)

Check for
updates

A First-Order Logic with Frames

Adithya Murali*’®, Lucas Pefia*™, Christof Loding?, and P. Madhusudan'

' University of Illinois at Urbana-Champaign, Department of Computer Science,
Urbana, IL, USA {adithyab,lpena7, madhu}@illinois.edu
¥ RWTH Aachen University, Department of Computer Science, Aachen, Germany
loeding@automata.rwth-aachen.de

Abstract. We propose a novel logic, called Frame Logic (FL), that ex-
tends first-order logic (with recursive definitions) using a construct Sp(-)
that captures the implicit supports of formulas— the precise subset of
the universe upon which their meaning depends. Using such supports, we
formulate proof rules that facilitate frame reasoning elegantly when the
underlying model undergoes change. We show that the logic is expressive
by capturing several data-structures and also exhibit a translation from
a precise fragment of separation logic to frame logic. Finally, we design
a program logic based on frame logic for reasoning with programs that
dynamically update heaps that facilitates local specifications and frame
reasoning. This program logic consists of both localized proof rules as
well as rules that derive the weakest tightest preconditions in FL.

Keywords: Program Verification, Program Logics, Heap Verification, First-
Order Logic, First-Order Logic with Recursive Definitions

1 Introduction

Program logics for expressing and reasoning with programs that dynamically
manipulate heaps is an active area of research. The research on separation logic
has argued convincingly that it is highly desirable to have localized logics that
talk about small states (heaplets rather than the global heap), and the ability
to do frame reasoning. Separation logic achieves this objective by having a tight
heaplet semantics and using special operators, primarily a separating conjunction
operator * and a separating implication operator (the magic wand —x).

In this paper, we ask a fundamental question: can classical logics (such as
FOL and FOL with recursive definitions) be extended to support localized spec-
ifications and frame reasoning? Can we utilize classical logics for reasoning effec-
tively with programs that dynamically manipulate heaps, with the aid of local
specifications and frame reasoning?

The primary contribution of this paper is to endow a classical logic, namely
first-order logic with recursive definitions (with least fixpoint semantics) with
frames and frame reasoning.

* Equal contribution = Corresponding Author

© The Author(s) 2020

P. Miiller (Ed.): ESOP 2020, LNCS 12075, pp. 515-543, 2020.
https://doi.org/10.1007/978-3-030-44914-8 19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-44914-8_19&domain=pdf
http://orcid.org/0000-0002-6311-1467
http://orcid.org/0000-0002-9782-721X
https://doi.org/10.1007/978-3-030-44914-8_19

516 A. Murali et al.

A formula in first-order logic with recursive definitions (FO-RD) can be nat-
urally associated with a support— the subset of the universe that determines
its truth. By using a more careful syntax such as guarded quantification (which
continue to have a classical interpretation), we can in fact write specifications in
FO-RD that have very precise supports. For example, we can write the property
that x points to a linked list using a formula list(z) written purely in FO-RD
so that its support is precisely the locations constituting the linked list.

In this paper, we define an extension of FO-RD, called Frame Logic (FL)
where we allow a new operator Sp(«) which, for an FO-RD formula «, evaluates
to the support of «. Logical formulas thus have access to supports and can use
it to separate supports and do frame reasoning. For instance, the logic can now
express that two lists are disjoint by asserting that Sp(list(z)) N Sp(list(y)) = 0.
It can then reason that in such a program heap configuration, if the program
manipulates only the locations in Sp(list(y)), then list(x) would continue to be
true, using simple frame reasoning.

The addition of the support operator to FO-RD yields a very natural logic
for expressing specifications. First, formulas in FO-RD have the same meaning
when viewed as FL formulae. For example, f(xz) = y (written in FO-RD as
well as in FL) is true in any model that has mapped by f to y, instead of a
specialized “tight heaplet semantics” that demands that f be a partial function
with the domain only consisting of the location x. The fact that the support of
this formula contains only the location z is important, of course, but is made
accessible using the support operator, i.e., Sp(f(z) = y) gives the set containing
the sole element interpreted for z. Second, properties of supports can be naturally
expressed using set operations. To state that the lists pointed to by and y are
disjoint, we don’t need special operators (such as the * operator in separation
logic) but can express this as Sp(list(z)) N Sp(list(y)) = 0. Third, when used to
annotate programs, pre/post specifications for programs written in FL can be
made implicitly local by interpreting their supports to be the localized heaplets
accessed and modified by programs, yielding frame reasoning akin to program
logics that use separation logic. Finally, as we show in this paper, the weakest
precondition of specifications across basic loop-free paths can be expressed in
FL, making it an expressive logic for reasoning with programs. Separation logic,
on the other hand, introduces the magic wand operator —« (which is inherently
higher-order) in order to add enough expressiveness to be closed under weakest
preconditions [38].

We define frame logic (FL) as an extension of FO with recursive definitions
(FO-RD) that operates over a multi-sorted universe, with a particular foreground
sort (used to model locations on the heap on which pointers can mutate) and
several background sorts that are defined using separate theories. Supports for
formulas are defined with respect to the foreground sort only. A special back-
ground sort of sets of elements of the foreground sort is assumed and is used
to model the supports for formulas. For any formula ¢ in the logic, we have a
special construct Sp(y) that captures its support, a set of locations in the fore-
ground sort, that intuitively corresponds to the precise subdomain of functions

A First-Order Logic with Frames 517

the value of ¢ depends on. We then prove a frame theorem (Theorem 1) that
says that changing a model M by changing the interpretation of functions that
are not in the support of ¢ will not affect the truth of the formula ¢. This theo-
rem then directly supports frame reasoning; if a model satisfies ¢ and the model
is changed so that the changes made are disjoint from the support of ¢, then
¢ will continue to hold. We also show that FL formulae can be translated to
vanilla FO-RD logic (without support operators); in other words, the semantics
for the support of a formula can be captured in FO-RD itself. Consequently, we
can use any FO-RD reasoning mechanism (proof systems [19, 20] or heuristic
algorithms such as the natural proof techniques [24, 32, 37, 41]) to reason with
FL formulas.

We illustrate our logic using several examples drawn from program verifica-
tion; we show how to express various data-structure definitions and the elements
they contain and various measures for them using FL formulas (e.g., linked lists,
sorted lists, list segments, binary search trees, AVL trees, lengths of lists, heights
of trees, set of keys stored in the data-structure, etc.)

While the sensibilities of our logic are definitely inspired by separation logic,
there are some fundamental differences beyond the fact that our logic extends
the syntax and semantics of classical logics with a special support operator
and avoids operators such as * and —x*. In separation logic, there can be many
supports of a formula (also called heaplets)— a heaplet for a formula is one that
supports its truth. For example, a formula of the form « V 8 can have a heaplet
that supports the truth of a or one that supports the truth of 5. However,
the philosophy that we follow in our design is to have a single support that
supports the truth value of a formula, whether it be true or false. Consequently,
the support of the formula oV 3 is the union of the supports of the formulas «

and .

The above design choice of the support being determined by the formula has
several consequences that lead to a deviation from separation logic. For instance,
the support of the negation of a formula ¢ is the same as the support of ¢. And
the support of the formula f(x) = y and its negation are the same, namely the
singleton location interpreted for z. In separation logic, the corresponding for-
mula will have the same heaplet but its negation will include all other heaplets.
The choice of having determined supports or heaplets is not new, and there have
been several variants and sublogics of separation logics that have been explored.
For example, the logic DRYAD [32, 37] is a separation logic that insists on de-
termined heaplets to support automated reasoning, and the precise fragment of
separation logic studied in the literature [29] defines a sublogic that has (essen-
tially) determined heaplets. The second main contribution in this paper is to
show that this fragment of separation logic (with slight changes for technical
reasons) can be translated to frame logic, such that the unique heaplet that
satisfies a precise separation logic formula is its support of the corresponding
formula in frame logic.

The third main contribution of this paper is a program logic based on frame
logic for a simple while-programming language destructively updating heaps. We

518 A. Murali et al.

present two kinds of proof rules for reasoning with such programs annotated with
pre- and post-conditions written in frame logic. The first set of rules are local
rules that axiomatically define the semantics of the program, using the small-
est supports for each command. We also give a frame rule that allows arguing
preservation of properties whose supports are disjoint from the heaplet modified
by a program. These rules are similar to analogous rules in separation logic.
The second class of rules work to give a weakest tightest precondition for any
postcondition with respect to non-recursive programs. In separation logic, the
corresponding rules for weakest preconditions are often expressed using separat-
ing implication (the magic-wand operator). Given a small change made to the
heap and a postcondition 3, the formula o — 8 captures all heaplets H where
if a heaplet that satisfies « is joined with H, then 8 holds. When « describes
the change effected by the program, a —x 3 captures, essentially, the weakest
precondition. However, the magic wand is a very powerful operator that calls for
quantifications over heaplets and submodels, and hence involves second order
quantification. In our logic, we show that we can capture the weakest precon-
dition with only first-order quantification, and hence first-order frame logic is
closed under weakest preconditions across non-recursive programs blocks. This
means that when inductive loop invariants are given also in FL, reasoning with
programs reduces to reasoning with FL. By translating FL to pure FO-RD for-
mulas, we can use FO-RD reasoning techniques to reason with FL, and hence
programs.

In summary, the contributions of this paper are:

— Alogic, called frame logic (FL) that extends FO-RD with a support operator
and supports frame reasoning. We illustrate FL with specifications of various
data-structures. We show a translation to equivalent formulas in FO-RD.

— A program logic and proof system based on FL including local rules and rules
for computing the weakest tightest precondition. FL reasoning required for
proving programs is hence reducible to reasoning with FO-RD.

— A separation logic fragment that can generate only precise formulas, and a
translation from this logic to equivalent FL formulas.

