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Modellprädiktiver Regelung mittels

Maschinellem Lernen mit Anwendung

auf Abwärmerückgewinnung in

Fahrzeugen

Von der Fakultät für Maschinenwesen der Rheinisch-Westfälischen

Technischen Hochschule Aachen zur Erlangung des akademischen

Grades eines Doktors der Ingenieurwissenschaften genehmigte

Dissertation

vorgelegt von

Yannic Vaupel
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Kurzfassung

Als Teil einer Strategie zur Reduzierung des CO2-Fußabdrucks der Transportbranche

ist der Einsatz von Wärmerückgewinnungssystemen in LKW eine vielversprechende

Option. Dafür kommt eine Reihe möglicher Technologien in Betracht, wobei der Ein-

satz eines Organic Rankine Cycles (ORC), unter Nutzung der thermischen Energie

des Abgases als Wärmequelle, als besonders vielversprechend gilt. Beim Einsatz im

LKW ist das ORC-System, im Gegensatz zu etablierten Einsatzfeldern von ORCs,

starken Fluktuationen der Wärmequelle ausgesetzt. Daraus ergeben sich substantiel-

le Herausforderungen für den sicheren und effizienten Betrieb des Wärmerückgewin-

nungssystems.

In dieser Arbeit werden diese Herausforderungen mittels modellbasierter Methoden

adressiert. Zu Beginn wird ein dynamisches Modell des ORC-Systems entwickelt und

mit Messdaten validiert. Anschließend erfolgt eine Erweiterung zu einem schaltenden

Modell, sodass auch An- und Abfahrvorgang abgebildet werden können. Darüber hin-

aus werden zwei Modellierungsansätze für Wärmeübertrager verglichen.

Im Rahmen einer modellbasierten dynamischen Optimierung wird anschließend der

optimale Betrieb des Wärmerückgewinnungssystems analysiert. Dabei stellt sich her-

aus, dass eine temporäre Erhöhung der Überhitzung des Arbeitsmediums sinnvoll

sein kann. Aus den gewonnenen Erkenntnissen wird eine Regelungsstruktur abgelei-

tet. Diese wird simulativ mit nichtlinearer Modellprädiktiver Regelung (NMPC) sowie

einem PI-Regler mit Störgrößenaufschaltung umgesetzt. Die erreichte Regelungsgüte

des NMPC ist hoch, allerdings übersteigt der Rechenaufwand die zulässige Rechen-

dauer. Der PI-Regler erreicht eine ähnliche Regelgüte mit deutlich geringerem Re-

chenaufwand.

Anschließend wird eine auf maschinellem Lernen (ML) basierende NMPC Methode

auf das ORC System angewandt. Diese reduziert den rechnerischen Aufwand, kann

aber keine Einhaltung der Pfadbeschränkungen garantieren. Daher werden als finaler

Beitrag der Arbeit Methoden entwickelt, die mittels ML den rechnerischen Aufwand

von NMPC reduzieren und dabei Pfadbeschränkungen beachten.
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Summary

Waste heat recovery (WHR) from heavy-duty (HD) diesel trucks is a viable option for

reducing the carbon footprint of the transport industry. Among the various available

technology options for WHR, using a bottoming organic Rankine cycle (ORC) with

the exhaust gas as heat source is considered the most promising. The ORC system in

a HD diesel truck is subject to strong heat source fluctuations, which is in contrast

to ORC operation in established processes. This poses substantial challenges for safe

and efficient operation of the WHR system.

In this thesis, we address these challenges using model-based methods. We first de-

velop a dynamic ORC model for WHR and validate it with measurement data from a

test rig. Next, we extend our dynamic model to a switching model that it is capable of

accounting for start-up and shutdown situations. We compare two popular modeling

approaches for the heat exchangers, identifying their perks and weaknesses.

With our model established, we use dynamic optimization to understand how the

system is best operated and we find that it can be beneficial to temporarily increase

workfing fluid superheat in certain situations. From our findings, we derive a control

structure for model-based control of the process. We apply this structure in silico to

nonlinear model predictive control (NMPC) and to a PI controller with feedforward

term. Our findings indicate good control performance of NMPC but excessive compu-

tational demand for on-board application. The PI controller achieves similar control

performance at insignificant computational demand.

Next, we apply a machine-learning (ML) based method for NMPC to the ORC system.

While this achieves a drastic reduction in online computational demand, constraint

satisfaction cannot be guaranteed. Hence, as a final contribution, we develop meth-

ods that use ML to reduce the computational demand of NMPC while promoting

constraint satisfaction.
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Chapter 1

Introduction

The transport sector accounted for 14% of worldwide direct greenhouse gas emissions

(GHG) in 2010 according to the Intergovernmental Panel on Climate Change (IPCC)

[16]. To limit global warming by the year 2100 to 2 °C compared to pre-industrial

levels, an unprecedented effort among all industries is required. Therefore, decar-

bonization of the transport industry is an important aim [17]. A major contributor to

GHG emissions from the transport sector is road transport. Here, heavy-duty (HD)

diesel trucks, are the largest source of GHG emissions. Consequently, there is regula-

tory pressure to improve fuel economy of HD trucks, e.g., in the european market [18].

Furthermore, the reduction in operating cost associated with improved fuel economy

provides an additional selling proposition for vehicle manufactures in an enormously

cost-sensitive industry.

Internal combustion engine (ICE) vehicles, and HD trucks in particular, have a long

history of fuel economy improvement through engine technology innovation [19]. How-

ever, as further improvement through traditional levers (engine efficiency, powertrain

efficiency, aerodynamic efficiency) is limited, creative approaches are imperative. Con-

sidering that only around 40 % of fuel energy is converted to propulsion energy [20],

waste heat discharged to the environment from the exhaust gas and coolant provides

a potential lever. Accordingly, waste heat recovery (WHR) has become a heavily re-

searched approach to improve fuel efficiency of vehicles. A variety of technologies to

realize the conversion of thermal energy to either mechanical or electric energy exist.

The most discussed technologies are thermoelectric generators, turbocompounding

and the organic Rankine cycle (ORC). In this thesis, we will focus on the ORC. Like

the steam Rankine cycle, the ORC is a thermodynamic cycle that utilizes a heat source

to evaporate a pressurized working fluid and generates mechanical energy through ex-

panding the working fluid. In contrast to the steam Rankine cycle, an organic working
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1 Introduction

fluid is used. This makes the process more suitable for low to medium-temperature

heat sources such as coolant or exhaust gas of HD trucks. Consequently, the ORC is

an established technology for a variety of applications ranging from geothermal power

generation [21] to industrial waste heat recovery [22]. Employing an ORC in a vehi-

cle, however, raises issues that are not encountered in classic ORC applications. The

system is required to be small in order to maintain high payload and light-weight in

order to avoid detrimental effects on fuel economy. Furthermore, high safety standards

apply which makes the use of many flammable working fluids questionable. Beyond

design aspects, operation of the system is inherently complex, since, in contrast to

classical ORC applications, the heat source varies strongly with limited predictabil-

ity. Therefore, control system design requires careful consideration so that the control

system is able to reject these disturbances.

In this thesis, we will focus on safe and economically optimal operation of the system.

We will apply a model-based approach to understand and optimize system operation

of the ORC system. To this end, process simulation is a powerful tool. As the ORC

system has considerable thermal inertia, a dynamic process model is required to ade-

quately describe its operation in a HD truck. To develop such a model, it has to be

considered which phenomena of the process occur sufficiently fast to be considered as

steady-state, which phenomena warrant consideration of dynamic effects and which

phenomena occur slow enough to be practically irrelevant. For dynamic ORC models,

the pump and expansion machine can typically be considered as steady-state and the

most relevant dynamic phenomena occur in the heat exchangers, i.e., in the evaporator

and condenser. For all process units, adequate models have to be developed. These

typically consists of mass and energy balances and, in case a pressure drop is to be

considered, momentum balances. Finally, phenomenological equations are required to

describe the physical properties and transport phenomena, in particular heat transfer.

With a dynamic model established, simulations can be executed that enhance under-

standing of the process and its dynamic behavior. Thereby, it is for example possible

to understand the effect of changes in the heat source conditions on the system. Pro-

vided that the model contains the necessary features, simulation of a system start-up

or a complete driving cycle is possible. Dynamic process models can furthermore be

used in dynamic optimization problems to find optimal operating policies for a speci-

fied objective.

Dynamic optimization is a subclass of numerical optimization where the optimization

problem is subject to the dynamic model equations and user-specified constraints on

input and state variables. As the inputs and constraints are continuous in time, the

problem is of infinite dimension. However, the problem can be approximated in fi-

nite dimension with methods that either “first optimize then discretize” or “discretize
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then optimize” [23]. In this thesis, we use direct single shooting which is of the latter

type. In contrast to simple simulation, we can gain much more insight using dynamic

optimization. For example, we might be interested in how the ORC system has to

be operated in order to maximize power production during a specific driving cycle

or how to reach power production as fast as possible from a cold start. Although

we could try to find a good operation strategy by trial and error, this would be a

cumbersome process for a transient driving cycle with many degrees of freedom due

to the time-dependent inputs. Furthermore, even if we had a preconception of what

constitutes an optimal input for a specific scenario, we would need an optimization

solver to obtain a certificate of optimality.

For a variety of reasons, results from offline dynamic optimization cannot be directly

employed to operate the system. First, the heat source conditions in real-world op-

eration might significantly deviate from the benchmark driving cycles considered in

dynamic optimization. Second, due to mismatch between our model and the real

system, the system might react to the computed controls differently than expected.

Thus, we cannot directly use our results in an open-loop manner but rather we have

to use feedback control to operate the system. For developing a suitable control sys-

tem, our insights from dynamic optimization can be helpful. The control method

closest to our dynamic optimization approach is nonlinear model predictive control

(NMPC). Here, also an optimal control problem is solved. In contrast to dynamic

optimization, however, only part of the full time frame, the prediction horizon, is

considered. Thereby, the size of the optimal control problem can be reduced so that

it can be solved in a reasonable time, which allows for implementation as a controller.

The problem is then re-solved after one sampling interval to introduce feedback. The

objective function in NMPC can be either regulatory, i.e., tracking of a prescribed

set-point or set-point trajectory or it can be motivated by economics (eNMPC) [24].

In the latter case, one can design a controller that automatically operates the system

such that power production is maximized.

Although we solve the optimal control problem on a limited horizon, NMPC is associ-

ated with significant computational cost. As the technology is increasingly employed

outside of classic fields, e.g., chemical plants, this is a relevant concern for many ap-

plications where dynamics are fast and little computational power is available. In the

case of WHR in a vehicle, the control signal has to be updated frequently due to the

fast changes in driving conditions. Furthermore, the available computational power

is relatively small. The high computational cost of NMPC is a long-standing issue

and, unsurprisingly, many methods to alleviate this problem have been proposed. The

most prominent is explicit MPC, which originally was proposed for linear model pre-

dictive control [25]. Here, the fact that the optimal control problem is parametric
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in the initial state is exploited by solving the parametric program a priori and stor-

ing the result. Similar notions are exploited in fast-update methods [26], where an

approximate solution is found based on the assumption that it only changes slightly

compared to the previous solution. As explicit MPC reaches its limits for increasing

problem size, it has been suggested to learn the optimal control policy based on offline

simulation with a machine learning (ML) method [27]. These methods are straight-

forward to use but have the drawback that their success depends on careful training

of the ML model. Furthermore they do not guarantee constraint satisfaction, which

is a major feature of MPC.

In this thesis, we address many of the points raised before. First, we provide the

necessary background with a literature review in Chapter 2. In particular, we discuss

technological options for automotive WHR. We only briefly touch turbocompounding

and thermoelectric generators and focus on ORC technology. Furthermore, we discuss

the basics of dynamic optimization and NMPC. Finally, we provide a brief overview of

artificial neural networks (ANN), which is the ML model used in this work. We start

the main sections of the thesis by developing a dynamic model of an ORC for automo-

tive WHR in Chapter 3 with a heat exchanger model based on the moving boundary

(MB) approach [28]. We use dynamic optimization to estimate key parameters such

that the model matches data obtained from a test rig and subsequently validate the

model on another data set. The model we establish in Chapter 3 is only applicable

when all three phases (liquid, two-phase and vapor) are present in the heat exchangers

(“nominal operation”). To allow for simulation of situations where this is not the case,

e.g., start-up or temporary loss of superheat, we extend the heat exchanger model to

account for non-nominal operation in Chapter 4. For comparison, we also implement

a heat exchanger model based on the finite volume (FV) approach in Chapter 4. We

analyze the models in non-nominal operation and show that the MB model can pro-

duce unphysical results due to the enthalpy averaging assumptions. We propose two

remedies to solve the issue. After developing an ORC model and analyzing the prop-

erties of commonly used heat exchanger models, we proceed to find optimal operating

policies for the system in Chapter 5. Therefore, we assess typical driving situations

with dynamic optimization. We find that, in contrast to steady-state operation, sev-

eral peaks in superheat occur in optimal operation of a typical driving cycle. However,

the additional produced power compared to operation at minimal superheat is neg-

ligible. In a situation where the power that can be utilized is temporarily limited,

we find that it is sensible to increase superheat in order to store thermal energy in

the heat exchanger walls for later use. In Chapter 6, we transfer the findings from

Chapter 5 to a control setting. We compare NMPC strategies with regulatory and

economic objective function to a PI controller with feedforward term. We find that
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the NMPC controllers only hold small economic advantages over the PI controller.

The NMPC strategies in Chapter 6 are not real-time capable for the WHR system.

As the application of NMPC in embedded applications is a growing and relevant field,

we develop a contribution consisting of two parts in Chapters 7-8. In the first part

in Chapter 7, we use artificial neural networks to learn the optimal control policy for

an ORC system. We find that the ANN controller is able to stabilize a superheat

set-point even when the disturbances are outside the training set boundaries. How-

ever, since no guarantees exist that the ANN controller satisfies the constraints, we

propose two methods that use a ML model of the optimal control policy as a starting

point to find a good control policy at small computational cost in Chapter 8. The first

method uses the ANN to initialize the NMPC algorithm. The idea is that providing

a good initial guess will accelerate convergence to the optimal solution. The second

method uses the ANN prediction and carries out a correction with the solution of a

single quadratic program (QP), facilitating optimality and feasibility at small compu-

tational cost.

We conclude this thesis in Chapter 9 where we provide a summary of our findings.

Furthermore, we outline promising avenues for further research.
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Chapter 2

Literature review

In this chapter, we cover the scientific background required for this thesis. First,

we review automotive waste heat recovery technology with a focus on WHR systems

using an ORC to recover waste heat in Chapter 2.1. We then proceed to discuss

dynamic optimization problems and solutions approaches with a focus on direct single

shooting in Chapter 2.2, followed by an introduction to model predictive control in

Chapter 2.3. We conclude this chapter with a presentation of machine learning with

a focus on artificial neural networks, our machine learning method of choice in this

thesis, in Chapter 2.4. More specific literature reviews regarding the contributions of

this thesis are provided in the introductions of the respective chapters.

2.1 Automotive waste heat recovery

While the passenger vehicle market is beginning a transition away from vehicles with

ICEs towards zero-emission propulsion technology, most notably battery electric vehi-

cles, a similar trend cannot yet be observed for HD vehicles [19]. Here, diesel engines

are expected to be the dominant propulsion technology for the foreseeable future [29].

However, manufacturers are facing ever increasing environmental regulations and pres-

sure from customers to reduce operational cost, both of which provides incentive to

improve fuel efficiency [19].

Besides a plethora of technologies that aim at directly improving engine efficiency [19],

WHR is a promising technology to increase fuel efficiency [30]. It is motivated by the

fact that only about 40 % of fuel energy are converted to propulsion energy [20] and

the rest is discharged to the environment as “waste heat”. Waste heat streams are the

tailpipe exhaust gas, the exhaust gas recirculation (EGR), the coolant, the charge air
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2.1 Automotive waste heat recovery

cooling system and the lubricating oil [31]. Among these, the tailpipe exhaust gas

and EGR are most attractive for WHR [32, 33, 34]. In [32], the authors assessed the

available heat sources from an energy and an exergy perspective. They found that

the engine coolant, while having the second highest energy content, was unattractive

due to its relatively low temperature.

A variety of technologies is considered for WHR in automotive application [19]. The

most significant are

• turbocompounding (either mechanical or electrical),

• thermoelectric generators,

• organic Rankine cycles.

We will discuss these technologies in the following sections. In accordance with the

focus of this thesis, we will limit ourselves to a brief overview of turbocompounding

and thermoelectric generators and emphasize the background on ORCs.

2.1.1 Turbocompounding

Turbocompounding is based on the expansion of the tailpipe exhaust gas, similar to

turbocharging [35]. It can be distinguished into mechanical turbocompounding and

electrical turbocompounding. In mechanical turbocompounding, an additional tur-

bine is placed behind the turbocharger turbine in the exhaust gas stream. The gener-

ated mechanical power is directly transmitted to the engine crankshaft. In electrical

turbocompounding, more mechanical power is generated from expanding the exhaust

gas in the turbocharger than is required for compressing the engine air and the dif-

ference is fed to an electric generator. The advantage of both approaches, compared

to ORCs, is their simplicity as much less additional equipment is required. However,

the amount of power that can be produced is limited and expected reductions in fuel

consumption are in the range of 5 %.

2.1.2 Thermoelectric generators

Thermoelectric generators (TEG) [36] recover energy based on the Seebeck effect with

semiconductor materials. Two cells of n-type and p-type are electrically connected in

sequence and thermally connected in parallel. Connecting one side of the system to a

hot source and the other side to a cold sink causes a flow of electrical current which

then can be utilized. The advantages of TEGs are that the system, unlike turbo com-

pounding or ORCs, does not contain any moving parts or potentially dangerous fluids
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[37]. However, available materials are limited to moderately high temperatures and

overheating has to be prevented when used for automotive waste heat recovery. The

efficiency of TEGs is further limited as electron transport also results in undesired

heat transport, reducing the thermal potential [36]. Even for state-of-the-art materi-

als, e.g., bismuth telluride, TEGs only achieve about 20% of the Carnot efficiency for

the relevant range of operating conditions [38]. The efficiency of TEGs is commonly

evaluated through the figure of merit ZT where T is the average temperature of the

considered system and Z is defined as

Z =
α2σ

λ
(2.1)

where α is the Seebeck coefficient, σ is the electrical conductivity and λ is the thermal

conductivity. The value for ZT in established materials and temperature conditions

ranges around approximately 1 [36, 39] and an increase to a value of 1.2 would be

required for WHR in vehicles to be competitive [36].

TEGs have been investigated as means to recover waste heat by major automotive

companies and several contributions present mathematical models and experimental

setups [40, 39, 41, 34, 42]. The nominal power among the mentioned systems is below

1 kW. The reported potential fuel savings are in the range of 3%. As TEGs are also

associated with high cost, the technology is currently not competitive for WHR in

vehicles.

2.1.3 Organic Rankine cycles

The ORC is a power cycle that converts thermal energy into mechanical energy. In

contrast to the classic steam Rankine cycle, organic working fluids (WF) are used.

ORCs are adequate for utilizing low to medium grade heat sources. Thus, they have

been investigated for a variety of applications including primary power generation from

geothermal [43] and solar thermal heat sources [44]. Furthermore, the technology is

attractive for waste heat recovery in industrial [22] and transport applications [45].

Beside vehicles, suitable applications in the transport sector are ships [46] and diesel

trains [47]. The two latter applications hold some advantages over application in road

vehicles. Longer periods of steady-state operation occur, the exhaust gas conditions

can be predicted and weight and space constraints are less significant than in HD

trucks. Thanks to the wide range of potential applications, the technology has become

very popular and a great body of work, including a textbook [48], exists. In accordance

with the focus of this thesis, we will put emphasis on the area of automotive waste

heat recovery using ORCs. We will briefly discuss the thermodynamic principles of
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2.1 Automotive waste heat recovery

ORCs and various design aspects before we discuss ORC systems that were specifically

proposed for WHR in vehicles operated in street traffic.

2.1.3.1 Working principle

The ORC is a thermodynamic power cycle, presented in its most basic form with a

T -s diagram in Fig. 2.1. The process consists of the following steps. The subcooled

1 2

34

(a) Flowsheet of basic ORC configuration

4

1

2

3

T

s

(b) T -s diagram

Figure 2.1: Sketch of a basic ORC and corresponding T -s diagram. The WF is repre-

sented by the green solid lines, the heat source is represented by the gray

dashed lines and the coolant is represented by the blue dash-dotted lines.

WF is pressurized in a pump 4→ 1 . Then it is preheated, evaporated and eventu-

ally superheated in one or more heat exchangers where thermal energy is extracted

from the heat source 1→ 2 . Next, it is expanded in an expansion machine (e.g., a

turbine) which produces mechanical power 2→ 3 . This expansion machine can be

coupled to a generator so that the ORC system provides electric power or the me-

chanical power can be used directly, e.g., by connecting the expansion machine to an

engine crankshaft. In a final step, the WF is cooled down in a condenser to subcooled

state in order to prevent cavitation in the pump 3→ 4 .

Working fluids are commonly grouped according to their behavior during expansion.

WFs with negative slope in the T -s diagram are termed wet fluids, those with positive

slope are termed dry fluids and those with near-infinite slope are termed isentropic

fluids [49]. Dry and isentropic WFs hold the advantage over wet WFs that no super-

heating is necessary. For wet WFs (cf. Fig. 2.1b), superheating is required to avoid
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droplet formation during expansion which can lead to significant damage in a turbine

[31].

2.1.3.2 Literature review on proposed automotive WHR systems

Here, we provide a brief overview of ORC systems for automotive WHR. More specific

literature reviews with regard to ORC modeling, operation and control are provided

throughout the introductions of Chapters 3-6.

In contrast to stationary applications, ORCs operated in vehicles have to be lightweight,

cheap and of small size. Furthermore, the transient nature of the heat source makes

operation challenging [50]. Nevertheless, when compared to turbocompounding and

TEGs, ORC systems for waste heat recovery in vehicles are considered to be a rel-

atively mature and competitive technology [30, 50]. Research reaches back into the

1970s where an initial system was proposed in the wake of the 1973 oil crisis [19]. The

subject was sparsely investigated throughout the 1980s and 1990s but has experienced

renewed interest from the late 2000s on [30]. More recent reviews can be found in

[51, 31, 50]. The review in [31] focuses on an assessment of the available heat sources

in HD trucks. In contrast, the review in [51] focuses on a variety of suitable vehicle

types for WHR and their respective engine operation profiles. Finally, in [50] many

aspects ranging from system design to proposed control structures are covered. The

authors note the discrepancy between the predicted power outputs in simulation stud-

ies and realized experimental systems. These raise concerns regarding estimates on

potential fuel savings which vary between 5 % and 10 % [30, 51]. Concurrently to this

thesis, Katharina Eichler develops a holistic simulation toolchain for ORC simulation

in vehicles [52]. The work is complementary as [52] focuses on providing methods

to develop an ORC system from an early conceptual stage to application on a test

rig, whereas this thesis focuses on deriving optimal operating policies and control

strategies for a specific system based on numerical optimization. In this section, we

first discuss possible system architectures, the choice of which mostly depends on the

choice of heat source followed by a brief discussion on common expander and heat

exchanger types. Finally, we touch on methods for choosing an adequate WF.

System architecture A variety of system architectures have been proposed in lit-

erature. Albeit ORC systems for WHR are mostly proposed for heavy-duty vehi-

cles, applications to passenger vehicles exist, in particular in earlier contributions

[53, 54, 55, 56, 57]. The number of employed heat sources has a strong impact on

possible architectures. As discussed before, the most suitable heat sources are the ex-
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haust tailpipe gas and the EGR. Thus, most proposed systems either use the exhaust

tailpipe gas only or both, the tailpipe exhaust gas and EGR. Reviews on the resulting

configuration and their respective advantages can be found in [58, 59, 50]. When only

the tailpipe exhaust gas is chosen as heat source, a single heat exchanger is typically

used to achieve compact packaging [59] but exceptions exist [60]. In case both the

tailpipe exhaust gas as well as the ERG are employed as heat sources, a serial or a

parallel configuration is possible. The serial configuration simplifies the control task

but is also associated with a lower efficiency [59].

Some authors suggested more uncommon power cycle setups, e.g., the Kalina cycle

or a transcritical cycle [61]. A recent review on further modified ORC structures for

automotive WHR can be found in [62]. Herein, we consider a basic ORC process as

presented in Fig. 2.1. The rationale for this choice is the low capital expense and

structural simplicity of this process.

Expanders Two types of expansion machines, volumetric expanders and turbines,

are commonly used [50]. Volumetric expanders operate at relatively low rotational

speeds and have a fixed displacement volume. In contrast, turbines operate at a

high rotational speed and the mass flow is not influenced by the rotational speed in

supersonic operation [63]. The system considered herein uses a turbine.

Expanders can either produce mechanical power by coupling them directly with the

drivetrain or produce electrical power by coupling them with a generator. Direct

coupling with the drivetrain requires a gearbox due to the differences in rotational

speed. Due to the high rotational speeds, higher transmission losses can be expected

for turbines [50]. Generally, mechanical coupling removes the expander rotational

speed as a degree of freedom which means that the expander will likely operate at a

suboptimal speed. Electrical coupling preserves the rotational speed as a degree of

freedom. However, it requires the integration of an additional electric system, which is

associated with high investment cost, and the conversion and reconversion of energy,

which is associated with losses in efficiency. A clear advantage of volumetric expanders

is that they can operate with vapor-liquid mixtures, while these have to be avoided in

turbines in order to prevent damage. For further information, the reader is referred

to [64] for a discussion of expander choice in small-scale ORC system generally and

to [65] for discussions concerning automotive WHR specifically.

Heat exchangers Either shell-and-tube heat exchangers or plate-and-fin heat ex-

changers are used [50]. Plate-and-fin heat exchangers can typically be built with

smaller volume but tend to be heavier than shell-and-tube heat exchangers. An in-
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depth review is provided in [66]. The heat exchangers considered herein are of plate-

and-fin type. The design target for the heat exchangers is to provide a large heat

exchange area at little volume and weight. However, a high heat exchanger weight

is associated with high thermal inertia, buffering WF temperature fluctuation and,

thus, simplifying the control task [50]. This observation motivated the use of a thermal

buffer system in [67].

Working fluids Many factors have to be considered when choosing an adequate work-

ing fluid. Besides thermodynamic properties, relevant criteria include flammability,

toxicity and global warming potential [31]. Great care is required as the choice of work-

ing fluid also affects other design decisions, e.g., the required heat transfer area [50].

WFs can be either pure substances or zeotropic mixtures of components with different

boiling points. The latter can be exploited to achieve higher second law efficiencies.

An overview of WF selection for ORCs in general is provided in [68]. Publications

considering optimal WF choice include [49, 69, 70] and the choice of WF mixtures is

discussed in [71, 72, 73, 74]. Occasionally, dynamic models were used to account for

part-load conditions [75]. For automotive WHR, a variety of publications compare

different working fluids, mixtures or even try to design novel molecules. Simulation-

based screenings are carried out in [76, 77]. A working fluid screening typically consists

of a pre-screening step where working fluids are removed from the considered set based

on undesired thermodynamic properties. This is followed by a second step where a

considered system is simulated with the various fluids. Optimization-based strategies

for WF selection are employed in [78, 79, 80]. In [78], the cycle is optimized with

global optimization for each candidate fluid. In [80, 79] fluid design is considered.

The authors account for transient heat source with operating point clustering in [80]

and a simplified dynamic model in [79].

2.2 Dynamic optimization

A focus of this thesis is to find optimal operating policies for an ORC system us-

ing numerical optimization. Due to operation in street traffic, optimal operation is

strongly influenced by the transient exhaust gas conditions. Furthermore, the ORC

system exhibits significant thermal inertia (mostly due to the HX metal walls). These

factors require the use of a dynamic model to adequately describe system operation in

street traffic. As a consequence, when we want to optimize ORC operation, we have to

consider this dynamic model in our optimization problem. This gives rise to dynamic

optimization problems which are commonly encountered in chemical engineering and
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other disciplines [23].

2.2.1 Problem formulation

We consider dynamic optimization problems of the following type

min
u(t)

Φ (x (tf )) (2.2a)

s. t. Mẋ (t) = f (x (t) ,y (t) ,u (t) ,d (t) ,p) ∀t ∈ [t0, tf ] (2.2b)

0 = g (x (t) ,y (t) ,u (t) ,d (t) ,p) ∀t ∈ [t0, tf ] (2.2c)

x (t0) = x0 (2.2d)

0 ≥ h (x (t) ,y (t) ,u (t) ,d (t) ,p) ∀t ∈ [t0, tf ] (2.2e)

umin ≤ u (t) ≤ umax ∀t ∈ [t0, tf ] (2.2f)

where Φ is a Mayer-type objective function evaluated at final time tf . Note that

Lagrange-type or Bolza-type objective functions can easily be rewritten as Mayer-type

objective function, thus, our formulation remains generally applicable. The differential

equations are described by the vector-valued function f in (2.2b) and the algebraic

equations are described by the vector valued function g in (2.2c) whereM is a constant

mass matrix, x are the differential variables, y the algebraic variables, u are the

inputs to the system that can be manipulated, d are the disturbances, i.e., inputs

to the system which cannot be manipulated and p are time-invariant parameters.

