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Abstract: Compliance with Quality by Design (QbD) constitutes a major
challenge in biopharmaceuticals. Monoclonal antibodies (mAbs) represent a
significant biopharmaceutical product class, typically produced in mammalian
cell cultures. A key quality attribute for mAb production is glycosylation. We
examine how process intensification affects glycosylation via dynamic optimiza-
tion using different problem formulations. We maximize process performance
with simultaneous control of product quality. For these, we utilize a mechanis-
tic dynamic model for mAb production in mammalian cell cultures including
glycosylation presented by Ehsani et al. in Computer Aided Chemical Engi-
neering (2017). To achieve target glycan distribution in the final product, we
incorporate constraints for the acceptable glycosylation ranges into the dynamic
optimization problem. As a result, we derive optimal supplementation profiles
of nutrients and/or nucleotide sugars. This work successfully illustrates an
example of how model-based dynamic optimization can be employed for imple-
mentation of the QbD approach in biopharmaceutics.
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1 Introduction

Monoclonal antibodies (mAbs) constitute a rapidly-evolving high-value biophar-
maceutical product with a wide range of applications. Therefore, many attempts
have been made towards improving mAb process development and operation.
In this direction, optimizing product yield has been on the main focus over a
long period of time. As an outcome of those attempts, significant increase in
product titers for mAb products has been accomplished [32, 41]. Current drivers
in mAb processes point to the direction of flexible operation and shift of future
process development from design of new technologies to comprehension and op-
timization of existing ones [32]. For this purpose, apart from achieving high
product titers, efficiently monitoring and controlling of product quality comes
into central focus [32, 41, 50].

To bring together regulatory authorities and pharmaceutical industry, the
International Council for Harmonisation (ICH) was founded by the European
Medicines Agency, the FDA and the Pharmaceuticals and Medical Devices
Agency of Japan. ICH has established the Quality by Design (QbD) frame-
work and the guidance documents that underly it, with the vision to develop
more efficient processes that consistently meet quality specifications. However,
in protein therapeutics the current methods in this direction are still in an early
stage [45]. While process development is still quite empirical, advancements
in process analytical technologies and chemometric methods have facilitated
a deeper process understanding, have significantly reduced the analysis time
and have by now been successfully established as common practice in biophar-
maceutical manufacturing [50, 11, 45]. To this end, knowledge on qualitative
structure characteristics is an additional tool for risk assessment and improving
early process development [30].

The application of the QbD framework necessitates identification of the crit-
ical quality attributes (CQAs) and of suitable variables for manipulating the
CQAs to their desired states [13, 45]. Glycosylation, aggregation and charge
isoforms are reported in the literature as CQAs in mAb production [31]. The
work in [31] shows that process conditions do impact product quality. Sharf-
stein et al. (2008) [50] review literature attempts on understanding the impact
of culture conditions on productivity and product quality. Although basic un-
derstanding and some first links between CQAs and appropriate variables for
their control in protein therapeutics are being established, moving from process
knowledge to CQA controllability remains still a major challenge [7, 45].

In protein therapeutics, one of the most critical and sensitive quality at-
tributes is glycosylation [7, 8, 41, 45, 55], which is a complex post-translational
modification that takes place in the endoplasmic reticulum (ER) and Golgi ap-
paratus of a cell [7]. Tt refers to the addition of glycan structures to polypeptide
chains and can influence physico-chemical properties and the clinical action of
protein therapeutics, namely safety and efficacy of the drug [7, 45]. Particularly
in the case of mAbs, it directly affects the immune effector function of ther-
apeutics [8]. Consequently, glycosylation characteristics derive from specific
knowledge about desired phenotypes, and acceptable limits on glycosylation
variability are established during preclinical and clinical assessment of thera-
peutic proteins [7]. To ensure consistency of product quality during commercial
manufacturing, these limits should be satisfied.

Glycosylation profiles can be influenced by a series of factors, among which



cell line, culture conditions, mode of operation and down-stream processing
[9, 45]. During late stage process development and optimization, the cell line is
already selected, and the variations in the purification process only affects the
relative proportions of the glycan structures. Therefore, at these stages, culture
conditions that significantly affect glycan biosynthesis are of more immediate
interest. The effects of culture conditions on glycosylation, as well as of gly-
can heterogeneity on various antibody effector functions have been the focus
of many research studies. Batra et al. (2016) [7] review current developments
and outcomes on this field. Research findings indicate the existence of a trade
off between cell growth, mAb productivity and increased glycosylation levels
[3]. Deriving appropriate feeding of nutrients and nucleotide sugars (NSs) is a
promising way to achieve the desired balance between these goals. Mathemat-
ical models can be exploited in order to identify optimal feeding profiles, fill
the existing gaps in process knowledge, and avoid time- and labor- intensive
analysis [45].

Monoclonal antibody production is typically carried out in mammalian cell
cultures, due to their ability to effectively perform post translational modifi-
cations, such as glycosylation [6, 50, 51]. Over the years, different cell culture
models with different levels of complexity and biological insight have been cre-
ated. Although these models are primarily built to predict process behavior,
recently such models have been also successfully used for computationally in-
tense optimization studies, e.g., [12, 14, 29, 35]. However, these models so far
did not include direct measures for product quality, and could therefore not be
used for quality-targeting optimizations.

