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Kurzfassung

Moderne HPC-Anwendungen werden hauptsächlich in Sprachen höherer Stufe ge-
schrieben. Dies hilft der Programmierproduktivität, indem der Compiler zur Abstrak-
tion genutzt wird. Es erlaubt außerdem, viele Systeme und Architekturen mit einer
einzigen Code-Basis zu bedienen. Für portable Performance verlassen Entwickler sich
auf den Compiler, um ihren Code zu optimieren. Allerdings können die Ergebnisse
sich sehr zwischen verschiedenen Compilern und ihren Versionen unterscheiden.

Diese Arbeit beschreibt einen strukturierten Arbeitsablauf, um diese Unterschiede
zu lokalisieren. Dafür werden Profiling-Daten genutzt, um zwei Ausführungen des
gleichen Codes zu vergleichen. Danach beschreibt die Arbeit Methoden für detail-
lierte Analyseschritte. Insbesondere werden Muster bei Kerneln eingeführt, um die
Unterschiede mit Compiler-Optimierungen in Verbindung zu bringen. Das erlaubt es,
ihre Effekte zu analysieren und damit die Ursache für den Unterschied zu verstehen.
Abschließend präsentiert diese Arbeit Fallstudien und Analyseergebnisse des Ar-

beitsablaufs. Damit wird die Anwendbarkeit für die gewählten Benchmarks aus einer
breiten Spanne der Simulationsgebiete demonstriert. Für einige Fallstudien ist es mög-
lich, Änderungen der Compiler-Parameter oder am Quellcode abzuleiten. Das führt
zu Verbesserungen der Performance von bis zu 14%.

Stichwörter: HPC, Compiler-Optimierungen, Performance, Kernel-Eigenschaften
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Abstract

Modern HPC applications are mainly written in higher-level languages. This helps
programming productivity by using the compiler as a means of abstraction. It also
allows to target many systems and architectures with a single code base. For portable
performance, developers rely on the compiler to optimize their code. However, the
results can vary greatly between different compilers and their versions.

This thesis describes a structured workflow to first locate such differences. For
that, it uses profiling data to compare two executions of the same code. Afterwards,
the thesis delineates methods for detailed analysis steps. In particular, it introduces
patterns of kernels to relate the differences to compiler optimizations. This allows to
analyze their effects and thereby the cause of the difference.
Finally, the thesis presents case studies and analysis results of the workflow. This

demonstrates the applicability for the chosen benchmarks from a wide range of sim-
ulation domains. For some case studies, it is possible to derive changes of com-
piler parameters or the source codes. This leads to performance improvements of up
to 14%.

Keywords: HPC, Compiler Optimizations, Performance, Kernel Properties
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1. Introduction

When developing simulations, scientists are oftentimes faced with the following re-
quirements: The application should deliver results quickly because computing re-
sources are limited and expensive. At the same time, the simulation should also
be able to run on multiple HPC systems. The latter includes different hardware
architectures and configurations as well as varying software environments.

To reach these goals, one approach is to write portable code and rely on the com-
piler for optimizations. Doing so allows to target many architectures at once and
adapt to changes more easily. Compilers are also beneficial for programming produc-
tivity because the scientists can work with higher-level languages. The compiler then
acts as a level of abstraction for the translation to machine code. In that context,
compiler optimizations are most important for the sequential performance of the gen-
erated code. This also builds the foundation for the computational parts of parallel
applications.
However, reality shows that different compilers have different optimization strate-

gies. This can have various reasons, which are usually invisible to the application
developer: Firstly, compilers implement transformations for the same optimization
goal in different ways. This leads to small deviations when dealing with real appli-
cations. Additionally, many optimizations are guarded with heuristics or controlled
by thresholds. These are usually subject to the compiler’s tuning for a particular set
of applications. Still, they can have a huge impact on the optimization of all other
codes.
For the developer, these differences primarily manifest as varying performance.

However, it can be hard to relate the observed behavior with the causes mentioned
above. This is because these implementation details are usually hidden from the user.
Nevertheless, understanding the causes has many advantages: On the one hand, it
allows to find approaches to make full use of the compiler. In some cases, this could
result in more portable code that achieves similar or better performance. On the
other hand, it can help to improve the compiler’s optimization pipeline for other
codes as well.
There are only few results on this topic known in literature. To the best of my

knowledge, there currently exists no general approach to analyze the effect of compiler
optimizations. In particular, this means only domain experts are able to understand
the compiler’s influence on performance. To that end, my thesis makes the following
contributions to enable this analysis by application developers:

1. I propose a workflow to locate differences between the observable runtime be-
havior of two executables. Afterwards, I describe steps to analyze the found
differences and understand their causes.

2. To ease the analysis, I present patterns in the source code of typical HPC

1



1. Introduction

applications. For these, I show possible optimizations, which allows to relate
differences to the machine code generated by the compiler.

3. Finally, I evaluate the two approaches with case studies of real benchmark
applications. I describe possible improvements for the analyzed code or the
compilation options to demonstrate the applicability.

1.1. Environment for Measurements

Later chapters will include runtime measurements to present practical considerations.
For this, I execute on the node login18-t provided by RWTH Aachen University
as part of the HPC environment. The system is dedicated to tuning and has the
advantage to allow interactive access in contrast to waiting for batch jobs. This is
especially important for the workflow described in Chapter 3, which requires iterative
changes.
As mentioned before, compiler optimizations are mostly concerned with sequential

performance. For that reason, I focus on execution on a single core. This also
facilitates analysis of the results, because tools do not need to handle parallelism.
I run on an Intel Xeon Platinum 8160 processor, which is clocked at 2.1GHz and
provides three level of caches: The L1D cache is private to each core and has a
size of 32KB. The L2 cache is also private with a size of 1MB while the L3 cache
is shared with 1.375MB per core. The processor microarchitecture has been code-
named Skylake and was launched in 2017.
For compilation I use the same Skylake system running CentOS 7.7.1908. When

comparing different compilers, I employ the following versions unless noted otherwise:

• Clang 10.0.0, labeled as clang,
• the GNU Compiler Collection in version 10.1.0, shown as gcc, and
• version 19.1.1.217 of the Intel Compiler, labeled as icc.

1.2. Structure

The remainder of this thesis is structured as follows: Chapter 2 begins with short
explanations of background knowledge. It starts with a brief introduction about
the phases of modern compilers. The chapter continues with the advantages of an
Intermediate Representation (IR) and possible optimization passes before generating
machine code. Finally, I discuss the difficulties of ordering optimizations and related
work in literature.
In Chapter 3, I introduce my workflow as the central contribution of this thesis. Its

description is independent of the specific benchmarks discussed later. This makes it
possible to apply the workflow in general and beyond the scope of this thesis. The ex-
planations are also agnostic of the used tools to gather the needed data. Nevertheless,
later sections contain practical considerations for currently available software.
Afterwards, Chapter 4 presents properties of kernels (see Definition 5). This aims

to help with the analysis phase of the workflow. The properties are generically based

2



1.2. Structure

on patterns in source code, but again independent of real applications. For a practical
discussion, I present small example code snippets and their properties.

Finally, I evaluate the applicability of the workflow in Chapter 5 by means of case
studies. These include a program from the NAS Parallel Benchmarks and mini-
applications developed by the Department of Energy (DoE). The case studies are
chosen to show the different usage scenarios of the workflow. I present select results
from applying the workflow and discuss performance improvements of up to 14%.
I draw conclusions in Chapter 6 and summarize my findings. This includes a

discussion how scientists could apply my work to their applications. Finally, I mention
possible extensions of the workflow for broader usage.
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2. State of the Art
This thesis aims to examine the effect of compiler optimizations. To that end, the
following chapter establishes required background knowledge: It starts with an ex-
planation of compiler phases in Section 2.1. In particular, I give a short overview of
lexical, syntax, and semantic analysis in modern compilers. Afterwards, Section 2.2
discusses the concept and advantages of an Intermediate Representation. It also de-
scribes some target independent optimizations that are of relevance for later parts of
this thesis. The third Section 2.3 continues with the translation to machine instruc-
tions. This concludes the stages to compile source code into a binary for the target
architecture.

In the second part of this chapter, Section 2.4 briefly discusses how optimizations
are composed in current compilers: In many cases, the effectiveness of optimizations
depends on the order in which transformations are applied. The employed heuristics
are one of the reasons for varying performance between different compilers mentioned
before. Finally, Section 2.5 closes with references to related research to tackle this
problem.

2.1. Compiler Phases
Compilers are an important part of modern software development: They allow to
write portable applications in higher-level languages. However, hardware, in the form
of processors, needs machine code for execution. The task to translate between these
two representations is left to the compiler. The resulting binary can be optimized for
different metrics, for example code size or memory usage. For HPC applications, the
primary criterion is typically performance during execution.
To improve on this metric, researchers and industry have worked on a number of

optimization techniques. They are responsible to produce fast code that runs well
on the target architecture. However, this makes modern compilers themselves very
complex pieces of software. To deal with this situation, literature suggests a modular
design with several phases [16, 32].
In the beginning the input file is processed by Lexical Analysis. This splits the

source code into tokens, which may have additional attributes. For example, a variable
identifier is characterized by its name. Afterwards, Syntax Analysis constructs a
derivation tree of the token stream. The underlying context-free grammar specifies
the syntax of the programming language. The result is usually referred to as Abstract
Syntax Tree (AST).
The AST is then the representation used in the third phase, Semantic Analysis. Its

purpose is to infer additional knowledge about the compiled program. For example,
this includes type checking, which cannot be expressed using context-free grammars.
Finally, the compiler needs to generate machine code from the AST.

5



2. State of the Art

1 int f() {
2 int x = 1;
3 int y = 2;
4 x = x + y;
5 return x;
6 }

(a) multiple assignments

1 int f() {
2 int x1 = 1;
3 int y = 2;
4 int x2 = x1 + y;
5 return x2;
6 }

(b) single assignment

Listing 2.1: Example illustrating Static Single Assignment.

2.2. Intermediate Representation and Optimizations

In most modern compilers, generation of machine code is preceded by the translation
into an Intermediate Representation (IR). It is usually closer to actual execution than
the AST, which facilitates optimizations. Still, the IR provides a clear separation
from the final machine code described in Section 2.3. This offers the advantage that
optimizations can be written independently of the target architecture. As a result, it
is less work to port the compiler to a new architecture because these transformations
can be reused.
The IR also allows to choose a design well-suited for optimizations. Literature

suggests that a Static Single Assignment (SSA) form simplifies transformations [32].
The idea of SSA is that each variable is only assigned once and never changed. As
an example, consider the C code of a function f in Listing 2.1. In the left code, the
variable x is assigned twice: It is initialized in line 2 and later updated to the result of
the addition with y in line 4. The latter requires the compiler to distinguish between
the two uses of the variable in the assignment. This is different in the right code
where x has been replaced by two new variables x1 and x2.

The advantage of the SSA form is the reduced complexity of certain analyses and
optimizations. For example in line 4 of Listing 2.1b, the value of x2 is determined
by x1 + y. These two variables are initialized to constant values in lines 2 and 3. As
such the compiler can propagate their values and assign the constant 3 to x2. This is
easily possible because SSA guarantees that the values of the variables never change
after assignment.
In a similar way, the compiler can perform other optimizations on the IR. One

important requirement is that these transformations are independent of the target
architecture. However, it is still allowed that certain parameters depend on the final
code generation. For example an optimization could behave differently if a required
machine instruction is not supported.
The following sections present optimizations whose understanding is of relevance

for this thesis. The mentioned transformations are only a small subset of the op-
timizations described in literature. An overview of other basic transformations can
be found in “A Catalogue of Optimizing Transformations”, compiled by Allen and
Cocke in 1971 [19]. More literature on the early work of program optimization is
listed in [18].

6



2.2. Intermediate Representation and Optimizations

2.2.1. Dead Code Elimination

Using the previously described constant propagation, the compiler can sometimes
infer that part of the code is never executed. Such regions are designated dead
and can be removed without altering the program behavior during execution [19].
Accordingly, the optimization is referred to as Dead Code Elimination (DCE).
A closely related optimization is Dead Store Elimination (DSE). As the name

suggests, it aims to remove dead stores to memory instead of executable code. This
is based on the observation that programs might contain stores to the same memory
location without intervening reads or other synchronization. In such case, the last
store determines the value in memory and the previous accesses can be removed. As
for DCE, the program behavior stays unchanged but performance might improve due
to fewer memory accesses.

2.2.2. Inlining

Another optimization possible at IR level is function inlining (called “procedure in-
tegration” in [19]). This is motivated by the fact that function calls incur a small
overhead for multiple reasons: Firstly, execution must jump to a different code ad-
dress and at the end return to the next instruction after the call. Modern processors
have specialized hardware units to predict branches, but their capabilities are still
limited. Secondly, arguments must be passed according to the calling convention,
which sometimes includes pushing to the stack. Finally, the called function needs to
setup its own stack frame for storing temporary values and saved register values.
To inline a function, the compiler copies the code into the calling context. In doing

so, it can deal with parameters and return values once instead of passing them at run
time. Additionally, there is only one stack frame of the surrounding function, which
can be enlarged as necessary. The inlining might also enable further intra-procedural
optimizations where code analysis is limited to a single function [19]. For example,
it might be possible to propagate constant arguments and remove dead code after
inlining a function into a particular caller.

2.2.3. Loop Optimizations

Loops are another control flow structure that is subject to optimization. Two well
known transformations include Loop Invariant Code Motion (LICM) and loop un-
rolling. The first attempts to move code out of the loop that is invariant for all
iterations. In particular, this includes computations that are independent of the loop
variable. This avoids repeated evaluations and makes it possible to keep the result in
registers [19].
Unrolling, on the other hand, is concerned with replicating the loop body, which

enables further optimizations. For example, it might be possible to eliminate repeated
checks of the loop header [19]. The replication also reduces the number of jump
instructions executed during run time. Additionally, unrolling might be a prerequisite
for vectorization as discussed in the next section.

7



2. State of the Art

2.2.4. Vectorization

Many architectures today have specialized instructions to operate on vectors of data.
According to Flynn’s taxonomy [29], they belong to the category of Single Instruc-
tion Multiple Data (SIMD). To make use of these instructions, the compiler has to
structure the code accordingly. This is usually performed on the IR because many
aspects are independent of the concrete architecture.

