix for 2D images, e.g. x(m, n) can be generated by concatenating rows or
columns into a one-dimensional column vector. It is clear from this representation that the
autocovariance matrix for large values of K quickly becomes unwieldy and difficult to inter-
pret visually. A compact representation for the 2D case is derived in [Cla85].

2.1.3 Markov Chains and Autoregressive Modeling

Markov chains are discrete-time and discrete valued random processes in which the current
value depends on the entire past values only through the most recent value. In a K-th order
Markov chain, the current value depends on the past values only through the most recent
K values. This is called the Markov property. Markov models play an important role in
signal processing and are frequently encountered in the context of video coding, for example
in binary arithmetic coding (BAC), intra-prediction or in quantization with quantizer state
modeling (dependent quantization or trellis-coded quantization, see Section 2.2.7).

8



2.1 Mathematical Fundamentals

An example of a process that fulfills the Markov property is an Autoregressive (AR) pro-
cess, with v(n) being a zero-mean, independent and identically distributed (iid) white noise
process with variance σ2

v:

x(n) =
K
∑

i=1

ai x(n− i) + v(n) (2.13)

AR(1) processes are often used to model images. Following the naming convention a1 = ρ,
an AR(1) process has the autocovariance function

µx ,x(k) = σ
2
xρ
|k| (2.14)

with a variance

σ2
x =

σ2
v

1−ρ2
. (2.15)

Typical values for natural images are between ρ = 0.85 and ρ = 0.99. Such AR(1) pro-
cesses can for example be used to assess the decorrelation and energy-compaction efficiency
of linear block transforms.

2.1.4 Entropy

In information theory, entropy is a quantitative measure of information, originated by Shan-
non in 1948. For a discrete random process x(n), the entropy is defined as the average
self-information. If all possible outcomes of a random process x(n) are defined by a source
alphabet S = {x0, x1, ..., xNs−1}, then the first order entropy H(S) is defined as:

H(S) = −
Ns−1
∑

i=0

p(x i) log2 (p(x i)) (2.16)

The unit of entropy is given in bit/symbol. The first order entropy is used for example to
design fixed-length and variable-length codes of a given source alphabet. Another important
concept in the context of video coding is the conditional entropy H(S2|S1):

H(S2|S1) = −
Ns,1−1
∑

i1

Ns,2−1
∑

i2

p(x i1 , x i2) log2

�

p(x i2 |x i1)
�

(2.17)

The conditional entropy is a measure of the information content of S2, given the knowledge
of the states of S1. Since H(S2|S1)≤ H(S2), the conditional entropy is the property which is
being exploited in predictive coding and context-dependent entropy coding. In this thesis,
the latter case is especially relevant, since the Context-adaptive binary arithmetic coding
(CABAC) engine of VVC is used for the final stage of coding.

9



2 Fundamentals

2.1.5 Transforms

In the most general terms, a transform T applied to a 2D input signal X of size N ×N can be
expressed as cc = T · xc, where xc is the column-scanned vector representation of X . Accord-
ingly, the transform T must be of size N 2 × N 2. For practical applications, it is well known
that such a non-separable transform T quickly becomes difficult to handle for increasing val-
ues of N , due to the computational complexity and large memory requirements of storing
the non-separable transform matrices. Therefore, special attention is given to separable 2D
transforms. In this case, the coefficient matrix C containing coefficients c(x , y) resulting
from the 2D separable transform of a real-valued block of data X of size N × N is given by
the matrix multiplication C = Tv · X · TT

h , where Tv and Th are the vertical and horizontal
transforms, respectively. This overall process is denoted as the forward transform. The cor-
responding backward transform is given by X = T−1

v · C ·
�

T−1
h

�T
. A complex, orthonormal

transform furthermore fulfills the property that T−1 = [T ∗]T = TH,where TH is the Hermitian
matrix (conjugate transpose) of T , and T · T−1 = J .

Linear block transforms are an essential part of a video coding scheme. They have three
important properties useful for video coding: First, they decorrelate the data and provide a
frequency-related distribution of energy such that low energy coefficients can be discarded.
Secondly, the retained coefficients can be quantized using a scalar quantizer. Here, percep-
tual considerations relating to the human visual system can also be exploited. Lastly, the
sparse matrix of remaining quantized coefficients exhibits symbol redundancies that can be
exploited using variable length and CABAC-coding. In video coding, the separability feature
of an orthonormal linear block transform is often desired, since it simplifies the computation
process. Further considerations are made regarding the internal structure, e.g. symmetry
and number of unique values of a transform matrix T [Wie14]. In recent video coding devel-
opments, it is also common to apply a secondary, non-separable transform to the coefficients
C or a sub-matrix of C in order to further decorrelate them in the transform domain.

An N × N transform matrix T is composed of rows tn, n ∈ {0, ..., N − 1} of basis vectors.
The elements tn(m) of each vector tn are the coefficients of the transform matrix. Sinusoidal
transforms based on the cosine and sine function and their discrete approximations are of
particular importance. In total, 8 different discrete cosine (DCT type) and 8 different discrete
sine (DST type) transforms are being distinguished. Each of these two types have different
even or odd symmetry properties. Table 2.1 lists a selection of some of the more common
basis functions in their orthonormal variant [BYR07][Zha+16]. Figure 2.1 visualizes the
second basis function for each of the DCT and DST types given in Table 2.1 for length N = 32.

The effectiveness of a transform can be assessed using the following criteria:

• The energy packing efficiency ηe, which is the ratio of energy contained within the
first T out of U diagonal coefficients:

ηe(T ) =

∑T−1
l=0 E{c2(l, l}}

∑U−1
k=0 E{c2(k, k}}

(2.18)

• The decorrelation efficiency ηc, which measures the amount of diagonalization pro-
vided by the transform. This is computed by the sum of non-diagonal covariances µc,c

in the transform domain divided by the sum of non-diagonal covariances µx ,x in the

10



2.1 Mathematical Fundamentals

Transform type Basis function tn(m), n, m ∈ {0,1, ..., N − 1}

DCT-II tn(m) = cn

q

2
N cos

� n(2m+1)π
2N

�

, cn =

¨q

1
2 if n= 0

1 otherwise

DCT-V tn(m) = cncm
2p

2(N−1)+1
cos

�

2nmπ
2N−1

�

, c{n,m} =

¨q

1
2 if n, m= 0

1 otherwise

DCT-VIII tn(m) =
2p

2N+1
cos

� (2n+1)(2m+1)π
4N+2

�

DST-I tn(m) =
q

2
N+1 sin

� (n+1)(m+1)π
N+1

�

DST-VII tn(m) =
q

4
2N+1 sin

� (2n+1)(m+1)π
2N+1

�

Table 2.1 Transform basis functions.

0 5 10 15 20 25 30 35 40

−0.2

0

0.2

m

t 1
(m
)

DCT-II
DCT-V
DCT-VIII
DST-I
DST-VII

Figure 2.1 Visualization of the second basis function t1(m) for different DCT and DST types with
N = 32.

spatial domain.

ηc = 1−
∑

x 6=y

�

�µc,c(x , y)
�

�

∑

x 6=y

�

�µx ,x(x , y)
�

�

(2.19)

• The coding gain G for Gaussian processes under high-rate assumptions is given by the
ratio of the arithmetic and geometric mean values of the squared expected values over
the discrete set of U coefficients:

G =
1
U

∑

k,l E{c(k, l)2}
U
q
∏

k,l E{c(k, l)2}
(2.20)

2.1.6 Quantization

In most general terms, a quantizer maps an input value to an output value according to a
specified rule. If just a single input value x is quantized using Q(·) to an output value y , this

11



2 Fundamentals

is termed scalar quantization. If the input x is a vector, this is termed vector quantization.
The most common type of scalar quantizers relevant for this thesis are uniform quantizers
using a defined step size ∆:

yT =QT(x) = sgn(x)·
�

x
∆
+

1
2

�

(2.21)

yT =QR(x) = sgn(x)·
�

j x
∆

k

+
1
2

�

(2.22)

Equation 2.21 is called a mid-tread quantizer, due to the fact that small values |x |< ∆/2 are
mapped to zero. Equation 2.22 is called a mid-rise quantizer, mapping small values around
zero to ±1

2 . Typically, if the output quantization levels of y are odd in number and symmetric
about the origin, this corresponds to a mid-tread quantizer. Accordingly, if the number of
output quantization levels is even, this corresponds to a mid-rise quantizer.

Quantizers with non-uniform step size can be beneficial in many cases, for example if the
Probability density function (PDF) or Probability mass function (PMF) of the signal x is not
uniform, if certain signal levels (e.g. x ≈ 0) contain excessive noise or if it is beneficial
to map a larger signal range to zero (e.g. in transform coding). The most common type
of non-uniform quantization is the so-called deadzone quantizer. Here, the quantization
step size is larger for input values around zero. In image and video coding, quantizers are
specified from a decoder point of view. The most common are called Uniform reconstruction
quantizers (URQs). In this case, the reconstructed value x̂ is given by:

x̂ =∆ · y (2.23)

The task of finding the optimal y is handled by the encoder and could be determined
by simple application of Equations (2.21) or (2.22), or a more complex process, such as
Rate-distortion optimized quantization (RDOQ).

2.1.7 Filters

Finite impulse response (FIR) filters are encountered at many stages in a video coding frame-
work. A distinction must be made between linear and non-linear filters, which are both com-
mon. If a unit impulse δ(n) is given as an input to a Linear time-invariant (LTI) system, h(n)
is termed the impulse response of the system. For a general input signal x(n), the output

y(n) =
∞
∑

k=−∞
x(k)h(n− k) (2.24)

is observed. This is also written using the convolution operator ∗ as y(n) = x(n)∗h(n). The
effect of filtering is frequently analyzed in the transform domain using an N -point Discrete
Fourier transform (DFT). Examples for linear filters in the video coding framework are the
sub-sample interpolation filters for motion compensation, FIR Wiener filters or the blending
filter applied to the prediction signals resulting from geometric partitioning.

Rank-order, median filters and morphological filters are typical examples of non-linear
filters. The de-blocking filters of HEVC and VVC are also examples of non-linear filters.
These filters are not based on linear relationships between input and output. Unlike linear
filters, they do not have an explicit frequency domain transfer function.

12



2.2 Video Compression Fundamentals

Source Pre-processing Encoding

Decoding

Transmission

Post-processingDisplay

Figure 2.2 General concept of a video transmission scheme. The video coding part is indicated by
the dashed box.

2.2 Video Compression Fundamentals

The main idea of video coding is to exploit the high temporal and spatial redundancy of
the signal for compression. Two general distinctions can be made: In lossless compression
schemes, only the statistical redundancies are exploited for coding and no information is lost
in the encoding process. In other words, the lossless decoder is able to reconstruct a video
from the bitstream which is identical to the source video. This is an important feature in
many applications, e.g. in medical imaging where compression artifacts are to be avoided.
The achievable compression ratios, measured by dividing the original video file size by the
file size of the compressed bitstream, is typically in the range from 2:1 to 5:1 for natural
video, heavily depending on the characteristics of the source material. For screen content
for example, higher compression ratios may be achieved.

If the condition that all information must be preserved is relaxed, this opens the field
of lossy compression, which is the predominant type of video coding used for broadcast,
streaming, and consumer video on DVD and Blu-Ray discs. Lossy compression exploits not
only the statistical redundancy but also the psychovisual redundancy of the video signal
by means of color sub-sampling, frequency transforming, or quantization of the prediction
error signal. Information about the original video source is discarded that is considered to
be irrelevant for the human observer. The more information is discarded – thereby lowering
the bitrate – the lower the quality of the compressed video. Naturally, this opens up the
question of how the quality of the compressed video could be assessed. This important
aspect is further detailed in Section 2.3. An important operating point of a lossy video coder
is the bitrate at which the compressed video can be considered visually lossless, meaning
that most human observers could not tell a difference between the compressed and original
video. Considering this specific operating point, compression ratios of 1000:1 and more can
be achieved by today’s video coding schemes.

The basic concept of a video transmission scheme is visualized in Figure 2.2. A video
source, which might be a camera or any other device that outputs a digital video represen-
tation, provides a sequence of pictures at a given frame rate. This is followed by an optional
pre-processing step, such as a color conversion or denoising process. Then, the encoding is
performed, compressing the video and transforming it into a bitstream. In the transmission
stage, the data is prepared and sent to the receiver. This stage may involve many sub-steps
such as packetization, encryption, channel coding and all of the inverse processes at the
receiver side. The decoder, assuming its input is the error-free bitstream, reconstructs the
compressed video. Subsequent operations may be applied on the decoded video in a post-
processing stage, such as the addition of film grain or a frame interpolation. Lastly, the video

13



2 Fundamentals

is displayed for viewing.

2.2.1 Hybrid Video Coding

The predominant type of video codecs deployed today apply the hybrid video coding scheme.
The term hybrid is used to emphasize that two different approaches are being combined:
Predictive coding and transform coding. The most basic structure of a hybrid video coder
is visualized from an encoder perspective in Figure 2.3. Essentially, the hybrid video coder
is a DPCM loop: From the input video – more specifically input blocks – a prediction is
subtracted. The prediction error or residual signal is then transformed, and the resulting
transform coefficients are quantized. These are fed to an entropy coder. Since encoder and
decoder are synchronized, an inverse transform is also part of coding loop. Therefore, the
prediction process only utilizes information that has already been coded and is identically
available at a decoder side. The prediction itself might relate to intra-picture prediction (in
short intra-prediction), meaning that only already coded samples of the current picture are
used, inter-picture prediction (in short inter-prediction), meaning that already coded past
pictures are used for prediction, or a combination of both of these approaches.

Before a picture is being output for display or put into the picture buffer, one or more loop
filters are applied to remove visible compression artifacts and to improve the dependent
prediction process.

Pictures can be distinguished by the type of prediction that is allowed to be applied for
the blocks that compose them:

• Intra-coded pictures or I-pictures only allow intra-prediction to be applied to the coding
blocks. Therefore, every I-picture can be decoded independently.

• Inter-coded pictures with one motion hypothesis per block, e.g. uni-directional or uni-
prediction, are denoted as P-pictures. This generally does not exclude the possibility
that individual blocks are intra-coded.

• Inter-coded pictures with up to two motion hypothesis per block, e.g. bi-directional or
bi-prediction, are denoted as B-pictures. This generally does not exclude the possibility
that individual blocks are intra-coded or using inter-prediction with just one motion
hypothesis.

The following sections give brief introductions into the relevant sub-blocks of a hybrid video
coding scheme, closely aligned with recent video coding standards, such as HEVC and VVC.
More specific information on concrete methods of inter-prediction used in VVC is detailed in
Section 2.4.

2.2.2 Source Formats

The most common type of video source format relevant for video coding and also this thesis
is called a YUV format. YUV is an integer, byte-aligned, and packed representation of the
Y CBCR color space . Historically, Y UV was also used for a specific analog encoding of color
in television systems, while Y CBCR always related to the digital encoding for video and image
compression. Nowadays, both terms YUV and Y CBCR are often used interchangeably.

14



2.2 Video Compression Fundamentals

Input
Video

+ Transform Quantization

inv. Transform

+

Loop FiltersPicture Buffer
Parameter
Estimation

Prediction

Entropy Coding

Bitstream

Reconstructed Video

−

Decoder

Figure 2.3 General concept of a hybrid video coding scheme.

The luma and chroma components of the Y CBCR color space are encoded with a given bit-
depth Bd. For the video sequences included in the JVET test set for example, 8 bit and 10 bit
sequences are defined, but higher bit-depths up to 16bit are encountered in professional ap-
plications. The theoretical signal range of each component is therefore given by [0, 2Bd−1].
International Telecommunication Union (ITU) recommendations however, which specify
common properties and parameters for video standards such as ITU-R BT.709 (HDTV) and
ITU-R BT.2020 (UHD), may give different quantization level assignments. BT.709 for ex-
ample specifies an allowed value range for video data of [1, 254] for 8 bit and [4,1019] for
10bit video. In this thesis, the video encoder scales every input source to a 10bit representa-
tion by a factor 2Bd−8. The color components in this integer representation are also denoted
as the luma and chroma components.

Since the human visual system is less sensitive to color than it is to structure, sub-sampling
of the chroma components is commonly applied in consumer applications. Many sub-
sampling schemes exist but three are of special interest for video coding. The sub-sampling
scheme is expressed by the ratio between the number of luma and chroma samples:

Y : X1 : X2 (2.25)

The first value Y denotes the number of luma samples considered and the two other values
X1 and X2 indicate the number of chroma samples in horizontal and vertical direction in
relation to the Y value. The three very common types of sub-sampling are:

• 4:2:0, where X1 = 2 specifies that the horizontal chroma resolution is halved. The
value X2 = 0 indicates that the same sub-sampling is also applied in the vertical direc-
tion. If the luma component of a picture has a resolution of w× h in terms of width
and height, the chroma component has a resolution of w

2 × h
2 . All JVET test sequences

are given in 4:2:0 chroma sub-sampling.

• 4:2:2, where X1 = 2 again specifies that the horizontal chroma resolution is halved.
The value X2 = X1 however indicates that no sub-sampling is applied in the vertical
direction. The chroma component would have a resolution of w

2 × h.

• 4:4:4, where X1 = 4 specifies that no horizontal sub-sampling is applied and X2 = X1

specifies that also no sub-sampling is applied in the vertical direction. All components

15



2 Fundamentals

of a picture would have a resolution of w × h. This sub-sampling scheme is often
encountered in professional video applications and in captured screen content.

2.2.3 Picture Partitioning

Every picture is partitioned into an array of non-overlapping blocks that are processed in
raster-scan order. The blocks in all relevant recent video coding schemes are square-shaped
and have a defined maximum size. In AVC for example, a fixed block size of 16× 16 luma
samples is specified, denoted as a Macroblock (MB). In HEVC, this is increased to a max-
imum of 64 × 64 luma samples to cope with higher resolutions and denoted as a Coding
tree block (CTB). The same terminology is kept for VVC, but the maximum block size is
again increased to 128 × 128 luma samples. If all three color components are considered
as a whole, this is also termed a Coding tree unit (CTU). CTUs may be further grouped
into structures that fulfill certain requirements, such as independent decodability or parallel
processing capability.

In HEVC and VVC, a CTU may be further split into multiple Coding units (CUs), comprising
the Coding blocks (CBs) of each component. In HEVC, the splitting is governed by a quad-
tree, always resulting in square shaped CUs while in VVC a quad-tree with nested binary and
ternary trees is used. Therefore, a CU in VVC can be square-shaped or rectangular.

Further sub-division of a CU is also possible: Depending on the processing stage that
is being considered in the hybrid video coding scheme, the distinction is made between
Prediction units (PUs) and Transform units (TUs) with their associated Prediction blocks
(PBs) and Transform blocks (TBs). In HEVC, a CU might be partitioned into two rectangular
or four square PUs, meaning that prediction is performed for these blocks separately. In VVC
however, no sub-partitioning of a CU into PUs is possible. This is a fundamental difference
which is substantially modified by the geometric block partitioning scheme presented in this
thesis.

Lastly, the pixels of a CU considered in the transform stage of the hybrid video coder may
be partitioned into TUs, meaning that separate linear block transforms of smaller size are
applied to the samples of each TB. In HEVC, this segmentation is performed by a separate
quad-tree while in VVC only a single quad-split may be employed1.

2.2.4 Intra-Prediction

Intra-prediction tries to predict the samples of the current block by using only already de-
coded samples of the current picture. Numerous methods are practically and theoretically
discussed. Most of these methods try to exploit the high spatial correlation between neigh-
boring samples by simple linear modeling. If the coding scheme supports more than one
method, different methods are typically utilized, depending on the properties of the local
picture region. The choice which method shall be employed is made by the encoder and
signaled as additional side-information. The following common methods are distinguished:
Planar prediction is a type of bilinear interpolation of samples using reference samples from
the top and left neighborhood of the current block and is particularly suited for the prediction
of smooth content with gradual changes in signal amplitude. DC intra-prediction assumes

1VVC Draft > 3 / VTM > 3.2., see Intra sub-partitions (ISP) and Sub-block transform (SBT)

16



2.2 Video Compression Fundamentals

that the texture of current block is completely flat and therefore assigns an average DC value,
computed from the reference samples, to all samples in the prediction block. Directional or
angular intra-prediction methods on the other hand are particularly suited for the modeling
of directional structures containing edges. For these methods, the interpolation is performed
along an indicated direction [Sul+12].

Novel methods of intra-prediction try to predict the chroma samples from reconstructed
luma samples, combine or enhance the result of planar, DC, or directional prediction method
with additional information from reference samples or perform further sub-division and in-
termediate reconstruction of the prediction blocks. Although typically classified as a predic-
tion method specifically for screen-content, the copying of entire blocks of samples can also
be considered an intra-prediction method. Such a scheme can even be enhanced by not sig-
naling the location which is to be copied, but rather determining this at the decoder using,
for example, template matching.[BCL18; CYK19]

Modeling of the prediction using 2-D non-separable Markov processes is also employed.
In this scheme, a block is predicted by recursively sliding a filter over the reference and the
newly predicted samples [Che+18].

A new class of algorithms tries to predict the current samples using non-linear modeling,
moving away from the aforementioned hand-designed signal models. Advances in Machine
Learning in recent years have opened up the field to prediction schemes based on Neural
Networks (NN) which were trained on huge data sets. Although truly Deep Neural Net-
works (DNNs) are still algorithmically too complex for real world video coding applications,
a greatly simplified, linear version of NN-based intra-prediction is currently being included
in VVC.

2.2.5 Inter-Prediction

Inter-prediction exploits the temporal redundancies of the video source for coding. Unless
a scene change is occurring or novel content is being uncovered, the individual pictures of
a video sequence are often very similar to each other – except for the motion of any objects
present in the video. By estimating this motion and compensating it, a prediction for the cur-
rent picture based on already coded pictures can be determined. This is accordingly termed
Motion-compensated prediction (MCP) and is the key tool for the efficient compression of
video.

The classic approach to MCP is to signal a displacement or motion vector for a given block.
Based on the collocated position of the current block in the reference picture, the displace-
ment vector locates a block of samples in the reference picture that is being copied into the
current picture. Since the true motion of an object is rarely discrete and coinciding with the
pixel grid, interpolation filters are used to approximate the sub-pixel motion.

Novel methods of inter-prediction extend the translational motion model to motion vec-
tors of higher order, such as an affine motion model. In this scheme, the motion of a block is
estimated using an affine transformation, which can also capture effects such as zoom, rota-
tion, or shearing. Other current methods of inter-prediction try to improve the prediction of
a motion compensated block by capturing irregular sub-block motion, illumination changes
or by an adaptive weighting of multiple prediction hypothesis [BCL18; CYK19].

Reference pictures used in motion compensation are also not always required to be pic-
tures used for actual displaying. Techniques are proposed to generate special reference pic-

17



2 Fundamentals

tures, composited from past and future reference pictures solely for the purpose of prediction
[Che+18; RH19].

A big aspect of inter-prediction is the efficient coding of translational motion vectors. Not
only the samples of a picture are correlated but also the motion withing a single or across
multiple pictures changes only slowly.

2.2.6 Other Compression Methods

Inter- and intra-prediction are the two predominant types of prediction, but other schemes
are also deployed in recent video coding standards or those in development. In particular,
the combination of two or more prediction hypothesis, merging inter- and intra-prediction
signals together, are established methods [BCL18; CYK19][Che+18; RH19].

Another compression approach modifies the dynamic range of prediction samples using
linear mapping functions. Effectively, this assigns new code words to the sample values.

In the context of screen content coding, it is common that a source video only makes
use of a limited range of colors. This property can similarly be exploited by designing code
books that encode the color directly, rather than using the prediction- or transform-based
representation [Pen+16].

Another type of compression scheme adaptively changes the resolution of pictures or indi-
vidual blocks using down-sampling and up-sampling filters in the coding loop [Jos+19]. This
makes use of a well-known result from rate-distortion theory that for low rates and specific
properties, it is better to perform down-sampling and coding with a smaller quantization
step size than encoding at full resolution and discarding many transform coefficients.

2.2.7 Transform Coding and Quantization

Next to prediction, transform coding is the other essential part of the hybrid video coding
scheme. Depending on the success of the prediction stage, the prediction error may still
contain significant correlation. Video coding schemes such as HEVC and VVC therefore of-
fer different options on how the prediction error is handled and quantized. These choices
are signaled as transform coding modes. For HEVC and VVC, the following choices can be
distinguished:

• In HEVC, a Residual quadtree (RQT) can be signaled to further segment the residual
block into smaller TBs. These smaller blocks can then be coded using separate block
transforms. In VVC, only one such split is available, denoted as SBT.

• If the prediction, e.g. through motion compensation, achieves such high accuracy that
no residual is required or it is determined through Rate-distortion optimization (RDO)
that the residual can be quantized to zero, this is indicated by the Skip-mode in HEVC
and VVC. The prediction block is therefore used as is.

• A sinusoidal block transform is applied to the residual. The main transforms as intro-
duced in Section 2.1.5 used for video coding are the DCT-II and the DCT-III, which is
the inverse of the DCT-II and considered the core transform, and the DST-VI / DST-VII
pair. In the context of image and video coding, the designation the DCT implicitly re-
lates to the DCT-II / DCT-III and the designation the DST to the DST-VI / DST-VII pair.

18



2.2 Video Compression Fundamentals

In HEVC these transforms can be of size 2N × 2N with N ∈ {2,3, 4,5}. However, the
DST is only available for 4 × 4 intra-predicted blocks. In VVC, the transforms are of
size 2N × 2M with N , M ∈ {2, 3,4, 5,6}. Here, the DST-VII and the DCT-VIII are added
as additional core transforms for variable block sizes. Due to the separability of these
transform, it is possible in VVC to apply four different combinations of DCT-VIII and
DST-VII in vertical and horizontal direction. The transforms defined in Section 2.1.5
are approximated using integer matrices such that all transform and quantization op-
erations can be performed using fixed-point integer arithmetic, e.g. no intermediate
or output values are exceeding a certain bit-depth. In HEVC and VVC, this is specified
to be 16 bit.

• Another coding option is to skip the transform and perform quantization directly on
the residual signal. This is denoted as Transform-skip. Since no decorrelation is ap-
plied, this method is mostly suitable for high bitrates, very small prediction errors or
prediction errors whose properties are otherwise not suitable for transform coding.

• Extending on the previous method, both transform and quantization can be skipped,
therefore allowing perfect reconstruction and a lossless representation of the coded
block. This is denoted as Transquant-bypass in HEVC.

• Lastly, direct PCM coding of the sample levels is possible. In HEVC, this is performed
without applying prediction or quantization to the samples beforehand. In VVC, both
prediction and / or quantization of the residual before PCM coding is possible.

HEVC and VVC use similar scalar quantizers. The quantizer step size is determined by the QP
(Quantization parameter) which has been given to the encoder as a configuration parameter
and is therefore also encoded in the compressed bitstream. The quantization step size follows
a logarithmic structure such that the step size doubles between the given QP and QP+6.
Specifically for HEVC, the quantizer step sizes ∆Q for QP > 5 are given by [Wie14]:

∆Q(QP) =∆Q,0(QP%6) · 2bQP
6 c (2.26)

∆Q,0(k) = [ 2−
4
6 2−

3
6 2−

2
6 2−

1
6 1 2

1
6 ] (2.27)

In VVC, the concept of a single scalar quantizer is replaced by a Trellis-coded quantizer
(TCQ) (or dependent quantizer), which is composed of two scalar quantizers, mapping to
even and odd reconstruction values. A state machine switches between these two quantizers
using defined transition rules [Sch+19].

2.2.8 Entropy Coding

Entropy coding is performed as the final step after transform and quantization. In the entropy
coding stage, all syntax elements relating to the CUs are written into the bitstream. Unlike
previous stages of the hybrid video coder, this is a lossless mapping of information given
by syntax elements (or symbols) to a coded representation. Two types of entropy coding
can be distinguished that are applied in this thesis and in video coding in general: The first
type approaches the first order entropy of the given set of symbols. This is performed by

19



2 Fundamentals

Syntax element Binarization

Context
Modeling

Binary
Arithmetic

Coder
Bitstream

i

x
bin bi

regular

bypass

p(bi) = 0.5

p(bi |Ck)

Context update

Figure 2.4 High-level view of the CABAC coding engine.

assigning variable length codes to the symbols according to their probabilities. The second
type approaches the conditional entropy of the source. This is performed using CABAC. Both
approaches can also be combined to achieve highest compression efficiency.

In the following sub-sections, introductions into these two coding types are given. The
overall entropy coding scheme is visualized in Figure 2.4. First, syntax elements are bina-
rized. Then, every bin bi of a bin-string b is given to the CABAC-coding engine. Here, the
bin can be coded with a fixed probability of p(bi = 0) = p(bi = 1) = 0.5, called the bypass-
mode, or with a probability that is derived from a context model, called the regular-mode.
For a given bin, many different contexts may be available that are selected based on addi-
tional criteria. In every available context model, the probability of the bin having a value of
0 (or 1) can be different from 0.5 and is updated after every coding step. Hence, the context
model adapts to the probability of actual coded 0’s and 1’s for the specific bin.

2.2.8.1 Binarization

The entropy coding in HEVC and VVC is performed using a binary arithmetic coder. There-
fore, every non-binary syntax element needs to be turned into a bin-string of 1’s and 0’s
before being given to the coding engine. The binarization is the process of converting a
non-binary value x into a binary code b = C(x). Conversely, the inverse process x = C−1(b)
is called de-binarization. In the context of this thesis, different binarizations are applied to
syntax elements, which are selected based on assumptions or measurements made about the
distribution of p(x).

Although the binarization could be an arbitrary mapping of binary code words b to values
x , systematic approaches play a special role in video coding due to their simplicity. The
following overview summarizes the different relevant binarization approaches.

A source alphabet S = {s0, s1, ..., sx , ..., sNS−1} shall have a maximum of NS entries. The
entries sx , x ∈ {0, ..., NS−1} in the given alphabet can have arbitrary integer or floating-point
values. Therefore, the integer value x only relates to the index of the alphabet entry sx . In
actual coding examples, it is however often the case that no such remapping is required,
e.g. an alphabet S may be given by S = {c, c + 1, ..., x , ..., NS + c − 1} with some c ≥ 0, and
therefore directly encoding a syntax element.

The length of a code word shall be measured in bit, e.g. the code word b = [ 1 1 0 ]
has a length of NC(b) = 3bit. Each element of b is called a bin bi, which can always take the
value of 0 or 1. The entire code word b is thus denoted as a bin-string.

20



2.2 Video Compression Fundamentals

2.2.8.2 Fixed-length Codes

The most trivial fixed-length (FL) code is a flag, which can be coded with 1bit. If the source
alphabet contains NS entries, a fixed length code of length NC =

�

log2 NS

�

is required:

CFL,NC
(x) = [ b0 b1 · · · bNC−1] (2.28)

2.2.8.3 Systematic Variable-length Codes

Systematic variable length codes are constructed using defined rules. The most common
codes are unary codes (U), truncated-unary codes (TU), truncated-binary codes (TB), and
Exponential Golomb codes of order k (EG,k).

Unary Code The unary code, or thermometer code, represents a value x by x bits of one
parity and a stop bit of the other parity. The length of a code word b is therefore NC(b) =
x + 1.

CU(x) = [ 1 1 · · · 1
︸ ︷︷ ︸

x times

0 ] (2.29)

Truncated-Unary Code The truncated-unary code corresponds to the unary code with a
defined maximum value NS. Thus, for the last valid code word, the terminal bit can be
omitted:

CTU,NS
(x) = [ 1 1 · · · 1

︸ ︷︷ ︸

x<Ns−1 times

bNS−1 ], bNS−1 =

¨

1 if x = NS − 1

0 otherwise
(2.30)

Truncated-Binary Code The truncated-binary code is an extension of the fixed-length code
for maximum values which are not a power of two, e.g. NS 6= 2k, k ∈ N0. If l = blog2(NS)c,
then truncated binary coding assigns the first M symbols to code words of length l and the
remaining symbols NS − M to code words of length l + 1, where M = 2l+1 − NS. For these
remaining code words, the input value x is offset by M . The last bin bl can therefore be
omitted for all x < M .

CTB,NS
(x) = [ b0 · · · bl−1

︸ ︷︷ ︸

x<M

bl
︸︷︷︸

x≥M

] (2.31)

Exponential-Golomb Code The k-th order Exponential Golomb code is constructed by
using a unary prefix code and a suffix of configurable length. The number of prefix bins l is
determined by the value x and the order k as follows:

2k(2l−1 − 1)≤ x < 2k(2l − 1) (2.32)

The number of bins m in the suffix is determined by m= k+ l −1. The suffix encodes the
value x − 1− 2k(2l−1 − 1) with a fixed-length binary code.

21



2 Fundamentals

x CFL,3(x) CU(x) CTU,5(x) CTB,5(x) CEG,0(x) CEG,1(x) CEG,2(x)

0 000 0 0 00 0 0 0 0 00

1 001 10 10 01 10 0 0 1 0 01

2 010 110 110 10 10 1 10 00 0 10

3 011 1110 1110 110 110 00 10 01 0 11

4 100 11110 1111 111 110 01 10 10 10 000

Table 2.2 Example binarizations using the systematic codes detailed in Section 2.2.8.1.

s5, p(s5) = 0.05

s4, p(s4) = 0.10

s0, p(s0) = 0.20

s2, p(s2) = 0.25

s1, p(s1) = 0.40

0

1
s
′
4, p(s

′
4) = 0.15

s0, p(s0) = 0.20

s2, p(s2) = 0.25

s1, p(s1) = 0.40

0

1
s2, p(s2) = 0.25

s
′
0, p(s

′
0) = 0.35

s1, p(s1) = 0.40

0

1
s1, p(s1) = 0.40

s
′
2, p(s

′
2) = 0.60

0

1

root

Figure 2.5 Visualization of Huffman code tree construction.

CEG,k(x) = [ 1 1 · · · 0
︸ ︷︷ ︸

l prefix bins

b0 b1 · · · bm−1
︸ ︷︷ ︸

m suffix bins

] (2.33)

An example for these different binarizations is shown in Table 2.2.

2.2.8.4 Basic Huffman Coding

Huffman coding is a type of variable length coding that produces prefix-free codes, approach-
ing the first order entropy H(S) of the given source alphabet S. If the probability mass func-
tion p(si) for all source symbols S = {s0, s1, ..., si, ..., sNS−1} is known or estimated, the code is
constructed using a so-called Huffman code tree. The construction starts by combining the
two-least probable symbols and assigning them the codes 0 and 1 respectively. These two
symbols are removed from S but combined to a new entry which has the sum probability of
both symbols. This combined symbol is re-added to S. Then, again the two least probable
symbols are determined which are assigned the codes 0 and 1. The process continues until
S contains only one entry. This will be the root node of the Huffman code tree and the con-
struction of the code has finished. Figure 2.5 visualizes the process for a set of five symbols
with given probabilities.

22



2.2 Video Compression Fundamentals

2.2.8.5 Context Modeling and Arithmetic Coding

In HEVC and VVC, all syntax elements on the block level are coded with CABAC. As visualized
in Figure 2.4, every bin bi is fed into the arithmetic coding engine. Here, the pre-determined
decision is made, whether the bin is coded in bypass-mode, assuming equiprobability of the
bin values, or in regular-mode where an adaptive probability based on context modeling is
employed. A context model Ck with context index k can be seen as the conditional probability
p(bi|Ck) that a bin takes a specific value bi = 0 or bi = 1, given the context Ck. The context
index k per bin indicates that more than one context may be available. This necessitates a
context selection process. The most commonly used types of context modeling and selection
types are:

• Spatial context selection: The applicable context model depends on the existence and
value of previously coded syntax elements in the local neighborhood. For example, the
selection of a context for a specific coding mode flag in the current coding unit may
depend on the value of the coding mode flag coded for the left and top neighboring
coding units. If the value of the flag for the left or top coding unit is true, a context
C1 is chosen. If the value of the flag is true for both neighbors, a context C2 is chosen.
Otherwise, a default model C0 is chosen.

• Slice type dependent selection: Different context models are chosen based on the cur-
rent slice type (I, P, or B), assuming, for example, that the coding statistics vary with
different picture types and different context initialization values are given.

• Component dependent selection: Syntax elements relating to luma or chroma samples
can be coded with different contexts.

• Bin index dependent selection: A context Ck is chosen according to the bin index i.
In the simplest case, k = i < M is specified, where M denotes a maximum number of
regular coded bins. If the bin-string is longer than M , the remaining bins are coded
using bypass mode. This is frequently done in video coding standards to limit the
complexity of CABAC coding.

The aforementioned approaches can also be combined. The probability provided by a con-
text model is directly used for the coding interval subdivision process used in arithmetic
coding. For more information on arithmetic coding, the reader is referred to [WNC87] and
[MNW98]. Once a context Ck is selected and the bin value of bi has been coded, the prob-
ability of p(bi|Ck) is updated. In HEVC and VVC, the probability update is modeled using
finite state machines. The state of a context is represented by the probability of the least
probable symbol 0< pLPS ≤ 0.5 and by the value of the most probable symbol bMPS ∈ {0,1}.
If the most probable symbol is coded, pLPS decreases. If the least probable symbol is coded,
pLPS increases. The step size by which the probability increases or decrease is dependent on
the current state, often following a logarithmic function. If pLPS reaches the equiprobability
threshold of pLPS = 0.5, the polarity of bMPS is flipped. More specific information on CABAC
can be found in [MSW03] and for HEVC in [SB12]. In contrast to HEVC, VVC uses two state
machines as probability estimators, having different adaptation rates.

23



2 Fundamentals

2.2.9 Loop Filters

The last step in the processing flow of the hybrid video coding scheme and before a picture
can be displayed is the in-loop filtering. The goal of the in-loop filtering is to reduce coding
noise and edge-artifacts. This improves both the objective coding efficiency as well as the
subjective visual quality of the reconstructed video. Two types of filters can be distinguished:
Non-linear and linear filters. The first type comprises filters such as the de-blocking filter (DF)
and the Sample-adaptive offset (SAO) filter, which are both included in HEVC. The second
type of filter is based on Wiener-filtering approaches. One particular method is called the
Adaptive loop filter (ALF), which is included in VVC. Both SAO and ALF require the signaling
of filter parameters. For more information, the reader is referred to [Fu+12] and [CYK19].

2.2.10 Rate-Distortion Optimization

The final bitrate of the compressed video depends on a number of factors. The video content
and its intrinsic characteristics (resolution, frame rate, spatial and temporal activity, natural
or screen content, etc.) are obvious aspects that influence by how much a video can be
compressed for a given quality and is considered to be outside of reach in this thesis. The
other factors however, which are freely choosable, are the coding tools and the dependent
coding parameters for these methods. Considering a single video sequence and a fixed set
of coding tools, the rate R versus the distortion D characteristic for a given set of coding
parameters P provides a means to assess the quality of the choice of parameters. If all
operating points P, e.g. sets of coding parameters, are visualized in the RD-plane, then the
best choice of coding parameters is given by the convex hull of these points. For a fixed rate
RT, this can also be formalized as the minimization problem:

min
P

D(P) subject to R(P)≤ RT (2.34)

For a practical coder, this set of parameters can be found through RDO. As can be seen from
the introductions given above, a wide range of coding parameters (block sizes, prediction
modes, transform coding modes, loop filter settings) are available for recent video codecs.
The process of selecting the best set of parameters is the task of the encoder and out of the
scope of a video coding standard. In the reference encoders for HEVC and VVC however,
the method of choice for performing RDO is Lagrangian optimization. The Lagrangian cost
function for a coding unit is given by:

J(P|λ) = D(P) +λR(P) (2.35)

The Lagrange multiplier λ controls the slope along a line of operating points in the RD-
plane. Minimizing J for λ = 0 would only minimize the distortion and λ → ∞ would
conversely only minimize the rate. The constrained problem given in Equation 2.34 can
now be represented as an unconstrained problem using the Lagrangian cost function:

Popt = arg min
P
(D(P) +λR(P)) (2.36)

In the reference encoders for HEVC and VVC, the minimum cost J is determined by a nearly
exhaustive search of the best coding tools for a given coding unit in a one-pass encoding,

24



2.3 Evaluation and Metrics

although certain speed-ups and short-cuts are utilized to find individual coding parameters.
Clearly, this method does not cater to the fact that spatial or temporal dependencies between
coding parameters of consecutive coding units may exist. For example, the selection of
a precise but more costly (in terms of J) motion vector for the current coding unit could
result in lower RD-costs for subsequent coding units due to improved prediction. This is
not considered in the reference encoders. Theoretically, Lagrangian optimization should be
performed over all coding units jointly, which undoubtedly would make the encoding process
more complex.

2.3 Evaluation and Metrics

The algorithms and methods developed in the context of this thesis have been implemented
into the reference software for VVC, termed the VVC Test Model (VTM) [Joi20]. For most of
the experiments conducted in Chapters 4, 5, and 7, VTM-3.2 has been used. For the simpli-
fications proposed to JVET, detailed in Chapter 6, VTM-5.0 has been used. The coding per-
formance of the proposed algorithms is analyzed using objective metrics. For this purpose,
coding simulations are performed in which a set of specified video sequences is encoded and
decoded according to the JVET Common test conditions (CTC). For determining the rate-
distortion performance, the decoding process is technically not required, since all metrics
can be gathered at the encoder side. However, next to the rate-distortion performance, com-
plexity measurements in terms of encoder and decoder run time are also recorded, requiring
the decoding step. In this thesis, the rate and distortion measurement are determined always
from the bitstream and the decoded video, not from measurements output by the reference
software. This provides an additional safety against possible software issues at the encoder.
For every simulation performed, a perfect match of the reconstructed video at the encoder
side and at the decoder side is asserted.

The coding performance of the proposed algorithms and methods is assessed in terms of
Bjøntegaard-delta (BD)-rate changes. Therefore, the coding results of one simulation acts
as an anchor or reference against the tested simulation. Except for Chapter 7, the common
anchor is always the unmodified respective software version. In addition to the evaluation
according to the JVET CTC, a visual assessment is performed using Video Multi-Method As-
sessment Fusion (VMAF) [Net20]. Although VMAF is reported to have high correlation with
visual test results performed by human test subjects and is used extensively in industry, it is
not a metric per se and has not yet achieved widespread academic or standardization activity
adoption. Since VMAF cannot replace actual visual testing using human viewers, which is
an elaborate and time-consuming process, these results can be seen as supplementary and
indicators at most.

2.3.1 JVET Common Testing Conditions

If not otherwise stated, the experiments conducted in this thesis follow the JVET CTC, specif-
ically [Bos+18a] for experiments with VTM-3.2, and [Bos+18b] for experiments with VTM-
5.0. The two test specifications do not differ in terms of the sequences to be tested but only
in the applicable configuration files supplied to the encoder.

There are four encoding scenarios described in the JVET CTC:

25



2 Fundamentals

• Random-access (RA): This scheme provides the highest compression performance. The
coding order of pictures differs from the output order, as the pictures are arranged in a
so-called hierarchical-B coding structure. I-picture are inserted in this coding structure
at roughly every second, allowing the decoding process to be started at these locations
independently. The pictures composing such an independently decodable structure are
also called a Group of Pictures (GOP). RA is the typical configuration for streaming
and broadcasting applications.

• Low-delay B (LDB): In this scheme the coding order is equal to the output order,
therefore no structural delay is introduced. Pictures in this configuration may use
bi-prediction. The typical application for LDB is video conferencing, where no random-
access property is required.

• Low-delay P (LDP): This scheme is identical to the LDB case, except that pictures may
only use bi-prediction.

• All-Intra (AI): In this scheme all pictures are coded using intra-prediction and can
therefore be decoded independently. The typical application are video editing or video
encoding with extremely low delay.

Due to the importance of RA, all experiments in this thesis are conducted in this configura-
tion. In Chapter 6, additional LDB coding results are provided. Since this thesis deals with
the improvement of inter-prediction, no AI simulations are conducted.

The JVET CTC specify 26 video sequences of different resolutions and characteristics.
Video sequences of same resolution are grouped into classes. For natural video content,
the following classes are specified:

• Class A1 and A2: 6 UHD sequences of size 3840× 2160 luma samples.

• Class B: 5 HD sequences of size 1920× 1080 luma samples.

• Class C: 4 WVGA sequences of size 832× 480 luma samples.

• Class D: 4 WQVGA sequences of size 416× 240 luma samples.

• Class E: 3 WXGA sequences of size 1280× 720 luma samples.

Class A1 and A2 are not mandatory for LDB simulations, while class E is only mandatory
for LDB simulations. For screen content, the JVET CTC only specify one additional class.
To augment this, coding experiments in Chapter 6 are performed using additional screen
content sequences containing text with graphics and motion (TGM), specified in the CTC for
screen content coding of HEVC [Yu+15]:

• Class F: 4 sequences of mixed resolution and content (computer generated, screen
content, natural video with screen overlay).

• Class TGM: 4 sequences of size 1920 × 1080 luma samples, exclusively containing
screen content.

The overall coding efficiency in terms of BD-rate change is always reported according to the
JVET CTC, specifying an average in terms of BD-rate change to be calculated over classes
A1, A2, B, C, and E, if applicable. All simulations are run with quantizer settings using base
QP={22, 27, 32, 37}.

26



2.3 Evaluation and Metrics

2.3.2 Bjøntegaard Delta Measurements

The Bjøntegaard-delta (BD) [Bjø01] measurement provides a single number to easily asses
the coding performance of two different coding schemes. The basic concept is to interpo-
late a curve between the rate-distortion operating points of the two coding schemes under
consideration. The rate of each operating point is given in kbps, whereas the distortion is
measured by the Peak Signal-To-Noise Ratio (PSNR). Then, the difference between these
two curves is integrated. Only the overlapping interval of both curves is used for the cal-
culation. Here, it is distinguished between BD-rate, where the overlapping rate interval is
chosen, and BD-PSNR, where the overlapping PSNR interval is chosen. According to the
JVET CTC, a piece-wise cubic interpolation method for calculation of the BD measurements
is used. The interpolation is performed in the logarithmic domain both for the rate and the
distortion, already given by the PSNR.

For consistency and ease of language in this thesis, a negative percentage in terms of BD-
rate always reflects a bitrate saving and hence, higher compression efficiency.

2.3.3 VMAF

It is a well-known fact that the PSNR does not consistently reflect the human perception of
image or video quality. Especially at low bitrates, humans can judge the quality of two com-
pressed videos with equal PSNR but otherwise distinct coding parameters very differently,
due to the perception of spatial and temporal compression artifacts. The Video Multi-Method
Assessment Fusion (VMAF) measurement provides a prediction of subjective visual quality.
Although the authors term VMAF as a “metric”, it does not fulfill all the required mathe-
matical conditions of a metric, such as symmetry and triangle inequality. For a given coded
video and the uncompressed reference, VMAF provides a so-called VMAF score, which is a
number between 0 and 100. The score of 100 corresponds to the quality of the reference,
thereby indicating excellent quality if the reference is the uncompressed video source. A
score of 0 corresponds to poor quality. Therefore, VMAF can also be seen as a prediction of
the Differential Mean Opinion Score (DMOS), frequently reported in visual testing for video
and image coding.

At its core, VMAF computes two objective image measures, Visual Information Fidelity
(VIF) [SB06] and Detail Loss Metric (DLM) [Li+11], and the temporal difference in terms of
absolute difference between adjacent frames. These measures are fused to a single feature
using a support vector machine regressor, assigning weights to each elementary measure.
This machine learning model is trained and tested using the opinion scores obtained through
real subjective visual testing.

In analogy to BD-measurements, a bitrate vs. VMAF-score plot for two coding schemes
provides a comparison of the visual performance. Since the VMAF-scores over rate shows
a similar logarithmic behavior as the PSNR, it is proposed in this thesis to compute a “BD-
VMAF” using the same piece-wise cubic interpolation method as for BD-rate and BD-PSNR.
These BD-VMAF values are reported for all experiments in the appendix.

27



2 Fundamentals

2.4 Overview of Inter-Prediction in Versatile Video Coding

After the finalization of HEVC in 2013, the HEVC Format Range Extension (RExt),
Scalable High Efficiency Video Coding (SHVC) and Multiview High Efficiency Video Cod-
ing (MV-HEVC) in 2014, 3D High Efficiency Video Coding (3D-HEVC) in 2015, and the
Screen Content Coding (SCC) extension in 2016, the focus of the joint standardization ac-
tivity between Visual coding experts group (VCEG) of ITU-T and Moving picture experts
group (MPEG) of ISO quickly shifted towards the development of a new video coding stan-
dard. The Joint Video Exploration Team (JVET, later changed to Joint Video Experts Team)
was founded between these two entities and started working on video coding technology
which surpasses the coding efficiency of HEVC. Over the course of several joint meetings,
the Joint exploration model (JEM) was developed, which consists of additional coding tools
and modified existing methods based on HEVC. JEM in its final version 7.0 achieved−28.5 %
luma BD-rate change for RA over HEVC, coded with HM-16.6, at roughly 10 times encod-
ing run time and 7 times decoding run time [Che+19b]. Therefore, it was concluded that
significant evidence exists that coding efficiency beyond HEVC can be obtained, justifying a
new standardization cycle.

This was followed by a Joint Call for Proposals on Video Compression with Capability be-
yond HEVC [Seg+17], which was answered by 32 organizations from industry and academia
with technology proposals. The majority of these proposals were based on JEM. The most
promising new coding tools and proven coding tools from HEVC were selected for a first
test model. The new standardization project was given the name Versatile Video Coding, to
stress its broad range of targeted applications, such as 360° and immersive video – next to
classical 2D video. Screen content coding is also a component of VVC from the start.

In the following, a brief overview into specific aspects of VVC is given. Since the proposed
geometric partitioning tool is an inter-prediction coding tool, no further details are given
on novel intra-coding tools in VVC or novel loop-filters. Instead, the reader is referred to
[BCL18; CYK19] and subsequent standardization documents, due to the ongoing nature of
the VVC standardization. Therefore, certain aspects detailed might be subject to change in
the future.

Figure 2.6 shows an updated version of the basic hybrid video coding block diagram shown
before in Figure 2.3, including all coding tools for VVC (Draft 5).

First and foremost, but not visible in the figure, the block partitioning structure of VVC is
different compared to HEVC, as already introduced in Section 2.2.3. The MTT (or Quadtree
binary tree ternary tree (QTBTTT)) structure provides means to partition a picture with
higher flexibility. This effectively allows a more efficient segmentation of the content, ac-
cording to its spatial and temporal properties, providing a large amount of the overall im-
proved coding gain over HEVC. Consequently, coding tools that operate on the block level
are implicitly influenced by the superordinate block partitioning. For a reference encoder,
which shall demonstrate the coding performance of the scheme, this means that more coding
parameters can be tested during RDO. This is an important aspect when a new coding tool
such as the proposed geometric partitioning tool is added to the codec.

VVC has significantly more inter-prediction coding tools compared to HEVC. Many of these
tools build upon the concept of weighted prediction, where multiple prediction hypotheses
are combined using a weighted average. Where HEVC only distinguished between Adaptive
motion vector prediction (AMVP) and Merge-mode motion vector coding for inter-predicted

28



2.4 Overview of Inter-Prediction in Versatile Video Coding

Decoder

Input
picture LMCS + T+Q

iT5+iQ6

+
Entropy
Coding7

Coded
bitstream

LMCS

Intra Prediction1

Weighted
Prediction2

iLMCS

Loop Filters4

Inter Prediction3 Buffer

Motion Estimation

−

×2 / ×1 hypotheses

×0 / ×1 hypotheses

Reconstruction

Intra Prediction1: 67 Intra Modes, CCLM, PDPC, MRL, ISP, MIP

Weighted Prediction2: TPM, CIIP, BCW

Inter Prediction3: AMVP, Ext. Merge, MMVD, Affine MC, SbTMVP, AMVR, BDOF, DMVR, SMVD

Loop Filters4: DF, SAO, ALF

Transform5: LBT, MTS, LFNST, SBT, TS, TQB

Quantization6: Dep. Scalar Quantization, Joint Chroma Coding

Entropy Coding7: Multi-Hypothesis CABAC

Screen Content Coding: IBC, RDPCM

Figure 2.6 High level block diagram of VVC (Draft 5).

29



2 Fundamentals

current blockA1

A0

B1B0B2

C1

C0

4× 4 sub-block

(a) Spatial and temporal merge candidates.

Col. Ref. Cur. Ref. Cur. Pic. Col. Pic.

current CU collocated CU

mcol

mpred

tb

td

(b) Temporal scaling process.

Figure 2.7 Visualization of merge candidate positions and temporal motion vector scaling for VVC.

blocks [Wie14], VVC has the following prediction and coding tools:

• The Merge-mode is a coding tool known from HEVC which allows the signaling of a
motion vector (uni- or bi-directional) for the current coding unit from a list of unique
merge candidates. No motion vector difference is added. Therefore, Merge-mode
allows the efficient representation of highly correlated motion vector fields. The merge
candidate list is constructed from the following type of candidates mpred, j, j ∈ {0, ..., 5}
in the given order:

1. Spatial merge candidates from neighboring CUs

2. Temporal merge candidates from collocated CUs

3. History-based merge candidates from a FIFO table

4. Pairwise averaged merge candidates

5. Zero motion vectors

The spatial candidate positions A{0,1} and B{0,1,2} as well as the temporal positions C{0,1}
are indicated in Figure 2.7a. For the predicted temporal motion vector mpred, an ad-
ditional scaling process is performed according to the POC distances tb and td of the
involved pictures. This is indicated in Figure 2.7b. The history-based merge candidate
is a novelty compared to HEVC. For each CTU row, a FIFO table of 6 unique motion
vectors is constructed and updated after coding of each CU.

• The Merge mode with MVD (MMVD) is an additional merge-based tool. Here, the
first or second merge candidate from the regular merge candidate list, as detailed
above, is further refined using a motion vector difference (MVD), e.g. mmmvd =
mpred,{0,1} +mmvd. The motion vector difference is signaled using a type of non-linear
vector quantization using a distance index for the magnitude and a direction index,
e.g. mmvd = mmag,k · nl . The mapping is shown in Table 2.3. In total, 64 different
motion vectors can be signaled using MMVD.

• The Triangular Prediction Mode (TPM) can also be considered as a weighted predic-
tion coding tool, using merge-based motion vector prediction. TPM performs a leaf
partitioning of the current coding unit into two triangles. The samples pTPM,k(x , y),
k ∈ {0, 1} contained in each triangle are inter-predicted using a spatial merge candi-
date list, containing only uni-directional motion vectors. The final prediction block

30



2.4 Overview of Inter-Prediction in Versatile Video Coding

Dist. index k 0 1 2 3

mmag,k
1
4

1
2 1 2

Dist. index k 4 5 6 7

mmag,k 4 8 16 32

(a) Distance quantization.

Dir. index l 0 1 2 3

nl

�

1

0

� �

−1

0

� �

0

1

� �

0

−1

�

(b) Direction quantization.

Table 2.3 Mapping for distance and direction index for MMVD.

mTPM,0

mTPM,1

mTPM,0

mTPM,1

(a) Triangular partitioning concept.

4 5 6 7 8 8 8 8
3 4 5 6 7 8 8 8
2 3 4 5 6 7 8 8
1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6
0 0 0 1 2 3 4 5
0 0 0 0 1 2 3 4

0 0 0 0 1 2 3 4
0 0 0 1 2 3 4 5
0 0 1 2 3 4 5 6
0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 8
3 4 5 6 7 8 8 8
4 5 6 7 8 8 8 8

(b) Blending weights wTPM(x , y).

Figure 2.8 Visualization of the triangular prediction mode for VVC.

pBlock(x , y) is composited from the prediction samples of each triangle using a blend-
ing filter. This blending filter defines per-sample weights wTPM(x , y) and computes a
weighted average based on the distance of each sample to the diagonal or anti-diagonal
partitioning line.

pBlock =
wTPM · pTPM,0 + (8−wTPM) · pTPM,1

8
for all x , y (2.37)

Effectively, this provides a smooth transition at the boundary between the two samples.
These concepts are visualized in Figure 2.8.

• Affine motion compensated prediction extends the translational motion model to a 4
or 6 parameter affine motion model. The affine motion field of a block is fully de-
scribed using two control point (4 parameter model) or three control point (6 parame-
ter model) motion vectors. Affine motion compensation can be performed using AMVP
or Merge-based signaling of the control point motion vectors. To simplify the motion
compensation process, the affine transform is performed on a block basis. For each
4× 4 luma sub-block, a motion vector relating to the sub-block center is derived from
the control point motion vectors. Unlike regular motion compensation in 1/4 sample
accuracy, this is performed using 1/16 sample accuracy. Hence, higher accuracy inter-
polation filters for affine motion compensation are defined.

• Sub-block temporal motion vector prediction (SbTMVP) is a special type of temporal
motion vector prediction at the sub-block level. Unlike regular Temporal motion vec-
tor prediction (TMVP), SbTMVP applies a motion shift before fetching the temporal
motion information from the collocated picture, where the motion shift is obtained

31



2 Fundamentals

from the motion vector from one of the spatial neighboring blocks of the current CU.
While TMVP fetches a single motion vector at the collocated position, SbTMVP fetches
the entire motion vector field of same size as the current CU at the shifted collocated
position. In essence, this could also be viewed as a motion compensated prediction of
the motion vector field. SbTMVP is signaled as an additional merge candidate.

• Adaptive motion vector prediction (AMVP) is augmented by Adaptive motion vector
resolution (AMVR), which allows the motion vector difference resolution to be adapted
at the CU level. Next to 1/4 luma sample resolution, 1/2, 1, and 4 sample resolution can
be signaled.

• While bi-prediction in HEVC is generated by averaging the two prediction signals, a
weighted average can be signaled in VVC. This is denoted as Bi-prediction with CU-
level weight (BCW). 5 different weights wBCW can be signaled such that the final
prediction pBlock is generated from the two prediction blocks p0 and p1 in a similar way
as for TPM:

pBlock =
wBCW · p0 + (8−wBCW) · p1

8
(2.38)

• The bi-prediction signal of a CU can be further refined using Bi-directional optical
flow (BDOF). Optical flow is calculated from the coded reference pictures using spatial
and temporal gradients of 4×4 sub-blocks, assuming a smooth motion vector field. A
sample refinement is then derived based on the estimated motion vectors and applied
to the bi-prediction signal.

• The well-known method of Decoder-side motion vector refinement (DMVR) is now a
part of VVC. A signaled motion vector can be further refined at the decoder-side by
performing a bilateral matching.

• In another weighted prediction scheme, inter- and intra-prediction signals can also
be averaged in the Combined inter and intra-prediction (CIIP) mode, using prediction
samples pInter generated by the regular inter-prediction process of the Merge-mode and
pIntra of the regular intra-prediction process. Here, a sample weight wCIIP ∈ {1,2, 3} is
derived depending on the intra-prediction coding modes of the left and top neighbor.

pBlock =
(4−wCCIP) · pInter +wCIIP · pIntra + 2

4
(2.39)

32



3 Prior Art of Non-rectangular Partitioning

Non-rectangular prediction and transform coding of digital video data has been the subject
of much work in academia, industry, and standardization, evident through a large body
of publications, patents, and standardization documents. This chapter aims at giving an
overview over the historic developments, arriving at the state-of-the-art in the field.

The application of non-rectangular partitioning to video is motivated by the fact that nat-
ural objects and their motion can be spatially better approximated by such a segmentation,
than by rectangular trees. This is a commonality among the different realizations of geo-
metric partitioning in AVC, HEVC, and VVC, as proposed in this thesis. In all these cases,
GEO is used as an additional coding tool among other tools. This also means that object
boundaries are not required to be coded with this coding tool. The application is merely
determined by the encoder through RDO. In many cases though, the better approximation
of object boundaries may result in higher coding efficiency.

A different and in terms of partitioning much more flexible approach has been taken earlier
in MPEG-4 Part 2: Visual (M4V) with the concept of video objects. In M4V, a video object is
an arbitrary shaped area of the video scene that may exist for an arbitrary duration of time.
This concept and the resulting coding tools are not specifically introduced for higher coding
efficiency, but for specific applications, such as the browsing and manipulation (cutting,
pasting, compositing) of these video objects.

These two different views of non-rectangular partitioning are reviewed in Sections 3.1
and 3.2. Lastly, an approach is reviewed in Section 3.3 that tries to combine the flexibility
of arbitrarily partitioned blocks with the target application of using it as a coding tool.

3.1 Shape-adaptive Coding in MPEG-4

Prior to the development of H.264/AVC, the focus of the standardization activity of MPEG
was put on the MPEG-4 Part 2: Visual (M4V) coding standard. M4V was published in its
first edition in 1999. Different to H.264/AVC, whose main focus was put on the efficient
compression of video frames, M4V provides a very diverse functionality for the coding of
rectangular frames, video objects, still images, and hybrids of synthetic and natural video
content [Ric03]. For this thesis, the object-based coding profile is of particular interest. The
shape of an object in M4V is defined by a bitmap and explicitly coded into the bitstream.
This can be either a binary valued bitmap or a grey-level / greyscale bitmap. Binary bitmaps
have certain visual drawbacks, since it is often not possible to neatly separate natural ob-
jects from their background. Grey-scale shape coding gives a more flexible control of object
transparency, for example it is possible that the edges of an object “fade out”, and therefore
the foreground samples are transitioning into the background.

Both types of bitmaps nevertheless utilize a binary shape coding called context-based arith-
metic encoding (CAE), a method which is known from the JBIG standard for binary image

33



3 Prior Art of Non-rectangular Partitioning

compression [93]. In contrast to contour-based coding methods, like polygon or vertex-
based coding, B-spline coding, chain coding, and base line coding, all of which were inten-
sively investigated during the standardization of M4V [Kat+98], CAE directly operates on
bitmaps. Contour-based approaches require an additional step to transform the contour into
a binary shape, typically through a filling algorithm. CAE has been shown to outperform
vertex-based coding when lossless shape coding is required, whereas vertex-based coding is
better in terms of coding efficiency for lossy shape coding [Kat+98].

A video object is segmented into binary alpha blocks (BABs) of size 16×16 luma samples,
identical to the macroblock (MB) grid. In case of binary shape coding, only those BABs
are required to be shape-coded that are overlapping with the object boundaries. Thus, a
bab_type syntax element indicates for every BAB whether the BAB is transparent (not part
of the current video object), opaque (internal to the current video object with motion and
texture coded as usual), or a boundary BAB.

In CAE, the binary-valued samples of a boundary BAB are scanned in a given scan-order.
Then, for every scanned sample position, a context is calculated. A context-template is used
to define a region of neighboring samples that have been previously coded. Similar to tex-
ture coding methods, it is distinguished between intra-coded BABs and inter-coded BABs.
For intra-coded BABs, the context template is formed from 10 spatial neighbors cn. Then,
the context index is calculated by arranging the previously coded values into a 10 bit word
c9c8c7c6c5c4c3c2c1c0, defining a probability value for the current sample being zero. Each of
the possible 1024 context probabilities are stored in a table. Inter-coded BABs use a template
that consists of nine sample positions, four in the current video object plane (c0 to c3) and five
in a reference video object plane (c4 to c8). The position of the central context sample in the
reference video object may be offset from the collocated position by an integer-valued vector.
This effectively allows motion compensated shape-coding using a “shape motion vector”.

For motion compensated prediction across video object planes, the transparent samples in
transparent MBs and boundary MBs are padded. This is performed in boundary MBs by first
extrapolating from opaque samples horizontally and then vertically. Fully transparent MBs
with a single neighboring boundary MB are filled by horizontal or vertical extrapolation of
the boundary pixels of that MB. Transparent MBs without boundary MBs as neighbors are
simply filled with the value 2Bd−1,where Bd is the bit-depth of the video, e.g. Bd = 8.

The prediction error of a boundary MB is coded in the core profile using four 8× 8 DCTs
followed by quantization, run-level coding, and entropy coding as usual. In the advanced
coding efficiency profile, the Shape-adaptive DCT (SADCT) provides a more efficient method
of coding the boundary texture. The SADCT is introduced in greater detail in Section 7.2.

3.2 Geometry-based Partitioning Proposals for AVC and
HEVC

Unlike the shape coding using bitmaps as discussed in M4V, geometry-based partitioning
can be considered a parametric block partitioning approach.

The first scientific mentioning of a partitioning method for inter-prediction blocks using
a straight line has been made by Kondo and Sasai in 2005 [KS05]. They propose a “sliced
block” motion compensation method that claims a 5% bitrate reduction for P-picture coding

34



3.2 Geometry-based Partitioning Proposals for AVC and HEVC

over H.26L JM 1. In their method, MBs and sub-MBs are partitioned by a line parametrized
using two points. Recognizing the potential complexity and bitrate overhead when the line
is allowed to pass through any two points, they impose the limitation that all points shall
exist on a fixed, one-pixel interval on the boundary of the macroblock. It is claimed by the
authors that the slice line for the current block is encoded using prediction from the shape
information of neighboring MBs. No technical and experimental information is however
given how this is accomplished and how effective the spatial prediction is performed. The
method is evaluated on three sequences, Mobile & Calendar, Stefan, and Foreman.

In a parallel work in 2006, Hung, de Queiroz, and Mukherjee [HDM06] propose using a
straight line parametrized by an angle and a distance value for MB and sub-MB partitioning.
Angle and distance values are quantized, resulting in two wedge dictionaries for 16 × 16
and 8 × 8 blocks, with 2012 and 340 partitioning entries. The wedge partitioning mode
is coded with an entropy coding scheme assuming equiprobable symbols, except for those
canonical (halves) partitions. The encoder performs an edge detection and a linear regres-
sion to determine a seed partitioning that is being further refined by varying the angle and
distance parameters. Two different encoder strategies are tested: The first tests all available
partitions exhaustively. The second encoder strategy– called fast wedge partitioning – tests a
sub-set of 77 partitions for both block sizes around the seed partitioning. For the exhaustive
strategy, a bitrate reduction of −4.7% is reported and −3.1% for the fast wedge partitioning
technique in terms of BD-rate change. The method seems to be evaluated only on the Fore-
man sequence without giving details on the used reference, testing condition, or complexity
impact.

Divorra, Yin, Dai, and Li expanded on the previous works in 2007 and proposed geometry-
adaptive block partitioning (GEO) for AVC [Esc+07], hence providing the name and acronym
to the method. They also use a parametrization using an angle θ and a distance ρ, with
the exact quantization specifications given in Section 4.2.3. Using the equation f (x , y) =
x cosθ + y sinθ − ρ, every sample of the geometrically partitioned block is classified into
three categories. Samples at position (x , y) with f (x , y) > 0 are assigned to the first parti-
tion, samples with f (x , y) < 0 are assigned to the second partition, and samples fulfilling
f (x , y) = 0 are classified as boundary samples. For these boundary samples, the final pre-
diction value is computed as a linear combination of each corresponding value, if they were
fully assigned to the first and second partition. The partitioning is signaled using index val-
ues for the quantized angle and distance parameters. Also, spatial prediction is applied: If
a neighboring block is geometrically partitioned, the parameter differences are signaled us-
ing Exp-Golomb codes. Otherwise, a fixed-length coding for the angle and a variable-length
coding for the distance, therefore assuming an exponential distribution, is used. In terms of
prediction, they propose using either inter- or intra-prediction in both partitions. For simplic-
ity, only DC or directional intra-prediction with the same direction as the partitioning line
is considered. They evaluate their method on two sequences, Tiger and Foreman, against
JSVM 6. For intra-coding with GEO, −8.69 % and −5.65 % bitrate reductions are reported
for the first 10 pictures of Foreman and Tiger, respectively. For inter-coding, −7.6 % and
−4.46 % bitrate reduction are reported for the first 60 pictures. They also show a coded ex-
ample of Foreman at QP36, claiming a sharper look and higher detail around the contours.
The authors present a follow-up paper in [Dai+07], improving the geometric intra-prediction
method, and also proposed GEO to VCEG for the next video coding standard [DYG07].

In 2009, Ferreira, Hung, de Queiroz, and Mukherjee proposed additional improvements

35



3 Prior Art of Non-rectangular Partitioning

for motion vector prediction and complexity reductions of a GEO video coder [Fer+09]. For
motion vector prediction, they adapt the search positions of spatial predictors (compare Fig-
ure 2.7a) according to the angle of the current GEO partition mode. 7 different cases are
defined. For complexity reduction, they measure the distribution of angles and distances in a
training set and only utilize the N = {32,64, 128,256}most likely combinations, coded with
fixed-length binarization. Against JSVM 9.2 and using the VCEG M33 testing recommenda-
tion, they measured consistent coding efficiency improvements with a mean BD-rate change
of −6.92 % for N = 256, decreasing to −5.56% for N = 32. Interestingly, the corresponding
implications on relative encoding complexity according to N are not discussed.

Conceptually similar complexity reductions were proposed by Guo et. al. in 2010
[Guo+10]. They also study the distribution of GEO modes and define most valuable par-
titions (MVPs) that are a subset of all available GEO partitions for a given block size. They
measure the distributions independently for the angle and distance parameter and conclude
that more balanced partitions with equal number of samples in both segments are more
probable to be used by the encoder. This is explained by the assumption that block matching
likely fails for very small GEO segments. The MVP set is constructed by sampling the distance
space ρ with two different quantizers, having step sizes ∆ρ0 and ∆ρ1. The application of
each quantizer is determined by a threshold T0. If ρ ≤ T0, the first quantizer with smaller
step size ∆ρ0 is used. Otherwise, the coarser quantizer ∆ρ1 is used. The number of GEO
partitions is reduced from the full set of 58, 274, and 1110 partitions to the simplified set
of 10, 30, and 40 for 8× 8, 16× 16, and 32× 32 blocks, respectively. The coding efficiency
against JSVM 6 for the full set is measured at −7.97% for CIF and −3.02% for 720p con-
tent, without using 32× 32 blocks. For the simplified set, coding efficiency drops slightly to
−5.37% for CIF and −2.31 % for 720p content. When 32× 32 GEO blocks are allowed for
720p content, the situation is reversed: Coding efficiency increases more for the simplified
set to −6.16% and to −5.86 % for the full set of GEO partitions. The encoder runtime for
the simplified set is reported to be 400% that of the H.264 reference encoder JSVM.

GEO and a similar Flexible Macroblock Partition (FMP) scheme were subsequently pro-
posed as new coding tools among the responses to the Call for Proposals for HEVC
[Yan+10][Kar+10b]. A description of the video coding technology of [Kar+10b] in a jour-
nal publication can be found in [Kar+10a]. Here, GEO is available for 16 × 16, 32 × 32,
and 64×64 blocks with 256, 512, and 1024 possible geometric partitions, respectively. The
blending of samples in the region of the partitioning line is denoted as Overlapped block
motion compensation (OBMC) for geometric partitions.

In consequence of the proposals, GEO was selected to be incorporated into the Test Model
under Consideration (TMuC) software and investigated in Subtest 2: Flexible Motion Parti-
tioning of Tool Experiment 3: Inter Prediction in HEVC [Kru+10]. The first version of GEO
provided −3.12% bitrate savings. The similar FMP approach provided −3.48% of bitrate
savings [KS10a]. Additional proposals were made, focusing on simplifications, specifically
reductions of GEO and FMP split modes [ZY10; Che+10; GYF10]. Over several meeting cy-
cles, GEO and FMP were investigated with further focus put on encoding run time [KS10b;
FZC11; Zhe+11a; Zhe+11b; ZCK11]. For GEO, this meant a proposed reduction in the num-
ber of splits. First, optimizations were proposed in [Fra+11], showing different encoder
complexity vs. coding gain trade-offs. The full complexity GEO performance, estimated
over a reduced number of frames, is reported as giving −5 % in terms of BD-rate change for
a Random access (RA) coding configuration. 238 modes for 16× 16 blocks and 494 modes

36



3.2 Geometry-based Partitioning Proposals for AVC and HEVC

for 32×32 with algorithmic simplifications were reported to provide −2.8% for an increase
in encoding time to 190 % against TMuC-0.9. A reduction down to 127 and 122 modes still
provided −1.9% for 130 % encoding time. A further reduction down to 26 partition modes
for 16 × 16 and 32 × 32 and disabling for 64 × 64 was tested, providing −1.8 % BD-rate
change over the TMuC, but with similar complexity. An explanation of this method outside
of the standardization context can be found in [BFT11].

Simplifications to the FMP scheme resulted in partitions which are now known as
Asymmetric motion partitioning (AMP) in HEVC. A unified solution to flexible motion par-
titioning was proposed, consisting of asymmetric rectangular splits, two non-rectangular
splits, given by the diagonal and anti-diagonal line through the block and OBMC [Bor+11].
The method provided −1.4 % coding gain in terms of luma BD-rate change, with 174 % en-
coding time and 117% decoding time compared to HM-2.0. Lastly, a non-rectangular parti-
tioning scheme consisting of the two diagonal partitions and four wedge partitions for 8×8
blocks was proposed [Zhe+11c], providing −0.7 % of BD-rate change for 119% encoding
time increase over HM-3.0. By the 7th JCT meeting however, all work on non-rectangular
partitions has stopped.

Outside of the standardization activity, the complexity impact of GEO at the encoder
side was recognized by others and possible solutions were proposed. An extensive wedge-
based and object-based partitioning framework was proposed by Wang, Sun, and Sullivan
[Wan+12; Wan+13], using a texture-difference partition line selection at the encoder side to
speed up the RDO for finding the optimal partitioning. In this scheme, the luma and chroma
mean values are computed for each segment. Then, a texture difference is computed us-
ing a component-weighted average of the absolute differences between the segment mean
values. The partitioning mode that maximizes this texture difference function is selected as
the optimal partitioning. The scheme, implemented in JM-16.2, provides −8.1% BD-rate
change for a wedge-based coding scheme and −5.6 % for an object-based coding scheme,
with 125 % and 123% encoding time increase over the H.264 reference encoder, respectively.
Additionally, the method is tested on 3D video sequences that have high-quality depth-maps
available. For these sequences, the partitioning of texture blocks is derived from segmenting
the associated depth blocks.

