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Abstract
The minimum color-degree perfect b-matching problem (Col-BM) is a new exten-

sion of the perfect b-matching problem to edge-colored graphs. The objective of

Col-BM is to minimize the maximum number of differently colored edges in a

perfect b-matching that are incident to the same node. We show that Col-BM is

-hard on bipartite graphs by a reduction from (3,B2)-Sat, and conclude that

there exists no (2−ε)-approximation algorithm unless  =  . However, we

identify a class of two-colored complete bipartite graphs on which we can solve

Col-BM in polynomial time. Furthermore, we use dynamic programming to devise

polynomial-time algorithms solving Col-BM with a fixed number of colors on

series-parallel graphs and simple graphs with bounded treewidth.
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1 INTRODUCTION

Assignment problems are among the most famous combinatorial optimization problems. In its most basic form, the assignment

problem consists of a set of agents A, a set of jobs B, and a set of agent-job pairs E ⊆A×B that define which agent can perform

which job [29]. The objective is to find a one-to-one assignment of jobs to agents. Graph-theoretically the assignment problem

corresponds to the maximum (weighted) matching problem in a bipartite graph which is known to be polynomial-time solv-

able by the Hungarian method [19]. However, for many applications this original version of the assignment problem fails to

capture all relevant requirements. Therefore, various more complex forms of the assignment problem are studied, for example,

the (capacitated) b-matching problem [29] or the restricted matching problem [30]. In the maximum b-matching problem,

there is a specified b-value for every node which determines how many incident edges of this node can be chosen at most

in a b-matching. The general matching problem thus corresponds to a b-matching problem where all b-values are equal to

one.

In this paper, we study a new extension, the so-called minimum color-degree perfect b-matching problem (Col-BM), which

we introduce via the following application; see Figure 1. Assume that an airline aims to establish new flight connections using

different types of aircraft. The appropriate type of aircraft is given for every connection of interest, and the number of operable

connections at each airport is dictated by the takeoff and landing slots owned by the airline. As unused slots have to be returned

permanently by policy so that they can be reassigned to other airlines [15], all available slots at all airports have to be utilized.

However, operating different types of aircraft at the same airport decreases flexibility in crew scheduling, and increases the

necessary space for spare-part storage. Therefore, the maximum number of different types of aircraft operated at any airport

should be minimized.
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FIGURE 1 Example Col-BM instance where the edge colors correspond to different types of aircraft [Color figure can be viewed at wileyonlinelibrary.com]

In the setting above, the selection of appropriate flight connections corresponds to a perfect simple b-matching problem,

which consists in finding an edge subset of a graph such that the vertices in the resulting subgraph have certain prespecified

degrees. However, a classical b-matching neglects the diversity induced by different types of aircraft. We model the different

types of aircraft by adding colors to the edges of the underlying graph. This leads to Col-BM, a b-matching extension on

an edge-colored graph with the objective of minimizing the maximum number of differently colored edges incident to the

same node.

Before providing a formal definition of Col-BM, we introduce some notation that is used in the paper. Let G = (V , E) be

an undirected graph with an edge coloring E1∪̇ · · · ∪̇Eq = E and c ∶ E → {1, …, q} be the corresponding color function with

c(e) = j if and only if e∈Ej. For an edge subset M ⊆E and a node v∈V , 𝛿M(v) denotes the set of edges in M that are incident

to v, that is, 𝛿M(v)≔ 𝛿(v)∩M with 𝛿(v)≔ {e∈E| v∈ e}. Further, colM(v) denotes the set of colors in 𝛿M(v), that is,

colM(v) ≔ c(𝛿M(v)) = {j ∈ {1, …, q}|𝛿M(v) ∩ Ej ≠ ∅}.

We call the number of different colors of edges in M which are incident to v, that is, |colM(v)|, the (M-)color degree of v, similar

to [12]. For an edge subset M ⊆E, the color degree of M, f max
G (M), is defined as the maximum M-color degree of nodes in G, that

is, f max
G (M) ≔ maxv∈V |colM(v)|. Finally, we call a subset M ⊆E a perfect b-matching for a mapping b : V →N0 if |𝛿M(v)| = b(v)

for every v∈V .

Definition 1. (Minimum color-degree perfect b-matching)

Given an undirected graph G = (V , E), an edge coloring E1∪̇ · · · ∪̇Eq = E, and a mapping b : V →N0, the minimum
color-degree perfect b-matching problem (Col-BM) asks for a perfect b-matching M ⊆E of minimum color degree

f max
G (M).

In this paper, we study the complexity of Col-BM on different graph classes. Our main contributions can be summarized as

follows:

• Col-BM is strongly -hard on two-colored bipartite graphs G = (VA ∪VB, E) with b(v) = 1 for all v∈VA and b(v) = 2

for all v∈VB.

• There exists no (2− 𝜀)-approximation algorithm for Col-BM unless  =  .

• Col-BM on two-colored complete bipartite graphs G = (VA ∪VB, E), with b(v) = 1 for all v∈VA and b(v) = 2 for all

v∈VB can be solved in (|V|2) time.

• Col-BM with a fixed number of q colors on series-parallel graphs can be solved in (|E| ⋅ maxv∈V b(v)4) time.

• Col-BM with a fixed number of q colors on simple graphs G = (V , E) with treewidth tw(G) < W can be solved in

(|V| ⋅ maxv∈V b(v)2W ) time.

With these results, we extend ongoing studies of matching problems on edge-colored graphs. Most contributions in this

field incorporate restrictions depending on the edge coloring in order to reduce the space of feasible solutions. The probably

first problem of this kind is the rainbow (or multiple-choice) matching problem [13]: Given an edge-colored graph, find a

maximum matching such that all edges have distinct colors. The rainbow matching problem is known to be -complete on

http://wileyonlinelibrary.com
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bipartite graphs [28], and Le and Pfender [20] more recently proved that it is even -complete on paths. Another problem

of this kind is the blue-red matching problem (BRM): Given a blue-red-colored graph and w∈N0, find a maximum matching

which consists of at most w blue and at most w red edges. Nomikos et al. [26] devised an 
2

as well as an asymptotic
3

4
-approximation algorithm for BRM. The exact complexity of BRM is still open.

One of the earliest weighted matching problems considered on edge-colored graphs is the bounded color matching problem

(BCM): Given an edge-colored graph with edge weights, find a maximum weighted matching such that the number of edges in

each color satisfies a color-specific upper bound. As a generalization of rainbow matching, all complexity results of the former

directly translate to BCM. A straightforward, greedy strategy leads to a
1

3
-approximation algorithm for BCM [22]. Moreover,

several bi-criteria approximation algorithms for BCM, which are allowed to slightly violate the color constraints, are due to

Mastrolilli and Stamoulis [21,22]. Recently, an extension of BCM that additionally incorporates edge costs was studied under

the name budgeted colored matching problem [7]. Büsing and Comis [7] present pseudo-polynomial dynamic programs for the

budgeted colored matching problem with a fixed number of colors on series-parallel graphs and trees.

The concept of incorporating the edge-coloring into the objective function of a matching problem is, to our knowledge,

relatively new and only few problems of this type have been studied yet. One such problem that is closely related to Col-BM is

the labeled maximum matching problem (LMM): Given an edge-colored graph, LMM asks for a maximum matching that uses

the minimum number of different colors. Monnot [23] showed that LMM is -complete on bipartite complete graphs and

2-approximable on 2-regular bipartite graphs. Subsequently, Carrabs et al. [9] presented alternative mathematical formulations

and an exact branch-and-bound scheme for LMM. Another family of related problems are so-called reload cost problems. In

reload cost problems, the edge colors symbolize different types of transport, and costs arise for every change of color at a node.

The task is to find a specific subgraph for which the weighted sum of all color changes is minimal. The reload cost problem has

been considered for spanning trees [31], paths between two vertices [14], tour or flow problems [2] as wanted subgraphs. For a

detailed review of these kind of problems we refer to [3].

A weighted b-matching problem with an objective function incorporating the edge coloring is the diverse weighted

b-matching problem (D-WBM). D-WBM can be considered as the counterpart of Col-BM: Given a weighted, edge-colored,

bipartite graph, D-WBM asks for a b-matching satisfying upper and lower vertex degree bounds such that the weights of edges

incident to the same node are evenly distributed among all colors. In [1], D-WBM is claimed to be -hard and diversifica-

tion is ensured by minimizing a quadratic function that penalizes unbalanced weight-color distributions rather than adopting

a Max-Min approach analogous to our Min-Max approach. For a more extensive review on general matching theory we refer

to [22].

The remainder of this paper is organized as follows. In Section 2, we prove that Col-BM is -hard in general. However,

in Section 3, we identify a class of two-colored complete bipartite graphs for which Col-BM is solvable in polynomial time.

Furthermore, we provide dynamic programs for solving Col-BM on series-parallel graphs (Section 4) and on simple graphs

with bounded treewidth (Section 5) that run in polynomial time if the number of colors is fixed. We finish this paper with a

conclusion and an outline of future research (Section 6).

2 COMPLEXITY

Concerning the complexity of Col-BM, we remark that if b(v)= 1 for all v∈V(G), Col-BM reduces to a simple, polynomial-time

solvable perfect matching problem. In the following, we show that in general the decision version of Col-BM is strongly

-complete even if b(v)∈ {1, 2} for all v∈V(G) and q = 2.