To address the QbD challenge in protein therapeutics, mathematical models
that describe the glycosylation process have also been developed, e.g., [17, 37].
This paves the way towards model-based optimization that can directly account
for product quality attributes. In the past years, some first studies towards un-
derstanding the effects of process changes in glycosylation within the paradigm
of QbD for protein therapeutics are undertaken. Green and Glassey (2015) [22]
perform a multivariate analysis that looks at modeling of the effect of operating
conditions on glycosylation. Aghamohseni et al. (2014) [3] utilize mathemati-
cal modeling and experimentation to quantify the impact of nutrient levels on
glycosylation and mAb productivity. Villiger et al. (2016) [55] employ a high-
throughput method for screening nucleotides and nucleotide sugars to explore
their influence on glycosylation. Recently, Ehsani et al. (2019) [16] utilize de-
sign of experiments and model simulations to investigate the effects of feeding
scenarios on the protein glycosylation pattern using a calibrated model. Ko-
tidis et al. (2019) [38] develop a predictive mathematical model for cell culture
dynamics and mAb glycosylation. This model was used to define an optimal uri-
dine/manganese/galactose feeding strategy for optimization of antibody galac-
tosylation, and the optimization results are then validated with independent
experimentation.

Two of the most typical operation modes for mAb production are fed-batch
and perfusion systems [41]. Although increased research emphasis is currently
placed on continuous manufacturing [31, 36], fed-batch operation still reflects
the common choice for large scale production, mainly due to certain advantages
it offers, such as scalability, operational simplicity and high productivity [41].

In this work, we perform model-based optimization to devise quality-consistent
feeding strategies for intensification of mAb producing processes in fed-batch



mode of operation. In a first step, we examine effects of nutrients supplemen-
tation on antibody glycosylation, when using dynamic optimization to increase
the final product. The results, as presented in Section 4, confirm the variability
of glycosylation when changing from batch to fed-batch mode. Therefore, in a
next step, dynamic optimization of mAb production with simultaneous consid-
eration of glycosylation-associated product quality is employed. More precisely,
we derive optimal feeding profiles for nutrients and nucleotide sugars, account-
ing at the same time for both increased production outcome and glycoprotein
distribution within specified acceptable ranges reported in the literature. To
the best of the authors’ knowledge, it is the first time that multiple glycosy-
lation related quality attributes have been incorporated as constraints to the
dynamic optimization problem to successfully maximize antibody production
while satisfying product quality.

The rest of the paper is structured as follows. Section 2 illustrates the basic
characteristics of the model utilized for the optimization studies, as well as the
procedure for parameter identification and parameter fitting to experimental
data from the literature. In Section 3, we describe the different formulations to
the dynamic optimization problems, first for monitoring (Section 3.1) and later
for controlling (Section 3.2) product quality, in terms of target glycan distribu-
tion. We present and discuss the results of these optimizations in Section 4, and
in Section 5 we conclude this work.

2 Modeling and parameter identification

To efficiently model and control product quality, we need to describe and con-
nect the different scales of the cell culture process. To this end, our mechanistic
dynamic model for the production of mAbs in mammalian cell cultures pre-
sented in Ehsani et al. (2017) [17] serves as basis for this work. The model
is comprised of three major layers including bioprocess dynamics, intracellu-
lar reaction network and kinetic reactions inside Golgi apparatus. The model
consists of 271 differential equations, 374 algebraic equations and 155 parame-
ters. A brief description of the model equations presented in [17] is provided in
Appendix A.

In this study, the presented model is used to investigate the effect of nutrient
supplementation in the process and product performance. Along with nutrient
availability, other bioprocess conditions such as pH, temperature and dissolved
oxygen affect the cell culture, and thus the glycosylation process [13]. These
effects are not incorporated to the model.

In order to identify the most sensitive model parameters, we first perform
global sensitivity analysis (GSA) using random sampling - high dimensional
model representation (RS-HDMR) [56] by evaluating 105 samples in the range of
50 % - 200 % of the parameters’ nominal values. Note that the reported nominal
values do not lie not on the arithmetic mean of the distribution but rather the
geometric one. Due to the presence of stiff ordinary differential equations in the
examined model, simulation with parameter values below the imposed limit of
50 % of the nominal values results to either abnormal termination or very long
CPU times. Hence, to avoid simulation problems with parameter values in the
range of 0 % - 50 % of the nominal values, the analysis is carried out in the
reported range. To expand RS-HDMR function, we use third-order Legendre



polynomials for the uniformly distributed samples in the parameter space.

