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Abstract:

Offset-free nonlinear model predictive control (NMPC) can eliminate the tracking offset associated with

the presence of plant-model mismatch or other persistent disturbances by augmenting the plant model with

disturbances and employing an observer to estimate both the states and disturbances. Despite their importance,

a systematic approach for the generation of suitable disturbance models is not available.

We propose an optimization-based method to generate disturbance models based on sufficient observability

conditions and generalize the theory of offset-free NMPC by allowing for (i) more measured variables than

controlled variables and (ii) unmeasured controlled variables. Based on the sufficient conditions, we formulate

a generalized semi-infinite program, which we reformulate and solve as a simpler semi-infinite program using

a discretization algorithm. The solution furnishes the optimal disturbance model, which maximizes the set of

those state, manipulated variable, and disturbance realizations, for which a sufficient observability condition is

satisfied. The disturbance model is generated offline and can be used online for offset-free NMPC.

We apply the approach using three case studies ranging from small scale chemical reactor cases to a medium

scale polymerization reactor case. The results demonstrate the validity and usefulness of the generalized theory

and show that the model generation approach successfully finds suitable disturbance models for offset-free

NMPC.
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1 Introduction

Model predictive control (MPC) is an established advanced process control concept, e.g., for industrial processes

[1, 2]. One of the most popular MPC tasks is setpoint tracking. However, the inevitable discrepancy between the

controller model and the real process, as well as persistent disturbances typically lead to an offset between the

tracked process variables and their desired setpoints [3, 4]. In the following, we use for simplicity “disturbances”

for both phenomena. In the case of economic MPC, this translates into suboptimal or even infeasible closed-

loop process behavior [5]. For example, applying reduced dynamic controller models inherently introduces a

disturbance, which may lead to undesired offset, e.g. [6, 7]. This motivates offset-free MPC [4, 8], i.e., exactly

tracking given setpoints by adding constant differential states to the process model as a disturbance model

(DM). The values of the disturbance states are determined using suitable state estimation. Offset-free closed-

loop process behavior can be guaranteed under reasonable assumptions. We refer to the work of Pannocchia et

al. [5] for an overview of offset-free MPC. While several works focused on offset-free linear MPC (LMPC), e.g.,

[3, 8, 9, 10, 11, 12], few articles are available on offset-free NMPC. Huang et al. [13] used an advanced-step

NMPC and advanced-step moving horizon estimator for offset-free NMPC. Morari and Maeder [4] presented

sufficient conditions on the DM, the controller, the observer, and the closed-loop behavior of the controlled

system to guarantee offset-free tracking. Pannocchia [14] combined the ideas of offset-free NMPC for tracking

and real-time optimization with modifier adaptation to achieve offset-free economic NMPC (eNMPC). Schulze

et al. [7] used an output DM to eliminate an offset in the controlled and measured variables introduced by the

application of a reduced dynamic controller model.

Although the choice of the DM is crucial and the appropriate assumptions for it exist, cf. [5], there are only

a few works for the generation of DMs. In particular, the focus has been on linear MPC for constant setpoint

tracking [15, 16]. In contrast, there is no general approach available for the generation of DMs in NMPC, as

also mentioned in [5]. Furthermore, the existing works about offset-free NMPC [4, 5, 14] assumed the number

of controlled variables (CVs) to equal the number of manipulated variables (MVs) and the CVs to be measured,

which is not always given in industrial examples. For instance, in distillation columns, the temperature is

typically used as a measurement whereas the unmeasured product purity is to be controlled [17, 18, 19, 6].

Herein, we present a general approach for the generation of DMs in offset-free NMPC. The DM results

from the solution of an optimization problem, which embeds a sufficient observability condition for the DM

to guarantee offset-free tracking behavior. More specifically, we propose a generalized semi-infinite program

(GSIP), cf. [20], taking into account the structure of the augmented model. The GSIP is reformulated as a

semi-infinite program (SIP), cf. [20]. Solving the SIP, we maximize the size of a set within the state-space of

the augmented model, so that a sufficient observability condition for offset-free NMPC is satisfied within the

set. That is, the augmented model is observable for all states that are elements of the set and the resulting

disturbance model is optimal in the sense that it maximizes this set. The process dynamics are not included

in the optimization problem explicitly but rather accounted for by the sufficient observability condition, which
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in turn does not require the integration of the augmented model [4]. Thus, the model generation approach

does not require to treat a dynamic model and considers algebraic equations only. Furthermore, we relax

the existing sufficient conditions on offset-free NMPC by allowing for more measured variables than CVs and

unmeasured CVs while the existing literature about offset-free NMPC assumes the CVs to be measured [4]. Both

more measured variables than CVs and unmeasured CVs are relevant in the application of NMPC to industrial

processes. We illustrate the theoretical extensions and apply the new DM generation approach based on SIP to

three numerical case studies ranging from small scale chemical reactor cases to a larger polymerization reactor

case.

The remainder of the work is structured as follows. We present the theory of offset-free NMPC and extend

the sufficient conditions from Morari and Maeder [4] in Section 2. Section 3 outlines our DM generation

approach. We illustrate the results and DM generation approach in numerical case studies in Section 4 and

draw conclusions in Section 5.

2 NMPC

We present the controlled system and the nominal NMPC first, before we motivate and introduce offset-free

NMPC. For an overview of NMPC and offset-free NMPC, we refer to [2, 5].

Both nominal and offset-free NMPC aim at controlling the exact, but usually unknown real system

xΦpk � 1q � fΦpxΦpkq,uΦpkq,dΦpkqq

zΦpkq � g
z
ΦpxΦpkq,dΦpkqq

yΦpkq � g
y
ΦpxΦpkq,dΦpkqq,

(1)

with the differential states xΦpkq P XΦ � RnxΦ , disturbances dΦpkq P DΦ � RndΦ , measurement zΦpkq P Z �

Rnz , the CVs yΦpkq P Y � Rny , the MVs uΦpkq P U � Rnu , and fΦ : XΦ � U � DΦ Ñ XΦ, the measurement

function gzΦ : XΦ �DΦ Ñ Z, and the output function gyΦ : XΦ �DΦ Ñ Y, and the discrete time point k P N.

The tracking error between the outputs yΦ and a reference signal r is defined by

epkq � yΦpkq � rpkq.

We assume that the disturbances and the reference signals are asymptotically constant, i.e.,

rpkq Ñ r8

dΦpkq Ñ dΦ,8.

In offset-free NMPC, the aim is to control the system such that yΦ tracks the given reference signal r, i.e., to

A. Caspari et al. Page 3 of 39



Disturbance Model for Offset-Free NMPC

achieve zero tracking error asymptotically:

epkq Ñ 0, k Ñ8.

2.1 Nominal NMPC

Nominal NMPC uses a nominal model of the plant given by

xpk � 1q � fpxpkq,upkqq

zpkq � gzpxpkqq

ypkq � gypxpkqq,

(2)

with the differential states xpkq P X � Rnx , measurements zpkq P Z � Rnz , the CVs ypkq P Y � Rny , and

f : X � U Ñ X , the measurement function gz : X Ñ Z, and the output function gy : X Ñ Y.

Nominal NMPC uses the nominal plant model (2) as the controller model in state estimation and control.

To estimate the states, nominal NMPC employs an observer of the form

x̂pk � 1q � fpx̂pkq,upkqq � lx pϵpkqq

ẑpkq � gzpx̂pkqq

ϵpkq � zΦpkq � ẑpkq,

(3)

with the observer residual ϵ and the observer gains lx : Z Ñ X , with lxp0q � 0.

At each time k for a given reference rpkq and x̂pkq, the nominal NMPC solves the following optimization

problem:

min
x̄,ū,

x1,...,xN
u0,...,uN�1

F pxN � x̄q �
N�1̧

t�0

lpxt � x̄,ut � ūq

s.t. x0 � x̂pkq

x̄ � fpx̄, ūq

rpkq � gypx̄q

xt�1 � fpxt,utq,@t P t0, ..., N � 1u,

(4)

with xt P X,@t P t1, ..., Nu, ut P U,@t P t0, ..., N �1u, x̄ P X, ū P U are the states and inputs defining the target

equilibrium, and X � X the admissible state set and U � U the admissible MV set.

We denote the solution of (4) by U�pkq �
�
x̄�pkq, ū�pkq,x�1 pkq, ...,x

�
N pkq,u

�
0 pkq, ...,u

�
N�1pkq

�
. u�0 pkq is applied

as (an implicit) nominal NMPC control law to the process

uΦpkq � cpx̂pkq, rpkqq � u
�
0 pkq. (5)
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Nominal NMPC leads to a tracking offset in the presence of disturbance, which we illustrate in the case

studies in Section 4.

2.2 Offset-Free NMPC

We now present the theory and sufficient conditions for offset-free NMPC. Morari and Maeder [4] assumed that

the measured variables are the CVs. We extend their work by proving that offset-free NMPC can be guaranteed

in the case that the CVs are a subset of the measured variables or in the case that unmeasured CVs are predicted

accurately at steady state. The theory is shown for ordinary differential equation systems (ODEs), although it

can in principle be modified for differential-algebraic equation systems (DAEs) by applying the implicit function

theorem.