There are two major vectorization techniques known in literature: Loop vector-
ization extends the transformations discussed in the previous section. For that, it
moves operations from consecutive loop iterations into vector registers. In contrast,
the Superword Level Parallelism (SLP) vectorizer works on combining scalar oper-
ations into vector instructions [42]. For handling of loops, this requires unrolling of
the loop body to expose the parallelism. However, the idea of SLP also applies to
operations outside of loops if they can be reordered without affecting the result. The
two techniques target different opportunities and can be implemented as separate
passes in the same compiler.

2.3. Machine Code

Finally, the compiler needs to generate machine code by translating the IR for the
target architecture. This stage is usually split into multiple smaller steps: Instruc-
tion selection is concerned with choosing appropriate operations from the ISA. Ad-
ditionally, the compiler performs instruction scheduling to increase Instruction-Level
Parallelism (ILP) and thereby performance. At the end, Register Allocation (RA)
assigns hardware registers to the instructions.
During or after this pipeline, it is possible to apply Peephole Optimization [47]. This

refers to replacing instruction sequences with faster alternatives yielding equivalent
results. For that, the compiler analyzes a sliding window of operations, called the
peephole. Possible transformations include the removal of redundant instructions or
simplifications of jumps [16].
The compiler also needs to lower the vectorized code to use SIMD instructions.

This complements the target independent transformations described in Section 2.2.4.
Moreover, the compiler might use specialized instructions, for example to speed up
multiply-accumulate operations:

(-) a± (b · c) (2.1)

In the case of addition, this is also referred to as fused multiply-add (FMA).

2.4. Composing Optimizations

The first transformations for optimizing compilers were described already in the 1960s
and early 1970s [49, 47, 28, 17, 19]. Since then a large number of analyses and
optimizations have been proposed in literature. This requires the engineers to choose
a set of transformations suitable for their compiler: Integrating many transformations
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costs a lot of effort and potentially introduces bugs. Consequently, compilers usually
include transformations that are beneficial for their users’ needs.

Once implemented, the compiler also has to decide when to apply a given trans-
formation. For example, inlining as described in Section 2.2.2 duplicates code if a
function is called multiple times. This increases the overall code size and is usually
not advisable for large functions. On the other hand, it enables further optimizations
as discussed above.
The solution implemented by most production compilers is to employ heuristics.

These try to estimate the possible benefit of applying a transformation. Based on
this approximation, the compiler decides if the optimization should be performed.
Additionally, many transformations include cost models to steer individual parame-
ters. For example, the number of unrolled loop iterations may depend on the length
of the loop body [19].
These decisions are further complicated by a sequential optimization pipeline: In

current compilers, optimizations are applied in a fixed order. As a result, transfor-
mations need to work on the result of their predecessors. This implies that compiler
writers need to take interaction of transformations into account when designing the
pipeline. Unfortunately, these relationships are non-trivial and very hard to predict
for all possible codes.
The heuristics and the optimization pipeline are unique to every compiler. In fact,

they usually change from one release to another as improvements are made. This
is why their generated code can differ significantly, leading to varying performance
during execution.
The mentioned heuristics usually make better decisions the more information they

have available. One technique to gather data from another source is Profile-Guided
Optimization (PGO): Here, the compiler gets a profile from an instrumented execu-
tion of the application. This gives more precise information about the frequency of
branches and function calls. With Link-Time Optimization (LTO), there is an addi-
tional run of the optimization pipeline when linking. This means the whole program
is visible to the pipeline, which makes Interprocedural Optimization (IPO) passes
more effective.
Another related approach is binary optimization, which is applied after the exe-

cutable has been linked. One recent example is the BOLT optimizer presented by
Facebook engineers [52]. It also relies on sample-based profiling and reorganizes the
compiled code to improve performance. For example, it tries to locate hot functions
close to each other, which reduces pressure on the instruction cache.

2.5. Related Work

The idea of automatically searching for the best performing code dates back more
than 20 years: In 1997, Bilmes et al. described PHiPAC as a methodology to write
portable C code. The developed routines are parametrized and scripts search for the
values with the best performance [24]. Soon after, Whaley and Dongarra published
their work on Automatically Tuned Linear Algebra Software (ATLAS) [58]. They
concentrate on optimizing the general matrix-matrix multiplication. This can be
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used to produce fast versions of the other routines in BLAS level 3 [27].
With the increasing maturity of optimizing compilers, other research work focuses

on finding the best set of options. A promising technique is “iterative compilation”
which evaluates the generated code after compilation [25]. Unfortunately, testing all
possible combinations is infeasible due to the large search space [40]. As one solution,
Triantafyllis et al. developed Optimization-Space Exploration (OSE) [57]. Their idea
is to make use of the existing compiler heuristics to limit the number of combinations
to explore.
The approach of iterative compilation can also be used to address another problem

described in the previous Section 2.4: Cooper et al. describe “adaptive optimizing
compilers” to explore different orderings of optimizations [26]. Other works employ
machine learning to improve compiler heuristics [56] or to mitigate the problem by
predicting beneficial orderings [41].
In addition to the compilation of particular applications or libraries, researchers

have also looked at improving the set of standard optimization settings. Haneda et
al. report results with randomly generated settings [34]. Hoste and Eeckhout present
the framework Compiler Optimization Level Exploration (COLE) [36]. It allows to
find Pareto optimal settings for multiple metrics, such as compilation time as well as
execution time.
All of the work cited so far is concerned with automatic procedures. Their shared

goal is to find an optimum to some objective function. Unfortunately, this does not
help to understand the effect of compiler optimization. To the best of my knowledge,
this area has not been explored yet.
One step into this direction has been taken by Granston and Holler [31]: Their

tool “Dr. Options” recommends compiler options based on information about the
application. This includes data supplied by the user, the compiler, and optionally a
profiling run. The tool matches this information with encoded feedback from tuning
experts and outputs the recommendation. However, the work’s focus is very narrow
by targeting Hewlett-Packard’s PA-RISC architecture and compiler. Additionally,
the recommendations will be most useful for few standard cases that the tool was
developed for. I envision that such tool would be less helpful for more advanced and
yet unseen problems.
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3. Workflow
As seen in the previous chapter, compilers perform many optimizations guarded by
heuristics. These optimizations are important to get good performance from portable
source code. As such compilers writers have implemented many different optimiza-
tions and strategies. Various flags are available to enable and tweak the passes or
groups thereof. This leads to varying performance for a given source code when
compiling into executable binaries. However, the exact causes for the performance
differences are not well understood in detail.

To study the optimizations’ effect, I present a workflow to compare the execution of
two binaries. To that end, Section 3.1 establishes the needed terminology used in the
description. Based on the given definitions, this allows to formally define the goals
of the workflow and discuss scenarios not handled in this thesis. The proceeding
sections explain the workflow in detail: Section 3.2 describes how to compare two
profiles measured by the workflow. Afterwards, I show how to refine the profiling and
compare the generated instructions in Section 3.3. Finally, Section 3.4 lists possible
optimizations to improve the performance. I give practical considerations for applying
the developed workflow in Section 3.5.

3.1. Terminology and Goals
The purpose of this section is to establish terminology to describe the proposed work-
flow. This will involve interaction between multiple entities, designated as follows:

• The person applying the workflow is called a “performance analyst”. This may
be abbreviated as analyst for short.

• Compiling source code results in object code for a target architecture. After
linking, it is possible to get a binary that can be executed on a computer system.
For this thesis, I use the terms binary and executable interchangeably.

Finally, a binary may be run on a system comprised of both hardware and software.
The following two definitions characterize the environments during build and run
time. They are important to get reproducible measurements and results.
Definition 1 (build configuration). The build configuration captures the way of
compiling source code into an executable. This includes the used software and their
versions as well as all options passed to it. It also comprises the hardware and how
it is configured at the time of compilation.
Remark. The hardware is relevant because it might influence options implicitly during
build. For example, many compilers support a flag that optimizes for the current
architecture. That is, source code compiled with the same flags is actually optimized
for different systems.
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Definition 2 (run environment). The run environment captures where and how an
application is executed. The first part is made up of the system hardware and the
installed operating system. Additionally, it is defined by the resources actually used
for execution. This includes the processing elements and accessed partitions of the
available memory. Finally, it comprises the application configuration, its parameters,
and the input data.
A run environment is reproducible if the system is idle except for required back-

ground services, and measures are taken to minimize the jitter (for example by pinning
the execution).

In this thesis, I will use the measured runtime to compare the performance of two
executables. This metric has the advantage that it is generally available and can be
measured at different levels. Additionally, it is less ambiguous than the number of
operations or retired instructions. Based on the established notion above, this allows
to define “differences in performance”:

Definition 3 (difference). Given two binaries compiled from the same source code
with unique build configurations, executed in the same reproducible run environment.
The measured performance shows a difference if one binary is statistically and repro-
ducibly faster than the other. The difference is said to be significant if its relative
value is larger than some defined threshold.

This definition is very central to the thesis and the developed workflow. As such,
I would like to highlight three important aspects in above definition:

1. The given definition is agnostic of the granularity used for measuring the run-
time. Hence, it can be applied to binaries as a whole, but also to parts of them
such as functions or even instructions.

2. A difference is measured despite the same source code and the reproducible
run environment. This implies it must be caused by a change in the build
configuration.

3. The notion of “significance” depends on an externally defined threshold. This
can be used as a parameter of the workflow that steers which differences are
analyzed. As a result, the workflow can be applied with a very flexible degree
of detail.

3.1.1. Goals of the Workflow

With the defined terminology, it is now possible to express the goals of the pro-
posed workflow: The starting point is a significant difference of the total runtime
between two binaries from the same source code. By applying the workflow, the
aim is to locate differences more precisely, allowing to analyze and understand their
causes. Ultimately, a thorough understanding enables the analyst to improve the
performance.
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However, it is initially not important what part of the build configuration causes
the difference. According to the definition there are several parts that could influence
performance:

• The difference can be related to the used software and their versions. Most im-
portantly, this means the compiler, which is the focus of this thesis. In a broader
sense, the software also includes linked libraries, which I will not look at. These
can be difficult to analyze for two reasons: Firstly, the libraries are sometimes
beyond control of the application developer. This holds for runtime libraries
employed by OpenMP and MPI that are tightly integrated with the system.
Additionally, source code for optimized vendor libraries like Basic Linear Alge-
bra Subprograms (BLAS) is rarely available to the end user. The latter makes
it impossible to apply the proposed workflow which relies on recompilation.

• Obviously, compiler options influence the optimization passes and thereby per-
formance. In the most basic case, this includes standard options to set the opti-
mization level via -O or target a specific architecture. However, most compilers
also support many advanced flags to override heuristics and their decisions.

• Finally, the hardware can indirectly influence choices of the compiler, in partic-
ular for the architecture’s support for certain instructions. However, the same
effect can often be achieved by adding explicit options. As such, I neglect this
degree of freedom by choosing a fixed system for building and running.

To summarize I focus on differences caused by the compiler and its options for this
thesis. Also the workflow does not aim to propose improvements in the compiler by
itself. Still, this can sometimes be a secondary result after fully understanding the
difference.

3.1.2. Overview of the Workflow
The following section briefly paraphrases the proposed workflow to give a high-level
overview. Figure 3.1 shows a corresponding graphical representation. More detailed
explanations of the steps are found in Sections 3.2 to 3.4.

significant difference of total runtime

Compare Executables Analyze Difference

Improve Compiler Options & Code for Better Performance

for each

sig. difference

decompose function

compare
function

Figure 3.1.: Overview of the workflow for analyzing the effect of compiler optimiza-
tions.

13



3. Workflow

As mentioned above, the workflow starts after identifying a significant difference of
the total runtime between two binaries. To isolate the difference, the workflow follows
a strategy of divide-and-conquer: In a first step, the two executables are compared by
means of profiling data. This allows to identify performance differences at function
level and decide which are significant. Afterwards, these differences are analyzed and
recursively decomposed into smaller functions. By repeatedly profiling the binaries,
this gradually increases the level of detail.
After a finite number of steps, the workflow isolates (possibly multiple) differences.

In most cases, these are located in small parts of the application’s source code. As
such, it is tractable to analyze each significant difference in greater detail. In this the-
sis, I propose to eventually compare the functions’ assembly instructions. This allows
to relate the measured differences with optimizations performed by the compiler.

3.2. Comparing Executables
The following section describes how to find differences between two executables. A
visual representation is given in Figure 3.2. The first step is to compare the total
runtime of the two binaries, which has two reasons:

• For the initial profile, this step ensures that the profiling tool did not add dispro-
portionately large overhead. In particular, the significant difference observed
initially must still be present.

• After recompilation, it is important to verify that the previous differences are
still visible.

In the second case, the comparison ensures consistent results while applying the
workflow: In later stages of the analysis, the workflow describes modifications to
refine the level of detail. This is needed for the strategy of divide-and-conquer men-
tioned before. However, the modifications can negatively influence the runtime of the

significant difference of total runtime

Compare Runtimes

Compare ProfilesAdapt Inlining Analyze Difference

Improve Compiler Options & Code for Better Performance

profile

inlining

differs

recompile & profile

for each

sig. difference

decompose
function

recompile & profile

compare
function

Compare Executables

Figure 3.2.: Workflow for analyzing the effect of compiler optimizations, details for
step “Compare Executables”.
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recompiled binaries. In this step of the feedback loop, it is thus important to compare
the runtimes to previous executions:

Assume that the runtime of the faster executable increased significantly compared
to previous runs. If the difference to the other runtime is now smaller than before,
the modification is the primary reason. As such, it might make sense to apply the
opposite modification to the other binary. Concrete cases of this are discussed for
each of the modifications described later in the chapter.

3.2.1. Compare Profiles

The second step is to compare the runtimes of individual functions from the two
executables. This requires that the two profiles contain “matching” data as defined
in the following:

Definition 4 (comparable profiles, topmost & matching function sets). A profile
captures the aggregated time spent in functions of a binary during execution. These
functions can be sorted into a list by their respective runtime. Every non-empty
prefix of this ordered list is called a topmost function set.
Two profiles are comparable if they have a common topmost function set. The

largest common set is called the matching function set.