In a next step, we utilize a scatter search algorithm [15] to tune the sensitive
parameters identified by GSA. For the unstructured part (first two layers) ex-
perimental data taken from [26] are used for the tuning. The experimental data
taken from [26] include some key bioprocess indicators and metabolites in an im-
munoglobulin (IgG1) producing mammalian cell culture (e.g., viable/dead cell
density, glucose, glutamine, lactate, ammonia, mAb), which are used to tune the
first model layer, as well as the concentrations of nucleotide sugars, which are
integrated to tune the second layer parameters. The experiments are conducted
in a batch culture, which defines a unique dataset for our study, and provides a
good starting point to investigate the effect of nutrient supplementation in the
culture. More precisely, 20 parameters (these refer to the reduced number of
parameters after the GSA) are estimated using the data reported from analyz-
ing 12 metabolites in 13 time points. For the third layer, namely the kinetic
reactions inside Golgi apparatus, we use a different time course dataset of gly-
cosylation profiles for the fitting, derived from [25]. Both above-mentioned data
sources deal with the same isotype of mAbs, i.e., I[gG1l. IgG1l-based mAbs con-
stitute the majority (> 70 %) of clinically approved mAbs [13]. Furthermore,
glycosylation profiles have in general large overlaps for different mAb products,
and thus their major glycoforms fall often into the same specific ranges, e.g., [7].
These observations enable us to combine the two different datasets for model
fitting. Of course, when available, data from the same source is preferred. How-
ever, due to the lack of reported time course data for the glycoform variations
during a mAb production cell culture process published in the literature, this
was not possible in our case. In the third layer of the model, 25 parameters
are estimated using the data reported in [25]. Here also an IgG1 producing
mammalian cell culture (without supplementing metabolites for optimization of
glycan profile) is used to estimate the parameters, and to simulate the system
as a starting point for evaluating the effects of supplementing sugars and nu-
cleotide sugars. This dataset includes the measurements of 13 glycan structures
in 13 time points.

3 Process Optimization

Optimal feeding profiles that provide cell culture with the appropriate amounts
of nutrients can essentially contribute to an increased production outcome. How-
ever, overfeeding can have an inhibitory effect on cell growth, mainly due to the
accumulation of toxic byproducts. Furthermore, supplementation affects qual-
ity attributes such as glycosylation. More precisely, nutrient feeding leads to
changes in nucleotide sugars metabolism, and thus to the glycosylation patterns.
Thus, the dynamic nature of the described problem necessitates dynamic opti-
mization techniques, in order to derive optimal feeding strategies that achieve
high product formation and simultaneously comply with the required quality
attributes.

In our model, as originally presented in [17], the unstructured cell culture
part describes viable cell density, extracellular metabolite and nucleotide sug-
ars concentrations, as well as specific productivity. Specific productivity and
nucleotide sugars concentrations are the input parameters to the glycosylation
part. Assuming each protein carries two glycan molecules (one M9 and one M8)



on its Fc region, the production rate of each of these two glycan is equal to the
specific protein production rate. Since the protein secretion process occurs after
glycosylation in Golgi apparatus [53], the rate of protein production influences
protein glycosylation, and the glycosylation profile affects the rate of recombi-
nant protein secretion as a quality criterion. The mechanisms that underlie the
impact of specific productivity on glycosylation have been extensively discussed
(using a model-based approach) in [27]. To this end, process optimization is
crucial in order to derive trade off between mAb productivity and high glyco-
sylation processing levels. Noticeably, the results in [22] indicate the potential
of predicting most glycan forms at the end of the cultivation through glucose
(Glc) and amino acids concentrations as well as product titre.

Some indicative values on acceptable ranges for glycoprotein distribution of
mAbs are reported in the literature [7]. Starting with a batch process that
gives glycan distribution very close to these ranges (unoptimized batch case),
we perform model-based dynamic optimizations. We firstly examine the effects
of process optimization on the distribution of glycoforms, by supplementing
nutrients. To ensure variability of glycoprotein distribution within acceptable
ranges, we then reformulate the optimization problem to control glycosylation
ranges. For this, both feeding of nutrients and nucleotide sugars is employed.

The categorization of the glycan structures to quality attributes can be seen
in Figure 1.
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Fig. 1:
Categorization of glycan structures to quality attributes.

In Table 1 we present a brief summary of the examined case studies. Case
studies CS1-3a and CS1-3b refer to optimizations without and with quality
attributes, respectively.

We solve the resulting dynamic optimization problems using direct single-
shooting method. A piecewise constant discretization of the controls is em-
ployed, where the time horizon is discretized to six-hour intervals, with enabled
grid adaptation. The optimizations are performed within gPROMS Model-
Builder v.5.0.1 [1]. Optimization tolerances are set to 1E-3. More information
about CPU times and optimization status is presented in Table Bl in Ap-
pendix B.

3.1 Process optimization without control on glycosylation

Starting from an unoptimized batch case, we explore different scenarios for the
optimization of the fed-batch case. In all optimizations we consider supplemen-



Table 1: Summary of examined case studies

Objective Controls
Maximize Feeding Feeding Initial
Glc, GlIn  Nucleotide Concentrations
Sugars Gle, Gln

CSla final mAb concentration Yes No No
CS1b final mAb concentration Yes Yes No
CS2a  final mAb concentration Yes No Yes
CS2b  final mAb concentration  Yes Yes Yes
CS3a  volumetric productivity — Yes No Yes
CS3b  volumetric productivity — Yes Yes Yes

tation of glucose and glutamine (Gln), which correspond to the main carbon
and nitrogen sources for the cells, respectively. In our first case study (CSla)
we consider, as commonly done [29, 35, 40], only feeding rates and composition
of Glc and Gln as optimization variables. We aim at maximizing the mAb fi-
nal product concentration, which is our desired high-value biopharmaceutical
product. The second case study (CS2a) has the same objective as in CSla,
but considers additionally initial concentrations of Glc and Gln in the culture
as optimization variables, since medium composition is crucial for cell growth
and product formation. The benefits of using alternative objectives have been
also reported by us and others [28, 39]. Thus, in the third case study (CS3a),
we present optimizations using volumetric productivity as an objective, varying
again initial nutrient concentration and feeding of Glc and Gln.