To account for disturbances to eliminate the offset associated with nominal NMPC, offset-free NMPC uses

a nominal model augmented with a DM, resulting in the following augmented model:

xaugpk � 1q � faugpxaugpkq,uaugpkq,daugpkqq

daugpk � 1q � daugpkq

zaugpkq � g
z
augpxaugpkq,daugpkqq

yaugpkq � g
y
augpxaugpkq,daugpkqq,

(6)

with the differential states xaugpkq P X � Rnx , the disturbances daugpkq P D � Rnd , measurement zaugpkq P Z,

the CVs yaugpkq P Y, the MVs uaugpkq P U , and faug : X � U � D Ñ X , the measurement function gzaug :

X �D Ñ Z, and the output function gyaug : X �D Ñ Y.

One possible choice would be a linear disturbance model added to the nominal model:

faugpxaugpkq,uaugpkq,daugpkqq � fpxaugpkq,uaugpkqq �Bd � daugpkq,

with Bd P RNx�Nd that would have to be defined during DM generation. We denote a disturbance model as

an exact disturbance model if the augmented system (6) and the real system (1) coincide. Later, we show that

an exact disturbance model is not required to achieve offset-free tracking even in the case of unmeasured CVs.

To estimate the states and disturbances, offset-free NMPC employs an observer of the form

x̂augpk � 1q � faugpx̂augpkq,uaugpkq, d̂augpkqq � lx pϵaugpkqq

d̂augpk � 1q � d̂augpkq � ld pϵaugpkqq

ẑaugpkq � g
z
augpx̂augpkq, d̂augpkqq

ϵaugpkq � zΦpkq � ẑaugpkq,

(7)

with the observer residual ϵaug and the observer gain ld : Z Ñ D, with ldp0q � 0.
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At each time k for a given reference rpkq, d̂augpkq, x̂augpkq, the offset-free NMPC solves the following

optimization problem

min
x̄aug,ūaug,

xaug,1,...,xaug,N
uaug,0,...,uaug,N�1

F pxaug,N � x̄augq �
N�1̧

t�0

lpxaug,t � x̄aug,uaug,t � ūaugq (8a)

s.t. x0 � x̂augpkq,daug,0 � d̂augpkq (8b)

x̄aug � faugpx̄aug,daug,0, ūaug,N q (8c)

rpkq � gyaugpx̄aug,daug,0q (8d)

xaug,t�1 � faugpxaug,t,daug,0,uaug,tq,@t P t0, ..., N � 1u, (8e)

with xaug,t P Xaug,@t P t1, ..., Nu, uaug,t P Uaug,@t P t0, ..., N � 1u, x̄aug P Xaug, ūaug P Uaug are the states and

inputs defining the target equilibrium, and Xaug � X the admissible state set and Uaug � U the admissible MV

set.

We denote the solution of (8) by U�
augpkq � px̄�augpkq, ūaug

�pkq,x�aug,1pkq, ...,x
�
aug,N pkq,

u�aug,0pkq, ...,u
�
aug,N�1pkqq. uaug,0

�pkq is applied as (an implicit) offset-free NMPC control law to the process

uΦpkq � caugpx̂augpkq, d̂pkq, rpkqq � u
�
aug,0pkq. (9)

2.2.1 Assumptions and Sufficient Conditions for Offset-Free NMPC

We state several assumptions which are used later to prove offset-free tracking. The first two assumptions

generalize the assumption of Morari and Maeder [4], where it is assumed that the measured variables are the

CVs, implying nz � ny.

Assumption 1 (measurements) There are nz measurements and ny CVs, with nz ¥ ny. The measurements

contain the CVs:
zaug,ipkq � yaug,ipkq,@i P t1, ..., nyu

zΦ,ipkq � yΦ,ipkq,@i P t1, ..., nyu.

If Assumption 1 is not satisfied, we assume that the augmented system is exact for those CVs that are not

measured:

Assumption 2 (exact steady state prediction) The augmented system accurately predicts those CVs at the

steady state which are not measured.

yaug,8,i � yΦ,8,i,@i : y8,i � z8,i.
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Assumption 2 is satisfied, e.g., when the disturbances are modeled exactly, so that the augmented system

is exact. This may occur in practical applications when it is known that a persistent disturbance only affects

single equations, inputs, or outputs. The case studies demonstrate that exact predictions can also be achieved

by adding disturbances to those equations corresponding to the unmeasured CVs. Thus, the assumption is

not as restrictive as it might sound and can easily be enforced, which we take into account in the DM gener-

ation procedure presented in Section 3. Below, we prove that offset-free tracking can be achieved when either

Assumption 1 or 2 is satisfied.

Assumption 3 (observer) The observer is designed to be nominally error-free at steady state, satisfying

ldpϵq � 0ñ ϵ � 0

for all ϵ P Z.

Assumption 3 generally implies nd ¥ nz unless the measurements z are degenerate, e.g., in case they are

correlated or trivially defined.

We use the following assumptions on the controller, the closed-loop system, and on the observability and

controllability of the augmented model (6).

Assumption 4 (controller) Let the control law be defined by (9). The controller is designed to be nominally

error-free at steady state, i.e., for all d P D, r P Y which yield strictly feasible targets,

x� faugpx,d, caugpx,d, rqq � 0ñ gyaugpx,dq � r

holds for all x P X .

Assumption 4 implies in general nu ¥ ny barring degeneracy of the CVs y. Thus, we exclude those cases

where, e.g., the CVs are not independent of each other.

Assumption 5 (convergence of closed-loop system) If the closed-loop system (1), (7), (8), and (9) is subject

to an asymptotically constant reference and disturbance with rpkq Ñ r8, dΦpkq Ñ dΦ,8 as k Ñ 8, then all

states converge to a steady state yΦpkq Ñ yΦ,8, uΦpkq Ñ u8 as k Ñ 8, with yΦ,8 P Y, u8 P U , and r8 P Y

strictly in the interior of the feasible set.

Assumption 6 (observability) Consider the augmented model (6). For all z P Z, u P U , there exist x� P X ,

d� P D such that
x� � faugpx

�,d�,uq

z � gzaugpx
�,d�q

(10)

holds. Furthermore, px�,d�q is the unique solution to (10) for any given pu, zq.
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As in [4], we assume non-degeneracy of the measurements z. Then, (10) will have no solution unless nd ¥ nz

and a unique solution requires nd � nz. Using Assumptions 3 and 6 justifies the focus on the case nd � nz for

the DM generation approach presented in Section 3. There, we present a DM generation approach based on an

optimization problem that furnishes the optimal disturbance model. Although it would be possible to use nd

as a degree of freedom in the optimization problem, the theory requires nd � nz, as implied by Assumption 6.

Therefore, we focus on nd � nz.

Assumption 7 (controllability) Consider the augmented model (6). For all r P Y, d P D, there exist x� P X ,

u� P U such that
x� � faugpx

�,d,u�q

r � y � gyaugpx
�,dq

(11)

holds. Furthermore, px�,u�q is the unique solution to (11) for any given pd, rq.

With the assumptions and definitions, we can state the following theorem which is adapted from a theorem

given in [4] by allowing more measurements than CVs and unmeasured CVs, i.e., the assumptions are relaxed

compared to the assumptions in [4].

Theorem 1 (offset-free NMPC) Consider the augmented model (6), the observer (7) and the controller (9).

Let either Assumption 1 or 2 and Assumptions 3-7 be satisfied. Then yΦpkq Ñ rpkq as k Ñ8.

The proof is in Appendix A.

We do not assume any specific form of the output or measurement function except non-degeneracy, i.e., both

can be any function of states and disturbances.

We use the following assumption and sufficient condition from [4] for Assumption 6 (observability) to generate

a DM in the next section.

Assumption 8 The functions faug and gzaug are continuously differentiable, i.e., belong to C1.

We abbreviate the gradients of the augmented system by

Gxpx,dq :�
Bgzaug
Bxaug

����
px,dq

Gdpx,dq :�
Bgzaug
Bdaug

����
px,dq

F xpx,d,uq :�
Bfaug

Bxaug

����
px,d,uq

F dpx,d,uq :�
Bfaug

Bdaug

����
px,d,uq

.

Theorem 2 (sufficient condition for observability) Consider the augmented model (6) with nd � nz, the fixed
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point (10), and Assumption 8. Let

rank

�
��F xpx,d,uq � I F dpx,d,uq

Gxpx,dq Gdpx,dq

�
�


looooooooooooooooooooomooooooooooooooooooooon
Jpx,d,uq

� nx � nd (12)

hold. Then, there exists a neighborhood U8 � Z8 � U � Z of pu, zq where (10) has a unique solution, i.e.,

Assumption 6 is satisfied.

The proof can be found in [4]. Note that the sufficient observability condition (12) depends on the states x,

disturbances d, and MVs u. To guarantee offset-free tracking, the condition has to be satisfied at the obtained

steady state, cf. Theorem 1. Hence, the sufficient observability condition (12) can be used to generate suitable

disturbance models satisfying (12) in the largest possible subset of the state space, thereby guaranteeing offset-

free tracking within this subset. This is the basis for the DM generation approach presented in the next section.

In the best case, offset-free tracking is guaranteed within the complete state space.