Remark. If it exists, the matching function set of two profiles is unique: Topmost
function sets for a specific profile are prefixes of an ordered list and form a total
order. Thus there is a unique largest set that is common for both profiles.

In this thesis, the workflow has no further requirements except the aggregated
runtime per function. That is, it relies on flat profiles without call graph information.
This is motivated by the fact that the profiles are measured with the same input data.
As such, the workflow assumes that both executions call the functions in the same
order and equally often. This allows to use profiling tools based on sampling, as
discussed further in Section 3.5.
For profiles with common function sets, it is possible to compare the runtimes of the

contained functions. To illustrate this concept and the previous definitions, consider
a source code with functions A, B, C, and D. Suppose there are four different build
configurations, and runs of the compiled binaries result in corresponding profiles.
Table 3.1 lists the visible functions in each of the profiles. The entries are sorted by
the function’s runtime, which is denoted in parentheses.
The first two profiles are clearly comparable: They have the common topmost

function sets {A, B} and {A, B, C}. The latter is also the matching function set, which
in this case comprises all visible functions. The runtime differences between functions
A and B in the two profiles are negligible, while C has the same runtime in both.
The first and third profile have {A} and {A, B} in common while the second and

third only have {A, B}. For both combinations, {A, B} is the matching function set
and the runtime differences for these functions are again small. Function C is not
included because the third profile has function D with a larger runtime. This means
comparison of the matching function set would miss the potential difference between
function C in the first two profiles (30 s) and the sum of D and C in the third (37 s).
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A (40 s)
B (39 s)
C (30 s)

(a) Profile I

B (40 s)
A (39 s)
C (30 s)

(b) Profile II

A (40 s)
B (39 s)
D (25 s)
C (12 s)

(c) Profile III

B (40 s)
D (18 s)
C (12 s)
A (10 s)

(d) Profile IV

Table 3.1.: Four profiles to illustrate the concept of matching functions.
Functions are ordered by their runtime. Function D is not visible in the
first two profiles.

The fourth profile has no common topmost function set with the first one and
only {B} with the second. This is because is has function D in the second position,
which is not visible in the first two profiles. One reason could be that it was inlined
into function C, which would match the given runtimes. With the third, the profile
shares the common function set {A, B, C, D}. All functions taken together also form
the matching function set and the profiles are comparable. However, the runtimes
for function C differ by 28% while function A is four times faster in Profile IV.

When comparing two profiles, the workflow considers the functions from their
matching function set: By requiring topmost function sets, it is ensured that no
function is “skipped” after sorting by runtime. In the above case, comparison of all
functions from the second and third profile would have neglected function D while
finding a spurious difference in C. At the same time, the workflow aims to compare
as many functions as possible. That is why it considers the largest common set, the
matching function set.
It is apparent that the matching function set can comprise varying parts of a profile.

In the best case, the profiles capture the same set of functions in possibly different
orderings. This is the situation for the first two or the last two profiles from the
previous example. Their functions can be compared without restrictions. For every
significant difference, Section 3.3 explains how to analyze in detail.
The above example also discusses profiles where some function is not visible. This

is oftentimes related to different inlining strategies. As mentioned before, the profiles
might still be comparable, even if their matching function set does not contain all
functions. However, this becomes a problem if the difference is located in one of the
missed functions. It is also possible that two profiles are not comparable at all. In
both cases, it is necessary to first adapt the inlining as explained in the following
section.

3.2.2. Adapt Function Inlining

Ideally, the matching function set contains all functions from the two profiles. This
would imply that the set covers the complete runtime. As such the workflow is
guaranteed to find a difference by comparing the functions. However, this is not the
case if a function is only visible in one of the profiles.
There are two ways to make the matching function set cover a larger part of the

runtime: Either increase the number of functions visible in both profiles or have
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bigger functions. This is closely related to the compilers’ decisions whether to inline
functions. Incidentally, inlined functions are usually those that are “invisible” in the
profiles. Thus, the workflow could either propose to disable inlining of particular
functions or force additional inlining.

As discussed before, the workflow builds on profiling the runtime spent in functions.
This means less inlining and having more distinguishable functions provide a more
fine-grained view of the executable, which should be preferred. However, replacing
inlined code with a function call might prevent other optimizations. Furthermore,
it introduces additional instructions and overhead. This is because of the calling
conventions and resulting register usage as mentioned in Section 2.2.2.
It is possible that after recompilation the binary with less inlining is significantly

slower than before. As mentioned above, it then makes sense to apply the opposite
modification for the other executable. Here this means forcing additional inlining,
which could lead to improved performance. If that is observed, such result is partic-
ularly important for the previously slower binary: The modification mimics inlining
decisions from the faster executable, which were previously different. To verify such
scenario, the additional inlining should also be applied to the original source code. If
performance is similarly improved, the modification is the first result of the workflow.

3.3. Analyzing Differences in Functions

The previous section explained how to identify significant differences at function level.
To follow the strategy of divide-and-conquer, the workflow proceeds with analyzing
them until successful. Figure 3.3 gives a graphical representation of this part of the
workflow.

significant difference of total runtime

Compare Executables

Disable Inlining Outline Loops . . .

Analyze Function
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Improve Compiler Options & Code for Better Performance
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Figure 3.3.: Workflow for analyzing the effect of compiler optimizations, details for
step “Analyze Difference”.
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If possible, the workflow first tries to decompose the identified function. This aims
to make the function reasonably small to analyze the contained instructions. The
way to decompose a particular function highly depends on its structure. Concretely,
I describe how to handle inlined function calls and multiple loops.

3.3.1. Disable Inlining of Function Calls

As discussed in Section 2.2.2, function inlining can lead to better performance for
multiple reasons. However, it can hinder the comparison of profiles as already seen in
the previous section. In addition, inlining also complicates the analysis of a difference
because it mixes instructions from different parts of the source code. Thus, it is helpful
to avoid inlining of direct function calls to decompose a difference. This results in
separate functions that can be clearly attributed in the profile. Thereby, it becomes
possible to compare their runtimes as described before.
It was mentioned in Section 3.2.2 that such changes can negatively impact perfor-

mance. For this reason, it is advisable to start with functions that are called only
few times. Particularly functions called inside of loop bodies executed many times
can incur a high overhead. In a first step, these function calls should be left to the
compiler to optimize as needed. Instead, the loops themselves can be handled as
described in the next Section 3.3.2.
To illustrate the concept, consider the example code in Listing 3.1. If the functions

workA, workB, update, and exchange are defined in the same translation unit, the
compiler is likely to inline the calls. As a result, a profile will only show the time
spent in the surrounding function f. This makes it hard to localize the cause for the
difference, which could be related with any of the four functions.
To get more fine grained information, the first step is to avoid inlining of the call

to update. This should incur little overhead since the function call is outside of the
loops and only executed once. Still, the effect on performance should be evaluated by

1 void f(int *len , int N) {
2 for (int i = 0; i < N; i++) {
3 for (int j = 0; j < len[i]; j++) {
4 workA(i, j);
5 workB(i, j);
6 }
7 }
8
9 update ();

10
11 for (int i = 0; i < N; i++) {
12 exchange (i);
13 }
14 }

Listing 3.1: Example of a function with multiple loops and function calls.
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comparing the total runtime as described in the beginning of Section 3.2. In contrast,
the functions workA, workB, and exchange are called repeatedly. Not inlining them
can also inhibit other optimizations such as vectorization. This is more likely to result
in a measurable impact on performance. I describe conditions for still handling them
in Section 3.3.3.

3.3.2. Outline Loops

The same idea as before can also be used to decompose functions with multiple loops:
Instead of avoiding function inlining, I propose to actively outline loops into separate
functions. After recompilation, the individual loops are visible in the profiling data
via their outlined functions. This makes it possible to identify the loops that cause
the differing execution times of the original function. These can be analyzed further
by the workflow.
As an example, reconsider the function f in Listing 3.1. In total there are three

for loops, but the one from lines 3 to 6 is nested inside another loop. To minimize
the added overhead to call the outlined functions, it is advisable to focus on outer
loops first. In the discussed example, the function f contains two outer loops: the
first one from lines 2 to 7 and the other from lines 11 to 13. Outlining them into
their own functions results in the code as presented in Listing 3.2. This makes the
individual timings visible in a function-level profile. For that to work, care has to be
taken that the compiler does not inline them again during optimization.

1 void f_loop1 (int *len , int N) {
2 for (int i = 0; i < N; i++) {
3 for (int j = 0; j < len[i]; j++) {
4 workA(i, j);
5 workB(i, j);
6 }
7 }
8 }
9

10 void f_loop2 (int N) {
11 for (int i = 0; i < N; i++) {
12 exchange (i);
13 }
14 }
15
16 void f(int *len , int N) {
17 f_loop1 (len , N);
18 update ();
19 f_loop2 (N);
20 }

Listing 3.2: Outlined loops of the previous example listing.

19



3. Workflow

3.3.3. Decompose Loop Bodies

By outlining loops as described above, the workflow is able to identify differences for
individual loops. However, the loop bodies might still be too large for further analysis.
For example, assume that the workflow identifies a difference in the function f_loop1
of Listing 3.2. In that case, it is still unknown whether the difference is caused by
workA or workB. A similar situation can arise if the loop contains multiple nested
loops.
To get more data from such loops, it is possible to attempt further decomposition

of the loop body. This includes both disabling the inlining of function calls and the
outlining of (nested) loops as described in the previous two sections. However, close
attention must be paid to ensure consistent results: As the loop body is executed
multiple times, such decomposition might strongly influence performance. For that
reason, it is important that the analyzed difference is still visible after recompilation.
If this is not the case, the decomposition has to be reversed and the function must
be analyzed as a whole.

3.3.4. Compare Function

At some point of the process, the analyzed function cannot be decomposed further
as described before or not without hiding the difference. For the rest of this thesis, I
will refer to such functions as kernels:

Definition 5 (kernel). A kernel is a function that contains

• at most a single outer loop, with possibly multiple nested ones, and
• no function calls outside of loops.

To pick up the previous example, f_loop1 and f_loop2 in Listing 3.2 are kernels.
Meanwhile the original function f in Listing 3.1 violates both conditions as it consists
of two loops and calls update at function scope.
The simple structure of a kernel implies that its source code directly influences all

generated machine instructions. As a result, the difference in runtime must be caused
by the compiler’s code generation. This opens a chance to identify the difference in
the executed binary itself.
The path towards this goal depends on the contained code and possible optimiza-

tion classes. As such, the following paragraphs describe techniques to gather more
data: The first three are concerned with analyzing the generated machine code in-
structions and their execution behavior. The optimization reports described last con-
tain information about the compiler’s heuristics and decisions. However, the reports
can be very detailed, so it is oftentimes useful to know what to look for. The prop-
erties of kernels described in the following Chapter 4 can help to identify important
optimizations.

Compare quantity of instructions In some cases, the executables contain very dif-
ferent kinds or numbers of instructions. This can easily be detected by a static
analysis of the generated code: For usage in this workflow, I propose to map each
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instruction to the associated mnemonic. Afterwards, it is sufficient to count how
often each of them occurs in the analyzed function.

Vectorization is one important class of cases that can be handled like this: The
different instructions allow to clearly distinguish between a sequential and a vectorized
loop. Another situation detected by the number of instructions is loop unrolling. In
general, such transformation will generate more instructions by duplicating the loop
body [19]. However, during execution, this could lead to less jumps and less overhead
for the loop header.

Identify time-consuming instructions In many cases the quantity of instructions
is unable to reveal any obvious difference. This makes it necessary to compare the
generated code at assembly level. To limit the scope of the analysis, it is important to
identify “relevant” instructions. For this workflow, “relevance” can be decided based
on the sampling data contained in the profile: Similar to functions, the assumption
is that sample counts are proportional to execution time. Thus instructions sampled
more often can be considered more “relevant” than others.
In a second step, the identified instructions need to be compared between the

executables. The exact procedure highly depends on the class of instructions at hand
and the application domain. As such, this step relies on expert knowledge of the
performance analyst.
Once understood, the found difference can often be related to expressions in the

original source code. The correspondence is obvious if the function is short and there
are only few instructions. Otherwise, it is advisable to rely on debugging information
added by the compiler. Even in case of optimizations and moved instructions, this
usually points to the region of interest.

Include data from hardware counters The performance of generated code is also
influenced by other factors, including caches and branch predictors. To compare func-
tions at this architectural level, it may help to look at hardware counters. Availability
of such counters depends on the vendor and the particular processor. Additionally,
the profiler must be able to measure events generated by the counters. If integrated
with sampling, it is possible to get numbers of events per function. Similar to the
execution time, this allows to compare the two binaries.

Consult optimization reports Many compilers offer some form of report with details
about the performed optimizations. This may contain information about missed
passes due to unavailable or insufficient analysis results. For example, the compiler
needs precise information about pointer aliasing to preserve correctness. This is
particularly important for many loop transformations that could otherwise lead to
wrong results.
The report also allows to understand the influence of heuristics that guard the

optimizations. As explained in Section 2.4, they control whether to apply the opti-
mization and to what degree. However, these heuristics are often implemented with
a specific type of application in mind. As such, they can produce unexpected or
suboptimal results for other cases.
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3.4. Improving the Performance
It should be clear that the outcome of the previous analysis steps can be very diverse.
In the following section, I list some common scenarios that could be encountered.
Applications of the workflow in later chapters will include examples of possible im-
provements. However, it is important to note that the mentioned cases are by no way
exhaustive for all possible codes.

In some cases, the analysis shows that a particular heuristic is responsible for
the increased runtime. Fortunately, most compilers offer advanced options to adapt
thresholds or overwrite decisions. It may also happen that a compiler does not per-
form a transformation by default. This can have multiple reasons, for example that
a pass was not observed beneficial in general. In such cases, there are usually flags to
still enable the optimization. The advantage of this approach is that it requires no
changes in the application. This means the source code itself remains portable and
is easier to maintain.
In other cases, a compiler’s analysis may be unable to deduce some needed knowl-

edge. This can sometimes be solved by encoding additional guarantees into the
source code. Ideally, the modifications should make use of standardized functionality
to retain portability. For example, C99 [13] introduced the restrict qualifier for
pointers:

An object that is accessed through a restrict-qualified pointer has a spe-
cial association with that pointer. This association [...] requires that all
accesses to that object use, directly or indirectly, the value of that partic-
ular pointer. (ISO/IEC 9899:1999 [13, p. 109])

Thus, the compiler can assume that no independent pointer aliases the same object.
Furthermore, it also conveys additional information for a future maintainer of the
application.
Finally, it can happen that a compiler lacks capability to perform a needed trans-

formation. This can be considered a weakness in the compiler’s optimization pipeline.
As such, the workflow may point to areas that need improvement by compiler writ-
ers. However, some transformations are very hard to detect, even for sophisticated
compilers. An example could be that one of the code path multiplies the result of an
expensive computation with zero. In such cases, it may be justifiable to adapt the
source code and avoid the computation altogether.