The initial conditions at t0 are described by x0 (2.2d). The optimization problem is

subject to the inequality path constraints described by h (2.2e) and the inputs are

box-constrained in (2.2f).

2.2.2 Solution approaches

As time is continuous, the inputs and constraints in (2.2a)-(2.2f) are of infinite dimen-

sion. Practically, we are interested in a sufficiently fine approximation of this problem.

Methods to solve dynamic optimization problems are of either of the following cate-

gories [23].

1. Indirect methods

2. Direct methods

Indirect methods aim at finding a solution which satisfies the necessary conditions of

optimality through solving a boundary value problem. They are also referred to as
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“optimize then discretize” methods [23]. As we use direct methods in this thesis, we

refrain from further discussion and refer the reader to [23, 81].

Direct methods Direct methods first reduce the problem to finite dimension by

discretization and then solve the resulting finite-dimensional optimization problem.

Depending on which quantities are discretized, direct approaches can be further cat-

egorized as sequential [82] and simultaneous methods [83] or multiple shooting [84].

In simultaneous methods, all variables are discretized and the states are obtained by

approximation, e.g., with a Runge-Kutta scheme [23]. The resulting nonlinear pro-

gram (NLP) is typically sparse and can be solved with readily available solvers such

as, e.g., IPOPT [85]. The sequential method, also referred to as single shooting, only

discretizes the control variables by control vector parameterization. This results in a

much smaller dense NLP. Multiple shooting is a hybrid between the aforementioned

methods. In addition to discretizing the controls, the states are discretized at a few

shooting knots. Continuity of the final solution is enforced through additional con-

straints in the NLP. The method holds advantages over single shooting for unstable

or strongly nonlinear systems and can easily be parallelized. However, the additional

constraints complicate the NLP. In the following, we provide additional detail on single

shooting as our method of choice in this thesis.

Single shooting Single shooting is based on splitting the two tasks of solving the

differential-algebraic equations (DAE) model and optimizing the controls. Here, the

control vector is discretized using control vector parameterization. The input function

is thereby split into time intervals and represented by B-splines parameterized with

coefficients which become the new degrees of freedom of the optimal control problem

[86].

ui (t) =

nφ∑
j

ci,jφi,j (t) (2.3)

where ci,j are the coefficients and φi,j the B-splines. A piece-wise constant parame-

terization is the most simple and concurrently most commonly used parameterization

[86]. However, continuous control parameterizations can hold advantages when ap-

plied to process equipment. In addition to the degrees of freedom, the constraints have

to be considered. These are typically evaluated on a grid. In principle, this allows

for intermediate violations of the constraints, however, these are rarely relevant given

that an adequate grid is chosen. In case avoiding any constraint violation is deemed

necessary, algorithms to guarantee constraint satisfaction exist [87, 88].
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The resulting NLP reads

min
c

ϕ (c,p) (2.4a)

s. t. 0 = g (c,p) (2.4b)

0 ≥ h (c,p) (2.4c)

where c is the concatenation of all control vectors parameters ci,j and p is a vector

of quantities in which the problem is parametric. In our case, it includes the initial

state x0 and the disturbances d.

Typically, a sequential quadratic programming method, e.g., SNOPT [89] is used to

solve the dense NLP. In the single shooting algorithm, the NLP solver and a DAE

integrator are called in an alternating fashion. The integrator solves the DAE equation

system with the current control profile and computes state values and sensitivities.

The sensitivities can be obtained integrating the sensitivity system or solving the

adjoint equations [23]. Single shooting holds advantages over simultaneous methods

for stiff systems, as state-of-the-art integrators with variable step length control can

easily be employed. It has, however, disadvantages for unstable systems.

2.3 Model predictive control

Model predicitve control (MPC) [90] is an advanced control method. The working

principle is illustrated in Fig. 2.2. The basic idea is to use a process model to predict

the evolution of the considered system given an input vector. This model is used in

an optimization problem to minimize a given cost function while respecting specified

constraints. While input constraints generally represent physical limits, constraints

on states are typically desirables and often realized through soft constraints [90]. The

problem is solved on a limited horizon called the prediction horizon consisting of NP

intervals of duration ∆tC in order to limit computational demand. The controls are

varied on a control horizon of length NC ≤ NP after which they are held constant.

The result of the optimization is an optimal input trajectory. Unless we consider a

batch problem, we would like to use an infinite horizon to achieve optimal and stable

operation. However, for practical reasons we have to use a finite horizon [91]. For

a variety of reasons, the calculated input trajectory is not fully applied to the plant.

First, due to plant-model mismatch the model predictions will not be equal to the

plant response. Second, unexpected disturbances might arise during the prediction

horizon. Third, the finite horizon solution might be a bad approximation of the

infinite horizon solution. Thus, only the first input signal of the trajectory is sent
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Figure 2.2: Illustration of the working principle of model predictive control (adapted

from [91]). Based on the current measurements, an optimal control prob-

lem with prediction horizon NP is solved. The resulting open-loop control

trajectory is applied to the plant until the problem is re-solved in order to

provide feedback.

to the plant and the model is re-solved after one sampling interval ∆tS to introduce

feedback. Therefore, the closed-loop trajectory can differ significantly from the open-

loop trajectory, especially when a short prediction horizon is chosen. The main perks

of MPC are [92]

• handling of multiple-input-multiple-output (MIMO) systems,

• consideration of input and state constraints,

• disturbances can be considered,

• prediction of future plant behavior.

Depending on the model equations and objective function, MPC can be categorized as

linear model predictive control (LMPC), nonlinear model predictive control (NMPC)
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or economic nonlinear model predictive control (eNMPC). These subcategories are

briefly discussed in the following.

2.3.1 Linear model predictive control

Linear model predictive control (LMPC) problems use a quadratic objective function,

a linear model and linear constraints. Typically the objective function aims at tracking

a predefined setpoint while penalizing control action.

Φ (t) =

∫ tf

t0

(
x (t)− xdes

)T
Q
(
x (t)− xdes

)
+
(
u (t)− udes

)T
R
(
u (t)− udes

)
dt

+
(
x (tf )− xdes

)T
P
(
x (tf )− xdes

)
(2.5)

where Q and R and P are positive definite weighting matrices. An additional term

penalizing incremental change in the controls can be added to prevent drastic control

action. Since a linear model is used, the method only works well in the vicinity of

the corresponding operating point. However, as linear models can be easily identified

for operational plants, e.g., through step response, it is the predominant method in

industry [92]. Historically, large-scale chemical plants have been operated at a fixed

operating point and the main focus of the controller was disturbance rejection. With

increasing penetration of intermittent renewable energies, however, this operational

paradigm might change [93].

2.3.2 Nonlinear model predictive control and economic nonlinear

model predictive control

LMPC might not be appropriate, i.e., it might lead to suboptimal or even infeasible

closed-loop behavior, when the controlled system exhibits a strongly nonlinear behav-

ior or is operated flexibly as opposed to operation at a fixed operating point. Nonlinear

model predictive control (NMPC) has been extensively researched since the 1990s [91],

which, to some extent, has been driven by the increasing combination of the scheduling

and supervisory control layers in the automation hierarchy [94]. In NMPC, either the

model or constraints are nonlinear or the objective function is non-quadratic or both.

In each instance of NMPC a dynamic optimization problem (2.2a)-(2.2f) has to be

solved and the methods mentioned in Chapter 2.2 can be employed. Solving NMPC

problems is much more computationally expensive than solving LMPC problems. Al-

though nonlinear identification methods exist, a drawback that impairs the widespread

application of NMPC is that, often, the model has to be developed by hand. A good
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overview of the developments in the field is provided in [95]. In the 1990s and early

2000s, most of the works focused on guaranteeing stability for NMPC [91]. Common

approaches for this use terminal region constraints and terminal penalty terms in the

objective function [96, 91]. More recently, approaches that do not require a terminal

constraint have been developed [97]. Another significant focus in research in recent

years was on handling uncertainty, which can occur due to measurement noise, state

estimation or uncertain model parameters [95]. Rigorous approaches to the problem

can guarantee constraint satisfaction (e.g., [98]). However, these methods often result

in an overly conservative control policy. Thus, methods that offer a compromise (e.g.,

[99]) have been proposed.

Traditionally, the NMPC controller serves as supervisory controller that maintains

a setpoint. This would typically be specified by the upper layer of the automation

hierarchy and aim at profitable operation. However, the most profitable operation of

a plant might not always correspond to operating at a fixed point [100]. Furthermore,

a regulatory objective function might not choose the most economical transition from

one operating point to another. These considerations motivate economic nonlinear

model predictive control (eNMPC) [24]. Here, an objective function reflective of the

process economics is chosen. This objective function is typically not quadratic and

positive definite with respect to an optimal steady state, allowing for transient oper-

ation [24]. Thus, the objective function does not satisfy the assumptions of standard

stability proofs and requires special stability theory [95]. However, the approaches are

similar in that they use ideas like terminal constraints or a quasi-infinite horizon. For

an overview, we refer the reader to [24].

2.3.3 Fast-update methods

As NMPC problems are expensive to solve, the associated feedback delay can severely

deteriorate control performance for many application. To remedy this problem, so-

called fast-update methods have been proposed. An overview of such methods is

provided in [26]. The methods make use of the fact that the discretized NMPC

optimization problem (2.4a)-(2.4c) is parametric in p. The aim of these methods is to

follow an optimal solution trajectory copt (p). Fast-update methods can be subdivided

into sensitivity-based update methods and suboptimal update methods [26]. Methods

from the first category use a linear approximation of the KKT conditions to construct

an update step. Methods from the latter category approximate the NMPC solution

by performing a limited number of iterations. The QP we solve in one of our methods

in Chapter 8 is inspired by these methods (Neighboring extremal updates [101, 102]).
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2.4 Machine learning

Machine learning (ML) refers to a variety of methods that aim at inferring knowledge

from data [103]. They have in common that data is used for training in the hope that

the trained ML model is able to make adequate predictions when presented with data

not encountered in training, i.e., it is able to generalize. ML tasks can be classified

into regression tasks and classification tasks. Regression tasks, e.g., predicting reaction

rates as a function of species concentration, typically operate on a continuous output

domain. Classification tasks, e.g., assessing whether sensor data is corrupted or not,

operates on a discrete output domain. In this thesis, we restrict ourselves to the

discussion of regression tasks. A plethora of methods is available and the reader is

referred to introductory literature for an overview [103]. In the following, we introduce

artificial neural networks (ANN) which is our ML model of choice. We choose ANNs

because of their easy applicability with available software and good generalization

capabilities [104].

2.4.1 Artificial neural networks

An ANN is a ML model that is inspired by the workings of neural networks in organ-

isms [105]. It consists of a network of interconnected artificial neurons. The original

idea of using artificial neurons as computing units was developed by McCulloch and

Pitts [106] in 1943.

A seminal finding is that ANNs are universal approximators, i.e., they can learn any

smooth function on a compact subset of Rn to arbitrary precision [107, 108]. The

most commonly used artificial neural network is the multilayer feedforward neural

network, often also referred to as a multilayer perceptron. A sketch of a feedforward

neural network is depicted in Fig. 2.3. It provides a mapping from the input to the

output space by propagating information through an input layer, at least one hidden

layer and one output layer. Although, a great variety of further ANN-types exists,

we will limit the discussion to multilayer feedforward ANNs as they are sufficient for

the regression tasks considered in this work. ANNs with a single hidden layer are

commonly referred to as shallow ANNs and ANNs with multiple hidden layers are

referred to as deep ANNs. The hidden layer consists of artificial neurons and the

number of neurons in each layer as well as the number of hidden layers are degrees

of freedom in ANN design. A sketch of a single neuron is depicted in Fig 2.4. The

inputs to the neurons are received from the previous layer and are multiplied with

their respective weights wij, summed up with the bias bj and then evaluated by the
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...

input

layer
hidden layers output

layer

...
...

x1

x2

xn

y1

y2

ym

...

Figure 2.3: A fully connected feedforward artificial neural network. Hidden layer neu-

rons are indicated by solid circles and output layer neurons by dashed

circles. For clarity of presentation, biases and weights are not shown.

∑
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Figure 2.4: A single neuron (adapted from [105]). The inputs to the neuron are

weighted and summed up with the bias and the result is evaluated by

the activation function ϕ.

activation function ϕ. The output of neuron j is given by

yj = ϕ

(∑
i∈Ni

wijxi + bj

)
(2.6)
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A variety of activation functions can be used. Typical choices are sigmoid functions

(e.g., hyperbolic tangent) and threshold functions (e.g., signum function). Recently

the rectified linear unit (ReLU) activation function has been used extensively. It shows

superior learning results [109], in particular in deep networks. Furthermore, it is less

prone to the vanishing gradient problem [110] than other activation functions. In the

final layer (output layer) the number of neurons is equal to the number of outputs

and often a linear activation function is used. With the basic network structure

established, we can now discuss how an ANN is trained, i.e., how adequate values for

weights and biases are identified from data.

The training task is to find values for the weights and biases such that the ANN, when

provided with the input data, minimizes a given loss function of its predicted output

and the output data. The most common loss function for regression tasks is the mean

squared error (MSE). Training is performed by optimization, often with stochastic

gradient descent. The gradient of the objective function can be determined by the

backpropagation algorithm [105]. The training problem is known to exhibit multiple

minima [104]. However, it was observed that, given sufficient data is available and

an adequate ANN architecture is chosen, good performance can be obtained from

most training results [109]. A further issue during training is the danger of over-

and underfitting (bias/variance dilemma) [111]. A common remedy, also used in this

thesis, is early stopping. The data is split into a training set, a validation set and a

test set. Training is stopped after a number of training steps with increases in the

loss function on the validation set to prevent overfitting.

After some initial success, a new wave of interest in ANNs arose through the advances

in tasks such as digital image processing and text recognition using deep learning [109].

In chemical engineering, ANNs have been heavily researched in the 1990s and had

established themselves as a method for a variety of application, e.g., fault detection

[104]. Another widely investigated field in chemical engineering are hybrid models

which combine first principle models with ANNs [112, 113]. Furthermore, ANNs have

been used in process control which we discuss in the introduction of chapter 8. The

recent success of deep learning in text and image recognition has ignited new hope

that artificial intelligence can significantly advance chemical engineering, although it

is unclear whether all the novel methods developed in computer science are useful in

chemical engineering tasks [114]. For example, the use of deep learning requires great

amount of data which are normally not available in chemical engineering applications

unless the data is generated by simulation [114]. Examples of this can be found in

[115], where the physical properties of a WF are represented with an ANN and in [27],

where the optimal control policy of a NMPC controller is represented by an ANN.
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Chapter 3

Development and validation of an

ORC model

3.1 Introduction

In this chapter, we develop a dynamic model of an ORC for WHR in a diesel truck that

is suitable for optimization. To obtain a model that is valid over a broad range of op-

erating conditions, we estimate model parameters using transient data obtained from

a test rig. To enable parameter estimation via dynamic optimization, the thermody-

namic formulation necessary for the calculation of the WF properties [116] is directly

implemented in the model. Further, we introduce generic heat transfer correlations

that can be parameterized without detailed knowledge about the heat exchanger (HX)

geometry. This approach of estimating parameters with transient data on an ORC

system for waste heat recovery has so far not been reported in literature and promises

to provide a more accurate prediction of transients. In order to demonstrate the ef-

fectiveness of the approach, we validate the model with a simulation using input data

from the World Harmonized Transient Cycle (WHTC), which exhibits strongly tran-

sient exhaust gas conditions.

Since HD trucks are operated in street traffic, the ORC system is subject to signifi-

cant fluctuation in its heat source. Therefore, the dynamic system behavior is of high

relevance. In [117], it was found that during transient operation less than half of the

design point efficiency could be achieved. Thus, we focus on dynamic modeling of the

ORC in this Chapter.

When building a dynamic model, it has to be decided which dynamic effects have to

be considered and which can be assumed to be quasi-stationary on the timescale of
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interest. In accordance with the findings in literature, we use dynamic models for the

HXs, as the most significant dynamics of an ORC are observed there [118], while the

pump and the turbine are represented with pseudo-steady-state models.

Dynamic modeling of HXs has received significant attention, especially with regard to

control system design [119]. The two most common approaches are either discretiza-

tion using the finite volume (FV) method or the implementation of a moving boundary

(MB) model. While historically a trade-off between more accurate FV models and

computationally less expensive MB models was assumed to exist, recent publications

have questioned this notion [120, 119, 121, 122]. It was found that, with a sufficient

number of finite volumes, both approaches can achieve similar accuracies. Under such

conditions, a smaller computational effort for the MB approach is required, which

explains its popularity in model-based control applications [123]. For further reduc-

tion of computational demand, often linearized models derived from either type are

employed [124, 125, 126, 127] or physically motivated simplifications are used [47]. As

the computational effort can be crucial in dynamic optimization, we choose the MB

approach.

An extensive description of MB models can be found in [28], where many important

aspects regarding the implementation are discussed. In contrast to discretization with

the FV method, the MB approach in its initial formulation can not handle the ap-

pearance or disappearance of phases that is associated with start-up and shutdown

of the system and can also occur during operation. This particular shortcoming and

attempts to overcome it have been subject of several publications [128, 129, 130, 131,

132, 133, 134].

While many publications dealing with details of dynamic HX modeling are available,

relatively few contributions report full ORC models for WHR. In the majority of publi-

cations on full ORC models, HXs are modeled with the FV method [135, 136, 137, 138].

In [139], both HX modeling approaches are presented. In [138] an ORC model for a

heavy duty diesel truck implemented in Simulink is presented. Most of these publica-

tions obtain thermodynamic properties of the WF from look-up tables or databases

connected through an interface. Another option is presented in [135], where polyno-

mials that are valid in certain intervals are fitted to the data.

We extend the findings in literature by providing a dynamic parameter estimation

procedure. To allow for this, we embed the fundamental equation of state in the

model. Further, we introduce flexible heat transfer correlations that do not require

precise knowledge of the HX geometry. Finally, we present an extensive parameter es-

timation and model validation using experimental data representative of street traffic

conditions.

The remainder of this chapter is structured as follows: In Chapter 3.2, we introduce

23



3 Development and validation of an ORC model

the topology of the considered system, followed by a description of the implemented

models in Chapter 3.3. We describe the parameter estimation in detail in Chapter 3.4

and its results are discussed in Chapter 3.5, together with a validation using input

data of different experiments. Finally, we draw conclusions in Chapter 3.6.

3.2 System topology

A schematic representation of the considered system is depicted in Fig. 3.1. The sys-

Exhaust

Cooling water

1 2

3
4

Texh,in, mexh

meth

Tcw,in, mcw

nturb

Working fluid

Figure 3.1: System topology of the ORC test rig including the exhaust pipe (grey,

dashed), the WF cycle (green, solid), and cooling water (blue, dash-dot).

Circled numbers mark the states of the working fluid. Disturbances and

control inputs, which are recorded during experiments, are labeled within

arrows.

tem is a basic ORC configuration as discussed in Chapter 2.1.3. The input variables

to the system are the exhaust gas mass flow and inlet temperature ṁexh, Texh,in, the

CW mass flow and inlet temperature ṁCW , TCW,in and the WF mass flow ṁWF and

turbine speed nturb.

The WF leaves the evaporator as superheated vapor (“nominal operation”), as sub-

cooled liquid or as two-phase fluid, depending on the amount of heat transferred from
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the exhaust gas to the system. In the latter cases, the turbine bypass valve is opened

in order to avoid droplet erosion in the turbine during expansion, thus no power is

generated. Also, in case of insufficient cooling capacity, the amount of heat trans-

ferred into the system can be reduced by opening the exhaust gas bypass valve. In

this Chapter, we only consider the nominal transient operation mode where the WF

is not expanded into the two-phase region. Furthermore, all available exhaust gas

is passed through the evaporator. A liquid storage tank is installed in the system

in order to be able to control the total WF volume in the cycle. The valve to the

storage tank can be opened during start-up/shutdown which maintains the condenser

pressure at ambient pressure and can be closed when the desired amount of WF in

the cycle is reached.

3.3 Dynamic ORC model

In the following, we describe all implemented dynamic models representing the ORC

system. The model is implemented in the equation-based modeling environment

gPROMS [140], which, in addition to providing numerical solvers for DAE-systems,

offers the possibility to perform parameter estimation and solve dynamic optimization

problems.

3.3.1 Heat exchanger model using the moving boundary approach

We model the HXs (evaporator, condenser) with the MB approach where, instead

of discretizing in the spatial domain along a grid with fixed cell volumes, the fluid

volume is discretized in zones according to the fluid’s aggregate state. Given an evap-

orator, in which subcooled fluid is fed and superheated vapor exits (vice versa for the

condenser), the model consists of three zones. This case is illustrated in Fig. 3.2.

The quantities at the zone interfaces using the indexes 0 and 2 are in fact saturation

quantities in the presence of all zones. However, to maintain generality, we use the

notation where two additional differential quantities, the specific enthalpies h0 and

h2, are added to the model, as compared to the most common formulation [28]. This

allows the model to be easily extendable to simulate non-nominal conditions, where

not all zones are present and h0 or h2 might be the outlet enthalpy [132]. For each

zone, we formulate a lumped mass and energy balance. The differential quantities

characterizing the WF are pressure p and enthalpy h at the zone boundaries. The HX

wall is divided according to the zone lengths of the WF and an energy balance is de-

rived for each wall element. During simulations, the zones move along the evaporator
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Figure 3.2: Application of the moving boundary approach to the counter-current evap-

orator in the nominal case. Numbers represent the discretized zones (sub-

cooled, two-phase, superheated) respectively their boundaries.

length. The secondary side is modeled quasi-stationary, as the exhaust gas or cooling

water normally have lower residence times in the HX and no phase change occurs [28].

The HX is a counter-current plate heat exchanger with multiple fluid channels. For

simplicity, the channels are not modeled separately. Instead, we assume that only one

rectangular channel per fluid and one single separating wall exists. For this assump-

tion to be valid, the flow conditions in the separate channels must all be similar. This

simplification of the geometry is expected to contribute to the prediction error.

In order to derive the MB model equations, we make a number of assumptions, namely

• averaged thermodynamic state variables for each zone (enthalpy, density),

• spatially uniform pressure over the complete HX length (momentum balance

can be omitted),

• constant cross sectional fluid flow area,

• no axial heat conduction in WF or wall,

• homogeneous equilibrium two-phase flow, and

• quasi-stationary behavior on the secondary sides (exhaust, CW).

These assumptions are typically made for the implementation of the MB approach in

literature ([28, 119, 130]) and are applied when deriving the following equations.
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3.3.1.1 Governing differential equations

For the sake of brevity, we present the equations in the final form that is implemented

in the model, rather than discussing their derivation. A detailed derivation of all of

the following equations in this section can be found in [132].

For control volumes with single-phase flow, we get the following mass (3.1) and energy

(3.2) balances

A

(
(za − zb)

dρ̄

dt
+ ρ̄

d (zb − za)
dt

)
+ ρaA

dza
dt
− ρbA

dzb
dt

= ṁa − ṁb, (3.1)

A

(
(zb − za) ρ̄

dh̄

dt
+ (zb − za) h̄

dρ̄

dt
+ ρ̄h̄

d (zb − za)
dt

)
− A (zb − za)

dp

dt

+ρahaA
dza
dt
− ρbhbA

dzb
dt

= ṁaha − ṁbhb + bWFαWF (zb − za)
(
Tw − T̄

)
, (3.2)

where A is the cross-sectional area of the fluid channel and z is the longitudinal

coordinate. ρ, T and ṁ are density, temperature and mass flow of the WF, where

the subscripts a and b indicate quantities of the left-hand and right-hand boundary

of the zones and the overline indicates averaged quantities. t is the time, bWF the

width of the fluid channel and αWF is the heat transfer coefficient from WF to the

wall. The last term on the right hand side of (3.2) is the heat flow from the wall into

the WF. As ρ̄ and h̄ are algebraic quantities, we account for their time dependence

by constructing their total differential w.r.t. the differential quantities (3.3) and (3.4)

and inserting them into (3.1) and (3.2), in order to obtain formulations, where only

actual differential quantities appear in time derivatives.

dρ̄

dt
=
∂ρ̄

∂p

dp

dt
+
∂ρ̄

∂h̄

dh̄

dt
(3.3)

dh̄

dt
=

1

2

(
dha
dt

+
dhb
dt

)
(3.4)

For the two-phase zone, the mass (3.5) and energy (3.6) balances are

A
(

(γ̄ρ′′ + (1− γ̄) ρ′)
d (zb − za)

dt
+ (zb − za)

(dγ̄

dt
(ρ′′ − ρ′)

+γ̄
∂ρ′′

∂p

dp

dt
+ (1− γ̄)

∂ρ′

∂p

dp

dt

))
+ ρaA

dza
dt
− ρbA

dzb
dt

= ṁa − ṁb, (3.5)

A
(d (zb − za)

dt
(γ̄ρ′′h′′ + (1− γ̄) ρ′h′) + (zb − za)

(dγ̄

dt
(ρ′′h′′ − ρ′h′)
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+γ̄h′′
dρ′′

dp

dp

dt
+ (1− γ̄)h′

dρ′

dp

dp

dt
+ γ̄ρ′′

dh′′

dp

dp

dt
+ (1− γ̄) ρ′

dh′

dp

dp

dt

))
−A (zb − za)

dp

dt
+ Aρaha

dza
dt
− Aρbhb

dzb
dt

= ṁaha − ṁbhb + bWFαWF (zb − za)
(
Tw − T̄

)
, (3.6)

where γ̄ is the average void fraction calculated with (3.7) and the superscripts ′ and ′′

indicate quantities at liquid and vapor saturation respectively. The time derivative of

the average void fraction can be expressed by constructing the total differential w.r.t.

the differential quantities (3.8).

γ̄ =
ρ′

(h0 − h2) (ρ′ − ρ′′)2

{
(h0 − h2) ρ′ + ρ′′

[
h2 − h0

+ (h′ − h′′) ln

(
ρ′′ (h′′ − h0)

ρ′ (h2 − h′)

)]}
(3.7)

dγ̄

dt
=

∂γ̄

∂h0

dh0

dt
+

∂γ̄

∂h2

dh2

dt
+
∂γ̄

∂p

dp

dt
(3.8)

Under nominal operating conditions, the HX model consists of two single-phase control

volumes and one two-phase control volume, which are combined as can be seen in

Fig. 3.2. The mapping of the zone boundary positions to the zone lengths li is given

in Tab. 3.1. The energy balance for each wall zone (3.9) reads,

Table 3.1: Mapping of zone boundary positions (cf. Fig 3.2) and zone lengths [28].

za zb
dza
dt

dzb
dt

0 0 l0 0 dl0
dt

1 l0 l0 + l1
dl0
dt

d(l0+l1)
dt

2 l0 + l1 l d(l0+l1)
dt

0

Awρwcpw

(
li

dTwi
dt

+
(
Tw,Bi,i−1

− Twi
) dza,i

dt
+
(
Twi − Tw,Bi,i+1

) dzb,i
dt

)
= Q̇exhi − bWFαWF,ili

(
Twi − T̄i

)
− αambpevapli (Twi − Tamb) , (3.9)

where Aw, ρw and cpw are the wall cross-sectional area, density and heat capacity.

Twi is the temperature of the respective wall zone and Tw,Bi,i−1
and Tw,Bi,i+1

are the
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wall temperatures at the left- and right-hand boundary of the zone, which are calcu-

lated using a length-weighted average, as suggested in [130]. Q̇exhi is the amount of

heat transfered from the exhaust gas to the wall, bWF is the WF channel width and

αi the heat transfer coefficient for the WF in the respective zone. We introduce a

term accounting for heat loss from the exchanger wall to the environment, in which

αamb is the heat transfer coefficient, pevap the HX perimeter and Tamb the ambient

temperature.

3.3.1.2 Thermodynamic model of the working fluid

We implemented a suitable thermodynamic formulation for the WF ethanol in form

of a fundamental equation of state based on the free Helmholtz energy [141, 116]. A

major advantage of this formulation is the availability of analytical derivatives for all

important derivatives required for the MB model. The analytical expressions for the

derivatives can be found in [142]. Saturation properties are calculated from auxiliary

equations which can be found in [116].

3.3.1.3 Exhaust temperature calculations

By analytical integration of the quasi-stationary energy balance on the exhaust side

from interface i+1 to interface i assuming static one dimensional flow [131] (Fig. 3.3),

the temperature at the end of one element can be calculated as in (3.10) and the heat

transfered to the wall as in (3.11). Both the exhaust heat capacity cp,exhi and the heat

Figure 3.3: Illustration of the qualitative temperature distribution assumed for the

exhaust gas in the evaporator.

transfer coefficient αexhi are assumed constant over one element. ṁexh, Texh and bexh
are mass flow, temperature and width of the exhaust channel.