3 Disturbance Model Generation based on Semi-Infinite Program-

ming

In this section, we describe the new DM generation approach. In the general case of a nonlinear augmented

model (10), the sufficient observability condition (12) depends on x,u, and d. We denote the set for which

(12) is satisfied as observable set, similar to the feasible set in optimal experimental design in the context

of guaranteed parameter estimation, e.g., [21, 22]. Hence, the observable set can be defined by O � tx,u,d :�
detpJpx,u,d,pdqq

�2
¥ εu. Fig. 1 illustrates an observable set for a constant value of d. The augmented system

can be used for offset-free NMPC in the entire observable set; if the controlled system achieves a steady state

that lies within the projection of the observable set to the state space, offset-free tracking can be guaranteed.

Whether the controlled system achieves a steady state lying in the observable set can be checked a-posteriori

or enforced using state constraints. Thus, a large observable set is desirable. The augmented system (6) results

from a given nominal model extended by a DM. Thus, the augmented system depends on the choice of the

DM and so does the observable set. Different DMs yield different observable sets. This is the key idea behind

the DM generation approach we propose. Here, we approximate the observable set by its inner orthotope,

although other approximations could also be used, e.g., ellipsoids. We assume the DMs can be parameterized

by parameters pd P Pd. These parameters may be real numbers as well as integers that define the structure

and detailed form of the DMs. Here, we use integers, i.e., Pd is a discrete set. Although the DM generation

approach is not restricted to discrete sets, we do not see an advantage in using continuous parameters to define

the DM structure. The DM generation approach targets the DM resulting in the largest possible observable
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Fig. 1: Observable set and an inner orthotope. For a given parameterization of the DM by the parameters pd,
the observable set is defined by O � tx,u,d :

�
detpJpx,u,d,pdqq

�2
¥ εu. The inner orthotope we generate in

the DM generation approach is the largest orthotope in O, depending on the specific measure to characterize
the size of the orthotope, e.g., volume, surface, or perimeter.

set. Therefore, we formulate a GSIP to maximize the inner orthotope of the observable set, i.e.,

max
pdPPd

xu,xlPX
du,dlPD
uu,ulPU

nx̧

i�1

wx,ipx
u
i � xl

iq �
nḑ

i�1

wd,ipd
u
i � dliq �

nu̧

i�1

wu,ipu
u
i � ul

iq (13a)

s.t. det
�
Jpx,u,d,pdq

�2
¥ ε,@ px,u,dq P rxl,xus � rul,uus � rdl,dus (13b)

Jpx,u,d,pdq �

�
��F xpx,u,d,p

dq � I F dpx,u,d,p
dq

Gxpx,u,d,p
dq Gdpx,u,d,p

dq

�
�
 (13c)

hpxu,xl,uu,ul,du,dl,pdq � 0 (13d)

gpxu,xl,uu,ul,du,dl,pdq ¤ 0, (13e)

where (13b) guarantees that (12) is satisfied. Note that J in (13b) now depends on pd since the disturbance

model is parameterized by pd and that nz � nd, cf. Section 2.2.1. Since (13) has np � 2nx � 2nz � 2nu

variables, the problem size scales linearly with the number of variables of the augmented model and the number

of parameters to parameterize the DM. Note that we use nz � nd. Overall, the problem scales linearly with

the number of parameters used to parameterize the DM, the number of differential states, the number of
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measurements, and the number of CVs. We can use the constraints (13d) and (13e) with the functions h :

X �X �U �U �D�D�Pd Ñ Rnh and g : X �X �U �U �D�D�Pd Ñ Rng , e.g., if we aim at generating

a model used to track one specific point, the constraint gyaugpx,dq � r8 can directly be added to the problem.

Furthermore, the constraints can be used to add disturbances to specific equations, e.g., to those equations

which correspond to unmeasured CVs, thereby enabling exact steady state predictions for those variables as

required by Assumption 2 for offset-free NMPC, cf. Theorem 1. On the other hand, without these constraints,

a DM is generated by the solution of (13) which can be used for offset-free tracking within a set of the state

space that is defined by the boundaries xu,xl,du,dl, and uu,ul.

For linear offset-free MPC, i.e., linear models and linear disturbance models, cf. [8], the sufficient observ-

ability condition (12) does not depend on x,d, and u. Given an observable nominal model, the sufficient

observability condition (12) solely depends on the choice of disturbance model, and so does (13b). Hence, the

GSIP (13) reduces to a finite optimization problem.

The determinant in (13b) may be difficult to evaluate for large matrices J . If we assume that either

F xpx,u,d,p
dq � I or Gdpx,u,d,pdq is invertible, we can instead make use of the Schur complement of J and

equivalently replace (13b) by either detpSApx,u,d,p
dqq2 ¥ ε{detpF xpx,u,d,pdq�Iq2 or detpSDpx,u,d,p

dqq2 ¥

ε{detpGdpx,u,d,pdqq2, where SA and SD are the Schur complements of J defined by SA � Gdpx,u,d,p
dq �

Gxpx,u,d,p
dqpF xpx,u,d,p

dq � Iq�1F dpx,u,d,p
dq and

SD � F xpx,u,d,p
dq � I � F dpx,u,d,p

dqpGdpx,u,d,p
dqq�1Gxpx,u,d,p

dq, cf. [23]. Note, that the determi-

nants of the Schur complements and the determinants of F xpx,u,d,pdq � I and Gdpx,u,d,pdq may be easier

to compute, as the sizes of these matrices are smaller. (13b) could also be replaced using only the respective

Schur complements with either SApx,u,d,p
dq ¥ ε or SDpx,u,d,p

dq ¥ ε , thereby only requiring evaluation

of the determinant of these matrices. Although not yielding an equivalent GSIP, this would guarantee the

satisfaction of the observability condition.

The constraint (13b) is problematic in those cases where J in (13) is structurally singular for given pa-

rameter values of p. In this case, (13b) violates the linear independence constraint qualification (LICQ) and

the Mangasarian-Fromovitz constraint qualification (MFCQ), cf. [24]. Therefore, we exclude a-priori those

realizations of pd leading to structural singularity of J . This can be performed for instance using the approach

that we provide in Appendix B. Herein, we solve optimization problems that become more and more restrictive.

Thus, we first determine those realizations of pd resulting in a J that is structurally singular and we exclude

those parameter realizations before solving (13).

Alternatively, we could reformulate (13) using complementarity constraints, which can then be relaxed or

reformulated to avoid violation of the constraint qualifications, cf. [24, 25, 26].

The GSIP (13) can be reformulated to account for other approximations of the observable set. In the specific

case of an orthotope approximating the observable set, we can reformulate the GSIP (13) to a SIP using x �

xl�ξxdpxu�xlq, d � dl�ξddpdu�dlq, u � ul�ξudpuu�ulq, adding ξx P r0, 1snx , ξu P r0, 1snu , ξd P r0, 1snd
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as additional degrees of freedom, and substitute (13b) by

det
�
J
�
xl � ξx d pxu � xlq,ul � ξu d puu � ulq,dl � ξd d pdu � dlq,pd

�	2
¥ ε,

@
�
ξx, ξd, ξu

	
P r0, 1snx � r0, 1snd � r0, 1snu ,

where d is the component wise multiplication. The same reformulation was used by Lemonidis [27] to reformu-

late a GSIP resulting from the flexibility problem in kinetic model reduction. We expect the SIP to be easier

to solve than the original GSIP with the algorithm that we use for the case studies. Thus, the following SIP

arrises:

max
pdPPd

xu,xlPX
du,dlPD
uu,ulPU

nx̧

i�1

wx,ipx
u
i � xl

iq �
nḑ

i�1

wd,ipd
u
i � dliq �

nu̧

i�1

wu,ipu
u
i � ul

iq (14a)

s.t. det
�
J
�
xl � ξx d pxu � xlq,ul � ξu d puu � ulq,dl � ξd d pdu � dlq,pd

�	2
¥ ε,

@
�
ξx, ξd, ξu

	
P r0, 1snx � r0, 1snd � r0, 1snu

(14b)

Jpx,u,d,pdq �

�
��F xpx,u,d,p

dq � I F dpx,u,d,p
dq

Gxpx,u,d,p
dq Gdpx,u,d,p

dq

�
�
 (14c)

hpxu,xl,uu,ul,du,dl,pdq � 0 (14d)

gpxu,xl,uu,ul,du,dl,pdq ¤ 0. (14e)

We embed (14) in the overall model generation approach which is depicted in Fig. 2. The approach starts

with defining a parameterization of the DM and performing the preprocessing, i.e., excluding all those parameter

realizations leading to a structural singularity of J . In the case of unmeasured CVs, exact steady state predictions

for these CVs are necessary to guarantee offset-free NMPC. This can be obtained by either considering an exact

DM (if known) or by adding disturbances to those equations that correspond to the unmeasured CVs. After

parameterizing the remaining part of the DM we decide whether specific constraints should be added to the

SIP (14), e.g., if the resulting DM should be valid at a certain point (e.g. the setpoint). After parameterization

and defining additional constraints, the SIP (14) is solved. A suitable DM results if sufficient optimal values

are found for the DM parameterization of the bounds of the observable set, resulting from the solution of

(14). These bounds are sufficient, for example, if the resulting orthotope includes the entire state space of the

augmented model or a region that captures relevant parts of the state space. A new parameterization has to be

defined if the SIP (14) is infeasible or the bounds of the observable set orthotope are not sufficient. If a different

parameterization is not available, no suitable DM exists for the desired task. In the case studies presented in

Section 4, we use linear disturbance models leading to a sufficiently large observable set, i.e., there is no need for
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refining the DM parameterization. Note, the proposed approach in Fig. 2 is applied offline. The approach finds

the structure as well as the parameter values of the disturbance model. The resulting augmented model can

then be used online for offset-free NMPC. The overall offset-free NMPC scheme including the model generation

approach is illustrated in Fig. 3.

