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Abstract
Due to resolving major technological challenges Additive Manufacturing (AM) is on the brink of industrialization. In order 
to operate capital-intensive AM equipment in an economically viable manner, service providers must configure their pro-
duction environment in a way which enables high capacity utilization and short throughput times while minimizing work 
in process. The interrelation of those three mentioned production-related key performance indicators, also known as the 
scheduling dilemma, must be addressed with due consideration of the technology’s characteristics. Within the framework 
of this paper the authors describe the impact of a service provider’s facility configuration regarding machine pool, operator 
availability and distribution of work content on the production system’s utilization. The evaluations rely on a simulation 
model developed in Matlab®, which allows for modification and execution of production schedules within AM facilities of 
different configurations. The validation of the proposed model is based on empirical data gathered on the shopfloor of GKN 
Additive, a global AM service provider.

Keywords  Additive manufacturing · Factory planning · Productivity · Simulation · Factory planning · Shopfloor · 
Production logistics

1  Introduction

Today’s rapidly evolving competitive landscape, character-
ized by shortened innovation cycles and hence shortened, 
steeper value chains [1], exerts pressure on Additive Manu-
facturing (AM) job-shops and OEMs operating capital-
intensive AM equipment. Despite offering a technology 
lead, AM job-shops may create a differentiator and thus 
competitive advantage by a clear commitment to operational 
excellence, positively contributing to decreased through-
put times, reduced work in process (WIP) and increased 
machine utilization. The quantification of those Key Perfo-
mance Indicators (KPIs) is influenced by input variables, i.e. 
shopfloor configuration, such as machine availability, opera-
tor presence, distribution of work content and production 
order release rate. As modifications of the latter parameters 
for the sake of quantifying their impact on the mentioned 
KPIs is not justifiable from an economic perspective in a real 
production environment, a suitable simulation is modeled, 

applied and validated against real production data gath-
ered from four Laser Powder Bed Fusion (LPBF) machines 
installed at GKN Additive, a global AM service provider. 
The described simulation approach allows for sound deci-
sions on both strategic and operational level: the results may 
be utilized for identification of the right time for a capacity 
increase, optimization of operator presence, quantification 
of production order release rate and guidance during the 
process of data preparation, e.g. when deciding whether or 
not to add an additional part to a buildjob.

In a first step the nomenclature for all relevant KPIs, input 
and auxiliary variables is elucidated in order to define and 
structure a model suitable for the specifics of LPBF technol-
ogy. Subsequently, the assumptions and Design of Experi-
ment (DoE) for the simulation runs are explained, followed 
by visualization and validation of the generated results. The 
paper concludes with a critical interpretation of the results 
and an overview regarding further research in the domain of 
AM-specific production simulations.

According to the author’s most recent study, LPBF pro-
duction environments are characterized by work content 
distributions (see Sect. 2.1) which are rarely found in the 
context of conventional manufacturing [2]. Like a job-shop 
environment, e.g. producing complex molds and dies by 
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means of high-precision 5-axis CNC machining, LPBF is 
also characterized by unmanned, autonomous production, 
high average work content per production order and chal-
lenges when it comes to scheduling operator presence and 
production runs. However, differences justifying a dedicated 
examination regarding the applicability of the state of the 
art still exist:

•	 The work content’s coefficient of variation is significantly 
lower than in conventional manufacturing, i.e. standard 
deviation is low compared to average work content  [2].

•	 Work content does not follow a Normal distribution as 
assumed in models such as [3].

•	 Lot sizing is fundamentally different compared to con-
ventional manufacturing. While the situation described 
above typically applies to one-of-a kind manufacturing, 
LPBF manufacturing lots are comprised of a set of highly 
heterogenous part making the deduction of robust default 
production times a challenging task.