3.5. Practical Considerations for Applying the Workflow
The workflow described in this chapter is based on comparing runtime profiles. So
far, I have only mentioned the need to measure the time spent in individual functions.
To conclude the presentation of the workflow, this last section discusses how to obtain
this data in practice. For the purpose of this thesis, I have looked at the following
tools available at the university’s HPC system:

GNU gprof [2] analyzes the output from an instrumented executable. It requires
the compiler to insert additional instructions at the beginning of each function. These
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call a runtime library that saves the entered function and its caller in a table. Further-
more, the library samples the program counter and periodically records the executed
instructions.

This information is used to construct a call graph as proposed by Graham et al.
in their paper from 1982 [30]. Additionally, the gprof command supports so-called
flat profiles. They show only the total time spent in each function. Finally, it allows
to annotate the source code based on the sampled program counter.

Linux perf [9] was initially a tool to read performance counters with the Linux ker-
nel. It can also be used to sample the program counter and aggregate the time spent
in each function. Based on infrastructure in the kernel, this makes it a lightweight
profiler with little overhead. Similar to the previous tool, perf also supports record-
ing call graph information. To capture the needed data, the default mode is to use
the stack frame pointed to by the frame pointer.

Intel VTune Profiler [4] is a proprietary tool for performance analysis. Among
other modes, it is able to sample the current instruction during execution of a binary.
This information can be used to estimate the time spent in each function and detect
hotspots. As the others, it also captures additional data to construct a call graph.

As expected for a profiler, all tools sample the program counter and aggregate time
at function level. However, during the first experiments I noticed that inlined func-
tions are handled differently: GNU gprof lists functions as emitted by the compiler,
in particular not those that were inlined. The perf command has the same default
when profiling without call graph data. When using debugging information to con-
struct the call tree, it also shows information about inlined functions. The latter
seems to be the default for Intel VTune unless disabled by a command line option.
Still, the information about inlined functions is not accurate for more complex

cases: I observed profiles that either miss functions completely or attribute too little
time for inlined code. This is more likely to happen if the compiler mixes instructions
from multiple code locations.
It could be that future tools will improve and deliver more precise information. In

the extreme case, the data would be accurately related to individual lines of code.
This would greatly simplify the workflow without the need to decompose functions.
However, for this thesis, it should be possible to apply the workflow with tools avail-
able today. This is why it only relies on profiles with non-inlined functions and
decomposes them if needed.
Out of the tools mentioned above, gprof has the disadvantage that it needs support

from the compiler. It works for the GNU and Intel compilers, but not for the Clang
compiler by the LLVM project. As such, it may be unsuitable for analysis of arbitrary
binaries. In a similar fashion, Intel VTune only supports the x86 architecture.

3.5.1. Profiling with Linux perf

For these reasons I will use Linux perf when applying the workflow in the following
chapters. It has low overhead and runs on a variety of platforms, including x86,
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PowerPC, and ARM. Being freely available, it often comes pre-installed in many
HPC environments running GNU/Linux. However, the described workflow remains
generic and agnostic of the used profiler. As such it can be applied with any other
tool that provides function-level timings.

The choice of the profiling tool also influences how to compile the executable for
profiling: Some tools require additional flags to the compiler to enable instrumenta-
tion, for example gprof. For perf, no such options are needed and profiling works
with any binary that includes function tables. However, debugging symbols are help-
ful to analyze the results. In particular, they provide references from the assembly
instructions to the original source code. For most compilers, debugging symbols can
be enabled by passing the flag -g.
To profile an application with perf, it suffices to prepend the command with perf

record. By default, this selects the cycles event to sample timing information.
However, perf supports many other events that can be configured via the param-
eter -e, short for --event. This includes the symbolic names cache-misses and
branch-misses that will be used in Chapter 5. Unless determined by parameter -o
(for --output), the profiling data is stored in perf.data.
Afterwards, the sampling data can be analyzed using perf report. This command

honors the parameter -i (for --input) to load a file other than perf.data in the
current directory. If perf detects a terminal output, it starts with an interface for
interactive analysis. Otherwise, it prints the list of functions in text form, which can
also be forced by passing --stdio. Additionally, perf report supports many other
flags for filtering and sorting. These are described in detail in the documentation [9].
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The workflow described in Chapter 3 aims to study the effect of compiler optimiza-
tions. To that end, it decomposes runtime differences between two executables by
comparing profiling data. Eventually, the process arrives at a number of kernel func-
tions as characterized in Definition 5. The analysis of such kernels on the other hand
highly depends on its source code. This was already mentioned in Section 3.3.4 and
also influences possible improvements described in Section 3.4.
Hence, this chapter defines properties of kernels and describes corresponding opti-

mizations. The goal is to determine preconditions of compiler transformations that
are important for HPC applications. This facilitates the task to understand the run-
time differences decomposed by the workflow: In a first step, the analyst identifies
the properties of the kernel function. They are based on source code because this
is also the representation available to the compiler. As a result, the analyst obtains
a list of possible optimizations to check. These are likely candidates to explain the
runtime difference.
For the scope of this thesis, it is practical to restrict the properties in three ways:

Firstly, the properties do not need to be exhaustive and cover all possible codes. In-
stead, I focus on properties and optimizations found important for HPC applications.
Secondly, it suffices to determine required preconditions of the transformations. That
is, the guidelines should point to a list of possible optimizations but do not need
to guarantee soundness. Finally, each of the described properties is binary, either
present or absent, but they are not mutually exclusive. For example, a kernel may
have multiple memory access patterns as discussed in Section 4.3.
The remainder of this chapter is structured as follows: Section 4.1 covers existing

classifications proposed in the literature. Afterwards, I discuss the properties grouped
into three classes: Section 4.2 starts with the control flow constructs of loops and
function calls. Next, Section 4.3 focuses on memory access patterns while Section 4.4
covers computational operations. Finally, I depict some of the properties and related
optimizations by means of examples in Section 4.5.

4.1. Existing Classifications

The goal of identifying relevant properties of kernels can be seen as a classification
problem. There already exists some promising literature that has worked in this
area. However, most research so far has focused on approaches to structured parallel
programming. They are primarily concerned with the task of “encoding” a problem
into a parallel application. Instead, the described workflow is used to understand
optimizations of already existing source code. Nevertheless, I discuss some approaches
in the following that influenced the properties described in the later sections.
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Asanovíc et al. from Lawrence Berkeley National Laboratory identify 13 dwarfs as
follows: “A dwarf is an algorithmic method that captures a pattern of computation
and communication.” [20] In their report, the authors use the found dwarfs to classify
applications that could benefit from parallelism. The goal is to design future hard-
ware architectures and software frameworks to deliver good performance on these
classes. However, the granularity of complete applications does not fit the needs of
the workflow.
McCool et al. from Intel define algorithmic patterns to structure a parallel pro-

gram [46]. The patterns describe how input data is used within operations to obtain
output data. For example, the map pattern applies a function to every element of
an input vector. Similarly, the stencil pattern defines an operation that uses data
from neighbor cells to compute an output element. While closer the source code,
the work is clearly tailored to developing parallel applications. The same applies to
earlier work by Mattson et al. who define a pattern language to model and implement
parallel programs [45].
More recently, Nugteren et al. describe algorithmic species as a way to classify

affine loop nests [50]. The classification is based on information available from the
polyhedral model. This has the advantage that the species can be determined auto-
matically from source code. In a sense, this is very close to the needs of the workflow.
However, the approach is limited by the restrictions from the polyhedral represen-
tation of affine loops. In particular, it is not possible to describe indexed memory
accesses as discussed in Section 4.3.2.

4.2. Control Flow

Kernels are functions with two additional conditions as imposed by Definition 5:
There may be at most a single outer loop and no function calls outside of loops.
However, if the kernel contains an (outer) loop, there are no restrictions on its body.
In particular, there may be nested loops and also function calls in one of the loop bod-
ies. As such, the existence of these control flow constructs is an important property
with respect to optimizations.

4.2.1. Loops

Loops account for a large fraction of time spent in HPC applications. Naturally,
this makes optimizations very important to obtain good performance. This holds
especially true for the loop body that is executed repeatedly. Important optimizations
targeting the body are the topic of following sections. However, there are also compiler
transformations related to the loop structure itself. Two particular examples are loop
unrolling and LICM as discussed in Section 2.2.3.

4.2.2. Function Calls

Per Definition 5 of a kernel, function calls are only allowed inside of loops. However,
this implies that any contained function call is executed repeatedly. As such, the

26



4.3. Memory Access Patterns

related overhead might become measurable and inlining is of particular importance.
A detailed explanation of this optimization has been given in Section 2.2.2.

4.3. Memory Access Patterns

The second group of properties is related to memory access to load and store data.
In many cases, the accesses exhibit a pattern that lends itself for optimization. For
HPC applications, the most important classes are strided (Section 4.3.1) and indexed
patterns (Section 4.3.2).

To illustrate the memory access patterns, I give small example codes for each
property. All listings use a loop structure and their memory accesses depend on the
loop iteration variable. This allows to keep the code short, but is not a prerequisite
for the properties. Instead, the patterns are determined by the code’s sequential
semantics. Unrolling the loop or parts thereof still has the same memory accesses.
Finally, a code may also exhibit patterns without loops, for example when loading
consecutive memory from a given data structure.

4.3.1. Strided Memory Accesses

Many algorithms work on data that resides in memory at a constant stride of n
elements. This leads to a very regular pattern, which the compiler can exploit for
its optimizations. The following paragraphs describe some particular forms of this
access pattern and related transformations.

unit-stride If stride n = 1, the access pattern is referred to as unit-stride. A very
basic example is the addition of two vectors as depicted in Listing 4.1. Here, the
elements of the two input arrays b and c are accessed one after the other. The result
of adding the two values is written back to array a.

One important optimization for unit-stride accesses is vectorization by means of
SIMD instructions. In most cases this is a prerequisite for efficient vectorization of
computational operations as discussed in Section 4.4.

1 for (int i = 0; i < N; i++) {
2 a[i] = b[i] + c[i];
3 }

Listing 4.1: Addition of two vectors as an example of a unit-stride memory access
pattern.

non-unit stride If instead n 6= 1, the accessed memory is not contiguous and there
are “gaps” in between. An example can be seen in Listing 4.2, which shows a compu-
tation on an Array of Structures (AoS). The code doubles the value of even-numbered
elements, but skips over the odd-numbered offsets.
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1 for (int i = 0; i < N; i++) {
2 data [2 * i] *= scale;
3 }

Listing 4.2: Computation on an Array of Structures as an example of non-unit stride
memory access.

As for unit-stride it is sometimes possible to vectorize such memory accesses if sup-
ported by the hardware. This requires instructions to load and store non-contiguous
values. These are usually referred to as gather for loads and scatter for stores.

reuse An orthogonal property is whether the kernel reuses values of strided memory
accesses, for example across iterations of a loop. A concrete example is inspired by
the stencil pattern described by McCool et al. [46]: Listing 4.3 shows a loop that
accesses a sliding window of values from a vector.

1 for (int i = 1; i < N - 1; i++) {
2 new[i] = 0.25 * (old[i - 1] +
3 2 * old[i] + old[i + 1]);
4 }

Listing 4.3: Stencil-like operation on a sliding window of values from a vector.

An important optimization for this property is to keep reused values in registers.
This can avoid repeated loads and reduce the data volume on caches and the memory
bus. If multiple stores target the same memory location without an intervening read,
all except the last are dead and can be removed. The related optimization is known
as DSE as described in Section 2.2.1.

4.3.2. Indexed Memory Accesses

For some algorithms the location in memory is determined by another array of values.
This is referred to as indexed access and represents the second important class of
memory access patterns. A simple example is a matrix vector multiplication where
the matrix is sparse. Listing 4.4 shows an implementation for the Compressed Row
Storage (CRS) format. In the code, the required element of the vector b is determined
by index[j]. Also note that the access of M[j] and index[j] is unit-stride.

Because it is less regular than strided patterns, the compiler has less opportunities
to transform indexed accesses. If supported by the hardware, the compiler might
again introduce gather loads or scatter stores. This is similar to the the possible
transformation discussed for non-unit stride accesses. However, the instructions need
to support arbitrary offsets instead of only a constant stride. If applicable this can
potentially enable further transformations, as discussed in the following.
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1 for (int i = 0; i < N; i++) {
2 a[i] = 0.0;
3 for (int j = ptr[i]; j < ptr[i + 1]; j++) {
4 a[i] += M[j] * b[index[j]];
5 }
6 }

Listing 4.4: Sparse matrix vector multiplication as an example for indexed loads.
M is a matrix in CRS format while a and b are vectors.

4.4. Computational Operations
After loading data, the kernel can perform calculations on the values. For HPC
applications, the first distinction is related to the used arithmetic: Real numbers
are usually represented by floating point values in either single or double precision
following the IEEE 754 standard [12]. However, some areas such as spectral methods
require complex arithmetic with a real and imaginary part. In that case, each part
is a real number and they are stored as two values next to each other in memory.
The following sections describe different kinds of operations and possible optimiza-

tions. It starts with the operations of addition, subtraction, and multiplication in
Section 4.4.1. Afterwards, Section 4.4.2 looks at division and reciprocals. Finally,
mathematical functions such as square roots are handled in Section 4.4.3.