Texhi = Twi +
(
Texhi+1

− Twi
)

exp

(
− αexhibexh
ṁexhcp,exhi

li

)
, i ∈ [0, 2] (3.10)

29



3 Development and validation of an ORC model

Q̇exhi = ṁexhcp,exhi
(
Texhi+1

− Texhi
)

(3.11)

3.3.1.4 Heat transfer correlations

The dynamic behavior of the HX model is significantly influenced by the chosen heat

transfer correlations. In literature, correlations of varying complexity, ranging from

fixed heat transfer coefficients [137] to elaborate Nusselt correlations [55], can be

found. While fixing the heat transfer coefficients reduces computational effort, it can

be expected to deteriorate the model accuracy. Nusselt correlations, which are based

on similarity theory, promise high accuracy, but require detailed knowledge about

the HX geometry. As a compromise, we decided to introduce generic correlations for

the calculation of all heat transfer correlations, where the influences of mass flow and

temperature on the heat transfer coefficient can be captured without detailed informa-

tion on geometry. An additional advantage of this approach is that finding adequate

bounds on the parameters to be estimated is rather simple. A similar approach has

been used in [135]. For all three sections of the evaporator, we choose the same generic

functional approach, as given in (3.12), for the WF heat transfer coefficients.

αi,WF,evap = αi,0,evap ·
[
(1− ki) ·

(
ṁ

ṁ0

)ci,1,evap
+ ki ·

(
ṁ

ṁ0

)ci,2,evap]
+ di,evap (3.12)

The approach assumes the heat transfer coefficient to depend on the WF mass flow

rate. It is scaled using a maximum mass flow rate ṁ0 to ensure the scaled value

ranges between zero and one. αi,0 and di in (3.12) represent a base coefficient and

an additional factor. While the exponent ci,1 is bounded between zero and one, the

exponent ci,2 is bounded to be greater than one. To allow for the dominance of one

exponent within a region of low or high mass flow, we use the logistic function ki as

an activation function, as shown in (3.13):

ki =
1

1 + exp
(
ṁ−ei
ṁ0·fi

) (3.13)

The parameters ei and fi are used to determine the mass flow rate at which the logistic

function switches and how fast this switch occurs. While this functional approach

offers great flexibility and a wide range of behaviors can be captured, six parameters

per zone are added to the parameter estimation problem.

For the heat transfer in the condenser and the exhaust gas heat transfer coefficient,

we use the comparable, yet slightly different correlations (3.14) and (3.15), where the

subscripts cond and exh represent the values of the WF in the condenser and the
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3.3 Dynamic ORC model

exhaust gas.

αi,WF,cond = αi,0,cond ·
(
ṁWF

ṁWF,0

)ci,1,cond
·
(
Ti,WF,in

TWF,0

)ci,2,cond
+ di,cond (3.14)

αi,exh = αexh,0 ·
(
ṁexh

ṁexh,0

)cexh,1
·
(
Ti,exh,in
Texh,0

)cexh,2
+ dexh (3.15)

In addition to the mass flow rate, they also depend on the respective temperature

TWF/exh,0. Again, the temperature is normalized by the maximum permissible tem-

perature in the HX.

For calculating the heat transfer coefficient of the CW in the condenser, we employ a

simple approach, where the CW mass flow ṁCW is the independent variable, i.e.,

αCW = αCW,0 ·
(
ṁCW

ṁCW,0

)cCW
+ dCW . (3.16)

The mass flow rate is once again normalized by the maximal CW mass flow.

3.3.2 De Laval’s nozzle

An important variable that strongly influences the pressure in the evaporator and

therefore most characteristics of the WF is its mass flow leaving the evaporator

ṁevap,out. Its value can be determined by the implementation of a model for a de

Laval’s nozzle, which is placed within the turbine to convert thermal energy into ki-

netic energy. The nozzle is modeled similar to an orifice, thus can also be used for the

turbine bypass.

We implemented a model based on the description in the VDI Wärmeatlas [143] and

the previous work of Leung [144], assuming homogeneous flow equilibrium conditions.

With the simplification of neglecting friction on the wall, ṁevap,out is calculated from

(3.17) - (3.19), in which Cd is the discharge coefficient, pHP the high pressure level,

νin the specific inlet volume, ψ the discharge function and ALaval the smallest cross-

sectional area of the Laval nozzle.

ṁevap,out = Cd

√
2 · pHP

νin
· ψ · ALaval (3.17)

ψ =

√
(1− ηs) +

(
ω · ηs · ln

(
ηs
η

)
− (ω − 1) · (ηs − η)

)
ω ·
(
ηs
η
− 1
)

+ 1
(3.18)
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0 =
(ω2 − 2 · ω + 1)

2 · ηs · ω
· η2

s − 2 · (ω − 1) · ηc + ω · ηs · ln
(
ηc
ηs

)
+

3

2
· ω · ηs − 1 (3.19)

The calculation of ψ in (3.18) depends on whether the flow is in choked state (reaching

sonic velocity at ALaval). This can be verified by calculating the critical flow pressure

pc,Laval and comparing it to the low pressure level pLP . In (3.18), the nondimension-

alized pressures ηc = pc
pHP

and η = p1
pHP

are used. ηs is set to one [143]. Using

this formulation, Cd is the only unknown parameter that can be determined in the

parameter estimation.

3.3.3 Models for pump, turbine, piping and fluid tank

We model the pump assuming a fixed isentropic and mechanical efficiency (ηis,pump,

ηmech,pump), according to (3.20). Within the model, we set both efficiencies to 0.9.

Changes of either efficiency would have a minor impact on the system model, as the

pump power Ppump is far smaller than that produced by the turbine Pturb and the

effect of ηis,pump on the WF outlet temperature is negligible. hout,is is the enthalpy of

the WF in the case of an isentropic compression/expansion.

Ppump =
1

ηmech,pump
· ṁWF ·

hout,is − hin
ηis,pump

(3.20)

For the turbine, we use (3.21) to calculate the power output Pturb.

Pturb = ηmech,turb · ṁWF · ηis,turb · (hin − hout,is) (3.21)

For both the isentropic and mechanical efficiency (ηis,turb, ηmech,turb), a set of data

points of the turbine efficiencies is available. Using this data, we create polynomial fits.

The isentropic efficiency is a function of pressure ratio between high and low pressure

and turbine speed. For this, we choose a polynomial function of third order with

respect to pressure ratio and fifth order with respect to turbine speed. The mechanical

efficiency, in contrast, is a function of turbine speed n (second order polynomial) and

torque M (fifth order polynomial). Both polynomial functions reflect the measured

data accurately, as shown in Tab. 3.2.

When comparing outlet and corresponding inlet temperatures of two sequential units

in the ORC, it becomes obvious that it is necessary to account for heat losses in

between. For this, we place pipe segments between each pair process units in the

model. We model these pipes to track a stationary outlet temperature T statWF,out with a

first-order delay behavior with the time-constant τpipe, i.e.,

dTWF,out

dt
=

1

τpipe,i
·
(
T statWF,out − TWF,out

)
. (3.22)
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Table 3.2: Summary of the data fit for the isentropic and mechanical efficiency of the

turbine, including validity range, size of data set and R2-value of the fit.

The subscript scale indicates a scaling value.

Valid input range Data set R2

ηis
pHP
pLP
∈ [0, 40], nturb ∈ [0.636, 1.636] · nscale 54 0.992

ηmech Mturb ∈ [0, 1] ·Mscale, nturb ∈ [0.636, 1.636] · nscale 192 0.995

The stationary outlet temperature of the WF T statWF,out is computed from (3.23), similar

to (3.10). It is a function of ambient temperature Tamb, inlet temperature TWF,in

and heat capacity flow ṁWF · cp,WF , assumed to be constant over the pipe segment.

Furthermore, the heat transfer to the pipe wall is described by the factor αpipe ·Apipe.

T statWF,out = Tamb + (TWF,in − Tamb) · exp

(
(αpipe · Apipe)i
ṁWF · cp,WF

)
(3.23)

Both τpipe and (αpipe · Apipe) depend on the respective pipe segment and fluid state,

thus are not known a priori. Therefore, they have to be estimated within the param-

eter estimation described in Chapter 3.4.

We did not implement a dynamic model including storage terms for the tank since no

sensor signals for validation are available. Instead, we introduced an orifice, represent-

ing the connection to the tank, using (3.17) - (3.19). The tank is assumed to operate

at atmospheric level. With an adequate cross-sectional area, it is possible to calculate

the mass flow leaving the condenser in order to keep the pressure level constant.

3.4 Parameter estimation

The models of the units in the ORC described in Chapter 3.3 contain a large number

of unknown parameters. These include parameters for the heat transfer correlations

in the HXs and geometry parameters. As discussed in Chapter 3.1, few publications

in the field of dynamic HX modeling present results of parameter estimation. In the

rare cases where a parameter estimation is carried out, it is generally done with a

steady-state model. This yields a NLP, which can be solved to minimize some least-

squares criterion [145]. In [138], Nusselt correlations are extended with multipliers,

which are separately optimized for various steady-state points using Particle Swarm

Optimization. In [146], coefficients for heat transfer correlations, that are very similar

to the ones introduced in Chapter 3.3.1.4, are estimated. However, the estimation

is performed with a steady-state model and only base coefficients, that correspond
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3 Development and validation of an ORC model

to α0, are estimated. Parameter estimation based on data measured at steady-state

points does not necessarily improve capturing the system’s transient behavior.

To estimate the parameters using data measured under transient conditions means

that the dynamic model has to be embedded in the parameter estimation problem,

which results in a dynamic optimization problem (2.2a)-(2.2f). In case of a parameter

estimation, however, the DOF are the fixed parameters p while the inputs u are those

that were used during the experiment. The parameter estimation utility in gPROMS

allows to perform dynamic parameter estimation using a Maximum Likelihood for-

mulation by minimizing the objective function (3.24a) subject to the dynamic model,

where data of j measured variables in i experiments, taken at k time points, are con-

sidered. ξ are the measured quantities. The sensor variances σ2
ijk are assumed to have

constant values of 2 K for temperature and 0.1 bar for pressure sensors. As we used

a constant variances model, changes in the variance values correspond to a different

weighting in the objective function between pressure and temperatures. Delays in the

response of the sensors are neglected.

min
p

NE∑
i=1

NVi∑
j=1

NMij∑
k=1


(
ξ̃ijk − ξijk

)2

σ2
ijk

 (3.24a)

s.t. (2.2b)-(2.2d)

pmin ≤ p ≤ pmax (3.24b)

To solve the parameter estimation problem, the initial values for the differential quan-

tities x0 have to be specified. However, the vector of differential variables contains

quantities such as the wall temperatures and zone lengths that cannot be measured.

To circumvent this issue, we assume the system to be in steady-state at the beginning

of the experiment.

x0 = xstat (u0,p) (3.25)

The steady-state of the system xstat is a function of the parameters to be estimated

as indicated in (3.25). We derive the steady-state by simulation by simulating from

an initial state with fixed inputs u0 for 5000 seconds before the first measurement

is recorded. Depending on the chosen set of parameters, the simulation still can fail

during the transient from the initial value to the steady-state associated with the

parameter set, which might, in consequence, cut off some feasible solutions. Another

issue associated with the method is that dynamic optimization problems typically

have multiple minima, while we only employ a local solver. Hence, the quality of the

solution depends on the chosen initial values of the parameters.
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3.4 Parameter estimation

Fig. 3.4 shows the ORC topology including all relevant sensors and introduced pipe

segments required for the parameter estimation and following model validation. We

introduce five pipe segments according to the formulation presented in Chapter 3.3.3.

The geometry of the evaporator and condenser have many uncertainties such as the

T T

TT

T

Pipe segments

Exhaust

Cooling water

Temperature sensors

p

T

T T

T

T
T

Figure 3.4: ORC topology for parameter estimation including pipe segments within

the WF cycle. Temperature and pressure sensor positions are labeled in

circles. The pipe segment in the bypass path is also accounting for losses

in the expansion through the valve.

fluid flow areas, heat exchange areas, wall thicknesses etc., therefore several parameters

have to be estimated here. Another important parameter is the discharge coefficient

for the Laval nozzle in the turbine. Additionally, all coefficients for the heat transfer

correlations introduced in (3.12) to (3.16) have to be estimated. As no sensor data

of the ambient conditions during the measurement is available, we estimate the sink

term with a constant heat transfer coefficient multiplied with the perimeter, together

with an assumed ambient temperature.

The tables summarizing all estimated parameters together with their respective lower

and upper bounds are given in Tab. A.1, A.2 and A.3.
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3 Development and validation of an ORC model

3.5 Parameter estimation results and model validation

The results of the parameter estimation for the main ORC model components are

presented in Chapter 3.5.1, followed by a validation of the full cycle model in Chap-

ter 3.5.2 using measurement data from an experiment not incorporated in the previous

parameter estimation. For confidentiality reasons, all signals are scaled. The param-

eter estimations results for the pipe model are provided in Appendix A. We use all

pipe models together with their respective values for τ and α ·A within the validation

of the ORC in the next section. Parameter values for the pipe models are given in

Tab. A.1.

3.5.1 Parameter estimation results of the ORC model

We carry out the parameter estimation for the main parts of the ORC model, namely

the evaporator and condenser, using transient measurement data from the test rig de-

scribed in Chapter 3.2. As the storage tank valve after the condenser is open through-

out the experiments, the low pressure of the ORC is nearly constant at around 1 bar.

Therefore, the low pressure level is not taken into account for the objective function

of this parameter estimation problem. For the measurements taken for the parameter

estimation, the turbine in the test rig was bypassed using the expansion valve. As a

result, we assume the superheated vapor to undergo an isenthalpic expansion to the

low pressure level. To account for losses in the bypass, we introduce an additional

pipe segment.

The input variables for one of the experiments included in the parameter estimation

are depicted in Fig. 3.5. In this particular experiment, the response on steps in the

WF mass flow is examined. Step changes in the mass flow to three different constant

levels are applied, each of the steps corresponding to about 10 % change in mass flow.

The simulation results obtained after the parameter estimation using the method de-

scribed in Chapter 3.4, are shown together with the measurement data in Fig. 3.6.

Although there is a bias between the simulated and measured data, the transient be-

havior caused by time-varying inputs is captured by the model, as the plots of the

measured values show similar dynamics, e.g., in comparing the high pressure level to

the WF mass flow.

To provide quantitative observations, we introduve four statistic indicators in (3.26)

to (3.29): the maximal absolute deviation between the simulated result and measure-

ment ∆ξmax, the maximal relative deviation ∆ξmax,rel, the absolute deviation averaged
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Figure 3.5: Trajectories of all input variables within a step-response experiment used

for the parameter estimation.
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over all samples ∆ξ̄ and the relative mean deviation ∆ξ̄rel.

∆ξmax = max

(√[
ξ̃k − ξk

]2
)
, k ∈ [0, ktot] (3.26)

∆ξmax,rel = max


√[

ξ̃k − ξk
]2

ξ̃k

 , k ∈ [0, ktot] (3.27)

∆ξ̄ =

ktot∑
k=0

(√[
ξ̃k − ξk

]2
)

ktot
(3.28)

∆ξ̄rel =

ktot∑
k=0

(√
[ξ̃k−ξk]

2

ξ̃k

)
ktot

(3.29)

The values of these indicators for the presented case are summarized in Tab. 3.4. In

general, the deviations are small with a maximum relative error of less than 4 % and

a relative averaged error of less than 2 % for the temperatures. For the high pressure

level, the mean relative error of 3 % supports the impression obtained from inspection

of the plot in Fig. 3.6a, where the dynamics are captured appropriately.

The high pressure level of the system can be adequately predicted for steady-state

points. It is predominantly influenced by the WF inlet mass flow into the evaporator

as the steps in the inlet mass flow rate are qualitatively similar compared to the

high pressure level. In the measurement data, after each step in the mass flow, the

pressure shows a notable overshoot before it reaches a steady level. This overshoot is

not appropriately captured by the model.

The remaining simulated output variables associated with the evaporator model also

exhibit an acceptable representation of the measurements. The maximum deviation

of the simulated WF evaporator outlet temperature is 10.2 K and the mean deviation

is 3.7 K. The maximum and mean deviations of the exhaust gas outlet temperature

are 4.6 K and 1.0 K respectively. In the condenser, a constant offset between the

simulated outlet temperatures and the respective measurements is observed. This

can be attributed to uncertainties in the geometry, heat transfer coefficients and heat

capacity of the CW.

The resulting values of all parameters characterizing evaporator and condenser are

given in Tab. A.2 and A.3. Quantitative measures of errors for direct comparison are

rarely provided in literature. When comparing the errors found here to [139], where

the deviation of the WF outlet temperature in the evaporator is at around 8 K, the
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Figure 3.6: Simulated trajectories of relevant thermodynamic variables of the ORC in

comparison to their corresponding measured trajectories in a measurement

used for the parameter estimation, including maximal and mean relative

errors.
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Table 3.3: Summary of statistic error indicator values for relevant variables resulting

from a measurement used for the parameter estimation.

∆ξmax [bar]/[K] ∆ξmax,rel [%] ∆ξ̄ [bar]/[K] ∆ξ̄rel [%]

pWF,evap,out 0.52 7.7 0.22 3.2

TCW,cond,out 6.8 2.0 5.7 1.7

TWF,cond,out 2.0 0.6 1.1 0.3

TWF,evap,out 10.2 2.0 3.7 0.8

Texh,evap,out 4.6 1.1 1.0 0.2

absolute average error here with 3.9 K for the measured value seems to be smaller. In

general, a fair comparison of model accuracy is hardly possible as the system topology

and scenarios vary from publication to publication. For example, in [138], comparable

mean errors of ∆ξ̄pHP ,rel = 2.2 % and ∆ξ̄Tturb,in = 8 K are reported, but this system

includes a second evaporator in parallel, which also applies to [147, 148]. While

[147] lists the errors for steady-state validation, the averaged errors in the dynamic

validation are not provided. Compared to the errors given in [148] (∆ξ̄pHP ,rel = 12.4 %,

∆ξ̄hturb,in,rel = 5.4 %), our proposed approach seems to be more accurate. In contrast,

the relative errors reported in [120] are comparable small (< 5 % when using the MB

approach). It has to be noted that the system is a vapor compression cycle operating

at lower temperature and pressure levels.

3.5.2 Validation of the model

In order to validate the model, we performed simulations with inputs taken from an

experiment not considered in the parameter estimation. For this experiment, parts

of the World Harmonized Transient Cycle (WHTC) were taken as inputs, thus repre-

senting realistic data for the exhaust mass flow and inlet temperature in street traffic.

The experiment was also executed with an open tank valve thus constant low pressure

level. In contrast to the case used for the parameter estimation, the WF was expanded

using the turbine. Hence, the turbine model described in Chapter 3.3.3 is used.

All model inputs are shown in Fig. 3.7. The exhaust gas mass flow exhibits strong

fluctuations, as expected under real-world driving conditions, with the lowest value

being 70 % smaller than the highest. However, the variations in the exhaust gas tem-

perature are small.

Again, the simulated output variables of the evaporator are in good agreement with

the measurements and the relative deviations are of the same magnitude as those
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in the previous section (Tab. 3.4). Note that the simulated WF evaporator outlet

temperature does not completely capture the dynamics measured in the system. The

maximum deviation is three times higher than the deviation averaged over all sam-

pling points. For the turbine outlet and condenser, the simulated values capture the

dynamics of the measured temperatures properly, but deviate by an almost constant

offset. Accordingly, the difference between the maximum absolute deviation ∆ξmax
and the mean absolute deviation ∆ξ̄ is comparatively small.

Table 3.4: Summary of statistic error indicator values for relevant variables resulting

from the measurement used for the model validation.

∆ξmax [bar]/[K] ∆ξmax,rel [%] ∆ξ̄ [bar]/[K] ∆ξ̄rel [%]

pWF,evap,out 0.95 9.7 0.49 5.5

TCW,cond,out 4.9 1.4 3.7 1.1

TWF,cond,out 2.2 2.7 1.3 0.4

TWF,evap,out 13.5 2.7 3.9 0.8

TWF,turb,out 18.3 4.8 12.4 3.2

Texh,evap,out 4.9 1.2 1.7 0.4

3.6 Conclusion

In this Chapter, we presented a dynamic model representing an ORC for waste heat

recovery in a diesel truck. As the dominant transient phenomena can be observed in

the HXs, we implemented dynamic models for the evaporator and condenser. More

precisely, we chose the MB approach, one of two prominent approaches in dynamic HX

modeling. The pump and expander are described with pseudo-steady-state models.

To account for heat losses between components, we developed a simple pipe model.

To facilitate the use of the ORC model for dynamic optimization, we implemented

a fundamental thermodynamic equation based on the free Helmholtz energy. This

holds the advantage that the sensitivities with respect to the optimization variables

can be obtained directly by integrating the sensitivity system. To validate the model,

we used transient measurement data and solved the arising dynamic optimization

problem in gPROMS. Here, we used simple functional approaches instead of more

complex Nusselt correlations for the calculation of the heat transfer coefficients.

The results of a validation study show that the ORC model is able to capture the

relevant dynamics qualitatively as well as quantitatively, with a mean relative error
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Figure 3.7: Trajectories of all controlling inputs within the measurement used for the

model validation.
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Figure 3.8: Simulated trajectories of relevant thermodynamic variables of the ORC in

comparison to their corresponding measured trajectories within the model

validation, including maximal and mean relative errors.
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smaller than 4 % for all measured temperatures for a transient measurement data set.

The mean relative error for both evaporator outlet temperatures is smaller than 1 %.

For the high pressure level, a mean relative deviation of 5.5 % arises. This model

accuracy could not have been obtained without the parameter estimation applied to

transient data.
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Chapter 4

Comparison and improvement of heat

exchanger models with phase changes

4.1 Introduction

In this chapter, we extend our model from Chapter 3 to cover non-nominal operation.

Furthermore, we implement a FV heat exchanger model for comparison. Dynamic

models of HXs are used for simulation, control and optimization of a variety of sys-

tems, such as ORCs [118, 135, 149, 138], vapor compression systems [121, 150, 151, 120]

and solar thermal systems [134, 152]. The type of models employed depends on the

requirements on precision and computational demand. As discussed in Chapter 3, two

model types are predominantly used for HX: the MB approach and the FV method. In

research contributions considering nonlinear model predictive control applications, the

MB approach is typically employed due to its lower computational demand [123, 153].

In the FV method, the HX is discretized spatially. Often, an equidistant grid is chosen

as the position of the two-phase zone is usually not known a-priori. Mass and energy

are conserved in the volumes and the values of the edge fluxes are obtained depending

on the discretization scheme. The MB approach and the FV approach both allow for

the consideration of a pressure drop along the HX by including a momentum balance

[28, 154]. Numerical problems, typically termed chattering [155], can occur when dis-

continuities in relevant thermodynamic derivatives at the saturation lines are present.

Several methods to circumvent chattering have been proposed [156, 157, 158, 155].

The standard MB approach [28], as presented in Chapter 3, does not consider the

appearance and disappearance of phases that can occur during transient operation of

a HX. Several contributions generalized the MB approach to allow for the appearance

45



4 Comparison and improvement of heat exchanger models with phase changes

and disappearance of phases [128, 129, 130, 131, 159, 134, 132, 133]. Typically, the

appearance and disappearance of zones is realized by employing a hybrid discrete-

continuous approach in the sense of [160]. In literature, authors use different criteria

for the model switches, such as enthalpy [133], a combination of enthalpy and zone

length [134, 132], density and zone length [159] or void fraction and zone length [131].

While in many publications only selected switching events are described, all possible

zone combinations are presented in [132]. The models are implemented in different

simulation environments, e.g., Modelica [130, 161] or Simulink [131, 138].

The model from Chapter 3 represents the desired operational mode of the ORC (“nom-

inal operation”) in which superheated vapor is obtained from the evaporator and the

expander can be used for power generation.

In this Chapter, we assess both the MB and FV modeling approach. In particular, we

discuss the model behavior in start-up situations. To account for conditions of insuffi-

cient heat availability, such as the start-up of the ORC, we extend our MB model from

Chapter 3 to a hybrid discrete-continuous model [160] in this Chapter. Our analysis

reveals that the MB approach exhibits some limitations that become evident during

simulations of start-ups.

In most relevant literature [121, 120], the discussed modeling approaches are com-

pared on the application to vapor compression systems. In [121], the authors limit

themselves to cases where model switching occurs at the HX outlet. They find that

the MB and FV approaches result in similar accuracy, while the FV approach has

a higher computational demand. The trade-off between accuracy and computational

demand is investigated in [120], where a switching MB and FV model are compared.

Desideri et al. [119] examine HX models in ORCs but exclude switching in their

analysis. The authors present an integrity test that assesses a model’s capability to

ensure energy and mass conservation. In their work, all implemented models pass

the test. For assessment of model accuracy, a FV model with 100 control volumes is

used as reference. Rodriguez and Rassmussen [122] assess the impact of the switching

criteria and thresholds of the MB model on its performance. The authors compare

the deviation of the MB model from a FV model and argue that the MB model should

closely mimic the FV model and that the number of switches should be similar.

The remainder of this chapter is structured as follows: In Chapter 4.2, we present the

models for the MB and FV approach. In Chapter 4.3, we identify the limitations of

the MB approach related to the start-up of a condenser. We then propose solutions

for the identified shortcomings in Chapter 4.4. In Chapter 4.5, we compare these

solutions for the start-up of a condenser of an ORC using data from an existing test

rig. We provide conclusions in Chapter 4.6.
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4.2 Model description

In this section, we first discuss the extensions of the MB model from Chapter 3

to handle the appearance and disappearance of zones. In the second part of this

section, we introduce the FV approach. we address the well-known chattering problem

appearing in the FV approach using the smooth-density method [155], which is a

recommended measure as it provides high accuracy together with limited additional

computational cost. Both models are implemented in the equation-oriented modeling

software gPROMS v5.0.1 (x64) [162]. The model equations are shown in Chapter 3.3.1

for the MB approach and Appendix B for the FV approach. For both models, the

required thermodynamic properties of the WF are calculated from an implementation

of a fundamental equation of state based on the free Helmholtz energy [141, 116].

4.2.1 Switching moving boundary model

The mass and energy balance of the exhaust/coolant side are modeled quasi-stationary

and the energy balance for the wall element is identical to the one presented in Chap-

ter 3. Depending on the application, various combinations of single-phase and two-

phase flow zones and switches between combinations are possible [132]. Herein, we

restrict ourselves to combinations of zones as they typically occur during operation

of power cycles. The treatment of the discrete-continuous behavior is transferable to

other case studies, such as the operation of vapor compression cycles [131]. The rele-

vant model equations can be found in Chapter 3.3.1. For our case study, all possible

combinations of zones are illustrated in Fig. 4.1 for the condenser. We assume that

the WF leaving the condenser/entering the evaporator is always in subcooled state.

The following model states are accounted for:

• Condenser (Evaporator)

– SC (SC): only a subcooled zone exists

– TPSC (SCTP): a two-phase zone and a subcooled zone exist

– SHTPSC (SCTPSH): a superheated zone, a two-phase zone and a sub-

cooled zone exist. This is equivalent to our model presented in Chapter 3.

The nomenclature reflects the fact that state events occur only at the evaporator outlet

and the condenser inlet, as is typical for power cycles. Handling of the discrete state

events that trigger switching is discussed in a variety of publications [132, 133, 154].

Herein, we choose a switching scheme based on enthalpy, as illustrated in Fig. 4.1.

When simulating hybrid discrete-continuous models using declarative modeling lan-
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Figure 4.1: Illustration of switching events for the MB approach for the case of a

condenser. Horizontal lines at the left end in the top and middle figure

represent inactive zones. Inequalities display the switching criteria, in

which the inlet/outlet enthalpy is compared to the saturation enthalpy

plus/minus a small positive value (εh).
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guages, such as gPROMS [162], all differential states have to exist in all continuous

modes of the model. To satisfy this requirement, inactive zones are handled by pseudo

balances, which allow for a proper initialization when the zone is reactivated. We illus-

trate this approach on the example of the inactive superheated zone for the condenser

in TPSC mode (see Fig. 4.1, middle), where we have the following equations:

dl0
dt

= 0, (4.1)

dTw,0
dt

=
1

τw
(Tw,1 − Tw,0) , (4.2)

ṁin = ṁ0, (4.3)

dh0

dt
=

dhin
dt

+
1

τh
(hin − h0) , (4.4)

in which l is the length of the zone, t the time, ṁ the mass flow of the WF crossing a

zone boundary, h the mass-specific enthalpy, Tw the temperature of the wall and the

user-specified time constants τw and τh. As it serves to eliminate the offset resulting

from εh, the parameter τh should be generally assigned to a small value. τw eliminates

the temperature difference between a zone that vanished and its neighbor. A general

rule for providing an adequate value for τw cannot be stated here as it depends on the

system at hand. Subscript 0 indicates the superheated zone in the condenser.

If the two-phase zone and one of its neighboring zones are active, the enthalpy at the

left (h0) or right zone boundary (h2) tracks the liquid respectively vapor saturation

enthalpy (h′ and h′′), depending on pressure p. This is shown in (4.5) for the previously

mentioned case, in which h2 tracks h′.

dh2

dt
=

dh′

dp

dp

dt
+

1

τh
(h′ − h2) (4.5)

4.2.2 Finite volume model

For the FV model, we use the same assumptions as for the MB approach in Chap-

ter 3. The model equations are discretized on an equidistant grid and can be found

in Appendix B. Fig. 4.2 provides a visualization of the discretization scheme.

The partial derivatives of the density ρ of the WF ∂ρ/∂h|p and ∂ρ/∂p|h are discon-

tinuous at the phase boundary between subcooled and two-phase fluid. This gives

rise to a spurious numerical internal mass flow in a volume when switches occur.

