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Abstract
Various statistical problems can be formulated in terms
of a bilinear form of the covariance matrix. Examples
are testing whether coordinates of a high-dimensional
random vector are uncorrelated, constructing confi-
dence intervals for the risk of optimal portfolios or
testing for the stability of a covariance matrix, espe-
cially for factor models. Extending previous works to
a general high-dimensional multivariate linear pro-
cess framework and factor models, we establish dis-
tributional approximations for the associated bilinear
form of the sample covariance matrix. These approx-
imations hold for increasing dimension without any
constraint relative to the sample size. The results are
used to construct change-point tests for the covariance
structure, especially in order to check the stability of
a high-dimensional factor model. Tests based on the
cumulated sum (CUSUM), self-standardized CUSUM
and the CUSUM statistic maximized over all subsamples
are considered. Size and power of the proposed testing
methodology are investigated by a simulation study and
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illustrated by analyzing the Fama and French factors for
a change due to the SARS-CoV-2 pandemic.

K E Y W O R D S

change-points, COVID-19 crisis, factor model, high-dimensional
statistics, multivariate analysis, portfolio analysis, strong
approximation, time series

1 INTRODUCTION

In this article, we study large sample approximations of bilinear forms of the sample covariance
matrix of a d-dimensional time series of length n within a high-dimensional framework, which
can serve as a basis for various inferential procedures such as the analysis of dependencies of
observed variables in terms of statistical tests and confidence intervals or change detection. Areas
where this setting is of importance are diverse and comprise genetics, environmental statistics
as well as econometrics and finance. To give a concrete example, in finance optimal portfolio
selection is a classical problem directly pointing to a quadratic form. Here, for a random vector
Y of returns with covariance matrix 𝚺, one aims at determining a variance-minimizing portfolio
w∗ under additional constraints (such as no short sales) leading to the risk Var(w∗) = w∗′𝚺w∗

of the optimal portfolio w∗. Imposing sparsity constraints such as ||w||𝓁q , q∈ {0, 1}, see Brodie
et al. (2009), may lead to substantially reduced transaction costs and allows for cheap index track-
ing if the assets belong to an index. The associated minimized financial risk can be estimated
by the bilinear form w∗′𝚺̂nw∗ using the sample covariance matrix 𝚺̂n from a d-dimensional
time series of length n. Clearly, it is of interest to make inference on that quadratic form and to
detect change-points where the covariance matrix and hence the risk changes. Another interest-
ing econometric problem is to detect changes (breaks) in economical or statistical factor models,
which can be done by investigating the eigenstructure or related expansions. We shall illustrate
this by analyzing the well-known Fama and French factors for a change due to the COVID-19
coronavirus pandemic.

The proposed testing methodology allows for high-dimensional data intractable by other
known methods such as Aue et al. (2009), Han and Inoue (2015), or Kao et al. (2018), and is
extremely cheap in terms of computational costs. On the other hand, whereas other tests are based
on (quadratic forms of) cumulated sums for vech(YtY′

t) or linear mappings of those vectors, our
approach is to study bilinear forms of matrix-valued CUSUMs corresponding to projections v′Yt
of the data. By construction and purpose, the methods allow for large d including d≥n and do
not require to invert a matrix of dimension d× d as many other approaches, which can become
intractable in applications even when d<n.

We contribute Gaussian approximations for bilinear forms associated to the sample covari-
ance matrix under general multivariate linear time series including a rich class of factor models.
These results complement previous works of Kouritzin (1995), Steland and von Sachs (2017,
2018), and Steland (2020). As in these papers, the Gaussian approximations hold true without
any constraint on the dimension d, which may grow arbitrarily with the sample size n, and allow
to construct various change-point tests. On the other hand Steland (2020) studies unweighted
as well as weighted CUSUM test statistics for a high-dimensional linear time series framework
covering multivariate linear processes with approximately white noise innovations and focuses
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on VARMA and spiked covariance models, here we allow for nonapproximate multivariate lin-
ear time series and consider the unweighted CUSUM, a self-standardized CUSUM as well as a
maximized CUSUM statistic, where maximization is over all available subsamples. The latter two
statistics have certain merits and were not studied in the above cited papers. Self-normalization
is an approach to avoid estimation of long-run-variance parameters, but it changes the asymp-
totic law which impedes the calculation of critical values. Instead of a consistent estimator for
the nuisance parameter one uses a weakly convergent statistic, whose limiting law is propor-
tional to the parameter. Hence, after self-normalization the nuisance parameter cancels in the
limit. This approach has been proposed by Kiefer et al. (2000) for dynamic regression inference,
but the phenomenon and its merits are also well known in unit root testing and monitoring, see
Kwiatkowski et al. (1992), Breitung (2002), and Steland (2007), among others. Here we basically
use the self-normalizing statistic of Shao and Zhang (2010) which takes into account the presence
of a change-point. The CUSUM statistic maximized all over subsamples addresses the fact that the
classical (unweighted) CUSUM test targets the at most one change-point alternative hypothesis.
By considering all possible subsamples and taking the maximum of all corresponding CUSUMs
allows to detect complex change-point alternatives, which may be undetectable by the classical
unweighted CUSUM statistic (see the simulations for an example).

This article focuses to some extent on factor models, which have not been treated in the
above cited papers. Factor models are regarded as a powerful tool for modeling and understand-
ing the common dependence among multivariate outputs. They are widely used in various areas
including econometrics and finance to model macroeconomic variables such as the GDP and
inflation, see Bai and Ng (2008), or to model asset and portfolio returns from financial mar-
kets, see Goldfarb and Iyengar (2003), Johnstone (2001), and the classical Fama approach (Fama
& French, 1993, 2015). In medicine they are used to explain genetic data, in environmetrics to
model complex spatial–temporal dependencies. Their use in natural sciences and technology is
also widespread, see, for example, Reyment and Jvreskog (1996). The class of factor models stud-
ied here covers the case of an arbitrary but finite number of independent factors and the case of
a growing or even infinite number of factors, which are generally correlated but may be inde-
pendent as well (under certain constraints). We especially elaborate on testing the stability of a
factor model as a relevant special case in many areas. This problem is approached by consider-
ing certain pseudo-spectral representations and to test for a change with respect to the (leading)
pseudo-eigenvectors by applying a CUSUM change-point test to a quadratic form calculated using
pseudo-eigenvectors. More detailed analyses using a large number of pseudo-eigenvectors can be
easily conducted by a multiple testing procedure. This method, described in detail in Section 2,
shows decent power in simulations despite its simplicity and will be illustrated by a real data anal-
ysis. Especially, self-standardization often improves the accuracy of the type I error rate, although
the unweighted CUSUM with estimated variance tends to be more powerful for larger deviations
from the no-change null hypothesis. Self-standardization also benefits in terms of detection power
when the number of projections used for testing is increased. The CUSUM maximized over sub-
samples leads to a loss of power for the classical at most one change-point model, but can be very
powerful for complex change scenarios where other tests completely fail.

The proposed class of change-point tests considering bilinear forms of the sample covari-
ance matrix requires to select projection (weighting) vectors. For several problems their choice
is obvious. This applies, for example, to testing candidate coordinates against remaining ones (as
especially arising in statistical genetics), or when considering sparse optimal portfolio selection
mentioned already above, where 𝓁1-bounded portfolio vectors are constructed from historical
data sets. A quite general approach is to use (estimated) eigenvectors of the covariance matrix,
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in order to test the stability of the covariance structure. Calculating the eigenvalue–eigenvector
pairs from the sample covariance matrix is equivalent to determining the spectral decomposi-
tion, which represents the sample covariance matrix as a linear combination of outer products of
the eigenvectors with weights given by the eigenvalues. Somewhat more general, any represen-
tation of an estimator of the covariance matrix as a linear combination of outer products can be
interpreted as an estimation of the (pseudo) eigenvector–eigenvalue pairs—and used for our test-
ing approach. Testing the stability of the covariance structure in this way also offers an attractive
approach to test for the stability of a factor model structure, and we shall elaborate this idea in
some detail.

As in practice the above testing methodology usually relies on an estimator of the covari-
ance matrix, it is worth discussing a few approaches from the rich literature on this subject.
The main issue is the well-known fact that the sample covariance matrix behaves poor when
d is large. For d>n it is singular and hence not invertible, and even when d<n but d/n is
close to 1, the estimated eigenstructure tends to be systematically distorted, as the small eigen-
values are underestimated and large eigenvalues overestimated. This results in a numerically
ill-conditioned estimator, which means that inversion amplifies the estimation error dramatically.
Classical results, addressing Gaussian samples, to overcome this issue are Dempster (1972), where
selected entries are set to zero, and Stein (1956, 1975), who shrinks the eigenvalues toward a com-
mon value. Shrinkage methods have been later thoroughly investigated by Ledoit and Wolf (2003,
2004) for i.i.d. samples and by Sancetta (2008) for the weak-dependent case. Second, one could
use Bayesian and empirical Bayes estimators, which are related to the shrinkage estimators but
provide alternative interpretations. For example, Chen (1979) and Daniels and Kass (1999, 2001),
discuss priors such that the correlations are shrunken to 0 and the covariance matrix toward the
identity, Yang and Berger (1994) develop the reference prior approach, and Barnard et al. (2000)
put a prior on the standard deviations and model the correlations given standard deviations by
an inverse-Wishart distribution. Third, one could use the method based on random matrix theory
to denoise the sample covariance matrix, as studied by Laloux et al. (2000), Sharifi et al. (2004),
and Pafka and Kondor (2003). For a selective overview on high-dimensional factor model-based
covariance estimation for both observable and latent factors we refer to Fan et al. (2013, 2016), Bai
and Shi (2011), and the references therein. Inferential methods for factor models in large dimen-
sions have been studied by Bai (2003). He considered the principal components estimator and
derived the rate of convergence and the limiting distributions of the estimated factors and fac-
tor loadings. Bai and Li (2012, 2016) studied maximum likelihood estimation. Their results cover
consistency, the rate of convergence, and the limiting distributions for different sets of identifica-
tion conditions. When the factors are observable, factor models indeed allow for more efficient
estimators of the covariance matrix, see Fan et al. (2008, 2011).

The specific problem to test for a change in factor models has been discussed by several
authors, for example, Breitung and Eickmeier (2011), Han and Inoue (2015) and, recently, by Kao
et al. (2018), among others. Breitung and Eickmeier (2011) consider assumptions as in Bai (2003),
especially a finite number of factors and asymptotics for panel data with n/d2 = o(1) where d
stands for the size of the panel. They study tests based on the principal component estimators
of the factor model. Kao et al. (2018) consider a specialized CUSUM change-point test for a
d-dimensional time series based on estimates of the eigenvalue and eigenvector pairs and develop
asymptotic theory for factor models with innovations following a nonlinear specification going
beyond the setting studied here. But their approach is restricted to the low-dimensional frame-
work of a fixed dimension d. Furthermore, their test statistic needs the condition d/n< 1/2 to be
computable and requires to invert a d× d matrix for standardization. Although standardization
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typically improves statistical power, it may be infeasible when analyzing high-dimensional big
data. The approach of Han and Inoue (2015) even requires to calculate a d(d+ 1)/2× d(d+ 1)/2
dimensional matrix to conduct the test. Contrary, the asymptotics studied here allows for (essen-
tially unconstrained) increasing dimension as well as for an increasing number of factors (includ-
ing an infinite number of factors), and the proposed CUSUM-based procedures are highly efficient
from a computational point of view. Furthermore, the method is more general and not restricted
to analyses of the eigenstructure of a factor model. For example, by simply choosing appropriate
weighting vectors, one may easily detect changes in covariances of (sets of) coordinates as well.
As demonstrated in the simulations, the tests can compete with other approaches in terms of
accuracy and detection power.

The organization of the article is as follows. Section 2 explains the general setting, discusses
its basic relationship to projection-based analyses, and introduces the bilinear form of inter-
est. Notation, the specific model for the vector time series and its interpretation in terms of an
infinite-dimensional factor model with unobservable factors as well as assumptions are intro-
duced and discussed in Section 3. Section 4 provides several results on strong approximations
justifying the proposed inferential procedures. We also propose estimators for the asymptotic
variance parameters and show their consistency, uniformly in the dimension. The finite sample
properties in terms of size and power of the tests are investigated to some extent in Section 5 by
a simulation study. We also illustrate the method by analyzing Fama and French factors and find
that there is evidence for a change due to the COVID-19 coronavirus pandemic in the whole eigen-
structure which can be dated at the end of February 2020. Proofs of main results are provided in
Section 6.

2 MODEL, ASSUMPTIONS AND EXAMPLES

The general approximation result for partial sums holds for sparse projection vectors vn, wn in the
sense that they have uniformly bounded 𝓁1-norm. For appropriately standardized partial sums,
however, one can employ weighting vectors with uniformly bounded 𝓁2-norms.

Assumption 1. (i) Let wn = (w1, … ,wdn)
′,n ≥ 1, be a sequence of weights wj =wnj, not neces-

sarily nonnegative, with uniformly bounded 𝓁1-norm, that is,

sup
n∈N

||wn||𝓁1 = sup
n∈N

dn∑
𝜈=1

|w𝜈| < ∞. (1)

(ii) wn = (w1, … ,wdn)
′,n ≥ 1, is a sequence of weights wj =wnj, with

sup
n∈N

||wn||𝓁2 = sup
n∈N

√√√√ dn∑
𝜈=1

w2
𝜈 < ∞. (2)

It is worth briefly discussing the first assumption. Sequences {wi ∶ i ∈ N} with
∑∞

i=1 |wi| < ∞
certainly satisfy Assumption 1 (i). Averaging a finite number of coordinates is also covered. Fur-
thermore, this assumption allows for weights that depend on the dimension dn. For example,
one may average all coordinates by using the weights wni = 1

dn
, for i= 1, … , dn. Although the

dependence on the sample size n through the dimension dn may be of primary importance for
high-dimensional problems, several of our results even allow the weights to depend on n.
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Let us assume the following linear process framework. The 𝜈th coordinate of the observed
dn-dimensional random vector Yni, 1≤ i≤n, is given by a sum (equivalently a linear combination)
of L ∈ N linear processes

Y (𝜈)
i =

L∑
l=1

∞∑
j=0

c(𝜈,l)nj 𝜀
(l)
i−j, (3)

where {c(𝜈,l)nj ∶ j ≥ 0} are coefficients (possibly depending on n) and {𝜀(l)i ∶ i ∈ Z}, l= 1, … , L,
are mean zero error terms. Observe that model (3) can be reformulated as a multivariate linear
process

Yni =
∞∑

j=0
Cnj𝜺i−j,

where 𝜺i = (𝜀(1)i , … , 𝜀
(L)
i )′, i≥ 1, are i.i.d. random vectors with zero mean and the dn ×L coeffi-

cient matrices are given by Cnj = (c(1)nj , … , c(dn)
nj )′ with c(𝜈)nj = (c(𝜈,1)nj , … , c(𝜈,L)nj )′.

Assumption 2. The L ∈ N innovation processes {𝜀(1)i ∶ i ∈ Z}, … , {𝜀(L)i ∶ i ∈ Z} are stochasti-
cally independent.

Throughout the article we assume the uniform moment condition

sup
i

E[|𝜀(l)i |4+𝛿] < ∞, l = 1, ...,L, for some 𝛿 > 0. (4)

The existence of higher moments is assumed where needed. Similar to Steland and von
Sachs (2017) we impose the following decay condition on the coefficients.