2 � Modeling approach

2.1 � Boundary conditions, nomenclature 
and definitions

The production KPIs mentioned in the previous sections 
are borrowed from the area of production logistics. This 
research area constitutes an integrated approach to describe, 
link and optimize the production-economical subdomains of 
production theory, program, capacity and process planning 
[4]. For further details regarding the fundamental interrela-
tions between WIP, lead times and productivity see [3, 5, 6]. 
In order to create a basic understanding of the terms utilized 
during the remainder of this paper, they are described with 
due consideration of the characteristics of LPBF technology. 
As the way components are created from a digital model in 
3D printing is fundamentally different compared to conven-
tional manufacturing, the described framework is limited to 
the printing process and its interfaces to the previous step 
of data preparation. In order to generate a profound under-
standing of the fundamental interrelations that occur when 
AM and production systematics are combined, downstream 
activities along the process chain (i.e. heat treatment, base 
plate separation, milling, quality assurance etc.) are delib-
erately excluded from the considerations of this paper. This 
limitation seems reasonable if established methodologies 
may be applied when deducting production KPIs for the 
conventional manufacturing technologies.

Throughput (TP). A specific workstation’s average out-
put in a given period of time. As parts populating a build 
plate and being manufactured on a LPBF system do not 

constitute a homogenous good, the throughput is measured 
in productive hours per hour.

Utilization (U). The Throughput TP of a specific work-
station divided by its theoretical maximum production capa-
bility (hours per unit hour). In order to facilitate conversion 
in between throughput and utilization within the context of 
this paper, the maximum production capability is set to 1 h 
per unit hour.

Work in Process (WIP). The Work in Process is the 
cumulative sum of the work content waiting for processing 
or currently being processed on a workstation. A buildjob 
comprised of 1 to n parts becomes WIP once the process of 
data preparation is finished, i.e. it is being released for pro-
duction. Once the job is being completed and removed from 
the machine it becomes WIP at the subsequent workstation.

Throughput Time (TT). The average time period 
between a buildjob’s arrival and departure at a specific 
workstation, i.e. the time it spends as WIP. The transforma-
tion of a digital WIP (buildjob populated with oriented, sup-
ported and nested parts) to physical WIP during this period 
is a unique characteristic of AM processes.

Work Content (WC). The total time required for manu-
facturing a specific buildjob, including mount and unmount 
time.

Work Content Distribution (WCD). Aggregation of 
various buildjobs with regard to their work content for a 
given period of time. A work content distribution is typi-
cally depicted in a histogram and can be approximated by 
a suitable probability distribution, characterized by a set of 
specific parameters.

Production Order Release Rate (PORR). The rate at 
which production orders, i.e. buildjobs are being released 
for manufacturing at a defined workstation. The release 
rate does not depend on the work content of the production 
orders being released. It is measured in production orders 
per unit time and may follow a deterministic or stochastic 
pattern when being modeled. As soon as a production order 
is released, it becomes WIP at the respective workstation.

Operator Availability (OA). The variables m,n and q 
describe the count of operators present during the 6am, 2 pm 
and 10 pm shift respectively. The operator availability OA 
is therefore defined as the set {m, n, q ∈ ℕ|m + n + q > 0} . 
When an operator is busy mounting or unmounting a build-
job he may not be assigned other tasks.

Machine Configuration (MC). The shopfloor’s machine 
configuration is comprised of 1 to m machines, each charac-
terized by a specific mount and unmount time and material 
acceptance. A machine may only run on one type of material 
and changes are not allowed.



Production Engineering	

1 3

2.2 � Structure of the simulation model

Within the proposed model, the instances at the LPBF manu-
facturing systems are characterized by a dynamic, discrete 
and stochastic behavior:

•	 The status of the production environment changes over 
time as production orders enter and leave the system 
(dynamic property)

•	 Changes with regard to the status of the simulated build-
job are tracked on an hourly base (discrete property)

•	 Arrival dates of production orders and their correspond-
ing work content cannot be predicted as they depend on 
customer orders and decisions made during data prepara-
tion (stochastic property)

As the attributes of a buildjob currently being processed 
change during each period of length Δt even if no new job 
is being released for production, the system is modeled as 
time-driven rather than event-discrete.