Muhit, Pickering, and Frater [MPF09a] proposed a similar texture-based fast search strat-
egy using a Sobel edge detection algorithm, applied to the original, uncompressed block,
followed by a Hough transform to find dominant edges or lines. This initializes a second re-
finement step, in which the angle and distance parameters of the partitioning line are further
optimized. They later also published an improved motion compensation method, in which
the regular block-based motion compensation of each geometric segment is augmented by
an elastic motion model to capture sub-block motion [MPF09b].

The suitability of geometric or wedge-based partitioning for coding of depth maps has
been recognized. Various methods have been proposed that use geometric partitioning in
combination with intra-prediction to adapt to the unique, flat textured and high-frequency
characteristics of depth maps [Kan+10; KH12; Mer+16]. In consequence, 3D-HEVC offers
the possibility of intra-coding depth maps using wedges. An index signaled at the PB level
indicates a binary wedge pattern from a set of wedgelets [Tec+16].

After the finalization of HEVC, interest in non-rectangular block partitioning declined. A
joint inter-intra prediction scheme using geometric partitioning was proposed in [Che+14]
by Chen, Mukherjee, Han, and Rose. In this proposal, two different coding modes are added

37



3 Prior Art of Non-rectangular Partitioning

to the VP9 codec:

• An inter-intra multi-hypothesis prediction scheme, where inter- and intra-prediction
signals are combined following a 1D weighting function along the intra-prediction
angle.

• A geometric partitioning scheme using partitioning code books, segment-based inter-
or intra-prediction and soft masking at the partitioning boundary.

Parts of this method were incorporated into the emerging open-source video compression
format AV1, finalized in 2018 by the Alliance for Open Media (AOMedia) industry consor-
tium. AV1 specifies a prediction mode named Advanced Compound Prediction and further
distinguishes several sub-modes [Che+18; RH19]. One of the inter-prediction sub-modes is
termed Compound Wedge Prediction, which defines a code book of 16 possible wedge par-
titions. The code book contains wedges that are oriented either horizontally, vertically, or
oblique, with slopes of ±2 or ±0.5 samples for rectangular and square-shaped blocks. Sim-
ilar to TPM and the proposed method in this thesis, two predictions are averaged using
per-sample weights to generate a combined predictor.

Besides block partitioning models using a line, some research has been conducted into
extending this approach to parametric models with higher degrees of freedom. Zhang, Wang,
Zheng, and Wu proposed polyline block partitioning in which a block is partitioned using two
line segments [Zha+09]. Two points A and B of the polyline are located on the boundary
of the current macroblock, just as it is the case for regular geometric block partitioning.
A third point C can now be located within the macroblock and the line segments AC and
BC constitute the polyline. The method claims an additional −1.08% to −1.45% of BD-rate
change for low and high bitrates compared to H.264/AVC using geometric block partitioning
and P-picture coding.

Besides block-based approaches for motion compensated prediction, much research has
been conducted in the area of mesh-based motion compensation [BK97; Ost97; HLC97;
VTP97; HWZ11]. In most of these schemes, a triangular tessellation of the picture is per-
formed, and affine motion models are applied for prediction. In the most recent proposal
by Huang, Woods, and Zhao, this approach is combined with a quad-tree: Each leaf of the
quad-tree is partitioned into two triangles. The motion of each triangle is represented using
motion vectors at control points, located at the triangle vertices. The encoder can signal
the number of control points per block, one, two, or four. This allows a flexible motion
representation, which can be pure translational motion for the entire block, horizontal bilin-
ear (motion field is uniform within each column), vertical bilinear (motion field is uniform
within each row), and affine for both triangles. The method is however not compared against
state-of-the-art hybrid video coders and only shown to outperform the Motion Compensated
Embedded Zero Block Coding (MC-EZBC) coder.

In summary, prior art in geometric block partitioning demonstrates that higher coding
efficiency can be consistently obtained. However, previous methods only consider the case
of further partitioning square coding blocks. A state-of-the-art video coding scheme such
as VVC offers a variety of rectangular coding blocks, with different sizes and aspect ratios.
This necessitates a quantization of partitioning parameters shown in Chapter 4 that reflects
these new requirements. Prior art also lacks an in-depth investigation into the suitability of
spatial prediction and coding of geometric partitioning parameters, applicable to an ample

38



3.3 Segmentation-based Partitioning

set of video sequences. No previous prior art on temporal prediction through projection as
proposed by the author of this thesis has been found.

The implications of performing blending at the geometric segment boundary have not been
studied extensively. Chapter 5 shows that optimal blending is largely resolution and content-
dependent. Furthermore, prior art in AVC and HEVC only considers differential motion
vector signaling using motion vector differences. This approach can be considered being
costly in terms of signaling bits when the coding scheme already offers a flexible rectangular
block partitioning and an extensive set of motion vector prediction tools. Therefore, more
efficient signaling approaches of the motion information are also detailed in Chapter 5. This
is also a key step that enables the development of a low-complexity encoder which does not
perform a computationally intensive block-matching for geometric partitions.

3.3 Segmentation-based Partitioning

Block partitioning approaches that do not explicitly signal the partitioning boundary using a
parametric model or binary shape coding typically rely on a method to derive the partitioning
information automatically. This avoids the costly signaling of arbitrarily shaped boundaries.
The main approach, which has been proposed by multiple authors, is based on segmentation
algorithms [Che+07; Kim+08; MC11; Ahm+13b; Ahm+13a]. These methods are denoted
as segmentation-based partitioning (SBP), implicit block partitioning, or partitioning using
motion hints. In these proposals, it is assumed that moving objects can be clearly separated
from the background and that the object boundaries coincide with motion vector field dis-
continuities. Chen et. al. [Che+07] first proposed to segment a local region of a reference
picture into a binary valued shape. This binary shape can be used as a partitioning mask
for the current block, assuming that the shape is only subject to translational motion and
not being deformed. The estimated translational motion coincides with the motion of the
object. Hence, it can be predicted from one of the two motion vectors that are associated
with the partitioned block. An additional motion vector difference is nevertheless signaled
for refinement, in cases where the object boundary cannot be reliably located in the seg-
mented reference picture. Note that due to the prediction of the shape motion from one of
the block motion vectors, it is actually irrelevant, whether the binary shape describes the
foreground or background. The method achieves a reported −6.79% BD-rate change for
P-picture coding over H.264/AVC.

A more recent approach in the 3D extension of HEVC (3D-HEVC) is made by Jäger with
Depth Based Block Partitioning (DBBP) [Jäg13]. DBBP is a coding tool that utilizes the
depth map as side-information in order to perform a segment-wise prediction of the texture.
Explicit coding of the shape of the partition boundary is avoided by thresholding of the
collocated depth map into a binary segmentation mask. Average bitrate reductions of−0.5%
are reported for the texture.

Inspired by DBBP, the author of this thesis also investigated SBP as an additional coding
tool in a more recent, post-HEVC hybrid video coder (HM-14.0-KTA-1.0) [BHW16]. While
DBBP and the proposals using the macroblock of AVC used simple thresholding to derive the
partitioning, the larger block sizes of HEVC required the usage of more complex segmenta-
tion, pre- and post-processing methods. It is proposed to median filter the reference picture,
segment local areas of the reference pictures using k-means clustering of the CBCR compo-

39



3 Prior Art of Non-rectangular Partitioning

(a) Original (b) SBP blocks

Figure 3.1 Original picture and partitioning masks for SBP blocks chosen by the encoder. RaceHorses
sequence, POC 193, QP27.

nents and apply morphological opening and closing filters. Through experimentation, it was
determined that five iterations of k-means clustering suffice to achieve stable cluster cen-
ters. Figure 3.1 shows an example of the coded texture and the corresponding partitioning
masks for blocks using SBP. It can be seen in the given example blocks that a color-based seg-
mentation succeeds if the foreground objects can be clearly separated. For video sequences
with highly textured background, as in the Kimono sequence, the segmentation based on
color alone fails and therefore no meaningful partitioning can be obtained. The method is
reported to provide an overall luma BD-rate change of −0.39 % for Low-delay B (LDB) and
−0.62 % for Low-delay P (LDP), using 12 selected sequences of the JCTVC and JCTVC-3V
test set. It is further investigated how a hypothetically optimal segmentation could improve
the coding efficiency. This is simulated by using depth maps for generation of the block par-
titioning. Coding efficiency with an optimal segmentation increases, measured by a luma
BD-rate change of −2.21 % and −2.14 % for LDB and LDP, respectively.

40



4 Prediction and Parameter Coding for
Non-rectangular Block Partitions

This chapter discusses the main concepts for performing non-rectangular partitioning, pre-
diction, and coding in state-of-the-art video coding. First, general aspects of non-rectangular
block partitioning are introduced in Section 4.1 with the main focus on geometry-based par-
titioning (GEO). Then, different parametrization variants of non-rectangular partitions are
discussed in Section 4.2. In this context, a baseline algorithm in terms of parametrization
and quantization of the geometric partitioning side-information is established that can be
used for comparison of further developments. In the following Section 4.3, entropy coding
and prediction methods for the additional side-information are presented and local optima
of parameter settings are empirically determined. In particular, Section 4.2.2 investigates
which explicit signaling strategy is suitable and providing the highest coding gain for a given
parametrization and quantization. Section 4.3.2.1 investigates the possibility of spatially
predicting the geometric partitioning, while Section 4.3.2.2 applies the same methodology
for the concept of predicting the geometric partitioning over time.

Multiple aspects essential for a working geometry-based partitioning coding mode are as-
sumed to be disposable in this chapter, such as the blending process, motion vector prediction
and the overall mode control. These are discussed in great detail in the subsequent Chap-
ter 5. Based on the findings in this chapter and Chapter 5, Chapter 6 presents simplifications
for the geometric partitioning coding mode which were developed in the context of the VVC
standardization activity.

Although the order of the specific chapters and sections presented may suggest a successive
approach in the development of the final geometric block partitioning coding tool, the author
recognizes that the typical development process of such a coding tool is often cyclical and
iterative in nature. Different components of a coder are highly intertwined and – due to the
presence of the prediction feedback loop – recursive in nature. Therefore, the optimization
of one specific aspect of the presented method, for example the partitioning granularity, may
require the re-tuning of other aspects that are dependent, such as the blending strength for
overlapped-wedge motion compensation or the signaling and vice versa.

Figure 4.1 shows a high-level block diagram of the necessary steps for non-rectangular,

GEO Parameter
Reconstruction

Sample-
Distance

Calculation

Distance-Weight
Mapping

Mask Storage

GEO Partitioner

Coded Parameters Blending Masks

Figure 4.1 Main components of the geometric block partitioner.

41



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

specifically geometry-based block partitioning as presented in this thesis. From a decoder
perspective, input to the process is the coded representation of the partitioning information
relating to a given coding block. Successively, this partitioning information is decompressed
through sub-steps such as parameter prediction, look-up tables and inverse quantization.
Based on the underlying geometric model and the decompressed parameters, per-sample
properties can then be calculated that define to which partition a sample can be assigned. In
the proposed method, a sample distance to an idealized partitioning line, dividing the two
partitions, is calculated. In a third step, the distance criterion is used to derive per-sample
weighting masks which are used in the core prediction and coding steps of the encoder and
decoder.

4.1 General Aspects of Prediction using Non-rectangular
Block Partitions

Many building blocks of a modern video coder directly operate on rectangular blocks of
samples. Motion compensation as introduced in Section 2.2.5 is typically performed by
fetching a contiguous, two-dimensional array of samples from a reference picture. If bi-
prediction is employed, two blocks of samples are fetched and the samples are averaged.
This can be expressed as a weighting process:

PPB = w0 · PL0 +w1 · PL1, (4.1)

where PPB is the resulting prediction block of the current coding block, PL0 and PL1 are
intermediate, motion compensated prediction blocks and w0 and w1 are weights which fulfill
the condition w0 + w1 = 1. As w0 and w1 have identical values for all samples in PL0 and
PL1, respectively, this operation can be performed efficiently in hardware, for example with
Single instruction, multiple data (SIMD) vectorization technology such as Intel’s Streaming
SIMD Extensions (SSE) on general purpose CPUs.

In HEVC, a coding block may be composed of two prediction sub-blocks PPB,0 and PPB,1 for
the case of AMP:

PPB = PPB,0 + PPB,1 (4.2)

PPB,0 =
�

Pw0×h0
PB,0 0(w−w0)×h0

�

(4.3)

PPB,1 =
�

0(w−w1)×h1 Pw1×h1
PB,1

�

(4.4)

For simplicity, PPB,0 and PPB,1 in Equation (4.2) have identical dimensions w×h and could
be the result of uni- or bi-directional motion compensation. Thus, they can also be seen as
the zero-extended versions of the actual prediction sub-blocks Pw0×h0

PB,0 and Pw1×h1
PB,1 which are

of size w0×h0 and w1×h1, respectively. This extension to identical dimensions is exemplified
by Equations (4.3) and (4.4) for a vertical sub-block partitioning, e.g. h0 = h1 = h.

In the case of non-rectangular block partitioning, the block-based processing of Equa-
tion (4.2) is modified to introduce a sample-wise assignment to the first or second partition:

PPB = M0 ◦ PPB,0 +M1 ◦ PPB,1 (4.5)

42



4.1 General Aspects of Prediction using Non-rectangular Block Partitions

x
y

w

h

S0

S1

(a) Rectangular

w

h

S0

S1

(b) Geometric

w

h

S0

S1

(c) Contour

Figure 4.2 Parametric block partitioning models.

Similar to weighted prediction, M0 and M1 now define per-sample weights. In the context
of this thesis, the weighting matrices shall fulfill the property M0 +M1 = cJ , where J is a
matrix of ones and c ∈ {2k}, k ∈ N0. If all weights of the weighting matrices fulfill Mn ∈
{0, 1}, n = 0, 1, they can also be thought of as binary masks or hard masks. Such a hard
masked block of samples is now denoted as a segment or a partition S, e.g. Sn = Mn ◦ PPB,n,
n = 0, 1. In principle, the masks Mn could have arbitrary binary shapes. Examples for such
shapes are shown in Figure 4.2. Rectangular shapes as visualized in Figure 4.2a are used in
all modern video codecs. As mentioned above, the AMP modes of HEVC belong to this type of
partitioning, where a square coding block is partitioned into two prediction sub-blocks. The
rectangular leaf splits that are the result of a Quadtree binary tree (QTBT) partitioning as
part of JEM or the MTT partitioning of VVC can also be considered to belong in this category.

If the partitioning is determined by a geometric model, e.g. by a straight line as shown in
Figure 4.2b, this is termed Geometric Block Partitioning (GEO) , Geometric Motion Partition-
ing (GMP) or Geometric Inter-Prediction (GIP) if strictly only inter-prediction is considered.
Symmetric and asymmetric rectangular partitions can therefore be considered a subset of
geometric partitioning. Also, triangular block partitioning, where a rectangular block is par-
titioned into two triangles, can be considered a special subset of GEO.

If the partitioning is determined by a contour that is not explicitly parametrized using a
simple model (e.g. using splines), this is termed object-based partitioning. One particular
method reviewed in Chapter 3 employs segmentation to obtain the contour information and
is therefore termed Segmentation-based block partitioning (SBP).

It is apparent that using a hard mask with Mn ∈ {0,1}may lead to visible edge artifacts in
the prediction signal along the partitioning boundary, which is detrimental for natural video
content. These edge artifacts can be mitigated by a de-blocking filter applied to the samples
in the region of the partitioning boundary, similar to the de-blocking process applied to the
samples along the coding block edges. Alternatively, as proposed in the thesis at hand, a
blending process is used, where samples of PPB0 and PPB1 in the region of the partitioning
boundary are weighted based on their distance to the partition boundary. Instead of a hard
transition from one partition S0 to the other partition S1 and vice versa, this results in a

43



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

CTU

QT

BT

GEOTT

CUCUCU

TT

TPMCUCU

QT

GEOCUTT

CUGEOBT

CUCU

CU

CU

Figure 4.3 Visualization of a partitioned CTU using the MTT, TPM and GEO. Note that each leaf CU
could be coded using intra- or inter-prediction coding tools, whereas TPM and GEO leaf CUs are
inter-predicted.

smooth transition of the two contents. This can be easily achieved by specifying non-binary
weights for Mn. The blending process bears similarities to OBMC and is detailed further in
Section 5.1.1 since it is an essential part of the algorithm.

The following sections deal with fundamental aspects of non-rectangular, specifically geo-
metric block partition-based prediction and try to answer questions that arise when designing
such an inter-prediction coding tool:

• What is the optimal parametric representation of a geometry-based partitioning
scheme? How does the parametric representation affect the coding efficiency and
processing?

• How many different geometric partition shapes are optimal in terms of coding effi-
ciency and also providing a reasonable algorithmic complexity trade-off?

• How are the geometric splits distributed among different block sizes?

• How can geometric partitioning parameters be predicted and coded?

4.2 Parametrization of Non-rectangular Block Partitions

The parametrization of a non-rectangular partitioning scheme is concerned with the mathe-
matical representation and modeling of the partitioning itself. As summarized in Chapter 2,
for the case of rectangular partitions in modern video codecs, tree-based structures are em-
ployed, such as quad-trees, binary-trees, ternary-trees, or combinations thereof. Geometry-
based partitions are typically used in combination with rectangular partitions on the last
hierarchy level, e.g. on the leaf nodes of existing tree structures. Although in principle it
would be possible to further subdivide a geometric segment recursively into geometric sub-
segments – a well-known tessellation technique in computer graphics – such a scheme is not
considered in the context of video coding, due to the obvious complexity involved in finding
an optimal segmentation at the encoder.

44



4.2 Parametrization of Non-rectangular Block Partitions

mT,0

mT,1

mT,0

mT,1

TPM

mS,0

mS,1

mS,1

mS,0
mS,1mS,0

mS,1

mS,0 ...

GEO

Figure 4.4 Visualization of the general concept of triangular partitioning (TPM) and geometric par-
titioning (GEO) for inter-prediction. A coding block is segmented into two partitions. Each resulting
triangle or segment is the predicted by motion compensation using the triangle motion vectors mT,0
and mT,1 or the segment motion vectors mS,0 and mS,1. In TPM, the motion vectors are predicted
using the Merge-mode of VVC.

An example of a non-rectangular leaf coding mode is Triangular prediction mode (TPM)
of VVC as reviewed in Section 2.4. TPM is applied on the last hierarchical level of the par-
titioning tree. The partitioning in VVC is based on the MTT, which is the combination of a
Quadtree (QT) with nested Binary trees (BTs) and Ternary trees (TTs). Each node of the
initial QT can be further partitioned using a nested QT, BT or TT. Resulting BT and TT nodes
can also be further partitioned using BTs and TTs. For BT and TT splits, the direction of the
split (horizontal or vertical) is further indicated. The leaf nodes at the end of the partitioning
tree, also termed CUs, are coded with the specified inter- or intra-prediction coding block
tools. Non-rectangular partitioning tools such as TPM and GEO are applied at this level and
partition the leaf-CU further into two segments, terminating the tree-structure at this point.
An example of a fully partitioned CTU using TPM and GEO is shown in Figure 4.3. The
direct consequence of combining GEO with the MTT of VVC is the availability of variable
block sizes: Whereas GEO for AVC was only considering 16×16 blocks and GEO for HEVC
square blocks ranging from 8×8 to 64×64 luma samples, GEO for VVC can be applied to
25 different square and non-square block sizes that are the result of the MTT. This requires
a careful design of the number and spatial distribution of geometric splits for each block
size. It is clear that too many, similar geometrical splits may be an over-representation and
therefore do not provide any significant coding gain due to the expensive signaling involved.
Too few geometric splits on the other hand likely do not provide significant benefit over the
available TPM and might still require an extensive MTT signaling. The third consideration
that must be reflected in this trade-off is algorithmic complexity: For a practical encoder,
fewer geometric splits to be tested are preferable, requiring less encoder optimization. One
of the main contributions of this thesis is providing a practical solution to this problem and
offering a sensible trade-off between achievable coding gain and algorithmic complexity for
geometric block partitions.

TPM provides the comparable algorithmic framework of the experiments in the following
sections, since the overall processing steps are very similar for GEO and the same motion
vector coding approach using merge vectors is used initially. In TPM, two triangular parti-
tions are defined, which are the result of splitting the coding block along the diagonal or
anti-diagonal line. This is visualized in Figure 4.4. In geometric partitioning, this concept
is extended to allow significantly more partitioning shapes, such as those exemplified in
Figure 4.4.

In the subsequent section, the following coding experiments are conducted:

• Experiment 4.1 investigates the basic performance of an angle-distance-based quanti-
zation scheme that was already used or Advanced Video Coding (AVC), extended to

45



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

the MTT of VVC.

• Experiment 4.2 improves upon this model by addition of an angle-dependent quan-
tization of the distance. A rate-distortion optimal distribution of geometrical splits is
experimentally determined.

• Experiments 4.3 through 4.5 investigate the coding performance of an alternative rep-
resentation for geometric partitioning parameters using block intercept coordinates.

These experiments will provide a baseline for the subsequent optimizations and coding ap-
proaches. Furthermore, they introduce the two different representations considered in this
thesis.

4.2.1 Geometry-based Partitioning Models

Per definition, geometry-based partitioning relates to a partitioning scheme where a
rectangular-shaped block is partitioned into two disjunct sub-partitions by a straight line.
Unlike for TPM, this line can conceptually split the block in every possible way and is there-
fore not limited to the diagonal or anti-diagonal line. For simplicity and future references,
this straight line shall be defined as a simple linear curve (e.g. a curve with zero curva-
ture) in Euclidean geometry. As it is well known, a straight line can have many different
parametrizations. For the case of a Cartesian coordinate system with (x , y)-axis definitions,
a straight line may, for example, be defined by

• two points P0 = [x0, y0]T and P1 = [x1, y1]T on the x ,y-plane,

• the slope-intercept form y = mx + b,

• a vector equation r = P0+λv with P0 being a position and v the direction of the line,

• the Hesse normal form r · n0 = d with n0 being the normal vector and d the distance
to the coordinate origin,

• a line given in polar coordinates.

For the last case of a polar coordinate system (θ , r) on the Euclidean plane, the straight line
can be parametrized by an angle ϕ and a distance ρ which fulfills:

r =
ρ

cos(θ −ϕ) (4.6)

By applying the polar and Cartesian coordinate transform relations

y = r sinθ

x = r cosθ
(4.7)

r =
p

x2 + y2

θ = arctan( y
x )

(4.8)

the different line representations in Cartesian and polar coordinates can be easily con-
verted into one another. Mathematically, the choice of the line parametrization is irrelevant,

46



4.2 Parametrization of Non-rectangular Block Partitions

ρ

x

y

w

h
ϕ

(a) Angle-distance representation

P0

P1
w

h

(b) Block intercept representation

Figure 4.5 Parametrizations for geometric block partitioning

however for application in video coding, which requires a software- and / or hardware im-
plementation of the underlying algorithms, the following considerations have to be made
with regard to different representations:

• Quantization effects

• Hardware-friendliness, e.g. number and type of operations required to perform various
functions

• Implementability in integer, fixed-point or floating-point arithmetic

• Compactness of representation

• Simplicity

The two parametrizations based on so called Block boundary-intercept (BI) points P0, P1 and
the Angle-distance (AD) representation ϕ, ρ are analyzed in great detail in this thesis and
coding experiments will be conducted for both representations. The partitioning parameters
for these two variants can be represented by a parameter matrix A as follows:

ABI =
�

P0 P1

�

(4.9)

AAD =
�

ϕ ρ
�

(4.10)

The two representations also differ in regard to the quantization applied to the parame-
ters in ABIand AAD. Quantization of the parameters is an important aspect as it controls the
number and shapes of possible geometric splits. The number of geometric partitions on the
other hand has direct influence on other aspects, such as the achievable coding gain and the
encoder and decoder complexity in terms of run time. These topics and its implications are
discussed in greater detail in the following sub-sections 4.2.2 through 4.2.4.

47



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

Start GEO
partition coding

Binarization

Entropy
Coding

Explicit
Coding

Finish

Partition index n

Figure 4.6 Explicit coding of the partitioning information using an index value n. The index value is
binarized using a fixed length code CFL(·). The bins are subsequently bypass-coded using the binary
arithmetic coding engine of VVC.

4.2.2 Explicit Coding of Geometric Partitioning Parameters

For the first coding experiments conducted in sub-sections 4.2.3, 4.2.4 and 5.1.1, a simple,
explicit signaling of the geometric partition parameters is chosen. For each block size w×h=
2i ×2 j, i, j ∈ {3...7} supported by GEO, a code book of geometric partitioning parameters is
available at the encoder and decoder side. Each code book Cw,h contains an ordered list of
geometric partitioning parameters A.

Cw,h = {A0, A1, ..., Ak, ..., ANw,h−1} (4.11)

For reconstruction of the partitioning, it is therefore sufficient to signal an index value k
to the decoder. Since a binary arithmetic coder with switchable context modeling is used
in VVC, a binarization step is required to translate the decimal index k into a binary rep-
resentation as discussed in Section 2.2.8.1. For the most basic GEO implementation, an
equiprobable distribution of geometric partitioning parameters is assumed first. Therefore,
a fixed length binarization CFL,l(k) is chosen for the index value k, using l bit as it is the sim-
plest way of signaling and can be considered a baseline for further experiments. The length
l of the code is determined by the maximum number of partitions in the code book:

l =
�

log2 Nw,h

�

(4.12)

All bins of the resulting bin-strings shall be coded using the bypass mode of the CABAC
engine. Further, no encoder simplifications will be considered and a full RDO is performed.

4.2.3 Angle-distance Representation

The angle-distance representation has been used in previous implementations of GEO as
reviewed in Chapter 3. It has been proposed first by Divorra et. al. in the context of AVC
[Esc+07]. The partitioning line in this scheme is described by a pair of angle and distance
parameters AAD = [ ϕ ρ ], which specify a point in polar coordinates relative to the center
of the current block given by its width w and height h in luma samples. Thus for simplicity,

48



4.2 Parametrization of Non-rectangular Block Partitions

a local coordinate system is constructed with its origin O located at the center of the current
block, as shown in Figure 4.5a. The partitioning line is now defined by the line perpendicular
to the vector p = AAD −O and passing through AAD.

In order to obtain a finite set of geometric block partitions C AD
w,h , quantization is applied to

the parameters ϕ and ρ. The quantization is performed in a straightforward manner, using
a linear quantizer. The authors in [Esc+07] proposed to use a quantization according to the
following scheme:

ϕ = m ·∆ϕ, m ∈ �0, 1, ..., Nϕ (ρ)
	

(4.13)

ρ = n ·∆ρ, n ∈ �0,1, ..., Nρ
	

(4.14)

Nϕ (ρ) =











�

180◦
∆ϕ

�

, if ρ = 0

�

360◦
∆ϕ

�

, otherwise

(4.15)

where ∆ϕ and ∆ρ are the angle and distance quantization step sizes, respectively. The
maximum angle integer quantization value Nϕ is dependent on the distance ρ. For all par-
titioning lines which are passing through the origin (e.g. ρ = 0), only those angles that are
contained in the first half of the unit circle need to be considered. For the original proposal of
GEO in the context of AVC, only square shaped blocks of size 16×16 luma samples – the so
called MB – or of size 8× 8 were considered. Therefore, the authors proposed a maximum,
quantized integer distance values of Nρ =

p
2MBSize/ 2, which is equal to half the length

of the diagonal slicing the macroblock. It is to be noted at this point that such a simplistic
definition of Nρ, independent of the angle, may result in partitioning lines which lie entirely
out of the current block, which can be easily seen for ϕ = 0◦ or ϕ = 90◦ and ρ =

p
2MBSize/2

for example. It can be assumed that the authors included an additional, not further speci-
fied or published method of checking whether a geometric partition lies entirely within the
current block. An example of such a quantized (ϕ,ρ)-space using ∆ϕ = 22.5◦ and ∆ρ = 1
is shown in Figure 4.7. For an 8× 8 block Divorra et. al. proposed quantization steps sizes
of ∆ϕ = 11.25◦ and ∆ρ = 1. This would lead to a maximum of 140 partitions for an 8× 8
block, assuming that all quantized (ϕ,ρ)-points must lie entirely within the block.

As non-square block sizes resulting from the MTT of VVC are also considered in the pro-
posed codec described in this thesis, Nρ shall be more precisely defined by deriving a maxi-
mum distance ρmax depending on ϕ, w and h in the following way:

ρmax(ϕ) = cos (ϕ) ·
�

w− 1
2
+

h− 1
2 tan (90◦ −ϕ)

�

, 0≤ ϕ ≤ 90◦ (4.16)

The reasoning behind this derivation is visualized in Figure 4.8: The maximum distance
ρmax is equal to the distance of the origin to the line which slices the upper-right luma sam-
ple. This ensures that at least a single luma sample is contained in one of the two geometric
partitions. By utilizing the block symmetry and re-mapping the angle ϕ of the three remain-
ing quadrants to the first quadrant, ρmax can also be computed for the angles in the range of

49



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

w

h

x

y

Quantized ϕ,ρ

Figure 4.7 Example of a quantized (ϕ,ρ)-space for given step sizes of ∆ϕ = 22.5◦ and ∆ρ = 1.

ρmax

ϕ

x

y

w

h

Figure 4.8 The maximum distance ρmax for which a valid partitioning is generated.

90◦ < ϕ < 360◦. Now, Nρ(ϕ) can be expressed depending on ρmax as follows:

Nρ(ϕ) =
�

ρmax

∆ρ

�

(4.17)

According to Equation (4.17), the distance quantization step size ∆ρ is independent of
the angle ϕ as well as the block width w and height h. It can be easily seen that a fixed
quantization of the distance step size, e.g. ∆ρ = 1 would lead to a prohibitively large
number of partitions for the largest supported block size in VVC, which is 128× 128 luma
samples. Therefore, in the following, two different distance quantization approaches shall
be analyzed in more detail. The first method assumes a uniform distance step size ∆ρ
for the current block, which is adjusted according to the block width and height. A second
quantization scheme varies the distance step size∆ρ according to the angle ϕ and the width
and height, thereby resulting in an angle-dependent step size ∆ρ(ϕ). Both quantization
schemes assume a uniform angle quantization step size ∆ϕ.

As mentioned before, for the following experiments that are conducted, no specialized
coding of the GEO partitioning is employed. Unless otherwise stated, the GEO partition
is encoded by using an index value k. The index value is binarized using a fixed length
code of size l =

 

log2 NAD
w,h

£

, where NAD
w,h is the maximum number of available geometric

partitions for a given block size w×h. This naive coding of the partitioning ensures that the
encoder chooses a GEO partition purely based on minimizing the achievable distortion of the
current block. More advanced methods of coding the partitioning itself will be investigated
in Section 4.3. Furthermore, the blending process, detailed in Sections 5.1.1 and Sections

50



4.2 Parametrization of Non-rectangular Block Partitions

∆ρ

∆ϕ

w

h

x

y

ρmax(ϕ)
Quantized ϕ,ρ

Figure 4.9 Example of a quantized (ϕ,ρ)-space for given quantization step sizes of ∆ϕ = 22.5◦ and
∆ρ = 1. The maximum distance ρmax was computed according to Equation (4.17) and is indicated
by the dashed line. Note that the quantization points, which would lie directly on the ρmax curve are
not included in the set of partitions as they would provide very unequally distributed GEO partitions.

6.3, is using a fixed blending filter length of dm = 3. For motion vector coding, Merge-mode
based techniques from TPM are adapted.

4.2.3.1 Block-size dependent quantization

In the previous section, Equation (4.16) was specified to provide the maximum distance
ρmax that still results in a valid partition. In a straightforward approach, the given maximum
distance ρmax shall now be quantized with a fixed step size ∆ρ. The resulting (ϕ,ρ)-space
therefore consists of (ϕ,ρ) points that are distributed along concentric circles at angles being
multiples of ∆ϕ. Each point represents a geometric parameter combination A. In order
to avoid partitions that are very unequally distributed, meaning that one GEO partition is
significantly smaller than the other partition, quantization points close to the maximum
distance ρmax are avoided. This can be achieved by setting a threshold according to:

n ·∆ρ ≤ ρmax −ρth (4.18)

A smaller value of ρth would allow the quantization points to be located closer to the
maximum distance ρmax, whereas a larger value of ρth will cause the block to be sliced by a
line closer to the origin of the current block. A reasonable, predetermined threshold can be
set at ρth = 1.5 luma samples, preventing the generation of very small partitions consisting
only of a single pixel but still allowing a large number of partitions.

Figure 4.9 shows an example of a quantized (ϕ,ρ)-space for a 16 × 8 block and quan-
tization step sizes of ∆ϕ = 22.5◦ and ∆ρ = 1. For the shown example, this results in a
total of 96 potential partitions. Using Equations (4.15) and (4.17), the maximum number
of geometric partitions NAD

w,h in the given quantized (ϕ,ρ)-space can now be estimated based
on Nϕ and Nρ(ϕ), which in turn depend on the quantization step sizes ∆ϕ and ∆ρ and the
luma block sizes w and h.

51



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

Block size Number of Partitions NAD
w,h

{w, h} × {h, w} ∆ρ=1 ∆ρ=max (w, h)/8

8× 8 96 96

8× 16 172 88

8× 32 336 78

8× 64 660 78

8× 128 1312 74

16× 16 256 128

16× 32 416 96

16× 64 744 86

16× 128 1396 82

32× 32 572 140

32× 64 900 112

32× 128 1556 86

64× 64 1232 148

64× 128 1872 116

128× 128 2532 156

Table 4.1 Number of geometric partitions using the distance-angle representation, depending on
the block size for two different quantization schemes. The angle quantization step size is fixed to
∆ϕ = 11.25◦.

NAD
w,h =

Nϕ−1
∑

m=0

(Nρ(m ·∆ϕ)− 1) + Nϕ/2 (4.19)

Table 4.1 lists the maximum number of partitions for ∆ϕ = 11.25◦ (e.g. Nϕ = 32 angles)
and two different quantization schemes for ∆ρ. The second column shows the number of
partitions when using the fixed quantization scheme ∆ρ = 1, regardless of the block size.
As mentioned before, it can be argued that ∆ρ = 1 would result in a very large number of
partitions, especially for block sizes larger than 16×16 luma samples, such that performing
a full search of all partitions at the encoder side is a task of high complexity.

The third column shows the number of partitions using an alternative quantization where
the distance step size∆ρ is adjusted according to the width and height of the current block as
∆ρ =max(w, h)/8. This quantization results in a fairly even distributed number of partitions
across all block sizes and is used for the subsequent first Experiment 4.1. On average, a block
can have approximately 104 different geometric partitions using this scheme. For this first
experiment, the coding of the respective index k of the chosen partitioning is performed
using a binary code of length l =

 

log2 NAD
w,h

£

. Based on numbers provided in Table 4.1, this
results in fixed length codes of 7 or 8 bit, depending on the block size. Detailed coding results
with sequence specific BD-rate changes for a RA configuration are shown in Table A.1. The

52



4.2 Parametrization of Non-rectangular Block Partitions

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

Tango2
FoodMarket4

Campfire

CatRobot1

DaylightRoad2

ParkRunning3
MarketPlace

RitualDance

Cactus

BasketballDrive

BQTerrace

BasketballDrill

BQMall

PartyScene

RaceHorsesL

BasketballPass

BQSquare

BlowingBubbles

RaceHorsesM
BasketballDrillText

ArenaOfValor

SlideEditing

SlideShow

Percentage of total area coded with GEO [%]

Lu
m

a
B

D
-r

at
e

ch
an

ge
[%
]

Figure 4.10 Visualization of the relationship between coded area of the GEO mode and the achievable
coding gain for Experiment 4.1. The linear trend line is indicated in gray.

overall coding gain that can be achieved is −0.36 % in terms of luma BD-rate change against
the VTM-3.2 anchor. It is notable that the coding gain is qualitatively evenly distributed
among the different resolution classes. The largest coding gain can be achieved for class C
sequences with −0.62 %. In particular, for the BQMall sequence −0.92 % can be achieved,
as well as −0.76 % for the RaceHorses sequence. Table A.2 lists the corresponding mode
usage of GEO for each class in percentage of total area that is coded using the GEO mode.

The usage statistic indicates that on average, 4.64 % percent of all pixels are coded with
GEO. For lower QPs, the usage generally tends to increase. By analyzing the dependency
between mode usage in terms of area coded and the resulting coding gain, it can be seen
that a roughly linear relationship between the usage of GEO and the achievable coding gain
exists, as indicated in Figure 4.10. Here, BQMall is the strongest outlier, as it provides the
most coding gain with less coded area than expected from the linear trend. It can therefore be
assumed that BQMall fulfills the geometric partitioning model quite well. Similarly, the two
different resolutions of RaceHorses, the BasketballDrill and the ArenaOfValor sequence have
higher GEO modes usages which are explainable by the characteristics of these sequences.
BQTerrace is another interesting deviation, as GEO is utilized in roughly 8.52 % of the entire
sequence, although less coding gain at −0.41 % is realized as indicated by the linear trend.
A closer examination of the results reveals that for BQTerrace 15.97 % of the entire sequence
is coded with GEO at QP22, which is the most for any sequence and Quantization parameter
(QP). An explanation of this behavior might be given due to the noisy characteristics of the
BQTerrace sequence, which influences the encoder more strongly at lower QPs.

Figure 4.11 shows the relative distribution of different block sizes using GEO over the
entire CTC test set. As it is to be expected with any coding block tool, with increasing QPs,
larger blocks will be utilized more frequently, although the absolute usage of GEO decreases
as shown in Table A.2. Further, it is noteworthy that blocks with disproportionate ratios
between width and height are used far less frequently compared to those blocks that have
identical area, e.g. 32×32 blocks coded with GEO are occurring more frequently compared
to 64× 16 and 16× 64 blocks.

Next to the overall usage, a more in-depth analysis can also be made regarding the distri-
bution of ϕ and ρ for this particular experiment. By analyzing the distribution of angle and

53



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

0 2 4 6 8 10 12 14 16 18 20 22 24

8× 8

8× 16

16× 8

8× 32

16× 16

32× 8

8× 64

16× 32

32× 16

64× 8

8× 128

16× 64

32× 32

64× 16

128× 8

16× 128

32× 64

64× 32

128× 16

32× 128

64× 64

128× 32

64× 128

128× 64

128× 128

Percentage of all GEO blocks used [%]

B
lo

ck
si

ze
[w

id
th

by
he

ig
ht
]

QP22
QP27
QP32
QP37

Figure 4.11 Relative block size utilization of GEO for Experiment 4.1.

54



4.2 Parametrization of Non-rectangular Block Partitions

0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦
0

2

4

6
O

cc
ur

en
ce

ba
se

d
on

ar
ea

co
de

d
[%
]

(a) Angle ϕ

0 1 2 3 4 5
0

10

20

30

40
QP22 QP27
QP32 QP37
Equiprob.

(b) Distance index n

Figure 4.12 Utilization of different angles and distances (as quantized distance indices) for Experi-
ment 4.1.

distance components, it can be assessed whether certain angles and distances are more rel-
evant. This knowledge can be utilized in the subsequent design of a more advanced coding
method.

As can be seen in Figure 4.12a, the relative distribution of angles in terms of area coded
is rather uniform, albeit with a preference for certain angles. Especially angles in the range
between 135° and 180° seem to be slightly favored. These angles typically result in blocks
which are split by a line starting from the left or top boundary and ending at the bottom
boundary of the current block. One of the resulting GEO partitions will therefore be located
close to the top-left corner of the block.

Figure 4.12b shows the corresponding distribution of distances for the given experiment.
Unlike the nearly equiprobable distribution of angles, it is noteworthy that a distinctly non-
uniform distribution can be observed. The highest probability can be measured for distances
with a quantization index of n = 1. These are geometric partitions where the partitioning
line is slightly off-centered, e.g. the line does not slice the block into segments of equal area.
The more off-centered the geometric partitions become with increasing distance index n, the
lower the probability that such a partitioning will be used by the coder.

A possible explanation for this behavior might be given by the fact that some GEO parti-
tions for which the partitioning lines pass through the block center, e.g. for n = 0, can also
be reached by a combination of MTT splits and a TPM split, needing less signaling bits.

A potential problem with the applied quantization scheme in Experiment 4.1 is the in-
dependence between the angle and the distance step size ∆ρ that becomes apparent for
blocks with disproportionate ratios of width and height, e.g. w/h 6=1. For example, considering
a block of a larger width and smaller height, e.g. 128× 16, it can be easily seen that a fixed
quantization for the distance ∆ρ would heavily favor vertical splits over horizontal splits.

4.2.3.2 Angle-dependent quantization

In the following, a quantization scheme is analyzed that still divides the (ϕ,ρ)-space into
equi-angular segments but applies an angle-dependent quantization to the distance compo-
nent. This can be expressed as:

55



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

∆ρ(ϕ)

∆ϕ

w

h

x

y

ρmax

Quantized ϕ,ρ

Figure 4.13 Example of a quantized (ϕ,ρ)-space for given step sizes of∆ϕ = 22.5◦,e.g. Nϕ = 16 and
Nρ = 4. The maximum distance ρmax was computed according to Equation (4.17) and is indicated by
the dashed marking. Note that the quantization points which would lie directly on the ρmax curve are
not included in the set of partitions as they would provide very unequally distributed GEO partitions.

∆ϕ =
360.0◦

Nϕ
(4.20)

∆ρ (ϕ) =
ρmax(ϕ)−ρth

Nρ
(4.21)

Essentially, this quantization scheme keeps the number of distances per angle fixed to the
value of Nρ. From a conceptual point of view, this allows a better coverage of the (ϕ,ρ)-space
of possible geometric partitions and also allows for an easier way of limiting or expanding
the total number of geometric partitions by varying the parameter Nρ. In Figure 4.13, an
example of such a quantization is visualized. Here, a threshold of ρth = 1.5 luma samples is
set, to prevent the generation of extremely small partitions.

The total number of partitions using the angle-dependent quantization can now be com-
puted as:

NAD
w,h = Nϕ/2+ Nϕ · (Nρ − 1) (4.22)

In Table 4.2, the total number of geometric partitions per block size is listed for reasonable
values of Nϕ and Nρ. For comparison with Experiment 4.1, the angle-dependent quantization
scheme is tested for these combinations of Nϕ and Nρ. First, the coding results for Nϕ =
32, e.g. ∆ϕ = 11.25◦ and Nρ = 4 are presented in more detail in Experiment 4.2. The
corresponding detailed coding results are given in Table A.3 and the mode usage statistics
are listed in Table A.4. This combination of angles and distances results in a varying number
of partitions, ranging from 96 partitions up to 172 partitions which can be coded using a 7
or 8 bit fixed length binary code.

Overall, a slight coding gain can be achieved with an overall luma BD-rate change of
−0.45 % compared to the −0.36 % that were achieved with the block-size dependent quan-
tization. Also, the GEO mode usage increased from 4.64 % to 5.11 %. In terms of individual
sequences, the largest coding gain improvements are achieved for the BQMall sequence and

56



4.2 Parametrization of Non-rectangular Block Partitions

Number of Partitions Nw,h

Block size Nϕ = 32 Nρ = 4

{w, h} × {h, w} Nρ = 1, 2, 3, 4, 5, 6 Nϕ = 8, 16, 64

8× 8 44 96 96 96 96 96 32 56 176

8× 16 44 80 118 172 172 172 52 92 332

8× 32 44 76 110 156 194 238 44 88 292

8× 64 44 76 110 136 186 212 40 72 272

8× 128 44 76 106 136 174 200 40 72 264

16× 16 44 76 124 172 256 256 52 84 340

16× 32 44 76 112 160 202 250 48 88 316

16× 64 44 76 108 144 178 220 48 80 272

16× 128 44 76 108 144 178 208 48 80 272

32× 32 44 76 108 140 196 224 44 76 276

32× 64 44 76 108 140 184 210 44 76 268

32× 128 44 76 108 140 176 206 44 76 268

64× 64 44 76 108 140 172 212 44 76 268

64× 128 44 76 108 140 172 204 44 76 268

128× 128 44 76 108 140 172 204 44 76 268

Table 4.2 Number of geometric partitions for every block size using the angle-dependent quantization
scheme with varying numbers of Nϕ and Nρ.

57



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

0 1 2 3 4 5 6 7 8 9 10
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Tango2

FoodMarket4

Campfire

CatRobot1

DaylightRoad2
ParkRunning3

MarketPlace
RitualDance

Cactus

BasketballDrive

BQTerrace
BasketballDrill

BQMall

PartyScene

RaceHorsesL

BasketballPass

BQSquare

BlowingBubbles

RaceHorsesM BasketballDrillTextArenaOfValor

SlideEditing

SlideShow

Percentage of total area coded with GEO [%]

Lu
m

a
B

D
-r

at
e

ch
an

ge
[%
]

Figure 4.14 Visualization of the relationship between coded area of the GEO mode and the achievable
coding gain for Experiment 4.2. The linear trend line is indicated in gray.

Nϕ = 32

Nρ = 1 Nρ = 2 Nρ = 3 Nρ = 4 Nρ = 5 Nρ = 6

Luma BD-rate change −0.16 % −0.33 % −0.38 % −0.45 % −0.38 % −0.43 %

Table 4.3 Coding results for varying number of distances.

the DaylightRoad2 sequence. An overall loss in coding efficiency compared to the anchor is
observed for the BQSquare sequence, although very small at 0.01 %. Similar mode usage ver-
sus coding gain statistics for Experiment 4.2 can be gathered an visualized in Figure 4.14.
However, the two different quantization schemes cannot be directly compared, as in gen-
eral, more partitioning shapes are available in Experiment 4.2 compared to Experiment 4.1.
The benefit of the angle-dependent quantization scheme lies in the fact that quantization is
more easily handled and the number of geometric partitions per block size can be controlled
precisely.

In the following, a thorough investigation is performed, how many geometric partitions
per block provide the most coding gain, still assuming that a fixed length code is applied to
signal the partitioning. This ensures that the GEO mode decisions of the encoder for each
block are purely based on achieving the minimum distortion.

A full search of the entire (Nϕ, Nρ) parameter space would require an excessive amount
of simulation time. Therefore, as already indicated in Table 4.2, a variation of the maximum
number of quantized distance parameters Nρ is performed first, while keeping the number
of angles fixed at Nϕ = 32. Quantized distances in the range from Nρ = 1 to Nρ = 6 are
evaluated in steps of 1. The actual distance ∆ρ in terms of luma samples is computed
according to Equation (4.21). The overall coding gains for these experiments are listed in
Table 4.3.

It can be seen that the largest overall coding gain can be achieved for the setup of Exper-
iment 4.2 using Nϕ = 32 and Nρ = 4, although very similar coding gain is achievable when
the number of quantized distances is increased to Nρ = 6.

In the second optimization step, Nρ is now kept fixed to the value of Nρ = 4, while the

58



4.2 Parametrization of Non-rectangular Block Partitions

Nρ = 4

Nϕ = 8 Nϕ = 16 Nϕ = 32 Nϕ = 64

Luma BD-rate change −0.28 % −0.40 % −0.45 % −0.39 %

Table 4.4 Coding results for varying number of angles.

Figure 4.15 Example of a geometrically partitioned picture with the setup described in Experi-
ment 4.2. The relative usage of GEO in terms of pixels coded for this particular picture is 16.06 %.
RaceHorses sequence, POC31, RA, QP37.

number of angles Nϕ is tested for Nϕ = 8, Nϕ = 16, Nϕ = 32 and Nϕ = 64. The coding
results are given in Table 4.4. Again, the combination of parameters used in Experiment 4.2,
Nϕ = 32 and Nρ = 4 appears to be optimal if a fixed length code is applied and no methods
of prediction are applied to the GEO partitioning information.

Figure 4.15 shows an example of a partitioned picture using GEO for the RaceHorses se-
quence. In this particular example, it can be observed that GEO is frequently used for the
coding of object boundaries, such as at the heads, backs and legs of the horses or the shoul-
ders of the horse riders.

4.2.4 Intercept Representation

An alternative representation of the geometric partitioning next to the angle-distance repre-
sentation is achieved by specifying block intercept points as given in Equation (4.23). Here,
the partitioning line is parametrized by two points P0 = [x0 y0]T and P1 = [x1 y1]T which
are placed on the boundary of the current block. The idealized partitioning line is then given

59



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

by all points in the (x , y)-plane that fulfill the condition

(y1 − y0)x − (x1 − x0)y + x1 y0 − x0 y1 = 0. (4.23)

The boundary can be defined as the rectangular border of samples comprising the first
and the last row as well as the leftmost and rightmost column. For simplicity, the origin of
the coordinate system referring to P0 and P1 is moved to the center of the top-left sample,
e.g. the location P = [ 0 0 ]T denotes the center at the top-left sample. Furthermore, only
full-pixel coordinates shall be allowed, thereby all possible coordinates for P0 and P1 can be
expressed as integers. By taking into account that P0 and P1 can never be located in the same
row or column, the maximum number NBI

w,h of geometric partitions for a given block of size
w× h can be derived as

NBI
w,h = w2 + h2 + 4wh+ 10− 8w− 8h. (4.24)

It is to be noted that Equation (4.24) also includes the diagonal partitions and the symmet-
rical vertical and horizontal partitions that are already available in other partitioning modes
of VVC, namely TPM. Table 4.5 lists the maximum number of geometric partitions according
to Equation (4.24) for typical block sizes. The second column of Table 4.5 gives the num-
ber of geometric partitions when no quantization on the granularity of the partitioning is
applied. It can be argued that 266 different partitions for an 8 × 8 block and even 96266
partitions for a 128× 128 block are providing a level of precision which unlikely results in
significant coding gain. The burden on an encoder to search so a large partitioning space
can also be considered too high.

A straightforward method of quantization to combat this issue using the intercept rep-
resentation can be achieved by distributing the coordinate points P0 and P1 on the rows
and columns using variable steps sizes ∆w and ∆h, respectively. For symmetry and ease
of calculation, the block corners shall be included, regardless of the quantization step sizes.
Figure 4.16 shows an exemplified quantization for an 8×8 block using∆w= 2 and∆h= 2.
By connecting all valid points, a total of 80 different partitions are generated for this given
example. This is visualized in Figure 4.16.

Effectively, introducing variable step sizes∆w and∆h will quantize the width w and height
h to:

wq =
w
∆w

, ∆w= 1, 2k, ... w (4.25)

hq =
h
∆h

, ∆h= 1,2k, ... h (4.26)

Using Equation (4.24) and taking into account that the top-left, top-right, bottom-right
and bottom-left corner are always valid coordinate points, the total number of partitions for
the case ∆w 6= 1 and ∆h 6= 1 can be derived as:

NBI
wq,hq

= (wq + 1)2 + (hq + 1)2 + 4(wq + 1)(hq + 1) + 10− 8(wq + 1)− 8(hq + 1) (4.27)

Similar as for the quantization process detailed in Subsection 4.2.3.1, the step sizes∆w and
∆h can now be made block-size dependent by scaling the step sizes ∆w and ∆h according

60



4.2 Parametrization of Non-rectangular Block Partitions

∆w

∆h

w

h

x

y

Quantized P{0,1}

Figure 4.16 Example of all valid geometric partitions using the quantized intercept representation
for a block of 16 × 8 luma samples. The example shows a total of 80 partitions using step sizes of
∆w= 4 and ∆h= 2.

to the width and height of the current block. Table 4.5 lists the total number of geometric
partitions per block size for different quantization schemes in the third to fifth column. In
contrast to the angle-distance representation detailed in Section 4.2.3, the number of geo-
metric partitions appears to be more difficult to control, if non-base-2 step sizes ∆w and ∆h
are avoided.

The following Experiments 4.3, 4.4 and 4.5 evaluate how the coding performance is in-
fluenced by different step sizes ∆w = w/4 and ∆h = h/4, ∆w = w/8 and ∆h = h/8, or
∆w = w/16 and ∆h = h/16. The overall coding results for these three experiments are
shown in Table 4.6. Detailed results are given in Tables A.5, A.6 and A.7 of the appendix.
The three corresponding quantization schemes are listed in Table 4.5 and show how many
different geometric split modes are available per block.

Identical to the previous Experiments 4.1 and 4.2, the coding of GEO partitions is per-
formed by signaling an index k ∈ {0...NBI

wq,hq
− 1} using a fixed length binary code of length

l =
 

log2 NBI
wq,hq

£

per block.

The results show that the best achievable coding efficiency in Experiment 4.3 with−0.42 %
is lower compared to the best achievable result using the angle-distance representation.
However, in terms of number of GEO partitions available, the setup of Experiment 4.3 using
80 partitions is comparable to the angle-distance combination Nϕ = 32 and Nρ = 2 with
a median of 76 partitions. Here, the intercept representation achieves a BD-rate change of
−0.38 % compared to −0.33% for the angle-distance representation. This could indicate
that the partitioning shapes resulting from the quantization performed using the intercept
representation provide a better distribution and are therefore more useful to the coder. The
number of possible GEO partitions for the next quantization step size already greatly in-
creases for Experiment 4.4 to 266-352 partitions, depending on the block size. Overall cod-
ing efficiency improves with more partitions to −0.42% compared to the VTM-3.2 anchor.
An even higher number of partitions is available in Experiment 4.5 with 266-1472 possi-
ble splits, depending on the block size. This causes a relative drop in coding efficiency to
−0.37 %, indicating that the excessive number of partitions needing more signaling bits does

61



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

Block size Number of Partitions NBI
w,h

{w, h} × {h, w} ∆w= 1
∆h= 1

∆w= w/4
∆h= h/4

∆w= dw/8e
∆h= dh/8e

∆w= dw/16e
∆h= dh/16e

8× 8 266 80 266 266

8× 16 650 80 307 650

8× 32 1802 80 307 707

8× 64 5642 80 307 707

8× 128 19466 80 307 707

16× 16 1290 80 352 1290

16× 32 2954 80 352 1379

16× 64 7818 80 352 1379

16× 128 23690 80 352 1379

32× 32 5642 80 352 1472

32× 64 12554 80 352 1472

32× 128 32522 80 352 1472

64× 64 23562 80 352 1472

64× 128 51722 80 352 1472

128× 128 96266 80 352 1472

Table 4.5 Number of geometric partitions using the intercept representation, depending on the block
size for two different quantization schemes.

Step size quantization

∆w= w/4 ∆w= w/8 ∆w= w/16

∆h= h/4 ∆h= h/8 ∆h= h/16

Luma BD-rate change −0.38 % −0.42 % −0.37 %

Table 4.6 Coding results for different block intercept step size quantizations. More detailed results
are shown in Table A.5, Table A.7 and Table A.5.

62



4.3 Prediction and Coding of Geometric Partitioning Side-Information

not provide a better Rate-distortion (RD) trade-off.

4.2.5 Summary

In summary it can be stated that the angle-distance and intercept-based representation of
GEO partitions provide similar coding gains if the number of geometric splits is comparable.
The number and shape of the partitions is considered to be more precisely controllable from
an implementation point of view using the angle-distance representation. Here, the highest
coding gain was achieved with a luma BD-rate change of −0.45% over VTM-3.2 for a setting
using Nϕ = 32 angles with equiangular spacing and an angle-dependent quantization of the
distance using Nρ = 4 steps. The best parameter settings for each representation will be
used for further experiments.

4.3 Prediction and Coding of Geometric Partitioning
Side-Information

This section details different approaches to the prediction and coding of geometric partition-
ing parameters. In the previous section, these two aspects of geometric partitioning were
performed only in the most simplistic manner: the partitioning is signaled by means of an
index value k which maps to the respective representation of geometric partitioning parame-
ters, e.g. angle-distance values or (P0, P1)-coordinate pairs. The index value was coded with
a fixed length binary code and thereby neglecting the inherent source entropy or conditional
entropy.

It has already been observed in Experiment 4.1 that certain geometric partitions are more
likely to occur than others. By tendency, those geometric partitioning shapes seem to less
likely occur that produce a more unbalanced segmentation of the given block. This obser-
vation will be analyzed in greater detail. Further, for the case of using an angle-distance
representation, it has been observed that the angle and distance information have different
distributions, which can also be potentially exploited for coding.

Another aspect which this section tries to answer is the open question how geometric
partitioning parameters can be predicted. As object boundaries are often smooth and not
subject to sudden changes in direction, it is reasonable to assume that this property can be
exploited for prediction and coding.

First, coding experiments are conducted to analyze the RD-performance of different ex-
plicit signaling schemes in Section 4.3.1. Then, possibilities of spatial and temporal predic-
tion of the partitioning are investigated in Section 4.3.2.

4.3.1 Entropy Coding for Geometric Partitioning Parameters

An improved coding without prediction of the partitioning parameters can be achieved by
variable length coding according to the source statistics. In the context of modern video
coding schemes using a binary arithmetic coder as the back-end of the codec, this can be
achieved through two different approaches:

• Variable-length binarization of the source alphabet according to the source entropy.

63



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

• Context-adaptive coding of the binarized bins.

Both approaches can be performed independently of each other (e.g. a variable length bi-
narization with equiprobable- or bypass-coding of the bins or context-adaptive coding of
fixed length binarized bins) and also in combination for highest compression performance.
Since fixed length coding of the partitioning index was used in the previous coding exper-
iments, other entropy coding methods will be tested in the following subsections, namely
Huffman coding of the partitioning index, truncated binary coding of the partitioning index
and separate coding of the angle and distance parameters:

• Experiment 4.6 analyzes the coding performance of Huffman coding for explicit sig-
naling, exploiting the knowledge that certain geometric partitions are more likely to
occur than others.

• Experiment 4.7 analyzes the coding performance using truncated binary coding.

• Experiment 4.8 analyzes the coding performance when angle and distance parameters
are coded separately.

4.3.1.1 Huffman Coding

An optimal binarization for a discrete source with known symbol statistics can be obtained
through Huffman coding, see Section 2.2.8.1. The Huffman code is considered as it can be
used for coding the partitioning information without knowledge of the chosen representation
of geometric partitioning parameters. Each partitioning mode per block size is associated
with the index value k within a known range 0 to Nw,h − 1. In comparison to the previous
approach, this index value k is now binarized using Huffman trees CH(·) which have been
pre-computed for each block size. Each bin of the resulting bin-string is bypass-coded using
the CABAC engine of VVC. The statistics necessary for pre-computing the Huffman trees
have been collected from the previous Experiment 4.2 using the identical sequences. For
evaluation, a new Experiment 4.6 is conducted according to the JVET CTC.

The coding results shown in Table A.8 indicate that Huffman coding can increase the
overall coding efficiency from −0.45% using fixed length binary coding in Experiment 4.2
to −0.50 %. The improvement in coding efficiency is very similar for different sequence
classes, which validates that separate Huffman coding for individual block sizes improves
the coding for different resolutions. In particular, the coding efficiency for class C sequences
was improved from −0.73 % to −0.83 %, which marks the biggest increase per class.

Detailed results on the Huffman code associated with the respective geometric partition-
ing for a block size of 32×32 luma samples are given in Table 4.7. The table lists the source
statistics for the five most-probable geometric partitions and the five least-probable geomet-
ric partitions along with the Huffman code, e.g. the binarized partitioning index value CH(k)
and the measured entropies.

In summary, the entropy of the resulting code words H(CH) = 6.87bit is close to the en-
tropy of the source H(S) = 6.83 bit measured by the occurrences of the partitioning indices.
Further, Table 4.7 reveals which partitioning shapes are utilized more frequently and are
accordingly coded with fewer bits. In Figures 4.12a and 4.12b, the independent probability
distributions of different angles and distances were already studied and it was observed that

64



4.3 Prediction and Coding of Geometric Partitioning Side-Information

Entry
k

Partition
Index

Source Statistics S Code words
CH(k)

Partition
Count Probability

0 64 2696 0.0143 011101

1 68 2664 0.0141 011011

2 63 2484 0.0131 010100

3 117 2473 0.0131 010011

4 116 2453 0.0130 010010

...

115 19 597 0.0032 01011000

116 99 584 0.0031 00110001

117 82 578 0.0031 00110000

118 109 548 0.0029 111101111

119 40 495 0.0026 111101110

Summary 188908 H(S)=6.83 bit H(C)=6.87bit

Table 4.7 Huffman coding of the partition index information for a block of size 32×32 luma samples.

65



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

Start GEO
partition coding

Binarization

Entropy
Coding

Explicit
Coding

Finish

Partition index k

Huffman table

Figure 4.17 Huffman coding of the partitioning information. The index value k is translated into a
variable length bin string using Huffman tables CH(·). The bins are subsequently bypass coded using
the binary arithmetic coding engine of VVC.

geometric splits occurring in the left side of the block are qualitatively more probable. This
observation is now confirmed, as the three most probable partitions show the same general
shape. Of course, it must be pointed out that the variable-length Huffman coding is im-
mediately reflected by changing encoder rate-distortion optimization decisions. As the rate
required for signaling the partitioning information in Experiment 4.6 is now varying from
roughly 6 bit to 9bit, the selection of the most probable geometric splits is automatically
enforced by the encoder.

4.3.1.2 Truncated Binary Coding of Geometric Partitioning Parameters

Truncated binary coding is a simple modification to fixed length coding detailed in Sec-
tion 2.2.8.1, used to model a uniformly distributed finite alphabet of symbols, where the
total number of symbols N is not a power of two. If l = blog2(N)c, then truncated binary
coding assigned the first M symbols to code words of length l and the remaining symbols
N − M to code words of length l + 1, where M = 2l+1 − N . As it is used for fixed length
coding and Huffman coding, the bins of the resulting bin-string are bypass-coded.

In Experiment 4.7, the coding performance for truncated binary coding is assessed. Cod-
ing results for this setup are given Table A.9. The overall coding efficiency improves slightly
from −0.45% for fixed length coding in Experiment 4.2 to −0.47% with truncated binary
coding. Considering the very low complexity of truncated binary coding compared to Huff-
man coding, this method can be seen as a sensible alternative to fixed length coding.

4.3.1.3 Separate Coding of Geometric Partitioning Parameters

The analysis of the distribution of angle and distance parameters performed in Sec-
tion 4.2.3.1 and displayed in Figure 4.12 shows that a nearly uniform distribution of angles
can be expected and a distribution of distances that favors blocks which are sliced slightly
off-centered. Distances that produce more unbalanced GEO partitions become less likely
to be chosen by the encoder. This characteristic can be utilized for a coding scheme of the

66



4.3 Prediction and Coding of Geometric Partitioning Side-Information

partitioning parameters, specifically adapted to needing less bits for more likely parameter
combinations. A coding scheme that models the measured parameter more closely is given
by:

1. Fixed length bypass coding of the angle ϕ by signaling the quantization index m, e.g.
as in ϕ = m·∆ϕ. For the 32 different angles, a 5bit fixed length code CFL,5(·) is chosen.

2. Single context CABAC-coded non-zero flag combined with truncated-unary bypass cod-
ing of the distance quantization index n, e.g. as in ρ = n · ∆ρ(ϕ). The non-zero
CABAC-coded flag adapts to the probability P(n = 0) ≈ 0.12, while the remainder is
coded by the TU code CTU,Nρ−1(n−1) with maximum symbol Nρ−1. The same context
model is used for all available block sizes.

The detailed coding results for this Experiment 4.8 are shown in Table A.10. It can be seen
that the coding efficiency compared to fixed length coding is nearly identical overall, mea-
sured at−0.46%. These results also verify clearly that the distributions of angle and distance
parameters cannot be considered to be statistically independent of each other, as almost no
additional coding gain can be reported.

4.3.2 Predictive Coding for Geometric Partitioning Parameters

Predictive coding of side-information is widely used in different parts of a video coding
scheme. For the case of inter-prediction in VVC for example, this is realized by prediction
of motion vectors for translational and affine motion. In natural video content, motion is
frequently observed to be spatially and temporally coherent, meaning it is only slowly chang-
ing locally and over time. Examples for such video content are rigid objects in motion, such
as cars moving along a road, people walking or general camera motion. This property of
the motion vector field is exploited extensively through predictive coding: the motion of al-
ready coded picture regions is searched by an encoder for a good predictor that provides the
best rate-distortion performance according to the selected operating point, e.g. the given
λ value. For very dynamic content and especially dynamic textures with random or quasi-
random motion however, it is well known that motion vector prediction may fail. Examples
of such video content are the leaves of a tree in motion or the motion of water, smoke, and
fire. In such cases, other prediction modes may be favorable and chosen by an encoder.

For rigid objects, the question arises whether the properties of the video content can also
be exploited for coding the partitioning, specifically the geometric partitioning parameters of
a block. The visual coding example of Figure 4.15 given in Section 4.2.3.2 already seems to
indicate that for higher QPs, the geometric block partitioning is roughly aligned with object
boundaries. In analogy to motion vector prediction, the simplest approach to predicting
the geometric partitioning would assume that the partitioning itself changes slowly and can
therefore be predicted using a simple linear model. Ultimately, it would be beneficial to
exploit this postulated property and use it for improved coding of the partitioning data.

The predictive coding of the geometric partitioning parameters can be integrated into the
existing codec using a separate GEO coding mode as indicated in Figure 4.18. The GEO
coding mode, signaled by a flag, indicates whether predictive coding or explicit coding as
introduced in Section 4.2.2 is used for the current block. This ensures that in cases where pre-
dictive coding fails or where it is not available, the partitioning information can be signaled

67



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

Start GEO
partition coding

GEO
mode flag

Explicit
coding

Predictive
coding

Finish

false true

Figure 4.18 Block diagram showing the addition of a predictive coding mode next to the explicit
coding mode for the partitioning data.

using the established method. Based on the coded partitioning of a spatially or temporally
neighboring block given by parameters AN, the goal of the prediction process is to obtain a
prediction of the current block given by parameters APred. It is noted that the parameters AN

and APred can relate to the angle-distance or intercept representation, as they can be easily
converted into one another. Since it is unlikely that the predicted partitioning APred will be
identical to the RD-optimal partitioning determined by an encoder for the current block, the
prediction can be updated using prediction error parameters given by AE:

AC = APred + AE (4.28)

In the following sub-sections, methods will be detailed, how APred can be generated from
the spatial or temporal neighborhood of a coding block and how this side-information can be
signaled to the decoder. Further, coding approaches for the prediction error AE are discussed
with specific adaptations based on the chosen representation of the geometric partitioning
parameters.

4.3.2.1 Spatial Prediction

Geometric partitioning parameters can be predicted from the spatial neighborhood of a cod-
ing block by different approaches. In general, three different sources of side-information
that could be utilized for this purpose come to mind:

• The partitioning parameters of the local neighborhood. This may include geometric
partitioning parameters but also conventional quad- or binary-split information could
be utilized.

• The prediction mode information of the local neighborhood. This could for example
encompass the motion vector field, where a sudden local change of the motion vector
direction may indicate the presence of an object boundary. Further, directional intra-
prediction modes could indicate the presence of structures parallel or perpendicular
to a partitioning boundary.

68



4.3 Prediction and Coding of Geometric Partitioning Side-Information

x

y

coded partitioning

predicted
partitioning

neighbor block current block

Figure 4.19 Example of spatial prediction of the geometric partitioning from the local neighborhood
of a coding block. The prediction, which is a linear continuation of the partitioning boundary of the
neighboring block into the current block, is indicated by the dashed line. The hypothetical segmented
object is shaded in gray.

• Reconstructed samples which, for example, could be segmented and used to interpo-
late the object boundary. Other approaches could utilize edge- or corner detectors in
combination with Hough-transform based feature extraction.

As the prediction process needs to be performed at the decoder, all considered examples for
prediction sources listed above need to be assessed in terms of their technical feasibility. It is
often prohibited in an actual decoder to access reconstructed samples for purposes of mode
derivation. Such operations may violate the sequential pipelining used in hardware decoders
and may introduce significant latency [CLC06]. Therefore, in the following sub-sections
the focus is laid on methods utilizing the coded partitioning side-information for prediction
purposes. Specifically, only the immediate local neighborhood of the current block may
be used for prediction purposes, meaning that only those coding units are considered and
accessed which are adjacent to the top and the left block boundary. This limiting constraint
is in line with the access constraints applied in other coding modes, such as motion vector
prediction or intra-mode prediction. Figure 4.19 exemplifies the process of spatial prediction
for geometric partitions, assuming a linear continuation of the neighboring partitioning line.

Analysis of spatial geometric partitioning properties The application of spatial predic-
tion assumes that correlation exists between the partitioning information of adjacent blocks.
As a first prerequisite, it is necessary that blocks coded with GEO are occurring in clus-
ters with adjacent block boundaries as prediction is only applied across the immediate local
neighborhood. The coding results that have already been generated in Experiment 4.2 are
analyzed to obtain further insights whether this property can already be observed in coded
sequences. The coding results of Experiment 4.2 are suited for this purpose as no predic-
tion of the geometric partitioning data has been used in the setup. The encoder used for
Experiment 4.2 chooses the geometric partitioning mode without knowledge of the local
neighborhood, optimizing for lowest possible distortion only.

Secondly, as it is assumed that the partitioning is predictable at object boundaries, the
previous coding results can be analyzed for occurrences where the geometric partitioning
lines of neighboring blocks are connected. Connected partitioning lines, meaning that two

69



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

PA,0

PA,1

rth

rth

current block

PB,0

PB,1

neighbor block

Figure 4.20 Adjacent GEO blocks are labeled as connected, if the Euclidean distance between two line
coordinates is smaller than a given threshold rth. The distance is measured for interpolated points,
which are located on the boundary of the current block.

end points of two line segments are reasonably close to each other, could indicate the pres-
ence of a coherent object boundary. Naturally, an object boundary could also extend over
multiple, adjacent coding blocks. Therefore, it is reasonable to not only measure the relative
frequency of GEO blocks with connected partition lines but also the number of adjacent GEO
blocks that are connected in a single cluster.

For the analysis of the partitioning data, a radial threshold rth is introduced. Two parti-
tioning lines are denoted as being connected, if any coordinate pair meets the condition:





PA,i − PB, j







2
< rth i, j ∈ {0,1} (4.29)

Figure 4.20 illustrates this measurement procedure. If the condition given by Equa-
tion (4.29) is not met, a cluster size gS = 1 is assigned for the current coding block, in-
dicating that this block is isolated and therefore unlikely to be usable for spatial prediction.
If the condition given by Equation (4.29) is met for two adjacent GEO blocks, the cluster
size gS = 2 is assigned. Generalizing this for more than two adjacent blocks, the cluster size
gS = n is assigned if n GEO blocks are connected. Accordingly, a large radial threshold rth in
terms of luma samples will result in more adjacent GEO blocks being labeled as connected.
Thus, rth can also be thought of as the parameter controlling the sensitivity of a detector for
connected partitions.

Figure 4.21 shows a visual example of the distribution of cluster sizes gS for picture 31
of the RaceHorses sequence, using a detection threshold of rth = 3 luma samples. For this
particular example, quite a few larger clusters with gS ≥ 3 are observed. Although this
single example seems to indicate that smooth, connected object boundaries are existing in
the video content and reflected by the partitioning of the coded material, it remains to be
seen how this observation generalizes to a larger selection of natural video sequences at
different resolutions. Therefore, the measurement is performed for the entire JVET CTC
test set, using the RA coding results of Experiment 4.2. The cluster sizes gS are collected
for every sequence and averaged for each QP. To estimate the influence of the detection
threshold rth,the measurement is repeated for three different thresholds rth =1, 2.25 and 3

70



4.3 Prediction and Coding of Geometric Partitioning Side-Information

gS=1
gS=2
gS=3
gS=4

gS>=5

Figure 4.21 Visualization of connected GEO block clusters for a threshold of rth = 3. The number of
connected blocks contained in a cluster is given by gS and indicated by color. RaceHorsesL sequence,
POC31, RA, QP37.

luma samples, which are reasonably small values for which adjacent blocks are labeled as
connected.

The measurement results shown in Figure 4.22 indicate that the majority of the coded
GEO blocks of Experiment 4.2 are in fact either isolated blocks or not connected and do not
form part of a larger object boundary. For a radial threshold of rth = 1 luma sample, more
than 90 % of all GEO blocks are labeled as gS = 1 and therefore isolated. However, a higher
QP increases the percentage of connected GEO blocks. For a detection threshold of rth = 3
and a QP of 37 for example, 16.8 % of all coded GEO blocks are occurring in connected
clusters.

For these connected blocks it can further be measured, if the proposed simple linear con-
tinuation of the partitioning line of each neighboring block coincides with the partitioning
of the current block, as chosen by the encoder during RDO. For this purpose, the difference
angle θ is measured, which is given by the smallest absolute angle between two partitioning
lines, parametrized by AA = [ϕA ρA] and AB = [ϕB ρB]:

θ =min(π− |ϕA −ϕB| , |ϕA −ϕB|). (4.30)

This is illustrated in Figure 4.23. The difference angle θ is equal to zero if the prediction
and the coded partitioning line are identical. The maximum value of the difference angle is
given by θ = 90◦, if the coded partitioning line is perpendicular to the prediction. For all
connected blocks with gS ≥ 2, the difference angle is measured over the JVET CTC test set
and a histogram of the difference angles is computed using a bin size of 11.25◦. The results
for the four different QPs are shown in Figure 4.24. The relative frequency of difference

71



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

QP22 QP27 QP32 QP37
0

20

40

60

80

100 93.2 90.7 90.4 90.8

6.0 7.9 8.2 8.0
0.7 1.1 1.2 1.00.1 0.2 0.2 0.20.0 0.1 0.0 0.0

Size of GEO groups per QP

Pe
rc

en
ta

ge
[%
] gS=1

gS=2
gS=3
gS=4
gS>=5

(a) rth = 1.

