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Zusammenfassung

In dieser Arbeit werden reagierende turbulente Strömungen mit der Dissipa-
tions Element (DE) Analyse untersucht. Dies ist eine Gradiententrajektorien
basierte Methode zur Unterteilung turbulenter Felder in raumfüllende Unterre-
gionen, in denen sich Skalare monoton verhalten. Im Kontext der Verbrennung
ist diese Eigenschaft wichtig, da DEs somit lokal und eindeutig das maximale
Ausmaß aufzeigen, welches eine von di�usivem Transport dominierte Struktur,
wie z.B. eine Flamme, in einer turbulenten Strömung potentiell einnehmen
kann.

Zuerst wird die DE-Analyse auf das Mischungsbruchfeld Z aus direkten
numerischen Simulationen (DNS) von nicht vorgemischten Freistrahlflammen
angewandt. Es wird gezeigt, dass sich die normierte DE-Parameterstatistik
sowie die charakteristischen Skalierungen der jeweiligen Mittelwertgrößen nicht
von innerten turbulenten Strömungen unterscheiden. Zusätzlich wird gezeigt,
dass die skalare Dissipationsrate ‰ mit dem Gradienten der größeren lokalen
Strömungstopologie, dem DE-Gradienten g, in Beziehung gesetzt werden
kann. Ein DE-Parameter basiertes Regimediagramm für nicht vorgemischte
Verbrennung wird eingeführt und verifiziert.

Des weiteren werden nicht-lokale E�ekte in DNS von vorgemischten Freis-
trahlflammen untersucht. Die DE Analyse wird auf die Temperaturfelder T

angewendet, welche jedoch im Gegensatz zu Z einen chemischen Quellterm
besitzen. Die Selbstähnlichkeit der normierten DE-Längenverteilung bleibt
bestehen, jedoch zeigt die Statistik der skalaren Di�erenz ∆T einen deutlichen
Einfluss der Flammenstruktur. In der Flammenstrukturanalyse wird gezeigt,
dass die Einführung von Extrempunkten nahe der Flammenfront zu einer sig-
nifikanten Verdickung der Vorwärm- und Reaktionszone führt. Dieser E�ekt
wird quantifiziert und mit der Brenngeschwindigkeit in Beziehung gesetzt.

Abschließend werden die gewonnenen Erkenntnisse bei der Modellierung
der Verbrennung genutzt. Die Skalierung und Selbstähnlichkeit der DE-
Parameterstatistik werden in einer Methodik für die Vorhersage von Ver-
brennungsregimen bei nicht vorgemischter Verbrennung verwendet. Diese
Methodik wird in Reynolds-gemittelten Navier-Stokes-Simulationen eines
PKW-Dieselmotors angewendet. Weiterhin wird ein Modell für die Wahrschein-
lichkeitsdichtefunktion von Z eingeführt, welches E�ekte von laminaren Berei-
chen und externer Intermittenz berücksichtigt.
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Abstract

In this thesis, reacting turbulent flows are analyzed from a structural point
of view using Dissipation Element (DE) analysis, which is a gradient trajec-
tory (GT) based method for compartmentalizing turbulent fields into space
filling sub-regions in which scalars behave monotonically. In the context of
combustion, this property is important, as DEs locally and unambiguously
indicate the maximum extent a di�usive transport dominated structure, such
as a flame, can potentially occupy in a turbulent flow.

First, DE analysis is applied to the mixture fraction field Z of a series of
direct numerical simulations (DNS) of non-premixed jet flames. In a statistical
investigation, it is shown that the normalized DE parameter statistics as well
as the characteristic scalings of the respective mean quantities do not di�er
from non-reacting turbulent flows and are therefore una�ected by the heat
release. Additionally, it is demonstrated that the scalar dissipation rate ‰ can
be related to the gradient of the larger local flow topology as represented by
the DE gradient g. The DE parameters are then used in the construction of
a regime diagram for non-premixed combustion which is verified by the DNS
results.

Secondly, non-local e�ects in DNS of premixed combustion are investigated
in a series of spatially evolving jet flames. DE analysis is applied to the
temperature fields T which, contrary to Z, possess a chemical source term.
The self-similarity of the normalized DE length distribution is retained, but
the statistics of the scalar di�erence ∆T show a clear influence of the flame
structure. In the consecutive GT based flame structure analysis, it is shown
that the introduction of extremal points close to the flame front leads to a
significant thickening of both the preheating and inner reaction zone. This
e�ect is quantified and related to the turbulent burning velocity.

Finally, the insights gained are used in combustion modelling. The scaling
and self-similarity of the DE parameter statistics are used in a framework
for the prediction of combustion regimes in non-premixed combustion. This
framework is applied in the Reynolds averaged Navier-Stokes simulation of a
passenger car diesel engine. Further, a novel model for the probability density
function of Z is presented, which considers e�ects of laminar regions and
external intermittency.
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1 Introduction and Motivation

With a growing world population and projected strong economic growth in
currently underdeveloped countries, world wide energy consumption is esti-
mated to increase by 1.4% each year for the next three decades according to
the World Energy Outlook [129]. Regardless of the substantial national and
international e�orts to reform the energy sector, this exponentially growing
demand for energy will be largely met with fossil fuels. The U.S. Energy
Information Administration predicts that in the year 2050, more than 70% of
the primary energy consumption will still stem from fossil fuel sources [67].
Combustion as the presently predominant mode of the energy conversion of
fossil fuels will remain an omnipresent key technology due to its cost e�ec-
tiveness and flexibility. Further, the emergence of liquid fuels processed from
biomass or e-fuels as an indirect result of the increasing usage of intermit-
tent renewable energy sources will propagate the importance of combustion
technology.

It is therefore of paramount importance to further develop energy systems
based on combustion technology to increase the e�ciency in order to lower
greenhouse gas emissions as well as to preserve the finite fossil fuel resources.
Additionally, the environmental aspect of harmful pollutants such as NOx,
soot and unburned hydrocarbons associated with the operation of current
combustion devices requires urgent attention.

Due to ever increasing computing resources, computational fluid dynamics
(CFD) tools have become indispensable in the engineering process of com-
bustion systems. Among the benefits of utilizing CFD are the significant
reduction of the designing and development process cost as well as signifi-
cant performance gains of the combustion applications enabled by the more
comprehensive and complementary insights gained with this approach.

In the engineering or industrial context, combustion takes place in turbulent
flow fields to greatly increase the output and e�ciency. Simulating the result-
ing highly non-linear, multi-physics and multi-scale problem is a considerable
challenge. Traditionally, this is achieved by using the Reynolds averaged
Navier-Stokes (RANS) approach, or more recently, large eddy simulations
(LES). In addition to the original closure problem faced in any turbulent
flow and the consequent need to use turbulence models, both RANS and
LES require combustion models. Therefore, the quality and the predictive
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nature of CFD results is inseparably linked to the reliability of the utilized
combustion model. Good simulation results have been achieved for a large
variety of devices including internal combustion engines, aircraft engines, and
stationary gas turbines.

State-of-the-art combustion models exploit the assumption that the chemical
processes are significantly faster than the turbulent mixing processes. This
assumption is well justified for a large variety of combustion devices and
operation points, as evident from the widespread use and success of CFD.
However, to achieve the goal of simultaneously lowering emissions while
increasing the e�ciency, novel avenues for combustion processes must be
explored. A promising and much pursued approach is low temperature
combustion (LTC). A variety of di�erent technologies fall under this category,
such as partially premixed charge compression ignition (PCCI), homogeneous
charge compression ignition (HCCI) in internal combustion engines, moderate
or intense low oxygen dilution (MILD) in power generation and lean direct
injection in aircraft engines. These technologies all have in common that
oxidizer or fuel stream are diluted to various degrees. The resulting decrease
in temperature causes the chemical processes to slow down. Therefore, the
assumed separation of the combustion and turbulent scales loses its validity
and the resulting complex combustion phenomena must be considered in
combustion models for truly predictive CFD results.

In the present thesis, these combustion conditions are investigated numeri-
cally for non-premixed and premixed combustion. To eliminate uncertainties
introduced by model assumptions, these investigations are carried out using
direct numerical simulations (DNS). Due to the immense computational cost
of DNS, these simulations can only be carried out for highly idealized con-
figurations on a non-dimensional basis. The sheer volume of data obtained
and the high level of complexity of turbulent flows then poses significant chal-
lenges for the subsequent investigation. To overcome this challenge, a gradient
trajectory based method called Dissipation Element (DE) analysis is used to
compartmentalize the entire reacting turbulent flow field into small, physically
meaningful sub-units. These individual sub-units are then susceptible to a
more intuitive consideration. Following this approach, combustion model
assumptions are tested systematically and compared to the flame structure
within DEs. The observed deviations are related to DE parameters which
describe the local topology of the scalar field. By combining the insight
gained from the gradient trajectory based analysis of the combustion and
the statistics of DE parameters, a novel methodology for combustion regime
classification and combustion modelling is introduced.
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2 Introduction to Reacting Turbulent Flows

The presented thesis investigates the interaction between two very complex,
yet vastly di�erent physical phenomena: turbulence and combustion chemistry.
In the following chapter, a very brief introduction to both will be given to
emphasize and illustrate the challenge of investigating their highly non-trivial
interaction in reacting turbulent flows.

2.1 Theoretical Concepts of Turbulence

Most flows both in engineering applications and nature are turbulent. Exam-
ples range from the mixing of milk and co�ee, to atmospheric flow fields all
the way to the turbulent movement of young star clusters [49]. A multitude of
technical processes which are taken for granted would be practically impossible
without the specific characteristics of turbulence. Neither e�cient internal
combustion engines nor power plants would be feasible. Even though the
governing equations have been known for more than a hundred years and
despite the dedicated work of generations of researchers, turbulence is far
from understood and a surprisingly low number of exact results exist.

In this section, the governing equations are presented followed by a brief
discussion of the general properties of turbulence and traditional methods of
investigating turbulent flows.

2.1.1 Governing Equations of Fluid Motion

In the continuum limit, the limit in which the mean free path of the molecules
of the investigated fluid is significantly smaller than the smallest scales in
the velocity field, the momentum equations governing the evolution of the
velocity field ui at all points in time and space can be written in di�erential
form1 as

ˆflui

ˆt
+ ˆfluiuj

ˆxj

= ˆ·ij

ˆxi

+ flfi , (2.1)

1In eq. (2.1) and throughout the remainder of this thesis, Einstein’s summation convention
is used. This signifies that any index appearing twice in a given equation implies a
summation over said index.
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2 Introduction to Reacting Turbulent Flows

with fl being the flow density, ·ij denoting the stress tensor which accounts
for all forces acting in the surfaces of an infinitesimal fluid volume, and fi

being the volume forces. fi will be neglected in the following introduction
and investigation due to its subordinate influence on the subject matter.
The momentum equations are complemented with the equation for mass
conservation

ˆfl

ˆt
+ ˆfluj

ˆxj

= 0 . (2.2)

The stress tensor ·ij in eq. (2.1) can be subdivided into an isotropic and an
anisotropic contribution

·ij = ≠p”ij + ·ij,a , (2.3)

where p denotes the pressure and ”ij represents the Kronecker delta. For
Newtonian fluids, the anisotropic part of the stress tensor ·ij,a is assumed
to be proportional to the viscosity of the fluid and the local gradients of the
velocity fields and modeled as

·ij,a = fl‹

3
ˆuj

ˆxi

+ ˆuj

ˆxj

≠ 2
3”ij

ˆuk

ˆxk

4
, (2.4)

with ‹ denoting the kinematic viscosity. This approximation is valid if
the time scale on which fluid molecules react to changes of the velocity
gradients is far smaller than the time scales on which the velocity gradients
themselves are changed. This is given for the flow configurations investigated
in this thesis. Substituting the modeled Ansatz eq. (2.4) for the anisotropic
contribution of the stress tensor in eq. (2.1), one arrives at the Navier-Stokes
equations. In a traditional introduction to the topic of turbulence, further
simplifications would be performed assuming constant material properties
of the investigated fluid. In the case of a homogenous distribution of the
density fl = const, both the mass conservation equation and the Navier-Stokes
equations are simplified further. However, the reacting flows investigated
in this thesis are characterized by both large spatial density and viscosity
gradients. Consequently, the governing equations are more cumbersome.

It can be shown that the Navier-Stokes equations obey several transforma-
tional invariances such as the invariance regarding rotations and reflections of
the coordinate systems. Further, the Navier-Stokes equations are Galilean
invariant which signifies that the equations remain unchanged when written
in a coordinate system which is moving with a fixed velocity.

A quantity of interest directly derived from the Navier-Stokes equations
which will be utilized in the investigation in this thesis is the vorticity Êi.
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The vorticity describes the local spinning motion of the flow field which is
inseparably linked to the presence of turbulence. Taking the curl of the Navier-
Stokes equations yields the equation for the vorticity Êi = ‘ijkˆuk/ˆxk, where
‘ijk indicates the Levi-Civita symbol,

ˆÊi

ˆt
+ ui

ˆÊj

ˆxi

=

‘ijk

ˆ

ˆxi

3
1
fl

ˆ·km,a
ˆxm

4
+ Êi

ˆuj

ˆxi

≠ Êj

ˆuj

ˆxj

+ ‘ijk

1
fl2

ˆfl

ˆxi

ˆp

ˆxk

. (2.5)

The vortex stretching term Êi

ˆuj

ˆxi
constitutes a source term which is only

present in three-dimensional flows. Consequently, two-dimensional and three-
dimensional turbulent flows are fundamentally di�erent. An additional source
term for the vorticity, only present in non-constant density flows, is the
baroclinic term ‘ijk

1
fl2

ˆfl

ˆxi

ˆp

ˆxk
which stems from the misalignment of the

density and pressure gradients.

2.1.2 Characteristics of Turbulent Flows
The Navier-Stokes equations can be normalized using a suitable reference
length L and reference velocity U . The only non-dimensional number that
emerges is the Reynolds number

Re = UL

‹
. (2.6)

The Reynolds number represents one of the most important non-dimensional
numbers in fluid mechanics and can be interpreted as the ratio of inertial
forces to viscous forces. It is named after Osborne Reynolds who pioneered
the investigation of the transition between laminar and turbulent flows in
the late nineteenth century. For low values of the Reynolds number, viscous
e�ects dominate which results in smooth and sheetlike laminar flows which
are deterministic in nature. Consequently, laminar flows can be treated
easily using analytical approaches. With increasing values of the Reynolds
number, small perturbations in the flow field are no longer immediately
damped by viscous e�ects and the flow becomes gradually more unstable
until a fully turbulent transition is achieved. In fully turbulent flows, the
small perturbations yield large fluctuations in the velocity field, and the flow
completely loses its deterministic nature.

While it is di�cult to give an exact definition of turbulence, there are di�er-
ent properties and characteristics which can be attributed to turbulence [120]:
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• Turbulence is inherently chaotic. Stemming from the strong non-linearity
of the convective term of the Navier-Stokes equations, the solutions are
very sensitive to disturbances in the initial or boundary conditions, even
though the Navier-Stokes equations themselves are deterministic. As a
consequence, turbulence can only be treated with statistical methods.

• Turbulence is a multi-scale and non-local phenomenon. The pressure
term in the Navier-Stokes equations couples distant points with each
other (in incompressible flows, every material point is dependent on all
other points in the flow field). The multi-scale nature of turbulence
manifests itself in the coexistence of turbulent structures of various
shapes, sizes and time scales. This results in a large number of degrees
of freedom which increases significantly with increasing values of the
Reynolds number. Consequently, the numerical treatment of the Navier-
Stokes equations in the form of direct numerical simulations (DNS) is
only feasible for limited values of the Reynolds number.

• Turbulent flows are highly dissipative. Without a continuous supply of
energy, either in the form of external forcing or the presence of mean
shear, turbulence decays rapidly.

• Turbulence is three-dimensional. As already pointed out in eq. (2.5),
the presence of turbulence is directly linked to three-dimensionality due
to the vanishing vortex stretching term in two-dimensional space.

• Mixing in turbulent flows is greatly enhanced. This not only applies to
momentum but also to passive and reactive scalars, e.g. the temperature,
oxidizer and fuel. This very property is what makes turbulence so
essential in a wide range of engineering applications.

2.1.3 Scales in Turbulent Flows

As mentioned above, turbulence is a multi-scale phenomenon. The general
understanding is that kinetic energy is injected into the flow dependent large
scales. From these large or integral scales, the energy is then converted in
an energy cascade to consecutively smaller and smaller scales. Finally, the
energy is dissipated by the viscosity at the smallest scales. The idea of this
cascade of turbulent energy was introduced by Richardson [106]. During the
transport of the energy to the smaller scales, the information about the large
scales is progressively lost. Therefore, the smallest scales are expected to be
independent of the flow type or geometry and are consequently isotropic and
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2.1 Theoretical Concepts of Turbulence

homogeneous. The idea of statistical isotropy was first introduced by Taylor
[116]. The assumption of statistical homogeneity and isotropy significantly
reduces the complexity of the equations and the analysis. The first promising
attempt at quantifying the multi-scale nature of turbulence and assessing the
non-locality was introduced by von Kármán and Howarth [121]. To assess the
structure of turbulence, two-point correlations of the velocity field obtained
at the positions xj and x

Õ
j

with the separation vector rj = xj ≠ x
Õ
j

and the
magnitude r = |rj | were considered. For isotropic flows, this resulted in the
derivation of the equations for the longitudinal and transversal correlation
functions f = Èu1u

Õ
1Í/Èu2

1Í and g = Èu2u
Õ
2Í/Èu2

2Í, the so-called Kármán-Howard
equation. Here and hereafter, È. . . Í indicates averages. However, similar to
the Reynolds averaged Navier-Stokes equations, the equations are unclosed
due to a triple correlation ÈuiujukÍ in the non-linear convective transport
term [107]. Consequently, the Kármán-Howard equation constitutes only the
first equation in an infinite series of consecutively higher moment equations,
which in their entirety contain all statistical information [85].

Although there is a multitude of di�erent length scales and definitions
thereof, the following are used most frequently in experimental and numerical
investigations of turbulent flows and are used throughout this thesis:

• The integral length scale ¸t: the integral length scale is a large scale which
is characterised by the flow geometry and the boundary conditions. For
example, the characteristic geometrical length scale can be proportional
to the pipe diameter in a pipe flow, nozzle diameter in a jet flow or the
cylinder bore in an internal combustion engine. Indicating the extent of
uniformly moving fluid volumes, it is defined as

¸t =
Œ⁄

0

f(r)dr . (2.7)

The corresponding Reynolds number can be formulated as

ReL = u
Õ
¸t

‹
, (2.8)

where u
Õ is the root mean square of the velocity fluctuations indicating

the characteristic velocity of integral scale eddies.

• Taylor scale ⁄: The Taylor scale is situated between the large and the
smallest scales. Originally introduced by Taylor [116], it is related to
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2 Introduction to Reacting Turbulent Flows

the curvature of the velocity two-point correlations f and g in the limit
of r æ 0. The Taylor microscale is defined by

⁄ =
3

≠1
2

ˆ
2
f(r)

ˆr2

----
r=0

4≠1/2

. (2.9)

Using the Taylor scale as the characteristic length scale, the correspond-
ing Reynolds number is

Re⁄ = u
Õ
⁄

‹
. (2.10)

The Taylor scale based Reynolds number is often used in flow configura-
tions where the integral scale is less meaningful or significantly changing,
as in isotropic turbulence, decaying turbulence or mixing layers. The
Taylor scale based Reynolds number allows for more comparability
between flows of di�erent configurations than the integral Reynolds
number.

• Instead of assessing the multi scale nature of turbulence by the correla-
tion functions f and g, Kolmogorov [72] used structure functions in the
formulations of his famous similarity hypotheses. Structure functions
are the statistical moments of the velocity di�erence ∆ui = ui ≠u

Õ
i

at the
positions separated by the previously introduced spatial separation rj .
Similar to the two-point correlations, under the assumption of isotropy,
structure functions can be expressed in the form of only two velocity
components without the loss of generality. The arbitrary-order structure
functions are then defined as

Dm,n = È(∆u1)m(∆u2)nÍ . (2.11)

From the equation of second-order structure function D2,0 directly fol-
lowed the first similarity hypothesis which states that for asymptotically
large Reynolds numbers and in the viscous range (r æ 0), the structure
functions are only dependent viscosity ‹ and dissipation rate Á = 2‹Ès2

ij
Í,

where sij is the fluctuating strain rate tensor 1/2(ˆu
Õ
i
/ˆxj + ˆu

Õ
j
/ˆxi).

Therefore, from dimensional consideration followed the Kolmogorov
micro scale ÷, which is proportional to the smallest length scales in
turbulent flows at which the turbulent kinetic energy is dissipated by
viscosity:

÷ =
3

‹
3

Á

41/4

. (2.12)
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2.1 Theoretical Concepts of Turbulence

Of course, the substantial insight gained through structure functions is
not limited to the first similarity hypothesis, but extends among many
other contributions to the second similarity hypothesis and the famous
4/5-law.

The ratios of the di�erent length scales can be expressed by the Reynolds
numbers

¸t
÷

≥ Re3/4
L

, (2.13)

and
¸t
⁄

≥ Re1/2
L

. (2.14)

With an increasing value of the Reynolds number, the ratios of the scales
increase as well. Consequently, the Reynolds number indicates the scale
separation or in other words, the degrees of freedom of the flow.

2.1.4 Geometries in Turbulent Flows
The inherent di�culties in understanding turbulence are linked in great
part to the previously mentioned multi-scale and non-local characteristics.
Today, even in the simplest and most thoroughly investigated case of isotropic
decaying turbulence, no closed theory exists [75]. However, regardless of their
non-deterministic, random nature and complexity, turbulent fields possess
a structure. Consequently, attempts at recreating passive scalar mixing by
using random Gaussian fields as a surrogate for the fluctuating velocity did
not yield the desired results [74]. Di�erent to Gaussian fields, distinct spatial
structures are an important characteristic of turbulent fields. These spatial
organizations in turbulent flows were first referred to as ’coherent structures’
by Brown and Roshko [26] and linked to vortical motions.

Early and highly insightful statistical methods to evaluate non-local charac-
teristics are the already introduced two-point correlations [116] and structure
functions [73, 72]. However, both of these approaches face significant chal-
lenges in flows which are characterized by high levels of anisotropy. This is
especially true for typical turbulent combustion configurations, where the
anisotropy caused by external intermittency is additionally exacerbated by
high spatial gradients of the material properties of the fluid. As a consequence,
the analysis based on two-point correlations and structure functions su�ers
from the following challenges:

• Once isotropy no longer applies, using only two velocity components in
the formulation of both structure functions and correlation functions
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2 Introduction to Reacting Turbulent Flows

reduces the generality of the methods. Therefore, a second transversal
velocity has to be taken into consideration with implications to the
derivation and interpretation of the equations.

• Due to the assumption of isotropy, statistics are independent of the
direction rj and consequently only a function of the magnitude r. In
the context of reacting flows, it can be easily imagined that statistics
obtained with rj pointing in the normal direction to a flame front will
di�er significantly from statistics obtained tangential to it. Similarly,
the absolute position xj , which is of no consequence in an isotropic flow,
may significantly a�ect the results obtained with the two statistical
methods.

• Lastly, independent of isotropy, applying the averaging procedure È. . . Í
may lead to a loss of important local flow dynamics present in the
instantaneous fields.

Consequently, it is questionable whether the Cartesian frame in which the
traditional theories are developed might be counterproductive and if instead a
flow intrinsic frame of reference might be advantageous. Corrsin [35] therefore
asked the question “What types of geometry are naturally identifiable in
turbulent flows?” Following this paradigm, di�erent approaches to identifying
natural geometries, usually linked to vortex structures, were pursued [110].
However, vortex tubes and sheets have the severe flaw of not allowing for a
space filling and unique decomposition of the flow field. This challenge was
overcome by Wang and Peters [127] with the concept of dissipation elements.
This method and the turbulent structures identified in this fashion pose an
integral part of this thesis. Dissipation element analysis is explained in detail
in Chapter. 3.1 where its added benefits in the investigation of reacting flows
are further highlighted.

2.2 Introduction to Turbulent Combustion

Complementary to the fluid motion described by the Navier-Stokes equations,
the thermo-chemical state of the flow can be described by the transport
equations of the species mass fractions Y–, with the index – indicating the
species and a form equation of the energy E. These equations and the
numerical methods used in solving them are discussed in detail in Section 4.2.

The fundamental di�erence between the equations for the species mass
fraction and the temperature and the Navier-Stokes equations is the absence
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of the non-linear transport term present in the momentum transport eq. (2.1).
Therefore, if the flow field is laminar (or the Péclet number Pe = UL/D– is
low due to a large di�usion coe�cient D– of the reactive scalar), both species
mass fractions and temperature are deterministic. The deterministic nature of
the thermo-chemical field is underlined by the results of the first mathematical
description of premixed combustion, the thermal flame theory by Zeldovich
and Frank-Kamenetski [131], which yielded that the laminar burning velocity
sL is largely independent of the flow field and is mostly determined by the
material properties of the fuel and oxidizer.

However, once the flow field is turbulent, this no longer applies. In turbulent
flow fields, the range of di�erent size eddies, described in Section 2.1.3, induces
strain and shear which greatly enhance the mixing. The sharp interfaces
between these turbulent structures result in locally significantly steeper gra-
dients of the reactants’ concentrations, the heat release greatly increases in
turn. The molecular mixing of fuel and oxidizer poses a requirement in the
first place for any combustion process.

2.2.1 Non-dimensional Numbers in Turbulent Combustion

However, compared to the turbulent mixing of a passive scalar, a couple of
di�erences apply. Foremost, the heat release from the combustion chemistry
increases the temperature. Due to the exponential influence of the temperature
on the reactivity, in turn greatly increases the heat release. In the combustion
of hydrocarbons, the high value of the heat release causes this self-amplification
to result in relatively thin layers in which intense chemical activity takes place.
Besides the enhanced mixing aspect, this poses the question to which extent
the combustion chemistry and turbulent scales interact.

Traditionally, to help gauge the scale interaction, non-dimensional numbers
are used. The most widely used non-dimensional numbers which will be
utilized throughout this thesis will be discussed in the following section.

• The Damköhler numbers Da are used to relate the time scales to the
characteristic time scales of the transport mechanisms to the chemical
time scale. In the turbulent context, the turbulent Damköhler number
is defined as

Da· = ·

tF
. (2.15)

Therefore, Da· can be interpreted as the ratio of the integral turbulence
time scale to the characteristic flame time scale tF. There are multiple
definitions of the characteristic flame time scale depending on the context.
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For example, in premixed combustion, the characteristic flame time
scale may be defined as tF = ¸F/sL with the flame thickness ¸F. In
non-premixed combustion, a common definition is tF = ‰

≠1
q Z

2
st(1≠Zst)2

with Zst denoting the stoichiometric mixture fraction and ‰q denoting
the quenching scalar dissipation rate at stoichiometric conditions in a
laminar counterflow configuration.

• To compare the other end of the turbulent spectrum to the flame scales,
the Karlovitz number Ka is utilized

Ka = tF
t÷

. (2.16)

It constitutes the ratio of the characteristic flame time scale to the
smallest turbulent time scale. For premixed combustion, the Karlovitz
number can also be defined in terms of length scales

Ka = ¸
2
F

÷2 . (2.17)

Consequently, di�erent characteristic length scales of the flame can be
used to define the Karlovitz number.

As these two non-dimensional numbers represent a comparison of the flame
scales with both ends of the turbulence spectrum, they can be related to the
integral Reynolds number in unity Schmidt number flows [91]

ReL = Da2
·
Ka2 . (2.18)

This relation neatly demonstrates the increased complexity of adding combus-
tion to turbulent flows. For typical combustion conditions and the correspond-
ing values for the Damköhler number and the Karlovitz number encountered
in engineering applications, the resulting Reynolds number is likewise very
high. The already large number of degrees of freedom stemming from the
flow field is then greatly expanded by the number of reacting scalars needed
in the description of the thermo-chemical state.

For premixed combustion, the degrees of interaction between turbulence and
combustion can be organized in the form of a regime diagram, the so-called
“Borghi-Peters-diagram” [19, 95]. Here, regimes of premixed combustion are de-
fined by both length scale and velocity ratios. Utilizing the relation eq. (2.18),
the combustion regime boundaries are expressed with the non-dimensional
numbers Re and Ka. Self-evidently, the former is used to distinguish between
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2.2 Introduction to Turbulent Combustion

laminar and turbulent combustion. The Karlovitz number is defined twofold;
once as shown in eq. (2.17) relating the flame thickness Kolmogorov micro
scale and using a much smaller characteristic flame scale, relating ÷ to the
thickness of the inner reaction zone ¸”

Ka” = ÷
2

¸
2
”

. (2.19)

For Ka < 1, the laminar flame structure is expected to be unperturbed, as it
is exceed in size by even the smallest turbulent structures. These combustion
conditions are additionally classified by u

Õ
< sL into the “wrinkled flamelets"

regime, in which the influence of turbulence is further diminished as even the
integral sizes eddies are outpaced by the laminar flame speed and by u

Õ
> sL

into the “corrugated flamelet" regime.
The combustion conditions with Ka > 1 and Ka” < 1 are classified as

the “thin reaction zones" regime. Here, turbulent eddies can penetrate the
di�usive-reactive flame structure. As a consequence, a thickening of the
preheat zone is expected as turbulence transports the temperature ahead
of the propagating flame front. However, due to scale separation, the inner
reaction zone remains una�ected. Lastly, for Ka” > 1 in the “broken reaction
zones" regime, turbulent mixing a�ects the highly reactive species in the inner
reaction zone.