Theorem 2. The decision version of Col-BM on two-colored bipartite graphs G = (VA ∪VB, E) with b(v) = 1 for all
v∈VA and b(v) = 2 for all v∈VB is strongly -complete.

Proof. We reduce (3,B2)-Sat to the decision version of Col-BM. The problem (3,B2)-Sat is a strongly -complete

[4] special case of 3-Sat where every literal occurs exactly twice in the formula. Let  be a (3,B2)-Sat instance with

variables x1, … , xn and clauses C1, … , Cm. We construct a corresponding Col-BM instance

̃ ≔ (G = ((U ∪ W) ∪ (V ∪ R), E = E1 ∪ E2), b),

where G is composed of two layers; see Figure 2. Layer 1 models the correspondence between a perfect b-matching with

color degree one and a satisfying truth assignment for an instance of (3,B2)-Sat. Layer 2 is an auxiliary complete bipartite

graph ensuring the existence of a perfect b-matching. In the following we refer to edges in E1 as blue edges and to edges

in E2 as red edges.
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FIGURE 2 Construction of the perfect b-matching [Color figure can be viewed at wileyonlinelibrary.com]

Layer 1 contains two sets of nodes V ≔ {v1, … , vn} and U ≔ {u1, … , um}, representing the variables and clauses of

, respectively. We connect V and U via the following edges: blue edges {vi, uj} for all positive literals xi ∈Cj and red

edges {vi, uj} for all negative literals xi ∈ Cj. Finally, we set b(v) = 2 for all v∈V and b(u) = 1 for all u∈U. As a result,

Layer 1 is bipartite by construction and
∑

v∈Vb(v) = 2n > m =
∑

u∈Ub(u) holds true as for every (3,B2)-Sat instance 

holds 3m = 4n.

Layer 2 contains two sets of nodes W ≔ {wi,k ∣ i∈ {1, … , n}, k∈ {1,2,3}}∪W ′
and R ≔

{
ri | i ∈ {

1, …, ⌈ 7

6
n⌉}} ,

ensuring the existence of a perfect b-matching in G. Note that
7

3
n is integer as 3 divides n. If

7

3
n is even, we define

W ′
≔ ∅ and otherwise W ′

≔ {w0}. We connect W with V and R via the following edges: a red-colored edge {vi, wi,3}

and blue-colored edges {vi, wi,1}, {vi, wi,2} for each i∈ {1, … , n}, as well as blue-colored edges {r, w} for all r ∈R and

w∈W. Finally, we set b(w) = 1 for all w∈W and b(r) = 2 for all r ∈R. As a result, G is bipartite by construction with

node partitions V ∪R and U ∪W, b-values b(x) = 2 for x∈V ∪R and b(y) = 1 for y∈U ∪W, and∑
v∈V

b(v) +
∑
r∈R

b(r) =
∑
u∈U

b(u) +
∑
w∈W

b(w).

The Col-BM instance ̃ can be constructed in polynomial time. Hence, it remains to be shown that  is a Yes-instance if

and only if ̃ has a perfect b-matching M with color degree f max
G (M) = 1.

Let M be a perfect b-matching in G with f max
G (M) = 1. Then |colM(vi)| = 1 for all i∈ {1, … , n} and we set xi= True

if both edges in 𝛿M(vi) are blue and xi= False if both are red. It remains to be shown that x is a satisfying assignment for

. By construction, for all j∈ {1, … , m} there exists exactly one i∈ {1, … , n} such that 𝛿M(uj) = {{vi, uj}}. If {vi, uj}

is blue, then xi ∈Cj by construction. Hence, our choice xi= True verifies clause Cj. Analogously, if {vi, uj} is red, then

xi ∈ Cj. Hence, our choice xi= False verifies clause Cj. Consequently, x is a satisfying assignment for .

Conversely, let x be a satisfying truth assignment for  and M = ∅. We choose a verifying literal xi (xi) for each clause

Cj and add the corresponding blue (red) edge {vi, uj} to M. Thus, we select m edges in Layer 1 and |𝛿M(u)| = b(u) = 1

holds for all u∈U. As xi and xi cannot simultaneously be satisfied by x, 𝛿M(v) contains only edges of the same color

for all v∈V . Hence, f max
G (M) = 1. To conclude our reduction, it suffices to extend M to Layer 2 without increasing

f max
G (M). Therefore, we proceed for every vi ∈V with |𝛿M(vi)| < b(vi) as follows: if 𝛿M(vi)∩E1 ≠ ∅, add {vi, wi,1} to M; if

𝛿M(vi)∩E2 ≠ ∅, add {vi, wi,3} to M; if 𝛿M(vi) = ∅, add both {vi, wi,1} and {vi, wi,2} to M. Thus, |𝛿M(v)| = 2 and |colM(v)| = 1

for all v∈V . Finally, let M′
be a perfect b-matching in G′

≔G[R∪ {w∈W | 𝛿M(w) = ∅}], which exists as G′
is a complete

bipartite graph and, by construction, ∑
r∈R

b(r) =
∑

w∈W∶𝛿M(w)=∅
b(w).

Consequently, M* ≔M ∪M′
is a perfect b-matching in G with f max

G (M∗) = 1.

As the decision version of Col-BM is obviously in  since we can check the feasibility and color-degree of a given

b-matching in (|V(G)| ⋅ |E|) time, the problem’s strong -completeness follows. ▪

Theorem 2 states that we can solve the strongly -complete (3, B2) - Sat problem by deciding whether an optimal perfect

b-matching in G has color degree one or two. This directly implies the inapproximability of Col-BM.

Corollary 3. There exists no (2− 𝜀)-approximation algorithm for Col-BM unless  =  .

http://wileyonlinelibrary.com
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(A) (B)

FIGURE 3 A, Sufficient subgraph G′
. B, Options for edge ar [Color figure can be viewed at wileyonlinelibrary.com]

Note that any b-matching in a two-colored graph has color degree at most two. Hence, every exact algorithm solving the

perfect b-matching problem is a 2-approximation algorithm for Col-BM on two-colored graphs. Moreover, notice that Col-BM

on a two-colored bipartite graph G = (VA ∪VB, E) with b(v) = 1 for all v∈VA and b(v) = 2 for all v∈VB corresponds to the

task of partitioning G into monocromatic paths of length 3 whose end-nodes are exclusively in VA (spanning P3Partition).

It is known that partitioning an uncolored graph into paths of length 3 (P3Partition) is -complete on bipartite graphs of

maximum degree 3 [24]. However, to the best of our knowledge, no work has been published on monochromatic P3Partition

problems in edge-colored graphs nor on spanning P3Partition problems in uncolored graphs. In the case that b(v) = r, r ∈N,

for all v∈V , Col-BM is closely related to the partitioning of graphs into monochromatic r-factors. A survey on partitioning

problems of edge-colored graphs into monochromatic subgraphs can be found in [16].

3 COMPLETE BIPARTITE GRAPHS

In the previous section, we have proven that Col-BM is -hard on two-colored bipartite graphs G = (VA ∪VB, E = E1 ∪E2)

with b(v) = 1 for all v∈VA and b(v) = 2 for all v∈VB. In this section, we additionally assume G to be complete bipartite and

prove that in this case Col-BM is solvable in polynomial time by providing a constructive algorithm. For better lucidity, we

abbreviate the edge notation {v, w} as vw in this section.

Let G = (VA ∪VB, E = E1 ∪E2) be a two-colored complete bipartite graph with color function c and b(v) = 1 for all v∈VA

and b(v) = 2 for all v∈VB. We assume |VA| = 2|VB| to ensure that G contains a perfect b-matching. As a result, Col-BM reduces

to the question whether G contains a perfect b-matching M with f max
G (M) = 1.

We utilize two characteristics of such graphs to classify those for which a perfect b-matching M with f max
G (M) = 1 exists.

We begin by identifying a subgraph, which is sufficient for the existence of a perfect b-matching M with f max
G (M) = 1.

Lemma 4. Let G = (VA ∪VB, E) be a two-colored complete bipartite graph with b(v) = 1 for all v∈VA and b(v) = 2 for
all v∈VB. If G contains the gadget

G′ ≔ ({b, c, 𝑑} ∪ {r, s}, {br} ∪ {bs, cr, cs, ds}),

illustrated in Figure 3A as a subgraph, then there exists a perfect b-matching M in G with f max
G (M) = 1.

Proof. Let G be a graph that contains the subgraph G′
. We present an algorithm to construct a perfect b-matching M

in G with f max
G (M) = 1. Therefore, let G′

be the subgraph defined above and initialize M = ∅. For a given M ⊆E, we call

a node v∈V(G) (M)-unsatisfied if |𝛿M(v)| < b(v).

Repeat the following two steps until all w∈VB∖V(G′
) are satisfied. First, choose a node w∈VB∖V(G′

) and three

distinct, unsatisfied nodes v1, v2, v3 ∈VA∖V(G′
). Second, add two arbitrary edges e, f ∈ {v1w, v2w, v3w} of identical color

to M, which exist as G is two-colored.