The paper is organized as follows. Section 2 sets up first-order logics with
recursive definitions (FO-RD), with a special uninterpreted foreground sort of lo-
cations and several background sorts/theories. Section 3 introduces Frame Logic
(FL), its syntax, its semantics which includes a discussion of design choices for
supports, proves the frame theorem for FL, shows a reduction of FL to FO-RD,
and illustrates the logic by defining several data-structures and their properties
using FL. Section 4 develops a program logic based on FL, illustrating them
with proofs of verification of programs. Section 5 introduces a precise fragment
of separation logic and shows its translation to FL. Section 6 discusses com-
parisons of FL to separation logic, and some existing first-order techniques that
can be used to reason with FL. Section 7 compares our work with the research
literature and Section 8 has concluding remarks.

A First-Order Logic with Frames 519

2 Background: First-Order Logic with Recursive
Definitions and Uninterpreted Combinations of
Theories

The base logic upon which we build frame logic is a first order logic with recursive
definitions (FO-RD), where we allow a foreground sort and several background
sorts, each with their individual theories (like arithmetic, sets, arrays, etc.). The
foreground sort and functions involving the foreground sort are uninterpreted
(not constrained by theories). This hence can be seen as an uninterpreted com-
bination of theories over disjoint domains. This logic has been defined and used
to model heap verification before [23].

We will build frame logic over such a framework where supports are modeled
as subsets of elements of the foreground sort. When modeling heaps in program
verification using logic, the foreground sort will be used to model locations of the
heap, uninterpreted functions from the foreground sort to foreground sort will
be used to model pointers, and uninterpreted functions from the foreground sort
to the background sort will model data fields. Consequently, supports will be
subsets of locations of the heap, which is appropriate as these are the domains
of pointers that change when a program updates a heap.

We define a signature as X' = (S;C; F;R;Z), where S is a finite non-empty
set of sorts. C is a set of constant symbols, where each ¢ € C has some sort
T € 5. F is a set of function symbols, where each function f € F' has a type of
the form 7, x ... x 7,,, = 7 for some m, with 7;,7 € S. The sets R and Z are
(disjoint) sets of relation symbols, where each relation R € R UZ has a type of
the form 7 X ... X 7,,,. The set Z contains those relation symbols for which the
corresponding relations are inductively defined using formulas (details are given
below), while those in R are given by the model.

We assume that the set of sorts contains a designated “foreground sort”
denoted by of. All the other sorts in S are called background sorts, and for
each such background sort o we allow the constant symbols of type o, function
symbols that have type ¢ — ¢ for some n, and relation symbols have type o™
for some m, to be constrained using an arbitrary theory 7.

A formula in first-order logic with recursive definitions (FO-RD) over such a
signature is of the form (D, «), where D is a set of recursive definitions of the
form R(x) := pr(x), where R € T and pg(x) is a first-order logic formula, in
which the relation symbols from Z occur only positively. « is also a first-order
logic formula over the signature. We assume D has at most one definition for any
inductively defined relation, and that the formulas pr and « use only inductive
relations defined in D.

The semantics of a formula is standard; the semantics of inductively defined
relations are defined to be the least fixpoint that satisfies the relational equations,
and the semantics of « is the standard one defined using these semantics for
relations. We do not formally define the semantics, but we will formally define
the semantics of frame logic (discussed in the next section and whose semantics
is defined in the Technical Report [25]) which is an extension of FO-RD.

520 A. Murali et al.

3 Frame Logic

We now define Frame Logic (FL), the central contribution of this paper.

FL formulas: ¢ ==t =tr | R(tr,...,tr,) @ A@ | np | ite(y:@,0) | Fy: 7. @

TeES, RERUTZof type 71 X -+ X Ty
Guards: v o=t =t | R(try, .- s tep) | YAy | =y | ite(y:v,7) | Ty y. v
7€ S\ {osn}, R€ R of type 71 X -+ X Ty
Terms: tr i=c |z | f(try,. - tr,) | ite(y:trtr) |

Sp(g&) (lf T = Us(f)) | Sp(tT/) (lf T = Us(f))
7,7 € S with constants ¢, variables z of type T,
and functions f of type 71 X -+ Xty — T

Recursive definitions: R(x) := pr(ax) with R € Z of type 71 X -+ X Tp, with
7i € S\ {05}, FL formula pr(x) where all relation symbols
R’ € T occur only positively or inside a support expression.

Fig. 1. Syntax of frame logic: v for guards, ¢, for terms of sort 7, and general formulas
. Guards cannot use inductively defined relations or support expressions.

We consider a universe with a foreground sort and several background sorts,
each restricted by individual theories, as described in Section 2. We consider the
elements of the foreground sort to be locations and consider supports as sets
of locations, i.e., sets of elements of the foreground sort. We hence introduce a
background sort os(f); the elements of sort osr) model sets of elements of sort or.
Among the relation symbols in R there is the relation € of type of X og(s) that
is interpreted as the usual element relation. The signature includes the standard
operations on sets U, N with the usual meaning, the unary function - that is
interpreted as the complement on sets (with respect to the set of foreground
elements), and the constant (). For these functions and relations we assume a
background theory Bo, that is an axiomatization of the theory of sets. We
further assume that the signature does not contain any other function or relation
symbols involving the sort o).

For reasoning about changes of the structure over the locations, we assume
that there is a subset F;, C F of function symbols that are declared mutable.
These functions can be used to model mutable pointer fields in the heap that
can be manipulated by a program and thus change. Formally, we require that
each f € F,, has at least one argument of sort oy.

For variables, let Var, denote the set of variables of sort 7, where 7 € S. We
let x abbreviate tuples x1, ..., x, of variables.

Our frame logic over uninterpreted combinations of theories is a variant of
first-order logic with recursive definitions that has an additional operator Sp(y)
that assigns to each formula ¢ a set of elements (its support or “heaplet” in the
context of heaps) in the foreground universe. So Sp(¢p) is a term of sort ogf).

A First-Order Logic with Frames 521

The intended semantics of Sp(¢) (and of the inductive relations) is defined
formally as a least fixpoint of a set of equations. This semantics is presented
in Section 3.3. In the following, we first define the syntax of the logic, then
discuss informally the various design decisions for the semantics of supports,
before proceeding to a formal definition of the semantics

3.1 Syntax of Frame Logic (FL)

The syntax of our logic is given in the grammar in Figure 1. This extends FO-RD
with the rule for building support expressions, which are terms of sort osf) of
the form Sp(«) for a formula o, or Sp(t) for a term t.

The formulas defined by ~ are used as guards in existential quantification and
in the if-then-else-operator, which is denoted by ite. The restriction compared to
general formulas is that guards cannot use inductively defined relations (R ranges
only over R in the rule for 7, and over RUZ in the rule for ¢), nor terms of sort
os(y and thus no support expressions (7 ranges over S\ {os()} in the rules for y
and over S in the rule for). The requirement that the guard does not use the
inductive relations and support expressions is used later to ensure the existence
of least fixpoints for defining semantics of inductive definitions. The semantics of
an ite-formula ite(y, v, B) is the same as the one of (yA«a)V(—yAB); however, the
supports of the two formulas will turn out to be different (i.e., Sp(ite(y : «, 3))
and Sp((y A) V (—y A B)) are different), as explained in Section 3.2. The same
is true for existential formulas, i.e., Jy : . has the same semantics as Jy.y A ¢
but, in general, has a different support.

For recursive definitions (throughout the paper, we use the terms recursive
definitions and inductive definitions with the same meaning), we require that
the relation R that is defined does not have arguments of sort og(r). This is
another restriction in order to ensure the existence of a least fixpoint model in
the definition of the semantics.!

3.2 Semantics of Support Expressions: Design Decisions

We discuss the design decisions that go behind the semantics of the support
operator Sp in our logic, and then give an example for the support of an inductive
definition. The formal conditions that the supports should satisfy are stated in
the equations in Figure 2, and are explained in Section 3.3. Here, we start by an
informal discussion.

The first decision is to have every formula uniquely define a support, which
roughly captures the subdomain of mutable functions that a formula ¢’s truth-
hood depends on, and have Sp(p) evaluate to it.

The choice for supports of atomic formulae are relatively clear. An atomic
formula of the kind f(z)=y, where x is of the foreground sort and f is a mutable
function, has as its support the singleton set containing the location interpreted

1 1t would be sufficient to restrict formulas of the form R(t1,...,tn) for inductive
relations R to not contain support expressions as subterms.

522 A. Murali et al.

for . And atomic formulas that do not involve mutable functions over the fore-
ground have an empty support. Supports for terms can also be similarly defined.
The support of a conjunction a A 8 should clearly be the union of the supports
of the two formulas.

Remark 1. In traditional separation logic, each pointer field is stored in a sep-
arate location, using integer offsets. However, in our work, we view pointers as
references and disallow pointer arithmetic. A more accurate heaplet for such
references can be obtained by taking heaplet to be the pair (z, f) (see [30]), cap-
turing the fact that the formula depends only on the field f of z. Such accurate
heaplets can be captured in FL as well— we can introduce a non-mutable field
lookup pointer Ly and use x.L¢.f in programs instead of z.f.

What should the support of a formula vV 8 be? The choice we make here is
that its support is the union of the supports of @ and 3. Note that in a model
where « is true and S is false, we still include the heaplet of 8 in Sp(aV). In a
sense, this is an overapproximation of the support as far as frame reasoning goes,
as surely preserving the model’s definitions on the support of o will preserve the
truth of «, and hence of oV 3.

However, we prefer the support to be the union of the supports of a and £.
We think of the support as the subdomain of the universe that determines the
meaning of the formula, whether it be true or false. Consequently, we would like
the support of a formula and its negation to be the same. Given that the support
of the negation of a disjunction, being a conjunction, is the union of the frames
of o and 8, we would like this to be the support.