Start

choose DM parameterization

perform preprosessing to ex-
clude structural singularity of J

solve problem (14)
to global optimality

(14) feasible ?

DM generated, offset-free track-
ing possible within bounds
rxl,xus, rul,uus,rdl,dus

bounds
sufficient?

suitable DM generated

different
parameteriza-
tion known?

no suitable
DM found

yes

no

yes

no

yes

no

Fig. 2: DM generation approach.
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Fig. 3: Illustration of overall offset-free NMPC scheme including disturbance model generation. The optimal
disturbancs models are generated offline and used online as controller models in state estimation and NMPC.
Thus, offset-free tracking is guaranteed within the observable set of the augmented system (nominal model and
optimal disturbance model).

3.1 Solving SIPs

The DM generation approach requires the solution of the SIPs (14), which have the following general form:

min
χPX

fpχq

s.t. gpχ,ψq ¤ 0,@ψ P Ψ.

(15)

We give a brief overview of the approach to solve (15) in this section. We use the algorithm of Djelassi

and Mitsos [28]. While this algorithm is based on discretization, there are other approaches and we refer to

[29, 30, 20] for thorough overviews of SIPs and solution techniques.

SIPs are mathematical programs of the form (15) with a finite number of variables and an infinite number

of constraints, expressed by parameterized constraints gpχ,ψq ¤ 0,@ψ P Ψ, which have to be satisfied for all

possible realizations of their parameters ψ P Ψ. The difficulty of SIPs arises from the infinite nature of the

constraints gpχ,ψq ¤ 0,@ψ P Ψ. A point χ̄ is feasible, if χ̄ P X and if the supremum g�i of the lower-level

program (LLP) is positive:

g�i � sup
ψPΨ

gipχ̄,ψq ¤ 0, @i P t1, ..., Ngu, (16)
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where Ng is the number of constraints. If the set Ψ is convex and the constraints gipχ, �q are concave on Ψ, then

the LLP (16) is a convex problem (given a constraint qualification) and can be replaced in the SIP (15) by the

Karush-Kuhn-Tucker (KKT) conditions of the lower-level program (16). As a consequence, the SIP (15) reduces

to a finite optimization problem. In the general case of non-concave constraints gpχ, �q, this approach is not

applicable. In this case, discretization approaches, such as the algorithm proposed by Blankenship and Falk [31],

can be used to solve the SIP (15), where the set Ψ is replaced by a finite discretization of Ψ, leading to a finite

optimization problem that approximates the SIP and can be solved using NLP solvers. The algorithm of Djelassi

and Mitsos [28] is based on this paradigm. As an adaptive discretization algorithm in the vein of Blankenship

and Falk [31], the hybrid discretization algorithm of Djelassi and Mitsos [28] relies on solving multiple finite

NLP subproblems to global optimality. Indeed, the algorithm solves multiple problems that are derived from

a given SIP by considering only a finite subset of the infinitely many constraints gpχ, �q ¤ 0,@ψ P Ψ, through

replacement of the set Ψ by a finite discretization of Ψ. Furthermore, to assess the feasibility of a given iterate,

the maximum violation of the semi-infinite constraint is computed via the global solution of the lower-level

program (16) of the SIP. Based on this, convergence and finite termination of the algorithm are guaranteed

by refining the finite discretization of the set Ψ (thereby the set of constraints) if necessary and manipulating

further algorithmic parameters appropriately [28].

4 Case Studies

We apply the proposed DM generation approach and use the generated models in closed-loop simulation case

studies. We consider linear DM, where the disturbances are added to the differential equations, i.e., we use the

following form of the augmented model (6):

faugpxpkq,upkq,dpkqq � fpxpkq,upkqq �Bdpp
dq � dpkq, (17)

where pd P Pd � t0, 1unz�1�nx�nz are the parameters of the DM gathered in the matrix

Bdpp
dq �

�
������������

pd1,1 0 0

...
. . . 0

pd1,1�nx�nz

. . . pdnz,1

0
. . .

...

0 0 pdnz,1�nx�nz

�
�����������


, (18)

with which we can distribute nz disturbances over nx equations. Note that it is not relevant for the observability

condition which specific disturbance is added to which equations. Hence, the disturbance model parameteriza-

tion with the matrix (18) allows for all possible linear DM realizations. In the case of a linear DM, it is irrelevant
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which disturbance is added to an equation. There is no advantage of adding more than one disturbance to an

equation or adding one disturbance to more than one equation. Adding one disturbance to multiple equations

would only be useful if the exact DM, e.g., an input disturbance model, would be known. This could be con-

sidered in the DM generation approach by choosing an appropriate DM parameterization. Although this is a

simple choice of a DM parameterization, we obtain augmented models that satisfy the sufficient condition for

observability within the entire state space or within relevant regions of the state space. If this would not be

the case, other parameterizations could be used. For example, universal approximators, such as polynomials or

artificial neural networks [32] could be used allowing for any functional correlation to be used as a disturbance

model. However, this could complicate the DM generation procedure, as it has to estimate the parameters of

the functional correlation to determine the optimal DM. Thus, we use the simple linear DM form. Neverthe-

less, we demonstrate that we obtain suitable DMs that can be used for offset-free tracking. Furthermore, we

target a suitable DM to track offset-free the given setpoints r8. Thus, we add gyaugpx,dq � r8 to (14). This

reduces the degrees of freedom in the DM generation problem. It would be possible to generate a DM that is

suitable for offset-free tracking of setpoints within a range instead of discrete setpoints. Then, the constraints

gyaugpx,dq � r8 are not required for the respective setpoints that are to be tracked within a range. In addition,

we want to add exactly nz disturbances to the nominal model, as sufficient for offset-free tracking, and therefore

use the integer constraint
°1�nx�nz

j�1 pdi,j � 1,@i P t1, ..., nzu and
°nz

i�1

°1�nx�nz

j�1 pdi,j � nz to (14).

We solve the resulting integer problems using enumeration by solving a SIP for every DM instance satisfying

the integer constraints and finally select those DM for which the highest objective function results.

Using enumeration to solve the integer problems, we have to solve one SIP for every integer realization. We

solve each individual SIP using the hybrid discretization algorithm proposed by Djelassi and Mitsos [28]. In

particular, we employ a C++ implementation of the algorithm that makes use of the C++ library libALE [33].

To solve subproblems of the SIP algorithm to global optimality, the implementation employs the deterministic

global optimization solver MAiNGO [34]. The parameters of the hybrid discretization algorithm are chosen

to be 10�4 for the initial restriction parameter and 2 for the reduction parameter. The SIPs are solved to an

absolute and relative optimality tolerance of 10�4 for the case studies I and II and 10�2 for case study III. All

NLP subproblems are solved to optimality tolerances which are in line with the requirements outlined in [28]

and all feasibility tolerances are set to 10�9.

Since the underlying library MC++ [35] in MAiNGO does not provide the determinant as an intrinsic

function, the only missing ingredient for the solution of (14) is an appropriate representation of the determinant

in (14b). Accordingly, we employ a Laplace expansion [36] to represent the determinant symbolically. It is well

known that Laplace expansion has unfavorable scaling of Opn!q [37, 36]. In contrast, other algorithms such as LU

decomposition admit scaling of order Opn3q [37, 36]. For the small-scale case studies discussed in the following,

the Laplace expansion approach is feasible since the number of terms in the expansion remains manageable. For

larger cases, the determinant could be calculated numerically. To still be able to calculate the relaxations, the
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selected numerical method must then satisfy the requirements for the generation of McCormick-based relaxations

of algorithms as proposed in [38]. The most important requirement is that the algorithm must terminate in a

known maximum number of iterations, which is given for the Laplace expansion as well as multiple alternative

algorithms with a more favorable scaling behavior. The second crucial requirement is that the algorithms cannot

have general if-then-else statements. In particular, such statements that control the progress of the algorithm,

e.g., those found in pivoting in the solution of linear systems.

We consider the generated models in closed-loop NMPC case studies. We use multiple-shooting [39] (case

study Chemical Reactor I) and single-shooting [40] (case studies Chemical Reactor II and Polymerization Re-

actor) implemented in DyOS [41] for the solution of the dynamic optimization problems of the NMPC. We

apply multiple-shooting since it can be used for the dynamic optimization of unstable systems [39], such as the

chemical reactor case study that we consider. The resulting nonlinear programming problems (NLPs) within

the direct shooting approaches are solved to local convergence using SNOPT [42] with optimality tolerance of

10�4. We apply the integrator NIXE [43] with integration tolerances of 10�8. The process is emulated in-silico,

using NIXE [43] with integration tolerances of 10�8. We use an Extended Kalman Filter (EKF) [44] for state

estimation. We assume that there is no measurement noise. However, measurement noises satisfying the as-

sumption of asymptotically constant disturbances can be interpreted as disturbances and are, thus, covered by

Theorem 1.

We present three case studies to illustrate the DM generation approach and the relevance and usefulness of

the relaxed sufficient conditions in Theorem 1. The first case study uses nz � ny, whereas the second case study

uses nz ¡ ny. In the first and second case study, we first consider that all CVs are measured. Then we also deal

with unmeasured CVs. The third case study assumes all CVs to be measured and demonstrates the application

of the approach to a medium scale example. The first and second case studies use models with three and four

differential states, respectively, and the model in the third case study comprises nine differential states.