4.4.1. Addition, Subtraction, Multiplication
These basic mathematical operations build the foundation of any HPC application.
As such, current architectures support special instructions for increased performance.
For one, there are single instructions working on multiple data (SIMD). Additionally,
some vendors support instructions to fuse multiplications and additions (FMA).
To take advantage of these instructions, programmers usually rely on the compiler

to transform their code. As such, a very important technique to get good performance
for these operations is vectorization as described in Section 2.2.4. To guarantee sound-
ness, the compiler is required to analyze data dependencies. This makes sure that
the vectorized code is semantically equivalent to the sequential code. In particular,
it must give the same results on all possible inputs.
After the compiler has proven soundness, it needs to find an efficient mapping to the

available instructions. As a first step, all data must be available in vector registers.
This requires analysis of the memory access pattern as discussed in Section 4.3.
Afterwards, suitable operations must be grouped together and replaced by a vector
instruction. This can be particularly tricky for operations on complex numbers as
shown in the following.
The sum of two complex numbers is defined as:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i (4.1)

In other words, the code needs to add the real and imaginary parts separately. As
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the parts reside next to each other in memory, this is well suited for traditional vector
instructions that operate on every element of a vector.

In contrast, a multiplication of two complex numbers involves more operations:

(a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i (4.2)

Efficient vectorization of complex multiplication is thus harder for two reasons:

1. The imaginary part of the product is composed of mixed terms. For example, a
is the real part of the first number, while d is the imaginary part of the second.
As a solution, it is possible to “shuffle” the elements of the second vector holding
c and d.

2. For the real part, the two sub-products have to be subtracted. In contrast,
they need to be added for the imaginary part. This requires special vector
instructions to perform the needed operations.

An example for complex arithmetic will be given in Section 4.5.1 when discussing
the zaxpy kernel.

4.4.2. Division, Reciprocal
In addition to these basic operations, some algorithms also need to divide floating
point values. If suitable, the generated code can make use of vector instructions as
well. However, division of floating point values is much slower than addition and
multiplication.
For example on Intel architectures, instructions for addition and multiplication

have a latency of 3 to 5 cycles. Due to pipelining they can achieve a throughput
of 1 or even 0.5 cycles per instruction [37, Appendix D.3]. In contrast, division has
a latency of up to 35 cycles on 256-bit vectors and only became pipelined with the
Skylake microarchitecture [37, Section 15.12]. This improved throughput to 5 cycles
per instruction for single precision and 8 cycles for double precision [37, Appendix
D.3].
Due to the much higher latency, some architectures provide ways to compute ap-

proximations with reduced precision. For example, a division can be replaced by a
multiplication with its reciprocal:

a/b ≈ a · (1/b) (4.3)

If needed, the approximation can be refined by a Newton-Raphson iteration [37,
Sections 15.12.1 and 18.25.1]. This transformation is particularly efficient when the
reciprocal can be reused for multiple computations.

4.4.3. Other Mathematical Functions
Finally, some HPC applications require other mathematical functions besides the op-
erations described in the previous sections. These include square roots, trigonometric
and hyperbolic functions as well as functions for exponentiation and logarithms. In
the C and C++ programming languages, their definitions are provided by including
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the header math.h or cmath. For Fortran programs, these functions are available as
intrinsics defined by the standard [14].
Without additional options, the compiler generates the mentioned operations as

function calls. Their implementation is usually provided by a system library, libm
on POSIX systems such as GNU/Linux. However, the user can choose to omit strict
requirements defined by the respective standards. For example, many compilers offer
switches to neglect setting the errno variable on invalid arguments. This enables
further optimizations because the compiler can use faster implementations.
If reduced precision is acceptable, some calls may be replaced by special hardware

instructions as available. For example, Intel platforms have instructions to approx-
imate the reciprocal of a square root. They can be used to approximate the square
root function:

√
a ≈ a · (1/

√
a) (4.4)

Similar to the previous section, higher precision can be obtained by means of a Taylor
expansion [37, Sections 15.12.3 and 18.25.3].
Another possibility is to employ vectorized versions contained in additional li-

braries. For example libmvec is available since glibc 2.22 released in August 2015 [1].
It offers vector implementations of the functionality provided by libm for x86_64 ma-
chines. Similarly SLEEF is another library that includes implementations for x86_64,
AArch64, AArch32, and PowerPC64 [11, 55]. Additionally, some vendors also bundle
specialized libraries with their commercial compiler.

4.5. Example Kernels

In the following, I present example kernels to discuss some properties in detail. They
perform basic operations from linear algebra on vectors and matrices. This makes the
code listings short and straight-forward to understand. Nevertheless, the kernels oc-
cur as building blocks in many numerical algorithms. As such, they are representative
for a large set of HPC applications.

4.5.1. Dense Linear Algebra on Vectors

The first kernel can be seen in Listing 4.5. It works on two dense vectors ~x and ~y
represented as arrays. The code consists of a for loop that iterates over all elements
and computes a · ~x + ~y. The result is assigned back to vector ~y, overwriting the
previous value. Because of its significance, this kernel is known as axpy operation.
This refers to its name in the BLAS library [43].

1 for (int i = 0; i < N; i++) {
2 y[i] = a * x[i] + y[i];
3 }

Listing 4.5: axpy operation from BLAS level 1, performing ~y ← a · ~x+ ~y.
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The operation can be performed in different arithmetics as discussed in Section 4.4.
Depending on the data type, the axpy operation is prefixed with a single letter.
For this discussion, I focus on daxpy for double precision real values and zaxpy for
double precision complex numbers. Apart from the arithmetic, the kernel possesses
the following properties:

• From the class of control flow properties, the kernel contains a single loop. As
described in Section 4.2.1, this makes loop optimizations a relevant target. In
particular, loop unrolling is important as seen later on. There is no function
call and therefore no possibility for inlining.

• The loop loads and stores the vector elements at unit-stride as i is incremented
by one in every iteration. This makes it possible to load the data using vector
instructions as seen in Section 4.3.1. Every value is used exactly once, so there
is no reuse that the compiler could optimize for.

• Finally, the loop performs one multiplication and one addition. As there are
no data dependencies between the iterations, the compiler may attempt to
vectorize the code. Moreover, the operation matches the definition of FMA
instructions which could be used if available.

Double Precision Real Values: daxpy

To observe the possible optimizations in practice, I present measurements of an im-
plementation with arrays of doubles. As data size, I choose N = 1024 so that
2 ·N · 8Bytes = 16, 384Bytes fit into the L1D cache. To get measurable timings, the
code performs the axpy operation 20,000,000 times. Further details on the environ-
ment have been described in Section 1.1.

Instead of runtimes, I present performance as the rate of floating point operations
per second. Table 4.1 lists the average values and standard deviations of 10 repe-
titions. For the base version (first row), I passed the flags -Ofast -march=native
for all compilers. The first parameter enables additional optimizations that are not
valid for strict standard-compliance but may yield better performance. Targeting
the native architecture makes the compiler optimize for that particular processor.
Additionally, it is allowed to use all available instructions, most importantly SIMD
instructions.
The numbers in the first row of Table 4.1 are in the range of 15 to 18GFLOP/s.

This is around one quarter of the peak performance of 67.2GFLOP/s per core. Upon
inspection, all three compilers use 256-bit vectors instead of AVX-512 instructions.
The reason is that using longer registers incurs a penalty on the clock frequency.
Hence, the compilers use the older AVX instructions by default in order to not regress.

flags clang gcc icc
-Ofast -march=native 17.72 ± 0.02 15.63 ± 0.12 15.42 ± 0.04

forcing AVX-512 35.79 ± 0.57 28.92 ± 0.10 27.93 ± 0.55

Table 4.1.: Measurements of the daxpy kernel. All numbers are in GFLOP/s.
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However, for this simple kernel, the runtime is clearly bound by the vector in-
structions. As such, a larger vector width will improve performance, even if clock
frequency degrades. For these cases, all three compilers offer advanced options to
force using AVX-512 if applicable. They are named -qopt-zmm-usage=high for the
Intel Compiler and -mprefer-vector-width=512 for the other two. The measured
performance is listed in the second row of Table 4.1. As expected, the executables
are around twice as fast compared to the first row.
In both rows, the executable compiled by Clang performs 10% to 20% better

than the other two. This is due to different unrolling decisions of the compilers:
While gcc and icc do one vector computation, Clang performs up to eight before
evaluating the loop header. It is possible to reach a similar decision for GCC by
passing -funroll-loops. This improves the runtime to 16.54GFLOP/s in the base
version and to 32.04GFLOP/s with AVX-512. For the Intel Compiler, similar options
did not change the number of unrolled loop iterations.

Complex Arithmetic: zaxpy

For complex values, it is additionally important that the compiler efficiently maps
the multiplication on vector instructions. These difficulties were already discussed in
Section 4.4.1. For the measurements, I halve the number of elements toN = 512. This
compensates the doubled storage requirement per element for the real and imaginary
part. As before, the axpy operation is performed 20,000,000 times to get measurable
timings.
Table 4.2 shows the average GFLOP/s and standard deviations of 10 repetitions.

Similarly to Table 4.1, the first row represents the base version. In contrast to the
daxpy results, the binary compiled by Clang is now the slowest. This is because
of a regression in version 10.0.0 when generating code for the operations on com-
plex values. For comparison, a binary compiled by the older release 9.0.1 runs at
18.78GFLOP/s when using 256-bit vector registers.
In the second row I again force the compilers to use AVX-512 as explained above.

Interestingly, this avoids the regression seen with Clang 10.0.0 which is now the
fastest. As before, the runtime of the GCC version can be further reduced by enabling
loop unrolling: With the option -funroll-loops, the performance is improved to
28.05GFLOP/s with AVX-512.
However, it is possible to improve even further when moving closer to the ma-

chine level: Starting from the GCC version with AVX-512, I replaced the main loop
by hand-written assembly code. For this I followed the ideas given at the end of
Section 4.4.1: My assembly version applies shuffle instructions to swap the real and
imaginary parts of x[i]. Additionally, it uses the instruction vfmaddsub231pd avail-
able on the hardware. This performs the additions and subtractions as required for

flags clang gcc icc
-Ofast -march=native 11.71 ± 0.08 15.56 ± 0.15 17.94 ± 0.08

forcing AVX-512 33.90 ± 0.13 26.48 ± 0.24 25.58 ± 0.45

Table 4.2.: Measurements of the zaxpy kernel. All numbers are in GFLOP/s.

33



4. Properties of Kernels for Optimizations

the multiplication of two complex values. The full listing of the modifications can be
found in Appendix A. This version achieves an average of 40.87GFLOP/s which is
around 20% higher than the performance of Clang 10.0.0.

4.5.2. Sparse Matrix Vector Multiplication

As a second example, I investigate optimizations for a sparse matrix vector multi-
plication in CRS format. This was already presented in Listing 4.4 when discussing
indexed loads in Section 4.3.2. The code is replicated in Listing 4.6 for easier refer-
ence. Note that the numbering starts with the second line to account for the function
header. This makes the optimization report in Listing 4.7 easier to understand.

Similar to the axpy operation, the code contains an outer loop that iterates over
all rows of the matrix. Additionally, there is an inner loop for every non-zero entry in
row i. Array a is accessed at unit-stride depending on the outer loop variable i. The
same holds for ptr where also the next element i + 1 is needed. This constitutes a
reuse as mentioned at the end of Section 4.3.1.
In the inner loop, the accesses to arrays M and index depend on j. It starts at

an offset defined by ptr[i] until ptr[i + 1]. Still, it is unit-stride because j is in-
cremented by one in every iteration. The value of index[j] determines the element
position in array b. Per Section 4.3.2 this defines an indexed memory load. With
regard to the computation, the inner loop performs one addition and one multipli-
cation. As above for the axpy kernel, these operations are suitable for vectorization
and FMA instructions.
To inspect the code generation with the different compilers, I put the kernel into

a function. The required arrays a, b, ptr, index, and M are passed as pointers.
Moreover, the function takes the number of rows N as a parameter. As in the previous
example, I specify the flags -Ofast -march=native for all compilers described in
Section 1.1.
The emitted assembly code shows that no compiler vectorized the kernel. The

reason becomes clear when requesting optimization reports. For example, the Intel
Compiler outputs an additional text file containing the lines in Listing 4.7. The
remarks show that the compiler assumes dependences between the arrays. This is
because the C programming language allows passing aliasing pointers which share

2 for (int i = 0; i < N; i++) {
3 a[i] = 0.0;
4 for (int j = ptr[i]; j < ptr[i + 1]; j++) {
5 a[i] += M[j] * b[index[j]];
6 }
7 }

Listing 4.6: Sparse matrix vector multiplication, replicated from Listing 4.4.
Note that compared to the previous listing, the line numbers are shifted
by one. This is to accommodate the function header in the actual source
file spmv.c.
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LOOP BEGIN at spmv.c(2 ,3)
[...]
remark #15344: loop was not vectorized : vector

dependence prevents vectorization
remark #15346: vector dependence : assumed FLOW

dependence between a[i] (3:5) and M[j] (5:7)
remark #15346: vector dependence : assumed ANTI

dependence between M[j] (5:7) and a[i] (3:5)

LOOP BEGIN at spmv.c(4 ,5)
remark #15344: loop was not vectorized : vector

dependence prevents vectorization
remark #15346: vector dependence : assumed FLOW

dependence between a[i] (5:7) and M[j] (5:7)
remark #15346: vector dependence : assumed ANTI

dependence between M[j] (5:7) and a[i] (5:7)
[...]

LOOP END
[...]

LOOP END

Listing 4.7: Excerpt from the optimization report of the Intel Compiler for the sparse
matrix vector multiplication kernel function.

memory. In such case, vectorized code would deliver wrong results.
The same problem also existed for the axpy kernel in the previous Section 4.5.1.

However, that situation was easier to deal with for the compilers: Without indexed
loads, the loop obviously accesses the elements 0 to N − 1 of the two arrays x and y.
To prove safeness of vectorization, it suffices to make sure that none of these elements
overlap. This can be handled efficiently at runtime by comparing computed pointer
values. Additionally, there were only two pointers for axpy whereas spmv takes five.
To allow vectorization, the compiler would have to prove no overlap between the
accesses to a and the four other pointers. That is because writing to the result vector
could potentially modify the other data.
To remedy this situation, C99 [13] introduced the restrict qualifier as mentioned

in Section 3.4. For a second experiment, I added the keyword to all five pointer
arguments. In this code, it assures the compiler that none of the pointed memory
overlaps. This enables vectorization which is now performed by all three compilers.
However, the tested compilers show different vectorization strategies: Clang and

GCC use an available hardware instruction to perform the gather load of four el-
ements. Similar to the previous section, Clang also unrolls the vectorized loop to
process a total of 32 elements in one iteration. GCC only performs one vector com-
putation on four elements before rechecking the inner loop header. In contrast, the
Intel Compiler uses instructions to perform the gather in software: The generated
code loads two elements in a scalar fashion and puts them at the right place of a
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(smaller) vector register. This avoids the hardware instruction, which it would have
been allowed to use.