This phenomenon causes a high number of discontinuous switches, hence is termed

chattering in literature [158], and can drastically reduce simulation speed. It is well

known that it also gives rise to large numerical errors which can eventually even lead
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Figure 4.2: FV discretization scheme with the values for h, ρ and ṁ for both cells and

boundaries.

to flow reversal, i.e., negative value of ṁWF [155]. Several methods to circumvent the

problem have been proposed [156, 157, 158, 155]. Herein, we apply smoothing of the

density function [155] within a transition section (vapor quality x ∈ [0, δ]). Thereby,

the equation of state is replaced by a third order polynomial for a C1-continuous den-

sity approximation in the transition section. Hence, each cell volume is in one of the

following states:

• SC: subcooled fluid,

• TRANS: transition to two-phase fluid,

• TP: two-phase fluid,

• SH: superheated fluid.

To avoid a chattering effect due to discontinuities in the heat transfer coefficients in

the cells, we use a linear interpolation with respect to x for the FV model:

αliq−trans = αliq +
(
αtrans − αliq

)x
δ

for x ∈ [0, δ] , (4.6)

αtrans−vap = αvap +
(
αtrans − αvap

)1− x
δ

for x ∈ [1− δ, 1] , (4.7)

where α is the heat transfer coefficient, the subscripts liq, trans, vap indicate quan-

tities in subcooled, two-phase and superheated region and δ is a user-specified param-

eter. Note that the transition region of the heat transfer coefficient and smoothed

density function are expressed in terms of the same model parameter δ, hence the re-

gions coincide. This choice is natural in order to minimize the number of state events

during simulation to further mitigate chattering effects and speed up simulations,

however, it is not mandatory.
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4.3 Model analysis for start-up operation

In this section, we discuss the start-up process where the HX is in SC mode, i.e.,

only subcooled liquid is present. We identify a limitation of the MB approach by

simulating a typical start-up situation in a condenser with parameters (heat transfer

coefficient, residence time) taken from literature. Further, we simplify and analyze

the model equations to identify the cause of the limitation. Our analysis indicates

that the problem becomes particularly evident in the condenser. Finally, we present

two approaches to circumvent the problem.

4.3.1 Problem identification

At the beginning of the start-up procedure, the condenser is completely filled with

subcooled liquid. Hence, the employed MB model only consists of one active zone.

Further, the inlet enthalpy of the WF entering the condenser increases strongly during

start-up.

We assume a constant rate of change in inlet enthalpy of dhin/dt = 1500 J/(kg · s)
for the first 100 s of the simulation and dhin/dt = 0 J/(kg · s) for the remaining

300 s. The average residence time of the WF in the condenser τHX is given by

τHX =
ρ̄V

ṁWF

(4.8)

and adjusted to a value taken from literature (140 s, [163]) by choosing an adequate V

and ṁWF for this constructed example. ρ̄ and V are the averaged density of the WF

and the HX volume. The HX is operating in a WHR system with open tank valve, i.e.,

at ambient pressure. The use of a Laval nozzle model from Chapter 3 allows enforcing

a near constant pressure level. For the heat transfer from the WF to the wall, we

choose a heat transfer coefficient of αliq = 400 W/(m2 ·K) [143]. We assume constant

WF and CW mass flow rates and a constant CW inlet temperature of 298 K. The

model is initialized at steady-state for dhin/dt = 0 J/(kg · s), so that it is subjected

to a step in the inlet enthalpy rate of change as t = 0 s, as is typical in the start-up

situation. The resulting WF outlet temperature is depicted in Fig. 4.3. It can be

seen that the increase in inlet enthalpy leads to a substantial initial decrease in outlet

temperature. In the illustrated case, the temperature drops from the initial steady-

state to 282 K. When dhin/dt is set to zero at t = 100 s, the WF outlet temperature

trajectory exhibits a kink and consequently approaches a new stationary value. From

physical insight, an increase in outlet temperature due to the increase in hin after

some initial delay associated with τHX would be expected under the given conditions.
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Figure 4.3: Simulated WF outlet temperature in the start-up case with heat transfer,

together with the change of inlet enthalpy.

The model behavior seen in Fig. 4.3 is therefore non-physical and can cause severe

numerical problems. In fact, we experienced several crashes during simulation of the

model due to the WF outlet temperature reaching the lower bound for temperature

variables when we carried out simulations with input data from the test rig described

in Chapter 3.

By varying the mass flow rate, we further assess the effect of the residence time on the

identified phenomenon. To avoid different final steady-states and to isolate the effect

of the residence time, we remove the heat transfer term from the model equations to

allow for a distinct analysis of this behavior. The inlet enthalpy is raised starting at

t = 0 s with a constant rate of 100 J/(kg · s). At t = 300 s, the rate of change of the

inlet enthalpy is set to 0 J/(kg · s).
The results are depicted in Fig 4.4 and demonstrate that a higher residence time

amplifies the effect.

4.3.2 Problem analysis

As the model consists of a single active zone with length ltot, we replace the indexes a

and b with in and out. To allow for assessment of model equations, we assume the WF
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Figure 4.4: Simulated WF outlet enthalpy in the start-up case with no heat transfer

for different residence times.

density to be constant, i.e., ∂ρ/∂p = 0 s2/m2 and ∂ρ/∂h = 0 (kg · s2)/m5, which is

a reasonable assumption for subcooled fluids. Further, we assume isobaric operation

during start-up, i.e., dp/dt = 0 bar/s. The boundaries of the zone do not move in

space, i.e., dzin/dt = 0 m/s and dzout/dt = 0 m/s. Using these assumptions, the

mass and energy balance (3.1) and (3.2) of the MB formulation simplify to

dhout
dt

=
2

τHX

(
hin − hout

)
︸ ︷︷ ︸

1

− 2 · αWF bWF ltot
(
Tw − T̄

)
ρV︸ ︷︷ ︸
2

− dhin
dt︸︷︷︸
3

, (4.9)

where bWF is the heat transfer width and T̄ the averaged temperature of the WF.

In order to assess the behavior of hout, the terms in (4.9) have to be evaluated. At the

beginning of the start-up process (t = t0), the temperature along the length of the

HX is constant, i.e., hin (t0) = hout (t0) and the fluid temperature is equal to the wall

temperature, i.e., T̄ (t0) = Tw (t0). Hence, term 1 and term 2 on the right-hand

side (RHS) of (4.9) are initially equal to zero. Consequently, the MB model response

shows an initial decrease in hout to an initial increase in hin under these assumptions.

The decrease in hout continues until the difference of term 1 and 2 becomes greater

than term 3 . In a physical system, the outlet enthalpy is expected to increase in
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response to a ramp in inlet enthalpy after a certain time delay due to the average

residence time of the fluid in the apparatus.

By neglecting the heat transfer term 2 from the RHS of (4.9), we obtain a linear

system that allows for a more detailed analysis in the Laplace domain. We introduce

the Laplace transform of the linear system (4.10) by setting y (t) = hout and u (t) =

hin, i.e.,

L (ẏ (t)) =
2

τHX
(L (u (t))− L (y (t)))− L (u̇ (t)) . (4.10)

We can rearrange (4.10) to obtain the transfer function G (s).

G (s) =
Y (s)

U (s)
=
−s+ 2

τHX

s+ 2
τHX

(4.11)

The system exhibits a positive root of the term in the nominator of (4.11). This is

called a non-minimum phase zero and is a well known phenomenon in control engi-

neering [164]. Non-minimum phase systems are associated with an inverse response

behavior, as identified in the previous section, which is unphysical for the examined

system. The linear system can be solved analytically. The resulting trajectories of

the analytic solution for the outlet enthalpy hout for a step in dhin/dt and a variety of

residence times are depicted in Fig. 4.5. The effect occurs irrespective of the residence

time, though its significance differs. This is in agreement with (4.9), as the residence

time influences the first term on the RHS. Note that assuming no heat transfer is

conservative for a condenser as the occurrence of heat transfer with T̄ > Tw would

enhance the phenomenon. This is obvious from (4.9), where the second term on the

RHS would be negative, hence amplify the effect.

4.4 Proposed solution approaches for start-up opera-

tion

The behavior observed and analyzed in Chapter 4.3 can be traced back to the aver-

aging assumption for the enthalpy

h̄ =
1

2
(ha + hb) , (4.12)

which is commonly used in the MB approach [28]. In situations such as a start-up,

where the enthalpy difference between the zone boundaries of a single zone is small,

the model predicts an inverse reaction of outlet enthalpy to changes in inlet enthalpy,

54



4.4 Proposed solution approaches for start-up operation

0 200 400 600
-5

0

5

10

15

20

25

30

0

20

40

60

80

100

Figure 4.5: Analytic solution of (4.9) assuming no heat transfer and

dhin/dt = 100 J/(kg · s) between 0 and 300 s and dhin/dt = 0 J/(kg · s)
between 300 and 700 s for a variety of residence times.

in particular for small throughput to volume ratios, i.e., high τHX . A straightforward

method to prevent this behavior is to change the averaging assumption (4.13) for h̄

by adjusting the averaging parameter f

h̄ = f · hin + (1− f)hout , (4.13)

which will be discussed in the following. If we apply the altered assumption to (4.9),

neglect the heat transfer term 2 and perform the Laplace transform, we obtain the

transfer function Gf (s)

Gf (s) =
− f

1−f s+ 1
(1−f)τHX

s+ 1
(1−f)τHX

. (4.14)

Reducing f monotonically decreases the spurious inverse response. For f = 0, which

is equivalent to an ideal mixing assumption, the inverse response completely vanishes.

It has to be noted that reducing f to zero yields a first-order system with response

time τHX . The resulting transfer function Gf=0 (s) reads

Gf=0 (s) =
1

τHXs+ 1
. (4.15)
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Clearly, a first-order response is not representative of the physical behavior as the

delay in the outlet response due to the residence time of the HX is neglected. Note

that the altered averaging assumption (f = 0) is equivalent to a FV model with

NV = 1 for a first-order upwind scheme which generally has the transfer function

GFV (s)

GFV (s) =
1(

τHX
NV

s+ 1
)NV . (4.16)

An illustration of the behavior with the altered averaging assumption (4.13) is de-

picted in Fig. 4.6, for a system with a residence time of 60 seconds making use of the

assumptions from Chapter 4.3.2. Again, dhin/dt = 100 J/(kg · s) for the first 300 sec-

onds and dhin/dt = 0 J/(kg · s) for the last 400 seconds. This corresponds to a ramp

in hin. For comparison, the corresponding trajectories with the standard averaging

assumption and f = 0.3 are also depicted, as well as the behavior for ideal plug flow,

reflecting the expected behavior of the simulation. Further, the solution for the FV

approach with NV = 20 is depicted. A detailed view of the first 100 seconds is

provided in Fig. 4.7. The higher order behavior of the FV model captures the delay

due to the residence time best and it can be seen that the classic averaging assumption

exhibits a trajectory very similar to the one of the FV model after the initial inverse

response. The altered averaging assumption does not exhibit the inverse response, but

the trajectory differs slightly more. However, this drawback is insignificant compared

to avoiding potential simulation failures. The observation that the FV approach with

multiple cells most closely mimics the expected behavior suggests a combination of

both modeling approaches.

Since the problem only occurs in particular situations, the FV model should only be

used when it is necessary as it is associated with higher computational cost. Conse-

quently, we only use the FV approach when only the liquid zone is present. Otherwise,

we use the MB approach. As mentioned before, most equation oriented modeling

frameworks require the vector of differential quantities to consist of the same vari-

ables for each continuous mode of switching models. Hence, the FV equations also

have to be solved when the model is inactive. However, we can use pseudo-balances

as they would be used for inactive zones in a switching MB model as suggested in,

e.g., [132]. So, when the HX is in SC mode, the balances of the MB model are sim-

plified and the variables are set to dummy values. The FV model is solved as usual

and all balances for each cell are solved. When the inlet enthalpy fulfills the switch-

ing criterion (hin > h′ + εh), the model switches to the MB mode and consequently

uses its balances. The FV balances are then simplified, e.g., the heat transfer and

time-derivative of the distributed state variable hfv,i are set to zero, thus reducing
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Figure 4.6: Solution assuming no heat transfer and dhin/dt = 100 J/(kg · s) between 0

and 300 s and dhin/dt = 0 J/(kg · s) between 300 and 700 s for a residence

time of τHX = 60 s. Depicted is the solution of Eq (4.14) for the MB

approach with the respective values of f and Eq. (4.16) for the FV model.

computational demand compared to using a full FV model. Also, there is no change

in the algebraic FV variables ρfv,i, Tfv,i, pfv,i and ṁfv,i. For a possible subsequent

switch to the nominal case, the equations then remain unaltered.

4.5 Evaluation of solution approaches for the start-up

simulation of a condenser

In this section, we present simulation results for the start-up of a condenser used in an

ORC for WHR. In particular, we compare the results using a conventional FV model

with 20 cells to the two proposed solution approaches, i.e., changing the averaging

assumption and the hybrid approach proposed in Chapter 4.4 which also uses 20 cells

in SC mode. A simulation with the standard averaging assumption is not shown here

as the simulation terminates prematurely when TWF,out drops below physically sensible

values. The performance of the approaches is evaluated against measurement data

obtained from the test rig described in Chapter 3, using the same model parameters
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Figure 4.7: Detailed view of the solution assuming no heat transfer and

dhin/dt = 100 J/(kg · s) between 0 s and 100 s for a residence time

of τHX = 60 s.

and correlations. The inputs to the system, which are also obtained from the test rig,

are the WF mass flow ṁWF , the WF inlet enthalpy hin and its time derivative dhin/dt,

the CW mass flow ṁCW and the CW inlet temperature TCW,in. The trajectories of

the inputs to the system are depicted in Fig. 4.8. It has to be noted that when the

WF fed into the condenser is in two-phase state, the enthalpy cannot be reconstructed

from the available measurement data (p, T ) provided by the test rig. Hence, a linear

increase in enthalpy is assumed for the case of a two-phase inlet state. The system is

operated with an open tank valve, thus at constant ambient pressure in the condenser.

The resulting WF and CW outlet temperatures for all three models are depicted in

Fig. 4.9a and Fig. 4.9b.

The simulations illustrate that, by construction, none of the proposed approaches

exhibits an inverse response. For the WF outlet temperature, the FV model captures

the measurement data better than the two solution approaches, especially when the

start-up is finished and all three zones are present. While a final offset remains for

all models, the offset associated with the FV is clearly smaller. The hybrid approach

is in accordance with all other models used. For the CW outlet temperature, the

behavior during the two-phase inlet transition phase cannot be accurately captured

by any modeling approach. When the start-up is finished and the system is working
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4.6 Conclusion

in nominal operation, all approaches result in similar values. Thus, the two proposed

solution approaches allow for robust start-up simulation while maintaining favorable

computational demand.
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Figure 4.8: Input variables for cold start case study. The two dots in Fig. 4.8b are the

points where the entering WF is at the saturation points.

4.6 Conclusion

In this Chapter, we presented an assessment of dynamic HX models using the MB

approach and the FV method. The analysis extends available literature by consider-

ing the start-up situation of an ORC for WHR. To enable this analysis, we extended

the model presented in Chapter 3 to allow for switches in the model structure and

implemented a FV model in gPROMS.

We carried out our analysis for the HXs of a power cycle. We discussed the start-up
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Figure 4.9: Resulting nondimensionalized temperatures of the fluids at the condenser

outlet for the case study presented in Chapter 4.5.

of HX models in power cycles where initially only subcooled fluid is present. In a

simulation, an inverse response of the MB model outlet temperature to a rise in the

inlet enthalpy, which can even result in premature termination of simulations, can be

observed. Analysis in the Laplace domain revealed that the inverse response corre-

sponds to a non-minimum phase zero of the model.

We proposed two approaches to circumvent the identified issue. First, by changing

the averaging assumption for the enthalpy, the pathological behavior can be avoided.

Second, we proposed a hybrid model that uses the FV approach during start-up and

the MB approach during nominal operation.

We compared the proposed solutions to the FV model in a case study, in which the

start-up of the condenser of an ORC was considered. Measured data was obtained

from the test rig presented in Chapter 3. The study shows that both proposed solu-

tions successfully circumvent the identified problem. Hence, under the presented start-

up conditions, changing the averaging assumption appears to be the most promising

approach, as it preserves the favorable CPU times associated with the MB approach.

Our findings indicate that special attention should be paid to the operating conditions

that have to be covered when selecting a model type. However, our analysis concerning

non-nominal operation is limited to the start-up of a power cycle. In vapor compres-

sion systems, for example, state events and high rates of change in enthalpy might

occur at the evaporator inlet during start-up and shutdown operation [120].
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Chapter 5

Optimal operating policies for the

ORC system

5.1 Introduction

In this chapter, we discuss optimal operating policies for the considered ORC system

for automotive WHR. In most of the classic ORC applications, the ORC system is

operated either with a nearly constant heat source (geothermal), a slowly varying

heat source that is predictable (solar-thermal) or with long periods of steady-state

operation (ships and trains). Heavy-duty diesel trucks, however, are operated under

highly transient heat source conditions due to their use in street traffic.

Available publications on ORC applications with non-transient conditions typically

consider optimization of steady-state operating points [165, 166, 115], some including

design considerations [167] and working fluid (WF) selection [168, 169, 78]. Some-

times even fluid mixtures are designed [70, 71, 74]. A possibility to account for mild

variable operating conditions in design optimization is by clustering operating points

[170, 171, 80] and considering off-design behavior with stationary [43] or simplified

dynamic models [172, 79]. The publications in [171, 80, 79] consider WHR for a

heavy-duty truck, whereas [170] considers a marine application and [172] considers a

geothermal application. While steady-state models are used in most of the aforemen-

tioned publications, dynamic models might be required depending on the time scales

on which changes in the inputs and disturbances occur related to the system inertia.

Thus, most publications reporting dynamic ORC models consider waste heat recovery

in diesel-trucks [139, 118, 135, 137, 147, 138, 75] but exceptions, e.g., [173], where a

geothermal ORC system is considered, exist.
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Many interactions between exhaust gas, ORC, cooling water cycle and engine exist [59]

and the significance of dynamic effects on optimal system operation is widely accepted

[174, 175, 56, 176]. To achieve efficient system operation, maximizing time in power

production mode, i.e., maintain sufficient superheating to allow for turbine operation,

is of paramount importance [117]. The effect of transient exhaust gas conditions is

considered in [177] for an ORC system in a truck with two parallel heat exchangers

utilizing the tailpipe exhaust gas and exhaust gas recirculation. The authors exam-

ine three strategies for set-point generation and find that a fuzzy logic strategy with

flexible superheat exhibits the best performance. The work is extended with respect

to real-time application in [178].

In order to adequately control the WHR system, understanding optimal system oper-

ation is crucial. Many of the numerous contributions on control design for ORCs con-

sider following predefined set-point trajectories which are often obtained from steady-

state optimization, neglecting dynamic effects [153]. The majority of publications on

steady-state operation of ORCs finds that operation at minimal superheating is desir-

able [179]. Consequently, this notion is adopted in many control related publications

where the control strategy aims at maintaining a fixed superheat [118, 180, 181, 182]

or vapor quality [126]. However, in [43], Ghasemi and coauthors demonstrated that

optimal off-design operation of air-cooled geothermal power plants mandates varying

the superheat as a function of the ambient temperature. The literature review above

indicates that, although many publications on control strategies for ORCs operated

in a transient setting are available, a relevant research gap exists with respect to the

understanding of economically optimal dynamic ORC operation.

In this Chapter, we address this gap by assessing whether the notion of operation

at minimal superheat is optimal for an ORC for WHR in street traffic. Therefore,

we apply dynamic optimization to the WHR system subject to transient heat source

conditions. From the optimization results, we infer optimal operating policies. The

dynamic optimization problem that we solve is closely related to the nonlinear model

predictive control (NMPC) formulation, which has been applied to WHR in various

publications [183, 47, 184, 153]. Indeed, we solve a similar optimal control problem

(OCP) which considers the full length of the respective scenario and assumes full

knowledge of the heat source. Thus, it represents an upper bound on the performance

of NMPC and allows to draw conclusions for control strategy design. We consider

two exemplary cases whose characteristics occur in street traffic. First, we consider

exhaust data used for model validation in Chapter 3. For simplicity, we assume that

no operational restrictions, beyond safety constraints, are imposed on the system.

Second, we examine a scenario where the permissible turbine power is temporarily

limited. This scenario typically occurs in street traffic when the engine torque is neg-
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ative or below a certain threshold. Though ORC systems for WHR can include a

battery, the permissible turbine power can be limited by the operational constraints

of the battery. The dynamic optimization problems are solved using the open-source

dynamic optimization tool DyOS [185].

The remainder of this chapter is structured as follows. We provide a brief presentation

of the changes to the model from Chapter 3 in Chapter 5.2, followed by a presentation

of the optimization procedure in Chapter 5.3. In Chapter 5.4, we examine optimal

operation for a typical driving cycle followed by a detailed examination of a scenario

where the expander power is temporarily limited (Chapter 5.5). We discuss the results

of the case studies and the implications on control strategy design in Chapter 5.6 and

present our conclusions in Chapter 5.7.

5.2 Process model

The model representing the WHR system is based on the validated test rig model

from Chapter 3 and implemented in Modelica. In addition to the assumptions stated

in Chapter 3, we follow the common practice of focusing on the high pressure side

of the system, i.e., we omit an elaborate condenser model as it does not significantly

influence the high pressure part [176]. Instead, we assume that the condenser operates

at ambient pressure and the WF leaves the condenser as a subcooled liquid with fixed

subcooling (Fig. 5.1). Under these assumptions, the turbine rotational speed does not

influence the high pressure side in our model and solely serves for optimizing turbine

efficiency [63]. Further, we neglect heat losses in the pipes which connect the process

units. In this Chapter, the WHR system is always operating in “nominal operating

mode” as defined in Chapter 3.

5.3 Optimization problem

We solve dynamic optimization problems of the type introduced in Chapter 2.2 ((2.2a)-

(2.2f)). Safety-related path constraints are specified as box constraints for the WF

superheat ∆Tsup, the WF evaporator outlet temperature T ∗WF,evap,out and the high

pressure p∗. Asterisks indicate quantities that are scaled in the same manner as in

Chapter 3. The degrees of freedom (DOF) for optimization are the WF fluid mass

flow ṁ∗WF,in, the turbine rotational speed n∗turb and the exhaust gas valve position

xBPV , which are box-constrained as in (2.2f).

A list of the lower and upper bounds for the path constraints and the DOF is provided
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Figure 5.1: Adapted topology of the examined system. The WF is indicated by the

solid green line and the exhaust gas by the dashed gray line. The DOFs

are indicated by arrows and the disturbances by the circle. The condenser

is represented with an idealized model that assumes operation at ambient

pressure and fixed subcooling.

in Table 5.1. The constraint on minimal superheat protects the turbine from damage

due to droplet formation. The lower bound on pressure reflects a minimal pressure

ratio. As the condenser is assumed to operate at ambient pressure, this constraint

can be directly expressed for the high pressure side. The upper bound on p∗ ensures

safe operation as does the maximum WF outlet temperature which prevents WF

degradation. We do not specify a lower bound on WF outlet temperature. However, an

effective lower bound is provided at any time through the minimal superheat constraint

added with the saturation temperature of the pressure at that time. The lower and

upper bounds on ṁ∗WF,in and n∗turb reflect the limits in which the model is valid and

the lower bound on xBPV is included to avoid simulation failure due to very small

exhaust gas mass flows.

In the following sections, we compare two operating policies. We assess the examined

policies using the resulting net average power P ∗net,av, which is defined as follows

P ∗net,av =

∫ tf
t0

(
P ∗turb (t)− P ∗pump (t)

)
dt

tf − t0
(5.1)

where P ∗turb is the scaled turbine power and P ∗pump is the scaled pump power.

First, we assess a policy that aims at maintaining minimal superheat while using n∗turb
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5.3 Optimization problem

Table 5.1: Bounds of path constraints and DOF.

Path DOF

Variable Unit LB UB Variable Unit LB UB

∆Tsup K 10 - ṁ∗WF,in - 0.0073 0.0363

T ∗WF,evap,out - - 0.8719 n∗turb - 0.73 1.09

p∗ - 0.3 1.5 xBPV - 0.05 1.00

to optimize turbine efficiency. We refer to this strategy, which is a standard approach

in literature, as MSH (minimal superheat). Fixing the superheat to a minimal value

is infeasible as it often resulted in integration failure. Furthermore no unique solution

that provides minimal superheat exists, due to the availability of the exhaust gas

bypass valve. Thus, we use an optimization-based approach. The objective can be

expressed as

Φ1 (tf ) =

∫ tf

t0

(
∆Tsup (t)−∆Tminsup

)2
dt . (5.2)

As we assess the examined operating policies based on P ∗net,av, we introduce specific

measures that ensure that we find the minimal superheat strategy with highest P ∗net,av
in Chapter 5.4 and Chapter 5.5.

Second, we examine the thermodynamically optimal policy, i.e., maximizing the net

work without consideration of a desired superheat, which we refer to as FSH (flexible

superheat). This also corresponds to the economically optimal policy, given that all

produced power can be utilized, and can be expressed as

Φ2 (tf ) = −
∫ tf

t0

Pnet (t) dt . (5.3)

We assume the validated model to represent the real system behavior herein. Since

we are interested in understanding how to best operate the system, i.e., with FSH

or MSH, mismatch between the system and our model is a minor concern. However,

when the model is used for the control of a physical system, considerations regarding

plant-model mismatch are required. A potential remedy could be the addition of a

disturbance model to achieve offset-free model predictive control as practiced in [186].

For all scenarios, the initial state of the system x0 is specified to the economically

optimal steady-state, indicated as xoptss , for the heat source conditions at t = 0 s

x0 = xoptss

(
d (t = 0) ,uoptss

)
. (5.4)
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5 Optimal operating policies for the ORC system

We determine xoptss in an a-priori optimization and, as expected, it corresponds to

operation with minimal superheat.

The dynamic optimization problems are solved using direct single shooting [23] with

the open-source software DyOS [185]. The model is linked to DyOS through the func-

tional mock-up interface (FMI). The sensitivities are calculated through sensitivity

integration with the integrator sLimex [187] and the NLPs are solved with SNOPT

[89]. All degrees of freedom are discretized on a piecewise linear continuous grid which

is determined by the grid adaption algorithm described in [188].

5.4 Optimal operation considering only safety constraints

In this section, we present the optimization of a typical transient driving cycle as it

would occur in street traffic. We assume that there is no limit on expander power at

any time and only the safety-related path constraints apply. The heat source data

is taken from an experiment that includes parts of the World Harmonized Transient

Cycle (Fig. 5.2). For FSH we minimize Φ2.
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(a) Exhaust gas mass flow
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(b) Exhaust gas inlet temperature

Figure 5.2: Heat source data for the WHTC taken from the test rig described in

Chapter 3

For MSH, we exploit that n∗turb only optimizes turbine power and use a two-step

procedure. We first minimize Φ1 to obtain minimal superheat and subsequently, we

minimize Φ2, where we fix the trajectory of ṁ∗WF,in to the optimal solution of the

first step and leave n∗turb as DOF to optimize turbine power. As we can separate the

two optimization tasks of achieving minimal superheat and obtaining optimal turbine

operation for the resulting operating conditions, we can avoid a weighting between
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5.5 Optimal operation including limitations on turbine power

those objectives. All optimization problems are subject to (2.2b)-(2.2f).

The optimized trajectories for the DOF and key variables are depicted in Fig. 5.3.

No trajectories for the exhaust bypass valves are presented as it remains fully opened

at all times for both policies. For the examined case, a value of P ∗net,av = 0.5307 is

obtained with FSH and P ∗net,av = 0.5280 with MSH. In other words, the additional

flexibility merely yields a 0.5% increase in net average power. However, the trajecto-

ries differ strongly from each other in this case and several deviations from minimal

superheat occur for FSH while for MSH only small deviations occur in order to main-

tain feasibility. Between t = 0 s and t = 100 s, the peaks for FSH occur at a high

frequency and do not exceed 25 K. This might be due to the adaption algorithm as

it is well known that a very fine discretization can lead to oscillatory control profiles

[188]. More interesting are the two largest deviations in Fig. 5.3c, which do occur

between t = 300 s and t = 400 s with two peaks exceeding 40 K, where the exhaust

gas exhibits comparatively mild fluctuations. Apparently, the optimizer exploits the

fact that temporarily operating at higher superheat, hence lower pressure level, can

be advantageous. Further analysis showed that the amount of the heat recovered from

the exhaust gas and transferred to the WF is higher for MSH. Moreover, we ruled out

that the behavior is due to the fluid-dependent turbine efficiency map by executing

the optimization with a turbine with fixed efficiencies where the behavior persisted.

As a test using a different WF (cyclopentane) did not exhibit any peaks in superheat,

the behavior appears to be fluid-specific.

As can be seen from Fig. 5.3a and 5.3b, the WF mass flow and turbine speed exhibit

fast changes for FSH. It is questionable if a physical unit would be able to follow these

trajectories and to what extent the additional strain would results in reduced lifetime

of the components. For MSH, actor action is less drastic and less mechanical strain is

expected. Further, realizing the peaks in superheat in a control setting would require

foresight of the exhaust gas conditions. Considering these observations and the fact

that MSH only produces 0.5% less power than FSH, using minimal superheat seems

to be an appropriate control objective, when no other constraints apply.

