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A B S T R A C T   

Energy systems are becoming increasingly complex as developments such as sector coupling and decentral 
electricity generation increase their interconnectedness. At the same time, energy system models that are 
implemented to depict and predict energy systems are limited in their complexity due to computational con
straints. Thus, a trade-off has to be made between high degrees of detail and model runtimes. As a first step 
towards efficiently managing the complexity of energy system models, we examine the relationship between the 
purpose of models and their complexity. Using fact sheets on 145 models, we manually cluster these models 
based on their purpose and underlying research questions. Further, we conduct mathematical clustering using 
several clustering methods to investigate the reproducibility of our results. For our study, we define the 
complexity of a model as the level of detail in which it represents reality. We distinguish the level of detail into 
the four dimensions of temporal, spatial, mathematical and modeling content complexity. The differences be
tween the clusters found in these dimensions are verified statistically using confidence intervals. 112 out of 145 
models can be allocated to one out of four major clusters possessing clearly distinguishable complexity profiles: 
unit commitment, electrical grids, policy assessment, and future energy systems. In each of these profiles, high 
complexity in one dimension or subdimension is compensated by low complexities in other dimensions. We 
therefore conclude that when creating a model, modelers allocate complexity in order of priority on those 
features and properties that are particularly important for fulfilling the model’s purpose. Our results provide a 
necessary basis for the emerging field of complexity management in energy system modeling and are therefore of 
high interest for the scientific community and the interpreters of model results such as decision makers from 
policy and industry.   

1. Introduction 

Computer models play a decisive role in understanding energy sys
tems. They serve a variety of purposes, such as understanding load 
flows, determining the effects of energy policy measures and comparing 
chances and risks of different technologies. This broad variety of pur
poses has led to the development of an equally broad variety of energy 
system models. 

Traditionally, energy systems have often been analyzed proprietarily 
[1] and sharing methods and best practices has only recently become a 
focus of the modeling community (see e.g. the IEA-ETSAP Community 
[2]). In our experience, researchers tend to build their own models for 
personal or small-scale use and subsequently employ them to answer as 
many research questions as possible. While modelers generally are 

interested in having models that are as accurate as needed while being as 
simple as possible, to our knowledge, systematic complexity manage
ment is currently not at the forefront of modelers’ efforts. However, the 
increasing complexity of energy systems [3] causes needs for the holistic 
complexity management of energy system models. 

Therefore, our work aims at shifting the focus from the research 
questions that can be answered using a given model to the questions: 
“Which qualities does a model need in order to answer a particular research 
question? In which dimensions does it need to be complex and in which di
mensions is a lower degree of detail sufficient?” In order to do this, we 
analyzed the status quo of complexity management in energy system 
modeling, examining whether models used for similar purposes share 
similar qualities regarding complexity (so-called complexity profiles). 
To carve-out current approaches of energy system modelers towards 
complexity management, we define different dimensions of complexity 
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and cluster existing energy system models according to these di
mensions. To use the most relevant data, our clustering method focuses 
on the predominant complexity qualities and approaches of the models. 

Our work is structured as follows: section 2 is dedicated to the 
relevant literature background, the subsequent section 3 serves to 
demonstrate the data used for our analysis, in section 4 we introduce our 
methods, the results are then shown in section 5, we provide a discussion 
in section 6 and conclude this paper in section 7. 

2. Literature background 

As the model landscape is becoming more diverse, model compari
sons and overviews have received considerable attention. The first 
comprehensive model classification scheme was developed by van Beeck 
in 1999 [4]. The scheme lists several ways of classifying models, such as 
the model purpose, the modeling assumptions, its approach and meth
odology and its sectoral, temporal and geographical coverage. Many 
later attempts at classifying models rely on criteria similar to those by 
van Beeck. However, most models are difficult to allocate to strict classes 
[5]. 

Most recent attempts towards classifying models focus on specific 
subspaces of the modeling landscape [6], falling broadly into one of two 
groups: they focus either on models with a specific purpose (often, this is 
energy policy analysis or the analysis of national energy systems) or on 
models incorporating specific technologies (e.g. electric vehicles). In 
addition, there are also more general overviews over the model 
landscape. 

Among comparisons of models with a specific purpose are the works 
of M€ost and Keles [7], Savvidis et al. [8], Lopion et al. [12], Weijermars 
et al. [9], Pfenninger et al. [10], Fisher et al. [11], Ventosa et al. [12], 
and DeCarolis et al. [13]. The latter focus on “economy optimization 
models” – models used to generate insights about energy economics on 
regional and bigger scales. They evaluate twelve models with regard to 
their openness and reproducibility of modeling results. M€ost and Keles 
[7] gather data on eight stochastic models for electricity market prices. 
Savvidis et al. [8] examine 40 models in order to find models able to 
answer questions relevant to energy policy. Lopion et al. [12] investigate 
models of national energy systems covering all energy sectors. They give 
a history of energy system modeling and highlight current trends and 
future challenges for energy system models. The purpose of their com
parison is to help analysts in their choice of model and the scheme 
developed resembles the one by van Beeck [4]. The criteria used include 
the models’ temporal and spatial horizon as well as their methodology 
and modeling approach. Weijermars et al. [9] delineate modeling ap
proaches suitable for determining future energy mixes. They distinguish 
between six major approaches, such as energy consumption extrapola
tion and scenario analysis, and name relevant models in these cate
gories. Pfenninger et al. [10] aim to give a guideline as to which models 
are particularly suited for the analysis of the challenges recent energy 
market and energy technology developments pose. Hence, they do not 
develop a model taxonomy, but discuss the current paradigms and 
challenges of energy modeling and how different approaches deal with 
these. One of the challenges they identify is complexity. While they 
explain how some modeling approaches deal with the complexity 
inherent in energy systems, the purpose of their work is no to analyze 
different energy modeling tools with regard to their complexity. Fisher 

et al. [11] compile an overview of modeling tools suited for modeling US 
states’ energy systems in compliance with the US Clean Power Plan of 
the Obama administration. Their goal is to give those tasked with 
creating transformation plans for US states’ energy systems an overview 
over the tools at their disposal. Ventosa et al. [12] develop a model 
taxonomy for electricity market models. They categorize models ac
cording to their mathematical approach (i.e. optimization, simulation 
and equilibrium models), including detailed sub-categories, and present 
examples of models developed in these categories. In addition, they find 
further distinguishing attributes (e.g. the degree of competition 
modelled and the models’ time scope) and discuss the three approaches 
with regard to these attributes. 