These considerations are among many other aspects immensely helpful in
gaining an intuitive access to the complicated subject of turbulent combustion.
However, the presented regime diagram is in essence limited to two charac-
teristic flame scales, ¸F and ¸”. Yet, each of the vast number of elementary
reactions present in the combustion of hydrocarbons possess an individual
characteristic time scale. Therefore, once the unity Karlovitz number is
departed, the interaction between turbulence and combustion chemistry will
be governed by an increasing overlap and the consequent interplay of two
spectra of turbulence scales and flame scales.

2.2.2 Models for Turbulent Combustion
As previously established, the large number of degrees of freedom and lack of
analytical solutions make a direct numerical approach for solving the extensive
system of equations comprised of the conservation of mass, momentum, species
and energy equations unfeasible in real world conditions. Further exposition
and a more detailed estimate of calculation costs will be discussed in Chapter 4.
Therefore, to resolve the crucial task of solving engineering problems involving
turbulent combustion, models for turbulent combustion are indispensable.
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Thereby, the development of turbulent combustion models draws from the
insights and success of turbulence models employed in non-reacting flows. In
these largely statistical moment based approaches, the important yet unclosed
turbulent mixing (or sub-filter transport in large eddy simulations) is solved by
closure hypotheses which rely on dimensional arguments and require empirical
input. In addition to the unclosed transport, the source terms in the species
and energy equations present an additional closure problem faced in reacting
flows. Due to the exponential dependency of the reaction rate coe�cient on
the temperature, even small turbulent fluctuations of the temperature field
can lead to a significant increase or decrease of the reactivity. Due to this
highly non-linear behavior, the traditional moment method closures adopted
from non-reacting turbulence models are less suitable.

To overcome this challenge, the previously introduced non-dimensional
numbers are used to describe the interaction between turbulence and the
combustion chemistry and classify the combustion into regimes. Model
assumptions are then applied based on these regimes.

• In the limit of Da· æ Œ or Ka π 1, the turbulent scales greatly
exceed the combustion scales to the point where the scale separation
causes the source terms to be completely una�ected. From the ‘per-
spective’ of the turbulence, the chemistry is infinitely fast and modeled
accordingly. Characteristic examples for these models are the Burke-
Schumann model [28] for non-premixed combustion or the Bray-Moss-
Libby model [23] for premixed combustion.

• In the completely opposite limit, Da· æ 0, the turbulent mixing is
infinitely fast compared to the chemical time scales. Consequently, the
reacting fluid is perfectly homogenized by turbulent mixing (ˆ/ˆxi = 0)
and the vanishing transport terms in the governing equations lead to a
system of ordinary di�erential equations; the homogeneous reactor.

• Finally, for 1 π Da· π Œ or Ka < 1, the limit of fast but not infinitely
fast chemistry, the combustion chemistry is a�ected by the turbulent flow
field. However, due to the still very thin nature of the reaction layers, the
coupling between the turbulent velocity field and the chemistry can be
fully described with adequate turbulent one-point quantities. Therefore,
only very limited, non-local information is required, which is usually
supplied in the form of meaningful gradient based quantities such as
the scalar dissipation rate ‰ or the strain rate a. These conditions are
commonly referred to as the “Flamelet Regime” in which the combustion
resembles an ensemble of thin stretched laminar flames attached to a
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turbulently wrinkled flame front. The Flamelet Model for non-premixed
combustion [93] and for premixed combustion [24] or the G-equations for
the thin reaction zones regime [95] are a few examples for combustion
models in these conditions.

2.3 Outline of the Thesis

The previous short introduction to turbulent combustion and the combustion
regimes left two elementary questions unanswered. Foremost, what are the
combustion conditions as the regime of high scale interaction Da· ¥ 1 is
approached? The expected interplay between fine scale turbulent mixing
and the short lived radical species usually only found in the inner reaction
zone implies that the traditional view of the flame as a di�usively dominated
structure is dissolved. The inherent di�culty in both analyzing and modeling
these conditions lies in the problem that two structures of finite sizes are
interacting and thus have to be compared. To reiterate, the advantage in
viewing either turbulence or the combustion chemistry as thin/fast compared
to the other allows for the justified assumption of treating the coupling
between the velocity field and the reacting scalars with one-point statistics.
Consequently, the need for a definition of a turbulent structure is avoided. As
briefly discussed in Section 2.1.4, defining coherent structures in the chaotic
turbulent fields is a substantial challenge. This challenge is further complicated
by the additional requirement that the definition of the turbulent structures
must be meaningful in the given context of turbulent combustion.

The second elementary question follows implicitly from the usage of com-
bustion models. The quality of the modeling results is directly linked to
the correct assumptions regarding the combustion regime. This traditionally
requires a certain experience and a limited preexisting knowledge of the system
to be simulated. In a substantial number of operation points or in the very
limits of infinitely fast or slow chemistry, this seems trivial. However, at
which point does the assumption of fast chemistry quantitatively cease its
validity? In a large variety of combustion systems, like internal combustion
engines, the boundary conditions of the combustion process change rapidly
and drastically in time. Similarly, the combustion regimes are expected to
change. Other e�ects which cause uncertainties with regards to this choice
might be linked to the high anisotropy observed in these flows which results
in locally lower or higher values for the Damköhler number. Lastly, given the
multi-scale nature of turbulence, the coexistence of combustion regimes in a
turbulent flow seems very plausible. This poses the question if, instead of
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relying on fixed regime assumptions, a systematic identification and prediction
and consequent modeling of combustion conditions is feasible. To not average
out flow dynamics or locally existing regimes, the investigation of this question
is again directly linked to a robust definition of turbulent structures to achieve
a local flame analysis instead of a purely statistical approach.

The method of choice of identifying coherent structures in this thesis is
the Dissipation Element (DE) analysis. In Chapter 3, an introduction to the
DE analysis is given. DEs provide a procedure for compartmentalizing scalar
fields into physically meaningful sub-units which provide a direct measure
for turbulent scales. Furthermore, DEs enable a variety of additional ways of
investigating non-local e�ects in reacting and non-reacting turbulent flows.
After the underlying physical ideas of dissipation elements are explained and a
parameterization of DEs is defined, the method of detecting DEs with gradient
trajectories is explained and physical and numerical prerequisites to the
analyzed flows are presented. Common characteristics of DEs are interpreted
and self-similar properties of DE parameter statistics are highlighted which
make an approach using DEs especially desirable for potential combustion
models.

In Chapter 4, a short introduction to direct numerical simulations (DNS)
of reacting turbulent flows on theoretical and methodological grounds is given.
The configurations of the DNS conducted for this thesis are explained and
the specific combustion conditions, which focus on the departure from the
flamelet regime, are justified. The chapter is concluded with a short flame
analysis of the conducted DNS.

Chapter 5 is dedicated to the investigation of turbulent non-premixed
combustion. To investigate non-premixed combustion, DE analysis is applied
to the mixture fraction fields of a series of datasets from DNS of non-premixed
temporally evolving jet flames with jet Reynolds numbers ranging from 4,500
to 10,000 and varying stoichiometric mixture fractions. Statistics of the DE
parameters of non-premixed flames are compared to those obtained from
non-reacting jets. It is found that the universality of the normalized length
distribution of the DEs observed in non-reacting cases also holds true for
the reacting flows. The characteristic scaling with the Kolmogorov scale ÷ is
obtained as well. The e�ects of combustion on the scalar di�erence in the DEs
are shown and are found to diminish as the Reynolds number and the fuel
dilution are increased. The DEs provide the means for a local comparison of the
turbulent and characteristic flame scales. A regime diagram for non-premixed
combustion is introduced using the DE parameters for a local classification
of the turbulent flame surface into flamelet-like zones and fine-scale mixing
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zones in addition to the burning and non-burning zones. The soundness of the
regime diagram and the potential consequences for combustion modeling in
the individual regimes is demonstrated by the investigation of the correlation
between the chemical field and the DE parameters in the individual regimes.

Premixed combustion is analyzed in Chapter 6. DE analysis is applied
to the temperature fields of a set of DNS of spatially evolving premixed jet
flames at di�erent values for the Reynolds number and approximately constant
Karlovitz numbers. The variation of the jet Reynolds number, ranging from
5,600 to 22,400 is achieved by increasing the width of the jet and keeping
the bulk velocity constant, which also implies an approximately constant
value of the turbulence intensity across the flames. The flames considered are
nominally situated in the thin-reaction zones regime.

Again, the invariance of the normalized length distribution of the DEs
toward changes in the Reynolds number observed in non-reacting flows holds
true for the reacting cases and the characteristic scaling with Kolmogorov
micro-scale is reproduced. However, the joint DE statistics reflect the influence
of the chemical source term present in the temperature field and the resulting
imprint of the premixed flame structure on the turbulent scalar fields.

Further, an analysis of the combustion process along gradient trajectories
is presented. The thickening of the inner reaction layer and its enhancement
with increasing values for the Reynolds number is linked here to the presence
of extremal points in the temperature field in the vicinity or inside the inner
reaction layer, and therefore to the interruption of the flamelet structure
by turbulence and not by the thickening of the entire flamelet itself. In
addition to the expected strong thickening of the formaldehyde layer, the
layers of species which are not usually present in the preheat zone, show a
significant thickening and these species are observed several flame thicknesses
ahead of the turbulent flame surface. Finally, it is shown that in the regions
where the inner reactive layer is thickened, the local fuel consumption rate is
reduced in comparison to a laminar planar flame. However, the total burning
rate integrated over the entire flame structure across the flame surface is
larger due to the increased volume of the reactive layer. These observations
highlight the importance of assessing the balance between two competing
phenomena related to high Karlovitz numbers, the e�ect of turbulence strain
and stirring on the chemistry, which usually decreases the local burning rate,
and the e�ect on the species fields. These species fields then might experience
modifications in their topology, such as the introduction of local extremal
points and significant thickening of the volumes between their iso-surfaces.

This thesis concludes in Chapter 7 with the application of the insights
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gained from the investigation presented in the previous chapters to combus-
tion modeling. The DE parameter based regime diagram for non-premixed
combustion is used in conjunction with the characteristic scaling of the DE
parameters and the self-similarity of the DE parameter statistics in a mod-
elling framework for the prediction of combustion regimes in computational
fluid dynamics simulations (CFD) of engineering applications. The prediction
modeling framework is applied to simulations of a passenger car direct injec-
tion diesel engine in multiple operation points. The results of the modeling
procedure are presented and critical operation parameters are discussed.

Finally, a novel modeling approach for the probability density function
(PDF) of the mixture fraction is proposed which uses DE paramter based
statistics. The PDF of the mixture fraction is of integral importance to
a large number of combustion models. Here, while being restricted to the
commonly used mean and variance of the mixture fraction, this model approach
individually considers contributions of the laminar regions as well as the
turbulent core and the turbulent/non-turbulent interface region. The latter
region represents a highly intermittent part of the flow which is of high
relevance to the non-premixed combustion of pure hydrocarbon fuels. The
new DE based model is validated against the DNS datasets and a comparison
with the predominantly used —-PDF is presented.
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3 Introduction to Dissipation Element

Analysis

3.1 Introduction to Dissipation Elements

The sheer volume of data obtained from direct numerical simulations (DNS)
poses a challenge in itself for any analysis of turbulence and turbulent com-
bustion. If the non-deterministic behavior of turbulence is added on top,
the complexity is increased to a point where novel methods of analysis are
inevitably required to gain deeper insight into this physical phenomenon
that defies complete comprehension regardless of the best e�orts of many
generations of researchers. A desirable quality of a method for the analysis
of turbulent flows is the ability to break down the complexity of the entire
turbulent domain into smaller structures which are ideally simple enough for
an intuitive consideration. At the same time, this method of analysis needs to
be robust and e�cient enough to cope with the vast amount of data generated
by modern large scale DNS. A potential method for the analysis for turbulent
flows that fulfills these requirements is the dissipation element (DE) analysis.

3.1.1 Definition of Dissipation Elements
The inherent challenge of analyzing turbulent flows stems from the complexity
introduced by the chaotic and multi-scale nature of turbulence. A way to
overcome this challenge and gain a deeper insight is to compartmentalize the
entire turbulent field and its scales into simpler sub-units. If the criteria for
compartmentailization are chosen sensibly, the analysis of these sub-units
is far less complex and the comprehension of more detailed structures and
correlations is possible.

Other scale-decomposing methods exist including the Fourier transform, the
wavelet transform and proper orthogonal decomposition, and these methods
have their individual advantages for linear problems. However these methods
are less valuable for the understanding of the nonlinear interactions in turbu-
lence or have limited applicability in flow configurations which display high
levels of anisotropy.

Another desirable characteristic of a compartmentalization method for
turbulent flows is the space-filling and non-overlaping nature of the sub-units.
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∆„i

x

„

¸i

Figure 3.1: Schematic representation of a DE and its parameters in one-dimensional
space. ¸i indicates the linear distance and ∆„i the scalar di�erence of the ith DE
in the scalar profile.

To ensure that all physical e�ects in the turbulent domain are considered, all
material points must be uniquely assigned to a sub-unit. While systematic
approaches for the space-filling decomposition exist, such as the velocity
gradient tensor Q and pressure p based approach [130], these methods su�er
from the arbitrariness introduced from the setting of threshold levels. Finally,
the method to decompose turbulent domains should ideally yield results that
are easy to interpret in a physical way, as well as the potential for a model
developement.

A physically motivated method for such a compartmentalization of scalar
fields in turbulent flows that meets all mentioned requirements is the dissi-
pation element (DE) analysis [98]. DEs are ensembles of material points in
which the underlying scalar behaves monotonically, i.e., the space in between
the turbulence-introduced extremal points. To illustrate the identification of
DEs in a one-dimensional setting, a schematic profile of a scalar „ in physical
space is shown in Fig. 3.1. An intuitive way for a quick estimation of scales in
turbulent profiles or signals is to observe the local extremal points and judge
the spacing between the minima and the maxima. In 1D, DE analysis does
the exact same procedure: first, all extremal points in the scalar field are
identified. Second, the segments of space linking individual pairs of minima
and maxima are then classified as DEs. The DE identified in this way can
then be parametrized by its pair of extremal points. The DE length of the
ith DE is defined as the separation distance of the minima and maxima in
physical space ¸i = |xmax,i ≠ xmin,i| and the DE scalar di�erence is defined
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Figure 3.2: Schematic representation of gradient trajectories connecting the same
extremal points in three dimensional space. The grids represent di�erent iso-surfaces
of the scalar „. The black dots indicate material points where gradient trajectories
are started in the DE detection process.

as the di�erence of the scalar in these extremal points ∆„i = „max,i ≠ „min,i.
These two parameters are henceforth called DE parameters. Additionally, the
mean DE scalar gradient is calculated as gi = ∆„i

¸i
, which takes the steepness

of the entire sub-unit into consideration.
The numerical procedure of DE analysis is trivial for a 1D case, but serves

to illustrate the underlying intuitive idea of obtaining scales in this fashion.
In higher dimensional spaces, the number of DEs linked to each extremal
point is not limited to two. Additionally, the treatment of critical points in
the scalar fields gets more complicated as the dimensionality is increased.
To link the extremal points in scalar fields in 2D and 3D space, gradient
trajectories of „ are employed. Starting from any material point, the direction
of the scalar gradient n̨„ = Ò„

|Ò„| is calculated. The gradient trajectory can
be determined by tracing along descending ≠n̨„ and ascending directions
n̨„. This can be interpreted as moving in the normal direction from each
iso-surface of „ to the next. The gradient trajectories are traced until they
terminate at a maximum in the ascending direction and at a minimum in the

21



3 Introduction to Dissipation Element Analysis

Figure 3.3: A DE in the mixture fraction field Z in a DNS of non-premixed
temporally evolving jet flame. The DE is represented by the gradient trajectories
used in the detection process. The gradient trajectories are colored by the local value
of the passive scalar. The grey iso-surface indicates the position of the stoichiometric
mixture fraction.

descending direction, whereby the definition of extremal points the gradient
of „ is zero. This procedure in 3D space is illustrated for three exemplary
material points and their gradient trajectories in Fig. 3.2. The ensemble of
material points linked to the same pair of extremal points in a scalar field is
then classified as a DE. It is easy to see that each material point is uniquely
assigned to a single DE and since all material points can be assigned, the
method provides a space-filling compartmentalization. Therefore, the scalar
field itself provides the geometry of the sub-units and the obtained scales are
an intrinsic result of the flow.

While the definition of the DE scalar di�erence ∆„ remains the same in
higher dimensional fields, the DE length is defined as the Euclidian distance
between the minimum and the maximum ¸ = |x̨max ≠ x̨min|. The arc-length
s of the gradient trajectories between the extremal points might be a more
obvious choice to characterize the length of the DE, but s di�ers slightly based
on the location of the di�erent material points in one DE and is therefore not
unambiguous.

A DE obtained from a scalar field from a 3D DNS of a planar temporally
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3.1 Introduction to Dissipation Elements

Figure 3.4: Schematic representation of the potential methods of obtaining spatial
statistics in the DE decomposed space. Left: obtaining statistics along the gradient
trajectories of the individual DE. Middle: obtaining statistics on an iso-surface
(such as mixture fraction or temperature) intersecting the DE. Right: using the DE
volume as a frame of reference for statistics.

evolving non-premixed jet flame is shown in Fig. 3.3. Additionally, a section
of an iso-surface of the scalar is shown to further illustrate the tracing of
gradient trajectories in the normal direction from iso-surface to iso-surface.
In the three-dimensional space, DEs display various shapes and sizes. The
overall orientation of each DE, as well as the trajectories used in its detection,
proceed approximately in the direction of the straight line connecting the
two extremal points. A common characteristic shared by most DEs is the
converging of all gradient trajectories as the extremal points are approached.
As a multitude of DEs are connected to a single extremal point, these elements
form interwoven and entangled structures in 3D space.

While the space-filling parametrization of the turbulent scalar fields by
means of the DE already yields a plethora of applications in the analysis of
turbulent flows, a lot of physical insight can be gained by using individual
DEs as a non-abitrary and meaningful frame of reference for obtaining spatial
statistics. As mentioned above, DEs are regions of monotonic scalar between
extremal points. The di�usive flux of „ is defined as J = ≠D„Ò„, where D„

is the di�usion coe�cient of the scalar. Therefore, it is easy to see that the
di�usive flux is interrupted in the extremal points of the scalar field as J = 0,
since by definition in these points Ò„ = 0.

Selected methods of using DEs for obtaining spatial statistics are shown
in Fig. 3.4. In the cartoon of a DE on the left side, the gradient trajectories
are used for obtaining statistics in the normal direction. This provides the
ability to obtain structure-function-like statistics along physically meaningful
directions and overcome the inherent di�culties in anisotropic flows. A second
method is to obtain statistics in the tangential direction on the intersection
area of an iso-surface and a DE. This is shown for the cartoon of a DE in
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the middle of Fig. 3.4. Material points on the vertices of the iso-surface of „

are chosen as the starting points of the gradient trajectories, uniquely linking
sections of the iso-surface to DEs. This is especially useful for scalars which
possess physically meaningful absolute values. An example of this was already
shown in Fig. 3.3, where the indicated iso-surface is the stoichiometric mixture
fraction Zst which indicates the position of the reaction zone in non-premixed
flames. Finally, as shown by the DE cartoon on the right side of Fig. 3.4, the
entire DE volume can be used to obtain statistics like variances, minimum or
maximum values and other quantities of interest in each DE.

DE analysis lends itself for tracking the temporal evolution of features
in time-varying data. Especially when temporal events involving the DEs,
like splitting, merging or annihilation, can be meaningful interpreted in the
context of the analyzed scalar and physics, this becomes a very powerful tool.
Recently, a robust algorithm was developed which determines the assignment
of DEs between two successive time-steps by solving two graph optimization
problems [109]. It first resolves one-to-one assignments of DEs by computing
a maximum-weight, maximum-cardinality matching on a weighted bi-partite
graph. Second, the algorithm detects temporal events by creating a graph of
potentially conflicting event explanations and finding a weighted, independent
set in it.

3.1.2 Physical and Numerical Considerations
The applicability of the DE analysis to a given scalar field depends on several
prerequisites, which are of the physical nature of the scalar field and numerical
properties of the simulation which provided the scalar field.

Whether a scalar field can be sensibly decomposed into DEs depends on
the following characteristics of the scalar [123]:

1. Gradient trajectories must end at definite points without spiralling
infinitely.

2. Trajectories and DEs should not be trivial, but display natural and
intrinsic characteristcs of turbulent fields. For instance, trajectories
should neither pass through the entire flow field to be infinitely long,
nor be infinitesimally small.

3. The tracing process of trajectories should be relatively stable both ana-
lytically and numerically, to resist the perturbation from the inaccuracy
of flow fields, or else a unique decomposition of the entire flow field into
DEs will not be possible.
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Most scalar fields obtained from DNS of turbulent flows satisfy these three
conditions if certain numerical prerequisites in the DNS are met. Regarding
the first characteristic, it was shown that in a su�ciently smooth scalar field
the length of a gradient trajectory will be finite [37]. This implies that since
the length of the gradient trajectory is bounded, an infinite spiralling loop
should not be possible if the numerical schemes and resolution in the DNS
are adequate to provide a su�ciently smooth scalar field.

Satisfying the second condition is linked to a significantly high enough
Reynolds number of the flow. If the gradient trajectories can extend over the
entire integral scale of the flow, characteristics of the turbulent scales will
not be reflected by the DEs due to the lack of scale separation. Transport
of most scalars in turbulent flows is governed by the balance of advective
and di�usive terms. The former introducing extremal points and the latter
removing them. A scalar field dominated by di�usive transport makes a poor
choice for DE analysis. Therefore, additional attention should be paid to the
Schmidt number of the scalar Sc„ = ‹/D„, where ‹ is the kinematic viscosity.
Scalars with very low values of Sc„ may not be suitable to estimate turbulent
scales accurately even if the the Reynolds number is su�cient to result in a
well developed turbulent flow field.

The third requirement of the robustness of the traced trajectories against
small perturbations is ensured by the previously mentioned di�usion processes
in turbulent flows. In the inertial range of turbulence, where viscous e�ects can
be neglected, the random motions of eddies will cause the iso-surfaces of scalars
to be highly corrugated. Recalling the analogy between the gradient trajectory
tracing and the movement in normal direction from iso-surface to iso-surface,
small perturbations caused by inaccuracies will quickly lead to faulty pathing
of the gradient trajectories. However, in the viscous range, di�usion smooths
the corrugation of the iso-surfaces caused by the turbulent eddies. It follows
that the tracing of the gradient trajectories must be performed well below the
inertial scale [123]. The consequence for the DNS is the requirement of well
resolved viscous scales. This observation implies that DE analysis for scalars
obtained from large eddy simulations or experiments that do not resolve the
viscous turbulent scales might be problematic.

Treatment of Critical Points

In a scalar field, all material points can be classified as critical points and
noncritical points. If Ò„ = 0 is zero at a certain point, this point will be critical.
The tracing of the gradient trajectories relies on a well defined direction n̨„.
Due to the previously mentioned physical characteristics of typical scalars
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in turbulent flows, this is ensured in noncritcal points. Therefore, critical
points need to be treated di�erently. In 3D space, based on the eigenvalues
of the Jacobian J̨„ = ÒÒ„, four types of critical points can be classified for
viscous scalar fields: sources, sinks, repelling node saddles and attracting node
saddles [50]. As trajectories converge or diverge in straight lines in all of these
critical points, analysis and treatment is fairly simple. Regardless, di�erences
between the extremal points and saddle points need to be taken into account.

Saddle points are mathematically not stable and the trajectories in the
vicinity of these points can be diverted by a small perturbation, while extremal
points are stable and their position can be identified in a robust manner even
if small perturbations are present. Due to the fact that the scalar fields used
to trace trajectories are di�usion controlled at small scales, the scalar gradient
vectors around extremal points will point away from a minimum and in a
straight line towards a maximum without rotation.

As soon as the scalar gradient decreases below a certain value compared
to the mean gradient in the proximity, an extremal point is expected in the
immediate vicinity. Therefore, Wang [123] defines the detection threshold ‘ as
the ratio of the local scalar gradient to the mean gradient in the surrounding
grid points. The extremal point will be encapsulated by a spherical iso-surface
of a scalar value close to the one in the extremal point. The radius of this
sphere r depends on the threshold ‘. For an exemplary threshold of ‘ = 2·10≠5

(which was used in all of the DE analyses shown in the following sections)
the radius of the containing sphere will be r = 0.02∆, with ∆ being the
grid spacing between surrounding points. Under the assumption of su�cient
numerical resolution and the assumption that the expected critical point is
located exactly at the center of the sphere, the local curvature Ÿ = Ò · n̨ can
then be used to identify the type of critical point. For Ÿ = ≠6 a maximum is
detected, while for, Ÿ = 6 a minimum and ≠2 Æ Ÿ Æ 2 a saddle are identified.

In case of a detected extremal point, the gradient trajectory tracing can
be stopped for the material point. In case of the a saddle point, the gradient
trajectory needs to be artificially perturbed, i.e. numerically moved for a small
step size in a random direction. However, this procedure is only necessary
in the exceedingly rare event that a chosen material point is situated on a
saddle point.

From these considerations, it is easily seen that the requirements of the
resolution of the DNS exceed the commonly used minimum requirements of
∆/÷ Æ 2.1 [104]. Based on the numerical schemes employed in the DNS,
lacking numerical resolution leads to an introduction of false extremal points,
if spectral methods are used. Otherwise, extremal points are removed if
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the numerical di�usivity of the scheme is too high. Clearly, both e�ects
might change the results of the DE analysis. For DNS of isotropic turbulence
employing spectral methods, it was found that results of DE analysis do not
change for resolutions of ∆/÷ Æ 1 [123]. The same restrictions of ∆/÷ Æ 1
apply to central finite di�erence schemes and weighted ENO [68] schemes
used in the DNS in this work.

3.2 Statistics of Dissipation Element Parameters

Instead of indirectly obtaining turbulent scales by relating other statistical
turbulence quantities to each other, for example expressing the integral length
scale as lt ≥ k

3/2
/Á, with the turbulent kinetic energy k and the dissipation

rate Á, DE parameters provide scales which are obtained directly from the
turbulent flow. The statistics of these parameters allow for some fundamental
insight into the governing physical mechanisms and shall be discussed in this
section.

3.2.1 Marginal Statistics and Scaling of mean DE Parameters

The probability density function (PDF) of the DE length P (¸) displays inter-
esting characteristics as well as helps to understand the physical mechanisms
governing the DE formation and annihilation. DE analysis was first applied
to isotropic turbulence [127]. It was found that the PDF of the normalized
DE length ¸

ú = ¸/¸m, with the volume average mean DE length ¸m, shows
a remarkable invariance towards changes in the Reynolds number. This
invariance is independent of the scalar field the DE analysis is applied to
and carries over to non-isotropic configurations [53], reacting flows [41] and
was confirmed in experiments [52]. To demonstrate this, P (¸ú) is shown for
isotropic turbulence as well as other selected cases in Fig. 3.5. These DNS
include isotropic turbulence [20], a planar spatially evolving mixing layer [5], a
planar temporally evolving non-premixed jet flame [38] and a planar spatially
evolving premixed jet flame [41]. Even though the cases are vastly di�erent in
terms of the flow configuration and physical properties of the scalar, the PDFs
show almost perfect collapse. All PDFs display two distinct features. For
small ¸, a linear increase is observed in the linear/linear scaled plot in Fig.3.5
a). This linear increase corresponds to the di�usive drift of the extremal
points towards each other and the subsequent annihilation of DEs. The second
feature is the random cutting and reconnection of large DEs by turbulent
eddies. This manifests itself in the exponential decrease of the PDF for large
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Figure 3.5: PDF of the normalized DE length ¸/¸m in a): linear/linear scale and
b): linear/logarithmic scale obtained from DNS of various inert and reacting cases.
( ): passive scalar in isotropic turbulence, ( ): passive scalar in spatially evolving
mixing layer, ( ): mixture fraction in temporally evolving di�usion jet flame and
( ): temperature in spatially evolving premixed jet flame.