By construction f max
G (M) = 1, exactly one node a∈VA∖V(G′

) remains unsatisfied, and M is a perfect b-matching in

G[V∖({a}∪V(G′
))]. Hence, it suffices to prove that there always exists a perfect b-matching M′

in the induced subgraph

G′′
≔G[{a}∪V(G′

)] with f max
G′′ (M′) = 1, as then M* ≔M ∪M′

is a perfect b-matching in G with f max
G (M∗) = 1. We

distinguish two cases based on the color of the edge ar; see Figure 3B:

1 If c(ar) = c(br), then M′ = {ar, br, cs, ds} is a perfect b-matching in G′ ′
with f max

G′′ (M′) = 1.

2 If c(ar) ≠ c(br), then c(ar) = c(cr) and M′ = {ar, cr, bs, ds} is a perfect b-matching in G′′
with f max

G′′ (M′) = 1.

Hence, M* ≔M ∪M′
is a perfect b-matching in G with f max

G (M∗) = 1. ▪

http://wileyonlinelibrary.com
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FIGURE 4 Stable-partitioned graph with the identical partitions of VA induced by the i-colored neighborhoods of nodes r, s, t∈VB [Color figure can be

viewed at wileyonlinelibrary.com]

As not all Col-BM instances contain the gadget G′
, we continue by exploiting the fact that in every perfect b-matching M

in a q-colored complete bipartite graph G = (VA ∪VB, E) with f max
G (M) = 1, the incident edges 𝛿M(v) of every node v∈VB are

necessarily of the same color. We still assume b(v) = 1 for all v∈VA and b(v) = 2 for all v∈VB. As a result, for every node

v∈VB only node pairs that are connected to v by edges of the same color are potential matching partners.

Definition 5. Let G be a q-colored graph. For v∈V(G) and a color i∈ {1, … , q}, we define the i-colored neighborhood

of v as

Ni(v) ≔ {w ∈ V(G)|c(vw) = i}.

We remark that in a complete bipartite graph G = (VA ∪VB, E) every node v∈VB induces a partition {N1(v), … , Nq(v)} of

VA. If this partition of VA is identical for all v∈VB, that is, {N1(r), … , Nq(r)} = {N1(s), … , Nq(s)} for all r, s∈VB, we call G
stable (color) partitioned; see Figure 4. We use the notion of a stable partitioning to determine whether a perfect b-Matching

M in G with f max
G (M) = 1 exists.

Lemma 6. Let G = (VA ∪VB, E) be a q-colored, stable-partitioned, complete bipartite graph with b(v) = 1 for all v∈VA

and b(v) = 2 for all v∈VB. Then there exists a perfect b-matching M in G with f max
G (M) = 1 if and only if |Ni(w)| is even

for all colors i∈ {1, … , q} and all nodes w∈VB.

Proof. Let {P1, … , Pq} denote the unique partition of VA induced by the set of i-colored neighborhoods of r ∈VB.

On the one hand, if |Pi| is even for all i∈ {1, … , q}, then we construct a perfect b-matching M with f max
G (M) = 1 by

iteratively matching two unsatisfied nodes belonging to the same class Pi to an unsatisfied node in VB. On the other hand,

if M is a perfect b-Matching with f max
G (M) = 1, then every Pi is canonically partitioned by M into disjoint node pairs.

Thus, |Pi| has to be even for all i∈ {1, … , q}. ▪

We proceed by proving that every two-colored complete bipartite graph G = (V , E) with |V | > 6 either fulfills the conditions

of Lemma 4 or the conditions of Lemma 6. This leads to a complete characterization of two-colored complete bipartite graphs

with more than six nodes and will be used to derive an algorithm for this graph class.

Lemma 7. Let G = (VA ∪VB, E) be a two-colored complete bipartite graph with |VA| = 2|VB|, and |V(G)| > 6. Then
exactly one of the following is true.

1 G contains the gadget G′ defined in Lemma 4.

2 G is stable partitioned.

Proof. Assume (1) holds. Then (2) is violated as r and s induce different partitions of {b, c, d}.

Conversely, assume (2) is violated. Therefore, there exist r, s∈VB such that {N1(r), N2(r)}≠ {N1(s), N2(s)}. Hence,

at least one of the following holds.

i N1(s) intersects both N1(r) and N2(r), that is, N1(r)∩N1(s)≠ ∅ ∧ N2(r)∩N1(s)≠ ∅,

ii N2(s) intersects both N1(r) and N2(r), that is, N1(r)∩N2(s)≠ ∅ ∧ N2(r)∩N2(s)≠ ∅

Notice that as |V(G)| > 6 and |VA| = 2|VB|, it directly follows that |VA|≥ 6 and |VB|≥ 3. Without loss of generality

assume that (i) holds, as the argumentation is analogous in the case that (ii) holds. The validity of (i) directly implies

|N1(s)|≥ 2. If |N1(s)|≥ 3, then we choose b∈N2(r)∩N1(s), c∈N1(r)∩N1(s) and d ∈N1(s)∖{b, c}. Therefore, bs, cr, cs
and ds are of color one whereas br is of color two; see Figure 5. Consequently, ({b, c, d, r, s}, {br, bs, cr, cs, ds}) represents

a gadget as defined in Lemma 4. If |N1(s)| = 2 and (ii) holds, then |N2(s)|≥ 3 and the statement follows via symmetry.

http://wileyonlinelibrary.com
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FIGURE 5 Setting if (i) holds and |N1(s)|≥ 3 [Color figure can be viewed at wileyonlinelibrary.com]

(A) (B)

FIGURE 6 |N1(s)| = 2 and (ii) is violated and A, ∣N1(r) ∣ = 1; B, |N2(r)| = 1 [Color figure can be viewed at wileyonlinelibrary.com]

Therefore, assume that |N1(s)| = 2 and (ii) is violated. Then either |N1(r)| = 1 or |N2(r)| = 1; see Figure 6. If |N1(r)| = 1,

then |N2(r)|≥ 5 and |N2(r)∩N2(s)|≥ 4, and we choose b∈N2(r)∩N1(s), c∈N2(r)∩N2(s), and d ∈N2(r)∖{b, c}. There-

fore, br, cr, cs and dr are of color two whereas bs is of color one. Consequently, ({b, c, d, r, s}, {br, bs, cr, cs, dr})

represents a gadget as defined in Lemma 4; see Figure 6A. If |N2(r)| = 1, then |N1(r)|≥ 5 and |N1(r)∩N2(s)|≥ 4, and we

choose b∈N1(r)∩N2(s), c∈N1(r)∩N1(s) and d ∈N1(r)∖{b, c}. Therefore br, cr, cs and dr are of color one whereas

bs is of color two. Consequently, ({b, c, d, r, s}, {br, bs, cr, cs, dr}) represents a gadget as defined in Lemma 4; see

Figure 6B. We conclude, if (2) is violated, then (1) holds. ▪

We remark that the condition imposed on the size of the graph in Lemma 7 is tight.

Proposition 8. There exists a complete bipartite graph G with |V(G)| = 6 that is neither stable partitioned nor does it
contain the gadget G′

.

Proof. The graph

({a, b, c, 𝑑} ∪ {r, s}, {ar, as, br, ds} ∪ {bs, cr, cs, dr})

neither is stable partitioned nor contains the gadget G′
; see Figure 7. ▪

The results from Lemma 7 imply that, on a two-colored complete bipartite graph G = (VA ∪VB, E) with |V(G)| > 6, Col-BM

can be reduced to identifying the gadget G′
as subgraph, or determining that none exists; see Algorithm 1. We first check whether

G is stable partitioned. If this is the case, G does not contain the gadget G′
and we can determine the minimum color degree

of a perfect b-matching in G by checking the cardinalities of the elements of the unique partition of VA: if all cardinalities are

even, the minimum color degree of a perfect b-matching in G is one otherwise it is two. In the other case, G contains the gadget

G′
and, hence, the minimum color degree of a perfect b-matching in G is one.

Theorem 9. Col-BM on two-colored complete bipartite graphs G= (VA ∪VB, E) with b(v)= 1 for all v∈VA and b(v)= 2

for all v∈VB can be solved in (|V|2) time using Algorithm 1.

Proof. The correctness of Algorithm 1 follows from Lemmas 4, 6, and 7. Regarding the runtime, P and S can be

computed in (|VA|) = (|V|) time. The comparison of S and P can be performed in (|VA|) time if they are represented

using characteristic vectors. Thus, Algorithm 1 checks if every w∈VB induces the same partition of VA in (|VA| +|VB||VA|) time. The cardinalities of the two color classes and their parity can be checked in (|VA|). Hence, Algorithm

1 solves Col-BM in (|V|2) time. ▪

Notice that if Algorithm 1 terminates in line 6 (line 10), an optimal perfect b-Matching can be determined using the

construction from the proof of Lemma 4 (Lemma 6).

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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Algorithm 1. Solve Col-BM

1 choose r ∈ VB
2 P ∶= {N1(r),N2(r)}
3 for s ∈ VB ⧵ {r} do // check if G is stable partitioned
4 S ∶= {N1(s),N2(s)}
5 if P ≠ S then // gadget G′ exists
6 return f max ∶= 1

7 for p ∈ P do // check if all |p| are even
8 if |p| is odd then
9 return f max ∶= 2

10 return f max ∶= 1

FIGURE 7 Graph G with |V(G)| = 6 that neither is stable partitioned nor contains the gadget G′
[Color figure can be viewed at wileyonlinelibrary.com]

4 SERIES-PARALLEL GRAPHS

In this section, we consider Col-BM on series-parallel (SP)-graphs. We show that, in case of a fixed number of colors, Col-BM

can be solved in polynomial time on SP-graphs by dynamic programming. Subsequently, we extend our dynamic program to

solve Col-BM on trees. We start with a formal definition of SP-graphs based on the one given in [17].