Assumption 3. {c(𝜈,l)nj ∶ j ∈ N0}, 𝜈 = 1, … , d, l = 1, … ,L, satisfy

sup
n∈N

max
1≤𝜈≤dn

|c(𝜈,l)nj |2 ≪ (j ∨ 1)−
3
2
−𝜗, ∀ l = 1, … ,L,

for some 0 < 𝜗 <
1
2
.

Here and in the sequel an ≪ bn stands for an =O(bn). Furthermore, we shall write anm
n,m
≪ bnm

if there exists a constant C such that anm ≤Cbnm for all n, m.
The following result shows that a large class of general multivariate linear processes with

correlated coordinates of the innovations are a special case of our model, as they can be repre-
sented as 𝚺1∕2

L 𝜺i for some covariance matrix 𝚺L. The following result shows that a weak sparsity
assumption on the left-singular vectors of SL = 𝚺1∕2

L is sufficient.

Lemma 1.

(i) Let G be a dn ×L matrix with uniformly 𝓁1-bounded left-singular vectors. Then the class of
multivariate linear processes of the form

Yni =
∞∑

j=0
(Cnj|0dn×(dn−L))G𝜺i−j, i ≥ 0,

for L-dimensional i.i.d. innovations {𝜺i ∶ i ≥ 1} with independent coordinates satisfies
Assumption 3.
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(ii) The class of multivariate linear processes of the form

Yni =
∞∑

j=0
CnjSL𝜺i−j, i ≥ 0,

for some regular matrix SL with uniformly 𝓁1-bounded left-singular vectors and L-dimensional
i.i.d. innovations {𝜺i ∶ i ≥ 1} with independent coordinates, satisfies Assumption 3.

Example 1 (Factor models with a finite number of independent factors). Recall that a factor
model for a d-dimensional random vector Y assumes that

Y = BF + E

with

Y =
⎛⎜⎜⎜⎝

Y1

⋮

Yd

⎞⎟⎟⎟⎠ , B =
⎛⎜⎜⎜⎝
b(1)

1 … b(K)
1

⋮

b(1)
d … b(K)

d

⎞⎟⎟⎟⎠ , F =
⎛⎜⎜⎜⎝

F1

⋮

FK

⎞⎟⎟⎟⎠ , E =
⎛⎜⎜⎜⎝

E1

⋮

Ed

⎞⎟⎟⎟⎠ ,
where the random variables F1, … , FK represent K uncorrelated factors, B is the matrix of the
factor loadings b(j)

i , and E1, … , Ed are d idiosyncratic errors, which are assumed to be indepen-
dent from F1, … , FK . Classical factor analysis assumes a fixed dimension d, while the sample size
n is allowed to increase. The main results of this article allow for factor models of large dimen-
sions, where the dimension d= dn grows with the sample size n and can even grow faster than n.
Furthermore, the coefficients of the linear series may depend on n, which we therefore now make
explicit. The covariance matrix of Yn is given by

𝚺n = BnCov(Fn)B′
n + Cov(En).

A factor models assumes that a more or less large part of the dependence structure can be
explained by the factors and reduces the dimensionality of the covariance matrix in this way.
Given the factors, the remaining correlation between the coordinates should be small, suggest-
ing that a sparsity assumption for the covariance matrix of the errors En is reasonable. Here, one
often even assumes that Cov(En) is a diagonal matrix, otherwise a so-called approximate factor
model is present.

Now suppose that the above factor model is observed at n time instants yielding the vector
time series Yni = (Y (1)

ni , … ,Y (dn)
ni )′, 1≤ i≤n,

Yni = BnFni + Eni,

for i= 1, … , n, where the vector Fni = (F(1)
ni , … ,F(K)

ni )′ contains the values of all K factors at time i,
for i= 1, … , n, and the matrix Bn is as above. The vector Eni = (E(1)

ni , … ,E(dn)
ni )′ is an idiosyncratic

error component that contains the noise due to the dn variables at time i and not explained by the
factors, for i= 1, … , n.
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Specifically, with L=K + 1 we assume that the coordinates of the factors as well as the
idiosyncratic errors are linear processes given by

E(𝜈)
ni =

∞∑
j=0

c(𝜈)nj 𝜀
(L)
i−j and F(l)

ni =
∞∑

j=0
g(l)nj𝜀

(l)
i−j, 𝓁 = 1, … ,K, (5)

for coefficients {c(𝜈)nj ∶ j ≥ 0} and {g(l)nj ∶ j ≥ 0}, for 𝜈 = 1, … , dn, l = 1, … ,K. Then the 𝜈th
coordinate of Yni, 1≤ i≤n, is given by

Y (𝜈)
ni = b′

n𝜈Fni + E(𝜈)
ni =

L−1∑
l=1

b(l)
𝜈 F(l)

ni + E(𝜈)
ni , for i = 1, … ,n, (6)

where b′
n𝜈 denotes the 𝜈th row of Bn. If we define c(𝜈,l)nj = b(l)

𝜈 g(l)nj , for l= 1, … L− 1, and c(𝜈)nj = c(𝜈,L)nj ,
then it follows

Y (𝜈)
ni =

∞∑
j=0

c(𝜈,1)nj 𝜀
(1)
i−j + · · · +

∞∑
j=0

c(𝜈,L−1)
nj 𝜀

(L−1)
i−j +

∞∑
j=0

c(𝜈,L)nj 𝜀
(L)
i−j

=
L∑

l=1

∞∑
j=0

c(𝜈,l)nj 𝜀
(l)
i−j,

such that the model is a special case of (6). It is worth mentioning that the above model covers the
classical case of time i idiosyncratic noise being independent across the coordinates (but possibly
heteroscedastic), that is,

Y (𝜈)
ni = b(1)

n𝜈 F(1)
ni + · · · + b(L−1)

n𝜈 F(L−1)
ni + 𝜀̃

(𝜈)
ni

with 𝜀̃
(1)
ni , … , 𝜀̃

(dn)
ni independent (namely for c(𝜈)nj = 0, if 0 ≤ j ≠ 𝜈, and ≠ 0, j = 𝜈), but also allows

for time i correlated noise terms, which is a common and realistic assumption to handle the case
that the factors do not absorb all correlations.

A special case well known from the literature is to assume that Yni = BnFni + Eni as above
with a VAR model for the factor process,

Fni = Φ(L)Fn,i−1 + Uni,

with mean zero errors and a lag polynomial Φ(L) of finite order such that det(I − Φ(z)) = 0 has all
its roots outside the unit circle. If Bn has full rank and if the two innovation series form a bivari-
ate weak white noise which is orthogonal to all lagged factor values, then Yni attains a VARMA
representation, see Dufour and Stevanovic (2013). A similar result holds for VARMA factors. Our
framework and discussion go beyond these settings, since general linear processes with slowly
decaying coefficients are considered and, as shown by the following example, models with an
infinite number of factors are covered.

Example 2 (A generalized factor model). In some applications the assumption of independent
factors is too restrictive. Our model framework (3) allows for the more general case of K + K′

factors, where K factors are as above and thus guaranteed to be independent. The additional K′

factors may be correlated among each other but independent of the other factors. But, under
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certain conditions, they can be independent among each other as well. Indeed, we may even con-
sider the case of an infinite number of correlated factors. Observe that in Example 1 all K(=L− 1)
factors and the errors depend on different innovation processes, such that they are independent
from each other. We now introduce, in addition to (5), further factors depending on the same
innovation process {𝜀(L−1)

i ∶ i ≥ 0}, by defining

F(l)
ni =

∞∑
j=0

g(l)nj𝜀
(L−1)
i−j , for l = L, … ,L − 1 + K′,

for coefficients {g(l)nj ∶ j ≥ 0}. In general, these factors are correlated, but they may be independent
among each other as well as independent of the other K factors, namely if the sets n𝓁 = {j ≥ 0 ∶
g(l)nj ≠ 0} are disjoint (for each n). We obtain

Y (𝜈)
ni =

K+K′∑
l=1

b(l)
n𝜈F(l)

ni + E(𝜈)
ni =

L−2∑
l=1

b(l)
n𝜈F(l)

ni +
K+K′∑
l=L−1

b(l)
n𝜈F(l)

ni + E(𝜈)
ni

=
L−2∑
l=1

∞∑
j=0

𝜀
(l)
i−j b(l)

n𝜈g(l)nj
⏟⏟⏟

=∶c(𝜈,l)nj

+
∞∑

j=0
𝜀
(L−1)
i−j

K+K′∑
l=L−1

b(l)
n𝜈g(l)nj

⏟⏞⏞⏞⏟⏞⏞⏞⏟

=∶c(𝜈,L−1)
nj

+
∞∑

j=0
c(𝜈)nj

⏟⏟⏟

=∶c(𝜈,L)nj

𝜀
(L)
i−j

=
L∑

l=1

∞∑
j=0

c(𝜈,l)nj 𝜀
(l)
i−j.

Of course, all sequences of coefficients have to satisfy Assumption 3. Observe that, in view of the
representation in the second line in the above display, K′ and hence K can be even∞, provided we
impose sufficient conditions to ensure that the coefficients c(𝜈,L−1)

nj decay fast enough. A sufficient
condition on the factor loadings b(l)

ni , for i = 1, … , d, l = 1, … ,K + K′, is to assume that

sup
n∈N

max
1≤i≤dn

|b(l)
ni |2 ≪ l−2−𝛿, for some 𝛿 > 0.

3 CHANGE-POINT TESTS FOR TESTING THE STABILITY
OF THE COVARIANCE STRUCTURE AND FOR FACTOR
MODELS

Change-point testing based on CUSUM statistics is a widespread approach to test for the presence
of changes. Here we study several CUSUM procedures and a specialized approach to handle factor
models. Estimation of the change-point is studied as well.

3.1 Testing the stability of the covariance structure

Suppose we are interested in testing whether there is a change in the covariance matrix of the
vector time series Yn1, … , Ynn. Thus, let us assume that

Yni = Y(0)
ni 1(i ≤ 𝜏) + Y(1)

ni 1(i > 𝜏), 1 ≤ i ≤ n,



10 BOURS and STELAND

for some change-point 1 ≤ 𝜏 ≤ n, where Y(0)
ni denotes the stationary time series before the change

and Y(1)
ni the stationary after-change time series. If 𝜏 < n, then the change occurs within the

observed sample. The change may be due to a change of the variance of the innovations or because
of a change of the coefficients of the assumed linear process framework. In any case, we assume
that it induces a change of the covariance matrix from

𝚺(0)
n = Var(Y (0)

n1 )

to a different covariance matrix

𝚺(1)
n = Var(Y (1)

n,𝜏+1).

That means, denoting 𝚺n[i] = Var(Yni), 1≤ i≤n, we are interested in the change-point testing
problem

H0∶ 𝚺n[i] = 𝚺(0)
n ∀i = 1, … ,n H1∶ ∃ k ∈ {2, … ,n} ∶ 𝚺n[k] ≠ 𝚺(0)

n ,

which tests the null hypothesis of stability of the covariance structure against the alternative
hypothesis of a change, equivalently expressed as

H0∶ 𝜏 = n H1∶ 𝜏 < n.

Let n = {(xn, yn) ∈ Rdn × Rdn ∶ x′
n𝚺n0yn ≠ x′

n𝚺n1yn}. Select weighting vectors vn, wn ∈Vn sat-
isfying Assumption 1 (i) resp. (ii). Then the change is also present in the sequence of bilinear
forms

𝜎2
n[k] = v′

n𝚺n[k]wn, k ≥ 1.

We assume that

inf
n≥1

|Δn| > 0, Δn = v′
n𝚺(0)

n wn − v′
n𝚺(1)

n wn, (7)

to ensure that the change is present asymptotically. The proposed change-point tests are based on
the partial sums of outer products,

Snk =
∑
i≤k

YniY′
ni, k ≥ 1.

The maximally selected CUSUM statistic compares Snk/k, the sample covariance matrix using the
data available at time k, with the full-sample estimate in terms of the bilinear form induced by
the weighting vectors. Precisely, it is defined as

Cn = Tn∕𝛼̂n with Tn = max
1≤k<n

1√
n

|||||v′
n

(
Snk −

k
n

Snn

)
wn

||||| . (8)

Here 𝛼̂n is an estimator of the asymptotic standard deviation associated to the bilinear form under
study and is discussed in detail below. The theoretical results provided in the next section yield
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the asymptotic distribution under the null hypothesis, justifying the following test: Reject H0
at the nominal significance level 𝛼 ∈ (0, 1), if Cn > c1−𝛼, where cp denotes the p-quantile of the
Kolmogorov distribution, see (13). If the test rejects, it is of interest to locate the change. Under
the common assumption that the true change-point 𝜏 is proportional to the sample size, 𝜏 = ⌊n𝜗⌋,
0<𝜀<𝜗< 1, one may estimate it consistently, as shown in the next section, by

𝜏n = arg max
n0≤k<n

1
n

|||||v′
n

(
Snk −

k
n

Snn

)
wn

||||| ,
that is as the (smallest) time index k≥n0:= ⌊n𝜀⌋, for some small 𝜀> 0, at which the maximum in
the definition of Cn resp. Tn is attained. Practitioners could find it more intuitive to estimate the
change-point by maximizing the distance between the sample averages, that is, to use

𝜏n = arg max
n0≤k<n−n0

||||v′
n

(1
k

Snk

)
wn − v′

n

( 1
n − k

[Snn − Snk]
)

wn
|||| .

To avoid estimation of the asymptotic variance parameter it has been proposed to use
self-normalized CUSUMs, see Shao and Zhang (2010) and the discussion in the Introduction.
Here one normalizes the CUSUM statistic, which can be represented as a functional of the partial
sum process, by an appropriate integral functional of the partial sum process whose distributional
limit is linear in the asymptotic variance parameter. As a consequence, this nuisance parameter
cancels in the limit. Adopted to our situation here one may calculate

Tn,sn = max
1≤k<n

|||||v′
n

(
Snk −

k
n

Snn

)
wn

)
∕Vn(k),

with Vn(k) = n−2[Vn1(k) + Vn2(k)] where

Vn1(k) =
k∑

i=1

{
v′

n

( i∑
𝓁=1

Sn𝓁 −
i
k

k∑
𝓁=1

Sn𝓁

)
wn

}2

,

Vn2(k) =
n∑

i=k+1

{
v′

n

( n∑
𝓁=i

Sn𝓁 −
n − i + 1

n − k

n∑
𝓁=k+1

Sn𝓁

)
wn

}2

.