¸, which can be observed in the linear/logarithmic scale plot in Fig. 3.5 b).
The scaling of the mean DE length is demonstrated in Fig. 3.6, where

the ratio of the mean DE length and the Kolmogorov micro scale ¸m/÷

is shown for selected flow configurations and Reynolds numbers. A clear
Kolmogorov scaling can be observed for all cases. The absolute value of the
ratio depends slightly on the scalar field the DE analysis was applied to.
Therefore, normalizing ¸ with the ÷ instead of ¸m yields similar results with
regards to the collapse of the PDFs, which was observed in Fig. 3.5.

3.2.2 Joint Statistics

Adding the second DE parameter to the statistical analyses helps to gain
further insight. The joint probability density function (JPDF) of both DE
parameters P (¸, ∆„) is expected to su�ce for a complete statistical description
of a scalar field [127]. The JPDF of both normalized DE parameters is shown
for selected cases in Fig. 7.7. The DE scalar di�erence was normalized in the
same fashion as the DE length, ∆„

ú = ∆„/∆„m, with the volume averaged
scalar di�erence ∆„m. Analogous to the marginal PDF in Fig. 3.5, regions in
the JPDF can be attributed to di�erent physical mechanisms. These regions
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Figure 3.6: Ratio of the Kolmogorov micro scale ÷ to the mean DE length ¸m for
various inert and reacting cases. Diamonds: spatially evolving premixed jet flames,
triangles: temporally evolving di�usion jet flames and crosses: inert temporally
evolving jets. The dash dotted line indicates the average ratio obtained from
isotropic turbulence. The line is placed arbitrarily as no jet Reynolds number is
defined in homogeneous isotropic turbulence.

are marked in Fig. 7.7 a). The di�usive drift region is characterized by small
¸ and ∆„. The random splitting and reconnection region is indicated for
intermediate to large ¸ and ∆„. Additionally, the probability density of cli�
structures in the scalar fields, the common feature of turbulent scalars [65], can
be observed for small ¸ and large ∆„. While the scalar di�erence between the
extremal points in Figs. 7.7a)-c) is solely governed by di�usive and convective
transport, for the temperature field in Fig.7.7a) a source term is present
in the governing equations. While the normalized spatial distribution of
the extremal points remains the same, c.f. Fig. 3.5, the scalar di�erence is
significantly influenced by the source term. The presence of the strongly
coherent and robust flame front results in a high probability of cli� structures
in the JPDF. The motion of turbulent eddies will introduce extreme points in
the temperature field in the vicinity of the flame front, creating smaller scalar
di�erences. However, the inherent di�erence in the source terms in these
newly created points will counteract this. The di�erence between the fairly
universal JPDF of the passive scalar „ and the JPDF of a reactive scalar,
in this example the temperature T , can be used to gauge the level of scale
interaction between turbulence and the physical mechanism governing the
source term.
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Figure 3.7: JPDFS of the normalized DE length and DE scalar di�erence for
various fields in di�erent flow configurations. a): passive scalar in an inert temporally
evolving planar jet, b): passive scalar in an inert spatially evolving mixing layer,
c): mixture fraction in a planar temporally evolving non-premixed jet flame and d):
temperature in a planar spatially evolving premixed jet flame.
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Besides providing turbulent scales, the DEs provide a multitude of ways
to analyze turbulent flows or enhance existing methods of analysis. A few
examples, which are not limited to inert flows, shall be given in the following
section.

It is possible to relate DEs to a di�erent and commonly used method of
analysis. As remarked in Chapter 2, structure functions are a common tool
to study the multi-scale nature of turbulence to overcome the challenge of
non-locality in turbulent flows. Analogous to the structure functions of the
velocity field eq. (2.11), structure functions of the scalar field of order n are
defined as:

Sn(r̨) = È(„(x̨ + r̨) ≠ „(x̨))nÍ , (3.1)

with r̨ being the spatial separation between the two points and È. . . Í indicating
an appropriately defined statistical average. Besides the simple case of isotropic
turbulence, choosing a physically meaningful r̨ can prove to be challenging in
non-homogeneous or non-isotropic flows. A straightforward way of choosing
r̨ is employing the gradient trajectories of the DEs. The di�erence of the
quantity of interest can be conditioned on the arc length distance s of any point
on the gradient trajectory starting in a respective material point as shown
by [55]. Even more simplified, only the extremal point pairs of individual
DEs can be used to obtain structure functions based on DEs:

Sn ≥ È∆„
n|¸Í . (3.2)

The scalar di�erence to the nth power conditioned on the DE length È∆„
n|¸Í

represents a structure function where the distance r̨, in this case ¸, is not
arbitrarily chosen, but is determined by the two extremal points of each
dissipation element. The statistical average will be done for dissipation
elements with the same lengths, instead of using arbitrary points with same
separating distances.

The results for the normalized first order scalar structure function in
isotropic turbulence are shown in Fig. 3.8a). The theoretical scaling with
this exponent of 1/3 is recovered in this way of obtaining the structure
function [127]. In isotropic turbulence, other theoretical scalings of the
structure functions, such as the value of of the scaling exponent of 2/3 for the
structure function of the turbulent kinetic energy È(k(x̨+ r̨)≠k(x̨))Í ≥ È∆k|¸Í,
can be recovered as well [55]. However, in free shear flows, the presence of
mean shear has an influence on the scaling of the structure functions. This
can be investigated accurately with the DE conditioned structure functions
as well, as demonstrated for selected shear flow configurations in Fig. 3.8b).
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Figure 3.8: Mean DE scalar di�erence conditioned on the DE length for various
flow configurations. ( ): isotropic turbulence, ( ): planar temporally evolving
non-premixed jet flame, ( ): inert temporally evolving planar jet and ( ): inert
spatially evolving mixing layer. The dashed black lines indicate in a): the theoretic
scaling and in b): actual scaling observed in free shear flows.

Even though the cases are vastly di�erent, the conditional structure functions
display a seemingly universal scaling exponent of 1/2.

Obtaining structure functions in this way is, of course, not limited to the
first order, but for the sake of brevity, additional orders are not shown here.

3.2.3 DE analysis of Reacting Flows

There are many di�erent physical phenomena in turbulent flows which strongly
interact with a certain range of turbulent scales. As the DE analysis provides
turbulent scales, a local comparison with the characteristic scales of the
additional physical phenomenon is straightforward. The investigation of
scale interaction by means of DE analysis is illustrated here in the context of
turbulent combustion. This subject lends itself to a DE analysis because in the
asymptotic limits of no scale interaction or very limited interaction, turbulent
combustion is fairly well understood and can be modeled appropriately, while
the intense interaction of flame scales and turbulent scales is still the subject
of research.

For premixed combustion, the idea of varying levels of scale interaction leads
to the construction of the so-called “Borghi-Peters diagram” [95]. Turbulent
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scales, such as the Kolmogorov length ÷ are compared to di�erent scales of
the flame. Using the DE length ¸ obtained from the temperature field for
the local estimation of the turbulent length scales to be compared to the
flame thickness lF, consistent results with regards to the expected combustion
regimes were obtained [41].

However, for non-premixed flames this comparison is not as clear as the
flame scales strongly vary in space and depend on the local gradient of the
mixture fraction Z. The mixture fraction is the most meaningful scalar field in
the context of non-premixed flames [95] and is therefore the prime candidate
for the DE analysis.

A common configuration to investigate non-premixed laminar flames is
the counterflow configuration [101]. An exemplary mixture fraction profile
in a counterflow flame is shown in Fig. 3.9a). In the limit of fast, but not
infinitely fast chemistry, the so called “flamelet regime," a corresponding heat
release profile in mixture fraction space can be obtained from the steady-state
flamelet solution. This heat release profile is shown in Fig. 3.9b). The decisive
parameter linking the flow field and the chemical field in this regime is the
scalar dissipation rate at stoichiometric conditions

‰st = 2D (ÒZ)2
st . (3.3)

Conveniently, the DE gradient g = ∆Z/¸ can be used analogously to the
scalar dissipation rate. In the limit of small DEs, the following relation is
true:

lim
¸æ0

g = |ÒZ| . (3.4)

From this follows the proportionality of the scalar dissipation rate ‰ and the
DE gradient g,

‰ ≥ Dg
2 . (3.5)

The strong correlation between g and ‰ was first observed in isotropic turbu-
lence [127], but also in free shear flows [53] and in reacting flows [58].

Now let us assume that the mixture fraction field is a�ected by turbulence
of di�erent intensities leading to the introduction of extremal points in the
mixture fraction profile in Fig. 3.9a). Consequently, DEs will form around
the position of the stoichiometric mixture. Three exemplary conceivable DEs
are plotted in Fig. 3.9a); a long DE, an intermediate DE and a short DE.
Let all three DEs have the same mixture fraction gradient at stoichiometric
conditions of a laminar flamelet profile so that the scalar dissipation rate ‰st
is the same. The introduced extremal points signify a forced interruption of
the di�usive transport on which the flamelet structure relies. The points of
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Figure 3.9: a): ( ): Mixture fraction Z profile in physical space obtained from a
counterflow configuration, the black dashed lines indicate the position and the value
of the stoichiometric mixture fraction. ( ): schematic long DE, ( ): schematic
intermediate and ( ): schematic short DE. b): ( ): Corresponding stationary
flamelet solution of the normalized heat release Ê̇T in mixture fraction space. The
colored dashed lines indicate location of the extremal points in mixture fraction space
of the respective schematic DEs. c) and d): mean stoichiometric temperature ÈTstÍ
in a DNS of planar non-premixed jet flame conditioned on the stoichiometric scalar
dissipation rate ‰st (c): ∆Z Ø ∆Zr and d): ∆Z Æ ∆Zr ). The scalar di�erence ∆Z

is indicated by the color of the lines, ranging from blue (∆Z = 0.01) over yellow to
red (∆Z = 1). ( ): stationary flamelet solution in the counterflow configuration.
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interruption with regards to the heat release for three exemplary DEs are
marked in Fig. 3.9b). The long DE interrupts the profile in points of negligible
heat release and no e�ect on the flame structure is expected. However, it
is already questionable if the traditional flamelet structure will form for the
intermediate DE. In contrast, for the short DE, the formation of an intact
flamelet structure can be ruled out. It is straightforward to see that comparing
the DE scalar di�erence ∆Z to the range of Z values in the flamelet in which
significant values of the heat release are present is a convenient way to judge
wether a conventional flamelet structure is feasible. To this end, a reaction
zone thickness ”Zr in Z-space needs to be defined. Even though the reaction
zone thickness varies greatly depending on the fuel and oxidizer composition,
”Zr can to be easily approximated by fitting the heat release of the flamelet
solution for the given composition with a gaussian:

”Z
Õ
r = 2

A
≠2 ln (2)Ê̇max

ˆ
2
Ê̇T

ˆZ2

----
≠1

Z=ZÊ̇max

B0.5

, (3.6)

with the maximum heat release in the stationary flamelet solution Ê̇T,max for a
given ‰st and ZÊ̇max being the mixture fraction value for which the maximum
heat release is observed. In essence, ”Z

Õ
r provides a meaningful, non-abitrary

and easily obtainable flame scale for non-premixed combustion for di�erent
values of ‰st to be compared to the turbulent scale provided by ∆Z.

This concept is applied to a DNS of a temporally evolving planar non-
premixed jet flame. The temperature at stoichiometric conditions is condi-
tioned on the scalar dissipation rate as well as the DE scalar di�erence ∆Z.
This is shown in Fig. 3.9c) for large ∆Z. For DEs with ∆Z ¥ 1, the stationary
flamelet solution is obtained. As the DE scalar di�erence is reduced, the
temperature is lowered as well. The original flamelet profile is compressed
along the ‰st-axis, but the expected clear correlation with the temperature is
still observed. However, for small ∆Z < ”Zr, this correlation ceases as the
inner flame structure is interrupted by extremal points. This is shown in
Fig. 3.9d), where no discernible relation between ‰st and ÈTstÍ is observed.

This example shows how the DE scalar di�erence ∆Z can be used in the
context of non-premixed flames to judge the scale interaction between the
flame and turbulence. ∆Z symbolizes the maximum length in Z-space in
which a di�usive transport dominated structure, like a flamelet, can exist.
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4 Direct Numerical Simulations of Turbulent

Reacting Flows

In this chapter, a brief introduction and overview of direct numerical simula-
tions (DNS) is given, and the numerical methods employed in conducting the
DNS cases discussed in this thesis are summarized. Important quantities and
non-dimensional numbers which characterize the cases are showcased. The
chapter is concluded with a brief flame analysis of the performed cases.

4.1 Introduction to Direct Numerical Simulations

As outlined in Chapter 2, the characteristics of turbulence lead to a lack of
analytical solutions. Consequently, to validate theoretical predictions and
models, the ground truth or ’reality’ needs to be established. To acquire a reli-
able turbulent solution, there are two approaches. Traditionally, experiments
were used with the advantage that no model assumptions are needed (not
even the Navier-Stokes equations in which the viscous stress tensor constitutes
a modelled term.) Nonetheless, the crucial benefit lies in the high values of
the Reynolds number achievable in experiments. However, in addition to the
di�culty of controlling the boundary conditions and the substantial uncertain-
ties this causes in experiments, the signal to noise ratio in the recorded data
lessens the quality and requires post-processing algorithms. More importantly,
it is typically unfeasible to obtain three dimensional data fields of large fluid
volumes with the desired temporal and spatial resolution. Due to the one-point
or planar measurements possible with cameras and lasers, the recreation of
three-dimensional data fields relies on Taylors’ hypothesis. All these e�ects are
exacerbated in reacting flows where the high density gradients and radiation of
the reactants severely complicate the measurements or prevent the utilization
of certain experimental techniques completely. Furthermore, quantities of
paramount importance, such as most species mass fractions or the heat release,
cannot be obtained in a three-dimensional fashion in turbulent reacting flows
with state-of-the-art experimental methods.

These drawbacks do not apply to DNS where the full Navier-Stokes equa-
tions are solved numerically for all turbulent scales for a given problem. To
accomplish this, the computational domain, on the one hand, needs to span
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several integral scales ¸t to capture important large scale flow characteristics.
On the other hand, the grid has to be fine enough to resolve the viscous
subrange adequately. For simple, first order statistics and likewise simple
quantities, Pope [104] estimates a maximum grid spacing ∆ of

∆ Æ 2.1÷ . (4.1)

However, Boschung et al. [22] showed that the cut-o� length scales in the
viscous range are both dependent on the Reynolds number and the order of
the statistics to be investigated. Depending on the configuration and the goal
of investigation, the required grid resolution needs to be significantly finer
than the originally proposed ratio.

The first numerical study of turbulence using DNS was performed by Orszag
and Patterson [87]. These were DNS of forced isotropic turbulence in a periodic
box employing pseudo-spectral methods. Unlike the DNS performed for this
thesis, which utilize finite di�erence schemes, the Navier-Stokes equations
were solved in wave number space using highly accurate spectral methods.

Due to breakthroughs and significant advances in computer engineering
science, computational power has increased exponentially since this early
groundwork of DNS. However, the most serious shortcoming of DNS re-
mains the tremendous calculation costs associated with them. Even with the
aide of state-of-the-art supercomputers and massively parallelized codes, the
achievable Reynolds number is still very limited.

Accounting for the larger computational grids as a result of the increasing
scales separation and the smaller time step sizes to satisfy the Courant-
Friedrichs-Lewy condition, Pope [104] estimated the computational costs C

required for a statistical convergence of a turbulent flow as

C ≥ Re6
⁄

. (4.2)

The predicted steep rise in computational costs with increasing Re⁄ signifes
the inherent di�culties of increasing the Reynolds number in DNS. Further,
the most numerically ’cost e�ective’ configuration of forced isotropic turbu-
lence does not lend itself to the study of a variety of important phenomena
interacting with the combustion chemistry encountered in reacting turbulent
flows. Such phenomena include the shear generated turbulence and the inher-
ent anisotropy associated with it, the presence of the turbulent/non-turbulent
interface and external intermittency. As the idealized free-shear flow configu-
rations used for studying the aforementioned phenomena possess only limited
regions of turbulence production (unlike the forcing in the entire domain of
the isotropic turbulence cases), high turbulence intensity and consequently
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the Reynolds number are significantly lower for the same expenditure of
calculation resources.

Finally, resolving not only the turbulent but also all chemical scales further
increases the costs of DNS of reacting turbulent flows drastically. For the
values of the Damköhler number and the resulting combustion conditions
investigated in this thesis, this resulted in twice as fine grid spacing than
what would be considered necessary to adequately resolve the viscous range
of the turbulent scales. Due to the high density gradients encountered in
the combustion of hydrocarbons, the Poisson equation is noticeably more
costly to solve. The significant added cost of the DNS by the additional
scalar transport of the species mass-fractions is proportional to the number
of species required in the approximation of the combustion chemistry. Even
more impactful to the overall cost are the chemical source terms which require
the solution of a large, sti� system of equations on time scales well below that
of the flow field. Besides the numerical aspects, the strong heat-release e�ects
present in the combustion of hydrocarbons modify transport properties and
further decrease the turbulent Reynolds number as a result of the increase of
kinematic viscosity with temperature [63].

As a result, the computational costs for DNS utilizing finite rate chemistry
with detailed chemical mechanisms for a simple fuel such as methane, is
increased by two orders of magnitude compared to a non-reacting flow with a
comparable turbulent Reynolds number.

Consequently, compromising with regards to limiting the potential insights,
early investigations employing 3D-DNS of turbulent combustion forwent the
use of a detailed description of chemistry in favor of irreversible one-step
chemistry [88, 112, 100, 76] or used three-step of four-step global reactions
to approximate the combustion chemistry [89, 14]. DNS of reacting flows
employing detailed finite rate chemistry with meaningful values of the Reynolds
number were performed only very recently [62, 119, 83].

Even using simplified chemical mechanisms, the Reynolds number required
to simulate the combustion conditions in real life engineering applications will
regrettably be unobtainable for decades to come. Therefore, concessions to
the numerical setup need to be made, which usually result in smaller integral
scales and a significantly smaller inertial subrange in DNS. As a consequence
of the limited achievable Reynolds number in state-of-the-art DNS of reacting
flows, certain statistics are contaminated by viscous e�ects. However, the
described finite Reynolds number e�ects are not limited to DNS but are also
present in experiments [1].

Despite the drawbacks of DNS, it has become an important tool in the
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investigation of reacting and non-reacting flows, which will only become
more prominent as calculation capacities increase. The access to all relevant
instantaneous flow and scalar fields and the quantities derived thereof poses a
prerequisite for the entire investigation presented in this thesis.

4.2 Numerical Methods and Algorithms

In the following, the specific numerical methods employed in the conduction
of the DNS cases will be listed.

The computational code is an in-house code called CIAO, which was under
the guidance of Prof. Pitsch at the Center for Turbulence Research at Stanford
University. The simulations of the reacting flows conducted for the completion
of this thesis, CIAO was used to solve the reacting Navier-Stokes equations
in the low-Mach limit,

ˆfl

ˆt
+ ˆflui

ˆxi

= 0 , (4.3)
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In the governing equations, fl denotes the density, u– the velocity,   the
disturbance pressure, ·ij,a the stress tensor, Y– the mass fraction of species –,
Vi,– the di�usion velocity of species –, ṁ– the net mass production rate of
species – due to chemical reactions, cp the specific heat capacity of the mixture,
T the temperature, Ÿ the conductivity of the mixture, h– the enthalpy of
species i, and n the number of species. For the stress tensor ·–—,a, the model
for Newtonian fluids eq. (2.4) is used. The di�usion velocity follows the
Curtiss-Hirschfelder approximation [64] with
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where D– denotes the di�usivity of species –, M– the molecular mass of
species – and M the molecular mass of the gas mixture. Radiative heat loss
q̇R = 0 was neglected due to its very limited e�ect in the simulated combustion
conditions.

The temperature and species equations, eqs. (4.5) and (4.6), are advanced by
introducing a symmetric operator split of Strang [114]. The two independent
operators account for transport and reaction.

The chemistry operator is noted as FC and is described by the following
set FC

dt
of ordinary di�erential equations

FC
dt

:

Y
__]

__[

ˆflY–

ˆt
= Ê̇–

cp
ˆflT

ˆt
=

nq
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h–Ê̇–.
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Similarly, the operator for transport FTrans
dt

is governed by
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Combining these two operators, the solution at a new time step!

Y
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, (4.10)

where m denotes the m
th time step.

Combustion chemistry is modeled using a reduced mechanism for the oxi-
dation of methane comprising 28 species and 102 reactions [99]. Additionally,
the formation of NO is included by means of the Zeldovich mechanism [78].

Time integration is achieved using a Crank-Nicolson [36] time advancement
scheme. Spatial and temporal staggering is used to increase the accuracy of
stencils. The Poisson equation for the pressure is solved by the multi-grid
HYPRE solver [47]. Momentum equations are spatially discretized with a
fourth order scheme. Species and temperature equations are discretized with
a fifth order weighted ENO [68] scheme.

The chemistry operator uses a time-implicit backward di�erence method,
as implemented in CVODE [27], which is a widespread software package
for integrating sti� ODEs. For further details about the applied numerical
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Figure 4.1: General setup of the non-premixed DNS investigated in this thesis.
The grey iso surface indicates the position of the stoichiometric mixture fraction.

algorithms and code verification, the reader is referred to [43].
The code uses the widely known message passing interface (MPI) standard.
The parallelization strategy is to decompose the rectangular simulation do-
main into cubes and assign a processor to each of these cubes in order to
minimize the cost of communication.

4.2.1 Numerical Methods of the Non-Reacting Cases

The DNS of the non-reactive cases are performed by solving the non-dimensional
unsteady incompressible Navier-Stokes equations employing the in-house
Solver psDNS [60]. Additionally, an advection-di�usion equation is solved for
a passive scalar. Spatial derivatives are calculated by the implicit sixth-order
finite di�erence compact scheme introduced by Lele [79]. The temporal inte-
gration is performed by employing a low storage fourth-order Runge-Kutta
method. The Poisson equation is solved in spectral space by adapting a
Helmholtz equation [34].
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4.3 Configurations and Case Descriptions

The configuration selected for the DNS of the non-premixed cases for this
thesis is the temporally evolving planar jet. Three di�erent jet Reynolds
numbers Rejet = U0H0/‹fuel, with initial mean jet bulk velocity U0, initial jet
width H0, and kinematic viscosity ‹fuel of the fuel, were realized. The values
of the Reynolds numbers range from 4,500 to 10,000. Multiple Reynolds
numbers are required to investigate the distinctive scaling of DE parameters,
which was observed in non-reacting flows by Wang and Peters [127, 128, 126].
In addition to the change in Reynolds numbers, two di�erent dilutions of the
fuel stream were used for the lowest Reynolds number. These four cases will
be referred to as the low Re low dilution case, the low Re high dilution case,
the intermediate Re case and the high Re case. The turbulent Damköhler
number Da = ‰qH/Uc,0 is set to Da = 0.125 for the low Re low dilution
case and the low Re high dilution case and to Da = 0.15 for the other two
high dilution cases. These values were chosen to induce local extinction and
provide the basis for the investigation of extinction processes. At the final
time step of the simulation, this resulted in approximately 5%, 11%, 16% and
24% of extinguished flame surface for the Re low dilution case, for the Re high
dilution case, for the intermediate Re case, and high Re case, respectively.

The oxidizer stream in all reacting cases is air, consisting of oxygen YO2,1 =
0.232 and nitrogen YN2,1 = 0.768. The fuel stream consists of highly diluted
methane with YCH4,2 = 0.232 for the low dilution case and YCH4,2 = 0.07
for the high dilution cases. The indices 1 and 2 indicate the oxidizer and
the fuel properties, respectively. The dilution of the fuel stream is achieved
with N2. This results in a stoichiometric mixture fraction of Zst = 0.2 for
the low Re low dilution case and Zst = 0.45 for the low Re high dilution
case, the intermediate Re case and the high Re case. These high dilutions
were chosen for two reasons; first, to provide su�cient distance between the
turbulent/non-turbulent interface (TNTI) and the flame surface. Second, to
provide a wide reaction zone thickness in mixture fraction space ”Zr. The
temperature for both oxidizer and fuel was set to T1 = T2 = 500 K for the low
dilution case. To increase the resistance to the turbulence-induced strain, the
temperature for the high dilution cases was raised to T1 = T2 = 680 K. The
quenching dissipation rate for all cases is ‰q = 120 s≠1.

The flow configuration of the reacting cases is shown schematically in
Fig. 4.1. The domains are periodic in the stream-wise x-direction and span-
wise z-direction. Boundary conditions in the crosswise y-direction were chosen
as outlets [86].
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The resolution was chosen to ensure a su�ciently resolved reaction zone
with a minimum thickness of the OH-layer of 10 grid points at all times. This
resolution was used in a number of DNS studies of non-premixed combustion
for similar configurations [62, 11], where the quality of the results and the
resolution requirements where assessed in detail. The minimum Kolmogorov
scale is ÷ = 209¯m, with ÷ = ‹

3/4
Á

≠1/4, for the low Re low dilution case,
÷ = 281¯m for the low Re high dilution case, ÷ = 245¯m for the intermediate
Re case, and ÷ = 233¯m for the high Re case. From this follows that
∆/÷ ¥ 0.76, ∆/÷ ¥ 0.74, ∆/÷ ¥ 0.85, and ∆/÷ ¥ 0.86, respectively. This
high resolution is required for a meaningful result of a DE analysis [127].
Additional details regarding the numerical and physical parameters of the
DNS are summarized in tab. 7.2.

The velocity field in the jet core was initialized with instantaneous realiza-
tions of turbulent channel flows. The mixture fraction field was initialized by
integrating ‰(Z) = a exp(≠2[erfc≠1(2Z)]2) = 2D(Z)(ˆZ/ˆy)2 in y-direction
from Z = 0 (oxidizer) to Z = 1 (fuel). The mixture fraction profile starts at
the edge of the channel velocity profile at y = ±0.5H0 to provide a wider fuel
slab to maintain combustion during later time steps and allow the velocity
field to develop. The parameter a was chosen so that the dissipation rate at
stoichiometric conditions ‰st is set to ‰st = 40s≠1 for the low dilution case
and ‰st = 10 s≠1 for the high dilution cases. This di�erence in the initial
scalar dissipation rate is chosen because of the significantly closer proximity
of the position of the initial stoichiometric mixture to the velocity profile
for the high dilution cases. The temperature and species mass fractions are
mapped onto the mixture fraction field from a steady state flamelet solu-
tion with a non-unity Lewis number obtained in a counterflow configuration
following Pitsch and Peters [101].

The initial profiles of the stream-wise velocity component and the mixture
fraction are shown in Fig. 4.2. The normalized initial velocity profiles of the
reacting cases di�er slightly due to the di�erent Reynolds numbers of the
turbulent channel flows used in the initialisation.

In addition to the three reacting cases, a DNS of a non-reacting planar
temporally evolving jet was conducted. This DNS will be referred to as
non-reacting case I. The numerical setup, domain dimensions, and initial
Reynolds number mirror the intermediate Re case. The initial velocity field is
initialized using the same instantaneous velocity field of a turbulent channel
flow employed in the initialization of the intermediate Re case. Material
properties of the flow are homogeneous and obtained from the fuel composition
of the reacting cases of YCH4,2 = 0.07 and YN2,2 = 0.93 at T = 680 K. A
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Figure 4.2: Starting profiles of the stream-wise mean velocity component ÂU0 (solid
lines) and starting profiles of the mixture fraction Z0 and passive scalar „0 (dashed
lines). ( ): low Re low dilution case, ( ): low Re high dilution case, ( ):
intermediate Re case, ( ): high Re case, ( ): non-reacting case I and ( ): non-
reacting case II

passive scalar „ was added, ranging from 0 to 1. The initial „ is that of the
mixture fraction profile of the reactive case of the same Reynolds number.
The Schmidt number of the passive scalar was set to Sc„ = 0.77. The ratio of
the minimum Kolmogorov scale to the grid resolution is ∆/÷ ¥ 1.1.

Finally, a non-dimensional, non-reacting DNS, from this point on referred to
as non-reacting case II, will serve as another dataset to include a more widely
used jet configuration with traditional initial solution at a higher Reynolds
number [113, 115, 66]. This configuration possesses periodic boundary condi-
tions in both the stream-wise x- and the span-wise z-direction and free-slip
conditions in the cross-stream direction y. The non-dimensional size of the
domain is Lx ◊ Ly ◊ Lz = 6fi ◊ 12.5 ◊ 6fi. Nondimensionalization of the
transport equations is performed with the initial velocity U0, the initial jet
thickness H0, and the maximum initial scalar value „max,0. The stream-wise
velocity component and the passive scalar field are prescribed via a hyperbolic
tangent profile. In the core region, the initial velocity is perturbed with a
broadband random Gaussian velocity field derived from a one-dimensional
turbulent energy spectrum to speed up the laminar-turbulent transition. The
initial jet Reynolds number is set to Rejet = U0H0/‹ = 9850. The resolution
in the core region is ∆/÷ ¥ 1.4.