5.5 Optimal operation including limitations on turbine

power

The case presented in Chapter 5.4 can be considered as a best case scenario as no

constraints beyond the safety constraints are considered. The strongest assumption we

made in Chapter 5.4 is that the power produced by the turbine can always be utilized

completely. Furthermore, operational constraints, i.e., constraints on maximal WF
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Figure 5.3: Optimization results; dashed blue lines indicate lower and upper bounds.

temperature or pressure, could become active. We consider these scenarios in this

section.
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5.5.1 Active power constraint

To account for a situation where only a limited turbine power can be utilized, e.g.,

due to maximal charging current of a battery system, we consider a scenario with

tf = 800 s and constant exhaust gas conditions with ṁ∗exh = 0.201, T ∗exh,in = 0.967.

We assume that the expander power is temporarily limited. Here, we arbitrarily choose

t1 = 200 s and t2 = 400 s as the start and end of the interval in which the power

limitation applies. We assume knowledge of the times where the power limitation

applies as we do with the heat source signals in order to obtain an upper bound on

system performance. We realize this scenario by formulating a multistage dynamic

optimization problem consisting of three stages. For FSH, we use Φ2 as objective

function. The optimization problem is subject to (2.2b)-(2.2f) and the turbine power

constraint, active in the second stage, is added in (5.5)

P ∗turb (t) ≤ P ∗,maxturb ∀t ∈ [t1, t2] . (5.5)

Due to (5.5), minimizing superheat and maximizing turbine power are not independent

for this scenario and we do not use the two-step strategy from Chapter 5.4 for MSH.

Instead, we realize MSH by minimizing Φ2 subject to (2.2b)-(2.2f), (5.5) and adding

an upper bound on superheat (5.6):

Tmaxsup = 10.7 K . (5.6)

For reference, we consider the case without (5.5), i.e., operation at steady-state to

allow for an estimate of the energy that is lost due to the power limitation.

The optimal results of the DOF and path constrained variables are presented in

Fig. 5.4. The turbine power for FSH and MSH is presented in Fig. 5.5. Here, the

advantages of FSH are evident. The optimizer exploits the thermal capacity of the

evaporator to store thermal energy during the power limitation which is released after

the power limitation ends. Shortly before the power limitation phase begins, the WF

mass flow is reduced (Fig. 5.4a), while the exhaust bypass valve remains fully opened

(Fig. 5.4c). Consequently, superheat rises and increases up to more than 100 K at the

end of the power limitation phase. Approximately at t = 390 s, T ∗WF,evap,out reaches its

upper bound and the WF mass flow is increased, which decreases superheat. The tur-

bine speed is adjusted to a suboptimal point to satisfy the limitation on power output.

When the power limitation ends at t = 400 s, the WF mass flow is set to its maximum

value which results in a strong increase in pressure and also in power production. The

periods in time where the turbine power is lower than at optimal steady-state without

power limitation are indicated by the blue cross-hatched area and the periods in time
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Figure 5.4: Results of the optimization for the power limitation case for DOF and path

constrained variables, dashed blue lines indicate lower and upper bounds.

where turbine power is higher are indicated by the green hatched area in Fig. 5.5a.

The optimizer exploits that the heat exchanger wall temperature has increased during
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Figure 5.5: Turbine power for FSH and MSH for the power limitation case. Bounds

that do not apply at all times are depicted as dashed green lines when

they do not apply and yellow dotted lines when they apply.

the power limitation. Consequently, a higher WF mass flow can be evaporated as can

be seen from Fig. 5.4a. Hence, parts of the energy not used earlier can be recovered.

MSH, however, does not exploit this option to save energy, as can be seen in Fig. 5.4d.

To allow for the required reduction of turbine power, the exhaust bypass valve opens

shortly before the power limitations begins which can be seen in Fig. 5.4c. During the

power limitation, it remains partially opened and a part of exhaust gas is bypassed

to allow for satisfaction of the superheat path constraint. The system approaches

a steady-state at minimal superheat with a partially opened exhaust bypass valve,

hence not making full use of the exhaust gas potential. At the end of the power limi-

tation, the valve is closed again and all the exhaust gas passes through the evaporator.

In contrast to FSH, however, there is no heat available that can be recovered from

the evaporator walls. Consequently, the system takes some time to reach the initial

steady-state which results in some additional loss in a period where FSH exceeds the

steady-state turbine power.

The results that are obtained from visual inspection are supported by Fig. 5.6 where

the resulting P ∗net,av for each operating policy is presented. FSH avoids 53% of the

losses associated with MSH. This result emphasizes that operating at minimal super-

heat is not necessarily always the best policy. The behavior can be implemented in

a control strategy, albeit imperfectly, without knowledge about the future exhaust

conditions.
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Figure 5.6: Normalized net average power produced for both policies compared to

the case where no power limitation occurs (i.e., without constraint (5.5)).

Clearly, FSH exhibits superior performance over MSH.

5.5.2 Power limitation with high exhaust gas mass flow

As can be seen from Fig. 5.4e, the WF outlet temperature is briefly maintained at its

upper bound. The optimizer is, however, capable of preventing the use of the exhaust

bypass valve by increasing the pressure and choosing a suboptimal turbine speed. It

is clear that either a higher exhaust gas mass flow, temperature or longer duration of

the power limitation will result in a situation, where it will be required to bypass some

of the exhaust gas which will reduce the benefits of FSH. To assess such a scenario,

we increase the exhaust gas mass flow chosen in Chapter 5.5.1 by 5% to ṁ∗exh = 0.211

and solve the same optimization problems.

The resulting signal of the exhaust bypass valve position and the resulting trajectory

of the WF outlet temperature are presented in Fig. 5.7. For FSH, the exhaust gas

bypass valve is partially opened between t ≈ 300 s and t ≈ 400 s to avoid the WF

from exceeding the temperature limit and a portion of the exhaust gas is bypassed

(Fig. 5.7a). It should be noted that the exhaust bypass valve is reopened before

t = 400 s in anticipation of the end of the power limitation so that the WF temperature

reaches its upper bound exactly at that point in time (Fig. 5.7b). This behavior

requires a priori knowledge of the exhaust gas profile and cannot be directly included
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Figure 5.7: Results of the optimization for the power limitation case, dashed blue lines

indicate lower and upper bounds.

in the control strategy. Rather, the valve would be opened once the power limitation

would end. The losses associated with this fact, however, should be negligible.

For MSH, the qualitative behavior is similar to Chapter 5.5.1. As FSH requires

bypassing a portion of the exhaust gas for the considered scenario, the avoided losses

are smaller than in the previous case study, as can be seen from Fig. 5.8. Here, only

45% of the losses associated with MSH can be avoided. For higher exhaust gas mass

flows, FSH consequently results in a reduced relative advantage. This would also apply

for longer power limitations or higher exhaust gas temperatures. The results from this

section suggest that the exhaust bypass valve will only be required for control as a

manipulated variable to maintain safe operation. A general quantitative statement on

the benefits of this strategy cannot be made here as it clearly depends on the system

at hand and its operating conditions.

5.6 Implications on control strategy

In Chapter 5.4 we found that economically optimal dynamic operation exhibits oc-

casional peaks in superheat for a highly transient exhaust gas profile and ethanol as

WF. The gain in produced power, however, is negligible in comparison to operation at

minimal superheat. As the knowledge of the exhaust gas conditions is unrealistic but

required to exploit the effect and the resulting control action puts unnecessary strain

on the actors, it is appropriate to operate the system at minimal superheat during

regular operation. To obtain an optimal turbine speed, a separate optimization prob-

lem has to be solved. However, this can be approximated with a cheap steady state
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Figure 5.8: Normalized net average power produced for both policies compared to the

case where no power limitation occurs (i.e., without constraint (5.5)) with

ṁexh increased by 5% compared to Fig. 5.6. The relative advantage of

FSH over MSH shrinks when additional constraints become active.

optimization. The implications of further restrictions beyond safety constraints on

the control strategy are more severe. In Chapter 5.5 we found that using a flexible su-

perheat operating policy can be significantly more efficient than a minimal superheat

operating policy when the turbine power output is temporarily limited. This result

does not depend on a priori knowledge and can be implemented in control strategies.

It implies to track a turbine power set-point by adjusting WF mass flow and turbine

rotational speed. To achieve this, a steady-state optimization could be carried out

that aims at satisfying the power constraint while minimizing WF mass flow to guar-

antee maximal superheat. The exhaust bypass valve should only be used to guarantee

satisfaction of safety constraints once another constraint becomes active. The system

should then be operated at the steady-state which satisfies this additional constraint.

5.7 Conclusion

In this chapter, we assessed the optimal operation of an ORC system for waste heat

recovery in a heavy-duty diesel truck. We obtained optimal trajectories for the DOF
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by means of dynamic optimization with the open-source software tool DyOS [185].

We compared an operating policy that maximizes the net work (FSH) with a policy

that maintains minimal superheat while maximizing turbine power (MSH).

First, we assessed optimal operation of the WHR system in a transient driving cycle.

Results obtained with FSH indicate that, most of the time, it is best to operate the

system at minimal superheat, which is in agreement with literature for steady-state

operation. However, peaks in superheat do occur but gains in power compared to

MSH are negligible. Further, the occurrence of superheat peaks appears to be fluid-

specific. Hence, we recommend operating the system at minimal superheat in such

situations. This notion is reflected in many published studies on ORC control.

When further limitations apply, MSH can be suboptimal. This is illustrated for the

case of a limitation in permissible turbine power. For the scenario where we assume

constant exhaust gas mass flow and temperature and a temporary constraint on the

turbine power, FSH reveals that during that period, increased superheat is greatly

beneficial. The optimizer exploits that thermal energy which cannot be utilized during

the power limitation can be stored in the heat exchanger wall for later use. In the

examined case, this avoids 53% of the power losses resulting from MSH. Further

investigations reveal that the relative advantage of FSH shrinks in scenarios where

other constraints become active. Eventually, the exhaust bypass valve has to be

opened and part of the exhaust gas cannot be used as otherwise the maximum WF

temperature would be exceeded. For the examined case, the avoided losses drop to

45%. A similar effect is expected to apply when the duration of the power limitation

is increased. In contrast to the work by Ghasemi and coworkers [43], the behavior

observed in this work is due to dynamic effects. The optimizer exploits that, by

temporarily storing thermal energy through increased superheat, more power can be

produced overall.
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Chapter 6

Control system design for the ORC

system

6.1 Introduction

As discussed before, ORC operation in vehicles results in challenges, which are not

encountered in traditional ORC applications. These require careful consideration of

the control system for the ORC systems which is addressed in many publications. The

proposed methods range from classical PID-type controllers [124] including feedfor-

ward term [118, 189], linear model predictive control (LMPC) with single [125, 127]

or multiple models [190, 191], dynamic programming [47], to nonlinear model predic-

tive control (NMPC) with regulatory objective [192] and economic NMPC (eNMPC)

[123, 183]. NMPC is associated with high control quality, but also with high compu-

tational cost, making on-board implementation questionable. Fast NMPC methods

(Chapter 2.3.3) that approximate the NMPC solution have been applied to WHR in

vehicles and real-time capability was reported on desktop computers [153, 193]. For

an overview of this class of control algorithms we refer to [26]. Furthermore, explicit

NMPC [194] has been proposed to address the high computational demand of NMPC.

Recent works also compare advanced model-based controllers to PI controllers [153,

193, 178]. In [153], a real-time iteration (RTI) scheme [195] is implemented with

ACADO [196] for a parallel heat exchanger WHR system. The NMPC scheme is

found to result in a significantly higher net power production (about 9 %) than PID-

based control, which is predominantly due to the latter failing to meet the superheat

constraint resulting in the turbine being bypassed. In [193], a RTI scheme with eco-

nomic objective including moving horizon estimation is implemented for a single heat
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exchanger system and compared to a PID controller and a LQR. The authors find that

the eNMPC scheme only improves power production by about 2 % compared to the

other controllers. In [178], three different advanced control strategies are compared

for a system with a single heat exchanger. While NMPC with tracking objective and

dynamic programming with economic objective yield similar net power production, a

PID-based strategy results in significantly lower net power production. This is pre-

dominantly due to intermediate bypassing of the turbine as the superheat constraint

is not satisfied at all times.

While many control-related contributions focusing on the development and perfor-

mance evaluation of particular controllers are available, comparatively few publica-

tions address what constitutes optimal operation/control for the considered ORC

system. Answering this question requires considerations on (i) what are the control

objectives and (ii) which degrees of freedom should be employed to control the system.

These points are addressed to some extent in [63, 176] and [177]. We used dynamic

optimization to find optimal operating policies for characteristic operating scenarios in

Chapter 5. There, we compared operation at minimal superheat to optimal economic

operation with flexible superheat. For a scenario, where no operational constraints

besides minimal superheat become active, we found that economically optimal sys-

tem operation included several peaks in superheat similar to those in the fuzzy logic

strategy in [177]. However, as the additional produced power is small, we proposed

to operate at minimal superheat. Further, we found, in line with [63], that working

fluid (WF) mass flow should be the main actuator and the evaporator bypass should

only be used to satisfy operational constraints. This can for example be necessary

when, temporarily, only a limited amount of recovered power can be utilized. In this

situation, we found that operating at increased superheat can improve overall power

production. Our findings indicate that it is crucial to consider the system dynamics

for optimal operation and stress the need for energy management approaches, as e.g.,

[197].

In this chapter, we transfer our findings from Chapter 5 to a control strategy. We

implement a NMPC scheme based on single shooting which solves each instance of

the optimal control problem (OCP) to convergence. Using this scheme, we develop

(i) a controller with economic objective function and (ii) a controller with regulatory

objective function. For comparison, we implement (iii) a PI controller with feedfor-

ward term. Subsequently, we test the controllers in-silico with the ORC model used in

Chapter 5 on a driving cycle with highly transient disturbances. The aforementioned

contributions that include comparisons between advanced model-based controllers and

PI controllers [153, 193, 178] focus on developing real-time capable advanced control

strategies. In contrast, our focus is on discussing different approaches to the control
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problem and assessing the limit of the economic benefit of NMPC over decentralized

control strategies under idealized assumptions. We show that (i) the multi-variable

control problem can be addressed by a decentralized control structure without sig-

nificant loss of performance assuming an ideal condenser and (ii) employing a PI

controller with feedforward term leads only to small losses in produced power com-

pared to NMPC.

In the case study, we assume that the power produced can be fully utilized at all

times. Note that irrespective of whether the expansion machine is mechanically cou-

pled to the powertrain or connected to a generator, situations may occur, where the

amount of power that can be utilized is limited. Such a situation would require an

energy management system that switches to a different operating regime (as outlined

in Chapter 5) and is not considered herein.

The remainder of this chapter is structured as follows. We introduce our modeling

assumptions and the process model in Chapter 6.2 followed by a presentation of the

examined control strategies in Chapter 6.3. We present a case study based on the

World Harmonized Transient Cycle (WHTC) in Chapter 6.4 and present conclusions

in Chapter 6.5.

6.2 Investigated system

We consider the model from Chapter 3 with the simplifications introduced in Chap-

ter 5. The available inputs for manipulating the system are the WF mass flow rate

ṁWF,in set by the pump, the turbine rotational speed nturb and the exhaust gas bypass

valve position xBPV . As the turbine operates at supersonic conditions, nturb does not

affect the WF outlet mass flow from the evaporator [63]. Our findings from Chapter 5

indicate that, for a typical driving cycle, the exhaust gas bypass valve position can be

fixed so that all exhaust gas passes through the evaporator and power production is

maximized. Consequently, we do not consider xBPV as a degree of freedom (DOF) in

this chapter. The disturbances are ṁexh and Texh,in. We only consider nominal opera-

tion, i.e., the fluid enters the evaporator as subcooled liquid and exits as superheated

vapor. Thus, we do not require a switching model as developed in Chapter 4.

6.3 Examined control strategies

In this section, we first discuss the control objectives, the DOF considered for con-

trolling the system and we describe the considered control structures based on our

findings from Chapter 5 (Chapter 6.3.1). Then, we present (i) the eNMPC, (ii) the
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NMPC (both in Chapter 6.3.2) and (iii) PI controller with feedforward term (PI-ff)

in Chapter 6.3.3.

6.3.1 Considered control structures, objectives and degrees of

freedom

The ultimate objective of a WHR system in a vehicle is to reduce fuel consumption.

Assuming that the produced power can always be fully utilized, the control objective

is to maximize produced electric power while achieving safe operation by manipu-

lating the considered DOF (ṁWF,in, nturb). For eNMPC, we can directly formulate

the economic objective function accordingly and for all MPC controllers, we have to

determine adequate constraints. Herein, we refer to control structures, where not all

DOF are controlled by one controller as decentralized control structures. To translate

the objective of maximizing power production into a decentralized control structure,

we need to pair controlled variables with the DOF and specify adequate set-points.

A variety of decentralized control structures has been suggested in literature and dis-

tinction has to be drawn between ORC system with volumetric expanders, where the

expander speed influences the WF mass flow rate [198] and supersonic turbines, where

this is not the case [63]. For volumetric expanders, it is proposed to use pump mass

flow to control superheat and expander speed to control evaporating temperature

[118]. For turbines, using pump mass flow to control superheat is a sensible choice

[63]. The control structure can be extended by using the exhaust bypass to addition-

ally control pressure [176]. This additional control loop could be used by an energy

management system to adjust the power output. In works with MPC, authors either

choose a regulatory objective function that minimizes the deviation from a superheat

set-point [153] or a desired WF temperature [192] (NMPC) or an economic objective

function [183, 193] which maximizes net power production (eNMPC).

We assess the differences between MPC formulations with (i) economic objective func-

tion (eNMPC) and (ii) regulatory objective function (NMPC), with turbine operation

being optimized separately in the latter case. Furthermore, we implement (iii) a PI

controller with feedforward term that tracks a constant superheat set-point and uses

the same turbine optimization procedure as (ii).
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6 Control system design for the ORC system

6.3.2 Nonlinear model predictive control (NMPC)

As discussed in Chapter 2.3, NMPC relies on a repeated solution of an OCP on a

finite horizon. We solve the following OCP

min
u,s

∫ tOCPf

tOCP0

L (x (t) ,y (t) ,u (t)) + ρTsups (t) dt (6.1a)

s. t. (2.2b)-(2.2f)

∆Tminsup −∆Tsup (t)− s (t) ≤ 0 ∀t ∈
[
tOCP0 , tOCPf

]
(6.1b)

0 ≤ s (t) ∀t ∈
[
tOCP0 , tOCPf

]
(6.1c)

on a horizon from initial time tOCP0 to final time tOCPf . The objective function (6.1a) is

of Lagrange-type with running cost function L. The running cost functions for eNMPC

and NMPC are presented in Chapter 6.3.2.1 and Chapter 6.3.2.2, respectively. For

WF superheat, we employ a soft constraint (6.1b) by introducing a non-negative slack

variable s and adding a L1 penalty, weighted by ρTsup , in the objective. Here, the path

constraints are enforced at the control grid points. The horizon is divided into NP

control intervals of length ∆tC with tOCPf = tOCP0 +NP∆tC . The optimizer can change

the DOF for the first NC intervals after which they are held constant. The DOF are

discretized as continuous piece-wise linear functions in open-loop optimization. Note

that this does allow for discontinuities of the controlled variables in closed-loop. After

a solution is found, the control signal is sent to the process and the problem is re-

solved after one sampling interval ∆tS with tOCP0 and tOCPf shifted by ∆tS.

We solve the optimal control problems with the open-source tool DyOS [185] using

single shooting and warm-start the algorithm with the optimal solution from the

previous time-step. The integrator is NIXE [199] and the optimizer is SNOPT [89].

Since we aim to show that similar control performance as with NMPC can be achieved

using simpler methods, we use full state feedback for specifying the initial state x0

in (2.2d), as it provides an upper bound on NMPC performance. The application of

state estimation to an ORC system is shown in [153] with an unscented Kalman filter,

in [178] with an extended Kalman filter and in [193] with moving horizon estimation.

We determine the slack penalty weights based on the Lagrange multipliers of the hard

constrained problem [200].

6.3.2.1 Economic NMPC

Assuming that the power produced by the turbine can be fully utilized, optimal

economic operation is equivalent to maximizing net power output. Thus we set
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L (t) := − (Pturb (t)− Ppump (t)) in (6.1a) for eNMPC. The controller adjusts ṁWF,in

and nturb simultaneously. A schematic control structure is provided in Fig. 6.1.

eNMPC

x (t)

d(t)

_mWF (t)

nturb (t)

Figure 6.1: Control structure for eNMPC. Dotted lines indicate measurement and con-

trol signals.

6.3.2.2 Standard NMPC

In order to obtain good economic performance from NMPC, we have to choose a

suitable controlled variable. Following ideas from self-optimizing control [164], we

use the NMPC to force the process to operate a constraint. We design the NMPC

to enforce minimal superheat, i.e., we set L (t) :=
(
∆Tsup (t)−∆Tminsup

)2
in (6.1a) as

it is typically the active constraint in economically optimal operation (Chapter 5).

Controlling the superheat constraint is convenient, as the set-point is independent of

the operating conditions as opposed to, e.g., tracking an optimal pressure trajectory,

but still leads to inherently optimal operation. For this objective, NMPC uses only

ṁWF,in as DOF.

Since the turbine rotational speed does not affect the WF conditions at the evapora-

tor outlet, the objective function does not exhibit a sensitivity with respect to nturb.

Consequently, we determine nturb in an online steady-state optimization, solved at

each sampling instance of the NMPC, using fmincon in Matlab to optimize turbine

performance. Although, the problem is non-convex, we use a local solver to maintain

comparability to eNMPC where also a local solver is used. Thereby, we reduce the

control problem to a single-output problem in contrast to many publications in liter-

ature where two quantities out of TWF,out, ∆Tsup and p are controlled. Splitting the

two optimizations is possible as the turbine rotational speed only serves to optimize

turbine operation [63], which is typical for turbine expansion, but cannot be general-

ized to any expansion machine. A schematic representation of the control structure
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6 Control system design for the ORC system

is provided in Fig. 6.2.

NMPC

x (t)

d(t)
_mWF (t)

RTO

p (t)

hout (t)

nturb (t)

Figure 6.2: Control structure for NMPC. Dotted lines indicate measurement and con-

trol signals.

6.3.2.3 Operating constraints

In the considered case study, the scaled pressure p∗, the scaled WF evaporator outlet

temperature T ∗WF,evap,out and the evaporator superheat ∆Tsup are path constrained.

The lower bound on p∗ reflects the minimal pressure ratio of the turbine. Since

we assume condenser operation at ambient pressure, we can directly express this

as a function of the high pressure. The upper bound on p∗ is a safety constraint,

the upper bound on T ∗WF,evap,out prevents WF degradation and the lower bound on

∆Tsup prevents damage to the turbine by droplet formation. We formulate the path

constraint for ∆Tsup as a soft constraint and the constraints for T ∗WF,evap,out and p∗ as

hard constraints. We implement the soft constraint since, in contrast to the dynamic

optimization case study in Chapter 5, no prediction of the disturbances is available in

a control setting. We expect that, as a consequence, it will not be possible to satisfy

the constraint at all times. The lower and upper bounds for the path constraints and

the input constraints are listed in Tab. 6.1. Our choice of the lower bound of ∆Tsup

Table 6.1: Bounds of path constraints and DOF.

Path DOF

Variable Unit LB UB Variable Unit LB UB

∆Tsup K 20 - ṁ∗WF,in - 0.0073 0.0363

T ∗WF,evap,out - - 0.8719 n∗turb - 0.82 1.09

p∗ - 0.3 1.5

is more conservative than in the previous Chapter, due to the unknown exhaust gas
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6.4 Case study

conditions in a control setting. The rationale is to provide additional back-off so

that the controllers are able to maintain superheat above the limit of 10 K defined in

Chapter 5.

6.3.3 PI with feedforward term (PI-ff)

We use a PI controller with feedforward term to track a superheat set-point using the

WF mass flow as DOF

ṁWF,in (t) = KP · e (t) +KI

∫ t

t0

e (t) dt+ ṁWF,ff (t) , (6.2)

where e (t) = ∆T setsup−∆Tsup (t) is the control error, t0 indicates the initial time of the

simulation and ṁWF,ff is the feedforward term. Since we want the feedforward term

to account for the dynamic response of the system, it tracks the optimal steady-state

input ṁopt
WF,ss according to the following differential equation

ṁWF,ff (t) + τff
dṁWF,ff

dt
= ṁopt

WF,ss + τz
dṁopt

WF,ss

dt
, (6.3)

where τff and τz are time constants, which can be tuned to obtain a suitable dynamic

behavior of the feedforward term. Accordingly, in offset-free steady-state operation

the PI-ff control action is ṁWF,in = ṁopt
WF,ss. Note that also the rate of change of the

disturbances is considered on the right hand side of (6.3). This feedforward policy is

in accordance with [178], where the exhaust gas temperature rate of change was found

to be an important input in the dynamic programming strategy.

We provide the optimal steady state input as a map fmap (ṁexh, Texh,in) which we

determine by solving steady-state optimizations with varying heat source conditions

offline and fitting the correlation with a polynomial cubic in ṁexh and linear in Texh,in
(Fig. 6.3). Similar to NMPC, PI-ff controls the WF mass flow rate only. We deter-

mine nturb in a separate online steady-state optimization to obtain optimal turbine

operation. A schematic representation of the PI-ff control structure is provided in

Fig. 6.4.

6.4 Case study

6.4.1 Exhaust gas data

In this case study, we consider exhaust gas data (Fig. 6.5) used in Chapter 3 for model

validation and in Chapter 5 as a dynamic optimization case study. The disturbance
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Figure 6.3: Polynomial fit of optimal steady-state WF flowrate as function of distur-

bances. The data points were obtained by steady-state optimization.

∆Tsup (t)

d(t)
_mWF (t)

RTO

p (t)

hout (t)

nturb (t)
ff

PI
+

Figure 6.4: Control structure for PI-ff. Dotted lines indicate measurement and control

signals.

values and their time derivatives are measured at every controller sampling instant

but no prediction of the disturbances is available. The same exhaust gas mass flow

and temperature data is used with all three controllers. We assume no feedback delay

and no plant-model mismatch, i.e., we use the ORC system model for the controller

and as a plant surrogate, to obtain an upper bound on NMPC performance.
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(a) Exhaust gas mass flow
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Figure 6.5: Exhaust gas data for the case study.

6.4.2 Tuning of the controllers

Tuning parameters for the controllers are presented in Tab. 6.2. For NMPC, we

Table 6.2: Parameters for NMPC and PI-ff controller used in the case study.

Parameter Value

PI-ff KP −8.64× 10−4 kg K−1 s−1

KI 1.65× 10−6 kg K−1 s−2

τff 12.0 s

τz 1.35 s

∆T setsup 20 K

NMPC economic tracking

NP 5 5

NC 5 5

∆tC 8 s 8 s

∆tS 1 s 1 s

ρTsup 8 kW K−1 75 K

∆T setsup - 20 K

determined NP and ∆tC by implementing various combinations and choosing the

parameters that gave a feasible solution at the smallest computational cost (i.e., small

NP at given ∆tC). We setNP = NC as is commonly done in nonlinear model predictive

control [97].
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6 Control system design for the ORC system

We tuned PI-ff using dynamic optimization with the objective of minimizing the

squared deviation from the superheat set-point and the same exhaust gas data as in

the test cycle. To validate the control law, we used data from another cycle and found

PI-ff to work well. We choose ∆T setsup = 20 K in accordance with the lower bound

specified in Chapter 6.3.2.3.

6.4.3 Simulation results

The results for eNMPC, NMPC and the PI-ff are presented in Fig. 6.6. As can be
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Figure 6.6: Results for eNMPC, NMPC and PI-ff. Input constraints are indicated by

the blue dotted lines.

seen, significant peaks in superheat occur in eNMPC (Fig. 6.6d). This reflects re-

sults found in Chapter 5 and similar results can be seen in [201], however, since no

disturbance prediction is available, this behavior is surprising. Apparently, the advan-
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tages of temporarily operating at increased superheat observed in Chapter 5 can also

be leveraged without knowledge of future disturbances. Every new measurement of

the disturbance is a step change for the optimizer compared to the previous instant.

When we researched the phenomenon for Chapter 5, we found that superheat peaks

are present in the optimal solution for step experiments when the steps in ṁexh are of

sufficient duration. In agreement with this observation, the peaks in superheat occur

from t ≈ 200 s on, where the profile for ṁexh is smoother than in earlier periods.

PI-ff is able to track the superheat set-point well and maintains the system above

a superheat threshold of ∆Tsup = 10 K. The performance is mostly comparable to

NMPC which is also able to track the superheat set-point with a maximum deviation

of less than 10 K. Since, all controllers stay above this threshold, we do not consider

bypassing the turbine herein. However, PI-ff operates below the superheat set-point

more often and for more prolonged periods than NMPC. This is mostly in situations

where a fast decrease in ṁWF,in is required and the PI controller does not act with

the same speed as the idealized model-based controllers (Fig. 6.6a). In a case where

the violation of the superheat constraints results in the turbine being bypassed, these

periods would significantly decrease power production. Thus, it is important to find

good tuning parameters and to choose sufficient back-off for the superheat set-point.