Other model comparisons focus mainly on models dealing with 
specific technologies and their effects. Foley et al. [14] analyze six 
electricity system models in detail in order to help modelers with their 
choice of model, while Timmerman et al. [15] examine which energy 
system models can be adapted for modeling decarbonized industrial 
parks. Mahmud and Town [16] focus on the transport sector, comparing 
models implemented to investigate the effects of electric vehicles on 
power distribution networks. They identify 125 modeling tools, 44 of 
which they study in detail. Ringkjøb et al. [6] examine 75 models suit
able for analyzing energy systems with high shares of renewables, using 
three main criteria: the models’ “general logic” (i.e. top-down vs. 
bottom-up modeling, the models’ purpose and their methodology), their 
spatial and temporal resolution and the technological and economic 
aspects included in the models. This scheme of categorization also re
sembles the one developed by van Beeck [4]. Connolly et al. [17] pursue 
a similar goal, focusing on models used for analyzing the integration of 
renewables into energy systems. They create a questionnaire directed at 
modelers, covering a broad range of attributes, including the models’ 
users, their applications and some model properties. Their analysis 
covers 37 models. 

Lastly, there exists a number of analyses that are part of neither of the 
two groups named above. One of these is Hall and Buckley [18]. They 
aimed at giving an overview over the general model landscape in the 
United Kingdom and helping analysts choose a model. Hence, their 
comparison is restricted geographically in terms of where a model is 
used rather than thematically. The classification scheme that is applied 
to 22 models again is similar to the one used by van Beeck [4] (e.g. some 
of its categories are modeling approach, methodology, and technolog
ical detail). Another general overview is offered by Jebaraj and Inian 
[19], who distinguish six types of energy system models by their 
approach and provide a chronology of models developed in these cate
gories. Despr�es et al. [20] aim at reconciling the differences between 
broad energy system models and detailed electricity system models in 
order to make use of both approaches’ strengths. In order to do so, they 
propose a methodology to describe both model types. Their typology 
includes the models’ “general context and positioning” [20] (e.g., their 
mathematical approach and the modelled energy systems), their spatial 
and temporal resolution and their technical and economic features (e.g. 
whether electricity transmission is considered). 

The model comparisons, typologies and overviews named above 
have been limited in scope and in sample size. Their purpose was often 
to give an overview of existing models in order to help analysts choose a 
model. The aim of our study, however, goes beyond providing an 
overview over existing models and their suitability for addressing spe
cific research questions. Rather, we focused on the models’ complexity 
as introduced below. In the grand scheme, it is our intention to find out 
how complex a model has to be depending on its purpose. As a first step 
towards this understanding, we examined in which ways models with 
different purposes differ in their complexity. We believe that our novel 
approach contributes to existing literature and might improve energy 
system modeling in future. 

Abbreviations 

GUI Graphical user interface 
MCA Multiple correspondence analysis 
MODEX Model experiments 
SSD Sum of squared distances  
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2.1. Defining complexity 

In order to examine the complexity of energy system models, it is 
necessary to define the term complexity. Different quantitative defini
tions of complexity exist in a variety of fields. They are based on 
discipline-specific understandings of complexity. Additionally, there is 
an interdisciplinary, broad and qualitative notion of complexity that 
stems from the study of complex systems. Understanding and describing 
the qualities and behaviors of complex systems is the task of complexity 
research, an interdisciplinary field, the findings of which are applicable 
to energy systems [3]. Complex systems possess a number of properties 
that distinguish them from other systems [3,21]:  

� Agents: Agents are the actors in a system, making decisions based on 
their own motivations. Those need not necessarily be identical to the 
system’s motivations and goals. Agents can learn and interact with 
other agents.  
� Networks: Physical and non-physical networks connect agents. The 

connections between agents can vary in direction and strength.  
� Self-organization: The system creates a structure autonomously based 

on its agents’ behavior. As a result, the system as a whole develops 
into a certain direction without needing a singular authoritative 
agent guiding it.  
� Path-dependency: A system’s state is always partially a result of its 

past [22]. For example, lock-in effects can appear, rendering it 
difficult or impossible to return to an earlier state [23].  
� Emergence: The system as a whole possesses properties and displays 

behavior that cannot be explained based on the properties and be
haviors of its elements, solely.  
� Co-evolution: Complex systems interact with other systems. Several 

forms of interactions (e.g. competition, interdependency) can be 
present at the same time. 
� Adaptability: The system as a whole keeps its identity despite its el

ements changing.  
� Non-linearity: A complex system’s behavior is highly dependent on its 

environment. Even small changes in input can lead to drastic changes 
in output [22,24]. 

Specific fields’ understandings of complexity and complex systems 
draw upon the findings of complexity research, often highlighting one or 
several of the properties named above (e.g. Ref. [25–28]). Thus, the 
concept of complexity can also be transferred to the field of energy 
system analysis. For example, households, energy producers, TSOs and 
governmental institutions constitute agents with differing and some
times contradictory motivations. Lock-in effects take place in energy 
systems as well: the current global energy system, relying on fossil fuels 
to a great extent, displays inertia. This complicates the transition to an 
energy system with significantly reduced green-house gas emissions, an 
effect that has been named carbon lock-in Ref. [29]. Further examples of 
complex properties in energy systems including a detailed explanation 
are given by Bale et al. [3]. 

2.2. Complexity in energy system modeling 

A model represents a real system in a simplified way as to allow 
understanding the system. By definition, a model has a purpose. This 
purpose in turn determines which parts of the system are modelled to 
what extent [30]. The areas in which a model has to be particularly 
detailed and thus complex depend on the research questions the model is 
supposed to answer. That is why we define the complexity of an energy 
system model as the level of detail with which it represents the real 
system. 

We distinguish between four dimensions of complexity which we 
base on the works of Senkpiel and Winkelmüller [5,31]. Table 1 shows 
the four categories and their main properties.  

� Mathematical complexity: The mathematical model class of the 
modeling approach used (such as linear, mixed-integer linear, non- 
linear, etc.) and its ability to reflect stochastic behavior of the rep
resented system.  
� Temporal complexity: The model’s temporal resolution and horizon.  
� Spatial complexity: The model’s geographical resolution and horizon.  
� System scope: The system’s parts that are modelled and the depth of 

their representation. 

Recent approaches towards a better management of complexity in 
energy system models can be found in Priesmann et al. [32], focusing on 
different complexity settings of energy system optimization models and 
Nolting et al. [33], focusing on metamodeling approaches. 

3. Data 

The data used for our investigation stems from the MODEX (Model 
Experiments) project. Projekttr€ager Jülich, a German institution con
cerned with funding public research, invited modelers to respond to a 
survey regarding their models’ properties. The data was collected in so- 
called fact sheets summarizing the main attributes of the listed models. 