QP22 QP27 QP32 QP37
0

20

40

60

80

100 88.8 85.8 85.4 86.3

9.3 11.1 11.4 11.1
1.5 2.3 2.3 2.00.3 0.6 0.6 0.50.1 0.2 0.2 0.1

Size of GEO groups per QP

Pe
rc

en
ta

ge
[%
] gS=1

gS=2
gS=3
gS=4
gS>=5

(b) rth = 2.25.

QP22 QP27 QP32 QP37
0

20

40

60

80

100 85.8 82.8 82.3 83.2

11.3 12.9 13.3 13.0
2.2 3.0 3.1 2.80.6 1.0 1.0 0.70.2 0.3 0.3 0.2

Size of GEO groups per QP

Pe
rc

en
ta

ge
[%
] gS=1

gS=2
gS=3
gS=4
gS>=5

(c) rth = 3.

Figure 4.22 Distribution of connected GEO blocks measured for different thresholds rth and gathered
over the JVET CTC test set for RA configuration of Experiment 4.2.

72



4.3 Prediction and Coding of Geometric Partitioning Side-Information

current block

ϕA

neighbor block

ϕB

difference
angle θ

prediction

Figure 4.23 Visualization of the analysis methodology regarding the difference angle θ between
predicted and coded partitioning for connected blocks.

angles indicates that a slight correlation exists between adjacent GEO blocks with connected
partitions. For high QPs, the difference angle is in the range of 0≤ θ ≤ 11.25◦ for over 40%
of all connected blocks, thus indicating the presence of smooth object boundaries. A perfect
continuation of the partitioning with a difference angle of θ = 0° however, was measured
in only 13.5% of all connected blocks for QP37. The difference angle distribution becomes
markedly flatter for the lowest QP.

Summarizing these findings, it can be stated that although the overall percentage of coded
GEO blocks which are adjacent to each other and sharing a connected partitioning is compar-
atively low, prediction of the partitioning by linear extrapolation could be a viable method
to improve coding efficiency for sequences where distinct object boundaries are present. Es-
pecially for higher QPs, it has been shown that GEO blocks occur in connected clusters more
frequently. In those cases, the geometric partitioning for the current block can be modeled
by linear extrapolation of the partitioning from a neighbor block.

Further, it must be noted that it is difficult to assess the potential of spatial prediction
based on these findings alone. The RDO process and search strategy of an encoder may
undoubtedly have significant influence on the global distribution of GEO modes, block size
utilization and other local properties in the coded material. The influence of RDO on the
GEO distribution in the shown analysis has been limited due to the fixed-length signaling of
the GEO mode used in Experiment 4.2. A practical encoder however could also be designed
which performs a pre-analysis of the texture or the local neighborhood and selects a GEO
mode accordingly. The measurement could be further refined by considering neighboring
non-GEO blocks and the rectangular partitioning structure as a source for potential spatial
predictors.

Spatial prediction using angle-distance representation In the following, the geometric
partitioning of the current block is assumed to be predictable through a linear continuation
of the partitioning of a neighboring block, due to the conclusions drawn based on the previ-
ous analysis. Given the sizes and positions of the current and adjacent neighbor block, the
predicted parameters APred relating to the current block can be derived. The coordinates of
the neighboring block with respect to the top-left luma sample shall be denoted as [xN, yN]T

and the size of the neighboring block in terms of luma samples as wN × hN. Accordingly, the
coordinates and size of the current block are given by [xC, yC]T and wC × hC.

73



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

0 10 20 30 40 50 60 70 80
0

20

40

Difference angle θ [◦]

R
el

at
iv

e
fr

eq
ue

nc
y
[%
]

QP22
QP27
QP32
QP37

Figure 4.24 Distribution of the difference angle θ between predicted and coded partitioning using
the coding results generated in Experiment 4.2. The difference angle distribution was gathered for
each QP and accumulated over all sequences.

ρN

x

y

ϕN ϕPred
ρPred

neighbor block current block

Figure 4.25 Exemplified spatial prediction of the partitioning parameters ϕPred and ρPred for the
current block, based on the partitioning parameters of the neighbor block given by ϕN and ρN. Note
that ϕpred and ϕN differ only by a 180° shift. The hypothetical object being partitioned is indicated
by the shaded shape.

74



4.3 Prediction and Coding of Geometric Partitioning Side-Information

The angle and distance parameters AN = [ϕN ρN] are given with respect to the center of
neighboring block, e.g. [xN,c, yN,c]T = [xN, yN]T + [wN/2, hN/2]T. Accordingly, the center coor-
dinates of the current block are given as [xC,c, yC,c]T = [xC, yC]T+[wC/2, hC/2]T. The predicted
distance ρPred of the current block can now be easily derived as:

ρPred = |dPred| (4.31)

with dPred defined by the distance of the center of the current coding block to the parti-
tioning line:

dpred = dCN,x cos(ϕN)− dCN,y sin(ϕN)−ρN (4.32)

�

dCN,x

dCN,y

�

=

�

xN,c

yN,c

�

−
�

xC,c

yC,c

�

(4.33)

The distance dPred can also be utilized to determine, whether the predicted partitioning
will slice the current block. This can be achieved by comparing dPred against the maximum
valid distance ρmax as specified in Equation (4.16). Regarding the prediction of the angular
partitioning parameter, it can be seen that the predicted angle ϕPred is identical to the angle
of the partitioning line of the neighboring block, augmented by a ±180◦ offset, depending
on the sign of dPred. This is indicated in the example given in Figure 4.25.

ϕPred = ϕN + kπ, k =

¨

+1 dPred > 0, ϕN > π

−1 dPred > 0, ϕN ≤ π
(4.34)

The final predicted parameters are quantized to the nearest values contained in the code
book of partitioning parameters for the current block by using a linear quantization:

ϕPred,q =
�

ϕPred

∆ϕ
+
∆ϕ

2

�

·∆ϕ (4.35)

ρPred,q =

�

ρPred

∆ρ(ϕPred,q, wC, hC)
+
∆ρ

2

�

·∆ρ(ϕPred,q, wC, hC) (4.36)

Spatial prediction using intercept representation Similarly, for the intercept representa-
tion, where the partitioning parameters of the neighboring block are given by the intercept
coordinates AN = [ PN,0 PN,1 ], the predicted parameters PPred,0 and PPred,1 are calculated by
finding the intersection points of the extrapolated partitioning line with the block boundary.

The coordinates of PPred,0 =
�

xPred,0, yPred,0

�T
and PPred,1 =

�

xPred,1, yPred,1

�T
can be calcu-

lated using the following Equations (4.37), where a straight segment of the block boundary
is given by ABlock,i =

�

PB,0 PB,1

�

with i ∈ {0...3}:

75



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

PN,0

PN,1

x

y

PPred,0

PPred,1

neighbor block current block

Figure 4.26 Exemplified spatial prediction of the partitioning parameters AC = [ PPred,0 PPred,1 ]
for the current block, based on the partitioning parameters of the neighbor block given by AN =
[ PN,0 PN,1 ]. The partitioning line of the neighbor block is extrapolated and the intersections with
the first column and first row of samples are determined. Note that PPred,0 and PPred,1 have not been
quantized to the sample-grid.

xPred,k =

�

xN,0 yN,1 − xN,1 yN,0

� �

xB,0 − xB,1

�− �xB,0 yB,1 − xB,1 yN,0

� �

xN,0 − xN,1

�

�

xN,0 − xN,1

� �

yB,0 − yB,1

�− �yN,0 − yN,1

� �

xB,0 − xB,1

�

yPred,k =

�

xN,0 yN,1 − xN,1 yN,0

� �

yB,0 − yB,1

�− �xB,0 yB,1 − xB,1 yN,0

� �

yN,0 − yN,1

�

�

xN,0 − xN,1

� �

yB,0 − yB,1

�− �yN,0 − yN,1

� �

xB,0 − xB,1

�

, k ∈ {0,1}

(4.37)
Since xPred,k and yPred,k as calculated by Equation (4.37) can specify non-integer coordi-

nate points or coordinate points not contained in the code book of valid GEO parameters,
quantization is again applied to generate the final predicted coordinate pairs:

xPred,q,k =
� xPred,k

∆w
+
∆w
2

�

·∆w

yPred,q,k =
� yPred,k

∆h
+
∆h
2

�

·∆h
, k ∈ {0,1} (4.38)

The block boundary is defined by the four vertical and horizontal line segments given in
Table 4.8.

Therefore, a total of four intersection points are calculated. Intersection points whose
coordinates lie outside of the current block are dismissed. Further, for purely vertical or
horizontal geometric partitions of the neighboring block, Equation (4.37) can be avoided
and the calculation of intersections is greatly simplified. Conceptually, the order of the co-
ordinates PPred,0 and PPred,1 is irrelevant. For statistical analysis performed in later chapters
however, the convention shall be followed that the coordinate PPred,0 always refers to the
coordinate closest to the neighboring block that is the source of the prediction.

Partitioning predictor candidate list Similar to spatial motion vector prediction as re-
viewed in Section 2.4, predetermined spatial locations along the border of the coding block

76



4.3 Prediction and Coding of Geometric Partitioning Side-Information

Block boundary segment ABlock,i =
�

PB,0 PB,1

�

left ABlock,0=

�

0 0

0 h− 1

�

top ABlock,1=

�

0 w− 1

0 0

�

right ABlock,2=

�

w− 1 w− 1

0 h− 1

�

bottom ABlock,3=

�

0 w− 1

h− 1 h− 1

�

Table 4.8 Line segment parameters of the block boundary given by coordinates PB,0 and PB,1 for a
block of size w× h.

current blockA0

A1

A2

B0B1B2B3 4× 4 sub-block

Figure 4.27 Visualization of the spatial positions used to determine the presence of neighboring GEO
blocks.

are checked for the occurrence of spatially neighboring GEO blocks. These positions are
labeled A0, A1 , A2 for the neighbor positions at the left block boundary, and B0, B1, B2, B3

for the neighbor positions at the top block boundary. The spatial context, e.g. the meaning
of each label is listed in Table 4.9a. Each position as exemplified in Figure 4.27 relates to a
4× 4 sub-block, which is the granularity of information storage in VVC.

The predictor candidate list shall be limited to a maximum number of two candidates such
that the selected candidate can be signaled using a single flag. It is also considered unlikely
that more than two spatial predictors will be available for a block, given the GEO cluster
analysis performed on the already coded data.

The spatial positions are checked in the order given by Table 4.9b. First, spatial positions
close to the top-left corner of the coding block are checked, followed by spatial positions
close to the bottom-left and top-right corner. If the predictor candidate list already contains
2 valid predictors, the process is terminated, and no further candidates are added to the list.

If the list contains less than 2 entries and if a neighboring block at these locations is using
the GEO coding mode, the predicted parameters are computed and quantized to the reso-

77



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

Spatial position Label

left-below A0

left-bottom A1

left-top A2

top-right above B0

top-right B1

top-left B2

top-left above B3

(a) Spatial context and associated
label.

Derivation order Label

1 A2

2 B3

3 B2

4 A1

5 B1

6 A0

7 B0

(b) Derivation order for spatial
candidates.

Table 4.9 Spatial positions used for the derivation of GEO predictor candidates.

lution of the code book for the given current block as detailed above. If the predicted and
quantized parameters are contained within the code book and not yet part of the predictor
candidate list, they are added to the predictor candidate list successively.

The selection of the predictor candidate for the current coding block is a task performed
by the encoder through RDO. The predictor is signaled by an index p ∈ {0,1} which is
translated to a binary code word. The resulting bin is then context coded. If no predictor
candidate has been determined from the neighborhood or if the predictor candidate list
contains less than two valid entries, the predictor candidate list is filled with the two most
probable GEO splits, as determined for the Huffman coding in Experiment 4.6. This ensures
that always 2 prediction options are available and the prediction mode flag (see Figure 4.18)
is not wasted.

Partition prediction error coding It has been established in the analysis of the coded data
that the extrapolated partitioning from a neighboring block only matches the optimal parti-
tioning in a few cases. It is therefore reasonable to introduce the concept of partition predic-
tion error coding, which – in analogy to motion vector difference coding – allows the coder
to signal difference values in order to update the predicted partitioning parameters. This can
also be seen as a refinement coding of the predicted partitioning. The coding method for this
refinement scheme is visualized in Figure 4.28. First, an index value is signaled, mapping to
the partition predictor candidate list. This is followed by the coding of an optional prediction
error term that modifies the predicted partitioning.

As stated in Equation (4.28), a prediction error term AE is added to the predicted parti-
tioning APred to obtain the final partitioning parameters. Depending on the chosen represen-
tation, the prediction error term AE modifies the partitioning in distinct ways:

AC,AD =
�

ϕPred,q ρPred,q

�

+
�

m ·∆ϕ n ·∆ρ(ϕPred,q, w, h)
�

(4.39)

78



4.3 Prediction and Coding of Geometric Partitioning Side-Information

Predictor
Index Coding

Predictor
Offset
Coding

Predictive
coding

Finish

GEO mode flag = true

Figure 4.28 Coding method for the prediction mode branch of the geometric partitioning information.
First, a predictor (spatial / temporal) is signaled, followed by an (optional) refinement.

AC,BI =
�

PPred,q,0 PPred,q,1

�

+
�

D(m, PPred,q,0) D(n, PPred,q,1)
�

(4.40)

Equation (4.39) describes the prediction update process for the angle-distance representa-
tion. In this case, two integer parameters m and n are used to modify the partitioning. The
parameters are multiplied with the quantization step sizes ∆ϕ and ∆ρ for the angle and
distance, respectively. This ensures that the final partitioning parameters AC,AD are also con-
tained in the partition code book. The effect of this refinement can be seen in Figure 4.29a.
The variation of the angle ϕ causes a change of direction with respect to the predicted parti-
tioning line, whereas the variation of the distance ρ causes a shift parallel to the prediction
partitioning line. Further, the condition ρpred + n ·∆ρ(w, h,ϕ) < 0 may occur, indicating a
180° flip of the angle ϕC. If both parameters m and n are non-zero, the tilting and shifting
effects on the partitioning line are combined.

Equation (4.40) describes the prediction update process for the intercept representation.
Here, the two integer parameters m and n cause a shift of the intercept points along the block
boundary. This is visualized in Figure 4.29b. Comparing this method of prediction error
coding with the angle-distance representation, it becomes clear that the intercept approach
might be beneficial for approximating a smooth contour, as only a single parameter m or n,
relating to the start- or end-point of the partitioning line, needs to be coded while the other
is parameter is zero or close to zero. This representation fits the observed cases, where the
partitioning is connected across multiple blocks.

In the following experiments, the refinement parameters m an n are coded using a com-
bination of a context coded flag for m and a context coded flag for n, indicating whether the
value of m or n is non-zero, and a separate coding of the remainder value, e.g. the value of
m− 1 and n− 1. Here, different coding schemes are tested for the remainder:

• Unlimited refinement bypass coding of the remainder using an Exp-Golomb binariza-
tion of order k = 1, e.g. CEG,1(|m| − 1) and CEG,1(|n| − 1), respectively.

• Limited refinement bypass coding of the remainder using a fixed length code, indicat-
ing m= ±1 and n= ±1, e.g. CFL,1(m> 0) and CFL,1(n> 0), respectively.

79



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

ρN

x

y

ϕN ϕpred
ρpred

m ·∆ϕ

n ·∆ρ

neighbor block current block

(a) Effect of partition prediction difference coding for angle-
distance representation.

PN,0

PN,1

x

y

Ppred,0

Ppred,1

D(m, Ppred,0)

D(n, Ppred,1)

neighbor block current block

(b) Effect of partition prediction difference coding for intercept
representation.

Figure 4.29 Visualization of partition prediction difference coding for different parametrizations.
Note that for the same coded offsets m and n, significantly different geometric partitions are gener-
ated.

80



4.3 Prediction and Coding of Geometric Partitioning Side-Information

• No refinement coding. One of the two predictors is signaled using the aforementioned
candidate flag.

The Exp-Golomb code of order k = 1 has been chosen for the unlimited refinement coding
experiment since a geometric distribution of m and n is expected, supported by the find-
ings shown in Figure 4.24. Further, no restriction on the range of m or n has been applied.
Combined with the flag-based coding of the predictor index, this means that at least 3bit
are necessary to signal the continuation of a neighboring partitioning line. It is to be noted
however, that the predictive coding approach is in competition with the explicit coding (see
Figure 4.18) and the final coding mode is determined based on the lowest achievable, es-
timated rate. Therefore, refinement values of |m| > 6 or |n| > 6 will never be chosen by
the encoder, as signaling a value larger or smaller than ±6 would require 6bit for the Exp-
Golomb code of order k = 1, exceeding the bit-budget compared to explicit coding. It is
noted that with this given restriction due to the RDO, a binarization of the remainder for
finite alphabets, such as Golomb-Rice coding, could further save 1 bit.

The limited refinement and no refinement coding experiments can be seen as a check,
whether a simpler approach provides any RD benefit.

Coding performance for angle-distance representation In total, three experiments are
conducted in this subsection:

• Experiment 4.9 investigates the coding performance of spatial prediction with full re-
finement coding.

• Experiment 4.10 investigates the coding performance of spatial prediction with limited
refinement coding.

• Experiment 4.11 investigates the coding performance of spatial prediction with no
refinement coding. The prediction is used as is.

First, Experiment 4.9 investigates the performance of spatial prediction using full refine-
ment coding. The detailed coding results for this setup are shown in Table A.11. Compared
to the identical setup in terms of number and distribution of geometric splits used for Ex-
periment 4.2 without prediction, only a slight overall coding gain is observed, improving
from −0.45% to −0.49%. For the Ultra high definition (UHD) classes A1 and A2, coding
efficiency improves comparably more, from −0.30% to −0.35 % and −0.36 % to −0.45%,
respectively. More insights into this observed low impact on coding efficiency can be gained
from analyzing the actual spatial prediction mode usage, listed in Table A.12. For each class,
the relative mode usage given by the percentage of GEO pixels that are coded with spatial
prediction is measured. The table reveals that only 6.7% of all coded GEO blocks are us-
ing spatial prediction, averaged over all classes and QPs. Further, considering that the rate
cost for explicitly coded GEO partitions has been increased by 1bit due to the signaling of
the additional GEO mode flag, it can be stated that not enough blocks are utilizing the spa-
tial prediction mode to significantly improve coding efficiency. It is to be noted that for the
screen content class F the highest usage of spatial prediction is measured. This is largely at-
tributed to the sequence SlideEditing which contains a computer screen capture with vertical
scrolling motion. This scrolling motion is partitioned almost exclusively by horizontal GEO

81



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

−2 −1 0 1 2
0

20

40

60

80

100

Angular refinement value m

O
cc

ur
en

ce
[%
] QP22

QP27
QP32
QP37

−2 −1 0 1 2
0

20

40

60

80

100

Distance refinement value n

O
cc

ur
en

ce
[%
] QP22

QP27
QP32
QP37

Figure 4.30 Distribution of angular and distance refinement values m and n, measured for Experiment
4.9 using spatial prediction.

modes that can be very well predicted across multiple adjacent blocks. The spatial predic-
tion mode was utilized for 24 % of all pixels coded with GEO in this sequence. For natural
video content, the highest spatial prediction mode usages where measured for the BQMall
and RaceHorses sequence at 9% and 9.21%. The lowest usage of spatial prediction can be
measured for the Campfire sequence which contains footage of a campfire next to a group
of people in low lighting conditions. Here, the spatial prediction mode usage was measured
at 2 %, averaged over all QPs. Non-surprising, dynamic texture content such as fire with its
undefined object boundaries is not well suited for spatial prediction.

The distribution of refinement values for m and n is another interesting aspect to analyze,
giving further insight in how the coding scheme could be further optimized and how the
encoder trades improved segmentation precision against distortion for the given operating
point. The distribution for Experiment 4.9, again measured by occurrence in terms of relative
area coded, for the angular refinement variable m and the distance refinement variable n
is shown in Figure 4.30, grouped by QPs. The statistics reveal that in 80 % of the cases the
encoder does not choose to code a refinement value m 6= 0 or n 6= 0. This statistical behavior
is also largely independent of the QPs, with the slight tendency of 2-3 % to code a refinement
value for QP37 compared to QP22.

Comparing this result with the statistics provided in Figure 4.22, it can assessed that in
the overall few cases (~15 %) where a connected partitioning is observed, 6.7 % of all GEO
blocks will be coded in a mode that was designed to handle such specific cases. In summary,
the angle-distance representation using spatial prediction with full refinement coding for this
representation does not provide significant coding gain, likely due to only very few blocks
that have characteristics suiting the model and a signaling scheme that requires too many
bits to code an update.

Experiment 4.10 provides coding results for a spatial prediction where a constraint on the
maximum and minimum refinement value has been enforced, effectively requiring less bits to
signal the refinement values. Detailed coding results for this setup are given in Table A.13.
The maximum absolute refinement value for this experiment was set to be |m| = 1 and
|n| = 1, coded by a single flag, depending on the value of the non-zero flag as mentioned
before. This means that the predicted partitioning line can be tilted by ±11.25◦ or shifted
by ±∆ρ(ϕPred,q, w, h), which for example ranges from 1 luma sample for an 8× 8 block to
22 luma samples for a 128×128 block at ϕPred = 45◦. The overall coding gain slightly drops
from −0.49 % for Experiment 4.9 to −0.48% for Experiment 4.10. Thus, no major impact

82



4.3 Prediction and Coding of Geometric Partitioning Side-Information

is observed. This experiment validates that the refinement coding method itself is not the
main contributing factor.

Lastly, no refinement coding on top of the spatial predictor is tested in Experiment 4.11. In
this setup, one of two different predictor candidates can be signaled using a flag. Therefore,
if the GEO mode is selected, only 2 bit are sufficient to signal the geometric split – a first
flag to indicate that spatial prediction is used and a second flag to indicate the predictor
candidate. The coding efficiency shown in Table A.14 shows that this method does not
provide any benefit over unlimited or limited refinement coding. Likely, as it is assumed
for Experiments 4.9 and 4.10, there are too few cases where the optimal partitioning of the
current block is the straight-line continuation of the partitioning of the neighboring block.

Coding performance for intercept representation The refinement coding experiment is
repeated for the intercept representation of geometric partitioning parameters, since the
refinement using this representation modifies the partitioning differently compared to the
angle-distance representation:

• Experiment 4.12 investigates the coding performance of spatial prediction with full
refinement coding.

• Experiment 4.13 investigates the coding performance of spatial prediction with limited
refinement coding.

• Experiment 4.14 investigates the coding performance of spatial prediction with no
refinement coding. The prediction is used as is.

Rather than tilting or shifting the partitioning line around its predicted position, the refine-
ment by moving a line coordinate along the block boundary has a combined effect. This is
visualized in Figure 4.29b. Especially if the predicted coordinate closest to the neighbor-
ing block is kept constant, this representation seems to be more suitable to approximate
connected object boundaries.

In the first Experiment 4.12, again no constraints are imposed on the refinement variables
m and n. The basic partitioning setup from Experiment 4.5 is reused, with a varying number
of 266-352 partitions per block, requiring 9 bit for explicit signaling. This is the bit budget
that can be exploited for spatial prediction. Again, subtracting the 1bit used to indicate
the first or second predictor candidate and the 2 bit required for signaling a non-zero value
of m and n, this leaves 6bit to signal both refinement values. As for Experiment 4.12, an
Exp-Golomb code of order k = 1 is utilized to binarize m and n. The coding results given
in Table A.15 show that the overall coding efficiency in this representation increases very
slightly from −0.42% for Experiment 4.5 to −0.44% for Experiment 4.12. As no big change
in coding efficiency is observed, a similar conclusion as for the angle-distance representation
can be drawn. Although the spatial prediction mode utilization is higher, measured at 9%
for the intercept representation as shown in Table A.16, compared to 6.7 % for the angle-
distance representation, the higher prediction mode usage does not manifest in significant
coding gain.

Interestingly, the distributions of refinement values for m and n, where m relates to the
shift of the first coordinate P0 and n to the shift of the second coordinate P1, are clearly dif-
ferent from each other. This is shown in Figure 4.31, grouped by QPs and measured over the

83



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

−6−5−4−3−2−1 0 1 2 3 4 5 6
0

20

40

60

80

100

P0 refinement value m

O
cc

ur
en

ce
[%
] QP22

QP27
QP32
QP37

−6−5−4−3−2−1 0 1 2 3 4 5 6
0

20

40

60

80

100

P1 refinement value n

O
cc

ur
en

ce
[%
] QP22

QP27
QP32
QP37

Figure 4.31 Distribution of coordinate refinement values m and n, measured for Exp. 4.12 using
spatial prediction.

entire CTC test set. It can be seen that for those blocks that are spatially predicted, in roughly
80% of the cases no refinement is coded for the first coordinate P0, which per definition is the
coordinate closest to the neighboring block. For the second coordinate P1 however, a non-
zero refinement value n is coded in 40 of the cases. This supports the assumptions of smooth
and connected object boundaries. However, since the overall usage of spatial prediction is
too low, no significant improvement in coding efficiency can be reported.

Experiment 4.13 shows the corresponding coding results for a spatial prediction setup
using the intercept representation in Table A.17, where a constraint on the maximum and
minimum refinement values has been enforced. These results also do not show any change
in coding efficiency using a limited refinement coding.

Lastly, Experiment 4.14 shows the coding results without any refinement coding using the
intercept representation in Table A.18. As it is the case for the angle-distance representation,
there is no benefit compared to the variants of using an unlimited or limited refinement
coding.

4.3.2.2 Temporal Prediction

Significant correlation exists between temporally adjacent pictures in a video sequence. This
inter-frame redundancy is extensively exploited by motion compensation and motion predic-
tion to improve coding efficiency. The basic concept of inter-picture prediction using motion
compensation in VVC has already been reviewed in Section 2.4. In this sub-section, the ques-
tion shall be answered, how the temporal correlation can also be exploited for the purpose
of improved geometric partition coding. The resulting algorithm is a refined version of the
temporal projection developed and published by the author in [BHW17] and [BSW18].

Partitioning data storage In contrast to spatial prediction of the partitioning parameters,
temporal prediction requires the availability of the partitioning information for each refer-
ence picture. Therefore, the overall process bears strong similarities to TMVP in HEVC or
VVC. Table 4.10 lists the syntax elements for HEVC and VVC that are stored in the motion
buffer of each reference picture, including the memory requirements for a naive implemen-
tation. As the additional memory required for storing the motion data can be significant,
motion data compression schemes are employed in both standards. In HEVC, the 4×4 min-
imum size PU grid is sub-sampled to a size of 16× 16 luma samples. In VVC, the constraint

84



4.3 Prediction and Coding of Geometric Partitioning Side-Information

on the minimum motion data storage unit size is relaxed to 4× 4 luma samples. Instead, a
rounding operation is applied to the motion vectors to enable a floating-point representation
of each motion vector using a 6bit mantissa and a 4 bit exponent. Additionally, the infor-
mation is stored whether the motion vector is a classical motion vector, or a displacement
vector used for the Intra block copy (IBC) mode of VVC.

In order to enable temporal prediction of the partitioning, the absolute spatial position of
each partitioning line must be known for the pictures that were already coded. Therefore,
the partitioning information must be stored with each reference picture. As it is the case
for temporal motion vector prediction, the memory requirement can be substantial. Next to
the coded representation of the partitioning, which – depending on the granularity of the
partitioning – may require 7 to 9 bit per GEO coding block, additional partitioning infor-
mation must be known for the prediction process. This is explained by the fact that the 7
to 9bit for the GEO parameters map to partitioning line parameters (angle and distance or
coordinates) for a given block size. The block partitioning structure however is not stored
with each reference picture and there is no information easily available to associate a mo-
tion data storage unit with a coding unit. Therefore, in order to fully reconstruct the GEO
partitioning from each motion data storage unit, an additional spatial reference for the par-
titioning parameters is needed. This problem could be solved regardless of the chosen GEO
parametrization by storing the coordinates of two points that are traversed by the partition-
ing line per motion data storage unit, given in absolute coordinates relative to the top-left
sample of the coded picture. Assuming that the maximum supported resolution of the coder
is beyond 8K UHD, 15bit per coordinate component are required. This would require 60bit
per motion data storage unit, not utilizing the fact that the geometric partitioning and the
block partitioning structure are quantized. Therefore, it is reasonable to take advantage
of the already available, quantized representation of the geometric partitioning and store
additional information relating to the block structure. Here, two distinctions can be made:

• For the angle-distance representation, the corresponding absolute or relative location
of the GEO block coordinate system’s origin needs to be made available for each motion
data storage unit. Together with an angle and a distance, this sufficiently describes an
infinitely extending partitioning line.

• For the intercept representation, the size and position of the corresponding GEO block
for each motion data storage unit needs to be known. This allows the reconstruction
of absolute line coordinates.

In a naive implementation, this data can be stored within each motion data storage unit next
to the motion information. The position of each GEO coding unit can be coded relative to
the fixed CTU raster. For a CTU raster of 128× 128 luma samples in VVC and a 4× 4 block
granularity, this would require 5bit for the x and 5 bit for the y-component. Therefore, for
the angle-distance representation, additional 10bit are required to store the position of the
GEO block coordinate system’s origin.

For the intercept representation, the size of the GEO block also needs to be known. Since
there are 13 different possible combinations for the width and height of a GEO coding block,
ranging from 128×128 luma samples to 8×8 luma samples in VVC, a 4 bit coded represen-
tation is sufficient. Therefore, 14bit for the partitioning information per motion data storage
unit are required for the intercept representation. In summary, if a 7bit coded representation

85



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

HEVC VVC

Motion data
storage unit

16× 16 4× 4

Motion data
resolution

16 bit 18bit

Motion data
storage per

reference picture
list

• 16bit motion vectors

• 4bit reference indices

• 1bit reference picture
list utilization flag

• 10bit motion vectors
(6bit mantissa, 4bit
exponent)

• 4bit reference indices

• 1bit reference picture
list utilization flag

Additional data — • 1bit IBC flag

Table 4.10 Motion data storage comparison for HEVC and VVC.

for the GEO partitioning is assumed, the angle-distance representation would require 17bit
of static memory to store the partitioning information per motion data storage unit. The
intercept representation would require 21bit of static memory per motion data storage unit
for temporal prediction.

It is noted that alternatively, the entire MTT of each CTU could be efficiently stored. By
comparison, a pointer-based implementation using dynamic memory would require n

24P +
n
2 D bits for storing a quad tree, where n is the number of nodes of the tree, P is the number of
bits required to store the child node pointers and D the number of data bits residing in the leaf
node. Assuming the worst case, where a CTU is fully partitioned into 8× 8 GEO blocks and
the geometric partitioning is coded using 7bit, this would require an equivalent of 32.875bit
dynamic memory per motion data storage unit. With overall larger block partitions, due to
the video characteristics or a higher QP for example, this requirement however may become
significantly less.

Overall, it can be stated that additional memory is required for performing temporal pre-
diction of the GEO parameters. However, using efficient storage techniques, the memory
requirements for a set of GEO parameters are comparable in size to the memory require-
ments of a single motion vector.

Temporal projection of partitioning data The motion of an object covering multiple pic-
tures can be modeled using a motion trajectory. This motion trajectory is an estimate of the
three-dimensional function that describes the translational movement of an object. It is clear
that from the perspective of the video coder, the true motion trajectory of an object in the
world coordinate system remains unknown, since only the apparent motion, which is the
projection of the object onto the two-dimensional plane, sampled at regular time instances
can be measured and estimated. An example of a motion trajectory is shown in Figure 4.32.
The object, visualized by the gray circle, is moving from the left side of the frame to the

86



4.3 Prediction and Coding of Geometric Partitioning Side-Information

Moving
object

x

y

t
tn−1 tn tn+1

Motion
trajectory

Figure 4.32 Example of spatial prediction of the geometric partitioning from the local neighborhood
of a coding block. The prediction, which is a linear continuation of the partitioning boundary of the
neighboring block into the current block, is indicated by the dashed lines. The hypothetical object is
shaded in gray.

bottom-right of the frame over the duration of three pictures. However, this translational
motion may not be a strictly linear motion, as indicated in the Figure. Further, more complex
motion could also be superimposed onto the translational motion, such as rotation, zoom
or shear. These can be modeled by higher-order motion models, such as an affine motion
model.

The estimation of the motion trajectory is therefore a task handled by the underlying en-
coder. The reference encoders for VVC and HEVC, for example, perform block matching to
estimate translational motion vectors under the assumption that the motion is linear. Block
matching between two pictures can therefore be seen as a first order, piece-wise approxi-
mation of the motion trajectory. This is also reflected by the way temporal motion vector
prediction is performed:

1. In HEVC and VVC, regular TMVP is performed by estimating the motion vector of
the current block, based on the motion field of coded reference pictures, sampled at
collocated spatial positions denoted as C0 and C1 (see Figure 2.7a). The motion vector
predictor is scaled according to the temporal distances between the current picture
and the coded reference pictures. This scaling process can also be viewed as a forward
projection of the motion vector encountered at C0 or C1 of the reference picture motion
field.

2. In VVC, SbTMVP is performed by estimating the motion of multiple sub-blocks based
on the motion vector field of coded reference pictures, sampled by a sub-block sized
grid at a spatial location that has been derived through an additional motion shift. This
motion shift is obtained from spatially neighboring motion vectors. Thus, the overall
process can be viewed as a first step of a backward projection using the neighboring
motion vector to obtain the shifted position and a second step, which is the identical
forward projection step as for regular TMVP.

Under the assumption that moving objects in a video sequence remain rigid, meaning that
the object boundaries are not subject to significant deformations, the block partitioning along

87



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

tn−1

tn

object
motion

vector mobj

block grid

current picture

reference picture

Figure 4.33 Example of temporal prediction of the partitioning using the object motion given by mobj.
A very similar concept is used in SbTMVP in VVC.

these object boundaries can be expected to remain static. This allows, in analogy to temporal
motion vector prediction, the temporal prediction of the partitioning parameters through a
motion compensation step. The partitioning parameters, which are to be stored along with
the motion vector field of each reference picture in the decoded picture buffer, can therefore
be re-used by applying a motion shift. This motion shift is conceptually identical to the
motion of the object. Figure 4.33 visualizes the process of motion compensated partitioning.

The object in this case is segmented by a combination of rectangular block partitioning
and geometric block partitioning as indicated. The partitioning that has been coded for the
object in the reference picture can be transferred to the current position of the object using
the motion vector mobj that is associated with the object. It can be seen in Figure 4.33 that it
is unlikely that the identical, compensated partitioning can be superimposed onto the block
(e.g. the CTU) grid of the current picture such that identical sized coding blocks are selected
for the current picture. Therefore, an additional process is required to estimate the closest
matching block partitioning for the current picture.

At this point, it should be noted that, although temporal prediction of the rectangular
block partitioning could also be achieved, only the temporal prediction of geometric block
partitioning parameters is considered. Due to the comparably low signaling cost of the rect-
angular block partitioning using the MTT, no significant coding gain is expected from pre-
dicting the rectangular partitioning. Further, the SbTMVP mode already provides a very
similar functionality on the prediction block level. SbTMVP transfers the entire sub-block
motion of a reference picture to the current picture, which implicitly contains the partition-
ing information of the reference picture.

The predicted partitioning parameters APred,BI can be easily computed for the intercept
representation by addition of the object motion vector mobj to the line coordinates given by
AT = [P0 P1]:

APred,BI = AT + [ mobj mobj ] (4.41)

This shift of the partitioning parameters is also visualized in Figure 4.34a. Given the shifted
partitioning parameters APred,BI, the final partitioning parameters for the current block can

88



4.3 Prediction and Coding of Geometric Partitioning Side-Information

be computed according to Equation (4.37), by determining the intersection points of the
partitioning line with the current block boundary.

For the angle-distance representation, a similar approach is taken by shifting the parti-
tioning parameters using the motion vector mobj. For simplicity, the (ϕT,ρT) coordinate is
converted to Cartesian coordinates and the motion vector mobj is added to obtain a point
(xshift, yshift), located on the shifted partitioning line:

�

xshift

yshift

�

=

�

ρT cos(ϕT)
ρT sin(ϕT)

�

+mobj (4.42)

The predicted angle of the partitioning line ϕPred is identical to angle ϕT of the partitioning
line relating to the collocated block, corrected by a 180° shift if necessary.

ϕPred = ϕT + kπ, k ∈ {0,1} (4.43)

Then, the new predicted distance ρPred can be determined based on the relative locations
of the two block centers, where xT = [xT, yT]T specifies the center location of the collocated
block and xC = [xC, yC]T the center location of the current block, as follows:

�

xtmp

ytmp

�

= xT +

�

xshift

yshift

�

− xC (4.44)

ϕtmp = atan2
�

ytmp, xtmp

�

(4.45)

dPred = cos
��

�ϕtmp −ϕPred

�

�

�

q

x2
tmp + y2

tmp (4.46)

ρPred = |dPred| (4.47)

The sign of dPred indicates, whether the 180° shift applied to the predicted angle given in
Equation (4.43) is necessary:

k =

¨

0

1

dPred ≥ 0

dPred < 0
(4.48)

For both representations, quantization as given in Equations (4.35), (4.36) and (4.38)
is applied to the predicted parameters. From an implementation-based point of view and
the derivations given above, it becomes clear that the intercept representation is preferred.
Temporal prediction can be achieved through a simple addition of a scaled motion vector,
whereas a change to Cartesian coordinates is required for the angle-distance representation.

At this stage, the question arises how the object motion mobj can be estimated or generated
from the motion vector field of the reference picture. Since the true motion of the object
boundary is not known, a scanning process is employed that performs the projection for
each motion vector encountered within a search range, centered at the collocated position.
The projection process is a scaling operation based on the temporal distances of the involved
pictures that is applied to each motion vector mmv of the reference picture motion vector
field. In this process, the reference picture shall occur at time t1, measured by Picture order
count (POC). The motion vector mmv is referencing another reference picture at time t2.

89



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

PT,0

PT,1

collocated blockt1
PPred,0

PPred,1

current blockt0

mobj

mobj

(a) Temporal prediction visualized for the intercept representation

ρT
ϕT

collocated blockt1

(xT, yT)

ρPred

ϕPred

current blockt0

(xC, yC)

mobj

(b) Temporal prediction visualized for the angle-distance representation

Figure 4.34 Temporal prediction of GEO parameters by using the object / boundary motion given by
the motion vector mobj.

90



4.3 Prediction and Coding of Geometric Partitioning Side-Information

mS,0

mS,1

projection

mS,0,p

predicted
partitioning

collocated position

true motion

x

y

t
t1 t0

Figure 4.35 Visualization of the temporal prediction process through projection. The partitioning
information is made available at the collocated position for the current CU by applying a spatial shift
according the motion information.

Note that the picture at t2 may precede or follow the picture at t1 in output order, depending
on the coding order of the coding scheme. The temporal distance between the two reference
pictures shall be denoted tb. The temporal distance between the current picture at time t0

and the reference picture at time t1 shall be denoted as td.

tb = t1 − t2 (4.49)

td = t0 − t1 (4.50)

The projection process is now simply an inversion of each motion vector mmv and a scaling
according to the ratio of tb and td:

mobj = −
tb

td
mmv (4.51)

This process is depicted in Figure 4.35. Based on the collocated position of the current
block in the current reference picture, the motion vector field of the current reference picture
is tested for the presence of additional geometric partitioning data. As established above,
the partitioning data of each GEO coding unit is available for each 4× 4 motion data stor-
age unit. For each 4× 4 unit that contains geometric partitioning data, the projection vec-
tor mobj is derived according to Equation (4.51) and the compensation processes according
to Equation (4.41) for the block-intercept representation or according to Equations (4.42)
through (4.47) for the angle-distance representation are invoked. For a faster prediction
process, detected duplicate combinations of geometric partitioning data and motion data
can be skipped.

Since a geometrically partitioned block contains at least two different motion vectors mS,0

and mS,1 which are associated with each partition, two projection hypotheses mS,0,p and

91



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

reference picture motion vector field

Pm

r

...

GEO block B 4x4 grid

collocated position mS,0

mS,1

scan

Figure 4.36 Visualization of the scanning process using a spiral pattern. Projection is performed at
each unique 4× 4 storage unit location Pm containing geometric partitioning information.

mS,1,p are computed per GEO block. If it is assumed that the motion vectors mS,0 and mS,1

relate to different objects or to the motion of the foreground and the background, only
one hypothesis mS,0,p or mS,1,p will coincide with the object motion. This can be tested
by calculation whether the predicted partitioning parameters APred,BI or APred,AD are actually
slicing the current block.

In Alternative temporal motion vector prediction (ATMVP) and SbTMVP only a fixed num-
ber of predetermined spatial positions are scanned for computing motion vector predictors.
In ATMVP for example, the C0 and C1 positions, located at the bottom right and at the cen-
ter of the current block, are tested for temporal prediction. In SbTMVP, the A1, B1, B0 and
A0 positions are tested first to derive the initial shift vector. This simple scanning process
is extended for the temporal prediction of GEO parameters, as it is unlikely to encounter a
4×4 unit containing the partitioning data with such few tested locations. Instead a scanning
process is proposed which starts at the center position of the current block in the current ref-
erence picture. Then, spiraling outwards as indicated in Figure 4.36, multiple locations Pm

are computed and each underlying 4× 4 unit is checked for the following conditions:

1. If the scan position at Pm is contained within the current reference picture,

2. if the 4× 4 unit is associated with an inter-predicted block,

3. if the 4× 4 unit is not using IBC,

4. if the 4× 4 unit contains valid GEO or TPM partitioning information,

5. if the motion vectors of the 4× 4 unit and the partitioning data have not been tested
yet.

If all conditions are met, the projection process is performed and if a valid partitioning has
been computed, the predictor candidate is added to the partitioning predictor candidate list.
In the following experimental simulations, a scan region of 32 rectangular spiral passes is
used, which is equal to a square-shaped scan region size of r = 256 luma samples around
the collocated position. In VVC and under the JVET CTC, the search area is therefore equal
to the area covered by four CTUs when GEO is enabled.

92



4.3 Prediction and Coding of Geometric Partitioning Side-Information

−6−5−4−3−2−1 0 1 2 3 4 5 6
0

20

40

60

80

100

Angular refinement value m

O
cc

ur
en

ce
[%
] QP22

QP27
QP32
QP37

−3 −2 −1 0 1 2 3
0

20

40

60

80

100

Distance refinement value n

O
cc

ur
en

ce
[%
] QP22

QP27
QP32
QP37

Figure 4.37 Distribution of angular and distance refinement values m and n, measured for Experiment
4.15 using temporal prediction.

Coding performance for angle-distance representation In analogy to the spatial predic-
tion coding experiments, three coding experiments are conducted for temporal prediction
that differ with regard to the level of refinement coding optionally applied to the predicted
partitioning:

• Experiment 4.15 investigates the coding performance of temporal prediction with full
refinement coding.

• Experiment 4.16 investigates the coding performance of temporal prediction with lim-
ited refinement coding.

• Experiment 4.17 investigates the coding performance of temporal prediction with no
refinement coding. The prediction is used as is.

First, the angle-distance representation is tested for its coding performance using temporal
prediction in Experiment 4.15. Again, the basic coding setup from Experiment 4.2 is used,
where the explicit coding of the partitioning is performed using a fixed length code of 7 or
8 bit. For temporal prediction, one of two predictor candidates can be signaled using a flag.
An unlimited refinement coding using an Exp-Golomb code of order k = 1 can optionally be
signaled. The overall coding efficiency, shown in Table A.19, increases from −0.45% for the
reference Experiment 4.2 without prediction to −0.51 % for Experiment 4.15 with temporal
prediction. For classes A1, A2, B and C, a nearly uniform improvement by approximately
0.06% can be reported. For individual sequences, the highest coding efficiency improvement
compared to Experiment 4.2 can be measured for the UHD sequences CatRobot1, ParkRun-
ning3 at −0.1 % and for the High definition (HD) sequences Cactus and BQTerrace at −0.1%
and −0.13%, respectively.

The usage statistic of the temporal prediction mode shown in Table A.20 reveals that over-
all 27.8% of all pixels coded with GEO are coded using the temporal prediction mode. This
compares to 6.7% for spatial prediction as measured in Experiment 4.12. Also, a stronger
dependency of the QP can be observed. For the highest bitrates at QP22, the temporal pre-
diction mode usage is 20.9%, whereas for the lowest bitrates at QP37 usage increases to
31.9%.

Figure 4.37 shows the occurrence of refinement values m and n of Experiment 4.15 that
are applied to the predicted angle and distance per block, respectively. Similar as for spatial
prediction, a refinement of the angular parameter is coded only for 20 % of the GEO pixels.

93



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

For the distance parameter however, a refinement value n is coded in only 5 to 10 % of all
GEO pixels.

To test whether a better coding efficiency trade-off exists, limited refinement coding is
conducted in Experiment 4.16. As for the case of spatial prediction, only the refinement
values m = ±1 and n = ±1 can be signaled using a single flag per parameter. The detailed
coding results are shown in Table A.21. Overall, coding efficiency for this setup increases
marginally to −0.52%, indicating that the additional bits spent for the unlimited refinement
coding in Experiment 4.15 can be omitted.

In analogy to the spatial prediction experiments, the setup of not using any refinement
coding on top of the temporal prediction is tested in Experiment 4.17. Coding efficiency,
shown in Table A.22, compared to the unlimited refinement scheme increases marginally
from −0.51 % to −0.53 %. This increase confirms the findings of the refinement statistics as
shown in Figure 4.37. Since the encoder chooses a zero refinement of the angle or distance
in most of the cases, these bits can be considered redundant. Combined with the larger
usage of temporal prediction compared to spatial prediction, this results in a slight coding
gain.

Coding performance for intercept representation

• Experiment 4.18 investigates the coding performance of temporal prediction with full
refinement coding.

• Experiment 4.19 investigates the coding performance of temporal prediction with lim-
ited refinement coding.

• Experiment 4.20 investigates the coding performance of temporal prediction with no
refinement coding. The prediction is used as is.

Experiment 4.18 investigates the coding performance of temporal prediction for the intercept
representation. The detailed coding results are shown in Table A.23. Here, compared to the
case of using no prediction in Experiment 4.4, coding efficiency improves from −0.42% to
−0.49 % as shown in Table A.23. This is a substantial increase in coding efficiency, compared
to the relative improvement measured for the angle-distance representation. The temporal
prediction mode usage analysis in Table A.24 reveals that for 42.1 % of the area coded with
GEO the partitioning has been temporally predicted, averaged over the entire CTC test set,
significantly more compared to the usage for the angle-distance representation. In particu-
lar, the CatRobot1 sequence and the ArenaOfValor screen content sequence are well suited
for temporal prediction with average prediction mode usages of 54.8 % and 53.3 %, respec-
tively. On the lower end of the usage statistics are the Campfire and RitualDance sequence
with 26.6% and 32.67%. The RitualDance sequence is an interesting example where tem-
poral prediction is not successful, whereas its characteristics otherwise fit the GEO model
quite well, showing dancing people. However, the fast speed of the motion may be an ex-
planation why temporal prediction using the projection process is not suitable. The limited
search range around the collocated position is likely not able to capture fast moving object
boundaries.

The distribution of coordinate refinement values m and n in Figure 4.38 appears overall
very similar to those that were previously measured for Experiment 4.15. In roughly 70-80%

94



4.3 Prediction and Coding of Geometric Partitioning Side-Information

−6−5−4−3−2−1 0 1 2 3 4 5 6
0

20

40

60

80

100

P0 refinement value m

O
cc

ur
en

ce
[%
] QP22

QP27
QP32
QP37

−6−5−4−3−2−1 0 1 2 3 4 5 6
0

20

40

60

80

100

P1 refinement value n

O
cc

ur
en

ce
[%
] QP22

QP27
QP32
QP37

Figure 4.38 Distribution of coordinate refinement values m and n, measured for Experiment 4.18
using temporal prediction.

of the cases for each parameter, no refinement value is coded. In further consequence, the
limited refinement coding scheme for the intercept representation tested in Experiment 4.19
also provides a slight coding gain compared to the unlimited refinement coding. The de-
tailed coding results are shown in Table A.25. With this approach, overall coding efficiency
improves to −0.51 % in terms of BD-rate change. No additional benefit can be measured
when no refinement coding is allowed as shown in Experiment 4.20, as the overall BD-rate
change remains at −0.51% . The detailed results for this experiment are given in Table A.26.

4.3.3 Summary

The experiments performed in Sections 4.3.1 and 4.3.2 investigated the two approaches
for signaling a given set of geometric partitioning parameters: explicitly, without exploiting
any spatial or temporal correlation, and predictively by trying to estimate the partitioning
parameters of the current coding block from the spatial and temporal neighborhood. Addi-
tionally, it was investigated whether different levels of refinement coding provide any benefit
once a predictor has been determined. The coding experiments were performed for the two
different representations of geometric partitioning parameters.

In Table 4.11, the explicit coding results that were measured in Experiments 4.2, 4.6, 4.7
and 4.8 for the angle-distance representation are summarized. Huffman coding provides
the highest overall coding efficiency with a luma BD-rate change of −0.50%. These results
were achieved by using GEO partition mode usage statistics per block size for the generation
of Huffman code trees. Thereby, the joint probabilities of certain angle and distance com-
binations are mapped to code words with fewer bits. In terms of coding efficiency, this is
followed by the less complex truncated binary coding which assumes a uniform distribution
of GEO partition modes. With this method, −0.47% of BD-rate change can be achieved over
the VTM-3.2 anchor.

In Table 4.12, the coding results for predictive coding are summarized. In general, tempo-
ral prediction improves the coding efficiency more than spatial prediction. Highest overall
coding efficiency was achieved by using the angle-distance representation for GEO param-
eters and not performing any refinement coding on top of the predicted parameters. Using
this combination, a BD-rate change of −0.53% was measured over VTM-3.2 for a RA coding
configuration.

In summary, it can be stated that spatial prediction of the partitioning by assuming a lin-

95



4 Prediction and Parameter Coding for Non-rectangular Block Partitions

Explicit Coding Method BD-Rate Change

Fixed length −0.45 %

Huffman −0.50 %

Truncated Binary −0.47 %

Separate Parameters −0.46 %

Table 4.11 Summary of the explicit coding results using the angle-distance representation for Exper-
iments 4.2, 4.6, 4.7 and 4.8.

Predictive Coding Method
BD-Rate Change

Spatial Prediction Temporal Prediction

AD BI AD BI

Full Refinement −0.49% −0.44 % −0.51% −0.49%

Limited Refinement −0.48% −0.44 % −0.52% −0.51%

No Refinement −0.49% −0.44 % −0.53% −0.51%

Table 4.12 Summary of the predictive coding results using the angle-distance and intercept repre-
sentation with different refinement coding methods. The explicit coding for all simulations was per-
formed using fixed length binarization. The coding efficiency baseline result for the angle-distance
results is −0.45% and −0.42 % for the intercept representation, where no prediction is used.

96



4.3 Prediction and Coding of Geometric Partitioning Side-Information

ear continuation of a neighboring partitioning is not a viable method to improve the coding
efficiency of geometric partitioning substantially. Different levels of refinement coding have
almost no impact on measured coding efficiency since the usage of such a prediction mode is
too low. On the other hand, temporal prediction by projection of the partitioning parameters
using the reference picture motion vectors can improve coding efficiency by almost 0.1%,
independent of the chosen representation. For the angle-distance representation, a good
rate-distortion trade-off seems to be achievable by not coding any refinement parameters
and using the temporally predicted partitioning parameters as they are. In terms of im-
plementation and algorithmic complexity, the intercept representation allows for a simpler
projection process. Certainly, temporal prediction adds additional complexity and mem-
ory requirements to the coder. However, the additional memory requirements are in the
same range as motion vectors. Algorithmically, the presented projection method also offers
room for improvement by using a smarter search strategy than the currently employed scan
method.

97





5 Inter-prediction Modifications

The blending process that was already briefly introduced in Section 5.1.1 is one of the main
inter-prediction features of non-rectangular partitioning (GEO or TPM), significantly distin-
guishing it from other motion compensation based block tools. Next to the blending process,
additional modifications to the coder are applied for GEO, compared to regular block based
inter-prediction. Some of these changes affect only the encoder: The motion estimation
process, for example, needs to be adapted to handle non-rectangular partitions. The mo-
tion compensation process, on the other hand, is affected at the encoder and decoder side.
It is also of interest to analyze the effect of GEO on memory bandwidth for bi-directional
motion compensation and to investigate how coding performance changes by restricting the
prediction to uni-directional motion compensation. Other adaptations, such as for motion
vector prediction and coding may further affect coding efficiency. Minor changes, such as
the motion vector storage process are not considered to be critical but are discussed briefly
for completeness.

The following sections detail the necessary changes for GEO in close alignment with Versa-
tile Video Coding and the VTM-3.2 reference encoder and decoder. Since VVC inherits many
technologies from HEVC, similarities and well-known concepts that apply to both codecs are
pointed out. Optimizations and simplification to the processes described in this chapter are
highlighted in the subsequent Chapter 6.

5.1 Motion Compensation

The basic principle of motion compensation for GEO has been reviewed in Section 4.1: A
composite prediction block PPB is generated from two intermediate prediction blocks PPB,0

and PPB,1 through the blending process:

PPB = Mf,0 ◦ PPB,0 +Mf,1 ◦ PPB,1 (5.1)

The prediction blocks PPB,k, k ∈ {0, 1} are the result of uni- or bi-directional motion com-
pensation. In contrast to other inter-prediction coding modes of VVC, this requires that at
least two block-based motion compensation steps are performed. In the worst-case, four
motion compensation steps are required if both GEO segments are utilizing bi-prediction.

Equation (5.1) is a simplified model of the blending process using the filter weights Mf

given in floating point accuracy. In the actual specification and reference implementation
however, integer arithmetic is used for the entire process of motion compensation. The
filter masks Mf,0 and Mf,1 then contain per-sample weights w0(x , y) and w1(x , y) such that
w0 +w1 = 2Bf for all x and y .

If a motion vector is having a non-zero, fractional sample part, an interpolation process
fInt(·) is further applied. For a uni-predicted block, using the motion vector m = [mx my]T

and the reference pictures RLi(x , y), i ∈ {0,1} from reference picture list L0 or L1, respec-
tively, this can be expressed as:

99



5 Inter-prediction Modifications

P̃Li = fInt(RLi(x + bmxc , y +
�

my

�

), m) (5.2)

In the VTM reference software, fractional sample interpolation is performed using 14bit
accuracy. Therefore, in order to obtain prediction samples in the output bit depth Bd, e.g.
Bd = 8 bit or Bd = 10 bit, an additional scaling process is applied after motion compensa-
tion. For a motion compensated and interpolated sample p̃Li, given in 14 bit precision, and
a prediction sample pPB in output bit depth Bd, this can be expressed as:

pPB =
�

p̃Li

214−Bd
+

1
2

�

, i ∈ {0, 1} (5.3)

Accordingly, if bi-prediction with equal weighting is used and two interpolated samples
p̃L0 and p̃L1 are given, the prediction sample pPBin output bit depth is derived by

pPB =
�

p̃L0 + p̃L1

215−Bd
+

1
2

�

. (5.4)

For GEO, Equation (5.1) is implemented such that the weighting by Mf is applied in the
14bit domain for higher precision. Up to four interpolated samples are involved, depending
on the usage of uni- or bi-prediction for each segment. In the following, p̃Li,k shall denote
the interpolated sample of segment k, resulting from the segment-wise motion compensation
using the motion vector mS,Li,k. The weights wk of Mf,k shall be integer weights in the range
of 0≤ wk≤ 2Bf .

• If both segments are using uni-prediction, the final predicted sample pPB is derived by

pPB =

�

w0 p̃Li,0 +w1 p̃L j,1

214+Bf−Bd
+

1
2

�

, i, j ∈ {0,1}. (5.5)

• If segment k = 0 is using bi-prediction and segment k = 1 is using uni-prediction, the
final predicted sample pPB is derived by

pPB =

�

w0(p̃L0,0 + p̃L1,0) + 2w1 p̃L j,1

215+Bf−Bd
+

1
2

�

, j ∈ {0,1}. (5.6)

• If segment k = 0 is using uni-prediction and segment k = 1 is using bi-prediction, the
final predicted sample pPB is derived by

pPB =

�

2w0 p̃Li,0 +w1(p̃L0,1 + p̃L1,1)

215+Bf−Bd
+

1
2

�

, i ∈ {0, 1}. (5.7)

• If both segments are using bi-prediction, the final predicted sample pPB is derived by

pPB =

�

w0(p̃L0,0 + p̃L1,0) +w1(p̃L0,1 + p̃L1,1)

215+Bf−Bd
+

1
2

�

. (5.8)

100



5.1 Motion Compensation

5.1.1 Discretization of Geometric Partitions and Prediction Blending

According to Figure 4.1, the second step in generating a geometric partition is the discretiza-
tion of the partitioning line. Up to this point, the geometric model only defines a partitioning
line in terms of continuous coordinates. The discretization process transforms the geometric
model parameters into two-dimensional matrices. This process can also be described as a
rasterization. As mentioned before, a weighting mask M is employed to combine the samples
of each prediction into a rectangular block for further processing. Two types of weighting
masks are being considered:

1. Weighting or blending filter masks Mf, which are used to compose the final prediction
block from the two intermediate prediction blocks. In analogy to overlapped-block
motion compensation and weighted prediction, the weighting masks Mf define a tran-
sition zone around the partitioning line, where the samples from both predictions are
weighted based on their distances to the partitioning line.

2. Binary weighting masks Mb, which are used to unambiguously indicate whether a
sample is part of the first S0 or the second S1 partition segment. This information is
useful for subsequent stages of transform coding of individual segment residuals e.g.
using the Shape-adaptive DCT. The binary weighting mask or sub-sampled version may
also be used to assign motion vectors to the motion vector buffer.

Since chroma subsampling may be employed for the given video source, two masks of dif-
ferent size can be associated with the blending filter or the binary mask, e.g. Mf,Luma and
Mf,Chroma or Mb,Luma and Mb,Chroma. The luma and chroma masks can either be generated from
the same discretization process with different input sizes for the width and height as given
below or the chroma mask can be generated from the luma mask via subsampling. The latter
process is a simplification and detailed in Chapter 6.6.2. For brevity and ease of notation,
Mf and Mb shall relate to the luma component if not stated otherwise.

Both types of masks can be generated in the same manner, by calculating the distance d of
each sample from the partitioning line using the following equations. For the angle-distance
representation, the coordinate system is placed in the center of the current block, therefore
the shifted coordinates xc and yc are used for ease of calculation. Equation 5.9 shows the
per-sample distance calculation in polar coordinates, given the partitioning line parameters
AAD = [ ϕ ρ ]. It is noted that a definition with inverted y-coordinates, e.g. −yc sinϕ is
also frequently encountered in the literature, which would align the y-axis direction of the
polar coordinate system with the picture coordinate system.

dAD(ϕ,ρ, xc, yc) = xc cosϕ + yc sinϕ −ρ (5.9)

�

xc

yc

�

=

�

x − w/2+ 1/2

y − h/2+ 1/2

�

, x , y ∈ B (5.10)

For the intercept representation, the line coordinates ABI = [ P0 P1 ] are used to deter-
mine the distance d to the partitioning line according to Equation (5.11).

dBI(P0, P1, x , y) =
(y1 − y0)xc − (x1 − x0)yc + x1 y0 − x0 y1

p

(y1 − y0)2 + (x1 − x0)2
(5.11)

101



5 Inter-prediction Modifications

x

y

d ≤ 0

d > 0

w

h

S0

S1

Sample part of S0

Sample part of S1

Figure 5.1 Example of a binarized geometric partitioning.

Equation (5.11) is the expanded form of the well-known point-to-plane distance equation
using the Hessian normal form for two dimensions, where a normal n0 perpendicular to a
given plane and a positive distance dP from the coordinate origin to the plane is specified.
The distance of the plane to a point given by its position vector r can then be calculated as:

d(r ) = r · n0 − dP (5.12)

For both representations, the sign of the distance d can be used to identify on which side of
the partitioning line a sample (x , y) is located. This information can be stored in the binary
mask Mb. All samples which fulfill the condition d ≤ 0 are assigned to segment S0 and all
samples which fulfill d > 0 are assigned to segment S1. This is indicated in Figure 5.1. The
determination of the distance of a sample to the partitioning line based on the center of the
sample solves the assignment ambiguity for samples that are sliced by the partitioning line.
If the center of a sample is located on one side of the partitioning line, then it can be easily
seen that the majority of the sample is also located on the same side of the partitioning line.

Mb(x , y) =







0, if d(xc, yc)≤ 0

1, if d(xc, yc)> 0

(5.13)

Further, using a mapping function f (d), the linear weighting masks Mf containing the
weights wGEO can be constructed. An example of a mapping function can be seen in Fig-
ure 5.2. The mapping function f (d) in this example assigns linear weights in the discretized
range from 0...1 to each distance d.

wGEO(x , y) = f (d(xc, yc)) (5.14)

Mf =











wGEO(0,0) wGEO(1, 0) · · · wGEO(w− 1,0)
wGEO(0, 1)

...
. . .

...

wGEO(0, h− 1) · · · wGEO(w− 1, h− 1)











(5.15)

102



5.1 Motion Compensation

-3 -2 -1 1 2 3

1

0

0.5
dm

d

f (d)

f
fq

Figure 5.2 Distance-based weighting function with configurable transition region dm.

f (d) =







0, d < −dm
d

dm
+ 0.5, −dm ≤ d ≤ dm

1, d > dm

(5.16)

The transition region is denoted as dm and could be a constant parameter setting or an
adaptive parameter, for example depending on the block size or the type of video content. A
larger transition region will generally cause a larger blurring or smoothing along the parti-
tioning line, whereas a smaller transition region will likely introduce a visible edge into the
composite prediction block. In order to avoid floating point operations when the weighting
function Mf is applied to the samples, f (d) is typically quantized and scaled to integer values
in an actual implementation. More details on such implementation specific aspects are given
in Chapter 6.

The integer quantization of f (d) is also indicated as fq in Figure 5.2. Below the minimum
or above the maximum range of d, the weight is clipped to the value of 0 or 1. For simplicity
and ease of implementation, two blending and binary masks can be defined for each GEO
partition mode that relate to each segment, with J being a matrix of all ones:

Mf,0 = Mf

Mf,1 = J −Mf
(5.17)

Mb,0 = Mb

Mb,1 = J −Mb
(5.18)

TPM in VVC and the proposed GEO coding tool in this thesis are using a quantization
step size for fq of 0.125 that results in 9 different values for Mf, resulting in the closed value
interval given by [0, 0.125,0.25...1]. Scaling this interval by 2Bf allows the integer averaging
process to be implementable using multiplications, additions, and bit-shifts only. Figure 5.3
visualizes the influence of different transition regions sizes dm for the case of an 32×32 luma
blending filter Mf with 2Bf = 8,e.g. 9 possible weights.

The question arises, how large the transition region dm shall be defined for best coding
efficiency. In the following, a detailed heuristic analysis is presented, how different transition
region values dm impact the coding gain and residual characteristics. An optimal setting is to
be empirically determined which can be applied for further experiments. Also, the potential
visual impacts are briefly assessed.

In the subsequent Experiments 5.21, 5.22, 5.23 and 5.24, coding results are obtained by
encoding the JVET test set using different filter lengths dm = {1, 3,5, 7} for all block-sizes.

103



5 Inter-prediction Modifications

dm = 1 dm = 2 dm = 3 dm = 4 dm = 5
0

0.25

0.5

0.75

1

Figure 5.3 Example of 32× 32 filter masks Mf for different transition region sizes dm.

Luma BD-rate change

dm = 1 dm = 3 dm = 5 dm = 7

JVET Overall −0.32 % −0.50 % −0.48 % −0.37 %

Table 5.1 Overall coding performance obtained when varying the blending filter length dm.

As depicted in Figure 5.3, this causes the blending region to vary from a sharp transition
to a qualitatively wide transition. To further study the effect of the different blending tran-
sition sizes, the unquantized prediction residual is also recorded during the encoding. In
order to limit the amount of data and computation time for these simulations, only the first
65 pictures of each sequence were coded for the experiments. This corresponds to one or
two Groups of Pictures (GOPs), depending on the frame rate of each video sequence. The
detailed results for these four experiments are given in Table A.27 (dm = 1), Table A.28
(dm = 3), Table A.29 (dm = 5) and Table A.30 (dm = 7) in the appendix. An overview of the
corresponding BD-rate change for each blending filter is shown in Table 5.1.

Based on the obtained coding results, the following conclusions can be drawn:

• Overall, a filter length of dm = 3 provides the best trade-off in terms of coding gain
across all classes.

• For UHD sequences, a larger filter length of dm = 5 appears to be slightly beneficial.

• For screen content, which is contained in class F, the shortest tested filter length of
dm = 1 provides the highest coding gain.

These findings suggest that the optimal size of the blending region may depend on the char-
acteristics of the video content. It is not surprising that applying less blending, which is
assumed to have a similar impact on the residual as OBMC, to screen content or Text and
graphics with motion (TGM) content is beneficial due to the high spatial-frequency spectrum
of such sequences. Surprisingly though, the optimal filter size for natural video content in
terms of coding efficiency as measured in Experiments 5.21 - 5.24 is noticeably sharper com-
pared to the blending filter used in TPM. In TPM, the integer filter weight wTPM is given by
the Manhattan distance with an offset of 4 of each sample to the diagonal (or anti-diagonal)
partitioning line, clipped to a value range between 0 and 8. For the diagonal from the top-
left to the bottom-right, the weight wTPM,0 is derived as given by Equation (5.19) and for the
anti-diagonal from the bottom-left to the top-right the weight wTPM,1 is derived as given by
Equation 5.20:

104



5.1 Motion Compensation

dTPM,0 =
x
a
− y

b
+ 4 (5.19)

dTPM,1 =

¨

h− 1− x
a − y

b w> h
w− 1− x

a − y
b w≤ h

(5.20)

wTPM,i(x , y) = clip(0, 8,dTPM,i(x , y)) i ∈ {0, 1} (5.21)

Therefore, it can be seen that the TPM blending filter is 7 samples across, noticeably wider
than the optimal GEO blending filter.

In order to gain more insight how different filter lengths impact the properties of the
residual signal, it is of interest to analyze the local energy content of the prediction residual.

It has been theoretically shown by Shishikui [Shi92], Wentao and Zheng [Wen+00;
Zhe+01; Wen+02] that the motion-compensated frame difference samples are not wide-
sense stationary across a block, meaning that the mean and the covariance are not indepen-
dent of the spatial position within the block. In fact, the variance of the residual tends to
increase towards the edges of the block and is lowest at its center. According to the authors,
the space-dependent properties are due to the motion fluctuation and the nature of block-
based motion compensation and estimation. Further, OBMC has been proven empirically
and theoretically to lower the residual variance at block boundaries and provide coding gain
as well as perceptual visual improvements.

In the following, an empirical analysis of the space-dependent residual variance is ex-
tended to geometrically partitioned blocks. As GEO blocks can be partitioned in multiple
ways for a range of different block sizes, unlike performed in previous studies, the residual
variance is not measured in two dimensions but depending on the distance to the partition-
ing line. For each sequence of the test set that was encoded in Experiments 5.21 – 5.24,
roughly 3000000 residual luma samples drawn from randomly selected geometrically parti-
tioned blocks are analyzed depending on their absolute distance to the partitioning line. To
reduce the effect of sequence-dependent outliers, the median across the sample variance per
distance bin is measured. The results of this analysis can be seen for each QP in Figure 5.4.

The following observations can be made from Figures 5.4a – 5.4d:

• In general, the observation of a non-stationary variance for the motion compensated
prediction error can be confirmed for GEO blocks. As it is known for the block bound-
aries, the prediction error variance is distinctly higher in the vicinity of the partitioning
line.

• For the lower QPs 22 and 27, see Figure 5.4a and Figure 5.4b, the shortest filter length
of dm = 1 results in the overall lowest prediction error variance depending on the
distance to partitioning line. Although the prediction errors variances for different
filter lengths converge to the same value at a distance of roughly d ≥ 10, the shortest
filter length converges faster.

• For higher QPs, especially for QP37, see Figure 5.4d, increasing the blending filter
length dm lowers the prediction error variance in the region close to the partitioning
line between two segments.

105



5 Inter-prediction Modifications

0 2 4 6 8 10 12 14 16 18 20
0

100

200

Distance from Partitioning Line

Va
ri

an
ce

Filter dm = 1
Filter dm = 3
Filter dm = 5
Filter dm = 7

(a) QP22

0 2 4 6 8 10 12 14 16 18 20
0

200

400

Distance from Partitioning Line

Va
ri

an
ce

Filter dm = 1
Filter dm = 3
Filter dm = 5
Filter dm = 7

(b) QP27

0 2 4 6 8 10 12 14 16 18 20
0

200

400

600

800

Distance from Partitioning Line

Va
ri

an
ce

Filter dm = 1
Filter dm = 3
Filter dm = 5
Filter dm = 7

(c) QP32

0 2 4 6 8 10 12 14 16 18 20
0

500

1,000

1,500

Distance from Partitioning Line

Va
ri

an
ce

Filter dm = 1
Filter dm = 3
Filter dm = 5
Filter dm = 7

(d) QP37

Figure 5.4 Residual luma variance for GEO blocks depending on the distance to the partitioning line
using different filtering lengths dm.

106



5.1 Motion Compensation

a) Original +
Partitioning

b) Coded,
dm = 1

c) Coded,
dm = 3

d) Coded,
dm = 5

a) Original +
Partitioning

b) Coded,
dm = 1

c) Coded,
dm = 3

d) Coded,
dm = 5

a) Original +
Partitioning

b) Coded,
dm = 1

c) Coded,
dm = 3

d) Coded,
dm = 5

a) Original +
Partitioning

b) Coded,
dm = 1

c) Coded,
dm = 3

d) Coded,
dm = 5

Figure 5.5 Example of 32× 32 filter masks Mf for different transition region sizes dm.

It can be summarized that the known effect of OBMC for regular motion compensated blocks
also holds true for geometrically partitioned blocks to a certain degree. At least for higher
QPs, averaging the sample values at the boundary between two segments provides the ben-
efit of a lower residual energy. However, the analysis also shows that more blending applied
uniformly to all blocks does not result in more coding gain. It can be assumed that also
the mode utilization for different block sizes, which is quite QP-dependent as shown in Fig-
ure 4.11, is another factor to consider. At lower QPs, typically smaller block sizes in the
range from 8× 8 to 16× 16 luma samples are used more frequently. At large blending filter
lengths, almost all samples are being averaged, and therefore these small blocks may lose
their distinct feature of being geometrically partitioned. The GEO mode in this case would
operate more like multi-hypothesis prediction with two to four hypothesis per block [Gir98;
FWG98].

Lastly, next to the influence on the coding gain, the potential visual impact of different
blending parameters must also be considered. It is known from the design of loop-filters
that objective measures such as PSNR and Structural Similarity (SSIM) do not always reliably
justify certain filtering design choices [Nor+12]. Therefore, objective assessment through
extensive visual testing is often performed.

Figure 5.5 exemplifies the potential visual impact of different blending filter lengths for a
coded example. It can be seen that the overall differences in sharpness are small but notice-
able in a still-picture comparison. For further experiments in this chapter, it was therefore
decided to keep the blending filter length at dm = 3 as this setting provided the most overall
coding gain. Further, an even shorter filter might be visually less convincing and may make
the object boundaries artificially sharp. In Chapter 6, Section 6.3 the findings in this sec-
tion are utilized to design an adaptive blending filter for GEO and TPM in VTM-5.0 that can
be signaled to switch between two different blending filter lengths depending on the video
content.

5.1.2 Uni- and bi-directional Motion Compensation

Using the motion information, e.g. the motion vectors mS,0 and mS,1 and the associated ref-
erence pictures, rectangular arrays of samples are fetched from the Decoded Picture Buffer
(DPB). If indicated by the magnitude of the x- and y-component of the motion vectors, frac-
tional sample interpolation may also be performed. Lastly, the two intermediate prediction

107



5 Inter-prediction Modifications

Block size
Memory Bandwidth B

Uni-prediction Bi-prediction

GEO Regular GEO Regular

8×8 7.03 3.51 14.06 7.03

16×16 4.13 2.07 8.27 4.13

32×32 2.97 1.49 5.94 2.97

64×64 2.46 1.23 4.92 2.46

128×128 2.22 1.11 4.45 2.22

Table 5.2 Theoretical worst-case memory bandwidth requirements for GEO compared to regular
predicted blocks using uni- or bi-prediction (both segments bi-predicted for the case of GEO).

blocks PPB,0 and PPB,1 are multiplied by the respective weighting masks Mf,0 and Mf,1, added
and scaled, if integer weights are used in the process.

It is noted that each intermediate prediction block PPB,i, i ∈ {0, 1} may be the result of
uni- or bi-directional motion compensation, depending on the number of motion hypothe-
ses. Thus, in contrast to regular inter-prediction in VVC, GEO would require 4 block-based
memory accesses and interpolation steps in a worst-case scenario where both segments are
using bi-prediction.

The larger number of motion compensation operations increase the theoretical memory
bandwidth requirements. In this context, the theoretical memory bandwidth B is understood
as the ratio between the number of fetched reference samples and the number of predicted
samples:

B =
Nfetched

Npredicted
(5.22)

The memory bandwidth B is higher for smaller blocks, due to the additional samples that
have to be fetched around the given block for the interpolation filter. When a K-tap inter-
polation filter is used, K/2 − 1 additional samples to the top and left block boundary and
K/2 additional samples to the bottom and right block boundary are required. Considering a
block of w×h luma samples, the required memory bandwidth for performing uni-prediction
is given as:

B =
(w+ K − 1) · (h+ K − 1)

w · h (5.23)

As it is the case in HEVC, VVC specifies an 8-tap FIR filter for interpolation the luma
component and a 4-tap FIR filter for the chroma component. Table 5.2 lists the theoretical
luma memory bandwidth requirements of GEO for different block sizes in comparison to
regular uni- or bi-predicted blocks. The analysis has been performed by assuming that GEO
requires a full block motion compensation.