Definition 10. A (2-terminal) SP-graph with two distinguished nodes 𝜎 and 𝜏, called source and sink, is defined as

follows.

1 An edge {𝜎, 𝜏} is SP.

2 A graph, constructed by a finite number of the following operations, is SP.

i Combine two SP-graphs G1, G2 with sources 𝜎1, 𝜎2 and sinks 𝜏1, 𝜏2 by identifying 𝜏1 with 𝜎2, called series
composition of G1 and G2.

ii Combine two SP-graphs G1, G2 with sources 𝜎1, 𝜎2 and sinks 𝜏1, 𝜏2 by identifying 𝜎1 with 𝜎2 and 𝜏1 with 𝜏2, called

parallel composition of G1 and G2.

The series and parallel composition are illustrated in Figure 8A. Every SP-graph G can be associated with a decomposition
tree T = T(G), which is a rooted, binary tree whose nodes correspond to the subgraphs of G appearing in the recursive con-

struction; see Figure 8B. The leaves of the decomposition tree correspond to edges in G. The inner nodes of the decomposition

tree are of two different types: an S-node corresponds to the series-composition of the graphs associated with its child nodes

and, analogously, a P-node corresponds to the parallel composition of its child nodes. We denote the root of T with r and it

corresponds to G itself by construction.

Let G = (V , E) be an SP-graph with edge coloring E1∪̇ · · · ∪̇Eq = E, and b : V →N0 a mapping. It is known that a decom-

position tree can be computed in linear time for an SP-graph [11]. Thus, let T be a decomposition tree for G. For t∈V(T), let

Gt denote the subgraph of G with source 𝜎t and sink 𝜏 t corresponding to t. We propose a dynamic program to solve Col-BM

on SP-graphs using the corresponding decomposition trees.

First, we introduce a set of labels

t = {(𝛼,F𝜎, 𝛽,F𝜏) | 0 ≤ 𝛼 ≤ b(𝜎t), 0 ≤ 𝛽 ≤ b(𝜏 t), F𝜎,F𝜏 ⊆ {1, …, q}}

http://wileyonlinelibrary.com
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(A) (B)

FIGURE 8 A, Series and parallel composition. B, Example of an SP-tree [Color figure can be viewed at wileyonlinelibrary.com]

for every t∈V(T). The parameters 𝛼 and 𝛽 define new, smaller b-values for 𝜎t and 𝜏 t, whereas the color-subsets F𝜎 , F𝜏 define

the prespecified set of colors for edges incident to 𝜎t and 𝜏 t.

Before we specify our dynamic program, we introduce some more notation. For a node t∈V(T) and a label

x = (𝛼, F𝜎 , 𝛽, F𝜏)∈t, we call a subset M ⊆E(Gt) a (t, x)-restricted matching if |𝛿M(𝜎t)| = 𝛼, |𝛿M(𝜏 t)| = 𝛽, colM(𝜎t) = F𝜎 ,

colM(𝜏 t) = F𝜏 and |𝛿M(v)| = b(v) for all v∈V(Gt)∖{𝜎t, 𝜏 t}. Consequently, we define the (t, x)-restricted Col-BM as

min
M⊆E(Gt)

{f max
Gt

(M) | M is (t, x)-restricted inGt}.

For a node t∈V(T) and a label x∈t, we call the optimal solution value of the (t, x)-restricted Col-BM the cost ct(x) of x at t.
Thus, for all perfect b-matchings M* in G with minimum color degree it holds that

f max
G (M∗) = min

F𝜎 ,F𝜏⊆{1,…, q}
cr((b(𝜎r),F𝜎, b(𝜏r),F𝜏)),

for the root r of T . Our dynamic program for solving the Col-BM on SP-graphs exploits the structure of decomposition trees

and recursively computes label costs bottom up. To that end, we consider the three types of nodes in the decomposition tree of

G starting with the initialization in leaves.

Lemma 11. Let t∈V(T) be a leaf in T , and let e denote the only edge in the corresponding graph Gt. Then
ct((0, ∅ , 0, ∅)) = 0, ct((1, {c(e)}, 1, {c(e)})) = 1, and ct(x) = ∞ for all other labels x∈t.

Proof. If t∈V(T) is a leaf in T , the corresponding graph Gt consists of exactly one edge e by the definition

of decomposition trees. Therefore, there exists exactly one (t, (0, ∅ , 0, ∅))-restricted matching: M0 = ∅. Hence,

ct((0, ∅, 0, ∅)) = f max
Gt

(M0) = 0. There also exists exactly one (t, (1, {c(e)}, 1, {c(e)}))-restricted matching: M1 = {e}.

Hence, ct((1, {c(e)}, 1, {c(e)})) = f max
Gt

(M1) = 1. For all other labels x∈t, the (t, x)-restricted Col-BM is infeasible and

hence, ct(x) = ∞. ▪

For the two remaining types of tree nodes, label costs can be derived recursively from the label costs of child nodes. We

begin by considering S-nodes, which correspond to the series composition of the graphs associated with its child nodes. As a

result of this interrelation, every restricted matching at an S-node can be decomposed into two restricted matchings at its child

nodes. By minimizing over all feasible combinations of restricted matchings at the child nodes, we get the following.

Lemma 12. Let t∈V(T) be an S-node in T with child nodes 𝓁 and u. Then the cost of xt = (𝛼t,Ft
𝜎, 𝛽

t,Ft
𝜏) ∈ t at t can

be computed as

ct(xt) = min
0 ≤ k ≤ b(𝜏𝓁),

F𝓁
𝜏 ,Fu

𝜎 ⊆ {1, …, q}

max {c𝓁((𝛼t,Ft
𝜎, k,F𝓁

𝜏 )), cu((b(𝜏𝓁) − k,Fu
𝜎, 𝛽

t,Ft
𝜏)), |F𝓁

𝜏 ∪ Fu
𝜎|}.

Proof. If t∈V(T) is an S-node with child nodes 𝓁 and u, by definition 𝜎t = 𝜎𝓁 , 𝜏 t = 𝜏u, and 𝜏𝓁 = 𝜎u =: y. Let xt =
(𝛼t,Ft

𝜎, 𝛽
t,Ft

𝜏) ∈ t and Mt ⊆E(Gt) be an optimal solution to the (t, xt)-restricted Col-BM, that is, ct(xt) = f max
Gt

(Mt). By

http://wileyonlinelibrary.com
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defining M𝓁 ≔Mt ∩E(G𝓁) and Mu ≔Mt ∩E(Gu), it follows that

f max
Gt

(Mt) = max {f max
G𝓁

(M𝓁), f max
Gu

(Mu), |colM𝓁 (y) ∪ colMu (y)|}. (1)

Furthermore, for k ≔ |𝛿M𝓁 (y)|, F𝓁
𝜏 ≔ colM𝓁 (y), and Fu

𝜎 ≔ colMu (y) it holds that M𝓁 is an (𝓁, (𝛼t,Ft
𝜎, k,F

𝓁
𝜏 ))-restricted

matching in G𝓁 while Mu is a (u, (b(y) − k,Fu
𝜎, 𝛽

t,Ft
𝜏))-restricted matching in Gu. Thus by definition, f max

G𝓁
(M𝓁) ≥

c𝓁((𝛼t,Ft
𝜎, k,F

𝓁
𝜏 )) and f max

Gu
(Mu) ≥ cu((b(y) − k,Fu

𝜎, 𝛽
t,Ft

𝜏)) which yields in combination with (1) that

ct(xt) = f max
Gt

(Mt) = max {f max
G𝓁

(M𝓁), f max
Gu

(Mu), |colM𝓁 (y) ∪ colMu(y)|}
≥ max {c𝓁((𝛼t,Ft

𝜎, k,F
𝓁
𝜏 )), cu((b(y) − k,Fu

𝜎, 𝛽
t,Ft

𝜏)), |F𝓁
𝜏 ∪ Fu

𝜎|}
≥ min

0 ≤ k ≤ b(y),
F𝓁
𝜏 ,Fu

𝜎 ⊆ {1, …, q}

max {c𝓁((𝛼t,Ft
𝜎, k,F𝓁

𝜏 )), cu((b(y) − k,Fu
𝜎, 𝛽

t,Ft
𝜏)), |F𝓁

𝜏 ∪ Fu
𝜎|}.

Conversely, let

k∗,F𝓁∗
𝜏 ,Fu∗

𝜎 = arg min

0 ≤ k ≤ b(y),
F𝓁
𝜏 ,Fu

𝜎 ⊆ {1, …, q}

max {c𝓁((𝛼t,Ft
𝜎, k,F𝓁

𝜏 )), cu((b(y) − k,Fu
𝜎, 𝛽

t,Ft
𝜏)), |F𝓁

𝜏 ∪ Fu
𝜎|}.