The upper bound on the inlet flow rates derives from the imposed constraint
on maximum allowed feeding volume as presented below (feeding rate cannot
be greater than the considered volume variation throughout the culture). The
upper bounds of Glc and Gln concentrations in the feed are selected ad-hoc
based on values reported in the literature [35, 47]. The culture time is an
additional degree of freedom and is flexible to vary from one to twice the batch
time, as long as all imposed constraints are satisfied. Our previous experience
has shown that this bound is sufficient, as process optimization typically cannot
extend culture longevity that much [28; 29].

We formulate, as state constraint, an upper bound on the integral of the
feeding rate (boundary value for maximum volume variation from [39]). We
also impose state constraints on the upper bound of lactate and ammonia con-
centration, which are toxic byproducts (bounds reported in [58]), and on the
lower bound of culture viability (value from [48]) to avoid undesired product
degradation. Viability is the percentage of viable over total cells in the culture,
and its lower bound usually serves as termination criterion for the optimization.
In many practical applications a higher bound on viability throughout the cul-
ture is maintained, cf., e.g., [31]. As our study focuses on the early steps of



process development within the QbD framework, we believe it is important to
explore the process behavior in the regions of low viability index to gain valuable
process understanding and enable the assessment of potential issues in future
steps of process development. Note that a linear correlation with increasing the
lower bound on viability and decreasing both final product titer and culture
duration is reported in [29]. Finally, we introduce an upper bound to the Glc
concentration level throughout the cultivation, at the value of the initial Glc
concentration in the examined batch case. This is because presence of Glc in
abundance has been reported as energy inefficient [34].

A mathematical formulation of the problem description above is given by
the following set of equations (1):

max ProcessObjective
u(t)

s.t. CultureViability(z(t),u(t)) = 50%
VolumeV ariation(x(t), u(t)) < 20%
Amm(z(t), u(t)) < 5.1mM
Lac(xz(t), u(t)) < 58mM
Gle(z(t),u(t)) < Gleg (1)

where z(t) state variables, u(t) the degrees of freedom: Fj,gic, Fingin [0-0.08]
(L/h), cingic [0-400] (mM), ¢ingin [0-200] (mM), t; [94.8-189.6] (h) and mAb(ty)
the final product concentration. For CS2 and CS3 we have additional cyge [0-
24.2] (mM), cogin [0-10] (mM).

As presented in the results section, although these optimizations improve the
process objective, the final product does not meet the target glycan distribu-
tion. This raises a critical point for practical implementation, as it implies that
optimization studies relying solely on an increased production outcome through
nutrient supplementation without directly accounting for product quality, can
fail to deliver a high quality glycosylated product.

3.2 Process optimization with control on glycosylation

To be able to fulfill target glycan distribution for the final product, we de-
velop case studies (CS1-3b), where we now incorporate directly product quality
specifications (in terms of acceptable glycosylation ranges) to the previously
examined optimization problems.

The following reformulations of the optimization problem are performed.

Glycosylation ranges at the end of the culture are included as constraints.
This is reasonable, as we examine batch and fed-batch cultures, where the prod-
uct is only collected at the end of the culture life span. In practice, mAb se-
cretion occurs throughout the culture time, and thus in the future additional
“control points” could be incorporated. However, this would require some ad-
ditional information on the propagation of acceptable glycosylation ranges with
respect to the dynamics of the glycosylation process throughout the culture,
which to the authors’ best knowledge is not yet available in the literature.

Additional feeding of nucleotide sugars is introduced to manipulate glyco-
protein distribution to the desired ranges. More precisely, we consider feeding
of UDP-GlcNAc, UDP-Gal, GDP-Fuc, since the significance of the variations in



glycan profile, aroused from changes in the concentrations of these nucleotide
sugars are the most frequently reported in the literature, cf., e.g, [8, 55].

Feeding galactose, N-Acetylglucosamine and fucose are reported to dramati-
cally increase the intracellular concentrations of UDP-Hex (UDP-Glc and UDP-
Gal), UDP-GlcNAc and GDP-Fuc, respectively [5, 18, 52, 55, 57]. Hence, in our
model simulations we assume that feeding these supplements indirectly reflects
the effect of supplementing the respective sugars. This assumption enables us
to compare our results against the ones reported in the literature. However,
moving from extracellular metabolites to intracellular nucleotide sugars actu-
ally corresponds to complicated metabolic pathways that depend on numerous
mechanisms and process conditions. Thus, a more accurate calculation of nu-
cleotide sugar bounds could in a future step derive based on maximum uptakes
of nutrients and stoichiometry of metabolic reactions.