The performance effect of the described differences depends on the input data. For
example, consider a very sparse matrix with only few non-zero elements per row. It
can happen that their number per row is smaller than that processed in one unrolled
iteration. In that case, the generated code falls back to other code paths which might
be slower.
Moreover, the effect of using available instructions for gather loads in hardware

are not clear. Intel’s “Optimization Reference Manual” devotes an entire section
to discuss the reasons for and against [37, Section 15.16.4]. One of the pages also
contains the following sentence:

In performance critical applications it is advisable to evaluate both options
[hardware gather and implementation in software] before choosing one.

([37, p. 15-67])

Such evaluation is not performed in this thesis.
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After presenting the workflow in Chapter 3, the properties described in Chapter 4
are intended to facilitate the analysis step. To show the applicability of the two
approaches, the following chapter is dedicated to the evaluation of the workflow. To
that end, I present case studies for important scenarios that can be analyzed with
the workflow. These stem from the possible reasons that could lead to a difference as
described in Section 3.1.1:

• For differences between compilers, I study the Block Tri-diagonal (BT) solver
from the NAS Parallel Benchmarks in Section 5.1. It is a pseudo-application
with focus on dense linear algebra of equation systems for Computational Fluid
Dynamics (CFD) [23]. Additionally, I discuss LULESH in Section 5.2, which
performs computations on an unstructured mesh [5].
The investigation of the two codes covers the main aspect from the motivation
presented in Chapter 1: The case studies demonstrate how to analyze runtime
differences and relate them to compiler optimizations. Furthermore, they also
show that the workflow applies to both C/C++ and Fortran, which are the
predominant languages for HPC codes.

• miniMD presented in Section 5.3 is an application from the field of Molecular
Dynamics (MD) [7]. Its analysis shows two more possible starting points for
the workflow: Section 5.3.1 investigates a difference between two versions of the
GNU Compiler Collection. Additionally, I discuss the impact of different flags
for the Clang compiler in Section 5.3.2.

• Finally, I investigate one difference for miniQMC in Section 5.4, a Quantum
Monte Carlo (QMC) simulation [10]. From the applications presented in this
thesis, it is the largest with around 20,000 lines of code. The analysis demon-
strates that the workflow can successfully explain the effect of compiler opti-
mizations in a simulation of that size. For that, it decomposes the difference
which allows to relate it to the generated code of one function.

These codes represent different application domains important in the context of
HPC. This demonstrates that the workflow is generally applicable and not specific
to one domain. For each of the codes, I build executables with the three compilers
mentioned in Section 1.1. The only exception is the BT solver because the NAS
Parallel Benchmarks are written in Fortran. Hence, it is not possible to build the
code with Clang, which is a compiler for C and C++ code only.
For measurements, I execute on login18-t as described in Section 1.1. Being an

interactive system, the computing resources are shared between all users. It should
therefore be avoided to block the system with long-running processes. For that reason,
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Function Properties

NAS BT

y_solve_cell
(third loop)

loop;
strided memory accesses;
add., sub., mult., reciprocal

matmul_sub strided memory accesses;
sub., mult.

matvec_sub strided memory accesses;
sub., mult.

binvcrhs strided memory accesses;
sub., mult., reciprocal

LULESH CalcElemShapeFunctionDerivatives strided memory accesses;
add., sub., mult.

EvalEOSForElems
↪→ CalcEnergyForElems

↪→ CalcPressureForElems

(nested) loops, function calls;
strided & indexed accesses;
add., sub., mult., div., sqrt

miniMD ForceLJ::compute_halfneigh loop;
strided & indexed accesses;
add., sub., mult., reciprocal

miniQMC DTD_BConds::computeDistances loops, function calls (floor);
strided & indexed accesses;
add., sub., mult., sqrt

Table 5.1.: Overview of the analyzed functions by benchmark and properties of the
decomposed kernels. Computational operations are abbreviated if unam-
biguous.

I aim for execution times of less than 5 minutes. At the same time, sampling must
run long enough for meaningful profiles.
Furthermore, I do not repeat the profiling runs which enables quick iteration dur-

ing the steps of the workflow. As a result, it is not possible to assess run-to-run
deviations due to other load on the system. However, the measurements presented
in Section 4.5.1 showed performance variations of less than 2%. Thus, reproducible
results can be expected when making sure that the system is idle and no other users
disturb the measurements.
To obtain the total runtime, I rely on the integrated timing routines of the bench-

marks. This has the advantage to exclude initialization methods, which are unrelated
to problem solution. By comparing the runtimes of two binaries, it is possible to iden-
tify significant runtime differences between them. This represents the starting point
for the workflow as discussed in Section 3.1.2. During analysis, I focus on significant
differences with a relative deviation of more than 5%.
Table 5.1 gives an overview of the analyzed functions. The third column lists the

properties of the decomposed kernels. More details are presented in the corresponding
sections. This also includes discussions about the reasons of the differences and
possible improvements. Furthermore, I highlight important points and strengths of
the workflow as well as possible weaknesses.
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5.1. NAS Parallel Benchmarks: Block Tri-diagonal Solver

The NAS Parallel Benchmarks are developed by NASA’s Advanced Supercomputing
Division. The initial version was described in 1991 as “pencil and paper” speci-
fications [23, 22]. This means the benchmarks were specified algorithmically and
vendors created their own implementations. Since 1995, NAS distributes reference
implementations written in Fortran. Additionally, the specification defined sets of
input parameters, referred to as “classes”. Over time, the group added new classes to
account for the increased computing speed.

For my experiments, I use the latest version 3.4.1 available for download [8]. I
compile the MPI version with Intel MPI in version 2018.4.274, but only execute se-
quentially with one rank. As mentioned above, I focus on the Block Tri-diagonal
solver, abbreviated “BT”. This pseudo-application solves “multiple, independent sys-
tems of nondiagonally-dominant, block tridiagonal equations with a (5 × 5) block
size” [23, 22]. The performed computations model important parts of CFD codes.
The usage of Fortran restricts the experiments to the GNU Compiler Collec-

tion (gcc) and the Intel Compiler (icc). For these, I initially pass the compiler
flags -Ofast -march=native. As input parameters, I use the values from class B of
the benchmark. This specifies a size of 1023 with 200 iterations and a time increment
of ∆τ = 0.0003 [22].
With serial execution, the chosen configuration provides runtimes that are neither

too short for reliable measurements nor too long for repeated runs: The benchmark
reports timings of 163.7 s for gcc and 141.8 s for icc. With a relative difference of
around 13%, this constitutes a significant runtime difference. In the following, I
analyze the causes by applying the workflow as described in Chapter 3.

5.1.1. Initial Profile

As a first step, I profile the compiled executables with the help of perf. Doing so
increases the runtimes to 167.6 s and 145.6 s, respectively. This represents an overhead
of around 4 s or 2.5% for both binaries. Table 5.2 shows the obtained data for the
functions with the highest sample counts. Based on the frequency of 4,000Hz, this
can be translated into execution time listed in the third column. Note that I strip
the final underscore of the function names that the compilers add for compatibility
reasons.
As both profiles show the same functions, they are directly comparable. The sample

counts reveal that the gcc versions of y_solve_cell and binvcrhs are much slower.
Additionally, the functions at positions five to seven have a different order. For easier
matching, I mark their function names in Table 5.2 with symbols. This makes it
clear that matmul_sub is slower with gcc, but matvec_sub is faster than the version
compiled by icc. The difference for compute_rhs is less than 4% and therefore not
studied.
During analysis, it turns out that three of the four differences are related to vec-

torization: y_solve_cell, matmul_sub, and matvec_sub. The findings leading to
this conclusion and possible improvements are presented in the following section.
Afterwards, I discuss possible causes for the difference in binvcrhs.
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Function Samples Time
y_solve_cell 151946 38.0 s
binvcrhs 131039 32.8 s
z_solve_cell 84188 21.0 s
x_solve_cell 71421 17.9 s
matmul_sub * 69200 17.3 s
compute_rhs † 66385 16.6 s
matvec_sub § 37234 9.3 s
x_backsubstitute 21119 5.3 s
z_backsubstitute 17193 4.3 s
y_backsubstitute 17102 4.3 s

(a) GNU Compiler Collection

Function Samples Time
y_solve_cell 118111 29.5 s
binvcrhs 88913 22.2 s
z_solve_cell 85244 21.3 s
x_solve_cell 71400 17.9 s
compute_rhs † 68976 17.2 s
matvec_sub § 66323 16.6 s
matmul_sub * 25781 6.4 s
x_backsubstitute 19899 5.0 s
z_backsubstitute 17130 4.3 s
y_backsubstitute 16830 4.2 s

(b) Intel Compiler

Table 5.2.: Original profiles of the BT solver built with gcc and icc. Functions with
less than 10,000 samples are not shown. Symbols next to function names
mark corresponding entries in the two tables.

5.1.2. Vectorization in Three Subroutines

The function y_solve_cell contains multiple loops and function calls. Investigation
of the generated code shows that none of the calls were inlined. This is because
the routines are defined in other files and these are compiled separately. Therefore,
I use the technique described in Sections 3.3.2 to outline the loops. To that end,
I move three nested loops into separate functions and profile the result with perf.
The sample counts show that around 80% of the runtime is spent in the third loop.
Moreover, this last loop also accounts for all of the original difference between gcc
and icc in this function.
The body of the third loop operates entirely on double precision floating point

values. It contains strided memory accesses and performs additions, subtractions,
and multiplications. As described in Section 4.4.1, an important optimization of such
code is vectorization. Therefore, I look at the generated instructions with suffixes
sd and pd. The former operate on scalar values while latter are SIMD instructions
working on “packed” data. Table 5.3 shows the found instruction mnemonics sorted
by their count1.
It can be seen that the only vector instruction for gcc is vxorpd. In contrast, icc

also generates SIMD instructions for the computational operations. When invoking
gcc with the option -fopt-info-vec-missed, the compiler confirms it “couldn’t
vectorize [the] loop”. To solve this problem, I add the directive !$omp simd to the
original version of y_solve_cell. This informs the compiler that vectorization is
safe and can be performed without further analysis. After recompilation with the
flag -fopenmp-simd, the execution time for gcc decreases to 155.8 s without perf,
while icc is unchanged.

1 generated using the following sequence of pipes: objdump -d --no-show-raw-insn bt.gnu | \
awk -F"\n" -v RS="\n\n" '$1 ~ /y_solve_cell_loop3_/' | tail -n +2 | \
sed -E 's/.*:\W+(\w+).*/\1/' | grep "[sp]d$" | sort | uniq -c | sort -rn
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Instruction Count
vmovsd 87
vmulsd 72
vxorpd 25
vfmadd231sd 25
vfmsub231sd 20
vaddsd 11
vfnmadd231sd 5
vfmsub132sd 5
vfmadd132sd 5

(a) GNU Compiler Collection

Instruction Count
vmovsd 298
vmovhpd 200
vmulsd 82
vmulpd 60
vfnmsub231pd 25
vfmsub231pd 25
vfnmsub231sd 20
vfmsub231sd 20

Instruction Count
vmovupd 18
vfmadd213pd 15
vsubsd 10
vfmadd213sd 10
vaddsd 7
vxorpd 5
vfmsub213sd 5
vaddpd 5

(b) Intel Compiler

Table 5.3.: Count of instruction mnemonics with suffixes sd and pd for the third
outlined loop of y_solve_cell1.

Analysis of the generated code for matmul_sub and matvec_sub reveals similar
vectorization issues with the GNU Compiler Collection. For matvec_sub, this ac-
tually gives gcc an advantage over the Intel Compiler. However, I focus on worse
performance of gcc and do not investigate improvements for the binary produced by
the Intel Compiler. I instead analyze matmul_sub in the following, which is faster
with icc by a factor of 2.7.

Inspection of its source code shows that the function contains a fully unrolled
multiplication of two 5× 5 matrices. While icc generates vectorized code, the GNU
Compiler Collection emits scalar instructions. This is because the compiler has to
analyze the source code before vectorizing it. In this case, gcc cannot prove soundness
and therefore refrains from SLP vectorization. For that reason, I rewrite the fully
unrolled code as three nested loops. This allows the loop vectorizer to transform the
code and reduces the runtime of the GNU Compiler Collection to 148.8 s.
However, this modification slows down the binary compiled by the Intel Compiler.

The optimization report reveals that the compiler changes the order of the nested
loops. This leads to a less optimal instruction stream after vectorization when com-
pared to the original version that was fully unrolled. As a result, the total execution
time increases from 141.8 s to 147.4 s.

5.1.3. Caching across Function Boundaries

The difference for binvcrhs is more difficult to explain. This is partly because the
cause of the difference cannot be isolated in the generated code of a single routine:
As an experiment, I compile two mixed versions with assembly code generated by
the Intel Compiler. For the first, I only replace the function binvcrhs with assembly
code from icc. For the second version, I use the generated assembly code for the
entire source file solve_subs.f. This additionally includes the functions matmul_sub
and matvec_sub already discussed in the previous section.

Profiling results are presented in the second and third column of Table 5.4. They
show that the usage of assembly generated by icc reduces the execution time of
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Version Samples Time Cache Misses
compiled with gcc 131039 32.8 s 4.35 · 108

replacing binvcrhs 107503 26.9 s 3.96 · 108

replacing solve_subs.f 97128 24.3 s 3.94 · 108

compiled with icc 88913 22.2 s 3.64 · 108

Table 5.4.: Profiles of binvcrhs with mixed versions of the BT solver.

binvcrhs. Another slight improvement can be seen when also replacing the other
functions. However, the second mixed version is still around 9% slower compared to
the runtime when compiling the complete benchmark with icc.

One possible explanation is the influence of hardware caches. They have a global
state, which is naturally maintained across function boundaries. In this case, caching
could lead to better performance when accessing data in binvcrhs. The amount of
cached data depends on the instructions executed before entering the function. These
could be different for the executables built with gcc and icc. In fact, analysis of the
call sites show that this includes the functions matmul_sub and matvec_sub.