4.1 Case Study I: Simple Chemical Reactor

We use the chemical reactor model from [8, 2, 5], which is provided in Appendix C. Fig. 4 shows a flowsheet

of the chemical reactor. The feed stream to the reactor has the temperature T0, flowrate F0, and concentration

c0. A reaction takes place inside the reactor, which is surrounded by a cooling jacket, where cooling water is

fed in with a temperature of Tc.

The CVs are yptq � pcptq, hptqq and the MVs uptq � pF ptq, Tcptqq, where F is the outlet flow rate and Tc

is the cooling temperature, with the bounds F ptq P r0, 0.25s m3{min and Tcptq P r295, 305s K. We emulate a

plant-model mismatch due to a disturbance of the feed flowrate F0, i.e., the plant is simulated with F0ptq �

0.1 m3{min, 0 ¤ t   5 min and F0ptq � 0.11 m3{min, t ¥ 5 min, whereas the NMPC controller model uses

F0ptq � 0.1 m3{min,@t.
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Fig. 4: Flowsheet of chemical reactor for case study I.

As in [8], the control task is to track a constant setpoint for c and h using the following objective in (8a)

l � pct � 0.5 kmol{m3q2 � pht � 0.6599 mq2.

The NMPC has a sampling time of 0.2 min and both control and prediction horizon set to 10 min. We discretize

the continuous process model with the same sampling time of 0.2 min to obtain a discrete-time system to which

we can apply the DM generation approach.

In the model generation approach, we use for (14) the constraints T l, Tu P r250, 450s K, T l
c , T

u
c P r295, 305s K,

and c � 0.5 kmol{m3, h � 0.6599 m, as we target offset-free tracking at these specific setpoint. We constrain

the squared determinant in (14) to be larger than ϵ � 10�4.
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Fig. 5: Results of closed-loop simulation using NMPC without DM. Offset-free tracking is not achieved, see (a)
and (b). (a) Reactor concentration (CV). (b) Reactor height (CV). (c) Feed flowrate (MV). (d) Cooling fluid
temperature (MV).
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Fig. 5 shows the closed-loop simulation results with nominal NMPC and full state-feedback, i.e., all states

are measured. We see that the nominal NMPC leads to a steady state but with a clear offset. This demonstrates

the need for offset-free NMPC.

4.1.1 All CVs measured

����� ���������������

�

���� ����

Fig. 6: Observable sets for reactor case study for augmented model with DM 1 and DM 2. Projection to T axis.
DM 1 results in a larger observable set. The observable set has a size of zero for DM 3.
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Fig. 7: Results of closed-loop simulation using NMPC with DM. DM 1 is the solution of the DM generation
approach in Fig. 2. (a) Reactor concentration (CV). (b) Reactor height (CV). (c) Feed flowrate (MV). (d)
Cooling fluid temperature (MV). (e) Disturbance 1 with DM 1. (f) Disturbance 2 with DM 1.

We assume the CVs to be measured, i.e., zptq � pcptq, hptqq and use the weights wT � 1 and wF � 500 in

(14). All other weights are zero as the determinants in (14) do not depend on the corresponding variables. The

observable set does in turn include the whole state space for these variables.

We analyze the three possible DMs, where up to one disturbance is added to each differential equation. DM
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1, with pd1,1 � 1, pd2,2 � 1, DM 2, with pd1,2 � 1, pd2,2 � 1, and DM 3, with pd1,1 � 1, pd2,1 � 1.

For DM 2, we performed a polynomial regression to fit a polynomial of order 5 to the squared determinant.

This is done since the original expression for the determinant contains a division by zero. However, the expression

does not diverge due to this division by zero and a polynomial fit can be obtained. In the SIP we used the

polynomial instead of the original squared determinant expression in (14b). We validate the optimization results

a posteriori by calculating the actual value of the determinant.

For DM 1, the solution of (14) yields Tl � 341.983 K, and Tu � 450 K and the complete defined state space

for the other variables. The SIP algorithm converges within 30 iterations and with a total of 55 subproblems

solved. For DM 2, the solution of (14) yields Tl � 413.878 K, Tu � 450 K, and the complete defined state space

as observable set for the other variables. The SIP algorithm converges within 11 iterations and with a total

of 20 subproblems solved. For DM 3, the determinant in (14) is zero and therefore, problem (14) is infeasible.

That is, DM 3 is not a suitable DM as the sufficient observability condition (12) is violated in the entire state

space.

The projection of the observable sets to the T axis for DM 1 and DM 2 are illustrated in Fig. 6. We see

that DM 1 results in a larger observable set. Consequently, DM 1 results from the proposed approach in Fig. 2.

Fig. 7 shows that using DM 1, the setpoints can be tracked with zero offset. In contrast, there is an offset when

the other DMs are used. The DM approach in Fig. 2 successfully finds a DM that can be used for offset-free

NMPC. Figs. 7e and 7f shows the profiles of the disturbances with DM 1, which are estimated by the EKF. We

see that they are at zero as long as no disturnbance exists and increase from 5 min on, when the disturbance

exists, until they reach their steady state values.

4.1.2 Not all CVs measured
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Fig. 8: Results of closed-loop simulation using NMPC with DM. DM 1 is the solution. (a) Reactor concentration
(unmeasured CV). (b) Reactor height (CV). (c) Feed flowrate (MV). (d) Cooling fluid temperature (MV)

Now, we consider the case that not all CVs are measured and assume the states T and h to be measured:

zptq � pT ptq, hptqq, i.e., c is an unmeasured CV, and use the weights wT � 1 and wF � 500 in (14). All other

weights are zero as the determinants in (14) do not depend on the corresponding variables. The observable set

does in turn include the whole state space for these variables.

We analyze the three possible DMs, i.e., DMs where up to one disturbance is added to each differential
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equation. DM 1, with pd1,1 � 1, pd2,2 � 1, DM 2, with pd1,2 � 1, pd2,2 � 1, and DM 3, with pd1,1 � 1, pd2,1 � 1.

For DM 1 the solution of the SIP (14) yields Tl � 290.504 K, Tu � 450 K, and the complete defined state

space as observable set for the other variables. The SIP algorithm terminates within 10 iterations and with a

total of 15 subproblems solved. For DM 2, the solution of (14) yields Tl � 353.995 K, Tu � 450 K, and the

complete defined state space as observable set for the other variables. The SIP algorithm terminates within 15

iterations and with a total of 24 subproblems solved. For DM 3, (14) is known to be infeasible a priori since

the sufficient observability condition (12) is not satisfied for this DM.

Theorem 1 assumes exact steady state predictions for the unmeasured CVs. As discussed previously, this

can be achieved by adding disturbances to those equations corresponding to the unmeasured CVs. Note that

with DM 2, no disturbance is added to the equation corresponding to the unmeasured CV c. To guarantee

offset-free tracking, we add one disturbance to the first differential equation to achieve accurate steady state

prediction for c, cf. Theorem 1. Therefore, we do not consider DM 2 in the model generation approach. This

is realized by adding pd1 � 1 to (14). By this, we account for the unmeasured CV by adding one disturbance to

the corresponding differential equation.

Consequently, DM 1 results from the DM generation approach in Fig. 2. Fig. 8 shows that using DM 1, the

setpoints can be tracked with zero offset. In contrast, there is an offset when the other DMs are used.

The case study demonstrates that offset-free tracking can be achieved although not all CVs are measured.

However, the unmeasured CVs are predicted exactly at the steady state, since DM 1 adds disturbances to

the equation corresponding to the unmeasured CV. Although DM 3 adds a disturbance to this equation, too,

the resulting augmented model does not satisfy the sufficient observability condition (12). In fact, it is not

observable and the closed-loop results show an offset. DM 2 is observable due to (12), however, it does not add

a disturbance to the equation corresponding to the unmeasured CV c and hence does not satisfy Assumption 2.

4.2 Case Study II: Chemical Reactor

We use the chemical reactor model from Santos et al. [45]. This case study is an illustrative example for

nz ¡ ny. The model is provided in Appendix D.

The CVs are the reactor height and temperature yptq � phptq, TRptqq and the MVs are the reactor outlet

flowrate and the cooling water flowrate uptq � pF3ptq, FJptqq with the bounds F3ptq P r0, 12 � 10
�3{60s mol/s

and FJptq P r0, 76 � 10
�3{60s mol/s.

As in [45], the control task is to track a constant setpoint for h and TR using the following objective in (8a)

l � ph� 0.3 mq2 � p10�2 � pTR � 37.5�Cqq2

We use an NMPC sampling time of 30 s and both control and prediction horizon set to 10 min. We emulate a

plant model mismatch by simulating the plant using the nominal model with F2ptq � 4 � 10�3 mol{min, 0 h ¤
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t   0.5 h and F2ptq � 3.2 � 10�3 mol{min, 0.5 h ¤ t. In contrast, the NMPC controller model used F2ptq �

4 � 10�3 mol{min,@t. We discretize the augmented model with the same sampling time of 30 s to obtain a

discrete-time system to which we can apply the DM generation approach.

In the model generation approach, we constrain the squared determinant in (14) to be larger than ϵ � 10�4.

The feasible state space is R for all bounds of the orthotope approximating the observable set.