Moreover, let M𝓁 ⊆E(G𝓁) be an optimal solution to the (𝓁, (𝛼t,Ft
𝜎, k∗,F𝓁∗

𝜏 ))-restricted Col-BM on G𝓁 and Mu ⊆E(Gu)

be an optimal solution to the (u, (b(y) − k∗,F∗
𝜎, 𝛽

t,Ft
𝜏))-restricted Col-BM on Gu. We define the matching Mt ≔M𝓁 ∪Mu

in Gt. By construction, Mt is (t, xt)-restricted, colM𝓁 (𝜏) = F𝓁∗
𝜏 , and colMu (𝜎) = Fu∗

𝜎 . Thus,

ct(xt) ≤ f max
Gt

(Mt) = max {f max
G𝓁

(M𝓁), f max
Gu

(Mu), |colM𝓁 (𝜏) ∪ colMu (𝜎)|}
= max {c𝓁((𝛼t,Ft

𝜎, k∗,F𝓁∗
𝜏 )), cu((b(y) − k∗,Fu∗

𝜎 , 𝛽 t,Ft
𝜏)), |F𝓁∗

𝜏 ∪ Fu∗
𝜎 |}

= min
0 ≤ k ≤ b(y),

F𝓁
𝜏 ,Fu

𝜎 ⊆ {1, …, q}

max {c𝓁((𝛼t,Ft
𝜎, k,F𝓁

𝜏 )), cu((b(y) − k,Fu
𝜎, 𝛽

t,Ft
𝜏)), |F𝓁

𝜏 ∪ Fu
𝜎|}.

▪

To conclude the computation of label costs, we consider P-nodes. Recall, that P-nodes correspond to the parallel composition

of the graphs associated with its child nodes. Thus, we can again compute the cost of labels by minimizing over all feasible

combinations of restricted matchings at the child nodes.

Lemma 13. Let t∈V(T) be a P-node in T with child nodes 𝓁 and u. Then the cost of xt = (𝛼t,Ft
𝜎, 𝛽

t,Ft
𝜏) ∈ t at t can

be computed as

ct(xt) = min
0 ≤ k ≤ 𝛼t , F𝓁

𝜎 ∪ Fu
𝜎 = Ft

𝜎

0 ≤ m ≤ 𝛽 t , F𝓁
𝜏 ∪ Fu

𝜏 = Ft
𝜏

max {c𝓁((k,F𝓁
𝜎 ,m,F𝓁

𝜏 )), cu((𝛼t − k,Fu
𝜎, 𝛽

t − m,Fu
𝜏 )), |Ft

𝜎|, |Ft
𝜏 |}.

Proof. If t∈V(T) is a P-node with child nodes 𝓁 and u, by definition 𝜎𝓁 = 𝜎u = 𝜎t and 𝜏𝓁 = 𝜏u = 𝜏 t. Let xt =
(𝛼t,Ft

𝜎, 𝛽
t,Ft

𝜏) ∈ t and Mt ⊆E(Gt) be an optimal solution to the (t, xt)-restricted Col-BM, that is, ct(xt) = f max
Gt

(Mt). By

defining M𝓁 ≔Mt ∩E(G𝓁) and Mu ≔Mt ∩E(Gu), it follows that

f max
Gt

(Mt) = max {f max
G𝓁

(M𝓁), f max
Gu

(Mu), |colM𝓁 (𝜎) ∪ colMu(𝜎)|,|colM𝓁 (𝜏) ∪ colMu (𝜏)|}
= max {f max

G𝓁
(M𝓁), f max

Gu
(Mu),|Ft

𝜎|, |Ft
𝜏 |}. (2)

For the choice of k ≔ |𝛿M𝓁 (𝜎)|, m ≔ |𝛿M𝓁 (𝜏)|,F𝓁
𝜎 ≔ colM𝓁 (𝜎), and F𝓁

𝜏 ≔ colM𝓁 (𝜏), the matching M𝓁 is

(𝓁, (k,F𝓁
𝜎 ,m,F𝓁

𝜏 ))-restricted by construction. Moreover, for Fu
𝜎 ≔ colMu (𝜎) and Fu

𝜏 ≔ colMu (𝜏) the matching Mu is

(u, (𝛼t − k,Fu
𝜎, 𝛽

t − m,Fu
𝜏))-restricted. Thus, it follows by definition that f max

G𝓁
(M𝓁) ≥ c𝓁((k,F𝓁

𝜎 ,m,F𝓁
𝜏 )) and f max

Gu
(Mu) ≥

cu((𝛼t − k,Fu
𝜎, 𝛽

t − m,Fu
𝜏)) which yields in combination with (2) that

ct(xt) = f max
Gt

(Mt) = max {f max
G𝓁

(M𝓁), f max
Gu

(Mu), |Ft
𝜎|, |Ft

𝜏 |}
≥ max {c𝓁((k,F𝓁

𝜎 ,m,F𝓁
𝜏 )), cu((𝛼t − k,Fu

𝜎, 𝛽
t − m,Fu

𝜏)), |Ft
𝜎|, |Ft

𝜏 |}
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≥ min
0 ≤ k ≤ 𝛼t , F𝓁

𝜎 ∪ Fu
𝜎 = Ft

𝜎

0 ≤ m ≤ 𝛽 t , F𝓁
𝜏 ∪ Fu

𝜏 = Ft
𝜏

max{c𝓁((k,F𝓁
𝜎 ,m,F𝓁

𝜏 )), cu((𝛼t − k,Fu
𝜎, 𝛽

t − m,Fu
𝜏 )), |Ft

𝜎|, |Ft
𝜏 |}.

Conversely, let

k∗,F𝓁∗
𝜎 ,Fu∗

𝜎 ,m∗,F𝓁∗
𝜏 ,Fu∗

𝜏 = arg min

0 ≤ k ≤ 𝛼t , F𝓁
𝜎 ∪ Fu

𝜎 = Ft
𝜎

0 ≤ m ≤ 𝛽 t , F𝓁
𝜏 ∪ Fu

𝜏 = Ft
𝜏

max{c𝓁((k,F𝓁
𝜎 ,m,F𝓁

𝜏 )), cu((𝛼t − k,Fu
𝜎, 𝛽

t − m,Fu
𝜏 )), |Ft

𝜎|, |Ft
𝜏 |}.

Moreover, let M𝓁 ⊆E(G𝓁) be an optimal solution to the (𝓁, (k∗,F𝓁∗
𝜎 ,m∗,F𝓁∗

𝜏 ))-restricted Col-BM on G𝓁 and Mu ⊆E(Gu)

be an optimal solution to the (u, (𝛼t − k∗,Fu∗
𝜎 , 𝛽 t − m∗,Fu∗

𝜏 ))-restricted Col-BM on Gu. We define the matching

Mt ≔M𝓁 ∪Mu in Gt. By construction, Mt is (t, xt)-restricted, F𝓁∗
𝜎 ∪ F𝓁∗

𝜎 = Ft
𝜎 , and F∗

𝜏 ∪ F∗
𝜏 = Ft

𝜏 . Thus,

ct(xt) ≤ f max
Gt

(Mt) = max{f max
G𝓁

(M𝓁), f max
Gu

(Mu), |colM𝓁 (𝜎) ∪ colMu (𝜎)|, |colM𝓁 (𝜏) ∪ colMu (𝜏)|}
= max{f max

G𝓁
(M𝓁), f max

Gu
(Mu), |F𝓁∗

𝜎 ∪ Fu∗
𝜎 |, |F𝓁∗

𝜏 ∪ Fu∗
𝜏 |} = max {f max

G𝓁
(M𝓁), f max

Gu
(Mu), |Ft

𝜎|, |Ft
𝜏 |}

= max{c𝓁((k∗,F𝓁∗
𝜎 ,m∗,F𝓁∗

𝜏 )), cu((𝛼t − k∗,Fu∗
𝜎 , 𝛽 t − m∗,Fu∗

𝜏 )), |Ft
𝜎|, |Ft

𝜏 |}
= min

0 ≤ k ≤ 𝛼t , F𝓁
𝜎 ∪ Fu

𝜎 = Ft
𝜎

0 ≤ m ≤ 𝛽 t , F𝓁
𝜏 ∪ Fu

𝜏 = Ft
𝜏

max{c𝓁((k,F𝓁
𝜎 ,m,F𝓁

𝜏 )), cu((𝛼t − k,Fu
𝜎, 𝛽

t − m,Fu
𝜏 )), |Ft

𝜎|, |Ft
𝜏 |}.

▪

A perfect b-matching M* in G of minimum color degree can be obtained by backtracking the chosen minima in the steps of

the dynamic program.

Next, we consider the runtime of our dynamic program. For better lucidity, let B := maxv∈Vb(v).

Theorem 14. Col-BM parameterized by the number of colors q on SP-graphs is fixed-parameter tractable (FPT) and
can be solved in (|E| ⋅ 36q ⋅ B4) time.

Proof. The correctness of the algorithm follows from Lemmas 11, 12, and 13. Regarding its runtime, observe that

the costs of (B2 ⋅ 4q) labels need to be computed for each node t∈V(T). The computational complexity of computing

costs of labels is dominated by the computation time of label costs for P-nodes. For P-nodes, we have to minimize over

(B) choices for k and m, respectively. For each color in Ft
𝜎 , that color can be either in F𝓁

𝜎 , in Fu
𝜎 , or in both which

yields (3q) possibilities. The same estimation holds for Ft
𝜏 and thus we compute the minimum of at most (9q ⋅ B2)

maxima and every maximum can be calculated in (1) time. As |V(T)| = 2|E|− 1, the algorithm runs in (|E| ⋅ 36q ⋅B4)
time. ▪

We note that in all Col - BM instances, B≤ |E| and therefore our algorithm has polynomial runtime if q is constant. Moreover,

we can extend our algorithm to solve Col-BM on trees as follows: given a Col-BM instance  on a tree T = (V , E), we construct

an auxiliary graph G by adding a new vertex y, connecting it to all leaves of T and setting b(y) = 0. By construction, G is SP

[8] and contains at most 2(|V |− 1) edges. Furthermore, every perfect b-matching in G contains no edges from 𝛿G(y) = E(G)∖E
and is therefore a perfect b-matching in T .