To investigate this hypothesis, I use perf to measure the cache-misses event.
The last column of Table 5.4 shows the number of observed cache misses. It can be
seen that the results qualitatively match the measured execution time. This provides
evidence for a possible correlation between cache misses and execution time. Further
analysis would be needed to fully explain the difference.

5.1.4. Results & Discussion

For this benchmark, the workflow identified multiple significant differences in the
initial profile. The lower performance of y_solve_cell and matmul_sub could be
explained with vectorization issues. For these routines, the properties described in
Chapter 4 correctly identified the importance of this optimization. Afterwards, it was
possible to enable vectorization by modifications in the source code: For the loop in
y_solve_cell, I added the directive !$omp simd. Additionally, gcc vectorizes the
matrix multiplication when writing as loops. In total, both modifications lead to a
relative improvement of 9%.
However, the example of matmul_sub also shows the difficulty with portable per-

formance improvements: The formulation as loops is much shorter and more readable
than the fully unrolled loop. This makes it easier for compilers to apply transfor-
mations, which results in lower execution times for gcc. On the other hand, the
Intel Compiler starts reordering the loops, leading to worse performance compared
to the original version. As of now, I am not aware of a portable solution with good
performance for both compilers.
The investigation of binvcrhs hints to a conceptual limitation of the workflow:

It builds on the assumption that differences between two executions are isolated in
functions. This approach does not work for global influences such as caches. Similar
problems could be encountered for global code layout changes. As one example,
BOLT attempts to move hot functions close together as mentioned in Section 2.4.
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5.2. LULESH

The second benchmark is LULESH, short for Livermore Unstructured Lagrangian
Explicit Shock Hydrodynamics [5]. It is an implementation of the Shock Hydrody-
namics Challenge Problem defined in 2011 [3]. LULESH models a hydrodynamics
application with calculations on an unstructured mesh. It is written in C/C++ and
has been studied extensively in literature [33, 21, 44, 15].

The current tagged release is version 2.0.3 from 2017, but I use the latest code
version from GitHub [6]. For compilation, I pass the options -Ofast -march=native.
Additionally, I explicitly disable the parallelization using MPI by defining USE_MPI=0.
Without enabling OpenMP, this results in a serial version of the application.
In the default configuration with 303 mesh points, an execution of the benchmark

on a single core finishes in around 15 s. This could be too short for measurements,
in particular for reliable profiling of the time spent in functions. For that reason, I
increase the simulated mesh size to 453 by passing the argument -s 45. This also
used to be the default in the first version of the benchmark, but was changed for
version 2.0 [38]. As expected, this leads to increased execution times and I measure
93.4 s for clang and 78.6 s for icc.

5.2.1. Inlining

When profiling with perf, the execution time increases to 95.1 s and 80.4 s respec-
tively. This represents an overhead of less than 2.5% and the workflow is expected
to deliver consistent results. The obtained sample counts per function are shown in
Table 5.5, excluding functions with less than 10,000 samples. As before, the third
column of the two tables lists the corresponding execution times, based on a sampling
frequency of 4,000Hz.

The profile summary shows that Clang and the Intel Compiler made different
inlining decisions. For Clang, the biggest part of the runtime is aggregated in the
entry LagrangeLeapFrog. In contrast, the samples are spread over multiple functions
for the Intel Compiler. However, the profile for Clang in Table 5.5a also shows
the function CalcElemShapeFunctionDerivatives, which is not visible for the Intel
Compiler.
Closer investigation of the source code shows that this function is called from two

locations: CalcKinematicsForElems and IntegrateStressForElems. Both are vis-
ible in Table 5.5b for the profile of the executable built by the Intel Compiler. How-
ever, only CalcKinematicsForElems is shown in Table 5.5a for Clang. The function
IntegrateStressForElems has instead been inlined into LagrangeLeapFrog men-
tioned above.
Static analysis of the code in CalcElemShapeFunctionDerivatives reveals many

additions, subtractions, and multiplications. These belong to the first group of com-
putational operations described in Section 4.4.1. This means it is likely that inlin-
ing the function enables further optimizations. For that reason, I add the attribute
always_inline to the function declaration of CalcElemShapeFunctionDerivatives.
After recompilation and execution with perf, the function is not visible anymore in
the profile. Instead, the sample count of CalcKinematicsForElems increases slightly
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Function Samples Time
LagrangeLeapFrog 267471 66.9 s
CalcKinematicsForElems 34320 8.6 s
CalcElemShapeFunctionDerivatives 22413 5.1 s
__cbrt 11239 2.8 s

(a) Clang Compiler

Function Samples Time
CalcHourglassControlForElems 60047 15.0 s
ApplyMaterialPropertiesForElems 57364 14.3 s
CalcFBHourglassForceForElems 46097 11.5 s
CalcQForElems 37435 9.4 s
CalcKinematicsForElems 37214 9.3 s
IntegrateStressForElems 31604 7.9 s
main 13483 3.4 s

(b) Intel Compiler

Table 5.5.: Original profiles of LULESH executables built with clang and icc. Func-
tions with less than 10,000 samples are not shown.

to 42772 samples, or 10.7 s. The counts for LagrangeLeapFrog and __cbrt remain
unchanged compared to Table 5.5a within expected variations.
In a measurement without perf, the total execution time decreases to 88.7 s. Com-

pared to the original runtime of 93.4 s, this represents an improvement of around 5%.
As explained in Section 3.2.2, mimicking the decisions of the other compiler is a possi-
ble outcome of the workflow. However, it provides little insight into the nature of the
performed optimization after inlining. For more detailed information, it is possible
to analyze the generated code of the calling functions. This is not performed in this
thesis for reasons of time and space.
To continue applying the workflow, it is necessary to achieve the same inlining in

both executables. For that, I add an attribute noinline to each of the functions vis-
ible in Table 5.5b but not in Table 5.5a. This increases the runtime of the executable
built by Clang to 91.0 s without a profiler. At the same time, the total time of icc
stays constant within expected deviations and rounding.
Runs with perf result in the profiles depicted in Table 5.6. The functions are sorted

by sample count, which is not shown due to space constraints. It can be seen that
the first seven functions are common between the two profiles. As such, the profiles
are comparable according to Definition 4 in Section 3.2.1. However, four functions
are at different positions, which is a first indication of possible runtime differences.

When looking at the sample counts, the biggest difference is found for the function
ApplyMaterialPropertiesForElems: In the clang profile, it has 82,695 samples
corresponding to around 20.7 s. In contrast, the executable built by the Intel Compiler
was only sampled 57,089 times in that function. This corresponds to a runtime of
14.3 s, which is around 30% less than clang. For that reason, the workflow proceeds
with the analysis of this significant difference.
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clang icc

ApplyMaterialPropertiesForElems CalcHourglassControlForElems
CalcHourglassControlForElems ApplyMaterialPropertiesForElems

CalcFBHourglassForceForElems
CalcKinematicsForElems CalcQForElems
CalcQForElems CalcKinematicsForElems

IntegrateStressForElems
main

Table 5.6.: Profile of LULESH executables after adapting function inlining. Only the
first seven functions are shown, sorted by sample count, which is omitted
due to space constraints.

5.2.2. Loop Fusion for Cache Locality

After identifying a difference, the first step is to decompose the function. In this case,
ApplyMaterialPropertiesForElems calls the function EvalEOSForElems, among
others. Further profiles confirm that the cause for the difference is located below
that function. Therefore, I remove all other attributes noinline and only pre-
vent inlining of EvalEOSForElems. This avoids effects from other parts of the code
that could influence further analysis steps. However, I keep the always_inline for
CalcElemShapeFunctionDerivatives. Together, these changes restore the runtime
of clang without the profiler to 87.7 s. With the overhead of perf, I measure 90.6 s
for clang and 80.9 s for icc.
To analyze the difference further, I first look at the code of EvalEOSForElems: It

contains two outer loops, further nested loops, and several function calls. Additional
profiling runs suggest that the biggest part of the runtime is spent in the function
CalcEnergyForElems. However, when preventing inlining of this function, the total
execution time increases significantly: For clang, I measure 94.0 s instead of 90.6 s,
and 88.7 s instead of 80.9 s for the binary built with the Intel Compiler. It can be
noticed that icc experiences a larger slowdown than clang. This leads to the conclu-
sion that inlining is required to observe the optimization that causes the difference.
Unfortunately, this implies further decomposition would produce inconsistent results
and must not be performed.
To understand the cause of the difference, it is therefore necessary to analyze

EvalEOSForElems together with all called functions. In addition to the mentioned
CalcEnergyForElems, this includes the transitively called CalcPressureForElems.
All three functions consist of several loops and perform many additions, subtrac-
tions, and multiplications. Furthermore, they contain some reciprocals, divisions,
and square roots.
When taking the previous results into account, it is likely that the Intel Com-

piler performs an optimization across function boundaries. This hypothesis is con-
firmed by a detailed analysis of the generated code: It becomes clear that the com-
piler fuses some of the loops after CalcPressureForElems has been inlined into
CalcEnergyForElems. As a result, cache locality is improved which leads to bet-
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ter performance.
This transformation can also be performed in the source code directly: In the origi-

nal version, CalcEnergyForElems has five loops and CalcPressureForElems another
two. However, all of these loops have the same iteration space and their iterations
are independent from each other. This allows to rewrite the computation with one
outer loop in CalcEnergyForElems. To retain the original structure, the loop body
calls CalcPressureForElems with the current iteration index as an argument.
After recompiling the code, it is possible to measure the expected improvements:

Without perf, the executable compiled Clang now finishes in 80.4 s. This is another
9% improvement compared to the runtime of 88.7 s from the previous section. In
total, the runtime decreases by almost 14% from the original measurement of 93.4 s.
At the same time, the timings for the Intel Compiler only improve slightly to 77.9 s
when compared to the original runtime of 78.6 s. This is another confirmation that
the compiler already performed the optimization in the original version.
The reasoning described above also explains the increased runtime when not inlin-

ing CalcEnergyForElems: When analyzing the function separately, the compiler has
to assume aliasing of pointer arguments. As a result, it cannot prove the soundness
of fusing the loops and therefore restrains from the optimization. The same problem
arises when preventing the compiler from inlining CalcPressureForElems: In that
case, the compiler cannot analyze the code inside the called function. As result, it is
not allowed to move the code because doing so could change the computed results.

5.2.3. Results & Discussion

By applying the workflow, it was possible to analyze the causes for two significant
differences. Both were related to inlining of function calls, which enabled other opti-
mizations. For the second difference, the important transformation was loop fusion as
applied by the Intel Compiler. To make Clang benefit from this knowledge, I added
one attribute always_inline and performed the loop fusion portably in the source
code. This reduces the runtime for the studied input parameters by almost 14%,
from 93.4 s to 80.4 s.
The case study shows that the workflow can deal with inlining to analyze applica-

tions like LULESH. This is important because LULESH follows the “programming
style typical in scientific C or C++ based applications” [5]. To that end, the work-
flow provides a structured approach to make profiles comparable. This was needed
in this case because the two compilers initially made different inlining decisions. Af-
terwards, it is possible to compare the runtimes of functions and locate differences.
To understand their causes, the workflow finally describes methods to decompose the
differences.
The analysis also shows the difficulty related to optimizations across function

boundaries. One reason is that the properties devised in Chapter 4 are focused on
kernels according to Definition 5. This means they provide little help for optimiza-
tions like loop fusion. However, I was still able to understand the cause by manual
inspection of the assembly code. This was only feasible after applying the workflow,
which narrowed down the difference to the function EvalEOSForElems.

46



5.3. miniMD

5.3. miniMD

miniMD is a Molecular Dynamics (MD) simulation modeled after the LAMMPS
software package [7, 53]. It is part of the Mantevo project which aims to provide
mini-applications for performance studies [35]. To that end, miniMD is consider-
ably smaller at around 5,000 lines of C++ compared to more than 200,000 lines of
LAMMPS [7]. The configuration used for this thesis is based on the sample input
file distributed with the benchmark. It simulates a Lennard-Jones system of atoms
without other interaction forces.

As for the BT solver from the NAS Parallel Benchmarks in Section 5.1, I compile
the source code with Intel MPI but execute with only one rank. Compiler optimiza-
tions are enabled with the options -Ofast -march=native. Furthermore, I define
-DUSE_SIMD for the preprocessor and pass -fopenmp to take omp simd directives into
account. However, I set environment variables to allow only one thread, which makes
miniMD execute routines optimized for sequential configurations.
To reach a runtime of at least 30 s, I increase the size by passing -s 64. This makes

miniMD simulate a total of 4 · 643 = 1048576 atoms for 100 timesteps. Using these
settings, the runtimes with clang, gcc, and icc range from 30 s to 36 s. However,
more interesting differences are observed with different executables from the same
compiler. This includes two versions of gcc and sets of flags for clang. I analyze
their causes in the following to demonstrate that the workflow can handle them
without modifications.

5.3.1. Two Versions of the GNU Compiler Collection

During early experiments, I observed a significant difference with the GNU Com-
piler Collection. When built with the older version 9.3.0 of the compiler, the sim-
ulation takes a total of 43.4 s. This is significantly slower than the executables by
clang (30.4 s) and icc (33.1 s). The newer gcc in version 10.1.0 also finishes in around
35.5 s, which is much closer to the other runtimes. To investigate this improvement
of around 18%, I apply the workflow for the executables built by different versions
of the GNU Compiler Collection.
Profiling with perf reveals that the difference is primarily caused by the function

ForceLJ::compute_halfneigh. Static code analysis shows that the method contains
nested loops, but no function calls. The loop bodies compute on floating point values
and perform additions, subtractions, multiplications, and divisions. Moreover, the
inner loop is marked with #pragma omp simd, which means that vectorization is a
likely optimization.
To explain the causes for the difference, I look at the instruction mnemonics of the

generated machine code. For that, I use the same methodology already presented in
Section 5.1.2 for the BT solver. Comparison of the two binaries shows that gcc 10.1.0
generates SIMD instructions, but version 9.3.0 does not. That is despite the fact that
the inner loop is annotated with a compiler directive. As such, I conclude that the
reduced execution time is due to improvements in the vectorizer for this newer version
of gcc.
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5.3.2. Flags for the Clang Compiler

Furthermore, the binary compiled by clang exhibits an enormous improvement when
adding the flag -march=native. To investigate this difference in isolation, I reduce
the optimization level to -O2. However, I keep the options -DUSE_SIMD -fopenmp
to enable omp simd directives. For this baseline version, I measure a runtime of
84.5 s, while compilation with the added -march=native reduces the execution time
to 32.0 s. These results differ significantly by a factor of 2.64 and the cause can be
analyzed with the workflow.
A profiling run with perf points to the same function compute_halfneigh as in

the previous section. For this reason, I again extract the mnemonics of the generated
instructions. Comparison shows that the computation is vectorized with SIMD in-
structions in both executables. However, the baseline version only uses instructions
defined by SSE2. In contrast, clang also emits AVX instructions when passing the
flag -march=native.