On the other hand, the PI-ff control profile for ṁWF,in (Fig. 6.6a) is much smoother

than for the eNMPC and NMPC. Consequently, operation is less straining for the

components and a longer lifetime could be expected.

The separation of the turbine optimization in the tracking NMPC strategy appears to

have no detrimental effect on system performance. In fact, notable differences in tur-

bine speed for eNMPC and NMPC (Fig. 6.6b) only occur in concordance with peaks

in eNMPC superheat. Before the first peak occurs (shortly before 200 s), there is no

visible difference in turbine power production for eNMPC and NMPC (Fig. 6.6c).

As in Chapter 5, we assess the examined strategies by comparing average scaled net

power (5.1), presented in Tab. 6.3. From the table, we make two main observations.

Table 6.3: Average scaled net power for eNMPC, NMPC and PI-ff.

P ∗net,av

eNMPC 0.516

NMPC 0.514

PI-ff 0.513

First, splitting the control problem in a superheat set-point tracking task and separate

turbine optimization yields similar power production to eNMPC while reducing the
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control problem to a single-input single-output problem. In fact, the losses in power

produced are less than 0.5 %. Second, the decoupled problem can be conveniently

addressed with a PI controller with marginal performance losses compared to much

more complex model-based control. This finding is in agreement with literature where

2 % losses of PI controller compared to eNMPC are reported [193]. The much higher

losses associated with a PI controller in [153] and [178] are mostly due to intermediate

turbine bypassing when the superheat constraint is violated. This implies that for a

PI controller, a set-point with sufficient back-off from the superheat constraint should

be chosen as the resulting losses in produced power are moderate compared with the

losses of temporarily bypassing the turbine. We found that increasing the superheat

set-point by 5 K reduces produced power by about 1 %. Note that in [153] a double

heat exchanger system was examined which is harder to control.

Using a prediction of the disturbance in NMPC is proposed in [186]. In case of a

perfect disturbance prediction, we find that PI-ff produces roughly 2 % less power

than eNMPC and NMPC. Furthermore, the improved NMPC superheat constraint

compliance would allow to reduce the superheat set-point, a result also observed in

[186].

Our results imply that NMPC has only small advantages over more traditional con-

trol strategies. Due to the specific system topology, the control problem effectively

reduces to a SISO problem, thus eliminating potential advantages of a centralized con-

trol structure. Furthermore, the economically optimal control policy can be approx-

imated with small losses by tracking minimal superheat. Finally, sufficient back-up

can compensate for the slightly poorer tracking performance of a PID-type controller

and ensure that the turbine is not bypassed at moderate economic cost.

6.5 Conclusion

Controlling an ORC on board of a vehicle operated in street traffic is a challenging

task. The system has to be operated safely and efficiently under highly transient heat

source conditions. Control updates have to be made at high frequency and the con-

trol algorithm has to be executed on on-board hardware with limited computational

resources.

Based on our findings from Chapter 5, we proposed and assessed several control strate-

gies in this Chapter. We compared the performance of a nonlinear model predictive

control algorithm (NMPC) and a PI controller with feedforward term (PI-ff). Fur-

thermore, we discussed how the economic optimal control problem with two DOF can

be recast as a single-input single-output tracking control problem and an additional
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steady-state optimization.

We compared the proposed controllers in a case study containing parts of the WHTC.

From the results we deduced two main findings. First, decomposing the control prob-

lem into two simpler subproblems results only in small losses with respect to power

production. This decomposition reduces the optimal control problem to a single-

input single-output problem which reduces the computational load for model-based

algorithms and allows for convenient use of a single PI controller. Second, losses

from using the PI controller with feedforward term are small with 0.5 % less energy

recovered than with economic NMPC. Even when we assumed perfect disturbance

predictions, this value only increased to about 2 %.

These results imply that it is unlikely that a vehicle manufacturer would use NMPC

for ORC in a vehicle. It has to be considered that the benefits of NMPC only apply

to the amount of fuel saved which optimistic estimates put in the range of 5 % so that

the additional overall fuel saving resulting from using NMPC would be in the range of

0.1 %. Our idealized NMPC framework is not real-time capable. Others have achieved

real-time capability using fast-update algorithms with ACADO [153] and their own

RTI implementation [193], albeit on desktop computers. However, even if real-time

capability could be achieved on-board, it is questionable whether the small gains in

power production are sufficient to outweigh the advantages of PID control, including

small development cost compared to NMPC.

When a decentralized control structure is chosen, designing an overall energy man-

agement system [197] is an important task. This system should consider all conceiv-

able conditions (e.g., limited cooling capacity) which could affect ORC operation.

As shown in Chapter 5, dynamic optimization can be a valuable tool to understand

optimal system behavior and draw conclusions on a suitable decentralized control

strategies. In this Chapter, we have not considered a scenario where the amount of

power that can be utilized is temporarily limited. For this, we would require an en-

ergy management system that first reduces power production through manipulation

of WF mass flow and turbine speed and switches to a mode where the exhaust by-

pass valve can be utilized when other constraints (e.g. maximum WF temperature)

become active. An interesting extension would be the consideration of the condenser,

which to date has not been adequately addressed in literature. In particular, it would

be interesting to assess the effects on the economically optimal operation when a cost

for cooling could be quantified (e.g., additional power consumption of radiator fan).
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Chapter 7

Approximate NMPC for the ORC

system using machine learning

7.1 Introduction

As we have seen in Chapter 6, the ORC system considered in this thesis can be ef-

ficiently controlled using a PI controller with feedforward term. For more complex

architectures or systems with fixed-displacement expanders, however, this might not

be the case as the number of DOF increases. Here, NMPC might be required to

achieve safe and efficient operation. Albeit CPU times of less than 100 ms for solving

an NMPC problem for WHR in a truck have recently been reported on a desktop com-

puter [201], implementation on in-vehicle hardware remains questionable. In general,

NMPC is increasingly investigated for automotive applications and limited computa-

tional resources on in-vehicle hardware can be prohibitive [202]. Thus, we use our

ORC system in this chapter to examine one approach to reduce the online computa-

tional demand for NMPC.

Several ideas to reduce the computational costs of NMPC are available. Explicit MPC

[25] exploits that the solution of MPC is parametric in the systems state variables and

to solve the parametric problem a priori. While the approach exhibits strong theo-

retical foundations in terms of its stability properties, solving the parametric problem

scales badly for increasing state vector size. Another method, which has been revisited

recently, is to learn the NMPC control policy using machine learning techniques e.g.,

[203, 27, 204, 205, 206]. The approach is straightforward to implement, however, it

suffers from the typical weaknesses of machine learning approaches, i.e., the course of

dimensionality and little or no extrapolation capability.
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Hence, it is of great significance to obtain a dense sampling of the state space and

to ensure that the controller does not operate outside the sampled region. Lucia and

Karg [27] showed that, in practice, an ANN-based controller might exhibit some ex-

trapolation capabilities. In [206], it is proposed to combine an ANN-based controller

with manifold learning techniques to achieve a simpler correlation to learn, especially

for large-scale systems. In this Chapter we apply an ANN-based controller to an

ORC waste heat recovery system for a heavy-duty diesel truck to establish a proof-of-

concept for the application. Our focus is on maintaining a desired superheat set-point.

The remainder of this chapter is structured as follows. We present the system consid-

ered and its model in Chapter 7.2. The method for gathering the training data and

the training procedure are described in Chapter 7.3 followed by an evaluation of the

controller performance in Chapter 7.4. We give our conclusions in Chapter 7.5.

7.2 Model description

We use the model equation from Chapter 3 with the simplifications made in Chapter 5.

We focus on maintaining a desired superheat set-point at the heat exchanger WF

outlet. As the turbine speed does not influence the WF state at the HX outlet, we

did not implement a turbine model and the WF inlet massflow ṁWF,in is the sole

degree of freedom. The corresponding system boundary is depicted in Fig. 7.1. For

Exhaust

Working fluid

Texh,in

mexh

4

1 2

3

mWF

Figure 7.1: Topology of the examined system. The WF is indicated by the solid green

line and the exhaust gas by the dashed gray line. The manipulated variable

is indicated by the arrow and the disturbances by the circle. The system

boundary for this work is indicated by the dot-dashed black line.

simplicity we assume constant heat transfer coefficients and a simple geometry typical

for waste heat recovery in a truck instead of using our parameters from Chapter 3.
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7 Approximate NMPC for the ORC system using machine learning

Key parameters for the model are specified in Tab. 7.1. Again, we assume “nominal

Table 7.1: Key heat exchange and geometry model parameters.

αi,0 αi,1 αi,2 αexh A Aw ALaval bWF bexh ltot
W/ (m2K) m2 m

100 900 50 45 0.004 0.03 0.00002 12 80 0.3

operation” as defined in Chapter 3.

7.3 Method: Data acquisition and training

To learn the NMPC control law, it is of great significance to provide a set of data

for training which adequately samples the state space. Recent efforts on ANN-based

MPC, e.g., [27, 206], present chemical reactions in stirred tank reactors as a case

study. Sampling the state space by providing a set of practically relevant initial con-

ditions is straightforward for such systems and can be achieved by simply altering

initial concentrations and reactor volume.

In contrast, it is complicated to provide a variety of physically meaningful initial con-

ditions for the ORC system, in particular for wall temperatures and zone lengths. For

example, it would make little sense to initialize the wall temperature of the super-

heated zone at a smaller value than the wall temperature of the subcooled zone. Such

an initialization might even result in an infeasible DAE initialization or integration

failure. We use an optimization-based procedure to address this issue. We solve 200

dynamic optimization problems using the open source tool DyOS [185], each start-

ing from the same feasible initial point but with a different time-invariant exhaust gas

massflow ṁexh. The optimizer minimizes the deviation of the superheat ∆Tsup at final

time tf from a desired superheat ∆T dessup , which is different in each run, thus achieving

a set of well distributed initial points. As a degree of freedom, the optimizer can

choose ṁWF,in which is constant for each run. Thereby, and by choosing tf = 2000 s

we achieve that the system is effectively at steady-state at tf . We provide 200 com-

binations of ṁexh ∈ [0.1 kg/s, 0.6 kg/s] and a desired superheat ∆T dessup ∈ [10 K, 50 K]

through latin hypercube sampling (LHS) and assume a constant exhaust gas inlet

temperature of Texh,in = 600 K. The objective function of the dynamic optimization

problem reads

min
u

(
∆Tsup (tf )−∆T des,k

sup

)2
(7.1)
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s. t. (2.2b)-(2.2d), (2.2f)

which is subject to (2.2b)-(2.2d) and (2.2f). For simplicity, we impose no path con-

straints.

We use the resulting steady-state optimal state vectors xopt,k
(
dk
)

as initial values for

the following NMPC runs and combine them with a different LHS of ṁexh. We then

carry out NMPC with these sets, minimizing the devations of the superheat trajec-

tory from desired superheat of 30 K. The NMPC problem is solved repeatedly with a

sampling time of ∆t = 5 s and minimizes the integral over the prediction horizon NP

of the deviation from desired superheat.

min
u(t),x(t)

∫ tf

t0

(∆Tsup (t)− 30 K)2 dt (7.2)

s. t. (2.2b)-(2.2d), (2.2f)

Here, we chose a piecewise-constant discretization of the inputs u (t). We chose a

control horizon NC = 8 and a prediction horizon NP = 10. The dynamic optimization

problem was solved with DyOS at every sampling instant and the total duration of

each run was 200 s, resulting in 40 samples per simulation.

A projection of the trajectories in the state space on pressure p and WF outlet enthalpy

hout of all 200 NMPC simulations is depicted in Fig. 7.2. We can see that we achieve

a dense sampling in the state-space and that the trajectories converge to the desired

superheat. The data is used for training the ANN and the amount of data is consid-

ered to be sufficiently dense to allow for effective interpolation. In total, we obtained

the datasets u∗ ∈ R8000×1, x∗ ∈ R8000×7 and d∗ ∈ R8000×1. The solution to the NMPC

problem for our scenario is parametric in x and d. Consequently, we learn the mapping

from those quantities to the optimal control policy. The NMPC controller provides the

optimal sequence uk := (u (tk) , u (tk + ∆t) , . . . , u (tk + (Nc − 1) ∆t)) over the control

horizon consisting of NC elements at every instance. However, as only the first cal-

culated input of this sequence is applied to the plant before the NMPC problem is

re-solved, we only learn the mapping for this quantity. The training process is illus-

trated in Fig. 7.3. We did not include ∆T dessup as an input to the ANN as it is fixed

to 30 K. We trained the ANNs using the Levenberg-Marquardt algorithm in Matlab’s

Neural Network Toolbox [207] and assumed all states to be measurable, thus elimi-

nating the need to implement state estimation.

Due to the parametric nature, the mapping is only dependent on the measured state

and disturbance at the current time. Hence, we used a feedforward neural network

with the hyperbolic tangent activation function. We tested several different ANN

architectures by varying the number of hidden layers and the number of neurons per
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Figure 7.2: State space projection on p and hout of the 200 NMPC simulations. Crosses

indicate initial values. The controllers regulates the system to achieve the

desired superheat.

NMPC

s:t: _x = f (x; y; u; d)
y = g (x; y; u; d)

ANN

min
R tk+NP∆t

t0=tk
(T (t)

sup
− 30K)

2
dt

x(t0) = x(tk)
umin ≤ u (t) ≤ umax

x (tk)

_mexh (tk)
x (tk +∆t)

... x (tk + 2∆t)

x (tk +NP∆t)

...
u (tk)
u (tk +∆t)

u (tk + (NC − 1)∆t)

−

Figure 7.3: Illustration of the training process of the ANN. Only the first control input

u (tk) is considered.

layer. In total we tested architectures consisting of one to four hidden layers consisting

of 10, 20 and 30 neurons each. To obtain reliable results, we executed five training

runs for each architecture.

We found that all trained ANNs achieved good results, differences in performance

were small and even a shallow network with only one hidden layer consisting of ten

neurons exhibited satisfactory performance. While this is an interesting observation,
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we do not claim that it is generally true for learning NMPC policies as we solved a

rather simple problem with only one manipulated variable here.

7.4 Case study

We test our proposed ANN-based controller in further scenarios in silico. To assess

its performance, we compare the resulting control policy and deviations from desired

superheat to the solution obtained by solving (7.2), (2.2b)-(2.2d), (2.2f). We used

an ANN consisting of two hidden layers of 20 neurons each and we examined a total

of ten structurally similar scenarios. All scenarios include two steps in the exhaust

gas mass flow which, however, do occur at different times. To generate the different

exhaust gas profiles, we sampled a LHS with three values for the different levels of

ṁexh and another LHS for the time-points where the steps occur. We obtained initial

values with the procedure described in Chapter 7.3. However, to test the robustness of

the ANN-based controller with respect to conditions not encountered during training,

we sampled ∆T dessup ∈ [10 K, 60 K] and ṁexh ∈ [0.1 kg/s, 0.65 kg/s].

We then solved these scenarios with the ANN-based controller and with NMPC and

assumed that the solution can be computed without time delay. To compare both

approaches we use the average deviation from the desired superheat εavg.

εavg =

∫ tf
0

√
(∆Tsup (t)− 30 K)2dt

tf
(7.3)

Tab. 7.3 presents the values of εavg for all executed simulations. In general, both con-

Table 7.2: Average deviation from desired superheat for all ten runs.

εavg [K]

Run 1 2 3 4 5 6 7 8 9 10

ANN .109 .722 .447 .241 .996 .410 .847 .101 .280 .276

NMPC .096 .636 .431 .241 .848 .319 .809 .100 .271 .244

Table 7.3: Average deviation from desired superheat for all ten runs.

trollers perform well in all scenarios with the average deviation always smaller than

1 K. However, NMPC exhibited slightly better performance for each run. Higher aver-

age deviation in certain runs does not necessarily indicate bad controller performance.

In fact, it is predominantly due to deviations of the superheat from 30 K at the initial
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7 Approximate NMPC for the ORC system using machine learning

point of the respective run. The average CPU time for obtaining the ANN-based

control policy was 20 ms on a desktop computer with an Intel(R) Core(TM) i7-4790

CPU and 16 GB RAM.

For further assessment, we examine the scenario with the highest relative deviation

between the ANN-based controller and NMPC controller, i.e., Run 6. The exhaust

gas mass flow is provided in Fig. 7.4a. Interestingly, it is a scenario where one of the

exhaust gas mass flow levels is outside the training set. This is in agreement with

intuition as it can be expected that the loss in controller performance is larger for

disturbances outside the training set. As in all scenarios in this manuscript, Texh,in re-

mains constant at 600 K. Fig. 7.4c depicts the control action taken by the ANN-based

controller and the NMPC controller. The resulting superheat is shown in Fig. 7.4d.

The control policy computed by the ANN is initially identical to the sequence pro-
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Figure 7.4: Disturbances, controls and resulting superheat for Run 6.

vided by NMPC. Both controllers react well to the change in ṁexh at t = 100 s though
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the ANN-based controller takes marginally longer to reach the desired superheat. The

second step in ṁexh occurs at t = 190 s and reaches a level outside the training set.

Though the ANN-based controller is capable to reject this disturbance, the NMPC

exhibits superior performance. The deviations for the ANN-based Controller remain,

however, sufficiently small.

7.5 Conclusion

Nonlinear model predictive control of ORCs for waste heat recovery in vehicles is a

challenging problem due to the transient and unpredictable heat source conditions,

the limited computational resources and necessary high sampling rates. NMPC has

been proposed for this system by several authors but typically requires significant

model simplification. Large computational cost is a well known issue in many other

NMPC applications and several approaches to overcome it have been developed.

In this Chapter, we presented a machine learning approach, where an ANN was used

to learn the NMPC control policy as function of the system state and the measured

disturbance. To obtain data for training, we solved to 200 NMPC simulations with

varying initial conditions and exhaust gas mass flow. In those cases, we aimed to track

a superheat set-point of 30 K. We trained the ANN-based controller using shallow

and deep ANNs consisting of up to four hidden layers and up to 30 neurons per layer.

Differences in performance were small and even the result for the smallest ANN with

one hidden layer of ten neurons showed satisfactory performance. We then performed

a case study where we executed ten NMPC simulations and compared the results

to the ANN-based controller. Two steps of random height at random time-points

occurred in the exhaust gas mass flow during these simulations. Further we included

initial values and exhaust gas mass flows which were slightly outside of the training

set. Our results show that the control policy learned by the ANN exhibits only

small deviations from the solution of NMPC while requiring negligible computational

expense. However, small deviations do occur, in particular when the disturbance

changes while the system is at desired superheat but not yet at steady-state. This

might improve when the training scenarios are modified.
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Chapter 8

Accelerating NMPC through machine

learning

8.1 Introduction

LMPC is the most frequently used advanced process controller in industry [92]. Ex-

plicit consideration of process constraints and natural handling of MIMO systems are

among the prime properties for its success. NMPC and in particular eNMPC promise

better results with respect to control performance [208] but are rarely used in industry,

in part due to their high computational requirements. In many real-world applications,

especially on embedded hardware, real-time capability cannot be achieved. eNMPC

is also an interesting approach for combining scheduling and control, which is consid-

ered critical in the context of achieving sustainability targets [93]. Several methods

exist to reduce or shift the computational demand of NMPC. Fast-update methods,

e.g., [101, 209] do not solve the problem to full convergence, and thus reduce the

time required for online computation. These methods rely on notions of continuity

of the optimal solution and try to track the optimality conditions. A comprehensive

review of fast-update methods can be found in [26]. Other authors use model reduc-

tion techniques, e.g., based on proper orthogonal decomposition [210], ML [211] or

simplifications based on physical insight of the system at hand [47] in order to obtain

a tractable problem.

A well-investigated method for reducing the online computational demand of MPC

is explicit MPC [25]. It exploits the fact that the solution to the optimization prob-

lem for finding the optimal control sequence is parametric in the vector of differential

states. Consequently, the parametric problem is solved offline prior to deploying the
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controller and the only task during online operation is to determine the correct poly-

topic region and to apply the corresponding controls. For problems with linear models,

quadratic cost functions and constraints, the optimal control policy is known to be

piecewise affine. The approach, however, scales unfavorably with the number of states

and constraints [212].

Learning the control policy of NMPC with ML methods has been proposed as early as

the 1990s [213]. These ideas have been recently revisited [206, 204, 27, 214], typically

in a supervised learning context, where the reference data is obtained from solving

multiple NMPC problems offline. This is the method we used in the previous Chap-

ter. Lovelett et al. [206] propose to use diffusion maps to find an intrinsic lower

dimensional manifold of the mapping from the state space to the control policy space

which allows for simplified learning of the control policy. Lucia and Karg [27] learn

the control policy of a robust framework [99] with an artificial neural network (ANN)

and show on a batch polymerization case study that the resulting ANN does not

perform worse than NMPC when the occurring uncertainty is larger than assumed.

They further find that deep ANNs exhibit superior performance compared to shal-

low ANNs with the same total number of neurons. This work was extended in [214]

where ANNs are used to approximate the cost function beyond the robust horizon. In

another effort, Karg and Lucia [205] show that deep ANNs with rectifier linear unit

(ReLU) activation functions can exactly describe the piecewise-affine control policies

resulting from linear MPC. Further, they present a feasibility-recovering step for the

linear problem. The authors have also applied their methods to mixed integer model

predictive control [215]. In [216] it is proposed to learn the control policy of a NMPC

algorithm which is robust to input disturbances and the authors provide conditions

under which probabilistic stability guarantees for the approximation of the control

law can be given. In [203] it is proposed to train the ANN directly on the cost func-

tion which resembles ideas from reinforcement learning. In a reinforcement learning

(RL) context it has been proposed to use MPC as a function approximator [217] and

considerations include constraint satisfaction [218]. Comparison with methods that

use MPC for RL is beyond the scope of our manuscript and we refer to [219] for an

overview of recent developments.

Note that in addition to approaches where ML is used to approximate the con-

trol policy, several MPC approaches where the controller uses a ML model (e.g.,

[220, 221, 222, 223]) or a hybrid model that contains ML model parts (e.g., [224])

exist. A detailed review is beyond the scope of this manuscript.

While methods which approximate the NMPC control policy relying only on ML with

supervised learning mostly eliminate the online computational demand, they have sev-

eral drawbacks. First, the required amount of data grows with the number of states.
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8 Accelerating NMPC through machine learning

This can be partially mitigated for problems whose closed-loop dynamics can be re-

duced, so that data can be represented by a low dimensional manifold [206]. Second,

constraints can be violated even if the control signal is only interpolated. Finally, no

extrapolation beyond the training set range can be guaranteed.

We propose two ML-based MPC methods that address the two latter problems while

facilitating fast solution of the NMPC problem. Both methods rely on learning the

open-loop control trajectory from offline NMPC simulations with an ANN which is

then used to provide an initial guess for a subsequent algorithm. In the first method,

we use the initial guess to solve the NMPC optimal control problem (OCP) to full

convergence. In the second, we instead solve a single quadratic program (QP) to cor-

rect the control trajectories provided by the ANN before applying them to the plant.

The first method aims at achieving convergence to the optimal solution of the NMPC

problem with reduced solution times by using knowledge from offline simulations. A

variety of initialization approaches for NMPC exist that try to exploit typical solution

structures. The simplest method, called warm-starting, is to reuse the results from

the previous time-step [90]. The so-called shift initialization strategy is motivated by

Bellman’s principle of optimality and is typically used in shrinking-horizon settings

[225]. There, the first time-step is discarded and the problem is initialized with the

remaining trajectory. When used in receding horizon settings, the trajectory is ap-

pended with a copy of the final time-step. Finally, an initialization strategy based

on the insight that many eNMPC problems exhibit turnpike properties has been pro-

posed by Würth [226]. In contrast to available initialization methods, our proposed

initialization strategy does not rely on assumptions about the solution structure. Note

that somewhat similar ideas have been presented for warm-starting of the integers for

hybrid MPC [227] and for finding the correct active set when solving quadratic pro-

grams (QP) associated with MPC [228].

The second method aims at improving the objective function and feasibility with lit-

tle computational effort by correcting the controls calculated by the ANN. We use

the control trajectories provided by the ANN and update the control profile approx-

imations by solving a QP with exact first and second order gradients, i.e., based on

a mechanistic model. The rationale is to reduce the potential deterioration of con-

trol performance due to interpolation of the ANN or extrapolation when disturbances

outside the training set range occur. Although the QP is inspired by neighboring

extremal updates [101, 102], the method is conceptually different as all calculations

are performed after the measurements from the current time-step are available.

To illustrate the performance of the proposed ANN-based methods, we apply them

to an established control case study. Here, we choose a polymerization process in a

CSTR. For comparison, we use two benchmarks: (i) NMPC with shift-initialization
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strategy [225] and (ii) implementing the controls provided by the ANN without fur-

ther correction, a method also used in literature [206, 205, 204, 27, 214]. The first

benchmark represents an upper bound to the achievable control performance. How-

ever, it is the method with highest computational cost. The second benchmark can be

obtained with small computational effort but the quality of the control signal can be

expected to be worse as the method interpolates between training data points or even

extrapolates when the current state or disturbance values are outside of the training

set range.

An application of these method to the ORC system is not considered in this chapter

as the feedback delay of our second method would still be too large for real-time ap-

plication. We discuss how our methods could be extended, in order to be used for the

ORC system, in the conclusion of this chapter.

The remainder of this chapter is structured as follows. We briefly introduce the exam-

ined process and the corresponding mathematical model in Chapter 8.2 followed by a

description of the benchmark controllers and presentation of our proposed methods in

Chapter 8.3. We discuss the data acquisition process in Chapter 8.4. Training results

and results of the proposed control schemes for the CSTR reactor are discussed in

Chapter 8.5 followed by concluding remarks in Chapter 8.6.

8.2 Styrene polymerization process description and con-

trol task

In the case study, we consider styrene polymerization in a CSTR (Fig. 8.1). Styrene

monomer is polymerized using azobisisobutyronitrile as initiator which is dissolved in

benzene. We select this process as it is commonly used as a control benchmark, e.g.,

in [229, 230, 231]. Our aim is to illustrate how our proposed methods can achieve sig-

nificant speed-up of the NMPC solution while maintaining good control performance,

although real-time capability of NMPC is not an issue for the examined system. Fur-

ther description of the process and the full model are provided in Appendix C. Con-

straints on input and state variables are listed in Tab. C.1.

The degrees of freedom are the monomer flow-rate Qm, the initiator flow-rate Qi and

the coolant flow-rate Qc. The solvent flow-rate is fixed. Considered disturbances are

the feed temperature Tf and the initiator feed concentration Cif . The disturbances

are measured but not predicted, i.e., the controller assumes the disturbances to be

constant over the control and prediction horizons with the value registered at the be-

ginning. The control objective Φ is to minimize a weighted sum of the deviation from

a desired polymer number average molecular weight (polymer grade) PNAMW and the
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Qi; Cif ; Tf

Qs; Tf

Qc; Tc

Qm; Cim; Tf

Figure 8.1: Styrene polymerization reactor. Manipulated variables are indicated by

the control valves

negative production rate, i.e.,

Φ (t) =

∫ t

t0

wNAWM

(
P des
NAMW (t)− PNAMW (t)

)2 − wProd (Qm (t) +Qi (t)) dt (8.1)

where wNAWM and wProd are weighting factors for the two objectives. The desired

grade is known but time-dependent.

8.3 NMPC approaches

We start with a brief description of the NMPC software implementation in Chap-

ter 8.3.1 as it is essential for generating the data. We then present the direct im-

plementation of the ANN signals to the plant, which is our second benchmark, in

Chapter 8.3.2 followed by our two proposed methods in Chapter 8.3.3 and Chap-

ter 8.3.4.

8.3.1 NMPC with shift initialization (sNMPC)

In the considered case study, the desired polymer grade trajectory P des
NAMW is the

time-dependent parameter which is available to the optimizer.
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We solve the OCP (8.1), (2.2b)-(2.2f) with direct single-shooting using DyOS [185].

The DAE-integrator is NIXE [199] and the optmizer is SNOPT [89]. The time horizon

is divided into NP time intervals of duration ∆t with tf = t0 + NP∆t. The controls

u (t) are discretized as piecewise constant on a grid with NC points where the last

interval has length (NP −NC + 1) ∆t and all other intervals have length ∆t. We

define u (t) :=
(
ut|0,ut|1, . . . ,ut|Nc−1

)
as the open-loop control sequence of the OCP.

The notation ut|k indicates that the signal is in the kth interval of the OCP solved at

time t. Only the first control signal ut|0 is implemented before the horizon is shifted

and the problem is re-solved. We use the shift initialization strategy [26] for initializing

subsequent OCPs, i.e., uinit (t+ ∆t) :=
(
u∗t|1,u

∗
t|2, . . . ,u

∗
t|Nc−1,u

∗
t|Nc−1

)
which reuses

the optimal solution from the previous instance, indicated by superscript ∗, shifted

by the sampling time ∆t and copies the last control signal. In the remainder of this

Chapter we only discuss signals at time t and therefore we will refer to ut|k as uk. We

neglect plant-model mismatch and the computational delay associated with solving

the OCP. Further, we assume full state feedback.