The UML diagram depicted in Fig. 1 holds the activities 
and logical structure of the simulation model implemented in 
Matlab®. The definition of relevant input variables, execu-
tion of the simulation run and calculation of corresponding 
output variables is explained in the following subsections.

Input Variables. Before the simulation run is initiated, 
the production environment and a feasible set of buildjobs 
are created. The production environment is described by 
the number of available machines and the type of materials 
they are capable of processing. Each machine is furthermore 
characterized by a material-independent mount and unmount 
time. Operators are responsible for mounting and unmount-
ing the machines and may be present during three differ-
ent shifts. Hence, the parameterization of the production 
environment is complete once the number of operators pre-
sent during the three respective shifts is defined. As LPBF 
machines operate autonomously once set up, operator pres-
ence is only mandatory for starting and finishing buildjobs.

In order to charge the production during the simulation 
run, a feasible set of buildjobs is another relevant input vari-
able of the model. Due to the novelty of LPBF processes in 
the context of a full-scale industrial production, to the best 
of the author’s knowledge, there is no statistically relevant 
data available regarding work content distribution (WCD) 
for LPBF machines. Based on the author’s experience gath-
ered in industry projects, Table 1 provides an overview of 
relevant production scenarios and a respective characteriza-
tion regarding their average and standard deviation of work 
content. The scenarios are derived by selecting application-
specific geometries and manually assigning them to a set of 
buildjobs, such that each job holds at least one part and a 
maximum of parts according to the available space on the 
build plate. In between the two extremes, the amount of parts 

per buildjob follows a Gaussian distribution with an aver-
age of four parts per buildjob. Once the set of buildjobs 
is populated with parts, the required manufacturing time is 
calculated by means of the approach suggested in [7].

All values are subject to verification with industrial end 
users. As the provided scenarios fall to the rather extreme 
regimes of what is typically observed in production, they 
span a large window of feasible combinations. Intuitively, 
all scenarios found in real LPBF production settings hence 
fall into that window, even if they are a mix of the defined 
scenarios.

To foster a better understanding and enable the creation 
of randomly distributed WCDs for simulation purposes, the 
historical production data of four LPBF machines installed 
at GKN Additive, a global AM full-service provider is 
analyzed.

Tables 2 and  3 hold an overview of the results of fitting a 
continuous, semi-infinite Gamma probability distribution to 
the given WCDs. The goodness of fit (GOF) for this distribu-
tion type is tested by applying an Anderson–Darling (AD) 
test with a significance level of 5%. This type of statistical 
test is used to determine how well the shape of the given 
production sample data follows a conjectured probability 
distribution. Within the context of this paper, the approach 
of Anderson–Darling is selected as it shows decent sensitiv-
ity to differences in the tail of the expected distribution [8]. 
Other tests, such as Kolmogorov–Smirnov, are particularly 
sensitive to differences in the regime of the sample data’s 
median, while Chi square tests come with the challenge of 
binning the sample data and hence cause a loss of informa-
tion [9]. The H0 hypothesis is defined per following: the 
machine-specific WCD follows a Gamma probability distri-
bution characterized by a scale factor α and a shape factor 
β. In case the formulated null hypothesis does not have to 
be rejected according to the result of the Anderson–Dar-
ling test, the conjectured Gamma probability distribution 
serves as a valid representation of the analyzed WCD and 
may be utilized to generate randomized data for simulation 
purposes. The metrics for calculating both critical and AD 
test statistics values are stated in [10].

In order to provide further statistical validation, a quan-
tile–quantile plot is created for all four machines. The graph-
ical exploration of the graph created by plotting the quan-
tiles of the sampled data against those of the hypothesized 
Gamma distribution backs up the results of the AD test. 
Outliers only occur for buildjobs characterized by extensive 
WC. Even though the AD test is particularly sensitive when 
it comes to deviations in the long tail, the H0 hypothesis does 
not have to be rejected.