Separation logic makes a different design decision. Logical formulas are not
associated with tight supports, but rather, the semantics of the formula is defined
for models with given supports/heaplets, where the idea of a heaplet is whether
it supports the truthhood of a formula (and not its falsehood). For example,
for a model, the various heaplets that satisfy —(f(x) = y) in separation logic
would include all heaplets where the location of x is not present, which does
not coincide with the notion we have chosen for supports. However, for positive
formulas, separation logic handles supports more accurately, as it can associate
several supports for a formula, yielding two heaplets for formulas of the form
aV 8 when they are both true in a model. The decision to have a single support
for a formula compels us to take the union of the supports to be the support of
a disjunction.

There are situations, however, where there are disjunctions «V /3, where only
one of the disjuncts can possibly be true, and hence we would like the support
of the formula to be the support of the disjunct that happens to be true. We
therefore introduce a new syntactical form ite(y : «, 8) in frame logic, whose
heaplet is the union of the supports of v and «, if v is true, and the supports
of v and g if v is false. While the truthhood of ite(vy : «,) is the same as that
of (v Aa)V (—y A B), its supports are potentially smaller, allowing us to write
formulas with tighter supports to support better frame reasoning. Note that the
support of ite(y : a,) and its negation ite(y : -,) are the same, as we
desired.

A First-Order Logic with Frames 523

Turning to quantification, the support for a formula of the form 3z.« is hard
to define, as its truthhood could depend on the entire universe. We hence provide
a mechanism for guarded quantification, in the form 3z : . «. The semantics
of this formula is that there exists some location that satisfies the guard -, for
which « holds. The support for such a formula includes the support of the guard,
and the supports of @ when x is interpreted to be a location that satisfies . For
example, 3z : (z = f(y)). g(x) = z has as its support the locations interpreted
for y and f(y) only.

For a formula R(t) with an inductive relation R defined by R(x) := pr(z),
the support descends into the definition, changing the variable assignment of the
variables in x from the inductive definition to the terms in t. Furthermore, it
contains the elements to which mutable functions are applied in the terms in t.

Recursive definitions are designed such that the evaluation of the equations
for the support expressions is independent of the interpretation of the inductive
relations. The equations mainly depend on the syntactic structure of formulas
and terms. Only the semantics of guards, and the semantics of subterms under
a mutable function symbol play a role. For this reason, we disallow guards to
contain recursively defined relations or support expressions. We also require that
the only functions involving the sort o) are the standard functions involving
sets. Thus, subterms of mutable functions cannot contain support expressions
(which are of sort og(f)) as subterms.

These restrictions ensure that there indeed exists a unique simultaneous least
solution of the equations for the inductive relations and the support expressions.

We end this section with an example.

Ezample 1. Consider the definition of a predicate tree(z) w.r.t. two unary mu-
table functions left and right:

tree(x) = ite(x = nil : true,) where
a=3r: (= left(x) Nr = right(z)).tree() A tree(r) A
Sp(tree(€)) N Sp(tree(r)) = O A =(z € Sp(tree(£)) U Sp(tree(r)))

This inductive definition defines binary trees with pointer fields left and right
for left- and right-pointers, by stating that x points to a tree if either z is equal
to mil (in this case its support is empty), or left(x) and right(x) are trees with
disjoint supports. The last conjunct says that = does not belong to the support
of the left and right subtrees; this condition is, strictly speaking, not required to
define trees (under least fixpoint semantics). Note that the access to the support
of formulas eases defining disjointness of heaplets, like in separation logic. The
support of tree(x) turns out to be precisely the nodes that are reachable from
x using left and right pointers, as one would desire. Consequently, if a pointer
outside this support changes, we would be able to conclude using frame reasoning
that the truth value of ¢ree(x) does not change.

3.3 Formal Semantics of Frame Logic

Before we explain the semantics of the support expressions and inductive defini-
tions, we introduce a semantics that treats support expressions and the symbols

524 A. Murali et al.

[Sp(e)]am (v) = [Sp(z)]a(v) = 0 for a constant ¢ or variable

Y {0} U ULSp(t)Dae(v) i F €

[Sp(f(tr, .- ta))]ne (v)

U [Sp(ti)]a (v) if f & Fu
[Sp(Sp(e))]a (v) = [[SP()ar(v)
[Sp(Sp())] s (v) = [Sp(t)] s (v)
[Sp(ts = t2)]ae (v) = [Sp(t1)]as (v) U [Sp(t2)]ar (v)
[Sp(R(ts, - - tn))]ae (v) = Ui [Sp(ti) [(v) for Re R
[[SP(R(t))]]M(V) = [Sp(pr ()]s (V[T < [E]ar.]) VUL, [Sp(ti)]n (v)
for R € 7 with definition R(T) := pr(T),
t=(t1,...,tn), T = (T1,...,%n)
[Sp(a A B (v) = [Sp(a)]m (v) U [Sp(B)]ar (v)
[Sp(=¢)]ar (v) = [Sp(e)]ar (v)
ity : . B)as (v v [Sp(a)lm (v) it M,v |= v
[Sp(ite(y = o, B)]ar(v) = [Sp(v)]am (v) U [Sp(8) s (v) if M, v
ity : tr. ta))ar (1) = v [Sp(t)]ar(v) if M,v =~
[Sp(ite(y : t1,t2))]ar (v) = [Sp(v)]m (v) U [Sp(t2)Lnt (v) i M, v b
[Sp(3y : v.0)]am(v) = GL% [Sp(n)]ar (vly = ul) U . _MU[. [Sp(0)]ar (v[y = ul)

Fig. 2. Equations for support expressions

from Z as uninterpreted symbols. We refer to this semantics as uninterpreted se-
mantics. For the formal definition we need to introduce some terminology first.

An occurrence of a variable x in a formula is free if it does not occur under
the scope of a quantifier for z. By renaming variables we can assume that each
variable only occurs freely in a formula or is quantified by exactly one quantifier
in the formula. We write ¢(z1, ..., zx) to indicate that the free variables of ¢ are
among &1, . . ., Tx. Substitution of a term ¢ for all free occurrences of variable x in
a formula ¢ is denoted ¢[t/x]. Multiple variables are substituted simultaneously
as o[t1/x1,. .., tn/x,]. We abbreviate this by ¢[t/z].

A model is of the form M = (U; [-]a) where U = (U,)ses contains a universe
for each sort, and an interpretation function [-]as. The universe for the sort ogf)
is the powerset of the universe for oy.

A variable assignment is a function v that assigns to each variable a concrete
element from the universe for the sort of the variable. For a variable x, we write
D, for the universe of the sort of z (the domain of x). For a variable z and an
element u € D, we write v[z < u] for the variable assignment that is obtained
from v by changing the value assigned for = to w.

The interpretation function [-]a; maps each constant ¢ of sort o to an el-
ement [c]y € Uy, each function symbol f : 71 X ... X 7, — T to a concrete
function [f]a : Upy X ... x U, — U,, and each relation symbol R € R UZ of
type T1 X ... X Tp, to a concrete relation [R]py C Uy, X ...x U, . These interpre-
tations are assumed to satisfy the background theories (see Section 2). Further-

A First-Order Logic with Frames 525

more, the interpretation function maps each expression of the form Sp(¢) to a
function [Sp(y)]ar that assigns to each variable assignment v a set [Sp(p)]ar(v)
of foreground elements. The set [Sp(¢)]as () corresponds to the support of the
formula when the free variables are interpreted by v. Similarly, [Sp(¢)]ar is a
function from variable assignments to sets of foreground elements.

Based on such models, we can define the semantics of terms and formulas in
the standard way. The only construct that is non-standard in our logic are terms
of the form Sp(y), for which the semantics is directly given by the interpretation
function. We write [t]as,, for the interpretation of a term ¢ in M with variable
assignment v. With this convention, [Sp(¢)]am(v) denotes the same thing as
[Sp(¢)]a,w- As usual, we write M, v |= ¢ to indicate that the formula ¢ is true
in M with the free variables interpreted by v, and [¢]as denotes the relation
defined by the formula ¢ with free variables z.

We refer to the above semantics as the uninterpreted semantics of ¢ because
we do not give a specific meaning to inductive definitions and support expres-
sions.

Now let us define the true semantics for FL. The relation symbols R € 7
represent inductively defined relations, which are defined by equations of the
form R(z) := pr(x) (see Figure 1). In the intended meaning, R is interpreted as
the least relation that satisfies the equation

[R(z)]nm = [pr(2)] M-

The usual requirement for the existence of a unique least fixpoint of the equation
is that the definition of R does not negatively depend on R. For this reason, we
require that in pg(z) each occurrence of an inductive predicate R’ € T is either
inside a support expression, or it occurs under an even number of negations.?

Every support expression is evaluated on a model to a set of foreground el-
ements (under a given variable assignment v). Formally, we are interested in
models in which the support expressions are interpreted to be the sets that cor-
respond to the smallest solution of the equations given in Figure 2. The intuition
behind these definitions was explained in Section 3.2

Ezample 2. Consider the inductive definition tree(z) defined in Example 1. To
check whether the equations from Figure 2 indeed yield the desired support,
note that the supports of Sp(x = nil) = Sp(x) = Sp(true) = 0. Below, we write
[u] for a variable assignment that assigns u to the free variable of the formula
that we are considering. Then we obtain that Sp(tree(x))[u] = 0 if u = nil, and
Sp(tree(x))[u] = Sp(a)[u] if © # nil. The formula « is existentially quantified
with guard ¢ = lefé(x) A r = right(x). The support of this guard is {u} because
mutable functions are applied to x. The support of the remaining part of « is the
union of the supports of tree(¢)[left(u)] and tree(r)[right(u)] (the assignments for
¢ and r that make the guard true). So we obtain for the case that u # nil that
the element u enters the support, and the recursion further descends into the
subtrees of u, as desired.