Alongside feeding the carbohydrate component of nucleotide sugar donors
(NSDs), it is also essential to feed nucleotide precursors, such as uridine and
guanosine (for UDP-GleNAc, UDP-Gal and GDP-Fuc, respectively). Feeding of
these nucleotides is known to inhibit cell growth [10, 21]. Model-based optimiza-
tion of NSD feeding strategies has been recently published [38]. In the present
study, feeding of these factors is not considered, assuming they are provided
in the media or supplemented feed. Hence, the potential deleterious effects of
nucleotide precursor feeding have been neglected. In future studies such effects
should be also considered.

The upper bounds on the feeding rates derive again from the constraint on
maximum culture volume and the feeding concentrations of the nucleotide sugars
from the values reported in [55]. Note that in CS2 an additional constraint to
avoid feeding when viability level has dropped bellow 70 % is imposed. In the
following section, the incorporation of this constraint is justified.

4 Results and discussion

In this section, we present the optimization results for the examined case stud-
ies. In the first subsection, we observe general trends and discuss the effects
of utilizing different problem formulations on optimization outcomes. In the
second subsection, we focus more on the quality aspects, evaluating the impact
of process optimization to the considered quality criteria for the different case
studies.

The key indicators of the optimization results are summarized in Table 2.
Figures 2,3,4 illustrate the time evolution of some key process variables for CS1,
CS2 and CS3, respectively. The optimal feeding profiles and overall volume vari-
ation for the optimizations without and with quality attributes for the examined
cases, the glycan distribution profiles, as well as the optimal feeding concentra-
tions are presented in the Appendix B (Figures B.1,B.2,B.3, Figures B.4,B.5,B.6
and Table B2, respectively).

The results illustrated here represent the solutions to a mathematical prob-
lem, as this is described in the previous section. In the following, the obtained
results are discussed in terms of process.



Table 2: Optimization results. HM is high mannoses, aFuc is afucosylated, Gal
is galactosylated, Sial is sialylated. Values with * indicate an active bound.
Values with ** indicate that the specification is out of range.

HM aFuc Gal Sial Final mAb Culture

% % % % [mg/L] Time [h]
Acceptable
Range([7]) 3-10 2-13 1040 0-2 N/A N/A
Unoptimized
Batch 11.2%% 25 28.3 0.3 124.3 94.8%
CSla 8.0 0.0 286 0.3 1378 94.8%*
CS1b 4.7 2.0 292 0.3 138.1 94.8%*
CS2a 57.1%F 0.1** 164 0.4  138.1 104.6
CS2b 10.0*  2.0* 10.0* 0.1 141.3 189.6*
CS3a 2.5% 0.0 6.3% 0.1 137.4 94.8%*
CS3b 3.0* 2.0* 181 0.2 1374 94.8%*

4.1 Comparison of the optimization results for the differ-
ent case studies

From the results presented in Table 2, we observe that in all cases although
optimization without direct quality attributes (optimized without QAs) leads
to an increase of product titer, the glycan distribution of the optimized cases
does no longer lie within the acceptable ranges. This is expected, since as already
discussed, operation mode directly affects glycosylation. As already mentioned,
this practically means that optimization studies considering only maximization
of a process objective would fail to deliver a quality compliant product. When
optimization with constraints on glycosylation ranges is conducted (optimized
with QAs), all glycosylation ranges are respected, and still the final product
concentration is at the same levels as the one from optimization without quality
attributes (see Figures 2a,3a,4a). This is a significant finding, as it indicates
that we do not necessarily need to sacrifice process performance to achieve high
quality. This of course requires careful selection of the manipulated variables
and their imposed bounds, as well as further experimental studies to support
this claim.

At this point it is to be noted that transforming the optimization problem
into a multi-objective formulation poses an interesting alternative, to the ap-
proach considered here, namely including glycosylation ranges as endpoint con-
straints. This might be of a specific interest once a desired clinical effect of the
mADb is identified, e.g., maximize galactosylation content to increase complement
dependent cytotoxicity (CDC) activity [13]. Such cases are further discussed in
the next subsection. Yet, from a mathematical perspective, formulating the

10
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Fig. 2:
CS1 - Comparison of key indicators for unoptimized (solid, dark grey) optimized
without QAs (dashed, light grey) and optimized with QAs (dotted, black) cases.

quality attributes as constraints with desired ranges offers a considerable ad-
vantage, as it gives additional degrees of freedom to the optimization problem.
This practically means that the optimization strategy can decide where on those
ranges maximum process performance is attained.

Comparing CS1 and CS2, we notice that the additional degrees of freedom
(initial concentrations of Glc and Gln) in CS2, lead to significant violation on
the final glycosylation profile of the product (see Table 2) for the optimizations
without QAs. For our in silico studies, the optimized results of CS2b play a
significant role as, despite the large deviations from the desired glycopatterns
presented in CS2a, they manage to meet all imposed glycosylation specifications
for the final product, while also increasing the final product titer. However, these
results do not look favorable for practical implementation, due to the following
reasons. First, by incorporating feed towards the end of the culture, the cells
most probably won’t be able to recover (results not presented here). To avoid
this behavior, a constraint to eliminate feeding at a low viability levels is added
(see Figure 3b). Yet, Gln concentration still remains zero for a prolonged period
of time (see Figure 3d), which since Gln is crucial for the survival of the cell
culture is not desired. Moreover, the optimized feeding strategy considerably
prolongs culture time without leading to significant increase of the product
concentration. In order to remedy this, we examine in CS3 an objective that
takes into account culture time, namely volumetric productivity. In certain
cases, maximizing specific productivity might also be of interest. However, in
our case this leads to low cell densities in the optimization, and thus low titers
(results not presented here).
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CS2 - Comparison of key indicators for unoptimized (solid, dark grey) optimized
without QAs (dashed, light grey) and optimized with QAs (dotted, black) cases.

