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A B S T R A C T

The current Distribution Grid Automation (DGA) Systems are being heavily dependent on the Information and
Communication Technologies (ICT) infrastructure for its proper operation. The DGA architectures are predomi-
nantly centralized and usually deployed on a dedicated hardware. This increases the risk of blackouts under a
coordinated cyber-physical attack. The compromise of the dedicated hardware that hosts the central coordinator
of the DGA automation results in a blackout. Though many countermeasures have already been proposed for
tackling different types cyber and physical attacks on the ICT infrastructure, very few measures have been pro-
posed to ensure the availability of the grid operation functions, even when it is compromised. This study proposes
an automatic, distributed approach based on Blockchain and Smart Contract that ensures the availability of the
core DGA functions even if the central coordinator that operates the grid is compromised. This is done by vir-
tualizing and migrating/re-initialising these functions from the dedicated hardware that was compromised to
another. Additionally, a Multi-Attribute Decision Making based method is incorporated into the Smart Contract
that helps in selection of the optimal hardware that can host the function considering its limitations (hardware
and software). Finally, a proof of concept implementation of the proposed solution is presented that utilizes the
Calvin IoT (Internet of Things) platform, Flow programming tool and Hyperledger fabric and its performance is
evaluated.
1. Introduction

Traditionally the distribution grid automation systems have a
centralized architecture where the data from the different field devices
like the measurement units and the Remote Terminal Units (RTUs) are
collected centrally by the Supervisory Control And Data Acquisition
(SCADA) System [1]. The collected data is then used for the different
monitoring and control applications like the State Estimation (SE),
Volt/Var control, network congestion management, Optimal power
dispatch, fault location isolation and optimal service restoration and so
on by Distribution grid Management System/Energy Management Sys-
tem (DMS/EMS). These applications ensure the safety and reliability of
the power grids. However, both the SCADA and the DMS/EMS are
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generally deployed in dedicated servers in a control center. Any attack on
these servers resulting in their failure would cause the loss of the oper-
ational capabilities with possible consequent blackout. For e.g, the co-
ordinated cyber-attacks performed on the Distribution Grid Automation
(DGA) system of the Ukranian DSO exploited this vulnerability [2].
Several decentralized distribution grid automation architectures were
proposed in literature, in particular the IDE4L project [3,4]. In the pro-
posed architecture, the intelligence for grid operation was allocated to
individual HV (High Voltage), MV (Medium Voltage) and LV (Low
Voltage) substations for managing their respective downstream grid,
using the Substation Automation Unit (SAU). This reduces the compu-
tational and communication burden to the SCADA/DMS. Furthermore,
each SAU is responsible for operating a specific segment of the grid and
wth-aachen.de (G. Lipari), fponci@eonerc.rwth-aachen.de (F. Ponci), amonti@

March 2021
niversity Press. This is an open access article under the CC BY-NC-ND license

mailto:abhinav.sadu@siemens-energy.com
mailto:glipari@eonerc.rwth-aachen.de
mailto:fponci@eonerc.rwth-aachen.de
mailto:amonti@eonerc.rwth-aachen.de
mailto:amonti@eonerc.rwth-aachen.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bcra.2021.100010&domain=pdf
www.sciencedirect.com/science/journal/20967209
www.journals.elsevier.com/blockchain-research-and-applications
https://doi.org/10.1016/j.bcra.2021.100010
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.bcra.2021.100010


A. Sadu et al. Blockchain: Research and Applications 2 (2021) 100010
interacts with the control center and other SAUs for coordinated control
of the whole power grid.