3.1. The MODEX fact sheets 

The MODEX fact sheets contain data on approximately 150 models, 
the vast majority of which are contributions from Germany. There were 
149 attributes examined. As the survey was posed in a multiple-choice 
format, a question typically correlates to several attributes. For 
example, there are five attributes regarding the models’ temporal res
olution (“annual”, “hour”, “15 min”, “1 min”, “other”). Some of the 
multiple-choice options were accompanied by a commentary field 
intended for detailed explanations. A more detailed overview on the 
attributes asked and the structure of the fact sheets can be found in 
Appendix A. 

As shown in Table 2, the majority of the attributes (98) relate to the 
models’ complexity. These attributes can be sorted into four categories 
corresponding to the four dimensions of complexity explained above. 
Four attributes related to the models’ purpose. The remaining 47 

Table 1 
Complexity dimensions.  

Complexity 
dimension 

Properties 

Mathematical Mathematical model class, approach to uncertainty 
Temporal Temporal resolution and horizon 
Spatial Spatial resolution and horizon 
System scope Energy supply sectors, demand sectors, primary energy 

carriers, technologies for generation and conversion, 
technologies for energy transportation, storage technologies, 
dynamicsa  

a Dynamics refer to temporally interdependent developments such as learning 
curves and cost degression that can be included in or excluded from the 
modelled system scope. 

Table 2 
Number of attributes in the MODEX model list.  

Category Number of attributes 

Complexity  
Energy system modelled 59 
Mathematical properties 17 
Spatial properties 13 
Temporal properties 9 

Thematic focus 4 
Other  

Licensing 10 
Programming 17 
General information 20  
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attributes concerned the models’ licensing and programming, the 
modelers themselves, their institutions and other general information. 

3.2. Models contained in the MODEX fact sheets 

Fig. 1 illustrates the number of developers involved in creating the 
models, number of users, and the existence of a graphical user interface 
(GUI), respectively. More than 80% of the models are created by a small 
team consisting of no more than ten persons and more than 60% 
comprise of a maximum of ten users. Only 3% of the models are used by 
more than 100 users. This indicates that the majority of the models 
represented in the MODEX fact sheets are small ones, likely developed 
for use in a single research facility. This is in line with the share of 
models that possess GUI. Only 40% of the models employ a GUI for all 
parts of the model or will be updated in such a manner. The rest of the 
models do not possess a GUI, requiring not only programming skills but 
also in-depth knowledge of the models themselves in order to be 
useable. This supports our initial assessment that the modeling land
scape predominantly consists of proprietary models intended for use in 
the research facility where they are developed. 

4. Methods: model clustering 

In order to examine the connection between the research question to 
be answered using a specific model and the necessary complexity level, 
we used several clustering techniques for the models listed in the 
MODEX fact sheets. After conducting initial data preparations and 
necessary data cleansing, we manually carved-out groups of models that 
serve similar purposes (i.e. manual clustering). We then examined the 
complexity properties of the models and created a complexity profile for 
each of the clusters. Finally, we re-clustered the models algorithmically, 
using several algorithms in order to verify the results of the manual 
clustering process. The different steps of the process chain are described 
in further detail in the following. 

4.1. Manual clustering 

During the manual clustering process, the MODEX list’s attributes 
“methodical focus”, “primary purpose”, “primary outputs” and “example 
research questions” were consulted. We removed models that did not 
contain information in these fields from the dataset. Each of the 
remaining 145 models’ primary foci was inferred from the attributes 
named above. Then, we grouped the models according to their primary 
focus, leading to 10 clusters of different foci. Afterwards, we re- 
examined the models’ thematic foci iteratively, assessing whether 
another cluster provided a better fit. 

4.2. Complexity properties and profiles 

The four biggest clusters contained a majority of the models (112 out 
of 145 models). These four clusters’ complexity properties were then 
investigated and compared to those of all 145 models. For each attri
bute, we calculated the percentage of models in a cluster that support or 
possess it (e.g. “xx% of the models from Cluster A support an hourly tem
poral resolution”). In order to do this, we translated information from the 
MODEX fact sheets to binary values, i.e. reducing detailed textual ex
planations to either “yes ( ¼ 1)” or “no ( ¼ 0)”. In doing so, multiple “yes 
(¼1)” answers for a model in one category were counted several times. 
E.g. if a model can be run as a LP and a MILP, we processed both anwers. 
We used the percentages calculated to compare the clusters with each 
other and with the sum of all models examined. Since the models in the 
MODEX list constitute a sample that might misrepresent the general 
population of models, we verified these values statistically by calcu
lating confidence intervals on a 95% significance level. There are several 
ways to generate confidence intervals for binary data. Following the 
method that Galvin [34] suggests, we chose Wilson Score intervals. 

Finally, the clusters’ complexity properties were aggregated into 
complexity profiles. The profiles detail the areas which a cluster’s 
models are particularly complex in compared to other clusters. 

4.3. Algorithmic clustering 

The manual clustering process performed is based upon a subjective 
assessment of a model’s focus. In order to further verify and assess the 
quality of the models’ cluster allocation, we used several algorithmic 
clustering techniques. The 112 models examined in detail were “counter 
clustered”, i.e. the direction of the analysis was reversed: the purpose of 
the manual clustering had been to find groups of models sharing a pri
mary focus and to then examine the differences in complexity of these 
groups. During the algorithmic clustering process, we grouped models 
according to their complexity properties and the resulting clusters were 
compared regarding their focus. The methods chosen were k-pod clus
tering, hierarchical clustering and multiple correspondence analysis (MCA) 
combined with k-means clustering. For all methods that required 
choosing the number of clusters, we set it to k ¼ 4 in order to test 
whether the manual clustering’s results could be replicated. 

k-pod is a clustering method developed by Chi et al. [35] that is 
derived from k-means. It combines the ease-of-use of the popular k-means 
method with the capability to deal with missing data. Generally, clus
tering algorithms require datasets to be complete [36]. However, several 
strategies to adapt the dataset exist: (1) the analysis can be restricted to 
either only those items or those attributes that are complete or (2) the 
missing data can be imputed (estimated) [37]. Reducing the dataset was 
infeasible for our dataset, since there was missing data for all models and 
all attributes, so we would have lost too much information. The second 
strategy decreases the clustering results’ quality, so working with a 
clustering algorithm that is capable of dealing with missing data points 
is preferable. Chi et al. [35] tested k-pod against other strategies to deal 
with missing data points, demonstrating its superiority with regards to 
clustering accuracy. Hence, we initialized k-pod ten times and chose the 
results of the run that produced the lowest sum of squared distances (SSD) 
[38] for our analysis. In order to examine the quality of the clustering 
results, we compared SSD and silhouette score [39] results for two to ten 
clusters. 