8.3.2 Direct application of ANN signals learned from NMPC (dANN)

In order to reduce the computational demand associated with solving the NMPC

problem repeatedly online, our second benchmark consists of solving a large number

of instances offline, learning the resulting control policy and deploying the resulting

ML model to control the process. As only the first control signal u0 is applied to the

plant before the problem is re-solved, it is only necessary to learn the control mapping

to this signal, thus simplifying the training problem. The number of variables that

the ML model has to approximate (targets) is equal to the number of manipulated

variables, i.e., the control horizon does not influence the number of targets. We use

an ANN to learn u0 with the inputs reflecting that, in our case, the solution of the

NMPC problem is parametric in x, p and d. This implies that the required data

amount does not scale with the number of algebraic variables

û0 (t) = fdANN (x (t) ,p (t) ,d (t)) . (8.2)

The training process is depicted in Fig. 8.2a. When the controller is deployed, fdANN

predicts the inputs û0 after x, p and d are available. The predicted inputs are clipped

so that they satisfy the input constraints and then applied to the plant

u0 (t) = max (umin,min (û0 (t) ,umax)) . (8.3)
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NMPC

s.t. (2.2b)− (2.2f)

ANN

min Φ (tf)

x (tk)

p (tk) x̂ (tk +∆t)
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x̂ (tk +NP∆t)
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(a) Training process for fdANN. Only u0 is a target.
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x (tk)

p (tk) x̂ (tk +∆t)
... x̂ (tk + 2∆t)

x̂ (tk +NP∆t)
...

u0 (tk)
u1 (tk)
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−

d (tk)
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û0
û1

ûNc−1
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s.t. (2.2b)− (2.2f)

min Φ (tf)

(b) Training process for f iANN. All components of u are targets.

Figure 8.2: Training of fdANN required for dANN and f iANN required for iANN and

uANN. While for the former method only the first control signal has to

be learned, for the two latter methods the complete control trajectory is

required.

8.3.3 ANN initialization (iANN)

The solution of the OCP (8.1), (2.2b)-(2.2f) with single-shooting requires an initial

guess for the trajectories of the control variables in each instance. The quality of the

initial guess influences the number of iterations required for convergence and, thus,

the time required for solving the OCP. A poor initial guess might also result in a poor

local optimum.

Our first proposal aims at utilizing the observations from offline NMPC simulations to

provide an accurate initial guess which fosters fast convergence of the OCP solution.

In contrast to the method presented in Chapter 8.3.2, we have to learn the complete

open-loop optimal control sequence in order to provide an initial guess

û (t) = f iANN (x (t) ,p (t) ,d (t)) . (8.4)
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and use the prediction from f iANN to initialize the OCP. The predictions of the open-

loop input trajectory û are filtered as in (8.3) in order to satisfy the input constraints.

While available initialization strategies [90, 225, 226] rely on some understanding

of the problem structure and are suitable only when the underlying assumptions are

fulfilled, the ANN initialization strategy promises to be efficient irrespective of problem

structure, given that sufficient data to cover the operational domain was available

during training. The training process to obtain f iANN is depicted in Fig. 8.2b. It

should be noted that in contrast to fdANN in (8.2) the number of targets scales also

with the control horizon length NC .

8.3.4 ANN update (uANN)

The strategy presented in the previous section aims at reducing the NMPC solution

time by providing a smart initialization. For many problems, however, solving the

NMPC problem to full convergence might not be tractable, irrespective of the ini-

tialization strategy. In such cases, using dANN would be possible at negligible cost.

However, as mentioned before, no safeguards to ensure path or endpoint constraint

satisfaction and convergence to local optimality exist. Thus, we propose a method that

aims at finding a compromise between reduced computational demand and constraint

satisfaction and optimality. Therefore, we use the approximation of the open-loop

control trajectory f iANN (8.4) as the initial guess in each time-step for a suboptimal

algorithm that solves a single OP approximation of the NMPC problem. We first

approximate û (t) using the trained f iANN. We then construct and solve the following

quadratic program (QP)

min
∆u

1

2
∆uTLuu (û,λ) ∆u+ ΦT

u (û) ∆u (8.5a)

s. t. h (û) + hu (û) ∆u ≤ 0 (8.5b)

to improve the control signal provided by the ANN. The solution of the QP satisfies

a first-order approximation of the constraints (8.5b), thus facilitating feasibility. We

obtain the Hessian Luu of the Lagrangian

L (û,λ) = Φ (û)− λTh (û) (8.6)

as well as the gradients of the objective and constraints functions with respect to the

inputs Φu and hu by integrating the DAE with first and second order sensitivities for

the predicted û (t) using DyOS with composite adjoints [232] and NIXE. We hence

require one integration with first and second order sensitivities and one QP solution
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8 Accelerating NMPC through machine learning

instead of a full optimization. To obtain Luu a guess for the Lagrange multipliers

λ is required. We obtain this guess through a simple warm start, i.e., we use the

Lagrange multiplier from the previous QP solution. For the first iteration we set

λ = 0NC ·NPC×1 where NPC is the number of path constraint as no previous solution

is available. We also investigated shifting the Lagrange multipliers but found this to

perform worse. The employed QP solver requires the problem to be convex, thus, in

case Luu is not positive definite, we iteratively add an increasing value to the diagonal

until the Hessian is positive definite so that we obtain a convex QP. In case the QP

(8.5a)-(8.5b) is infeasible, we solve a feasibility restoring QP

min
∆u,ξ

1

2
·
[
∆uT ξ

]
·
[
εINu·NC 0Nu·NC×1

01×Nu·NC 1

]
·
[
∆u

ξ

]
(8.7a)

s. t. h (û) + hu (û) ∆u ≤ 1NC ·NPC×1 · ξ (8.7b)

which aims at minimizing the maximum constraint violation ξ and bears some resem-

blance to the QP proposed in [205] for guaranteeing feasibility when approximating

the control policy for linear time-invariant systems. Note that small numbers ε are

placed on the diagonal of the appended matrix in order to maintain a positive definite

matrix and, thus, a convex QP. After solving either (8.5a)-(8.5b) or (8.7a)-(8.7b), ∆u

is added to the predicted input

u = û + ∆u (8.8)

and the first control signal u0 in u is applied to the plant before the time is shifted. The

algorithm requires, in addition to evaluating the ANN, one second-order sensitivity

integration and one QP solution. A pseudo-code description of the algorithm discussed

in this section is provided in Appendix D. The training process is identical to the one

for the method presented in Chapter 8.3.3.

It is important to highlight the subtle differences between fast-update methods and

uANN. While fast-update methods such as neighboring extremal updates [101, 102]

account for changes in disturbances and parameters in the QP, uANN incorporates

these in the ANN approximation. As this can only be done after the values have

been measured, the second-order sensitivity integration can only be carried out after

the measurements are available, whereas it is carried out during the sampling time

interval in fast-update methods.

8.4 Data generation

As discussed in Chapter 8.3, our proposed methods rely on learning the control policy

of the NMPC controller by means of supervised learning with samples from NMPC
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simulations. To generate the data for training, we executed 5000 closed-loop NMPC

simulations as explained in Chapter 8.3.1. As general guidelines on the required

amount of data are hard to provide, we iteratively increased the number of considered

NMPC solutions until we stopped noticing significant improvements in the ability of

the trained ANN to approximate the control policy within in the training set range.

Generating the data took more than two days on a desktop computer. From trial

simulations, we obtained ∆t = 5 h, NC = 5, NP = 7 as tuning parameters that

yielded good performance for the NMPC controller. The sampling time is equal to

the dynamic real time optimization sampling time used in [231] and shorter than

the smallest time constant at the reported steady-state [230]. Each run had a total

simulation time of tf = 100 h as in [231], corresponding to 20 samples per NMPC

simulation. Consequently, we obtained u ∈ R100000×15, u0 ∈ R100000×3, x ∈ R100000×6,

p ∈ R100000×5 and d ∈ R100000×2. The additional underlines indicate that the matrices

result from concatenating the vectors of all OCP solutions.

For sampling the state-space, we used latin hypercube sampling. To avoid a redun-

dant initial point in the data, we sampled the initial values of the differential states

with a deviation of ±10% from the nominal steady-state reported in [229, 230, 231]

for the initiator concentration Ci, the monomer concentration Cm, zeroth moments

D0 and first moments D1. Further, we sampled between the lower and upper bound

for the reactor temperature Tr. We did not sample the cooling jacket temperature

Tc in order to avoid situations where due to Tc being higher than Tf infeasibilities

might be unavoidable. Based on the different disturbances and desired grades de-

scribed in the following the trajectories then evolve to cover the state space. Each run

included one polymer grade transition that occurred at random times. The desired

grades were in the range from 52.2 kg/mol to 73.08 kg/mol. Further, two steps in

the disturbances initiator feed concentration Cif and feed temperature Tf occurred

randomly distributed with random step size and the resulting values within ±2% of

the nominal values of Tf0 = 330 K and Cif0 = 0.5888 mol/l.

8.5 Results

During training of fdANN and f iANN we found that deep ANNs achieved better ap-

proximation of the control policy than shallow ANNs with validation mean squared

errors smaller than 0.003 for both ANNs. Based on the training results, we chose

an ANN with four hidden layers for fdANN and an ANN with three hidden layers for

f iANN. Detailed training results are provided in Appendix E.

To assess the performance of the proposed control strategies, we investigate 10 sce-
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8 Accelerating NMPC through machine learning

narios structurally similar to those encountered during training, i.e., two step changes

in both disturbances and one step change in the desired polymer grade. To test the

robustness of the proposed approaches, we include disturbances outside the training

set range. We compare the results of our proposed methods iANN and uANN with

the two standard strategies sNMPC and dANN as benchmark. We discuss the re-

sults regarding their control performance and closed-loop constraint satisfaction in

Chapter 8.5.1 and the required computational times in Chapter 8.5.2. We neglect the

computational cost for evaluating ANNs in the remainder of this manuscript as the

times were often not measurable with the Python clock which has a precision of 16

milliseconds. This pertains to the introduced feedback delay and analysis regarding

the solution time.

8.5.1 Control performance

For the 10 scenarios for assessing controller performance, we allowed the disturbances

to be within ±3% around their nominal values, i.e., we increased the bounds of the

training set by 50%. The initial values were sampled within the training set range. An

overview of the closed-loop objective function and the maximum reactor temperature

constraint violation Tvio,max is presented in Tab. 8.1 for all 10 runs

Tvio,max = max (max (0, Tr (t)− 325 K, 315 K− Tr (t))) . (8.9)

sNMPC and iANN both achieve closed-loop constraint satisfaction in all ten runs.

For most runs they reach the same objective function value and the control signals

coincide. However, small differences in objective function value exist in some cases.

This can be explained by multimodality of the problem. For the two instances where

different objective functions are reached, using sNMPC provides a slightly better ob-

jective. However, during further trials not presented here, we did not find any pattern

indicating that either initialization method generally achieves consistently superior

results. Directly applying the control signals provided by the ANN (dANN) results

in closed-loop infeasibility for many runs. Moreover, the obtained objective function

value is often much worse than those obtained by sNMPC and iANN. Apparently, the

ANN is not able to provide sufficiently accurate prediction of the control inputs. In the

instances where the differences in objective value between dANN and sNMPC/iANN

are large and constraint violations occur using dANN, the disturbances are typically

outside the training set range. Hence, no improvement by providing a more densely

sampled training set or by using a larger ANN can be guaranteed. Applying a QP

update to the ANN prediction (uANN) yields controls that are closed-loop feasible
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Table 8.1: Closed-loop objective values and constraint satisfaction for all ten runs.

Run sNMPC dANN iANN uANN

Φ Tvio,max Φ Tvio,max Φ Tvio,max Φ Tvio,max
[−] [K] [−] [K] [−] [K] [−] [K]

1 -2.34 0.00 3.28 1.02 -2.34 0.00 -1.09 0.00

2 -0.10 0.00 0.52 0.00 -0.10 0.00 -0.04 0.00

3 -6.20 0.00 -3.13 0.42 -6.20 0.00 -6.14 0.00

4 -0.75 0.00 1.79 0.14 -0.74 0.00 -0.74 0.00

5 -5.18 0.00 -2.59 0.16 -5.18 0.00 -4.21 0.00

6 -6.26 0.00 -5.04 0.65 -6.26 0.00 -6.13 0.00

7 -4.36 0.00 60.03 2.04 -4.36 0.00 -3.86 0.07

8 3.03 0.00 4.57 0.05 3.03 0.00 3.09 0.00

9 60.96 0.00 72.70 0.11 61.04 0.00 61.21 0.00

10 -5.03 0.00 30.03 0.46 -5.03 0.00 -4.74 0.00

except for one run. In the run that exhibits closed-loops infeasibilitiy, it is orders of

magnitudes smaller than obtained with dANN and practically negligible. Further, the

obtained objective function value is better than the value obtained with dANN in all

runs and typically very close to the value obtained with sNMPC and iANN.

We discuss in the following one of the runs in more detail. We focus on run 7 where

dANN exhibits the largest constraint violation. This is to showcase the risks associ-

ated with using the ANN predictions without further correction and to highlight that

uANN can provide a significant improvement at little additional cost. Additional fig-

ures on all other runs are provided in the supplementary material of [7]. The feed

temperature and initiator feed concentration disturbance for run 7 are depicted in

Fig. 8.3. The feed temperature exhibits values both higher and lower than the train-

ing set limits and the initiator feed concentration exceeds the training set limit from

t = 65 h on.

The control inputs calculated by the controllers sNMPC, dANN, iANN and uANN

are depicted in Figs. 8.4a-8.4c and the resulting polymer grades, reactor tempera-

tures and objective function values are depicted in Figs. 8.4d-8.4f. NMPC with shift

initialization strategy (sNMPC), which provides the best achievable control policy,

precisely tracks the desired polymer grade (Fig. 8.4d) and no constraint violations oc-

cur (Fig. 8.4e). It should be noted that the path constraints are only evaluated on the

control grid points, i.e., with a resolution of 5 h and therefore can be visibly violated

at time points not considered on the grid without being infeasible. For visualization,
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Figure 8.3: Disturbance signals for run 7. The training set bounds of the disturbances

are indicated by the dashed gray lines.

grid points are indicated by the green crosses on the dANN trajectory. Methods to

guarantee path constraint satisfaction at all times exist (e.g., [87]) but are not con-

sidered here. Using the predictions from fdANN directly results in deterioration of

the control performance. Especially during those periods where the feed temperature

disturbance is outside the training set range, dANN is not able to track the desired

polymer grade. The reactor temperature violates the upper bound at t = 5 h and the

lower bound later on. The polymer grade initially overshoots the desired set-point

and then exhibits a permanent offset. After the second step in the feed tempera-

ture disturbance at t = 75 h, where it is within the training set range, the control

performance improves. Using f iANN to initialize the NMPC problem (iANN) yields

identical control signals as sNMPC for this run. Note that in those runs where the

control signals occasionally differ, these differences do not result in vastly different

PNAMW trajectories. Using the uANN approach, we observe a large improvement

compared to dANN. Especially during the period from t = 20 h to t = 75 h the

controller is able to maintain a polymer grade close to the set-point. Further, the con-

straint violation is small. In conclusion, uANN appears to offer a good compromise

between computational rigor and computational demand which we will assess next.

8.5.2 Solution times

As already mentioned, the ANN can be evaluated at negligible computational cost.

Further, the solution time of (8.5a)-(8.5b) was too short to be reliably measured with

the Python clock on Windows. Thus, we do not present statistics for dANN and
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Figure 8.4: Controls and results from run 7

only account for the computational demand of the NMPC solution of iANN and the

demand for the second-order sensitivity integration for uANN.
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8 Accelerating NMPC through machine learning

An overview of solution times is presented in Tab. 8.2. sNMPC has lower average

Table 8.2: Time for solving the respective problems. The shortest and longest solution

time over all runs are printed in bold face for each method. The time

required to evaluate the ANNs is neglected.

Run sNMPC iANN uANN

(s) (s) Integration (s)

min. max. avg. min. max. avg min. max. avg

1 0.56 4.08 1.58 1.42 3.47 2.20 0.05 0.08 0.06

2 0.41 3.78 1.11 1.47 3.23 2.18 0.03 0.11 0.06

3 0.42 4.08 1.37 1.22 3.45 1.95 0.03 0.08 0.05

4 0.08 3.66 0.99 0.41 3.05 1.95 0.03 0.08 0.05

5 0.47 4.22 1.82 0.47 3.72 2.15 0.03 0.09 0.06

6 0.37 4.64 1.21 0.98 2.64 1.57 0.03 0.09 0.05

7 0.41 6.44 1.10 1.09 3.64 1.96 0.03 0.09 0.06

8 0.64 4.28 1.76 1.30 3.67 1.91 0.03 0.09 0.06

9 0.42 4.61 1.47 0.42 3.59 2.27 0.03 0.09 0.05

10 0.44 3.94 1.28 1.03 2.50 1.77 0.03 0.08 0.06

solution times than iANN for all runs and lower minimum solution times for all runs

except two where the times are equal. However, for all runs, iANN exhibits lower

maximum times. When deploying an NMPC algorithm, reasonable slack to the ex-

pected maximum run time must exist. From this perspective, using iANN might hold

an advantage. The solution times for uANN are an order of magnitude smaller than

those of sNMPC and iANN.

Fig. 8.5 provides boxplots of all runs for sNMPC and iANN for further analysis.

Each boxplot contains the solution times for the 20 OCP instances of the respective

problem. It is evident that while sNMPC generally behaves better, i.e. the median so-

lution times are lower, iANN exhibits fewer outliers. Closer inspections of the NMPC

outliers reveals that these either occur when the disturbance changes or in the first

iteration when no shifted solution is available. The observation that the solution times

increase when the disturbances changes is in agreement with intuition as the assump-

tions that motivate the shift initialization strategy are not valid in those situations.

More frequent changes in the disturbances than the two steps occuring in our case

study would emphasize the strengths of the ANN initialization strategy (iANN). This

notion is supported by additional results, provided in the supplementary information,

where the disturbances change at every sample.
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Figure 8.5: Solution times for all ten runs.

8.6 Conclusion

We proposed two ML-based methods based on learning the open-loop control tra-

jectory with an ANN to reduce the computational demand associated with NMPC.

Both methods use the control policy predicted by the ANN for initializing an algo-

rithm. First, we proposed to use the initial guess from the ANN prediction to solve

the NMPC problem to convergence (iANN). Second, we proposed to solve a single

QP based on the initial guess (uANN) to obtain a compromise between the optimal

control policy and reduced computational demand.

We applied our proposed methods to a polymerization case study. We benchmarked

against two well-known approaches, i.e., NMPC with shift-initialization (sNMPC) and

the use of the ANN predictions without further correction (dANN).

After training, we applied our two proposed controllers and the two benchmark con-

trollers to ten additional NMPC runs which included disturbances outside the training

set. Using the ANN to initialize the NMPC (iANN) problem mostly results in identi-

cal control action and state trajectories as using the shift-initialization strategy (sN-

MPC), albeit, small differences occasionally exist. Using the ANN prediction directly

(dANN) to control the process resulted in a deterioration of the control performance

with respect to the objective function value for all runs and with respect to closed-loop

feasibility in some runs. This result is unsurprising, especially outside the training set

and is a drawback of any method that solely relies on ML. Using the ANN predictions

and solving a single QP (uANN) always resulted in superior objective function values

compared to (dANN) and negligible constraint violations.

While minimum runtime was lower with shift-initialization (sNMPC), iANN exhibited
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8 Accelerating NMPC through machine learning

tighter distribution of runtimes and shorter worst-case runtime for most cases. Thus,

application of iANN is more consistent and predictable which is an advantage for

application in the field. For uANN, the computational time required for the second-

order sensitivity integration was typically an order of magnitude smaller than the

time required for solving sNMPC or iANN. An overview of our findings is provided in

Tab. 8.3.

Table 8.3: Overview of the capabilities and limitations of the examined methods. Very

good performance is indicated by ++, good performance is indicated by +,

average performance is indicated by o and poor performance is indicated

by -.

objective value computational demand constraint satisfaction

offline online

sNMPC ++ ++ - ++

iANN ++ ++ o/- ++

uANN + - + +

dANN - - ++ -

An important aspect is analysis of the data demand with respect to the system size.

With an increasing dimension of the state-space, the number of required samples

grows, which could make the data acquisition intractable. This issue pertains to all

methods that use ML for learning the optimal control policy and has been scarcely

covered in literature. Consequently, the methods proposed herein should be applied

to a larger example to explore the limits of the approach. Ideally, such a case study

should allow for simple scaling of the problem size, e.g., by adding trays in a rectifica-

tion column. As mentioned by Lovelett et al. [206], many typical large scale chemical

engineering unit operations, e.g., heat exchangers or rectification columns, may in-

clude redundant information in the state space which can be exploited by learning the

optimal control policy in a latent space. Furthermore, a case study where the time

required for the second-order sensitivity integration of uANN is too long to achieve

real-time capability could be considered in future work. There, uANN could be used

in an advanced-step setting [233]. This could also be applied to the ORC system.

In [12], we observed that the fast-update method used to control the ORC system

required a full prediction of the exhaust gas conditions on the considered horizon.

Here, an initialization of the fast-update algorithm with the learned control policy

could remedy this issue.
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Chapter 9

Conclusions & outlook

In this thesis, we have examined the optimal operation and control of an ORC for

WHR. Furthermore, we have examined approximate NMPC through machine learn-

ing, a topic that has received significant attention recently. For our contribution to

optimal operation of an ORC for WHR, we followed a model-based approach. We cov-

ered model development and comparison, design of optimal operating policies through

dynamic optimization and comparison of various control strategies. Regarding the use

of ML in NMPC, we first applied a published method to our ORC example. In a sec-

ond step, we proposed two novel methods that tackle shortcomings of established

methods.

We started with model development for the considered ORC system in Chapter 3.

There, we introduced a model for the cycle that consists of submodels for every major

unit operation connected by pipe models. As the dominant dynamics are associated

with the thermal inertia of the heat exchanger, we chose a dynamic model for the

evaporator and condenser and steady-state models for the pump and turbine. More

specifically, we used the MB approach for modeling the heat exchangers. Since the

heat exchanger is discretized into zones according to the WF aggregate state, no dis-

crete events occur and the model is twice continuously differentiable, thus suitable

for gradient-based optimization techniques. Accordingly, we directly implemented a

Helmholtz free energy equation of state for the thermodynamic WF properties in-

stead of relying on a database. We employed dynamic optimization for parameter

estimation, using flexible custom heat transfer correlations. We found that the model

showed small prediction errors for all quantities and found that it also performed well

on additional validation data.

The model developed in Chapter 3 requires all three phases of the WF to be present

in the heat exchangers. Thus, situations like start-up, shutdown and temporary loss
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of superheat cannot be simulated. In Chapter 4, we examined extensions to the

model that allow for consideration of these scenarios. Therefore, we extended the MB

model by adding adequate equations for modes of operation where not all phases are

present. However, we restricted ourselves to scenarios that can be expected during

operation of power cycles. As the model switches between different operation modes

with if/else clauses, the extended model cannot directly be used for gradient-based

dynamic optimization. For comparison, we implemented a heat exchanger based on

the FV approach. For model comparison, we focused on the start-up situation. There

we found that the MB model can exhibit unphysical behavior due to the enthalpy av-

eraging assumption. Through simplifying assumptions, we arrived at a linear model

and showed that the system exhibits a positive zero which is associated with an in-

verse response. We proposed two remedies that eliminate this behavior and preserve

the low computational cost of the MB model in nominal operation, i.e., when all three

phases are present.

In Chapter 5, we examined optimal operating policies for the ORC system. Therefore,

we considered two relevant scenarios for the operation in street traffic. First, we used

data reflective of a real-world driving cycle that was recorded on a test rig and used in

Chapter 3 for parameter estimation. Second, we considered the case where the pro-

duced power that can be utilized is temporarily limited. This scenario can occur when

the engine torque is below a certain threshold, e.g., when the vehicle is going downhill.

Here, we assumed constant heat source conditions. To identify the optimal operat-

ing policies, we used dynamic optimization, employing the open-source solver DyOS.

Steady-state operation of power cycles is typically most efficient at minimal superheat.

Thus, to examine whether this also holds under transient conditions, we compared a

minimal superheat strategy to a flexible superheat strategy that maximizes produced

power. In the first scenario, we found that the flexible superheat strategy often op-

erates at minimal superheat, however, exhibits some significant peaks in superheat.

However, the differences in produced power compared to minimal superheat are small.

More relevant are the differences for the second examined scenario. Here, the flexible

superheat strategy allows for temporal storage of thermal energy in the heat exchanger

walls during the power limitation.

In Chapter 6, we examined control strategies for the ORC system. Our findings from

Chapter 5 provided the necessary insight into optimal system operation to develop the

proposed strategies. We developed two NMPC strategies and one strategy that uses a

PI controller with feedforward term. We showed that the MIMO control problem can

be reduced to a SISO superheat tracking control problem and a decoupled real-time

turbine optimization for the considered system. Thus, we compared an economic

NMPC that manipulates both degrees of freedom to a superheat tracking NMPC,
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where the turbine rotational speed is determined by the real-time optimization. Sim-

ilarly, the PI controller with feedforward term only manipulates the WF mass flow to

achieve minimal superheat. We found that splitting the control problem is possible

without substantial losses in economic performance. Furthermore we found that the

PI controller with feedforward performed almost as good as the much more sophisti-

cated NMPC controllers.

Although we achieved good performance with a PI controller for our considered sys-

tem, for more complex ORC architectures, NMPC might be required. Generally, the

application of NMPC in the automotive industry is often prevented due to the lim-

ited computational resources available. Thus, we use our ORC system as a simple

example to examine a method to reduce the online computational demand of NMPC.

The NMPC controllers we developed in Chapter 6 are far from real-time capable.

As a remedy, learning the optimal control policy from simulation data is a promising

approach for challenging problems with short sampling intervals and limited computa-

tional power. Instead of the optimization-based controller, a machine learning model

is used in the online application which is able to provide feedback in negligible time.

In Chapter 7, we applied this approach to an ORC system for waste heat recovery.

Therein, we restricted ourselves to the regulatory control problem. We carried out

200 NMPC simulations where the controller stabilized the system at a fixed superheat

setpoint. With the accumulated data, we trained an ANN that was used to replace

the controller in validation tests. Here, we used disturbance values that exceeded the

training set bounds. Still, the ANN-based controller was able to stabilize the system.

Although this is a promising result, the employed method generally suffers from the

fact that no guarantees for constraint satisfaction exist.

This motivated the work presented in Chapter 8. There, we examined methods that

use the learned optimal control policy for initialization of a control algorithm. In par-

ticular, we proposed two novel methods. The first method (iANN) uses the control

policy predicted by an ANN to initialize the NMPC problem which is then solved

to convergence. The idea here is that the ANN might be able to provide an initial

guess closer to the optimal solution than established methods, such as shifting the

solution from the previous time-step. We expected this method to work best in case

the disturbances change strongly between subsequent instances of the control prob-

lem. Second, we proposed a method that implements the controls after correcting the

inital guess with a single QP iteration (uANN). This methods aim at improving the

ANN prediction at little computational cost and satisfies a first-order approximation

of the constraints. To illustrate our methods, we used a control benchmark instead of

our ORC process. In particular, we applied our method to a CSTR case study for the

production of polystyrene. In our simulation case study, we found that iANN has an
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advantageous distribution of solution times, i.e., the distribution is more narrow and

maximum runtimes are smaller, than NMPC with shift initialization. Furthermore,

uANN significantly improves the control policy compared to the prediction of the

ANN with respect to objective function value and constraint satisfaction, while pro-

viding the solution an order of magnitude faster than NMPC. Thus, our two proposed

methods succeed in their aims to accelerate the solution of nonlinear model predictive

control problems.

Many interesting avenues for future research can be outlined.

As discussed, neither the MB approach nor the FV approach are suitable for gradient-

based optimization when phases appear or disappear in a heat exchanger. This is due

to (i) discrete events that occur when a phase appears or disappears in the extended

MB model and (ii) discrete events when a cell switches from one aggregate state to

another in the FV approach. To mitigate this behavior, adequate smoothing is nec-

essary so that the models are twice continuously differentiable. Recently, researchers

from our lab proposed to formulate similar problems with smoothed nonlinear com-

plementarity problem functions and showed that the resulting problems can be solved

with standard solvers in single shooting [234]. We attempted to apply the proposed

methodology to the FV approach in the master thesis of Ashutosh Manchanda [14]. It

should be noted that besides replacing the if/else clauses for switching, also the heat

transfer correlations and the WF thermodynamics must be smoothed. The resulting

model has a large number of complementarities and adequate choice of smoothing pa-

rameters is cumbersome. Dynamic optimization was possible, however, convergence

was slow and the results were very sensitive to good initial guesses. Future work

should therefore focus on improving the problem formulation. Another possibility is

to use the non-smooth modeling and optimization framework developed by the Barton

group, see [235] and references therein. Preliminary studies indicate that the mod-

eling approach is applicable to the FV model. However, neither of the mentioned

approaches has been applied to the MB approach and from intuition, it appears to be

more complex to find a smoothed formulation compared to the FV approach.