Here, as in Shao and Zhang (2010), the integrated squares of bilinear forms of CUSUMs centered
at the sample average are calculated separately for the data up to and after the candidate location
k for the change-point. The limiting distribution of Tn, sn is given by law of

sn = sup
0<r<1

|B(r)-rB(1)|√
∫ r

0 [B(s) −
s
r
B(r)]2 ds + ∫ 1

r [B(1) − B(s) − 1−s
1−r

(B(1) − B(r))]2 ds
. (9)

Quantiles have to be determined by simulation, however, and have been tabulated in Shao
and Zhang (2010). We shall also need p values. Here one can simulate S replicates, say,
T1,sn, … ,TS,sn ∼ sn, of (9) once and estimate the p value of an observed statistic Tobs,sn by
S−1 ∑S

s=1 1(Ts,sn > Tobs,sn).
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The above CUSUM statistics are known to be powerful for a change in the middle of the sam-
ple. For an early or late change the performance gets worse, see, for example, Steland (2020), and
may deteriorate completely, if there is a more complex situation with several change-points, see
the simulations in Section 4. Having in mind the latter case an interesting further change-point
statistic is

Cn,md = Tn,md∕𝛼̂n with Tn,md = max
1≤i<j≤n

1√
n

||||||
∑

i<𝓁≤j
v′

n

(
Sn𝓁 −

(j − i)
n

Snn

)
wn

|||||| ,
which considers the maximal deviation from the average of the cumulated sums, the maximum
being taken over all possible subsamples Yn𝓁 , i < 𝓁 ≤ j for 1≤ i< j≤n. In other words, each sub-
sample gives rise to a CUSUM statistic and the maximal one is taken. In this way, even small
segments where the null hypothesis is violated can be detected, wherever they are located. We
shall show that

Tn,md
d
→ sup

0<s<t<1
|B0(s) − B0(t)|,

as n→∞, for some Brownian bridge B0 on [0, 1]. The limiting process is the maximal loss func-
tional of Brownian bridge. Its exceedance asymptotics has been studied by Dȩbicki et al. (2016)
and satisfies

P
(

sup
0<s<t<1

|B0(s) − B0(t)| ≥ u
)
= 25∕2

√
𝜋u3(1 − Φ(2u)(1 + o(1)), u → ∞. (10)

Quantiles are therefore approximated by solving 25∕2√𝜋u3(1 − Φ(2u) = 𝛼 for sufficiently small
nominal significance levels 𝛼.

When being interested in testing k pairs of weighting vectors, we propose to combine the
above test with a multiple testing procedure. Using our large sample approximations one may
easily calculate corresponding p values pi, 1≤ i≤ k, and reject the global null hypothesis on the
global significance level 𝛼 ∈ (0, 1), if p(1) ≤ 𝛼∕k. Here we denote by p(1) ≤ … ≤ p(k) the ordered
p values and by H(i)

0 the corresponding null hypothesis of a stable pair. Furthermore, using the
Benjamini–Hochberg procedure to control the familywise error rate, the null hypothesis H(i)

0 is
rejected if p(i) ≤ 𝛼∕i. If k is large, it may be more appropriate to control the false discovery rate
(FDR) by the Benjamini–Yekutieli procedure and therefore to reject H(i)

0 if p(i) ≤ 𝛼i∕kci, where
ci =

∑i
j=1 1∕j ensures the FDR control under arbitrary dependence at 𝛼, if all null hypotheses are

true, and at the level 𝛼k0∕k, if k0 null hypotheses are true, see Benjamini and Yekutieli (2001).
As well known, both procedures allow for arbitrary dependencies. Our simulations indicate that
multiple testing can yield substantially more powerful tests than using a only a single projection.

Depending on the problem of interest, it may be necessary to estimate the weighting vectors.
Estimation of such unknowns in a procedure is a common issue and, when discussed, typically
solved by (i) in-sample estimation, (ii) assuming a so-called noncontamination period as in Chu
et al. (1996), or (iii) the availability of a learning sample of size m of the same dimension, such
that especially dm = dn holds. Of course, this can be ensured by splitting a given time series of
length N >n+m of dimension d̃N in two segments YN1, … , YNm (the learning sample of size
m) and YN, N −n+ 1, YNN (the test sample of size n). Then both samples have the same dimension
dn ∶= d̃N ; the condition N >n+m ensures a gap which should be chosen so that the samples can
be assumed to be (approximately) independent.
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3.2 Testing the stability of a high-dimensional factor model

Let us now elaborate specifically on testing the stability of a high-dimensional factor model.
Assume that the learning and testing series are weakly stationary and satisfy the standing assump-
tions of the article. As above, denote the pre- and postchange covariance matrices by 𝚺(0)

n and
𝚺(1)

n . Furthermore, suppose that a high-dimensional factor model holds true for the learning
sample und until the change in the testing sample, such that using the notation introduced
above

𝚺(0)
n = BnCov(F)B′

n + 𝚺nE,

where 𝚺nE = Cov(En). To fix ideas, assume a nonapproximate factor model with Cov(En) =
𝜎2

EI. If (u, 𝜆) is an eigenvector–eigenvalue pair of BnCov(F)B′
n, then (u, 𝜆 + 𝜎2

E) is an
eigenvector–eigenvalue pair of 𝚺(0)

n . This means, changes in the factors or loadings change the
eigenstructure of the covariance matrix and for approximative factor models this holds in an
approximative sense. Furthermore, if Y is a mean zero vector with covariance matrix 𝚺(0)

n (a
generic prechange observation), then Q(u) = E(u′YY′u) = 𝜆 + 𝜎2

E. If a change to 𝚺(1)
n leaves the

eigenvectors invariant but changes the eigenvalue 𝜆 to 𝜆 + 𝛿 for some 𝛿 > 0, the quadratic
form gives Q(u) = 𝜆 + 𝜎2

E + 𝛿, of course. On the other hand, if the eigenvectors change, say, to
ũ1, … , ũdn , then we have u = Ũa for some a ∈ Rdn , where Ũ = (ũ1, … , ũdn) is orthogonal. We
obtain for a generic observation Y after the change, that is, with mean zero and covariance
matrix 𝚺(1)

n ,

Q(u) = E(u′YY′u) = a′𝚲̃a =
dn∑
i=1

𝜆̃ia2
i ,

where 𝚲̃ = diag(𝜆̃1, … , 𝜆̃dn)
′ and 𝜆̃1, … , 𝜆̃dn are the eigenvalues corresponding to ũ1, … , ũdn .

Hence, the change is visible in the quadratic form Q(u), provided
∑dn

i=1 𝜆̃ia2
i ≠ 𝜆 + 𝜎2

E. These con-
siderations show that eigenvectors can be used as weighting vectors to detect changes in a factor
model.

Generally, if the factor model is unstable such that 𝚺(0)
n changes to 𝚺(1)

n , the direction of the
change 𝚫n = 𝚺(1)

n − 𝚺(0)
n matters, see also the discussion in Steland (2020) on its impact on the

asymptotics of the bilinear forms used here for inference under such a change-point alternative
model. Exploiting this relationship, however, requires knowledge or prior expectations about the
direction of change in terms of the column space of 𝚫n, which is rarely available. Therefore we
focus on instability leading to a change visible in (the column space of) 𝚺(0)

n .
A classical factor model for𝚺(0)

n assuming uncorrelated factors F1, … , FK , uncorrelated errors
E1, … , EK and orthogonal columns bn1, … , bn, K of the loadings matrix B can be interpreted as
a series expansion with remainder term:

𝚺(0)
n =

K∑
j=1

Var(Fj)bnjb′
nj + 𝚺nE.

The first K terms are a series with respect to the spanning set bn1b′
n1, … ,bn,Kb′

n,K and the
covariance matrix of the idiosyncratic noise term represents the remainder term.

Any reasonable estimator 𝚺̂(0)
n of 𝚺(0)

n being consistent under certain regularity conditions
will then be close to that expansion as well. Especially, in an idealized factor model BnCov(F)B′

n
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dominates and 𝚺nE is negligible or at least small, and thus the estimator 𝚺̂(0)
n should be close to∑K

j=1 Var(Fj)bnjb′
nj. These considerations suggest to assume that 𝚺̂(0)

n attains a representation

𝚺̂(0)
n =

dn∑
j=1

𝜆
(0)
nj 𝝃nj𝝃

′
nj, (11)

where 𝜆
(0)
n1 ≥ 𝜆

(0)
n2 ≥ … ≥ 𝜆

(0)
n,dn

≥ 0 are ordered real numbers, called pseudo-eigenvalues in what
follows, and 𝝃nj are vectors with ||𝝃nj||2 = 1, not necessarily orthogonal, which we may call
pseudo-eigenvectors. Obviously, this assumption covers the case of the usual spectral representa-
tion with respect to the eigenvectors, but it is more general. In some cases the vectors 𝝃nj result
from the estimator’s definition and satisfy sparsity constraints by its construction. Otherwise, we
take the basis for granted, for example, by applying a sparse principal component analysis, see
Zou et al. (2006), Witten et al. (2009), Benjamin Erichson et al. (2020), and Steland (2020) lead-
ing to such a representation with sparse directions. Let us assume that the pseudo-eigenvectors
corresponding to the leading K pseudo-eigenvalues satisfy

sup
n≥1

||𝝃nj||𝓁r ≤ C, j = 1, … ,K, (12)

for some constant C <∞, for r = 1 or r = 2, so that Assumption 1 (i) resp. (ii) holds. These
considerations suggest to apply the change-point test discussed above to the test sample using
the pseudo-eigenvectors 𝝃nj as weighting vectors obtained from a learning sample. Then the
change-point tests check whether or not there is a change in the pseudo-eigenvalues or
pseudo-eigenvectors. As checking the stability of the leading eigenvector–eigenvalue pair is often
of most interest, one may use the leading pseudo-eigenvector to conduct a stability test. One
may also average the first k leading eigenvectors to check the stability of the leading part of
the eigenstructure, but in our simulations this approach did not improve upon selecting only the
leading one. Instead, one can use the multiple testing procedures discussed above to analyze
the pseudo-eigenstructure in detail by selecting the first k pseudo-eigenvectors.

The estimator 𝚺̂(0)
n used in the pseudo-spectral representation can be the sample covariance

matrix, a shrinkage estimator or some other regularized estimator, as discussed to some extent
in the Introduction. Of course, one can also make use of the assumed factor model for that esti-
mation, but the proposed testing methodology does not necessarily require to estimate a factor
model. One can even rely on random projections as demonstrated in the simulations.

4 ASYMPTOTIC RESULTS

This section provides large sample approximations, in terms of strong approximations, of the class
of CUSUM statistics of interest and, more generally, of partial sums associated to bilinear forms
of the sample covariance matrix. These results also comprise a multivariate approximation and
a theorem about the CUSUM when maximized over all subsamples. Furthermore, we propose
estimators for the asymptotic variances and covariances arising in these approximations and show
that they are L1-consistent uniformly in the dimension. Finally, we establish the ratio consistency
of the proposed change-point estimator assuming that a change of the underlying coefficients of
the vector time series induces the change in the covariance structure.
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4.1 Strong approximations and related results

Recall that a strong approximation or strong invariance principle refers to results allowing to
approximate a partial sum S(n) =

∑
i≤nXi of mean zero random variables (or the interpolated

version) by a Brownian motion, in the sense that one can redefine {Xi : i≥ 1} on a new probabil-
ity space together with a Brownian motion B, such that |S(n)−B(n)| attains at least a LIL-type
bound, S(t) − B(t) = o(t1∕2 log(t)), t ≥ 1, a.s., as first established by Strassen (1965) for indepen-
dent random variables and martingales. Tight bounds such as O(t1∕2−𝜆), for some 𝜆 > 0, hold
under moment conditions for an i.i.d. sequence, see the KMT construction of Komlós et al. (1976,
theorem 2), and have been also established under dependence conditions, see, for example,
Eberlein (1986), Philipp (1986), and Berkes et al. (2014), among others. Note that a strong approx-
imation yielding |S(t) − B(t)| = O(t1∕2−𝜆) a.s., allows us to approximate the partial sum process
n−1∕2 ∑⌊nt⌋

i=1 Xi, t ∈ [0, 1], by a Brownian motion, also implying the central limit theorem and
Donsker’s invariance principle. In our treatment, we rely on a general strong approximation result
of Philipp (1986) for weakly dependent random elements attaining values in a Hilbert space,
which provides in our case the convergence rate O(t1∕2−𝜆) when approximating partial sums.

Let us first consider the maximally selected CUSUM statistic,

Tn = Tn(vn,wn) = max
k≤n

1√
n

|||||v′
n

(
Snk −

k
n

Snn

)
wn

||||| .
In order to devise the associated change-point test, we need the asymptotic null distribution of
Tn, which is provided by the following result.

Theorem 1. (i) Let vn,wn ∈ n be weighting vectors which satisfy Assumption 1 (i). Suppose
Yni, 1≤ i≤n, n≥ 1, is a vector time series satisfying the linear process resp. factor model framework
(3) and Assumptions 2 and 3.

Then, for each n ∈ N, there exists an equivalent version of Tn(vn,wn), again denoted by
Tn(vn,wn), and a standard Brownian motion {Bn(t) = Bn(t; vn,wn) ∶ t ≥ 0}, both defined on some
richer probability space (Ωn,n,Pn), such that for some asymptotic variance parameter 𝛼n(vn,wn)|||||Tn(vn,wn) − 𝛼n(vn,wn)max

k≤n

|||||B0
n

(
k
n

)|||||
||||| = o(1),

a.s., as n→∞, where B(0)
n (t), t ≥ 0, is a standard Brownian bridge given by B0

n(t) = Bn(t)
− t

n
Bn(n), t ∈ [0,n], and Bn(s) ∶= n−1∕2Bn(sn), s ∈ [0, 1], is the rescaled version of the process Bn on

[0, 1].
(ii) If vn,wn ∈ n satisfy Assumption 1 (ii) and 𝛼̂n(vn,wn) is a homogenous and consistent

estimator of 𝛼n(vn,wn), then |||||Cn(vn,wn) − max
k≤n

|||||B0
n

(
k
n

)|||||
||||| = o(1),

a.s., as n→∞.

Observe that the above strong approximation for Cn yields the weak convergence

Cn(vn,wn)
d
→ FKD, (13)

as n→∞, to the Kolmogorov distribution FKD.
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The proof of Theorem 1 is actually a consequence of more general strong approximations of
the centered partial sums, Dnk(vn, wn) given by

Dnk(vn,wn) = v′
n(Snk − E(Snk))wn, n, k ≥ 1.

Furthermore, define the associated càdlàg processes

n(t; vn,wn) = v′
n

1√
n
(Sn,⌊nt⌋ − E(Sn,⌊nt⌋))wn (14)

and

0
n(t, vn,wn) = n

(⌊nt⌋
n

)
−

⌊nt⌋
n

n(1), (15)

for t ∈ [0, 1] and n≥ 1.

Theorem 2. (i) Under the assumptions and construction of Theorem 1 (i) we have

|Dnt(vn,wn) − 𝛼n(vn,wn)Bn(t)| ≤ Cn n
1
2
−𝜆, ∀t > 0 a.s. (16)

If Cnn−𝜆 = o(1), as n→∞, this implies the strong approximation

sup
t∈[0,1]

|||||n(t; vn,wn) − 𝛼n(vn,wn)Bn

(⌊nt⌋
n

)||||| = o(1), a.s., (17)

sup
t∈[0,1]

|||||0
n(t; vn,wn) − 𝛼n(vn,wn)B0

n

(⌊nt⌋
n

)||||| = o(1), a.s., (18)

as n→∞, for the rescaled version of Bn on [0, 1] and B0
n(t) = Bn(t) − tBn(1), t ∈ [0, 1], which is a

standard Brownian bridge on [0, 1].
(ii) Under the assumptions of Theorem 1 (ii) and if limn→∞𝛼n(vn,wn) > 0 and 𝛼n(vn,wn) is

estimated by a homogenous and consistent estimator 𝛼̂n(vn,wn), then

sup
t∈[0,1]

|||||n(t; vn,wn)∕𝛼̂n(vn,wn) − Bn

(⌊nt⌋
n

)||||| = o(1), a.s., (19)

sup
t∈[0,1]

|||||0
n(t; vn,wn)∕𝛼̂n(vn,wn) − B0

n

(⌊nt⌋
n

)||||| = o(1), a.s., (20)

as n→∞, hold.