45



4 Direct Numerical Simulations of Turbulent Reacting Flows

Low Re Low Re Inter- High Re Non- Non-
low dilution high dilution mediate case reacting reacting

case case Re case case I case II
U0 [m s≠1] 12.1 16.0 16.0 20.7 16.0 1.0
H0 [mm] 15 18.7 25 32.3 25 1.0
Rejet,0 4500 4500 6000 10000 6000 9850

Da 0.125 0.125 0.15 0.15 - -
Zst 0.2 0.45 0.45 0.45 - -

Lx/H0 8 8.2 8.5 8.5 8.5 6fi

Ly/H0 10 10.2 8.0 8.2 8.0 12.5
Lz/H0 5.3 5.5 6.4 6.4 6.4 6fi

Nx 768 768 1024 1280 1024 2560
Ny 1024 768 768 960 768 1312
Nz 512 512 768 960 768 2560

∆/÷ 0.76 0.74 0.85 0.86 1.23 1.4
Total time [ms] 20 25 30 30 30 30

Symbol

Table 4.1: Numerical and physical initial parameters of the DNS. Where needed,
the parameters for the Non-Reacting case II were re-computed with the given values
for U0 and H0.

4.4 Turbulent Flame Analysis

The overall flame evolution is shown for two di�erent normalized time instants
t
ú = 10 and t

ú = 20 in Figs. 4.3-4.4. The non-dimensional time t
ú is defined as

t
ú = (t ≠ ∆t Ê‰ÕÕ2

st =0
)/tj. The jet time is defined as tj = H0/U0. In addition, the

duration for which the variance of the scalar dissipation rate at stoichiometric
conditions is zero ∆t Ê‰ÕÕ2

st =0
is introduced. The subtraction with ∆t Ê‰ÕÕ2

st =0
accounts for the varying time among the cases before the turbulent central
flow reaches the surface of the stoichiometric mixture fraction due to the
di�erent initial fuel slab sizes. The two time steps correspond to the time
of the maximum variance of the scalar dissipation rate at stoichiometric
conditions, t

ú = 10, and the final time step in the simulations t
ú = 20.

The mixture fraction Z is shown in Fig. 4.3. The increase in wrinkling
and folding of the flames due to turbulent advection, while present in the low
dilution case, is more pronounced in the high dilution cases. To indicate local
extinction, regions where the scalar dissipation rate exceeds the quenching
dissipation rate of the stationary flamelet solution ‰ Ø ‰q are encompassed
by a black contour. The regions of high ‰ are predominantly present in the
rich regions of flow close to Zst. To indicate the burning flame regions and
extinguished regions of the flame, a threshold of the OH mass fraction obtained
from the steady state flamelet solution YOH(xi) = 0.01YOH(Zst, ‰q) is plotted
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4.4 Turbulent Flame Analysis

as a white iso-line. While all the cases display mostly intact flames, the later
times show extinguished regions at low scalar dissipation rates indicating that
these were extinguished earlier and are in the process of re-ignition. The slices
of the temperature field for the same time steps of t

ú = 10 (top) and t
ú = 20

(bottom) are shown in Fig. 4.4. Extinct regions of flames are also evident in
the temperature field.

The temporal evolution of the normalized mean Ê‰st at stoichiometric con-
ditions is shown in Fig. 4.5a). Qualitatively, the temporal evolutions display
the same features for all cases. The shape of the temporal evolution of Ê‰st is
characteristic to the configuration of the planar temporally evolving jet and
is observed also in other reacting and non-reacting jets [9, 66]. The steep
increase of Ê‰st is a result of increasing gradients caused by the formation of
turbulence. The scalar dissipation rate experiences a peak and then enters an
equilibrium state with the other turbulent fields, indicated by the exponential
decay. Here, gradients decrease again as a result of the increasing length
scales of the system.

The temporal development of the total surface area of the stoichiometric
iso surface Ast is shown in Fig. 4.5b). Ast is normalized with the initial sto-
ichimetric iso surface area Ast,0 = 2LxLz. The significantly bigger di�erence
in stoichiometric iso surface growth between the low dilution case and high
dilution cases is indicative of a higher influence of the stoichiometry than the
Reynolds number in these simulations. The low Damköhler number causes
local extinction, as already observed in Figs. 4.3 and 4.4. The burning part
of the flame surface area Ast,burning is calculated from regions with at least
10% of the mass fraction of OH of the stationary flamelet solution at ‰ just
below quenching conditions. The influence of localised extinction manifests
itself in the departure of Ast,burning from Ast after t

ú ¥ 3, which results in a
final ratio of the burning area to the extinct area of the stoichiometric iso
surface of 0.95, 0.87, 0.80, and 0.75 for the low dilution low Re case, the high
dilution low Re, intermediate Re case, and high Re case, respectively. The
overall level of extinction is in good agreement with the magnitude of ‰st in
Fig. 4.4a). The trends observed in the temporal evolution of Ê‰st and Ast are
qualitatively consistent with the observations of the extinction behavior of
turbulent non-premixed flames of Lignell, Chen, and Schmutz [80].
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Figure 4.3: Mixture fraction Z in the x ≠ y center plane at time steps t
ú = 10

(left) and t
ú = 20 (right). Top to bottom: low Re low dilution case, low Re high

dilution case, intermediate Re case, and high Re case. The red color indicates the
fuel stream, blue the oxidizer. The iso contour of the stoichiometric mixture fraction
is indicated by a red line. The presence of OH is indicated by the iso contour of
YOH = 0.01YOH,flamelet(Zst) by the white lines. The regions of quenching dissipation
rates ‰ Ø ‰q are indicated by black contours.
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Figure 4.4: Normalized temperature T
ú = (T ≠ T1)/(Tmax ≠ T1), with Tmax =

2100 K for the low dilution case and Tmax = 1850 K for the high dilution cases, in
the x-y center plane at time steps t

ú = 10 (left) and t
ú = 20 (right). Top to bottom:

low Re low dilution case, low Re high dilution case, intermediate Re case, and high
Re case.
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Figure 4.5: (a): Temporal evolution of the normalized Favre averaged scalar
dissipation rate conditioned on the stoichiometric mixture fraction. (b): temporal
evolution of the normalized area of the iso surface of the stoichiometric mixture
fraction (solid) and burning area (dashed). ( ): low Re low dilution case, ( ):
low Re high dilution case, ( ): intermediate Re case and ( ): high Re case.
Normalization is achieved with the initial stoichiometric iso surface Ast,0 = 2LxLz.
Burning regions of the stoichiometric iso surface are identified by thresholding the
local OH mass fraction YOH,burning = YOH(Z = Zst) Ø 0.1YOH,flamelet(Zst, ‰q).
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5 Dissipation Element Based Flame Analysis

of Non-Premixed Flames

There are several regimes of interest in turbulent combustion. One that is very
frequently encountered is the flamelet regime, where chemistry is relatively
fast and reactions take place in thin layers. Many technical applications
fall into this regime; therefore, prediction methods based on the flamelet
concept are often used to model combustion in engines and gas turbines. In
this framework, a turbulent flame is viewed as an ensemble of thin flamelet
structures. The flamelet structure is laminar in nature and attached to an
instantaneous flame surface, which is corrugated by turbulence. The concept
applies to premixed as well as non-premixed combustion. In the case of non-
premixed combustion, the assumption of infinitely fast reactions leads to the
flame sheet model having an infinitely thin flame structure. As the turbulent
mixing is the sole rate-determining process in this regime, the description
of non-premixed combustion can be fully described by the transport of the
mixture fraction

Z = m1
m1 + m2

(5.1)

with m1 and m2 denoting the local mass originating of the fuel and the
oxidizer, respectively. The departure from this limit requires the consideration
of finite rate chemistry and can be described by the laminar di�usion flamelet
concept [92]. Flamelet equations can be derived by transforming the transport
equations for temperature and species mass fractions into equations with the
mixture fraction Z as the independent variable, yielding equations for the
species fractions and temperature as

fl
ˆY–

ˆt
≠ fl

‰

2
ˆ

2
Y–

ˆZ2 = Ê̇–, – = 1, 2, . . . , k . (5.2)

fl
ˆT

ˆt
≠ fl

‰

2
ˆ

2
T

ˆZ2 = Ê̇T , (5.3)

where ‰ is the scalar dissipation rate

‰ = 2D

3
ˆZ

ˆxi

42
. (5.4)
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In the equation for the chemical species, fl is the density, Y– is the mass
fraction of species –, t is the time, Z is the mixture fraction, and Ê– is the
chemical source term for species –. In the temperature equation, T is the
temperature, ÊT is the heat release term due to chemical reactions, and D is
the di�usion coe�cient of the mixture fraction. Since transport in the outer,
chemically inert structure of the flame is mostly governed by turbulence, which
leads to similar transport for all scalars [9], all Lewis numbers are assumed
be unity Le– = ⁄/(cpflD–) = 1, with the thermal conductivity ⁄, the heat
capacity cp, and the di�usion coe�cient of the species D–. Additional terms
containing spatial derivatives orthogonal to Z, can be neglected to the leading
order. The scalar dissipation rate ‰ serves as the quantity which connects
the reacting scalar field to the turbulent flow field.

For intense turbulence, when turbulent scales are small compared to the
scales of the flame, the implied separation of turbulent and chemical scales in
the laminar di�usion flamelet concept is expected to fail [16, 103]. The flame
structure and the rate of mixing then start to be a�ected by interactions
between reaction, di�usion, and turbulent straining. Another shortcoming
is that even in the case of thin structures for the combustion reactions not
all reactions are su�ciently fast. This is the case for the chemical processes
governing pollutants like NOx and soot, because their chemistry may be
comparably slow. Furthermore, close to extinction or during ignition, when
combustion becomes slow or when chemistry competes with di�usive losses
in more than one direction, which is known as the edge flame e�ect [48], the
flamelet assumption of a thin one-dimensional layer will cease to be valid.

To identify and analyse spatial regions of the turbulent reacting flow,
which either correspond to flamelet-“friendly" conditions or are dominated
by small-scale turbulence and extinction-inducing turbulence intensities, a
systematic method for compartmentalization of the turbulent fields is required.
A method for a physically motivated decomposition of turbulent scalar fields
is the dissipation element (DE) analysis.

The DE analysis is applied here to the series of reacting DNS of non-
premixed combustion outlined in the previous Chapter 4.3. In addition,
selected non-reactive cases are also considered for comparison. In particu-
lar, statistics of the DE parameters are compared among the reacting and
non-reacting cases to evaluate the e�ect of heat release on the scalar fields.
The correlation of DE parameters and reacting scalars is investigated to
demonstrate the importance of considering non-local e�ects in the investi-
gated combustion conditions. A comparison of the flame scales with the
local turbulent scales provided by the DEs is used to define a new regime
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5.1 Dissipation Element Analysis

diagram for turbulent non-premixed combustion based on the DE parameters.
Contrary to conventional approaches to regime classifications which employ
global statistical quantities, the regimes are based on the instantaneous scalar
topology and therefore allow for the coexistence and assessment of multiple
regimes in a single flame. Finally, the regime diagram is used in a local
classification of the combustion of the individual cases.

5.1 Dissipation Element Analysis

In the context of non-premixed flames, the mixture fraction Z is the scalar field
of choice for a DE analysis, as it provides the most practical and meaningful
scales for the investigation of turbulence/chemistry interaction. An exemplary
interaction between a DE and the stoichiometric iso surface, which is wrinkled
by the turbulent velocity field, in the low Re low dilution case is shown
in Fig. 5.1. This helps to illustrate the non-trivial shape of DEs in three-
dimensional space and, consequently, the complicated local structure of non-
premixed combustion in the highly turbulent cases.

An entire field of DEs extracted from the intermediate Re case is shown
in the top part of Fig. 5.2. The background field in this figure is that of the
mixture fraction Z in the x-z center-plane of the turbulent jet, which is shown
mirrored on the bottom part of the figure. The figure shows that dissipation
elements are space-filling objects which subdivide the entire turbulent scalar
field into smaller sub-units. As we follow the flame front indicated by the
iso-line of the stoichiometric mixture fraction, we observe that DEs of various
sizes and shapes are intersected by the flame. In addition, it can be seen
that the size of the DEs increases as the core region of the jet is departed
and the flame front is approached. This observed increase in size has two
reasons. Firstly, the increased di�usivity caused by the heat release as well
as a mean relative velocity in the cross-stream direction cause the DE to
increase in size. Secondly, the intersection area depicted here depends on the
DE orientation with regard to the shown cut plane. DEs tend to be elongated
tube-like structures, as seen in fig. 5.1. Therefore, DEs oriented parallel to
the x ≠ y plane will appear significantly larger than DEs aligned with the
span-wise direction. In the core of the jet, there is little to no preferential
orientation of the DEs as the mixture fraction field is close to an isotropic state.
However, crossing the reacting regions there are two reasons for a preferential
orientation of the DEs. Due to the initialisation and configuration of the
cases with Z = 1 in the core and Z = 0 in the outer cross-stream position,
it is more probable that the maxima are located closer to the core than the
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Zmax

Zmin

¸

Figure 5.1: A DE in interaction with the flame front in the low Re low dilution
case. The blue and red cone indicate the maximum and minimum, respectively. The
DE is represented by the gradient trajectories used in its detection. Local values
of the mixture fraction are indicated by the color of the gradient trajectories. The
grey contour is the iso surface of the stoichiometric mixture fraction Zst = 0.2.

minima, which results in a natural alignment with the cross-stream direction.
Additionally, the density di�erences cause a positive relative velocity between
the extremal points spanning Zst. On average, this relative velocity is the
cross-stream component which further induces an orientation on the DEs in
that direction.

In order to estimate the influence of small scale turbulence in combustion,
the local reaction layer thickness is typically compared to a turbulent length-
scale like the Kolmogorov scale ÷. However, in non-premixed combustion,
a comparison of the reaction layer thickness with turbulent length scales in
physical space does not make much sense, because the width of the layer
changes locally with the mixture fraction gradient. Since the transformation in
mixture fraction space makes the flame structure more general, a meaningful
comparison of scales, between the scalar di�erence ∆Z, provided locally by
the individual DEs, with the reaction layer thickness ”Zr is proposed. In
this context, the DE parameter ∆Z can be interpreted as the length in Z-
space in which a flamelet-like solution can exist before terminating at its
respective extremal points due to the influence of turbulence. Since the
gradient trajectories used to identify individual DEs are identical to the
physical coordinates of flamelets, DEs can also be viewed as groupings of
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Figure 5.2: Top part: DE analysis of the mixture fraction field of the intermediate
Re case. Individual DEs are encompassed in a black contour. Bottom part: mirrored
mixture fraction Z field on which the DE analysis was performed. Blue color
indicates the oxidizer with Z = 0 and blue the fuel Z = 1.

flamelet solutions. As the flame thickness in non-premixed flames varies
greatly with the mixture fraction gradient, a second parameter to characterize
DEs is instrumental in the analysis. Characterizing the scalar gradient, the
parameter g = ∆Z/¸ will be used. Its square is expected to be related to the
scalar dissipation rate ‰ as ‰ ≥ Dg

2, as was observed in isotropic turbulence
by Wang and Peters [128].

5.1.1 Marginal Dissipation Element Parameter Statistics

One of the characteristic properties of DE parameters in non-reacting flows is
the invariance of the PDFs of the DE length ¸ towards changes in Reynolds
numbers and underlying scalar [128, 53]. When normalized by the mean DE
separation length ¸m, the PDFs of ¸

ú = ¸/¸m show a characteristic shape
and almost perfect agreement for the entire range of investigated Reynolds
numbers. Fig. 5.3 shows the PDFs of the normalized DE parameters for the
four reacting cases and the two non-reacting jets. The PDFs were obtained
from the final time-steps in the respective simulations and weighted with
the individual DE volumes. DEs whose minima are situated outside the
turbulent/non-turbulent interface (TNTI), as obtained by the method of
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Bisset, Hunt, and Rogers. [17], were omitted from the statistics to rule out
the inclusion of false extremal points in the laminar regions of the flows.
In this fashion, 69.5%, 85.5%, 87.7%, and 92.1% of the iso-surface of the
stoichiometric mixture fraction is retained in the following statistics for the
low Re low dilution case, low Re high dilution case, intermediate Re case,
and high Re case, respectively. The decreasing number of excluded DE with
increasing Reynolds number is a strong indicator of the additional applicability
of the method to flames with higher turbulence intensities.

In Figs. 5.3a) and b), the normalized DE length for all investigated cases is
shown. The characteristic shape of the PDFs observed in the non-reactive
cases is retained in the reacting simulations [125, 55]. After an initial steep
linear increase for the shortest elements, a maximum of the PDFs is reached
at approximately 1.6 ¸

ú. This linear increase was attributed to the di�usive
drift of extremal points by Wang & Peters. After the maximum, a exponential
decrease of the PDF for the longer elements follows, which stems from the
random cutting and reconnection process of turbulent eddies [127]. A perfect
agreement is observed among all cases for the short elements. The wider
separation of scales due to increasing Reynolds numbers is apparent in the
tails of the PDFs which reach larger values for increasing Reynolds numbers.
In Fig. 5.3c), the PDF of the normalized DE length is conditioned on DEs
which cross the iso-surface of the stoichiometric mixture fraction. Again, the
PDFs display the characteristic course observed in the PDFs of the entire flow
field. The mean DE length ¸m is only slightly larger (about 15 %) compared
to the one obtained for all DEs within the TNTI. These observations are a
strong indication that the geometry of the flow and its reactive nature do not
fundamentally change the characteristic length scale of turbulent structures
identified by the DEs.

In Fig. 5.3 d), the ratio of the mean DE length and the Kolmogorov micro
scale is shown for all DEs within the TNTI. The scaling of ¸m with ÷, which
was already observed for other flow configurations, is also present in the
reactive flows. ¸m/÷ is approximately constant for the wide range of Reynolds
numbers and configurations investigated in this work and close to the ratio
observed in the isotropic configurations. In particular, the average DEs length
is approximately 25-35 Kolmogorov scales. The di�erence in ratio with regards
to the isotropic turbulence might be attributed to the presence of shear in
the jet configuration.
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Figure 5.3: Comparison of PDFs of the normalized DE length ¸/¸m a): plotted
in a linear scale and b): logarithmic scale . c): PDF of the normalized DE length
conditioned on DEs crossing the stoichiometric iso surface (with the black line
obtained from b), as a reference). d): ratio of the Kolmogorov micro scale ÷ to
the mean DE length ¸m for the investigated cases. ( ): low Re low dilution case,
( ): low Re high dilution case, ( and ): intermediate Re case, ( ): high Re
case, ( ): non-reacting case I and ( ): non-reacting case II. The dash dotted line
indicates the average ratio obtained from isotropic turbulence in Wang and Peters
[127]. The line is placed arbitrarily as no jet Reynolds numbers exist.
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5.1.2 Joint Dissipation Element Parameter Statistics

Fig. 7.7 shows the joint probability density functions (JPDF) of the normalized
DE length ¸

ú and the normalized scalar di�erence ∆Z
ú = ∆Z/∆Zm, with

the volume averaged scalar di�erence ∆Zm, of the three jet cases in the final
time step of the simulations. For the non-reacting cases in Figs. 7.7a) and
b), one observes a global maximum of the probability density in the lower
left corner for short elements and small scalar di�erences. This region of the
JPDF is dominated by the di�usive drift of the extremal points leading to an
annihilation of small DEs. On the top left hand side, for small ¸ and big ∆Z,
the probability of cli� structures, ubiquitously present in scalar turbulence,
can be observed [2, 65]. These structures are linked to external and internal
intermittency and manifest themselves in very steep gradients of the scalar
followed by a very gradual decent. Likewise, the scalar dissipation rate ‰

displays extreme spatial fluctuations. The lower right part of the JPDF, for
long elements and small scalar di�erences, shows the regime of the physical
mechanism of splitting and reconnection of DEs [127]. Qualitatively, the
JPDFs of the two non-reactive cases agree while a noticeably larger separation
of scales in the non-reacting case II is present, which is apparent from the
di�erent ranges of the axes.

The JPDFs of the reacting cases at low Reynolds number are shown in
Figs. 7.7 c) and d). Clear qualitative di�erences are observable compared to
the non-reacting case. While the di�usive drift region of the lower part of the
JPDF, for values of ∆Z

ú
< 0.8 resembles its counterpart of the non-reacting

flows, the top part looks vastly di�erent. In addition to the local maximum
probability in the di�usive drift region, the global maximum for intermediate
¸ and large ∆Z is observed for the low Re low dilution case. This indicates
the high probability of DEs which span large mixture fraction di�erences
almost all the way from the fuel to the oxidizer side. While the DE length
distributions are una�ected by the chemical reactions, the statistics of ∆Z

are heavily influenced by chemical reactions and a distinct influence of the
flame structure on the DE statistics can be observed. For the JPDF of the
low Re high dilution case, the global maximum shifts again into the di�usive
drift region while the cli� structures imprinted by the flame remain more
pronounced than in the non-reacting cases. These cli� structures become even
less pronounced as the Reynolds number is increased in the intermediate Re
case in Fig. 7.7e), where the second local maximum for large ∆Z

ú disappears.
Finally, the JPDF of the high Re case Fig. 7.7f) completely resembles the
JPDFs obtained from the non-reacting cases.

The (local) maximum probability density in Figs. 7.7 c) and d) stems
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from insu�cient turbulent mixing of the mixture fraction fields in these two
cases. In the very beginning of the simulations, the mixture fraction fields
have no turbulent fluctuations, and because of the lack of extremal points,
all DEs would be infinitely long with ¸ æ Œ. Simultaneously, all gradient
trajectories would reach from Z = 0 to Z = 1. Then, the DE di�erence would
be uniformly ∆Z = ∆Zm = 1. As turbulent mixing is applied to the mixture
fraction fields, the turbulent eddies induce extremal points which reduce both
¸ and ∆Z as time progresses. Di�usive drift will remove extremal points once
elements are small enough. Therefore, the high probability of large ∆Z (in
other words, close to its initial value) is a result of either not enough time
for the statistics ∆Z to have fully converged at the end of the simulations, or
the lack of su�cient turbulence to reach the asymptotic state observed in the
non-reacting cases or in the High Re case. The explanation for this is twofold.
The locally high di�usivity in the reacting regions smoothes the scalar field
and removes more extremal points in these regions. In addition, the locally
low e�ective Reynolds number causes lower eddy turnover times. Therefore,
fewer extremal points are introduced in the reacting regions.

The di�erence in the JPDFs between the low Reynolds number reacting
and non-reacting cases could therefore be attributed to low Reynolds number
e�ects in the reacting cases, which is amplified by heat release. Similar
results with regards to trends of the e�ects of heat release on small scale
statistics of the velocity and mixture fraction in non-premixed flames were
reported in Attili and Bisetti [6]. Additionally, this is consistent with the
findings of Gauding et al. [58], where a similar e�ect on the joint DE statistics
conditioned on the flame front was observed. Likewise, the di�erences were
linked to poor mixing in the reactive regions of the flow. This is another
strong indicator that not only the marginal DE length statistics P (¸), but
also the DE scalar di�erence statistics of passive scalars in turbulent flows
share a universal form if the Reynolds number is su�ciently high, regardless
of the presence of combustion and heat release. Therefore, the di�erences
between the JPDF of the DE parameters of a passive scalar field obtained
from the reacting configurations and the universal form of the JPDF might
be used to judge the extent of low Reynolds number e�ects.

For a more quantitive way to compare the DE statistics and to relate
DE parameter statistics to a more commonly used method of analysis of
turbulence, the mean of the normalized DE scalar di�erence is conditioned
on the normalized DE length È∆Z

ú|¸úÍ and È∆„
ú|¸úÍ, with ÈÍ indicating the

average of all grid points within the TNTI. The nth conditional moment
È∆„

n|¸úÍ can be interpreted as an analogue of the conventional structure
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Figure 5.4: JPDF of the normalized DE length ¸
ú = ¸/¸m and normalized scalar

di�erence ∆Z
ú = ∆Z/∆Zm in the final time step of the respective cases. a): non-

reacting case I, b): non-reacting case II, c): low Re low dilution case, d): low Re
high dilution case and e): intermediate Re case and f): JPDF of the high Re case.
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Figure 5.5: Normalized DE scalar di�erence conditioned on the normalized DE
length È∆Z

ú|¸úÍ and È∆„
ú|¸úÍ. ( ) intermediate Re case, ( ) high Re case and

( ) non-reacting case. The dashed line indicates the theoretical derived scaling.

function [127]: The mean of ∆Z
ú conditioned on ¸

ú for the intermediate Re
for all DEs within the TNTI is shown in Fig. 5.5a). One observes a clear
correlation between the two DE parameters for short elements with ¸

ú
< 1.

The scaling exponent is significantly larger than the theoretically derived
value. For larger elements, the two parameters appear to be less correlated.
However, for the non-reactive case I as well as for the high Re in Fig. 5.5b), a
good collapse of the conditional means and a clear scaling of È∆„

ú|¸úÍ for a
wide range of ¸

ú is observed. Thus, di�erences in the conditioned statistics of
the intermediate Re case can be attributed to low Reynolds number e�ects.
The slightly larger scaling exponent displayed by the conditional means in
Fig. 5.5b), compared to the value usually observed in homogeneous isotropic
turbulence, can be attributed to the presence of mean shear, as already
observed in other non-reactive shear flow by Celani et al. [29] and Attili and
Bisetti [5]. In the flamelet regime, the scalar dissipation rate ‰ serves as
the parameter connecting the fields of the reactive species with the turbulent
field, cf. eqs. 5.2 and 5.3. The correlation between the DE parameter and
‰ is therefore of high interest. Conveniently, the DE gradient g = ∆Z/¸ can
be used to relate the DE parameters to the scalar dissipation rate ‰. From
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dimensional considerations it follows

‰ = 2D

3
ˆZ

ˆxi

42
≥ Dg

2 . (5.5)

The average ratio C‰ = È‰/
!
2Dg

2"
Í is shown for the last time step for all

investigated cases in Fig. 5.6a). Regardless of configuration and Reynolds
number, the average ratio displays a constant value of C‰ ¥ 5. This indicates
for the investigated configurations that the local mixture fraction gradient,
and thus, the scalar dissipation rate, can indeed be related to the gradient
of the larger local flow topology, as indicated by g. Further, the ratio of
the second moment to the mean DE gradient squared Èg2Í/g

2
m is shown in

Fig. 5.6b). No clear influence of Reynolds number is discernible and all cases
display similar values for Èg2Í/g

2
m ¥ 1.6. The constant value for the ratio

can be explained by the universality of the normalized JPDF P (¸ú, ∆Z
ú)

and the consequently universal ratio of the various moments of g = f(¸, ∆Z).
Therefore, the mean scalar dissipation rate can be related to the mean DE
gradient È‰Í ≥ ÈDÍg2

m. Consequently, this signifies that the joint DE statistics
can be reconstructed, if the the unconditional mean scalar dissipation rate
and Kolmogorov micro scale are known.

5.2 Regimes in Turbulent Non-Premixed Combustion

One of the desirable features of DEs is their space-filling nature, enabling a
unique decomposition of the entire scalar field, and therefore, the ability to
locally categorize the flame using the DE parameters. A categorization of
combustion regimes based on DE parameters is outlined in this section. Similar
to the Borghi-Peters regime diagram for turbulent premixed combustion, the
turbulent scales are compared to the characteristic combustion scales. In the
context of non-premixed combustion, the characteristic combustion scales
are provided by the steady state flamelet solution. The DE parameter-based
regime diagram and the expected flame structure or lack thereof is depicted
in Fig. 5.7.

The first DE parameter of choice is the gradient g, as it is closely related
to ‰, cf. Fig. 5.6a). In the regime diagram, it represents the well-known and
investigated influence of the scalar dissipation rate on the reacting scalars
and is placed on the abscissa in Fig. 5.7. The first regime boundary is marked
by the quenching gradient gq, at which the heat release within the flame
is insu�cient to balance the energy transport caused by di�usion. In the
flamelet sense, g or ‰ should be su�cient to characterize the reacting scalars
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5 Dissipation Element Based Flame Analysis of Non-Premixed Flames

in flows with high but finite Damköhler numbers as outlined in Peters [91].
However, to account for the interaction of chemical and turbulent scales with
Damköhler numbers approaching unity, a second parameter, represented by a
second coordinate in the regime diagram, is required.