Corollary 15. Col-BM parameterized by the number of colors q on trees is FPT and can be solved in (|V| ⋅ 36q ⋅ B4)
time.

5 GRAPHS WITH BOUNDED TREEWIDTH

We proceed by considering Col-BM on graphs with bounded treewidth, which is a more general graph class that includes

SP-graphs. Using dynamic programming, we show that Col-BM on graphs with bounded treewidth is polynomial-time solvable

for a fixed number of colors. Before we present the details of our algorithm, we introduce the concept of tree decompositions,

followed by the definition of a graph’s treewidth according to Robertson and Seymour [27].

Definition 16. For a graph G = (V , E), a pair (T ,) consisting of a tree T = (V(T), E(T)) and a collection of vertex

subsets (called bags)  = {Xt ⊆ V|t ∈ V(T)} associated to the nodes of T , is called a tree decomposition of G if it

satisfies the following properties:
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(A) (B)

FIGURE 9 A, Graph G with tw(G) = 2. B, Nice tree decomposition (T ,) of G

1 Every vertex of G is contained in at least one bag, that is, ∪t∈V(T)Xt = V .

2 For each edge {v, w}∈E there exists a node t∈V(T) such that v, w∈Xt.

3 For all vertices, t, 𝓁, u∈V(T) such that 𝓁 lies on the unique path between t and u in T , it holds that Xt ∩Xu ⊆X𝓁 .

The width of a tree decomposition of graph G is defined as the cardinality of its largest bag minus one, that is,

tw(G, (T ,)) ≔ maxt∈V(T)|Xt| − 1. The treewidth of a graph G is now defined as the smallest width among all tree

decompositions of G, that is, tw(G) ≔ min {tw(G, (T ,))|(T ,) is a tree decomposition ofG}.

For better lucidity of dynamic programs, so-called nice tree decompositions were defined as a subclass of all tree

decompositions [6].

Definition 17. A tree decomposition (T ,) of a graph G = (V , E) is called nice if T is a rooted tree and all nodes t∈V(T)

can be categorized into four groups:

1 Leaves t∈V(T) have no child nodes and their bag contains exactly one vertex v∈V , that is, Xt = {v}.

2 Introduce nodes t∈V(T) have exactly one child node 𝓁 ∈V(T) such that X𝓁 ⊊Xt and Xt∖X𝓁 = {w} for some w∈V .

3 Forget nodes t∈V(T) have exactly one child node 𝓁 ∈V(T) such that Xt ⊊X𝓁 and X𝓁∖Xt = {w} for some w∈V .

4 Join nodes t∈V(T) have exactly two child nodes 𝓁, u∈V(T) such that Xt = X𝓁 = Xu.

For any graph G = (V , E) with bounded treewidth tw(G) < W, a nice tree decomposition (T ,) with (V) nodes and

tw(G, (T ,)) < W can be computed in linear time [5,18]. An illustrative graph with corresponding nice tree decomposition is

visualized in Figure 9.

Our dynamic program for solving the Col-BM on graphs with bounded treewidth exploits the structure of nice tree decom-

positions and recursively computes label costs bottom up. Let G = (V , E) be a graph with bounded treewidth tw(G) < W ∈N,

E1 ∪̇ · · · ∪̇ Eq = E be an edge coloring of G, and c ∶ E → {1, …, q} be the corresponding color function. Further, let (T ,)
be a nice tree decomposition of G such that tw(G, (T ,)) < W. Without loss of generality, we assume that the bag Xr, corre-

sponding to the root r of T , contains exactly one vertex. Should (T ,) violate this assumption, we simply add a sequence of

forget nodes to r and redefine T’s root.

For a tree node t∈V(T) we denote the set of edges of G induced by its bag Xt with E[Xt] and the subgraph of G induced

by the vertices in the bags of the subtree of T rooted in t with Gt. As before, for a vertex v∈V and a subset of edges M ⊆E,

we denote the set of colors in 𝛿M(v) by colM(v). Finally, for all mappings f : A→B, we abbreviate f a ≔ f (a) for a∈A for ease of

notation.

We use labels of the form

x = (m,F, 𝛽) ∈ t ≔ {0, 1}E[Xt] × ({1, …, q})Xt × N
Xt
0

at the tree nodes t∈V(T) to define an auxiliary variant of Col-BM on the subgraph Gt which we refer to as xCol-BM(t,x). To

that end, the binary-valued mapping m : E[Xt]→ {0, 1} prespecifies whether an edge e∈E[Xt] is part of the b-matching in Gt
or not. The mapping F ∶ Xt → ({1, …, q}) indicates for each vertex v∈Xt the set of unlocked edge colors Fv ⊆ {1, … , q}.

Only edges from 𝛿Gt (v) with unlocked colors may be chosen as part of a matching and all unlocked colors count toward the

color degree of a vertex - even if they are unused. This gives rise to the definition of the x-(M-)color degree of v∈V(Gt):

|colM(x, v)| =
{|Fv| ifv ∈ Xt,|colM(v)| else.
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Finally, the mapping 𝛽 : Xt →N0 defines the required degree of each vertex v∈Xt with respect to matching edges in E(Gt)∖E[Xt].

We formalize the auxiliary problem xCol-BM(t,x) as follows:

min
M⊆E(Gt)

max
v∈V(Gt)

|colM(x, v)|
s.t. |e ∩ M| = me ∀e ∈ E[Xt] (3)

|𝛿M(v)| = b(v) ∀v ∈ V(Gt)∖Xt (4)

|𝛿M(v)| ≤ b(v) ∀v ∈ Xt (5)

|𝛿M(v)∖E[Xt]| = 𝛽v ∀v ∈ Xt (6)

colM(v) ⊆ Fv ∀v ∈ Xt (7)

Every b-matching in Gt satisfying the constraints (3)–(7) is called (t, x)-feasible. We define the cost ct(x) of label x∈t at tree

node t as the optimal solution value to xCol-BM(t,x). If xCol-BM(t,x) is infeasible, we call x invalid and we set ct(x) = ∞. All

remaining labels are called valid and we calculate their cost recursively. To that end, we consider the four types of nodes in the

nice tree decomposition (T ,) of G starting with the initialization in leaves.

Lemma 18. Let t∈V(T) be a leaf with Xt = {v} for some v∈V . Then the cost of a valid label x = (m, F, 𝛽)∈t at t
can be computed as

ct(x) = |Fv|.
Proof. As t is a leaf, E[Xt] = ∅ and Gt consists of the isolated vertex v∈Xt. All valid labels x∈t have the form x = (m,

F, 𝛽) with Fv ⊆ {1, … , q}, and 𝛽v = 0. The only (t, x)-feasible matching in Gt is M ≔ ∅ and thus, ct(x) = |colM(x, v)| =
|Fv|. ▪

For the three remaining types of tree nodes, label costs can be derived recursively from the label costs of child nodes. We

begin by considering introduce nodes.

Lemma 19. Let t∈V(T) be an introduce node with unique child node 𝓁 ∈V(T), and let w∈V be the introduced vertex,

that is, Xt∖X𝓁 = {w}; see Figure 10A. Given a valid label xt = (mt, Ft, 𝛽
t)∈t, we define the label x𝓁 = (m𝓁 , F𝓁 , 𝛽𝓁)∈𝓁

via m𝓁
e ≔ mt

e for all e∈E[X𝓁], F𝓁
v ≔ Ft

v for all v∈X𝓁 , and 𝛽𝓁v ≔ 𝛽 t
v for all v∈X𝓁 . Then the cost of xt at t can be

computed as
ct(xt) = max {c𝓁(x𝓁), |Ft

w|}.
Proof. We begin by showing ct(xt) ≥ max {c𝓁(x𝓁), |Ft

w|}. Let Mt be an optimal solution to xCol - BM(t, xt). For the

vertex w∈V introduced by node t∈V(T), it holds that |colMt (xt,w)| = |Ft
w| as w∈Xt. Hence,

ct(xt) = max
v∈V(Gt)

|colMt (xt, v)| ≥ |colMt (xt,w)| = |Ft
w|. (8)

Next, let U ≔ 𝛿Gt (w) ⊆ E[Xt] be the set of edges introduced by t∈V(T) and M𝓁 ≔Mt∖{U}. We show that M𝓁 is an

(𝓁, x𝓁)-feasible matching in order to bound c𝓁(x𝓁) from above.

By construction of M𝓁 , e ∩ M𝓁 = e ∩ Mt = mt
e = m𝓁

e holds for all e∈E[X𝓁] and thus equalities (3) are satisfied.