Theorem 2 is essentially behind the asymptotic validity of all proposed tests. The following
theorem establishes this in detail for the test based on Tn, md which employs the tail asymp-
totics (10). In this case, which is slightly more involved than the others, one needs to consider
a null sequence of significance levels to obtain a rigorous result. For the CUSUM statistic and
the self-normalized CUSUM test we omit the details, since the derivations follow using simi-
lar arguments by relying on the implied FCLTs and the continuous mapping theorem, see also
Steland (2020).
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Theorem 3. Assume the conditions of Theorem 2 (ii) hold. Let pn ∈ (0, 1/4), n≥ 1, be a sequence
of nominal significance levels with pn = o(1), n→∞. Let un be the unique solution of 25∕2√𝜋u3(1 −
Φ(2u) = pn. Then, under the null hypothesis of no change

|P(Tn,md > un) − pn| = o(1), n → ∞.

The following theorem extends the previous strong approximation result to a finite number
of bilinear forms with projection vectors vn1, … , vnM , wn1, … , wnM , for M <∞. This is inter-
esting in view of the proposed method to infer possible changes in a factor model structure by
applying CUSUM change-point tests corresponding to sparse pseudo-eigenvectors, see the previ-
ous section, or, more generally, when correlated high-dimensional data is analyzed by projecting
it onto a lower dimensional space to reduce complexity. For this purpose, (sparse) principal com-
ponent analysis is a frequently chosen method, which reduces a large set of variables to a small
set that still contains most of the information.

Theorem 4. Let {vnj,wnj ∶ 1 ≤ j ≤ M} be weighting vectors of dimension dn satisfying Assumption
1 (i). Then, under the assumptions as in Theorem 2 (i), there exists a M-dimensional Brownian
motion {B(n)(t) ∶ t ∈ [0, 1]}, such that

‖‖‖‖‖(n(t; vni,wni))M
i=1 −

(
Bn

(⌊nt⌋
n

; vni,wni

))M

i=1

‖‖‖‖‖ = o(1), a.s., as n → ∞,

where || ⋅ || denotes an arbitrary vector norm on RM. The mean zero Brownian motion {B(n)(t) ∶ t ∈
[0, 1]} with coordinates Bni = Bn(t; vni,wni), t ∈ [0, 1], i = 1, … ,M, is characterized by

E[B2
n(1; vni,wni)] = 𝛼n(vni,wni), for i = 1, … ,M,

and

E[Bn(1; vni,wni)Bn(1; vnj,wnj)] = 𝛽n(vni,wni, vnj,wnj), for 1 ≤ i, j ≤ M, i ≠ j.

4.2 Estimation of the asymptotic covariance structure

In general, the asymptotic variance and covariance parameters arising in the above theorems are
unknown. In order to use our strong approximations, we have to find proper estimates, which
requires somewhat stronger assumptions. So let us consider pairs (vn, wn), (vnr, wnr), 1≤ r ≤M,
of projection vectors, on which we project the vector time series Yni. We follow previous works
(Steland & von Sachs, 2017, 2018) in using appropriate long-run variance (LRV) estimators and
show that they are L1-consistent for the general high-dimensional multivariate linear process
framework. We further go beyond these results in allowing the projection vectors as well as the
coefficients of the linear processes to depend on n.

It turns out that the asymptotic variance and covariance parameters, 𝛼2
n = 𝛼2

n(vn,wn) and
𝛽2

n(r, s) = 𝛽2(vnr,wnr, vns,wns), 1≤ r, s,≤M, are the long-run variance and covariance parame-
ters associated to the time series {v′

nYniw′
nYni ∶ i = 1, … ,n} and {v′

nrYniw′
nsYni ∶ i = 1, … ,n},

respectively. In view of this fact, we use Bartlett-type LRV estimates in the time domain. To
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simplify notation, put Yni(vr) = v′
nrYni and so on. Observe that sample mean and sample autoco-

variances of these processes are given by

𝜇̂
(vr ,wr)
n ∶= 1

n

n∑
j=1

Ynj(vr)Ynj(wr), for 1 ≤ r ≤ M,

Γ̂(r,s)
n (h) ∶= 1

n

n−h∑
i=1

(
Yni(vr)Yni(wr) − 𝜇̂

(vr ,wr)
n

)(
Y (vs)

n,i+|h|Y (ws)
n,i+|h| − 𝜇̂

(vs,ws)
n

)
, |h| < n,

for 1≤ r, s,≤M. For brevity of notation, let us denote Γ̂n(h) = Γ̂(1,1)
n (h) in case that a single pair,

(vn, wn), as in Theorem 2, of weighting vectors is considered. Define

𝛼̂2
n = 𝛼̂2

n(d) = Γ̂n(0) + 2
m∑

h=1
wmhΓ̂n(h),

𝛽
2
n(r, s) = 𝛽

2
n(r, s; d) = Γ̂(r,s)

n (0) + 2
m∑

h=1
wmhΓ̂

(r,s)
n (h), 1,≤ r, s,≤ M,

where m=mn, n≥ 1, is a sequence of lag truncation constants and wmh are weights.
The following theorem provides the L1-consistency, uniformly over the dimension d. It gener-

alizes (Steland & von Sachs, 2017, th. 4.4) to projection vectors depending on the sample size and
this fills a gap in the rigorous mathematical justification of the procedures when using uniformly
𝓁2-bounded projections.

Theorem 5. Assume the weights {wmh ∶ h ∈ Z,m ∈ N} satisfy

(W1) wmh → 1, as m→∞, for all h ∈ Z.
(W2) 0≤wmh ≤W <∞ for some constant W, for all m ≥ 1, h ∈ Z.

Furthermore, suppose that the coefficients c(𝜈,l)nj ensure the decay condition

sup
n≥1

sup
1≤𝜈

|c(𝜈,l)nj | ≪ (j ∨ 1)−(1+𝛿), ∀l = 1, … ,L,

for some 𝛿 > 0, and that 𝜀(l)k , k ≥ 1, are i.i.d. with max
k

E|𝜀(l)k |8 < ∞, for l= 1, … , L. Finally, suppose

that mn →∞ with m2/n= o(1), as n→∞.
(i) If vn, wn are weighting vectors with supn≥1||vn||𝓁1 , ||wn||𝓁1 < ∞, then

sup
d∈N

E|𝛼̂2
n(d) − 𝛼2(d)| →

n→∞
0.

(ii) Furthermore, if vnr, wnr, r ≥ 1, are weighting vectors which satisfy Assumption 1 (i), that is, they
have uniformly bounded 𝓁1-norm, then

sup
r,s≥

sup
d∈N

E|𝛽2
n(r, s; d) − 𝛽2(r, s; d)| →

n→∞
0.
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In the above theorem the dimension is regarded as a formal variable d and consistency is
shown uniformly in d. By plugging in the dimension dn of the time series, this result yields the
consistency of 𝛼̂2

n(dn) for an growing dimension dn →∞, without any constraint on the growth of
dn, since

E|𝛼̂2
n(dn) − 𝛼2(dn)| ≤ sup

d∈N

E|𝛼̂2
n(d) − 𝛼2(d)|,

and a similar statement holds true for the estimates 𝛽2
n(r, s; d), 1≤ r, s≤M.

4.3 Consistency of the change-point estimator

Let us now consider the proposed change-point estimator 𝜏n, defined as the smallest time point
where the test statistic in (8) attains its maximum over the time span from n0 to n. Clearly, the
estimator 𝜏n can be represented as

𝜏n = arg max⌊n𝜀⌋≤k≤n
|̂ n(k)|,

where

̂ n(k) =
1
n

Unk −
k
n2 Unn, 1 ≤ k ≤ n,n ≥ 1,

with Unk = Unk(vn,wn) = v′
n𝚺̃nkwn, and arg maxx∈Df (x) denotes the smallest maximizer of a

function f defined on D. Alternatively, one may use

𝜏n = arg max⌊n𝜀⌋≤k≤⌊n(1−𝜀)⌋|̃n(k)|,
where

̃n(k) =
1
k

Unk −
1

n − k
(Unn − Unk).

Let us now assume that the time series before and after the change is given by two different
coefficient arrays 𝔟 = {b(𝜈,l)

nj ∶ j ≥ 0, 𝜈 = 1, … , dn, l = 1, … ,L,n ≥ 1} and 𝔠 = {c(𝜈,l)nj ∶ j ≥ 0, 𝜈 =
1, … , dn, l = 1, … ,L,n ≥ 1} ensuring that

𝚺(0)
n = Var(Yn1(𝔟)) ≠ Var(Yn,𝜏+1(𝔠)) = 𝚺(1)

n , (21)

where Yni(𝔟) resp. Yni(𝔠) denote the vector time series corresponding to the coefficient array
𝔟 resp. 𝔠. For vn,wn ∈ n this induces a change in the associated quadratic forms, such
that Δn ≠ 0 where Δn = v′

n𝚺
(0)
n wn − v′

n𝚺
(1)
n wn in view of (21). In Steland (2020) it has been

shown that

n(k) = E(̂ nk) =

{
k(n−𝜏)

n
Δn, 1 ≤ k ≤ 𝜏,

𝜏
n−k

n
Δn, 𝜏 < k ≤ n.
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Furthermore, it holds

n(k) = E(̂n(k)) =

{
n−𝜏
n−k

Δn, 1 < k ≤ 𝜏,
𝜏

k
Δn, 𝜏 < k < n.

Observe that for Δn > 0 the functions n(k) and n(k) have a unique maximum at k = 𝜏, are
strictly increasing for k < 𝜏 and strictly decreasing for k > 𝜏. We strengthen condition (7) and
assume now that

0 ≠ Δ = lim
n→∞

Δn, i = 0, 1. (23)

Furthermore, let us specify the location of the change-point by assuming that

𝜏 = ⌊n𝜗⌋ (24)

for some change-point parameter 𝜗∈ (0, 1). 𝜗 can be estimated by

𝜗̂n = 𝜏n∕n resp. 𝜗̃n = 𝜏n∕n.

Clearly, any estimator is ratio-consistent for 𝜏, if it is consistent for 𝜗> 0.

Theorem 6. Suppose that (23 ) and (24 ) hold true. Then the change-point estimators 𝜏n and 𝜗̃n
are weakly consistent and ratio-consistent for 𝜏 , that is, specifically,

|𝜗̃n∕𝜗 − 1| P
→ 0, |𝜗̃n∕𝜗 − 1| P

→ 0, n → ∞.

5 SIMULATIONS AND DATA ANALYSIS

The proposed methods were investigated by simulations and applied to a real econometric data
set.

5.1 Simulations

To investigate size and power of the tests, two models employed in the literature on change
detection in factor models are examined.

Model 1: Time series from the frequently used simple model for a d-dimensional vector time
series

Yt = 𝜚Yt−1 + et + 𝜗et−1,

were simulated as H0 data, where et is i.i.d. N(0, I). Two types of alternatives were examined.
First, a change-point in the middle of the sample where the covariance matrix of the et changes

to Δ(1 +
√

log log T∕
√

T)I, Δ ≥ 1, similar as in Kao et al. (2018), who studied a specialized test
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for a linear mapping of eigenvalues and eigenvectors, respectively, given by a quadratic form. The
results are, however, only to some extent comparable, since their test requires to invert a d× d
matrix and is trimmed as well, thus requiring the condition d/n< 1/2 to be computable. Second,
the case of several change-points was studied where it is known that the classical CUSUM statistic
may not work. Here the covariance matrix of the et is given by

(1 + 2Δ)I, if n∕16 < t ≤ n∕4 or (3∕4)n < t ≤ (15∕16)n (25)

and I otherwise. We consider the cases d= 3, 10, 200, 500 and model parameters 𝜚 = 0, 0.5 and
𝜗 = −0.5, 0, 0.5, combined as given in the tables. The high-dimensional case was investigated for
d=n, a setting which cannot be handled by most existing tests in the literature. The single tests
use the leading eigenvector from the sample covariance matrix of a learning sample, whereas the
multiple testing approach employs the leading max(3,

√
d) eigenvectors. The size of the learn-

ing sample was chosen as max(200,n∕2). The asymptotic variance parameters, 𝛼n(vn,wn), were
calculated using the quadratic spectral kernel with a lag truncation of n0.3. For multiple test-
ing the Benjamini–Yekutieli procedure was used. Each rejection rate was simulated using 10,000
runs, where all tests were calculated on the same prewhitened simulated time series. For the
self-normalized CUSUM the required quantiles and p values under the limiting law (9) were
simulated using 10,000 runs based on standard normal partial sums.

One can observe from Table 1 that the size of both the single and multiple test are very good,
especially for the self-normalized statistic. When it comes to very high dimensions, the multiple
tests based on the CUSUM and the maximal CUSUM over subsamples are conservative, whereas
the self-normalized test develops a slight tendency to overreact, which is, however, not relevant
for typical practical purposes.

Figure 1 depicts power curves for sample size T = 200, dimension d= 10 and model param-
eters 𝜚 = 0.5, 𝜗= 0. Under the alternative change-point model 2 the self-normalized CUSUM is
slightly more powerful for small changes, but the CUSUM is better for large changes. The max-
imal CUSUM over subsamples is less performant. But under the complex change structure of
change-point model (25) both the CUSUM and the self-normalized version completely break
down. The power of the self-normalized CUSUM even becomes non-monotonic. It is here where
the maximal CUSUM overs subsamples really shines. It is highly powerful in detecting the change
structure.

Model 2: An explicit dynamic factor model Yni =BniFni +Eni was simulated using a specifica-
tion as in Han and Inoue (2015), a factor model with L Gaussian factors, random factor loadings,
and a break in the middle of the sample under the change alternative hypothesis parameterized
by 𝛿 in a certain fraction of the coordinates, namely

Y (𝜈)
i =

L∑
𝓁=1

b(𝓁)
𝜈 F(𝓁)

i + 𝜅E(𝜈)
i , 1 ≤ i ≤ n∕2, (26)

and

Y (𝜈)
i =

L∑
𝓁=1

(b(𝓁)
𝜈 − 𝛿1(𝓁 ≤ La)F(𝓁)

i + 𝜅E(𝜈)
i , n∕2 < i ≤ n, (27)

for 𝛿 ≥ 0 (with 𝛿 = 0 corresponding the no change null hypothesis), a∈ [0, 1] (fraction
of coordinates affected by a change under H1 if 𝛿 > 0) and, with F(𝓁)

i ,E(𝜈)
i

iid∼ N(0, 1),
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T A B L E 1 Size of CUSUM, maximal partial sum (max P-SUM), and self-normalized CUSUM
(CUSUM-SN) tests for the leading eigenvector (single) and the multiple test (multi)

Test d T (0, 0) (0.5, 0) (0, 0.5) (− 0.5, 0)
Single CUSUM 10 200 0.031 0.029 0.030 0.032

Max P-SUM 10 200 0.045 0.039 0.044 0.043

CUSUM-SN 10 200 0.051 0.048 0.053 0.053

Multi CUSUM 10 200 0.011 0.010 0.011 0.012

Max P-SUM 10 200 0.009 0.009 0.011 0.009

CUSUM-SN 10 200 0.042 0.044 0.048 0.046

Single CUSUM 10 500 0.035 0.035 0.039 0.042

Max P-SUM 10 500 0.059 0.061 0.064 0.063

CUSUM-SN 10 500 0.055 0.053 0.050 0.050

Multi CUSUM 10 500 0.022 0.022 0.027 0.024

Max P-SUM 10 500 0.028 0.029 0.035 0.026

CUSUM-SN 10 500 0.044 0.042 0.046 0.046

Single CUSUM 200 200 0.029 0.028 0.031 0.035

max P-SUM 200 200 0.040 0.040 0.044 0.046

CUSUM-SN 200 200 0.046 0.051 0.052 0.057

Multi CUSUM 200 200 0.001 0.001 0.001 0.001

Max P-SUM 200 200 0.001 0.001 0.001 0.001

CUSUM-SN 200 200 0.067 0.066 0.065 0.064

Single CUSUM 200 500 0.034 0.036 0.038 0.040

Max P-SUM 200 500 0.059 0.058 0.060 0.063

CUSUM-SN 200 500 0.050 0.047 0.052 0.051

Multi CUSUM 200 500 0.007 0.008 0.009 0.010

Max P-SUM 200 500 0.006 0.007 0.007 0.009

CUSUM-SN 200 500 0.059 0.063 0.065 0.058

F I G U R E 1 Power curves as a function of Δ for the CUSUM test (bold), self-standardized CUSUM
(dashed), and the maximal CUSUM test (thin) for 𝜚 = 0.5, 𝜗 = 0. Left panel: change in the middle of the sample.
Right panel: changes as specified in (25).
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F I G U R E 2 Left panel: Power curves for the dynamic factor model given by (26) and (27) as a function of 𝛿
(specifying the magnitude of the change in the middle of the sample), for the CUSUM test (bold),
self-standardized CUSUM (dashed), and the maximal CUSUM test (thin). Right panel: power for 𝛿 = 2 and
d= 200 as a function of the fraction, a, of coordinates affected by a change

𝜅 =
√
(1 + 𝛿2∕4)L and random factor loadings b(𝓁)

𝜈

iid∼ N(𝛿∕2, 1). In this model the first ⌊La⌋ coor-
dinates of the vector time series are affected by a change in the factor loadings. In-sample
estimates of the eigenvectors were used as weighting vectors. The remaining parameters were as
in the first set of simulations.