An adequate smoothed model, however, is key to examine further scenarios for op-

timal operating strategies. Although relevant scenarios with nominal operation are

conceivable, a model covering non-nominal operation is necessary for many interest-

ing scenarios, e.g., start-up or temporal loss of superheat. We believe that assessing

optimal operation through dynamic optimization provides valuable insight for control

strategy design. Thus, many more scenarios should be assessed in order to build a

comprehensive energy management system. Moreover, the peaks in superheat ob-

served in Chapter 5 warrant further investigation.
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Although we found no great improvement for the NMPC controllers over a PI con-

troller with feedforward term in Chapter 6, further efforts towards real-time capability

of NMPC for the ORC system are indicated. As discussed, more complex ORC ar-

chitectures have been proposed which are harder to control. To this end, fast-update

methods [26] should be examined. We implemented such a method in the master

thesis of Jan Schulze [12]. We found that neighboring extremal updates were not

real-time capable and a further step to reduce the computational demand would be

to approximate the Hessian instead of computing it exactly. Furthermore, the fast-

update method required full prediction of the exhaust gas conditions. Otherwise, the

unexpected changes in the exhaust gas conditions could not be compensated. Here,

using the methods discussed in Chapter 8 promises to alleviate this problem.

Our findings from Chapter 7 indicate that NMPC controllers for the ORC system

can be replaced by ANN-based controllers. Although our results are promising, the

case study is merely a proof-of-concept and the method should be applied to more

challenging scenarios.

The methods proposed to accelerate NMPC through machine learning in Chapter 8

offer many options for extension. Although uANN drastically reduces computational

demand, the bulk of the time consumed by the method arises through the sensitivity

integration in the feedback phase, i.e., after a measurement has been recorded. For

systems with very short sampling intervals, the associated delay might be too long

and reduce the quality of the control significantly or even render it completely worth-

less in case hard real-time constraints apply. For these situations, it is desirable to

shift the sensitivity integration into the preparation phase. Essentially, this would

mean that we would have to use the ANN prediction to initialize a fast-update strat-

egy, e.g., neighboring extremal updates [101, 102]. An attempt at this can be found

in the master thesis of Aron Zingler [15]. The findings there indicate that using an

ANN as initialization can result in a control performance with similar performance to

the optimal initialization strategy (or advanced step [134]) with a computational cost

similar to the shift-initialization strategy. The thesis further examines the option to

regularize the training of the ANN by including the sensitivities of the optimal control

policy with respect to the parameters of the discretized dynamic optimization problem

(2.4a)-(2.4c) in the loss function. Furthermore, a variety of efficient sampling algo-

rithms is examined. As outlined in Chapter 8, the main limitation of methods that

learn the optimal control policy from data is the curse of dimensionality as the opti-

mal control policy is a function of the initial state. Thus, the methods are not readily

applicable to large-scale problems and methods to alleviate this limitation should be

a major focus of future work. For many typical chemical engineering processes, e.g.,

distillation columns, it is conceivable that a latent space of smaller dimensionality
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9 Conclusions & outlook

than the differential state vector can be found. There, learning the optimal control

policy in a latent space is a promising idea [206].
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Appendix A

Pipe model parameter estimation and

parameters for HX models

The parameter estimation for the pipe models is carried out with data from the

temperature sensors depicted in Fig. 3.4. We use the data collected from the sensor

before the respective pipe segments as the input to (3.22) and (3.23), while the data

from the sensor behind the respective element is the desired output. For all segments,

measurements from a number of experiments are taken into account. Fig. A.1 shows

trajectories for one of the experiments using the obtained parameters for the pipe

segment between evaporator and turbine, with the WF outlet temperature of the

evaporator as a model input. It can be seen that the model is able to sufficiently

capture the dynamics of the temperature at the turbine inlet. For all other pipe

segments, results of similar quality are achieved by the parameter estimation.
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A Pipe model parameter estimation and parameters for HX models
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Figure A.1: Result of pipe model between evaporator outlet and turbine inlet, showing

the measured temperatures of the evaporator outlet and turbine inlet

together with the simulated turbine inlet temperature.

Table A.1: Overview of all estimated parameters for the pipe and turbine models,

including bounds and final values. Missing bounds indicate fixed values.

parameter lower bound upper bound final value

(α · A)evap,turb [W/ K] 1 · 10−4 100 9.24782

(α · A)cond,pump [W/ K] 1 · 10−4 100 17.061

(α · A)pump,evap [W/ K] 1 · 10−4 100 15.4042

(α · A)turb,cond [W/ K] 1 · 10−4 100 1.64795

τevap,turb [s] 0.001 150 56.6023

τcond,pump [s] 0.001 150 14.8807

τpump,evap [s] 0.001 150 150

τturb,cond [s] 0.001 150 0.188313

Tamb [K] 300
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Table A.2: Overview of all estimated parameters for the evaporator model, including

bounds and final values.

parameter lower bound upper bound final value

αliq,0 [W/ (m2 K)] 0 1000 427.287

cliq,1 [−] 0 1 0

cliq,2 [−] 1 10 3.67548

dliq [W/ (m2 K)] -1000 1000 -2.3888

bliq [−] 0.01 10 0.01

uliq [kg/s] 1 · 10−4 0.0499 0.005803

αtrans,0 [W/ (m2 K)] 0 1 · 105 278.844

ctrans,1 [−] 0 1 0.458011

ctrans,2 [−] 1 10 8.83129

dtrans [W/ (m2 K)] -1000 1 · 104 158.358

btrans [−] 0.01 10 0.088959

utrans [kg/s] 1 · 10−4 0.0499 0.02759

αvap,0 [W/ (m2 K)] 0 1000 57.6655

cvap,1 [−] 0 1 0

cvap,2 [−] 1 10 2.46687

dvap [W/ (m2 K)] -1000 1000 17.2663

bvap [−] 0.01 10 0.062251

uvap [kg/s] 1 · 10−4 0.0499 0.01665

αexh,0 [W/ (m2 K)] 0 1000 153.173

cexh,1 [−] 0 10 0.976345

cexh,2 [−] 0 10 1.21767

dexh [W/ (m2 K)] -1000 1000 -1.09746

ṁWF,0 [kg/s] 0.05 0.05 0.05

ṁexh,0 [kg/s] 0.4 0.4 0.4

Texh,0 [K] 923 923 923

αamb [W/ (m2 K)] 0 300 *

*depending on experiment conditions
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A Pipe model parameter estimation and parameters for HX models

Table A.3: Overview of all estimated parameters for the condenser model, including

bounds and final values.

parameter lower bound upper bound final value

αliq,0 [W/ (m2 K)] 0 1 · 104 93.7257

cliq,1 [−] 0 10 2.55708

cliq,2 [−] 0 10 2.86173

dliq [W/ (m2 K)] 0 1000 6.69519

αtrans,0 [W/ (m2 K)] 0 1 · 106 36411.7

ctrans,1 [−] 0 10 5.0614

ctrans,2 [−] 0 10 6.02665

dtrans [W/ (m2 K)] −1 · 104 1 · 105 16491.6

αvap,0 [W/ (m2 K)] 0 300 86.1252

cvap,1 [−] 0 10 1.37435

cvap,2 [−] 0 10 0.963504

dvap [W/ (m2 K)] 0 1 · 104 1862.48

αCW,0 [W/ (m2 K)] 100 5000 2722.54

dCW [W/ (m2 K)] 1 · 10−5 350 108.122

cCW [−] 0 10 0.503491

hplate [m] 1 · 10−5 5 · 10−4 3.74 · 10−4

hWF [m] 1 · 10−5 3 · 10−4 1.85 · 10−4

bplate [m] 0.2 0.4 0.283959

Nplates [−] 100 200 141.98

ltot [m] 0.2 0.5 0.343441

ṁWF,0 [kg/s] 0.05 0.05 0.05

TWF,0 [K] 503 503 503

ṁCW,0 [kg/s] 2 2 2
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Appendix B

Finite volume heat exchanger model

equations

The coupled partial differential equations representing mass (B.1) and energy balance

(B.2) are

A · ∂ρ
∂t

+
∂ṁ

∂z
= 0 , (B.1)

A · ∂ρh
∂t

+
∂ṁh

∂z
= q̇z (B.2)

∂ρ

∂t
=

(
∂ρ

∂p

)
h

∂p

∂t
+

(
∂ρ

∂h

)
p

∂h

∂t
. (B.3)

Besides partial derivatives of the density in the single-phase regions, the FV approach

also requires partial derivatives in the two-phase region, which are obtained from

[142]. The second order derivatives required for the smooth-density method [155]

are approximated via finite differences. For the discretization, a first order upwind

scheme is applied for all thermodynamic quantities ζi (B.4). It has to be noted that

flow reversal is not considered in here.

ζ̂i = ζi+1/2 = ζi for ζ ∈ {h, ρ, T, ...}. (B.4)

A grid with a uniform control volume length ∆z is using the cross sectional area A

according to (B.5):

∆z =
V

NV · A = const. (B.5)
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B Finite volume heat exchanger model equations

where NV is the number of volumes chosen for discretization. The resulting partial

differential equations (PDEs) can be reformulated to a set of ordinary differential

equations (ODEs) (B.6) and (B.7), equivalent to a 1-D PDE discretization, using

backward differences:[(
∂ρi
∂p

)
h

dp

dt
+

(
∂ρi
∂h

)
p

dhi
dt

]
A∆z + ṁi − ṁi−1 = 0 for i = 2, . . . , NV (B.6)

A∆z

(
hi
∂ρi
∂p
− 1

)
dp

dt
+ A∆z

(
hi
∂ρi
∂h

+ ρi

)
dhi
dt

= mi−1hi−1 −mihi + qr,iA∆z (B.7)
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Appendix C

Polystyrene CSTR model description

We consider a CSTR for the production of polystyrene by polymerization. The model

was initially presented in [229] and augmented in [230] to allow for the calculation of

number average molecular weight. We make use of the scaling recommendations in

[236]. All constrains on inputs and state variables are listed in Tab. C.1.

LB UB

Qm l/h 0 400

Qc l/h 0 700

Qi l/h 0 300

T K 315 325

Table C.1: Lower and upper bounds for inputs and constrained variables.

Model equations The unscaled model equations are

dCi
dt

=
Qi · Cif −Qt · Ci

V
− kd · Ci

dCm
dt

=
Qm · Cim −Qt · Cm

V
− kp · Cm · Cgp

dT

dt
=
Qt · (Tf − T )

V
− ∆Hr

ρ · cp
· kp · Cm · Cgp −

U · A
ρ · cp · V

· (T − Tc)

dTc
dt

=
Qc · (Tcf − Tc)

Vc
+

U · A
ρc · cpc · Vc

· (T − Tc)

dD0

dt
= 0.5 · kt · C2

gp −
Qt ·D0

V
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C Polystyrene CSTR model description

dD1

dt
= kp · Cm · Cgp −

Qt ·D1

V

Qt = Qm +Qi +Qs

Cgp =

√
2 · f · kd · Ci

kt

ki = k0i exp

(
−Ei
T

)
i ∈ {d, p, t}

PNAMW =
D1

D0

·MWm

where Cif is the initiator feed concentration, Qi the initiator flow rate, Qt the total flow

rate, Ci the initiator concentration, V is the reactor volume and kd is the reaction rate

of the initiation reaction. Cmf is the monomer feed concentration, Qm the monomer

flow rate, Cm the monomer concentration, kp the reaction rate of the propagation

reaction and Cgp the concentration of growing polymer. T is the reactor temperature,

Tf the feed temperature, ∆Hr the propagation reaction enthalpy, ρ the reactor content

density, cp the reactor content heat capacity, U the heat transfer coefficient from the

reactor content to the coolant, A the area of heat exchange between the reactor and

cooling jacket and Tc the coolant temperature in the jacket. Qc is the coolant flow

rate, Tcf the coolant feed temperature, ρc is the coolant density, cpc the coolant heat

capacity and Vc the jacket volume. kt is the reaction rate of the termination reaction,

D0 is the zeroth moment and D1 the first moment. The initiator efficiency is denoted

by f , Ei with i ∈ {d, p, t} are the activation energies for initiation, propagation and

termination and MWm is the monomer molecular weight. For implementation, we

use the dimensionless model as stated in [236, 231].

dx1

dt
= qi · x1f − qt · x1 − φd · kd · x1

dx2

dt
= qm · x2f − qt · x2 − φp · kp · x2 · xgp

dx3

dt
= qt · (x3f − x3) + β · φp · kp · x2 · xgp − δ · (x3 − x4)

dx4

dt
= δ1 · (qc · (x4f − x4) + δ · δ2 (x3− x4))

dx5

dt
=

1

2
· φt · kt · x2

gp − qt · x5

dx6

dt
= φp · kp · x2 · xgp − qt · x6

qt = qi + qm + qs
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xgp =

√
2 · f · φd · kd

φt · kt
· x1

pNAMW =
x6

x5

where x1 is the dimensionless initiator concentration, x2 is the dimensionless monomer

concentration, x3 is the dimensionless reactor temperature, x4 is the dimensionless

cooling jacket temperature and x5 and x6 are the dimensionless zeroth and first mo-

ments.
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Appendix D

uANN pseudo code implementation

The implementation of uANN is described in Algorithm 1.

Algorithm 1 uANN

for iTimeStep do

obtain x, d, and p

predict û = f iANN (x,d,p)

calculate Luu, Φu and hu

while ∆u not found do

obtain ∆u by solving (8.5a)-(8.5b)

if Luu not positive definite then

Modify Luu

end if

if (8.5a)-(8.5b) infeasible then

solve (8.7a)-(8.7b)

end if

end while

u = û + ∆u

apply u0 to plant and shift time

end for
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Appendix E

Training results for fdANN and f iANN

fdANN and f iANN were trained with TensorFlow [237] using the Keras interface [238]

and the adam [239] optimizer. The mean squared error (mse) was used as loss func-

tion. We tested several configurations of shallow and deep neural networks ranging

from one to six dense hidden layers with hyperbolic tangent activation function. All

configurations consisted of a total of 60 neurons. To obtain reliable results, we carried

out five training runs for each configuration. The maximum number of epochs was

1000. We used early stopping after 50 epochs without improvement of the mse on the

validation set which contained 20% of the data. The targets for the ANNs, i.e., the

entries of u0 and u were scaled to be in between 0 and 1.

The validation loss for fdANN is illustrated in Fig. E.1a and for f iANN in Fig. E.1b. We
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Figure E.1: Validation losses for fdANN and f iANN. Deep ANNs perform better than

shallow ANNs.
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E Training results for fdANN and f iANN

can see that shallow network performs significantly worse than deep networks as was

also found in [27]. Moreover, the shallow networks required more epochs for training

which is in accordance with the state-of-the-art in deep learning [109]. We can see

that neither for fdANN nor for f iANN the largest number of hidden layer yields the best

result. However, unless a shallow ANN is chosen, the differences in performance are

small. We found that using ReLU as activation functions yielded larger mse values

than the hyperbolic tangent. We select an ANN with four hidden layers for fdANN

and an ANN with three hidden layers for f iANN for the remainder of this manuscript,

as these exhibited the best validation performances. In both cases, the instances with

the smallest validation loss also exhibited the smallest loss on the training set.
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Ravindranath, A. Reisinger, K. Riahi, M. Rusticucci, R. Scholes, K. Seyboth,

Y. Sokona, R. Stavins, T. F. Stocker, P. Tschakert, D. van Vuuren, and J.-P.

van Ypserle, Climate Change 2014: Synthesis Report. Contribution of Working

Groups I, II and III to the Fifth Assessment Report of the Intergovernmental

Panel on Climate Change. Geneva, Switzerland: IPCC, 2014.

[17] G. Santos, “Road transport and CO 2 emissions: What are the challenges?,”

Transport Policy, vol. 59, pp. 71–74, 2017.

134



Bibliography

[18] European Parliament, “Regulation (EC) No 715/2007 of the European Parlia-

ment and of the Council of 20 June 2007 on type approval of motor vehicles

with respect to emissions from light passenger and commercial vehicles (Euro 5

and Euro 6) and on access to vehicle repair and maintenance information (Text

with EEA relevance),” 2007.

[19] D. W. Stanton, “Systematic development of highly efficient and clean engines to

meet future commercial vehicle greenhouse gas regulations,” SAE International

Journal of Engines, vol. 6, no. 3, pp. 1395–1480, 2013.

[20] A. A. Boretti, “Energy recovery in passenger cars,” Journal of Energy Resources

Technology, vol. 134, no. 2, 2012.

[21] V. Zare, “A comparative exergoeconomic analysis of different ORC configura-

tions for binary geothermal power plants,” Energy Conversion and Management,

vol. 105, pp. 127–138, 2015.

[22] F. Campana, M. Bianchi, L. Branchini, A. D. Pascale, A. Peretto, M. Baresi,

A. Fermi, N. Rossetti, and R. Vescovo, “ORC waste heat recovery in european

energy intensive industries: Energy and GHG savings,” Energy Conversion and

Management, vol. 76, pp. 244–252, 2013.

[23] L. T. Biegler, Nonlinear programming: Concepts, algorithms, and applications

to chemical processes. Philadelphia: Society for Industrial and Applied Mathe-

matics and Mathematical Programming Society, 2010.

[24] M. Ellis, H. Durand, and P. D. Christofides, “A tutorial review of economic

model predictive control methods,” Journal of Process Control, vol. 24, no. 8,

pp. 1156–1178, 2014.

[25] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit linear

quadratic regulator for constrained systems,” Automatica, vol. 38, no. 1, pp. 3–

20, 2002.

[26] I. J. Wolf and W. Marquardt, “Fast NMPC schemes for regulatory and economic

NMPC – a review,” Journal of Process Control, vol. 44, pp. 162–183, 2016.

[27] S. Lucia and B. Karg, “A deep learning-based approach to robust nonlinear

model predictive control,” IFAC-PapersOnLine, vol. 51, no. 20, pp. 511–516,

2018.

135



Bibliography

[28] J. M. Jensen, Dynamic modeling of thermo-fluid systems: With focus on evap-

orators for refrigeration, vol. 2003-01 of MEK-ET-PHD. Lyngby: Department

of Mechanical Engineering, Technical University of Denmark, 2003.

[29] A. C. Askin, G. E. Barter, T. H. West, and D. K. Manley, “The heavy-duty

vehicle future in the united states: A parametric analysis of technology and

policy tradeoffs,” Energy Policy, vol. 81, pp. 1–13, jun 2015.

[30] C. Sprouse, III and C. Depcik, “Review of organic Rankine cycles for internal

combustion engine exhaust waste heat recovery,” Applied Thermal Engineering,

vol. 51, no. 1–2, pp. 711–722, 2013.

[31] A. T. Hoang, “Waste heat recovery from diesel engines based on organic rankine

cycle,” Applied Energy, vol. 231, pp. 138–166, 2018.

[32] A. Cozzolini, M. C. Besch, D. Littera, H. Kappanna, P. Bonsack, M. Gautam,

S. Cordiner, and V. Mulone, “Waste heat recovery in heavy-duty diesel engines:

A thermodynamic analysis of waste heat availability for implementation of en-

ergy recovery systems based upon the organic rankine cycle,” in ASME 2012

Internal Combustion Engine Division Spring Technical Conference, American

Society of Mechanical Engineers, 2012.

[33] J. Fu, J. Liu, R. Feng, Y. Yang, L. Wang, and Y. Wang, “Energy and exergy

analysis on gasoline engine based on mapping characteristics experiment,” Ap-

plied Energy, vol. 102, pp. 622–630, 2013.

[34] N. Espinosa, M. Lazard, L. Aixala, and H. Scherrer, “Modeling a thermoelectric

generator applied to diesel automotive heat recovery,” Journal of Electronic

Materials, vol. 39, no. 9, pp. 1446–1455, 2010.

[35] D. Hountalas, C. Katsanos, and V. Lamaris, “Recovering energy from the diesel

engine exhaust using mechanical and electrical turbocompounding,” in SAE

Technical Paper Series, SAE International, 2007.

[36] L. E. Bell, “Cooling, heating, generating power, and recovering waste heat with

thermoelectric systems,” Science, vol. 321, no. 5895, pp. 1457–1461, 2008.

[37] B. Orr, A. Akbarzadeh, M. Mochizuki, and R. Singh,“A review of car waste heat

recovery systems utilising thermoelectric generators and heat pipes,” Applied

Thermal Engineering, vol. 101, pp. 490–495, 2016.

136



Bibliography

[38] H. Goldsmid, “Bismuth telluride and its alloys as materials for thermoelectric

generation,” Materials, vol. 7, no. 4, pp. 2577–2592, 2014.

[39] R. Stobart and D. Milner, “The potential for thermo-electric regeneration of

energy in vehicles,” in SAE Technical Paper Series, SAE International, 2009.

[40] J. LaGrandeur, D. Crane, S. Hung, B. Mazar, and A. Eder, “Automotive waste

heat conversion to electric power using skutterudite, TAGS, PbTe and BiTe,” in

2006 25th International Conference on Thermoelectrics, IEEE, 2006.

[41] Q. E. Hussain, D. R. Brigham, and C. W. Maranville, “Thermoelectric exhaust

heat recovery for hybrid vehicles,” SAE International Journal of Engines, vol. 2,

no. 1, pp. 1132–1142, 2009.

[42] M. Mori, T. Yamagami, M. Sorazawa, T. Miyabe, S. Takahashi, and

T. Haraguchi, “Simulation of fuel economy effectiveness of exhaust heat recov-

ery system using thermoelectric generator in a series hybrid,” SAE International

Journal of Materials and Manufacturing, vol. 4, no. 1, pp. 1268–1276, 2011.

[43] H. Ghasemi, M. Paci, A. Tizzanini, and A. Mitsos, “Modeling and optimization

of a binary geothermal power plant,” Energy, vol. 50, pp. 412–428, 2013.

[44] S. Quoilin, M. Orosz, H. Hemond, and V. Lemort, “Performance and design opti-

mization of a low-cost solar organic Rankine cycle for remote power generation,”

Solar Energy, vol. 85, no. 5, pp. 955–966, 2011.

[45] R. Pili, A. Romagnoli, K. Kamossa, A. Schuster, H. Spliethoff, and C. Wieland,

“Organic rankine cycles (ORC) for mobile applications – economic feasibility in

different transportation sectors,” Applied Energy, vol. 204, pp. 1188–1197, 2017.

[46] D. V. Singh and E. Pedersen, “A review of waste heat recovery technologies for

maritime applications,” Energy Conversion and Management, vol. 111, pp. 315–

328, 2016.

[47] J. Peralez, P. Tona, M. Nadri, P. Dufour, and A. Sciarretta, “Optimal control for

an organic rankine cycle on board a diesel-electric railcar,” Journal of Process

Control, vol. 33, pp. 1–13, 2015.

[48] E. Macchi and M. Astolfi, Organic rankine cycle (ORC) power systems: tech-

nologies and applications. Woodhead Publishing, 2016.

137



Bibliography

[49] J. Bao and L. Zhao, “A review of working fluid and expander selections for

organic Rankine cycle,” Renewable and Sustainable Energy Reviews, vol. 24,

pp. 325–342, 2013.

[50] B. Xu, D. Rathod, A. Yebi, Z. Filipi, S. Onori, and M. Hoffman, “A comprehen-

sive review of organic rankine cycle waste heat recovery systems in heavy-duty

diesel engine applications,” Renewable and Sustainable Energy Reviews, vol. 107,

pp. 145–170, 2019.

[51] S. Lion, C. N. Michos, I. Vlaskos, C. Rouaud, and R. Taccani, “A review of waste

heat recovery and organic rankine cycles (ORC) in on-off highway vehicle heavy

duty diesel engine applications,” Renewable and Sustainable Energy Reviews,

vol. 79, pp. 691–708, 2017.

[52] K. Eichler, Development of a Holistic Simulation Methodology for an Organic

Rankine Cycle Using the Example of a Commercial Vehicle Application. PhD

thesis, RWTH Aachen University, 2020.

[53] T. Endo, S. Kawajiri, Y. Kojima, K. Takahashi, T. Baba, S. Ibaraki, T. Taka-

hashi, and M. Shinohara, “Study on maximizing exergy in automotive engines,”

in SAE Technical Paper Series, SAE International, 2007.

[54] J. Ringler, M. Seifert, V. Guyotot, and W. Hübner, “Rankine cycle for waste
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[85] A. Wächter and L. T. Biegler, “On the implementation of an interior-point

filter line-search algorithm for large-scale nonlinear programming,”Mathematical

Programming, vol. 106, no. 1, pp. 25–57, 2005.

[86] T. Binder, L. Blank, H. G. Bock, R. Bulirsch, W. Dahmen, M. Diehl, T. Kro-
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pari, and P. Schäfer, “Challenges in process optimization for new feedstocks and

energy sources,” Computers & Chemical Engineering, vol. 113, pp. 209–221,

2018.

[94] J. B. Rawlings and C. T. Maravelias, “Bringing new technologies and approaches

to the operation and control of chemical process systems,” AIChE Journal,

vol. 65, no. 6, p. e16615, 2019.

[95] D. Q. Mayne, “Model predictive control: Recent developments and future

promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.

[96] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Constrained

model predictive control: Stability and optimality,” Automatica, vol. 36, no. 6,

pp. 789–814, 2000.
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[234] A. Caspari, L. Lüken, P. Schäfer, Y. Vaupel, A. Mhamdi, L. T. Biegler, and

A. Mitsos, “Dynamic optimization with complementarity constraints: Smooth-

ing for direct shooting,”Computers & Chemical Engineering, vol. 139, p. 106891,

2020.

[235] P. Stechlinski, M. Patrascu, and P. I. Barton, “Nonsmooth differential-

algebraic equations in chemical engineering,” Computers & Chemical Engineer-

ing, vol. 114, pp. 52–68, 2018.

155



Bibliography

[236] L. P. Russo and B. W. Bequette, “Operability of chemical reactors: multiplicity

behavior of a jacketed styrene polymerization reactor,” Chemical Engineering

Science, vol. 53, no. 1, pp. 27–45, 1998.

[237] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,

D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke,

Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale machine learning,”

in 12th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 16), (Savannah, GA), pp. 265–283, USENIX Association, 2016.

[238] F. Chollet et al., “Keras.” https://keras.io, 2015.

[239] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv:1412.6980v9, 2014.

156

https://keras.io

	Vorwort
	Contents
	Kurzfassung
	Summary
	Publications and Copyrights
	1 Introduction
	2 Literature review
	2.1 Automotive waste heat recovery
	2.1.1 Turbocompounding
	2.1.2 Thermoelectric generators
	2.1.3 Organic Rankine cycles

	2.2 Dynamic optimization
	2.2.1 Problem formulation
	2.2.2 Solution approaches

	2.3 Model predictive control
	2.3.1 Linear model predictive control
	2.3.2 Nonlinear model predictive control and economic nonlinear model predictive control
	2.3.3 Fast-update methods

	2.4 Machine learning
	2.4.1 Artificial neural networks


	3 Development and validation of an ORC model
	3.1 Introduction
	3.2 System topology
	3.3 Dynamic ORC model
	3.3.1 Heat exchanger model using the moving boundary approach
	3.3.2 De Laval's nozzle
	3.3.3 Models for pump, turbine, piping and fluid tank

	3.4 Parameter estimation
	3.5 Parameter estimation results and model validation
	3.5.1 Parameter estimation results of the ORC model
	3.5.2 Validation of the model

	3.6 Conclusion

	4 Comparison and improvement of heat exchanger models with phase changes
	4.1 Introduction
	4.2 Model description
	4.2.1 Switching moving boundary model
	4.2.2 Finite volume model

	4.3 Model analysis for start-up operation
	4.3.1 Problem identification
	4.3.2 Problem analysis

	4.4 Proposed solution approaches for start-up operation
	4.5 Evaluation of solution approaches for the start-up simulation of a condenser
	4.6 Conclusion

	5 Optimal operating policies for the ORC system
	5.1 Introduction
	5.2 Process model
	5.3 Optimization problem
	5.4 Optimal operation considering only safety constraints
	5.5 Optimal operation including limitations on turbine power
	5.5.1 Active power constraint
	5.5.2 Power limitation with high exhaust gas mass flow

	5.6 Implications on control strategy
	5.7 Conclusion

	6 Control system design for the ORC system
	6.1 Introduction
	6.2 Investigated system
	6.3 Examined control strategies
	6.3.1 Considered control structures, objectives and degrees of freedom
	6.3.2 Nonlinear model predictive control (NMPC)
	6.3.3 PI with feedforward term (PI-ff)

	6.4 Case study
	6.4.1 Exhaust gas data
	6.4.2 Tuning of the controllers
	6.4.3 Simulation results

	6.5 Conclusion

	7 Approximate NMPC for the ORC system using machine learning
	7.1 Introduction
	7.2 Model description
	7.3 Method: Data acquisition and training
	7.4 Case study
	7.5 Conclusion

	8 Accelerating NMPC through machine learning
	8.1 Introduction
	8.2 Styrene polymerization process description and control task
	8.3 NMPC approaches
	8.3.1 NMPC with shift initialization (sNMPC)
	8.3.2 Direct application of ANN signals learned from NMPC (dANN)
	8.3.3 ANN initialization (iANN)
	8.3.4 ANN update (uANN)

	8.4 Data generation
	8.5 Results
	8.5.1 Control performance
	8.5.2 Solution times

	8.6 Conclusion

	9 Conclusions & outlook
	A Pipe model parameter estimation and parameters for HX models
	B Finite volume heat exchanger model equations
	C Polystyrene CSTR model description
	D uANN pseudo code implementation
	E Training results for bold0mu mumu ffreferenceffffdANN and bold0mu mumu ffreferenceffffiANN
	Bibliography