The failure of a single SAU results in the failure of a segment of the
grid. The SAU is equally vulnerable as the SCADA/DMS in CA, as it is also
deployed on dedicated computational hardware. Though several coun-
termeasures have been proposed to deal with phishing attacks, credential
theft, distributed denial-of-service (DDoS) attacks, killDisk attacks and
unauthorized VPN/Remote Terminal access [5,6], they don't provide
mechanisms that ensure availability of their functions once they have
been compromised. In order to improve the availability of the grid
operation functions even when the SAU is compromised, solutions were
developed and presented in Ref. [7]. The authors propose a method to
virtualise the grid operation functions that can be migrated from one
hardware to another using Calvin IoT platform. They also investigate the
effectiveness of virtualization of the functions and the latency in migra-
tion of the functions. The system is so designed that a central entity
identifies the failed SAU and coordinates the migrated/re-initialized of
the operation functions into an another healthy SAU in the network.
Similarly, the authors [8] propose a centralized architecture using
Node-Red for improving the availability of a Phasor Data Concentrator
(PDC) that processes Phasor Measurement Unit (PMU) measurements
collected through a wide area network. However, in all of the previous
work presented the coordination of the migration of the functions was
achieved by a central entity. This introduces again a single point of
failure of the system. Furthermore, the coordination system is not
byzantine tolerant and sensitive to status data manipulation. Addition-
ally, the approaches do not provide a methodology to optimally place the
grid operation functions considering the hardware and software capa-
bilities of the computational resource that would host the function.

Therefore, in order to mitigate the drawbacks of the previously pre-
sented work a completely distributed coordination scheme is proposed
that uses Blockchain and smart contracts to improve the resilience of the
distribution grid automation system, specifically SAU in the context of
IDE4L architecture. The major contribution of the manuscript is as
follows:

� This study explains how the blockchain technology can be utilized in
enabling the resilient functioning of the IT infrastructure supporting
SAUs.

� An explanation of how blockchain based smart contracts can perform
secure and distributed migration of applications is presented.

� A Proof of Concept (PoC) implementation of the proposed solution is
presented. The Hyperledger Composer [19] and Hyperledger Fabric
are utilized for implementing the blockchain and Smart contract
component of the PoC. Then the implemented blockchain application
is integrated with the Calvin platform [17] via the flow programming
tool called Node-Red [20] and REST API. Then, the scenario in which
application (or actor) migration would get triggered automatically by
the devices (or runtimes) is proposed.

� A Multiple Attribute Decision Making (MADM) based algorithm is
proposed for choosing the destination machine (or runtime) to
migrate the selected applications (or actors) is proposed.

� The working functionality (i.e. migration process) of the imple-
mented prototype is tested and the performance evaluation i.e. vari-
ation in transaction latency under certain conditions, is performed.

A more generic version of the solution has been applied for a patent
and has received positive feedback from the German Patent and trade-
mark office [21].

2. Exemplary DGA system: IDE4L – its shortcomings

A decentralized automation architecture has been proposed within
the IDE4L project [3,4], in order to improve the performance of the
traditional centralized ADA system. In the proposed architecture, the
individual MV and LV substations manage their respective downstream
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grid, using the (SAU). The SAU enables the distribution of the grid
operation intelligence to individual MV and LV substations. A SAU is a
cyber-physical unit that has specific hardware and software components.
From the hardware perspective a SAU is a computational resource that
has processing capabilities, data storage capabilities and has appropriate
communication interfaces required to communicate with other SAUs,
IEDs (Intelligent Electronic Device), RTUs and DMS. The different soft-
ware components of the SAU form the three major layers as depicted in
Fig. 1. The interfacing layer is containing all the communication protocol
translators that enable SAU to interact with different IEDs, RTUs and
SAUs. The software components of the interfacing layer retrieve the data
from the storage layer (mostly a database) and encapsulate in the specific
communication protocol and send it (actuation command, control set
point, etc) to the appropriate receiver (IED-Actuator and RTUs).
Furthermore, the raw data (measurements, status set points, etc) received
from the IEDs, RTUs and SAUs, after de-encapsulating the messages from
them is stored in the instances of storage layer. Typically, the instance of
a storage layer is a database. The third layer, application layer, of SAU
hosts all the monitoring, control protection algorithms that are necessary
for grid operation, namely, state estimation, Volt VAR control, FLISR, etc.