For a= 1 and L= 3 factors the power curves as a function of 𝛿, simulated for L= 3 on the grid
𝛿 = 0, 0.5, … , 3, are shown in the left panel of Figure 2. In comparison with the tests examined
in Han and Inoue (2015), Wald and LM tests based on differences of pre- and post-sample means
of outer products of PCA estimates of the factors maximized over the candidate location for the
change, our tests have somewhat less power for small values of 𝛿, but for larger values they com-
pete with the best tests. Especially, the power curves are monotone, whereas several of the tests
studied in the cited paper have non-monotonic power in 𝛿 with power dropping down to 0.6 or
even 0.5 for 𝛿 = 2. Furthermore, the right plot in Figure 2 shows the power as a function of the
fraction, a, of time series under change, for 𝛿 = 2 and d= 200. These results are more or less in
agreement with the findings for model 1.

Finally, it was examined how the power of the tests is affected by the number of projections
used for the multiple test. Figure 3 shows the interesting results when using estimated eigenvec-
tors as well as random projections (i.i.d. standard normal). It turns out that the CUSUM with LRV
estimation reaches its highest power for a relatively small number of projections, whereas the
power of the self-standardized test is increasing. For large values, it competes well with the best
tests in Han and Inoue (2015). Random projections provides very similar results for the CUSUM
with estimated asymptotic variance and the maximal CUSUM, but lead to loss of power when
using the self-standardized CUSUM with many projections.

5.2 Data example: Is there an impact of the SARS-CoV-2 coronavirus
pandemic on the Fama/French factor model?

To illustrate the examined change-point test we consider the well-known Fama and French
five-factor model, (Fama & French, 2015), using data as provided by French. The five-factor model
extends the original three-factor model, Fama and French (1993), which added size and value to
an assets beta, by considering in addition factors for profitability and investment. As well known,
these factors are economic ones and do not result from a statistical factor analysis, and thus it
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F I G U R E 3 Power curves for the dynamic factor model (26) and (27) as a function of the number of
projections used for multiple testing, for fixed 𝛿 = 2 and a change in the middle of the sample. CUSUM test
(bold), self-standardized CUSUM (dashed), and the maximal CUSUM test (thin). Left panel: results for
projections onto eigenvectors. Right panel: random projections

makes sense to assume an underlying statistical factor model. The Fama and French factors are
correlated and it is interesting to investigate whether for a given period the eigenstructure is
affected by changes, which could be explained in the presence of a statistical factor model by a
change of the statistical factors, their loadings or changes in the idiosyncratic component.

The proposed multiple testing change-point test procedure with k= 5 was applied to analyze
the eigenstructure for three periods. Table 2 provides the p values of each test, the correspond-
ing thresholds according to Holm’s procedure to control the familywise error rate, the test
decisions when using the Benjamini–Yekutieli multiple testing procedure, and the estimated
change-points in case of rejection of the null hypothesis of stability of the corresponding sub-
space. Data from January 2019 to May 2020 was analyzed to investigate a possible break due
to the SARS-CoV-2 corona virus pandemic. Furthermore, as a comparison, the year 2018 was
analyzed. The data from 2015 were selected by purpose as an example illustrating a stable
period.

As can be seen from Table 2, in 2015 there is no evidence in the data for a change in
the eigenstructure. In the year 2018 the procedure decides in favor of a change in the leading
eigenvector–eigenvalue pair. The break is dated as October 10, 2018, by both 𝜏n and 𝜏n, where the
losses of SP500, Dow Jones Industrial and Nasday composite were 3.3%, 3.2%, and 4.8%, and losses
at other exchanges were between 2%and 6%. Market observers, such as Neue Zürcher Zeitung,
argued that Donald Trump’s tax cuts despite increasing deficits and the Fed’s raising of bench-
mark rates by a quarter percentage point in September to prevent overheating of the economy
could be among the major economic reasons.

The data from January 2019 until May 2020 spanning the COVID-19 coronavirus global out-
break are, however, perhaps of most interest. All tests yield very small p values and all null
hypotheses are rejected indicating evidence of a substantial change in the eigenstructure. When
relying on the estimator 𝜏n, the estimated break dates are particularly coherent. The breaks in
the eigensubspaces are dated between January 29 and February 28. Except the change in the least
important (fifth) and fourth direction, all changes are indeed dated quite coherently between
February 21 and February 28: On Monday, February 24, the Dow Jones Industrial Index and
FTSE fell by more than 3% in view of news that the COVID-19 coronavirus outbreak spread
outside China over the weekend. Other leading indices such as DAX and CAC40 followed. On
February 27 the NASDAQ-100 and S&P500 indices suffered their sharpest fall since the 2008
crash.
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T A B L E 2 Data analysis of the Fama/French factors over three periods. BY test decision gives the results
of the Benjamini–Yekutieli procedure. For the decisions of the Holm procedure compare the p-values with the
Holm thresholds.

Year 2015
p values CUSUM 0.099 0.1888 0.092 0.491 0.162

p values CUSUM-SN 0.326 0.344 0.025 0.232 0.163

p values max P-SUM 0.053 0.0253 0.056 0.225 0.042

BY Holm threshold 0.0125 0.025 0.01 0.05 0.0167

test decision (all tests) 0 0 0 0 0

Year 2018

p value CUSUM 0.002 0.0628 0.0498 0.5246 0.6907

p values CUSUM-SN 0.216 0.059 0.171 0.611 0.55

p values max P-SUM 0.008 0.087 0.027 0.244 0.456

Holm threshold 0.0167 0.01 0.05 0.01 0.025

BY test decision CUSUM 1 0 0 0 0

BY test decision CUSUM-SN 0 0 0 0 0

BY test decision max P-SUM 1 0 0 0 0

Est. change-point (𝜏n and 𝜏n) 9.10.18 – – – –

01/2019–05/2020

p values CUSUM 6 ⋅ 10−4 <10−5 0.003 0.01 0.025

p values CUSUM-SN 0.011 10−4 0.016 0.002 0.012

p values max P-SUM 0.024 5.8 ⋅ 10−5 0.099 0.003 0.017

Holm threshold 0.0167 0.01 0.05 0.01 0.025

BY test decision CUSUM 1 1 1 1 1

BY test decision CUSUM-SN 1 1 1 1 1

BY test decision max P-SUM 0 1 0 1 0

Est. change-points (𝜏n) 21.02.20 25.02.20 28.02.20 28.01.20 29.01.20

Est. change-points (𝜏n) 28.02.20 13.03.20 09.03.20 27.01.20 28.02.20
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APPENDIX. PROOFS

This section provides proofs of several main results. Most omitted derivations and details as well
as additional material can be found for sections A.1–A.4 in Bours (2019) and Steland (2020). The
general method of proof is as in previous works, especially Steland and von Sachs (2017), but the
structure of the approximating martingale is considerably more involved for the model studied
here and requires its own treatment.

Following previous developments (see, e.g., Kouritzin, 1995; Phillips & Solo, 1992; Steland &
von Sachs, 2017), we show a strong approximation for Dnk by using results from Philipp (1986).
The basic idea of the proof is to approximate the bilinear form Dnk by a martingale array.

A.1 Preliminaries and additional results
Multivariate time series with colored noise are covered by model (3) due to Lemma 1.

Proof of Lemma 1. We may assume that G has rank L. Let G =
∑L

k=1 𝜚kukv′
k denote the singular

value decomposition of G with left-singular vectors uk = (uk1, … ,uk,dn )
′, right-singular vectors

vk = (vk1, … , vkL)′ and singular values 𝜚k ≠ 0, k= 1, … , L. Put ũk = (uk1, … ,ukL)′. Then

(Cnj|0dn×(dn−L))G =
L∑

k=1
𝜚k

⎛⎜⎜⎜⎝
c(1)nj

′ũk

⋮

c(dn)
nj

′ũk

⎞⎟⎟⎟⎠ v′
k = C̃nj,

where C̃nj = (c̃(i,l)nj )i,l is the dn ×L matrix with entries

c̃(i,l)nj =
L∑

k=1
𝜚kc(i)nj

′ũkvkl

https://doi.org/10.1198/106186006X113430
https://doi.org/10.1111/sjos.12508
https://doi.org/10.1111/sjos.12508
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in row i= 1, … , dn and column l= 1, … , L. Since L is finite, ||ũk||𝓁1 ≪ 1 and c(𝜈,𝓁)nj ≪ (j ∨ 1)−3∕2−𝜗

by Assumption 3, it follows that the coefficients c̃(i,l)nj satisfy 3 as well. This verifies (i). To see
assertion (ii), observe that

Cnj𝜺i−j = (Cnj|0dn×(dn−L))

(
SL

0(dn−L)×L

)

and let G be the right matrix factor. If SL =
∑L

k=1 𝜚kukv′
k is the singular value decomposition of SL

with uniformly 𝓁1-bounded left-singular vectors, then
∑L

k=1 𝜚k

(
uk

0dn−L

)
v′

k =
(

SL
0(dn−L)×L

)
yields

the decomposition of G with uniformly 𝓁1-bounded left-singular vectors. ▪

As a preparation to define approximating martingales for Dnk, we need to introduce the
following quantities. For j, k= 0, 1, 2, … let

f (l1,l2)
k,j (vn,wn) = z(l1)

j,vn
z(l2)

j+k,wn
+ z(l1)

j,wn
z(l2)

j+k,vn
1k≠0,l1=l2 , ∀ l1, l2 = 1, … ,L,

and, for i= 0, 1, 2, … ,

f̃ (⋅)k,i(vn,wn) ∶=
∞∑
j=i

f (⋅)k,j (vn,wn).

For brevity of notation, we ignore the dependence of f (⋅)k,j (vn,wn) and f̃ (⋅)
k,j (vn,wn) on vn and

wn if has no relevance. Later in the proofs we shall need the following preparatory estimates for
the above quantities. We show that they are controlled under Assumption 1 (i) by virtue of the
following Lemma 2 which is proved in Bours (2019).

Lemma 2. Suppose that vn and wn have uniformly bounded 𝓁1-norm in the sense of Equation (1).
Then Assumption 1 (i) implies for all l1, l2 = 1, … , L

sup
n∈N

∞∑
i=1

∞∑
k=0

(f̃ (⋅)k,i − f̃ (⋅)k,i+n′ )2 ≤ C(n′)1−𝜗, ∀ n′ = 1, 2, … , (A1)

sup
n∈N

n′∑
k=1

∞∑
r=0

(f̃ (⋅)r+k,0)2 ≤ C(n′)1−𝜗, ∀ n′ = 1, 2, … , (A2)

sup
n∈N

n′∑
j=1

∞∑
k=0

(f̃ (⋅)k,j)2 ≤ C(n′)1−𝜗, ∀ n′ = 1, 2, … , (A3)

where the constant C may differ from line to line but does not depend on n. Furthermore, the
constants depend on the weighting vectors only through their 𝓁1-norms. There exist some

𝛼2
n = 𝛼2

n(vn,wn) ≥ 0, for n ≥ 1, (A4)

such that for all n′,m′ = 0, 1, … we have
L∑

l1,l2=1

n′∑
j=1

j−1∑
k=0

(
f̃ (l1,l2)

k,0

)2
(

E
[(

𝜀
(l1)
m′+j

)2(
𝜀
(l2)
m′+j−k

)2
]
− E

[
𝜀
(l1)
m′+j𝜀

(l2)
m′+j

]2
1{k=0}

)
− n′ 𝛼2

n
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=
L∑

l1,l2=1

n′∑
j=1

j∑
k=1

(
f̃ (l1,l2)

j−k,0

)2
(

E
[(

𝜀
(l1)
m′+j

)2(
𝜀
(l2)
m′+k

)2
]
− E

[
𝜀
(l1)
m′+j𝜀

(l2)
m′+j

]2
1{k=j}

)
− n′ 𝛼2

n

≤ C
(

n′)1−𝜗
. (A5)

Furthermore, if vn,wn, ṽn, w̃n, for n≥ 1, have uniformly bounded 𝓁1-norms, then there exists

𝛽2
n = 𝛽n(vn,wn, ṽn, w̃n), for n ≥ 1, (A6)

with
L∑

l1,l2=1

n′∑
j=1

j−1∑
k=0

f̃ (l1,l2)
k,0 (vn,wn)f̃

(l1,l2)
k,0 (ṽn, w̃n)

(
E
[(

𝜀
(l1)
m′+j

)2(
𝜀
(l2)
m′+j−k

)2
]

− E
[
𝜀
(l1)
m′+j𝜀

(l2)
m′+j

]2
1{k=0}

)
− n′ 𝛽2

n
n′,m′

≪ C(n′)1−𝜗. (A7)

A.2 Martingale approximation
Let us first examine the bilinear form Dnk = v′

n(Snk − E(Snk))wn. Notice that we have

Snk
(3)
=

k∑
i=1

L∑
l1,l2=1

∞∑
j1,j2=0

(
c(𝜈,l1)

nj1
c(𝜇,l2)

nj2

)
1≤𝜈,𝜇≤dn

𝜀
(l1)
i−j1

𝜀
(l2)
i−j2

and

E(Snk) =
k∑

i=1

L∑
l1,l2=1

∞∑
j1,j2=0

(
c(𝜈,l1)

nj1
c(𝜇,l2)

nj2

)
1≤𝜈,𝜇≤dn

E
[
𝜀
(l1)
i−j1

𝜀
(l2)
i−j2

]
.

Introduce L linear processes Zl
i(wn), l= 1, … , L, associated to a weighting vector wn by

Zl
i(wn) ∶=

∞∑
j=0

z(l)j,wn
𝜀
(l)
i−j, with z(l)j,wn

∶=
dn∑

p=1
wp c(p,l)nj . (A8)

Recall that Y (p)
i =

∑L
l=1

∑∞
j=0 c(p,l)nj 𝜀

(l)
i−j, p= 1, … , dn, such that

w′
nYni =

dn∑
p=1

wp

L∑
l=1

∞∑
j=0

c(p,l)nj 𝜀
(l)
i−j =

L∑
l=1

∞∑
j=0

z(l)j,wn
𝜀
(l)
i−j =

L∑
l=0

Zl
i(wn).