Representing the e�ect of the di�erent turbulent scales in the mixture
fraction field, the scalar di�erence ∆Z fills this spot and is therefore shown
on the ordinate of the regime diagram in Fig. 5.7. The scalar di�erence ∆Z

is especially fitting, as the gradient trajectories used for the detection of DEs
in the mixture fraction fields are linked to the local flamelet coordinates [94].
The turbulence-induced extremal points in the mixture fraction field represent
a forced interruption of any di�usive transport, as ÒZ = 0, or in the context
of the flamelet eqs. 5.2 and 5.3, ‰ = 0. The ∆Z of a DE including the
stoichiometric iso-surface is therefore the maximum distance in Z-space in
which a di�usive transport-dominated structure, such as a flamelet, can exist.
Therefore, the second boundary in the regime diagram is marked by the
threshold value Z-space (∆Z)t below which the di�usive structure of the
flame is disrupted too close to the stoichiometric mixture fraction ,and thus
the reaction zone, to form a coherent 1D flame structure.

The result is the definition of four regimes. In the top left, for large ∆Z

and small g, the “Burning Flamelet" regime is situated. Regions of the
flame identified by these DE parameters should adhere to the classical steady
flamelet model. The scales in the turbulent Z-field are locally large compared
to those imposed by the chemistry, and the individual flamelet solutions in the
DE can advance unencumbered for long distances in Z-space, from the fuel
side to the oxidizer. The DE gradient stays below quenching values ensuring
a burning solution.

The regime in the top right corner, called the “Large Scale Extinction"
regime, corresponds to large scale extinction events, such as large rollers
stemming from Kelvin-Helmholtz instabilities and the like. Here, the specified
“large scale" is the characteristic scale of the extinction inducing event, which
is large compared to the scale indicated by the local DE. Within these regions,
large cli�-ramp structures with significant strain are generated. Large scale
extinct regions such as flame holes [81, 90] correspond to this regime. The
extinction in this regime corresponds to the low-Damköhler type extinction
caused by eddies of integral scale size. The scale of the extinction events
in this regime is expected to be far larger than the individual DE volumes,
and the quenching process should occur fairly instantaneously and therefore
homogeneously in a single DE.

The regime in the bottom left corner is the “Fine Scale Mixing" regime,
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5.2 Regimes in Turbulent Non-Premixed Combustion

for g < gq and ∆Z < (∆Z)t, is characterized by low gradients and small
turbulent structures in the Z-field. This is indicative of very short flamelet
solutions, and it is questionable if the chemical field in these regions resembles
a one-dimensional solution or whether chemical reactions can be sustained.
Low gradients and small scalar di�erences put these regions in the DE regime
of “rapid splitting and reconnection" [128], meaning that di�usive fluxes
would rapidly change direction depending on the latest pairing of the extremal
points in the DE. A flame structure in the traditional sense should not exist
in the regions of “Fine Scale Mixing" if ∆Z is small enough and intense
turbulent advection becomes the dominating transport mechanism. If the
scalar di�erence is further decreased ∆Z < ”Zr, with the thickness of the
reaction zone in Z-space ”Zr, DEs may penetrate the reaction zone and exist
entirely in the reaction zone. The local topology of the flame would be more
akin to homogeneous reactors than flamelets.

The last remaining regime is the “Broken Reaction Zone" regime in the
bottom right corner. Here one finds small scalar di�erences in combination
with large gradients leading to small scale extinction zones due to locally
high turbulence activity. This type of extinction would correspond to a
high-Karlovitz type e�ect, where eddies of the size of the Kolmogorov scale
transport radicals out of the inner reaction zone. Contrary to the “Large Scale
Extinction" regime, the scales of the “Broken Reaction Zone" quenching events
are far smaller. Consequently, quenching would not occur homogeneously
within an entire DE resulting in partially burning DEs. The resulting local
topology would be characterized by small intermittent pockets of reacting
and non-reacting fluid.

In a first step, to ensure that DEs represent a sensible way of decomposing
the physical space into sub-units for the purpose of analyzing the interaction
between chemistry and turbulence, the PDF of temperature conditioned on
the mixture fraction P (T |Z) is compared to the conditional PDF of the
DE-averaged temperature ÂTDE. This average is calculated in the following
way. The intersecting area of the individual DEs and the Z iso-surface is
determined and the temperature in this intersecting area is then averaged. For
P ( ÂTDE|Z), this intersecting area additionally serves as a weight in the statistics
to account for the various sizes of the DEs. The PDFs of the instantaneous
temperature and the DE averaged temperature are shown in Fig. 5.8 for
the low Re low dilution case and intermediate Re case for three exemplary
values of the mixture fraction. One observes a characteristic bimodal shape of
the PDFs for most of the Z values, with the maximum at low temperatures
corresponding to the extinct regions of the iso-surface and the maximum at
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Figure 5.7: DE parameter based regime diagram for turbulent non-premixed com-
bustion. The solid lines indicate a burning solution at Zst and the dotted lines
represent the thickness of the reaction zone.
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Figure 5.8: (solid lines): PDFs of the temperature P (T |Z) conditioned on three
di�erent values of the mixture fraction and (dashed lines): PDF of the temperature
averaged within individual DEs P (ÂTDE|Z) . Red: Z = 0.5Zst, blue: Z = Zst and
yellow: Z = 1.5Zst, a): low Re low dilution case, b): intermediate Re case.

high T corresponding to the burning solution. No di�erences between the
PDFs of the temperature and the DE-averaged temperature can be observed.
These results are indicative of the fact that the flow compartmentalization
by means of DEs is indeed sensible, as the full PDF can be reconstructed
from the DE-averaged temperature with negligible errors. The categorization
based on the proposed regime diagram in Fig. 5.7 is applied to the surface of
the stoichiometric mixture fraction of the four reacting cases. The quenching
gradient is estimated by using the conditional average of the DE gradient at
the scalar dissipation corresponding to quenching conditions for the laminar
1D flamelet gq = Èg|‰ = ‰qÍ. This results in a quenching gradient for the low
Re low dilution case of gq = 110 s≠1, while it is gq = 92 m≠1, gq = 89 m≠1

and gq = 90 m≠1 for the low Re high dilution case, intermediate Re case,
and high Re case, respectively. The reaction thickness ”Zr in Z-space is
estimated locally by fitting the inner reaction zone of the heat-release profile
ÊT (Z) of the steady state flamelet solution with a Gaussian profile. The
reaction zone thickness is then defined as the half width of the Gaussian. This
procedure is shown for conditions close to quenching for the two investigated
dilutions in Fig. 5.9a). For local dissipation rates greater than the quenching
dissipation rate, the reaction zone thickness at quenching conditions is chosen.
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Figure 5.9: Left: heat release rate ÊT for steady state flamelet solutions at quench-
ing scalar dissipation rates (solid lines) and the inner reaction zone approximation
by means of a Gaussian profile (dashed lines). Blue: low dilution corresponding to
the boundary conditions in the low Re low dilution case, green: boundary conditions
corresponding to the low Re high dilution case, the intermediate Re case and the
high Re case. Right: variation of the inner reaction zone thickness ”Zr with ‰st.

The impact of the scalar dissipation rate at stoichiometric conditions on the
reaction zone thickness is shown in Fig. 5.9b), where an approximately 60%
wider ”Zr for the high dilution cases is observed.

The reacting scalars on the iso-surface of the stoichiometric mixture fraction
are averaged conditioned on the normalized DE parameters ∆Z

Õ = ∆Z/”Zr
and g

Õ = g/gq to achieve a comparison between the chemical and turbulent
scales and check the validity of the proposed regime diagram. This is shown
for the temperature field for all reacting cases in Fig. 5.10 and for the OH
mass fraction in Fig. 5.11. The conditional means of the reacting scalars
display a good consistency with the assumptions of the previously outlined
DE-based regime diagram. For all four cases, high values of the conditional
means ÈT Í and ÈYOHÍ are observed for high values of ∆Z

Õ and low values of g
Õ,

which is consistent with the idea of classifying the flame as burning flamelets
for these values of DE parameters. Here, the reacting scalars display the same
trends with regards to rising g

Õ as one would expect with an increase in ‰.
The second regime boundary is set as (∆Z)t = 15∆Z

Õ, as the conditioned
reacting scalar values decrease significantly. This value for ∆Z

Õ is consistent
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5.2 Regimes in Turbulent Non-Premixed Combustion

across all Reynolds numbers and across the di�erent dilutions. The reacting
scalars are more susceptible to quenching caused by gradients in the mixture
fraction field for ∆Z < (∆Z)t, as similar values of g yield significantly lower
values of the mean reacting scalars.

The regime boundary at g
Õ = 1 proves to be sensible as well with low values

of the mean reacting scalars indicating extinction for g
Õ
> 1. The locally high

values for ÈT Í and ÈYOHÍ in the “Large Scale Extinction” regime, present only
in the low Re case and and intermediate Re case, are not present in the high
Re case and can be attributed to the aforementioned low Reynolds number
e�ects which cause g and ‰ to be locally less correlated. The range of values
of the normalized DE parameters ∆Z

Õ and g
Õ observed in the individual cases

and the implied regime contributions to the overall combustion is consistent
with the probability of observing small scale structures in the flame and
extinct regions in Figs. 4.3 and 4.4 and the overall levels of extinction in
Fig. 4.5. The fine scale regimes “Fine Scale Mixing" and “Broken Reaction
Zones" are characterized by small structures in mixture fraction space and
display highly turbulent behavior. To gain a deeper understanding of the
fine scale mixing regimes, the mean temperature in the extremal points, i.e.
at the minimum mixture fraction, ÈTDE,minÍ, and at the maximum mixture
fraction, ÈTDE,maxÍ, of the DEs crossing the iso-surface is conditioned on the
normalized DE parameters as shown in Fig. 5.12. High values for the mean
temperature in the extremal points can be observed in a triangular region for
∆Z

Õ
< 10 and g

Õ
< 1. The values of the mean reacting scalars are comparable

to those obtained at the stoichiometric iso-surface, as observed for the small
∆Z

Õ and g
Õ in Figs. 5.10 and 5.11. The presence of extremal points of the

mixture fraction field within the reaction zone further validates the idea of a
“Fine Scale Mixing" regime. The DEs in this regime resemble fully reacting
sub-regions of the flame from the minimum to maximum. Due to the small
g

Õ in this triangular region, the ¸ of the DE occupying this part of the flame
ranges from 5÷ < ¸ < 50÷. This indicates the presence of large and fully
reacting structures, which are significantly wider than the reaction zones in
the flamelet solution. The values of 10 < ∆Z

Õ
< 15 might be viewed as a

transition range between two burning regimes.
For a final analysis of the sensibility of the DE-based regime diagram and

to estimate the level of extinction in the individual regimes, the marginal
PDF of the temperature at stoichiometric conditions P (Tst) is additionally
conditioned on the individual combustion regimes. This is shown for two
time steps for the high Re case in Fig. 5.13. As observed in Fig. 5.8b), two
peaks in the PDFs are present, one for low temperatures and one for high
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Figure 5.10: Mean temperature ÈT Í conditioned on normalized DE parameters
∆Z

Õ = ∆Z/”Zr and g
Õ = g/gq. Dashed lines indicate regime boundaries. a): low

Re low dilution case, b): low Re high dilution case c): intermediate Re case and d):
high Re case.
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Figure 5.13: PDF of the temperature conditioned on the stoichiometric mixture
fraction, and on the individual regimes in the final time step of the high Re case.
( ): “Burning Flamelet" regime, ( ): “Fine Scale Mixing" regime, ( ): “Large
Scale Extinction" regime and ( ): “Broken Reaction Zone" regime.
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Figure 5.14: (Gray lines): Mass fraction of OH radicals obtained along all gradient
trajectories of a single DE. The steady state flamelet solution for the DE averaged
scalar dissipation rate at stoichiometric conditions Ê‰stDE is indicated by the blue
dashed line and red dashed line for the non-unity Lewis number and unity Lewis
number solution, respectively. a): DE obtained from the “Burning Flamelet" regime,
b): DE from the “Fine Scale Mixing" regime and c): DE obtained from the “Broken
Reaction Zones" regime.

temperatures corresponding to burning and extinct parts of the stoichiometric
iso surface, respectively. For the extinction regimes, the global maximum of the
probability density is located at low temperatures with only minor amounts in
temperature-ranges that can sustain combustion. The remaining low amounts
of probability density of low temperature in the “Burning Flamelets" regime
can be explained by parts of the flow undergoing re-ignition or by locally too
high values of ‰ for re-ignition of previously extinguished parts of the flow.

5.2.1 Local Flame Analysis

As the gradient trajectories in mixture fraction space are equivalent to the
physical coordinates of the flamelet solution in physical space, a non-local
comparison with the steady state flamelet solution in a physically mean-
ingful framework is straightforward. For a more detailed investigation, the
instantaneous mass fraction of OH obtained along all gradient trajectories
used in the detection of exemplary DEs are plotted in the mixture fraction
space in Fig. 5.14. This is done for three representative DEs obtained from
the “Burning Flamelet" regime, the “Fine Scale Mixing" regime, and the
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“Broken Reaction Zone" regime in the last time step of the high Re case. The
representative DEs are obtained from burning regions of the stoichiometric
iso-surface, as shown in Fig. 4.5. The DEs are of comparable volume and
possess a similar intersecting area with the iso surface of the stoichiometric
mixture. YOH along the gradient trajectories is compared to the steady state
flamelet solutions obtained from the steady state flamelet solution using the
averaged scalar dissipation rate at the intersecting area of the DE and the
stoichiometric mixture fraction iso surface Ê‰stDE.

For the DE obtained from the “Burning Flamelet" regime, shown in
Fig. 5.14a), the mass fractions along the individual trajectories collapse
perfectly with the unity Le flamelet solution for a wide range of Z values. The
indiscernibility of YOH between the individual trajectories is very consistent
with the flamelet assumption of a change of any reactive scalar exclusively in
the Z-direction. However, for the DE obtained from the “Fine Scale Mixing"
regime in fig. 5.14b), YOH displays a wide range of values for a given value of
Z, especially for mixture fractions close to stoichiometry. Large departures
from both flamelet solutions can be observed with YOH obtained in the DE
having consistently higher values, even in the extremal points. The rather
large inhomogeneity of the reacting scalar on an iso-surface of Z within a
small spatial sub-unit, such as a DE, clashes with the 1D flamelet assumption,
as additional transport of the reacting scalars is expected to take place tangen-
tially to the mixture fraction coordinate. The mass fraction of OH obtained
from the “Broken Reaction Zones” regime, shown in fig. 5.14c) shares this
characteristic. While the range of values is significantly larger than in the
DEs of the other regimes, some trajectories display values corresponding to
an extinct solution while others are fully burning, which is consistent with
the assumption of a broken reaction zones regime.

The e�ect of the inhomogeneity of reactive scalars for a specific iso-value
of Z, which is observed for the exemplary DEs in the “Fine Scale Mixing"
regime and “Broken Reaction Zones" regime, can be statistically measured by
the coe�cient of variation of a reactive scalar in a DE:

cv,�(Z) =

Ò
ÁÂÕÕ2

–,DE(Z)
ÂÂ–,DE(Z)

. (5.6)

The mean coe�cient of variation of OH at stoichiometry, conditioned on
the normalized DE parameters Ècv,OH(Zst)|gÕ, ∆Z

ÕÍ, is shown for the low Re
high dilution case and the intermediate Re case in Figs. 5.15a) and b). The
coe�cient of variation is low in the “Burning Flamelet" regime for both cases
and is also relatively low for the “Large Scale Extinction" regime. As partly
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Figure 5.15: Mean DE coe�cient of variation of the OH mass fraction Ècv,OH(Zst)Í
conditioned on the normalized DE parameters g

Õ and ∆Z
Õ at the final time step. a)

low Re high dilution case; b) intermediate Re case; c) PDF of the DE coe�cient of
variation P (cv,OH(Zst)) conditioned on the individual regimes in the burning regions
of the stoichiometric iso-surface for the high Re case. ( ): “Burning Flamelet"
regime, ( ): “Fine Scale Mixing" regime, ( ): “Large Scale Extinction" regime
and ( ): “Broken Reaction Zone" regime.
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quenched DEs would display high values of the coe�cient of variation, the low
values support the notion of larger extinction events where regions spanning
the entire cross section of the DE are quenched simultaneously. High values for
the coe�cient of variation are observed in both the “Fine Scale Mixing" regime
and the “Broken Reaction Zones” regime. This indicates that the previously
observed characteristics for the three exemplary DEs in fig. 5.14a)-c) are
representative of the entire flame.

The PDF of the coe�cient of variation of the temperature P (cv,T (Zst))
conditioned on the individual regimes and the burning regions of the high
Re case is shown in fig. 5.15c). It shows that previously observed behavior
of the coe�cient of variation with regard to the regimes extends to the
temperature field. The di�erence in cv,T between the large-scale and the
fine-scale regimes is roughly one order of magnitude. While comparable to the
“Large Scale Extinction" regime, the “Burning Flamelet" regime displays the
lowest cv,T . In summary, independent of the value of g, the reacting scalar
fields display high local homogeneity in the “Burning Flamelet” regime and
“Large Scale Extinction” regime, while the “Fine Scale Mixing” regime and
the “Broken Reaction Zones" regime are characterized by turbulence induced
inhomogeneity.

5.2.2 Temporal Evolution of the Combustion Regimes

Finally, the temporal evolution of the individual regime’s contribution to
the overall combustion process is investigated. Besides o�ering ∆Z as a
value to quantify “large scale” or “fine scale” interaction, the approach of
using DE parameters for a classification of the combustion regimes o�ers a
signifiant additional advantage over traditional statistical methods. Instead
of comparing one single characteristic turbulence scale, which is defined for
the entire domain (like the Kolmogorov micro scale ÷ in the Karlovitz number
or the eddy turnover time · in the Damköhler number) to the characteristic
flame scale, a local comparison using DE parameters is possible. Every
material point on the stoichiometric iso-surface can be characterized by the
two DE parameters. Therefore, all of these material points can be classified
individually by the DE-based regime diagram. The large range of turbulent
structures simultaneously present in the various cases consequently leads
to a certain degree of coexistence of combustion regimes in the conditions
investigated in this work. The substantial advantage of using a local estimate
for the turbulence scales allows for the quantification of the local conditions.
For the coexistence of burning and extinct regimes, this was always implicitly
assumed by the simultaneous presence of flame holes and edge flames in flows
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Figure 5.16: Temporal evolution of the normalized area of the stoichiometric iso
surface attributed to the individual regimes A

ú
i,burn = Ai,st,burn/Ast,burn, conditioned

on the burning regions. a): solid lines indicate the “Burning Flamelet" regime and
dashed lines the “Fine Scale Mixing" regime. b): dash dotted lines indicate the
“Large Scale Extinction" regime and dotted lines the “Broken Reaction Zones" regime.
( ): low Re low dilution case, ( ): low Re high dilution case, ( ): intermediate
Re case and ( ): high Re case.
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5 Dissipation Element Based Flame Analysis of Non-Premixed Flames

for which the average scalar dissipation rate remained well below quenching
values [80, 8].

To achieve the local quantification of the combustion regimes, the burning
area of the stoichiometric iso-surface attributed to the individual regimes in
the burning regions of the flow Ai,st,burn(tú) is shown for all four reacting
cases in fig. 5.16a). As the overall burning area increases significantly over
time, normalization is achieved with the overall burning area Ast,burn(tú),
which is identical to the one shown in fig. 4.5b).

As expected, the combustion is classified as the “Burning Flamelet" regime
in the early time steps of all four cases. Later, the burning regions are
almost completely classified as either “Burning Flamelet" regime or “Fine
Scale Mixing" regime. The relative contribution of the “Fine Scale Mixing"
regime increases with the higher dilution and the higher Reynolds number.
While the “Burning Flamelet" regime and the “Fine Scale Mixing" regime
possess roughly the same area in the last time step of the intermediate Re
case, the “Fine Scale Mixing" regime is the dominant regime in the final time
step of the high Re case.

The temporal evolution of the normalized area of the stoichiometric iso-
surface in the burning regions attributed to the “Large Scale Extinction"
regime and the “Broken Reaction Zones" regime is shown in fig. 5.16 b).
Consistent with the assumption of the regimes, the areas of both the “Large
Scale Extinction" regime and the “Broken Reaction Zones" regime are very
low in the burning regions, which is emphasised by the significantly lower
range of values on the ordinate. Consequently, the overall contributions of
the two regimes to the stoichiometric iso-surface in the burning regions in the
final time step ranges from 0% for the low dilution low Re case to only 7% in
the high Re case.

The burning area in the two regimes might be attributed to ongoing
extinction events in these time steps and is well correlated with the point in
time, as well as with the ratio of burning regions of the stoichiometric iso
surface to the overall stoichiometric iso surface, c.f. fig. 4.5b). The area of
the “Large Scale Extinction" regime is approximately the same for all three
high dilution cases, which can be attributed to the comparable value of the
Damköhler numbers. However, the temporal evolution of the area of the
“Broken Reaction Zones" shows a clear dependence on the Reynolds numbers.
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Premixed Combustion

In turbulent flames, various combustion regimes exist which pose di�erent
implications to the accompanying modeling procedure. For premixed combus-
tion, the so-called “Borghi-Peters-diagram” can be constructed [95]. Turbulent
scales, such as the Kolmogorov length, are compared to di�erent scales of the
flame. To test the underlying theory of the combustion diagram by means
of DNS, a set of simulations of spatially evolving jet flames situated in the
thin reaction zone regime was employed by Luca et al. [83]. To achieve a
meaningful comparison between the local turbulent and chemical scales, a pro-
cedure employing a space-filling decomposition to assure that all interactions
are being considered is required. In the following section, the DE analysis is
applied to the temperature fields of three premixed flame DNS whose details
will be outlined in the section below. Since the temperature can be interpreted
as a progress variable C in the context of premixed combustion, the gradient
trajectories used in forming a DE can be interpreted as the three-dimensional
physical coordinates a flamelet solution occupies in physical space. Then, DEs
can be regarded as groups of flamelets, which share the same start and end
points in space and the same temperature at the extremal points. In addition
to using the DE length ¸ To investigate the di�erence of the turbulent scales
obtained from scalar fields of reacting and non-reacting flows, the DE analysis
is additionally applied to passive scalar fields of a spatially evolving jet and
isotropic homogeneous turbulence.

6.0.1 Configurations
The DE analysis was applied to three DNS of spatially evolving methane jet
flames in the Bunsen burner configuration. Only a brief description is included
here since additional details are available in previous works where the same
dataset has been employed [83, 3]. The cases are statistically homogeneous
in the span-wise z direction and inhomogeneous in the stream-wise x and
cross-stream y direction. The jet Reynolds number is set to 5,600, 11,200 and
22,400 for the Low Re case, the Intermediate Re case and the High Re case,
respectively. The jet Reynolds number is varied by changing the slot width H

while keeping the jet bulk velocity U constant. In this fashion, the small scales
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6 Dissipation Element Analysis of Turbulent Premixed Combustion

Figure 6.1: Atomic oxygen mass fraction in the x ≠ y center plane of the three
DNS of the Bunsen burner configuration. The yellow colored regions correspond to
high values of the mass fraction, and brown colored regions to low values.

of turbulence and the Karlovitz number are kept approximately constant while
the integral scales increases with the Reynolds number. The DNS feature
lean premixed methane/air flames with an equivalence ratio of „ = 0.7 and
a temperature of the unburned mixture of Tu = 800K, which is common
to stationary gas turbines. The temperature and species concentrations in
the co-flow correspond to the equilibrium state of the burned mixture. The
laminar burning velocity is sL = 1.01ms≠1 and the temperature-gradient
based laminar flame thickness is ”L = 110µm. To illiustrate the configuration,
the atomic oxygen mass fraction in the x ≠ y center plane of the three DNS
is shown in Fig. 6.1.

The reactive, unsteady Navier-Stokes equations are solved in the low Mach
number limit [117], all transport properties are computed with a mixture-
average approach [10], and a skeletal methane mechanism with 16 species
and 72 reactions [82] is employed. The resolution ∆ = 20micron is such that
”L/∆ ≥ 6 and ∆/÷ < 2 at all times, where ÷ is the Kolmogorov scale. A
discussion of the resolution requirements and an assessment of the quality of
the solution is discussed by Luca et al. [83]. Additional details regarding the
spatially evolving DNS are summarized in Tab. 6.1.

The Bunsen burner configuration possesses several fundamental di�erences
to the isotropic turbulence, on which the DE analysis was most extensively
applied and for which the underlying theory was developed. To isolate e�ects
on the DE parameter statistics, three additional non-reactive DNS cases are
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Low Re Intermediate High Re
Flame Re Flame Flame

Jet Reynolds number Re0 5600 11200 22400
Karlovitz number Ka 23 21 21
Jet width H [mm] 1.2 2.4 4.8
Jet bulk velocity U [m/s] 100 100 100
Turbulence intensity u

Õ [m/s] 10.0 9.8 11.7
Integral length scale ¸t [mm] 0.54 0.67 1.1
Kolmogorov scale ÷ [µm] 23 25 25
Nx 1440 2880 5760
Ny 960 1920 3840
Nz 256 512 1024

Table 6.1: Simulation parameters of the reacting configurations investigated in
this chapter. The turbulence statistics are evaluated at the stream-wise position of
x/lF = 0.6.

included in this study. To investigate the di�erence between the turbulent
scalar fields in a reacting and a non-reacting flow, a DNS using the exact
configuration and inflow velocity field of the Low Re Flame was conducted
omitting the combustion and using the homogeneous material properties
of the unburned lean premixed air/methane mixture. A passive scalar was
added with boundary conditions of „ = 1 in the slot and „ = 0in the co-
flow. The Schmidt number of the passive scalar is set to Sc = 1. This
DNS is henceforth called the Inert Spatially Evolving case and additional
information is given in Tab. 6.1. To identify the e�ects of the spatially evolving
nature of the previously outlined cases on the scalar fields, DNS data of a
temporally evolving non-reacting jet, referred to as the Inert Temporally
Evolving case, are included in this investigation. The non-dimensional DNS
features a comparable Jet Reynolds number to the intermediate Re Flame of
Re0 = 9,850. Further details regarding the setup and numerical methods of
the Inert Temporally Evolving case can be found in in Sec. 4.2.1.

As a final point of reference for the analysis, a passive scalar field of a
DNS of forced isotropic turbulence with a Taylor-based Reynolds number of
Re⁄ = 88 is used, which is similar to those of the High Re Flame and the Inert
Temporally evolving case. The computational domain is a box with periodic
boundary conditions and a non-dimensional length of 2fi. The domain is
discretized with 5123 grid points. Statistical steadiness is ensured via the
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6 Dissipation Element Analysis of Turbulent Premixed Combustion

stochastic forcing scheme. Again, the subsequent investigation is based on
a passive scalar with a unity Schmidt number. Additional information can
be found in Gauding [57]. This case will be referred to as the Inert Isotropic
case in the following sections.

6.1 DE Analysis of the Temperature Fields in Premixed

Jet Flames

6.1.1 Marginal Statistics

The DE analysis is applied to the temperature fields of the reacting DNS in
two di�erent stream-wise regions. This is necessary as statistics are bound to
change as the flow is traversed in the stream-wise direction. The upstream-
region corresponds to a stream-wise region of x ¥ 0.27LF to x ¥ 0.54LF,
where LF is the mean flame length. In this region, the turbulence is already
su�ciently evolved for a DE analysis. Here, the two flame fronts are approxi-
mately parallel. The second region, henceforth called the downstream region,
is situated at x ¥ 0.54LF - 0.8LF, where the flame fronts show the first signs
of closing in on themselves. These two stream-wise regions are also chosen
for the DE analysis of the passive scalar in the Inert Spatially Evolving case
to achieve a meaningful comparison of the statistics in the spatially evolving
cases. In both the Inert Temporally evolving case and the Inert Isotropic case,
the entire passive scalar fields were subjected to DE analyses. In the free shear
flow cases, DEs whose extremal points are located in the irrotational regions
of the flows were omitted from the statistics. These regions were identified
using the turbulent/non-turbulent interface criterion of Bisset, Hunt, and
Rogers. [17].

The DE analysis for the reacting cases is shown in Fig. 6.2 for the x ≠ y

center plane of the temperature fields in the upstream region. On the top
part of the figure, the temperature fields are shown as well as a black contour
indicating the iso line of the temperature where the heat release peaks to
mark the region of the flame front. On the bottom part of Fig. 6.2, the DE
analysis is shown in a mirrored fashion. One observes that, compared to the
jet thickness in the cross-stream direction, the DEs of the Intemediate Re
Flame are a lot smaller in scale than in the Low Re Flame. In addition, the
various shapes and sizes of the DEs intersecting the flame front indicate a wide
range of local turbulent scales interacting with the flame. The anisotropic
nature of the scales becomes apparent when the spatial change in DE sizes is
considered. In both cases, the DE sizes grow moving away from the jet core
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6.1 DE Analysis of the Temperature Fields in Premixed Jet Flames

Figure 6.2: Top part: upstream x ≠ y center plane of the temperature fields. The
red colored regions correspond to high temperatures, blue color to low temperature
regions. The black contour indicates the iso-surface of the maximum heat release.
Bottom part: The mirrored corresponding DE analysis of the temperature. The
DEs are colored individually and encompassed in a black contour. Left: Low Re
Flame, right: Intermediate Re Flame.

and approaching the flame front.
As a reference, the cross-section of the DE analysis of the passive scalar

field in the Inert Isotropic case is shown in Fig. 6.3. One observes a wide
range of sizes and shapes of the DEs similar to the ones previously beheld in
the analysis of the jet flames in Figure 2. As expected, the isotropic nature of
the scalar field carries over to the distribution of the DEs with no apparent
preferential orientation of the DEs.