Like k-means, k-pod is based on Euclidean distance as a measure of 
(dis)similarity. This can negatively affect clustering results when 
working with binary data. Generally, both binary data [40] and 
high-dimensional data [41] is difficult to cluster, so few promising 
methods for data that possesses both of these qualities exist. One of them 
is hierarchical clustering, which is compatible with a variety of distance 
measures. Choi et al. [42] compare 76 measures for binary data. We 
chose normalized Hamming distance to measure the similarity between 
the models. Being a symmetrical dissimilarity measure, Hamming dis
tance assumes that zeroes and ones (i.e. occurrences and 
non-occurrences of attributes) carry equal meaning. Since the modelers 
made conscious choices out of a number of limited options (e.g. which 
demand sectors to include), we opted for a symmetrical measure. 

There are different types of hierarchical clustering algorithms. 
Agglomerative algorithms start by creating a cluster for each of the 
objects that are to be clustered [41]. The distances (i.e. dissimilarities) 
between the clusters are calculated and the two clusters most similar to 
each other are merged. This process is repeated until the number of 
clusters pre-specified by the user is reached. Divisive algorithms start by 
creating one cluster for all objects, which is then divided into smaller 
clusters [41]. The algorithm we used was an agglomerative one. 

The rule according to which two clusters are merged by an 
agglomerative algorithm is called linkage method. For example, the al
gorithm can apply the chosen distance measures to all elements of the 
two clusters to calculate their distance (average linkage), only consider 
the elements that are farthest from each other between the two clusters 
(complete linkage) or those that are closest (single linkage). The linkage 
method chosen was average linkage in order to consider the clusters’ 
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whole makeup and minimize misallocations. Missing data was imputed 
using column means [34]. 

Since neither k-pod nor hierarchical clustering possess means to spe
cifically address high-dimensional data, we chose a tool of dimension 
reduction as our third clustering method. Performing a MCA on the data 
allowed us to both reduce its dimensionality and transcribe it into a non- 
binary format [43]. In an MCA, an eigenvalue problem is solved, using the 
first n eigenvectors as a new coordinate system to describe the data. The 
number of eigenvectors used is picked depending on the level of variance 
to be explained [44]. Choosing a higher number of eigenvectors allows 
covering more of the data’s variance but limits the dimension-reducing 
effect of the MCA. In order to cover 95% of the variance in our data, we 
performed the MCA with 50 eigenvectors. The transcribed data was then 
clustered using k-means. Missing data was imputed using column means. 

5. Results 

The manual clustering process resulted in 10 clusters of main foci. 

Table 3 shows the clusters sorted by the number of models assigned to 
them.1 The four largest clusters are noticeably larger than the other 
clusters. Together, they contain 112 out of the 145 models considered 
(77%). These were the four clusters whose complexity properties were 
examined in detail. 

The cluster named “electrical grids” contains models that are used to 
analyze electrical grids and optimize their operation. Among other 
things, they model load flows or the effects of battery storage and 
decentral electricity generation on the grid. Models in the cluster “future 
energy systems” are used for scenario analyses with regard to energy 
system transitions. They focus on future technologies, CO2 emissions 
and energy demands. Models in the cluster “unit commitment” are used to 
obtain power plant deployment schedules. Some of the models also 
include flexibility options and investment decisions. The last of the four 
big clusters, “policy assessment”, contains models used to assess the ef
fects of energy-related policies. 

5.1. Complexity properties of the clusters 

Since a complete description of the complexity properties of the 
clusters would go beyond the scope of this paper, only selected examples 
based on the main complexity drivers as introduced in section 2.2 will be 
presented: the mathematical modeling approach, the temporal horizon 
and resolution and the modelled system scope. 

5.1.1. Modeling approach 
Fig. 2 shows the share of modeling approaches in each cluster. 

Additionally, the leftmost group of columns shows the distribution of 
approaches across all models, including the small clusters not explicitly 
pictured. 

With 67% and 74%, respectively, linear programming (LP) is the most 
popular modeling approach for unit commitment models and models of 
future energy systems. In these two clusters, mixed-integer linear pro
gramming (MILP) is the second-most often used approach. Models used 
for the analysis of electrical grids and for policy assessment, however, 

Fig. 1. Number of model developers and users and share of models possessing a GUI.  

Table 3 
Number of models in the clusters.  

Cluster Description No. of 
models 

Share of 
total 
models 

Electrical grids Analyzing and optimizing 
electrical grids 

39 27% 

Future energy 
systems 

Scenario analysis for energy 
system transformations 

35 24% 

Unit commitment Power plant deployment planning 21 14% 
Policy assessment Scenario analysis for evaluating 

the effects of energy-related 
policies 

17 12% 

Decentralized 
energy systems 

Optimizing the planning, 
extension and operation of 
decentral generation units 

8 6% 

Societal influences Analyzing the socio-economic 
framework of energy systems 

8 6% 

Building sector Optimizing the energy supply for 
building sector 

5 3% 

Data processing Data processing methods for 
energy system models 

3 2% 

Other Varying foci, none of the above 9 6%  

1 In principle, a model could be part of different clusters if it covers different 
foci. However, for reasons of simplicity we assigned each model to the best 
fitting cluster, only. 
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predominantly use non-linear approaches, including “System Dy
namics”. System dynamics is a multi-disciplinary modeling approach 
capable of examining problems that are non-linear and subject to feed
back loops [45]. It has found use in a variety of disciplines, including 
economics, energy and environment modeling and policy analysis [46]. 
Given that it is based on system and control theory [47], it stands to 
reason that this approach is well-suited to analyzing electrical grids. 

The Policy assessment cluster stands out as the only cluster lacking LP 
models and having a high share (41%) of “other” responses. Most of its 
models are non-linear in nature, including agent-based and system dy
namics approaches. Since the questionnaire allowed respondents to select 
any of the categories concurrently, the results may over-present the 
unspecific “non-linear” category. The comments explaining the “other” 
responses either offer additional information regarding the categories 
selected or reveal that the corresponding models’ approaches are com
binations of several modeling techniques, making them difficult to 
classify. With one exception, the comments given by creators of future 
energy systems models are of an explanatory nature. This indicates that 
the modelers felt that their modeling approach could be classified within 
the categories available but wanted to give additional information. 