Concerning equalities (4), it holds that |𝛿M𝓁 (v)| = |𝛿Mt (v)| = b(v) for v∈V(G𝓁)∖X𝓁 . Finally, as M𝓁 ⊆Mt and Mt is

(t, xt)-feasible, it follows that

|𝛿M𝓁 (v)| ≤ |𝛿Mt (v)| ≤ b(v) ∀v ∈ X𝓁 ,

|𝛿M𝓁 (v)∖E[X𝓁]| = |𝛿Mt (v)∖E[Xt]| = 𝛽 t
v = 𝛽𝓁v ∀v ∈ X𝓁 ,

colM𝓁 (v) ⊆ colMt (v) ⊆ Ft
v = F𝓁

v ∀v ∈ X𝓁 ,

and hence conditions (5)–(7) are satisfied. Therefore, M𝓁 is (𝓁, x𝓁)-feasible.

Additionally, |colM𝓁 (x𝓁 , v)| = |colMt (xt, v)| for all v∈V(G𝓁) as Mt∖E[Xt] = M𝓁∖E[X𝓁] and Ft
v = F𝓁

v for all v∈X𝓁 .

As a result,

c𝓁(x𝓁) ≤ max
v∈V(G𝓁)

|colM𝓁 (x𝓁 , v)| = max
v∈V(G𝓁)

|colMt (xt, v)|
≤ max

v∈V(Gt)
|colMt (xt, v)| = ct(xt). (9)
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(A) (B)

FIGURE 10 A, Visualization of Gt for t∈V(T) being an introduce node with child node 𝓁. B, Visualization of Gt for t∈V(T) being a join node with child

nodes 𝓁 and u

By combining inequalities (8) and (9), we obtain ct(xt) ≥ max {c𝓁(x𝓁), |Ft
w|}.

Conversely, we show that ct(xt) ≤ max {c𝓁(x𝓁), |Ft
w|}. Let M𝓁 be an optimal solution to xCol - BM(𝓁, x𝓁). We define

the matching Mt ≔M𝓁∪ {e ∈ U|mt
e = 1} and show that Mt is (t, xt)-feasible in order to bound ct(xt) from above. For

e∈U, equation (3) holds by definition. For e∈E[Xt]∖U = E[X𝓁], equation (3) is satisfied as e∩Mt = e∩M𝓁 = m𝓁
e = mt

e
holds. Concerning equations (4), |𝛿Mt (v)| = |𝛿M𝓁 (v)| = b(v) holds for all v∈V(Gt)∖Xt. For the introduced vertex w∈Xt,

constraints (6) and (7) hold by the validity of xt. For v∈Xt∖{w} = X𝓁 , equation (6) holds as

|𝛿Mt (v)∖E[Xt]| = |𝛿M𝓁 (v)∖E[X𝓁]| = 𝛽𝓁v = 𝛽 t
v.

By the validity of xt, condition (7) holds for v∈Xt∖{w} as

colMt (v) = colM𝓁 (v) ∪ colMt∖M𝓁 (v) ⊆ Ft
v ∪ F𝓁

v = Ft
v.

Finally, equations (3) and (6) in combination with the validity of xt imply that inequalities (5) hold for all v∈V(Gt).

Therefore, Mt is (t, xt)-feasible.

The construction of Mt implies that |colMt (xt, v)| = |colM𝓁 (x𝓁 , v)| for all v∈V(G𝓁). Thus,

ct(xt) ≤ max
v∈V(Gt)

|colMt (xt, v)| = max { max
v∈V(G𝓁)

|colMt (xt, v)|, |colMt (xt,w)|}
= max { max

v∈V(G𝓁)
|colM𝓁 (x𝓁 , v)|, |Ft

w|} = max {c𝓁(x𝓁), |Ft
w|}.

We conclude ct(xt) = max {c𝓁(x𝓁), |Ft
w|}. ▪

Next, we consider the computation of label costs for forget nodes.

Lemma 20. Let t∈V(T) be a forget node with unique child node 𝓁 ∈V(T). Let w∈V be the forgotten vertex, that is,

{w} = X𝓁∖Xt, and denote its incident edges with respect to G[X𝓁] by U ≔ E[X𝓁]∖E[Xt] = 𝛿G𝓁
(w) ∩E[X𝓁]. Given a valid

label xt = (mt, Ft, 𝛽 t)∈t, we define the set 𝓁(xt)⊊𝓁 of labels at 𝓁 via

𝓁(xt) ≔
{
(m𝓁 ,F𝓁 , 𝛽𝓁) ∈ 𝓁|m𝓁

e = mt
e ∀e ∈ E[Xt],

F𝓁
v = Ft

v ∀v ∈ Xt,

𝛽𝓁v = 𝛽 t
v −

∑
e∈𝛿U (v)

m𝓁
e ∀v ∈ Xt,

𝛽𝓁w = b(w) −
∑
e∈U

m𝓁
e

}
.

Then the cost of xt at t can be computed as

ct(xt) = min
x𝓁∈𝓁(xt)

c𝓁(x𝓁).
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Proof. We begin by showing ct(xt) ≥ minx𝓁∈𝓁(xt) c𝓁(x𝓁). To that end, note that Gt = G𝓁 and let Mt be an optimal

solution to xCol-BM(t,xt). We define a label x𝓁 = (m𝓁 , F𝓁 , 𝛽𝓁)∈𝓁 as follows:

m𝓁
e ≔

{
mt

e fore ∈ E[Xt],|e ∩ Mt| fore ∈ U,

F𝓁
v ≔

{
Ft

v for v ∈ Xt,

colMt (v) for v = w,

𝛽𝓁v ≔

{
𝛽 t

v −
∑

e∈𝛿U (v)
m𝓁

e for v ∈ Xt,

b(v) −
∑

e∈Um𝓁
e for v = w.

By construction, x𝓁 ∈𝓁(xt). We show that Mt is (𝓁, x𝓁)-feasible in order to bound c𝓁(x𝓁) from above. By definition of

x𝓁 , equations (3) are satisfied for all e∈U, whereas |e ∩ Mt| = mt
e = m𝓁

e for e∈E[Xt] since Mt is (t, xt)-feasible. As

V(G𝓁)∖X𝓁 ⊆V(Gt)∖Xt, constraints (4) and (5) hold by the xt-feasibility of Mt. Concerning equalities (6), for any vertex

v∈Xt |𝛿Mt (v)∖E[X𝓁]| = |𝛿Mt (v)∖E[Xt]| − |𝛿Mt (v) ∩ U| = 𝛽 t
v −

∑
e∈𝛿U (v)

m𝓁
e = 𝛽𝓁v ,

whereas for the forgotten vertex w it holds that

|𝛿Mt (w)∖E[X𝓁]| = |𝛿Mt (w)∖(Mt ∩ U)| = b(w) −
∑
e∈U

m𝓁
e = 𝛽𝓁w .

Finally, as Mt is (t, xt)-feasible, constraints (7) are satisfied by our definition of x𝓁 and thus Mt is (𝓁, x𝓁)-feasible.

For the forgotten vertex w, F𝓁
w = colMt (w) by our definition of x𝓁 . Thus, we conclude that |colMt (xt, v)| = |colMt (x𝓁 , v)|

for all v∈V(Gt) and it follows that

ct(xt) = max
v∈V(Gt)

|colMt (xt, v)| = max
v∈V(G𝓁)

|colMt (x𝓁 , v)|
≥ c𝓁(x𝓁) ≥ min

x̃𝓁∈𝓁(xt)
c𝓁 (̃x𝓁).

Conversely, for all labels x𝓁 ∈𝓁(xt), xCol-BM(t,xt) is a relaxation of xCol-BM(𝓁,x𝓁), and therefore ct(xt) ≤

minx𝓁∈𝓁(xt) c𝓁(x𝓁).
We conclude ct(xt) = minx𝓁∈𝓁 (xt) c𝓁(x𝓁). ▪

To complete the computation of label costs, we consider join nodes.

Lemma 21. Let t∈V(T) be a join node with child nodes 𝓁 and u. Given a valid label xt = (mt, Ft, 𝛽 t)∈t, we define
the set 𝓁,u(xt)⊊𝓁 ×u of pairs of labels at 𝓁 and u via

𝓁,u(xt) ≔
{
((m𝓁 ,F𝓁 , 𝛽𝓁), (mu,Fu, 𝛽u) ∈ 𝓁 × u| m𝓁

e = mu
e = mt

e ∀e ∈ E[Xt],
F𝓁

v = Fu
v = Ft

v ∀v ∈ Xt,

𝛽𝓁v + 𝛽u
v = 𝛽 t

v ∀v ∈ Xt
}
.

Then the cost of xt at t can be computed as

ct(xt) = min
(x𝓁 ,xu)∈𝓁,u(xt)

max {c𝓁(x𝓁), cu(xu)}.

Proof. Recall that for join nodes Xt = X𝓁 = Xu and (V(G𝓁)∖X𝓁)∩ (V(Gu)∖Xu) = ∅; see Figure 10B.

We begin by showing ct(xt) ≥ min(x𝓁 ,xu)∈𝓁,u(xt) max {c𝓁(x𝓁), cu(xu)}. Let Mt ⊆E(Gt) be an optimal solution to

xCol-BM(t,xt), and M𝓁 ≔Mt ∩E(G𝓁) and Mu ≔Mt ∩E(Gu) the restrictions of Mt to the subgraphs G𝓁 and Gu, respec-

tively. We define labels x𝓁 ≔ (mt, Ft, 𝛽𝓁)∈𝓁 and xu ≔ (mt, Ft, 𝛽u)∈u such that 𝛽𝓁v = |𝛿M𝓁 (v)∖E[Xt]| and 𝛽u
v =|𝛿Mu(v)∖E[Xt]| for all v∈Xt. The xt-feasibility of Mt implies for all vertices v∈Xt that

𝛽𝓁v + 𝛽u
v = |𝛿M𝓁 (v)∖E[Xt]| + |𝛿Mu(v)∖E[Xt]| = |𝛿Mt (v)∖E[Xt]| = 𝛽 t

v,

and consequently (x𝓁 , xu)∈𝓁,u(xt).