108



5.1 Motion Compensation

mS,0

mS,1

MC

MC

×

×

DPB +

M0

M1

PPB

PPB,0

PPB,1

uni / bi

uni / bi

Figure 5.6 Basic principle of motion compensation for GEO using two block-based motion compen-
sation sub-steps (MC) accessing the Decoded Picture Buffer (DPB), followed by the blending process
to generate the final, composited prediction block PPB.

The theoretical analysis shows that the worst-case memory bandwidth is effectively dou-
bled. If the proposed GEO mode would utilize the same motion compensation logic twice
and perform the intermediate prediction block generation successively for each segment, la-
tency is introduced into the system. It is of interest to further study and quantify the effect
of motion compensation for GEO with regard to the required memory bandwidth.

Each motion compensation step requires a read access to external memory where the ref-
erence picture data (reconstructed samples, motion vectors) is stored. However, it is not
meaningful to measure the required memory bandwidth from external memory alone. In
a hardware decoder, a memory access is typically performed using a fast on-chip memory
cache1. The theoretical analysis in Table 5.2 based on Equation 5.22 is therefore supple-
mented by a more realistic measurement involving a cache model, as read access to the
cache is considerably faster compared to external memory access. This is exemplified in Fig-
ure 5.7, showing a high-level block diagram of a video decoder with cached memory access.
The on-chip cache is replenished from external memory using a given caching algorithm,
such as Pseudo-Least-Recently-Used (PLRU) or Tree-PLRU. The cache is filled on a line-by-
line basis from external memory and each cache line, having a pre-defined size, is labeled as
an item. Further, the cache algorithm keeps track of when an item has been accessed. Items
in the cache that are least recently used in an LRU scheme are discarded first and replaced by
new items from the external memory. If the decoder now requests an item which is not in the
cache, a cache-miss occurs, and an external memory access is triggered to retrieve the miss-
ing data. Otherwise, a cache-hit occurs and the decoder can access the data with very low
latency. The required overall memory bandwidth for the external memory therefore can be
significantly reduced using a cache with few cache-misses. Naturally, the size of the cache
has a large impact on the external memory bandwidth. A larger cache will contain more
items, leading to less cache-miss events and therefore less external memory access [Li+17;
HMI17].

5.1.3 Memory Bandwidth Measurements

The VTM reference software contains an implementation of a virtual cache model and the
necessary means to measure the required memory bandwidth for motion compensation of

1On modern, general purpose CPUs, this is equivalent to the L2 and / or L3 caches.

109



5 Inter-prediction Modifications

Decoder Cache
External
Memory

Decoder

total data

access

External

memory

access

Chip

Figure 5.7 High-level block diagram of a data access model for a video decoder.

the decoder [HM18b; HM18a]. The parameters of the cache model are the size of each cache
line, the total cache size, and the associativity level. These parameters can be configured by
the user. For the standardization activity at JVET, the following parameters are suggested:

• 128 byte cache line size

• 64 cache lines

• 4-way associativity

The memory bandwidth for GEO can now be estimated by measuring the unavoidable data
access to the external memory using the virtual cache model. To assess the change in memory
bandwidth, the same measurements are made for the VTM-3.2 anchor. For Experiment 4.2,
read access statistics measured by the decoder in MB are reported in Table A.31 in the ap-
pendix. For each sequence and QP, average memory bandwidth requirements across all pic-
tures are computed. Additionally, the picture with worst-case memory usage is reported.
Lastly, the relative changes for average memory usage and worst-case memory usage are
computed.

As provided by the measurement results in Table A.31, the average required memory band-
width for GEO increases by 2.68 % for QP37 and up to 4.24 % for QP22 compared to the
VTM-3.2 anchor. Evidently, a higher mode usage of GEO will increase the average band-
width requirement: For the particular example of a sequence and QP combination with
a significant usage of GEO, such as BQTerrace coded at QP22, the average bandwidth in-
creases by 12.14 %. On the other hand, the sequences BQMall and RaceHorses, which fit
the geometric partitioning model best, show per-QP increases in memory bandwidth close
to the overall average. Table A.31 also lists the worst-case memory bandwidth requirement
measured for a single frame per sequence and QP. In most cases, the worst-case memory
bandwidth requirement is higher for GEO compared to the anchor. However, instances can
be found where the worst-case memory bandwidth actually decreases for GEO compared to
the anchor (SlideEditing QP27, BasketballPass QP37).

The highest worst-case increase on the picture level for all tested sequences was measured
at 18.32% for the MarketPlace sequence coded at QP22. A deeper analysis shows that this
worst-case increase occurs at POC 532 in the middle of a scene transition using a dissolve
effect. Such a dissolve in combination with dynamic motion and a low QP is a perfect ex-
ample for the usage of bi-prediction and fine segmentation. This particular picture and the
geometric partitioning, since it marks the actual worst-case memory bandwidth increase of
GEO, is displayed in Figure 5.8.

In summary, it can be stated that although the theoretical worst-case memory bandwidth
for GEO with bi-prediction doubles, the impact for an actual decoder using cached memory

110



5.1 Motion Compensation

Figure 5.8 Picture with highest maximum memory bandwidth increase measured for the entire test
set at 18.32% compared to the VTM-3.2 anchor. In this particular example of the MarketPlace se-
quence (POC 532) coded at QP22, a scene transition occurs in combination with object motion (per-
sons on the left and right) and also dynamic texture motion (plants), causing a high usage of bi-
prediction and geometric partitioning at the same time. The usage of GEO in this picture is 31.04 %
in terms of pixels coded.

is more difficult to predict. Furthermore, alternative motion compensation techniques for
GEO, utilizing sub-block motion compensation, could offer a solution to the problem.

5.1.4 Restriction to Uni-prediction

Restricting motion compensation to uni-prediction is an option to limit the worst-case mem-
ory bandwidth requirements of GEO. The memory bandwidth requirements for GEO blocks
in this setup are identical to those of regular, bi-predicted blocks. The restriction to uni-
directional prediction for GEO can be easily enabled by changing the merge candidate list
derivation process:

• For GEO with bi-prediction, the regular merge candidate list derivation process is used.
A maximum of 6 merge candidates are available.

• For GEO with uni-prediction, the TPM merge candidate list derivation process is used.
A maximum of 5 merge candidates are available.

As briefly explained in Section 2.4, uni-directional TPM merge candidates are constructed
from spatially and temporally neighboring motion vectors in the following manner.

1. Motion vectors from the five spatial positions A1, B1, B0, A0 and B3 (see Figure 4.27)
are collected in this order.

111



5 Inter-prediction Modifications

2. If the candidate list is not filled yet, temporal motion vectors at the spatial positions
C0 and C1 are collected in this order for the first reference picture.

3. Collected motion vectors are added to the TPM merge candidate list in the following
order:

a) First, uni-directional motion vectors are added until the list is full, or no more
uni-directional motion vectors are available.

b) If the list is not filled yet, the L0 component of bi-directional motion vectors are
added until the list is full, or no more bi-directional motion vectors are available.

c) If the list is not filled yet, the L1 component of bi-directional motion vectors are
added until the list is full, or no more bi-directional motion vectors are available.

d) If the list is not filled yet, averaged L0 and L1 components of bi-directional motion
vectors are added until the list is full, or no more bi-directional motion vectors
are available.

4. If the number of TPM merge candidates is less than 5, zero-valued motion vectors are
added to the end of the list.

The coding performance for the uni-directional restriction is investigated in Experiment 5.25.
The detailed coding results for this experiment are shown in Table A.33. Overall, the coding
efficiency drops significantly from −0.45 % to −0.27 % in terms of luma BD-rate change.
Especially for UHD sequences, the restriction to uni-prediction causes the coding gain to
be halved, from −0.30% for A1 in Experiment 4.2 with bi-prediction to −0.16% in this
experiment. On the other hand, the drop in coding efficiency improvement is not as high
for sequences that fit the geometric partitioning model well. For BQMall, for example, luma
BD-rate gain drops from −1.13% to −0.96% and for the RaceHorses sequence from −0.89%
to −0.77 %.

On the one hand, the reason why the coding efficiency improvement drops is clear: Bi-
directional motion compensation by linear combination of two prediction signals has been
shown theoretically, under the assumptions of precise motion estimation and uncorrelated
displacement errors, to lower the bitrate of the residual encoder by at most 0.5 bit/sample
[Gir98]. On the other hand, secondary effects also need to be considered but are more diffi-
cult to quantify. If the VTM encoder chooses to code the current block using GEO with uni-
prediction, the RD-performance of motion-compensated prediction in subsequently coded
blocks may suffer. Assuming bi-prediction is the RD-optimal prediction mode for theses
blocks, more rate must be spent for the motion information signaling, since motion vec-
tor prediction from GEO or TPM blocks will only produce uni-directional motion vectors.
This could be even more critical for higher QPs, where Merge-mode is the dominant way of
signaling motion vectors.

5.2 Motion Estimation for Geometric Partitions

In the previous Sections 4.2 and 4.3, the motion information for each GEO segment was only
viewed from a decoder perspective: Motion information is available for every GEO block,
as it was simply decoded from the bitstream. This is necessarily preceded by an estimation

112



5.2 Motion Estimation for Geometric Partitions

process at the encoder side. The encoder estimates the RD-optimal motion information, e.g.
the applicable motion model, uni- or bi-directional motion vectors and the best reference
pictures for each block. The general process of motion compensation, as it is mentioned
in Section 5.1, typically assumes a block-wise processing. Likewise, the motion estimation
stage, which can be seen as a motion compensation step followed by a distortion computa-
tion step and a decision step, assumes a block-wise processing. In the reference encoders
for HEVC and VVC, HM and VTM, respectively, different motion estimation strategies are
employed, depending on the coding mode that is evaluated for the current block:

• In Merge-based inter-prediction modes, such as TPM, CIIP, or Merge mode with mo-
tion vector difference (MMVD) for VVC and the regular Merge-mode for HEVC, a pre-
determined set of motion vectors, termed merge candidates, is evaluated. Motion com-
pensation is performed for each merge candidate and the resulting prediction error is
computed.

• In AMVP-based inter-prediction modes which allow signaling of motion vectors and
motion vector differences (MVDs), a Block-Matching-Algorithm (BMA) is used to
search for an optimal motion vector. In the reference encoders for HEVC and VVC,
for example, the Test Zone (TZ) fast search strategy is employed, which is a combi-
nation of an adaptive diamond- and raster search around an initial prediction center
[Doa+17].

• In Affine-based inter-prediction modes with AMVP for the control point motion vectors,
iterative gradient-based motion estimation is used. This method relies on the repeated
computation of spatial and temporal gradients and solving a linear equation system to
obtain higher order motion parameters.

In all of the above cases, a signal distortion D between a compensated block PPB and the
original block POrg is computed at some point. To extend the block-wise computation for
the Sum of squared differences (SSD) and Sum of absolute differences (SAD) metric to ar-
bitrary shaped segments, the weighting masks Mf,k, k ∈ {0,1} can be easily utilized in the
process. This changes the regular block-based motion estimation to a masked motion esti-
mation which is performed segment-wise:

DSSD,M,k =
∑

x ,y

Mf,k ◦ (PPB − POrg)
2, k ∈ {0,1} (5.24)

DSAD,M,k =
∑

x ,y

Mf,k ◦
�

�PPB − POrg

�

� , k ∈ {0,1} (5.25)

The weighting masks Mf,k in the Equations (5.24) and (5.25) above contain the per-sample
weights in a value range from 0 to 1. The weighting masks Mf,k are Hadamard-multiplied
with the array of squared errors for the SSD or the absolute errors for the SAD case. Note
that the squaring operation (·)2 in Equation (5.24) refers to a per-element squaring. Thereby,
for a given segment k, samples with a weight of 0 are associated with the other segment and
do not influence the distortion DSSE,M,l or DSAD,M,l , l 6= k of the other segment. Furthermore,
the prediction error occurring in the transition zone along the partitioning line between the
two segments is given less weight in the overall distortion. The same rationale is used in
motion estimation algorithms for OBMC, such as the Windowed Block Matching Algorithm

113



5 Inter-prediction Modifications

(WBMA) [SM00]. However, due to the non-linearity of SSD and SAD, the overall block-wise
distortion for a composited GEO block cannot be correctly computed from the addition of
segment-wise distortion measurements. This problem is further addressed in Section 5.5 on
encoder mode control.

Equations (5.24) and (5.25) can be easily implemented at the encoder side and require
very little change for the reference encoders for VVC or HEVC. The overall BMA or Merge-
mode estimation strategies can be re-used for GEO and only the calculation of the distortion
needs to be adapted from a block-wise to a segment-wise processing. The masked motion
estimation can be very efficiently implemented using SIMD, for example using Intel’s SSE on
general purpose CPUs. An example implementation which computes a masked SAD using
only SIMD instructions is given in Listing 5.1. This variant computes the distortion for vec-
tors of 4 samples with single instructions. The algorithm, compared to regular block-based
SAD calculation, requires one additional SIMD instruction, _mm_madd_epi16 requiring
an execution time of 1 clock tick per instruction (CPI) on most modern CPUs [Int19]. Ex-
tensions of the algorithm for vectors of 8 samples and 16 samples of 16 bit length are given
in the appendix in Listing A.1 and Listing A.2.

At this point, it must be noted that no straightforward extension of the Sum of absolute
transform differences (SATD) distortion metric can be given for arbitrary shapes. In the ref-
erence encoders for VVC and HEVC, SATD is used in AMVP for sub-sample motion estimation
refinement, performed after an RD-optimal integer motion vector has been determined. The
SATD metric operates by transforming a block of residual values using the Hadamard trans-
form into a frequency domain before a SAD is computed in this domain. The weighting or
masking of samples is therefore not directly applicable in the transform domain as the weight
matrices Mf,k relate to spatial positions. Applying the mask to the residual before computing
the Hadamard transform could potentially result in the generation of additional, spurious
transform coefficients and thereby even worsen the measured distortion of the masked resid-
ual compared to the unmasked residual. The simplest solution to this problem is not to apply
the SATD for sub-sample motion estimation of individual segments. However, it is possible
to utilize the SATD on the rectangular, composited prediction block generated through the
blending process.

5.3 Motion Vector Prediction and Coding

The methods of motion vector prediction and coding that were used in the preceding exper-
iments are closely aligned with the Merge-mode of VVC and HEVC. In the VVC draft and its
reference implementation VTM-3.2 however, three distinct methods of prediction and coding
for block-based, translational motion vectors can be distinguished:

• Merge-mode based prediction and coding of motion vectors using a merge candidate
list of Motion vector predictors (MVPs). In VVC, this encompasses the HEVC-like spa-
tial, temporal, and zero-valued merge candidates and the additional, extended merge
candidates, e.g. History-based MVPs (HMVPs).

• AMVP-based prediction and coding using a list of two motion vector predictors and the
signaling of a Motion vector difference (MVD). In VVC, the signaling of the MVD can

114



5.3 Motion Vector Prediction and Coding

1 D i s t o r t i o n getMaskedSAD4_SSE ( short ∗ pOrg , short ∗ pPred , short ∗ pMask , i n t
width , i n t he igh t , i n t s t r i d eO rg , i n t s t r i d eP r e d , i n t s t r i deMask , i n t
log2MaxWeight )

2 {
3 __m128i vZero = _mm_setzero_si128 ( ) ;
4 __m128i vSum = vze r o ;
5 f o r ( i n t y = 0 ; y < he i g h t ; y++)
6 {
7 f o r ( i n t x = 0 ; x < width ; x+=4)
8 {
9 __m128i vOrg = _mm_loadl_epi64 ( ( const __m128i∗)&pOrg [ iX ] ) ;

10 __m128i vPred = _mm_loadl_epi64 ( ( const __m128i∗)&pPred [ iX ] ) ;
11 __m128i vmask = _mm_loadl_epi64 ( ( const __m128i∗)&pMask [ iX ] ) ;
12
13 vSum32 = _mm_add_epi32(vSum , _mm_madd_epi16( vMask , _mm_abs_epi16(

_mm_sub_epi16( vOrg , vPred ) ) ) ) ;
14 }
15 pOrg += s t r i d eO r g ;
16 pPred += s t r i d e P r e d ;
17 pMask += st r i d eMask ;
18 }
19 vSum = _mm_hadd_epi32(vSum , vZero ) ;
20 vSum = _mm_hadd_epi32(vSum , vZero ) ;
21 unsigned uiSum = _mm_cvtsi128_si32 (vSum) ;
22 return uiSum >>= log2MaxWeight ;
23 }

Listing 5.1 Code example for SAD-based distortion metric using SIMD instructions for vectors of
4×16bit samples.

115



5 Inter-prediction Modifications

be performed with different resolutions: quarter luma sample, integer luma sample or
four luma sample resolution. This method is denoted as AMVR.

• MMVD-based prediction and coding for VVC only, using the first two candidates of the
regular merge candidate list and a set of 32 pre-defined MVD refinement values in the
±x-axis or ±y-axis direction.

In terms of precision, e.g. how closely the actual translational motion of a given block can be
approximated by each coding mode, the Merge-mode offers the least precision since no MVD
refinement is possible. Only a single index is coded in this case. This is followed by MMVD
that allows the signaling of a refinement value for either the x- or y-component on top of the
candidate vector. The eight available MVD magnitudes are non-uniformly distributed and
signaled by two indices, specifying the direction and magnitude. Therefore, MMVD, can also
be seen as a type of non-uniform vector quantization of the MVD.

The highest precision can be obtained by AMVP in combination with AMVR, where –
within the allowed range of 16bit for HEVC and 18bit for VVC – arbitrary-valued MVDs can
be signaled on top of a motion vector predictor. Each MVD component is signaled through a
combination of a first flag, indicating a non-zero value, a second greater-than-two flag and
an CEG,1(·) coded remainder. Through AMVR, the MVD can be given in quarter-, full- or
4-sample precision.

It is of interest to investigate, which motion vector prediction and coding scheme can
be combined with GEO to obtain further coding gain. All previous results show that the
Merge-mode performs favorably due to its simplicity in terms of coding and estimation at the
encoder side. In the Core Experiments (CEs) on Combined and Multi-Hypothesis Prediction
during the early development of VVC, non-rectangular partitioning for inter-prediction in
combination with AMVP was proposed and evaluated:

• Triangular (or Diagonal as termed by the authors) partitioning in combination with
AMVP was tested in [AS18b; AS18a]. The usage of AMVP in the reference encoder
is coupled to motion estimation using block matching. Therefore, encoder runtime
increased to 175 % for a luma coding gain of -0.47 % against VTM-2.0. No further
experiments were conducted in light of these results.

• Geometric partitioning in a different implementation in combination with AMVP and
Merge-mode signaling was tested in [BS18b; BS18a] by the author of this thesis. An
overall coding gain over VTM-1.0 of -0.80 % for 250% encoder runtime increase using
bi-prediction was reported. Introducing significant encoder skipping to lower runtime
and the memory bandwidth limitation to uni-prediction caused a significant drop in
coding gain to -0.10% for a reported encoder runtime increase of 162 % against VTM-
2.0. Also, no further experiments were conducted in light of these results.

Due to these two separate findings, combining non-rectangular partitioning with AMVP is
deemed as not providing a favorable coding gain vs. encoder complexity trade off and will
therefore not be investigated further in this thesis.

MMVD however has been shown to give significant coding gain at 0.86 % for block-based
prediction at the expense of 12 % encoder runtime increase and negligible decoder runtime
increase [Chi+19]. An encoder-side benefit of MMVD lies in the fact that no extensive BMA

116



5.3 Motion Vector Prediction and Coding

Start GEO
motion coding

i > 1?

Motion Coding
Mode Flag

Merge Index
Coding

MMVD
Coding

Segment motion coding

Segment index i = 0

false true

i ++

false

Finish
true

Figure 5.9 Signaling of the motion information for the combination of MMVD and GEO. The coder
can signal, whether Mere-mode based coding or MMVD-mode based coding is used for each segment.

must be performed. Therefore, in the following, the possibility of combining MMVD and
GEO is investigated.

For the combination of both tools, the motion information signaling is adapted according
to Figure 5.9, to allow the switching between regular Merge-mode and MMVD-mode for
GEO segments. For this purpose, a motion coding mode flag is introduced. If the value of
the flag is false, the regular Merge-mode coding is invoked. Otherwise, the MMVD-mode
coding is performed. In detail, the two coding modes operate as follows:

1. For the Merge-mode, an index is signaled for each segment of the GEO block. In ac-
cordance with the VVC draft for regular inter-predicted blocks using the Merge mode,
a truncated-unary binarization CTU,K(·) is used for the merge index. The first resulting
bin is CABAC-coded while the remaining bins are bypass-coded. For the first segment,
K is set to the maximum number of merge candidates as configured in the Sequence
parameter set (SPS). In a RA coding configuration according to the JVET CTC for VTM-
3.2, a maximum of K = 6 merge candidates are available. For the second segment,
K is decreased by one, as both segments are not allowed to use the identical motion
vector.

2. For the MMVD coding, the signaling is conceptually performed identically as for regular
MMVD coded blocks. For each GEO segment, a base predictor is signaled by a flag,
followed by a truncated-unary coding CTU,8(·) of the magnitude. Finally, the direction
of the MVD vector is signaled by a 2 bit fixed-length code, e.g. CFL,2(·). In total, 64
different MVD vectors can be signaled per GEO segment.

The coding results for this Experiment 5.26 are detailed in Table A.32. As it is the case for
the baseline Experiment 4.2, the partitioning is again explicitly signaled using a fixed-length
code. Compared to the baseline experiment, the results demonstrate that the overall coding
efficiency improves from −0.45% to −0.56% in terms of luma BD-rate change over VTM-
3.2. Especially for the UHD class A2, coding gain improves considerably from −0.36 % to

117



5 Inter-prediction Modifications

QP22 QP27 QP32 QP37
0

20

40

60

80

100

R
el

at
iv

e
m

od
e

us
ag

e
[%
]

S0: Merge & S1: Merge S0: MMVD & S1: Merge
S0: Merge & S1: MMVD S0: MMVD & S1: MMVD

Figure 5.10 Relative motion vector prediction mode usage for Experiment 4.2, grouped by QPs.

−0.55 %. Also, for the WQVGA class D sequences, luma BD-rate coding gain improves from
−0.36 % to −0.58%, indicating that MMVD can be effectively combined with GEO across
different resolutions. The relative motion coding mode usage (Merge-mode or MMVD) for
this experiment has been collected for all sequences and is shown in Figure 5.10, grouped
by QP. The statistics show that – independent of the chosen QP – roughly 50-55% of all
pixels coded with GEO are still predicted using the Merge-mode for both partitions S0 and
S1. Approximately 10 % of GEO coded pixels are using MMVD for motion prediction of both
segments. In the remaining cases, either the first segment S0 or the second segment S1 is
using MMVD while the other is coded using Merge-mode. Interestingly, the usage of MMVD
is slightly more frequent for the second segment S1. As a reminder, the convention is made
that the first segment S0 always relates to the partition that includes the top-left sample of
the block. Except for a few corner-cases, this generally positions the first segment closer to
the top or left block boundary than the second segment. This may provide a reason for the
unequal usage of MMVD as shown in Figure 5.10: The correlation between samples and the
correlation between vectors of the motion vector field typically decreases when moving away
from the top and left block boundary. Therefore, it appears sensible that the first segment,
being qualitatively closer to the already coded samples and motion vectors, is predicted using
Merge-mode. Although Merge-mode signaling may be less precise, it is cheaper in terms of
the signaling cost. The prediction of the second segment, however, can benefit from MMVD,
since more precision through signaling of a motion vector difference is available for motion
compensation.

The encoder for this experiment was configured to run a full search of all available pairings
of GEO partitions and MMVD or Merge-mode motion vectors. In total this relates to an upper
bound of (6+ 64)2 · NAD

w,h different combinations of GEO partitions and motion vectors to be
tested. Assuming a median number of ÑAD

w,h = 140 GEO partitions across all block sizes, this
gives approximately 686000 possible combinations. This compares to an upper bound of
6 ·5 ·NAD

w,h combinations to be tested without MMVD, e.g. 4200 for the same median number
of ÑAD

w,h = 140 GEO partitions. As will be shown in Section 5.5.1 on encoder mode control and
the developed simplification strategies for VVC standardization in Section 6, this requires a
staged estimation strategy to manage the additional encoder complexity.

118



5.4 Motion Vector Storage

5.4 Motion Vector Storage

Once a block has been coded in an inter-prediction mode at the encoder or decoder side, it
is necessary to store the associated motion information in the motion buffer such that the
motion information is available for subsequent spatial and temporal motion vector predic-
tion. While this task is trivial for regular blocks resulting from a rectangular partitioning,
additional steps are required for geometrically partitioned blocks. GEO coding units always
encompass two different motion vectors that may be uni- or bi-directional in nature, as it
is the case for conventional coding units. In a video coding scheme such as HEVC or VVC,
the motion information is typically stored in the motion buffer with lower spatial resolution
compared to the pixel resolution. This is a design choice made to decrease the memory
requirements:

• The motion information in HEVC is stored on a 16×16 luma sample grid, e.g. each
motion data storage unit can be associated with a corresponding block of 16×16 luma
samples. Since the smallest possible prediction unit (PU) in HEVC for inter-predicted
blocks has a size of 8×8 luma samples, a sub-sampling of the motion field is performed
after a picture has been coded. For prediction blocks smaller than 16×16 samples, only
the motion information from the top-left sub-block on the 16×16 grid is stored. This
process is also termed motion data storage reduction [Wie14].

• The motion information in VVC is stored on a 4×4 luma sample grid. Since this size
coincides with the smallest possible coding and prediction unit size, no sub-sampling-
based motion data storage reduction process is required.

For GEO, the motion information of each segment shall be stored in the corresponding 4×4
sub-blocks of the motion buffer. This requires a mapping process that decides whether the
motion information of the first segment mS,0 or the motion information of the second seg-
ment mS,1 is stored for a given sub-block. Multiple possible solutions exist for this given task,
for example:

1. The decision can be made based on the blending filter mask Mf, see Equation (5.14), or
the binary mask Mb,see Equation (5.13). For each 4×4 sub-block of the blending filter
or binary mask, the coefficients can be summed and compared to a given threshold:

q f (i, j) =
4i+3
∑

x=4i

4 j+3
∑

y=4 j

Mf(x , y), 0≤ i <
w
4

, 0≤ j <
h
w

(5.26)

If qf(i, j) is smaller than a predetermined threshold γf, the sub-block at position (i, j) is
associated with the first segment and stores the motion information mS,0. Otherwise,
the sub-block stores the motion information mS,1. If Mf contains only integer weights
with a maximum value of wmax, the threshold can be set at γf = 8wmax. This process
is exemplified in Figure 5.11. Further simplifications can be applied, such as limiting
the summation given in Equation (5.26) to the corner weights of each 4×4 sub-block.

2. Alternatively, the distance of each 4×4 sub-block to the partitioning line can be com-
puted using Equations (5.9) or (5.11), depending on the representation of the parti-
tioning line.

119



5 Inter-prediction Modifications

8 8 8 8 8 8 7 5 3 1 0 0 0 0 0 0
8 8 8 8 8 8 7 5 3 1 0 0 0 0 0 0
8 8 8 8 8 8 8 6 3 1 0 0 0 0 0 0
8 8 8 8 8 8 8 6 4 2 0 0 0 0 0 0
8 8 8 8 8 8 8 6 4 2 0 0 0 0 0 0
8 8 8 8 8 8 8 7 5 3 1 0 0 0 0 0
8 8 8 8 8 8 8 7 5 3 1 0 0 0 0 0
8 8 8 8 8 8 8 7 6 3 1 0 0 0 0 0
8 8 8 8 8 8 8 8 6 4 2 0 0 0 0 0
8 8 8 8 8 8 8 8 6 4 2 0 0 0 0 0
8 8 8 8 8 8 8 8 7 5 2 0 0 0 0 0
8 8 8 8 8 8 8 8 7 5 3 1 0 0 0 0
8 8 8 8 8 8 8 8 7 5 3 1 0 0 0 0
8 8 8 8 8 8 8 8 8 6 4 2 0 0 0 0
8 8 8 8 8 8 8 8 8 6 4 2 0 0 0 0
8 8 8 8 8 8 8 8 8 7 5 2 0 0 0 0

Blending Filter

4 2 0 0

5 3 1 0

5 3 1 0

6 3 1 0

4× 4 Sub-block

mS,0 mS,0 mS,1 mS,1

mS,0 mS,0 mS,1 mS,1

mS,0 mS,0 mS,1 mS,1

mS,0 mS,0 mS,0 mS,1

Motion Storage

Figure 5.11 Visualization of the motion vector storage for GEO using the blending filter. The decision
to store motion vector mS,0 or mS,1 is made based on the sum of the filter weights of each 4×4 sub-
block.

The two approaches may generate slightly different mappings and have different algorithmic
complexities. While the first approach only requires several additions, the second approach
needs more computations per sub-block, depending on the implementation of the sample-
distance equations. However, the second approach may be better parallelizable since the
computation is not dependent on the generation of the filter or binary mask. However,
these differences are only relevant for actual hardware implementations and no significant
variation in terms of coding efficiency is expected.

5.5 Encoder Mode Control

A critical part of the GEO coding block tool is the design of the encoder. The side-information
that needs to be transmitted for reconstruction at the decoder side is determined by means
of rate-distortion optimization. In detail, this means that different coding parameters of the
block tool are evaluated in terms of the respective rate that is required for signaling the
particular choice of coding parameters and in terms of the distortion, e.g. the residual error
that is achievable. For a coding tool it is a desirable feature to be able to exhaustively test
all available coding parameters in terms of their actual RD-performance in reasonable time.
In the HEVC and VTM reference encoders, the final mode decision is based on the distortion
measured after transform coding using SSD and the rate in terms of fractional bits required
by the arithmetic coder. However, since evaluating every coding mode in this manner would
require the actual transform coding stage to be applied to the residual with Discrete cosine
transform (DCT), Discrete sine transform (DST) or even Explicit multiple-core transform
(EMT) computation and CABAC test-encoding to be performed, it becomes prohibitively
expensive in terms of encoder runtime with a growing coding parameter space. Therefore,
simplifications and heuristics are applied such that only parts of the entire parameter space
are evaluated using the residual transform coding stage of the coder. For inter-prediction
tools in the VTM reference encoder, the typical scheme that is applied for Merge-mode and
AMVP-based tools can be broken down into three parts:

1. Deriving a first set of candidate coding parameters (motion vectors, merge index,
AMVR settings, etc.) based on the luma SAD distortion of each motion compensated

120



5.5 Encoder Mode Control

prediction block and a simple lookup-table based model for the rate estimate R̃Motion

of the side-information . The RD-cost is estimated as:

JSAD = DSAD +
p

λ · R̃Motion (5.27)

2. From the candidate coding parameters with lowest RD-cost of the first set, deriving
a second set of coding parameters using the luma SATD metric. The effect of trans-
form coding is approximated by applying the Hadamard transform to the prediction
residual. The RD-cost is estimated as:

JSATD = DSATD +
p

λ · R̃Motion (5.28)

3. For those candidate coding parameters performing best from the second set, apply-
ing the full transform- and CABAC-coding to choose the final coding parameters. In
this stage, the actual squared prediction error is measured across all luminance and
chrominance components using the SSD metric. The final RD cost is calculated as:

JFinal =
1
λ

DSSD + RMotion + RTransform (5.29)

The goal of this approach is to find the global minimum in terms of actual RD-cost without
exhaustively testing all available coding options. Consequently, this requires the application
of heuristics to the estimation process, for example the maximum number of candidates to
be evaluated in each step or RD-based thresholds controlling whether a candidate is skipped
or is further tested. These heuristics have been carefully tuned and – in the context of the
standardization activity – are subject to frequent change and further optimization.

The λ in the VTM reference encoder is determined mainly by the chosen QP and an intri-
cate set of QP offsets and factors, with values depending on the coding structure, the slice
type and further user-defined settings [And+16]. The lambda model for VTM-3.2 (and also
HM versions 16.9 and later) can be summarized as follows:

λ= λmod · 0.57 · 2QP−QPOffset
3 · 2 1

12 (5.30)

with λmod being a user-defined lambda modifier with a default value of 1. The offset
parameter QPOffset is set to a fixed value for I-slices (e.g. QPOffset = 3 for RA) and for P- and
B-slices determined from a linear model depending on the QP and a temporal distance:

QPOffset(tGOP,QP) =∆QP(tGOP)+QP ·QPModelScale +QPModelOffset + 0.5 (5.31)

with∆QP,QPModelScale and QPModelOffset being configuration-dependent parameters and tGOP

an index relating to the hierarchical location of the current picture in the GOP. The correction
term 2

1
12 in Equation (5.30) is applied only for VTM to compensate for a slightly different

quantizer slope due to dependent quantization.
Precise measurements for the overall encoding complexity for the GEO baseline experi-

ment show an increase of about 25 % in terms of encoder runtime compared to the VTM-3.2
anchor without GEO. Figure 5.12 shows the relative computing time spent by different block
tools. The data has been gathered by encoding a single CTU at QP32 for a duration of 33
pictures in a RA configuration and by measuring the execution time of each block tool using

121



5 Inter-prediction Modifications

33.5 %

GEO

18.0 %

Merge + MMVD + CIIP

17.0 %

Intra
15.5 %

AMVP + Affine

7.2 %

TPM

6.3 %

AMVR

2.5 %
Affine Merge

Figure 5.12 Relative encoding runtime distribution for individual coding modes of the VTM-3.2+GEO
encoder. The GEO mode is tested by performing a full-search over all available GEO partitions. Statis-
tics were gathered by encoding a single CTU at QP32 in a RA configuration for 33 pictures.

high precision CPU timers. Figure 5.12 reveals that the introduction of GEO significantly
impacts the relative distribution of encoding complexity. One third of the entire runtime is
attributed to the estimation of optimal GEO coding parameters.

5.5.1 Partitioning Mode Selection

The application of GEO and Merge-mode based signaling of motion vectors results in a coding
parameter space with a total of NMerge ·(NMerge−1) ·NGEO possible combinations, where NMerge

is the number of merge candidates and NGEO the number of geometric partitioning modes
per block. Assuming NMerge = 6 and NGEO ≈ 140, it can be easily seen that a full search evalu-
ating 4200 possible predictions after blending using transform coding, CABAC test-encoding
and SSD is unfeasible. Therefore, a staged estimation strategy similar to those used in other
coding tools of the VTM encoder is used in all experiments conducted in Chapters 4 and 5.
The underlying idea behind the scheme is to generate only a small set of prediction candi-
dates that are fed to the transform coding stage. Since determining the best prediction and
coding methods for GEO is the main focus of the previous experiments, a scheme is proposed
with very few manually tuned settings and short-cuts. This non-optimized encoding can be
broken down into the following steps:

1. Perform block-based motion compensation for all available NMerge merge candidates,
e.g. NMerge = 6. The result is a prediction block Pl , l ∈ {0...NMerge − 1}.

2. Calculate a segment-based SAD distortion of the luma component for each of the
available NGEO GEO partition modes and NMerge motion compensated predictions from
Step 1. This gives a total of 2 · NMerge · NGEO distortion estimates Dk,l,m with k ∈ {0,1},

122



5.5 Encoder Mode Control

l ∈ {0...NMerge − 1} and m ∈ {0...NGEO − 1}. The original picture is denoted as POrg.

DSAD
k,l,m =

∑

x ,y

�

�Mf,k,m ◦ (Pl − POrg)
�

� (5.32)

3. Approximate the RD-cost Jl1,l2,m with l1, l2 ∈ l and l1 6= l2 for each of the NMerge·(NMerge−
1) · NGEO possible combinations of merge candidates and GEO partition modes using
the results from Step 2. Here, Rl1 and Rl2 are the bits required for signaling the motion
information of each segment and Rm are the bits required to signal the GEO partition.

J̃l1,l2,m ≈ DSAD
0,l1,m + DSAD

1,l2,m +
p

λ · (Rl1 + Rl2 + Rm) (5.33)

Then, determine the set of (l1, l2, m) tuples that minimize Equation (5.33):

arg min
(l1,l2,m)

Jl1,l2,m (5.34)

4. For the 0≤ k < NBlending tuples from Step 3 with lowest RD-cost, perform the blending
process for the luma component and compute the SATD for the resulting block-based
predictions. Determine the RD-cost for each candidate as:

Jk = DSATD
l1,l2,m +

p

λ · (Rl1 + Rl2 + Rm), 0≤ k < NBlending (5.35)

5. For the NTransform ≤ NBlending candidates from Step 4 with lowest RD-cost, perform the
blending of all remaining components and apply residual coding and CABAC test-
encoding. Compute the actual RD-cost using SSD.

6. Choose the best candidate from Step 5 as the final GEO prediction mode.

In all preceding experiments, the parameters NBlending for SATD calculation and NTransform for
transform coding were set to the value of NBlending=NTransform = 20. This conservative setting
increases the probability that the GEO mode providing the absolute minimum in terms of
RD-cost is selected. In Equation (5.33) of Step 3, a critical simplification is made by approx-
imating the combined, block-based SAD using the summation of the segment-based SADs
D0,l1,m and D1,l2,m. Due to the overlapping segment predictions that are combined using the
blending process, the absolute value in the form of the SAD metric used in Equation (5.32)
is not an LTI system. The maximum error per sample in the transition zone that can occur
compared to the block-based SAD computed after blending is equal to 2Bd−1, where Bd is
the bit-depth of the video. Although the relative amount of samples in the transition zone
is rather small for large blocks – about 4 % for a 128×128 block and transition zone size
dm = 3,see Section 5.1.1 – it increases significantly for smaller blocks to about 50% for a
8×8 block and transition zone size dm = 3. Therefore, Step 4 is introduced which performs
the blending process and calculates an SATD for the composited prediction block. This step
is critical and has been shown to improve BR-rate coding gain by up to 0.1 % on the entire
test-set compared to an encoder using the best candidates from Step 3 for the subsequent
transform coding stage.

Figure 5.13 provides an analysis of the relative complexity in terms of encoder runtime
spent in the individual steps of the proposed scheme (Step 1: Motion Compensation, Step 2:

123



5 Inter-prediction Modifications

77.2 %

GEO Transform Coding

19.0 %

GEO Segment Distortion

1.9 %

GEO Motion Compensation

1.9 %
GEO Blending

Figure 5.13 Relative encoding runtime distribution for the separate stages of the VTM-3.2+GEO
encoder. Note that most of the encoding time is spent in the transform coding stage, which is identical
for all inter-prediction modes.

Segment Distortion, Step 4: Blending and Step 5: Transform Coding). The data for this
analysis was gathered by encoding one CTU at QP32 for 33 pictures in a RA configuration
and measuring the execution time of each step using high precision CPU timers. It can be
seen that 77.2% of the entire encoding time for GEO is spent in the transform coding stage
that is unaltered by GEO and identical for all inter-prediction coding tools in the VTM-3.2
encoder. The second largest percentage is taken up by the segment-based SAD computation
with 19% of the encoding time spent. Lastly, the motion compensation and the blending
processes can be largely neglected in terms of encoding complexity since both steps only
make up 1.9% of the encoding time each.

5.6 Summary

Inter-prediction using geometric partitioning requires additional modifications to the overall
hybrid video coding scheme. Most notably, the two prediction segments are combined using
a blending filter, which performs OBMC along the partition boundary. The length of the
overlapping region – the size of the transition zone – has been experimentally optimized to
provide highest coding efficiency for a wide variety of video content. It is also recognized
that the optimal length depends on the resolution and video content type.

Motion compensation with bi-directional prediction provides highest compression effi-
ciency but the theoretical worst-case memory bandwidth requirement doubles, due to the
potential computation of 4 inter-prediction hypothesis. The actual bandwidth increase might
be lower, considering that a cached memory access is typically used by hardware decoders.
Limiting the motion compensation process to uni-prediction as a solution comes at the cost
of halving the overall coding efficiency of GEO.

Merge-based motion vector prediction and coding methods are suited for GEO, due to the
efficient signaling and small parameter space that needs to be searched. Overall coding effi-
ciency can be increased by an additional −0.1% using MMVD for motion vector prediction,

124



5.6 Summary

with higher gains reported for UHD sequences. Encoder mode control is an important aspect,
since the additional partitioning options can increase the encoder run time substantially, as
reviewed in Chapter (3). As a solution, a staged estimation strategy is presented that selects
the RD-optimal partitioning without using heuristics of skipping certain geometric shapes.

Minor changes are further required for motion estimation as well as motion vector stor-
age. The findings and conclusions of this chapter are the basis for optimizations that were
conducted in the context of the JVET standardization activity. These are detailed in the
subsequent Chapter (6).

125





6 Optimizations for VVC Standardization

The previous experiments were conducted using a non-optimized software, such as an en-
coder that exhaustively tests for the best overall combination of GEO partitioning mode and
inter-prediction side-information, e.g. motion vectors. This deliberate choice was made
since the preceding chapters focused on the development and analysis of techniques and
algorithms that maximize coding efficiency while regarding issues such as algorithm com-
plexity, ease of implementation and memory bandwidth requirements only as subsidiary.

For the standardization of a block-based coding tool like GEO however, these aspects are
of great interest and require careful revision. Decoding complexity for example, which is
assessed in terms of relative decoder runtime, is typically considered to be more critical
than encoding complexity. A coding tool operating on the block level must be designed
such that hardware implementations with very high throughput are achievable. Often, this
requires parts of the algorithm to be simplified to such an extent that they only approximate
the original model. Another important aspect for video coding applications is the ability
to perform all required decoder-side computations with integer arithmetic. This ensures
platform- and architecture independence compared to floating-point variants.

Lastly, the goal of the standardization process for a video coding scheme is to develop an
unambiguous, written description of a decoder that correctly decodes a valid bitstream. A
clean and simple design of an algorithm is therefore a desirable feature that more easily
translates into brief and precise specification text.

In this chapter, the aforementioned aspects are reviewed for the GEO coding tool and
simplifications and heuristic approaches are presented that were developed during the JVET
standardization activity for VVC. The following constraints are imposed on GEO compared
to Chapters 4 and 5 while trying to maintain as much coding gain as possible:

• Decoder and encoder complexity shall be comparable or lower than TPM.

• Motion compensation shall be restricted to uni-prediction.

• A uniform number of GEO partitions across different block sizes shall be specified.

• The overall operation of GEO and TPM shall be harmonized.

The result of these constraints is a design of the GEO coding tool that largely resembles the
TPM coding tool in terms of its general operation. Motion vector prediction is performed
through the Merge-mode as it is the case for TPM. Further, only explicit signaling of the GEO
partitioning is performed using truncated binary coding. To limit the memory bandwidth of
the coding tool, only uni-prediction is allowed for GEO which is the same constraint imposed
for TPM.

The additional constraint to specify a uniform number of additional GEO splits for dif-
ferent block sizes is merely a design choice made to simplify the specification of angle and
distance parameters and the blending process. This requires the reiteration of the optimiza-
tion process that was already detailed in Section 4.2 to determine a set of optimal angle and

127



6 Optimizations for VVC Standardization

distance partitioning parameters. Lastly, any floating-point operations involving trigonomet-
ric functions are replaced by integer arithmetic approximations in combination with look-up
tables.

Investigations on the optimal blending length performed in Section 5.1.1 already indicated
that a sharper blending filter is beneficial in terms of coding gain for pure screen content in
class F. This finding is integrated into the GEO design by making the blending filter content-
adaptive, e.g. it can be turned on or off depending on the video content by a high-level
flag.

The following sections summarize the efforts taken to optimize the individual aspects of
the GEO coding tool according to aforementioned criteria and previous findings. The result
of these optimizations are contributions to JVET [Ese+19a; Ese+19b] that spawned new
core experiments to be conducted [CYX19]. At last, GEO was adopted into the working
draft version 8 of VVC as a generalization of TPM. The code basis for these developments
was updated to VTM-5.0 which includes new additional coding tools such as Luma map-
ping and chroma scaling (LMCS) (formerly known as a reshaper) as a major novelty, SBT
for inter coded blocks, Symmetric motion vector difference (SMVD) and a multitude of im-
provements and simplifications for existing coding tools. For an overview, the reader shall
refer to [BCL18; CYK19].

6.1 Geometric Partitioning Parameters

For the update of the software to VTM-5.0 and the imposed uni-prediction restriction, the
number and distribution of geometric partitioning parameters using the angle-distance rep-
resentation is re-optimized. Based on the findings in Section 4.2.3.2, an angular spacing of
∆ϕ = 11.25◦, equal to Nϕ = 32 angles is kept for all block sizes. The quantized angle ϕm

is derived accordingly as ϕm = m ·∆ϕ with m ∈ {0...Nϕ − 1}. For the distance ρ, different
quantizer settings Nρ = {3, 4,5, 6,7} are again evaluated according to the JVET CTC. The
spacing of the distance ∆ρ(ϕm, w, h, ) for a block of size w × h in luma samples, such that
ρn = n ·∆ρ(ϕm, w, h) with n ∈ {0...Nρ − 1} is determined according to:

∆ρ(ϕm, w, h) =
ρmax(ϕm, w, h)−ρth(w, h)

Nρ
(6.1)

ρmax(ϕm, w, h) = cos(ϕm)

�

h
2 tan(π2 −ϕ)

+
w
2

�

, 0≤ ϕm <
π

2
(6.2)

ρth(w, h) = ρth,0 · 2log2(min(w,h))−3 (6.3)

For the software implementation in integer arithmetic and the specification text, the values
of∆ρ(ϕm, w, h) are not computed at runtime but stored in a look-up table VDist. The floating-
point values as shown in Equation 6.1 are scaled and rounded to integer values:

∆ρint(ϕm, w, h) =
�

∆ρ(ϕm, w, h) · 2Bi + 0.5
�

(6.4)

The value of the scaling factor Bi is matched to the bit-depth required for the per-sample
distance equation, as will be discussed in Section 6.6.1 subsequently. In the final proposal
for GEO, a bit-depth of Bi = 7 is chosen. Note that the size of the look-up table VDist that

128



6.1 Geometric Partitioning Parameters

β = 0 β = 1 β = 2 β = 3 β = 4∗

Figure 6.1 Visualization of the block aspect ratios β that are allowed for GEO. ∗Note that blocks with
β = 4 cannot be reached by the MTT under the JVET CTC for VTM-5.0.

contains the distance spacing dependent on the angle and the block size can be significantly
reduced by exploiting symmetries. As shown previously in Figure 4.9, it is sufficient to only
specify the angles in the first quadrant, e.g. 0≤ ϕm ≤ 90◦ and map the remaining quadrants
to the first quadrant accordingly. Furthermore, not all 25 available block sizes from 8× 8 to
128 × 128 need to be specified. It is sufficient to consider only the maximum aspect ratio
denoted β of a given block, and scale the distance step size in relation to an 8× 8 block:

β(w, h) = log2

�

max(w, h)
min(w, h)

�

(6.5)

γ(w, h) =

¨

w/8 w≥ h
h/8 w< h

(6.6)

∆ρint(ϕm, w, h) = VDist(m,β) · γ (6.7)

In total, the look-up table VDist(m,β) contains 45 entries to fully specify the angle-
dependent distance step size ∆ρint. The aspect ratios for different values of β are visualized
in Figure 6.1.

Equation (6.3) has been updated from Equation (4.21) by also linearly scaling the distance
margin ρth,0 relating to an 8 × 8 block according to the current block size. A larger value
of ρth,0 moves the partitioning lines closer to the center of the block. This avoids unequally
distributed geometric splits. Base margins of ρth,0 = 0.0, 0.5,1.0,1.5, 2.0,2.5 are evaluated
according to the JVET CTC, except for classes A1 and A2, for the best combination of Nϕ and
Nρ.

The coding results shown in Tables 6.1 and 6.2 lead to the following choice for the geo-
metric partitioning parameters:

• A distance quantization with Nρ = 5 steps is selected for the final codec. The com-
bination of Nϕ = 32 angles and Nρ = 5 distances provides the highest coding gain,
measured by a luma BD-rate reduction of −0.24% with the least number of geometric
splits.

• A distance margin of ρth,0 = 1.5 is chosen, as this setting provides the highest coding
gain for UHD and HD sequences.

In total, this combination of parameters results in NGEO = Nϕ ·Nρ− Nϕ/2−4= 140 geometric
splits per block size w×h, since the diagonal and anti-diagonal splits as well as the horizontal
and vertical splits for ρ = 0 are excluded to prevent the emulation of these splits. These
resulting 140 geometric splits are visualized in Figure 6.2 for a square shaped block, grouped

129



6 Optimizations for VVC Standardization

Class
Luma BD-rate change over VTM-5.0

Nρ = 3 Nρ = 4 Nρ = 5 Nρ = 6 Nρ = 7

A1 −0.07 % −0.07% −0.11 % −0.07% −0.10 %

A2 −0.16 % −0.16% −0.15 % −0.16% −0.17 %

B −0.10 % −0.10% −0.09 % −0.08% −0.11 %

C −0.46 % −0.51% −0.54 % −0.54% −0.53 %

Overall −0.20% −0.22% −0.23% −0.22% −0.23%

D −0.16 % −0.15% −0.21 % −0.16% −0.17 %

F −0.14 % −0.14% −0.18 % −0.18% −0.16 %

Table 6.1 Optimization of the distance parameter for the angle-distance representation of GEO.

Class
Luma BD-rate change over VTM-5.0

ρth,0 = 0.0 ρth,0 = 0.5 ρth,0 = 1.0 ρth,0 = 1.5 ρth,0 = 2.0 ρth,0 = 2.5

B −0.09% −0.10% −0.09% −0.11% −0.09% −0.09%

C −0.53% −0.54% −0.53% −0.55% −0.54% −0.53%

D −0.15% −0.19% −0.15% −0.16% −0.20% −0.14%

F −0.16% −0.20% −0.20% −0.17% −0.16% −0.16%

Mean −0.22% −0.25% −0.23% −0.24% −0.24% −0.22%

Table 6.2 Optimization of the base margin ρth,0 for the angle distance representation of GEO.

130



6.2 Motion Compensation

Figure 6.2 Visualization of all 140 geometric splits for VTM-5.0, grouped by identical angles. The
splits are shown for a square block size.

by identical angles ϕm, m ∈ {0...31}. It can be seen that very small geometric partitions, e.g.
segments likely containing only a few samples, are avoided with this scheme.

The code book of allowed partitioning parameters m and n are stored at the encoder and
decoder using a look-up table VParam = {A0, A1, Ak, ..., ANGEO−1} with Ak = [mk nk], therefore
only the partition index k must be signaled. For simplicity and in accordance with the find-
ings from Section 4.2.2 on entropy coding, a truncated binary binarization and subsequent
CABAC bypass-coding of the partitioning index is performed. The truncated binary code
CTB,140(k) results in a mean code length of 7.17bit for the partitioning index k.

If the decoder decodes a partition index k, the look-up table VParam returns the quantized
angle and distance indices m and n respectively for the given k, e.g. VParam : k 7→ (m, n).
According to the quantizer settings for the angle and distance, VParam contains 140 entries.
Then, in the next step, the quantized distance step size is reconstructed using the angle index
m, the aspect ratio β and the table VDist as shown in Equations (6.5)-(6.7) above.

The entire signaling of the geometric partitioning mode is performed in the Merge-mode
branch. The syntax in accordance with the Versatile Video Coding (Draft 5) specification
[BCL18] is shown in Table 6.3. For all inter-predicted coding blocks for which the Merge-
mode is signaled and with a width and height larger than 8 luma samples, a syntax element
geo_flag is coded. The syntax element geo_flag is CABAC coded using three context models,
chosen based on the value of geo_flag in adjacent coding units:

• If geo_flag[xL][yL] or geo_flag[xT][yT] is equal to 1, with xL, yL specifying the coordi-
nates of the left coding unit, adjacent to the current coding unit and xT, yT specifying
the coordinates of the above coding, adjacent to the current coding unit, the first con-
text model is used.

• If geo_flag[xL][yL] and geo_flag[xT][yT] is equal to 1, the second context model is
used

• Otherwise, the third context model is used.

6.2 Motion Compensation

Despite the reduced coding efficiency, standardization constraints imposed the restriction
to uni-prediction for all GEO coded blocks, due to the doubling in theoretically required,
worst-case memory bandwidth. Since only uni-prediction is allowed, two predicted samples
p̃Li,0 and p̃L j,1 are involved in the blending process. The motion compensation process for
GEO, detailed in Section 5.1 is implemented for VTM-5.0 as described by Equation (5.5):

131



6 Optimizations for VVC Standardization

merge_data( x0, y0, cbWidth, cbHeight ) { Descriptor

if (cbWidth > = 8 && cbHeight >= 8 ){
geo_flag[x0][y0] ae(v)

}
if ( geo_flag[x0][y0] ) {
geo_partition_idx[x0][y0] ae(v)

geo_merge_idx0[x0][y0] ae(v)

geo_merge_idx1[x0][y0] ae(v)

}
else {

... other Merge-modes

}
}

Table 6.3 Syntax table for the signaling of GEO in the Merge-mode branch, in accordance with the
VVC (Draft 5) specification.

pPB =

�

w0 p̃Li,0 +w1 p̃L j,1

214+Bf−Bd
+

1
2

�

, i, j ∈ {0, 1} (5.5 revisited)

Prior to the motion compensation step, a per-sample weight wGEO(x , y) has been derived
and assigned to two temporary buffers w0(x , y) = wGEO(x , y) and w1(x , y) = 8−wGEO(x , y).
Since all required samples and weights are available in arrays of memory, Equation (5.5)
can be efficiently implemented using SIMD code. Example code is shown in Listing A.3 for
vectors of 4× 16 bit length and in Listing A.4 for 8×16 bit vectors in the Appendix .

Similarities between the motion compensation process for GEO and BCW can be noted:
As it is the case for GEO, BCW performs a weighted prediction with two weights wL0 and wL1

in the range from 0 to 8 such that wL0 + wL1 = 8. However, for BCW, the weights apply to
entire prediction blocks, whereas for GEO they are applied to individual samples.

6.3 Adaptive Blending Filter

The investigations performed in Section 5.1.1 showed that a dependency between the achiev-
able coding gain for a given blending filter length and the video properties exists:

• Coding gain for sub-HD low resolution improves using sharper filters with dm < 5 luma
samples across.

• Coding gain for HD and UHD resolutions improves using more smoothing, e.g. a longer
blending filter with dm ≥ 5 across.

• Coding gain for pure screen and computer-generated content improves using a very
sharp blending filter.

132



6.3 Adaptive Blending Filter

To balance these different requirements for video resolution and content classes and to keep
the specification simple, an adaptive filter is proposed in the final design that has two differ-
ent settings:

1. A soft masking filter for natural video content is used with a quantized weighting
function that approximates a linear transition between the two prediction segments.

2. A hard masking filter for screen and computer-generated content is used with no tran-
sition zone between the two segments, e.g. only the weights w= 0 or= 8 are assigned.

The choice of the filter is signaled at the sequence level in the SPS. Since GEO is a coding
tool proposed as an extension of TPM, an adaptive blending filter for the two TPM splits is
also proposed.

6.3.1 Blending Filter for GEO

The investigations in Section 5.1.1 showed that a soft masking filter with a transition zone of
approximately 3 to 5 luma samples across has good performance for the entire JVET test set
containing natural video content. Therefore, a filter fq(·) as shown in Figure 6.5 is specified
in the final proposal for GEO that quantizes the integer distance dint – given in sub-pixel
accuracy – of each sample to weight values wGEO in the range from 0 to 8, approximating a
linear transition:

wGEO(x , y) = fq (dint(x , y)) (6.8)

The hard masking filter for screen content, also indicated in Figure 6.5, is derived based
on the polarity of dint :

wGEO(x , y) =

¨

0 dint(x , y)≤ 0

8 dint(x , y)> 0
(6.9)

Figure 6.4 shows an example of a soft masking mask for natural video content and the
corresponding hard masking mask for screen content for a coding block of size 16×32 luma
samples. The coding results over VTM-5.0 with hard masking for GEO and soft masking
(e.g. unchanged compared to the anchor) for TPM are shown in Table 6.4. For pure screen
content, as included in the text with graphics and motion (TGM) sequence class, an overall
BD-rate change of −1.95% over VTM-5.0 can be achieved. Especially for the sequences
Desktop and Console the hard masking is effective, with rate reductions measured at −2.79 %
and −2.62 %, respectively. Lower luma BD-rate changes are measured for class F at −0.31 %
over VTM-5.0. However, class F also contains the BasketballDrillText sequence, which is
a natural video sequence with news ticker style graphics at the bottom of the sequence.
Accordingly, lower coding efficiency is observed for such a mixed sequence with a luma BD-
rate change measured at −0.14 %.

Visual inspection of Desktop and Console coded with GEO compared to the anchor also
revealed that coding artifacts for high QPs are noticeably reduced. Two examples are shown
in Figure 6.3. It can be seen that with GEO, phantom prediction errors that occur in the
scrolling text disappear. This can be explained by the additional horizontal splits that are
available to the coder with GEO. These additional splits are heavily used whenever vertically
scrolling graphics or text appear in the video.

133



6 Optimizations for VVC Standardization

(a) Console VTM-5.0 (b) Console VTM-5.0+GEO

(c) Desktop VTM-5.0 (d) Desktop VTM-5.0+GEO

Figure 6.3 Visual examples showing reduced coding artifacts for sequences Console and Desktop at
QP37 using GEO with hard masking.

Class
BD-rate change over VTM-5.0

Y U V EncT DecT

F −0.31% −0.36 % −0.22% 102 % 101 %

TGM −1.95% −1.61% −1.59% 99% 100 %

Table 6.4 Coding results for VTM-5.0+GEO with hard masking.

0 8 16 24 32

0

8

16

ϕm

ρn

(xc, yc)

dwGEO

(a) Soft masking for natural content

0 8 16 24 32

0

8

16

d > 0
d ≤ 0

8
7
6
5
4
3
2
1
0

(b) Hard masking for screen content

Figure 6.4 Examples of soft and hard masking masks for GEO, which are generated depending on
the video content type using the adaptive blending filter.

134



6.3 Adaptive Blending Filter

0.0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

2

4

6

8

Blending off

Blending off

Blending on

Sample Distance d(xc, yc)
Sa

m
pl

e
W

ei
gh

t
w

G
IP d > 0

d ≤ 0

Figure 6.5 Integer mapping function of the sample distance d for derivation of blending weights
wGEO. Note that two different filters can be used: a first filter for natural video content and a second
filter for screen and computer graphics.

6.3.2 Blending Filter for TPM

Since TPM is regarded as a separate coding tool in this thesis, the adaptive blending filter
can also be easily integrated into this coding mode. In TPM, the per-sample weight for
each triangle split is derived from the Manhattan distance of each pixel to the diagonal or
anti-diagonal partitioning line:

dTPM,0(x , y) =
x
a
− y

b
+ 4 (5.19 revisited)

dTPM,1(x , y) =

¨

h− 1− x
a − y

b w> h
w− 1− x

a − y
b w≤ h

(5.20 revisited)

The corresponding sample weight is derived by clipping dTPM,i,i ∈ {0,1} to the value range
from 0 to 8. The hard masking can now be achieved in the following manner, by changing
the weight derivation process:

dTPM,hard,0(x , y) =







0 x
a ≤ y

b and y < h
2

0 x
y <

y
b and y ≥ h

2

8 otherwise

(6.10)

dTPM,hard,1(x , y) =



























8 w− 1− x
a ≤ y

b and y < h
2 and w≤ h

8 w− 1− x
a <

y
b and y ≥ h

2 and w≤ h
8 h− 1− x

a ≤ y
b and y < h

2 and w> h
8 h− 1− x

a <
y
b and y ≥ h

2 and w> h
0 otherwise

(6.11)

The resulting hard masking filters are shown in Figure 6.6 , next to the soft masking filters.
It can be seen that Equations (6.10) and (6.11) generate filters which contain an equal
number of samples in each triangle. Furthermore, Equations (6.10) and (6.11) remove the
clipping operation.

It is noted that other proposals for hard masking filters have also been made that assign all
samples on the diagonal to one specific triangle, resulting in an unequal number of samples

135



6 Optimizations for VVC Standardization

4 5 6 7 8 8 8 8
3 4 5 6 7 8 8 8
2 3 4 5 6 7 8 8
1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6
0 0 0 1 2 3 4 5
0 0 0 0 1 2 3 4

0 0 0 0 1 2 3 4
0 0 0 1 2 3 4 5
0 0 1 2 3 4 5 6
0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 8
3 4 5 6 7 8 8 8
4 5 6 7 8 8 8 8

(a) Soft TPM blending for natural content

0 8 8 8 8 8 8 8
0 0 8 8 8 8 8 8
0 0 0 8 8 8 8 8
0 0 0 0 8 8 8 8
0 0 0 0 8 8 8 8
0 0 0 0 0 8 8 8
0 0 0 0 0 0 8 8
0 0 0 0 0 0 0 8

0 0 0 0 0 0 0 8
0 0 0 0 0 0 8 8
0 0 0 0 0 8 8 8
0 0 0 0 8 8 8 8
0 0 0 0 8 8 8 8
0 0 0 8 8 8 8 8
0 0 8 8 8 8 8 8
0 8 8 8 8 8 8 8

(b) Hard TPM blending for screen content

Figure 6.6 Examples of soft and hard masking masks for TPM. The numbers indicate the per-sample
weights dTPM,0 for the soft mask and dTPM,hard,0 for the hard mask, see Equations (5.19) and (6.10).

Class
BD-rate change over VTM-5.0

Y U V EncT DecT

F 0.34 % 0.76 % 0.05 % 101 % 102 %

TGM −0.68% −0.66 % −0.54% 102 % 105 %

Table 6.5 Coding results for VTM-5.0 with hard masking for TPM.

predicted by each triangle [Zhu+19; Che+19a]. The coding results for classes F and TGM
using hard masking filters are shown in Table 6.5. It can be seen that the coding gain is
significantly lower if only hard masking for TPM is used and no GEO partitioning is avail-
able. For the TGM class, a luma BD-rate change of −0.68% is reported. For class F a luma
BD-rate change of 0.34 % can be reported. The loss for class F can be attributed to the Bas-
ketballDrillText sequence with a 0.71% luma BD-rate change and the ArenaOfValor sequence
with 0.24 % luma BD-rate change. These two sequences do not have the special character-
istics of pure screen content. For Desktop and Console, luma BD-rate changes of −1.09 %
and −0.93 % can be reported. This result again underlines the benefit of the additional
partitioning modes provided by GEO, especially for pure screen content

6.3.3 Combined Results

The two different blending filters for GEO and TPM can also be used in a combined fashion for
higher adaptability to the given content. In total, three different configurations are possible:

1. Hard masking with GEO and soft masking with TPM. This is identical to the setup
specified in Section 6.3.1.

2. Soft masking with GEO and hard masking with TPM.

3. Hard masking with GEO and hard masking with TPM.

The coding results in terms of luma BD-rate change for these configurations are provided
in Table 6.6. If soft masking with GEO and hard masking with TPM is configured, the luma
BD-rate for TGM improves from −0.68 % using hard masking with TPM and no geometric
partitioning (see Section 6.3.2) to −0.88 %, due to the additional GEO splits. The highest

136



6.4 Motion Vector Prediction, Coding and Storage

Class
Luma BD-rate change over VTM-5.0

GEO:H, TPM:S GEO:S, TPM:H GEO:H, TPM:H

F −0.31 % −0.09 % −0.14%

TGM −1.95 % −0.88 % −2.15%

Table 6.6 Coding results for VTM-5.0+GEO for different blending configurations. H: hard masking,
S: soft masking.

coding gain for TGM can be achieved if both TPM and GEO are using hard masking – the
coding gain then improves to −2.15 %. For the mixed content class F, the best trade-off can
be achieved if hard masking is used for GEO and soft masking for TPM. With this setup, the
encoder can actually choose which blending fits best for a given block. It is noted that this
configuration type would become unavailable if the TPM splits are integrated into GEO.

In summary it can be stated that an adaptive blending filter in combination with GEO
significantly improves the coding efficiency for pure screen content. The sharp edges and
often geometrical shapes occurring in screen content are a good fit for the GEO coding tool.
For high QPs, GEO can also help in removing coding artifacts.

6.4 Motion Vector Prediction, Coding and Storage

The motion vector prediction, coding and storage for GEO are aligned with the methods
used by TPM:

• Motion vector prediction is achieved through a merge candidate list of uni-directional
motion vectors. The merge candidate list is filled from the five spatial positions A1, B1,
B0, A0 and B3 (see Figure 4.27). Bi-directional motion vectors are decomposed into
the uni-directional components in this scheme. The merge candidate list is filled to a
maximum of 5 motion vectors.

• Motion vector coding is performed by signaling two merge indices. A first merge index
k0 in the range from 0...4 is signaled for the first segment using a combination of
a context coded bin, indicating k0 = 0 or k > 0 and truncated-unary coding of the
remainder. Then, a second merge index k1 in the range from 0...3 is signaled in the
same manner. The second merge index has a lower range since it is avoided that both
segments are coded with the same vector.

• Motion vector storage is performed by storing the two motion vectors mS,0 and mS,1

including the reference indices on a 4×4 grid basis, as detailed in Section 5.4. Addi-
tionally, a third bi-directional motion vector is constructed from the two uni-directional
motion vectors as specified for TPM [BCL18]. This bi-directional motion vector is
stored for those 4× 4 sub-blocks that are located in the transition zone between the
two GEO segments. The decision, which motion vector is to be stored for a given 4×4

137



6 Optimizations for VVC Standardization

8 8 8 8 8 8 7 5 3 1 0 0 0 0 0 0
8 8 8 8 8 8 7 5 3 1 0 0 0 0 0 0
8 8 8 8 8 8 8 6 3 1 0 0 0 0 0 0
8 8 8 8 8 8 8 6 4 2 0 0 0 0 0 0
8 8 8 8 8 8 8 6 4 2 0 0 0 0 0 0
8 8 8 8 8 8 8 7 5 3 1 0 0 0 0 0
8 8 8 8 8 8 8 7 5 3 1 0 0 0 0 0
8 8 8 8 8 8 8 7 6 3 1 0 0 0 0 0
8 8 8 8 8 8 8 8 6 4 2 0 0 0 0 0
8 8 8 8 8 8 8 8 6 4 2 0 0 0 0 0
8 8 8 8 8 8 8 8 7 5 2 0 0 0 0 0
8 8 8 8 8 8 8 8 7 5 3 1 0 0 0 0
8 8 8 8 8 8 8 8 7 5 3 1 0 0 0 0
8 8 8 8 8 8 8 8 8 6 4 2 0 0 0 0
8 8 8 8 8 8 8 8 8 6 4 2 0 0 0 0
8 8 8 8 8 8 8 8 8 7 5 2 0 0 0 0

Blending Filter

4 2 0 0

5 3 1 0

5 3 1 0

6 3 1 0

4× 4 Sub-block

MV0 MVBi MVBi MV1

MV0 MV0 MVBi MV1

MV0 MV0 MVBi MV1

MV0 MV0 MVBi MV1

Motion Storage

Figure 6.7 Illustration of the GEO motion vector storage derivation using blending weights for ϕm =
11.25◦ and ρn = 1.28. The sum of the corner weights indicated in red is used to assign the motion
information to each of the 4×4 sub-blocks.

sub-block, is made depending on the corresponding filter 4× 4 sub-block Mf,i, j:

Mf =







Mf,0,0 ... Mf,0,W−1
... Mf,i, j

...

Mf,H−1,0 · · · Mf,H−1,W−1






0≤ i < H, 0≤ j <W (6.12)

During the GEO motion information storage process, the sum of four corner weights
of each Mf,i, j sub-block (relating to the first segment) is calculated. If the sum is larger
or equal compared to an upper predetermined threshold γupper or smaller or equal
compared to a lower pre-determined threshold γlower, the respective uni-directional
motion information mS,0 or mS,1 is stored for the sub-block. Otherwise, a bidirectional
motion information mBi is assigned, which is a combination of the two uni-directional
motion vectors and reference indices. Both thresholds are determined by the size of the
coding block and have been designed such that only few 4× 4 sub-blocks will contain
the bi-directional motion vector for small block sizes w× h:

γlower =
4 · 2Bf

2(log2 w+log2)/2−1
(6.13)

γupper = 4 · 2Bf − γlower (6.14)

Figure 6.7 exemplifies the GEO motion information storage for a given blending matrix
and shows the highlighted corner weights used in the process.

6.5 Encoder Complexity

The design of an encoder algorithm that exploits the coding gain potential of a proposed
coding tool is a significant task. For the standardization activity conducted by JVET, the en-
coder algorithm design has to be seen in terms of a proof of concept: Unlike a production
encoder which may employ many different strategies to select a coding mode for a given
block quickly, the HM or VTM reference encoders test all available coding modes for a given

138



6.5 Encoder Complexity

block exhaustively, regardless of the coding scenario, e.g. random-access or low-delay ap-
plications. Production quality HEVC software encoders such as x265 or Turing often try to
predict optimal encoding decisions by means of a look-ahead, 2-pass encoding or texture
complexity analysis [Bla+17; Mul19; CBM17]. The complexity of these encoders can be
very precisely controlled by the user through selection of encoding presets. E.g. for x265,
ten different presets ranging from ultrafast to placebo (full RDO) can be selected with in-
creasing complexity. It is obvious that also special algorithms for GEO, for example relying
on object segmentation or edge detection to speed up the selection of the best partitioning,
can be developed and potentially greatly reduce the complexity. In the context of AVC, such
algorithms have been published in the literature [Wan+13]. For the case of a reference en-
coder such as HM or VTM however, it is unspoken consensus to avoid heavy pre-analysis and
heuristics for mode decisions. Thus, providing an encoding algorithm for a coding mode that
operates at low complexity in the HM or VTM framework is proof that at least one encoding
scheme exists that can search the available parameter space without excessive requirements.
Nevertheless, certain types of speed-ups and heuristics can be frequently found in the VTM
reference encoder. A common method is to reuse information on the coding block level from
previously tested coding modes, for example:

• For Merge-mode based tools such as TPM, MMVD, CIIP, and Affine Merge, the trans-
form coding stage is skipped if the current best coding mode is already using Skip-
mode. Hence, it is assumed that coding a residual will not provide coding gain for the
currently tested tool.

• Since a coding block of a given size and position can be reached by different MTT
splits, already estimated motion vectors with pixel precision accuracy are reused by
AMVP-based coding modes. This effectively prevents the execution of repeated block
matching.

• For the BCW tool, not all available weights are exhaustively tested for each inter coding
mode. Unequal weights are only tested depending on reference picture POC distances,
the QP and the temporal level of the current picture within the hierarchical coding
structure. Furthermore, unequal weights are only tested for Affine coding modes, if
the current best mode is an Affine mode.

Reliable encoder timing measurements performed separately from the previous experiments
show that the encoding runtime with GEO increases to about 125 % across all classes com-
pared to the VTM-3.2 anchor. This is largely attributed to the simple encoding scheme
already detailed in Section 5.5 that exhaustively tests all available GEO partitions using
a segment-wise distortion computation. Subsequently, candidates are optimized using the
SATD metric and fed to the transform coding stage. In order to reduce the encoding com-
plexity, an optimized scheme compared to the scheme detailed in Section 5.5.1 is developed.
The following measures are taken to limit the encoding complexity:

• SAD is first computed on a block basis and then estimated for the smaller segment using
a hard masking mask. Computing the SAD distortion in a segment-wise manner for
every merge candidate and GEO split would require 2 · NMerge · NGEO = 1400 weighted
SAD computations. The hard masking eliminates the requirement to multiply each
sample difference value with a sample blending weight. The SAD of the larger segment

139



6 Optimizations for VVC Standardization

can then be determined from the block-based SAD and the SAD of the smaller segment
by simple subtraction, requiring a total of NMerge + NMerge · NGEO = 705 non-weighted
SAD computations.

• To compensate for the error introduced by not using the sample blending weight, the
number of full blending candidates is increased to NBlending = 25. The SATD is computed
for these candidates.

• As most of the computation time is spent in the transform coding estimation stage (see
Figure 5.13), the number of GEO candidates to be tested is reduced from NTransform = 20
to NTransform = 3.

• Similar as it is performed for TPM, MMVD, CIIP and Affine Merge, the transform coding
stage is skipped, and the residual quantized to zero if the current best coding mode is
using Skip-mode.

Due to the restriction to uni-prediction only, an additional speed-up can be expected since the
encoder also needs to perform fewer motion compensation steps. The overall GEO encoder
algorithm for VTM-5.0 is shown in Figure 6.8 and can be described in detail as follows:

1. Perform block-based, uni-directional motion compensation for all available NMerge

merge candidates with NMerge = 5. The result is a prediction block Pl , l ∈ {0...NMerge −
1}. Compute the block-based SAD DSAD

Block,l for each merge candidate between the pre-
diction Pl and the original picture POrg.

DSAD
Block,l =

∑

x ,y

�

�Pl − POrg

�

� (6.15)

2. Calculate a segment-based SAD distortion of the luma component for the smaller GEO
partition for each of the NMerge motion compensated predictions from Step 1. This
gives a total of NMerge · NGEO distortion estimates DSAD

Small,l,m with l ∈ {0...NMerge − 1} and
m ∈ {0...NGEO − 1}.