We perform a closed-loop NMPC simulation with nominal NMPC and with full state-feedback. Fig. 9 shows

the closed-loop results. We see that the plant model mismatch from 0.5 h on leads to an offset in both CVs

(Figs. 9c and 9d). This demonstrates the need for offset-free NMPC.
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Fig. 9: Results of closed-loop simulation using nominal NMPC. Offset-free tracking is not achieved, see (c)
and (d). (a) Product flowrate (MV). (b) Cooling water flowrate (MV). (c) Height of reactor holdup (CV). (d)
Reactor temperature (CV).

4.2.1 All CVs measured
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Fig. 10: Results of closed-loop simulation using offset-free NMPC with DM 3. DM 3 is the solution. (a) Product
flowrate (MV). (b) Cooling water flowrate (MV). (c) Height of reactor holdup (CV). (d) Reactor temperature
(CV).

The measurements are zptq � pV ptq, TRptq, TJptqq and we use the weights wCa � 1 and wTJ
� 10�4 in (14). All

other weights are zero as the determinants in (14) do not depend on the corresponding variables. The observable

set does in turn include the whole state space for these variables. The variables V and TR are defined by their

setpoints as we target to generate a DM that can be used for offset-free NMPC of a specific setpoint.

We analyze the four possible DMs, given that we add three disturbances to four equations: DM 1, with

pd1,1 � 1, pd2,1 � 1, pd3,1 � 1, DM 2, with pd1,1 � 1, pd2,1 � 1, pd3,2 � 1, DM 3, with pd1,1 � 1, pd2,2 � 1, pd3,2 � 1, and

and DM 4, with pd1,2 � 1, pd2,2 � 1, pd3,2 � 1.

For this case study, the determinant in (14b) is independent of the state, input, and disturbance realization.
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The determinant only depends on the choice of the disturbance model, i.e., on the realization of the disturbance

model parameters pd. This is a special case where the SIP (14) would actually be finite optimization problem,

as the left hand side of the constraint (14b) is independent of x,u,d and only depends on pd. I.e., in this case,

it would not be required to solve an SIP but the finite optimization problem that (14) reduces to. Nevertheless,

the SIP (14) can be solved, which is rather simple in this special case. Furthermore, the determinants in (14b)

are zero for DM 1, DM 2, and DM 4, and (14b) is, hence, not satisfied for these disturbance models (realizations

of pd). As a consequence, solving the SIP (14) is rather simple and directly furnishes DM 3 and DM 3 is the

result of the generation approach in Fig. 2. Appendix D provides a further analysis of the nominal model

explaining why DM 3 is the only suitable DM. Thus, DM 3 can be used for offset-free tracking for all values of

Ca, TJ and the observable set is the entire defined state space.

Fig. 10 shows the results of the closed-loop simulation. We see that the NMPC with DM 3 leads to offset-free

closed-loop behavior.

4.2.2 Not all CVs measured

Now, we consider the case that CVs are unmeasured. The measurements are zptq � pV ptq, Captq, TJptqq, i.e., we

have TR as an unmeasured CV, and we use the weights wCa
� 1 and wTJ

� 1 in (14). The variables V and TR

are defined by their setpoints as we target to generate a DM that can be used for offset-free NMPC of a specific

setpoint.

We analyze the four possible DMs, given that we only add up to disturbances to the differential equations:

DM 1, with pd1,1 � 1, pd2,1 � 1, pd3,1 � 1, DM 2, with pd1,1 � 1, pd2,1 � 1, pd3,2 � 1, DM 3, with pd1,1 � 1, pd2,2 � 1,

pd3,2 � 1, and DM 4, with pd1,2 � 1, pd2,2 � 1, pd3,2 � 1.

According to Theorem 1, we can guarantee offset-free NMPC in the case of unmeasured CVs if the steady

state predictions of the augmented model are exact for the unmeasured CVs. This can be achieved by adding

disturbances to those equation that correspond to the unmeasured CVs. Here, we realize this by adding pd3 � 1

as a constraint to (14), thereby adding one disturbance to the equation correpsonding to the unmeasured CV

TR. This constraint excludes DM 2 as a solution of the SIP (14), i.e., DM 2 does not add a disturbance to the

equation corresponding to the unmeasured CV TR. Applying the model generation approach in Fig. 2, DM 1

results. Again, solving (14) was not required for this case study, as the determinant with DM 1 is constant and

nonzero, whereas the determinants with the other DMs are constant and zero. Thus, DM 1 can be used for

offset-free tracking for all values of Ca and TJ as the observable set is the complete state space.

Using DM 1 results in closed-loop profiles which are almost identical with those shown in Fig. 10. Offset-

free tracking can be achieved although the CVs are not measured. Looking at the DM 1, the plant model,

and the applied plant-model mismatch, we see that DM 1 is not the correct DM, i.e., it does not model the

actual plant-model mismatch. However, using DM 1, the CVs can be predicted exactly in the steady state; the

disturbances are added to those equations corresponding to the unmeasured CVs (in this case TR). Thus, we
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can conclude that in the case of unmeasured CVs, a DM is suitable that satisfies (12) and adds disturbances

to those equations that correspond to the unmeasured CVs. With these disturbances, the unmeasured CVs can

be predicted exactly in the steady state, and Assumption 2 is satisfied.

Note that Assumption 2 could also be satisfied by using an exact DM. However, this is usually not available

in real applications. Furthermore, we wanted to demonstrate that exact predictions can also be achieved without

using an exact DM.

4.3 Case Study III: Polymerization Reactor

In the last case study, we use the polymerization reactor model presented in [46] and we refer to [46, 47] for

more details of the model. The model is provided in Appendix E.

The CVs are yptq � pT ptq, Tjptqq and the MVs are the reactor feed flowrate and the cooling water flowrate

uptq � pF ptq, Fjptqq with the bounds F ptq P r0, 10s L/s and Fjptq P r0, 10s L/s. The seven measurements are

zptq � pCiptq, Cmptq, Cbptq, Crptq, Cbrptq, T ptq, Tjptqq. In turn, we have to add seven disturbances to the nominal

process model, due to nd � nz. We emulate a plant model mismatch through modifying the heat transfer area

of the plant by UAΦ � 2UA � 2 � 1560 J/(s K) from t � 1 h on.

The NMPC minimizes the following objective function in (8a)

l � pT � 450 Kq2 � pTj � 330 Kq2 (19)

with a sampling time of 240 s and both control and prediction horizon set to 1 h. The process model is

discretized using the same sampling time of 1 s to obtain a discrete time system to which we can apply the

model generation approach.

Since the variables range over several orders of magnitudes, we scale the model so that the variables are in

the range of Op1q and use the scaled model instead of the unscaled version.

We discretize the polymerization reactor model with the NMPC sampling time of 240 s. This leads to a

discrete-time system to which we can apply the sufficient condition from Theorem 2, which in turn is used for

the DM generation. In the model generation approach (Fig. 2), we use the bounds Cl
i , C

u
i P r0, 10s � 10�4,

Cl
m, Cu

m P r0.1, 0.2s mol/L, Cl
b, C

u
b P r0.4, 1.2s mol/L, Cl

br, C
u
br P r0, 2s � 10

�7 mol/L, Cl
r, C

u
r P r0, 2s � 10

�7 mol/L,

µ0,l
r , µ0,u

r P r0, 2s � 10�5 mol/L, µ0,l
b , µ0,u

b P r0, 2s � 10�5 mol/L, F l, Fu P r0, 10s L/s and F l
j , F

u
j P r0, 10s L/s, and

T � 450 K, Tj � 330 K, as these are the setpoints to be tracked. For (14), we use the weights wCm
� 0.1,

wCb
� 0.8, wCbr

� 2 � 10�7, wCr � 2 � 10�7, wµ0
r
� 2 � 10�5, and wµ0

b
� 2 � 10�5. All other weights are zero as

the determinants in (14) do not depend on the corresponding variables. The observable set in turn includes the

whole state space for these variables. The remaining states are defined by their setpoints as we target offset-free

tracking at the specific setpoint. We constrain the squared determinant in (14) to be larger than ϵ � 10�4.

Fig. 11 shows the results of the closed-loop simulations with and without DM. We see that the NMPC
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Fig. 11: Results of closed-loop simulation using offset-free NMPC for polymerization reactor case study with
and without DM. (a) Initiator flowrate (MV). (b) Reactor feed flowrate (MV). (c) Reactor temperature (CV).
(d) Cooling water temperature (CV).

without DM leads to an offset in both tracked variables T and Tj due to the plant model mismatch exist. This

demonstrates the need for offset-free NMPC.

We now focus on the generation of a suitable DM. Adding seven disturbances to the nine differential equations

allows for 36 possible DMs (
�
9
7

�
� 36). Analyzing the 36 DMs, we see that 21 DMs result in a structural

singularity for J , which we exclude at the beginning of the model generation approach. Using enumeration,

we solve (14) for the remaining DMs. While enumeration is feasible for medium-sized cases (as here), larger

numbers of possible DMs would motivate the use of other techniques to treat the integers in (14), cf. [48].