Despite its statistic feasibility, the hypothesized Gamma 
distribution must be capable of creating value-pairs of work 
content average and standard deviation which cover all sce-
narios stated in Table 1. Parametrization with � ∈ [0.1, 25] 
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and � ∈ [1, 144] yields the window of feasible value-pairs 
depicted in Fig. 2.

Following the results of the AD test, visual inter-
pretation of the quantile–quantile plots and coverage 
of all value-pairs resulting from the defined scenarios, 
the Gamma distribution is accepted for creating WCDs 
as input for the subsequent simulation. Each WCD, i.e. 

production schedule, is characterized by WC’s average, 
median and standard deviation values, constituting implicit 
input variables to the simulation as they are a result of the 
Gamma distribution’s shape and scale parameter choice.

Simulation of Production Order Processing. Once 
all input variables below are set, the simulation run is 
initiated:

Fig. 1   UML diagram of the proposed simulation model
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Table 1   Scenarios for LPBF production settings

LMHV low-mix high volume, HMHV high-mix high-volume, HMLV: high-mix low-volume

ID Scenario Product mix 
and production 
volume

Average of WCD Std. Dev. 
of WCD

Description

1 Dental Implants LMHV 10 h 10 h Similar geometries, constant z-height of buildjobs, varying packing 
density, single or multiple small-size parts

2 Tooling HMLV 30 h 10 h Varying geometries, varying z-height of buildjobs, varying packing 
density, single medium-size parts

3 OEM series parts LMHV 60 h 10 h Similar geometries, constant z-height of buildjobs, constant pack-
ing density, multiple small/medium-size parts

4 AM service provider HMHV 50 h 30 h Varying geometries, varying z-height of buildjobs, varying packing 
density, multiple small/medium-size parts

5 Prototyping HMLV 100 h 50 h Varying geometries, varying z-height of buildjobs, varying packing 
density, single large-size parts

Table 2   Results of fitting Gamma distributions to real production data

Machine 1: EOS M290 Machine 2: EOS M290

Sample Average WC Std. Dev. WC Sample Average WC Std. Dev. WC
196 Jobs 41.38 h 26.57 h 228 Jobs 41.18 h 25.59 h

Distribution Parameters: α = 16.48, β = 2.51 Distribution Parameters: α = 14.64, β = 2.81

Anderson-Darling test: α = 0.05 Anderson-Darling test: α = 0.05

not rejected 0.8362 not rejected 0.1767

Q-Q plot Q-Q plot
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•	 Operator presence
•	 Machine characteristics (material type, mount time, 

unmount time)
•	 Production order release rate
•	 Gamma distribution’s shape and scale parameter (used 

for creation of WCD and production schedules)

Model-specific parameters include the simulation peri-
od’s time interval Δt, simulation time of N time intervals and 
amount of independent simulations for each WCD.

The simulation run is initiated by randomly select-
ing and queuing an unprocessed job from the production 
schedule. As arrival of new production orders is assumed 
to be a homogenous Poisson process for the remainder of 
this paper (seasonal effects are not taken into account), 
characterized by an expected value matching the produc-
tion order release rate, the intermediate arrival times are 
exponentially distributed. Whenever the queue is empty, 
the algorithm skips the current interval and jumps to the 
next simulation period.

Table 3   Results of fitting Gamma distributions to real production data

Machine 3: EOS M290 Machine 4: EOS M400

Sample Average WC Std. Dev. WC Sample Average WC Std. Dev. WC
159 Jobs 47.52 h 26.66 h 181 Jobs 47.63 h 29.79 h

Distribution Parameters: α = 13,79, β = 3.45 Distribution Parameters: α = 17.65, β = 2.70

Anderson-Darling test: α = 0.05 Anderson-Darling test: α = 0.05

not rejected 0.3400 not rejected 0.7340

Q-Q plot Q-Q plot

Fig. 2   Value-pair boundary box for Gamma distribution and defined 
production scenarios
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During each simulation period the algorithm then iter-
ates through the current buildjob queue and simulates the 
execution of one of the following tasks (see UML diagram 
in Fig. 1 for simulation process details):

•	 Mount job j on machine m
•	 Reduce remaining mount time by Δt
•	 Start processing job j
•	 Reduce remaining job time by Δt
•	 Unmount job j from machine m
•	 Reduce remaining unmount time by Δt
•	 Create statistics & log for job j

Output Variables. Once the elapsed simulation time 
reaches N, the throughput statistics for all completed 
buildjobs are calculated by means of the developed 
algorithm.

