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Abstract. In this paper we address a variant of the freight train rout-
ing problem to estimate the residual capacity in railway networks with
regular passenger services. By ensemble averaging over a random tem-
poral distribution of usable slots in the network, bounds on the number
of additional freight trains on predefined relations are established. For
the solution, a two-step capacitated routing approach based on a time-
expanded network is used. The approach is applied in a case study to
freight relations in the railway network of North Rhine Westphalia.
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1 Introduction

Railway timetabling of passenger and freight traffic is usually performed on
different time scales. Whereas passenger services are scheduled in the annual
timetabling process, the majority of freight services are requested on relatively
short notice within the timetable period. As a result, freight traffic has to be
routed according to the spare residual capacity in the timetable, a problem
commonly referred to as the freight train routing problem [1].

In long-term planning of network and line concepts, the question how many
additional trains can effectively be routed is generally more important than the
generation of a specific timetable. This is why an understanding of the usability
of the residual network capacity as a function of the passenger traffic load is
required. In particular, the analysis has to deal with the problem that residual
capacity is temporally bound and may not allow for coherent freight train routes.

In this paper, an adaptation of the freight train routing problem for network
capacity planning applications is discussed. To assess the number of routable
freight trains, a time-expanded network is considered, where train path requests
and spare capacity for different network segments are randomly distributed
throughout the day. The solution consists in a two-step approach: In the first
step, the number of trains is maximized, in the second step traveling times are
minimized. The model is applied in a case study to North Rhine Westphalia and
compared to successive and static routing approaches.

⋆ This is a pre-copyedited version of a contribution published in Neufeld J.S., Buscher
U., Lasch R., Möst D., Schönberger J. (eds) Operations Research Proceedings 2019,
published by Springer, Cham. The definitive authenticated version is available online
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2 Related Work

Various studies of the freight train routing problem have been performed in
the literature. In the scheduling context, Cacchiani et al. [3] present an ILP
problem for scheduling extra freight trains in an existing passenger timetable.
The model is based on a time-expanded network graph that only contains links
compatible with the predefined passenger services. The problem is solved using
a Lagrangian heuristic where line capacity constraints are relaxed. A related,
continuous scheduling approach, has been described in [2]. Here, each train is
attributed with a time window and the objective is to minimize penalties result-
ing from time-window violation. Predefined passenger services can be allowed
some flexibility based on the penalization of time windows.

Borndörfer et al. [1] present an approach which abstracts from the timetable
to a more general routing setting. The problem is also set on a time-expanded
network graph. Capacity constraints imposed by passenger traffic are not consid-
ered, explicitly. Instead, they are accounted for by a nonlinear capacity restraint
function in the objective function, which measures the congestion effects as a
function of the local traffic load. Another timetable-independent routing ap-
proach is dicussed in [4], where a static network routing problem including line
segments, station areas, and route nodes is considered. Parametric queuing-based
delay evaluation procedures currently used by DB Netz AG [6] are applied to cal-
culate the residual capacity of each component. An iterative solution approach
accounting for the nonlinear coupling between train routing and capacity con-
straints, which explicitly depend on the routing of freight trains, is introduced.

Similar to [1] and [4], the focus of this work is on the identification of residual
network capacity in long-term planning, regardless of the specific timetable con-
cept. The model we propose can be seen as an extension of [4] to time-dependent
routing. From a methodological point of view, however, our approach is most
closely related to the one described in [3], including strict capacity constraints
in the network graph.

3 Model

3.1 Capacitated Railway Network Model

On a macroscopic level, railway networks are composed of lines, junctions and
stations. In Germany, the capacity utilization and spare capacity of these ele-
ments is presently assessed using aggregate queuing-based approaches [6]. Wait-
ing times as a function of the traffic load ρ are compared to an empirical level
of service (LoS), which denotes the economically optimal utilization of capacity
and depends on the share of freight trains (pfrt). The admissible number of trains
during a time frame T for a given traffic mix is obtained by setting (also see [5])

TW (ρ)
!
= c · e−1.3·(1−pfrt) · T =: LoS(pfrt), (1)

where the constant c depends on the type of element (see [6]).
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Fig. 1. Illustration of a 30 minute time slice of the network with randomly distributed
slots for freight trains. Station/yard capacity restrictions are not depicted in the figure.

In the present work, residual capacity is calculated based on Formula (1) for
each component and distributed randomly over the time frame F for all compo-
nents, independently. For macroscopic network routing on the station/yard-level,
correlations between infrastructure segments are relatively small due to a large
number of merging and starting or ending train services. An example for the
resulting time-expanded residual network graph, where residual capacity trans-
lates into usable links is given in Figure 1.