Using the DM generation approach, we find five DMs that are suitable for offset-free NMPC in the entire

defined state space, and three DMs which are suitable for offset-free NMPC only in a subset of the defined state

space. Problem (14) is infeasible for six DMs, and these DMs are not suitable for offset-free NMPC. We do

not find a solution of (14) for one DM, since the solver does not converge within 24 h. However, looking at the

last iteration of these problems, we can guarantee that three of the four DMs admit an observable set which

does not cover the entire defined state space. For the other DMs the solution of (14) for a specific disturbance

model takes CPU times from few seconds up to few minutes. As we find five DMs, each of them can be chosen

as a solution of (14). To demonstrate the suitability of the resulting DMs, from the five best suitable solutions

we select the DM with pdi,1 � 1@i P t1, ..., 5u, pd6,3 � 1 and pd7,3 � 1. All other parameter values of pd are zero.

I.e., one disturbance is added to every equation, except to the sixth and seventh equation. The corresponding

observable set is the entire defined state space. The solution of (14) results directly after the first iteration

within a few seconds.

Fig. 11 shows that NMPC with the DM achieves offset-free tracking and this case study, hence, demonstrates

that our DM generation approach can be applied to medium scale case studies.

5 Conclusions

We extend the theory of offset-free NMPC and propose an approach for the generation of disturbance models

for offset-free NMPC. Using relaxed assumptions, we show that offset-free tracking can be proven in the case

of more measurements than CVs and the case of unmeasured but correctly predicted CVs at the steady state.
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In the proposed model generation approach, the disturbance model results from the solution of a SIP. The

disturbance model generation problem can be reformulated to a SIP, which is computationally easier to solve

compared to a GSIP. The problem size of the SIP scales linearly with the number of variables of the augmented

model. Solving the SIP requires to calculate a determinant depending on the augmented model for which we use

symbolic expressions. However, calculating symbolic determinant expressions might be tedious for large-scale

applications. Solving the SIPs using sequential deterministic global optimization allows us to embed numerical

algorithms for determinant calculations in the optimization problems instead of just symbolic expressions. This

favors the application of our approach to large-scale case studies.

We illustrate both the theoretical results and the disturbance model generation approach in numerical

closed-loop case studies from small to medium scale. Thereby we demonstrate that by solving the disturbance

model generation problem, a disturbance model is obtained which satisfies the sufficient observability criteria

and can thus be used for offset-free tracking. The CPU times for the solution of the SIPs lies in the range of

seconds to minutes, i.e., the CPU times can be regarded to be negligible, since the disturbance model generation

problem is solved offline. This suggests that our approach can be applied to larger case studies. Further, the

results illustrate the validity and practical relevance of the extension of the offset-free NMPC theory. Offset-free

NMPC can be achieved if unmeasured CVs are predicted exactly at the steady state. This can be done by adding

disturbances to those equations that correspond to the unmeasured CVs and adding further disturbances so

that the observability criterion for the augmented model is satisfied. Hence, an exact disturbance model, i.e., a

model that exactly models the disturbances, is not required for offset-free NMPC.

The application of the disturbance model generation approach to large scale case studies is left for future

work. The size of the SIP of the disturbance model generation approach scales linearly with the number of

variables of the augmented model and the number of parameters to parameterize the DM. It is difficult to

state the limits of the disturbance model generation approach in terms of problem size of the SIPs in general.

Although the tools used are generally not restricted to a specific problem size, solving SIPs is computationally

expensive and might prohibit large-scale applications currently. Nevertheless, we present three case studies with

up to nine differential equations and we could solve the disturbance model generation problems therein in just a

few CPU minutes. Future works with larger case studies might exploit the specific structure of the optimization

problems to facilitate the solution of the SIPs. Future work can apply the proposed approach to generate

suitable disturbance models for reduced dynamic models, which introduce inherently a plant model mismatch,

e.g. [6, 49]. On the theoretical side, the extension of offset-free NMPC to economic NMPC is an interesting

future direction. Furthermore, future works can use this work to use NMPC models that can be applied for

offset-free tracking in a certain range, e.g., to accelerate a flexible process operation with hierarchical control

strategies [50]. Further, improving deterministic global optimization techniques is an ongoing path for future

research for this problem class.
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Appendix

A Proof of Theorem 1

Proof By Assumption 5, a steady-state is reached. By Assumption 3 and Assumption 6, the observer is nominally

error-free and satisfies at the steady-state

x̂8 � faugpx̂8, d̂8,u8q

zΦ,8 � gzaugpx̂8, d̂8q

where the inputs u8 result from the controller given by

u8 � caugpx̂8, d̂8, r8q.

The control law exists by Assumption 7. The output variables at the steady-state are given by

yΦ,8 � gyΦpx̂Φ,8q.

By Assumption 4 we have

yaug,8 � gyaugpx̂8, d̂8q � r8.

By Assumption 1 it holds that

yΦ,8,i � zΦ,8,i � zaug,8,i � yaug,8,i � r8,i,@i P t1, ..., nyu.

By Assumption 2 it holds that

yΦ,8,i � zΦ,8,i � zaug,8,i � yaug,8,i � r8,i,@i : y8,i � z8,i

and

yΦ,8,i � zΦ,8,i � zaug,8,i � yaug,8,i � r8,i,@i : y8,i � z8,i
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B Preprocessing to Exclude Disturbance Models leading to Struc-

tural Singularities

We propose a preprocessing strategy to excluding those realizations of the DM parameters pd for which J in

(13) is structurally singular. Recall that we assumed that pd defines the structure of the DMs and hence P d is a

discrete set. While continuous sets would be possible, we do not see an advantage in defining the DM structure

through continuous parameters. Furthermore, the algorithm provided here would need to be refined in case of

a continuous set P d. The preprocessing uses the following optimization problem

max
pdPPd1

xPX
dPD
uPU

det
�
Jpx,u,d,pdq

�2
(20a)

s.t. Jpx,u,d,pdq �

�
��F xpx,u,d,p

dq � I F dpx,u,d,p
dq

Gxpx,u,d,p
dq Gdpx,u,d,p

dq

�
�
 (20b)

hpx,u,d,pdq � 0 (20c)

gpx,u,d,pdq ¤ 0. (20d)

The preprocessing strategy is presented in Fig. 12. The approach solves (20), where in each iteration an element

is removed from the set Pd1 until the set Pd1 contains only those parameter realizations for which J in (13)

is structurally singular. Meanwhile, the set Pd2 accumulates all other parameter realizations, i.e., parameter

values for which J in (13) is structurally non-singular. Finally, we update Pd with Pd2 , so that Pd contains

only those parameter values for which J in (13) is structurally not singular. If the resulting Pd2 is an empty

set, then no suitable disturbance model exists with the given disturbance model parameterization. After the

preprocessing, the resulting set Pd is used in (13), so that all parameter values for pd are excluded for which

J in (13) is structurally singular. If the resulting set Pd is empty, then there is no suitable disturbance model

with the given parameterization, that satisfies the sufficient observability condition.

We can use the constraints (20c) and (20d) with the functions h : X � X � U � U � D � D � Pd Ñ Rnh

and g : X � X � U � U � D � D � Pd Ñ Rng , e.g., if we aim at generating a model used to track one specific

point, the constraint gyaugpx,dq � r8 can directly be added to the problem. In this case, we only exclude those

parameter realizations leading to structural singularities under the given constraint, e.g., at one specific point

in the state space.

Furthermore, the constraints can be used to add disturbances to specific equations, e.g., to those equations

which correspond to unmeasured CVs, thereby enabling exact steady state predictions for those variables as

required by Assumption 2 for offset-free NMPC, cf. Theorem 1.
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solve (20) to global
optimality, set
x�,u�,d�,pd�

equal to the solution

feasible ?

Pd1 Ð Pd1zpd�

detpJpx�,u�,d�,pd�qq
� 0 ?

Pd2 � H ?

Pd2 Ð Pd Y tpd�u

Pd1 � H ? Pd Ð Pd2 , terminate

no suitable disturbance
model exists with the
given parameterization

yes

no

yes

no

no

yes

yes

no

Fig. 12: Preprocessing for model generation approach to exclude disturbance model parameter values for which
J in (13) is structurally singular.
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C Process Model for Case Study I

We use the chemical reactor example from [8, 2, 5]. The process model is given by the following differential

equations:

dc

dt

����
t

�
F0ptqc0 � F ptqcptq

πr2hptq
� k0 exp

�
�

E

RT ptq



cptq (21a)

dT

dt

����
t

�
F0ptqT0 � F ptqT ptq

πr2hptq
�

∆H

ρCp
k0 exp

�
�

E

RT ptq



cptq �

2Uhptq

rρCp
pTcptq � T ptqq (21b)

dh

dt

����
t

�
F0ptq � F ptq

πr2
. (21c)

cptq P R is the concentration in the reactor, T ptq P R the reactor temperature, hptq P R the reactor fluid height,

F0ptq P R the reactor feed flow rate, F ptq P R the reactor outlet flowrate, c0 P R the feed concentration, T0 P R

the feed temperature, Tc P R the cooling fluid temperature, r P R the reactor radius, ρ P R the reactor fluid

density, Cp P R the reactor fluid heat capacity, ∆H P R the reaction enthalpy, and k0 P R the reaction rate

constant. Table 1 gives the values for the parameters in (21) from [8, 2].