The black bars in the diagram show the 95% confidence intervals 
calculated. Their meaningfulness varies depending on the cluster. For 
example, the intervals show that LPs are the dominant modeling 
approach in the future energy systems cluster on the chosen confidence 
level. It is not possible to make that same statement for the other clus
ters, however, since the confidence intervals overlap. This is part of a 
general trend that exists across the whole database. For this reason, 
further commentary on the confidence intervals will be given referring 
to the data as a whole in section 6. 

5.1.2. Temporal horizon and resolution 
Fig. 3 shows the models’ temporal horizon and resolution. Generally, 

temporal resolutions and horizons are balanced, keeping the number of 
time steps to calculate at a minimum. The vast majority of unit 
commitment models are run using an hourly resolution in combination 
with a temporal horizon of one year. Policy Assessment models lie at the 
opposite end of this spectrum, since they tend to be long-term models 
(76%) with only a yearly temporal resolution. Some of these models 
offer horizons of up to 100 years. Models within the future energy systems 
cluster are similar to policy assessment models in that they are often long- 
term models as well. However, the future energy systems models use 
significantly higher resolutions, often being run with hourly resolutions. 
The high number of replies in the “other” category is due to these models 
often supporting user-specified resolutions or using a fixed number of 
time slices per year. 

Models of electrical grids use a variety of resolutions and horizons. 
Most notable is the high number of short-term models with a horizon of 
less than one year as well as the high number of replies (61%) indicating 

“other” resolutions. These replies fall into three groups: 24% of all 
electrical grid models use very high resolutions smaller than seconds, 
15% support user-specified resolutions and 6% of all respondents indi
cated that their models do not have a temporal resolution. The 
remaining 16% of respondents indicating “other” did not give further 
explanations. 

5.1.3. System scope 
As shown in Fig. 4, across all clusters, the electricity sector is 

modelled most frequently. All of the models in the unit commitment 
cluster model electricity, while 62% of these models also model heat. The 
electrical grid cluster is clearly focused on the electricity sector, with none 
of the other sectors being included in more than 20% of the models. 
Policy assessment and future energy systems models display the greatest 
breadth of sectoral representation, with at least half of the models in 
both clusters including the electricity, hear, liquid fuels and gas sectors. 

Fig. 2. Modeling approaches with Wilson Score intervals (95% significance level).  

Fig. 3. Temporal horizon and resolution of the models with Wilson Score in
tervals (95% significance level). 
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5.2. Complexity profiles 

Based on the analysis of the clusters’ complexity properties that has 
been presented in part above, we derived complexity profiles for the four 
clusters examined. The profiles describe the areas of high and low 
complexity of the clusters’ models. 

5.2.1. Unit commitment 
The models in the unit commitment cluster are predominantly 

characterized by mathematically rather less complex approaches. Most 
of them are LP models – or less often MILP models – that focus on 
modeling the cost of energy supply. They usually operate with an hourly 
resolution and a temporal horizon of one year. Like the models of all 
clusters, they cover a broad variety of spatial scopes. Most models focus 
on the national level or on the level of individual power plants. The 
complexity of the system modelled varies. Their modeling of energy 
supply and demand sectors is on par with that of other clusters’ models 
with a focus on the electricity sector. Apart from electricity, only the 
heat sector appears to be important for current unit commitment models 
as less than 20% of the models depict one of the other sectors. Models in 
this cluster tend to include a broad variety of energy carriers and elec
tricity generation technologies. Overall, transmission capacities as well 

as storage technologies are examined more frequently by models in the 
unit commitment cluster compared to the other clusters. 

The modelers’ comments in the data indicate that models in the unit 
commitment cluster are predominantly used to solve (power plant) 
dispatch and investment problems. This is in line with their complexity 
profile, as evidenced by this cluster’s focus on the electricity sector and 
power plant modeling. 

The fact that heat is the second-most relevant generation sector in 
this cluster is possibly explained by heat being a by-product of thermal 
power plants [48]. Other sectors are excluded from analysis, indicating 
that covering electricity generation in great depth and breadth takes 
precedence over examining sector coupling potentials. It is also note
worthy that unit commitment models often model storage technologies. 
Pumped storage hydroelectric plants are regarded as a storage tech
nology with great future potential [48], which might explain the fact 
that all of the models in the unit commitment cluster include water-based 
generation technologies. This conclusion is supported by the fact that 
these models often include flexibility options, such as demand side 
management and storage. 

Despite their similarities in modeling approaches and purpose of the 
analysis, unit commitment models possess a far shorter temporal horizon 
than future energy systems models. This indicates that models in the unit 
commitment cluster are used for short-term power plant operation plan
ning rather than exploration of possible energy system transformation 
paths. Their focus is the optimization of an existing generation portfolio 
including relevant investment decisions in the near future. 

All findings mentioned above are summarized in Fig. 5. 

5.2.2. Electrical grids 
The electrical grids cluster is characterized by high mathematical 

complexity. Its models focus on examining technical parameters 
requiring non-linear approaches. The models’ temporal resolution var
ies from hourly to frictions of seconds. Their temporal horizon is often 
limited to the short term, which is likely an attempt to limit the time 
steps that have to be calculated. Regarding spatial complexity, this 
cluster differs from the others in the sense that individual power plants 
and grid areas of transmission system operators are modelled particu
larly often. 

Their high temporal and mathematical complexity is counter- 

Fig. 4. Energy generation sectors modelled with Wilson Score intervals (95% 
significance level). 

Fig. 5. Comparison of unit commitment models (left blue column) and all models (right grey column) with Wilson Score intervals (95% significance level).  
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balanced by limiting the complexity of the content modelled to highly 
grid-relevant elements. On the supply side, there is a focus on the 
electricity sector. On the demand side, the industry and trade sectors are 
more often included (71% and 65%, respectively) than households and 
transport (48% and 35%). With the electrification of transport and its 
implications on electrical grids currently being a topic of high interest, 
the transport sector being among the rarely included sectors is surpris
ing. The industry sector being more often included in electrical grid 
models than households is expected, however. This is due to the fact that 
demand side management, another highly grid-relevant topic, is seen to 
have more potential in industrial applications than in the household 
context [49]. 

As opposed to the other clusters, models in the electrical grids cluster 
examine load flows to a greater extent than transmission capacities. Half 
of all models in this cluster include direct current load flows. Some of the 
model authors indicated their models examine high voltage direct cur
rent, which is regarded as a necessary technology for a pan-national 
electricity grid [50]. In addition, it offers possibilities of improved load 
distribution and feed-in for large-scale renewables (such as for offshore 
wind parks) [51]. This indicates that at least part of the models are 
concerned with analyzing future pan-national grids. 

Again, Fig. 6 summarizes our findings. 