DSAD
Small,l,m =

∑

x ,y

�

�Mb,Small,m&(Pl − POrg)
�

� (6.16)

Here, Mb,Small,m denotes the binary mask of the smaller GEO partition mode m and “&”
the binary sample-wise AND operation. Then, calculate the distortion of the larger
GEO partition as:

DSAD
Large,l,m = DSAD

Block,l − DSAD
Small,l,m (6.17)

3. Approximate the RD-cost Jl1,l2,m with l1, l2 ∈ l and l1 6= l2 for each of the NMerge·(NMerge−
1) ·NGEO possible combinations of merge candidates and GEO partition modes m using
the results from Step 2. Here, Rl1 and Rl2 are the bits required for signaling the motion
information of each segment and Rm are the bits required to signal the GEO partition
mode m.

J̃l1,l2,m ≈ DLarge,l1,m + DSmall,l2,m +
p

λ · (Rl1 + Rl2 + Rm) (6.18)

Then, find the tuples of (l1, l2, m) that minimize the RD-cost J̃l1,l2,m:

arg min
(l1,l2,m)

Jl1,l2,m (6.19)

140



6.6 Decoder Complexity

Additionally, exclude all the candidates with J̃l1,l2,m > DSAD
Block,l +

p
λ · Rl with l1, l2, l ∈

{0...NMerge − 1} from further testing. If no candidate remains, abort the entire GEO
search.

4. For the 0 ≤ k < NBlending = 25 candidates from Step 3 with lowest RD-cost, perform
the blending process for the luma component and compute the SATD distortion for the
resulting block-based predictions. Determine the RD-cost for each candidate.

Jk = DSATD
l1,l2,m +

p

λ · (Rl1 + Rl2 + Rm), 0≤ k < NBlending (6.20)

5. For the NTransform = 3 candidates from Step 4 with lowest RD-cost, perform the blend-
ing of all remaining components and apply residual coding and CABAC test-encoding.
Compute the actual RD-cost using SSD.

6. Choose the best candidate from Step 5 as the final GEO prediction mode.

The measures taken above result in and overall reduction of encoding time for GEO by 75%
compared to the algorithm used in VTM-3.2+GEO, without any loss in coding efficiency.
Figure 6.9 shows the relative encoding time for the critical stages (Stage 1: Block-based
MC+SAD computation, Stage 2: Segment-based SAD computation, Stage 4: Blending and
SATD computation, Stage 5: Transform coding) of the proposed scheme. Compared to the
previous algorithm detailed in Section 5.5.1 and the statistics shown in Figure 5.13, the
amount of computation time spent in the transform coding stage has been reduced and is
now more balanced compared to the time required by the segment-based distortion compu-
tation.

Figure 6.10 shows the relative computation time used by GEO in VTM-5.0 compared to
other prediction modes of the VVC encoder. It can be seen that the relative encoding time
for GEO has been significantly reduced from 33.5% to 5.2%. It is however noted that the
encoding complexity of other coding modes has likely also increased from VTM-3.2 to VTM-
5.0 due to the adoption of additional tools.

Lastly, it can be summarized that the design of a low-complexity encoder for GEO can be
accomplished with the above listed methods. The coding results in Section 6.7 show that
encoder runtime increases to 105% for RA and 108% for LB for natural video content. These
optimizations have all been performed without any significant loss in coding performance
compared to the baseline algorithm detailed in Section 5.5.1. Nevertheless, the author ac-
knowledges that further improvements are possible and have already been demonstrated
based on this work. In [Gao+19a] encoder complexity is reported to be 104% for RA, and
105% for LB for the same 140 geometric splits. It is noted that the reduction of 140 geo-
metric splits to 108 or 80, also tested in [Gao+19a], does not result in a measurably lower
encoder complexity.

6.6 Decoder Complexity

The main difference in terms of decoding complexity between GEO and TPM is caused by
the modified blending filter: While the TPM blending filter weights can be derived in a
very simple manner, see Equations (5.19) and (6.11), or stored in memory, the derivation

141



6 Optimizations for VVC Standardization

Encoder Search

Block-based
Motion Compensation

Segment-based
SAD Optimization

Block-based
Blending Process

Block Transform
Coding Stage

Finish

Motion vectors ml , l ∈ {0...NMerge − 1}

DSAD
Block,l

J̃l1 ,l2 ,m, l1, l2 ∈ {0...NMerge − 1}, m ∈ {0...NGEO − 1}

Jk , 0≤ k < NTransform = 3

Final RD-cost

NMerge = 5 block MCs and SADs

NMerge · NGEO = 700 segment SADs

NBlending = 25 block SATDs

NTransform = 3 block SSDs + CABAC coding

Figure 6.8 VTM-5.0 mode estimation for GEO using four stages. The optimal GEO mode is found
by using a combination of block-based and segment-based distortion computations. Note that the
transform coding stage is common to all inter-prediction modes.

50.1 %

GEO Transform Coding

42.1 %

GEO Segment Distortion

4.6 %

GEO Motion Compensation

3.2 %
GEO Blending

Figure 6.9 Relative encoding runtime distribution for individual stages of the GEO mode estimation.
Statistics were gathered by encoding a single CTU at QP32 in a RA configuration for 33 pictures.

142



6.6 Decoder Complexity

5.2 %

GEO

21.3 %

Merge + MMVD + CIIP

33.2 %

Intra

13.6 %

AMVP + Affine

8.2 %

TPM

13.7 %

AMVR

4.7 %

Affine Merge

Figure 6.10 Relative encoding runtime distribution for coding modes of the VTM-5.0+GEO encoder.
The GEO mode is optimized by performing the search strategy as depicted in Figure 6.8. Statistics
were gathered by encoding a single CTU at QP32 in a RA configuration for 33 pictures.

of GEO filter weights involves a distance calculation with trigonometric functions and a
mapping operation from a distance value to a filter weight. If this shall be avoided, the
GEO filter masks could also be pre-computed and stored in memory. However, the memory
requirements for this approach might be prohibitively large for hardware implementation:
assuming 4bit for each weight, utilizing symmetries among the 140 geometric splits and also
across different blocks sizes (e.g. the filter masks for an 8×16 and a 16×8 block are coupled
by a simple geometric mapping), storing all filter masks in memory would require 1.92 kB.
Therefore, it is proposed to utilize the parametric model for the geometric partitioning line
as introduced in Section 5.1.1 and generate the weights on the fly while decoding every
GEO blocks. For this purpose, the parametric model using polar coordinates is converted
to an integer arithmetic based variant using look-up tables. The following sections detail
the methodology and approaches taken to ensure low complexity decoding for the GEO
coding tool. The success of these methods is demonstrated by the coding results given in
Section 6.7, with a decoding time of 100 %-101% for RA and LB compared to the VTM-5.0
anchor without GEO.

6.6.1 Integer Approximation for Weight Derivation

In standards prior to AVC, certain parts of video codecs were not explicitly specified in
integer-based arithmetic, such as the inverse DCT in H.263. Deviations in different floating-
point implementations of encoders and decoders may lead to differences when reconstruct-
ing a video from a bitstream on different platforms. To solve this conformance issue, all
critical decoder parts are specified using integer arithmetic in recent video codecs, such as
in AVC, HEVC and VVC. Furthermore, the design and specification of algorithms only using
integer additions, subtractions – additions using the respective numbers 2’s complement –

143



6 Optimizations for VVC Standardization

multiplications, and bit-shifts simplifies the hardware implementation. The complexity of
an algorithm can be assessed by counting the number of integer additions (ADD), bit-shifts
(SHIFT) and multiplications (MUL) required per reconstructed sample. For GEO, the criti-
cal part performed during decoding is the calculation of the distance of each sample to the
partitioning line. Recall that this operation is specified using floating-point operations in
Equation (5.9) as follows:

dAD
float(xc, yc) = xc cosϕ + yc sinϕ −ρ (5.9 revisited)

In this representation, the coordinates (xc, yc) specify the center of a pixel, relative to the
center of the coding block of size w × h, e.g. the top-left coordinate is given by (−w/2 +
0.5,−h/2+ 0.5). The same equation can be translated into integer arithmetic as follows:

dAD
int (x , y) = (2x −w+ 1) · cos [m]− (2y − h+ 1) · sin[m]− 2ρn (6.21)

Equation (6.21) replaces the cos() and sin() functions with cos[] and sin[] look-up tables,
fetching the trigonometric function values by the angular quantization index m. This equa-
tion can be further optimized for requiring as few additions, multiplications and shifts as
possible:

dAD
int (x , y) = (x << 1)

︸ ︷︷ ︸

1 SHIFT/sample

· cos [m]
︸ ︷︷ ︸

1 MUL/row
︸ ︷︷ ︸

1 ADD/sample

− (y << 1)
︸ ︷︷ ︸

1 SHIFT/row

· cos
�

(m+ N90◦)%Nϕ
�

︸ ︷︷ ︸

1 MUL/row

−(ρn << 1)
︸ ︷︷ ︸

1 SHIFT/block

+C

︸ ︷︷ ︸

3 ADD/row

(6.22)

C = (h− 1) · cos
�

(m+ N90°)%Nϕ
�− (w− 1) · cos [m]

︸ ︷︷ ︸

2 MUL/block, 4 ADD/block, 1 MOD/block

(6.23)

Here, the sin[] look-up table is eliminated using a 90° shifted angular quantization index.
For a block of size w×h, Equation (6.22) can be implemented requiring (1+ 3/w+ 4/wh) ADD
per sample, (1+ 1/w+ 1/wh) SHIFT per sample and (2/w+ 2/wh) MUL per sample.

The cosine look-up table in the final design contains Nϕ = 32 integer values, thereby
requiring a 90° shift of N90° = 8. Due to the integer arithmetic, Equation (6.22) can be seen
as an approximation to the actual distance given by Equation (5.9). The precision of the
approximation is determined by the bit-depth Bi of the cosine look-up table. The cosine
look-up table is generated by using a uniform, mid-riser quantizer Q(x), scaling the look-up
values to a dynamic range of [−2Bi−1, 2Bi−1] according to:

Q(x) =min
�

2Bi−1, max
�

−2Bi−1,
�

2Bi−1∆

�

j x
∆

k

+
1
2

�

+
1
2

���

, ∆=
max(x)−min(x)

2Bi

(6.24)

cos [m] =Q

�

cos

�

m
2π
Nϕ

��

, 0≤ m< Nϕ (6.25)

The approximate distance can then be determined by bit-shifting the distance dAD
int accord-

ing to:

144



6.6 Decoder Complexity

1 2 3 4 5 6 7 8 9 10
0

2,000

4,000

6,000

Cosine bit-depth Bi

D
is

to
rt

io
n

D
M

SE
(B

i)

Figure 6.11 Mean distortion of blending filter weights due to quantization of the cosine function with
a given bit-depth.

dAD
float ≈ dAD

int + (1<< Bi − 1)>> Bi (6.26)

Since the distances dAD
float or dAD

imt are subsequently used to derive the sample weights
wGEO(x , y) using the filter quantization function fq(·) of half-sample accuracy, the required
bit-depth Bi can be assessed by computing a Mean squared error (MSE) between Mf,float and
MBi

f,int for each geometric split:

DMSE(Bi) =
1

wh

∑

x ,y

�

Mf,float(x , y)−M Bi
f,int(x , y)

�2
(6.27)

Figure 6.11 shows the mean distortion DMSE(Bi), averaged over all geometric splits, for a
given cosine bit-depth Bi. It can be deduced from the figure that a cosine precision with a
bit-depth of Bi = 7bit produces a blending filter M7

f,int with nearly identical weights compared
to the blending filter Mf,float generated by the floating-point distance equation.

6.6.2 Chroma Weight Derivation

In case the video source format is provided with chroma subsampling, e.g. most commonly
as 4:2:0 or 4:2:2, the blending filter for the chroma component has a different size compared
to the luma component. In principle, the same process for generating the luma weighting
mask can be invoked with different input sizes in terms of width and height for the filter
size, e.g. wC = w/2 and hC = h/2 for 4:2:0 and wC = w/2 and hC = h for 4:2:2 with wC × hC

specifying the size of the chroma coding block. In order to simplify the process, the chroma
weights can be generated from the luma weights by subsampling:

w420
GEO,Chroma(x , y) = wGEO(2x , 2y), 0≤ x < wC, 0≤ y < hC (6.28)

w422
GEO,Chroma(x , y) = wGEO(2x , y), 0≤ x < wC, 0≤ y < h (6.29)

145



6 Optimizations for VVC Standardization

6.7 Overall Coding Performance

The overall coding results for RA and LDB in Experiment 6.27 over VTM-5.0 are provided in
Tables 6.7 and 6.8, respectively. Detailed results are given in Table A.34 and Table A.35. For
RA, GEO achieves an overall luma BD-rate change of −0.22 %, measured across the classes
A1, A2, B and C according to the JVET CTC. For LDB, higher coding efficiency improvements
can be reported at −0.44 %, measured across the classes B, C and E. The coding gain is not
evenly distributed among the resolution classes. For RA, largest improvements are observed
for class C which contain the BQMall and RaceHorses sequence. Here, coding efficiency
improves to −1.09 % and −0.71 %, respectively. For BQTerrace, SlideEditing and SlideShow,
a slight loss in coding efficiency is observed, measured at 0.04 %, 0.10% and 0.02 % in
terms of luma BD-rate change. However, the losses for class F can be completely avoided if
an adaptive blending filter is employed for pure screen content as shown in Section 6.3.

The coding results for different sequences largely confirm the previous observations that
GEO is a coding tool suitable for video sequences which contain clearly separated, natural
moving objects, such as in BQMall, RaceHorses, BasketballDrive or CatRobot1. For those se-
quences and for high QPs, a visual benefit is also assumed since GEO is used predominantly
for the coding of object boundaries. Figures 6.12 provides two examples, showing how GEO
removes staircase coding artifacts at object boundaries.

Arguably, coding efficiency for GEO can be improved significantly if bi-prediction is utilized
at the cost of increased worst-case memory bandwidth. However, analysis of actual memory
bandwidth consumption performed in Section 5.1.3 using a realistic cash model showed
that only a marginal increase in overall memory bandwidth consumption can be expected
for typical GEO mode usages.

Further enhancements and improvements for GEO are currently conducted in the context
of the VVC standardization [Gao+19a; Gao+19b; Gao+19c]. With different numbers and
distributions of GEO splits, coding efficiency for GEO is reportedly further increased. For a
configuration with 64 geometric splits, using 20 quantized angles and 4, 2 or 1 quantized
distances based on the angle, coding efficiency is reported at −0.34 % in terms of luma BD-
rate change for RA and −0.67 % for LDB over VTM-6.0. Further improvements made to the
encoder lower the encoding time to 102% and 103 %, respectively.

146



6.7 Overall Coding Performance

Class
Over VTM-5.0

Y U V EncT DecT VMAF

A1 −0.09 % −0.24% −0.05 % 105 % 101 % 0.08 %

A2 −0.14 % −0.29% −0.26 % 106 % 101 % −0.17 %

B −0.08 % −0.06% −0.21 % 106 % 100 % −0.07 %

C −0.54 % −1.09% −1.13 % 105 % 101 % −0.60 %

Overall −0.22% −0.42% −0.43% 106% 101% −0.20%

D −0.18 % −0.76% −0.35 % 105 % 101 % −0.12 %

F* −0.37 % −0.41% −0.32 % 103 % 101 % −0.43 %

TGM* −2.15 % −1.77% −1.76 % 99 % 100 % −2.07 %

Table 6.7 Coding results for VTM-5.0 + GEO in RA configuration.∗Results for screen content se-
quences with hard masking for GEO and TPM. Detailed coding results are provided in Table A.34.

Class
Over VTM-5.0

Y U V EncT DecT VMAF

B −0.22 % −0.23% −0.32 % 108 % 102 % −0.21 %

C −0.54 % −1.12% −1.00 % 108 % 101 % −0.30 %

E −0.68 % −0.46% −0.10 % 107 % 102 % −0.84 %

Overall −0.44% −0.59% −0.49% 108% 102% −0.40 %

D −0.39 % −0.84% −0.07 % 108 % 100 % −0.52 %

F* −0.28 % −0.42% −0.72 % 106 % 101 % −0.03 %

TGM* −2.49 % −2.26% −2.25 % 99 % 101 % −2.37 %

Table 6.8 Coding results for VTM-5.0 + GEO in LDB configuration.∗Results for screen content se-
quences with hard masking for GEO and TPM. Detailed coding results are provided in Table A.35.

147



6 Optimizations for VVC Standardization

(a) BQMall, Reference

(b) BQMall, GEO

(c) RaceHorses, Reference

(d) RaceHorses, GEO

Figure 6.12 Visual examples showing the geometric partitioning and potential visual impact com-
pared to the VTM-5.0 reference. Examples are coded using RA at QP37.

148



7 Exploration on Transform Coding for
Non-rectangular Partitions

Applying a linear block transform to the prediction error and quantization of the result-
ing transform coefficients is one essential part of the hybrid video coding scheme. Over 30
years have passed since the development of H.261 and numerous advancements have been
made in this area. The core method of transform coding is nevertheless still the application
of a two-dimensional, separable DCT-II transform to the prediction error signal, followed
by linear quantization of the resulting transform coefficients and subsequent entropy cod-
ing. This scheme has been augmented and improved in VVC by additional core transforms,
non-separable secondary transforms, and advanced entropy coding methods for transform
coefficients and residual samples. Furthermore, the linear quantizer has been replaced by
a Trellis-coded quantizer (TCQ) [Sch+19]. In the following, a brief review of past develop-
ments in the area of transform coding is given. This review cannot claim to be complete due
to the wide scope of the subject but can give the necessary background for the handling of
the prediction error resulting from a non-rectangular block partitioning.

It has been known for a long time that the DCT-II is not the optimal decorrelating trans-
form for images, which is the Karhunen-Loève transform (KLT) – the optimal linear transform
in terms of coding gain for non-stationary sources. The performance of the DCT-II for AR,
specifically AR(1) distributed sources with a high correlation coefficient ofρ→ 1 approaches
that of the KLT [CP93]. Furthermore, since the DCT-II does not require additional signaling
of side-information compared to the signal-dependent KLT, it is still the RD-optimal trans-
form for naturally occurring prediction error signals that can be modeled by Markov models
[DeL+16][Goy01]. This knowledge has been augmented by many empirical and theoretical
studies about the properties of prediction error signals and resulting transform coefficients
[Mül93; ZWZ10; SEO11; LG00]. Here, the important distinction must be made whether the
prediction error for intra-prediction [Wu+07; Zou+13] or inter-prediction [LKK11; CP93;
KMO10; Shi92; Wen+00; Wen+02; Zhe+01] is considered, since both have different char-
acteristics. A few key observations and conclusions drawn from these studies can be sum-
marized as follows:

Natural images are often modeled by two-dimensional first order Markov models. The co-
variance between samples can be written as r(m, n) = σ2ρ(m, n) (see Chapter 2) withσ2 be-
ing the variance of a natural image block and different assumptions are made on the correla-
tion coefficient function ρ(m, n). Often, separability is assumed, such that ρ(m, n) = ρ|m|h ρ

|n|
v

with ρh = ρv = 0.95 for natural images [CP93]. Otherwise, an isotropic, non-separable cor-
relation function is assumed, such that ρ(m, n) = e−ω0

p
m2+n2 [Gir87]. It is pointed out that

the validity of these models for natural images, assuming a Wide-sense stationary (WSS)
Markov process, is already violated by strong edges and directional structures that are known
to frequently occur.

The statistical properties of the intra-prediction error signal are different from those of
the original image. First, the overall correlation between samples of the intra-prediction

149



7 Exploration on Transform Coding for Non-rectangular Partitions

error is generally much lower. Secondly, the correlation is in fact often neither separable
in horizontal or vertical dimension nor isotropic. Depending on the prediction mode, the
correlations in horizontal and vertical direction can be very different from each other. For
example, blocks that are coded with a vertical intra-prediction mode show larger correlation
coefficients in the vertical direction than their counterparts in horizontal direction. The
opposite applies for a horizontal intra-prediction mode. However, also blocks using the same
intra-prediction mode can have considerably varying statistical properties over the entire
image or video [Zou+13].

In consequence to these findings, adaptations have been suggested to the DCT-II coding
of the intra-prediction error. Three different approaches can be mainly distinguished:

The non-isotropic, mode-dependent properties of the intra-prediction residual motivated
the use of the KLT and KLT-derived MDDT [Zou+13; Yeo+12] that were proposed for
H.264/AVC. In the MDDT scheme, a separable transform is designed based on separable
KLTs. A pair of column and row KLTs are derived by using training data for each intra-
prediction mode. Therefore, each intra-prediction mode has its corresponding KLT pair. The
better coding gain of such a transform is dimmed by the inherent sensitivity towards the
properties of the training data and increased hardware implementation cost.

The second approach is the application of a secondary transform after the DCT. Most
prominent examples are rotational transforms that are applied to the low-frequency DCT
coefficients of a block. Such transforms were suggested for HEVC and ultimately included in
the JEM [Che+19b; Che+17]. In JEM, a Mode dependent non-separable secondary trans-
form (MDNSST) is included with a total of 35 × 3 non-separable transforms, where 35 is
the number of transform sets given by the intra-prediction modes and 3 is the number of
NSST candidates (transform kernels) for each mode. This scheme required a huge amount
of memory for storing the transform kernels and therefore evolved into the Low-frequency
non-separable transform (LFNST) concept, now part of VVC. LFNST specifies only 4 trans-
form sets with 2 kernels per set [BCL18; CYK19].

The third approach are additional trigonometric core transforms next to the DCT-II. It was
recognized early on that the DST performs better than the DCT under certain conditions.
For first-order Markov processes for example, it can be shown that the decorrelation effi-
ciency of the DST is superior to the DCT for sources with a correlation coefficient ρ < 0.5
[Cla85]. Han, Saxena & Rose derived the DST-VII to be the actual KLT along the prediction
direction for intra modes in H.264/AVC [HSR10]. In HEVC, the DST-VII is the default trans-
form applied to 4×4 intra-predicted transform units [SF13]. To further enhance the coding
performance for the JEM, even more core transforms were added next to the known DCT-
II/DST-VII scheme: In the Adaptive multi-core transform (AMT) set (or often styled as EMT)
they are supplemented by the DCT-V, DCT-VIII and DST-I. Depending on the intra-mode, a
different transform set is chosen consisting of two transform candidates. For the horizontal
and vertical transform, one of the two transform candidates is selected. For inter-prediction
residuals, only one transform set consisting of the DST-VII and DCT-VIII is allowed, next to
the default DCT-II applied in both directions [Che+19b; Che+17; Zha+16]. This design was
significantly simplified for VVC, resulting in the Multiple transform selection (MTS) scheme:
In MTS, next to the DCT-II, the DCT-VIII and the DST-VII can be applied. Four combinations
of DCT-VIII and DST-VII in horizontal and vertical direction can be signaled for intra- and
inter-predicted blocks. [BCL18; CYK19].

Lastly, the transform-skip mode can also be seen as an additional “core” transform by ap-

150



plying the identity transform before quantization. Transform-skip is beneficial for coding
of prediction errors (intra or inter) with few non-zero samples in lossless and near loss-
less coding scenarios. Such characteristics are often observed for screen content, making
transform-skip a coding tool suitable for such content [Nar13] [MX12]. Transform skipping
has been a part of HEVC and is also included in the JEM and VVC [Ngu+19].

Many insights have been made regarding the properties of the inter-prediction residual, of-
ten termed the motion-compensated frame difference (MCFD). Girod showed that the power
density spectrum See(ωx ,ωy) of the motion-compensated prediction error signal e(x , y) is
dependent on the power density spectrum Sss(ωx ,ωy) of the input video signal s and the
power density spectrum Sqq(ωx ,ωy) of the quantization error q [Gir93] as follows:

See(ωx ,ωy) = 2Sss(ωx ,ωy) · (1−Re {F {p(∆x ,∆y)}}) + Sqq(ωx ,ωy) (7.1)

Where p(∆x ,∆y) is the probability density function of the displacement errors∆x and∆y .
As the power density spectrum is the Fourier transform of the correlation function, Equa-
tion (7.1) also shows that the correlation between the prediction error samples e decreases
with better motion compensated prediction. This is for example the case when sub-pixel in-
terpolation filters are introduced. Furthermore, different covariance models have been pro-
posed for the inter-prediction error. Chen and Pang assumed the probability density function
p(∆x ,∆y) of the displacement error to be composed of a uniform distribution over an inter-
val [−a, a] in both x and y direction and an impulse at the origin to model the probability
of achieving perfect motion compensation. Using this model they argued that the optimum
KLT of the inter-prediction error is identical to the KLT of the original image and therefore
the DCT also remains nearly optimum [CP93] for coding the inter-prediction error. Niehsen
and Brünig arrived at the same conclusion with a different covariance model and also tak-
ing OBMC into account. They also measured that the block means and standard deviations
of the inter-prediction error can vary greatly, preventing the common wide-sense-stationary
modeling. Hui and Siu further refined the displacement error modeling by also considering
block deformations due to failure of the block-based motion model for moving parts, light
variations, inaccuracy of motion compensation, quantization error and noise [HS07]. In this
covariance model, the inter-prediction error is assumed to contain directional deformations
rather than a uniform distribution.

Early empirical studies have shown that the samples of inter-prediction residual blocks
follow a Laplacian distribution [Wen+02]. This was confirmed for the JCT-VC test set se-
quences used during the standardization of HEVC [Nar13]. In terms of spatial properties
within a block of inter-prediction error samples, it was discovered by Zhen and Shishikui
that the prediction error tends to be larger at the block boundaries than at the block center
[Wen+00; Wen+02; Zhe+01] (see Chapter 5, Section 5.1.1), explained by authors using a
statistical motion distribution model theoretically. OBMC has been proven to decrease the
prediction error at these block boundaries.

The spatially non-constant variance withing the prediction error blocks also leads to cor-
relation between transform coefficients when the DCT-II is applied [SEO11], which can be
exploited for marginally improved coding of these coefficients. A spatially varying distribu-
tion of residual energy can also be seen as one motivation for the introduction of the RQT
in HEVC. The RQT allows to use large PBs and small TBs, catering to local variations in the
residual statistics [Tan+11]. For JEM however, the RQT was dismissed in favor of a uni-
fied approach of having identically sized CUs, PUs, and TUs using a more advanced block

151



7 Exploration on Transform Coding for Non-rectangular Partitions

partitioning scheme (QTBT). For VVC, a SBT mode is reintroduced, allowing one single
binary-split for a given coding block.

Naturally, the question arises whether these properties, observed and derived for rectan-
gular coding blocks, also hold true for geometrically partitioned blocks. An analysis of the
residual coding mode for TPM and GEO reveals that both of these non-rectangular parti-
tioning schemes more frequently use the Skip-mode – meaning that no residual is coded –
compared to other inter-prediction modes. The statistics for the JVET test set are shown
in Figure 7.1. Overall, it can be stated that even for a low QP of 22, more than 50% of
all inter-predicted pixels are coded without signaling a prediction error. This significantly
increases to more than 80 % for QP37. Differences exists between GEO, TPM, and other
inter-prediction modes. For a QP of 22 for example, about 62% of all GEO coded pixels
are using Skip-Mode, compared to 70 % for TPM. For a QP of 37, 89% of all GEO coded
pixels are using Skip-mode, compared to 92% for TPM. Other inter-prediction modes on
the other hand signal a residual more frequently. It is to be kept in mind, however, that
the combined overall usage in terms of pixels coded using GEO and TPM is mostly below
10%. It is interesting that for lower QPs, a prediction residual is actually more frequently
transmitted for GEO than for TPM, considering the higher mode signaling costs for GEO and
the improved motion compensation of GEO over TPM. It is also noted that this measurement
may be slightly biased due to different encoder strategies for GEO and TPM concerning the
skip-mode selection.

The following sections intend to explore different possibilities of transform coding for both
GEO and TPM. Since this is a topic suitable for a thesis of its own, no definite conclusions will
be drawn from the results. Modifying a small part of the transform coding scheme may result
in a deviation from the well-tuned interaction of DCT-II transform, rate-distortion optimized
quantization (RDOQ) of the reference encoder and spatial context-based CABAC-coding of
transform coefficients, negating any coding gain that is theoretically expected. Optimizing
all of these aspects would be out of the scope of this thesis. Nevertheless, the methods and
experiments provided may encourage further investigations into these areas.

In Section 7.1 additional properties for non-rectangular prediction error signals are em-
pirically studied. Section 7.2 explores the possibilities of transforming non-rectangular GEO
segments by means of the well-known SADCT. Section 7.3 provides coding results for per-
forming transform-skipping adapted to GEO partitions. In Section 7.4, methods that rely on
encoder-side optimization of the regular DCT-II and masking operations at the decoder are
presented.

7.1 Properties of Non-rectangular Prediction Residuals

The main difference expected in terms of statistical properties for inter-prediction error
blocks is a spatially varying distribution of residual energy. In Section 5.1.1, it was already
empirically shown that the prediction error is higher in the transition zone between two seg-
ments, where blending is applied. In the following, the prediction error for the two segments
composing a block shall be considered.

If the residual error has similar distributions in terms of correlation and energy in both
segments S0 and S1, a regular 2D block transform such as the DCT-II would suffice for decor-
relation. If, however, the two segments differ, the following problems may arise:

152



7.1 Properties of Non-rectangular Prediction Residuals

QP22 QP27 QP32 QP37
0

20

40

60

80

100

120

R
el

at
iv

e
Sk

ip
-m

od
e

us
ag

e
[%
] Skip Non-Skip

TP
M

TP
M

TP
M

TP
M

G
EO

G
EO

G
EO

G
EO

O
th

er
M

od
es

O
th

er
M

od
es

O
th

er
M

od
es

O
th

er
M

od
es

Figure 7.1 Relative usage of the Skip-mode for different inter-prediction coding modes in VTM-3.2.
Skip statistics also contains blocks with zero-valued luma CBF. The statistics are gathered per class
and averaged over the classes.

• If the majority of the residual energy is located in a spatially small area of the resid-
ual block, e.g. concentrated in just one segment S0 or S1, a block transform based on
trigonometric basis functions cannot efficiently represent such data. This is undoubt-
edly related to a famous result by Heisenberg and Bernstein called the Uncertainty
Principle. In short, the Uncertainty Principle states that a function s(t) and its Fourier
transform S( f ) cannot both be sparse. This also applies to discrete sequences. Let s(n)
be a sequence of length N and S(k) be its discrete Fourier transform

S(k) =
N−1
∑

n=0

s(n)e−j2πk n
N , k = 0, 1, ..., N − 1 (7.2)

If Nt and Nf count the number of non-zero entries in s(n) and S(k), respectively, then
the Uncertainty relations

Nt · Nf ≥ N (7.3)

and
Nt + Nf ≥ 2

p
N (7.4)

must be obeyed [WC14]. This can be extended to 2D signals accordingly.

• Likewise, segments of prediction residuals with low inter-sample correlation may not
be suitable for DCT-II based transform coding. This could become a relevant issue for
low QPs and specific video content.

The distribution of residual energy σ2
S.k, k ∈ {0,1} among the two GEO segments S0 and

S1 can be analyzed using the JVET test set. Measuring the residual energy at the encoder-
side for every tested GEO blocks could increase the overall variance of the distribution and
therefore reduce the ability to detect any statistical significance. Since the encoder is per-
forming a nearly full search of all possible combinations of GEO splits and motion vectors
per split, many of these combinations will not be a good prediction in terms of their RD-cost
and dismissed by the encoder. Only GEO blocks with competitive RD-cost are therefore con-
sidered relevant. However, also analyzing the single, best GEO block for every position and

153



7 Exploration on Transform Coding for Non-rectangular Partitions

block size in terms of RD-cost before transform coding is applied, could distort the distribu-
tion. Therefore, it is proposed to measure the properties of actually coded GEO blocks that
were chosen to be locally RD-optimal. This can of course be seen as a biased measurement,
since the properties of these selected blocks are apparently suitable for transform coding, if
a transform is chosen at all.

For coded GEO blocks, the variance of a segment Sk defined by its binary mask Mb,k and
the prediction block P shall be measured as

σ2
S,k =

1
NS,k

∑

x ,y

Mb,k ◦
�

P −µS,k

�2
(7.5)

NS,k =
∑

x ,y

Mb,k (7.6)

µS,k =
1

NS,k

∑

x ,y

Mb,k ◦ P (7.7)

with k ∈ {0,1}. To assess whether the two segments contain different amount of power,
the empirical joint discrete probability mass function p(σS,0,σS,1) in terms of a normalized
histogram is measured for all coded GEO blocks for the first 65 pictures of all video sequences
in the JVET test set. The distribution is measured by counting the relative occurrences of
(σS,0,σS,1) pairs in equally spaced bins with a width of ∆σ = 1 in the half-open interval
[0,100) and normalizing each bin count by the total occurrence. Therefore, the last bins in
each direction contain the occurrences for [100,∞). The distributions per QP are shown in
Figure 7.2. An elliptical probability mass function along the main diagonal would indicate
that the two segments always contain equal energy. The farther the probability mass function
is centered along the diagonal, the higher the overall prediction error variance.

In general, it can be observed from Figure 7.2 that for a low QP of 22, most of the prediction
error is – as to be expected – quantitatively small and centered around σS,0 = σS,1 ≈ 101.
The distribution also shows a stronger linear dependence between σS,0 and σS,1, indicating
in fact that GEO coded blocks often have similar residual energy in both segments. This
behavior becomes qualitatively less pronounced for higher QPs. Here, the distributions along
the diagonal generally become more smeared and shifted to the bottom right, indicating an
overall higher prediction error energy in both segments. It is also noteworthy that with
increasing QPs, the distributions masses are slightly more concentrated above the diagonal.
This indicates that the segment S0 tends to have lower residual energy compared to segment
S1. At this point the reader shall be reminded that by convention, segment S0 always relates
to the segment containing the top-left sample. Therefore, except for a few corner cases, most
GEO segments S0 are located closer to the top and left block boundary than the corresponding
S1 segments. This also explains why the residual energy is lower in the S0 segments for
higher QPs, since the correlation between motion vectors typically decreases when moving
away from the top-left block boundaries.

For each GEO block, the ratio between σ2
S,0 and σ2

S,1 of each coded block can also be
measured and analyzed in a histogram. For simplicity, the ratio is computed as βr =
max(σ2

S,0,σ2
S,1)/min(σ2

S,0,σ2
S,1), such that βr ≥ 1 for all blocks. The histogram bins for this mea-

surement are using a spacing of ∆βr = 1 in the interval from [1,9). Therefore, the last

1All sequences were scaled to 10bit.

154



7.2 Shape-adaptive DCT Coding for GEO

bin contains all ratios in the interval [10, ∞). The measurement results are shown in Fig-
ure 7.3. For QP22, the ratio between the variances of the two segments is in the ranges of
1-2 in almost 60% of the cases, 2-3 in 30% of the cases and larger than 3 in the remaining
interval. This distribution becomes flatter with increasing QP, showing that segments with
different residual variances are selected by the encoder more frequently.

Lastly, the per-sample inter-prediction error variances σ2(x , y) for a specific non-
rectangular partitioning mode can be analyzed. The two TPM splits are particularly suited for
this task since they occur more frequently compared to a single GEO split mode. Figure 7.4
shows the per-sample luma variance σ2(x , y) for the two TPM splits for 16×16 blocks. The
variance has been computed for each sample across all TPM residuals for a given TPM split
mode and block size.

First of all, the measurements confirm the observations from Zheng and Shishikui that the
residual energy is not uniformly distributed across the whole block. The variance is visibly
lowest at the center of each triangular segment and larger at the partitioning line and the
block edges. This extends the observations made in Section 5.1.1 that the prediction error is
highest at the partitioning boundary. It can also be seen that differences exists between the
two triangular split modes. In particular, the triangular split mode from the bottom-left to
the top-right, shown on the right of each sub-figure, has a different residual characteristics
in each triangle. The top-left triangle for QPs 27 and 32 has a visibly lower variance com-
pared to the bottom-right triangle. Again, this can be explained by the higher correlation in
terms of motion vectors that is expected for the top-left triangle, leading to a better motion
compensation. For the triangular split from the top-left to the bottom-right, shown on the
left of each sub-figure, this difference is much less pronounced.

Both of these results suggest that, despite the biased measurement due to analyzing the
RD-optimal, coded non-rectangular partitioned blocks, the two segments may have different
residual characteristics that are currently not considered during transform coding. There-
fore, in the following, three approaches are presented for the residual coding of GEO and
TPM blocks, specifically for the coding of single residual segments.

7.2 Shape-adaptive DCT Coding for GEO

The first approach presented for coding of GEO residuals utilizes the well-known Shape-
adaptive DCT (SADCT). The SADCT has originally been developed by Sikora, Makai, Kauff
and Schüür [SM95; KS98] for the coding of residuals with arbitrary shapes in M4V. [04].
M4V defines the concept of video objects (VO) which are described by texture, shape and
motion (see Section (3.1)). Two types of VOs are distinguished in M4V: For opaque objects,
a binary shape information is transmitted using bitmap-based, contour-based, or implicit
shape coding techniques. Transparent objects are described by grayscale alpha-maps with
8bit/sample, defining the shape as well as the transparency of an object. The shape informa-
tion in M4V is coded on a macroblock basis. The SADCT uses the binary shape information
in order to apply transform coding only to the residual samples that are contained in the VO.
If the VO contains N active samples, the SADCT will generate N transform coefficients.

In the following, a short review of the forward SADCT algorithm is given. For more in-
formation, the reader is referred to [SM95; KS98]. The basic concept of the SADCT is the
application of DCT basis functions of varying length l to the residual samples. Compared

155



7 Exploration on Transform Coding for Non-rectangular Partitions

20 40 60 80 100

20

40

60

80

100

σS,1

σ
S,

0

−5

−4

−3

−2

lo
g 1

0
p(
σ

S,
0
,σ

S,
1
)

(a) QP22

20 40 60 80 100

20

40

60

80

100

σS,1

σ
S,

0

−5

−4

−3

lo
g 1

0
p(
σ

S,
0
,σ

S,
1
)

(b) QP27

20 40 60 80 100

20

40

60

80

100

σS,1

σ
S,

0

−5

−4

−3

lo
g 1

0
p(
σ

S,
0
,σ

S,
1
)

(c) QP32

20 40 60 80 100

20

40

60

80

100

σS,1

σ
S,

0

−4

−3

lo
g 1

0
p(
σ

S,
0
,σ

S,
1
)

(d) QP37

Figure 7.2 Normalized 2D histogram estimating the empirical joint probability density p(σS,0,σS,1)
of the luma residual energy for GEO blocks. Statistics were gathered from all VTM-3.2 coded GEO
blocks for the first 65 pictures of all sequences from the JVET test set.

[1,2) [2,3) [3,4) [4,5) [5,6) [6,7) [7,8) [8,9) [9,10) >10
0

0.2

0.4

0.6

p
(β

r)

QP22
QP27
QP32
QP37

Figure 7.3 Histogram of the variance ratio βr =
max(σ2

S,0,σ2
S,1)

min(σ2
S,0,σ2

S,1)
for the luma residual of all GEO coded

blocks. Statistics were gathered from all VTM-3.2 coded GEO blocks for the first 65 pictures of all
sequences from the JVET test set.

156



7.2 Shape-adaptive DCT Coding for GEO

0 5 10 15

0

5

10

15

0 5 10 15

0

5

10

15
200

250

300

Pr
ed

ic
ti

on
er

ro
r

va
ri

an
ce
σ

2

(a) QP22

0 5 10 15

0

5

10

15

0 5 10 15

0

5

10

15 400

500

600

700

800

Pr
ed

ic
ti

on
er

ro
r

va
ri

an
ce
σ

2

(b) QP27

0 5 10 15

0

5

10

15

0 5 10 15

0

5

10

15 800

1,000

1,200

1,400

Pr
ed

ic
ti

on
er

ro
r

va
ri

an
ce
σ

2

(c) QP32

0 5 10 15

0

5

10

15

0 5 10 15

0

5

10

15

2,000

2,500

3,000

Pr
ed

ic
ti

on
er

ro
r

va
ri

an
ce
σ

2

(d) QP37

Figure 7.4 Distribution of the per-sample luma residual error energy σ2(x , y) for TPM blocks of size
16× 16. Statistics were gathered from all VTM-3.2 coded TPM blocks for the first 65 pictures of all
sequences from the JVET test set.

157



7 Exploration on Transform Coding for Non-rectangular Partitions

to the regular, block-based DCT, additional sample-shifting processes are required for two
purposes:

• to close any holes in the video object,

• to align the resulting SADCT coefficients at the top-left corner of the block such that
regular entropy coding as used for DCT coefficients can be applied.

The SADCT basis functions of length L are defined by t L(i, j) and grouped in the correspond-
ing transform matrices TL:

t L(i, j) =

√

√2
L
· c0 · cos

�

i
�

j +
1
2

�

π

L

�

(7.8)

c0 =

¨q

1
2 , if i = 0

1, otherwise
(7.9)

TL =







t L(0, 0) · · · t L(0, L − 1)
...

. . .
...

t L(L − 1,0) · · · t L(L − 1, L − 1)






(7.10)

For each row i in the binary mask Mb, the value Li shall denote the number of active
samples defined in that row and for each column j, the value L j denotes the number of
samples active in that column.

Li =
∑

x

Mb(x , i) (7.11)

L j =
∑

y

Mb( j, y) (7.12)

The input samples shall be given by s(x , y) with s j defining the column vector of samples
in column j. The forward SADCT operates as follows:

1. For each column vector s j, the L j samples of the given partition are shifted to the
topmost position and grouped to the column vector s∗j .

2. For each shifted column vector s∗j , the vertical 1D-DCT of length L j is computed. The
output DCT coefficients are denoted as a j:

a j = TL j
· s∗j (7.13)

3. The same procedure is applied in horizontal direction. First, the Li elements of column
vectors a j that belong to the same row i are shifted to the leftmost position and grouped
to row vectors bi.

4. For each shifted row vector, the horizontal 1D-DCT of length Li is computed.

ci = TLi
· bi (7.14)

158



7.2 Shape-adaptive DCT Coding for GEO

5. The output DCT coefficients are denoted as ci, containing all DCT coefficients.

These steps are visualized in Figure 7.5. In order to compensate for the mean weighting
defect, the SADCT variant with DC coefficient separation and ∆DC correction is used for the
remainder of the thesis. In this scheme, the DC coefficient, e.g. c(0,0) from the definitions
above, is calculated separately from the samples using the mean µS,k of the given segment
Sk. Then, the mean is subtracted from the input samples to the SADCT forward transform
process, e.g. es(x , y) = s(x , y) − µS,k. For transmission, c(0, 0) is replaced with µS,k, e.g.
c∗(0, 0) = µS,k. At the decoder side, c∗(0,0) is set to zero and the SADCT backward transform
is performed. This step requires ∆DC correction, since the original c(0,0) can have a non-
zero value depending on the shape parameters Li and L j, even if the input samples es(x , y)
are zero-mean.

Other deficiencies of the SADCT are well-known and have been pointed out in the litera-
ture [BOA96]:

• The shifting operation that aligns the columns with the top block boundary can de-
crease the correlation between neighboring samples.

• The grouping of AC coefficients into rows after the vertical DCT has been computed
does not reflect the correlation expected between DCT coefficients resulting from dif-
ferent transform lengths. It would be beneficial to group together coefficients of dif-
ferent length but similar frequency.

Nevertheless, the SADCT is a simple and straightforward transform that also fulfills the im-
portant property that transform coefficients are located at the top-left position just like regu-
lar DCT coefficients. This allows the same entropy coding process based on 4×4 coefficient
sub-blocks (CSBs) and pre-defined scan-orders of VVC / VTM-3.2 to be reused for coding of
SADCT coefficients. Furthermore, the transform basis functions t L(i, j) of different length
L are defined in such a way that the overall transform is considered pseudo-orthonormal.
Therefore, the same quantizer as for regular transform coefficients can also be reused and
no block-size dependent scaling or quantization is required.

In order to adapt the SADCT for GEO, an additional SADCT transform coding mode is
introduced which is evaluated by the encoder next to the default DCT-II and Skip-mode
coding. This allows the usage of DCT-II or Skip-mode as a fallback option. The signaling of
the SADCT mode is performed for transform units and is shown in syntax Table 7.1. Three
additional syntax elements are introduced:

1. tu_sadct_flag[x0][y0], a single-context CABAC-coded flag specifying if the SADCT is
enabled for the current luma residual of the transform block.

2. sps_sadct_code_partitions_flag, an SPS flag specifying if the SADCT codes a single
partition or the area around the partitioning line

3. tu_sadct_partition_flag[x0][y0], a bypass-coded flag coded specifying if the
residual of the first segment S0 or the second segment S1 is coded. If
tu_sadct_partition_flag[x0][y0]=0 is coded, all residual samples belonging to seg-
ment S1 are assumed to be zero. If tu_sadct_partition_flag[x0][y0]=1 is coded,
all residual samples belonging to segment S0 are assumed to be zero. If

159



7 Exploration on Transform Coding for Non-rectangular Partitions

x

y

s(x , y)

Mb(x , y)

S0

S1

s j s∗j

a j

D
C

T-
1

D
C

T-
2

D
C

T-
2

D
C

T-
3

D
C

T-
4

D
C

T-
5

D
C

T-
6

a j

bi

DCT-7
DCT-6
DCT-4
DCT-3
DCT-2
DCT-1

ci

c(x , y)

1.

2.

3.

4.

5.

Figure 7.5 Visualization of the SADCT algorithm for an exemplified GEO block.

x

y Skipped
CSB

csb_flag=0

Skipped
CSB

csb_flag=0

Skipped
CSB

csb_flag=0

Skipped
CSB

csb_flag=0

Skipped
CSB

csb_flag=0

0 2 5 9
1 4 8 12
3 7 1114
6 101315

0 2 5 9
1 4 8 12
3 7 1114
6 101315

0 2 5 9
1 4 8 12
3 7 1114
6 101315

Last Significant Coefficient

Figure 7.6 Visualization of the SADCT coefficient coding, based on 4×4 CSGs in VTM-3.2. Note that
the CSG flags for skipped CSGs are not signaled due to the last significant coefficient position coding
beforehand.

160



7.2 Shape-adaptive DCT Coding for GEO

sps_sadct_code_partitions_flag is false, then tu_sadct_partition_flag is omitted, and
a stripe of residual samples is always transform coded.

The scanning process for CSBs and SADCT coefficients is visualized in Figure 7.6. The last
significant coefficient position is signaled first. Derived from the last significant coefficient
position, coefficient sub-group flags csg_flag[xS][yS] are either coded or skipped. For coeffi-
cient sub-groups that contain at least one non-zero coefficient, csg_flag[xS][yS]=1 is coded.
Then, transform coefficient levels of a sub-block are coded in five passes over the scan posi-
tions.

As mentioned above, two types of SADCT coding are considered in the next experiments:

1. Experiment 7.28: Coding of the residual samples for segment S0 or S1, thereby as-
suming that the residual in the other segment S1 or S0 is equal to zero. This type of
coding is performed when sps_sadct_code_partitions_flag is true. The underlying as-
sumption of this coding mode is that motion compensated prediction performs well
in one segment but fails or is sub-optimal in the other segment. This coding mode is
visualized in Figure 7.7a. The detailed coding results are shown in Table A.36. For
this experiment, a marginal improvement of −0.04% in terms of luma BD-rate change
over VTM-3.2 + GEO is reported. The largest relative improvements are measured for
BasketballDrive at −0.09 % and for the two screen content sequences SlideEditing and
SlideShow, measured at −0.08% and −0.10%, respectively.

2. Experiment 7.29: Coding of residual samples that are contained in a rectangular
stripe of samples around the partitioning line. This type of coding is performed when
sps_sadct_code_partitions_flag is false. Here, the assumption is that the highest pre-
diction error is occurring in the blending region, as it was analyzed in Section 5.1.1.
This type of coding is visualized in Figure 7.7b. The detailed coding results are shown
in Table A.37. A lower improvement in coding efficiency compared to Experiment 7.28
can be reported with a luma BD-rate change of −0.02 % over VTM-3.2 + GEO. Here,
the largest improvements are measured for BQMall at −0.07 %, BasketballDrive and
RitualDance, both at −0.06 %.

The small impact on coding efficiency can be explained by the low mode utilization, shown
in Figure 7.8. Overall, only about 3 % of all luma samples coded with GEO are using the
SADCT and the majority of blocks is still coded using the DCT-II, in cases where a residual is
signaled. Multiple reasons can be assumed for this behavior, such as higher coefficient coding
costs for SADCT coefficients compared to DCT coefficients and slightly worse decorrelation
properties.

Examples of 32 × 32 luma transform blocks that are using the SADCT are given in Fig-
ure 7.9. In each sub-figure, the original, uncompressed block is shown on the left. Next to
the original, the prediction block using GEO and resulting uncoded residual is shown. For
visual reference, the binary partitioning mask is also shown. On the right side, the quantized
SADCT coefficients and the corresponding coded residual in the spatial domain is depicted.
Lastly, the reconstructed block (before loop-filtering is applied) is shown. The examples were
selected from all SADCT coded blocks conditioned on having a qualitatively high residual
energy and are randomly picked. Figures 7.9a and 7.9b both show examples, where motion
compensation results in a low prediction error in one segment and a high prediction error

161



7 Exploration on Transform Coding for Non-rectangular Partitions

transform_unit( x0, y0, tbWidth, tbHeight, treeType ) { Descriptor

if( treeType = = SINGLE_TREE | | treeType = = DUAL_TREE_LUMA )

tu_cbf_luma[x0][y0] ae(v)

if( treeType = = SINGLE_TREE | | treeType = =
DUAL_TREE_CHROMA ) {

tu_cbf_cb[x0][y0] ae(v)

tu_cbf_cr[x0][y0] ae(v)

}
if( ( tu_cbf_luma[x0][y0] | | tu_cbf_cb[x0][y0] | | tu_cbf_cr[x0][y0] )

&& treeType != DUAL_TREE_CHROMA ) {
if( cu_qp_delta_enabled_flag && !IsCuQpDeltaCoded ) {
cu_qp_delta_abs ae(v)

if( cu_qp_delta_abs )

cu_qp_delta_sign_flag ae(v)

}
}
if( ( ( ( CuPredMode[x0][y0] = = MODE_INTRA ) &&

sps_mts_intra_enabled_flag ) | | ( ( CuPredMode[x0][y0] = =
MODE_INTER ) && sps_mts_inter_enabled_flag ) ) &&
tu_cbf_luma[x0][y0] && treeType != DUAL_TREE_CHROMA && (
tbWidth <= 32 ) && ( tbHeight <= 32 ) )

tu_mts_flag[x0][y0] ae(v)

if( tu_cbf_luma[x0][y0] )

residual_coding( x0, y0, Log2( tbWidth ), Log2( tbHeight ), 0 )

if( tu_cbf_cb[x0][y0] )

residual_coding( x0, y0, Log2( tbWidth / 2 ), Log2( tbHeight / 2 ), 1 )

if( tu_cbf_cr[x0][y0] )

residual_coding( x0, y0, Log2( tbWidth / 2 ), Log2( tbHeight / 2 ), 2 )

}
if( CuPredMode[x0][y0] = = MODE_INTER && tu_cbf_luma[x0][y0]

&& tbWidth <= 64 && tbHeight <= 64 &&
!transform_skip_flag[x0][y0][0] && !tu_mts_flag[x0][y0] ) {

tu_sadct_flag[x0][y0] ae(v)

if( tu_sadct_flag[x0][y0] && sps_sadct_code_partitions_flag)

tu_sadct_partition_flag[x0][y0] ae(v)

}

Table 7.1 Syntax table for the signaling of SADCT for a transform unit in accordance with the VVC
(Draft 3) specification.

162



7.3 Transform-skipping for GEO

S0 = 0

S1 = 0

(a) SADCT transform coding of residuals S0 or S1

S(x , y) = 0
∀{x , y : |d(x , y)|< γ}

(b) SADCT transform coding of transition zone

Figure 7.7 Visualization of the two SADCT coding modes, depending on the value of the SPS syntax
element sps_sadct_code_partitions_flag. Coding mode (a) is tested in Experiment 7.28, coding mode
(b) is tested in Experiment 7.29.

in the other segment, due to a highly textured content, likely belonging to the background.
For these two cases, the reconstruction quality is improved from about 26dB for the predic-
tion block to over 30 dB by coding a residual using the SADCT. Figures 7.9c and 7.9d show
two examples of disocclusions, where new content is being uncovered. For Figure 7.9c, the
reconstruction quality improves only slightly from 29.23 dB to 30.01dB but considerably
more for the larger disocclusion depicted in Figure 7.9d. For this selected example, the cod-
ing of an SADCT-based residual improves the prediction from 22.56dB to 31.96 dB for the
reconstruction.

Although these are only a few selected examples, they nevertheless show promising re-
sults that the SADCT performs as designed for cases where a significant residual is present
in only one GEO segment. However, the SADCT seems not to be competitive for the vast ma-
jority of GEO coded blocks and the resulting prediction errors. Further research and specific
adaptations regarding quantization and entropy coding of SADCT coefficients may boost the
performance. It is also noted that the shifting operation in the SADCT algorithm is actually
not required, since the residual samples are always arranged in a triangular shape or a shape
that can be decomposed into one or two rectangles and a triangle. Rotating and flipping the
residual can therefore provide a similar concentration of samples at the top-left corner and
would not impact the correlation of samples.

7.3 Transform-skipping for GEO

Another option for residual coding of non-rectangular partitions with distinct distributions
is transform-skipping. As introduced in Chapter 2, transform-skipping omits the 2D blocks
transform and encodes the quantized residual directly. This can also be seen as the appli-
cation of an identity transform, e.g. T = In of size n in horizontal or vertical direction.
Transform-skipping is one essential coding tool for screen content, due to the very weakly
correlated prediction error observed for such content. For GEO, transform-skipping might be
favorable for very small segments with a high prediction error. Since transform-skipping is
already part of VVC and implemented in VTM-3.22, it is sufficient to explicitly allow the us-

2It is noted that the transform skip coding has changed for VVC / VTM versions > 3.2. For example, the last
significant coefficient coding is omitted in the most recent versions.

163



7 Exploration on Transform Coding for Non-rectangular Partitions

QP22 QP27 QP32 QP37
0

20

40

60

80

100

120

R
el

at
iv

e
tr

an
sf

or
m

m
od

e
us

ag
e
[%
]

Skip DCT-II SADCT

Figure 7.8 Relative transform coding mode usages for GEO blocks across all classes, measured for
Experiment 7.28.

age of transform skip with GEO for any given block size. Three different coding experiments
are conducted to assess the impact of transform-skipping:

1. Experiment 7.30: Coding of the residual using transform-skip for the entire w × h
sized transform block or regular DCT-based coding. The detailed coding results are
presented in Table A.38. Overall, this improves the coding efficiency slightly compared
to VTM-3.2 + GEO. The luma BD-rate changes by −0.05 % according to the JVET
CTC. For classes A1 and A2, no improvement in coding efficiency can be reported,
likely due to a higher percentage of large block sizes utilized for UHD content. The
largest improvements were measured for class D and F sequences with −0.14 % and
−0.10 %,respectively. For individual sequences, the coding performance was improved
specifically for BQTerrace (−0.35 %), BQSquare (−0.31 %) and SlideEditing (−0.22%).
However, BQTerrace and BQSquare are both considered to be quite noisy sequences,
which might explain the larger coding gain for these sequences. The higher coding
gain measured for screen content sequences is to be expected on the other hand.

2. Experiment 7.31: Coding of one residual segment, signaled by an additional flag and
quantization of the other segment residual to zero. The detailed coding results are
presented in Table A.39. In this setup, the encoder determines which segment shall
be coded with transform-skip and which shall be quantized to zero based on RD-
optimization. As a fallback option, DCT coding of the entire residual block is also
possible. Overall, the impact of coding efficiency is lower, measured at −0.02% ac-
cording to the JVET CTC. Even smaller coding efficiency reductions are measured for
the sequence classes compared to Experiment 7.30.

3. Experiment 7.32: Coding of one residual segment, signaled by an additional flag and
quantization of the other segment residual to zero as in Experiment 7.31. In addition,
the residual is shifted to the top-left corner, similarly as it is performed for SADCT
coding. The reasoning behind this approach is visualized in Figure 7.10: In order
to improve the coding of residuals that are not entirely located at the top-left corner
of the transform block, the residual samples are shifted to the top block-boundary

164



7.3 Transform-skipping for GEO

0 10 20 30

0

10

20

30

Original
Prediction:
26.06dB Residual

−400
−200
0
200
400

Partitioning
SADCT

coefficients

−400
−200
0
200
400

Coded
residual

−400
−200
0
200
400

Reconst.:
30.27dB

(a) RaceHorsesC, POC90, [448 224]

0 10 20 30

0

10

20

30

Original
Prediction:
26.51dB Residual

−400
−200
0
200
400

Partitioning
SADCT

coefficients

−400
−200
0
200
400

Coded
residual

−400
−200
0
200
400

Reconst.:
31.36dB

(b) MarketPlace, POC14, [1024 320]

0 10 20 30

0

10

20

30

Original
Prediction:
29.23dB Residual

−400
−200
0
200
400

Partitioning
SADCT

coefficients

−400
−200
0
200
400

Coded
residual

−400
−200
0
200
400

Reconst.:
30.01dB

(c) BQMall, POC2, [96 192]

0 10 20 30

0

10

20

30

Original
Prediction:
22.56dB Residual

−400
−200
0
200
400

Partitioning
SADCT

coefficients

−400
−200
0
200
400

Coded
residual

−400
−200
0
200
400

Reconst.:
31.96dB

(d) RitualDance, POC60, [896 608]

Figure 7.9 Selected examples for 32 × 32 GEO predicted and SADCT coded blocks for JVET test
sequences, coded at QP32.

165



7 Exploration on Transform Coding for Non-rectangular Partitions

x

y

s(x , y)

Mb(x , y)

S0

S1

s∗(x , y)

Skipped
CSB

csb_flag=0

Skipped
CSB

csb_flag=0

Skipped
CSB

csb_flag=0

Skipped
CSB

csb_flag=0

Skipped
CSB

csb_flag=0

0 2 5 9
1 4 8 12
3 7 1114
6 101315

0 2 5 9
1 4 8 12
3 7 1114
6 101315

0 2 5 9
1 4 8 12
3 7 1114
6 101315

Last Significant Sample

1. 2.

Figure 7.10 Visualization of residual sample shifting applied before transform-skip coding used in
Experiment 7.31.

first, followed by a shift to the left. Therefore, the last significant coefficient coding
can be efficiently applied and Coefficient sub-group (CSG) flag bits for irrelevant CSG
are saved. Compared to Experiment 7.31 without this modification, coding efficiency
again increases to −0.05% over the JVET test set. Furthermore, the coding gain for
class D improves to −0.20%.

Overall, it can be stated that transform-skipping in combination with GEO only impacts
sequences of small resolutions (class D) with measurable significance. Transform-skipping
applied to larger GEO predicted blocks does not seem to be competitive in the rate-distortion
sense. However, allowing transform-skipping for larger, regular partitioned blocks might also
result in similar results and should be investigated in the future.

7.4 Encoder-side Transform Optimizations with
Decoder-side Masking

Alternative transform coding approaches for non-rectangular shapes that still rely on the
regular DCT-II are also possible. The general idea behind such approaches involves an en-
coder side optimization in the spatial or transform domain such that the block transform is
only applied to the relevant segment. At the decoder side, a masking operation is required
for reconstruction, in order to set the reconstructed sample outside of the relevant segment
to zero. Here, different methods can be distinguished:

1. Padding or extension algorithms that insert samples into the region outside of the cur-
rent segment, e.g. for the case of GEO, if segment S0 is to be coded, the samples of
segment S1 are being padded or extended and vice versa3. For certain shapes, such
as triangular partitions, symmetric extensions can be easily determined that corre-
spondingly exploit the symmetry properties of the DCT. After the padding has been
generated, the regular DCT-II can be applied. At the decoder side, only the relevant
reconstructed samples are masked out.

2. Iterative encoder-side optimization that chooses the best DCT bases considering only
the approximation error in the relevant segment. Since the DCT bases are overcom-
plete for a subspace smaller than the given block, this essentially becomes a sparse

3Zero-padding is considered the most trivial approach and therefore not further investigated. It is obvious
that a zero-padded residual will increase the number of high-frequency coefficients. If those are quantized
to zero, a serious degradation in compression performance is to be expected.

166



7.4 Encoder-side Transform Optimizations with Decoder-side Masking

approximation problem. A well-known method for such an optimization is Orthogonal
matching pursuit (OMP). This optimization can be formalized as,

min
c
‖s − T · c‖2

2 subject to ‖c‖0 < L (7.15)

where s in this case is the column-wise scanned 2D signal, to be represented by the
column-wise scanned DCT transform basis images in T and the coefficients c. To get
a sparse representation, the L0 norm is chosen as the imposed optimization criterion.
Only L non-zero coefficients are retained. Equation 7.15 can be easily extended to
arbitrary shapes using a masked version of OMP using a binary mask M ,also scanned
column-wise into the vector m:

min
c
‖m ◦ (s − T · c)‖2

2 subject to ‖c‖0 < L (7.16)

The downside of this approach is given by the fact that the masked DCT transform
basis images m ◦ T are an overcomplete set for the masked residual.

Lastly, transforms with arbitrarily shaped DCT basis images can also be easily found by pro-
jecting each 2D block DCT basis image T M ,N

j1, j2
of size M × N with 0≤ j1 < M and 0≤ j2 < N

onto the subspace defined by a segment Sk, k ∈ {0,1} using the binary mask Mb,k as follows:

tM(i, j) =

√

√ 2
M

c0 cos
�

j
�

i +
1
2

�

π

M

�

, c0 =

¨q

1
2 if j = 0

1 otherwise
(7.17)

t M
j =

�

tM(0, j) tM(1, j) ... tM(M − 1, j)
�T

(7.18)

T M ,N
j1, j2
= t M

j1
·
�

t N
j2

�T
(7.19)

T̂ M ,N
j1, j2
= T M ,N

j1, j2
◦Mb,k (7.20)

The full set of new basis images T̂ M ,N
j1, j2

, which are zero outside of the given segment Sk, is
not optimal since it represents an overcomplete set of basis images in general. Due to the
lower rank of T̂ M ,N

j1, j2
, some basis images are actually redundant and mutually dependent of

each other. An optimal set of basis images would correspond to the full rank of the sub-
space. A well-known method to reduce the number of M ·N basis images and find a smaller,
orthogonal subset from a larger set of (non-orthogonal) functions is the Gram-Schmidt or-
thogonalization. This concept has been discussed by Gilge and extended to arbitrary bases,
such as polynomials, splines and sinusoidal functions [Gil90]. The drawback of such an
approach is the loss of separability and different sets of transforms existing for each block
size and shape combination. Considering that 15 unique block sizes are available for VVC
and about 140 GEO partitions per block size, this would require the precomputation of 4200
transform sets.

In the following, details are presented regarding the first two practical approaches, using
a symmetric extension of the residual and the consideration of OMP for coefficient selection.

167



7 Exploration on Transform Coding for Non-rectangular Partitions

7.4.1 Symmetric Extension for TPM

For residual blocks that are partitioned by TPM or specific GEO modes passing through the
center of the given block, a symmetric extension can be easily derived as follows: A pre-
diction error block of size w× h shall be considered, partitioned into two triangular shaped
segments S0 and S1. If the segment S0, containing the residual samples s0(x , y), shall be
transform coded using the DCT-II and the segment S1 is considered to contain no residual,
e.g. s1(x , y) = 0, ∀ x , y ∈ S1, a point-symmetric extension of S0 is given by S̃0 with samples
s̃0(x , y) by:

s̃0(x , y) = s0(w− 1− x , h− 1− y) (7.21)

Then, a symmetric extension S0,E is generated by S0,E = S0+S̃0. It can now be shown in
accordance with [Din+13] that the DCT-II transform bases

p
2T M ,N

j1, j2
with 0 ≤ j1 < M and

0 ≤ j2 < N and all j1 + j2 even, M = h and N = w, form an orthogonal set for the block
S0,E. For completeness, the derivation of this assertion is given below. The two-dimensional
DCT-II basis images T M ,N

j1, j2
can also be written as:

tM ,N
j1, j2
(m, n) = c j,1c j,2 cos

�

j1

�

m+
1
2

�

π

M

�

cos
�

j2

�

n+
1
2

�

π

N

�

(7.22)

c j,1 =

¨
q

1
M if j1 = 0

q

2
M otherwise

(7.23)

c j,2 =

¨
q

1
N if j2 = 0

q

2
N otherwise

(7.24)

Two transform bases tM ,N
j1, j2
(m, n) and tM ,N

j3, j4
(m, n) are orthogonal if the condition

M−1
∑

m=0

N−1
∑

n=0

tM ,N
j1, j2
(m, n)tM ,N

j3, j4
(m, n) = δ( j3 − j1)δ( j4 − j2) (7.25)

is met. Using Equation 7.21 and considering that S0,E is the union of S0 and S̃0, Equation 7.25
can also be written as:

∑

m,n∈S0

tM ,N
j1, j2
(m, n)tM ,N

j3, j4
(m, n) +

∑

m,n∈S0

tM ,N
j1, j2
(M − 1−m, N − 1− n)tM ,N

j3, j4
(M − 1−m, N − 1− n)

= δ( j3 − j1)δ( j4 − j2) (7.26)

The mirrored transform bases tM ,N
j1, j2
(M − 1−m, N − 1− n) can then be rewritten as

tM ,N
j1, j2
(M − 1−m, N − 1− n) = (−1) j1+ j2 tM ,N

j1, j2
(m, n) (7.27)

using the symmetry properties of the cosine function. With the condition that j1 + j2 and
j3 + j4 are even and using Equation 7.27, Equation 7.26 can be rewritten as

2
∑

m,n∈S0

tM ,N
j1, j2
(m, n)tM ,N

j3, j4
(m, n) = δ( j3 − j1)δ( j4 − j2), (7.28)

168



7.4 Encoder-side Transform Optimizations with Decoder-side Masking

S1 = 0

Residual Symmetric residual extension

c0,0 c0,2 c0,4 c0,6

c2,0 c2,2 c2,4 c2,6

c4,0 c4,2 c4,4 c4,6

c6,0 c6,2 c6,4 c6,6

c1,1 c1,3 c1,5 c1,7

c3,1 c3,3 c3,5 c3,7

c5,1 c5,3 c5,5 c5,7

c7,1 c7,3 c7,5 c7,7

DCT coefficients

c0,0 c0,2 c0,4 c0,6

c2,0 c2,2 c2,4 c2,6

c4,0 c4,2 c4,4 c4,6

c6,0 c6,2 c6,4 c6,6

c1,1 c1,3 c1,5 c1,7

c3,1 c3,3 c3,5 c3,7

c5,1 c5,3 c5,5 c5,7

c7,1 c7,3 c7,5 c7,7

Coefficient compaction

Figure 7.11 Visualization of symmetric residual extension for a TPM block and resulting DCT-II trans-
form coefficients.

proving that
p

2T M ,N
j1, j2

for all j1 + j2 even, form an orthogonal set over the symmetrically
extended block S0,E. Intuitively, the result is quite obvious, since a point-symmetric signal
can be perfectly represented by all basis images with even symmetry. Figure 7.11 visualizes
the method for a TPM block of sizes 8 × 8. Note how the transform coefficients cm,n are
arranged in a checkerboard pattern, fulfilling the above condition that no transform base
with m+ n odd is required.

Since coding of these coefficients using the default context modeling would not be a sen-
sible approach, a final coefficient compaction process is applied, by shifting all coefficients
to the left:

ĉ(m, n) =

¨

c
�

m, n
2

�

if m even

c
�

m, n−1
2

�

otherwise
(7.29)

The compacted coefficients ĉ(m, n) are then coded using the default entropy coding ap-
proaches of VVC. The symmetric residual extension of a luma segment is signaled in the
same manner as the usage of the SADCT in Section 7.2. A first flag, coded per TU, indicates
the usage of symmetric extension for the current block. If the value of the flag is one, a
second flag indicates which triangle shall be symmetrically extended. Two coding setups are
now experimentally tested, enabling the symmetric extension mode depending on the block
size. In both coding experiments, only TPM with the optional symmetric residual extension
is enabled and the GEO coding tool is turned off.

1. In Experiment 7.33, symmetric residual extension is enabled for all TPM block sizes.
The detailed coding results are shown in Table A.41. The coding results indicate that
this approach is not competitive. Overall, a slight loss in coding efficiency is reported
with an almost negligible luma BD-rate change of +0.01 % overall.

2. In Experiment 7.34, symmetric residual extension is enabled only for small TPM blocks
with w ≤ 16 and h ≤ 16, for which the signaling of a residual becomes more likely.
The detailed coding results are shown in Table A.42. The coding efficiency is again
only marginally effected with a luma BD-rate change of +0.01 %. Although the losses
for UHD sequences are now closer to zero, this experiments validates that this is not a
competitive way of coding triangular shaped residuals, even for smaller resolutions.

The common reason behind the almost non-existent impact on coding efficiency is again the
very low usage of this coding mode, shown in Figure 7.12 for Experiment 7.34. For a QP

169



7 Exploration on Transform Coding for Non-rectangular Partitions

QP22 QP27 QP32 QP37
0

20

40

60

80

100

120

R
el

at
iv

e
tr

an
sf

or
m

m
od

e
us

ag
e
[%
]

Skip DCT-II DCT-II+Extension

Figure 7.12 Relative transform coding mode usages for TPM blocks across all classes, measured for
Experiment 7.34.

of 22, only 1.17 % of all TPM samples are coded using the symmetric extension. This low
usage declines even further to 0.18% for QP37.

In summary, it must be stated that a symmetric extension of the residual according to the
TPM split is not a competitive method. Although improvements to the coefficient entropy
coding can probably be investigated, there seems to be no evidence that this will increase
the coding efficiency of TPM substantially.

7.4.2 Orthogonal Matching Pursuit (OMP)

The possibility of using OMP is only discussed theoretically in the context of this thesis. As
it was explained above, the goal of the iterative OMP process is to select sparse coefficients
c from an overcomplete transform T to approximate a signal s . Considering that s(x , y) is
the discrete two-dimensional function to be approximated and tλ(x , y) (or given as column
vectors tλ) are the basis functions of Twith 0≤ λ < N , e.g. N = w ·h for a given block. The
goal of OMP is to minimize the error e(s, g) in a least-squares sense given by:

g(x , y) = c0 t0 + c1 t1 + . . .+ cN−1 tN−1 (7.30)

e(s, g) =
∑

x

∑

y

(g(x , y)− s(x , y))2 (7.31)

The coefficients c that best approximate the signal s(x , y) are found by setting the partial
derivatives of e(s, g) to zero, leading to the following set of normal equations [Gil90]:

N−1
∑

n=0

cn

∑

x

∑

y

tn(x , y)tm(x , y)
!
=
∑

x

∑

y

s(x , y)tm(x , y), for m= 0...N − 1 (7.32)

It can be easily seen using Equation 7.25 that this set of coupled equations simplifies for
orthogonal bases to

170



7.4 Encoder-side Transform Optimizations with Decoder-side Masking

cm =
∑

x

∑

y

s(x , y)tm(x , y) (7.33)

which is nothing but the well-known multiplication of the signal by the transform matrix,
e.g. c = Ts . For non-orthogonal bases however, the problem given by Equation 7.32 remains
ill posed. Matching pursuit (MP) [MZ93] tries to solve this problem iteratively by subtracting
one weighted basis cλk

· tλk
from s in each step k, where cλk

is determined successively from
the transform bases that have the highest inner product, e.g. correlation, with the signal s
in the first step and the residual r in subsequent steps, updating a prediction ŝk according
to:

rk = rk−1 − cλk
tλk

, with r0 = s (7.34)

ŝk = ŝk−1 + cλk
tλk

, with ŝ0 = 0 (7.35)

In each step, MP chooses a different transform base given by its index λk. The residual r
quickly converges to zero as stated in [Tro04].

OMP [Tro04; TG07] initializes the approximation in the same way but adds a least squares
minimization to each step of MP to obtain the best approximation over transform bases that
have already been chosen. In each step, the best transform index λk is determined from the
transform set with highest inner product between the residual of the previous step and the
transform bases:

λk = argmax
j∈{0,...,N−1}

�

�rk−1 · t j

�

� (7.36)

Then, the transform matrix of selected basis function Tk is updated by adding the transform
base tλk

to it, e.g. Tk = [Tk−1 tλk
] with T0 defined as an empty matrix. The approximation

ŝk and residual rk are then derived by:

ck = arg min
c
‖s − Tkc‖2

2 (7.37)

ŝk = Tkck (7.38)

rk = s − ŝk (7.39)

Therefore, the residual rk is always orthogonal to the columns of Tk, hence the name of
the algorithm.

The stopping criterion for OMP can be defined in multiple ways, e.g. based on a maximum
number K of steps, e.g. coefficients, or a threshold for the MSE of rk.