Consequently,

v′
nSnkwn =

k∑
i=1

v′
nYniw′

nYni =
k∑

i=1

L∑
l1=1

L∑
l2=1

Zl1
i (vn)Z

l2
i (wn),

leading to the representation

Dnk = v′
nSnkwn − E(v′

nSnkwn)

=
k∑

i=1

L∑
l1,l2=1

(
Zl1

i (vn) Zl2
i (wn) − E

[
Zl1

i (vn) Zl2
i (wn)

])
.



BOURS and STELAND 31

We are now in the position to define the martingales. Let m ∶= 𝜎(𝜀(1)i , … , 𝜀
(L)
i ∶ i ≤ m),m ≥

1, be the natural filtration. It has been shown in Steland and von Sachs (2017) that for L= 1 an
approximating m-martingale for Dnm(vn, wn) is given by

M(n,1)
m = M(n,1)

m (vn,wn) =
m∑

i=0

∞∑
k=0

f̃ (1)k,0

[
𝜀
(1)
i 𝜀

(1)
i−k − E(𝜀(1)i )21k=0

]
.

For arbitrary L we consider

M(n)
m (vn,wn) =

m∑
i=0

L∑
l1,l2=1

∞∑
k=0

f̃ (l1,l2)
k,0 (vn,wn)

(
𝜀
(l1)
i 𝜀

(l2)
i−k − E

[
𝜀
(l1)
i 𝜀

(l2)
i

]
1k=0

)

=
m∑

i=0

L∑
l1=1

∞∑
k=0

⎡⎢⎢⎢⎣f̃ (l1,l1)
k,0

(
𝜀
(l1)
i 𝜀

(l1)
i−k − E

[(
𝜀
(l1)
i

)2
]
1k=0

)
+

L∑
l2=1
l2≠l1

f̃ (l1,l2)
k,0 𝜀

(l1)
i 𝜀

(l2)
i−k

⎤⎥⎥⎥⎦
for m, n≥ 0. The corresponding càdlàg processes are given by

n(t; vn,wn) = n− 1
2 M(n)⌊nt⌋(vn,wn), for t ∈ [0, 1], n ≥ 1.

Since by Assumption 2 any two innovations 𝜀(l1)
i and 𝜀

(l2)
i are uncorrelated for l1 ≠ l2, it is easy

to see that for each fixed n ∈ N the random variables M(n)
m (vn,wn) satisfy the martingale property

E[M(n)
m (vn,wn)|m−1]

=
m−1∑
i=0

L∑
l1,l2=1

∞∑
k=0

f̃ (l1,l2)
k,0

(
𝜀
(l1)
i 𝜀

(l2)
i−k − E

[
𝜀
(l1)
i 𝜀

(l2)
i

]
1k=0

)

+
L∑

l1,l2=1

⎛⎜⎜⎜⎝
∞∑

k=1
f̃ (l1,l2)

k,0 E
[
𝜀
(l1)
m

]
⏟⏟⏟

=0

𝜀
(l2)
m−k + f̃ (l1,l2)

0,0
(
E
[
𝜀
(l1)
m 𝜀

(l2)
m

]
− E

[
𝜀
(l1)
m 𝜀

(l2)
m

])
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0

⎞⎟⎟⎟⎠
= M(n)

m−1(vn,wn), for m ≥ 0.

The associated martingale differences are given by

M(n)
n′+m′ (vn,wn) − M(n)

m′ (vn,wn)

=
m′+n′∑

i=m′+1

L∑
l1,l2=1

∞∑
k=0

f̃ (l1,l2)
k,0 (vn,wn)

(
𝜀
(l1)
i 𝜀

(l2)
i−k − E

[
𝜀
(l1)
i 𝜀

(l2)
i

]
1k=0

)
, (A9)

for n′,m′ ≥ 0.
In what follows, we study the covariance structure of those martingales and establish formu-

las for them in terms of the moments of the innovations and the coefficients f̃ (⋅)k,i. Let (v(r)
n ,w(r)

n ),
r = 1, 2, … , be weighting vectors. Denote f̃ (⋅)k,i(r) = f̃ (⋅)k,i(v

(r)
n ,w(r)

n ) and let M(n)
k (r), k≥ 0, be the

corresponding martingales, r = 1, 2, … . A straightforward but lengthy calculation shows that
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Cov(M(n)
m′+n′ (r) − M(n)

m′ (r),M(n)
m′+n′ (s) − M(n)

m′ (s))

=
m′+n′∑

j=m′+1

[ L∑
l1,l2=1

(
f̃ (l1,l2)

0,0 (r)f̃ (l1,l2)
0,0 (s)

{
(𝛾l1 − 𝜎4

l1,m′+j′ )1l1=l1 + 𝜎2
l1,m′+j𝜎

2
l2,m′+j1l1≠l2

}

+
∞∑

k=1
f̃ (l1,l2)

k,0 (r)f̃ (l1,l2)
k,0 (s)𝜎2

l1,m′+j𝜎
2
l2,m′+j−k

)]
. (A10)

The following lemma follows using similar arguments as in Steland (2020).

Lemma 3. Suppose that 𝜀(l)i = 𝜀
(l)
ni depend on n and put 𝜎2

l,ni = E(𝜀(l)ni )
2 and 𝛾l,ni = E(𝜀(l)ni )

4 for all i
and n. Assume that

1
n′

n′∑
i=1

i|𝜎2
l,ni − s2

l | n,n′

≪ (n′)−𝛽 (A11)

and

1
n′

n′∑
i=1

i|𝛾2
l,ni − 𝛾2

l | n,n′

≪ (n′)−𝛽 (A12)

for constants s2
l ∈ (0,∞) and 𝛾l ∈ R, l= 1, … , L, for some 1 < 𝛽 < 2 with 1 + 𝜗 < 𝛽. Then, for

n,n′ ≥ 1 and m′ ≥ 0

|Cov(M(n)
m′+n′ (r) − M(n)

m′ (r),M(n)
m′+n′ (s) − M(n)

m′ (s)) − n′𝛽2
n(r, s)| n,n′,m′

≪ (n′)1−𝜗, (A13)

where for weighting vectors (vr, wr)= (vnr, wnr) and (vs, ws)= (vns, wns)

𝛽2
n(vr,wr, vs,ws) =

L∑
l1,l2=1

f̃ (l1,l2)
0,0 (r)f̃ (l1,l2)

0,0 (s){(𝛾l1 − s4
l1
)1l1=l2 + s2

l1
s2

l2
1l1≠l2}

+ s2
l1

s2
l2

∞∑
k=1

f̃ (l1,l2)
k,0 (r)f̃ (l1,l2)

k,0 (s), (A14)

for l= 1, … , L.

Lemma 4. We have

En,n′ ∶= ‖‖‖E
[(

M(n)
m′+n′ (r) − M(n)

m′ (r)
)(

M(n)
m′+n′ (s) − M(n)

m′ (s)
) | m

]
− n′𝛽2

n(r, s)‖‖‖L1

n,m′

≪ (n′)1−𝜗∕2.

Let us now study how well the martingale differences approximate the bilinear form. Associ-
ated to the bilinear form Dnk(vn,wn) we define

D(n)
n′,m′ (vn,wn) ∶=

m′+n′∑
i=m′+1

L∑
l1,l2=1

Zl1
i (vn)Z

l2
i (wn) − E

[
Zl1

i (vn)Z
l2
i (wn)

]
, (A15)
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for m′,n′ ≥ 0 and consider the decomposition

D(n)
n′,m′ (vn,wn) = M(n)

n′+m′ (vn,wn) − M(n)
m′ (vn,wn) + R(n)

n′,m′ (vn,wn). (A16)

In order to justify the approximation of D(n)
n′,m′ (vn,wn) by the lag m′ martingale differences, we

need to show that the approximation error R(n)
n′,m′ (vn,wn) is asymptotically negligible, as n′,m′ →

∞. The following lemma shows that this holds under the conditions of Theorem 2 in the L2-sense
and also provides a convergence rate.

Lemma 5. Under the conditions of Theorem 2 we have

E
[

R(n)
n′,m′ (vn,wn)2

] m′,n′

≪ (n′)1−𝜗, (A17)

for all m′,n′ = 0, 1, 2, … , where 0 < 𝜗 <
1
2

is the constant defined in Assumption 3.

Clearly, Lemma 5 ensures that, by an application of the law of total expectation,

‖‖‖E
[
R(n)

n′,m′ (vn,wn)2|m′ ]‖‖‖1
= E

[
R(n)

n′,m′ (vn,wn)2] n′,m′

≪ (n′)1−𝜗. (A18)

A.3 Proof of Theorem 2
In the following we show that the bilinear forms Dnk(vn,wn) satisfy a strong approximation result
with error term O

(
t

1
2
−𝜅

)
, for some 𝜅 > 0, by relying on the following result of Philipp (1986), see

also Eberlein (1986).

Theorem 7. Let 𝜉
(n)
i , i = 1, … ,n, be an array of random variables with values in Rd where

d≤∞. Furthermore let { (n)
i , i ≥ 1} be a nondecreasing sequence of 𝜎-fields such that 𝜉

(n)
i is

 (n)
i -measurable. Suppose that

D(n)
n′,m′ ∶=

m′+n′∑
i=m′+1

𝜉
(n)
i ,

satisfies for m′ ≥ 0,n′ ≥ 1 the following conditions:

(i) E|E[D(n)
n′,m′ | (n)

m′ ]| n′,m′

≪ (n′)
1
2
−𝜀, a.s., for some 𝜀> 0.

(ii) sup
i≥0

E|𝜉(n)i |4+𝛿 < ∞, for some 𝛿 > 0.

(iii) There exists a variance parameter 𝛼2
n ≥ 0 such that

E|||E[(D(n)
n′,m′ )2| (n)

m′

]
− n′𝛼2

n
||| n′,m′

≪ (n′)1−𝜀, a.s., for some 𝜀 > 0.

Then, without changing its distribution, we can redefine the sequence {𝜉(n)i ∶ i ≥ 1} on some new
probability space (Ω̃, ̃ , P̃) on which there exists a process {D̃(n)

n′ ∶ n′ ≥ 0} and a standard Brownian
motion {B̃(n)

t ∶ t ≥ 0} with incremental variance 𝛼2
n, such that

{D̃(n)
n′ ∶ n′ ≥ 0}

d
= {D(n)

n′,0 ∶ n′ ≥ 0}
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and for some 𝜆 > 0

|||D̃(n)⌊t⌋ − 𝛼nB̃(n)
t
||| t
≪ t

1
2
−𝜆, for all t > 0 P̃-a.s.

Let us now show that the array of random variables

𝜉
(n)
i = 𝜉

(n)
i (vn,wn) =

L∑
l1,l2=1

Zl1
i (vn)Z

l2
i (wn) − E

[
Zl1

i (vn)Z
l2
i (wn)

]
, (A19)

1≤ i≤n, n≥ 1, satisfies the conditions (i)–(iii) of Theorem 7.
Condition (i): Condition (i) is readily verified through Lemma 5 and the martingale property

because for some 𝜗

2
> 0 we have

‖‖‖E
[
D(n)

n′,m′ (vn,wn)|m′ ]‖‖‖1
(43)
= ‖‖‖M(n)

m′ (vn,wn) − M(n)
m′ (vn,wn) + E

[
R(n)

n′,m′ (vn,wn)|m′ ]‖‖‖1

= ‖‖‖E
[
R(n)

n′,m′ (vn,wn)|m′ ]‖‖‖1
≤

√‖‖‖E
[
R(n)

n′,m′ (vn,wn)2|m′ ]‖‖‖1

n′,m′

≪
(45)

(n′)
1
2
− 𝜗

2 , a.s.

Condition (ii): Using the cr-Inequality E|X + Y |r ≤ cr(E|X|r + E|Y |r), where cr = 2r − 1, for
r > 1, we get

E
[|𝜉(n)i |2+𝛿] = E

⎡⎢⎢⎣
||||||

L∑
l1,l2=1

Zl1
i (vn)Z

l2
i (wn) − E

[
Zl1

i (vn)Z
l2
i (wn)

]||||||
2+𝛿⎤⎥⎥⎦

≤ 2(1+𝛿)
L
2

L∑
l1,l2=1

E
[|||Zl1

i (vn)Z
l2
i (wn) − E

[
Zl1

i (vn)Z
l2
i (wn)

]|||2+𝛿
]
.

Therefore, the assertion follows immediately, if we prove that

sup
i≥0

E
[|||Zl1

i (vn)Z
l2
i (wn) − E

[
Zl1

i (vn)Z
l2
i (wn)

]|||2+𝛿
]
< ∞,

for all l1, l2 = 1, … , L. Let us first mention that with the assumption on our innovations the
cross-sectional correlations of Z(l)

i (⋅) are finite since we have

E
[

Zl1
i (⋅)

]
=

∞∑
j=0

z(m)
j,⋅ E

[
𝜀
(m)
i−j

]
= 0

and for l1 = l2 we get

E
[
Zl

i(vn)Zl
i(wn)] =

∞∑
j=0

z(l)j,vn
z(l)j,wn

E
[
(𝜀(l)i−j)

2]
⏟⏞⏞⏟⏞⏞⏟

≤ C<∞

(48)
≤ C

∞∑
j=0

j−
3
2
−𝜗 ≤ C, (A20)
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where C <∞ is a suitable constant. Here, and in what follows, we use the fact that for j≥ 0 and
l= 1, … , L,

sup
n∈N

|||z(l)j,wn

|||2
= sup

n∈N

||||||
dn∑

p=1
wp c(p,l)nj

||||||
2

≤ sup
n∈N

( dn∑
p=1

|wp|2

)||| max
1≤p≤dn

c(p,l)nj
|||2

Ann(C)
≤ C sup

n∈N

||wn||2
𝓁1
(j ∨ 1)−

3
2
−𝜗 ≤ Cw (j ∨ 1)−

3
2
−𝜗. (A21)

Next, we obtain for l1 ≠ l2

E
[
Zl1

i (vn)Z
l2
i (wn)] =

∞∑
j=0

z(l1)
j,vn

z(l2)
j,wn

E
[
𝜀
(l1)
i−j

]
E
[
𝜀
(l2)
i−j

]
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

=0

= 0. (A22)

Now we use the cr-inequality and the Cauchy–Schwarz inequality and obtain

sup
i≥0

E
[|||Zl1

i (vn)Z
l2
i (wn) − E

[
Zl1

i (vn)Z
l2
i (wn)

]|||2+𝛿
]

(47)
≤
(49)

sup
i≥0

21+𝛿 E
([|Zl1

i (vn)Z
l2
i (wn)|2+𝛿] + E

[
C2+𝛿])

CS
≤ sup

i≥0
21+𝛿

√
E
[|Zl1

i (vn)|4+2𝛿
]√

E
[|Zl2

i (wn)|4+2𝛿
]
+ C.

Therefore, Condition (ii) is immediately verified if we show that

sup
i≥0

E
[|Zl

i(⋅)|4+2𝛿] < ∞, ∀ l = 1, … ,L.