These qualitative observations will be quantified in the following section
via statistics of the DE parameters. First, the volume averaged values of
the DE parameters, the mean separation DE length ¸m, the mean DE scalar
di�erence ∆„m, or mean DE temperature di�erence ∆Tm for the reacting
cases, will be investigated as they provide the means of normalization in
the subsequent analysis. The mean separation length ¸m normalized with
the Kolmogorov micro-scale ÷ is shown in Fig. 6.4. The previously reportet
scaling of ¸m with ÷ holds true for the Inert Spatially Evolving case analyzed
here. Spanning a wide range of Reynolds numbers and three di�erent flow
configurations, the ratio of the two length scales comes to ¸m ¥ 30÷, which is
consistent with previous DE investigations of non-reacting flows. For the Inert
Spatially Evolving case, ¸m/÷ collapses in both upstream and downstream
regions. However, for the reacting cases, ¸m/÷ is approximately twice as large,
indicating larger turbulent length scales in the temperature field as compared
to the passive scalar field. The scaling with the Kolmogorov micro-scale is
not as evident as in the inert cases with ¸m ¥ 86÷ for the Low Re Flame and
¸m ¥ 62÷ the Intermediate Re Flame. However, this could be attributed to
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6 Dissipation Element Analysis of Turbulent Premixed Combustion

Figure 6.3: DE analysis of the passive scalar field in the Inert Isotropic case. The
DE are colored individually and encompassed in a black contour.
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Figure 6.4: Normalized mean DE length ¸m/÷. b): Normalized mean DE di�er-
ences ∆„m/∆„max and ∆Tm/∆Tmax. The blue, red and green diamonds correspond
to the Low Re Flame, Intermediate Re Flame and Inert Spatially Evolving case,
respectively. The solid symbols indicate the upstream region; the hollow, black
dashed symbols indicate the downstream region. The Inert Temporally Evolving
case and the Inert Isotropic case are indicated by the solid purple triangle and black
square, respectively. The abscissa position of the Inert Isotropic case was chosen
arbitrarily, as no jet Reynolds number exists.
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6.1 DE Analysis of the Temperature Fields in Premixed Jet Flames

the low Reynolds number in the Low Re Flame.
The higher values for, ¸m/÷ can be attributed largely to two e�ects. The

first e�ect is the dilatation resulting from the inherent di�erent densities
in the extremal points, not present in the passive scalar extremal points.
The di�erent densities cause a relative velocity between the extremal points,
which counteracts the drift velocity of the extremal points. Assuming the
lifetime of the DE in the Di�usive drift region to be of the order of the
Kolmogorov time ·÷, the dilatation causes ¸m to be enlarged significantly for
the premixed reacting cases, which display high values of ∆Tm and, therefore,
a large di�erence in density. A second e�ect not present in the non-reactive
cases is the non-unity Schmidt number Sc = ‹/D ¥ 0.7 of the temperature
fields in the reacting cases. To account for larger turbulent scales due to a
higher di�usion coe�cient, the Batchelor scale ⁄B = ÷Sc≠0.5 might be a more
suitable scaling length accounting for the larger normalized DE length, which
would lead to an approximately 20% smaller ratio. Overall, with the inherent
uncertainty left in estimating Kolmogorov scale and considering the vastly
di�erent configurations and range of Reynolds numbers the DE analysis is
applied to, these results indicates that the Kolmogorov scaling of ¸m applies to
non-premixed reacting flows as well. While there is only a slight di�erence of
¸m/÷ from the upstream to the downstream region for the Low Re Flame, the
ratio decreases for the Low Re Flame. The assumption of the “thin reaction
zones” is reflected in the value of the mean length in temperature fields of
¸m ¥ 10.1”L and ¸m ¥ 9.8”L for the Low Re Flame and the intermediate Re
Flame, respectively.

The mean scalar di�erence ∆„m and ∆Tm are shown in Figure 4b). Normal-
ization was achieved with the maximal possible scalar di�erence in the respec-
tive domains ∆„max and ∆Tmax. For the reacting cases, this is the temperature
di�erence between the burned and the unburned∆Tmax = Tb ≠ Tu = 1400 K.
The smallest ratio is seen in the Inert Temporally Evolving case followed
closely by the Inert Isotropic case. In comparison, the Inert Spatially Evolving
case displays larger scalar di�erences, which become slightly smaller as the
flow is traversed in the stream-wise direction. The scalar di�erences are by
far the largest in the temperature fields of the reacting cases in the upstream
regions. ∆Tm/∆Tmax decreases for both reacting cases significantly from the
upstream to the downstream region. Thereby, ∆Tm/∆Tmax of the downstream
region Low Re Flame almost equals that of the upstream region High Re case.

An important characteristic of the statistics of the separation length , is its
invariance toward changes in Reynolds numbers when normalized with the
mean length ¸

ú = ¸/¸m [127, 108, 53]. The probability density functions (PDF)
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6 Dissipation Element Analysis of Turbulent Premixed Combustion

of the normalized separation length P (¸ú) are shown in Fig. 6.5 in linear and
linear logarithmic scale. Figure. 6.5a) shows the PDF of the normalized DE
length for the three Inert cases. For the short elements, a linear increase of
the PDFs is observed. This linear increase is due to the di�usive drift of the
extremal points, which causes the annihilation of DEs due to the merging of
extremal points which are in close proximity of each other Wang and Peters
[127]. For these short elements, the PDFs show a perfect collapse.

After a maximum, an exponential decrease of the PDF for longer DEs is
observed, which is attributed to the cutting and connecting of the DEs by
turbulent eddies [127]. The exponential decrease of P (¸ú) is highlighted in
Fig. 6.5b) by the linear logarithmic scale. The motion of turbulent eddies
introduces new extremal points into the scalar fields altering the DE structure,
e�ectively cutting a DE. If the probability of the occurrence of the turbulence-
induced extremal point in the DE structure is independent of the location
within the DE, P (¸ú) will decrease exponentially for large ¸

ú. The slope of
the PDF in this representation indicates the cutting frequency, an inverse
of an eddy turnover time [124]. As previously observed, the Inert Isotropic
case displays the exponential decrease. This is expected, as the isotropic
nature of the case implies an eddy turnover time independent of the location
and, consequently, a constant cutting frequency. However, the exponential
decrease is also present in the PDFs of the Inert Temporally Evolving case and
Inert Spatially Evolving case, with one and two statistically inhomogeneous
directions, respectively. The slope of the exponential decrease of P (¸ú) is
approximately the same for all Inert cases, resulting in a collapse of the PDFs
in the range of scales dominated by random cutting and connecting range.
Only in the tails of the PDFs, small di�erences can be observed. The Inert
Isotropic case displays a range of normalized length scales comparable to that
of the Spatially Evolving case. The greatest separation of scales is seen in the
Inert Temporally Evolving case.

The PDFs for all spatially evolving cases for the upstream regions and
downstream regions are shown in Figs. 6.5c) and d). Again, the characteristic
linear increase in the PDFs for the di�usive drift range is observed for the
reacting and inert cases alike. The only di�erence in the characteristic shape of
the PDFs is found in the upstream region of the spatially evolving cases. Here,
the PDF of the Low Re Flame di�ers. While the PDFs of the Intermediate
Re Flame and the Non-Reactive collapse, an additional local maximum in
the Low Re Flame PDF is situated at ¸

ú ¥ 1.6. This second maximum is a
signature of a length scale induced at the nozzle that has not been su�ciently
mixed out at this streamwise location due to the limited level of turbulence
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Figure 6.5: PDFs of normalized separation length ¸
ú = ¸/¸m. Low Re Flame

(blue), Intermediate Re Flame (Red), Inert Spatially Evolving case (green). The
black line corresponds to the Inert Isotropic case and the purple to the Inert
Temporally Evolving case. a) and b): Inert Spatially Evolving case in the downstream
region, Inert Temporally Evolving case and Inert Isotropic case in linear and
linear logarithmic scales. c) and d): Upstream region and downstream region of
the spatially evolving jet cases in linear scales. e) and f): Upstream region and
downstream region of the spatially evolving jet cases plotted with semilogarithmic
scales.
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in this case. In the PDFs at the downstream region in Fig. 6.5, this initial
length scale in the PDF was mixed out and the PDF took the expected form.
Even though the Low Re and the Inert Spatially Evolving case share the same
initial Reynolds number, the absence of the local maximum in the upstream
region of the Spatially Evolving case is indicative of the fact that the passive
scalar reaches an equilibrium in the length scale distribution further upstream
of the nozzle, or in a temporal sense, faster than a reacting scalar, such as
the temperature.

Figs. 6.5e) and f) show the same PDFs in a linear logarithmic scale for
the upstream and downstream regions, respectively. This representation
highlights two distinctive characteristics. First, it shows the increasing scale
separation due to increasing Reynolds number. While the PDFs agree well
for the short DEs, the di�erences in the tails of the PDFs (long elements) are
apparent. The intermediate Re Flame displays the longest normalized DEs
in both regions, while the Low Re Flame displays the smallest separation
of length scales in the upstream position and the Inert Spatially Evolving
case in the downstream regions. While the PDF of the Non-Reactive case
shows hardly any di�erence in the two investigated region, the reacting cases
show a significantly wider separation of scales in the downstream region.
The non-reactive case displays an almost perfectly constant slope in both
regions. The reactive cases show a constant slope for intermediate length
comparable to the one observed in the Spatially Evolving case. For large ¸

ú,
the discrepancy from the constant slope in the PDF can be explained by DEs
that reach less turbulent regions where the cutting frequency is reduced due
to heat release and higher viscosity and can, therefore, be attributed to low
Reynolds number e�ects.

The invariance of the normalized DE length statistics toward changes
in Reynolds numbers previously first observed by Wang and Peters [127]
holds for the premixed flames. However, the same characteristic shape of
the PDFs of normalized length scales in the reacting scalars is surprising.
Traditional methods of obtaining turbulent scales in reacting flows, such as
spectra and structure functions, cannot be utilized to their fullest potential to
generate equivocal results regarding the e�ect, or lack thereof, of combustion
on turbulent scales due to the inherent high anisotropy and high intermittency
of the investigated reacting flows.

6.1.2 Joint Statistics

The second parameter characterizing DEs is the passive scalar di�erence ∆„

in the Spatial Evolving cases and ∆T in the premixed reacting cases. Its
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analysis is performed by means of the JPDF of the normalized DE length
¸

ú and the normalized scalar di�erence ∆„
ú, P (∆„

ú, ¸
ú). The JPDFs are

shown for the Spatially Evolving case for both the upstream and downstream
regions in Figs. 6.6a) and b). The maximum of the probability density is
located in the bottom left corners for small values of ¸

ú and ∆„
ú. This region

is characterized by the annihilation of short DEs due to the e�ect of the
drift of extremal points.In the center of the JPDFs, the region dominated by
the random cutting and reconnection of the DEs by turbulent eddies can be
observed. The bottom right corner region characterized by short elements and
large scalar di�erences corresponds to the so-called ’cli�’ structures in scalar
fields, cf. [2, 65]. These DEs characterize regions of high scalar gradients
followed by a gradual descent. The overall shapes of the JPDF in the two
stream-wise regions agree well. In addition to the increasing separation in
length scales from the upstream to the downstream region, already observed
in the marginal statistics in Figs. 6.5c) and d), the range of the values of the
normalized scalar di�erence increases as the flow is traversed in the stream-
wise direction. The JPDF of the Inert Isotropic case in Fig. 6.6c) qualitatively
shows the same shape as the one obtained from the Spatially Evolving case
with a dominant maximum for small ¸

ú and ∆„
ú in the drift region. Only a

slight di�erence for intermediate ¸
ú and small ∆„

ú can be observed, where
the Inert Isotropic case shows a higher probability density. While the range
of length scale values is similar, the Inert Isotropic case JPDF displays a
larger range of values of ∆„

ú. Just as with the length scale separation in
Figure 6.5f), the Inert Temporally Evolving case shows the largest range of
values for ∆„

ú.

The normalization of DE parameters in the JPDF is also defined in a
di�erent fashion in order to compare DE scales with the characteristic flame
thickness. In Fig. 6.7, the normalization of ¸ is performed with the lami-
nar flame thickness ”L (based on the temperature gradient) to achieve the
originally proposed comparison of turbulent and flame scales ¸

Õ = ¸/”L. The
DE temperature di�erence is normalized with the temperature di�erence of
the burned and unburned mixtures ∆T

Õ = ∆T/(Tb ≠ Tu). The maximum
normalized value of ∆T

Õ = 1 corresponds to a DE whose gradient trajectories
cross all the way from the unburned, through the premixed flame front to the
fully burned. In Figs. 6.7a) and b), the normalized JPDFs in the upstream
region of the Low Re Flame and the Intermediate Re Flame are shown. For
both cases, the maximum of the probability density is located in the right
bottom corner for large ∆T

Õ and small ¸
Õ, placing large volumes of the flow in

the ’cli�’ structure regime. This ’cli�’ structure is imposed by the premixed
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Figure 6.7: JPDFs of the normalized separation length ¸/”F and the normalized
scalar di�erence ∆T/(Tb≠Tu). a): Low Re Flame upstream region. b): Intermediate
Re Flame upstream region. c): Low Re Flame downstream region. d): Intermediate
Re Flame downstream region. e): Low Re Flame downstream region conditioned
on reacting DEs. f): Intermediate Re Flame downstream region conditioned on
reacting DEs.
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flame structure on the temperature field, which cannot be fully mixed out
by turbulent mixing and results in distinctly di�erent shape of the JPDF
as compared to the Spatially Evolving cases in Figure 6.6. Further, a local
maximum is found in the di�usive drift region for small ∆T

Õ and small ¸
Õ

where approximately the global maximum is found for the Spatially Evolving
cases. For scalar di�erences ∆T < 0.5, the JPDFs resemble vaguely those of
the non-reacting cases.

The small length scales remain constant while the integral scales increase
with the Reynolds number, as intended in the configuration. The assumption
of the regime of the“thin reaction zone” is reflected by the JPDFs as, while
being on average larger than the flame thickness ”m, the vast majority of the
DEs are of a comparable length to the flame thickness. While not reaching all
the way from the unburned to the burned, the flame structure remains largely
intact with high probabilities of traversing large temperature di�erences before
turbulence induced extremal points interrupting the laminar flame structure.
This is highly consistent with the conditions of the “thin reaction zones”
where turbulent mixing interferes with the preheating zone dynamics while
leaving the inner reaction zone una�ected, cf. Peters [95]. The JPDFs of the
downstream region of the two reacting cases are shown in Figs. 6.7c) and
d). Again, a noticeable change in the stream-wise direction can be observed
for both cases. While qualitatively resembling the JPDF of the upstream
region, the JPDFs show a clear increase in length scales, as well as a further
concentration of probability density in the global and local maximum.

In Figs. 6.7e) and f), the JPDF in the downstream region of the Low Re
and Intermediate Re Flame is conditioned on DEs which cross the flame
front, omitting all non-reactive DEs from the statistics. The absence of the
local maximum for small ∆T

Õ and small ¸
Õ further indicates that this region

corresponds to the core of the jet flow, as the similarity with the shape of
the Spatially Evolving cases in Fig. 6.6 already suggested. Both conditioned
JPDFs look strikingly similar with regard to the range of values of the two
DE parameters.

A similar conditioning of the DE statistics in reacting flows was applied to
the JPDF of the mixture fraction field in a non-premixed jet in Gauding et al.
[58], where only DEs crossing the iso-surface of the stoichiometric mixture Z

where retained in the statistics. While the scalar di�erence ∆Z was higher in
the reacting region of the non-premixed and ramp structures more probable,
it was shown that this is caused by poor mixing in these regions. A drastic
change in the shape of the JPDF with a clear imprint of the flame front, as
displayed in Fig. 6.7, was not observed.
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Figure 6.8: Kullback-Leibler divergence of the JPDFs of the normalized DE pa-
rameters of the various cases with reference to the JPDF obtained from the Inert
Isotropic case. b): Kullback-Leibler divergence of the marginal PDFs of the nor-
malized DE length with reference to the Inert Isotropic case. The blue, red, and
green diamonds correspond to the Low Re Flame, Intermediate Re Flame, and
Spatially Evolving case, respectively. The solid symbols indicate the upstream
region; the hollow and black dashed symbols indicate the downstream region. The
Inert Temporally Evolving case is indicated by the solid purple triangle.
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6 Dissipation Element Analysis of Turbulent Premixed Combustion

To achieve a quantitative comparison of the joint statistics of the normal-
ized DE parameter statistics, the Kullback-Leibler divergence DKL [77] was
computed. The Kullback- Leibler divergence, applied to the joint statistics
in this study, measures the logarithmic di�erence between the two JPDF of
the normalized DE parameters P1(∆„

ú, ¸
ú) and P2(∆„

ú, ¸
ú) with reference

to the latter and is defined as

DKL(P1||P2) =
Œ⁄⁄

0

P1(∆„
ú, ¸

ú) log P2(∆„
ú, ¸

ú)
P1(∆„ú, ¸ú)d∆„

úd¸
ú , (6.1)

where two identical JPDF P1 = p2 would yield DKL(P1||P2) = 0 The Kull-
back?Leibler divergence between the Inert Isotropic case and the various other
cases is shown in Fig. 6.8a). As expected from Fig. 6.6, the Kullback-Leibler
divergence yields low values for the non-reacting cases indicating good agree-
ment between the JPDFs and the JPDF of the Inert Isotropic case. For
the Spatially Evolving case, the divergence decreases from the upstream to
the downstream region, becoming almost identical to that of the isotropic
turbulence. The premixed reacting cases show DKL(P1||Piso) values at least
an order of magnitude higher. Here, the trend with regard to the spatial
change is reversed as the divergence increases from the upstream to the down-
stream region. As a point of reference, the Kullback-Leibler divergences of
the marginal PDF of the DE length is shown in Fig. 6.8b). DKL shows very
low values for the marginal PDFs, regardless of the reactive or non-reactive
nature of the case or stream-wise region. This further points to the DE scalar
di�erence, which is almost exclusively a�ected by changes in configuration or
the reactive nature of the scalar, while the normalized length scales remain
unchanged.

The Kullback-Leibler divergence of the JPDFs of the upstream and down-
stream regions of the spatially evolving cases yields values of
0.1 < DKL(Pi,,downstream||Pi,upstream) < 0.2 regardless of the reacting or non-
reacting nature of the configuration, which indicates that the change in joint
statistics is significantly more influenced by the reactive nature of the flames
than the stream-wise region.

Finally, the normalized mean DE scalar di�erence conditioned on the
normalized DE length È∆„

ú|¸úÍ and È∆T
ú|¸úÍ is investigated in Fig. 6.9.

This conditional mean resembles a conditioned first-order moment of the
respective scalar fields. For isotropic turbulence È∆„

ú|¸úÍ was found to scale
with Kolmogorov’s 1/3 power law, cf. Wang and Peters [127] and Wang [125].
This scaling is reproduced with the Inert Isotropic case, which follows the
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Figure 6.9: Normalized mean DE scalar di�erence conditioned on the normalized
DE length. The blue, red, and green lines indicate the Low Re Flame, Intermediate
Re Flame, and Spatially Evolving case, respectively. The black line corresponds to
the Inert Isotropic turbulence and the purple line to the Inert Temporally Evolving
case. The dashed black line indicates Kolmogorov’s 1/3 power law scaling.
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scaling indicated by the dashed black line for large and intermediate lengths.
The Inert Spatially Evolving case and the Inert Temporally Evolving case
both show a clear scaling of È∆„

ú|¸úÍ as well. However, this scaling is with
an exponent of approximately 2/3, twice as high as the one obtained from the
Inert Isotropic case. The perfect collapse of the two means in combination
with the similarities of the JPDFs in Fig. 6.6 seems to indicate that the
di�erences between DE statistics of the spatial or temporal configuration
is negligible. The di�erence in the scaling exponent can be attributed to
the mean shear present in these flow configurations, which is absent in the
Inert Isotropic case. The conditional means of the Low Re Flame and the
Intermediate Re Flame collapse perfectly for the short and intermediate
separation distances. Di�erences can only be observed for the large elements.
However, both reacting cases display only a scaling for short elements, which
ceases for DEs ¸

ú
> 1. For longer elements, the two DE parameters are

uncorrelated.

6.2 Gradient Trajectory Analysis of the Burning Rate

in Turbulent Premixed Jet Flames

The fundamental impact of turbulence on the flame speed in premixed flames
is twofold and varies by the degree of overlap between the turbulence and
the flame time and spatial scales. The overall rate of fuel consumption
can increase due to the turbulently increased flame surface and the direct
influence of fine scale turbulent mixing on the flame structure. The degree of
interaction can be categorized by combustion regimes which are summarized
in the “Borghi-Peters" diagram [95] introduced in Chapter 2.2.1. If the size
of the smallest turbulent scales, characterized by the Kolmogorov scale ÷,
significantly exceeds the flame thickness ”L, the increase of the flame speed
due to turbulence is entirely related to the increase in the flame surface area.
However, for ÷ < ”L, the first mechanism is superimposed on the second and
modifications to the flame speed might be related to modifications of the
imbalance between di�usion and reaction in the flame layers.

This combustion regime has been investigated in a number of experimental
and numerical works [45, 4, 102, 122, 61, 32, 44, 111, 31, 30]. In addition, the
dataset used in the present paper was used by Luca et al. [83] and Antonio
et al. [3] to study the e�ects of an increase of the integral scale in the thin
reaction zone regime. In particular, Luca et al. [83] focused on the mechanisms
of flame surface production and destruction, while Antonio et al. [3] concluded
that the observed enhanced turbulent flame speed could not be fully attributed
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to the increase in flame surface, but a thickening of the inner reaction zone
led to an additional increase in fuel consumption as well. Consequently, the
flame speed depends to a significant degree on the local structure of the
premixed flame which is analysed in detail in the present paper. In particular,
the combustion process is investigated along gradient trajectories and the
balance between the e�ects of turbulence on the local reaction rates and on
the topology of the reactive scalar fields is assessed.

While traditional one-point statistics evaluated at the flame surface perform
well in the context of very small flame thicknesses ÷ ∫ ”L, di�culties might
arise when the entire flame structure, characterized by a finite significant
thickness compared to the turbulence scale, needs to be analyzed. To overcome
this challenge faced in the thin reaction zones regime, a method of obtaining
statistics in a meaningful frame of reference is required, which additionally
takes the entire local flame structure into account.

DEs can be described by two parameters, namely the Euclidean distance
between their extremal points ¸ and the scalar di�erence in these points
∆„. This parameterization helps to significantly decrease the complexity of
the complicated local scalar structure and enables an intuitive analysis. In
addition, statistics of quantities of interest, such as gradients and reaction
rates, can be conditioned on the dissipation element parameters, providing a
link between the combustion process in the flame and the multi-scale structure
of the turbulent flow field.

In this work, the DE analysis is applied to the temperature fields of three
premixed flame DNS cases. Since the temperature can be interpreted as
a progress variable C in the context of premixed combustion, the gradient
trajectories used in forming a DE can be interpreted as the three-dimensional
physical coordinates a flamelet solution occupies in physical space. Then, DEs
can be regarded as groups of flamelets, which share the same start and end
points in space and the same temperature at the extremal points. In addition
to using the DE length ¸ to achieve the traditional comparison of turbulent
length scales and flame scales not only globally but also locally, the DE scalar
di�erence ∆T provides additional insight as well. As premixed flames are
structures which are dominated by the imbalance of di�usive transport and
reactions, a turbulence induced extremal point in the progress variable field
represents a forceful end to this structure as any di�usive flux in an extremal
point is by definition J = ≠DCÒC = 0. Therefore, ∆T represents the
maximum distance in temperature space over which a di�usively dominated
flame structure can exist before being terminated by turbulent advection.

First, the gradient trajectories of the temperature field are investigated in
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6 Dissipation Element Analysis of Turbulent Premixed Combustion

Figure 6.10: The T = 1800K iso-surface in the stream-wise regions investigated.
The stream-wise direction of the flow is from bottom-left to top-right. The Low Re
case, Intermediate case Re, and High Re case are shown from left to right.

detail and the impact of the DE parameters on the structure of the temperature
field surrounding the flame front is investigated. Second, the correlation of
meaningful reacting scalars and source terms with the DE parameters are
investigated. A detailed examination of the reacting scalar structure in the
preheating and inner reacting zone is conducted and directly compared to
a laminar flamelet and a flamelet model utilizing the temperature as the
progress variable. Finally, the implications of the alterations to the flame
structure due to turbulence are quantified and related to the flame speed of
the entire local flame topology.

6.2.1 Flame Structure Analysis

To evaluate the impact of the various turbulent scales on the flame structure,
the focus lies on gradient trajectories and DEs crossing the flame front. The
flame front is defined here as the temperature iso-surface of T� = 1800K,
which constitutes the temperature of the maximum heat release in the laminar
flamelet solution matching the boundary conditions of the DNS cases. The
following analysis is performed for all three cases at the stream-wise position
x/lF = 0.6, where lF is the mean flame length. At this stream-wise location,
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Figure 6.11: a): Mean temperature conditioned on the arc-length distance to the
flame surface for ( ): the Low Re case, ( ): the Intermediate Re case and ( ):
the High Re case. The black dashed line indicates the laminar flamelet solution.
b) Mean temperature additionally conditioned on the normalized scalar di�erence.
The solid and the dashed lines correspond to the Low Re case and the intermediate
Re case, respectively.

the flame and turbulence are fully developed. The steam-wise extend of the
investigated section for all three cases is 2H. The highly turbulent nature of
the combustion is illustrated by the iso-surface of T = 1800K, corresponding
to the peak heat release and fuel consumption rate in the one dimensional
planar flame, shown in Fig. 6.10 for the investigated stream-wise position in
the three cases.

As the tracing of gradient trajectories can be interpreted as moving in the
normal direction from each scalar iso-surface to the next, gradient trajectories
represent the shortest possible path through the flame structure. This can
be exploited to compare an otherwise highly complex and convoluted three-
dimensional flame structure to a one-dimensional object such as the flamelet.
To this end, the mean temperature ÈT Í, conditioned on the arc-length distance
s of the gradient trajectories starting at the flame surface, is shown for the
three cases in Fig. 6.11 a). Negative values s < 0 correspond to the preheating
zone of the flame, while positive values s > 0 indicate the arc-length distance
traveled from the flame front into the oxidation zone. Compared to the
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6 Dissipation Element Analysis of Turbulent Premixed Combustion

laminar flamelet, all three DNS cases display the temperature structure
expected in the thin reaction zones regime. In the preheating zone, ÈT Í is
clearly elevated above the flamelet values indicating a thickening due to the
turbulent transport of heat characteristic for this regime. On the contrary,
the conditional mean ÈT Í is close to the laminar flamelet solution, for s ¥ 0.
Finally, the mean temperature in the oxidation layer stays below that of the
flamelet solution but converges to it for large s. With this global statistics,
only a slight influence of the Reynolds number can be observed. In Fig. 6.11
b), the mean temperature is additionally conditioned on the normalized DE
scalar di�erence ∆T

ú = ∆T/(Tb ≠ Tu). Values of ∆T
ú ¥ 1 represent DEs

spanning from the burned to the unburned regions while ∆T
ú ¥ 0 indicates

DEs that terminate in extremal points at temperatures close to T = 1800K.
It can be observed that ∆T

ú is clearly linked to an increased temperature
in the preheating zone for a given arc-length distance from the flame, which
correspond to a local thickening of the flame structure. For small ∆T

ú, the
oxidation zone is notably a�ected as well. Another important e�ect observed
is the decrease of the gradients of the mean temperature close to the flame
front.