The decentralized automation architecture with SAUs for an exem-
plary MV grid is depicted in Fig. 2. The IP based secure wide area
communication and standardized data modelling schemes help in real-
izing such a decentralized automation architecture proposed in IDE4L
project. In this architecture each SAU is responsible for operating a
specific segment of the grid. This reduces the computational and
communication burden to the SCADA/DMS. It interacts with the IEDs
configured as measurement devices (IED-Measurement), IEDs configured
to control actuators and protection devices (IED-Actuator), the DMS and
other SAUs (in the MV and LV grid) for coordinated control of the whole
distribution grid. Depending upon the application (monitoring(control/
protection) the type of data, the rate of data exchange, levels of security
encryption and the communication protocol used varies. The SAU is so
designed that all the software components of the SAU could be deployed
in heterogenous computational hardware ranging from a single board
computational devices like Raspberry PI to high performance computa-
tional servers [4].

The SAU enables the decentralization of the grid operation and thus
reduces the risk of the complete blackout as each SAU is responsible for
its segment. However, it should be noted that each SAU is also deployed
in a dedicated hardware that is susceptible to targeted cyber-physical
attacks. Loss of a SAU (hardware/Software component) means loss of
grid segment operability. In the future with active distribution grids, the
SAU would be the most critical component coordinating the distributed
generation and load demand connected to the distribution grid. There-
fore, additional resilience measures have to be deployed that ensures
high availability of the SAU, specifically the algorithms that form the
application layer. The proposed methodology ensures that the algorithms
hosted by the SAU that are responsible for the operation of its grid
segment are made available, even when the specific SAU is compromised,
and thus improving the resiliency of the DGA.

3. Proposed methodology for improved resiliency of DGA

In this section the necessary pre-requisites, an overview of the pro-
posed solution, and a detailed explanation of how blockchain and smart
contract are used for implementing the solution are presented. In this
study, the proposed methodology is explained in the context of
increasing the resilience of the IDE4L automation architecture. Particu-
larly, the improvement in the availability of the grid operation functions
hosted by the SAUs is presented.

3.1. Necessary pre-requisites and assumptions

For successfully implementing the proposed solution, the following
pre-requisites must be fulfilled.



Fig. 1. Components of SAU (substation automation unit). RTU: Remote Terminal Unit.

Fig. 2. IDE4L based distribution grid automation with (substation automation units): An Overview. DMS: distribution management system.

A. Sadu et al. Blockchain: Research and Applications 2 (2021) 100010
� The communication network between the SAUs and the IEDs (Mea-
surement and Control) deployed, should be so configured that every
SAU is able to receive measurements and send control commands to
all IEDs irrespective of the grid segment that they are deployed in.

� The Monitoring, Control and Protection Functions should be designed
as executables that are platform and OS independent. This enables
seamless initialization of the functions after the migration/re-
initialization in a healthy SAU. The [7] proposes a method that en-
ables seamless virtualization of grid operation functions and initiali-
zation using CALVIN

� It is assumed that each SAU hosts services that enables identification
of available communication peripheries and monitoring of available
computational resources (% CPU availability, number of cores, clock
rate) in real time, bandwidth utilization and available RAM in real
time.
3

� Each SAU hosts a heartbeat service that enables the other SAUs in the
network to recognise if a specific SAU is alive or is not anymore
reachable within a network.

3.2. Overview of the proposed solution

In this study, the main objective of the proposed solution is to design a
resilience measure that ensures higher availability of the grid operation
functions (Monitoring, Control and Protection algorithms) hosted by SAU
even when the specific SAU is compromised by a cyber-physical attack. A
cyber-physical attack can be a targeted attack (e.g terrorist attacks) or
caused by natural calamities. These attacks can result in a hardware
failure or software failure that compromises the functioning of a SAU,
thus hampering the operability of a distribution grid segment. The pro-
posed solution provides higher availability of the grid operation
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functions by migrating/re-initialising all the grid operation functions of
the compromised SAU to a healthy SAU in the network of SAUs. An
example to show the benefits of the proposed solution is depicted in
Fig. 3. Fig. 3(a) shows the normal operation of distribution grid operated
by three different SAUs. Each SAU hosts a set of monitoring functions
depicted as green square, Control function depicted as yellow square and
the Protection function depicted as grey square. As depicted in Fig. 3(b)
Segment 3 of the distribution grid fails due to the failure of the SAU 3.
However, when the proposed solution is adopted, the algorithms are
migrated to the healthy SAU.