In order to statistically validate the results generated 
by applying the described algorithm (the simulation of 
a similar production schedule yields different results on 
every run due to the stochastic nature of production order 
arrival), each production schedule is simulated multiple 
times. While the statistical descriptors of the production 
schedule itself (average and standard deviation of work 
content) are obviously implicit input variables resulting 
from the hypothesized Gamma distribution, throughput is 
subject to random fluctuations for every simulation run. 
The corresponding quantiles, average and median val-
ues as well as outliers in the generated data are therefore 
quantified and interpreted when discussing the results in 
Sect. 4.2.

3 � Literature review

The maturity of Additive Manufacturing technologies such 
as LPBF is increasing continuously [11, 12]. A sustaina-
ble integration however, eventually leading to competitive 
advantage for end-users, may not solely rely on technologi-
cal differentiators. Resolving the specific challenges emerg-
ing from the perspective of Operations therefore serves as a 
sound basis for creating a unique selling proposition aside 
mastery of technology itself. Due to the relevance of operat-
ing AM production environments in an economically viable 
manner, numerous studies covering this topic have been pub-
lished in recent years. While most papers are characterized 
by a clear focus on evaluation of profitability-based variables 
(e.g. production cost, profit per part, see [13–16]), consid-
eration of time-related variables (e.g. due dates, adherence 
to delivery dates, cycle times) is also receiving increased 
attention [17, 18].

An extensive review of the above studies (including liter-
ature cited therein) is characterized by two major drawbacks 
judging from the perspective of production systematics:

•	 Utilization of an AM machine is typically measured as 
the volumetric share of parts populating the build enve-
lope [19, 20]. A definition of utilization and throughput 
following the perspective of production systematics is 
proposed by the authors in one of their recent studies [2]. 
A similar nomenclature was only found to be used as an 
auxiliary variable in the context of [21].

•	 All papers tend to neglect the fundamental interrelations 
in between the production KPIs and focus on a hence 
isolated optimization target. A holistic approach has to 
take the dilemma of logistics into account as utilization, 
work-in-process and throughput times are tightly con-
nected and therefore require an integrative analysis [3].

Combined with the above, the scarcity of published 
approaches on how to model and simulate a LPBF pro-
duction environment (see [22]) makes it mandatory to 
pursue this topic by means of a holistic approach cover-
ing both the specifics of LPBF technology and production 
systematics.

4 � Simulation of different production 
settings

The model described in Sect. 2 is henceforth applied to 
simulatively quantify the throughput (output variable) 
while varying the mentioned input variables. The sub-
sequent analysis and graphical description of simulation 
results is limited to the output variable of average through-
put being plotted against input parameters such as PORR, 
distribution parameters and operator availability.

4.1 � Assumptions

In order to cover the specifics of a LPBF manufacturing 
process and initially enable a validation of the developed 
model on a fundamental level, the simulations rely on the 
following assumptions:

•	 A maximum of one buildjob is being released during a 
simulation period of length Δt

•	 Only one buildjob may be processed on a specific 
machine at a given point in time

•	 Arrival rate of production orders is constant, i.e. the 
number of production orders received in a defined 
period obeys a Poisson distribution
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•	 Production orders may also be released when no opera-
tor is present

•	 Only one type of alloy is being processed, i.e. material 
changes are neglected

•	 Availability of machines is 100%, i.e. machine failures 
and maintenance are not considered

•	 Based on the author’s experience and observations on 
various LPBF shopfloors, mount and unmount proce-
dures are expected to last 1 h each

4.2 � Validation

The validation of the proposed approach is carried out by 
modeling the input parameters according to the setting 
found at GKN Additive’s shopfloor (machine specification, 
production order release rate, operator availability and 
WCD) and then comparing the simulation results with the 
actual performance indicators derived from the provided 
datasets. Table 4 holds an overview of the actual shopfloor 
data, its modeled configuration and the results gathered 
from evaluating 100 simulation runs for each machine (see 
Fig. 4 for detailed simulation results with varying pro-
duction order release rate). The mean average percentage 
error (MAPE) is a measure of prediction accuracy of a 
forecasting method and is utilized to evaluate the overall 
applicability of the simulation model.