The e�ect is not limited to the mean temperature. The joint probability
density function (JPDF) of the normalized temperature gradient ÒT

ú =
ÒT/ÒTfl(1800K), with ÒTfl(1800K) being the temperature gradient of the
unperturbed laminar flame, and the normalized arc-length distance s

ú = s/”F
is shown in Fig. 6.12. Additionally, the JPDF P (sú, ÒT

ú) is conditioned on
being part of dissipation elements with large scalar di�erences (∆T

ú
> 0.8),

intermediate scalar di�erences (0.8 > ∆T
ú

> 0.3) and small scalar di�erences
(0.3 > ∆T

ú). For the large scalar di�erences, the regions of high probability
density are situated around the laminar flamelet solution. Small di�erences
can only be observed in the preheating regions. However, for the intermediate
and the small scalar di�erences, the probability of reaching the values of ÒTfl
in the inner reaction is close to zero. This indicates that, for all but the
largest scalar di�erences, the entire temperature gradient structure in the
inner reaction zone is altered and significantly lower gradients are present
locally. In addition, the analysis show that the lower gradients in the inner
reaction layer are linked to the presence of extremal points, i.e., a temperature
minimum in the preheat zone side and/or a temperature maximum in the
oxidation side of the flame, relatively close to the flame surface, therefore
to the interruption of the flamelet structure by turbulence and not by the
thickening of the entire flamelet itself.

The implications of the findings of Figs. 6.11 and 6.12 for the local structure
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the normalized arc-length distance s/”F in the High Re case conditioned on the
normalized scalar di�erence ∆T
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0
s

T

Figure 6.13: Schematic illustration of the impact of the scalar structure as indi-
cated by DEs. The solid black lines indicate exemplary gradient trajectories of DEs.
The black dash-dotted lines represent possible adjacent gradient trajectories. The
grey region indicates temperature regions of high heat release. The encircled red
plus and blue minus signs indicate the maxima and minima, respectively. The solid
blue line and the dashed black line are the conditional mean temperature and the
flamelet, already shown Fig. 6.11.
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of the flame front and potential consequences for the flame speed are illustrated
in Fig. 6.13. The introduction of extremal points close to the flame front
leads to a decrease in the temperature gradients. Consequently, the gradient
trajectories traverse regions of high heat release for a longer distance. If ∆T

ú

is low enough, not only the preheat zone is significantly thickened but the
inner reaction zone as well. As shown by Antonio et al. [3] for the same DNS
dataset, the thickened reaction zone contributes to an increased consumption
of fuel and therefore an increase in flame speed. The present analysis links
the thickening to the penetration of turbulent eddies, and to the introduction
of extremal points, near and inside the inner reaction layer.

A second observation is linked to the nature of extremal points. By defini-
tion, the temperature in the immediate vicinity of these points will only rise,
for a minimum, or fall for a maximum. Therefore, for a gradient trajectory
that crosses the flame surface and is fully contained in the reaction zone, like
the shortest black solid line in Fig. 6.13, the adjacent trajectories will also fall
inside the reaction zone (dash-dotted lines in the figure), contributing again
to the thickening of the reaction layer. For the case of very small ∆T

ú, when
the extremal points are exclusively situated in the inner reaction zone, the
local topology actually resembles that of the broken reaction-zone regime.

6.2.2 Correlation between Reacting Scalars and DE Parameters

While the DE scalar di�erence of ∆T is linked to the thickening of the
temperature profile across the flame front, the second DE parameter, the
length ¸, can be employed to gain additional insight in the local flame structure.
To compare the turbulent length scales and the flame scales, the local value
of ¸ is compared to an adequate length scale provided by a laminar one-
dimensional laminar flame (flamelet) at the same condition of the DNS. The
local flamelet length scale is defined as

¸fl = |sfl(Tmax) ≠ sfl(Tmin)| , (6.2)

with sfl(Tmax) and sfl(Tmin) being the physical coordinates of the laminar
flamelet where the temperatures match those in the minimum and the max-
imum of the DE, respectively. Consequently, ¸ > ¸fl indicates a thickened
section of the flame and ¸ < ¸fl a compressed section steeper than a laminar
flamelet solution. The JPDF of the normalized DE parameter ¸

ú = ¸/¸fl and
∆T

ú is shown in Fig. 6.14. The JPDF is weighted with the intersection area
of the individual DEs and the flame front. As expected from the universality
of the normalized DE length statistics [41], the ¸

ú distribution is very similar.
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ú and ¸
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weighted with the intersection area of the individual DE and the flame surface. a):
The Low Re case, b): the Intermediate Re case and c): the High Re case.

It can be observed that the probability of encountering thickened regions is
higher than that of turbulently compressed regions. The most substantial
di�erence of P (¸ú, ∆T

ú) between the cases lies in the increasing probability
density of small ∆T

ú with increasing Reynolds number.
To evaluate the influence of the DE parameters on other important reacting

scalars besides the temperature close to the flame front, the mean mass
fractions ÈY–Í of selected species are conditioned on the temperature of their
respective maximum value in the laminar flamelet max Y–,fl and the previously
introduced normalized DE parameters ¸

ú and ∆T
ú. The conditional mean is

shown for O and OH, two species which exist on very short time scales due to
their high reactivity, in Figs. 6.15a) and b). A clear correlation with ¸

ú can be
observed with values lower than the laminar flamelet for ¸

ú
< 1. However, the

maximum joint probability of ¸
ú and ∆T

ú are situated in regions of ÈY ú
–

Í ¥ 1,
which explains the good agreement of the DNS data with the flamelet model
reported by Antonio et al. [3]. The influence of ∆T

ú is small for O and OH.
However, for species which are formed in the inner reaction zone and exist on
longer time scales, such as CO, the scalar di�erence has a distinct influence in
the conditional mean mass fraction, as seen in Fig. 6.15c). These observations
are indicative of a limited impact of the thickened flame structure on the
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combustion chemistry.
Analogous to the conditioned normalized mass fraction, the methane source

term ÈÊ̇ú
CH4

Í = ÈÊ̇CH4Í/ min Ê̇CH4,fl is conditioned on the normalized DE
parameters in Fig. 6.15d). This quantity is important because its volume
integral is proportional to the turbulent flame speed [95]. While being slightly
lower than the laminar flamelet value, Ê̇CH4 is significantly a�ected for very
low values of ∆T

ú and very large values of ¸
ú.

While the mean temperature conditioned on the arc-length distance to the
flame front in Fig. 6.11 revealed that the temperature profile is thickened with
decreasing ∆T

ú, it remains unclear if the profiles of other reacting scalars
are thickened to the same degree. To not limit the investigation to a single
iso-surface and take full advantage of the gradient trajectories, selected mean
quantities are conditioned on the arc-length distance to the flame front s

and the scalar di�erence ∆T
ú. This is analogous to the procedure for mean

temperature ÈT |s, ∆T
úÍ.

In experiments, formaldehyde CH2O is often used to identify the preheat
zone [13, 111, 44]. ÈYCH2O|s, ∆T

úÍ is shown in Fig. 6.16a). The conditional
mean shows the clear increase in the preheat zone with decreasing ∆T

ú,
highlighting the significant thickening of the preheat zone. In Fig. 6.16b),
ÈYO|s, ∆T

úÍ is shown, as this species usually does not exist in the preheat
zone. For ∆T

ú
< 0.4, significant values of the ÈYOÍ are observed several ”F

ahead of the flame. From this, it can be concluded that even species which
are not observed in the preheat zone of the laminar flame are transported
from the inner reactive layer to the preheat zone by turbulence. In addition,
it is observed that in the oxidation layer, the oxygen radical requires a long
distance to converge to the flamelet value, regardless of the conditioning with
respect to ∆T

ú.
The mean mass fraction of O is conditioned on s and ¸

ú in Fig. 6.16c). This
figure demonstrates that ¸

ú is not linked to the flame thickening in the preheat
zone. However, it can be observed that for ¸ > 9¸fl, i.e., the local turbulent
scales being almost an order of magnitude larger than the flame scale, the
ÈOÍ perfectly matches the laminar flamelet solution. This suggests that the
presence of a local minimum in the oxidation layer, even spatially located
very far from the flame surface, can significantly modify the final stages of
combustion toward the fully burned products. Finally, the conditional means
of the fuel reaction rate ÈÊ̇CH4Í are shown in Fig. 6.17 a). The significant
thickening observed for the temperature layer and the species is also reflected
in the reaction rate and the same correlation with the conditioning variable
∆T

ú is observed.
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Figure 6.15: Selected mean normalized mass fractions ÈY ú
– Í = ÈY–Í/ max Y–,fl

and normalized CH4 source term ÈÊ̇ú
CH4 Í = ÈÊ̇CH4 Í/ min Ê̇CH4,fl conditioned on the

normalized DE parameters and the temperature of their respective maximum value
in the laminar flamelet solution in the High Re case. The black crosses indicate the
values of the mean DE parameters.
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Figure 6.17: Mean CH4 source term ÈÊ̇CH4 Í in the High Re case conditioned on
arc-length distance s to the flame surface and scalar di�erence ∆T

ú. The black
dashed line indicates the laminar flamelet solution. The solid lines indicate the DNS
values and the colored dashed lines show the result of the flamelet progress variable
model ÈÊ̇Õ

CH4 Í. The black dashed line indicates the laminar flamelet solution.

The potential implications for modeling are investigated by computing
the fuel reaction rate using only the temperature T (s) along the gradient
trajectories and a flamelet model:

Ê̇
Õ
CH4(s) = Ê̇CH4,fl(T (s)) , (6.3)

with Ê̇CH4,fl(T (s)) being the value in the laminar flamelet solution for a given
temperature.

A comparison between the DNS values of the reaction rate and that com-
puted with the flamelet is also shown in Figs. 6.17 a) and b). The extent of
the thickening is reproduced by the flamelet progress variable model ÈÊ̇Õ

CH4
Í

as well. However, close to the flame front s = 0, ÈÊ̇Õ
CH4

Í is larger than the
source term obtained from the DNS cases.

6.2.3 Integral Statistics

In the previous sections, it was established that the DE parameters, foremost
the decrease of the scalar di�erence ∆T of DEs crossing the flame front, have
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6.2 Gradient Trajectory Analysis of the Burning Rate

a profound e�ect on the local flame structure in the form of a thickening
of both preheat and inner reaction zones. To quantify the increase in the
overall fuel consumption by the thickening e�ect, the integrated reaction rate
œ̇ along gradient trajectories is calculated as

œ̇ =
send⁄

sstart

≠Ê̇CH4(s)ds (6.4)

with sstart being the arc-length distance to the minimum and maximum. The
integrated fuel consumption œ̇L in a laminar flame una�ected by the influence
of turbulence can be calculated by integrating the laminar flamelet solution
in space across the same interval:

œ̇L =
send⁄

sstart

≠Ê̇CH4,1D(s)ds (6.5)

where ≠Ê̇CH4,1D(s) is the fuel consumption rate in the laminar flamelet in
physical space. Therefore, the consumption coe�cient Is = œ̇/œ̇L can be
defined to indicate increased fuel consumption of the local flame structure
(Is > 1) or decreased fuel consumption (Is < 1) compared to an unthickened
fully laminar flame front.

The mean consumption coe�cient ÈIsÍ, conditioned on the DE parameters
is shown in Fig. 6.18 a). Small values of ∆T

ú result in large integrated
consumption of fuel in the corresponding flame structure, with the exception
of very small values of the di�erence (∆T

ú
< 0.3) for which ÈIsÍ decreases

due to a lower value. For almost all values of the DE parameters, ÈIsÍ is
larger than one, while it converges to unity for large ∆T

ú and very short ¸.
Combined with the influence of the Reynolds number on the DE parameters
observed in Fig. 6.14, i.e., an increasing probability of small ∆T

ú, this analysis
of ÈIsÍ is consistent with the increased total fuel consumption and increased
turbulent flame speed with the Reynolds number observed by Antonio et al.
[3].

To quantify the prediction for the consumption of the flamelet model using
the temperature along the gradient trajectories T (s), cf. Fig. 6.17 b), the
modeled integrated fuel consumption œ̇T is calculated analogously to œ̇s

œ̇T =
send⁄

sstart

≠Ê̇CH4,fl(T (s))ds, (6.6)
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Figure 6.18: a): ÈIsÍ conditioned on the normalized DE parameters ¸/”F and
∆T/(Tb ≠ Tb) in the High Re case. b): Instantaneous CH4 source term Ê̇CH4 (T )
for two exemplary DEs (solid lines) and the laminar flamelet solution (black dashed
line). c): ÈIT Í conditioned on ¸/”F and ∆T/(Tb ≠ Tb) in the High Re case.
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, but using the flamelet mapping Ê̇CH4,fl(T (s)) to compute the local rate. A
model consumption coe�cient can be formed utilizing the modeled integrated
fuel consumption IT = œ̇/œ̇T . The implications of di�erent values for IT

are illustrated in Fig. 6.18 b), where two exemplary gradient trajectories are
shown. The purple line corresponds to a DE with IT > 1, as the Ê̇CH4,fl stays
below the laminar flamelet value for the entire range of temperatures. The
red line corresponds to a DE with IT < 1. Therefore, ÈIT Í can be interpreted
as an integrated e�ciency factor, relating the actual fuel consumption to the
theoretically achievable fuel consumption in the flamelet.

Finally, the mean of the model consumption coe�cient ÈIT Í, conditioned
on the DE parameters, is shown in Fig. 6.18 c). It is observed that largely
ÈIT Í < 1, and equivalently the integrated fuel consumption remain below that
of the flamelet progress variable model. In particular, for small values of ∆T

ú

it is significantly smaller than one.
The following overall picture emerges from this analysis. For small values

of ∆T
ú, which correspond to thickened flame regions, ÈIT Í drops to values

significantly smaller than one, or equivalently the local fuel consumption rate
in the DNS is smaller than the corresponding flamelet value. However, the
large values of ÈIsÍ in the same regions indicate that the decrease of the local
reaction rate with respect to the laminar flame is more than compensated by
the thickening of the reaction layer, with the final result of an increase of the
turbulent consumption speed.

111



6 Dissipation Element Analysis of Turbulent Premixed Combustion

112



7 Gradient Trajectory Statistics Based

Modelling Applications

In this chapter, the insights gained through the gradient trajectory analysis
of turbulent combustion in the previous chapters will be applied to two
di�erent aspects of combustion modelling. First, a systematic approach
to regime prediction in simulations of engineering applications using DE
parameter statistics is presented and applied. Second, a new approach to
modelling the mixture fraction probability density function is developed. Here,
gradient trajectories provide the means for considering additional important
e�ects in non-premixed combustion such as fully laminar regions and external
intermittency in turbulent/non-turbulent interface regions.

7.1 Prediction of Non-Premixed Combustion Regimes

In turbulent combustion, the various existing regimes exist pose implications
on the accompanying modelling procedure. In essence, turbulent scales are
compared to di�erent scales of the flame to determine the turbulence-flame
interaction [95]. Most conventional operation points of diesel engines fall into
the flamelet regime, where an ensemble of thin laminar flame structures is
attached to the flame surface, which is wrinkled by turbulence. However,
in certain operation points, the separation of scales between turbulence and
combustions ceases to exist due to the low temperatures and the consequently
longer chemical time scales or high local turbulence intensities where a flamelet
assumption is expected to be less accurate [16]. While current state of
the art computational fluid dynamics (CFD) simulations are capable of
producing satisfactory statistical results for passenger car internal combustion
engines (ICEs) with reasonable computational costs, the inherent modelling
assumptions regarding both the turbulence and the chemistry limits the
predictiveness of these simulations. This is especially true for low load
operation points or comparably slow chemical processes, such as the soot
formation process, where scale interactions between turbulence and combustion
cannot be considered. These scale interactions have to be investigated in very
costly direct numerical simulations (DNS), where all turbulence and flame
scales are resolved.

113



7 Gradient Trajectory Statistics Based Modelling Applications

The correlation between DE parameters and the dynamics of reacting
scalars was investigated by means of 3D-DNS of non-premixed methane jet
flames featuring detailed finite rate chemistry in chapter 4.3. The idealised
configuration of the DNS of the temporally evolving planar jet flame was chosen
for the ease and precision of obtaining statistics, but more importantly, to
realise the highest possible Reynolds number with the available computational
resources. While a DNS of a real ICE is highly desirable, the computational
costs to generate any statistically significant sample size for a single operation
point would be astronomical and unfeasible to conduct on any super computer
of the current generation or in the foreseeable future.

To apply the insight of the scale interaction gained through the DE analysis
of the DNS of the jet flames onto real world combustion applications, a
modelling framework is proposed. Statistics of normalized DE parameters
are modelled by employing adapted stochastic transport equations originally
developed for isotropic turbulence by Wang and Peters [98, 128]. Scaling
laws are exploited for the modelling of the mean DE parameters in the CFD
simulations of a passenger car direct injection (DI) diesel engine. The DE
statistics are then used for a spatial and temporal classification of the non-
premixed combustion regimes in the CFD. The CFD simulations feature a
wide range of operation points, including variations in injection timings, the
intake pressure and the exhaust gas recirculation.

The modelling framework yields plausible results with regards to the overall
trends in the operation parameters on non-premixed combustion regimes as
well as the location and time of critical scale interactions in the DI diesel
combustion process. It is found that the flamelet regime is indeed the overall
dominant form of combustion in all investigated operation points, but there are
periods in the early injection process where the scale interaction dominates.

7.1.1 Modelling Framework

In chapter 5, the DE analysis was applied to the mixture fraction field Z,
as it provides the most meaningful scales for non-premixed combustion. In
this context, a DE can be interpreted as a grouping of flamlets which share
the same start and end points in space and therefore, the same boundary
conditions. Using the DE parameters, four distinct regimes combustion
regimes can be identified cf. sec. 5.2. The first regime boundary divides
the combustion regimes into burning and extinction regimes. Here, the DE
gradient g = ∆Z/¸ is used analogously to the scalar dissipation rate. In the

114



7.1 Prediction of Non-Premixed Combustion Regimes

limit of small DEs, the following relation is true:

lim
¸æ0

g =
----
ˆZ

ˆxi

---- . (7.1)

From this follows the proportionality of the scalar dissipation rate ‰ and the
DE gradient g,

‰ = 2D

3
ˆZ

ˆxi

42
≥ Dg

2 , (7.2)

with the molecular di�usion coe�cient of the mixture fraction D. The strong
correlation between g and ‰ was first observed in isotropic turbulence [98],
but also in free shear flows [53] and in reacting flows [58, 41]. The quenching
DE gradient gq is then obtained by conditioning the mean DE gradient on
the quenching scalar dissipation rate

gq = Èg|‰ = ‰qÍ . (7.3)

The second regime boundary separates the large scale combustion, which is
consistent with the flamelet assumptions and the small scale combustion. To
achieve this in a premixed flame, the Kolmogorov scale ÷ would be compared
to the flame thickness [91]. However, in the context of non-premixed flames,
the flame thickness varies greatly with the local mixture fraction gradient.
Instead, the scales in Z-space are used for an evaluation of large scale or fine
scale interactions. Flamelets are defined along gradient trajectories of the
mixture fraction field [97], which are identical to the gradient trajectories
forming the DEs. Therefore, the DE scalar di�erence ∆Z limits the length
in Z-space in which a flamelet solution exists before being terminated by a
turbulence induced extremal point. It is easy to imagine that a DE with
a small ∆Z centered around the reaction zone interferes with a flamelet
assumption of a largely laminar flame structure. The combustion scale for
the comparison is the reaction zone thickness in Z space from the stationary
flamelet solution ”Zr. ”Zr is approximated by the half width of the Gaussian
of the heat release rate, cf. eq. (3.6). For all jet flames, regardless of the
Reynolds number, Damköhler number or fuel composition, it was found that
for a value of ∆Z < 15∆Zr, the assumption of a 1D flamelet ceases to be
valid, as seen if Fig. 5.15. This value was therefore chosen as the second
regime boundary.

To apply the insight gained from the DE analysis of the DNS of the
temporally evolving jet flames to real world engineering applications, a three
pronged modelling approach is used to predict non-premixed combustion

115



7 Gradient Trajectory Statistics Based Modelling Applications

regimes with the aid of the mean quantities available in CFD simulations.
A similar approach was used by Peters et al. [96] to successfully predict
super-knock events in turbo-charged spark-ignition engines.

Firstly, the probability density function (PDF) for the normalized DE
length ¸

ú = ¸/¸m, with the mean DE length ¸m, are modelled using the
semi-empirical stochastic transport equations originally developed by Wang
and Peters [98]. The PDF of the normalized DE length displays an invariance
towards changes in Reynolds number and underlying scalar fields, which was
observed for isotropic turbulence [98, 128]. the physical mechanisms governing
the evolution of DEs can be used to describe their behavior. Wang and Peters
[127] derived a semi-empirical stochastic transport equation for the PDF
of the normalized DE length P (¸ú, t), taking the following mechanisms into
account:

1. The generation of new extremal points resulting from random eddy
turnover of Obukhov-Corrsin eddies. The introduction of extremal
points leads to a cutting of DEs.

2. The elimination of extremal points by di�usion and the consecutive
joining of dissipation elements.

3. The disappearance of small DEs when ¸
ú approaches zero.

For simplicity, the spatial dependency of the statistics is neglected:

ˆP (¸ú, t)
ˆt

+ ˆ

ˆ¸ú (vú(¸ú)P (¸ú, t)) = 2»

Œs

0
P (¸ú + z

ú, t)dz

≠ »¸
ú
P (¸ú, t) + 8 ˆP (¸ú, t)

ˆt

----
¸ú=0

# ¸
ús

0

z
ú

¸ú P (¸ú ≠ z
ú, t)P (zú, t)dz

ú ≠ P (¸ú, t)
$

.

(7.4)

Here, the only external parameter is the non-dimensional cutting frequency
per unit length » = ⁄¸

2
m/(DZ), taking the di�usivity of the mixture fraction

field DZ as well as the cutting frequency per unit length of the Obukhov-
Corrsin eddies ⁄ into account. The non-dimensional di�usive drift velocity is
defined as

v
ú(¸ú) = ≠ 1

¸ú (1 ≠ c¸
ú exp(≠¸

ú)) , (7.5)

with the coe�cient c to be determined by satisfying the space conservation, i.
e., disappearing segments need to be added to longer elements so the overall
length of all DEs remains the same. The model results of P (¸ú) are compared
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Figure 7.1: PDF of the normalized DE length ¸
ú = ¸/¸m. ( ): statistics directly

obtained DNS and ( ): modeled statistics obtained from the stochastic transport
equation eq. (7.7).

to the PDF obtained from a planar temporally evolving jet flame are shown
in Fig. 7.1a).

To adequately describe the mixture fraction field, the second DE parameter
needs to be considered. Following the procedure of Wang and Peters [128],
the JPDF is modelled using the previously obtained marginal PDF and the
model equation for the conditional PDF of the scalar di�erence and using
Bayes’ theorem

P (¸ú, ∆Z
ú) = P (¸ú)P (∆Z

ú|¸ú) . (7.6)

The stochastic transport equation for the conditional PDF P (∆Z
ú|¸ú) was

derived analogously to eq. 7.4 by Wang and Peters [128] considering the same
fundamental physical mechanisms

ˆ

ˆt
[Pc(∆Z

ú|lú, t)P (lú, t)]

+ ˆ

ˆlú [(vú
l
Pc(∆Z

ú|lú, t)P (lú, t)] + ˆ

ˆ∆Zú [(vú
∆Z

Pc(∆Z
ú|lú)P (lú, t)] =

»

5
2

Œs

0
Pc( ∆Z

ú

k
|lú + y

ú, t)(P (lú + y
ú, t)) 1

k
dy

ú ≠ l
ú
Pc(∆Z

ú|lú, t)P (lú, t)
6

+ 2 ˆP (lú, t)
ˆlú

----
lú=0

# c∆Z
ús

0

l
ús

0

z

lú Pc(c∆Z
ú ≠ Â|lú ≠ z, t)Pc(∆Â|lú, t)

P (lú ≠ z, t)P (z, t)dzcdÂ ≠ Pc(∆Z
ú|lú, t)P (lú, t)

$
, (7.7)
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Figure 7.2: ( ): The mean normalized scalar di�erence conditioned on the nor-
malized DE length ¸ from the high Re case and ( ): conditional mean obtained from
the modified stochastic transport equation eq. (7.7).

with the model constants k and c compensating for an increased scalar
variance and after a DE cutting event and a reduced scalar variance in case of
a reconnection event, respectively. k and c determine the characteristic scaling
of È∆Z

ú|¸úÍ. The normalized drift velocity in scalar di�erence direction v
ú
∆Z

is defined as
v

ú
∆Z

(¸ú, ∆Z
ú) = ≠

3
12∆Z

ú

¸ú exp (≠a¸
ú)

4
(7.8)

where a has to be determined from the conservation of the total ∆Z
ú analogous

to eq. (7.5). A comparison between È∆Z
ú|¸úÍ obtained from the modelled

JPDF and the conditional mean obtained from the previously shown planar
temporally evolving jet flame is shown in fig. 7.2.

Secondly, the combustion scales need to be determined in every time step t

of the CFD. For this, the steady state flamelet solutions are calculated for
the boundary conditions of the CFD simulation. Using Â–,1 and Â–,2, the
composition of the reacting scalars of the oxidizer and the fuel stream, the
quenching gradient gq is calculated in every time step

gq(t) ≥ (‰q(Â–,1(t), Â–,2(t))/Dst)0.5 . (7.9)

The reaction zone thickness in Z-space Zr(t) is calculated using eq. (3.6) with
the unsteady flamelet solution used in the modelling of the reacting scalars in
the current time step.
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Thirdly, the mean DE parameters are modelled using temporally and
spatially resolved mean quantities of the CFD simulations. The previously
observed scaling of the mean DE length with the Kolmogorov micro scale ÷,
cf. Figs. 5.3 and 6.4, is exploited for the modelling of ¸m

¸m(t, xi) ≥
!
‹(t, xi)3ÂÁ(t, xi)≠1"1/4 , (7.10)

with the mean kinematic viscosity ‹ and the Favre averaged dissipation rate
of the turbulent kinetic energy ÂÁ.

Using the theoretical scaling of the first order scalar structure function
with an exponent of 1/3 [127], the mean DE scalar di�erences is modelled
following [96]

∆Zm(t, xi) ≥ ¸
1/3
m

Â‰(t, xi)1/2

ÂÁ(t, xi)1/6

Œ⁄

0

¸
ú1/3

f(¸ú, t)d¸
ú . (7.11)

The mean DE gradient gm is obtained using the correlation between g and
‰ analogous to eq. 7.2

gm(t, xi) ≥ Â‰(t, xi)0.5
D

≠0.5 . (7.12)

Finally, the probability of encountering a certain combustion regime Pj

can be computed by denormalizing the modelled DE parameter JPDF with
the mean DE parameters f(g, ∆Z) = ∆Zmgmf(gú, ∆Z

ú) and integrating the
JPDF over the suitable intervals. The intervals are dictated by the regime
boundaries. For example, the local probability of the “Burning Flamelet”
regime is calculated as follows

PFlamelet =
Œ⁄

∆Zt

gq⁄

0

f(g, ∆Z)dgd∆Z , (7.13)

with the small scale interaction boundary value ∆Zt = 15”Zr.

7.1.2 Engine Simulations

3D CFD simulations of a passenger car DI diesel engine were performed
with the in-house flow solver AC-FluX applying the representative interactive
flamelet (RIF) model. AC-FluX is based on finite volume methods and
employs unstructured, mostly hexahedral meshes. It is mainly used for spark
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ignition and diesel engine simulations. The simulated engine is a four-cylinder
GM Fiat diesel engine with a bore of 82 mm and a stroke of 90.4 mm, the
overall displacement is 1.9 l. Details regarding the numerical methods and the
validation of the simulations on the engine test bench can be found in Jochim,
Korkmaz, and Pitsch [69].

The operation points for which the modelling of the combustion regimes
was conducted were chosen to allow for a precise investigation of the impact of
the most commonly varied parameters on the combustion process. To achieve
this, only one parameter is changed from operation point to operation point to
isolate the e�ects. The varied parameters include the injection pressure pinj,
the intake pressure pintake, the exhaust gas recirculation (EGR), combustion
phasing (CA50) and mean e�ective pressure (IMEP). More details regarding
the simulated operating points are listed in tab.7.1. The baseline case, for
which the modelling results are discussed in more detail in the following
section, is situated in the center of the parameter space.

pinj pintake EGR CA50 IMEP
[bar] [bar] [%] [¶CA aTDC] [bar]
1300 1.5 20 8 8
1600 1.5 20 8 8
2000 1.5 20 8 8
1600 1.3 20 8 8
1600 1.7 20 8 8
1600 1.5 0 8 8
1600 1.5 10 8 8
1600 1.5 30 8 8
1600 1.5 20 6 8
1600 1.5 20 10 8
1600 1.5 20 8 4
1600 1.5 20 8 6

Table 7.1: Simulated operating points in the CFD of the DI diesel engine. Only one
setting is changed in each point in order to di�erentiate the source of the di�erent
e�ects. The baseline case is indicated by the bold text.
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7.1.3 Modelling Results
The results of the modelling of the mean DE parameters gm and ∆Zm in the
CFD simulation for the base line case are shown in fig. 7.3. The JPDF of the
modelled mean DE parameter at the iso-surface of ÂZst are shown for three
crank angle positions after top dead center (¶CA aTDC). The range of the
values changes considerably over the course of the combustion process. This
change seems plausible with high gradients and large scalar di�erences during
the injection and liquid jet breakup phases, to lower gradients and smaller
scalar di�erences during the fully developed combustion process.