However, with the proposed solution, the monitoring, control and
protection functions of the failed SAU are migrated to the other healthy
SAUs. Additionally, from Fig. 3(c) it can be seen that the functions of the
healthy SAUs are also redistributed among them. This migration/re-
initialization is done by selecting a target SAU considering the hard-
ware and software capabilities like the available computational and
communication resources that are required for successfully hosting a
specific grid operation function.

For a successful migration/re-initialization of the grid operation
functions, the following components are of absolute importance.

(1) An immutable ledger of the real time status of all SAUs

a. Hardware and software capabilities
b. Grid operation functions are currently hosted by them.
c. The grid segment they currently operate
(2) An immutable ledger of the requirements of each grid operation
function

a. Required computational and communicational resource
(3) An automatic triggering of an immutable logic to migrate/re-
initialize the grid operation functions when an SAU fails consid-
ering the capabilities of the different SAUs (hardware and soft-
ware) and the requirements of the grid operation functions.

In this study, a blockchain is used for pre-requisite (1) and (2).
Whereas, a smart contract is used to implement a logic for optimally
choosing the healthy SAU to which the grid operation functions hosted
by the failed SAU would be migrated. A detailed explanation of the
configuration of the blockchain and the Smart contract would be pre-
sented in the subsequent sub-sections. Furthermore, the necessary pre-
requisites for implementing the proposed solution would also be
presented.

3.3. Blockchain configuration

Blockchain was first introduced as a underlying technology of a P2P
(peer to peer) electronic cash system i.e. Bitcoin [9]. Blockchain is a
digital distributed ledger which is replicated and shared among all the
nodes in the network [22]. It is controlled in a decentralized manner by
multiple nodes running a consensus protocol [22]. It is a sequence of
blocks, where each block is identified by its cryptographic hash. The first
block is called genesis block, which contains an initial set of transactions
and then the hash of this block is calculated by taking its transactions and
a timestamp, as input. Furthermore, for every new block that is generated
afterward, the hash is determined by taking previous block's hash
together with its transactions and timestamp, as input [10]. As shown in
Fig. 4, each block hash is pointing towards previous block's hash which
results into chain of blocks [11].

It is an append-only database whichmeans that once the information/
data is recorded on the block then it cannot be altered afterward. If an
attacker would attempt to modify any transaction (or anything inside the
block), the hash of the respective block would change and this would
subsequently change the hash of all the blocks added after this block.
Thus, blockchain is a temper-proof or immutable data storage.
4

Therefore, in this study blockchain is used for the following purpose.

(1) Store the attributes and operational capabilities of the different
SAUs in a blockchain.

a) Hardware resources

i) Available computational resources
ii) Available storage resources
iii) Communication interfaces

b) Software resources
i) Available communication protocol translators
ii) Firmware compatibility (with the compromised SAU)

c) Grid operation function specific
i) Reachability to specific IEDs (sensors and actuators)
ii) Average communication latency between the SAU and

specific IEDs that communicated with the compromised
SAU

d) Administrative attributes
i) Unique ID
ii) Location
iii) Current grid operation functions hosted
iv) Operation jurisdiction (Grid segment it operates)
v) Priority index for migration coordination: This index helps

in determining the Master SAU that takes over the initial-
ization of the migration/re-initialization. The SAUwith the
highest index updates the blockchain with the ID of the lost
SAU and initiates the transaction to trigger the smart
contract.
(2) Requirements of the grid operation functions to be migrated/re-
initialized

a) Required minimum computational resource
b) Necessary communication protocols
c) List of thresholds that have to be obeyed

i) Maximum communication latency between the SAU and IED
allowed

d) Weights reflecting the importance of SAU resources (compu-
tational, storage and communication resources) used for
optimal selection of SAU for migrating the grid operation
function.