Optimization with CS3 shows an example of how alternative objectives might
be used for increased production outcome. Consideration of production time
within the objective function leads to culture longevity at the lower bound (in
this case batch time). However, as the optimized final product concentration
of CS3 is still comparable with the optimized one from utilizing an objective
specifically focusing on final product concentration (CS1, CS2), consideration
of volumetric productivity as an objective could be also considered in practice.
Note that in general for case studies CSla, CS1b and CS2a a prolonged culture
duration when moving from batch to fed-batch operation is anticipated. The
deficiency of our optimization results to capture this behavior is to a great
extend attributed to the limitations of the obtained parameter set to efficiently
meet all system requirements, taking also into account the imposed lower bound
on viability and the data described in [26].

Among the presented case studies, CS1b is deemed as the most promising
one, since it combines an increased product titer with desired glycosylation
patterns, namely high galactosylation index and low fractions of high mannoses
and afucosylated glycan structures. Please note that the potential influence of
the selected objectives to process scale up is considered out of the scope of the
presented study, and thus not presented here.

4.2 Effects of optimizations on glycosylation

The biantennary glycans GOF (GO refers to the number of galactose on the two
antennas and F refers to the fucosylation of the first N-acetylglucosamine, as
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Fig. 4:
CS3 - Comparison of key indicators for unoptimized (solid, dark grey) optimized
without QAs (dashed, light grey) and optimized with QAs (dotted, black) cases.

represented in Figure 1) and the galactosylated structures G1F-G2F are critical
in glycosylation, and they represent a major fraction of the total glycosylation
profile of therapeutic antibodies [23, 49]. Supplementation of glucose and galac-
tose is expected to increase the fraction of GOF and G1F-G2F [33, 43]. However,
galactosylation content stays generally in our optimization at relative low lev-
els (yet apart from CS3a still within the acceptable ranges), which could be a
critical point as in most cases higher galactosylation levels are more favorable
[8, 19] (see also Figures B.4c,B.5¢,B.6¢). To avoid this behavior we could either
increase the lower bound on the acceptable galactosylation range (using as ref-
erence the galactosylation levels of popular mAb products, the glycan profiles of
which are available online e.g., [19]) or incorporate galactosylation content into
the objective function (multi-objective formulation). A possible reason for the
decreased galactosylation content in our optimization could be high amounts
of GlcNAc. The increase in GlcNAc availability due to supplementation seems
to induce higher formation of GOF and the galactosylation content remains at
low levels. Although the inhibitory effects from transport of nucleotide sugars
are not considered in our mechanistic model, it is reported in the literature
that the increase in GlcNAc transport into the Golgi (when available in high
concentrations) slows down the transport of UDP-Gal [55, 57].

It has been (frequently) reported that the presence of high mannose struc-
tures over a specific range increases the antibody clearance from human body
[4, 20, 42]. Moreover, the human immunoglobulin G (IgG) contains very low
content of high mannose glycans compared to recombinant monoclonal anti-
bodies glycan profile [20]. The presence of elevated high mannose glycans is
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typically an indication for early departure from glycosylation [8]. For all the
above reasons, minimizing the high mannoses content is desired in mAb glyco-
sylation process. In our optimization, by supplementing more carbon sources
(Glc and Gln), we observe a generally decreasing trend in the high mannoses
content, compared to the unoptimized batch case (except CS2a, where there is
a channeling through high mannoses production, indicating that the network
does not progress to mature glycans). In all cases where we included the ad-
justment of the glycosylation profile to the desired ranges, the high mannoses
content is significantly decreased. Figures B.4a,B.5a,B.6a illustrate the varia-
tions in the high mannoses content for the different case studies. From these
results, we can observe that even in the optimized case studies, where an upper
bound to reduce the high mannose glycans in the final product is imposed, high
mannose species accumulate to up to 30 % during the initial phase of culture
(e.g., Figure B.4a). This profile deviates from what was previously reported in
[54], where the high mannose glycan profiles begin at ca. 5 % and subsequently
increase to 25 % during the second half of culture. As the dataset used for the
tuning of the third model layer only reports data from the third day on, the
dynamics of the glycosylation process at the early culture stages in our in silico
study are expected to have higher deviations from reality. Since also we only
impose the constraints to the glycosylation ranges at the final point, the profiles
of the optimized cases do not reduce the high mannose content at early stages.
However, in the late culture times, where also our constraints are imposed, the
results are expected to be more reliable.