The spatial distribution of the combustion regimes is illustrated in Fig. 7.4.
The local probability of the “Burning Flamelet” regime PFlamelet is mapped
onto the iso-surface of ÂZst of the baseline case. One observes a high spatial
inhomogenity of the PFlamelet distribution with patches of zero probability,
which is still observed at the latest crank angle position. For a more quantita-
tive comparison of the individual regime contributions, the surface area of
the regimes is calculated

Aj =
⁄⁄

ÂSst

Pj(xi)d ÂSst , (7.14)

with the surface area of the mean stoichiometric mixture fraction ÂSst. The
normalized temporal evolution of the surface area of the four regimes is in
the baseline case is shown in Fig. 7.5. The normalization is performed with
the area of the entire stoichiometric iso-surface for the coresponding time
step Ast . While the most prominent combustion regime is the “Burning
Flamelet” regime for the majority of the time steps, the dominant regime
during the late injection and jet breakup process is the “Fine Scale Mixing”
regime. The high probability of the “Fine Scale Mixing” regime PFine Scale is
not limited to the baseline case but is found in all the operation points during
this combustion phase. The extinction regimes remain largely irrelevant. To
measure the overall contribution of the combustion regimes to the entire
process, the integrated regime probability is calculated

Pj =
tend⁄

t0

AjA
≠1
st dt . (7.15)

The integrated regime Probability for the “Burning Flamelet” regime PFlamelet
is shown for all operation points in Fig. 7.6. Overall, most operation points
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Figure 7.3: JPDF of modelled normalized DE parameters at the iso-surface of
ÂZst for three crank angle positions for the baseline case.
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7.1 Prediction of Non-Premixed Combustion Regimes

Figure 7.4: Mean stoichiometric iso-surface for three di�erent crank angle positions
in CFD simulation of the baseline case. The colour of the iso-surface indicates the
local probability of the “Burning Flamelet” regime from Blue (PFlamelet = 0), over
green to yellow (PFlamelet = 1). Top to bottom: ¶CA = 3, ¶CA = 4 and ¶CA = 13.
The black wireframe indicates the piston bowl geometry and the liner.
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Figure 7.5: Temporal evolution of the stoichiometric iso-surface attributed to the
individual regimes normalized with the overall surface area in the respective time
step for the baseline case. ( ): “Burning Flamelet” regime, ( ): “Fine Scale
Mixing” regime, ( ): “Broken Reaction Zones” regime and ( ): “Large Scale
Extinction” regime.

show high values of PFlamelet in the 90% range. This is consistent with the
broad use of flamelet models in DI diesel CFD and the validated results
achieved with such simulations. With the exception of the EGR, the impact
of the operation parameters on PFlamelet is sensible as well. The engine load
has by far the highest impact on the combustion regimes with only 70% of the
integrated regime Probability being attributed to a flamelet like combustion
at an IMEP of 4 bar. This is especially relevant, as most recent e�orts for
optimising ICEs focus on the low load operation points.

7.2 A New Modeling Approach for Mixture Fraction

Statistics Based on Dissipation Elements

Many modeling approaches for real world engineering combustion applications
are based on the mixture fraction Z. An example is the flamelet model [92].
In this model, the assumption of fast, but not infinitely fast, chemical time
scales leads to thin laminar flame structures attached to the larger flame
surface which is corrugated by turbulence. In the context of non-premixed
combustion in the flamelet regime, all reacting scalars are a function of the
mixture fraction Z and the scalar dissipation rate ‰st at the position of the
stoichiometric mixture fraction or progress variable. As the mixture fraction

124



7.2 A New Modeling Approach for Mixture Fraction Statistics

1300 1600 2000
0.93
0.94
0.95

pinj [bar]

P
F

la
m

el
et

1.3 1.5 1.7
0.93
0.94
0.95

pintake [bar]

P
F

la
m

el
et

0 10 20 30
0.93
0.94
0.95

EGR [%]

P
F

la
m

el
et

6 8 10
0.93
0.94
0.95

CA50set [¶CA aTDC]

P
F

la
m

el
et

4 6 80.7

0.8

0.9

IMEPset [bar]

P
F

la
m

el
et

Figure 7.6: Integrated probability of the “Burning Flamelet" regime PFlamelet in
all simulated operation points.
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is a randomly fluctuating quantity in a turbulent flow, the accurate prediction
of the PDF of the mixture fraction P (Z) is of fundamental importance to the
quality of any simulation employing flamelets or any other mixture fraction
based combustion models.

Therefore, extensive e�orts have been made to understand and model the
properties of the mixture fraction PDF [15, 71, 25]. In a binary mixing process
in a fully turbulent flow, P (Z) is most commonly modeled employing the beta
function P—(Z) [51]. Conveniently, P—(Z) can be computed exclusively from
the mean Z and variance Z Õ2, which are readily available in most Reynolds
Averaged Navier Stokes (RANS) simulations.

The usage of P—(Z) stems in large part from the ability to match experimen-
tally measured mixture fraction PDFs. However, in highly intermittent flows,
P (Z) displays shapes which cannot be adequately reproduced by P—(Z), such
as more complex multimodal shapes or a singularity at either Z = 0 or Z = 1
and an intermediate local maximum. Due to limitations of the experimen-
tal setups and measurement techniques, fundamental turbulent combustion
experiments often use diluted fuels and consequently a high stoichiometric
mixture fraction. Yet, real world combustion applications of hydrocarbons
rarely employ diluted fuel streams and therefore typically have very low values
of Zst. This places the combustion in the highly intermittent region at the
outer edge of the turbulent regions in free shear flows in the vicinity or even
inside the turbulent/non-turbulent interface (TNTI) [105].

E�elsberg & Peters [46] argued that the TNTI represents a third regime of
finite thickness in free shear flows, which separates the laminar outer flow and
fully turbulent inner flow. To account for the e�ects of the TNTI layer on the
statistics of Z, they derived a composite PDF model taking the previously
mentioned three regimes into account.

Excellent agreement with experimental data of round jets with a wide range
of Reynolds numbers was reported [54]. However, this model relies on the
first four moments of the mixture fraction Z - Z4. On top of the challenge of
solving transport equations for up to Z4 with a multitude of further modeling
assumptions required to close these transport equations, the inherent nature
of the di�usively dominated TNTI layer and the ill posed eddy viscosity ‹t
in the vicinity of laminar regions poses the question whether this not only
impractical but potentially impossible in a RANS sense.

A potential substitute for the lack of the higher moments of Z in RANS
proposed here is the use of gradient trajectory (gradient trajectory) statistics.
Peters & Troulliet [97] demonstrated the reconstruction of P (Z) and P (‰)
using data from a DNS of a temporally evolving mixing layer by means of
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gradient trajectories of the mixture fraction field. Furthermore, gradient
trajectories were used in the precise regime classification of free shear flows
into turbulent core regions, interface regions, and the outer flow by Mellado
et al. [84].

The invariance of ¸
ú observed in non-reacting configurations carries over

to reacting flows as seen in Figs. 6.5 and 5.3, and if the scalar field does not
possess a source term, of ∆„

ú as well, cf. Fig. 7.7. Indeed, the reconstruction
of P (Z) obtained from the experimental measurements of an inert round jet
using only DE parameter statistics was demonstrated [56].

In the first part of this section, after a brief description of the numerical
methods, a gradient trajectory based investigation of the the Z-fields obtained
from three DNS data sets is shown and the reconstruction of P (Z) by means
of DE parameter statistics will be demonstrated. The first configuration
is a moderately turbulent inert planar temporally evolving jet. To show
the feasibility of the approach in reacting flows, a non-premixed planar
temporally evolving jet flame with a comparable Reynolds number is also
considered. Additionally, to rule out any particularities of a temporally
evolving configuration or e�ects of low Reynolds numbers, the reconstruction
procedure is applied to a highly turbulent inert spatially evolving mixing
layer.

In the second part, a DE-parameter statistic based composite PDF ap-
proach PDE will be explained exploiting the invariances of the normalized
DE parameters and scalings with statistical quantities readily available in
RANS. Additionally, the model assumptions for the DE parameter statistics
are motivated and justified by means of the Z-fields of the three DNS cases.

Finally, the modelling results for PDE(Z) are presented and compared
to the DNS results. Unlike the beta PDF, PDE(Z) captures all important
characteristics of the mixture fraction in the turbulent core, as well as the
TNTI layer of the respective configurations. The initial analysis and the
final validation are based on three high fidelity DNS data sets. The first
configuration is an inert non-dimensional planar temporally evolving jet
henceforth called the Inert Jet. The configuration and numerical methods are
summarized in Section 4.3. The second configuration is a non-premixed planar
temporally evolving jet called the Jet Flame in the following investigation
likewise described in Section 4.3.

The final configuration is a non-dimensional inert planar spatially evolving
mixing layer henceforth called the Mixing Layer. Along the stream-wise
direction, the boundary conditions are imposed inflow at x = 0 and free
outflow [86] at x = Lx. The boundary conditions are periodic in the span-wise
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Jet Flame Inert Jet Mixing Layer
Rejet,0 10,000 9,850 -
Re⁄ 86.4 101.1 305.1
Lx 8.5H0 6fiH0 473”Ê,0
Ly 8.2H0 12.5H0 290”Ê,0
Lz 6.4H0 6fiH0 158”Ê,0

ngridpoints [109] 1.2 8.6 18.7
∆/÷ 0.86 1.4 1.1

Table 7.2: Numerical and physical initial parameters of the DNS.

direction and free-slip in the crosswise direction. The inflow is a hyperbolic
tangent profile for the stream-wise velocity u with prescribed initial vorticity
thickness ”Ê,0. Low amplitude white noise is superimposed on the hyperbolic
tangent profile, resulting in the faster facilitation into a fully turbulent flow
downstream from the inlet. The Taylor micro scale based Reynolds number
reaches up to Re⁄ = u

Õ
⁄/‹ ¥ 305.1, with the turbulence intensity u

Õ. The
resolution in the investigated regions is ∆/÷ Æ 1.1. Further details regarding
the configuration can be found in [7]. The Mixing Layer DNS was performed
solving the unsteady Navier-Stokes equations in the low Mach number limit
employing the solver NGA developed at Stanford University [43]. Identical
to the methods employed for the Jet Flame DNS, the solver implements a
finite di�erence method on a spatially and temporally staggered grid with the
semi-implicit fractional-step method [70]. Additionally all three investigated
cases are summarized in tab. 7.2.

7.2.1 Gradient Trajectory Analysis
In the following section, the profoundly di�erent characteristics of the zonal
PDFs in the turbulent core PTC(Z) and in the TNTI layer PTNT(Z) will
be investigated using gradient trajectory analysis. The crucial ability of
considering non-local e�ects in an analysis employing gradient trajectories
will be exploited.

Regime Decomposition
A challenge faced in the analysis of free shear flows is the presence of both
laminar and turbulent regions. Physical properties of the flow change dras-
tically from one region to the other. Therefore, it is apparent to see that
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precisely separating turbulent and laminar parts is of prime importance to
obtain meaningful statistics. While di�erent and easy-to-use methods of
locating the TNTI exist [105, 17], the flow in the turbulent region just behind
the TNTI would not be considered fully turbulent [33]. Simply using all
material points behind the TNTI would potentially lead to the inclusion of
low Reynolds number e�ects in the statistics. The region between the TNTI
and the turbulent core needs to be considered a third region [46].

A method based on gradient trajectories for a precise regime classification
was proposed by Mellado et al. [84]. The turbulent core region of a free shear
flow is defined by regions of the flow which possess DEs, i.e. regions in which
all material points can be linked to a pair of extremal points via gradient
trajectories . The TNTI region is then defined by the material points whose
gradient trajectories cross the TNTI as defined by the method of Bisset et
al. [17], which uses thresholds of the enstrophy for the TNTI detection.

Statistics of the arithmetic mean Zm between the extremal points connected
by gradient trajectories of a DE

Zm = Zmax + Zmin
2 , (7.16)

with Zmax and Zmin being the mixture fraction in the maximum and the
minimum, respectively, and the scalar di�erence ∆Z in these points

∆Z = Zmax ≠ Zmin , (7.17)

show distinctly di�erent characteristics in the two flow regimes. In Fig. 7.7,
this is demonstrated via the joint probability density functions JPDFs of the
two DE parameters in the turbulent core PTC(Zm, ∆Z) and in the TNTI region
PTNT(Zm, ∆Z). The JPDFs display fundamentally di�erent shapes in the two
flow regimes, with PTNT(Zm, ∆Z) displaying a thin line at Zm = ∆Z/2. This
signifies that the gradient trajectories indeed continue indefinitely once the
TNTI is crossed. Furthermore, the fundamental di�erences serve to highlight
the importance of the consideration of a distinct TNTI region in a model
approach for P (Z) in free shear flows.

7.2.2 Modeling The Mixture Fraction Structure

For the desired gradient-trajectory-based reconstruction of mixture fraction
statistics, the gradient trajectories need to be properly parametrized. For this
purpose, Peters & Truoillet [97] proposed the previously investigated Zm and
∆Z on these points. A model for the scalar structure between these extremal
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Figure 7.7: JPDF of the DE parameters conditioned on turbulent core region (left)
and TNTI region (right) in the Inert Jet case.

points was then proposed as

Z(s) = ∆Z

2 sin(fis ≠ fi/2) + Zm , (7.18)

were s is the arc-length distance of the gradient trajectory from the minimum.
The results of the model for Z(s) are compared to results from the three DNS
cases. To this end, the normalized mixture fraction Z

ú = (Z ≠ Zmin)/∆Z

is conditioned on the normalized arc-length s
ú = s/smax, with the total arc

length smax from the minimum to the maximum. In Fig. 7.8, the conditional
mean ÈZú|súÍ is shown for the turbulent core regions of the three DNS cases,
and a passive scalar field obtained from DNS of isotropic turbulence [20]. The
normalized mixture fraction shows a perfect collapse for all cases and displays
a symmetric shape. Furthermore, the presence of heat release, variable density,
and viscosity does not a�ect the small scale structure of the mixture fraction
and the proposed analytic model is a very good fit of the DNS data.

Using this model for the scalar profile Z(s), the conditional model PDF
P (Z|Zm, ∆Z) can be derived [97] as

P (Z|Zm, ∆Z) = (7.19)
P (s)

|ˆZ/ˆs| = fi
≠1

|(Z ≠ Zm + ∆Z/2)1/2(Zm + ∆Z/2 ≠ Z)1/2|
,
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Figure 7.8: Mean normalized mixture fraction conditioned on the normalized arc-
length ÈZú|súÍ in the turbulent core. ( ): Isotropic Turbulence, ( ): Mixing Layer,
( ): Jet Flame, ( ): Inert Jet, ( ): model.

where P (s) is uniform. Finally, the zonal PDF Pi can be reconstructed by
convoluting the conditional model PDF with the JPDF of the DE parameters

Pi(Z) =
1⁄

0

∆Zmax⁄

0

P (Z|Zm, ∆Z)Pi(Zm, ∆Z)d∆ZdZm (7.20)

The results of the reconstruction procedure are shown in Fig. 7.9. For all cases,
excellent results in the turbulent core region and the overall flow are achieved.
The reconstructed PDF in the TNTI region reproduces the DNS well for large
to intermediate values of Z. For smaller values of Z, PTNT(Z) qualitatively
matches the DNS results. Keeping in mind that the model for Z(s) employed
was obtained to match the turbulent core region, the deviations from the
DNS cases are acceptable.

7.2.3 DE Based Modeling Approach
In this section, the original proposed composite PDF [46] is modified using the
previously introduced PDF reconstruction and exploiting other characteristics
of DE parameter statistics with the result of reducing the required input. The
composite PDF PDE is defined as

PDE(Z) = (1 ≠ “)”(Z) + “ [“tPTC(Z) + (1 ≠ “t)PTNT(Z)] , (7.21)
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Figure 7.9: Modelling results of the zonal PDFs Pi(Z) employing the joint DE
statistics obtained from DNS. The turbulent core region PDF PTC(Z), the TNTI
region PDF PTNT(Z), and the combined regions are indicated by the red, yellow
and blue lines, respectively. The solid lines indicate P (Z) obtained directly from
DNS and the dashed lines correspond to the model. Left: Inert Jet, middle: Jet
Flame and right: Mixing Layer.

with the intermittency factor “ as defined by Townsend [118] and the dirac
function ”(Z) representing the laminar part of the flow. The turbulent
intermittency factor “t is analogous to “ and signifies the probability of
encountering turbulent core in the turbulent region. PTC(Z) and PTNT(Z)
are the previously analysed zonal PDFs.

As shown in the previously, Pi(Z) can be successfully reconstructed if the
zonal JPDFs PTC(Zm, ∆Z) and PTNT(Zm, ∆Z) are available. For the former,
the universal shape of the PDF of the normalized scalar di�erence P (∆Z

ú)
is exploited. This universality is demonstrated in Fig. 7.10 (left), where the
PDFs show a perfect agreement across the di�erent flows. The slight deviation
in the tails for large ∆Z

ú can be attributed to the boundedness of Z. The
statistical independence of the two DE parameters is demonstrated on the
right of Fig. 7.10 (right), where P (∆Z

ú) is additionally conditioned on Zm in
the Mixing Layer leading to essentially the same distributions for all values of
Zm. Consequently, the JPDF in the turbulent core can be modeled as

PTC(Zm, ∆Z) = P (Zm)P (∆Z
ú)∆Z . (7.22)

Exploiting Kolmogorov’s theoretical scaling for the first oder scalar structure
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function [127], ∆Z can be calculated as

∆Z ¥ 2.4‰
1/2

Á
1/6 ¸

1/3 . (7.23)

Both P (∆Z
ú) can be obtained either by solving stochastic transport eqs. (7.4)

and (7.7), or exploiting the universal shape of the PDFs, obtained directly from
a DE analysis of a passive scalar field. For the following results, P (∆Z

ú) was
obtained from isotropic turbulence. The mean DE length ¸ can be calculated
exploiting its scaling with the Kolmogorov micro scale ¸ ¥ 30÷, c.f. Fig. 5.3d).

Considering the rather deterministic nature in the TNTI region, and in
good accordance with the JPDFs in Fig. 7.7, PTNT(Zm, ∆Z) is modeled using
a dirac function for the relation between Zm and ∆Z to represent the gradient
trajectories proceeding indefinitely into the laminar region of the flow

PTNT(Zm, ∆Z) = P (Zm)”(∆Z ≠ Zm/2) . (7.24)

Finally, the marginal PDF P (∆Zm) is modeled analogously for both zones
to the original approach using a beta function [46] with the mean and variance
of Z in the turbulent region of the flow.

P (Zm) = P—(Z|Zt, –Z Õ2t) . (7.25)
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Using the intermittency factor “, which can be calculated following Townsend
[118] or obtained exploiting its self-similar shape of the TNTI [11], Zt and
Z Õ2t can be calculated following Pope [104] as

Zt = Z/“ , (7.26)

Z Õ2t = Z Õ2 ≠ “(1 ≠ “)Z2
t

“
. (7.27)

Conveniently, due to the symmetry of Z(s), the mean arithmetic mean is
equivalent to the mean mixture fraction Zm = Zt. However, – needs to be
determined iteratively to assure that the variance generated by “tPTC(Z) +
(1 ≠ “t)PTC(Z) matches Z Õ2t.

Lastly, it was found for the investigated cases that “t = “ is a reasonable
simplification which also captures the trends in the experimental investigation
of the original composite PDF [54]. This is sensible, as in the fully turbulent
core for “ = 1 little to no TNTI contributions to the overall statistics are
expected. Vice versa, for low values of “, high probabilities of encountering
the TNTI would cause “t to be low as well.

7.2.4 Model Validation and Discussion

The results of the DE statistic-based model PDE(Z) are compared to the DNS
P (Z) and the conventional P—(Z) in Fig. 7.11. For both jet cases, PDE(Z)
displays superior results which capture all important trends present in P (Z).
In cross-stream positions far away from the core flow, PDE(Z) manages to
reproduce the influence of the TNTI layer on the Z statistics. Additionally,
in the core region of the Jet Flame, where the beta PDF is expected to
perform well, P (Z) is also matched better by the DE statistics-based model.
Another characteristic feature which is correctly reproduced by PDE(Z) is
the non-marching behavior of the PDF of the Inert Jet. The benefits of the
increased accuracy of PDE(Z) is demonstrated for the Jet Flame in Fig. 7.12,
where the modelled mean density

fl =
1⁄

0

P (Z)fl(Z, ‰st)dZ , (7.28)

with fl(Z, ‰st) obtained from the steady state flamelet solution matching the
boundary conditions of the DNS, is compared for the two model approaches. fl

modelled with PDE(Z) matches the DNS far better in almost all cross-stream
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Figure 7.11: PDF of the mixture fraction P (Z) for five cross-stream positions
y/h1/2, with the jet half width h1/2, for the Jet Flame (left) and Inert Jet (right).
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Figure 7.12: Mean density fl obtained from the convolution of P (Z) with a steady
state flamelet solution for the Jet Flame. (Solid line): PDNS(Z), (dashed line):
PDE(Z), and (dash-dotted line): Pfi(Z).

positions. Especially at the jet edges, PDE(Z) is superior. The model might be
easily improved by exchanging the sine-function model for Z(s) for empirically
obtained conditional means of ÈZ|sÍ at the TNTI, which are readily available
in literature. Here, we refrained from this practice to retain the general
applicability to any RANS simulation which solves Z and Z Õ2. Regardless,
the flexibility that the model o�ers could be deemed another advantage.
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8 Summary and Conclusion

In the first part of this thesis, dissipation element (DE) analysis was applied
to the mixture fraction fields and passive scalar fields of six non-premixed
reacting and inert direct numerical simulations (DNS) of the temporally
evolving jet configuration. The statistics of the normalized DE parameter ¸

ú

showed the characteristic invariance towards changes in Reynolds numbers
and was una�ected by the heat release in the reacting cases. The mean DE
length ¸m was found to scale with the Kolmogorov micro scale. The e�ect
of the heat release on the DE scalar di�erence ∆Z was observed with an
increased probability of cli�-ramp structures in the mixture fraction field.
However, the e�ect of the heat release on the statistics decreased with an
increasing dilution of the fuel stream and with an increase in the Reynolds
number. The joint probability density function (JPDF) of the two normalized
DE parameters obtained from the highest Reynolds number reacting case
displayed the universal form observed in the non-reacting cases. DE parameter
statistics were related to structure functions and the correlation between the
DE gradient g and the scalar dissipation rate ‰ was demonstrated. This
correlation allows for the reconstruction of the DE parameter statistics from
the value of the unconditional scalar dissipation rate.

Additionally, a DE parameter-based regime diagram was introduced. The
DE parameters g and ∆Z were compared to flame scales with the quenching
gradient gq and the reaction zone thickness ”Zr for a local classification of the
flame front into four regimes. The regime assumptions were tested using the
correlation between DE parameters and reacting scalars on a non-dimensional
basis. The soundness of the regime diagram was shown for all four reacting
cases. Below the regime threshold value of ∆Z Æ (∆Z)t = 15”Zr the model
assumptions of a 1D flamelet cease to be valid as the reacting scalars display
gradients in the tangential direction to the flamelet coordinates in physical
space. Above this threshold value, the local conditional fluctuations of the
reacting scalars are small, irrespective of the value of dissipation rate.

In the second part of this thesis, DE analysis was performed on the tem-
perature fields of the DNS of three spatially evolving methane jet flames.
Statistics of DE parameters were compared to those obtained from passive
scalar fields of non-reacting flows including isotropic turbulence, a spatially
evolving jet, and a temporally evolving jet to isolate individual e�ects of the
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reacting scalar on the DE statistics. It was found that the DE length ¸m,
was doubled in the temperature field compared to the passive scalar fields
when normalized with the Kolmogorov micro-scale ÷. However, the invariance
of the normalized statistics of ¸m toward changes in the Reynolds number
observed in scalar fields in non-reacting flows was retained in the reacting
cases. Substantial di�erences in the statistics of the DE scalar di�erence ∆T

and ∆„ between the premixed reacting and the spatially evolving cases were
observed, which could be attributed to the imprint of the premixed flame
structure. The marginal and joint statistics showed a high consistency with
the assumptions regarding the general setup of the reacting DNS and the
regime of the thin reaction zones, with ¸m at least an order of magnitude
higher than the flame thickness.

In a detailed investigation of the flame structure, it was shown that the
scalar di�erence ∆T between the extremal points of DEs consistently pa-
rameterizes both the temperature in the preheating zone and a reduction
of the temperature gradients in the entire flame structure. The analysis
shows that the lower gradients in the inner reaction layer are linked to the
presence of extremal points in the vicinity of the flame surface; therefore,
they lead to the interruption of the flamelet structure by turbulence and not
by the thickening of the entire flamelet itself. The trend of decreasing ∆T

with an increasing Reynolds number was shown by means of the JPDF of
DE parameters normalized by the flamelet scales. This suggests that the
increased thickening for an increasing integral scale and Reynolds number at
approximately constant turbulent intensity and Karlovitz number is linked to
the increased presence of turbulence-induced extremal points near and inside
the inner reactive layer of the flame.

As expected, species such as formaldehyde, which are usually present in the
preheat layer of laminar flames experience a significantly enhanced transport.
However, even species such as OH and O, which are usually negligible in the
preheat layer are present in a significant amount several flame thicknesses
ahead of the turbulent flame surface when the DE parameter ∆T is small.

The analysis of the integrated fuel consumption rate along the gradient
trajectories revealed that for regions with small ∆T , which correspond to
thickened flame sections, the local fuel consumption rate decreases with respect
to the flamelet solution. However, due to the thickening of the reaction layer,
the integral over the thickened flame is larger than that in the unthickened
flamelet, explaining an overall increase of the turbulent flame speed.

This work is concluded with the application of the insight gained through the
DE analysis of the turbulent combustion to model both the scale interaction
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between the turbulence and combustion as well as the scalar structure itself.
The previously introduced concept of a regime diagram for turbulent non-

premixed combustion based on DE parameters was used to apply the insight
gained from DNS to the computational fluid simulation of a real-world passen-
ger car direct injection diesel engine. The universality of the statistics of the
normalized DE parameters obtained from passive scalar fields in combination
with the characteristic scaling of the mean DE parameters was exploited in a
modelling framework. This framework relies on quantities readily available in
CFD simulations utilizing mixture fraction-based combustion models. With
the insight gained from the combustion regime boundaries from DNS, the
probability of encountering the individual regimes in a diesel engine could be
predicted. The modelling framework was applied to CFD simulations of a
passenger car diesel engine in various operation points. The results yielded
were highly plausible with a classification of the combustion processes as
largely flamelet-like. However, in the early combustion phases, as well as in
low load operation points, small scale combustion might dominate.

Futhermore, a DE statistic-based extension of the composite PDF model
for the mixture fraction Z from E�elsberg & Peters [46] was proposed. The
zonal decomposition of free shear flows and the reconstruction of the mixture
fraction PDF by means of gradient trajetories was demonstrated with three
inert and reacting DNS datasets. The DE statistics-based model was derived
and model assumptions in the model equations were justified by the DE
analysis of the three DNS cases. Finally, the results of the novel model
procedure were compared to the DNS and a conventional beta PDF model.
The DE statistic based model showed satisfactory results when compared to
the DNS and is vastly superior in all flow regions compared to the beta PDF
approach due to the consideration of the di�erent flow regimes.

In conclusion, this thesis demonstrated the importance of transcending the
conventionally used one-point statistics to comprehend the complex inter-
action of turbulence and combustion chemistry featured in the investigated
configurations. As structures of finite sizes interact at the presented combus-
tion conditions, it appears only logical that the conventionally considered
flame structure as well as a robustly defined turbulent structure must be
reflected in the method of analysis. In this regard, the DE analysis proved
invaluable in providing said turbulent structures in a non-arbitrary and well
parametrized way, which allowed for an intuitive and straight forward physical
interpretation of the results.

Another important aspect of the present thesis was shifting the perspective
of the investigation from a purely statistical approach using global, quantities
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8 Summary and Conclusion

to a more local analysis. By retaining the information of the topological
features of the instantaneous scalar fields in the analysis, new physical mech-
anisms were considered which would have otherwise been lost due to the
averaging procedure.

Lastly, the demonstrated universality of the DE parameter statistics are
a reason for optimism with regards to the certainty of directly applying the
knowledge of turbulence gained through the investigation of non-reacting
flows (and of course, theoretical considerations) onto reacting flows. The
presented DE parameter statistic based models exploiting these universalities
will hopefully only be the start and inspire others to further pursue modeling
approaches in this spirit.
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