e) List of IEDs (Sensors, actuators) that they interact with
f) Communication parameters of the IEDs
g) Administrative attributes

i) Unique ID
ii) Location
There are three different types of blockchains namely the public,
consortium and private blockchain [12]. In a public blockchain any node
can join a blockchain network and perform transactions. A private
blockchain is restricted and only authorized nodes can participate in the
network. A private blockchain is recommended when specific scalability,
privacy, and other regulatory norms have to be met. A private blockchain
is also preferred when all the blockchain operations are performed
internally within an organization and the read permissions have to be
restricted to a specific set of nodes. A consortium blockchain is a kind of
private blockchain but managed by more than one organization where a
selected set of nodes from different organizations have read permissions
and determine the consensus.

In this study a private blockchain, to be more precise a permissioned
blockchain as defined in Ref. [23] is used for the migration of the grid
operation functions from one SAU to another. This is because the ICT
infrastructure owned to operate the grid is owned by a specific organi-
zation. Each SAU is a participant and the asset exchanged is the grid
operation function. Furthermore, no unauthorized SAUs are to be
allowed as participants for operating the critical distribution grid
infrastructure.



Fig. 3. a) Normal operation mode with 3 SAUs (substation automation units). b) Failure of operation of Segment 3 when SAU 3 fails, c) Improved availability of SAU 3
with proposed solution.
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Fig. 4. Blockchain structure.
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3.4. Smart contract configuration

A smart contract ensures an automatic exchange of the asset (grid
operation functions) from one participant (SAU) to another upon an
occurrence of a specific transaction (occurrence of failure of SAU) via
blockchain. Where the assets are the grid operation functions, the ex-
change process is migration/re-initialization and the participants are the
authorized SAUs. A smart contract enables exchange of the assets be-
tween the participants automatically according to a pre-defined logic.

Smart contracts automate the workflows or processes. They are
activated upon receipt of a transaction. Once activated they perform
autonomously on a blockchain node. They reside on blockchain nodes
and hence are decentralized and cryptographically secured. Though, this
is true for HLF based blockchain where chaincodes are installed as con-
tainers within the peers, it might not be the case for other blockchain
systems where smart contacts are saved within block as lines of code for
example in Ethereum. Therefore, alteration or changes in the smart
contract code is impossible without being noticed.

A smart contract is triggered by a transaction. It then executes auto-
matically in a specified way on each node of the network, based on the
data inserted in the submitted transaction and smart contract's world
state i.e. the data stored on the blockchain [23]. Smart contracts elimi-
nate the need of a third-party to facilitate the exchanges between
transacting parties (or devices) as all network nodes execute the contract
and reach a consensus on the produced output [13]. In case, a node is
malicious or altered, then it will produce disparate results and prevent
the network from reaching a consensus. So, due to its non-deterministic
nature, the transaction will be rejected. Additionally, all transactions are
digitally signed and stored in an immutable ledger which preserves data
integrity and enables historical tracking or data verifiability [14]. Hence,
because of all these characteristics, blockchain based smart contracts give
us an opportunity to improve the grid automation resiliency.
Fig. 5. Runtime failure migration. S
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The different steps involved in the secure migration/re-initialization
of the grid operation functions (from now on called as actors/applica-
tions) from one SAU (from now on referred as Runtime) to another for a
system depicted in Fig. 5. Runtime Failure Migration is as given below.

(1) All Runtimes are equipped with the heartbeat application.
(2) All Runtimes (SAUs) periodically submit transactions to the

blockchain updating their operational statuses (capabilities,
available resources and applications hosted).

(3) The heartbeat actor (application), running on each runtime, helps
in identifying functional SAUs in the network.

(4) A set of Calvin Master nodes with the help of the heartbeat actor
send messages to the Runtimes in the same distribution grid area.
The list of these Runtimes is obtained by querying into the
blockchain. Failure of reception of heartbeat messages from the
failed runtime makes the Master Runtimes publish a list of failed
runtimes after a pre-defined timeout. A smart contract logic
checks if more than 50% of the master runtimes have published
the loss of the same SAU IDs. An event is generated to notify the
identification of the lost SAUs. This step reduces the risk of cor-
ruption of the master runtime in identifying the lost SAUs.