By construction, the matchings M𝓁 and Mu are feasible for xCol-BM(𝓁,x𝓁) and xCol-BM(u,xu), respectively. More-

over, as F𝓁
v = Fu

v = Ft
v for all v∈Xt, it follows that |colMt (xt, v)| = |colM𝓁 (x𝓁 , v)| for all v∈V(G𝓁) and |colMt (xt, v)| =
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|colMu (xu, v)| for all v∈V(Gu). Hence,

ct(xt) = max
v∈V(Gt)

|colMt (xt, v)|
= max { max

v∈V(G𝓁)
|colMt (xt, v)|, max

v∈V(Gu)
|colMt (xt, v)|}

= max { max
v∈V(G𝓁)

|colM𝓁 (x𝓁 , v)|, max
v∈V(Gu)

|colMu(xu, v)|}
≥ max {c𝓁(x𝓁), cu(xu)}
≥ min

(̃x𝓁 ,̃xu)∈𝓁,u(xt)
max {c𝓁 (̃x𝓁), cu (̃xu)}.

Conversely, we show ct(xt) ≤ min(x𝓁 ,xu)∈𝓁,u(xt) max {c𝓁(x𝓁), cu(xu)}. To that end, consider a pair of labels

(x𝓁 , xu)∈𝓁,u(xt), and let M𝓁 and Mu be optimal solutions to xCol-BM(𝓁,x𝓁) and xCol-BM(u,xu), respectively. We define

the matching Mt ≔M𝓁 ∪Mu in Gt and show that Mt is (t, xt)-feasible. Equations (3) hold, as |e∩Mt| = |e∩M𝓁| = m𝓁
e = mt

e
for all e∈E[Xt]. For all v∈V(G𝓁)∖Xt it holds that |𝛿Mt (v)| = |𝛿M𝓁 (v)| = b(v) and analogously |𝛿Mt (v)| = |𝛿Mu(v)| = b(v)
for all v∈V(Gu)∖Xt, proving that equations (4) hold. Concerning constraints (6), for every v∈Xt|𝛿Mt (v)∖E[Xt]| = |𝛿M𝓁 (v)∖E[Xt]| + |𝛿Mu(v)∖E[Xt]| = 𝛽𝓁v + 𝛽𝓁v = 𝛽 t

v

which, in combination with the validity of xt, directly implies that inequalities (5) are satisfied. Finally, for all v∈Xt
it holds that colMt (v) = colM𝓁 (v) ∪ colMu (v) ⊆ F𝓁

v ∪ Fu
v = Ft

v proving the validity of constraints (7). Therefore, Mt is

(t, xt)-feasible.

Additionally, |colMt (xt, v)| = |colM𝓁 (x𝓁 , v)| for all v∈V(G𝓁) and |colMt (xt, v)| = |colMu (xu, v)| for all v∈V(Gu) as

F𝓁
v = Fu

v = Ft
v for all v∈Xt. We thus conclude that for all (x𝓁 , xu)∈𝓁, u(xt)

ct(xt) ≤ max
v∈V(Gt)

|colMt (xt, v)|
= max { max

v∈V(G𝓁)
|colMt (xt, v)|, max

v∈V(Gu)
|colMt (xt, v)|}

= max { max
v∈V(G𝓁)

|colM𝓁 (x𝓁 , v)|, max
v∈V(Gu)

|colMu(xu, v)|}
= max {c𝓁(x𝓁), cu(xu)}

and therefore, it holds in particular that

ct(xt) ≤ min
(x𝓁 ,xu)∈𝓁,u(xt)

max {c𝓁(x𝓁), cu(xu)}.

We conclude ct(xt) = min(x𝓁 ,xu)∈𝓁,u(xt) max {c𝓁(x𝓁), cu(xu)}. ▪

Finally, we show how the optimal solution value to Col-BM on G is obtained from the computed label costs.

Lemma 22. Let r be T’s root with Xr = {z}, and M* a perfect b-matching in G of minimum color degree. We define the
set * = {(m, F, 𝛽)∈r ∣ 𝛽z = b(z)}⊊r of valid labels at r. Then

f max
G (M∗) = min

x∈∗
cr(x).

Proof. First, we show that f max
G (M∗) ≥ minx∈∗ cr(x). To that end, consider the label xr = (mr, Fr, 𝛽r)∈* with

Fr
z ≔ |colM∗ (z)|. Then M* is by construction (r, xr)-feasible and thus

min
x∈∗

cr(x) ≤ cr(xr) ≤ max
v∈V(Gt)

|colM∗ (xr, v)| = max
v∈V

|colM∗ (v)| = f max
G (M∗).

Conversely, we show f max
G (M∗) ≤ minx∈∗ cr(x). Let xr ∈* and Mr be an optimal solution to xCol - BM(r, xr). We note

that equations (4) and (6) ensure that Mr is a perfect b-matching. Therefore, it holds that

cr(xr) = max
v∈V(Gt)

|colMr (xr, v)| ≥ max
v∈V(Gt)

|colMr (v)| = f max
G (Mr) ≥ f max

G (M∗).

As xr was chosen arbitrarily from *, in particular

min
x∈∗

cr(x) ≥ f max
G (M∗).

We conclude f max
G (M∗) = minx∈∗ cr(x). ▪
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A perfect b-matching M* in G of minimum color degree can be obtained by backtracking the chosen minima in the steps of

the dynamic program. We can now formulate the main result of this section. For better lucidity, let B≔maxv∈Vb(v).

Theorem 23. Col-BM on simple graphs G = (V , E) with bounded treewidth tw(G) < W is in XP with respect to
the number of colors q and the width bound W, and can be solved in (|V| ⋅ 2W2+W(q−1) ⋅ BW ⋅ max {2W+q,BW})
time.

Proof. The correctness of the dynamic program follows from Lemma 22 and the label cost computations in Lemmas 18,

19, 20, and 21.

Concerning the algorithm’s runtime, recall that a nice tree decomposition (T ,) of G with |V(T)| ∈ (|V|) nodes

can be computed in linear time. For each t∈V(T), we have to consider at most

(2|E[Xt]| ⋅ 2q|Xt| ⋅ B|Xt|) ⊆ (2W2−W ⋅ 2qW ⋅ BW )

labels |t |. The computation of label costs for leaves and introduce nodes can be done in (1) time. For labels x∈t at

forget node t∈V(T) with child node 𝓁, we have to compare the label costs of |𝓁(x)| = 2|U|2q labels. For simple graphs,

∣U ∣ ≤ ∣W∣ and thus, the label costs for forget nodes can be computed in (2W2q) time. For labels x = (m, F, 𝛽)∈t at

join node t∈V(T) with child nodes 𝓁 and u, |𝓁,u(x)| = Πv∈Xt (𝛽v + 1) ≤ (B + 1)|Xt|. Consequently, the label costs for

join nodes can be computed in (BW ) time.

In conclusion, the computation of label costs can be performed in (max {2W+q,BW}) time. The algorithm thus runs

in

(|V| ⋅ 2W2+W(q−1) ⋅ BW ⋅ max {2W+q,BW})

time and is therefore an XP-algorithm for Col-BM parameterized by the number of colors q and the maximum treewidth

W; compare [10,25].
▪

Corollary 24. Col-BM on simple graphs G = (V , E) with bounded treewidth tw(G) < W is FPT with respect to the
number of colors q, the width bound W , and the maximum b-value B.

We note that for all Col-BM instances B≤ |E| and thus, for fixed q and W our dynamic program runs in polynomial time

((|V| ⋅B2W ) time). For trees, which are simple graphs with treewidth 1, the runtime obtained from Theorem 23 coincides with

the one from Corollary 15.

As soon as we drop the width bound W, we obtain Col-BM on general graphs with a fixed number of colors which is

strongly- hard by Theorem 2, even for B = 2. The complexity of Col-BM on simple graphs G = (V , E) with bounded

treewidth tw(G) < W and an arbitrary number of colors q remains open.

6 CONCLUSIONS

In this paper, we introduce the minimum color-degree perfect b-matching problem and prove its strong -hardness as well as

its (2− 𝜀)-inapproximability on bipartite graphs with two colors. However, we identify a class of two-colored complete bipartite

graphs on which we can solve Col-BM in quadratic time and propose polynomial-time dynamic programs solving Col-BM with

a fixed number of colors on series-parallel graphs and simple graphs with bounded treewidth.

Future work includes generalizing the results for complete bipartite graphs to more colors as well as to more general b-values.

Moreover, we will investigate the complexity of Col-BM on series-parallel graphs and graphs of bounded treewidth when the

number of colors is not fixed. Furthermore, we plan to examine how special structures in the edge coloring can be exploited.

Finally, we intend to devise general exact algorithms and heuristics for Col-BM by exploiting structures in the underlying

polytope.
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