This is easy to show if we use the inequality by Marcinkiewicz and Zygmund (1937): If
Xi, i= 1, … , n are independent random variables with E(Xi) = 0, then for every p≥ 1 there exist
positive constants Ap and Bp depending only upon p for which

Ap E
⎡⎢⎢⎣
( n∑

i=1
|Xi|2

)p∕2⎤⎥⎥⎦ ≤ E

[|||||
n∑

i=1
Xi

|||||
p]

≤ Bp E
⎡⎢⎢⎣
( n∑

i=1
|Xi|2

)p∕2⎤⎥⎥⎦ .
This inequality also holds for n=∞ if both

∑n
i=1 Xi and

∑n
i=1 X2

i converge a.s., as n→∞ (see Chow
and Teicher, 1997, theorem 2 and corollary 3, pp. 386–387).

We can now follow the arguments of Kouritzin (1995, pp. 351-352). Let 𝜉 = 𝛿

2
. With-

out loss of generality we assumed 𝛿 < 2 because in this case we have p ∶= 1+𝜉
2

< 1 and the

function f (x)= xp is concave, for x ≥ 0. Then Jensen’s inequality yields E[X1+𝜉] = E[(X2)
1+𝜉

2 ] ≤
(E[X2])

1+𝜉
2 . For simplicity we ignore the dependence of Zk(vn), z(l)j,⋅ and 𝜀

(l)
i−j on vn and l. Using the

Marcinkiewicz–Zygmund inequality (MZ) and Jensen’s inequality (J), we find

E[|Zl
i(⋅)|4+2𝛿] = E

||||||
∞∑

j=0
zj𝜀i−j

||||||
4+𝛿

k
≪

(MZ)
E
⎡⎢⎢⎣
||||||
∞∑

j=0
z2

j 𝜀
2
i−j

||||||
2+𝜉⎤⎥⎥⎦
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= E
⎡⎢⎢⎣
( ∞∑

j=0
z2

j 𝜀
2
i−j

)||||||
∞∑

j=0
z2

j 𝜀
2
i−j

||||||
1+𝜉⎤⎥⎥⎦

k
≪

∞∑
j=0

E
[

z2
j 𝜀

2
i−j

(
z2

j 𝜀
2
i−j

)1+𝜉
]
+

∞∑
j=0

E
⎡⎢⎢⎣z2

j 𝜀
2
i−j

||||||
∑
n≠j

z2
n𝜀

2
i−n

||||||
1+𝜉⎤⎥⎥⎦

and therefore

E
[|Zl

i(⋅)|4+2𝛿] = ∞∑
j=0

E
[|z2

j 𝜀
2
i−j|2+𝜉

]
+

∞∑
j=0

⎛⎜⎜⎝z2
j E

[
𝜀2

i−j

]
E
⎡⎢⎢⎣
||||||
∑
n≠j

z2
n𝜀

2
i−n

||||||
1+𝜉⎤⎥⎥⎦

⎞⎟⎟⎠
k
≪

∞∑
j=0

E
[|z2

j 𝜀
2
i−j|2+𝜉

]
+

∞∑
j=0

z2
j E

[
𝜀2

i−j

]
E

[|||||
∞∑

n=0
z2

n𝜀
2
i−n

|||||
1+𝜉]

k
≪
(J)

∞∑
j=0

(z2
j )

2+𝜉E
[|𝜀2

i−j|2+𝜉
]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
(4)
≤C<∞

+
∞∑

j=0
z2

j E
[
𝜀2

i−j
]

⏟⏟⏟
(4)
≤C<∞

||||||E
|||||
∞∑

n=0
z2

n𝜀
2
i−n

|||||
2||||||

1+𝜉
2

k
≪
(48)

∞∑
j=0

(j ∨ 1)−
(

3
2
+𝜗

)
(2+𝜉)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

<∞, since
(

3
2
+𝜗

)
(2+𝜉)>1

+
∞∑

j=0
(j ∨ 1)−

3
2
−𝜗

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

<∞, since 3
2
+𝜗>1

(
E
|||||
∞∑

n=0
z2

n𝜀
2
k−n

|||||
2) 1+𝜉

2

k
≪ 1.

The last inequality holds true since we have

E
|||||
∞∑

n=0
z2

n𝜀
2
k−n

|||||
2

=
∞∑

n=0
z4

nE
[
𝜀4

k−n] +
∞∑

n1,n2=0
n1≠n2

z2
n1

z2
n2

E
[
𝜀2

k−n1

]
E
[
𝜀2

k−n2

]

≤ C
⎛⎜⎜⎜⎝

∞∑
n=0

z4
n +

∞∑
n1,n2=0

n1≠n2

z2
n1

z2
n2

⎞⎟⎟⎟⎠ = C

( ∞∑
n=0

z2
n

)2

(48)
≤ C

( ∞∑
n=0

(n ∨ 1)−
3
2
−𝜗

)2

< ∞.

This finishes the proof and it is shown that 𝜉(n)k satisfies Condition (ii).
Condition (iii): For simplicity and clarity of presentation, we ignore the dependence on

(vn,wn) in what follows. Using the elementary inequality (a+ b)2 ≤ 2a2 + 2b2 (BE), we have



BOURS and STELAND 37

‖‖‖E
[
(D(n)

n′,m′ )2|m′ ] − n′𝛼2
n
‖‖‖1

(43)
= ‖‖‖E

[(
M(n)

n′+m′ − M(n)
m′ + R(n)

n′,m′

)2|m′ ] − n′𝛼2
n
‖‖‖1

(BE)
≤ 2 ‖‖‖E

[(
M(n)

n′+m′ − M(n)
m′

)2|m′ ] − n′𝛼2
n
‖‖‖1

+ 2‖‖‖E
[(

R(n)
n′,m′

)2|m′ ]‖‖‖1
.

Here the first term is
n,n′,m′

≪ (n′)1−𝜗∕2 by Lemma 4 and the second one is
n,n′,m′

≪ (n′)1−𝜗∕2 by (A18),
see Lemma 5, which shows (iii).

Consequently, Theorem 7 yields the existence of a standard Brownian motion, Bn(t), t ∈ [o,∞),
such that for some constant Cn and a universal constant 𝜆 > 0 we have the approximation

|Dnt − 𝛼nBn(t)| ≤ Cnt
1
2
−𝜆, for all t > 0, a.s.

This bound is sharp enough to yield the strong approximation (17). Denoting the standard
Brownian motion on [0, 1] associated to Bn, t → n− 1

2 Bn(tn), t ∈ [0, 1], again by Bn, we obtain

sup
t∈[0,1]

|||||n− 1
2 Dn,⌊nt⌋ − 𝛼nBn

(⌊nt⌋
n

)||||| ≤ Cnn−𝜆

which establishes the statement, provided Cnn−𝜆 = o(1). Assertion (17) on the process n(t)
follows now easily as well as the result for 0

n(t).
It also follows that for each fixed n, the conditional variance of M(n)

m′+n′ − M(n)
m′ satisfies

‖‖‖E
[(

M(n)
m′+n′ (vn,wn) − M(n)

m′ (vn,wn)
)2|m′ ] − n′𝛼2

n(vn,wn)
‖‖‖1

n′,m′

≪ (n′)1− 𝜗

2

and ‖‖‖E
[
D(n)

n′,m′ (vn,wn)2|m′ ] − n′𝛼2
n(vn,wn)

‖‖‖1

n′,m′

≪ (n′)1− 𝜗

2

as well as

‖‖‖E
[
D(n)

n′,m′ (vn,wn)2 − n′𝛼2
n(vn,wn)

]‖‖‖1

n′,m′

≪ (n′)1− 𝜗

2 .

The constants appearing above depend on the weighting vectors only through their 𝓁1-norms.
It remains to provide the arguments for the standardized statistics under Assumption 1 (ii) on

the projection vectors. First observe that for any sequence vn of weights satisfying Assumption 1
(ii) the scaled vectors d−1∕2

n vn satisfy Assumption 1 (i), since by virtue of Jensen’s inequality

d−1∕2
n ||vn||𝓁1 =

√
dn

1
dn

dn∑
𝜈=1

√
v2

n𝜈 ≤
√

dn

(
d−1

n

dn∑
𝜈=1

v2
n𝜈

)1∕2

= ||vn||𝓁2 .

Since the statistics standardized by 𝛼n(vn,wn) are invariant under scaling of the weighting
vectors, we may therefore apply the above results with d−1∕2

n vn and d−1∕2
n wn. When using a

homogenous and weakly consistent estimator, we may assume that the estimator is strongly
consistent when redefined on the new probability space. The difference between n(t)∕𝛼̂n and
n(t)∕𝛼n can be treated similarly as given in detail in the proof of Theorem 3, using the fact
that sup0<t<1|Bn(t)| < ∞, a.s., 𝛼n∕𝛼̂n → 1, n→∞, a.s., and |𝛼̂n − 𝛼n|∕𝛼n → 0, n→∞, a.s.. Putting
things together completes the proof.
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A.4 Proof of Theorem 3
Since for 1≤ i< j≤n

i∑
r=1

Dnr −
j
n

n∑
𝓁=1

Dn𝓁 −

( i∑
r=1

Dnr −
i
n

n∑
𝓁=1

Dn𝓁

)
=

∑
i<r≤j

Dnr −
j − i

n

n∑
𝓁=1

Dn𝓁 ,

we have the representation

Tn,md = max
1≤i<j≤n

|0
n(j∕n) −0

n(i∕n)| = sup
0<s<t<1

|0
n(t) −0

n(s)|.
Furthermore,

Rn = sup
0<s<t<1

𝛼−1
n |0

n(t) −0
n(s)| − sup

0<s<t<1
|B0

n(t) − B0
n(s)|

= 𝛼−1
n sup

0<s<t<1
(|0

n(t) −0
n(s)| − sup

0<s′<t′<1
|B0

n(t′) − B0
n(s′)|)

≤ 𝛼−1
n sup

0<s<t<1
(|0

n(t) −0
n(s)| − |B0

n(t) − B0
n(s)|)

≤ 𝛼−1
n sup

0<s<t<1
|0

n(t) −0
n(s) − [B0

n(t) − B0
n(s)]|

≤ 2𝛼−1
n sup

0<s<t<1
|0

n(t) − B0
n(t)| = o(1),

as n→∞, a.s.. Next,

𝛼̂−1
n sup

0<s<t<1
|0

n(t) −0
n(s)| − 𝛼−1

n sup
0<s<t<1

|0
n(t) −0

n(s)|
= 𝛼n − 𝛼̂n

𝛼̂n
𝛼−1

n sup
0<s<t<1

|0
n(t) −0

n(s)|
= 𝛼n

𝛼̂n

𝛼n − 𝛼̂n

𝛼n
𝛼−1

n sup
0<s<t<1

|B0
n(t) − B0

n(s)| + 𝛼n

𝛼̂n

𝛼n − 𝛼̂n

𝛼n
Rn

= oP(1),

as n→∞, in view of the estimate for Rn and since 𝛼̂n∕𝛼n
P
→ 1, 𝛼n is bounded away from 0 for large

enough n and sup0<s<t<1|B0
n(t) − B0

n(s)| = OP(1) by (10). These facts imply

Tn,md
d
→ sup

0<s<t<1
|B0

n(t) − B0
n(s)|, n → ∞.

Now let pn ∈ (0, 1) be an arbitrary sequence of probabilities with pn → 0, n→∞. Then for large
enough n the unique solution un of 25∕2√𝜋u3(1 − Φ(2u) = pn satisfies un →∞, since u3(1 −
Φ(2u)), u>u0, is strictly decreasing for large u0. We may conclude that

|P(Tn,md > un) − pn| = |||P(Tn,md > un) − 25∕2
√
𝜋u3

n(1 − Φ(2un)
|||

= |||P(Tn,md > un) − P
(

sup
0<s<t<1

|B0
n(t) − B0

n(s)| > un

)
+ o(1)|||
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≤ sup
z∈R

|||P(Tn,md ≤ z) − P
(

sup
0<s<t<1

|B0
n(t) − B0

n(s)| ≤ z
) ||| + o(1)

= o(1).

A.5 Proof of Theorem 4
We proceed analogously to the proof of Theorem 2 in Section A0.3. We define the multivariate
extension of the bilinear form Dnk by

Dnk = (Dnk(j))M
j=1 =

(
v′

nj(Snk − E(Snk))wnj

)M

j=1
.

Introduce the linear processes Zl
i(wnj), l= 1, … , L, j= 1, … , M, associated to a weighting

vector wnj = (w(j)
1 , … ,w(j)

dn
)′ by

Zl
i(wnj) ∶=

∞∑
j=0

z(l)j,wnj
𝜀
(l)
i−j, with z(l)j,wnj

∶=
dn∑

p=1
w(j)

p c(p,l)nj . (A23)

For ease of reading we shall, except when proving Theorem 5, omit in our notation the depen-
dence of the random variables Zl

i and the coefficients z(l)j,wnj
on the sample size. We obtain the

representation

Dnk =
k∑

i=1

L∑
l1,l2=1

(
Zl1

i (vn) Zl2
i (wn) − E

[
Zl1

i (vn) Zl2
i (wn)

])M
j=1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶𝜉(n)i

.

Furthermore we put

S(n)
n′,m′ =

m′+n′∑
k=m′+1

𝜉
(n)
k , n′,m′ ≥ 0.

For the Euclidean space RM equipped with the usual inner product and the induced vector
𝓁2-norm, the conditions (i) and (iii) are easily checked, similar to the proof of Theorem 2. In order
to show condition (ii), we introduce the conditional covariance operator

C(n)
n′,m′ (u) = E

[
u′ S(n)

n′,m′ S(n)
n′,m′ |m′ ], u ∈ R

M ,

and the covariance operator

T(n)(u) = E
[
u′B(n)B(n)] =

M∑
j=1

uj(Cov(Bn1,Bnj), … ,Cov(BnM ,Bnj))′, u ∈ R
M .

We need to check that

E
‖‖‖‖ 1

n′ C(n)
n′,m′ − C(n)‖‖‖‖ n′,m′

≪ (n′)−𝜗, for some covariance operator C(n). (A24)
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Here the norm is the operator norm ||Q|| = supu∈RM ,||u||=1|u′Qu| for a linear operator Q ∶ RM →
RM . It follows that (A24) holds true with C(n) =T(n), since we showed in Lemma 2‖‖‖E

[
(D(n)

n′,m′ (i))2|m′ ] − n′𝛼n(vni,wni)
|||L1

m′

≪
(32)

(n′)1−𝜗∕2, ∀i = 1, … ,M,

and for all i, j= 1, … , M with i≠ j‖‖‖E
[
D(n)

n′,m′ (i)D(n)
n′,m′ (j)|m′ ] − n′𝛽n(vni,wni, vnj,wnj)

‖‖‖L1

m′

≪
(34)

(n′)1−𝜗∕2. (A25)

A.6 Proof of Theorem 5
We have Ynk(v) ∶= vn

′Ynk
(35)
=

∑L
l=0 Zl

nk(vn), with Zl
nk(v) =

∑∞
j=0 z(l)nj,vn

𝜀
(l)
k−j and z(l)nj,vn

=∑dn
p=1 wnpc(p,l)nj , see (A8), where we explicitly indicate the dependence on n in the notation.

Investigating the coefficients z(l)nj,v we obtain, uniformly in n,

|||z(l)nj,vr

||| ≤ sup
q≥1

|||c(q,l)nj
||| dn∑

p=1
|vnp| = ||vnr||𝓁1 sup

q≥1

|||c(q,l)nj
||| ≪ (j ∨ 1)−(1+𝛿)

and analogously |||z(l)n,j+|h|,vr

||| ≤ ||vnr||𝓁1 sup
q≥1

|||c(q,l)n,j+|h|||| ≪ ((j + |h|) ∨ 1)−(1+𝛿).