As already mentioned, the major glycan contents in therapeutic mAbs are
the core fucosylated structures GOF and G1F-G2F. However, for some antibod-
ies (those whose mechanism of action includes antibody dependent cell mediated
cytotoxicity) the lower fucosylation content enhances the mAb activity and ef-
ficacy strongly [2, 44]. Therefore, maintaining the afucosylated content within
the desired ranges is of high importance. Our optimization indicates a trend
towards minimizing afucosylation content, yet keeping it within the imposed
bounds when quality constraints are introduced (Figures B.4b,B.5b,B.6b).

Although the relative percentage of sialylated glycans in monoclonal anti-
bodies is low [52] the progression of glycosylation process to the increased level
of antennarity and capping with sialic acid prevents fast removal of protein
from blood circulation and therefore increases serum half-life [46]. It is there-
fore crucial to keep the sialylation levels within the desired ranges. In all our
optimization cases, the target sialylation context is achieved (also for the opti-
mizations without incorporation of the constraints on the glycosylation ranges)
(see also Figures B.4d,B.5d,B.6d). This is most probably due to the imposed
ammonia constraint, which maintains low ammonia concentration in the cul-
ture, since increased ammonia levels have been reported in the literature to
have negative effects on sialylation and galactosylation [3, 7].

5 Conclusion

We dynamically optimize feeding profiles of nucleotide sugars and/or essential
nutrients in order to increase mAb titer in mammalian cell cultures, taking into
account product quality. Quality attributes, in our case studies, refer to target
glycan distribution of the final product. Switching from batch to fed-batch
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operation, cell glycosylation is affected, and thus quality-based optimization
is required to be able to maintain acceptable glycosylation ranges for mAb
production. This is done by including them as constraints to the optimization
problem formulation.

The results of our in silico study confirm an increased production outcome,
which satisfies the imposed quality constraints. Although no experimental val-
idation of the results is provided, this work shows an effective methodology,
with which quality attributes can be incorporated into the optimization prob-
lem increasing final product titer, while simultaneously meeting target glyco-
protein distribution. It additionally highlights the multiple benefits of utilizing
mathematical models for process optimization in biopharmaceutics, within the
broader concept of QbD paradigm. Yet, as the validity of model-based optimiza-
tion strategies is to a great extent correlated to the model accuracy and efficacy,
further attempts towards the development of predictive mathematical models
that can effectively capture process behavior are needed. This can minimize
experimental efforts and provide a valuable process insight. In this direction,
data generation, availability and methods for its successful utilization is a vital
element.

In the future, more research emphasis should be placed on investigating
the effect of other growth-limiting and/or growth-facilitating substances and
supplementing them into the culture. This can facilitate process intensifica-
tion (as more biomass can lead to more product), and also provide more effi-
cient mechanisms for controlling the glycosylation process. Additionally, other
quality-related attributes can be incorporated. Last but not least, experimental
validation of the results is required.
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A Model description

In the following, a short description of the model equations given in Ehsani et
al. (2017) [17] is provided.

Cell culture model

The dynamics of the cell culture are described as functions of extra- and intracel-
lular metabolites. The major nutrients (i.e., Glc and Gln), inhibitory substances
(i.e. Lac and Amm) and the glycoprotein constitute the extracellular metabo-
lites. The nucleotide sugars are the intracellular metabolites considered in the
model. The mass balances are written assuming perfect mixing.

The volume (V') varies based on the feed rates (F;,) and the outlet flow (Fpy:)

dav

Y _F,-F, Al
dt t (A1)

The balances on the viable (X,) and dead cells (X) are functions of the specific
growth (u) and death rates (uq). The lysis rate is also considered in the dead
cells balance

d V'X'U

Vo) v Xy () X, o (A-2)
d(V-X
% =V Xa (g — kiys) — Xy - Fous (A.3)

The growth rate is described as a Monod function of Gle, Gln, their saturation
coefficients and the maximum growth rate. The growth inhibiting effects of
Amm and Lac are also considered by Monod kinetics

. . [GZC] ) [GZTL] ) ki,Lac ) ki,Amm
H= Hmae g T 1GIe] Eam + [GIn] Kipae + [Lac] ki tmm + [Amm]

(A4)

The death rate is a function of Amm concentration in the culture, the maximum
death rate and the Amm constant for cell death

1
2
kd, Amm
1+ ( [Amm] )

The mass balances of Glc and Gln into the bioreactor are given by

Hd = Hdmazx * (A5)

w = VX, Qcie + Fincie - [Glein] — Fout - [Gle] (A.6)
d(V -Gl
%n]) =~V X, (Qcin + Qa.cin) + Fin.Gin [Glnin] — Four - [GIn] (A7)

The specific consumption rates of Glc and Gln are functions of growth rate,
their biomass yield coefficient and their maintenance term

Qaic = % L4 Mmaie (A.8)
X, /Gle
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Qain = % £ mem (A.9)
X,/Gln

The rate of degradation of Gln in the culture media is described by a first order
kinetic rate

Qa,cin = ka,cin - [GIn] (A.10)
The mass balances for lactate and Amm are given by
WWALSD X, Quue — Foue-[Lac] (A1)
av-[A
W — V- Xy Qamm + kacin - V - [GIn] — Fou - [Amm]  (A.12)
where
QLac = YLac/Glc . QGlc (Al?’)
Qamm = Yamm/cin - Qcin (A.14)
The glycoprotein balance is described as follows
d(V - [mAb
% =V Xy - Qmap — Four - [MAD] (A.15)

where the specific production rate is given by

Q?nAb = YL (Alﬁ)
X, /mAb
The four considered nucleotide sugars, namely UDP-GlcNAc, UDP-Gal, GDP-
Fuc and CMPNeubAc are modeled with the following general mass balance
equation