2 As usual, it would be sufficient to forbid negative occurrences of inductive predicates
in mutual recursion.

526 A. Murali et al.

A frame model is a model in which the interpretation of the inductive re-
lations and of the support expressions corresponds to the least solution of the
respective equations (see the Technical Report [25] for a rigorous formalisation).

Proposition 1. For each model M, there is a unique frame model over the
same universe and the same interpretation of the constants, functions, and non-
inductive relations.

3.4 A Frame Theorem

The support of a formula can be used for frame reasoning in the following sense:
if we modify a model M by changing the interpretation of the mutable functions
(e.g., a program modifying pointers), then truth values of formulas do not change
if the change happens outside the support of the formula. This is formalized
below and proven in the Technical Report [25].

Given two models M, M’ over the same universe, we say that M’ is a mutation
of M if [Rlm = [Rla, [elm = [e]ars and [flar = [f]a, for all constants c,
relations R € R, and functions f € F \ F,. In other words, M can only be
different from M’ on the interpretations of the mutable functions, the inductive
relations, and the support expressions.

Given a subset X C U,, of the elements from the foreground universe, we say
that the mutation is stable on X if the values of the mutable functions did not
change on arguments from X, that is, [f]ar(u1,--.,un) = [f]ar (w1, ..., uy,) for
all mutable functions f € F,, and all appropriate tuples uy, ..., u, of arguments
with {u1,...,u,} N X # 0.

Theorem 1 (Frame Theorem). Let M, M’ be frame models such that M’ is
a mutation of M that is stable on X C U,,, and let v be a variable assignment.
Then M,v E « iff M',v = « for all formulas o with [Sp(a)]m(v) C X, and
[t]ar,e = [tlaar, for all terms t with [Sp(t)|m (v) C X.

3.5 Reduction from Frame Logic to FO-RD

The only extension of frame logic compared to FO-RD is the operator Sp, which
defines a function from interpretations of free variables to sets of foreground
elements. The semantics of this operator can be captured within FO-RD itself,
so reasoning within frame logic can be reduced to reasoning within FO-RD.

A formula a(y) with y = y1,...,%, has one support for each interpreta-
tion of the free variables. We capture these supports by an inductively defined
relation Sp, (y,z) of arity m + 1 such that for each frame model M, we have
(Ut .oy Um, uw) € [Spy]ar if w € [Sp(a)]ar(v) for the interpretation v that inter-
prets y; as u;.

Since the semantics of Sp(«) is defined over the structure of a, we introduce
corresponding inductively defined relations Sps and Sp; for all subformulas 3
and subterms ¢ of either « or of a formula pg for R € 7.

A First-Order Logic with Frames 527

list(z) = ite(x = nil, true, 3z : z = next(x). list(z) Az & Sp(list(z))
(linked list)
dll(z) := ite(x = nil : T,ite(next(xz) = nil : T,3z: z = next(x).
prev(z) =z A dll(z) Az & Sp(dll(z)))) (doubly linked list)
Iseg(z,y) == ite(xr =y : T,3z: z = next(x). lseg(z,y) ANz & Sp(lseg(z,v)))
(linked list segment)
length(z,n) := ite(xr = nil : n = 0,3z : z = next(z). length(z,n — 1))
(length of list)
slist(x) = ite(x = nil : T, ite(next(x) = nil, T,3z : z = next(x).
key(x) < key(z) A slist(z) A x & Sp(slist(z)))) (sorted list)
mkeys(x, M) := ite(x = nil : M = 0,3z, My : 2 = next(z).
M = My Up, {key(z)} A mkeys(z, M1)) Az & Sp(mkeys(z, M1))
(multiset of keys in linked list)
btree(x) := ite(x =nil : T,3,r : € = left(x) A r = right(z).
btree(£) A btree(r) A x & Sp(btree(£)) N x & Sp(btree(r)) A
Sp(btree(£)) N Sp(btree(r)) = 0) (binary tree)
bst(x) := ite(x = nil : T,ite(left(x) = nil A right(z) = nil : T, ite(left(z) = nil :
Ir v = right(x). key(x) < key(r) A bst(r) Az & Sp(bst(r)),
ite(right(z) = nil : 3¢ : £ = left(x). key () < key(z) A bst(£) Az & Sp(bst(?)),
3, €= left(x) Ar = right(z). key(z) < key(r) A key(€) < key(z) A
bst(€) A bst(r) Az & Sp(bst(€)) Az & Sp(bst(r)) A
Sp(bst(£)) N Sp(bst(r)) = 0)))) (binary search tree)
height(xz,n) := ite(x = nil : n=0,3¢,r,n1,ne : £ = left(x) A r = right(z).
height(£,n1) A height(r,n2) A ite(n1 > n2 :n=mny +1,n=nz + 1))
(height of binary tree)
bfac(x,b) := ite(x = nil : 0,3¢,r,n1,n2 : £ = left(x) Ar = right(x).
height(£,n1) A height(r,n2) Ab=nz —ni)
(balance factor (for AVL tree))
avl(x) :=ite(x = nil : T,3,r : L = left(x) A r = right(x).
avl(€) A avl(r) A bfac(z) € {—1,0,1} A
x & Sp(avl(£)) U Sp(avl(r)) A Sp(avl(£)) N Sp(avl(r)) = 0) (avl tree)
ttree(x) := pttree(x, nil) (threaded tree)
pttree(x, p) = ite(x = nal : T,3, 7 : £ = left(x) Ar = right(z).
((r = nil A tnezt(xz) = p) V (r # nil A tnext(z) = 1)) A
pttree(€, z) A pttree(r,p) A x & Sp(pttree(€,x)) U Sp(pttree(r,p)) A

Sp(pttree(l, z)) N Sp(pttree(r,p)) = 0)
(threaded tree auxiliary definition)

Fig. 3. Example definitions of data-structures and other predicates in Frame Logic

528 A. Murali et al.

The equations for supports from Figure 2 can be expressed by inductive def-
initions for the relations Spgz. The translations are shown in the Technical Re-
port [25]. It is not hard to see that general frame logic formulas can be translated
to FO-RD formulas that make use of these new inductively defined relations.

Proposition 2. For every frame logic formula there is an equisatisfiable FO-
RD formula with the signature extended by auxiliary predicates for recursive
definitions of supports.

3.6 Expressing Data-Structures Properties in FL

We now present the formulation of several data-structures and properties about
them in FL. Figure 3 depicts formulations of singly- and doubly-linked lists,
list segments, lengths of lists, sorted lists, the multiset of keys stored in a list
(assuming a background sort of multisets), binary trees, their heights, and AVL
trees. In all these definitions, the support operator plays a crucial role. We also
present a formulation of single threaded binary trees (adapted from [7]), which are
binary trees where, apart from tree-edges, there is a pointer tnext that connects
every tree node to the inorder successor in the tree; these pointers go from leaves
to ancestors arbitrarily far away in the tree, making it a nontrivial definition.

We believe that FL formulas naturally and succinctly express these data-
structures and their properties, making it an attractive logic for annotating
programs.

4 Programs and Proofs

In this section, we develop a program logic for a while-programming language
that can destructively update heaps. We assume that location variables are de-
noted by variables of the form z and y, whereas variables that denote other
data (which would correspond to the background sorts in our logic) are denoted
by v. We omit the grammar to construct background terms and formulas, and
simply denote such ‘background expressions’ with be and clarify the sort when
it is needed. Finally, we assume that our programs are written in Single Static
Assignment (SSA) form, which means that every variable is assigned to at most
once in the program text. The grammar for our programming language is in
Figure 4.

Su=zx=c|lz=y|z=yf|lvi=be| af:=y
| alloc(z) | free(z) | if be then Selse S | whilebedo S| S; S

Fig.4. Grammar of while programs. c is a constant location, f is a field pointer, and
be is a background expression. In our logic, we model every field f as a function f()
from locations to the appropriate sort.

A First-Order Logic with Frames 529

4.1 Operational Semantics

A configuration C is of the form (M, H,U) where M contains interpretations
for the store and the heap. The store is a partial map that interprets variables,
constants, and non-mutable functions (a function from location variables to lo-
cations) and the heap is a total map on the domain of locations that interprets
mutable functions (a function from pointers and locations to locations). H is a
subset of locations denoting the set of allocated locations, and U is a subset of
locations denoting a subset of unallocated locations that can be allocated in the
future. We introduce a special configuration | that the program transitions to
when it dereferences a variable not in H.

A configuration (M, H,U) is valid if all variables of the location sort map
only to locations not in U, locations in H do not point to any location in U,
and U is a subset of the complement of H that does not contain nil or the
locations mapped to by the variables. We denote this by wvalid(M, H,U). Initial
configurations and reachable configurations of any program will be valid.

The transition of configurations on various commands that manipulate the
store and heap are defined in the natural way. Allocation adds a new location
from U into H with pointer-fields defaulting to nil and default data fields. See
the Technical Report [25] for more details.

4.2 Triples and Validity

We express specifications of programs using triples of the form {a}S{3} where
« and § are FL formulae and S is a program. The formulae are, however,
restricted— for simplicity, we disallow atomic relations on locations, and func-
tions with arity greater than one. We also disallow functions from a background
sort to the foreground sort (see Section 3). Lastly, quantified formulae can have
supports as large as the entire heap. However, our program logic covers a more
practical fragment without compromising expressivity. Thus, we require guards
in quantification to be of the form f(2') = z or z € U (z is the quantified
variable).