The deviation when comparing the throughput’s median1 
Q2 of the simulated data with the actual throughput TPreal is 
less than 6% for all four machines, while the overall MAPE 
amounts to 2.42%. The simulation runs for machine 1 and 
2 tend to slightly overvalue throughput, while computing 
slightly undervalued throughput for machine 3 and 4. A 
comparison between the outputs of the real and the modeled 
system substantiates the validity of the proposed model for 
the given operating points. Nevertheless, further validation 

has to be carried out in order to also gain trust in the results 
when output variables, such as throughput, fall into more 
extreme regimes. The production scenarios defined in Fig. 2 
serve as a reference framework for further validation.

4.3 � Utilization and Interpretation of Simulation 
Results

Assuming that the described model is of sufficient valid-
ity for quantifying the performance of a LPBF production 
setting, the results created by running the simulation with 
varying input parameters may be utilized in domains such 
as production planning & scheduling, data preparation, shift 
planning and capacity dimensioning. Analysis of the simula-
tion results depicted in Fig. 4 yields a machine-wise indica-
tion of reasonable production order release rates (PORR) 
while not changing work content distribution, operator pres-
ence and machine configuration. Once the PORR reaches a 
level where throughput is no longer increasing, the service 

Table 4   Comparison of real and simulated shopfloor data

Production data Simulation Results

ID Sample size Release rate Throughput TPreal Op. presence Release rate Throughput1 TPsim Deviation

06 14 22 Q1 Q2 Q3 Q2∕TPreal − 1

1 196 0.3500 0.6039 1 1 0 0.350 0.566 0.611 0.650 1.23%
2 228 0.4021 0.6901 1 1 0 0.400 0.645 0.695 0.740 0.74%
3 159 0.2663 0.5274 1 1 0 0.266 0.470 0.515 0.564 − 2.43%
4 181 0.3083 0.6122 1 1 0 0.308 0.536 0.580 0.633 − 5.28%

MAPE 2.42%

Fig. 3   Average throughput as a result of work content average and 
standard deviation (one operator present during two out of three 
shifts, production order release rate of 0.35 PO/day, 1  h machine 
mount and unmount time)

1  Q2 is the simulated throughput’s median, Q1 corresponds to the 
25th percentile, Q3 corresponds to the 75th percentile.
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provider might consider actions such as a capacity increase 
by investing in new equipment, proactively influencing work 
content distribution by adapting part nesting methodology 
or increasing operator presence.

In order to gain a understanding of the fundamental inter-
relations in between the input parameters and output vari-
ables, the following section provide an excerpt of feasible 
graphs (comprised of max. two input parameters and one 
output variable, as a set of more than three variables is dif-
ficult to visualize comprehensibly in ℝ2 or ℝ3).

Throughput vs. average and standard deviation of 
work content. Fixing the production order release rate, 
operator availability and machine configuration allows 
for plotting a LPBF system’s throughput against average 
and standard deviation of work content, each of which 
combinations belongs to a specific Gamma distribu-
tion. Obviously, the statistical descriptors are merely a 
result of the shape and scale parameters selected for the 