Table 1: Parameter values for chemical reactor case study.

parameter value
F0 0.1 m3/min
T0 350 K
c0 1 kmol{m3

k0 7.2 �1010 min�1

r 0.219 m
E{R 8750 K
U 54.94 kJ{min m2 K
ρ 1000 kg{m3

Cp 0.239 kJ{kg K
∆H -5 �10�4 kJ{kmol

D Process Model for Case Study II

We use the chemical reactor model from Santos et al. [45]:
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dV

dt

����
t

� F1 � F2 � F3ptq (22a)

dCa

dt

����
t

�
F1

V ptq

�
Ca,1 � Captq

�
�

F2

V ptq

�
Ca,2 � Captq

�
� k0 exp

�
�

E

RTRptq



(22b)

dTR

dt

����
t

�
1

βRptq

�
�QRptq �QGptq

�
(22c)

dTJ

dt

����
t

�
1

βJptq

�
ρJCp,JFJptq

�
TJ,0 � TJptq

�
� UAptq

�
TRptq � TJptq

�	
(22d)

0 � βRptq � ρCpV ptq � αR (22e)

0 � βJptq � ρJCp,JVj � αJ (22f)

0 � QRptq � ρCpF1

�
T1 � TRptq

�
� ρCpF2

�
T2 � TRptq

�
� UAptq

�
TRptq � TJptq

�
(22g)

0 � QGptq �∆HRV ptqk0 exp

�
�

E

RTRptq



(22h)

0 � A� πr
�
r � 2hptq

�
(22i)

0 � V ptq � V0 � πr2hptq, (22j)

where V ptq P R is the reactor volume, Captq P R the molar fraction of the component a, TRptq P R the reactor

temperature, TJptq P R the cooling jacket temperature, F1 P R and F2 P R the feed flowrates, F3ptq P R

the leaving stream flowrate, FJptq P R the cooling water flowrate, CA,1 P R and CA,2 P R the mole fractions

of component a in the feed streams 1 and 2, respectively, k0 P R the reaction constant, E P R the reaction

activation energy, R P R the ideal gas constant, QRptq P R the heat stream due to heat exchange with the

cooling jacket and due to convection, QGptq P R the heat stream released from the reaction, ∆HR P R the

reaction enthalpy, A P R the heat transfer surface, hptq P R the reactor height. The parameter values are given

in Tab. 2.

As described in Section 4.2.2, only DM 3 satisfies the sufficient observability condition (14b). This can also

be seen by analyzing the matrix J of resulting discrete time system of the model (22). For this, we substitute

the algebraic equations (22e)-(22j) into the differential equations (22a)-(22d), derive the discrete time form of

the resulting system and analyze the structure of the matrix J for this system. We see that equation (22b) is the

only equation depending an Ca. Thus, no disturbance needs to be added to this equation to make the matrix

J in (14c) non-singular. On the other hand, adding one disturbance to equation (22b) would make the matrix

J in (14c) singular, as this disturbance could not be added to the other two equations (given the disturbance

model structure in (17) and (18)), which would, however, be required to guarantee that J is non-singular. Thus,

the only possible disturbance model left is DM 3.

A physical reasons behind the peculiarity that only DM 3 is a suitable disturbance model is that the

disturbances are added to all MVs. Thus, the disturbances can propagate through the model so that the the

unmeasured CV Ca can be tracked without offset. In other words, by augmenting the model for the MVs, we
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can obtain offset-free tracking of the unmeasured CV, i.e., we trace the plant-model mismatch back to the MVs.

This restricts the selection of a possible disturbance model to just DM 3.

Table 2: Parameter values for chemical reactor case study II.

parameter value
F1 0 mol/s
CA,1 2.0 � 103 mol/m3

CA,2 10 � 103 mol/m3

Cp 4184 J/kg K
Cp,J 4184 J/kg K
Ea{R 10080 K
k0 6.20 � 1014 mol/m3 s
αR 0 J/K
αJ 7 � 105 J/K
ρ 1000 kg/m3

ρj 1000 kg/m3

T1 294.15 K
T2 294.15 K
U 900 W/m2 K
r 0.232 m
V0 4.2 � 10�3 m3

∆HR -33488 J/mol
Vj 0.014 m3

TJ,0 299.15 K
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E Process Model for Case Study III

The polymerization reactor model is presented in [46] and we refer to [46, 47] for more details of the model.

The model equation are as follows:

dCi

dt

����
t

�
FiptqC

0
i � pF � FiptqqCiptq

V
� kdptqCiptq (23a)

dCm

dt

����
t

�
FC0

m � pF � FiptqqCmptq

V
� kpptqCmptq

�
µ0
r ptq � µ0

bptq
�

(23b)

dCb

dt

����
t

�
FC0

b � pF � FiptqqCbptq

V
� Cbptq

�
ki2ptqCrptq � kfsptqµ

0
r ptq � kfbptqµ

0
bptq

�
(23c)

dCr

dt

����
t

� 2f�kdptqCiptq � Crptq
�
ki1ptqCmptq � ki2ptqCbptq

�
(23d)

dCbr

dt

����
t

� Cbptq
�
ki2ptqCrptq � kfbptq

�
µ0
r ptq � µ0

bptq
�	
� Cbrptq

�
ki3ptqCmptq (23e)

� ktptq
�
µ0
r ptq � µ0

bptq � Cbrptq
�	

dµ0
r

dt

����
t

� 2ki0ptqCmptq
3 � ki1ptqCrptqCmptq � Cmptqkfsptqpµ

0
r ptq � µ0

bptqq� (23f)

�
kpptqCmptq � ktptqpµ

0
r ptq � µ0

bptq � Cbrptqq � kfsptqCmptq � kfbptqCbptq
�
µ0
r ptq

� kpptqCmptqµ
0
r ptq

dµ0
b

dt

����
t

� ki3ptqCbrptqCmptq �
�
kpptqCmptq (23g)

� ktptq
�
µ0
r ptq � µ0

bptq � Cbrptq
�
� kfsptqCmptq � kfbptqCbptq

	
µ0
bptq � kpptqCmptqµ

0
bptq

dT

dt

����
t

�
pF � FiptqqpT

0 � T ptqq

V
�

∆HkpCmptqpµ
0
r ptq � µ0

bptqq

ρsCp,s
(23h)

�
UApT ptq � Tjptqq

ρsCp,sV

dTj

dt

����
t

�
FjptqpT

0
j � Tjptqq

Vj
�

UApT ptq � Tjq

ρjCp,jVj
. (23i)

Ciptq P R is the initiator concentration, Cmptq P R the monomer concentration, Cbptq P R the butadiene

concentration, Crptq P R the radical concentration, Cbrptq P R the branched radical concentration, µ0
r ptq P R

the zeroth moment of dead radicals, µ0
bptq P R the zeroth moment of dead butadiene, T ptq P R the reactor

temperature, Tjptq P R the cooling water temperature, Fi P R the initiator feed flowrate, F ptq P R the feed

flowrate, Fjptq P R the cooling water flowrate, C0
i P R the initiator feed concentration, C0

m P R the monomer

feed concentration, C0
b P R the butadiene feed concentration, f� P R the initiator efficiency, ∆H P R the reactor

enthalpy, V P R the reactor volume, ρs P R the reactor density, Cp,s P R the reactor heat capacity, U P R the

heat transfer coefficient, A P R the heat transfer area, T 0 P R the feed temperature, T 0
j P R the cooling water

feed temperature, V P R the cooling jacket volume, ρj P R the cooling water density, Cp,j P R the cooling water
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heat capacity. The reaction rates as presented in [47] are given by

c1ptq � 2.57� 0.00505T ptq (23j)

c2ptq � 9.56� 0.0176T ptq (23k)

c3ptq � �3.03� 0.00785T ptq (23l)

kdptq � 9.1 � 1013 exp
�
� 29508 pcal{molq{rRgT ptqs

�
(23m)

ki0ptq � 1.1 � 105 exp
�
� 27340 pcal{molq{rRgT ptqs

�
(23n)

ki1ptq � 1.0 � 107 exp
�
� 7067 pcal{molq{rRgT ptqs

�
(23o)

ki2ptq � 2 � 106 exp
�
� 7067 pcal{molq{rRgT ptqs

�
(23p)

ki3ptq � 1 � 107 exp
�
� 7067 pcal{molq{rRgT ptqs

�
(23q)

kpptq � 1 � 107 exp
�
� 7067 pcal{molq{rRgT ptqs

�
(23r)

kfsptq � 6.6 � 107 exp
�
� 14400 pcal{molq{rRgT ptqs

�
(23s)

kfbptq � 2.3 � 109 exp
�
� 18000 pcal{molq{rRgT ptqs

�
(23t)

ktptq � 1.7 � 109 exp
�
� 843 pcal{molq{

�
T ptq � 2

�
c1ptqxsptq � c2ptqxsptq

2 � c3ptqxsptq
3
��	

(23u)

xsptq � pC0
m � Cmptqq{C

0
m, (23v)

where Rg P R is the ideal gas constant and xsptq P R the monomer conversion rate. Table 3 give the parameter

values for (23).

Table 3: Parameter values for polymerization reactor case study.

parameter value
Fi 1 L/s
C0

i 0.981 mol/L
C0

m 8.63 mol/L
Cp,j 1647.72 J/(kg K)
Cp,s 4054.7 J/(kg K)
f� 0.57
ρj 1 kg/L
ρs 0.915 kg/L
UA 1560 J/(s K)
V 9450 L
Vj 2000 L
Rg 1.987 cal/(mol K)
∆H -69919.56 J/mol
C0

m 1.05 mol/L
T 0
j 294 K

T 0 333 K
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