We define a triple to be valid if every valid configuration with heaplet being
precisely the support of o, when acted on by the program, yields a configuration

with heaplet being the support of 5. More formally, a triple is valid if for every
valid configuration (M, H,U) such that M |= o, H = [Sp(a)]a:

— it is never the case that the abort state L is encountered in the execution

on S.
— if (M, H,U) transitions to (M', H',U’) on S, then M’ = § and H' =
[Sp(8)]m-

530 A. Murali et al.

4.3 Program Logic

First, we define a set of local rules and rules for conditionals, while, sequence,
consequence, and framing:

Assignment: {true} z := y {x =y} {true} z := c{z = ¢}
Lookup: {f(y) = f(y)} = == y.f {z = f(y)}
Mutation: {f(z) = f(x)} z.f = y {f(z) =y}
Allocation: {true} alloc(z) { /\ f(x) = def ;}
fer
Deallocation: {f(x)= f(z)} free(x) {true}
{be na} S{B} {-beAa}T {8}
Conditional: {a} if be then S else T {5}
{aAbe} S {a}
While: {a} while be do S {-be A a}
{a} S{B} {B}T {w}
Sequence: {a} S; T {u}
o = a Sp(a) = Sp(a’)

{a} S {8}

g =0 Sp(B) = Sp(B')
Consequence: {'} S {P'}
Sp(a) N Sp(u) =0 {a} S {5} _
Frame: {aAu} S{BAu} vars(S) N folu) =0

The above rules are intuitively clear and are similar to the local rules in
separation logic [38]. The rules for statements capture their semantics using
minimal/tight heaplets, and the frame rule allows proving triples with larger
heaplets. In the rule for alloc, the postcondition says that the newly allocated
location has default values for all pointer fields and datafields (denoted as def}).
The soundness of the frame rule relies crucially on the frame theorem for FL
(Theorem 1). The full soundness proof can be found in the Technical Report [25].

Theorem 2. The above rules are sound with respect to the operational seman-
tics.

4.4 Weakest-Precondition Proof Rules

We now turn to the much more complex problem of designing rules that give
weakest preconditions for arbitrary postconditions, for loop-free programs. In
separation logic, such rules resort to using the magic-wand operator —x [12, 27,
28, 38], The magic-wand operator, a complex operator whose semantics calls for
second-order quantification over arbitrarily large submodels. In our setting, our
main goal is to show that FL is itself capable of expressing weakest preconditions
of postconditions written in FL.

A First-Order Logic with Frames 531

First, we define a notion of Weakest Tightest Precondition (WTP) of a for-
mula S with respect to each command in our operational semantics. To define
this notion, we first define a preconfiguration, and use that definition to define
weakest tightest preconditions:

Definition 1. The preconfigurations corresponding to a valid configuration (M, H,U)
with respect to a program S are a set of valid configurations of the form (M,, Hy, Up)
(with M,, being a model, H, and U, a subuniverse of the locations in M,, and U,
being unallocated locations) such that when S is executed on M, with unallocated
set Uy, it dereferences only locations in H,, and results (using the operational se-
mantics rules) in (M, H,U) or gets stuck (no transition is available). That is:

preconfigurations((M, H,U), S) =

{(Mp, Hy, Up) | valid(M,, Hp, Up) and (M,, Hy, Up) 2 (M, H,U) or
(M,, Hp,Up) gets stuck on S}

Definition 2. « is a WTP of a formula 8 with respect to a program S if

{(MpaHpv Up) | M, o H,= [[Sp(a)ﬂMpv Ualid(MpaHpa U;D)}
= {preconfigurations((M, H,U),S) | M | 8, H = [Sp(8)] s, valid(M, H,U)}

With the notion of weakest tightest preconditions, we define global program
logic rules for each command of our language. In contrast to local rules, global
specifications contain heaplets that may be larger than the smallest heap on
which one can execute the command.

Intuitively, a WTP of 3 for lookup states that S must hold in the precondition
when z is interpreted as 2/, where 2’ = f(y), and further that the location y
must belong to the support of 5. The rules for mutation and allocation are
more complex. For mutation, we define a transformation MW/ =Y(8) that
evaluates a formula 3 in the pre-state as though it were evaluated in the post-
state. We similarly define such a transformation MW3"°®) for allocation. We
will define these in detail later. Finally, the deallocation rule ensures x is not in
the support of the postcondition. The conjunct f(x) = f(z) is provided to satisfy
the tightness condition, ensuring the support of the precondition is the support
of the postcondition with = added. The rules can be seen below, and the proof
of soundness for these global rules can be found in the Technical Report [25].

Assignment-G: {Bly/al} = = y {8} {Ble/al} v = c {5}
Lookup-G: {3z": 2’ = f(y). (B Ay € Sp(B))[2'/x]} = := y.f {B}
(where 2’ does not occur in)

Mutation-G: {MW* T =Y(3 Az e Sp(8))} =.f == y {B}
Allocation-G: {Vv: (v € U).(v # nil = MW" (3))} alloc(z) {5}

(for some fresh variable v)

Deallocation-G: {8 Ax & Sp(B) A f(z) = f(x)} free(z) {8}

(where f € F,, is an arbitrary (unary) mutable function)

532 A. Murali et al.

4.5 Definitions of MW Primitives

Recall that the MW3 primitives MW>/*=¥ and MW2"°®) need to evaluate a
formula § in the pre-state as it would evaluate in the post-state after mutation
and allocation statements. The definition of MW =Y is as follows:

MW=T=0(B) = Bz ite(z = x = dte(f(2) = f(x) : y.y), f(2))/]

The B[Az.p(z)/f] notation is shorthand for saying that each occurrence of a
term of the form f(t), where t is a term, is substituted (recursively, from in-
side out) by the term p(t). The precondition essentially evaluates 5 taking into
account f’s transformation, but we use the ite expression with a tautological
guard f(xz) = f(x) (which has the support containing the singleton x) in order
to preserve the support. The definition of M Wf,”oc(‘”) is similar. Refer to the
Technical Report [25] for details.

Theorem 3. The rules above suffixed with -G are sound w.r.t the operational
semantics. And, each precondition corresponds to the weakest tightest precondi-

tion of .

4.6 Example

In this section, we will see an example of using our program logic rules that we
described earlier. This will demonstrate the utility of Frame Logic as a logic for
annotating and reasoning with heap manipulating programs, as well as offer some
intuition about how our program logic can be deployed in a practical setting.
The following program performs in-place list reversal: j := nil ; while (i
= nil) do k := i.next ; i.next := j ; j :=1i ; i := k For the sake
of simplicity, instead of proving that this program reverses a list, we will instead
prove the simpler claim that after executing this program j is a list. The recursive
definition of list we use for this proof is the one from Figure 3:

list(x) == ite(x = nil, true, 3z : z = next(x). list(z) A x & Sp(list(z)))

We need to also give an invariant for the while loop, simply stating that i
and j point to disjoint lists: list(i) A list(5) A Sp(list(2)) N Sp(list(j)) = 0.

We prove that this is indeed an invariant of the while loop below. Our proof
uses a mix of both local and global rules from Sections 4.3 and 4.4 above to
demonstrate how either type of rule can be used. We also use the consequence
rule along with the program rule to be applied in several places in order to
simplify presentation. As a result, some detailed analysis is omitted, such as
proving supports are disjoint in order to use the frame rule.

{list (i) A list(5) A Sp(list(i)) N Sp(list(§)) = D Ai #nil} (consequence rule)

3 The acronym MW is a shout-out to the Magic-Wand operator, as these serve a
similar function, except that they are definable in FL itself.

A First-Order Logic with Frames 533

{list (i) A list(5) A Sp(list(z)) N Sp(list(5)) = O A # nil Ai ¢ Sp(list(5))}
(consequence rule: unfolding list definition)
i & Sp(list(k")) A list(j)
Sp(list(k")) N Sp(list(j)) = 0} (consequence rule)
{3k k' = next(i). next(i) = next(i) A list(k") Ni & Sp(list(k")) A list(j)
Ni & Sp(list(5)) A Sp(list(k")) N Sp(list(5)) = 0}
k := i.next ; (consequence rule, lookup-G rule)
{next(i) = next(i) A list(k) Ni & Sp(list(k)) A list(j)
Ni & Sp(list(5)) A Sp(list(k)) N Sp(list(5)) = 0}
i.next := j ; (mutation rule, frame rule)
{next(i) = j A list(k) Ni & Sp(list(k)) A list(j)
Ni & Sp(list(5)) A Sp(list(k)) N Sp(list(§)) = 0} (consequence rule)
{list(k) A next(i) = j ANi & Sp(list(3)) A list(j) A Sp(list(k)) N Sp(list(j)) = 0}
(consequence rule: folding list definition)
{list(k) A list(i) A Sp(list(k)) N Sp(list(i)) = 0}
ji=1i;1i:=k (assignment-G rule)

{list (i) A list(5) A Sp(list(i)) N Sp(list(5)) = 0}

{3k : k' = next(i). list (K
Ni & Sp(list(j)

>>

)
)
)
) A

Armed with this, proving j is a list after executing the full program above is
a trivial application of the assignment, while, and consequence rules, which we
omit for brevity.

Observe that in the above proof we were apply the frame rule because of
the fact that ¢ belongs neither to Sp(list(k)) nor Sp(list(j)). This can be dis-
pensed with easily using reasoning about first-order formulae with least-fixpoint
definitions, techniques for which are discussed in Section 6.

Also note the invariant of the loop is precisely the intended meaning of list ()
list(j) in separation logic. In fact, as we will see in Section 6, we can define a
first-order macro Star as Star(p,¥) = ¢ A A Sp(p) N Sp(v) = 0. We can use
this macro to represent disjoint supports in similar proofs.

These proofs demonstrate what proofs of actual programs look like in our
program logic. They also show that frame logic and our program logic can prove
many results similarly to traditional separation logic. And, by using the derived
operator Star, very little even in terms of verbosity is sacrificed in gaining the
flexibility of Frame Logic(please see Section 6 for a broader discussion of the ways
in which Frame Logic differs from Separation Logic and in certain situations
offers many advantages in stating and reasoning with specifications/invariants).