hypothesized distribution [23]. As it seems more intuitive 
to deal with averages and standard deviations from a prac-
ticioner’s perspective, they are preferred over shape and 
scale parameters for creating the corresponding graphs. In 
Fig. 3 the average throughput of a LPBF system is plot-
ted against the work content average (x-axis) and stand-
ard deviation (y-axis), while operator presence, machine 
configuration and production order release rate remain 
unchanged. Each colored point in the graph corresponds 
to a specific WCD and represents the average throughput 
for 50 simulation runs. The outer borders of the colored 
area resemble the boundary box introduced in Fig. 2, as 
the underlying Gamma distributions are parametrized 
identically. The black straights in Fig. 3 indicate constant 
coefficients of variation (CV). The CV is a standardized 
measure of the dispersion of a distribution, defined as 
the ratio of the standard deviation to the mean. Hence, 
the dispersion of the respective WCDs along the lines is 

Fig. 4   Simulation of throughput with changing production order release rate (one operator present during two out of three shifts, PORR and 
WCD according to Table 4, 1 h machine mount and unmount time)
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constant. Interpretation of the graphs provides the follow-
ing findings:

•	 The production system achieves maximum throughput 
when work content averages to at least 75 h per build-
job

•	 Average work content above 75 h per buildjob does not 
result in increased throughput

•	 The work content standard deviation only has very little 
impact on throughput. i.e. fluctuations regarding buildjob 
duration cause no significant reduction of throughput

•	 When running a LPBF production with comparably short 
buildjobs, i.e. WCDs characterized by low average and 
work content, the production order release rate has to 
be significantly higher to achieve reasonable throughput. 
Obviously, the latter is only feasible under the circum-
stances of sufficient customer demand and according 
order intake.

Throughput vs. production order release rate. The 
box plots (see [24] for statistical description) in Fig. 4 
depict simulation results for the four different EOS LPBF 
machines installed on GKN Additive’s shopfloor. While the 
red crosses indicate the operating points found in reality and 
were used beforehand for validating the simulation model, 
the horizontal red lines quantify the throughput’s median 
with varying production order release rate. The blue boxes 
are delimited by lower and upper quartiles and hence contain 
50% of the simulated output values. The comparably wide 
range of the whiskers (dashed black lines) and the occur-
rence of outliers (red plus symbols) underline the impact of 
the simulation’s stochastic nature and require the execution 

of a sufficient number of stochastically independent simula-
tion runs. According to the statistical analysis proposed in 
[25], execution of 100 simulation runs while not changing 
the input parameters accounts for a throughput sample pre-
cision of ± 0.003 h per working hour at a 95% confidence 
interval. Interpretation of the graphs provides the following 
findings:

•	 While throughput initially grows linearly for the given 
settings it starts converging to 0.93 h per working hour in 
the transitional areas found for production order release 
rates in between 0.5 and 0.65 PO/day (even outliers sys-
tematically fall below the maximum).

•	 On all four machines a production order release rate of at 
least 0.6 PO/day results in maximized throughput (please 
note that the WCDs of the four systems are very similar).

Connecting the throughput median values and linearly 
interpolating for the values in between (also see Fig. 5) 
yields a curve similar to the operating curves proposed in 
[3]. As the production order release rate is directly propor-
tional to the work-in-process (WIP) of a production system, 
the resemblance of the curves substantiates the validity of 
the developed model.

Throughput vs. production order release rate and 
operator presence. As LPBF equipment only operates 
autonomously from process start to end, the presence of 
operators is mandatory to carry out mounting and unmount-
ing of the machines. According to the author’s experience, 
backed up with an inconclusive literature review, operators at 
least supervise the auxiliary process steps even on partially 
automated LPBF equipment. A typical challenge in produc-
tion planning is imposed by ensuring a reasonable opera-
tor presence for a given production schedule and machine 
capacity. The proposed simulation model hence incorporates 
the presence of machine operators during different shifts as 
an input parameter. The curves in Fig. 5 depicts how opera-
tor presence (and production order release rate) is linked 
to maximum achievable throughput for a LPBF production 
system similar to Machine 1/Table 4. Interpretation of the 
graphs provides the following findings:

•	 Up to a production order release rate of 0.5 PO/day, oper-
ator presence does not have any impact on the system’s 
throughput as long as at least one operator is present dur-
ing at least one out of three shifts.