5.2.3. Policy assessment 
The models in the policy assessment cluster use non-linear modeling 

approaches, such as system dynamics and agent-based modeling. While 
there is a focus on economic effects, these models examine all three 
target dimensions of energy policy (economic efficiency, environmental 
sustainability and security of supply, cf. [56]). Most policy assessment 
models possess a long temporal horizon combined with a low, often 
yearly, resolution. Regarding spatial complexity, all policy assessment 
models cover national states, while none depict individual power plants. 

The fact that they often use agent-based modeling indicates that 
agents’ reactions are the focus of the analysis. This is supported by the 
fact that the policy assessment cluster possesses a high number of market 
models on the one hand and households being the most often modelled 
demand sector on the other hand. 

The content modelled is less broad than in other clusters, in partic
ular with regard to detailed grid modeling. Policy assessment models 

examine gasoline as well as diesel fuels far more often and the primary 
energy carriers hydrogen and uranium far less often than other models. 
This indicates that policy modelers limit complexity by focusing on 
those parts of the energy system that are deemed of high societal 
importance: hydrogen research funding is considerably lower than that 
of other renewable energy sources (see Ref. [52]), while uranium has 
lost importance as an energy carrier due to ongoing nuclear phase-outs. 
On the other hand, liquid fuel prices are of high importance across so
ciety and affect electric vehicles’ adoption [53]. 

The complexity profile of policy assessment models is illustrated in 
Fig. 7. 

With respect to its modeling approaches, the future energy systems 
cluster is similar to the unit commitment cluster. Models within this cluster 
use linear approaches and examine economic variables, mostly. The 
models in this cluster use long temporal horizons, frequently covering 
several decades. Still, an hourly resolution is the most common choice 
(74%), making these models highly temporally complex. Some models 
use custom resolutions, such as a set number of time slices per year. This 
indicates that modelers try to limit the number of time steps to be 
calculated. With regard to spatial complexity, future energy systems 
models examine households less often and power plants more often than 
other models. This distinguishes them from policy assessment models in 
particular and is verifiable through the 95% confidence intervals. 

Apart from their modeling approach, there are further similarities 
between future energy system models and unit commitment models. Just 
like the latter, future energy systems models often require solving both 
dispatch and investment problems, as evidenced by the modelers’ 
comments. Thus, one can conclude that as opposed to policy models, 
future energy systems models examine not agents’ actions but techno
logical and financial feasibility. In order to do so, they include a broad 
variety of technologies, resulting in high modeling content complexity. 
In all subcategories of this complexity dimension, their inclusion of 
features is high, often on par or slightly above that of unit commitment 
models and considerably exceeding that of the other two clusters. This 
distinguishes future energy systems models further from policy assessment 
models. 

Fig. 8 summarizes our findings regarding the complexity dimension 
of future energy systems in comparison to other model types. 

Fig. 6. Comparison of electical grid models (left blue column) and all models (right grey column) with Wilson Score intervals (95% significance level).  
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5.3. Algorithmic clustering 

Having examined the manually identified clusters, we used several 
clustering algorithms in order to test the validity of our clusters. For 
reasons of brevity, only the results obtained using k-pod and hierarchical 
clustering are explained in detail. The results of the MCA will be sum
marized in section 6 (discussion). 

5.3.1. K-pod 
We compared the cluster allocation of the k-pod run that generated 

the lowest SSD to the allocation achieved through the manual clustering 

process. Table 4 shows the models’ allocation ordered by manual clus
ters. The clusters created by k-pod were given the letters A to D. 

The models in the cluster electrical grids and, to a lesser extent, those 
in the cluster unit comment were mostly allocated to one cluster by k-pod. 
This is not true for policy assessment and future energy systems models, 
which the algorithm allocated into its four clusters very evenly. 
Comparing the complexity properties of the k-pod clusters to the manual 
clusters’, the manual ones are far more clearly distinguishable. It was 
not possible to generate complexity profiles based on the k-pod clusters. 

In order to evaluate the number of clusters chosen, we compared SSD 
values and silhouette scores for up to ten clusters. As shown in Fig. 9, the 

Fig. 7. Comparison of policy assessment models (left blue column) and all models (right grey column) with Wilson Score intervals (95% significance level)Future 
energy systems. 

Fig. 8. Comparison of policy assessment models (left blue column) and all models (right grey column) with Wilson Score intervals (95% significance level).  
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SSD curve is flat without a noticeable “elbow”. The highest silhouette 
score silmax occurs for two clusters and is very small (silmax ¼ 0:185). We 
also applied the jump method (results not shown), finding that its results 
varied heavily by run. Sugar and James [54] recommend selecting an 
exponent smaller than their suggestion of Y ¼ m

2 for high-dimensional 
data. We tested the values 5, 10, 30 and 50 (� m=2) for Y and ran 
several iterations for up to 10 clusters. Depending on the run, different 
cluster numbers appear to be optimal. In three out of four runs, the 
maximum cluster number chosen (ten) is among the ones that appear 
best suited. In an additional run with up to 20 clusters, 20 appeared as 
the optimal cluster number. This indicates that applied to our data, the 
jump method tends to evaluate the maximum cluster number as one of 
the best-fitting numbers, regardless of which cluster numbers are 
considered. 

5.3.2. Hierarchical clustering 
Table 5 shows the clusters created by the hierarchical clustering al

gorithm. The results are ordered by the manual clusters. At first glance, 
the results seem to validate the cluster allocation that has been manually 
determined. In all clusters but electrical grids, the models are over
whelmingly allocated to one cluster. However, in each case, this is 
algorithmic cluster C. An examination of the algorithmic clusters’ sizes 
(right in the Figure) reveals that cluster C contains 80 of the 112 models. 

6. Discussion 

In this part, the results of the manual and algorithmic clustering 
processes will be discussed. 

6.1. Manual clustering 

The results of the manual clustering showed a connection between 
the purpose of a model and its complexity. We found four clusters with 
clearly distinguishable purposes and complexity profiles. As we 
demonstrated a substantial relation between the main thematic focus of 
a model (i.e. the research questions to be answered using it) and its main 
complexity attributes (the so-called complexity profiles), we can derive 
that conscious decisions have been made by the modelers. A more 
detailed depiction with regard to one complexity driver is compensated 
by less accuracy with regards to other complexity drivers. Based on this, 
we conclude that modelers allocate complexity according to their pri
orities: depending on a model’s focus and purpose, modelers prioritize 
different dimensions of complexity by conducting trade-offs. 

The differences between the clusters vary depending on the 
complexity property examined. There are only minor differences with 
regard to spatial complexity, for example. This may be due to the format 
of the MODEX questionnaire, which did not distinguish spatial coverage 
from spatial resolution. In most properties, there are substantially more 
pronounced differences between the clusters. This indicates that (1) 
there is indeed a broad variety of models and that (2) the clusters cap
ture the differences between different model types well. 