3.2 Demand Modeling

Freight traffic demand is assumed to be independently uniformly distributed
over the time frame F for all freight relations. It is assumed saturating, i.e. the
number of train path requests is higher than the residual capacity. This allows
to determine the number of additionally marketable slots in a capacity analysis
setting.

3.3 Routing Approach

In the following, we adopt the notation and build on [3] for the routing problem.
Let (V,E) denote the network graph, T denote train runs, and σj and {τj} the
start and the (time-expanded) destination node of train run j ∈ T . δ−(v), δ+(v)
are the sets of in- and outgoing arcs in node v. Let further cv denote the node ca-
pacity, i.e. the number of additional freight trains trains that can simultaneously
be acquainted in a station at the given time. It is assumed the start node has
infinite capacity – which is reasonable, as it often refers to a shunting yard. tje,
tj,min refer to the running time of train j along e ∈ E and the minimum running
time of train j on its designated route. q is a factor specifying the maximum
admissible running time prolongation.
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The freight routing consists of a two-step approach, where the number of
additional freight trains subject to time constraints is maximized in the first
step and running times for this train number are minimized in the second step.

Step 1 – Constrained Flow Maximization

max
∑

j∈T, e∈δ+(σj)

xje, s.t.

∑
e∈E

tjexje ≤ q · tj,min ∀j ∈ T, e ∈ E (2)∑
e∈δ+(v)

xje ≤ 1 ∀j ∈ T, v ∈ V (3)

∑
e∈δ−(v)

xje =
∑

e∈δ+(v)

xje ∀j ∈ T, v ∈ V \ {σj , {τj}} (4)

∑
e∈δ+(v)

xje = zjv ∀j ∈ T, v ∈ V (5)

∑
j∈T

zjv ≤ cv ∀v ∈ V (6)

xje, zjv ∈ {0, 1} ∀j ∈ T, e ∈ E, v ∈ V, (7)

Constraint (2) imposes a running time restriction and constraint (3) ensures
that each train visits each node at most once (no cycles). (4) is the standard
flow conservation and constraints (5)-(7) ensure the capacity limits of stations
are satisfied. Infrastructure restrictions such as lack of electrification or narrow
curves can be accounted for by setting xje = 0 in case train j cannot be operated
on this line.

Step 2 – Running Time Minimization

Let n be the maximum number of additional freight trains obtained in the
first optimization step. The second, running time minimization step provides
insights into the quality of the routing concept in terms of the running times
of the trains. The two-step approach allows to decouple flow maximization and
running time minimization, which is computationally more efficient if additional
fairness constraints between different train relations (cf. [4]) are to be considered.

min
∑
j∈T

(∑
e∈E

tjexje −
∑

e∈δ+(σj)

xjetj,min

)
, s.t.

∑
j∈T

∑
e∈δ+(σj)

xje = n

Constr. (2)−(8)
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4 Results

The freight routing capacity is analyzed in a case study for the network of
North Rhine Westphalia, which consists of 51 nodes and 148 links (see Fig. 2).
For the analysis, the three relations Oberhausen-Troisdorf, Oberhausen-Siegen
and Aachen-Münster are considered, which are amongst the relations with the
highest demand or have been discussed to mitigate capacity shortages.

The results presented in the following are calculated for a 8h time frame
without running time restriction (2). For time resolutions of 3 to 5 minutes and
train demands of the order of the static residual capacity, almost all instances
could be solved to optimality using Gurobi in 60 – 600s. The paths of 6 additional
freight trains are visualized in Figure 2.

A major question in the context of residual freight capacity is whether trains
should be routed simultaneously (pre-planned freight slots in the timetable) or
successively (which refers to the current construction practice). To investigate
this problem, we analyze 500 realizations of the network with random demand
and usable slots on lines. It is found that simultaneous planning yields approx-
imately 2 trains more than successive routing (cf. Fig. 3), on average. Running
time drops by about 20 min (264.8/244.9 min), also see Fig. 3. The difference
will probably get stronger in case of higher overlap between freight relations.

Fig. 2. Visualization of freight train routing results for three freight train relations in
North Rhine Westphalia. Train routes (left) and time-expanded network (right).
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Fig. 3. Results freight train routing for simultaneous and successive routing (500 real.).
Number of additional freight trains (left) and running time statistics (right).

In a static routing setting for the same network, a total of 56 trains can be
supported at an average running time of 115 min. We therefore conclude that
connectedness of slots in the network is a major factor and that it seems advisable
to harmonize slots for entire freight relations in the timetabling process.

5 Conclusion and Outlook

In this paper we have discussed an approach to assess residual network capacity
for freight train routing in an existing passenger timetable concept based on
stochastic demand and residual capacity. We have demonstrated its applicability
in a case study for North Rhine Westphalia. In future, the approach is to be
extended by coupling it to a more detailed demand and capacity modeling.
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