#reactions
d[NS;]
7 = 2 S - Tij — Meen,i — TransGolgi’i (A.17)

j=1

where the intracellular biosynthetic rate (r; ;) and transport reactions into Golgi
(Transcoig:,i) are presented by Monod kinetics, S is the matrix of stoichiomet-
ric coefficients, and Mce;,; is the maintenance term, which represents the con-
sumption of nucleotide sugars in the host cell proteins glycosylation for each
nucleotide sugar.

Protein glycosylation model

Assuming an efficient and complete glycosylation process in ER, the protein car-
rying glycan molecules enters the Golgi apparatus. The rate of glycan structures
entering Golgi is derived from the specific production rate (Qmas)

g Vcell
Gii]=2- mAb_ ). A.18
[G1al (MWmAb) (Vgozgi (419
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where (Q!, 4,) is the specific production rate in pM. Considering that each
protein contains two N-linked oligosaccharides, one on each of the two heavy
chains (on the Cy2 domain) that compose the full mAb molecule, the whole term
is multiplied by 2. The molecular weight of the mAb (MW, 45) is assumed to
be 150 kDa.

The N-glycosylation process progresses in Golgi, where the reactions catalyzed
by ten enzymes in four compartments. Mass balance for each individual glycan
in a compartment (except from [G1,1]) is described by the following equation

d[GrL,J] _ #reaEctions

di SG . T‘Gi,j + kt]. . (Gi’jfl — Gi,j) (Alg)

i=1

where the concentration of glycan structure i in the compartment j is G; ;. The
first term in the right-hand side shows the Golgi glycosylation reaction kinet-
ics, and Sg is the stoichiometric coefficient matrix. The term k;; indicates the
transport rate to or from a compartment. For the single nucleotide substrate en-
zymes like Manl and ManlI the Michaelis-Menten kinetics with glycan substrate
competition are considered [24]

ratt - (Gl

- o
Kecfi ‘ (1 + Zlnzl,l;éi [KLG'L]>

(A.20)

TGy

For multiple substrate enzymes (i.e., GnT I-III, FucT, GalT, SiaT) the compe-
tition terms for both glycans and nucleotides is considered in the kinetic rate
[24]

gt - [Gigl - [NSi]

T G s n [Gril | [NSil , ym [Giy]  [NSisl
Kg - K2, - (1“‘21:1,1;&2‘ KLGJL + Kfl.z] + 21 Klg]l : K@SLLJ)

TGM

(A.21)
where, r%? is maximum specific rate coefficient and K&; and K7, are disso-
ciation constants for glycan and donor co-substrate, and n is the number of
reactions catalyzed by the same enzyme.

The calculated concentration of each glycan leaving Golgi is then multiplied
by the viable cell density to give the accumulated glycan concentration in the
culture supernatant.

B Supplementary optimization results
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Table B1: Optimization convergence details as reported by gProms [1]. Values
with * indicate termination following lack of improvement in optimization vari-
ables and objective function. No improvement tolerance is set to 1E-12 (default)
All CPU times are in [s].

Optimization Status CPU Time

CSla optimal 186.1
CS1b  optimal* 9255.0
CS2a  optimal* 993.4
CS2b  optimal* 145651.0
CS3a  optimal 24.3
CS3b  optimal 323.1

Table B2: Concentration of nutrients in the feed. Values with * indicate an
active bound. All concentrations are measured in [mM].

CinGlc CinGIn CinUDPGIcNac CinUDPGal CinGDPFuc

CSla 160.3 200  N/A N/A N/A
CS1b  400.0%  200.0% 29.2 296.4 0.7

CS2a 2770 1994 N/A N/A N/A
CS2b  400.0%  200.0%  100.0% 95.7 0.0%
CS3a 59.1 1121  N/A N/A N/A
CS3b  400.0%  200.0% 1.6 35.8 0.0%

FinGln (L/h)
FinUDP-GIcNAC (L/h)
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Fig. B.1:

CS1 - Feeding profiles and volume variation for optimized without QA (light
grey) and optimized with QA (black) cases.
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Fig. B.2:
CS2 - Feeding profiles and volume variation for optimized without QAs (light
grey) and optimized with QAs (black) cases.
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Fig. B.3:
CS3 - Feeding profiles and volume variation for optimized without QAs (light
grey) and optimized with QAs (black) cases.
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Fig. B.4:

CS1 - Glycan distribution profiles for unoptimized (solid, dark grey) optimized
without QAs (dashed, light grey) and optimized with QAs (dotted, black) cases.
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Fig. B.5:

CS2 - Glycan distribution profiles for unoptimized (solid, dark grey) optimized
without QAs (dashed, light grey) and optimized with QAs (dotted, black) cases.
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Fig. B.6:

CS3 - Glycan profiles for unoptimized (solid, dark grey) optimized without QAs
(dashed, light grey) and optimized with QAs (dotted, black) cases.
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