It is noteworthy that the intra-cluster variance of the data varies by 
property as well. While in most properties the profiles are clear-cut, in 

Table 4 
Comparison of manual clusters and K-Pod clusters.  

Cluster (manual) Cluster k- 
pod 

Number of 
models 

Share 

Unit commitment (21 models) A 6 29% 
B 3 14% 
C 12 57% 
D 0 0% 

Electrical grids (39 models) A 5 13% 
B 30 77% 
C 3 8% 
D 1 3% 

Policy assessment (17 models) A 0 0% 
B 7 41% 
C 4 24% 
D 6 35% 

Future energy systems (35 
models) 

A 11 31% 
B 6 17% 
C 9 26% 
D 9 26%  

Fig. 9. SSD (left) and silhouette score (right) for K-Pod.  

Table 5 
Clusters as created by Hierarchical clustering.  

Cluster (manual) Cluster 
Hierarchical 

Number of models Share 

Unit commitment A 0 0% 
B 0 0% 
C 21 100% 
D 0 0% 

Electrical grids A 3 8% 
B 16 41% 
C 17 44% 
D 3 8% 

Policy assessment A 0 0% 
B 3 18% 
C 14 82% 
D 0 0% 

Future energy systems A 1 3% 
B 5 13% 
C 28 72% 
D 1 3%  

Cluster (hierarchical) Number of models Share 

A 4 4% 
B 24 21% 
C 80 71% 
D 4 4%  
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some cases the spread between the models within one cluster is rather 
large. This is the case for the electrical grids cluster in particular. For 
example, while this cluster’s temporal horizon and its temporal resolu
tion are easily distinguished from the other clusters’, they are distrib
uted more evenly (see Fig. 3). This offers the conclusion that the 
electrical grids cluster includes a wider range of models, which differ in 
their complexity properties. 

The results of the manual clustering process are subjective to a 
certain extent. This is not only due to the clustering process applied it
self, but also because the data it is based on, i.e. the modelers’ statements 
on their models’ purpose, is sometimes ambiguous. In particular when 
models are created with several purposes in mind or are used to answer 
research questions that they had not been designed for, it is not easy to 
make clear-cut distinctions. 

The complexity profiles described above are based on the differences 
between the percentages we calculated regarding the clusters’ 
complexity properties. These differences can only be statistically vali
dated on a 95% confidence level in some cases. As Galvin [34] explains, 
there are three factors that influence the size of Wilson Score Intervals:  

� The sample size n  
� The confidence level p  
� The value to be validated 

An increase in sample size decreases the size of the confidence in
terval. That is why the intervals of the percentages calculated for all 145 
models are smaller than the clusters’, while the smallest cluster’s (i.e. 
policy assessment) intervals are the largest ones. A bigger sample size 
might thus help in statistically validating the differences between the 
clusters. However, this is hard to realize. To our knowledge, the MODEX 
fact sheets constitute the biggest concerted effort to comprehensively 
gather model data to date. 

The confidence level chosen was 95%. It is intuitively understood 
that selecting a lower confidence level (i.e. a lower probability that the 
true value lies in the confidence interval) results in smaller confidence 
intervals. That is why we tested 90% confidence levels for some of 
complexity properties. Since this brought only small improvements, we 
did not carry out a full analysis with 90% intervals. 

Finally, the value to be validated itself has an influence on its con
fidence interval. Values close to zero and one possess smaller intervals 
than those in the middle of the percentage scale. This cannot be 
controlled during confidence interval calculation but influences whether 
differences can be validated. Such values that lie close to the middle of 
the scale are disproportionally difficult to verify. This is the case for a 
majority of the percentages calculated, since there are few complexity 
properties that are present or lacking in a large part of the models. 

6.2. Algorithmic clustering 

The clustering algorithms’ results differ to great extent. This was to 
be expected as clustering represents an explorative technique. As a 
method of unsupervised learning, there is no correct or ideal result to 
judge an algorithm’s output against. Thus, a single algorithm’s clus
tering results is to be regarded as one possible way of structuring the 
data rather than the data’s “real” structure. The differences in the cluster 
allocations are therefore a result of the clustering algorithms’ different 
approaches and of the data’s “clusterability”. Both a high number of 
dimensions and a binary data format complicate clustering efforts. 

6.2.1. K-pod 
The k-pod results indicate that the Unit Commitment and Electrical 

Grids clusters are clearly distinguishable, whereas the other two clusters 
are not. This might indicate 4 being a poorly-chosen cluster number. It is 
possible that the two clusters that could not be easily distinguished in 
fact consist of more clusters. 

This interpretation, however, seems implausible given that k-pod’s 

results seem of low quality. The silhouette value indicating two clusters 
can either be due to two clusters describing the data best, due to there 
being little structure in the data or due to the silhouette value being ill- 
fitted to the data. The latter is likely due to the data being high- 
dimensional. With high-dimensional data, differences between dis
tances lose meaning [55]. Since the silhouette value is calculated using 
these differences, it is unreliable for high-dimensional data. This 
conclusion is supported by the low silhouette values overall. 

The flat SSD curve does not allow conclusions regarding the number 
of clusters. Thus, either there is little structure in the data or the elbow 
method fails to detect the structure. We used the jump method to 
distinguish between these two cases. The jump method showed clear 
differences between the cluster numbers tested, but which ones were 
indicated as well-suited and ill-suited, respectively, was not consistent 
over several runs. This indicates that the allocation of the models to 
clusters was not consistent either. 

Given that k-means uses Euclidean distances to calculate the differ
ences between the objects to be clustered, this is plausible. Euclidean 
distance is best used with metric data. While it is possible to use it with 
binary data, it can impair the meaningfulness of the cluster allocation. 
Although the missing data was filled in with metric data, it is possible 
that this has happened. Thus, it is likely that the cluster allocation is a 
result of k-means’ properties rather than a reflection of the data’s actual 
structure. 

6.2.2. Hierarchical clustering 
As opposed to k-means, hierarchical clustering algorithms are 

compatible with a broad range of pairwise distance measures. This 
makes them a likely choice for binary data. However, the results of this 
clustering method again display the algorithm’s properties as well rather 
than a structure underlying the data. The cluster sizes differ vastly, 
which is likely a result of the choice of algorithm, since agglomerative 
clustering tends to result in uneven cluster sizes. 