•	 The presence of one operator during one shift results in 
a significant limitation of maximum feasible throughput 
(0.82 h per working hour, -15% compared to maximum 
throughput of 0.97 h per working hour for three shift 
production).

•	 Even with the presence of one operator during all three 
shifts the throughput does not amount to the maximum 

Fig. 5   Simulation of throughput with changing production order 
release rate and operator presence (WCD according to Machine 1/
Table 4, 1 h machine mount and unmount time)
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theoretical value of 1 h per working hour. This model 
behavior is caused by the fact that operators do not start 
mounting/unmounting their assigned machine when their 
remaining work time is shorter than the required mount/
unmount time.

•	 Considering multiple shifts (and multiple operators) is 
only feasible when operating the LPBF equipment in the 
transitional areas of throughput.

5 � Conclusion

The presented simulation model serves as a framework 
for understanding the fundamental interrelations between 
production parameters and corresponding KPIs consider-
ing the specifics of LPBF technology. It is designed in a 
practicioner-friendly way and may serve as a sound basis 
for decision making in production planning, control and 
optimization. The results create a basic and intuitive under-
standing of the interrelations between input parameters and 
output variables and hence provide guidance when taking 
production-related decisions.

5.1 � Takeaways for end‑users

With LPBF, the manufacturing time is significantly impacted 
by the way single components are assigned to a buildjob 
[26]. This upstream process of data preparation is a manual 
task and hence operator’s decisions wether or not to add an 
additional part to a buildjob influences work content distri-
bution over time. For a fixed operator presence, end-users 
may choose from three options in order to increase utiliza-
tion of their equipment:

•	 Increasing average work content by adding more parts to 
a buildjob (which implies acceptance of longer through-
put times) and keeping the production order release rate 
constant

•	 Increasing production order release rate while keeping 
the work content distribution constant (which is only fea-
sible if a sufficient backlog of customer orders exists)

•	 A combination of the above two points

The simulation results furthermore indicate that the 
impact of releasing additional production orders is continu-
ously decreasing for utilizations beyond 65% (see Fig. 4). As 
releasing further production orders is equivalent to increas-
ing the work-in-process at a workstations this behavior fits 
the predictions of the operating curves model [3].

Regarding shift-planning, presence of operators during 
more than one shift is only increasing utilization beyond 
82% for the given production order release rate and work 
content distribution. (see Fig. 5).

When it comes to utilization, unlike the average work 
content, the work content standard deviation plays a minor 
role for the given production order release rate of 0.35 PO/d 
(see Fig. 3). Hence, deviations are acceptable if average 
work content is being monitored.

All conclusions above are qualitatively valid regardless of 
the operating point of the production, whereas quantitative 
predictions require precise knowledge of the corresponding 
operation point.

5.2 � Future developments

While the focus of this paper is on throughput as a major 
production system KPI, throughput times, adherence to 
delivery dates and work-in-process are equally relevant when 
evaluating production system and shall hence be covered 
by a holistic model. In order to create widespread adoption 
and eventually utilize the developed methodology in a LPBF 
production context, future work shall increase both plausibil-
ity and applicability of the simulation model and therefore 
focus on the following aspects:

•	 Consideration of upstream activities, i.e. data preparation 
(part orientation, support placement and nesting [27])

•	 Further validation based on the production scenarios 
mentioned in Table 1 by collection and evaluation of his-
torical production data (combined with advanced filter 
algorithms ensuring data quality and soundness).

•	 Detailed statistical analysis of the input parameter’s 
impact on output variables by means of Monte-Carlo 
simulation and subsequent sensitivity analysis.

•	 Incorporation of part- and buildjob-perspective, i.e. anal-
ysis of the influence of individual part portfolios, lot-
sizing strategies, scheduling rules etc. on the mentioned 
KPIs.

•	 Consideration of multiple materials
•	 Integration of metrics for production order release and 

scheduling in order to evaluate throughput times and 
adherence to delivery dates
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