5 Expressing a Precise Separation Logic

In this section, we show that FL is expressive by capturing a fragment of sep-
aration logic in frame logic; the fragment is a syntactic fragment of separation
logic that defines only precise formulas— formulas that can be satisfied in at

534 A. Murali et al.

most one heaplet for any store. The translation also shows that frame logic can
naturally and compactly capture such separation logic formulas.

5.1 A Precise Separation Logic

As discussed in Section 1, a crucial difference between separation logic and
frame logic is that formulas in separation logic have uniquely determined sup-
ports/heaplets, while this is not true in separation logic. However, it is well
known that in verification, determined heaplets are very natural (most uses of
separation logic in fact are precise) and sometimes desirable. For instance, see [8]
where precision is used crucially to give sound semantics to concurrent separa-
tion logic and [29] where precise formulas are proposed in verifying modular
programs as imprecision causes ambiguity in function contracts.

We define a fragment of separation logic that defines precise formulas (more
accurately, we handle a slightly larger class inductively: formulas that when
satisfiable have unique minimal heaplets for any given store). The fragment we
capture is similar to the notion of precise predicates seen in [29]:

Definition 3. PSL Fragment:

— sf : formulas over the stack only (nothing dereferenced). Includes isatom?(),
m(x) =y for immutable m, true, background formulas, etc.

ERSER Yy

— ite(sf, @1, p2) where sf is from the first bullet

— 1 A2 and @1 * pa

— T where L contains all unary inductive definitions I that have unique heaplets
inductively (list, tree, etc.). In particular, the body p; of I is a formula in
the PSL fragment (p;[I < @] is in the PSL fragment provided ¢ is in the
PSL fragment). Additionally, for oll x, if s,h = I(x) and s, = I(x), then
h=~h2

— Jy. (a:Ly)*gpl

Note that in the fragment negation and disjunction are disallowed, but mu-
tually exclusive disjunction using ite is allowed. Existential quantification is only
present when the topmost operator is a * and where one of the formulas guards
the quantified variable uniquely.

The semantics of this fragment follows the standard semantics of separation

logic [12, 27, 28, 38], with the heaplet of z ER y taken to be {x}. See Remark 1

in Section 3.2 for a discussion of a more accurate heaplet for x ER y being the set
containing the pair (z, f), and how this can be modeled in the above semantics
by using field-lookups using non-mutable pointers.

Theorem 4 (Minimum Heap). For any formula ¢ in the PSL fragment, if
there is an s and h such that s,h = ¢ then there is a hy, such that s,hy, = ¢
and for all b/ such that s,h = ¢, hy, Ch'.

4 While we only assume unary inductive definitions here, we can easily generalize this
to inductive definitions with multiple parameters.

A First-Order Logic with Frames 535

5.2 Translation to Frame Logic

For a separation logic store and heap s, h (respectively), we define the corre-
sponding interpretation M, j, such that variables are interpreted according to s
and values of pointer functions on dom(h) are interpreted according to h. For ¢
in the PSL fragment, we first define a formula P(yp), inductively, that captures
whether ¢ is precise. ¢ is a precise formula iff, when it is satisfiable with a store
s, there is exactly one h such that s,h = ¢. The formula P(¢p) is in separation
logic and will be used in the translation. To see why this formula is needed,
consider the formula @1 Aite(sf, @2, p3). Assume that g is imprecise, o is pre-
cise, and 3 is imprecise. Under conditions where sf is true, the heaplets for ¢,
and o must align. However, when sf is false, the heaplets for 7 and 3 can
be anything. Because we cannot initially know when sf will be true or false, we
need this separation logic formula P(y) that is true exactly when ¢ is precise.

Definition 4. Precision predicate P:

P(sf) =L andP(a:Ly):T
P(ite(sf, 1, p2)) = (sf A P(p1)) V (=sf A P(p2))
P(p1 A p2) = P(p1) V P(p2)
— P(p1 % p2) = P(p1) A P(p2)
P(I) =T where I €T is an inductive predicate

f
PQ3y. (x = y) * 1) = P(e1)
Note that this definition captures precision within our fragment since stack
formulae are imprecise and pointer formulae are precise. The argument for the
rest of the cases follow by simple structural induction.
Now we define the translation 7" inductively:

Definition 5. Translation from PSL to Frame Logic:

= T(sf) = of and T(x S y) = (f(@) = v)
ite(sf, 1, 2) = 1te(T(sf), T(p1), T(p2))
T(p1 A p2) = T(p1) NT(p2) A T(P(p1)) = Sp(T(e2)) € p(T(1))
T(P(32)) — Sp(T (1)) C Sp(T(2))
T(p1*p2) = T(p1) NT(p2) A Sp((1)) N Sp(T'(p2)) =0
T(I) = T(pr) where py is the definition of the inductive predicate I as in
Section 3.

~ Ty (x5 y) v 01) = 3y : [f(2) = o). [T(e1) A & Sp(T(1))]

Finally, recall that any formula ¢ in the PSL fragment has a unique minimal
heap (Theorem 4). With this (and a few auxiliarly lemmas that can be found in
the Technical Report [25]), we have the following theorem, which captures the
correctness of the translation:

Theorem 5. For any formula ¢ in the PSL fragment, we have the following
implications: sshiEe = M, ET(0)

My ET(p) = 5,1 |= ¢ where B = M ,(Sp(T(¢)))
Here, M 1, (Sp(T(p))) is the interpretation of Sp(T (¢)) in the model M j,. Note
B’ is minimal and is equal to hy, as in Theorem /.

536 A. Murali et al.

6 Discussion

Comparison with Separation Logic. The design of frame logic is, in many ways,
inspired by the design choices of separation logic. Separation logic formulas im-
plicitly hold on tight heaplets— models are defined on pairs (s,h), where s is
a store (an interpretation of variables) and & is a heaplet that defines a subset
of the heap as the domain for functions/pointers. In Frame Logic, we choose to
not define satisfiability with respect to heaplets but define it with respect to the
entire heap. However, we give access to the implicitly defined heaplet using the
operator Sp, and give a logic over sets to talk about supports. The separating
conjunction operation * can then be expressed using normal conjunction and a
constraint that says that the support of formulae are disjoint.

We do not allow formulas to have multiple supports, which is crucial as Sp is
a function, and this roughly corresponds to precise fragments of separation logic.
Precise fragments of separation logic have already been proposed and accepted in
the separation logic literature for giving robust handling of modular functions,
concurrency, ete. [8, 29]. Section 5 details a translation of a precise fragment
of separation logic (with * but not magic wand) to frame logic that shows the
natural connection between precise formulas in separation logic and frame logic.

Frame logic, through the support operator, facilitates local reasoning much
in the same way as separation logic does, and the frame rule in frame logic
supports frame reasoning in a similar way as separation logic. The key difference
between frame logic and separation logic is the adherence to a first-order logic
(with recursive definitions), both in terms of syntax and expressiveness.

First and foremost, in separation logic, the magic wand is needed to express
the weakest precondition [38]. Consider for example computing the weakest pre-
condition of the formula list(x) with respect to the code y.n := z. The weakest
precondition should essentially describe the (tight) heaplets such that changing
the n pointer from y to z results in = pointing to a list. In separation logic,
this is expressed typically (see [38]) using magic wand as (y — z) — (list(z)).
However, the magic wand operator is inherently a second-order property. The
formula o —(holds on a heaplet h if for any disjoint heaplet that satisfies «,
B will hold on the conjoined heaplet. Expressing this property (for arbitrary «,
whose heaplet can be unbounded) requires quantifying over unbounded heaplets
satisfying a, which is not first order expressible.

In frame logic, we instead rewrite the recursive definition list(-) to a new
one list'(-) that captures whether = points to a list, assuming that n(y) = z
(see Section 4.4). This property continues to be expressible in frame logic and
can be converted to first-order logic with recursive definitions (see Section 3.5).
Note that we are exploiting the fact that there is only a bounded amount of
change to the heap in straight-line programs in order to express this in FL.

Let us turn to expressiveness and compactness. In separation logic, separa-
tion of structures is expressed using *, and in frame logic, such a separation
is expressed using conjunction and an additional constraint that says that the
supports of the two formulas are disjoint. A precise separation logic formula
of the form «y * g * ..., is compact and would get translated to a much

A First-Order Logic with Frames 537

larger formula in frame logic as it would have to state that the supports of
each pair of formulas is disjoint. We believe this can be tamed using macros
(Star(a, B) = a A B A Sp(a) N Sp(B) = 0).

There are, however, several situations where frame logic leads to more com-
pact and natural formulations. For instance, consider expressing the property
that x and y point to lists, which may or may not overlap. In Frame Logic,
we simply write list(z) A list(y). The support of this formula is the union of
the supports of the two lists. In separation logic, we cannot use * to write
this compactly (while capturing the tightest heaplet). Note that the formula
(list(z) * true) A (list(y) * true) is not equivalent, as it is true in heaplets that
are larger than the set of locations of the two lists. The simplest formulation we
know is to write a recursive definition lseg(u, v) for list segments from « to v and
use quantification: (Jz. Iseg(x, 2) * lseg(y, z) * list(z)) V (list(x) * list(y)) where
the definition of Iseg is the following: lseg(u,v) = (u = v A emp) V (Fw. u —
w * lseg(w,v)).

If we wanted to say x1, ..., z, all point to lists, that may or may not overlap,
then in FL we can say list(x1) Alist(z2) A ... Alist(x,). However, in separation
logic, the simplest way seems to be to write using lseg and a linear number
of quantified variables and an exponentially-sized formula. Now consider the
property saying x1, ..., Z, all point to binary trees, with pointers left and right,
and that can overlap arbitrarily. We can write it in FL as tree(z1)A. . .Atree(zy,),
while a formula in (first-order) separation logic that expresses this property
seems very complex.