We examined whether this was a result of the linkage method chosen 
and clustered the data again using complete linkage (i.e. the distances 
between clusters were calculated using those elements in the clusters 
that were farthest from each other). This resulted in more even cluster 
sizes. However, since complete linkage determines two clusters’ simi
larity by only one element in each cluster, this can lead to mis
allocations. That is why we did not further analyze this cluster structure. 

6.2.3. Dimension reduction 
Reducing the number of dimensions and converting the data into a 

metric format through an MCA was expected to result in clusters that 
differ from those determined using k-pod. In part, this was true. How
ever, the models in one of the four manually determined clusters (i.e. 
unit commitment), were allocated to the exact same clusters through both 
k-pod and k-means after performing the MCA. Examining some of the 
clusters’ complexity properties, they were less clearly distinguishable 
than the clusters determined manually. Since a high number of di
mensions had to be used in order to cover 95% of the data’s variance, the 
dimension reduction effect of the MCA was small. It is likely that the 
remaining high dimensionality impaired the clustering algorithm’s 
results. 

6.3. Comparison of clustering approaches 

While the results of the algorithmic clustering approaches remained 
inconclusive to a certain extent, the manual clustering approach led to 
clearly distinguishable clusters with separate complexity profiles. We 
thus conclude that due to the binary nature and the high dimensionality 
of the data under investigation, manual clustering allows for better in
sights. Therefore, we derived the complexity profiles based on the 
manual clustering method and concluded the existence of trade-offs 
between different dimensions of complexity based on these results. 
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7. Conclusion 

Using data gathered in the MODEX fact sheets, we conducted both 
manual and algorithmic clustering to carve-out distinguishable model 
types. Based on this categorization, we investigated the models’ key 
attributes with regards to complexity. 

The manual clustering procedure resulted in four distinguishable 
clusters of different thematic foci, possessing well-defined complexity 
profiles. The results indicate that there is indeed a relationship between 
the research questions a model is supposed to answer and its complexity. 
We thus conclude that modelers allocate complexity by prioritizing 
those aspects that are deemed most important for answering the desired 
research questions (i.e. a trade-off between different drivers of model 
complexity are made). These aspects then represent the real system’s 
qualities in greater detail, while others are regarded as less important for 
the model’s main focus. 

The algorithmic clustering procedures intended to verify the clusters 
resulted in different cluster structures depending on the algorithm. Since 
clustering is an explorative technique, a clustering algorithm can only 
suggest one possible structure that underlies the data. A single algo
rithm’s results are not to be interpreted as the “real” structure of the 
data. As the manual clustering process did result in clearly distinguish
able complexity profiles, we concluded that there is indeed a structure 

present in the data that the algorithms failed to capture. 
The existence of a complexity allocations shows that there is 

awareness for complexity in the modeling community. Our findings 
indicate first efforts towards limiting model complexity by modeling at a 
high level of detail only where this is needed. However, this is only a first 
step towards comprehensive complexity management. If there is to be a 
comprehensive approach that allows fine-tuning the trade-off between 
models’ level of detail and the resulting complexity in various di
mensions, more discussion on guidelines and best practices is needed. To 
this end, the current push towards a more enhanced complexity man
agement in energy system analysis can be claimed a necessary step. 
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Appendix A  

Attributes Possible replies (if applicable) Used for 
clustering? 

1. General information 
Model name Open question Not used 
Acronym Open question Not used 
Institutions Open question Not used 
Authors Open question Not used 
Current contact person Open question Not used 
Contact email Open question Not used 
Website Open question Not used 
Support/community/forum Open question Not used 
User documentation Open question Not used 
Code documentation Open question Not used 
Documentation quality Open question Not used 
Source of funding Open question Not used 
Number of devolopers Open question Not used 
Number of users Open question Not used 
Citation reference Open question Not used 
Citation DOI Open question Not used 
References to reports produced using the model Open question Not used 
Larger scale usage Open question Not used 
2. Thematic focus 
Primary purpose Open question Manual 
Primary outputs Open question Manual 
Example research questions Open question Manual 
Methodical focus Open question Manual 
3. Licensing and openness 
Open source Open question Not used 
Going to open up Open question Not used 
Costs Open question Not used 
License Open question Not used 
Source code available Open question Not used 
GitHub Open question Not used 
Link to source code Open question Not used 
Data provided Open question Not used 
Cooperative programming Open question Not used 
I agree to publish this factsheet on the open energy 

platform (OEP) 
Open question Not used 

4. Programming 
Framework Open question Not used 
Framework name Open question Not used 
Software Open question Not used 
Modeling software Open question Not used 
Internal data processing software Open question Not used 

(continued on next page) 
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(continued ) 

Attributes Possible replies (if applicable) Used for 
clustering? 

External optimizer Open question Not used 
Additional software Open question Not used 
GUI Open question Not used 
References Open question Not used 
Typical computation time Open question Not used 
Typical computation hardware Open question Not used 
Technical data anchored in the model Open question Not used 
Model Integration Open question Not used 
Interfaces Open question Not used 
Model file format Open question Not used 
Model input Open question Not used 
Model output Open question Not used 
Integrating models Open question Not used 
Integrated models Open question Not used 
5. Complexity properties 
Modelled energy sectors Electricity, heat, liquid fuels, gas, others Algorithmic 
Modelled demand sectors Households, industry, commercial sector, transport Algorithmic 
Modelled energy carriers (primary energy carriers) Gas: natural gas, biogas, hydrogen 

Liquid: petrol, diesel, ethanol 
Solid: hard coal, lignite, uranium 
Renewables: biomass, sun, wind, hydro, geothermal Heat 

Algorithmic 

Modelled technologies: components for generation 
or conversion 

Renewables: PV, wind, hydro, biomass, biogas, solar thermal, other renewables (þcomment) 
Conventional: gas, coal, oil, liquid fuels, nuclear 
CHP 

Algorithmic 

Modelled technologies: components for transfer, 
infrastructure or grid 

Electricity: distribution, transition 
Gas: distribution, transition 
Heat: distribution, transition 

Algorithmic 

Modelled properties electrical grid AC load flow, DC load flow, net transfer capacities Algorithmic 
Modelled technologies: components for electricity 

storages 
Battery, kinetic, compressed air, pump hydro, chemical Algorithmic 

Modelled technologies: components for other 
storages 

Heat, gas Algorithmic 

User behavior Open question Algorithmic 
User behavior and demand side management Open question Algorithmic 
Changes in efficiency Open question Algorithmic 
Market models Open question Algorithmic 
Spatial and temporal model properties Open question Algorithmic 
Geographical coverage/Geographic (spatial) 

resolution of the model 
Global, continents, national states, TSO regions, federal states, regions, NUTS 3, municipalities, districts, 
households, power stations, others, comments 

Algorithmic  
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