In the following, a comparison is made between DCT, SADCT and OMP-based DCT cod-
ing of residual segments. For a fair comparison, the reconstruction quality of all three ap-
proaches is measured by the MSE between the original segment s(x , y) and the reconstruc-
tion estimate ŝk(x , y), where k denotes the number of high energy coefficients c of the full
transform that are kept. All other coefficients are quantized to zero:

ŝk,{DCT, SADCT, OMP} = T{DCT, SADCT}ck,{DCT, SADCT, OMP} (7.40)

171



7 Exploration on Transform Coding for Non-rectangular Partitions

ck+1 := [max (c − ck)] + ck (7.41)

c0 := [max (c)] (7.42)

In this notation, [max (a)] returns a vector of same size as a and containing the single
highest value of a at the corresponding position. Figure 7.13 shows the mean squared er-
ror of the reconstruction for a given number of coefficients of an AR(1) distributed residual
segment with ρ = 0.6, partitioned by a geometric split. It can be seen from the simula-
tion that an OMP-based DCT coefficient selection outperforms even the SADCT, meaning
that qualitatively fewer transform coefficients are required for (nearly) perfect reconstruc-
tion. Unsurprisingly, the block-based DCT is not competitive to the SADCT and OMP-based
DCT, due to the effect of zero-padding. Figure 7.14 shows the corresponding transform co-
efficients for DCT, SADCT and OMP-based DCT required for perfect reconstruction of the
masked residual. Here, however, a severe drawback of OMP compared to the SADCT be-
comes evident: Although the coefficients are very sparse, they are also scattered across the
transform block. The entropy coding scheme however expects transform coefficients to be
compact and located in the top-left corner where most of the transform domain signal energy
is concentrated in low frequency base functions. Therefore, coding experiments using OMP
performed during the work on this thesis have been unsuccessful in providing any significant
coding gain. A potential solution for this problem could be to constrain the OMP algorithm
further and add a rate regularization term to the minimization problem that reflects the
required property:

ck = arg min
c
‖s − Tkc‖2

2 +λR(cq) (7.43)

Where R(·) is an estimate of the bits required for coding the quantized coefficients cq.
However, this introduces multiple problems to finding the solution for Equation 7.43, since
the coefficient coding requires quantization to be applied first. This is a non-differentiable
operation and therefore difficult to model as well as the dependent entropy coding process.
Similar problems have been recognized in [Jia+16] in the context of using OMP for still
image coding. It is stated by the authors that the distribution of coded transform indices
λ for OMP-determined coefficients – although using transforms or dictionaries other than
the DCT for their specific problem – is rather uniform. Therefore, a fixed-length coding of
non-zero transform indices is proposed instead of a scan-based, bit-plane coding as used in
HEVC and VVC. The effect of such an adaptation remains to be investigated.

Lastly it is to be summarized that OMP-based coefficients selection for an overcomplete,
masked DCT base could be an interesting aspect to study further in the future. If a solu-
tion to the problem of efficiently coding sparse and scattered coefficients can be found or
if the sparse optimization can be regularized accordingly, this approach remains attractive
since only an additional masking is required for reconstruction at the decoder. Unlike the
SADCT case, no new transform bases need to be stored or computed at run time. An iterative
algorithm such as OMP however, could be an additional complexity burden for an encoder.

172



7.4 Encoder-side Transform Optimizations with Decoder-side Masking

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

Number of nonzero coefficients k

M
SE

of
re

co
ns

tr
uc

ti
on DCT

SADCT
OMP-DCT

Figure 7.13 Comparison of reconstruction quality for different transform schemes in terms of MSE
for a geometrically partitioned, AR(1) distributed residual, ρ = 0.6, depending on the number of
retained transform coefficients.

0 10 20 30

0

10

20

30

Residual

−20

0

20

DCT

1

3

5

7

9

dB

SADCT

k=105 non-zero coeff.

1

3

5

7

9

dB

OMP-DCT

k=63 non-zero coeff.

1

3

5

7

9

dB

Figure 7.14 Visualization of resulting transform coefficients for the residual segment on the left for
different transform schemes using DCT, SADCT and OMP-DCT.

173



7 Exploration on Transform Coding for Non-rectangular Partitions

7.5 Conclusions

The coding of the prediction error for geometrically partitioned segments remains an inter-
esting topic that should be further investigated in the future. Although the analysis of the
spatial distribution of the prediction error suggests that local, segment-dependent differences
exist, specialized transform coding approaches that target these cases may not result in any
significant coding gain over the plain DCT-II based block transforms. SADCT and transform-
skipping both result in marginal overall improvements of about −0.05 % in terms of luma
BD-rate change. Multiple reasons could explain this behavior, such as the non-optimized en-
tropy coding of transform coefficients for cases different from the separable DCT-II and MTS
scheme. Since GEO already requires more side-information bits to signal the partitioning,
these bits are “missing” for coding the residual. If a strong residual exists in a GEO or TPM
segment, it is likely that the encoder simply chooses to segment the local area into smaller
blocks using the MTT. Nevertheless, future research may result in competitive and practical
solutions to these problems.

174



8 Summary and Outlook

Continued improvements in motion compensated prediction have been one of the determin-
ing factors for better coding efficiency in hybrid video coding schemes. In particular, the
ability of combining highly flexible block partitioning structures with non-rectangular block
partitioning as realized by geometric block partitioning (GEO) has been demonstrated in
this thesis to improve the coding efficiency of state-of-the-art hybrid video coding. Overall,
the coding efficiency in a random-access configuration can be improved, measured by an
average luma BD-rate change of about −0.5% for the JVET CTC test set over VVC, the most
recent video coding standard in development. Higher gains are observed for sequences con-
taining rigid objects in motion, such as people, cars, or animals. For these type of sequences,
geometric block partitioning can better approximate object boundaries and model the sig-
nal characteristics more precisely. This ability is particularly useful at low bitrates, where
coding artifacts impair the perceived visual quality. Although the relative coding efficiency
improvements provided by GEO are lower compared to previous approaches reviewed in
Chapter 3, the additional gains require negligible additional decoding and manageable ad-
ditional encoding complexity for the reference encoder. The main contribution of this thesis
is a low-complexity geometric partitioning coding tool suitable for practical video coding
applications. Consequently, the technology presented in this thesis was accepted to be in-
cluded into VVC. Since the implementation of geometric partitioning in the VVC Test Model
is closely aligned with the discussed concepts, this thesis may serve as an in-depth guideline
beyond the usual algorithm or encoder description provided.

Important general design aspects regarding the representation, quantization, entropy cod-
ing, and prediction of geometric partitioning parameters were analyzed and discussed in
Chapter 4. First, two different parametrizations using block boundary intercept points and
angle-distance pairs were being compared, with the conclusion that angle-distance pairs
offer an overall easier controllable quantization and higher coding efficiency. An angle-
dependent quantization resulting in about 140 geometric splits per block size was deter-
mined to be optimal, although it is recognized that other optimization minima could be
found. The observed, non-equiprobable distribution of quantized angle and distance values
can be exploited by common entropy coding methods, such as Huffman coding in combina-
tion with binary arithmetic coding. Simpler coding techniques, such as truncated-binary or
fixed-length coding, provide slightly lower coding efficiency but require less decoding logic.
It was also shown that the geometric splits determined for the coding of moving objects
across multiple pictures display a correlation that can be exploited by temporal prediction.
This further improves the coding efficiency by about−0.1% on top of the previous results for
specific sequences. Although smooth and slowly changing object boundaries would suggest
that also spatial correlation exists across neighboring GEO blocks, no additional coding gain
could be realized with simple methods of prediction and coding, as considered in this thesis.

Chapter 5 detailed inter-prediction modifications required by GEO and also investigated
methods of motion vector prediction and coding that are offered by VVC and can be uti-

175



8 Summary and Outlook

lized by GEO. Blending – the per-sample weighting of pixels according to their distance
to the partitioning line – is the essential process that distinguishes GEO from other inter-
prediction coding tools. The amount of blending that is applied to smoothly combine two
inter-predicted segments has an impact on coding efficiency and is recognized to be reso-
lution and content dependent. It was shown in this thesis that a linear averaging with a
transition zone of approximately 5 samples centered at the partitioning boundary provides
a good compromise for UHD as well as HD and sub-HD sequences.

By adapting to the content characteristics and disabling the blending, GEO was also de-
veloped into a coding tool suitable for the compression of screen content. Significant coding
efficiency improvements of −2.15 % in terms of luma BD-rate change can be reported for
sequences containing text with graphics and motion.

Chapter 6 detailed simplifications and algorithmic improvements applied to the GEO cod-
ing tool that were developed in the context of the JVET standardization activity. These devel-
opments enabled the inclusion of GEO into VVC. Although the increased memory bandwidth
requirement for GEO when performing bi-prediction led to a restriction of the motion com-
pensation process to uni-prediction and an overall drop in coding efficiency improvements,
coding gain can still be retained for sequences showing the characteristics targeted by GEO.
While previous attempts of including extensive geometric partitioning into video coding stan-
dards were not successful due to high complexity, an improved encoder search strategy to
determine the rate-distortion optimal partitioning was developed that causes an increase of
the encoding run time to only 106 % and 108 % for random access and low delay coding
scenarios.

In Chapter 7, methods of transform coding for the inter-prediction error signal resulting
from geometric partitioning were briefly explored. Shape-adaptive DCT coding, transform-
skipping, and encoder-side optimizations were evaluated, but provided little additional cod-
ing efficiency improvement. Future investigations into these topics may build upon these
findings.

Most experimental results in this thesis were obtained by conducting encoding and decod-
ing simulations according to the CTC by JVET. These specify 26 video sequences of different
resolution, frame rate and content-type for the evaluation of proposed coding methods and
also standardized methods of computing the relative coding efficiency against a reference.
All methods were implemented in the VVC Test Model reference software, versions 3.2 and
5.0. Furthermore, perceived subjective quality was measured using VMAF. These measure-
ments and visual inspection of selected, coded still pictures indicate that geometric block
partitioning could also be visually beneficial, leading to fewer blocking artifacts and sharper
object boundaries at low data rates.

The development of GEO as a coding tool for VVC is certainly not finished. Further opti-
mizations regarding the quantization, prediction and entropy coding are to be expected in
the future. The combination of GEO with other coding tools, such as affine motion models
or intra-prediction, offers additional research opportunities. At last, the extension of GEO to
a parametric block partitioning approach with even higher flexibility, e.g. using polygons,
Bézier curves, or B-splines, could build a bridge between coding efficiency-oriented block
tools and object-based coding.

176



A Appendix

List of experiments

• Experiment 4.1: Basic GEO performance with fixed quantization, Table A.1

• Experiment 4.2: Angle-dependent distance quantization, Table A.3

• Experiment 4.3: Intercept representation (80 partitions), Table A.5

• Experiment 4.4: Intercept representation (266-352 partitions), Table A.6

• Experiment 4.5: Intercept representation (266-1472 partitions), Table A.7

• Experiment 4.6: Huffman coding of GEO partition, Table A.8

• Experiment 4.7: Truncated-binary coding of GEO partition, Table A.9

• Experiment 4.8: Separate coding of angle-distance parameters, Table A.10

• Experiment 4.9: AD, spatial prediction, full refinement coding, Table A.11

• Experiment 4.10: AD, spatial prediction, limited refinement coding, Table A.13

• Experiment 4.11: AD, spatial prediction, no refinement coding, Table A.14

• Experiment 4.12: BI, spatial prediction, full refinement coding, Table A.15

• Experiment 4.13: BI, spatial prediction, limited refinement coding, Table A.17

• Experiment 4.14: BI, spatial prediction, no refinement coding, Table A.18

• Experiment 4.15: AD, temporal prediction, full refinement coding, Table A.19

• Experiment 4.16: AD, temporal prediction, limited refinement coding, Table A.21

• Experiment 4.17: AD, temporal prediction, no refinement coding, Table A.22

• Experiment 4.18: BI, temporal prediction, full refinement coding, Table A.23

• Experiment 4.19: BI, temporal prediction, limited refinement coding, Table A.25

• Experiment 4.20: BI, temporal prediction, no refinement coding, Table A.26

• Experiment 5.21: Blending filter length dm = 1, Table A.27

• Experiment 5.22: Blending filter length dm = 3, Table A.28

• Experiment 5.23: Blending filter length dm = 5, Table A.29

177



A Appendix

• Experiment 5.24: Blending filter length dm = 7, Table A.30

• Experiment 5.25: Restriction of GEO to uni-directional prediction, Table A.33

• Experiment 5.26: Combination of GEO with MMVD, Table A.32

• Experiment 6.27: VTM-5.0 simplifications, RA: Table A.34, LDB: Table A.35

• Experiment 7.28: SADCT coding of residual segments, Table A.36

• Experiment 7.28: SADCT coding of transition zone residual, Table A.37

• Experiment 7.30: Transform skip for GEO TB, Table A.38

• Experiment 7.31: Transform skip for GEO residual segments, Table A.39

• Experiment 7.32: Transform skip for GEO residual segments + shifting, Table A.40

• Experiment 7.33: Symmetric extension for TPM residual segments, all blocks, Ta-
ble A.41

• Experiment 7.34: Symmetric extension for TPM residual segments, blocks {w, h} ≤ 16,
Table A.42

178



BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 −0.36 % −1.04 % −0.76 % 109.50 % 124.76 % −0.22 %

FoodMarket4 −0.32 % −0.42 % −0.28 % 107.27 % 150.25 % −0.24 %

Campfire −0.08 % −0.11 % −0.35 % 113.84 % 151.52 % −0.20 %

CatRobot1 −0.32 % −0.68 % −0.84 % 106.52 % 159.42 % −0.25 %

DaylightRoad2 −0.11 % −0.57 % −0.30 % 106.11 % 158.22 % −0.06 %

ParkRunning3 −0.27 % −0.28 % −0.24 % 110.87 % 146.68 % −0.21 %

MarketPlace −0.23 % −0.05 % −0.62 % 117.48 % 146.41 % −0.02 %

RitualDance −0.15 % −0.42 % −0.75 % 123.15 % 135.71 % −0.17 %

Cactus −0.39 % −0.64 % −0.53 % 125.32 % 164.82 % −0.23 %

BasketballDrive −0.22 % −0.67 % −0.53 % 118.05 % 152.29 % −0.25 %

BQTerrace −0.41 % −0.64 % −0.28 % 111.11 % 164.69 % −0.20 %

BasketballDrill −0.52 % −0.97 % −0.82 % 116.64 % 159.71 % −0.36 %

BQMall −0.92 % −1.08 % −1.17 % 121.70 % 165.21 % −0.50 %

PartyScene −0.29 % −0.48 % −0.57 % 126.30 % 127.99 % −0.11 %

RaceHorsesL −0.76 % −1.41 % −1.05 % 118.45 % 114.04 % −1.07 %

BasketballPass −0.35 % −1.19 % −0.78 % 118.78 % 193.70 % 0.11 %

BQSquare −0.08 % 0.16 % 0.32 % 126.88 % 203.06 % −0.26 %

BlowingBubbles −0.23 % −0.27 % −0.27 % 128.55 % 181.58 % 0.04 %

RaceHorsesM −0.62 % −1.23 % −1.36 % 113.68 % 162.64 % −0.42 %

BasketballDrillText −0.53 % −0.68 % −0.76 % 115.61 % 160.35 % −0.15 %

ArenaOfValor −0.52 % −0.85 % −0.48 % 119.65 % 143.10 % −0.56 %

SlideEditing 0.00 % 0.00 % −0.02 % 110.74 % 78.59 % −0.05 %

SlideShow −0.25 % −0.44 % −0.26 % 117.34 % 94.01 % −0.45 %

Mean −0.34 % −0.61 % −0.55 % 116.68 % 149.51 % −0.25 %

Class A1 −0.25 % −0.52 % −0.46 % 109.55 % 141.11 % −0.22 %

Class A2 −0.23 % −0.51 % −0.46 % 107.25 % 154.05 % −0.18 %

Class B −0.28 % −0.48 % −0.54 % 118.45 % 151.92 % −0.17 %

Class C −0.62 % −0.98 % −0.90 % 120.45 % 139.52 % −0.51 %

Class D −0.32 % −0.63 % −0.53 % 120.58 % 184.07 % −0.13 %

Class F −0.32 % −0.49 % −0.38 % 115.58 % 113.77 % −0.30 %

JVET Overall −0.36 % −0.63 % −0.61 % 114.83 % 146.74 % −0.27 %

Table A.1 Coding results for Experiment 4.1 with angle-distance representation and no predic-
tion used. Test: VTM-3.2 + GEO, Reference: VTM-3.2, RA according to JVET CTC. AD: ∆ϕ =
11.25◦, ∆ρ =max(w, h)/8. Coding of GEO partitions using CFL,{7,8} code.

179



A Appendix

GEO usage for QP

Class Sequence QP22 QP27 QP32 QP37 Mean

A1 Tango2 6.37 % 4.57 % 4.38 % 4.22 % 4.88 %

FoodMarket4 4.93 % 3.49 % 3.07 % 2.73 % 3.56 %

Campfire 4.72 % 2.33 % 1.84 % 1.59 % 2.62 %

A2 CatRobot1 5.25 % 2.79 % 2.37 % 2.11 % 3.13 %

DaylightRoad2 3.58 % 2.13 % 1.84 % 1.88 % 2.36 %

ParkRunning3 5.51 % 4.30 % 3.95 % 4.14 % 4.48 %

B MarketPlace 5.67 % 3.40 % 2.96 % 2.80 % 3.71 %

RitualDance 3.74 % 3.14 % 3.03 % 3.11 % 3.25 %

Cactus 9.60 % 4.64 % 3.75 % 3.41 % 5.35 %

BasketballDrive 5.31 % 3.86 % 3.51 % 3.17 % 3.96 %

BQTerrace 15.97 % 9.58 % 5.47 % 3.07 % 8.52 %

C BasketballDrill 9.25 % 8.93 % 8.43 % 8.30 % 8.73 %

BQMall 5.21 % 5.12 % 5.64 % 6.46 % 5.61 %

PartyScene 3.75 % 3.51 % 3.32 % 3.43 % 3.51 %

RaceHorsesL 7.36 % 7.79 % 7.80 % 7.60 % 7.64 %

D BasketballPass 4.88 % 5.58 % 5.85 % 6.25 % 5.64 %

BQSquare 2.94 % 1.66 % 0.84 % 0.49 % 1.48 %

BlowingBubbles 4.00 % 3.83 % 3.81 % 3.50 % 3.79 %

RaceHorsesM 7.24 % 7.61 % 7.97 % 7.16 % 7.50 %

F BasketballDrillText 9.25 % 8.93 % 8.43 % 8.30 % 8.73 %

ArenaOfValor 6.88 % 6.27 % 5.73 % 5.19 % 6.02 %

SlideEditing 1.05 % 0.99 % 0.90 % 1.00 % 0.99 %

SlideShow 1.16 % 1.22 % 1.29 % 1.62 % 1.32 %

Overall 5.81 % 4.59 % 4.18 % 3.98 % 4.64 %

Table A.2 Usage of GEO in percentage of area coded for Experiment 4.1

180



BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 −0.46 % −0.98 % −0.82 % 141.79 % 134.74 % −0.33 %

FoodMarket4 −0.32 % −0.35 % −0.44 % 126.67 % 131.71 % −0.17 %

Campfire −0.13 % −0.14 % −0.45 % 125.25 % 132.16 % −0.23 %

CatRobot1 −0.47 % −0.89 % −0.95 % 126.09 % 138.79 % −0.31 %

DaylightRoad2 −0.30 % −0.59 % −0.44 % 115.04 % 139.14 % −0.29 %

ParkRunning3 −0.30 % −0.28 % −0.25 % 139.98 % 131.90 % −0.22 %

MarketPlace −0.23 % −0.15 % −0.54 % 116.27 % 125.08 % −0.13 %

RitualDance −0.26 % −0.39 % −0.68 % 121.12 % 127.21 % −0.25 %

Cactus −0.46 % −0.65 % −0.65 % 131.94 % 145.49 % −0.43 %

BasketballDrive −0.27 % −0.64 % −0.67 % 119.32 % 135.99 % −0.36 %

BQTerrace −0.58 % −0.70 % −0.36 % 112.17 % 143.31 % −0.46 %

BasketballDrill −0.60 % −0.97 % −0.89 % 118.74 % 135.99 % −0.39 %

BQMall −1.13 % −1.45 % −1.28 % 113.92 % 142.15 % −0.70 %

PartyScene −0.30 % −0.50 % −0.62 % 133.12 % 97.88 % −0.26 %

RaceHorsesL −0.89 % −1.48 % −1.04 % 119.54 % 95.21 % −1.02 %

BasketballPass −0.36 % −1.07 % −0.72 % 118.19 % 154.48 % 0.10 %

BQSquare 0.01 % −0.12 % 0.21 % 127.33 % 160.88 % 0.27 %

BlowingBubbles −0.38 % −0.36 % −0.34 % 138.99 % 154.26 % −0.02 %

RaceHorsesM −0.73 % −1.54 % −1.33 % 124.28 % 129.56 % −0.39 %

BasketballDrillText −0.71 % −0.87 % −0.87 % 116.03 % 137.47 % −0.38 %

ArenaOfValor −0.68 % −1.04 % −0.61 % 121.64 % 138.66 % −0.53 %

SlideEditing −0.01 % −0.03 % −0.01 % 115.15 % 84.07 % −0.07 %

SlideShow −0.25 % −0.61 % −0.41 % 119.17 % 101.80 % −0.32 %

Mean −0.43 % −0.69 % −0.62 % 123.55 % 131.21 % −0.30 %

Class A1 −0.30 % −0.49 % −0.57 % 130.40 % 132.83 % −0.24 %

Class A2 −0.36 % −0.59 % −0.55 % 126.10 % 136.53 % −0.28 %

Class B −0.36 % −0.51 % −0.58 % 119.67 % 135.05 % −0.33 %

Class C −0.73 % −1.10 % −0.96 % 120.82 % 115.65 % −0.59 %

Class D −0.36 % −0.77 % −0.54 % 126.17 % 148.89 % −0.01 %

Class F −0.41 % −0.64 % −0.48 % 117.81 % 112.89 % −0.33 %

JVET Overall −0.45 % −0.68 % −0.67 % 123.34 % 129.43 % −0.37 %

Table A.3 Coding results for Experiment 4.2 with angle-distance representation and no predic-
tion used. Test: VTM-3.2 + GEO, Reference: VTM-3.2, RA according to JVET CTC. AD: ∆ϕ =
11.25◦, Nρ = 4. Coding of GEO partitions using CFL,{7,8} code.

181



A Appendix

GEO usage for QP

Class Sequence QP22 QP27 QP32 QP37 Mean

A1 Tango2 7.52 % 5.05 % 4.78 % 4.71 % 5.51 %

FoodMarket4 5.55 % 3.74 % 3.36 % 2.99 % 3.91 %

Campfire 5.36 % 2.71 % 2.14 % 1.86 % 3.02 %

A2 CatRobot1 6.14 % 3.29 % 2.74 % 2.55 % 3.68 %

DaylightRoad2 4.40 % 2.55 % 2.26 % 2.27 % 2.87 %

ParkRunning3 5.88 % 4.68 % 4.30 % 4.61 % 4.87 %

B MarketPlace 6.31 % 3.68 % 3.26 % 3.08 % 4.08 %

RitualDance 4.14 % 3.50 % 3.35 % 3.48 % 3.62 %

Cactus 10.88 % 5.12 % 3.98 % 3.68 % 5.91 %

BasketballDrive 6.27 % 4.40 % 4.00 % 3.60 % 4.57 %

BQTerrace 18.04 % 10.61 % 6.20 % 3.56 % 9.60 %

C BasketballDrill 9.86 % 9.36 % 9.08 % 8.83 % 9.28 %

BQMall 6.04 % 5.67 % 5.91 % 6.66 % 6.07 %

PartyScene 4.10 % 3.71 % 3.54 % 3.62 % 3.74 %

RaceHorsesL 8.09 % 8.62 % 8.50 % 8.62 % 8.46 %

D BasketballPass 5.32 % 5.65 % 6.16 % 6.68 % 5.95 %

BQSquare 3.40 % 1.87 % 0.98 % 0.64 % 1.72 %

BlowingBubbles 4.32 % 4.17 % 4.16 % 3.63 % 4.07 %

RaceHorsesM 7.77 % 8.26 % 8.28 % 7.81 % 8.03 %

F BasketballDrillText 9.86 % 9.36 % 9.08 % 8.83 % 9.28 %

ArenaOfValor 7.74 % 7.05 % 6.49 % 5.87 % 6.79 %

SlideEditing 1.30 % 1.02 % 0.97 % 1.04 % 1.08 %

SlideShow 1.24 % 1.36 % 1.51 % 1.74 % 1.46 %

Overall 6.50 % 5.02 % 4.57 % 4.36 % 5.11 %

Table A.4 Usage of GEO in percentage of area coded for Experiment 4.2

182



BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 −0.37 % −0.69 % −0.98 % 246.90 % 167.88 % −0.28 %

FoodMarket4 −0.31 % −0.48 % −0.49 % 212.85 % 223.00 % −0.21 %

Campfire −0.09 % −0.14 % −0.33 % 210.40 % 333.86 % −0.18 %

CatRobot1 −0.49 % −0.96 % −0.96 % 234.36 % 281.27 % −0.28 %

DaylightRoad2 −0.23 % −0.69 % −0.55 % 217.91 % 249.84 % −0.14 %

ParkRunning3 −0.25 % −0.30 % −0.27 % 217.74 % 161.09 % −0.18 %

MarketPlace −0.17 % −0.09 % −0.50 % 193.18 % 200.25 % −0.02 %

RitualDance −0.21 % −0.37 % −0.69 % 212.09 % 283.69 % −0.14 %

Cactus −0.38 % −0.40 % −0.63 % 195.15 % 385.31 % −0.29 %

BasketballDrive −0.23 % −0.59 % −0.61 % 171.79 % 252.52 % −0.33 %

BQTerrace −0.45 % −0.69 % −0.41 % 180.23 % 296.94 % −0.17 %

BasketballDrill −0.48 % −1.06 % −0.99 % 186.21 % 431.90 % −0.20 %

BQMall −1.00 % −1.17 % −1.22 % 160.97 % 257.71 % −0.66 %

PartyScene −0.25 % −0.55 % −0.41 % 154.78 % 169.89 % −0.14 %

RaceHorsesL −0.78 % −1.38 % −1.36 % 158.38 % 168.36 % −0.85 %

BasketballPass −0.34 % −0.83 % −0.86 % 162.22 % 316.50 % −0.03 %

BQSquare 0.12 % −0.03 % 0.33 % 169.00 % 274.20 % −0.23 %

BlowingBubbles −0.27 % −0.34 % −0.13 % 157.43 % 315.13 % 0.01 %

RaceHorsesM −0.67 % −1.20 % −1.23 % 138.50 % 197.89 % −0.38 %

BasketballDrillText −0.52 % −0.72 % −0.75 % 154.66 % 437.97 % −0.14 %

ArenaOfValor −0.53 % −0.87 % −0.69 % 209.66 % 469.27 % −0.44 %

SlideEditing −0.06 % −0.03 % −0.01 % 358.21 % 535.40 % −0.05 %

SlideShow −0.22 % −0.39 % −0.21 % 236.25 % 564.41 % −0.25 %

Mean −0.36 % −0.61 % −0.61 % 197.34 % 303.23 % −0.24 %

Class A1 −0.26 % −0.44 % −0.60 % 219.47 % 228.20 % −0.22 %

Class A2 −0.33 % −0.65 % −0.60 % 220.70 % 212.95 % −0.20 %

Class B −0.29 % −0.43 % −0.57 % 187.96 % 274.22 % −0.19 %

Class C −0.63 % −1.04 % −1.00 % 162.98 % 233.01 % −0.46 %

Class D −0.29 % −0.60 % −0.47 % 154.01 % 267.51 % −0.16 %

Class F −0.33 % −0.50 % −0.41 % 225.90 % 487.34 % −0.22 %

JVET Overall −0.38 % −0.64 % −0.70 % 192.73 % 240.61 % −0.27 %

Table A.5 Coding results for Experiment 4.3 with intercept representation and no prediction used.
Test: VTM-3.2 + GEO, Reference: VTM-3.2, RA according to JVET CTC. BI: ∆w = w/4, ∆h = h/4,
CFL,7 code (80 partitions).

183



A Appendix

BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 −0.46 % −0.78 % −0.87 % 313.17 % 196.64 % −0.41 %

FoodMarket4 −0.35 % −0.49 % −0.62 % 253.11 % 253.05 % −0.27 %

Campfire −0.10 % −0.11 % −0.36 % 260.51 % 288.00 % −0.19 %

CatRobot1 −0.56 % −1.16 % −1.07 % 227.03 % 276.68 % −0.39 %

DaylightRoad2 −0.28 % −0.51 % −0.37 % 253.86 % 234.99 % −0.10 %

ParkRunning3 −0.25 % −0.25 % −0.20 % 249.34 % 223.02 % −0.21 %

MarketPlace −0.14 % −0.23 % −0.71 % 212.21 % 207.43 % 0.05 %

RitualDance −0.20 % −0.31 % −0.64 % 262.81 % 255.21 % −0.08 %

Cactus −0.38 % −0.34 % −0.49 % 217.98 % 509.53 % −0.18 %

BasketballDrive −0.24 % −0.59 % −0.55 % 204.79 % 249.42 % −0.38 %

BQTerrace −0.43 % −0.74 % −0.14 % 215.32 % 304.41 % −0.42 %

BasketballDrill −0.52 % −0.91 % −0.84 % 225.82 % 499.48 % −0.30 %

BQMall −1.16 % −1.56 % −1.12 % 209.65 % 339.84 % −0.78 %

PartyScene −0.25 % −0.57 % −0.35 % 210.34 % 176.55 % −0.19 %

RaceHorsesL −0.92 % −1.35 % −1.17 % 214.66 % 195.95 % −1.04 %

BasketballPass −0.36 % −1.17 % −0.59 % 198.06 % 382.48 % −0.11 %

BQSquare −0.05 % −0.24 % 0.14 % 205.86 % 270.38 % −0.05 %

BlowingBubbles −0.25 % −0.48 % −0.57 % 199.88 % 315.43 % −0.04 %

RaceHorsesM −0.65 % −1.38 % −1.34 % 192.71 % 240.15 % −0.20 %

BasketballDrillText −0.55 % −0.74 % −0.90 % 229.77 % 415.41 % −0.33 %

ArenaOfValor −0.50 % −0.75 % −0.42 % 246.13 % 470.20 % −0.42 %

SlideEditing −0.03 % −0.07 % −0.05 % 386.90 % 466.47 % 0.03 %

SlideShow −0.29 % −0.48 % −0.46 % 238.61 % 451.92 % −0.51 %

Mean −0.39 % −0.66 % −0.60 % 236.02 % 314.03 % −0.28 %

Class A1 −0.31 % −0.46 % −0.62 % 271.33 % 235.80 % −0.29 %

Class A2 −0.36 % −0.64 % −0.54 % 241.63 % 237.28 % −0.24 %

Class B −0.28 % −0.44 % −0.51 % 220.43 % 286.69 % −0.20 %

Class C −0.71 % −1.10 % −0.87 % 212.56 % 275.03 % −0.57 %

Class D −0.32 % −0.82 % −0.59 % 196.02 % 292.53 % −0.10 %

Class F −0.34 % −0.51 % −0.46 % 267.63 % 443.76 % −0.31 %

JVET Overall −0.42 % −0.66 % −0.63 % 231.78 % 262.54 % −0.33 %

Table A.6 Coding results for Experiment 4.4 with intercept representation and no prediction used.
Test: VTM-3.2 + GEO, Reference: VTM-3.2, RA according to JVET CTC. BI: ∆w = w/8, ∆h = h/8,
CFL,9 code (266-352 partitions).

184



BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 −0.36 % −0.65 % −0.62 % 555.82 % 215.76 % −0.20 %

FoodMarket4 −0.32 % −0.36 % −0.67 % 474.04 % 207.17 % −0.29 %

Campfire −0.06 % −0.12 % −0.35 % 431.78 % 307.26 % −0.19 %

CatRobot1 −0.52 % −1.19 % −1.01 % 446.09 % 263.10 % −0.31 %

DaylightRoad2 −0.21 % −0.53 % −0.27 % 423.82 % 236.78 % −0.09 %

ParkRunning3 −0.21 % −0.19 % −0.18 % 449.39 % 228.17 % −0.18 %

MarketPlace −0.14 % 0.03 % −0.30 % 400.72 % 212.15 % 0.01 %

RitualDance −0.21 % −0.50 % −0.63 % 489.61 % 284.86 % −0.13 %

Cactus −0.33 % −0.47 % −0.57 % 414.39 % 517.57 % −0.24 %

BasketballDrive −0.18 % −0.66 % −0.45 % 326.69 % 221.66 % −0.13 %

BQTerrace −0.43 % −0.58 % −0.40 % 404.76 % 294.79 % −0.13 %

BasketballDrill −0.38 % −0.65 % −0.81 % 362.94 % 497.92 % −0.12 %

BQMall −1.06 % −1.44 % −1.15 % 359.27 % 274.06 % −0.71 %

PartyScene −0.24 % −0.41 % −0.39 % 340.14 % 116.19 % −0.09 %

RaceHorsesL −0.82 % −1.41 % −1.17 % 328.30 % 125.79 % −0.88 %

BasketballPass −0.26 % −1.09 % −0.66 % 301.03 % 440.55 % −0.00 %

BQSquare 0.11 % 0.16 % 0.44 % 396.06 % 476.80 % −0.29 %

BlowingBubbles −0.23 % −0.32 % −0.14 % 354.82 % 465.66 % 0.17 %

RaceHorsesM −0.56 % −1.05 % −1.11 % 295.16 % 284.45 % 0.10 %

BasketballDrillText −0.46 % −0.51 % −0.64 % 332.28 % 399.24 % −0.24 %

ArenaOfValor −0.40 % −0.68 % −0.27 % 392.04 % 433.87 % −0.42 %

SlideEditing −0.03 % −0.06 % −0.03 % 548.47 % 562.29 % −0.07 %

SlideShow −0.28 % −0.49 % −0.27 % 390.92 % 463.71 % −0.31 %

Mean −0.33 % −0.57 % −0.51 % 400.81 % 327.38 % −0.21 %

Class A1 −0.25 % −0.37 % −0.55 % 472.07 % 222.43 % −0.23 %

Class A2 −0.31 % −0.64 % −0.49 % 432.66 % 226.93 % −0.20 %

Class B −0.26 % −0.44 % −0.47 % 398.03 % 286.34 % −0.12 %

Class C −0.63 % −0.98 % −0.88 % 339.43 % 205.71 % −0.45 %

Class D −0.24 % −0.57 % −0.37 % 324.69 % 401.49 % −0.01 %

Class F −0.29 % −0.44 % −0.30 % 405.42 % 451.97 % −0.26 %

JVET Overall −0.37 % −0.61 % −0.60 % 401.36 % 237.93 % −0.25 %

Table A.7 Coding results for Experiment 4.5 with intercept representation and no prediction used.
Test: VTM-3.2 + GEO, Reference: VTM-3.2, RA according to JVET CTC. BI:∆w= w/16,∆h= h/16,
CFL,{9...11} code (266-1472 partitions).

185



A Appendix

BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 −0.48 % −1.01 % −0.81 % 121.00 % 108.77 % −0.42 %

FoodMarket4 −0.35 % −0.47 % −0.51 % 119.60 % 109.48 % −0.15 %

Campfire −0.15 % −0.15 % −0.42 % 128.28 % 97.82 % −0.24 %

CatRobot1 −0.55 % −0.79 % −0.91 % 111.85 % 89.09 % −0.41 %

DaylightRoad2 −0.32 % −0.78 % −0.40 % 113.24 % 107.36 % −0.18 %

ParkRunning3 −0.34 % −0.30 % −0.32 % 123.78 % 86.11 % −0.27 %

MarketPlace −0.24 % 0.04 % −0.65 % 127.09 % 108.50 % −0.07 %

RitualDance −0.27 % −0.54 % −0.70 % 138.44 % 107.60 % −0.26 %

Cactus −0.51 % −0.52 % −0.59 % 132.68 % 87.97 % −0.37 %

BasketballDrive −0.31 % −0.61 % −0.72 % 123.35 % 120.49 % −0.41 %

BQTerrace −0.63 % −0.67 % −0.47 % 137.38 % 110.18 % 0.11 %

BasketballDrill −0.71 % −1.05 % −0.94 % 153.45 % 96.75 % −0.48 %

BQMall −1.27 % −1.50 % −1.33 % 134.17 % 111.95 % −0.84 %

PartyScene −0.36 % −0.56 % −0.53 % 143.39 % 132.82 % −0.26 %

RaceHorsesL −0.96 % −1.42 % −1.31 % 131.21 % 110.50 % −1.27 %

BasketballPass −0.36 % −1.23 % −1.01 % 127.34 % 148.02 % −0.04 %

BQSquare −0.02 % −0.07 % 0.26 % 147.86 % 158.88 % 0.10 %

BlowingBubbles −0.41 % −0.20 % −0.16 % 135.25 % 146.03 % −0.43 %

RaceHorsesM −0.77 % −1.43 % −1.27 % 123.50 % 135.03 % −0.07 %

BasketballDrillText −0.64 % −0.85 % −1.01 % 136.97 % 111.22 % −0.36 %

ArenaOfValor −0.73 % −1.06 % −0.64 % 121.57 % 106.72 % −0.61 %

SlideEditing −0.06 % −0.06 % −0.04 % 115.52 % 113.71 % −0.15 %

SlideShow −0.35 % −0.75 % −0.55 % 115.32 % 119.80 % −0.35 %

Mean −0.47 % −0.69 % −0.65 % 128.79 % 114.12 % −0.32 %

Class A1 −0.33 % −0.54 % −0.58 % 121.93 % 102.02 % −0.27 %

Class A2 −0.40 % −0.62 % −0.54 % 115.78 % 91.26 % −0.29 %

Class B −0.39 % −0.46 % −0.63 % 131.49 % 104.77 % −0.20 %

Class C −0.83 % −1.13 % −1.03 % 139.93 % 110.35 % −0.71 %

Class D −0.39 % −0.74 % −0.55 % 132.07 % 143.41 % −0.11 %

Class F −0.44 % −0.68 % −0.56 % 121.80 % 111.40 % −0.37 %

JVET Overall −0.50 % −0.69 % −0.71 % 128.38 % 102.79 % −0.37 %

Table A.8 Coding results for Experiment 4.6 with Huffman coding of the partitioning information.
Test: VTM-3.2 + GEO, Reference: VTM-3.2, RA according to JVET CTC. AD: ∆ϕ = 11.25◦, Nρ = 4,
partitioning coded with CH code (Huffman trees).

186



BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 −0.47 % −1.19 % −1.11 % 117.48 % 100.18 % −0.30 %

FoodMarket4 −0.36 % −0.35 % −0.43 % 124.10 % 118.22 % −0.26 %

Campfire −0.11 % −0.14 % −0.44 % 116.53 % 93.34 % −0.21 %

CatRobot1 −0.56 % −0.91 % −0.99 % 123.60 % 93.49 % −0.45 %

DaylightRoad2 −0.33 % −0.83 % −0.42 % 120.52 % 107.83 % −0.15 %

ParkRunning3 −0.34 % −0.31 % −0.28 % 109.81 % 91.10 % −0.35 %

MarketPlace −0.26 % −0.25 % −0.27 % 131.88 % 102.90 % −0.24 %

RitualDance −0.24 % −0.44 % −0.71 % 129.13 % 95.95 % −0.22 %

Cactus −0.49 % −0.45 % −0.81 % 130.43 % 102.06 % −0.28 %

BasketballDrive −0.28 % −0.62 % −0.65 % 122.86 % 101.14 % −0.45 %

BQTerrace −0.57 % −0.52 % −0.41 % 131.57 % 101.97 % −0.29 %

BasketballDrill −0.65 % −1.07 % −1.02 % 123.31 % 102.74 % −0.48 %

BQMall −1.22 % −1.65 % −1.35 % 125.06 % 108.97 % −0.89 %

PartyScene −0.35 % −0.68 % −0.57 % 133.96 % 89.96 % −0.32 %

RaceHorsesL −0.90 % −1.64 % −1.43 % 135.45 % 100.89 % −0.82 %

BasketballPass −0.43 % −0.94 % −0.97 % 125.67 % 113.15 % 0.10 %

BQSquare −0.03 % −0.08 % 0.17 % 128.58 % 115.35 % −0.22 %

BlowingBubbles −0.36 % −0.40 % −0.26 % 131.91 % 104.83 % 0.01 %

RaceHorsesM −0.84 % −1.41 % −1.41 % 128.07 % 109.53 % −0.70 %

BasketballDrillText −0.69 % −0.63 % −0.78 % 122.09 % 105.49 % −0.41 %

ArenaOfValor −0.67 % −0.93 % −0.69 % 115.74 % 108.51 % −0.66 %

SlideEditing −0.03 % −0.03 % 0.00 % 121.70 % 107.18 % −0.10 %

SlideShow −0.33 % −0.65 % −0.45 % 125.42 % 103.02 % −0.55 %

Mean −0.46 % −0.70 % −0.66 % 124.99 % 103.38 % −0.36 %

Class A1 −0.31 % −0.56 % −0.66 % 118.84 % 101.93 % −0.26 %

Class A2 −0.41 % −0.68 % −0.56 % 117.73 % 96.62 % −0.32 %

Class B −0.37 % −0.46 % −0.57 % 128.90 % 100.10 % −0.30 %

Class C −0.78 % −1.26 % −1.09 % 129.24 % 99.82 % −0.63 %

Class D −0.41 % −0.71 % −0.62 % 128.43 % 109.95 % −0.20 %

Class F −0.43 % −0.56 % −0.48 % 121.09 % 105.74 % −0.43 %

JVET Overall −0.47 % −0.74 % −0.73 % 124.63 % 99.68 % −0.38 %

Table A.9 Coding results for Experiment 4.7 with truncated binary coding of the partitioning in-
formation. Test: VTM-3.2 + GEO, Reference: VTM-3.2, RA according to JVET CTC. AD: ∆ϕ =
11.25◦, Nρ = 4, partitioning coded with CTB code.

187



A Appendix

BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 −0.46 % −0.93 % −0.95 % 124.62 % 96.95 % −0.29 %

FoodMarket4 −0.33 % −0.43 % −0.44 % 124.88 % 115.91 % −0.23 %

Campfire −0.11 % −0.17 % −0.41 % 123.51 % 103.15 % −0.18 %

CatRobot1 −0.54 % −0.97 % −1.03 % 129.30 % 99.47 % −0.42 %

DaylightRoad2 −0.32 % −0.69 % −0.37 % 119.46 % 107.50 % −0.13 %

ParkRunning3 −0.33 % −0.30 % −0.28 % 116.36 % 97.13 % −0.27 %

MarketPlace −0.25 % −0.17 % −0.72 % 133.59 % 101.58 % −0.02 %

RitualDance −0.25 % −0.48 % −0.77 % 128.17 % 96.75 % −0.23 %

Cactus −0.49 % −0.65 % −0.74 % 134.51 % 100.86 % −0.53 %

BasketballDrive −0.28 % −0.69 % −0.66 % 130.78 % 89.06 % −0.31 %

BQTerrace −0.58 % −0.94 % −0.56 % 130.20 % 101.99 % −0.51 %

BasketballDrill −0.62 % −1.05 % −1.13 % 125.38 % 101.78 % −0.41 %

BQMall −1.21 % −1.41 % −1.13 % 122.58 % 95.19 % −0.84 %

PartyScene −0.33 % −0.58 % −0.52 % 134.83 % 115.84 % −0.09 %

RaceHorsesL −0.84 % −1.53 % −1.27 % 133.69 % 105.24 % −1.01 %

BasketballPass −0.37 % −1.14 % −0.83 % 125.93 % 112.65 % −0.15 %

BQSquare −0.01 % −0.15 % 0.41 % 128.01 % 111.34 % 0.00 %

BlowingBubbles −0.39 % −0.29 % −0.31 % 128.02 % 117.64 % −0.11 %

RaceHorsesM −0.82 % −1.31 % −1.33 % 124.01 % 104.71 % −0.32 %

BasketballDrillText −0.66 % −0.68 % −0.80 % 126.61 % 110.21 % −0.40 %

ArenaOfValor −0.69 % −1.09 % −0.67 % 124.98 % 109.48 % −0.59 %

SlideEditing −0.08 % −0.10 % −0.04 % 123.08 % 91.82 % 0.01 %

SlideShow −0.30 % −0.53 % −0.40 % 121.59 % 102.91 % −0.48 %

Mean −0.45 % −0.71 % −0.65 % 126.70 % 103.88 % −0.33 %

Class A1 −0.30 % −0.51 % −0.60 % 123.96 % 104.08 % −0.23 %

Class A2 −0.39 % −0.65 % −0.56 % 121.37 % 99.78 % −0.27 %

Class B −0.37 % −0.59 % −0.69 % 130.96 % 97.50 % −0.32 %

Class C −0.75 % −1.14 % −1.01 % 128.80 % 103.03 % −0.59 %

Class D −0.40 % −0.72 % −0.52 % 126.19 % 110.89 % −0.14 %

Class F −0.43 % −0.60 % −0.48 % 123.99 % 102.82 % −0.37 %

JVET Overall −0.46 % −0.73 % −0.73 % 127.01 % 100.71 % −0.36 %

Table A.10 Coding results for Experiment 4.8 with separate parameter coding of the partitioning
information. Test: VTM-3.2 + GEO, Reference: VTM-3.2, RA according to JVET CTC. AD: ∆ϕ =
11.25◦, Nρ = 4, partitioning coded with CFL,5 (angle), CFL,1 +CTU,Nρ−1 (distance).

188



BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 −0.49 % −0.89 % −0.99 % 329.81 % 173.56 % −0.36 %

FoodMarket4 −0.36 % −0.45 % −0.53 % 265.52 % 172.45 % −0.27 %

Campfire −0.19 % −0.20 % −0.52 % 251.76 % 173.52 % −0.29 %

CatRobot1 −0.60 % −1.17 % −1.15 % 260.00 % 164.93 % −0.42 %

DaylightRoad2 −0.34 % −0.79 % −0.45 % 284.22 % 152.13 % −0.10 %

ParkRunning3 −0.37 % −0.41 % −0.37 % 233.46 % 129.09 % −0.29 %

MarketPlace −0.27 % −0.09 % −0.56 % 263.60 % 142.25 % −0.16 %

RitualDance −0.27 % −0.56 % −0.78 % 284.88 % 159.33 % −0.26 %

Cactus −0.49 % −0.57 % −0.71 % 298.68 % 257.19 % −0.45 %

BasketballDrive −0.28 % −0.77 % −0.75 % 261.81 % 123.67 % −0.34 %

BQTerrace −0.68 % −0.83 % −0.52 % 261.07 % 134.93 % −0.31 %

BasketballDrill −0.61 % −1.27 % −1.27 % 307.23 % 211.46 % −0.40 %

BQMall −1.12 % −1.22 % −1.50 % 271.15 % 161.69 % −0.79 %

PartyScene −0.34 % −0.58 % −0.60 % 259.31 % 124.43 % −0.10 %

RaceHorsesL −0.89 % −1.64 % −1.62 % 284.28 % 141.46 % −1.18 %

BasketballPass −0.34 % −1.26 % −0.83 % 253.16 % 182.73 % −0.09 %

BQSquare 0.01 % −0.11 % 0.08 % 278.10 % 125.29 % 0.02 %

BlowingBubbles −0.34 % −0.36 % −0.29 % 266.75 % 177.18 % −0.35 %

RaceHorsesM −0.77 % −1.20 % −1.81 % 248.96 % 147.31 % −0.43 %

BasketballDrillText −0.65 % −0.78 % −1.09 % 309.06 % 256.09 % −0.38 %

ArenaOfValor −0.70 % −1.01 % −0.80 % 284.50 % 313.12 % −0.58 %

SlideEditing −0.09 % −0.08 % −0.05 % 504.13 % 597.46 % −0.06 %

SlideShow −0.28 % −0.52 % −0.45 % 346.49 % 475.59 % −0.46 %

Mean −0.45 % −0.73 % −0.76 % 287.30 % 204.21 % −0.35 %

Class A1 −0.35 % −0.51 % −0.68 % 275.45 % 170.15 % −0.31 %

Class A2 −0.44 % −0.79 % −0.66 % 256.22 % 145.19 % −0.27 %

Class B −0.40 % −0.57 % −0.67 % 270.94 % 153.99 % −0.30 %

Class C −0.74 % −1.18 % −1.25 % 277.69 % 153.39 % −0.62 %

Class D −0.36 % −0.73 % −0.71 % 259.96 % 154.56 % −0.21 %

Class F −0.43 % −0.60 % −0.60 % 350.64 % 379.97 % −0.37 %

JVET Overall −0.49 % −0.76 % −0.82 % 270.59 % 155.10 % −0.38 %

Table A.11 Coding results for Experiment 4.9 with spatial prediction and full refinement coding.
Test: VTM-3.2 + GEO, Reference: VTM-3.2, RA according to JVET CTC. AD: ∆ϕ = 11.25◦, Nρ = 4,
CFL,{7,8} explicit partition coding. Spatial prediction, predictor: CTU,2, refinement: CEG,1.

189



A Appendix

GEO spatial prediction mode usage for QP

Class Sequence QP22 QP27 QP32 QP37 Mean

A1 Tango2 2.23 % 6.67 % 7.75 % 7.82 % 6.12 %

FoodMarket4 3.14 % 6.42 % 7.89 % 8.89 % 6.59 %

Campfire 1.50 % 1.79 % 2.05 % 2.59 % 1.98 %

A2 CatRobot1 3.32 % 7.40 % 8.59 % 8.55 % 6.96 %

DaylightRoad2 1.85 % 5.06 % 7.46 % 10.74 % 6.28 %

ParkRunning3 2.24 % 3.90 % 5.45 % 6.39 % 4.50 %

B MarketPlace 2.44 % 5.28 % 6.63 % 7.23 % 5.39 %

RitualDance 4.18 % 5.72 % 6.35 % 6.99 % 5.81 %

Cactus 2.74 % 5.54 % 7.55 % 7.19 % 5.75 %

BasketballDrive 3.04 % 4.06 % 5.08 % 5.69 % 4.47 %

BQTerrace 1.89 % 4.13 % 5.81 % 6.01 % 4.46 %

C BasketballDrill 4.45 % 4.97 % 5.05 % 5.41 % 4.97 %

BQMall 5.05 % 8.27 % 10.69 % 11.99 % 9.00 %

PartyScene 2.43 % 4.09 % 5.06 % 6.28 % 4.47 %

RaceHorsesL 4.62 % 9.90 % 11.31 % 11.02 % 9.21 %

D BasketballPass 4.74 % 6.04 % 5.69 % 5.86 % 5.58 %

BQSquare 2.65 % 2.61 % 2.96 % 4.37 % 3.15 %

BlowingBubbles 3.99 % 5.11 % 5.35 % 6.42 % 5.22 %

RaceHorsesM 6.74 % 9.09 % 8.03 % 6.94 % 7.70 %

F BasketballDrillText 4.67 % 4.78 % 5.13 % 5.49 % 5.02 %

ArenaOfValor 5.26 % 5.87 % 6.84 % 7.61 % 6.39 %

SlideEditing 20.06 % 21.84 % 29.50 % 27.09 % 24.62 %

SlideShow 10.46 % 10.43 % 10.90 % 9.42 % 10.30 %

Overall 4.51 % 6.48 % 7.70 % 8.09 % 6.69 %

Table A.12 Relative usage of spatial prediction in percentage of area coded with GEO for Experi-
ment 4.9.

190



BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 −0.47 % −0.71 % −1.06 % 314.67 % 193.60 % −0.37 %

FoodMarket4 −0.38 % −0.49 % −0.55 % 272.98 % 162.54 % −0.23 %

Campfire −0.19 % −0.21 % −0.57 % 267.42 % 202.78 % −0.22 %

CatRobot1 −0.53 % −1.10 % −1.16 % 276.96 % 168.86 % −0.42 %

DaylightRoad2 −0.29 % −0.78 % −0.53 % 281.34 % 155.60 % −0.15 %

ParkRunning3 −0.37 % −0.42 % −0.35 % 225.01 % 126.49 % −0.32 %

MarketPlace −0.21 % −0.15 % −0.71 % 267.16 % 129.91 % −0.12 %

RitualDance −0.29 % −0.38 % −0.81 % 272.22 % 134.79 % −0.17 %

Cactus −0.52 % −0.66 % −0.83 % 294.40 % 251.86 % −0.27 %

BasketballDrive −0.29 % −0.82 % −0.84 % 253.89 % 115.96 % −0.50 %

BQTerrace −0.65 % −0.98 % −0.62 % 268.79 % 143.88 % −0.37 %

BasketballDrill −0.59 % −1.16 % −1.31 % 290.58 % 208.82 % −0.41 %

BQMall −1.17 % −1.23 % −1.63 % 246.70 % 162.41 % −0.80 %

PartyScene −0.31 % −0.62 % −0.55 % 264.76 % 106.98 % −0.15 %

RaceHorsesL −0.91 % −1.67 % −1.70 % 249.31 % 147.59 % −1.16 %

BasketballPass −0.36 % −1.31 % −0.97 % 259.68 % 169.82 % −0.05 %

BQSquare 0.01 % −0.11 % 0.19 % 275.63 % 114.26 % 0.16 %

BlowingBubbles −0.33 % −0.41 % −0.40 % 267.50 % 173.81 % −0.24 %

RaceHorsesM −0.78 % −1.44 % −1.49 % 239.14 % 144.20 % −0.52 %

BasketballDrillText −0.63 % −0.85 % −0.91 % 276.25 % 234.42 % −0.42 %

ArenaOfValor −0.70 % −1.17 % −0.83 % 301.71 % 248.38 % −0.64 %

SlideEditing −0.09 % −0.08 % −0.04 % 511.65 % 611.88 % −0.06 %

SlideShow −0.24 % −0.53 % −0.41 % 338.94 % 460.64 % −0.55 %

Mean −0.45 % −0.75 % −0.79 % 283.33 % 198.67 % −0.35 %

Class A1 −0.35 % −0.47 % −0.73 % 278.62 % 181.40 % −0.27 %

Class A2 −0.40 % −0.76 % −0.68 % 257.33 % 145.49 % −0.30 %

Class B −0.39 % −0.60 % −0.76 % 267.67 % 146.50 % −0.29 %

Class C −0.75 % −1.17 % −1.30 % 260.92 % 150.76 % −0.63 %

Class D −0.36 % −0.82 % −0.67 % 258.66 % 145.16 % −0.16 %

Class F −0.42 % −0.66 % −0.55 % 345.48 % 350.10 % −0.42 %

JVET Overall −0.48 % −0.76 % −0.88 % 265.89 % 153.86 % −0.38 %

Table A.13 Coding results for Experiment 4.10 with spatial prediction and limited refinement coding.
Test: VTM-3.2 + GEO, Reference: VTM-3.2, RA according to JVET CTC. AD: ∆ϕ = 11.25◦, Nρ = 4,
CFL,{7,8} explicit partition coding. Spatial prediction, predictor: CTU,2, refinement: CFL,1.

191



A Appendix

BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 −0.51 % −1.12 % −1.13 % 167.74 % 92.84 % −0.38 %

FoodMarket4 −0.40 % −0.43 % −0.61 % 152.39 % 108.36 % −0.20 %

Campfire −0.21 % −0.22 % −0.59 % 158.21 % 94.45 % −0.36 %

CatRobot1 −0.54 % −1.20 % −1.24 % 158.15 % 89.90 % −0.36 %

DaylightRoad2 −0.33 % −0.68 % −0.57 % 161.62 % 94.85 % −0.19 %

ParkRunning3 −0.40 % −0.42 % −0.37 % 144.42 % 85.95 % −0.34 %

MarketPlace −0.25 % −0.19 % −0.80 % 173.23 % 101.19 % −0.18 %

RitualDance −0.25 % −0.41 % −0.71 % 156.94 % 96.55 % −0.09 %

Cactus −0.55 % −0.79 % −0.83 % 162.83 % 103.12 % −0.33 %

BasketballDrive −0.29 % −0.89 % −0.87 % 157.53 % 81.77 % −0.30 %

BQTerrace −0.64 % −0.58 % −0.51 % 173.57 % 109.65 % −0.17 %

BasketballDrill −0.63 % −1.29 % −1.17 % 166.93 % 100.90 % −0.40 %

BQMall −1.20 % −1.24 % −1.53 % 161.23 % 101.75 % −0.86 %

PartyScene −0.33 % −0.67 % −0.57 % 174.07 % 100.92 % −0.16 %

RaceHorsesL −0.89 % −1.79 % −1.66 % 169.65 % 107.07 % −0.95 %

BasketballPass −0.37 % −1.15 % −0.77 % 163.37 % 105.04 % −0.10 %

BQSquare 0.01 % −0.20 % −0.15 % 186.36 % 100.53 % 0.15 %

BlowingBubbles −0.38 % −0.49 % −0.47 % 166.02 % 108.56 % −0.01 %

RaceHorsesM −0.75 % −1.30 % −1.65 % 162.75 % 108.06 % −0.47 %

BasketballDrillText −0.65 % −0.83 % −1.04 % 168.70 % 110.25 % −0.41 %

ArenaOfValor −0.70 % −1.11 % −0.82 % 149.04 % 100.74 % −0.77 %

SlideEditing −0.08 % −0.08 % −0.05 % 144.69 % 107.95 % −0.05 %

SlideShow −0.32 % −0.52 % −0.49 % 158.24 % 97.04 % −0.60 %

Mean −0.46 % −0.77 % −0.81 % 162.51 % 100.32 % −0.33 %

Class A1 −0.37 % −0.59 % −0.78 % 158.81 % 97.15 % −0.31 %

Class A2 −0.42 % −0.77 % −0.73 % 154.35 % 89.71 % −0.30 %

Class B −0.40 % −0.57 % −0.74 % 164.32 % 97.10 % −0.22 %

Class C −0.77 % −1.25 % −1.23 % 167.68 % 102.15 % −0.59 %

Class D −0.37 % −0.78 % −0.76 % 169.15 % 104.95 % −0.11 %

Class F −0.44 % −0.63 % −0.60 % 154.75 % 103.35 % −0.45 %

JVET Overall −0.49 % −0.80 % −0.88 % 162.04 % 96.88 % −0.35 %

Table A.14 Coding results for Experiment 4.11 with spatial prediction and no refinement coding.
Test: VTM-3.2 + GEO, Reference: VTM-3.2, RA according to JVET CTC. AD: ∆ϕ = 11.25◦, Nρ = 4,
CFL,{7,8} explicit partition coding. Spatial prediction, predictor: CTU,2.

192



BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 −0.45 % −1.10 % −1.05 % 277.03 % 185.26 % −0.38 %

FoodMarket4 −0.40 % −0.47 % −0.58 % 173.76 % 145.37 % −0.34 %

Campfire −0.11 % −0.18 % −0.45 % 191.45 % 184.24 % −0.22 %

CatRobot1 −0.61 % −1.17 % −1.24 % 166.25 % 166.01 % −0.54 %

DaylightRoad2 −0.29 % −0.62 % −0.47 % 175.94 % 138.28 % −0.33 %

ParkRunning3 −0.30 % −0.30 % −0.25 % 196.06 % 145.55 % −0.23 %

MarketPlace −0.20 % −0.21 % −0.67 % 156.56 % 116.12 % −0.06 %

RitualDance −0.23 % −0.37 % −0.77 % 189.05 % 147.73 % −0.20 %

Cactus −0.41 % −0.58 % −0.64 % 167.96 % 259.04 % −0.25 %

BasketballDrive −0.24 % −0.68 % −0.58 % 151.04 % 150.95 % −0.32 %

BQTerrace −0.50 % −0.60 % −0.37 % 155.10 % 154.00 % −0.00 %

BasketballDrill −0.51 % −1.18 % −1.03 % 168.26 % 267.21 % −0.20 %

BQMall −1.12 % −1.42 % −1.56 % 168.97 % 179.37 % −0.60 %

PartyScene −0.24 % −0.51 % −0.48 % 160.19 % 91.01 % 0.02 %

RaceHorsesL −0.92 % −1.67 % −1.73 % 154.88 % 109.80 % −1.13 %

BasketballPass −0.23 % −1.31 % −0.66 % 138.46 % 196.04 % −0.11 %

BQSquare 0.03 % −0.03 % 0.33 % 158.06 % 161.52 % −0.54 %

BlowingBubbles −0.16 % −0.22 % −0.11 % 164.68 % 183.58 % 0.39 %

RaceHorsesM −0.65 % −1.70 % −1.46 % 143.11 % 151.85 % 0.09 %

BasketballDrillText −0.55 % −0.73 % −1.04 % 169.16 % 272.99 % −0.13 %

ArenaOfValor −0.52 % −0.99 % −0.64 % 194.80 % 280.29 % −0.42 %

SlideEditing −0.06 % −0.07 % −0.05 % 314.55 % 328.07 % −0.12 %

SlideShow −0.34 % −0.61 % −0.52 % 193.83 % 276.20 % −0.43 %

Mean −0.39 % −0.73 % −0.70 % 179.53 % 186.54 % −0.26 %

Table A.15 Coding results for Experiment 4.12 with spatial prediction and full refinement coding.
Test: VTM-3.2 + GEO, Reference: VTM-3.2, RA according to JVET CTC. BI: ∆w = w/8, ∆h = h/8,
CFL,9 explicit partition coding. Spatial prediction, predictor: CTU,2, refinement: CEG,1.

193



A Appendix

GEO spatial prediction mode usage for QP

Class Sequence QP22 QP27 QP32 QP37 Mean

A1 Tango2 3.68 % 10.54 % 12.53 % 12.56 % 9.83 %

FoodMarket4 4.61 % 8.95 % 11.82 % 13.74 % 9.78 %

Campfire 1.79 % 2.63 % 3.08 % 3.13 % 2.66 %

A2 CatRobot1 5.31 % 11.21 % 12.89 % 12.97 % 10.59 %

DaylightRoad2 2.87 % 8.10 % 12.04 % 15.27 % 9.57 %

ParkRunning3 3.02 % 6.27 % 8.65 % 11.16 % 7.27 %

B MarketPlace 3.42 % 8.09 % 10.96 % 10.88 % 8.34 %

RitualDance 5.99 % 8.74 % 10.53 % 10.17 % 8.86 %

Cactus 3.65 % 8.29 % 10.37 % 10.46 % 8.19 %

BasketballDrive 4.54 % 6.26 % 6.88 % 7.50 % 6.29 %

BQTerrace 2.34 % 5.43 % 7.75 % 7.41 % 5.73 %

C BasketballDrill 5.68 % 6.78 % 7.51 % 7.69 % 6.91 %

BQMall 6.36 % 11.44 % 14.78 % 15.98 % 12.14 %

PartyScene 3.14 % 5.85 % 7.09 % 8.56 % 6.16 %

RaceHorsesL 7.44 % 13.43 % 16.87 % 15.08 % 13.20 %

D BasketballPass 6.41 % 8.08 % 7.54 % 8.57 % 7.65 %

BQSquare 3.06 % 2.00 % 1.51 % 2.69 % 2.31 %

BlowingBubbles 5.51 % 6.55 % 7.35 % 7.47 % 6.72 %

RaceHorsesM 9.76 % 12.28 % 11.61 % 10.64 % 11.07 %

F BasketballDrillText 6.48 % 6.65 % 7.33 % 6.94 % 6.85 %

ArenaOfValor 6.36 % 8.29 % 9.40 % 10.18 % 8.56 %

SlideEditing 19.79 % 22.34 % 24.38 % 29.54 % 24.01 %

SlideShow 14.48 % 13.25 % 14.05 % 10.29 % 13.02 %

Overall 5.90 % 8.76 % 10.30 % 10.82 % 8.95 %

Table A.16 Relative usage of spatial prediction in percentage of area coded with GEO for Experi-
ment 4.12.

194



BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 −0.44 % −0.98 % −1.02 % 263.28 % 195.46 % −0.33 %

FoodMarket4 −0.37 % −0.31 % −0.54 % 180.86 % 158.20 % −0.26 %

Campfire −0.14 % −0.17 % −0.47 % 192.40 % 184.96 % −0.24 %

CatRobot1 −0.62 % −1.30 % −1.32 % 178.29 % 174.77 % −0.43 %

DaylightRoad2 −0.30 % −0.82 % −0.51 % 188.57 % 159.23 % −0.18 %

ParkRunning3 −0.28 % −0.32 % −0.27 % 199.88 % 128.35 % −0.18 %

MarketPlace −0.19 % −0.28 % −0.52 % 163.73 % 132.43 % −0.17 %

RitualDance −0.24 % −0.37 % −0.78 % 195.99 % 161.68 % −0.19 %

Cactus −0.42 % −0.74 % −0.69 % 174.92 % 281.39 % −0.35 %

BasketballDrive −0.27 % −0.65 % −0.73 % 145.28 % 143.17 % −0.28 %

BQTerrace −0.48 % −0.78 % −0.37 % 168.55 % 172.93 % −0.37 %

BasketballDrill −0.49 % −1.08 % −1.05 % 180.18 % 264.69 % −0.23 %

BQMall −1.16 % −1.28 % −1.33 % 165.75 % 190.30 % −0.87 %

PartyScene −0.27 % −0.49 % −0.50 % 160.77 % 102.31 % −0.12 %

RaceHorsesL −0.91 % −1.67 % −1.62 % 164.81 % 123.79 % −0.93 %

BasketballPass −0.22 % −1.38 % −0.87 % 147.74 % 210.45 % −0.03 %

BQSquare 0.04 % 0.00 % 0.38 % 158.07 % 173.32 % −0.46 %

BlowingBubbles −0.22 % −0.23 % −0.37 % 165.89 % 208.25 % 0.18 %

RaceHorsesM −0.68 % −1.78 % −1.55 % 148.26 % 151.71 % −0.03 %

BasketballDrillText −0.52 % −0.84 % −1.04 % 174.83 % 287.50 % −0.08 %

ArenaOfValor −0.53 % −0.97 % −0.68 % 179.14 % 284.67 % −0.41 %

SlideEditing −0.04 % −0.06 % −0.02 % 305.80 % 317.90 % −0.09 %

SlideShow −0.30 % −0.60 % −0.49 % 198.94 % 372.26 % −0.43 %

Mean −0.39 % −0.74 % −0.71 % 182.69 % 199.12 % −0.28 %

Class A1 −0.32 % −0.49 % −0.67 % 207.74 % 176.63 % −0.27 %

Class A2 −0.40 % −0.81 % −0.70 % 187.88 % 149.56 % −0.26 %

Class B −0.32 % −0.56 % −0.62 % 167.52 % 169.09 % −0.27 %

Class C −0.71 % −1.13 % −1.13 % 166.73 % 157.06 % −0.54 %

Class D −0.27 % −0.85 % −0.60 % 153.26 % 182.91 % −0.08 %

Class F −0.35 % −0.62 % −0.56 % 207.39 % 307.81 % −0.25 %

JVET Overall −0.44 % −0.75 % −0.78 % 178.72 % 163.19 % −0.34 %

Table A.17 Coding results for Experiment 4.13 with spatial prediction and limited refinement coding.
Test: VTM-3.2 + GEO, Reference: VTM-3.2, RA according to JVET CTC. BI: ∆w = w/8,∆h = h/8,
CFL,9 explicit partition coding. Spatial prediction, predictor: CTU,2, refinement: CFL,1.

195



A Appendix

BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 −0.47 % −1.09 % −0.96 % 142.22 % 96.54 % −0.34 %

FoodMarket4 −0.39 % −0.47 % −0.69 % 108.90 % 98.43 % −0.42 %

Campfire −0.13 % −0.16 % −0.48 % 116.59 % 101.42 % −0.26 %

CatRobot1 −0.58 % −1.10 % −1.17 % 107.37 % 93.62 % −0.37 %

DaylightRoad2 −0.28 % −0.68 % −0.47 % 111.87 % 102.06 % −0.32 %

ParkRunning3 −0.27 % −0.31 % −0.30 % 122.38 % 104.88 % −0.21 %

MarketPlace −0.18 % −0.09 % −0.53 % 108.54 % 86.65 % −0.09 %

RitualDance −0.25 % −0.52 % −0.87 % 125.21 % 95.64 % −0.24 %

Cactus −0.44 % −0.48 % −0.66 % 99.66 % 115.61 % −0.45 %

BasketballDrive −0.25 % −0.75 % −0.78 % 97.09 % 108.61 % −0.23 %

BQTerrace −0.53 % −0.54 % −0.38 % 112.50 % 108.93 % −0.32 %

BasketballDrill −0.52 % −1.05 % −1.10 % 106.94 % 126.44 % −0.22 %

BQMall −1.15 % −1.45 % −1.65 % 107.47 % 122.24 % −0.83 %

PartyScene −0.28 % −0.49 % −0.50 % 112.34 % 91.54 % −0.05 %

RaceHorsesL −0.91 % −1.68 % −1.63 % 107.99 % 92.22 % −1.03 %

BasketballPass −0.23 % −1.27 % −0.70 % 93.78 % 148.23 % −0.02 %

BQSquare 0.04 % 0.07 % 0.19 % 115.37 % 129.96 % −0.63 %

BlowingBubbles −0.25 % −0.23 % −0.34 % 113.39 % 135.57 % 0.05 %

RaceHorsesM −0.66 % −1.71 % −1.41 % 97.89 % 111.54 % −0.28 %

BasketballDrillText −0.54 % −0.73 % −0.86 % 100.84 % 118.56 % −0.21 %

ArenaOfValor −0.55 % −0.93 % −0.71 % 103.49 % 107.93 % −0.41 %

SlideEditing −0.07 % −0.08 % −0.06 % 101.47 % 59.03 % −0.17 %

SlideShow −0.31 % −0.60 % −0.45 % 101.30 % 74.92 % −0.47 %

Mean −0.40 % −0.71 % −0.72 % 109.33 % 105.68 % −0.33 %

Class A1 −0.33 % −0.57 % −0.71 % 121.12 % 98.39 % −0.34 %

Class A2 −0.38 % −0.70 % −0.65 % 113.53 % 99.77 % −0.30 %

Class B −0.33 % −0.48 % −0.65 % 107.86 % 102.35 % −0.27 %

Class C −0.71 % −1.17 % −1.22 % 108.46 % 106.20 % −0.53 %

Class D −0.28 % −0.79 % −0.56 % 104.15 % 130.40 % −0.22 %

Class F −0.36 % −0.58 % −0.52 % 101.57 % 86.62 % −0.31 %

JVET Overall −0.44 % −0.72 % −0.81 % 111.69 % 102.03 % −0.36 %

Table A.18 Coding results for Experiment 4.14 with spatial prediction and no refinement coding.
Test: VTM-3.2 + GEO, Reference: VTM-3.2, RA according to JVET CTC. BI: ∆w = w/8,∆h = h/8,
CFL,9 explicit partition coding. Spatial prediction, predictor: CTU,2.

196



BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 −0.51 % −0.73 % −1.03 % 303.99 % 182.20 % −0.42 %

FoodMarket4 −0.39 % −0.52 % −0.59 % 279.66 % 172.85 % −0.21 %

Campfire −0.17 % −0.24 % −0.59 % 275.12 % 174.89 % −0.27 %

CatRobot1 −0.57 % −1.11 % −1.15 % 295.84 % 172.90 % −0.36 %

DaylightRoad2 −0.31 % −0.90 % −0.45 % 264.20 % 150.99 % −0.20 %

ParkRunning3 −0.40 % −0.44 % −0.39 % 233.53 % 133.69 % −0.41 %

MarketPlace −0.26 % −0.05 % −0.66 % 277.13 % 144.34 % −0.18 %

RitualDance −0.29 % −0.39 % −0.76 % 284.20 % 160.62 % −0.25 %

Cactus −0.56 % −0.59 % −0.78 % 318.97 % 266.51 % −0.44 %

BasketballDrive −0.29 % −0.76 % −0.71 % 265.18 % 128.45 % −0.36 %

BQTerrace −0.71 % −0.87 % −0.57 % 287.77 % 137.07 % −0.56 %

BasketballDrill −0.64 % −1.29 % −1.10 % 303.47 % 233.26 % −0.51 %

BQMall −1.22 % −1.44 % −1.46 % 259.32 % 165.78 % −0.94 %

PartyScene −0.31 % −0.53 % −0.53 % 258.32 % 123.58 % −0.05 %

RaceHorsesL −0.93 % −1.69 % −1.54 % 271.20 % 146.41 % −0.95 %

BasketballPass −0.32 % −1.30 % −0.94 % 264.24 % 176.14 % 0.05 %

BQSquare −0.03 % −0.12 % 0.38 % 276.33 % 125.30 % −0.17 %

BlowingBubbles −0.35 % −0.20 % −0.35 % 265.61 % 158.03 % 0.02 %

RaceHorsesM −0.77 % −1.61 % −1.88 % 252.28 % 161.21 % −0.58 %

BasketballDrillText −0.63 % −0.91 % −0.92 % 313.89 % 232.44 % −0.24 %

ArenaOfValor −0.79 % −1.21 % −0.88 % 327.09 % 305.20 % −0.92 %

SlideEditing −0.09 % −0.07 % −0.03 % 543.14 % 568.74 % −0.13 %

SlideShow −0.29 % −0.36 % −0.19 % 370.75 % 481.45 % −0.61 %

Mean −0.47 % −0.75 % −0.74 % 295.27 % 204.44 % −0.38 %

Class A1 −0.36 % −0.49 % −0.74 % 281.42 % 173.14 % −0.30 %

Class A2 −0.43 % −0.82 % −0.67 % 260.91 % 148.23 % −0.32 %

Class B −0.42 % −0.53 % −0.70 % 283.62 % 158.40 % −0.36 %

Class C −0.78 % −1.24 % −1.16 % 271.04 % 161.54 % −0.61 %

Class D −0.37 % −0.81 % −0.70 % 262.78 % 151.27 % −0.17 %

Class F −0.45 % −0.64 % −0.50 % 378.05 % 367.03 % −0.48 %

JVET Overall −0.51 % −0.77 % −0.82 % 275.14 % 159.95 % −0.41 %

Table A.19 Coding results for Experiment 4.15 with temporal prediction and full refinement coding.
Test: VTM-3.2 + GEO, Reference: VTM-3.2, RA according to JVET CTC. AD: ∆ϕ = 11.25◦, Nρ = 4,
CFL,{7,8} explicit partition coding. Temporal prediction, predictor CTU,2, refinement CEG,1.