In summary, we believe that frame logic is a logic that supports frame rea-
soning built on the same principles as separation logic, but is still translatable
to first-order logic (avoiding the magic wand), and makes different choices for
syntax/semantics that lead to expressing certain properties more naturally and
compactly, and others more verbosely.

Reasoning with Frame Logic using First-Order Reasoning Mechanisms. An ad-
vantage of the adherence of frame logic to being translatable to a first-order
logic with recursive definitions is the power to reason with it using first-order
theorem proving techniques. While we do not present tools for reasoning in this
paper, we note that there are several reasoning schemes that can readily handle
first-order logic with recursive definitions.

The theory of dynamic frames [18] has been proposed for frame reasoning for
heap manipulating programs and has been adopted in verification engines like
Dafny [21] that provide automated reasoning. A key aspect of dynamic frames
is the notion of regions, which are subsets of locations that can be used to
define subsets of the heap that change or do not change when a piece of code
is executed. Program logics such as region logic have been proposed for object-
oriented programs using such regions [1-3]. The supports of formulas in frame
logic are also used to express such regions, but the key difference is that the
definition of regions is given implicitly using supports of formulas, as opposed
to explicitly defining them. Separation logic also defines regions implicitly, and

538 A. Murali et al.

in fact, the work on implicit dynamic frames [31, 39] provides translations from
separation logic to regions for reasoning using dynamic frames.

Reasoning with regions using set theory in a first-order logic with recursive
definitions has been explored by many works to support automated reasoning.
Tools like VAMPIRE [20] for first-order logic have been extended in recent work to
handle algebraic datatypes [19]; many data-structures in practice can be modeled
as algebraic datatypes and the schemes proposed in [19] are powerful tools to
reason with them using first-order theorem provers.

A second class of tools are those proposed in the work on natural proofs [23,
32, 37]. Natural proofs explicitly work with first order logic with recursive defi-
nitions (FO-RD), implementing validity through a process of unfolding recursive
definitions, uninterpreted abstractions, and proving inductive lemmas using in-
duction schemes. Natural proofs are currently used primarily to reason with
separation logic by first translating verification conditions arising from Hoare
triples with separation logic specifications (without magic wand) to first-order
logic with recursive definitions. Frame logic reasoning can also be done in a very
similar way by translating it first to FO-RD.

The work in [23] considers natural proofs and quantifier instantiation heuris-
tics for FO-RD (using a similar setup of foreground sort for locations and back-
ground sorts), and the work identifies a fragment of FO-RD (called safe fragment)
for which this reasoning is complete (in the sense that a formula is detected as
unsatisfiable by quantifier instantiation iff it is unsatisfiable with the inductive
definitions interpreted as fixpoints and not least fixpoints). Since FL can be
translated to FO-RD, it is possible to deal with FL using the techniques of [23].
The conditions for the safe fragment of FO-RD are that the quantifiers over
the foreground elements are the outermost ones, and that terms of foreground
type do not contain variables of any background type. As argued in [23], these
restrictions are typically satisfied in heap logic reasoning applications.

7 Related Work

The frame problem [13] is an important problem in many different domains of
research. In the broadest form, it concerns representing and reasoning about
the effects of a local action without requiring explicit reasoning regarding static
changes to the global scope. For example, in artificial intelligence one wants a
logic that can seamlessly state that if a door is opened in a lit room, the lights
continue to stay switched on. This issue is present in the domain of verification
as well, specifically with heap-manipulating programs.

There are many solutions that have been proposed to this problem. The most
prominent proposal in the verification context is separation logic [12, 27, 28, 38],
which we discussed in detail in the previous section.

In contrast to separation logic, the work on Dynamic Frames [17, 18] and
similarly inspired approaches such as Region Logic [1-3] allow methods to ex-
plicitly specify the portion of the support that may be modified. This allows
fine-grained control over the modifiable section, and avoids special symbols like

A First-Order Logic with Frames 539

x and —=. However, explicitly writing out frame annotations can become verbose
and tedious.

The work on Implicit Dynamic Frames [22, 39, 40] bridges the worlds of
separation logic (without magic wand) and dynamic frames— it uses separation
logic and fractional permissions to implicitly define frames (reducing annotation
burden), allows annotations to access these frames, and translates them into set
regions for first-order reasoning. Our work is similar in that frame logic also
implicitly defines regions and gives annotations access to these regions, and can
be easily translated to pure FO-RD for first-order reasoning.

One distinction with separation logic involves the non-unique heaplets in
separation logic and the unique heaplets in frame logic. Determined heaplets
have been used [29, 32, 37] as they are more amenable to automated reasoning. In
particular a separation logic fragment with determined heaplets known as precise
predicates is defined in [29], which we capture using frame logic in Section 5.

There is also a rich literature on reasoning with these heap logics for program
verification. Decidability is an important dimension and there is a lot of work on
decidable logics for heaps with separation logic specifications [4-6, 11, 26, 33].
The work based on EPR (Effectively Propositional Reasoning) for specifying
heap properties [14-16] provides decidability, as does some of the work that
translates separation logic specifications into classical logic [34].

Finally, translating separation logic into classical logics and reasoning with
them is another solution pursued in a lot of recent efforts [10, 23, 24, 32, 32,
34-37, 41]. Other techniques including recent work on cyclic proofs [9, 42] use
heuristics for reasoning about recursive definitions.

8 Conclusions

Our main contribution is to propose Frame Logic, a classical first-order logic
endowed with an explicit operator that recovers the implicit supports of formulas
and supports frame reasoning. we have argued its expressive by capturing several
properties of data-structures naturally and succinctly, and by showing that it
can express a precise fragment of separation logic. The program logic built using
frame logic supports local heap reasoning, frame reasoning, and weakest tightest
preconditions across loop-free programs.

We believe that frame logic is an attractive alternative to separation logic,
built using similar principles as separation logic while staying within the first-
order logic world. The first-order nature of the logic makes it potentially amenable
to easier automated reasoning.

A practical realization of a tool for verifying programs in a standard program-
ming language with frame logic annotations by marrying it with existing auto-
mated techniques and tools for first-order logic (in particular [19, 24, 32, 37, 41]),
is the most compelling future work.

Acknowledgements: We thank ESOP’20 reviewers for their comments that
helped improve this paper. This work is based upon research supported by the
National Science Foundation under Grant NSF CCF 1527395.

540

1]
2]

[12]

A. Murali et al.

Bibliography

Banerjee, A., Naumann, D.: Local reasoning for global invariants, Part II:
Dynamic boundaries. Journal of the ACM (JACM) 60 (06 2013)
Banerjee, A., Naumann, D.A., Rosenberg, S.: Regional logic for local rea-
soning about global invariants. In: Vitek, J. (ed.) ECOOP 2008 — Object-
Oriented Programming. pp. 387—411. Springer Berlin Heidelberg, Berlin,
Heidelberg (2008)

Banerjee, A., Naumann, D.A., Rosenberg, S.: Local reasoning for global
invariants, Part I: Region logic. J. ACM 60(3), 18:1-18:56 (Jun 2013),
http://doi.acm.org/10.1145/2485982

Berdine, J., Calcagno, C., O’'Hearn, P.W.: A decidable fragment of separa-
tion logic. In: Proceedings of the 24th International Conference on Founda-
tions of Software Technology and Theoretical Computer Science. pp. 97-109.
FSTTCS’04 (2004)

Berdine, J., Calcagno, C., O’'Hearn, P.W.: Symbolic execution with separa-
tion logic. In: Proceedings of the Third Asian Conference on Programming
Languages and Systems. pp. 52-68. APLAS’05 (2005)

Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic
assertion checking with separation logic. In: Proceedings of the 4th In-
ternational Conference on Formal Methods for Components and Ob-
jects. pp. 115-137. FMCO’05, Springer-Verlag, Berlin, Heidelberg (2006).
https://doi.org/10.1007/11804192 6

Brinck, K., Foo, N.Y.: Analysis of algorithms on threaded
trees. The Computer Journal 24(2), 148-155 (01 1981).
https://doi.org/10.1093 /comjnl/24.2.148

Brookes, S.: A semantics for concurrent separation logic.
Theor. Comput. Sci. 375(1-3), 227-270 (Apr 2007).
https://doi.org/10.1016/j.tcs.2006.12.034

Brotherston, J., Distefano, D., Petersen, R.L.: Automated cyclic
entailment proofs in separation logic. In: Proceedings of the
23rd International Conference on Automated Deduction. pp.
131-146. CADE’11l, Springer-Verlag, Berlin, Heidelberg (2011),
http://dl.acm.org/citation.cfm?id=2032266.2032278

Chin, W.N., David, C., Nguyen, H.H., Qin, S.: Automated verification of
shape, size and bag properties. In: 12th TEEE International Conference
on Engineering Complex Computer Systems (ICECCS 2007). pp. 307-320
(2007)

Cook, B., Haase, C., Ouaknine, J., Parkinson, M., Worrell, J.: Tractable
reasoning in a fragment of separation logic. In: Proceedings of the 22nd In-
ternational Conference on Concurrency Theory. pp. 235-249. CONCUR’11
(2011)

Demri, S., Deters, M.: Separation logics and modalities: a survey. Journal
of Applied Non-Classical Logics 25, 50-99 (2015)

http://doi.acm.org/10.1145/2485982
https://doi.org/10.1007/11804192_6
https://doi.org/10.1093/comjnl/24.2.148
https://doi.org/10.1016/j.tcs.2006.12.034
http://dl.acm.org/citation.cfm?id=2032266.2032278

A First-Order Logic with Frames 541

[13] Hayes, P.J.: The frame problem and related problems in artifi-
cial intelligence. In: Webber, B.L., Nilsson, N.J. (eds.) Readings
in Artificial Intelligence, pp. 223 — 230. Morgan Kaufmann (1981).
https://doi.org/10.1016/B978-0-934613-03-3.50020-9