This is because SSE2 is included in the first specification of x86_64. As a result,
the compiler can assume support for all processors based on this architecture. In
contrast, AVX was proposed in 2008 and first products were released in 2011. For
that reason, clang does not use these instructions unless requested, for example when
invoking with -march. This avoids generating code by default that cannot run on
older processors.
It has to be noted that other compilers generate faster executables with only

SSE2: With the same baseline flags (-O2 -DUSE_SIMD -fopenmp), I measure 46.7 s
with gcc and 50.3 s with the Intel Compiler. Analysis of the generated instruction
mnemonics reveals that gcc does not vectorize the code with -O2, which results in
the best execution time. It is possible to disable vectorization for clang with the
flags -fno-vectorize -fno-slp-vectorize. However, this leads to even worse per-
formance and a runtime of 94.7 s. As these difference are limited to suboptimal
compilation flags, I did not further investigate their reasons.

5.3.3. Results & Discussion

In this section, I demonstrated the applicability of the workflow for executables from
the same compiler. First, I investigated a difference with a newer release of the GNU
Compiler Collection. Once more, the kernel properties identified vectorization as an
important optimization. This helped to explain the difference with improvements in
the vectorizer. The same approach could also be used to analyze the opposite case
of worse performance with a newer version. This makes it possible to investigate
regressions in a compiler’s optimization pipeline.
Afterwards, I related a difference with clang to the used SIMD extensions. This

explained the large improvement when adding the flag -march=native. In a similar
manner, this approach applies to compiler flags in general. For example, it is possible
to analyze the effect of individual optimizations and their parameters. Furthermore,
the workflow can be used to understand the combined result from optimization levels
such as -O3.

48



5.4. miniQMC

5.4. miniQMC

Finally, miniQMC contains Quantum Monte Carlo (QMC) algorithms similar to the
larger simulation QMCPACK [10, 39]. It simulates the total energy of a system
composed of nickel and oxygen atoms. This requires the solution of an integral over
possible positions of the electrons. In miniQMC, this is implemented by randomly
sampling the positions according to their probability [10].

As before, I compile with Intel MPI but only execute with a single rank. Ad-
ditionally, I activate OpenMP to take advantage of annotations for vectorization.
However, I use OMP_NUM_THREADS=1 to compute with only one thread. For BLAS,
the executables are linked to Intel’s Math Kernel Library (MKL).
Similar to the other case studies, I choose a benchmark configuration that results

in runtimes of around one minute. For that, I pass the parameter -g "4 2 2" on the
command line when running the application. This creates 4× 2× 2 boxes with each
16 nickel and 16 oxygen atoms. Nickel and oxygen atoms have 18 and 6 physically
relevant electrons [10], respectively, which results in a total of 6144 electrons.
Using this configuration, I measure the lowest execution time of 56.0 s for gcc

with -Ofast -march=native. It is closely followed by clang with 57.0 s when com-
piling with the same flags. For the Intel Compiler, the best performance results
from passing -O2 -march=native with a runtime of 63.6 s. If instead using -Ofast
-march=native, execution time increases to 65.1 s. Investigation with the workflow
shows that the difference is due to loop unrolling. However, the more interesting
difference to discuss is the one between clang and icc.

5.4.1. Branch Misses due to Jumps

Profiling with perf increases the runtimes to 58.5 s and 65.9 s. The overhead is
slightly bigger for icc, but still below 4%. Due to inlining, the initial profiles have
no common topmost function set. It is therefore necessary to modify the source code
to adapt the inlining and make the profiles comparable.
After repeated adaptions and profiling, I obtain the data shown in Table 5.7. Dur-

ing this process, the execution times increase slightly to 59.2 s for clang and 66.9 s
with icc. However, the difference is still clearly visible and the results are expected
to be consistent. From the profiles, it is apparent that the difference is related to
the marked function DTD_BConds::computeDistances: It takes 14.9 s when compiled
with icc, but only 7.8 s with clang.

To explain this difference, I look at the generated machine code. Analysis of the
instruction mnemonics shows that icc generates 21 jumps for this function. In con-
trast, clang only emits 7 jump instructions. At runtime, jump instructions lead to
more branches which hinders ILP. For that reason, modern processors have branch
predictors to improve instruction pipelining.
Using hardware counters, it is possible to measure how many branches were mis-

predicted. This allows to assess whether the higher number of jump instructions
influences performance. To that end, I use perf to record events for branch-misses.
The results show that clang has 2.41 · 105 branch misses for samples in the func-
tion DTD_BConds::computeDistances. On the other hand, perf records a total of
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Function Samples Time
MultiBsplineEval::evaluate_v 61259 15.3 s
einspline_spo::set 58769 14.7 s
mkl_blas_avx512_dgemm_kernel_nocopy_TN_b1 38822 9.7 s
MultiBsplineEval::evaluate_vgh 34466 8.6 s
mkl_blas_avx512_dgemm_kernel_0 32859 8.2 s
DTD_BConds::computeDistances † 31039 7.8 s

(a) Clang Compiler

Function Samples Time
MultiBsplineEval::evaluate_v 61404 15.4 s
DTD_BConds::computeDistances † 59767 14.9 s
einspline_spo::set 56828 14.2 s
mkl_blas_avx512_dgemm_kernel_nocopy_TN_b1 38971 9.7 s
MultiBsplineEval::evaluate_vgh 34105 8.5 s
mkl_blas_avx512_dgemm_kernel_0 32628 8.2 s

(b) Intel Compiler

Table 5.7.: Profiles of miniQMC executables built with clang and icc after de-
composition. Functions with less than 10,000 samples are not shown.
The names only list the containing struct or namespace due to space
limitations. The measured samples show a significant difference for
DTD_BConds::computeDistances, which is marked for easier reference.

6.69 · 108 branch misses for icc. These numbers differ by a factor of more than 2,700
which explains the worse performance with the Intel Compiler.

5.4.2. Results & Discussion
For miniQMC, I analyzed one difference between Clang and the Intel Compiler.
Similar to other benchmarks written in C++, it was possible to decompose the
difference by repeated profiling. This was very effective and the found function
DTD_BConds::computeDistances comprises less than 70 lines of code. Compared
to the total size of around 20,000 lines, this corresponds to less than 0.4% of the
total simulation.
Afterwards, investigation of the generated instruction mnemonics gave the right

hint. This is another example for a general strength of the workflow: With more data
available, it is easier to decide on the next step when analyzing a performance differ-
ence. In this case, it was possible to measure the right hardware counters with perf.
The results confirmed the hypothesis that the higher number of jumps influences the
performance.
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In my thesis, I presented a workflow to analyze the effect of compiler optimizations.
It compares the execution of two binaries starting with a difference in total runtime.
To increase the level of detail, the workflow makes use of profiling data. Based on
the time spent in each function, this allows to locate the differences more precisely.
The workflow recursively decomposes the functions by handling inlined function calls
and loops.

After decomposing a difference, the workflow requires a more detailed analysis
of the generated code. To support this step, I described properties of kernels that
may be found in the source code of HPC applications. For use in the workflow, I
related each property to possible transformations. This allows to focus on compiler
optimizations that are likely important for a decomposed difference.
Finally, I evaluated the workflow with case studies of four benchmark applications.

In measurements, all of them showed significant differences with the tested build
configurations. I presented the analysis results of several differences with the workflow
to demonstrate the possible usage scenarios. For all of them, the structured steps
described in this thesis were successful in locating the reasons.
I analyzed multiple differences when comparing two compilers for the BT solver

and LULESH. After understanding the causes, I described changes to increase per-
formance portability. In total, the proposed modifications lead to performance im-
provements of up to 14%. This demonstrates that the workflow can be used for
performance tuning of portable applications. In contrast to other approaches, the
analysis directly leads to parts of the code that can be improved. This is because the
starting point is a faster binary from another build configuration. As such, it is guar-
anteed that there is a possibility to generate better code. This makes it feasible to
recommend the workflow to application developers. If they come across a significant
difference, the workflow represents a structured way to understand the reason.
At the same time, the initial comparison also limits the improvements that may

be achieved with the workflow. Still, it is possible to exceed the performance of
the initially faster binary in two cases: On the one hand, modifications could make
one of the build configurations generate even better code. For example, changes
could facilitate a compiler analysis which triggers additional optimizations. On the
other hand, comparison could show that neither of the build configurations is the
fastest for all functions. Instead, the workflow could be used to mutually improve
the performance of both binaries. Further research is needed to examine if this yields
usable results in the general case.
Based on the work for this thesis, the main focus of the workflow remains on im-

proving portable performance. Nevertheless, there are two more areas of application
where the workflow can be used without modifications: With the study of miniMD, I
demonstrated the ability to analyze differences for the same compiler. This includes
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the comparison of binaries produced by two versions of the compiler. As discussed
before, this allows to investigate changes in the optimization of the code at hand.
Furthermore, the comparison of different flags enables the analysis of individual opti-
mizations and their parameters. Both analyses may be performed by an experienced
application developer with basic knowledge about compilers. Without the workflow,
such investigation would require thorough understanding of the complete translation
from the source code to the hardware level.

The workflow is structured in a way to allow analysis of large and complex codes.
In this thesis, miniQMC is the biggest of the discussed cases with around 20,000
lines of code. It could already be seen for this size that decomposing the difference
becomes more important. This trend is likely to continue for even larger simulation
packages used in production. Moreover, such codes often contain multiple solvers
that can be employed as needed. As for performance tuning in general, this requires
carefully designed test cases to analyze the code paths relevant for production runs.
The analysis of the BT solver revealed difficulties in handling differences related

to caching. Similar problems could be encountered for other specialized hardware
such as branch predictors. To take such global influences into account, it would be
necessary to extend the workflow. This likely requires adaptions of the steps for
decomposing the differences: The current workflow relies on the assumption that
differences can be isolated.
In the case of caching effects, however, it is equally important what data resides

in the cache when entering the function. This is primarily influenced by the code
executed before the function showing the runtime difference. Similarly, the anatomy
of prior conditional jumps is important for the effectiveness of branch prediction.
For that reason, it would be necessary to capture this information when analyzing
differences. One possibility could be to make use of an existing performance model for
cache accesses. The model can be either analytical [59] or based on benchmarks [54].
Furthermore, the results from LULESH show that it is important to study the

interaction between optimizations. Work in this area has previously been performed
when searching for the best combination of compiler parameters. For example, the ap-
proaches by Pan and Eigenmann take the optimizations’ interaction into account [51].
In a later work, Mustafa and Eigenmann define substituting optimizations [48]. They
observe that, after disabling a transformation, another optimization may take its place
and vice versa. By using the workflow described in this thesis, it would be possible
to analyze the effect on the generated code for real applications. This could help to
better understand and compare the interaction between optimizations.
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A. Assembly Version of the zaxpy Kernel

The following represents an assembly version of the main loop from the zaxpy kernel
as discussed in Section 4.5.1.

1 zaxpy:
2 # start of the zaxpy function ; code to check
3 # the arguments and perform setup ...
4
5 # real(a)
6 vbroadcastsd %xmm0 , %zmm2
7 # img(a)
8 vbroadcastsd %xmm1 , %zmm3
9

10 # more setup ...
11
12 .loop:
13 # x[:] stored as real(x[i]), img(x[i]), ...
14 vmovupd (%rdi ,% rax), %zmm1
15
16 # swap real and imaginary parts:
17 # img(x[i]), real(x[i]), img(x[i+1]) , ...
18 vshufpd $85 , %zmm1 , %zmm1 , %zmm6
19
20 # img(a) * swap(x[:])
21 vmulpd %zmm3 , %zmm6 , %zmm7
22
23 # real(a) * x[:] -+ img(a) * swap(x[:])
24 # %zmm7 = %zmm2 * %zmm1 -+ %zmm7
25 vfmaddsub231pd %zmm1 , %zmm2 , %zmm7
26
27 # add y[:]
28 vaddpd (%rcx ,% rax), %zmm7 , %zmm7
29 vmovupd %zmm7 , (%rcx ,% rax)
30
31 addq $64 , %rax
32 cmpq %rdx , %rax
33 jne .loop
34
35 # other versions of the loop ...
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Glossary

AoS Array of Structures. 27, 28

AST Abstract Syntax Tree. 5, 6

ATLAS Automatically Tuned Linear Algebra Software. 9

AVX Advanced Vector Extensions. 48

BLAS Basic Linear Algebra Subprograms. 10, 13, 31, 49

CFD Computational Fluid Dynamics. 37, 39

COLE Compiler Optimization Level Exploration. 10

CRS Compressed Row Storage. 28, 29, 34

DCE Dead Code Elimination. 7

DSE Dead Store Elimination. 7, 28

FMA fused multiply-add. 8, 29, 32, 34

ILP Instruction-Level Parallelism. 8, 49

IPO Interprocedural Optimization. 9

IR Intermediate Representation. 5, 6, 7, 8

ISA Instruction Set Architecture. 8

LICM Loop Invariant Code Motion. 7, 26

LTO Link-Time Optimization. 9

MD Molecular Dynamics. 37, 47

MKL Math Kernel Library. 49

OSE Optimization-Space Exploration. 10

PGO Profile-Guided Optimization. 9

QMC Quantum Monte Carlo. 37, 49
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Glossary

RA Register Allocation. 8

SIMD Single Instruction Multiple Data. 8, 29, 32, 40, 47, 48

SLP Superword Level Parallelism. 8, 41

SSA Static Single Assignment. 6

SSE2 Streaming SIMD Extensions 2. 48
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