197



A Appendix

GEO temporal prediction mode usage for QP

Class Sequence QP22 QP27 QP32 QP37 Mean

A1 Tango2 13.28 % 29.72 % 33.32 % 32.72 % 27.26 %

FoodMarket4 16.64 % 20.72 % 23.45 % 25.40 % 21.55 %

Campfire 12.88 % 11.19 % 13.41 % 12.78 % 12.57 %

A2 CatRobot1 24.70 % 37.48 % 38.61 % 37.80 % 34.65 %

DaylightRoad2 14.03 % 24.74 % 28.60 % 31.70 % 24.77 %

ParkRunning3 16.63 % 22.40 % 25.93 % 28.58 % 23.39 %

B MarketPlace 18.66 % 26.60 % 28.96 % 28.45 % 25.66 %

RitualDance 17.20 % 21.13 % 22.06 % 22.20 % 20.64 %

Cactus 18.73 % 28.15 % 33.11 % 33.64 % 28.41 %

BasketballDrive 17.00 % 22.99 % 25.46 % 26.64 % 23.02 %

BQTerrace 20.06 % 27.51 % 35.09 % 37.40 % 30.01 %

C BasketballDrill 24.76 % 28.59 % 31.70 % 33.07 % 29.53 %

BQMall 25.96 % 34.56 % 42.55 % 45.21 % 37.07 %

PartyScene 19.35 % 26.00 % 32.26 % 33.66 % 27.82 %

RaceHorsesL 18.45 % 28.29 % 32.87 % 33.01 % 28.16 %

D BasketballPass 24.54 % 30.70 % 33.50 % 32.16 % 30.23 %

BQSquare 25.05 % 24.74 % 28.00 % 29.38 % 26.80 %

BlowingBubbles 28.83 % 33.26 % 39.28 % 36.82 % 34.55 %

RaceHorsesM 24.92 % 28.43 % 31.40 % 30.52 % 28.82 %

F BasketballDrillText 24.72 % 27.47 % 29.27 % 32.46 % 28.48 %

ArenaOfValor 28.76 % 35.33 % 41.59 % 43.88 % 37.39 %

SlideEditing 27.52 % 38.26 % 40.21 % 42.22 % 37.05 %

SlideShow 18.10 % 19.76 % 21.00 % 24.81 % 20.92 %

Overall 20.90 % 27.31 % 30.94 % 31.94 % 27.77 %

Table A.20 Relative usage of temporal prediction in percentage of area coded with GEO for Experi-
ment 4.15.

198



BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 −0.54 % −0.73 % −1.15 % 304.90 % 184.86 % −0.41 %

FoodMarket4 −0.45 % −0.61 % −0.63 % 292.12 % 176.37 % −0.42 %

Campfire −0.15 % −0.24 % −0.57 % 269.74 % 189.37 % −0.24 %

CatRobot1 −0.62 % −1.22 % −1.21 % 267.08 % 160.12 % −0.43 %

DaylightRoad2 −0.38 % −0.92 % −0.51 % 263.42 % 157.52 % −0.29 %

ParkRunning3 −0.38 % −0.42 % −0.37 % 238.84 % 133.80 % −0.31 %

MarketPlace −0.30 % −0.15 % −0.67 % 288.17 % 151.16 % −0.20 %

RitualDance −0.28 % −0.49 % −0.84 % 278.37 % 160.52 % −0.22 %

Cactus −0.54 % −0.74 % −0.74 % 321.56 % 264.60 % −0.32 %

BasketballDrive −0.30 % −0.74 % −0.75 % 252.48 % 139.86 % −0.28 %

BQTerrace −0.69 % −0.83 % −0.64 % 294.31 % 148.11 % −0.27 %

BasketballDrill −0.65 % −1.19 % −1.11 % 309.21 % 235.09 % −0.47 %

BQMall −1.30 % −1.34 % −1.44 % 276.41 % 176.29 % −1.11 %

PartyScene −0.32 % −0.58 % −0.43 % 253.98 % 118.14 % −0.09 %

RaceHorsesL −0.88 % −1.73 % −1.66 % 279.95 % 160.92 % −1.18 %

BasketballPass −0.34 % −1.17 % −0.93 % 264.28 % 186.41 % 0.14 %

BQSquare −0.01 % −0.24 % 0.26 % 277.11 % 140.30 % 0.13 %

BlowingBubbles −0.41 % −0.43 % −0.36 % 270.76 % 180.81 % −0.14 %

RaceHorsesM −0.82 % −1.75 % −1.93 % 256.35 % 154.37 % −0.40 %

BasketballDrillText −0.73 % −0.88 % −1.09 % 308.34 % 275.06 % −0.43 %

ArenaOfValor −0.82 % −1.19 % −0.83 % 295.44 % 312.08 % −0.77 %

SlideEditing −0.09 % −0.07 % −0.04 % 526.15 % 645.64 % −0.14 %

SlideShow −0.31 % −0.43 % −0.25 % 362.87 % 483.72 % −0.66 %

Mean −0.49 % −0.79 % −0.78 % 293.56 % 214.57 % −0.37 %

Class A1 −0.38 % −0.53 % −0.78 % 284.71 % 178.94 % −0.36 %

Class A2 −0.46 % −0.85 % −0.70 % 254.59 % 147.61 % −0.34 %

Class B −0.42 % −0.59 % −0.73 % 283.86 % 164.98 % −0.26 %

Class C −0.79 % −1.21 % −1.16 % 277.76 % 165.87 % −0.71 %

Class D −0.40 % −0.90 % −0.74 % 265.71 % 162.44 % −0.07 %

Class F −0.49 % −0.64 % −0.55 % 362.33 % 400.17 % −0.50 %

JVET Overall −0.52 % −0.79 % −0.85 % 276.31 % 164.23 % −0.42 %

Table A.21 Coding results for Experiment 4.16 with temporal prediction and limited refinement cod-
ing. Test: VTM-3.2+ GEO, Reference: VTM-3.2, RA according to JVET CTC. AD:∆ϕ = 11.25◦, Nρ =
4, CFL,{7,8} explicit partition coding. Temporal prediction, predictor: CTU,2, refinement: CFL,1.

199



A Appendix

BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 −0.55 % −0.86 % −1.10 % 166.58 % 95.89 % −0.42 %

FoodMarket4 −0.43 % −0.51 % −0.60 % 157.11 % 108.65 % −0.39 %

Campfire −0.20 % −0.23 % −0.60 % 159.57 % 98.22 % −0.30 %

CatRobot1 −0.59 % −1.12 % −1.19 % 161.92 % 92.86 % −0.40 %

DaylightRoad2 −0.36 % −0.86 % −0.64 % 169.76 % 97.91 % −0.29 %

ParkRunning3 −0.39 % −0.43 % −0.39 % 141.83 % 92.80 % −0.33 %

MarketPlace −0.25 % −0.22 % −1.06 % 179.16 % 105.28 % −0.25 %

RitualDance −0.33 % −0.61 % −0.77 % 187.79 % 98.32 % −0.25 %

Cactus −0.58 % −0.78 % −0.86 % 181.23 % 116.98 % −0.35 %

BasketballDrive −0.34 % −0.64 % −0.83 % 178.69 % 97.94 % −0.34 %

BQTerrace −0.70 % −0.69 % −0.47 % 182.81 % 103.73 % −0.25 %

BasketballDrill −0.69 % −1.33 % −1.26 % 182.86 % 109.01 % −0.46 %

BQMall −1.26 % −1.41 % −1.57 % 177.87 % 126.97 % −0.87 %

PartyScene −0.38 % −0.63 % −0.65 % 188.10 % 102.37 % −0.26 %

RaceHorsesL −0.97 % −1.75 % −1.58 % 186.78 % 112.40 % −1.32 %

BasketballPass −0.43 % −1.27 % −0.85 % 169.14 % 118.94 % −0.12 %

BQSquare −0.04 % −0.32 % 0.06 % 190.60 % 111.58 % −0.33 %

BlowingBubbles −0.42 % −0.26 % −0.30 % 188.69 % 125.84 % −0.20 %

RaceHorsesM −0.77 % −1.60 % −1.59 % 171.15 % 120.56 % −0.52 %

BasketballDrillText −0.74 % −0.99 % −1.06 % 176.85 % 119.91 % −0.45 %

ArenaOfValor −0.79 % −1.18 % −0.90 % 168.06 % 109.88 % −0.83 %

SlideEditing −0.09 % −0.09 % −0.06 % 145.64 % 108.90 % −0.10 %

SlideShow −0.32 % −0.62 % −0.53 % 174.04 % 112.94 % −0.58 %

Mean −0.51 % −0.80 % −0.82 % 173.31 % 108.17 % −0.42 %

Class A1 −0.39 % −0.53 % −0.76 % 160.60 % 99.91 % −0.37 %

Class A2 −0.45 % −0.80 % −0.74 % 157.23 % 94.34 % −0.34 %

Class B −0.44 % −0.59 % −0.80 % 181.57 % 103.28 % −0.29 %

Class C −0.82 % −1.28 % −1.27 % 183.66 % 111.91 % −0.73 %

Class D −0.42 % −0.86 % −0.67 % 179.14 % 118.70 % −0.29 %

Class F −0.49 % −0.72 % −0.64 % 165.55 % 112.22 % −0.49 %

JVET Overall −0.53 % −0.81 % −0.90 % 172.67 % 102.94 % −0.43 %

Table A.22 Coding results for Experiment 4.17 with temporal prediction and no refinement coding.
Test: VTM-3.2 + GEO, Reference: VTM-3.2, RA according to JVET CTC. AD: ∆ϕ = 11.25◦, Nρ = 4,
CFL,{7,8} explicit partition coding. Temporal prediction, predictor: CTU,2.

200



BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 −0.56 % −0.80 % −1.07 % 261.83 % 197.84 % −0.44 %

FoodMarket4 −0.41 % −0.42 % −0.53 % 191.36 % 158.33 % −0.36 %

Campfire −0.12 % −0.17 % −0.46 % 193.84 % 182.90 % −0.27 %

CatRobot1 −0.69 % −1.39 % −1.28 % 176.45 % 161.46 % −0.41 %

DaylightRoad2 −0.34 % −0.94 % −0.45 % 179.38 % 146.93 % −0.28 %

ParkRunning3 −0.31 % −0.34 % −0.32 % 200.19 % 144.05 % −0.27 %

MarketPlace −0.18 % −0.09 % −0.86 % 173.24 % 128.40 % −0.04 %

RitualDance −0.23 % −0.54 % −0.83 % 205.56 % 145.54 % −0.16 %

Cactus −0.50 % −0.57 % −0.78 % 184.97 % 268.90 % −0.28 %

BasketballDrive −0.24 % −0.69 % −0.64 % 153.68 % 150.04 % −0.42 %

BQTerrace −0.57 % −0.63 % −0.42 % 179.34 % 157.50 % −0.35 %

BasketballDrill −0.61 % −1.21 % −1.28 % 188.21 % 267.95 % −0.43 %

BQMall −1.31 % −1.45 % −1.86 % 174.71 % 180.39 % −0.81 %

PartyScene −0.30 % −0.58 % −0.47 % 163.77 % 109.72 % −0.20 %

RaceHorsesL −1.02 % −1.77 % −1.74 % 170.20 % 110.47 % −1.22 %

BasketballPass −0.31 % −1.15 % −0.61 % 148.74 % 215.18 % −0.11 %

BQSquare −0.10 % 0.05 % 0.24 % 169.45 % 183.51 % −0.49 %

BlowingBubbles −0.33 % −0.41 % −0.42 % 161.55 % 219.79 % 0.21 %

RaceHorsesM −0.67 % −1.59 % −1.48 % 159.14 % 164.03 % −0.02 %

BasketballDrillText −0.59 % −0.93 % −1.05 % 177.85 % 289.93 % −0.10 %

ArenaOfValor −0.67 % −1.11 % −0.70 % 185.35 % 275.59 % −0.69 %

SlideEditing −0.08 % −0.09 % −0.04 % 319.83 % 350.76 % −0.15 %

SlideShow −0.31 % −0.66 % −0.45 % 201.92 % 354.79 % −0.52 %

Mean −0.45 % −0.76 % −0.76 % 187.85 % 198.43 % −0.34 %

Class A1 −0.37 % −0.46 % −0.69 % 211.96 % 176.41 % −0.35 %

Class A2 −0.45 % −0.89 % −0.68 % 184.37 % 148.04 % −0.32 %

Class B −0.34 % −0.50 % −0.71 % 177.27 % 162.39 % −0.25 %

Class C −0.81 % −1.25 % −1.34 % 173.04 % 153.72 % −0.67 %

Class D −0.35 % −0.78 % −0.57 % 157.96 % 192.46 % −0.10 %

Class F −0.41 % −0.70 % −0.56 % 213.49 % 314.66 % −0.37 %

JVET Overall −0.49 % −0.77 % −0.87 % 183.98 % 159.72 % −0.40 %

Table A.23 Coding results for Experiment 4.18 with temporal prediction and full refinement coding.
Test: VTM-3.2 + GEO, Reference: VTM-3.2, RA according to JVET CTC. BI: ∆w = w/8, ∆h = h/8,
CFL,9 explicit partition coding. Temporal prediction, predictor: CTU,2 refinement: CEG,1.

201



A Appendix

GEO temporal prediction mode usage for QP

Class Sequence QP22 QP27 QP32 QP37 Mean

A1 Tango2 27.73 % 45.61 % 49.95 % 49.91 % 43.30 %

FoodMarket4 29.20 % 33.16 % 37.17 % 38.67 % 34.55 %

Campfire 32.33 % 24.05 % 24.70 % 25.32 % 26.60 %

A2 CatRobot1 45.01 % 56.03 % 59.46 % 58.70 % 54.80 %

DaylightRoad2 31.42 % 41.03 % 47.16 % 50.56 % 42.54 %

ParkRunning3 28.57 % 38.08 % 43.29 % 48.03 % 39.49 %

B MarketPlace 35.77 % 41.57 % 44.88 % 46.94 % 42.29 %

RitualDance 28.77 % 31.89 % 35.29 % 34.71 % 32.67 %

Cactus 37.23 % 45.52 % 50.04 % 49.46 % 45.56 %

BasketballDrive 31.73 % 36.13 % 37.55 % 39.15 % 36.14 %

BQTerrace 41.93 % 49.08 % 55.12 % 56.73 % 50.72 %

C BasketballDrill 36.72 % 39.74 % 41.68 % 44.95 % 40.77 %

BQMall 39.39 % 48.35 % 54.74 % 60.59 % 50.77 %

PartyScene 32.88 % 38.46 % 44.79 % 48.05 % 41.04 %

RaceHorsesL 30.64 % 37.34 % 41.77 % 44.24 % 38.50 %

D BasketballPass 32.82 % 38.99 % 43.53 % 47.06 % 40.60 %

BQSquare 40.93 % 41.61 % 46.46 % 52.51 % 45.38 %

BlowingBubbles 41.84 % 49.39 % 53.86 % 55.47 % 50.14 %

RaceHorsesM 35.69 % 39.87 % 44.25 % 46.63 % 41.61 %

F BasketballDrillText 39.10 % 40.83 % 40.57 % 43.98 % 41.12 %

ArenaOfValor 43.46 % 51.98 % 57.50 % 60.33 % 53.32 %

SlideEditing 42.42 % 39.62 % 45.08 % 52.05 % 44.79 %

SlideShow 29.52 % 29.34 % 34.13 % 40.66 % 33.41 %

Overall 35.44 % 40.77 % 44.91 % 47.60 % 42.18 %

Table A.24 Relative usage of temporal prediction in percentage of area coded with GEO for Experi-
ment 4.18.

202



BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 −0.57 % −0.80 % −1.09 % 260.46 % 199.57 % −0.45 %

FoodMarket4 −0.46 % −0.42 % −0.59 % 178.83 % 171.77 % −0.47 %

Campfire −0.14 % −0.16 % −0.51 % 189.03 % 163.58 % −0.31 %

CatRobot1 −0.69 % −1.28 % −1.30 % 181.94 % 158.64 % −0.42 %

DaylightRoad2 −0.37 % −0.96 % −0.51 % 178.54 % 147.26 % −0.31 %

ParkRunning3 −0.31 % −0.33 % −0.28 % 188.48 % 139.63 % −0.23 %

MarketPlace −0.24 % −0.16 % −0.83 % 163.25 % 131.46 % −0.10 %

RitualDance −0.25 % −0.48 % −0.91 % 198.66 % 151.35 % −0.20 %

Cactus −0.50 % −0.59 % −0.72 % 171.10 % 294.27 % −0.37 %

BasketballDrive −0.25 % −0.80 % −0.69 % 147.89 % 172.92 % −0.34 %

BQTerrace −0.56 % −0.80 % −0.46 % 162.26 % 152.41 % −0.21 %

BasketballDrill −0.57 % −1.28 % −1.04 % 177.36 % 282.84 % −0.41 %

BQMall −1.39 % −1.56 % −2.04 % 171.52 % 201.46 % −0.99 %

PartyScene −0.31 % −0.56 % −0.58 % 159.14 % 109.15 % −0.02 %

RaceHorsesL −0.99 % −1.77 % −1.73 % 164.84 % 134.46 % −1.35 %

BasketballPass −0.34 % −1.32 % −0.61 % 148.87 % 212.70 % −0.02 %

BQSquare −0.03 % 0.14 % 0.27 % 168.70 % 175.07 % 0.03 %

BlowingBubbles −0.34 % −0.41 % −0.42 % 168.07 % 191.18 % −0.05 %

RaceHorsesM −0.74 % −1.70 % −1.57 % 151.34 % 165.82 % −0.31 %

BasketballDrillText −0.65 % −0.86 % −1.08 % 177.11 % 297.37 % −0.19 %

ArenaOfValor −0.69 % −1.17 % −0.67 % 208.52 % 306.25 % −0.57 %

SlideEditing −0.07 % −0.08 % −0.04 % 310.18 % 344.35 % −0.16 %

SlideShow −0.32 % −0.70 % −0.55 % 202.69 % 347.18 % −0.50 %

Mean −0.47 % −0.78 % −0.78 % 183.86 % 202.20 % −0.35 %

Class A1 −0.39 % −0.46 % −0.73 % 204.97 % 175.09 % −0.41 %

Class A2 −0.46 % −0.86 % −0.70 % 182.21 % 146.88 % −0.32 %

Class B −0.36 % −0.56 % −0.72 % 166.63 % 169.96 % −0.24 %

Class C −0.82 % −1.29 % −1.35 % 166.29 % 168.82 % −0.69 %

Class D −0.36 % −0.82 % −0.58 % 157.67 % 183.73 % −0.09 %

Class F −0.43 % −0.70 % −0.59 % 218.51 % 319.12 % −0.35 %

JVET Overall −0.51 % −0.80 % −0.89 % 176.71 % 165.76 % −0.41 %

Table A.25 Coding results for Experiment 4.19 with temporal prediction and limited refinement
coding. Test: VTM-3.2 + GEO, Reference: VTM-3.2, RA according to JVET CTC. BI: ∆w = w/8,
∆h= h/8, CFL,9 explicit partition coding. Temporal prediction, predictor: CTU,2, refinement: CFL,1.

203



A Appendix

BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 −0.56 % −0.87 % −0.91 % 141.24 % 101.52 % −0.38 %

FoodMarket4 −0.40 % −0.47 % −0.50 % 128.06 % 110.56 % −0.41 %

Campfire −0.15 % −0.17 % −0.53 % 114.99 % 106.34 % −0.28 %

CatRobot1 −0.71 % −1.30 % −1.38 % 110.08 % 96.90 % −0.54 %

DaylightRoad2 −0.39 % −0.92 % −0.53 % 114.48 % 104.27 % −0.37 %

ParkRunning3 −0.31 % −0.35 % −0.32 % 138.31 % 104.60 % −0.28 %

MarketPlace −0.20 % −0.18 % −0.87 % 109.08 % 97.77 % −0.17 %

RitualDance −0.26 % −0.42 % −0.74 % 136.89 % 93.98 % −0.19 %

Cactus −0.53 % −0.56 % −0.75 % 111.94 % 105.66 % −0.36 %

BasketballDrive −0.27 % −0.60 % −0.70 % 104.95 % 112.17 % −0.22 %

BQTerrace −0.58 % −0.94 % −0.55 % 106.27 % 110.31 % 0.05 %

BasketballDrill −0.64 % −1.13 % −1.03 % 115.40 % 152.29 % −0.49 %

BQMall −1.32 % −1.51 % −1.85 % 115.08 % 147.44 % −1.11 %

PartyScene −0.31 % −0.60 % −0.60 % 121.19 % 90.53 % −0.23 %

RaceHorsesL −1.02 % −1.84 % −1.60 % 113.60 % 90.54 % −1.27 %

BasketballPass −0.33 % −1.33 % −0.95 % 100.77 % 156.63 % −0.15 %

BQSquare 0.04 % 0.00 % 0.39 % 125.27 % 162.88 % −0.59 %

BlowingBubbles −0.35 % −0.39 % −0.24 % 116.34 % 145.39 % 0.10 %

RaceHorsesM −0.76 % −1.77 % −1.43 % 109.48 % 123.89 % −0.42 %

BasketballDrillText −0.68 % −0.83 % −1.06 % 108.57 % 122.76 % −0.30 %

ArenaOfValor −0.71 % −1.15 % −0.71 % 105.97 % 108.08 % −0.67 %

SlideEditing −0.08 % −0.09 % −0.05 % 99.92 % 65.08 % −0.15 %

SlideShow −0.31 % −0.60 % −0.44 % 106.24 % 77.40 % −0.50 %

Mean −0.47 % −0.78 % −0.75 % 115.40 % 112.48 % −0.39 %

Class A1 −0.37 % −0.50 % −0.65 % 127.05 % 105.31 % −0.36 %

Class A2 −0.47 % −0.86 % −0.74 % 120.01 % 101.64 % −0.40 %

Class B −0.37 % −0.54 % −0.72 % 112.94 % 103.55 % −0.18 %

Class C −0.82 % −1.27 % −1.27 % 115.96 % 115.78 % −0.77 %

Class D −0.35 % −0.87 % −0.56 % 111.65 % 145.97 % −0.26 %

Class F −0.44 % −0.67 % −0.57 % 105.02 % 90.16 % −0.41 %

JVET Overall −0.51 % −0.79 % −0.86 % 117.87 % 106.64 % −0.42 %

Table A.26 Coding results for Experiment 4.20 with temporal prediction and no refinement coding.
Test: VTM-3.2 + GEO, Reference: VTM-3.2, RA according to JVET CTC. BI: ∆w = w/8, ∆h = h/8,
CFL,9 explicit partition coding. Temporal prediction, predictor: CTU,2.

204



BD-rate change Relative complexity

Sequence / Class Y U V EncT DecT

Tango2 −0.05 % −1.04 % −0.07 % 106.46 % 96.28 %

FoodMarket4 −0.02 % 0.36 % −0.03 % 104.43 % 77.46 %

Campfire −0.11 % −0.09 % −0.26 % 103.51 % 79.05 %

CatRobot1 −0.27 % −0.47 % −0.36 % 104.50 % 75.41 %

DaylightRoad2 −0.19 % −0.61 % −0.52 % 104.36 % 74.36 %

ParkRunning3 −0.20 % −0.20 % −0.18 % 102.92 % 86.46 %

MarketPlace −0.12 % 0.53 % −0.93 % 114.21 % 103.68 %

RitualDance 0.03 % −0.25 % −0.46 % 100.25 % 78.52 %

Cactus −0.23 % −0.48 % −0.49 % 107.43 % 99.97 %

BasketballDrive −0.03 % −0.17 % −0.09 % 111.10 % 101.94 %

BQTerrace −0.38 % −0.52 % 0.04 % 105.45 % 98.29 %

BasketballDrill −0.56 % −0.80 % −0.31 % 103.57 % 137.92 %

BQMall −1.20 % −1.76 % −1.21 % 102.72 % 122.61 %

PartyScene −0.31 % −0.58 % −0.67 % 102.32 % 112.20 %

RaceHorsesL −1.20 % −1.62 % −1.81 % 102.21 % 122.99 %

BasketballPass −0.32 % −0.07 % −1.79 % 95.63 % 211.81 %

BQSquare −0.07 % 0.42 % 0.83 % 99.92 % 238.79 %

BlowingBubbles −0.32 % −0.95 % −1.40 % 110.79 % 232.89 %

RaceHorsesM −1.21 % −1.82 % −1.66 % 111.99 % 199.43 %

BasketballDrillText −0.82 % −0.71 % −0.33 % 105.26 % 130.48 %

ArenaOfValor −0.69 % −0.83 % −0.65 % 110.16 % 103.94 %

SlideEditing −0.29 % −0.21 % −0.22 % 90.45 % 82.94 %

SlideShow −0.17 % 0.66 % 1.31 % 95.25 % 82.68 %

Mean −0.38 % −0.49 % −0.49 % 104.13 % 119.57 %

Class A1 −0.06 % −0.26 % −0.12 % 104.76 % 83.79 %

Class A2 −0.22 % −0.42 % −0.36 % 103.91 % 78.18 %

Class B −0.14 % −0.18 % −0.39 % 105.64 % 95.89 %

Class C −0.82 % −1.19 % −1.00 % 100.21 % 123.25 %

Class D −0.48 % −0.61 % −1.00 % 102.76 % 218.70 %

Class F −0.50 % −0.27 % 0.03 % 98.75 % 98.01 %

JVET Overall −0.32 % −0.51 % −0.49 % 103.65 % 95.81 %

Table A.27 Coding results for Experiment 5.21 with filter length dm = 1. Test: VTM-3.2 + GEO,
Reference: VTM-3.2, RA according to JVET CTC with only the first 65 pictures coded. AD: ∆ϕ =
11.25◦, Nρ = 4.

205



A Appendix

BD-rate change Relative complexity

Sequence / Class Y U V EncT DecT

Tango2 −0.28 % −1.22 % −0.35 % 105.92 % 97.19 %

FoodMarket4 −0.12 % −0.14 % −0.18 % 105.22 % 75.35 %

Campfire −0.09 % −0.07 % −0.22 % 103.09 % 76.27 %

CatRobot1 −0.42 % −0.42 % −0.56 % 105.10 % 73.44 %

DaylightRoad2 −0.33 % −0.88 % −0.58 % 104.48 % 72.86 %

ParkRunning3 −0.26 % −0.28 % −0.29 % 105.12 % 85.93 %

MarketPlace −0.34 % 0.76 % −0.60 % 115.79 % 98.25 %

RitualDance −0.16 % −0.19 % −0.55 % 95.08 % 80.72 %

Cactus −0.42 % −0.34 % −0.55 % 106.91 % 101.46 %

BasketballDrive −0.21 % −1.15 % −0.30 % 102.92 % 102.67 %

BQTerrace −0.27 % −0.40 % −0.16 % 93.41 % 100.87 %

BasketballDrill −0.74 % −0.98 % −0.90 % 102.45 % 135.24 %

BQMall −1.83 % −3.13 % −2.69 % 104.06 % 125.41 %

PartyScene −0.40 % −1.04 % −0.45 % 96.34 % 119.53 %

RaceHorsesL −1.57 % −2.00 % −2.13 % 97.57 % 119.58 %

BasketballPass −0.32 % 0.56 % −2.12 % 94.60 % 223.38 %

BQSquare −0.08 % 0.21 % 0.72 % 95.02 % 241.93 %

BlowingBubbles −0.41 % −0.54 % −1.08 % 91.95 % 238.25 %

RaceHorsesM −1.40 % −2.33 % −1.38 % 121.95 % 208.25 %

BasketballDrillText −0.83 % −0.90 % −0.43 % 111.89 % 130.87 %

ArenaOfValor −0.79 % −1.20 % −0.79 % 109.24 % 106.82 %

SlideEditing −0.15 % −0.25 % −0.19 % 81.71 % 82.46 %

SlideShow 0.26 % 0.65 % 0.51 % 101.37 % 81.42 %

Mean −0.49 % −0.66 % −0.66 % 102.23 % 120.79 %

Class A1 −0.17 % −0.48 % −0.25 % 104.72 % 82.31 %

Class A2 −0.34 % −0.53 % −0.47 % 104.89 % 76.87 %

Class B −0.28 % −0.26 % −0.43 % 98.59 % 96.36 %

Class C −1.13 % −1.79 % −1.54 % 96.72 % 124.23 %

Class D −0.56 % −0.52 % −0.97 % 95.09 % 225.82 %

Class F −0.38 % −0.42 % −0.23 % 98.67 % 98.17 %

JVET Overall −0.50 % −0.76 % −0.70 % 100.52 % 95.50 %

Table A.28 Coding results for Experiment 5.22 with filter length dm = 3. Test: VTM-3.2 + GEO,
Reference: VTM-3.2, RA according to JVET CTC with only the first 65 pictures coded. AD: ∆ϕ =
11.25◦, Nρ = 4.

206



BD-rate change Relative complexity

Sequence / Class Y U V EncT DecT

Tango2 −0.39 % −1.03 % −0.40 % 68.04 % 94.89 %

FoodMarket4 −0.18 % −0.10 % −0.35 % 64.41 % 76.59 %

Campfire −0.03 % −0.05 % −0.13 % 102.43 % 79.42 %

CatRobot1 −0.41 % −0.86 % −0.72 % 104.43 % 77.57 %

DaylightRoad2 −0.37 % −0.89 % −0.39 % 67.10 % 74.78 %

ParkRunning3 −0.29 % −0.28 % −0.21 % 70.71 % 87.61 %

MarketPlace −0.38 % 0.32 % −0.85 % 113.56 % 100.71 %

RitualDance −0.18 % −0.50 % −0.92 % 106.11 % 79.76 %

Cactus −0.40 % −0.85 % −0.93 % 108.59 % 100.93 %

BasketballDrive −0.20 % −0.41 % −0.16 % 126.96 % 105.48 %

BQTerrace −0.29 % −0.98 % 0.10 % 112.85 % 95.07 %

BasketballDrill −0.83 % −0.74 % −0.42 % 86.15 % 140.10 %

BQMall −1.64 % −2.76 % −2.26 % 90.51 % 121.90 %

PartyScene −0.34 % −0.73 % −0.78 % 103.02 % 115.09 %

RaceHorsesL −1.23 % −1.76 % −1.39 % 102.27 % 114.80 %

BasketballPass −0.27 % 0.20 % −1.96 % 91.30 % 220.67 %

BQSquare −0.07 % −0.07 % −0.02 % 99.62 % 250.54 %

BlowingBubbles −0.20 % −0.49 % −0.59 % 118.75 % 235.09 %

RaceHorsesM −1.00 % −1.52 % −1.72 % 114.02 % 205.27 %

BasketballDrillText −0.80 % −0.94 % −0.08 % 113.89 % 131.20 %

ArenaOfValor −0.53 % −0.75 % −0.58 % 90.61 % 105.78 %

SlideEditing −0.11 % −0.10 % −0.11 % 86.07 % 82.69 %

SlideShow 0.25 % 0.62 % 0.83 % 92.58 % 82.50 %

Mean −0.43 % −0.64 % −0.61 % 97.13 % 120.80 %

Class A1 −0.20 % −0.39 % −0.30 % 75.66 % 83.20 %

Class A2 −0.36 % −0.67 % −0.44 % 79.02 % 79.39 %

Class B −0.29 % −0.48 % −0.55 % 108.46 % 95.86 %

Class C −1.01 % −1.50 % −1.21 % 90.96 % 122.34 %

Class D −0.38 % −0.47 % −1.07 % 99.22 % 225.17 %

Class F −0.30 % −0.29 % 0.02 % 91.74 % 98.40 %

JVET Overall −0.48 % −0.77 % −0.65 % 90.38 % 95.77 %

Table A.29 Coding results for Experiment 5.23 with filter length dm = 5. Test: VTM-3.2 + GEO,
Reference: VTM-3.2, RA according to JVET CTC with only the first 65 pictures coded. AD: ∆ϕ =
11.25◦, Nρ = 4.

207



A Appendix

BD-rate change Relative complexity

Sequence / Class Y U V EncT DecT

Tango2 −0.48 % −1.35 % −0.89 % 69.56 % 157.41 %

FoodMarket4 −0.14 % −0.25 % −0.29 % 65.26 % 115.98 %

Campfire 0.00 % −0.06 % −0.18 % 75.07 % 110.84 %

CatRobot1 −0.36 % −0.43 % −0.58 % 64.48 % 101.50 %

DaylightRoad2 −0.30 % −0.79 % −0.25 % 65.71 % 116.13 %

ParkRunning3 −0.24 % −0.22 % −0.20 % 72.07 % 140.11 %

MarketPlace −0.34 % 0.30 % −0.13 % 119.47 % 101.80 %

RitualDance −0.21 % −0.64 % −0.91 % 97.16 % 81.99 %

Cactus −0.42 % −0.47 % −0.72 % 108.38 % 102.89 %

BasketballDrive −0.09 % −0.51 % −0.22 % 109.73 % 107.61 %

BQTerrace −0.34 % −0.75 % −0.42 % 103.42 % 102.25 %

BasketballDrill −0.67 % −0.52 % −0.38 % 101.74 % 141.12 %

BQMall −1.03 % −1.54 % −1.66 % 105.94 % 128.27 %

PartyScene −0.22 % −0.29 % −0.52 % 98.90 % 115.56 %

RaceHorsesL −0.79 % −0.99 % −1.03 % 98.31 % 126.59 %

BasketballPass −0.22 % 1.07 % −1.76 % 100.97 % 224.24 %

BQSquare 0.10 % 1.05 % 1.54 % 105.66 % 243.62 %

BlowingBubbles −0.05 % −0.95 % −1.09 % 113.61 % 238.66 %

RaceHorsesM −0.46 % −1.32 % −0.95 % 108.58 % 203.89 %

BasketballDrillText −0.69 % −0.37 % −0.11 % 101.31 % 130.65 %

ArenaOfValor −0.35 % −0.50 % −0.41 % 115.65 % 107.96 %

SlideEditing −0.05 % −0.05 % 0.02 % 86.19 % 82.55 %

SlideShow 0.25 % 0.56 % 0.68 % 90.54 % 84.84 %

Mean −0.31 % −0.39 % −0.45 % 94.68 % 133.32 %

Class A1 −0.20 % −0.55 % −0.45 % 68.67 % 125.86 %

Class A2 −0.30 % −0.48 % −0.34 % 66.26 % 117.07 %

Class B −0.28 % −0.41 % −0.48 % 104.00 % 98.79 %

Class C −0.68 % −0.83 % −0.90 % 97.23 % 127.19 %

Class D −0.16 % −0.04 % −0.56 % 103.41 % 224.83 %

Class F −0.21 % −0.09 % 0.04 % 94.13 % 99.53 %

JVET Overall −0.37 % −0.57 % −0.56 % 85.91 % 114.75 %

Table A.30 Coding results for Experiment 5.24 with filter length dm = 7. Test: VTM-3.2 + GEO,
Reference: VTM-3.2, RA according to JVET CTC with only the first 65 pictures coded. AD: ∆ϕ =
11.25◦, Nρ = 4.

208



Table A.31 Memory bandwidth measurements for VTM-3.2 (Anchor) and VTM-3.2+GEO, showing
the average and worst-case bandwidth requirements in MB and the percental change.

Anchor Bw. [MB] GEO Bw. [MB] Change [%]

Sequence QP Mean Max Mean Max Mean Max

Tango2 22 101.85 131.00 107.58 139.70 5.62 6.64

27 92.48 116.50 95.28 120.30 3.03 3.26

32 84.98 108.10 87.75 111.30 3.25 2.96

37 78.31 101.20 80.44 102.40 2.73 1.19

FoodMarket4 22 85.60 157.00 89.65 164.20 4.74 4.59

27 74.80 109.30 76.68 116.30 2.51 6.40

32 69.42 104.10 71.30 104.50 2.72 0.38

37 65.86 97.50 67.21 105.00 2.04 7.69

Campfire 22 91.37 138.40 100.72 156.00 10.23 12.72

27 57.77 90.40 60.38 95.80 4.51 5.97

32 55.38 72.40 57.28 75.30 3.42 4.01

37 52.64 69.30 55.00 74.80 4.50 7.94

CatRobot1 22 128.72 178.90 134.09 190.70 4.17 6.60

27 111.78 131.70 114.65 134.00 2.57 1.75

32 101.17 119.10 102.91 124.70 1.73 4.70

37 92.89 111.00 93.96 115.40 1.16 3.96

DaylightRoad2 22 96.20 142.60 99.43 145.80 3.35 2.24

27 82.07 99.80 83.59 99.60 1.85 -0.20

32 72.93 90.90 74.06 94.70 1.55 4.18

37 67.15 88.30 68.54 91.00 2.07 3.06

ParkRunning3 22 130.60 155.00 138.41 165.30 5.98 6.65

27 109.48 128.10 113.53 136.00 3.70 6.17

32 95.52 114.10 98.55 120.50 3.17 5.61

37 82.83 101.10 85.40 102.30 3.10 1.19

MarketPlace 22 26.44 46.40 27.44 54.90 3.75 18.32

27 21.78 43.10 22.27 49.30 2.29 14.39

32 19.26 37.50 19.60 40.00 1.75 6.67

37 17.24 30.70 17.55 34.90 1.80 13.68

RitualDance 22 22.17 31.30 22.87 34.20 3.18 9.27

27 19.52 30.80 20.06 30.20 2.81 -1.95

32 17.82 27.00 18.29 28.20 2.65 4.44

37 16.32 23.80 16.77 26.10 2.73 9.66

Cactus 22 29.54 42.60 31.41 47.70 6.33 11.97

27 23.65 29.10 24.49 29.80 3.56 2.41

32 21.53 27.30 22.20 27.30 3.10 0.00

209



A Appendix

37 19.57 26.30 20.20 26.70 3.21 1.52

BasketballDrive 22 28.34 46.30 29.39 50.60 3.71 9.29

27 23.33 38.60 23.95 39.10 2.67 1.30

32 20.85 31.20 21.35 30.70 2.37 -1.60

37 19.18 24.90 19.64 25.30 2.41 1.61

BQTerrace 22 44.05 85.60 49.40 95.20 12.14 11.21

27 24.46 48.30 25.75 51.30 5.28 6.21

32 18.94 30.40 19.50 33.50 2.97 10.20

37 16.57 22.40 16.89 23.80 1.96 6.25

BasketballDrill 22 5.34 6.70 5.65 7.50 5.80 11.94

27 4.69 5.90 4.97 6.30 5.89 6.78

32 4.29 5.50 4.55 6.00 6.03 9.09

37 4.00 5.50 4.22 6.10 5.43 10.91

BQMall 22 6.56 10.10 6.72 10.20 2.35 0.99

27 5.63 7.90 5.80 7.90 2.97 0.00

32 5.17 7.40 5.34 8.00 3.31 8.11

37 4.77 7.40 4.98 7.30 4.38 -1.35

PartyScene 22 8.12 12.30 8.31 12.40 2.29 0.81

27 6.50 10.20 6.65 9.90 2.31 -2.94

32 5.55 7.90 5.65 8.00 1.73 1.27

37 4.95 7.70 5.05 7.70 2.04 0.00

RaceHorsesL 22 6.84 11.50 7.17 12.80 4.89 11.30

27 5.76 8.90 6.03 10.00 4.71 12.36

32 4.94 6.70 5.21 7.20 5.31 7.46

37 4.43 6.40 4.63 6.40 4.33 0.00

BasketballPass 22 1.67 2.60 1.71 2.70 2.13 3.85

27 1.50 2.20 1.56 2.30 4.32 4.55

32 1.39 2.20 1.42 2.30 2.77 4.55

37 1.27 2.20 1.31 2.10 2.89 -4.55

BQSquare 22 2.29 3.40 2.33 3.50 1.64 2.94

27 1.65 2.80 1.66 2.90 0.70 3.57

32 1.28 2.40 1.28 2.40 0.27 0.00

37 1.17 2.50 1.15 2.60 -1.91 4.00

BlowingBubbles 22 2.14 3.50 2.18 3.70 1.91 5.71

27 1.76 3.00 1.79 3.10 1.55 3.33

32 1.51 2.50 1.55 2.90 3.00 16.00

37 1.31 2.60 1.35 2.80 2.79 7.69

RaceHorsesM 22 2.07 3.00 2.13 3.00 3.15 0.00

27 1.74 2.30 1.79 2.50 2.98 8.70

32 1.53 2.30 1.58 2.30 3.22 0.00

210



37 1.34 2.00 1.38 2.10 2.97 5.00

BasketballDrillText 22 5.28 6.60 5.58 7.50 5.68 13.64

27 4.59 5.70 4.85 6.40 5.59 12.28

32 4.15 5.60 4.42 5.60 6.46 0.00

37 3.89 5.40 4.13 6.00 6.35 11.11

ArenaOfValor 22 24.24 32.10 25.12 33.20 3.59 3.43

27 20.48 27.60 21.19 28.60 3.47 3.62

32 18.37 25.00 19.03 27.90 3.55 11.60

37 16.52 23.60 17.15 25.90 3.82 9.75

SlideEditing 22 4.82 7.90 4.81 8.80 -0.15 11.39

27 5.01 10.60 5.05 8.40 0.83 -20.75

32 5.14 9.50 5.18 8.60 0.71 -9.47

37 5.38 10.60 5.40 9.70 0.51 -8.49

SlideShow 22 6.23 11.20 6.30 11.80 1.11 5.36

27 6.13 10.60 6.18 10.80 0.78 1.89

32 5.90 10.30 5.96 10.70 0.90 3.88

37 5.76 9.50 5.78 10.90 0.41 14.74

Overall 22 4.24 18.32

27 3.08 14.39

32 2.87 16.00

37 2.68 14.74

211



A Appendix

BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 −0.44 % −0.98 % −1.13 % 375.87 % 171.48 % −0.28 %

FoodMarket4 −0.36 % −0.49 % −0.46 % 319.67 % 149.84 % −0.22 %

Campfire −0.12 % −0.11 % −0.68 % 304.41 % 169.49 % −0.24 %

CatRobot1 −0.62 % −1.04 % −1.13 % 288.42 % 128.04 % −0.46 %

DaylightRoad2 −0.47 % −1.26 % −0.69 % 277.10 % 144.46 % −0.14 %

ParkRunning3 −0.56 % −0.52 % −0.51 % 320.72 % 156.27 % −0.45 %

MarketPlace −0.36 % −0.15 % −0.77 % 249.15 % 135.63 % −0.02 %

RitualDance −0.25 % −0.54 % −0.83 % 318.56 % 140.02 % −0.11 %

Cactus −0.51 % −0.72 % −0.74 % 263.55 % 117.49 % −0.38 %

BasketballDrive −0.34 % −0.95 % −0.92 % 243.46 % 135.24 % −0.17 %

BQTerrace −0.76 % −1.14 % −0.44 % 275.65 % 138.56 % −0.12 %

BasketballDrill −0.66 % −1.19 % −1.29 % 249.04 % 83.49 % −0.20 %

BQMall −1.25 % −1.61 % −1.87 % 256.19 % 112.42 % −0.60 %

PartyScene −0.46 % −0.60 % −0.73 % 247.40 % 122.38 % −0.12 %

RaceHorsesL −1.17 % −2.05 % −1.91 % 242.33 % 93.03 % −1.21 %

BasketballPass −0.47 % −1.71 % −1.53 % 231.22 % 174.10 % −0.12 %

BQSquare −0.16 % −0.02 % 0.14 % 295.80 % 158.72 % 0.05 %

BlowingBubbles −0.55 % −0.24 % −0.58 % 287.84 % 133.49 % −0.10 %

RaceHorsesM −1.13 % −2.04 % −1.95 % 232.09 % 131.80 % −0.47 %

BasketballDrillText −0.65 % −0.92 % −1.06 % 244.96 % 123.04 % −0.15 %

ArenaOfValor −0.72 % −1.11 % −0.76 % 256.90 % 104.21 % −0.71 %

SlideEditing −0.06 % −0.08 % −0.05 % 304.85 % 116.83 % −0.14 %

SlideShow −0.36 % −0.66 % −0.54 % 259.06 % 133.72 % −0.66 %

Mean −0.54 % −0.88 % −0.89 % 275.84 % 133.64 % −0.31 %

Class A1 −0.31 % −0.52 % −0.76 % 326.56 % 158.92 % −0.25 %

Class A2 −0.55 % −0.94 % −0.78 % 292.61 % 136.42 % −0.35 %

Class B −0.45 % −0.70 % −0.74 % 267.53 % 129.83 % −0.16 %

Class C −0.89 % −1.36 % −1.45 % 247.17 % 99.96 % −0.53 %

Class D −0.58 % −1.00 % −0.98 % 258.33 % 144.21 % −0.16 %

Class F −0.45 % −0.69 % −0.60 % 264.54 % 116.88 % −0.41 %

JVET Overall −0.56 % −0.89 % −0.94 % 277.53 % 127.34 % −0.31 %

Table A.32 Coding results for Experiment 5.26 using Merge-mode and MMVD motion vector coding.
Test: VTM-3.2 + GEO, Reference: VTM-3.2, RA according to JVET CTC. AD: ∆ϕ = 11.25◦, Nρ = 4,
CFL,{7,8} explicit partition coding. Full encoder search of all possible MMVD+GEO combinations.

212



BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 −0.22 % 0.04 % −0.51 % 162.55 % 161.25 % 0.02 %

FoodMarket4 −0.15 % −0.09 % −0.21 % 134.98 % 155.34 % −0.05 %

Campfire −0.11 % −0.06 % −0.28 % 129.31 % 139.18 % −0.32 %

CatRobot1 −0.29 % −0.78 % −0.67 % 116.92 % 116.57 % −0.28 %

DaylightRoad2 −0.17 % −0.51 % −0.14 % 120.77 % 135.32 % −0.23 %

ParkRunning3 −0.17 % −0.11 % −0.10 % 135.79 % 129.06 % −0.24 %

MarketPlace −0.09 % 0.25 % −0.43 % 115.65 % 128.12 % −0.08 %

RitualDance −0.19 % −0.30 % −0.53 % 132.19 % 138.62 % −0.24 %

Cactus −0.26 % −0.11 % −0.32 % 107.86 % 116.62 % −0.53 %

BasketballDrive −0.15 % −0.55 % −0.39 % 114.81 % 130.27 % −0.30 %

BQTerrace −0.00 % −0.30 % −0.02 % 118.46 % 136.32 % −0.06 %

BasketballDrill −0.33 % −0.88 % −0.66 % 120.07 % 97.10 % −0.63 %

BQMall −0.96 % −0.94 % −0.85 % 106.59 % 96.56 % −1.06 %

PartyScene −0.24 % −0.34 % −0.27 % 114.04 % 127.59 % −0.30 %

RaceHorsesL −0.77 % −1.08 % −1.31 % 106.54 % 97.88 % −1.11 %

BasketballPass −0.26 % −0.94 % −0.74 % 100.33 % 153.36 % −0.76 %

BQSquare −0.02 % −0.02 % 0.24 % 109.26 % 144.84 % −0.20 %

BlowingBubbles −0.12 % −0.04 % −0.10 % 116.50 % 156.33 % −0.03 %

RaceHorsesM −0.78 % −1.49 % −1.47 % 98.68 % 127.81 % −0.70 %

BasketballDrillText −0.40 % −0.32 % −0.50 % 103.47 % 129.15 % −0.48 %

ArenaOfValor −0.50 % −0.50 % −0.20 % 109.58 % 111.67 % −0.81 %

SlideEditing −0.03 % −0.04 % −0.04 % 99.69 % 121.09 % 0.02 %

SlideShow 0.03 % −0.32 % −0.14 % 104.10 % 124.96 % −0.24 %

Mean −0.27 % −0.41 % −0.42 % 116.44 % 129.35 % −0.37 %

Class A1 −0.16 % −0.04 % −0.33 % 140.10 % 144.29 % −0.12 %

Class A2 −0.21 % −0.46 % −0.30 % 123.83 % 122.49 % −0.25 %

Class B −0.14 % −0.20 % −0.34 % 117.07 % 125.67 % −0.24 %

Class C −0.58 % −0.81 % −0.77 % 111.22 % 102.35 % −0.78 %

Class D −0.29 % −0.62 % −0.52 % 105.19 % 138.57 % −0.42 %

Class F −0.23 % −0.29 % −0.22 % 104.01 % 119.90 % −0.38 %

JVET Overall −0.27 % −0.38 % −0.45 % 121.05 % 121.68 % −0.36 %

Table A.33 Coding results for Experiment 5.25 using uni-prediction restriction and TPM motion
vector coding. Test: VTM-3.2 + GEO, Reference: VTM-3.2, RA according to JVET CTC. AD:
∆ϕ = 11.25◦, Nρ = 4, CFL,{7,8} explicit partition coding.

213



A Appendix

1 D i s t o r t i o n getMaskedSAD8_SSE ( short ∗ pOrg , short ∗ pPred , short ∗ pMask , i n t
width , i n t he igh t , i n t s t r i d eO rg , i n t s t r i d eP r e d , i n t s t r i deMask , i n t
log2MaxWeight )

2 {
3 __m128i vZero = _mm_setzero_si128 ( ) ;
4 __m128i vSum = vze r o ;
5 f o r ( i n t y = 0 ; y < he i g h t ; y++)
6 {
7 f o r ( i n t x = 0 ; x < width ; x+=8)
8 {
9 __m128i vOrg = _mm_loadu_si128 ( ( const __m128i∗)&pOrg [ x ] ) ;

10 __m128i vPred = _mm_lddqu_si128 ( ( const __m128i∗)&pPred [ x ] ) ;
11 __m128i vMask = _mm_lddqu_si128 ( ( const __m128i∗)&pMask [ x ] ) ;
12
13 vSum = _mm_add_epi32(vSum , _mm_madd_epi16( vMask , _mm_abs_epi16(

_mm_sub_epi16( vOrg , vPred ) ) ) ) ;
14 }
15 pOrg += s t r i d eO r g ;
16 pPred += s t r i d e P r e d ;
17 pMask += st r i d eMask ;
18 }
19 vSum = _mm_hadd_epi32(vSum , vZero ) ;
20 vSum = _mm_hadd_epi32(vSum , vZero ) ;
21 unsigned uiSum = _mm_cvtsi128_si32 (vSum) ;
22 return uiSum >>= log2MaxWeight ;
23 }

Listing A.1 Code example for SAD-based distortion metric using SIMD instructions for vectors of
8×16bit samples.

214



1 D i s t o r t i o n getMaskedSAD16_SSE ( short ∗ pOrg , short ∗ pPred , short ∗ pMask ,
i n t width , i n t he igh t , i n t s t r i d eO rg , i n t s t r i d eP r e d , i n t s t r i deMask ,
i n t log2MaxWeight )

2 {
3 __m256i vZero = _mm256_setzero_si256 ( ) ;
4 __m256i vSum = vZero ;
5 f o r ( i n t y = 0 ; y < he i g h t ; y++)
6 {
7 f o r ( i n t x = 0 ; x < width ; x+=16)
8 {
9 __m256i v s r c 1 = _mm256_lddqu_si256 ( ( const __m256i∗)&pOrg [ x ] ) ) ;

10 __m256i v s r c 2 = _mm256_lddqu_si256 ( ( const __m256i∗)&pPred [ x ] ) ) ;
11 __m256i vmask = _mm256_lddqu_si256 ( ( const __m256i∗)&pMask [ x ] ) ) ;
12
13 vSum = _mm256_add_epi32 (vSum , _mm256_madd_epi16( vMask ,

_mm256_abs_epi16 (_mm256_sub_epi16 ( vOrg , vPred ) ) ) ) ;
14 }
15 pOrg += s t r i d eO r g ;
16 pPred += s t r i d e P r e d ;
17 pMask += st r i d eMask ;
18 }
19 vSum = _mm256_hadd_epi32 (vSum , vZero ) ;
20 vSum = _mm256_hadd_epi32 ( vsum32 , v z e r o ) ;
21 uiSum = _mm_cvtsi128_si32 ( _mm256_castsi256_si128 (vSum) )+

_mm_cvtsi128_si32 ( _mm256_castsi256_si128 (_mm256_permute2x128_si256 (
vSum , vSum , 0x11 ) ) ) ;

22 return uiSum >>= log2MaxWeight ;
23 }

Listing A.2 Code example for SAD-based distortion metric using SIMD instructions for vectors of
16×16bit samples.

215



A Appendix

1 void b l end i ngF i l t e r 4_SSE ( const i n t16_t ∗ pSrc0 , i n t s r c 0 S t r i d e , const
i n t16_t ∗ pSrc1 , i n t s r c 1 S t r i d e , const i n t16_t ∗ pMask0 , i n t mask0Str ide
, const i n t16_t ∗ pMask1 , i n t mask1Str ide , in t16_t ∗pDst , i n t d s t S t r i d e
, i n t width , i n t he igh t , i n t s h i f t , i n t o f f s e t )

2 {
3 __m128i vZero = _mm_setzero_si128 ( ) ;
4 __m128i vO f f s e t = _mm_set1_epi32 ( o f f s e t ) ;
5 f o r ( i n t row = 0 ; row < he i g h t ; row++ )
6 {
7 f o r ( i n t c o l = 0 ; c o l < width ; c o l += 4 )
8 {
9 __m128i vSum = _mm_loadl_epi64 ( ( const __m128i∗)&pSrc0 [ c o l ] ) ;

10 __m128i vDst = _mm_loadl_epi64 ( ( const __m128i∗)&pSrc1 [ c o l ] ) ;
11 __m128i vMask0 = _mm_loadl_epi64 ( ( const __m128i∗)&pMask0 [ c o l ] ) ;
12 __m128i vMask1 = _mm_loadl_epi64 ( ( const __m128i∗)&pMask1 [ c o l ] ) ;
13 vSum = _mm_cvtepi16_epi32 (vSum) ;
14 vDst = _mm_cvtepi16_epi32 ( vDst ) ;
15 vMask0 = _mm_cvtepi16_epi32 ( vMask0 ) ;
16 vMask1 = _mm_cvtepi16_epi32 ( vMask1 ) ;
17 vSum = _mm_mullo_epi32 (vSum , vMask0 ) ;
18 vDst = _mm_mullo_epi32 ( vDst , vMask1 ) ;
19 vSum = _mm_add_epi32(vSum , vDst ) ;
20 vSum = _mm_add_epi32(vSum , vO f f s e t ) ;
21 vSum = _mm_srai_epi32 (vSum , s h i f t ) ;
22 vSum = _mm_packs_epi32 (vSum , vZero ) ;
23 _mm_storel_epi64 ( (__m128i∗)&pDst [ c o l ] , vSum) ;
24 }
25 pSrc0 += s r c 0 S t r i d e ;
26 pSrc1 += s r c 1 S t r i d e ;
27 pMask0 += mask0St r ide ;
28 pMask1 += mask1St r ide ;
29 pDst += d s t S t r i d e ;
30 }
31 }

Listing A.3 Code example for SIMD-based blending filtering for vectors of 4×16 bit samples.

216



1 void b l end i ngF i l t e r 8_SSE ( const i n t16_t ∗ pSrc0 , i n t s r c 0 S t r i d e , const
i n t16_t ∗ pSrc1 , i n t s r c 1 S t r i d e , const i n t16_t ∗ pMask0 , i n t mask0Str ide
, const i n t16_t ∗ pMask1 , i n t mask1Str ide , in t16_t ∗pDst , i n t d s t S t r i d e
, i n t width , i n t he igh t , i n t s h i f t , i n t o f f s e t )

2 {
3 __m128i vZero = _mm_setzero_si128 ( ) ;
4 __m128i vO f f s e t = _mm_set1_epi32 ( o f f s e t ) ;
5 f o r ( i n t row = 0 ; row < he i g h t ; row++ )
6 {
7 f o r ( i n t c o l = 0 ; c o l < width ; c o l += 8 )
8 {
9 __m128i vSrc0 = _mm_loadu_si128 ( ( const __m128i∗)&pSrc0 [ c o l ] ) ;

10 __m128i vSrc1 = _mm_loadu_si128 ( ( const __m128i∗)&pSrc1 [ c o l ] ) ;
11 __m128i vMask0 = _mm_loadu_si128 ( ( const __m128i∗)&pMask0 [ c o l ] ) ;
12 __m128i vMask1 = _mm_loadu_si128 ( ( const __m128i∗)&pMask1 [ c o l ] ) ;
13 __m128i vTmp , vSum , vDst , vM0 , vM1 ;
14 // f i r s t 64 by t e s
15 vSum = _mm_cvtepi16_epi32 ( vSrc0 ) ;
16 vDst = _mm_cvtepi16_epi32 ( v s r c 1 ) ;
17 vM0 = _mm_cvtepi16_epi32 ( vMask0 ) ;
18 vM1 = _mm_cvtepi16_epi32 ( vMask1 ) ;
19 vSum = _mm_mullo_epi32 (vSum , vM0) ;
20 vDst = _mm_mullo_epi32 ( vDst , vM1) ;
21 vSum = _mm_add_epi32(vSum , vDst ) ;
22 vSum = _mm_add_epi32(vSum , vO f f s e t ) ;
23 vTmp = _mm_srai_epi32 (vSum , s h i f t ) ;
24 // next 64 by t e s
25 vSrc0 = _mm_unpackhi_epi64 ( vSrc0 , v z e r o ) ;
26 vSrc1 = _mm_unpackhi_epi64 ( vSrc1 , v z e r o ) ;
27 vMask0 = _mm_unpackhi_epi64 ( vMask0 , v z e r o ) ;
28 vMask1 = _mm_unpackhi_epi64 ( vMask1 , v z e r o ) ;
29 vSum = _mm_cvtepi16_epi32 ( vSrc0 ) ;
30 vDst = _mm_cvtepi16_epi32 ( vSrc1 ) ;
31 vM0 = _mm_cvtepi16_epi32 ( vMask0 ) ;
32 vM1 = _mm_cvtepi16_epi32 ( vMask1 ) ;
33 vSum = _mm_mullo_epi32 (vSum , vM0) ;
34 vDst = _mm_mullo_epi32 ( vDst , vM1) ;
35 vSum = _mm_add_epi32(vSum , vDst ) ;
36 vSum = _mm_add_epi32(vSum , vO f f s e t ) ;
37 vSum = _mm_srai_epi32 (vSum , s h i f t ) ;
38 vSum = _mm_packs_epi32 (vTmp , vSum ) ;
39 _mm_storeu_si128 ( (__m128i∗)&pDst [ c o l ] , vSum) ;
40 }
41 pSrc0 += s r c 0 S t r i d e ;
42 pSrc1 += s r c 1 S t r i d e ;
43 pMask0 += mask0St r ide ;
44 pMask1 += mask1St r ide ;
45 pDst += d s t S t r i d e ;
46 }
47 }

Listing A.4 Code example for SIMD-based blending filtering for vectors of 8×16bit samples.

217



A Appendix

BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 −0.13 % −0.74 % −0.13 % 105.22 % 100.26 % 0.10 %

FoodMarket4 −0.11 % 0.04 % 0.13 % 105.25 % 100.39 % 0.17 %

Campfire −0.02 % −0.02 % −0.16 % 104.77 % 102.27 % −0.03 %

CatRobot1 −0.20 % −0.49 % −0.58 % 105.84 % 100.17 % −0.21 %

DaylightRoad2 −0.08 % −0.22 % −0.12 % 105.81 % 101.98 % −0.13 %

ParkRunning3 −0.14 % −0.15 % −0.08 % 106.42 % 101.72 % −0.16 %

MarketPlace −0.03 % 0.27 % −0.15 % 106.12 % 101.36 % −0.02 %

RitualDance −0.14 % −0.32 % −0.56 % 105.01 % 100.66 % −0.06 %

Cactus −0.20 % −0.30 % −0.35 % 106.07 % 102.91 % −0.45 %

BasketballDrive −0.04 % −0.29 % −0.03 % 105.10 % 100.69 % −0.13 %

BQTerrace 0.02 % 0.31 % 0.06 % 106.65 % 101.12 % 0.29 %

BasketballDrill −0.30 % −0.76 % −0.82 % 104.90 % 99.95 % −0.60 %

BQMall −1.05 % −1.92 % −1.96 % 106.01 % 101.40 % −0.81 %

PartyScene −0.17 % −0.28 % −0.31 % 105.61 % 101.03 % −0.07 %

RaceHorses −0.64 % −1.41 % −1.42 % 105.24 % 101.04 % −0.91 %

BasketballPass −0.17 % −1.60 % −0.98 % 104.98 % 101.36 % −0.51 %

BQSquare 0.15 % 0.08 % 0.41 % 105.65 % 101.25 % 1.11 %

BlowingBubbles −0.07 % −0.37 % −0.31 % 105.93 % 101.59 % −0.25 %

RaceHorses −0.61 % −1.14 % −0.50 % 105.33 % 100.17 % −0.83 %

BasketballDrillText −0.36 % −0.59 % −0.53 % 106.05 % 103.86 % −0.50 %

ArenaOfValor −0.39 % −0.54 % −0.32 % 102.76 % 100.31 % −0.19 %

SlideEditing∗ −0.07 % −0.09 % −0.05 % 101.42 % 100.90 % −0.12 %

SlideShow∗ −0.65 % −0.40 % −0.36 % 101.65 % 100.57 % −0.89 %

FlyingGraphic∗ −2.15 % −1.60 % −1.56 % 99.38 % 99.23 % −1.94 %

Desktop∗ −3.06 % −2.70 % −2.70 % 97.39 % 98.46 % −2.98 %

Console∗ −2.89 % −2.38 % −2.43 % 99.45 % 99.44 % −2.90 %

ChineseEditing∗ −0.51 % −0.40 % −0.33 % 100.59 % 101.61 % −0.45 %

Mean −0.52 % −0.67 % −0.60 % 104.24 % 100.95 % −0.50 %

Class A1 −0.09 % −0.24 % −0.05 % 105.07 % 100.96 % 0.08 %

Class A2 −0.14 % −0.29 % −0.26 % 106.02 % 101.28 % −0.17 %

Class B −0.08 % −0.06 % −0.21 % 105.79 % 101.34 % −0.07 %

Class C −0.54 % −1.09 % −1.13 % 105.44 % 100.84 % −0.60 %

Class D −0.18 % −0.76 % −0.35 % 105.47 % 101.08 % −0.12 %

Class F −0.37 % −0.41 % −0.32 % 102.95 % 101.39 % −0.43 %

Class TGM −2.15 % −1.77 % −1.76 % 99.19 % 99.65 % −2.07 %

JVET Overall −0.22 % −0.42 % −0.43 % 105.60 % 101.12 % −0.20 %

Table A.34 Coding results for Experiment 6.27. Test: VTM-5.0 + GEO, Reference: VTM-5.0, RA
according to JVET CTC. Simplified GEO with 140 partitions per block, integer arithmetic and uni-
prediction restriction. ∗Screen content sequences coded with hard masking.

218



BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

MarketPlace −0.10 % −0.21 % 0.10 % 107.75 % 103.12 % −0.25 %

RitualDance −0.31 % −0.10 % −0.52 % 107.32 % 102.84 % −0.11 %

Cactus −0.44 % −0.33 % −0.56 % 107.82 % 100.34 % −0.35 %

BasketballDrive −0.14 % −0.84 % −0.17 % 107.77 % 102.01 % 0.03 %

BQTerrace −0.08 % 0.31 % −0.43 % 107.88 % 102.23 % −0.37 %

BasketballDrill −0.61 % −1.15 % −0.63 % 108.57 % 101.72 % −0.09 %

BQMall −0.64 % −1.54 % −1.57 % 107.76 % 99.82 % −0.64 %

PartyScene −0.25 % −0.30 % −0.29 % 108.31 % 100.86 % 0.12 %

RaceHorses −0.64 % −1.48 % −1.51 % 107.93 % 102.38 % −0.57 %

BasketballPass −0.35 % −0.91 % −0.81 % 107.69 % 102.14 % −0.19 %

BQSquare −0.08 % −0.87 % 2.55 % 107.85 % 101.37 % −0.55 %

BlowingBubbles −0.45 % −0.24 % −0.65 % 108.09 % 98.16 % −1.04 %

RaceHorses −0.69 % −1.34 % −1.37 % 107.64 % 100.34 % −0.31 %

FourPeople −0.38 % 0.13 % −0.06 % 109.02 % 104.59 % −0.35 %

Johnny −1.04 % −1.33 % −0.22 % 106.87 % 102.47 % −1.59 %

KristenAndSara −0.62 % −0.18 % −0.02 % 106.51 % 99.54 % −0.58 %

BasketballDrillText −0.70 % −1.28 % −0.47 % 106.44 % 98.67 % −0.27 %

ArenaOfValor −0.52 % −1.11 % −1.02 % 105.39 % 100.45 % −0.45 %

SlideEditing∗ 0.05 % 0.08 % 0.12 % 105.93 % 104.03 % −0.39 %

SlideShow∗ 0.05 % 0.63 % −1.52 % 105.25 % 101.01 % 0.99 %

FlyingGraphic∗ −2.34 % −1.47 % −1.75 % 99.45 % 100.19 % −2.44 %

Desktop∗ −4.23 % −4.25 % −4.21 % 99.02 % 103.67 % −3.77 %

Console∗ −3.06 % −2.99 % −2.82 % 99.06 % 100.08 % −3.27 %

ChineseEditing∗ −0.33 % −0.34 % −0.21 % 99.49 % 99.28 % 0.01 %

Mean −0.75 % −0.88 % −0.75 % 106.03 % 101.30 % −0.68 %

Class B −0.22 % −0.23 % −0.32 % 107.70 % 102.03 % −0.21 %

Class C −0.54 % −1.12 % −1.00 % 108.13 % 101.14 % −0.30 %

Class E −0.68 % −0.46 % −0.10 % 107.43 % 102.05 % −0.84 %

Class D −0.39 % −0.84 % −0.07 % 107.81 % 100.46 % −0.52 %

Class F −0.28 % −0.42 % −0.72 % 105.75 % 101.00 % −0.03 %

Class TGM −2.49 % −2.26 % −2.25 % 99.23 % 100.73 % −2.37 %

JVET Overall −0.44 % −0.59 % −0.49 % 107.78 % 101.74 % −0.40 %

Table A.35 Coding results for Experiment 6.27. Test: VTM-5.0 + GEO, Reference: VTM-5.0, LDB
according to JVET CTC. Simplified GEO with 140 partitions per block, integer arithmetic and uni-
prediction restriction. ∗Screen content sequences coded with hard masking.

219



A Appendix

BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 −0.06 % −0.12 % 0.17 % 187.64 % 108.96 % −0.11 %

FoodMarket4 −0.02 % −0.06 % 0.00 % 182.25 % 109.59 % −0.08 %

Campfire −0.03 % 0.00 % 0.03 % 165.87 % 135.03 % 0.06 %

CatRobot1 −0.02 % 0.03 % 0.00 % 170.18 % 122.43 % −0.11 %

DaylightRoad2 −0.04 % −0.13 % −0.14 % 205.31 % 116.38 % −0.20 %

ParkRunning3 0.00 % 0.00 % 0.00 % 177.54 % 125.73 % −0.04 %

MarketPlace −0.04 % 0.01 % 0.13 % 179.44 % 146.68 % 0.10 %

RitualDance −0.06 % 0.04 % −0.05 % 190.85 % 142.64 % 0.01 %

Cactus −0.06 % 0.10 % 0.11 % 150.07 % 145.63 % −0.01 %

BasketballDrive −0.09 % 0.13 % −0.05 % 151.16 % 168.37 % −0.07 %

BQTerrace −0.06 % 0.13 % −0.09 % 188.39 % 140.48 % −0.18 %

BasketballDrill −0.05 % 0.13 % 0.09 % 165.36 % 144.68 % 0.14 %

BQMall −0.07 % 0.12 % −0.08 % 200.24 % 181.09 % 0.12 %

PartyScene −0.01 % 0.04 % −0.02 % 155.51 % 151.70 % −0.12 %

RaceHorsesL −0.04 % 0.02 % −0.12 % 152.14 % 131.94 % −0.09 %

BasketballPass −0.06 % −0.03 % 0.17 % 151.66 % 182.65 % 0.00 %

BQSquare 0.03 % 0.28 % 0.23 % 171.20 % 183.64 % 0.57 %

BlowingBubbles −0.06 % 0.03 % −0.03 % 154.53 % 196.73 % 0.31 %

RaceHorsesM −0.02 % 0.06 % 0.04 % 147.20 % 148.98 % −0.04 %

BasketballDrillText −0.01 % 0.09 % −0.09 % 157.21 % 162.65 % −0.05 %

ArenaOfValor −0.02 % 0.06 % 0.07 % 166.99 % 150.46 % −0.08 %

SlideEditing −0.08 % −0.07 % −0.07 % 115.95 % 101.66 % 0.04 %

SlideShow −0.10 % −0.01 % −0.04 % 150.83 % 121.90 % −0.06 %

Mean −0.04 % 0.04 % 0.01 % 166.85 % 144.35 % 0.00 %

Class A1 −0.04 % −0.06 % 0.07 % 176.99 % 115.26 % −0.04 %

Class A2 −0.02 % −0.03 % −0.04 % 183.18 % 117.46 % −0.12 %

Class B −0.06 % 0.08 % 0.01 % 170.33 % 147.19 % −0.03 %

Class C −0.04 % 0.08 % −0.03 % 166.81 % 149.99 % 0.01 %

Class D −0.03 % 0.08 % 0.10 % 155.16 % 176.10 % 0.21 %

Class F −0.05 % 0.02 % −0.03 % 146.10 % 130.80 % −0.04 %

JVET Overall −0.04 % 0.03 % −0.00 % 173.19 % 134.66 % −0.04 %

Table A.36 Coding results for Experiment 7.28. Test: VTM-3.2 + GEO + SADCT, Reference: VTM-3.2
+ GEO, RA according to JVET CTC. Optional SADCT coding of residual segment.

220



BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 −0.01 % −0.05 % 0.03 % 152.28 % 105.12 % −0.00 %

FoodMarket4 0.02 % −0.01 % 0.12 % 148.31 % 121.31 % −0.06 %

Campfire −0.04 % 0.00 % −0.04 % 147.04 % 131.49 % −0.07 %

CatRobot1 0.02 % −0.03 % −0.04 % 137.07 % 130.43 % 0.03 %

DaylightRoad2 −0.04 % −0.11 % −0.08 % 162.18 % 113.55 % −0.08 %

ParkRunning3 −0.00 % −0.01 % 0.01 % 146.23 % 124.28 % −0.07 %

MarketPlace −0.00 % −0.16 % −0.08 % 146.27 % 122.30 % 0.14 %

RitualDance −0.06 % 0.15 % −0.04 % 167.38 % 151.32 % −0.02 %

Cactus −0.03 % 0.03 % 0.04 % 115.21 % 148.64 % −0.04 %

BasketballDrive −0.06 % −0.04 % −0.07 % 128.20 % 159.49 % −0.18 %

BQTerrace 0.01 % −0.07 % −0.26 % 143.14 % 172.06 % 0.27 %

BasketballDrill −0.00 % 0.03 % 0.08 % 134.60 % 167.91 % −0.03 %

BQMall −0.07 % 0.12 % −0.32 % 146.22 % 165.78 % −0.08 %

PartyScene −0.03 % 0.02 % −0.06 % 136.44 % 169.15 % 0.03 %

RaceHorsesL 0.01 % 0.01 % −0.45 % 144.77 % 182.86 % 0.15 %

BasketballPass −0.03 % 0.29 % −0.01 % 130.31 % 192.51 % 0.21 %

BQSquare −0.02 % 0.10 % 0.06 % 127.64 % 179.21 % 0.65 %

BlowingBubbles −0.03 % 0.29 % −0.02 % 121.01 % 163.63 % 0.14 %

RaceHorsesM 0.03 % 0.22 % −0.28 % 138.47 % 155.36 % 0.06 %

BasketballDrillText −0.04 % 0.10 % 0.06 % 136.72 % 146.40 % −0.15 %

ArenaOfValor −0.01 % 0.02 % 0.05 % 130.99 % 129.15 % −0.08 %

SlideEditing −0.04 % −0.03 % −0.04 % 90.55 % 97.21 % 0.02 %

SlideShow −0.03 % 0.07 % 0.04 % 116.67 % 103.98 % 0.02 %

Mean −0.02 % 0.04 % −0.06 % 136.86 % 144.92 % 0.04 %

Class A1 −0.01 % −0.02 % 0.04 % 147.12 % 117.32 % −0.04 %

Class A2 −0.01 % −0.05 % −0.03 % 147.43 % 119.58 % −0.04 %

Class B −0.03 % −0.02 % −0.09 % 137.79 % 148.88 % 0.04 %

Class C −0.02 % 0.04 % −0.19 % 140.00 % 169.53 % 0.02 %

Class D −0.01 % 0.23 % −0.06 % 128.47 % 168.53 % 0.27 %

Class F −0.03 % 0.04 % 0.03 % 116.95 % 117.05 % −0.05 %

JVET Overall −0.02 % −0.01 % −0.08 % 142.11 % 140.66 % 0.00 %

Table A.37 Coding results for Experiment 7.29. Test: VTM-3.2 + GEO + SADCT, Reference: VTM-3.2
+ GEO, RA according to JVET CTC. Optional SADCT coding of transition zone.