Observe that Y nk(v)Y nk(w), k≥ 1, as well as Y nk(vr)Y k(wr)Y k+ h(vs)Y n, k+ h(ws), k≥ 1, are strictly
stationary for any fixed r, s, and h. The dependence on d will be suppressed in notation. Similar to
Steland and von Sachs (2017) we can conclude from the proof of Theorem 2 and Kouritzin (1995,
p. 351), that 𝛼2 can be represented as

𝛼2 = lim
n→∞

𝛼2
n = lim

n→∞
Var

(√
n 𝜉n) = lim

n→∞
Var

(
1√
n

n∑
i=1

𝜉ni

)

Therefore 𝛼2 is the long-run variance parameter associated to the time series

𝜉nk = (v′
nYnk)(w′

nYnk) − E
[
(v′

nYn1)(w′
nYn1)

]
=

L∑
l1,l2=1

Zl1
nk(v)Z

l2
nk(w) − E

[
Zl1

n1(v)Z
l2
n1(w)

]
, k ≥ 1,

and 𝛼̂2
n is the Bartlett-type estimator calculated from the first n observations with

𝛼̂2
n = Γ̂n(0) + 2

m∑
h=1

wmhΓ̂n(h).

Furthermore we can conclude from the proof, see (A25), that 𝛽2 = 𝛽2(r, s, d) can be expressed by

𝛽2(r, s; d) = lim
n→∞

{
E[𝜉n1(r)𝜉n1(s)] + 2

n∑
h=1

n − h
n

E[𝜉n1(r)𝜉n,1+h(s)]

}
,

where 𝜉nk(i) = Y (vi)
nk Y (wi)

nk − E
[
Y (vi)

n1 Y (wi)
n1

]
, k ≥ 1, for i= 1, 2, … .
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It suffices to show

sup
d∈N

E|𝛽2
n(r, s; dn) − 𝛽2(r, s; dn)| n→∞

→ 0.

Define Γnh(r, s; d) = E[𝜉n1(r) 𝜉n,1+|h|(s)], h ∈ Z. A lengthy explicit calculation using the represen-
tation of 𝜉n1(r) as a finite sum of linear processes shows that

sup
n≥1

sup
r,s≥1

sup
d∈N

E[𝜉n1(r) 𝜉n,1+|h|(s)] ≪ |h|−2(1+𝛿),

such that

sup
n≥1

sup
1≤r,s

sup
d∈N

|𝛽2(r, s; d)| ≤ sup
1≤r,s

sup
d∈N

∑
h∈Z

|Γh(r, s; d)| < ∞.

Wei Biao and Min (2005) introduced the following coupling dependence measure: Let 𝜀′i be an
i.i.d. copy of 𝜀i. Then (… , 𝜀i−1, 𝜀

′
i) is a coupled version of (… , 𝜀i− 1, 𝜀i) with 𝜀i replaced by 𝜀′i . For

an arbitrary linear process Zn =
∑∞

j=0 zj𝜀n−j = Z(… , 𝜀n−1, 𝜀n) and Z′
n = Z(… , 𝜀−1, 𝜀

′
0, 𝜀1, … , 𝜀n)

with 𝜀0
d
= 𝜀′0 such that 𝜀′0 is independent from {𝜀k}, the coupling dependence measure is given by

𝛿p({Zi ∶ i ∈ N0},n) = ||Zn − Z′
n||Lp = |zn|||𝜀0 − 𝜀′0||Lp , p ≥ 1. (A26)

Applying this fact to our situation, we obtain for some constant C for all n≥ 1

||Ynk(v)||L8 ≤
L∑

l=1

‖‖‖Zl
nk(v)

‖‖‖L8
≤

L∑
l=1

∞∑
j=0

|||z(l)nj,v
|||‖‖‖𝜀(l)k−j

‖‖‖L8
⏟⏞⏟⏞⏟

<∞

≤ C
∞∑

j=0
(j ∨ 1)−(1+𝛿) < ∞

and

𝛿8({Yni(v)}, k) = ||Ynk(v) − Ynk(v)′||L8 ≤
L∑

l=1

‖‖‖Zl
nk(v) − Zl

nk(v)
′‖‖‖L8

(53)
=

L∑
l=1

|||z(l)nk,v
|||‖‖‖𝜀(l)0 − 𝜀

′(l)
0

‖‖‖L8
≤ CL(k ∨ 1)−(1+𝛿),

such that

sup
n≥1

sup
vn∶||vn||𝓁1≤Cv,w

∞∑
k=0

𝛿8({Yni(v)}, k) < ∞,

that is, uniformly over n and weighting vectors with uniformly bounded 𝓁1-norms. Furthermore,

𝛿4({𝜉ni}, k) = ||Ynk(v)Ynk(w) − (Ynk(v)Ynk(w))′||L4

≤ ||Ynk(v)||L8 ||Ynk(w) − Ynk(w)′||L8 + ||Ynk(w)||L8 ||Ynk(v) − Ynk(v)′||L8

= O(𝛿8({Yni(v)}, k) + 𝛿8({Yni(w)}, k))
= O((k ∨ 1)−(1+𝛿)),
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leading again to supn≥1supvn∶||vn||𝓁1≤Cv,w

∑∞
k=0 𝛿4({𝜉i}, k) < ∞. Finally, similar arguments lead to

𝛿2({𝜉ni(r)𝜉n,i+h(s)}, k) = O(𝛿8({Yni(v)}; k) + 𝛿8({Yni(w)}; k))

and therefore to supn≥1supvn∶||vn||𝓁1≤Cv,w

∑∞
k=0 𝛿2({𝜉i(r) 𝜉i+h(s)}, k) < ∞. Next define Γ̃nh(r, s) =

1
n

∑n−h
i=1 𝜉ni(r) 𝜉n,i+h(s). We may employ Wei Biao (2007, th. 1), which applies to the stationary

series Yn1, … ,Ynn, and obtain, in view of the fact that the above dependence measures are
uniformly bounded in n≥ 1 and r, s≥ 1,

sup
d∈N

E[n(Γ̃nh(r, s; d) − E[Γ̃nh(r, s; d)])]2 ≤ C3(n − h) (A27)

for some constant C3 <∞ not depending on h, d or m, uniformly over ||vn||𝓁1 ≤ Cv,w, such that

sup
1≤r,s

sup
d∈N

sup|h|≤mn

||Γ̃nh(r, s; d) − E[Γ̃nh(r, s; d)]||L2 ≤ C4 n− 1
2 ,

for some constant C4 <∞. With these estimates the proof can be completed as in Steland (2020),
see Bours (2019) for details.

A.7 Proof of Theorem 6
By (A15) we have Dnk(vn, wn)=Unk(vn, wn)−E(Unk(vn, wn)). In what follows, the weighting vec-
tors vn and wn are fixed and therefore we omit them in notation. The existence of ank-martingale
which approximates the Dnk under the change-point alternative is crucial and will allow for a
straightforward proof of the consistency of the change-point estimator.

Theorem 6 can be shown along the lines of the proof for L= 1 given in Steland (2020). For
completeness, we provide some details of the proof. The first step is to establish the following
martingale approximation under the change-point model, which is of independent interest.

Lemma 6. Under the change-point model given by (21 ), (23 ) and (24 ) with 𝜏 = ⌊n𝜗⌋, 𝜗∈ (𝜀, 1)
for some 𝜀∈ (0, 1), there exist a nk-martingale array D̃nk, 1≤ k, n≥ 1, such that

E(Dnk − D̃nk)2 n,k
≪ k1−𝜗. (A28)

Hence for k≤n and n≥ 1

E
(

Dnk −
k
n

Dnn −
[

D̃nk −
k
n

D̃nn

])2 n,k
≪ k1−𝜗. (A29)

and for 1≤ k<n

E
(

Dnk

k
− Dnn − Dnk

n − k
−
[

D̃nk

k
− D̃nn − D̃nk

n − k

])2 n,k
≪ n−1−𝜗. (A30)

Proof of Lemma 6. Denote the approximating martingales for Dnk corresponding to the coeffi-
cients 𝔟 and 𝔠 by M(n)

k (𝔟) and M(n)
k (𝔠). For each n≥ 1, put

D̃nk = 𝛿M(n)
k (𝔟)1(k ≤ 𝜏) + [𝛿M(n)

𝜏 (𝔟) + 𝛿M(n)
k (𝔠) − 𝛿M(n)

𝜏 (𝔠)]1(k > 𝜏), k ≥ 1. (A31)
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As in Steland (2020) one verifies that E(D̃nk|n,k−1) = 0 for all k. Let Unk = (U(1)
nk ,U(2)

nk )
′ with U(1)

nk =∑
i≤kYni(𝔟)Yni(𝔟))′ and U(2)

nk =
∑

i≤kYni(𝔠)Yni(𝔠))′. Clearly,

Dnk = D(1)
nk 1(k ≤ 𝜏) + [D(1)

n𝜏 + D(2)
nk − D(2)

n𝜏 ]1(k > 𝜏),

such that the proof of (A29) can be completed as in Steland (2020), as a consequence of Lemma 5
applied to D(1)

nk and D(2)
nk . (A30) follows by noting that ⌊n𝜀⌋≤ k, n− k≤ ⌊n(1− 𝜀)⌋, such that, for

example,

E(Dnk − D̃nk)2

(n − k)2

n,k
≪ n−1−𝜗. ▪

We claim that

n(k) =
⎧⎪⎨⎪⎩

1−𝜏∕n
1−k∕n

Δn, k ≤ 𝜏,

𝜏∕n
k∕n

Δn, k > 𝜏.

To verify this formula, observe that, by definition of ̂n(k)

E(̃n(k)) =
1
k

E(Unk) −
1

n − k
(E(Unn) − E(Unk)).

Plugging in the definition of Unk, we obtain the representation

E(̃n(k)) = v′
n

(1
k

Snk −
1

n − k
(Snn − Snk)

)
wn. (A33)

We have for k ≤ 𝜏 by linearity

E
[1

k
Snk −

1
n − k

(Snn − Snk)
]
= 𝚺(0)

n + 1
n − k

(𝜏𝚺(0)
n + (n − 𝜏)𝚺(1)

n − k𝚺(0)
n )

=
(

1 − 𝜏 − k
n − k

)
𝚺(0)

n − n − 𝜏

n − k
𝚺(1)

n

= n − 𝜏

n − k
(𝚺(0)

n − 𝚺(1)
n )

and for k > 𝜏

E
[

Snk

k
− Snn − Snk

n − k

]
= 1

k
[𝜏𝚺(0)

n + (k − 𝜏)𝚺(1)
n ] − 1

n − k
[(n − 𝜏)𝚺(1)

n − (k − 𝜏)𝚺(1)
n ]

= 𝜏

k
𝚺(0)

n −
(
−k − 𝜏

k
+ n − k

n − k

)
𝚺(1)

n

= 𝜏

k
(𝚺(0)

n − 𝚺(1)
n ).

To summarize

E
[

Snk

k
− Snn − Snk

n − k

]
=

{
n−𝜏
n−k

(𝚺(0)
n − 𝚺(1)

n ), k ≤ 𝜏,
𝜏

k
(𝚺(0)

n − 𝚺(1)
n ), k > 𝜏.
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In view of (A33) and the definition of Δn this implies (22). Introduce the associated rescaled
functions

v̂n(t) = ̂n(⌊nt⌋), t ∈ [𝜀, 1 − 𝜀], (A34)

vn(t) = n(⌊nt⌋), t ∈ [𝜀, 1 − 𝜀], (A35)

and

v(t) = 1 − 𝜗

1 − t
Δ1(t ≤ 𝜗) + 𝜗

t
Δ1(t > 𝜗), t ∈ [𝜀, 1 − 𝜀]. (A36)

We have

𝜏n = arg max⌊n𝜀⌋≤k≤⌊n(1−𝜀)⌋ v̂n(k∕n) = n arg max
t∈{⌊n𝜀⌋∕n,… ,⌊n(1−𝜀)⌋∕n}

v̂n(t) = n𝜗̃n. (A37)

The next step is to show that v̂n(t) converges uniformly to v(t) in the sense that

sup
t∈[𝜀,1−𝜀]

|v̂n(t) − v(t)| = oP(1),

as n→∞. First observe that ̂n(k) − n(k) =
(

D̃nk
k

− D̃nn−D̃nk
n−k

)
+ Rnk, where D̃nk is the

nk-martingale array from Lemma 6, and, by virtue of (A30), the remainder term Rnk =(
Dnk

k
− Dnn−Dnk

n−k
− [ D̃nk

k
− D̃nn−D̃nk

n−k
]
)

satisfies

E
(

max⌊n𝜀⌋≤k≤⌊n(1−𝜀)⌋R2
nk

)
n
≪ n−𝜗.

Hence, it suffices to show the following maximal inequalities: For all 𝛿 > 0

P
(

max⌊n𝜀⌋≤k≤⌊n(1−𝜀)⌋|D̃nk| > 𝛿n
)

= o(1), P
(

max⌊n𝜀⌋≤k≤⌊n(1−𝜀)⌋|D̃nn − D̃nk| > 𝛿n
)

= o(1), (A38)

as n→∞. Using E(D̃2
nn) = O(n) and Doob’s maximal inequality we may conclude that

P
(

max⌊n𝜀⌋≤k≤⌊n(1−𝜀)⌋|D̃nk|2 > 𝛿2n2
)

≤ P
(

max⌊n𝜀⌋≤k≤n
|D̃nk|2 > 𝛿2n2

)
= E(D̃2

nn)
𝛿2n2 = O

( 1
n

)
.

Furthermore, noting that D̃nn − D̃nk is the sum of n− k=O(n𝜀) martingale differences, a further
application of Doob’s inequality shows that

P
(

max⌊n𝜀⌋≤k≤⌊n(1−𝜀)⌋|D̃nn − D̃nk|2 > 𝛿2n2
)

= O
( 1

n

)
as well. Therefore, (A38) follows. Next consider

sup
t∈[𝜀,1−𝜀]

|v̂n(t) − v(t)| ≤ sup
t∈[𝜀,1−𝜀]

|v̂n(t) − vn(t)| + sup
t∈[𝜀,1−𝜀]

|vn(t) − v(t)|
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= max⌊n𝜀⌋≤k≤⌊n(1−𝜀)⌋|̂n(k) − n(k)| + sup
t∈[𝜀,1−𝜀]

|vn(t) − v(t)|
= sup

t∈[𝜀,1−𝜀]
|vn(t) − v(t)| + oP(1),

as n→∞. Observe that supt∈[𝜀,1]| ⌊nt⌋
n

− t| = O(1∕n). Therefore,

sup
t∈[𝜀,1−𝜀]

|vn(t) − v(t)| ≤ sup
t∈[𝜀,𝜗]

|vn(t) − v(t)| + sup
t∈[𝜗,1−𝜀]

|vn(t) − v(t)| = o(1),

as n→∞, and we arrive at supt∈[𝜀,1−𝜀]|v̂n(t) − v(t)| = oP(1). The last step is to apply an argmin
theorem: 𝜗 is an isolated minimum of −v(⋅) and −v̂n(⋅) converges uniformly to −v(⋅) on the com-
pact set [𝜀, 1− 𝜀], where 0<𝜀<𝜗 is arbitrary but fixed. Consequently, we can apply an argmin
result, for example, van der Vaart (1998), and now (A37) yields 𝜗̃n

P
→ 𝜗 > 0 and therefore the ratio

consistency 𝜏n∕𝜏 = 𝜗̃n∕𝜗
P
→ 1, as n→∞.