[14] Ttzhaky, S., Banerjee, A., Immerman, N., Lahav, O., Nanevski, A., Sagiv,
M.: Modular reasoning about heap paths via effectively propositional for-
mulas. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. pp. 385-396. POPL ’14, ACM,
New York, NY, USA (2014). https://doi.org/10.1145/2535838.2535854

[15] Ttzhaky, S., Banerjee, A., Immerman, N., Nanevski, A., Sagiv, M.:
Effectively-propositional reasoning about reachability in linked data struc-
tures. In: Proceedings of the 25th International Conference on Computer
Aided Verification. pp. 756-772. CAV’13, Springer-Verlag, Berlin, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8 53

[16] Itzhaky, S., Bjgrner, N., Reps, T., Sagiv, M., Thakur, A.: Property-directed
shape analysis. In: Proceedings of the 16th International Conference on
Computer Aided Verification. pp. 35-51. CAV’14, Springer-Verlag, Berlin,
Heidelberg (2014). https://doi.org/10.1007/978-3-319-08867-9 3

[17] Kassios, I.T.: The dynamic frames theory. Form. Asp. Comput. 23(3), 267—
288 (May 2011). https://doi.org/10.1007/s00165-010-0152-5

[18] Kassios, I.T.: Dynamic frames: Support for framing, dependencies and shar-
ing without restrictions. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM
2006: Formal Methods. pp. 268-283. Springer-Verlag, Berlin, Heidelberg
(2006)

[19] Kovécs, L., Robillard, S., Voronkov, A.: Coming to terms with quantified
reasoning. In: Proceedings of the 44th ACM SIGPLAN Symposium on Prin-
ciples of Programming Languages. pp. 260-270. POPL '17, ACM, New York,
NY, USA (2017). https://doi.org/10.1145/3009837.3009887

[20] Kovécs, L., Voronkov, A.: First-order theorem proving and Vampire. In:
CAV ’13. pp. 1-35 (2013). https://doi.org/10.1007/978-3-642-39799-8 1

[21] Leino, K.R.M.: Dafny: An automatic program verifier for func-
tional correctness. In: Proceedings of the 16th International Confer-
ence on Logic for Programming, Artificial Intelligence, and Reason-
ing. p. 348-370. LPAR’10, Springer-Verlag, Berlin, Heidelberg (2010).
https://doi.org/10.5555/1939141.1939161

[22] Leino, K.R.M., Miiller, P.: A basis for verifying multi-threaded pro-
grams. In: Castagna, G. (ed.) Programming Languages and Systems.
pp. 378-393. Springer Berlin Heidelberg, Berlin, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00590-9 27

[23] Loding, C., Madhusudan, P., Pena, L.: Foundations for natural proofs
and quantifier instantiation. PACMPL 2(POPL), 10:1-10:30 (2018).
https://doi.org/10.1145/3158098

[24] Madhusudan, P., Qiu, X., Stefanescu, A.: Recursive proofs for induc-
tive tree data-structures. In: Proceedings of the 39th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

https://doi.org/10.1016/B978-0-934613-03-3.50020-9
https://doi.org/10.1145/2535838.2535854
https://doi.org/10.1007/978-3-642-39799-8_53
https://doi.org/10.1007/978-3-319-08867-9_3
https://doi.org/10.1007/s00165-010-0152-5
https://doi.org/10.1145/3009837.3009887
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.5555/1939141.1939161
https://doi.org/10.1007/978-3-642-00590-9_27
https://doi.org/10.1145/3158098

542

[27]

[28]

A. Murali et al.

guages. pp. 123-136. POPL ’12, ACM, New York, NY, USA (2012).
https://doi.org/10.1145/2103656.2103673

Murali, A., Pena, L., Loding, C., Madhusudan, P.: A first order logic with
frames. CoRR (2019), http://arxiv.org/abs/1901.09089

Navarro Pérez, J.A., Rybalchenko, A.: Separation logic + superposition
calculus = heap theorem prover. In: Proceedings of the 32nd ACM SIG-
PLAN Conference on Programming Language Design and Implementation.
pp. 556-566. PLDI '11, ACM, New York, NY, USA (2011)

O’Hearn, P.W.: A primer on separation logic (and automatic program ver-
ification and analysis). In: Software Safety and Security (2012)

O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs
that alter data structures. In: Proceedings of the 15th International Work-
shop on Computer Science Logic. pp. 1-19. CSL 01, Springer-Verlag, Lon-
don, UK, UK (2001), http://dl.acm.org/citation.cfm?id=647851.737404
O’Hearn, P.W., Yang, H., Reynolds, J.C.: Separation and information hid-
ing. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. pp. 268-280. POPL ’04, ACM, New
York, NY, USA (2004). https://doi.org/10.1145/964001.964024
Parkinson, M., Bierman, G.: Separation logic and abstraction. In: Proceed-
ings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. pp. 247-258. POPL ’05, ACM, New York, NY,
USA (2005). https://doi.org/10.1145/1040305.1040326

Parkinson, M.J., Summers, A.J.: The relationship between separation logic
and implicit dynamic frames. In: Barthe, G. (ed.) Programming Languages
and Systems. pp. 439-458. Springer Berlin Heidelberg, Berlin, Heidelberg
(2011). https://doi.org/10.1007 /978-3-642-19718-5 23

Pek, E., Qiu, X., Madhusudan, P.: Natural proofs for data structure
manipulation in C using separation logic. In: Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation. pp. 440-451. PLDI '14, ACM, New York, NY, USA (2014).
https://doi.org/10.1145/2594291.2594325

Pérez, J.A.N., Rybalchenko, A.: Separation logic modulo theories. In: Pro-
gramming Languages and Systems (APLAS). pp. 90-106. Springer Interna-
tional Publishing, Cham (2013)

Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using
SMT. In: Proceedings of the 25th International Conference on Computer
Aided Verification. pp. 773-789. CAV’13, Springer-Verlag, Berlin, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8 54

Piskac, R., Wies, T., Zufferey, D.: Automating separation logic with trees
and data. In: Proceedings of the 16th International Conference on Computer
Aided Verification. pp. 711-728. CAV’14, Springer-Verlag, Berlin, Heidel-
berg (2014)

Piskac, R., Wies, T., Zufferey, D.: Grasshopper. In: Abrahfim, E., Havelund,
K. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems. pp. 124-139. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

https://doi.org/10.1145/2103656.2103673
http://arxiv.org/abs/1901.09089
http://dl.acm.org/citation.cfm?id=647851.737404
https://doi.org/10.1145/964001.964024
https://doi.org/10.1145/1040305.1040326
https://doi.org/10.1007/978-3-642-19718-5_23
https://doi.org/10.1145/2594291.2594325
https://doi.org/10.1007/978-3-642-39799-8_54

A First-Order Logic with Frames 543

[37] Qiu, X., Garg, P., Stefanescu, A., Madhusudan, P.: Natural proofs for
structure, data, and separation. In: Proceedings of the 34th ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation. pp. 231-242. PLDI ’13, ACM, New York, NY, USA (2013).
https://doi.org/10.1145,/2491956.2462169

[38] Reynolds, J.C.: Separation logic: A logic for shared mutable data structures.
In: Proceedings of the 17th Annual IEEE Symposium on Logic in Computer
Science. pp. 55-74. LICS ’02 (2002)

[39] Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames: Combining dy-
namic frames and separation logic. In: Drossopoulou, S. (ed.) ECOOP 2009
— Object-Oriented Programming. pp. 148-172. Springer Berlin Heidelberg,
Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03013-0 8

[40] Smans, J., Jacobs, B., Piessens, F.. Implicit dynamic frames.
ACM Trans. Program. Lang. Syst. 34(1), 2:1-2:58 (May 2012).
https://doi.org/10.1145/2160910.2160911

[41] Suter, P., Dotta, M., Kunéak, V.. Decision procedures for algebraic
data types with abstractions. In: Proceedings of the 37th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. pp. 199-210. POPL ’10, ACM, New York, NY, USA (2010).
https://doi.org/10.1145/1706299.1706325

[42] Ta, Q.T., Le, T.C., Khoo, S.C., Chin, W.N.: Automated mutual ex-
plicit induction proof in separation logic. In: Fitzgerald, J., Heit-
meyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016: Formal Meth-
ods. pp. 659-676. Springer International Publishing, Cham (2016).
https://doi.org/10.1007/978-3-319-48989-6 40

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

https://doi.org/10.1145/2491956.2462169
https://doi.org/10.1007/978-3-642-03013-0_8
https://doi.org/10.1145/2160910.2160911
https://doi.org/10.1145/1706299.1706325
https://doi.org/10.1007/978-3-319-48989-6_40
http://creativecommons.org/licenses/by/4.0/

	A First-Order Logic with Frames
	1 Introduction
	2 Background: First-Order Logic with RecursiveDefinitions and Uninterpreted Combinations ofTheories
	3 Frame Logic
	3.1 Syntax of Frame Logic (FL)
	3.2 Semantics of Support Expressions: Design Decisions
	3.3 Formal Semantics of Frame Logic
	3.4 A Frame Theorem
	3.5 Reduction from Frame Logic to FO-RD
	3.6 Expressing Data-Structures Properties in FL

	4 Programs and Proofs
	4.1 Operational Semantics
	4.2 Triples and Validity
	4.3 Program Logic
	4.4 Weakest-Precondition Proof Rules
	4.5 Definitions of MW Primitives
	4.6 Example

	5 Expressing a Precise Separation Logic
	5.1 A Precise Separation Logic
	5.2 Translation to Frame Logic

	6 Discussion
	7 Related Work
	8 Conclusions
	Bibliography