221



A Appendix

BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 0.05 % 0.02 % −0.06 % 115.04 % 108.08 % 0.05 %

FoodMarket4 0.00 % 0.01 % −0.05 % 139.85 % 106.01 % 0.06 %

Campfire −0.10 % 0.06 % 0.02 % 147.45 % 107.73 % 0.09 %

CatRobot1 0.03 % −0.02 % −0.02 % 148.82 % 99.85 % 0.06 %

DaylightRoad2 −0.04 % −0.20 % −0.12 % 159.11 % 99.27 % −0.14 %

ParkRunning3 0.00 % −0.01 % 0.00 % 140.97 % 93.97 % −0.09 %

MarketPlace 0.02 % −0.15 % −0.26 % 151.07 % 122.89 % 0.17 %

RitualDance −0.03 % 0.05 % 0.02 % 173.20 % 106.07 % 0.02 %

Cactus −0.00 % −0.04 % 0.06 % 127.16 % 135.21 % 0.02 %

BasketballDrive −0.05 % 0.06 % 0.07 % 148.47 % 157.71 % −0.21 %

BQTerrace −0.35 % 0.21 % 0.08 % 159.52 % 145.64 % −0.01 %

BasketballDrill −0.11 % 0.11 % 0.07 % 144.63 % 183.64 % 0.07 %

BQMall −0.05 % 0.12 % 0.04 % 165.52 % 160.19 % 0.27 %

PartyScene −0.17 % 0.42 % 0.34 % 138.88 % 144.73 % 0.06 %

RaceHorsesL 0.00 % −0.07 % −0.06 % 159.26 % 170.08 % 0.14 %

BasketballPass −0.03 % 0.13 % 0.02 % 129.89 % 159.66 % 0.22 %

BQSquare −0.31 % 0.57 % 0.80 % 145.64 % 146.59 % 0.47 %

BlowingBubbles −0.19 % 0.36 % −0.05 % 133.62 % 182.36 % 0.01 %

RaceHorsesM −0.02 % 0.06 % 0.19 % 146.33 % 155.75 % 0.09 %

BasketballDrillText −0.08 % 0.27 % 0.12 % 151.46 % 169.09 % −0.26 %

ArenaOfValor −0.07 % 0.25 % 0.26 % 140.01 % 122.19 % 0.09 %

SlideEditing −0.22 % −0.10 % −0.01 % 103.76 % 115.69 % −0.02 %

SlideShow −0.01 % −0.04 % −0.08 % 133.84 % 113.74 % 0.02 %

Mean −0.08 % 0.09 % 0.06 % 143.63 % 135.05 % 0.05 %

Class A1 −0.01 % 0.03 % −0.03 % 132.84 % 102.87 % 0.07 %

Class A2 −0.00 % −0.07 % −0.05 % 148.97 % 95.43 % −0.06 %

Class B −0.09 % 0.03 % −0.00 % 149.90 % 131.26 % −0.00 %

Class C −0.08 % 0.15 % 0.10 % 151.27 % 162.37 % 0.14 %

Class D −0.14 % 0.28 % 0.24 % 137.82 % 158.54 % 0.20 %

Class F −0.10 % 0.10 % 0.07 % 130.79 % 127.60 % −0.04 %

JVET Overall −0.05 % 0.04 % 0.01 % 146.50 % 124.14 % 0.04 %

Table A.38 Coding results for Experiment 7.30. Test: VTM-3.2 + GEO + Transform Skip, Reference:
VTM-3.2 + GEO, RA according to JVET CTC. Optional transform skip applied to entire GEO TB.

222



BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 0.05 % 0.07 % −0.07 % 118.73 % 80.05 % 0.10 %

FoodMarket4 0.00 % −0.00 % −0.03 % 129.27 % 99.16 % 0.06 %

Campfire −0.03 % 0.03 % 0.02 % 151.04 % 91.56 % 0.05 %

CatRobot1 0.02 % 0.01 % −0.03 % 140.32 % 88.90 % 0.05 %

DaylightRoad2 −0.05 % −0.32 % −0.11 % 148.44 % 92.41 % −0.01 %

ParkRunning3 −0.00 % 0.01 % −0.00 % 133.39 % 82.76 % −0.12 %

MarketPlace 0.04 % −0.10 % −0.19 % 166.97 % 96.82 % 0.12 %

RitualDance 0.01 % −0.04 % −0.03 % 160.74 % 91.74 % 0.04 %

Cactus 0.00 % 0.00 % 0.13 % 142.42 % 144.36 % 0.02 %

BasketballDrive −0.03 % −0.06 % 0.06 % 147.58 % 169.69 % −0.14 %

BQTerrace −0.24 % 0.06 % −0.04 % 185.45 % 120.39 % −0.01 %

BasketballDrill −0.04 % 0.10 % 0.13 % 151.50 % 170.29 % −0.08 %

BQMall −0.02 % 0.34 % 0.16 % 177.30 % 149.99 % 0.05 %

PartyScene −0.12 % 0.31 % 0.05 % 155.00 % 162.05 % −0.06 %

RaceHorsesL 0.06 % −0.19 % −0.32 % 163.61 % 139.79 % 0.19 %

BasketballPass −0.08 % −0.01 % −0.17 % 146.62 % 155.40 % 0.19 %

BQSquare −0.16 % 0.25 % 0.81 % 185.84 % 191.53 % 0.45 %

BlowingBubbles −0.15 % 0.24 % 0.36 % 145.10 % 187.47 % −0.01 %

RaceHorsesM −0.00 % 0.05 % −0.14 % 149.38 % 187.89 % −0.25 %

BasketballDrillText −0.05 % 0.14 % −0.00 % 143.34 % 172.20 % −0.10 %

ArenaOfValor −0.03 % 0.22 % 0.18 % 157.52 % 155.54 % 0.17 %

SlideEditing −0.12 % −0.05 % −0.02 % 109.97 % 128.61 % −0.07 %

SlideShow 0.05 % 0.04 % 0.03 % 148.04 % 103.62 % −0.07 %

Mean −0.04 % 0.05 % 0.03 % 150.33 % 133.14 % 0.02 %

Class A1 0.01 % 0.03 % −0.03 % 131.82 % 88.79 % 0.07 %

Class A2 −0.01 % −0.10 % −0.05 % 140.11 % 86.95 % −0.02 %

Class B −0.05 % −0.02 % −0.01 % 158.15 % 119.93 % 0.01 %

Class C −0.03 % 0.14 % 0.01 % 161.28 % 152.51 % 0.03 %

Class D −0.10 % 0.13 % 0.22 % 155.12 % 178.64 % 0.10 %

Class F −0.04 % 0.09 % 0.05 % 138.13 % 136.27 % −0.02 %

JVET Overall −0.02 % 0.01 % −0.02 % 149.62 % 112.91 % 0.02 %

Table A.39 Coding results for Experiment 7.31. Test: VTM-3.2 + GEO + Transform Skip, Reference:
VTM-3.2+GEO, RA according to JVET CTC. Optional transform skip applied to signaled GEO residual
segment.

223



A Appendix

BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 0.05 % 0.12 % 0.08 % 169.09 % 126.03 % 0.05 %

FoodMarket4 −0.02 % −0.01 % −0.02 % 144.25 % 103.07 % −0.00 %

Campfire −0.07 % 0.05 % 0.07 % 162.72 % 131.81 % 0.00 %

CatRobot1 0.03 % −0.05 % −0.03 % 152.40 % 113.41 % 0.04 %

DaylightRoad2 0.01 % −0.06 % −0.11 % 180.46 % 123.22 % 0.06 %

ParkRunning3 0.01 % −0.01 % 0.01 % 160.49 % 129.56 % −0.01 %

MarketPlace 0.00 % −0.08 % −0.13 % 162.49 % 140.66 % 0.15 %

RitualDance −0.01 % 0.17 % 0.03 % 168.73 % 148.32 % −0.05 %

Cactus −0.02 % −0.06 % 0.04 % 127.56 % 142.97 % 0.07 %

BasketballDrive −0.03 % −0.03 % 0.04 % 144.84 % 160.03 % −0.08 %

BQTerrace −0.38 % 0.32 % 0.17 % 170.19 % 148.41 % −0.17 %

BasketballDrill −0.05 % 0.20 % 0.09 % 150.53 % 167.20 % −0.02 %

BQMall −0.09 % 0.27 % 0.22 % 156.25 % 166.83 % 0.08 %

PartyScene −0.16 % 0.14 % 0.17 % 144.47 % 166.75 % 0.01 %

RaceHorsesL −0.06 % −0.05 % −0.16 % 152.70 % 147.38 % 0.01 %

BasketballPass −0.12 % 0.17 % 0.06 % 127.91 % 161.78 % 0.28 %

BQSquare −0.38 % 0.73 % 0.67 % 167.79 % 165.57 % 0.59 %

BlowingBubbles −0.23 % 0.41 % 0.23 % 138.00 % 191.32 % 0.02 %

RaceHorsesM −0.05 % 0.00 % 0.45 % 136.45 % 173.20 % 0.14 %

BasketballDrillText −0.16 % 0.09 % 0.14 % 151.57 % 177.89 % −0.18 %

ArenaOfValor −0.08 % 0.25 % 0.24 % 142.59 % 123.58 % 0.00 %

SlideEditing −0.14 % −0.09 % −0.07 % 107.99 % 101.86 % −0.04 %

SlideShow −0.05 % 0.04 % 0.06 % 132.99 % 98.43 % −0.11 %

Mean −0.09 % 0.11 % 0.10 % 150.11 % 143.88 % 0.04 %

Class A1 −0.01 % 0.05 % 0.04 % 157.31 % 115.99 % 0.02 %

Class A2 0.02 % −0.04 % −0.05 % 163.17 % 118.07 % 0.03 %

Class B −0.09 % 0.06 % 0.03 % 152.58 % 147.43 % −0.02 %

Class C −0.09 % 0.14 % 0.08 % 150.33 % 160.36 % 0.02 %

Class D −0.20 % 0.33 % 0.35 % 141.36 % 170.77 % 0.26 %

Class F −0.11 % 0.07 % 0.09 % 132.48 % 121.34 % −0.08 %

JVET Overall −0.05 % 0.06 % 0.03 % 154.97 % 137.47 % 0.01 %

Table A.40 Coding results for Experiment 7.32. Test: VTM-3.2 + GEO + Transform Skip, Reference:
VTM-3.2+GEO, RA according to JVET CTC. Optional transform skip applied to signaled GEO residual
segment and shifting to top-left corner of TB.

224



BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 0.07 % 0.00 % −0.18 % 98.82 % 119.26 % 0.07 %

FoodMarket4 0.04 % −0.02 % 0.04 % 88.72 % 125.07 % 0.09 %

Campfire −0.01 % −0.02 % 0.06 % 92.44 % 128.29 % −0.08 %

CatRobot1 0.04 % 0.05 % 0.21 % 88.19 % 134.54 % −0.04 %

DaylightRoad2 0.03 % −0.06 % −0.04 % 83.03 % 130.35 % 0.10 %

ParkRunning3 −0.00 % −0.02 % −0.01 % 95.21 % 115.10 % −0.02 %

MarketPlace −0.02 % 0.06 % −0.06 % 91.30 % 149.46 % −0.11 %

RitualDance 0.02 % 0.01 % −0.18 % 98.96 % 143.60 % −0.06 %

Cactus 0.04 % −0.08 % 0.03 % 85.06 % 181.86 % −0.10 %

BasketballDrive −0.00 % −0.05 % 0.00 % 85.97 % 195.68 % −0.20 %

BQTerrace 0.02 % −0.36 % 0.11 % 89.49 % 197.99 % 0.06 %

BasketballDrill 0.04 % −0.08 % −0.18 % 94.54 % 237.92 % 0.07 %

BQMall −0.00 % 0.09 % 0.13 % 88.57 % 172.75 % 0.08 %

PartyScene −0.02 % −0.17 % −0.08 % 92.13 % 128.84 % 0.01 %

RaceHorsesL −0.03 % −0.02 % 0.09 % 90.72 % 146.94 % −0.19 %

BasketballPass 0.03 % 0.12 % −0.17 % 82.83 % 205.13 % 0.07 %

BQSquare −0.03 % −0.14 % 0.05 % 82.47 % 211.54 % 0.10 %

BlowingBubbles 0.00 % −0.09 % −0.03 % 89.06 % 180.57 % 0.05 %

RaceHorsesM 0.02 % −0.28 % −0.38 % 80.87 % 159.00 % 0.35 %

BasketballDrillText −0.05 % −0.03 % −0.15 % 84.98 % 204.26 % 0.10 %

ArenaOfValor −0.02 % −0.08 % −0.04 % 85.60 % 172.58 % −0.22 %

SlideEditing −0.01 % −0.04 % −0.06 % 84.18 % 77.76 % −0.13 %

SlideShow 0.04 % −0.12 % −0.00 % 80.97 % 99.15 % 0.02 %

Mean 0.01 % −0.06 % −0.04 % 88.44 % 157.29 % 0.00 %

Class A1 0.03 % −0.01 % −0.03 % 92.69 % 122.45 % 0.03 %

Class A2 0.02 % −0.01 % 0.05 % 87.99 % 125.08 % 0.01 %

Class B 0.01 % −0.08 % −0.02 % 89.83 % 170.60 % −0.08 %

Class C −0.00 % −0.05 % −0.01 % 91.32 % 165.89 % −0.01 %

Class D 0.01 % −0.09 % −0.13 % 83.39 % 186.83 % 0.14 %

Class F −0.01 % −0.07 % −0.06 % 83.31 % 126.88 % −0.06 %

JVET Overall 0.01 % −0.04 % −0.01 % 90.42 % 148.93 % −0.02 %

Table A.41 Coding results for Experiment 7.33. Test: VTM-3.2 + TPM symmetric residual extension
for all block sizes, Reference: VTM-3.2, RA according to JVET CTC.

225



A Appendix

BD-rate change Relative complexity Visual

Sequence / Class Y U V EncT DecT VMAF

Tango2 0.01 % −0.02 % −0.07 % 108.89 % 123.46 % 0.05 %

FoodMarket4 −0.01 % −0.09 % 0.03 % 95.43 % 145.94 % 0.05 %

Campfire −0.00 % 0.02 % 0.02 % 101.08 % 145.86 % −0.12 %

CatRobot1 −0.02 % 0.16 % 0.04 % 97.04 % 157.32 % 0.03 %

DaylightRoad2 0.04 % −0.17 % 0.12 % 96.08 % 132.34 % 0.14 %

ParkRunning3 0.00 % −0.01 % −0.03 % 106.62 % 133.82 % 0.06 %

MarketPlace −0.00 % 0.19 % 0.01 % 94.41 % 164.15 % −0.02 %

RitualDance 0.03 % 0.08 % −0.24 % 108.99 % 147.59 % −0.04 %

Cactus 0.02 % −0.04 % 0.12 % 93.32 % 238.55 % −0.10 %

BasketballDrive 0.01 % −0.04 % 0.03 % 96.85 % 194.13 % −0.04 %

BQTerrace 0.05 % −0.24 % 0.00 % 83.60 % 184.85 % 0.06 %

BasketballDrill 0.01 % −0.11 % 0.00 % 94.48 % 188.73 % 0.12 %

BQMall −0.03 % 0.22 % 0.22 % 78.03 % 178.02 % 0.14 %

PartyScene −0.02 % −0.25 % −0.05 % 89.61 % 133.22 % −0.05 %

RaceHorsesL −0.00 % −0.08 % −0.25 % 87.58 % 110.31 % −0.01 %

BasketballPass 0.02 % 0.05 % −0.13 % 87.57 % 206.01 % −0.06 %

BQSquare −0.04 % −0.17 % 0.09 % 74.89 % 217.69 % 0.41 %

BlowingBubbles 0.05 % 0.07 % 0.01 % 82.26 % 190.50 % 0.38 %

RaceHorsesM 0.01 % −0.14 % −0.28 % 77.67 % 152.03 % 0.06 %

BasketballDrillText −0.03 % 0.21 % 0.06 % 101.95 % 225.82 % 0.02 %

ArenaOfValor −0.03 % −0.06 % 0.08 % 91.06 % 168.61 % −0.21 %

SlideEditing 0.01 % 0.01 % −0.01 % 76.92 % 73.53 % −0.11 %

SlideShow −0.03 % −0.00 % 0.03 % 86.48 % 119.66 % 0.09 %

Mean 0.00 % −0.02 % −0.01 % 91.77 % 162.27 % 0.04 %

Class A1 −0.00 % −0.03 % −0.00 % 100.87 % 135.20 % −0.01 %

Class A2 0.01 % −0.00 % 0.04 % 99.11 % 137.81 % 0.07 %

Class B 0.02 % −0.01 % −0.01 % 94.73 % 181.83 % −0.03 %

Class C −0.01 % −0.05 % −0.02 % 86.75 % 148.23 % 0.05 %

Class D 0.01 % −0.04 % −0.08 % 80.02 % 186.49 % 0.20 %

Class F −0.02 % 0.04 % 0.04 % 88.39 % 133.51 % −0.05 %

JVET Overall 0.01 % −0.02 % −0.00 % 94.55 % 153.53 % 0.02 %

Table A.42 Coding results for Experiment 7.34. Test: VTM-3.2 + TPM symmetric residual extension
for block sizes with w≤ 16 and h≤ 16, Reference: VTM-3.2, RA according to JVET CTC.

226



Bibliography

[04] Information technology - Coding of audio-visual objects - Part 2: Visual. Stan-
dard. Geneva, CH: International Organization for Standardization, June 2004
(cited on page 155).

[93] Information technology - Coded representation of picture and audio information
- Progressive bi-level image compression. Standard. Geneva, CH: International
Organization for Standardization, June 1993 (cited on page 34).

[Ahm+13a] A. Ahmmed, M. J. Alam, M. Pickering, R. Xu, A. T. Naman, and D. Taubman.
“Motion hints based inter-frame prediction for hybrid video coding.” In: 2013
Picture Coding Symposium (PCS). Dec. 2013, pages 177–180. DOI: 10.1109/
PCS.2013.6737712 (cited on page 39).

[Ahm+13b] A. Ahmmed, R. Xu, A. T. Naman, M. J. Alam, M. Pickering, and D. Taubman.
“Motion segmentation initialization strategies for bi-directional inter-frame
prediction.” In: 2013 IEEE 15th International Workshop on Multimedia Signal
Processing (MMSP). Sept. 2013, pages 058–063. DOI: 10.1109/MMSP.2013.
6659264 (cited on page 39).

[And+16] K. Andersson, P. Wennersten, J. Samuelsson, J. Ström, P. Hermansson, and
M. Pettersson. AHG 3: Recommended settings for HM. Technical report JCTVC-
X0038. Geneva, Switzerland, 24th meeting: Joint Collaborative Team on Video
Coding (JCT-VC) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, May
2016 (cited on page 121).

[AS18a] Yongjo Ahn and Donggyu Sim. CE10: Diagonal motion partitions with uni-
prediction constraint (Test 10.3.3). Technical report JVET-L0125. Macau SR,
China, 12th meeting: Joint Video Experts Team (JVET) of ITU-T VCEG and
ISO/IEC MPEG, Oct. 2018 (cited on page 116).

[AS18b] Yongjo Ahn and Donggyu Sim. CE10-related: Diagonal motion partitions on
top of MTT block structure. Technical report JVET-K0270. Ljubljana, Slovenia,
11th meeting: Joint Video Experts Team (JVET) of ITU-T VCEG and ISO/IEC
MPEG, July 2018 (cited on page 116).

[BCL18] Benjamin Bross, Jianle Chen, and Shan Liu. Versatile Video Coding (Draft 5).
Technical report JVET-N1001. Geneva, Switzerland, 14th meeting: Joint Video
Experts Team (JVET) of ITU-T VCEG and ISO/IEC MPEG, Mar. 2018 (cited on
pages 17, 18, 28, 128, 131, 137, 150).

[BFT11] P. Bordes, E. Francois, and D. Thoreau. “Fast encoding algorithms for
geometry-adaptive block partitioning.” In: 2011 18th IEEE International Con-
ference on Image Processing. Sept. 2011, pages 1205–1208. DOI: 10.1109/
ICIP.2011.6115647 (cited on page 37).

227

https://doi.org/10.1109/PCS.2013.6737712
https://doi.org/10.1109/PCS.2013.6737712
https://doi.org/10.1109/MMSP.2013.6659264
https://doi.org/10.1109/MMSP.2013.6659264
https://doi.org/10.1109/ICIP.2011.6115647
https://doi.org/10.1109/ICIP.2011.6115647


Bibliography

[BHW16] Max Bläser, Cordula Heithausen, and Mathias Wien. “Segmentation-based
Partitioning for Motion Compensated Prediction in Video Coding.” In:
2016 Picture Coding Symposium. Nuremberg, Germany, Dec. 2016 (cited on
page 39).

[BHW17] Max Bläser, Cordula Heithausen, and Mathias Wien. “Geometry-Adaptive Mo-
tion Partitioning Using Improved Temporal Prediction.” In: 2017 Visual Com-
munications And Image Processing. St Petersburg, USA, Dec. 2017 (cited on
page 84).

[Bjø01] G. Bjøntegaard. Calculation of average PSNR differences between RD-curves.
Technical report VCEG-M33. Austin, USA: ITU-T SG16/Q6 VCEG, 2001 (cited
on page 27).

[BK97] D. B. Bradshaw and N. G. Kingsbury. “Combined affine and translational mo-
tion compensation scheme using triangular tessellations.” In: 1997 IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing. Volume 4.
Apr. 1997, 2645–2648 vol.4. DOI: 10.1109/ICASSP.1997.595332 (cited
on page 38).

[Bla+17] S. Blasi, M. Naccari, R. Weerakkody, J. Funnell, and M. Mrak. “The Open-
Source Turing Codec: Toward Fast, Flexible, and Parallel HEVC Encoding.”
In: SMPTE Motion Imaging Journal 126.9 (Nov. 2017), pages 1–8. ISSN: 2160-
2492. DOI: 10.5594/JMI.2017.2744578 (cited on page 139).

[BOA96] M. Bi, S. H. Ong, and Y. H. Ang. “Comment on "Shape-adaptive DCT for generic
coding of video".” In: IEEE Transactions on Circuits and Systems for Video Tech-
nology 6.6 (Dec. 1996), pages 686–688. ISSN: 1558-2205. DOI: 10.1109/76.
544740 (cited on page 159).

[Bor+11] P. Bordes, P. Chen, I.-K. Kim, L. Guo, H. Yu, and X. Zheng. CE2: Unified so-
lution of flexible motion partitioning. Technical report JCTVC-E374. Geneva,
Switzerland, 5th meeting: Joint Collaborative Team on Video Coding (JCT-VC)
of ITU-T VCEG and ISO/IEC MPEG, Mar. 2011 (cited on page 37).

[Bos+18a] Frank Bossen, Jill Boyce, Karsten Suehring, Xiang Li, and Vadim Seregin. JVET
common test conditions and software reference configurations for SDR video.
Technical report JVET-L1010. Macao, SAR China, 12th meeting: Joint Video
Experts Team (JVET) of ITU-T VCEG and ISO/IEC MPEG, Oct. 2018 (cited on
page 25).

[Bos+18b] Frank Bossen, Jill Boyce, Karsten Suehring, Xiang Li, and Vadim Seregin. JVET
common test conditions and software reference configurations for SDR video.
Technical report JVET-N1010. Geneva, Switzerland, 14th meeting: Joint Video
Experts Team (JVET) of ITU-T VCEG and ISO/IEC MPEG, Mar. 2018 (cited on
page 25).

[BS18a] Max Bläser and Johannes Sauer. CE10: Results on Geometric block partitioning
(Test 3.3). Technical report JVET-K0146. Ljubljana, Slovenia, 11th meeting:
Joint Video Experts Team (JVET) of ITU-T VCEG and ISO/IEC MPEG, July
2018 (cited on page 116).

228

https://doi.org/10.1109/ICASSP.1997.595332
https://doi.org/10.5594/JMI.2017.2744578
https://doi.org/10.1109/76.544740
https://doi.org/10.1109/76.544740


Bibliography

[BS18b] Max Bläser and Johannes Sauer. CE10: Results on Geometric Partitioning (Ex-
periments 3.2.a - 3.2.c). Technical report JVET-L0417. Macau SR, China, 12th

meeting: Joint Video Experts Team (JVET) of ITU-T VCEG and ISO/IEC MPEG,
Oct. 2018 (cited on page 116).

[BSW18] Max Bläser, Johannes Sauer, and Mathias Wien. Description of SDR and 360◦

video coding technology proposal by RWTH Aachen University. Technical report
JVET-J0023. San Diego, USA, 10th meeting: Joint Video Experts Team (JVET)
of ITU-T VCEG and ISO/IEC MPEG, Apr. 2018 (cited on page 84).

[BYR07] Vladimir Britanak, Patrick C. Yip, and K.R. Rao. Discrete Cosine and Sine Trans-
forms: General Properties, Fast Algorithms and Integer Approximations. 1st edi-
tion. Academic Press, 2007. ISBN: 9780123736246 (cited on page 10).

[CBM17] J. Carter, S. Blasi, and M. Mrak. “Complexity-Driven Rate-Control for Parallel
HEVC Coding.” In: 2017 IEEE Visual Communications and Image Processing
(VCIP). Dec. 2017, pages 1–4. DOI: 10.1109/VCIP.2017.8305101 (cited
on page 139).

[Che+07] Jianle Chen, SangRae Lee, Kyo-Hyuk Lee, and Woo-Jin Han. “Object Bound-
ary Based Motion Partition For Video Coding.” In: Picture Coding Symposium
(PCS). Nov. 2007 (cited on page 39).

[Che+10] P. Chen, W.-J. Chien, R. Panchal, and M. Karczewicz. Geometry Motion Parti-
tion. Technical report JCTVC-B049. Geneva, Switzerland, 2nd meeting: Joint
Collaborative Team on Video Coding (JCT-VC) of ITU-T VCEG and ISO/IEC
MPEG, July 2010 (cited on page 36).

[Che+14] Y. Chen, D. Mukherjee, J. Han, and K. Rose. “Joint inter-intra prediction based
on mode-variant and edge-directed weighting approaches in video coding.”
In: 2014 IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP). May 2014, pages 7372–7376. DOI: 10.1109/ICASSP.2014.
6855032 (cited on page 37).

[Che+17] J. Chen, E. Alshina, G. Sullivan, J.-R. Ohm, and J. Boyce. Algorithm Descrip-
tion of Joint Exploration Test Model 7 (JEM 7). Technical report JVET-G1001.
Torino, Italy, 7th meeting: Joint Video Exploration Team (JVET) of ITU-T VCEG
and ISO/IEC MPEG, July 2017 (cited on page 150).

[Che+18] Y. Chen et al. “An Overview of Core Coding Tools in the AV1 Video Codec.”
In: 2018 Picture Coding Symposium (PCS). June 2018, pages 41–45. DOI: 10.
1109/PCS.2018.8456249 (cited on pages 17, 18, 38).

[Che+19a] C.-C. Chen, Y. Zhang, K. Reuze, Y.-J. Chang, W.-J. Chien, and M. Karczewicz.
Non-CE4/8: Blending-off Switch for TPM Mode. Doc. JVET-O0645. Gothenburg,
Sweden, 15th meeting: Joint Video Experts Team of ITU-T VCEG and ISO/IEC
MPEG, July 2019 (cited on page 136).

[Che+19b] J. Chen, M. Karczewicz, Y. Huang, K. Choi, J. Ohm, and G. J. Sullivan. “The
Joint Exploration Model (JEM) for Video Compression with Capability be-
yond HEVC.” In: IEEE Transactions on Circuits and Systems for Video Technology
(2019), pages 1–1. ISSN: 1558-2205. DOI: 10.1109/TCSVT.2019.2945830
(cited on pages 28, 150).

229

https://doi.org/10.1109/VCIP.2017.8305101
https://doi.org/10.1109/ICASSP.2014.6855032
https://doi.org/10.1109/ICASSP.2014.6855032
https://doi.org/10.1109/PCS.2018.8456249
https://doi.org/10.1109/PCS.2018.8456249
https://doi.org/10.1109/TCSVT.2019.2945830


Bibliography

[Chi+19] Wei-Jung Chien, Jill Boyce, Roman Chernyak, Kiho Choi Francois, Ryoji
Hashimoto, Yu-Wen Huang, Shan Liu, and Daniel Luo. JVET AHG report: Tool
reporting procedure (AHG13). Technical report JVET-M0013. Marrakech, Mo-
rocco, 13th meeting: Joint Video Experts Team (JVET) of ITU-T VCEG and
ISO/IEC MPEG, Jan. 2019 (cited on page 116).

[Cla85] R. J. Clarke. Transform Coding of Images. Microelectronics and Signal Pro-
cessing. Academic Press Limited, 1985. ISBN: 0121757307 (cited on pages 8,
150).

[CLC06] Tung-Chien Chen, Chung-Jr Lian, and Liang-Gee Chen. “Hardware Architec-
ture Design of an H.264/AVC Video Codec.” In: Asia and South Pacific Confer-
ence on Design Automation. Jan. 2006, 8 pp.-. DOI: 10.1109/ASPDAC.2006.
1594776 (cited on page 69).

[CP93] Chi-Fa Chen and Khee K. Pang. “The optimal transform of motion-
compensated frame difference images in a hybrid coder.” In: IEEE Transac-
tions on Circuits and Systems II: Analog and Digital Signal Processing 40.6 (June
1993), pages 393–397. ISSN: 1558-125X. DOI: 10.1109/82.277884 (cited
on pages 149, 151).

[CYK19] Jianle Chen, Yan Ye, and Seung Hwan Kim. Algorithm description for Versatile
Video Coding and Test Model 3 (VTM 3). Technical report JVET-N1002. Geneva,
Switzerland, 14th meeting: Joint Video Experts Team (JVET) of ITU-T VCEG
and ISO/IEC MPEG, Mar. 2019 (cited on pages 17, 18, 24, 28, 128, 150).

[CYX19] C.-C. Chen, H. Yang, and X. Xiu. Description of Core Experiment 4 (CE4): In-
ter prediction. Doc. JVET-O2024. Gothenburg, Sweden, 15th meeting: Joint
Video Experts Team of ITU-T VCEG and ISO/IEC MPEG, July 2019 (cited on
page 128).

[Dai+07] C. Dai, O. D. Escoda, P. Yin, X. Li, and C. Gomila. “Geometry-Adaptive Block
Partitioning for Intra Prediction in Image Video Coding.” In: 2007 IEEE In-
ternational Conference on Image Processing. Volume 6. Sept. 2007, pages VI -
85-VI - 88. DOI: 10.1109/ICIP.2007.4379527 (cited on page 35).

[DeL+16] S. De-Luxán-Hernández, D. Marpe, H. Schwarz, K. Muller, M. Wien, J. Ohm,
and T. Wiegand. “Block adaptive selection of multiple core transforms for
video coding.” In: 2016 Picture Coding Symposium (PCS). Dec. 2016, pages 1–
5. DOI: 10.1109/PCS.2016.7906349 (cited on page 149).

[Din+13] J. Ding, Y. Huang, P. Lin, S. Pei, H. Chen, and Y. Wang. “Two-Dimensional
Orthogonal DCT Expansion in Trapezoid and Triangular Blocks and Modi-
fied JPEG Image Compression.” In: IEEE Transactions on Image Processing 22.9
(Sept. 2013), pages 3664–3675. ISSN: 1941-0042. DOI: 10.1109/TIP.2013.
2268971 (cited on page 168).

[Doa+17] Nghia Doan, Tae Kim, Chae Eun Rhee, and Hyuk-Jae Lee. “A hardware-
oriented concurrent TZ search algorithm for High-Efficiency Video Coding.”
In: EURASIP Journal on Advances in Signal Processing 78 (Nov. 2017). DOI:
10.1186/s13634-017-0513-9 (cited on page 113).

230

https://doi.org/10.1109/ASPDAC.2006.1594776
https://doi.org/10.1109/ASPDAC.2006.1594776
https://doi.org/10.1109/82.277884
https://doi.org/10.1109/ICIP.2007.4379527
https://doi.org/10.1109/PCS.2016.7906349
https://doi.org/10.1109/TIP.2013.2268971
https://doi.org/10.1109/TIP.2013.2268971
https://doi.org/10.1186/s13634-017-0513-9


Bibliography

[DYG07] Oscar Divorra, Peng Yin, and Cristina Gomila. Geometry-adaptive Block Par-
tioning. Technical report VCEG-AF10. San Jose, USA, 32nd meeting: ITU-T
SG16/Q6 VCEG, Apr. 2007 (cited on page 35).

[Esc+07] O. Divorra Escoda, P. Yin, C. Dai, and X. Li. “Geometry-Adaptive Block Parti-
tioning for Video Coding.” In: 2007 IEEE International Conference on Acoustics,
Speech and Signal Processing - ICASSP ’07. Volume 1. Apr. 2007, pages I-657-
I-660. DOI: 10.1109/ICASSP.2007.365993 (cited on pages 35, 48, 49).

[Ese+19a] Semih Esenlik, Han Gao, Alexey Filippov, Vasily Rufitskiy, Anand Meher Kotra,
Biao Wang, Elena Alshina, Max Bläser, and Johannes Sauer. Non-CE4: Geomet-
rical partitioning for inter blocks. Doc. JVET-O0489. Gothenburg, Sweden, 15th

meeting: Joint Video Experts Team of ITU-T VCEG and ISO/IEC MPEG, July
2019 (cited on page 128).

[Ese+19b] Semih Esenlik, Han Gao, Biao Wang, Anand Meher Kotra, Zhijie Zhao, Elena
Alshina, Max Bläser, and Johannes Sauer. Non-CE4: Adaptive blending filter-
ing for TPM. Doc. JVET-O0513. Gothenburg, Sweden, 15th meeting: Joint
Video Experts Team of ITU-T VCEG and ISO/IEC MPEG, July 2019 (cited on
page 128).

[Fer+09] R. U. Ferreira, E. M. Hung, R. L. de Queiroz, and D. Mukherjee. “Efficiency
improvements for a geometric-partition-based video coder.” In: 2009 16th IEEE
International Conference on Image Processing (ICIP). Nov. 2009, pages 1009–
1012. DOI: 10.1109/ICIP.2009.5413818 (cited on page 36).

[Fra+11] E. Francois, P. Bordes, L. Guo, and M. Karczewicz. CE2: Simplified Geome-
try Block Partitioning. Technical report JCTVC-D230. Daegu, Korea, 4th meet-
ing: Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T VCEG and
ISO/IEC MPEG, Jan. 2011 (cited on page 36).

[Fu+12] C. Fu, E. Alshina, A. Alshin, Y. Huang, C. Chen, C. Tsai, C. Hsu, S. Lei, J.
Park, and W. Han. “Sample Adaptive Offset in the HEVC Standard.” In: IEEE
Transactions on Circuits and Systems for Video Technology 22.12 (Dec. 2012),
pages 1755–1764. ISSN: 1558-2205. DOI: 10.1109/TCSVT.2012.2221529
(cited on page 24).

[FWG98] M. Flierl, T. Wiegand, and B. Girod. “A locally optimal design algorithm for
block-based multi-hypothesis motion-compensated prediction.” In: Proceed-
ings DCC ’98 Data Compression Conference (Cat. No.98TB100225). Mar. 1998,
pages 239–248. DOI: 10.1109/DCC.1998.672152 (cited on page 107).

[FZC11] E. Francois, X. Zheng, and P. Chen. CE2: Summary of Core Experiment 2 on
Flexible Motion Partitioning. Technical report JCTVC-D229. Daegu, Korea, 4th

meeting: Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T VCEG
and ISO/IEC MPEG, Jan. 2011 (cited on page 36).

[Gao+19a] Han Gao, Semih Esenlik, Elena Alshina, Anand Meher Kotra, Biao Wang, Max
Bläser, and Johannes Sauer. CE4: CE4-1.1, CE4-1.2 and CE4-1.14: Geomet-
ric Merge Mode (GEO). Doc. JVET-P0068. Geneva, Switzerland, 16th meeting:
Joint Video Experts Team of ITU-T VCEG and ISO/IEC MPEG, Oct. 2019 (cited
on pages 141, 146).

231

https://doi.org/10.1109/ICASSP.2007.365993
https://doi.org/10.1109/ICIP.2009.5413818
https://doi.org/10.1109/TCSVT.2012.2221529
https://doi.org/10.1109/DCC.1998.672152


Bibliography

[Gao+19b] Han Gao, Semih Esenlik, Elena Alshina, Anand Meher Kotra, Biao Wang, Max
Bläser, and Johannes Sauer. CE4: CE4-1.7, CE4-1.8: GEO and TPM Blending Off
for SCC. Doc. JVET-P0069. Geneva, Switzerland, 16th meeting: Joint Video Ex-
perts Team of ITU-T VCEG and ISO/IEC MPEG, Oct. 2019 (cited on page 146).

[Gao+19c] Han Gao, Semih Esenlik, Elena Alshina, Anand Meher Kotra, Biao Wang,
Max Bläser, and Johannes Sauer. CE4-Related: Geometric Merge Mode (GEO)
Simplifications. Doc. JVET-P0107. Geneva, Switzerland, 16th meeting: Joint
Video Experts Team of ITU-T VCEG and ISO/IEC MPEG, Oct. 2019 (cited on
page 146).

[Gil90] M. Gilge. “Region-oriented transform coding (ROTC) of images.” In: Interna-
tional Conference on Acoustics, Speech, and Signal Processing. Apr. 1990, 2245–
2248 vol.4. DOI: 10.1109/ICASSP.1990.116016 (cited on pages 167, 170).

[Gir87] B. Girod. “The Efficiency of Motion-Compensating Prediction for Hybrid Cod-
ing of Video Sequences.” In: IEEE Journal on Selected Areas in Communications
5.7 (Aug. 1987), pages 1140–1154. ISSN: 1558-0008. DOI: 10.1109/JSAC.
1987.1146632 (cited on page 149).

[Gir93] B. Girod. “Motion-compensating prediction with fractional-pel accuracy.” In:
IEEE Transactions on Communications 41.4 (Apr. 1993), pages 604–612. ISSN:
1558-0857. DOI: 10.1109/26.223785 (cited on page 151).

[Gir98] B. Girod. “Why B-pictures work: a theory of multi-hypothesis motion-
compensated prediction.” In: Proceedings 1998 International Conference on Im-
age Processing. ICIP98 (Cat. No.98CB36269). Volume 2. Oct. 1998, 213–217
vol.2. DOI: 10.1109/ICIP.1998.723350 (cited on pages 107, 112).

[Goy01] V. K. Goyal. “Theoretical foundations of transform coding.” In: IEEE Signal
Processing Magazine 18.5 (Sept. 2001), pages 9–21. ISSN: 1558-0792. DOI:
10.1109/79.952802 (cited on page 149).

[Guo+10] L. Guo, P. Yin, Y. Zheng, X. Lu, Q. Xu, and J. Sole. “Simplified geometry-
adaptive block partitioning for video coding.” In: 2010 IEEE International Con-
ference on Image Processing. Sept. 2010, pages 965–968. DOI: 10.1109/ICIP.
2010.5649913 (cited on page 36).

[GW08] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Upper
Saddle River, N.J.: Prentice Hall, 2008. ISBN: 9780131687288 013168728X
9780135052679 013505267X (cited on page 5).

[GYF10] L. Guo, P. Yin, and E. Francois. TE3: Simplified geometry block partitioning.
Technical report JCTVC-B085. Geneva, Switzerland, 2nd meeting: Joint Col-
laborative Team on Video Coding (JCT-VC) of ITU-T VCEG and ISO/IEC MPEG,
July 2010 (cited on page 36).

[HDM06] E. M. Hung, R. L. De Queiroz, and D. Mukherjee. “On Macroblock Partition for
Motion Compensation.” In: 2006 International Conference on Image Processing.
Oct. 2006, pages 1697–1700. DOI: 10.1109/ICIP.2006.312686 (cited on
page 35).

232

https://doi.org/10.1109/ICASSP.1990.116016
https://doi.org/10.1109/JSAC.1987.1146632
https://doi.org/10.1109/JSAC.1987.1146632
https://doi.org/10.1109/26.223785
https://doi.org/10.1109/ICIP.1998.723350
https://doi.org/10.1109/79.952802
https://doi.org/10.1109/ICIP.2010.5649913
https://doi.org/10.1109/ICIP.2010.5649913
https://doi.org/10.1109/ICIP.2006.312686


Bibliography

[HLC97] P. Hsu, K. J. R. Liu, and T. Chen. “2-D mesh motion compensation with adaptive
interpolation.” In: Proceedings of First Signal Processing Society Workshop on
Multimedia Signal Processing. June 1997, pages 213–218. DOI: 10.1109/
MMSP.1997.602638 (cited on page 38).

[HM18a] Ryoji Hashimoto and Seiji Mochizuki. AHG5: How to use the software to evalu-
ate memory bandwidth. Technical report JVET-K0451. Ljubljana, Slovenia, 11th

meeting: Joint Video Experts Team (JVET) of ITU-T VCEG and ISO/IEC MPEG,
July 2018 (cited on page 110).

[HM18b] Ryoji Hashimoto and Seiji Mochizuki. AHG5: Measurement result of memory
bandwidth with anchor streams. Technical report JVET-I0033. Gwangju, Korea,
9th meeting: Joint Video Exploration Team (JVET) of ITU-T VCEG and ISO/IEC
MPEG, Jan. 2018 (cited on page 110).

[HMI17] Ryoji Hashimoto, Seiji Mochizuki, and Tomohiro Ikai. AHG5: How to measure
memory bandwidth. Technical report JVET-H0043. Macao, China, 8th meeting:
Joint Video Exploration Team (JVET) of ITU-T VCEG and ISO/IEC MPEG, Oct.
2017 (cited on page 109).

[HS07] K. Hui and W. Siu. “Extended Analysis of Motion-Compensated Frame Differ-
ence for Block-Based Motion Prediction Error.” In: IEEE Transactions on Im-
age Processing 16.5 (May 2007), pages 1232–1245. ISSN: 1941-0042. DOI:
10.1109/TIP.2007.894263 (cited on page 151).

[HSR10] J. Han, A. Saxena, and K. Rose. “Towards jointly optimal spatial prediction
and adaptive transform in video/image coding.” In: 2010 IEEE International
Conference on Acoustics, Speech and Signal Processing. Mar. 2010, pages 726–
729. DOI: 10.1109/ICASSP.2010.5495043 (cited on page 150).

[HWZ11] H. Huang, J. W. Woods, and Y. Zhao. “Motion compensated prediction using
partial mesh generation.” In: 2011 18th IEEE International Conference on Im-
age Processing. Sept. 2011, pages 1677–1680. DOI: 10.1109/ICIP.2011.
6115778 (cited on page 38).

[Int19] Intel. Intel Intrinsics Guide. 2019. URL: https://software.intel.com/
sites/landingpage/IntrinsicsGuide/ (visited on 10/30/2019) (cited
on page 114).

[Jäg13] F. Jäger. “Depth-based block partitioning for 3D video coding.” In: 2013 Picture
Coding Symposium (PCS). Dec. 2013, pages 410–413. DOI: 10.1109/PCS.
2013.6737770 (cited on page 39).

[Jia+16] M. Jiang, M. Kalluri, N. Ling, J. Zheng, and P. Zhang. “An approach to image
compression using R-D optimal OMP selection.” In: 2016 IEEE International
Symposium on Circuits and Systems (ISCAS). May 2016, pages 2230–2233.
DOI: 10.1109/ISCAS.2016.7539026 (cited on page 172).

[Joi20] Joint Video Experts Team of ITU-T VCEG and ISO/IEC MPEG. VVC Test Model
(VTM). https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM.
2018–2020 (cited on page 25).

233

https://doi.org/10.1109/MMSP.1997.602638
https://doi.org/10.1109/MMSP.1997.602638
https://doi.org/10.1109/TIP.2007.894263
https://doi.org/10.1109/ICASSP.2010.5495043
https://doi.org/10.1109/ICIP.2011.6115778
https://doi.org/10.1109/ICIP.2011.6115778
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://doi.org/10.1109/PCS.2013.6737770
https://doi.org/10.1109/PCS.2013.6737770
https://doi.org/10.1109/ISCAS.2016.7539026
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM


Bibliography

[Jos+19] Urvang Joshi, Debargha Mukherjee, Debargha Chen, Sarah Parker, and Adrian
Grange. “In-loop Frame Super-resolution in AV1.” In: 2019 Picture Coding
Symposium (PCS). Nov. 2019 (cited on page 18).

[Kan+10] M. Kang, C. Lee, J. Y. Lee, and Y. Ho. “Adaptive geometry-based intra predic-
tion for depth video coding.” In: 2010 IEEE International Conference on Mul-
timedia and Expo. July 2010, pages 1230–1235. DOI: 10.1109/ICME.2010.
5583876 (cited on page 37).

[Kar+10a] M. Karczewicz, P. Chen, R. L. Joshi, X. Wang, W. J. Chien, R. Panchal, Y. Reznik,
M. Coban, and I. S. Chong. “A Hybrid Video Coder Based on Extended Mac-
roblock Sizes, Improved Interpolation, and Flexible Motion Representation.”
In: IEEE Transactions on Circuits and Systems for Video Technology 20.12 (Dec.
2010), pages 1698–1708. ISSN: 1051-8215. DOI: 10.1109/TCSVT.2010.
2092614 (cited on page 36).

[Kar+10b] M. Karczewicz, P. Chen, R. Joshi, K. Wang, and W.-J. Chien. Video coding tech-
nology proposal by Qualcomm. Technical report JCTVC-A121. Dresden, Ger-
many, 1st meeting: Joint Collaborative Team on Video Coding (JCT-VC) of
ITU-T VCEG and ISO/IEC MPEG, Apr. 2010 (cited on page 36).

[Kat+98] A. K. Katsaggelos, L. P. Kondi, F. W. Meier, J. Ostermann, and G. M. Schuster.
“MPEG-4 and rate-distortion-based shape-coding techniques.” In: Proceedings
of the IEEE 86.6 (June 1998), pages 1126–1154. ISSN: 1558-2256. DOI: 10.
1109/5.687833 (cited on page 34).

[KH12] M. Kang and Y. Ho. “Depth Video Coding Using Adaptive Geometry Based Intra
Prediction for 3-D Video Systems.” In: IEEE Transactions on Multimedia 14.1
(Feb. 2012), pages 121–128. ISSN: 1520-9210. DOI: 10.1109/TMM.2011.
2169238 (cited on page 37).

[Kim+08] J. H. Kim, A. Ortega, P. Yin, P. Pandit, and C. Gomila. “Motion compensation
based on implicit block segmentation.” In: 2008 15th IEEE International Con-
ference on Image Processing. Oct. 2008, pages 2452–2455. DOI: 10.1109/
ICIP.2008.4712289 (cited on page 39).

[KMO10] S. Klomp, M. Munderloh, and J. Ostermann. “Block size dependent error
model for motion compensation.” In: 2010 IEEE International Conference on
Image Processing. Sept. 2010, pages 969–972. DOI: 10.1109/ICIP.2010.
5649414 (cited on page 149).

[Kru+10] A. Krutz et al. Tool Experiment 3: Inter Prediction in HEVC. Technical report
JCTVC-A303. Dresden, Germany, 1st meeting: Joint Collaborative Team on
Video Coding (JCT-VC) of ITU-T VCEG and ISO/IEC MPEG, Apr. 2010 (cited
on page 36).

[KS05] S. Kondo and H. Sasai. “A motion compensation technique using sliced blocks
in hybrid video coding.” In: IEEE International Conference on Image Processing
2005. Volume 2. Sept. 2005, pages II-305-8. DOI: 10.1109/ICIP.2005.
1530052 (cited on page 34).

234

https://doi.org/10.1109/ICME.2010.5583876
https://doi.org/10.1109/ICME.2010.5583876
https://doi.org/10.1109/TCSVT.2010.2092614
https://doi.org/10.1109/TCSVT.2010.2092614
https://doi.org/10.1109/5.687833
https://doi.org/10.1109/5.687833
https://doi.org/10.1109/TMM.2011.2169238
https://doi.org/10.1109/TMM.2011.2169238
https://doi.org/10.1109/ICIP.2008.4712289
https://doi.org/10.1109/ICIP.2008.4712289
https://doi.org/10.1109/ICIP.2010.5649414
https://doi.org/10.1109/ICIP.2010.5649414
https://doi.org/10.1109/ICIP.2005.1530052
https://doi.org/10.1109/ICIP.2005.1530052


Bibliography

[KS10a] A. Krutz and T. Sikora. Summary report for TE3 on inter prediction in HEVC.
Technical report JCTVC-B053. Geneva, Switzerland, 2nd meeting: Joint Col-
laborative Team on Video Coding (JCT-VC) of ITU-T VCEG and ISO/IEC MPEG,
July 2010 (cited on page 36).

[KS10b] A. Krutz and T. Sikora. Summary report for TE3 on inter prediction in HEVC.
Technical report JCTVC-C220. Guangzhou, China, 3rd meeting: Joint Collab-
orative Team on Video Coding (JCT-VC) of ITU-T VCEG and ISO/IEC MPEG,
Oct. 2010 (cited on page 36).

[KS98] Peter Kauff and Klaas Schüür. “Shape-adaptive DCT with block-based DC sep-
aration and Delta DC correction.” In: IEEE Transactions on Circuits and Systems
for Video Technology 8.3 (June 1998), pages 237–242. ISSN: 1051-8215. DOI:
10.1109/76.678616 (cited on page 155).

[LG00] E. Y. Lam and J. W. Goodman. “A mathematical analysis of the DCT coefficient
distributions for images.” In: IEEE Transactions on Image Processing 9.10 (Oct.
2000), pages 1661–1666. ISSN: 1941-0042. DOI: 10.1109/83.869177 (cited
on page 149).

[Li+11] S. Li, F. Zhang, L. Ma, and K. N. Ngan. “Image Quality Assessment by Sepa-
rately Evaluating Detail Losses and Additive Impairments.” In: IEEE Transac-
tions on Multimedia 13.5 (Oct. 2011), pages 935–949. ISSN: 1941-0077. DOI:
10.1109/TMM.2011.2152382 (cited on page 27).

[Li+17] Xiang Li, Ted Hsieh, Jianle Chen, and Marta Karczewicz. AHG5 External Mem-
ory Access Evaluation with the Consideration of Cache. Technical report JVET-
G0061. Torino, Italy, 7th meeting: Joint Video Exploration Team (JVET) of
ITU-T VCEG and ISO/IEC MPEG, July 2017 (cited on page 109).

[LKK11] H. J. Leu, S. Kim, and W. Kim. “Statistical Modeling of Inter-Frame Prediction
Error and Its Adaptive Transform.” In: IEEE Transactions on Circuits and Sys-
tems for Video Technology 21.4 (Apr. 2011), pages 519–523. ISSN: 1558-2205.
DOI: 10.1109/TCSVT.2011.2125470 (cited on page 149).

[MC11] S. Milani and G. Calvagno. “Segmentation-based motion compensation for
enhanced video coding.” In: 2011 18th IEEE International Conference on Im-
age Processing. Sept. 2011, pages 1649–1652. DOI: 10.1109/ICIP.2011.
6115769 (cited on page 39).

[Mer+16] P. Merkle, K. Müller, D. Marpe, and T. Wiegand. “Depth Intra Coding for 3D
Video Based on Geometric Primitives.” In: IEEE Transactions on Circuits and
Systems for Video Technology 26.3 (Mar. 2016), pages 570–582. ISSN: 1051-
8215. DOI: 10.1109/TCSVT.2015.2407791 (cited on page 37).

[MNW98] Alistair Moffat, Radford M. Neal, and Ian H. Witten. “Arithmetic Coding Revis-
ited.” In: ACM Trans. Inf. Syst. 16.3 (July 1998), pages 256–294. ISSN: 1046-
8188. DOI: 10.1145/290159.290162. URL: http://doi.acm.org/10.
1145/290159.290162 (cited on page 23).

[MPF09a] A. A. Muhit, M. R. Pickering, and M. R. Frater. “A fast approach for geometry-
adaptive block partitioning.” In: 2009 Picture Coding Symposium. May 2009,
pages 1–4. DOI: 10.1109/PCS.2009.5167365 (cited on page 37).

235

https://doi.org/10.1109/76.678616
https://doi.org/10.1109/83.869177
https://doi.org/10.1109/TMM.2011.2152382
https://doi.org/10.1109/TCSVT.2011.2125470
https://doi.org/10.1109/ICIP.2011.6115769
https://doi.org/10.1109/ICIP.2011.6115769
https://doi.org/10.1109/TCSVT.2015.2407791
https://doi.org/10.1145/290159.290162
http://doi.acm.org/10.1145/290159.290162
http://doi.acm.org/10.1145/290159.290162
https://doi.org/10.1109/PCS.2009.5167365


Bibliography

[MPF09b] A. A. Muhit, M. R. Pickering, and M. R. Frater. “Motion compensation using
geometry and an elastic motion model.” In: 2009 16th IEEE International Con-
ference on Image Processing (ICIP). Nov. 2009, pages 621–624. DOI: 10.1109/
ICIP.2009.5413849 (cited on page 37).

[MSW03] D. Marpe, H. Schwarz, and T. Wiegand. “Context-based adaptive binary arith-
metic coding in the H.264/AVC video compression standard.” In: IEEE Transac-
tions on Circuits and Systems for Video Technology 13.7 (July 2003), pages 620–
636. ISSN: 1558-2205. DOI: 10 . 1109 / TCSVT . 2003 . 815173 (cited on
page 23).

[Mul19] MulticoreWare Inc. x265 Manual. English. Version 8.2. MulticoreWare Inc.
Sept. 25, 2019. URL: http://x265.org/ (cited on page 139).

[Mül93] F. Müller. “Distribution shape of two-dimensional DCT coefficients of natural
images.” In: Electronics Letters 29.22 (Oct. 1993), pages 1935–1936. ISSN:
0013-5194. DOI: 10.1049/el:19931288 (cited on page 149).

[MX12] M. Mrak and J. Xu. “Improving screen content coding in HEVC by transform
skipping.” In: 2012 Proceedings of the 20th European Signal Processing Confer-
ence (EUSIPCO). Aug. 2012, pages 1209–1213 (cited on page 151).

[MZ93] S. G. Mallat and Zhifeng Zhang. “Matching pursuits with time-frequency
dictionaries.” In: IEEE Transactions on Signal Processing 41.12 (Dec. 1993),
pages 3397–3415. ISSN: 1941-0476. DOI: 10.1109/78.258082 (cited on
page 171).

[Nar13] M. Narroschke. “Coding Efficiency of the DCT and DST in Hybrid Video Cod-
ing.” In: IEEE Journal of Selected Topics in Signal Processing 7.6 (Dec. 2013),
pages 1062–1071. ISSN: 1941-0484. DOI: 10.1109/JSTSP.2013.2272192
(cited on page 151).

[Net20] Netflix, Inc. VMAF - Video Multi-Method Assessment Fusion. https : / /
github.com/Netflix/vmaf. 2018–2020 (cited on page 25).

[Ngu+19] Tung Nguyen, Benjamin Bross, Paul Keydel, Heiko Schwarz, Detlev Marpe, and
Thomas Wiegand. “Extended Transform Skip Mode and Fast Multiple Trans-
form Set Selection in VVC.” In: 2019 Picture Coding Symposium (PCS). Nov.
2019 (cited on page 151).

[Nor+12] A. Norkin, G. Bjontegaard, A. Fuldseth, M. Narroschke, M. Ikeda, K. Ander-
sson, M. Zhou, and G. Van der Auwera. “HEVC Deblocking Filter.” In: IEEE
Transactions on Circuits and Systems for Video Technology 22.12 (Dec. 2012),
pages 1746–1754. ISSN: 1051-8215. DOI: 10.1109/TCSVT.2012.2223053
(cited on page 107).

[Ohm15] Jens-Rainer Ohm. Multimedia Signal Coding and Transmission. Springer, Hei-
delberg/Berlin, 2015. ISBN: 3-540-01249-4. DOI: 10.1007/978-3-662-
46691-9 (cited on page 5).

[OS09] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Process-
ing. 3rd. Upper Saddle River, NJ, USA: Prentice Hall Press, 2009. ISBN:
0131988425, 9780131988422 (cited on page 5).

236

https://doi.org/10.1109/ICIP.2009.5413849
https://doi.org/10.1109/ICIP.2009.5413849
https://doi.org/10.1109/TCSVT.2003.815173
http://x265.org/
https://doi.org/10.1049/el:19931288
https://doi.org/10.1109/78.258082
https://doi.org/10.1109/JSTSP.2013.2272192
https://github.com/Netflix/vmaf
https://github.com/Netflix/vmaf
https://doi.org/10.1109/TCSVT.2012.2223053
https://doi.org/10.1007/978-3-662-46691-9
https://doi.org/10.1007/978-3-662-46691-9


Bibliography

[Ost97] J. Ostermann. “Feedback loop for coder control in a block-based hybrid coder
with mesh-based motion compensation.” In: 1997 IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing. Volume 4. Apr. 1997, 2673–
2676 vol.4. DOI: 10.1109/ICASSP.1997.595339 (cited on page 38).

[Pen+16] W. Peng, F. G. Walls, R. A. Cohen, J. Xu, J. Ostermann, A. MacInnis, and T. Lin.
“Overview of Screen Content Video Coding: Technologies, Standards, and Be-
yond.” In: IEEE Journal on Emerging and Selected Topics in Circuits and Systems
6.4 (Dec. 2016), pages 393–408. ISSN: 2156-3365. DOI: 10.1109/JETCAS.
2016.2608971 (cited on page 18).

[RH19] Oeter de Rivaz and Jack Haughton. AV1 Bitstream & Decoding Process Specifi-
cation. Technical report. The Alliance for Open Media, 2019. URL: https:
//aomediacodec.github.io/av1- spec/av1- spec.pdf (cited on
pages 18, 38).

[Ric03] Iain E. G. Richardson. H.264 and MPEG-4 Video Compression: Video Coding
for Next-generation Multimedia. New York, NY, USA: John Wiley & Sons, Inc.,
2003 (cited on page 33).

[San] Sandvine, Inc. The Global Internet Phenomena Report 2019. https : / /
www.sandvine.com/press-releases/sandvine-releases-2019-
global-internet-phenomena-report. Accessed: 2019-12-30 (cited on
page 1).

[SB06] H. R. Sheikh and A. C. Bovik. “Image Information and Visual Quality.” In:
Trans. Img. Proc. 15.2 (Feb. 2006), pages 430–444. ISSN: 1057-7149. DOI:
10.1109/TIP.2005.859378. URL: http://dx.doi.org/10.1109/TIP.
2005.859378 (cited on page 27).

[SB12] V. Sze and M. Budagavi. “High Throughput CABAC Entropy Coding in HEVC.”
In: IEEE Transactions on Circuits and Systems for Video Technology 22.12 (Dec.
2012), pages 1778–1791. ISSN: 1558-2205. DOI: 10.1109/TCSVT.2012.
2221526 (cited on page 23).

[Sch+19] H. Schwarz, T. Nguyen, D. Marpe, and T. Wiegand. “Hybrid Video Coding with
Trellis-Coded Quantization.” In: 2019 Data Compression Conference (DCC).
Mar. 2019, pages 182–191. DOI: 10.1109/DCC.2019.00026 (cited on
pages 19, 149).

[Seg+17] Andrew Segall, Vittorio Baroncini, Jill Boyce, Jianle Chen, and Teruhiko
Suzuki. Joint Call for Proposals on Video Compression with Capability beyond
HEVC. JVET-H1002. Macao, CN, 8th meeting: Oct. 2017 (cited on page 28).

[SEO11] J. Schmidt, B. Edler, and J. Ostermann. “Prediction of DCT coefficients con-
sidering motion compensation error distributions.” In: 2011 Visual Communi-
cations and Image Processing (VCIP). Nov. 2011, pages 1–4. DOI: 10.1109/
VCIP.2011.6115991 (cited on pages 149, 151).

[SF13] A. Saxena and F. C. Fernandes. “DCT/DST-Based Transform Coding for Intra
Prediction in Image/Video Coding.” In: IEEE Transactions on Image Processing
22.10 (Oct. 2013), pages 3974–3981. ISSN: 1941-0042. DOI: 10.1109/TIP.
2013.2265882 (cited on page 150).

237

https://doi.org/10.1109/ICASSP.1997.595339
https://doi.org/10.1109/JETCAS.2016.2608971
https://doi.org/10.1109/JETCAS.2016.2608971
https://aomediacodec.github.io/av1-spec/av1-spec.pdf
https://aomediacodec.github.io/av1-spec/av1-spec.pdf
https://www.sandvine.com/press-releases/sandvine-releases-2019-global-internet-phenomena-report
https://www.sandvine.com/press-releases/sandvine-releases-2019-global-internet-phenomena-report
https://www.sandvine.com/press-releases/sandvine-releases-2019-global-internet-phenomena-report
https://doi.org/10.1109/TIP.2005.859378
http://dx.doi.org/10.1109/TIP.2005.859378
http://dx.doi.org/10.1109/TIP.2005.859378
https://doi.org/10.1109/TCSVT.2012.2221526
https://doi.org/10.1109/TCSVT.2012.2221526
https://doi.org/10.1109/DCC.2019.00026
https://doi.org/10.1109/VCIP.2011.6115991
https://doi.org/10.1109/VCIP.2011.6115991
https://doi.org/10.1109/TIP.2013.2265882
https://doi.org/10.1109/TIP.2013.2265882


Bibliography

[Shi92] Yoshiaki Shishikui. “A Study on Modeling of the Motion Compensation Predic-
tion Error Signal.” In: IEICE TRANSACTIONS on Communications Vol.E75-B.5
(Apr. 1992), pages 368–376. ISSN: 0916-8516 (cited on pages 105, 149).

[SM00] J. K. Su and R. M. Mersereau. “Motion Estimation Methods for Overlapped
Block Motion Compensation.” In: IEEE Transactions on Image Processing 9.9
(Sept. 2000), pages 1509–1521. DOI: 10 . 1109 / 83 . 862628 (cited on
page 114).

[SM95] T. Sikora and B. Makai. “Shape-adaptive DCT for generic coding of video.”
In: IEEE Transactions on Circuits and Systems for Video Technology 5.1 (Feb.
1995), pages 59–62. ISSN: 1051-8215. DOI: 10.1109/76.350781 (cited on
page 155).

[Sul+12] G. J. Sullivan, J. Ohm, W. Han, and T. Wiegand. “Overview of the High Effi-
ciency Video Coding (HEVC) Standard.” In: IEEE Transactions on Circuits and
Systems for Video Technology 22.12 (Dec. 2012), pages 1649–1668 (cited on
page 17).

[Tan+11] Y. H. Tan, C. Yeo, H. L. Tan, and Z. Li. “On residual quad-tree coding in
HEVC.” In: 2011 IEEE 13th International Workshop on Multimedia Signal Pro-
cessing. Oct. 2011, pages 1–4. DOI: 10.1109/MMSP.2011.6093805 (cited
on page 151).

[Tec+16] G. Tech, Y. Chen, K. Müller, J. Ohm, A. Vetro, and Y. Wang. “Overview of
the Multiview and 3D Extensions of High Efficiency Video Coding.” In: IEEE
Transactions on Circuits and Systems for Video Technology 26.1 (Jan. 2016),
pages 35–49. ISSN: 1558-2205. DOI: 10.1109/TCSVT.2015.2477935 (cited
on page 37).

[TG07] J. A. Tropp and A. C. Gilbert. “Signal Recovery From Random Measurements
Via Orthogonal Matching Pursuit.” In: IEEE Transactions on Information Theory
53.12 (Dec. 2007), pages 4655–4666. ISSN: 1557-9654. DOI: 10.1109/TIT.
2007.909108 (cited on page 171).

[Tro04] J. A. Tropp. “Greed is good: algorithmic results for sparse approximation.” In:
IEEE Transactions on Information Theory 50.10 (Oct. 2004), pages 2231–2242.
ISSN: 1557-9654. DOI: 10.1109/TIT.2004.834793 (cited on page 171).

[VTP97] P. J. L. Van Beek, A. M. Tekalp, and A. Puri. “2-D mesh geometry and motion
compression for efficient object-based video representation.” In: Proceedings
of International Conference on Image Processing. Volume 3. Oct. 1997, 440–443
vol.3. DOI: 10.1109/ICIP.1997.632151 (cited on page 38).

[Wan+12] Q. Wang, M. T. Sun, G. J. Sullivan, and J. Li. “Complexity-reduced geometry
partition search and high efficiency prediction for video coding.” In: 2012 IEEE
International Symposium on Circuits and Systems. May 2012, pages 133–136.
DOI: 10.1109/ISCAS.2012.6271486 (cited on page 37).

238

https://doi.org/10.1109/83.862628
https://doi.org/10.1109/76.350781
https://doi.org/10.1109/MMSP.2011.6093805
https://doi.org/10.1109/TCSVT.2015.2477935
https://doi.org/10.1109/TIT.2007.909108
https://doi.org/10.1109/TIT.2007.909108
https://doi.org/10.1109/TIT.2004.834793
https://doi.org/10.1109/ICIP.1997.632151
https://doi.org/10.1109/ISCAS.2012.6271486


Bibliography

[Wan+13] Q. Wang, X. Ji, M. T. Sun, G. J. Sullivan, J. Li, and Q. Dai. “Complexity Reduc-
tion and Performance Improvement for Geometry Partitioning in Video Cod-
ing.” In: IEEE Transactions on Circuits and Systems for Video Technology 23.2
(Feb. 2013), pages 338–352. ISSN: 1051-8215. DOI: 10.1109/TCSVT.2012.
2203743 (cited on pages 37, 139).

[WC14] Z. Wu and C. W. Chen. “Signal Reconstruction from Partial Frequency Coeffi-
cients for Image/Video Frame Upsampling.” In: IEEE Transactions on Broad-
casting 60.3 (Sept. 2014), pages 575–581. ISSN: 1557-9611. DOI: 10.1109/
TBC.2014.2347871 (cited on page 153).

[Wen+00] Wentao Zheng, Y. Kanatsugu, S. Itoh, and Y. Tanaka. “Analysis of
space-dependent characteristics of motion-compensated frame differences.”
In: Proceedings 2000 International Conference on Image Processing (Cat.
No.00CH37101). Volume 3. Sept. 2000, 158–161 vol.3. DOI: 10.1109/ICIP.
2000.899319 (cited on pages 105, 149, 151).

[Wen+02] Wentao Zheng, Y. Shishikui, M. Naemura, Y. Kanatsugu, and S. Itoh. “Anal-
ysis of space-dependent characteristics of motion-compensated frame differ-
ences based on a statistical motion distribution model.” In: IEEE Transactions
on Image Processing 11.4 (Apr. 2002), pages 377–386. ISSN: 1057-7149. DOI:
10.1109/TIP.2002.999672 (cited on pages 105, 149, 151).

[Wie14] Mathias Wien. High Efficiency Video Coding – Coding Tools and Specification.
Berlin, Heidelberg: Springer, Sept. 2014. ISBN: 978-3-662-44275-3 (cited on
pages 10, 19, 30, 119).

[WNC87] Ian H. Witten, Radford M. Neal, and John G. Cleary. “Arithmetic Coding for
Data Compression.” In: Commun. ACM 30.6 (June 1987), pages 520–540.
ISSN: 0001-0782. DOI: 10.1145/214762.214771. URL: http://doi.acm.
org/10.1145/214762.214771 (cited on page 23).

[Wu+07] X. Wu, Q. Sun, K. Zhang, and Lu Yu. “Modeling Natural Image for Estimat-
ing DCT Coefficient Properties of Intra Prediction.” In: 2007 IEEE Interna-
tional Conference on Multimedia and Expo. July 2007, pages 476–479. DOI:
10.1109/ICME.2007.4284690 (cited on page 149).

[Yan+10] H. Yang et al. Description of video coding technology proposal by Huawei Tech-
nologies & Hisilicon Technologies. Technical report JCTVC-A111. Dresden, Ger-
many, 1st meeting: Joint Collaborative Team on Video Coding (JCT-VC) of ITU-
T VCEG and ISO/IEC MPEG, Apr. 2010 (cited on page 36).

[Yeo+12] C. Yeo, Y. H. Tan, Z. Li, and S. Rahardja. “Mode-Dependent Transforms for
Coding Directional Intra Prediction Residuals.” In: IEEE Transactions on Cir-
cuits and Systems for Video Technology 22.4 (Apr. 2012), pages 545–554. ISSN:
1558-2205. DOI: 10.1109/TCSVT.2011.2168291 (cited on page 150).

[Yu+15] Haoping Yu, Robert Cohen, Krishna Rapaka, and Jizheng Xu. Common test
conditions for screen content coding. Technical report JCTVC-U1015. Warsaw,
Poland, 21st meeting: Joint Collaborative Team on Video Coding (JCT-VC) of
ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, June 2015 (cited on
page 26).

239

https://doi.org/10.1109/TCSVT.2012.2203743
https://doi.org/10.1109/TCSVT.2012.2203743
https://doi.org/10.1109/TBC.2014.2347871
https://doi.org/10.1109/TBC.2014.2347871
https://doi.org/10.1109/ICIP.2000.899319
https://doi.org/10.1109/ICIP.2000.899319
https://doi.org/10.1109/TIP.2002.999672
https://doi.org/10.1145/214762.214771
http://doi.acm.org/10.1145/214762.214771
http://doi.acm.org/10.1145/214762.214771
https://doi.org/10.1109/ICME.2007.4284690
https://doi.org/10.1109/TCSVT.2011.2168291


Bibliography

[ZCK11] X. Zheng, I. S. Chong, and I.-K. Kim. CE2: Summary report of core experiment
on Motion Partitioning and OBMC. Technical report JCTVC-G032. Geneva,
Switzerland, 7th meeting: Joint Collaborative Team on Video Coding (JCT-VC)
of ITU-T VCEG and ISO/IEC MPEG, Nov. 2011 (cited on page 36).

[Zha+09] Y. Zhang, W. Wang, L. Zheng, and M. Wu. “Motion Compensation Using Poly-
line Based Block Partition.” In: 2009 2nd International Congress on Image and
Signal Processing. Oct. 2009, pages 1–5. DOI: 10.1109/CISP.2009.5304312
(cited on page 38).

[Zha+16] X. Zhao, J. Chen, M. Karczewicz, L. Zhang, X. Li, and W. Chien. “Enhanced
Multiple Transform for Video Coding.” In: 2016 Data Compression Confer-
ence (DCC). Mar. 2016, pages 73–82. DOI: 10.1109/DCC.2016.9 (cited
on pages 10, 150).

[Zhe+01] W. Zheng, Y. Shishikui, M. Naemura, Y. Kanatsugu, and S. Itoh. “Analysis of
overlapped block motion compensation based on a statistical motion distribu-
tion model.” In: Proceedings 2001 International Conference on Image Processing
(Cat. No.01CH37205). Volume 3. Oct. 2001, 522–525 vol.3. DOI: 10.1109/
ICIP.2001.958166 (cited on pages 105, 149, 151).

[Zhe+11a] X. Zheng, P. Bordes, P. Chen, and I.-K. Kim. CE2: Summary of Core Experi-
ment 2 on Flexible Motion Partitioning. Technical report JCTVC-E022. Geneva,
Switzerland, 5th meeting: Joint Collaborative Team on Video Coding (JCT-VC)
of ITU-T VCEG and ISO/IEC MPEG, Mar. 2011 (cited on page 36).

[Zhe+11b] X. Zheng, P. Bordes, P. Chen, I.-K. Kim, W.-H. Peng, and L. Guo. CE2: Sum-
mary report of Core Experiment on motion partitioning and OBMC. Technical
report JCTVC-F022. Torino, Italy, 6th meeting: Joint Collaborative Team on
Video Coding (JCT-VC) of ITU-T VCEG and ISO/IEC MPEG, July 2011 (cited
on page 36).

[Zhe+11c] X. Zheng, H. Yu, S. Li, Y. He, and P. Bordes. CE2: Non-rectangular motion parti-
tioning. Technical report JCTVC-F415. Torino, Italy, 6th meeting: Joint Collab-
orative Team on Video Coding (JCT-VC) of ITU-T VCEG and ISO/IEC MPEG,
July 2011 (cited on page 37).

[Zhu+19] W. Zhu, L. Zhang, J. Xu, and K. Zhang. Non-CE8: disabling TPM blending. Doc.
JVET-O0563. Gothenburg, Sweden, 15th meeting: Joint Video Experts Team
of ITU-T VCEG and ISO/IEC MPEG, July 2019 (cited on page 136).

[Zou+13] F. Zou, O. C. Au, C. Pang, J. Dai, X. Zhang, and L. Fang. “Rate-Distortion Op-
timized Transforms Based on the Lloyd-Type Algorithm for Intra Block Cod-
ing.” In: IEEE Journal of Selected Topics in Signal Processing 7.6 (Dec. 2013),
pages 1072–1083. ISSN: 1941-0484. DOI: 10.1109/JSTSP.2013.2274173
(cited on pages 149, 150).

[ZWZ10] T. Zhu, J. Wang, and X. Zhang. “Research on statistical distributions of trans-
form coefficients for H.264/SVC.” In: 2010 3rd International Congress on Im-
age and Signal Processing. Volume 1. Oct. 2010, pages 198–201. DOI: 10.
1109/CISP.2010.5648005 (cited on page 149).

240

https://doi.org/10.1109/CISP.2009.5304312
https://doi.org/10.1109/DCC.2016.9
https://doi.org/10.1109/ICIP.2001.958166
https://doi.org/10.1109/ICIP.2001.958166
https://doi.org/10.1109/JSTSP.2013.2274173
https://doi.org/10.1109/CISP.2010.5648005
https://doi.org/10.1109/CISP.2010.5648005


Bibliography

[ZY10] X. Zheng and H. Yu. TE3: Huawei & Hisilicon report on flexible motion parti-
tioning coding. Technical report JCTVC-B041. Geneva, Switzerland, 2nd meet-
ing: Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T VCEG and
ISO/IEC MPEG, July 2010 (cited on page 36).

241