(5) On the reception of this event, all the rest of the Runtimes stop
their periodic updates of their statuses to blockchain.

(6) A new operational runtime needs to be selected which will be
responsible for re-deploying the applications of the failed runtime.

(7) The master runtime with the highest priority index then submits a
blockchain transaction.

(8) Smart contract will process the transaction from the master node
and choose the new optimal runtime for the placement of an actor
of the failed runtime. It will generate results that include the
destination runtime ID, application ID (grid operation function to
be migrated/reinitialized) and the application's state (last saved
state before the failure).

(9) The master node will analyse the application's state, and then
initiate the deployment of the application on the chosen destina-
tion runtime.

(10) After finishing re-deployment, the runtime with the new migrated
functions will submit a blockchain transaction to update the status

(11) The master node will repeat steps from 6 to 10 until all the ap-
plications of failed runtime have been re-deployed

(12) The master node will trigger an event to re-start their periodic
status update with a final migration end transaction
AU: substation automation unit.
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As depicted in Fig. 5, when SAU 1 (Runtime 1) fails the Runtime with
the highest priority index (Runtime 3) becomes the master node and
coordinates the migration of all the applications hosted in Runtime 1 to
Runtime 2 using smart contract. However, it should be noted that if the
Runtime with the highest priority index fails then the node with the next
highest priority index becomes the master node. In this study, a MADM
approach is used to design the pre-defined logic of the smart contract.
3.5. Smart contract logic: A MADM based selection of optimal destination
runtime

Selecting an optimal destination runtime for actor migration is a two-
step mechanism, i.e. selection of capable runtimes and application of
multiple attribute decision-making to choose the most optimal runtime
from the set of capable runtimes.

3.5.1. Selection of capable runtimes
It is assumed that all the runtimes (or SAUs) are on the same network,

with an established connection between them. The goal of the first step is
to select runtimes that satisfy the list of requirements as described below.
Whenever a runtime triggers migration, the smart contract retrieves the
parameters' values, mentioned in the requirements list (Section.3.5.1.1),
from the blockchain ledger. Therefore, these values should be updated
periodically by other blockchain transactions, which facilitates the smart
contract's decision-making on the latest timestamped data.

3.5.1.1. List of requirements.

(1) Runtime status should be operational.

(2) Actor deployment requirements should match with runtime
attributes.

� As shown in Fig. 6 an application's requirements could be its
execution location (or address) and should match with the
runtime's location (or address). When an application needs to be
migrated, the smart contract logic will consider only those
runtimes, for placement, which will be on the same connected
network (or same static location).
(3) Runtime capabilities should contain all the functionalities needed
by an actor for its execution.

(4) A runtime should have enough computational resources. This
should be decided after carefully analysing the computational
requirements of the different applications. The determination of
such thresholds is out of scope of this study. However, the
Fig. 6. Requirement matching with attributes and migration.
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threshold values of available CPU % >20%, Available RAM
>512 MB; Bandwidth utilization <80%, Round Trip Time (RTT)
of less than 250 ms between the Runtime and the IED.

3.5.2. Selection of optimal runtime from the set of capable runtimes
The decision to select the most appropriate destination runtime for

application migration is done by MADM methods. The MADM is exten-
sively used in solving problems when there exists a set of feasible alter-
natives which need to be analysed and evaluated with respect to a set of,
usually conflicting, attributes. The aim of MADM is to determine the best
alternative or rank the alternatives [15]. TheMADM approach adopted in
this study is a two-step algorithm. In the first step depending upon the
relative pair-wise weight of the criteria an absolute weight for each cri-
terion is deduced. In the second step, these weights are used to determine
the relative closeness of the available solution to the ideal solution. For
the first step, the AHP (Analytical Hierarchy Process) method is used to
compute the weight for each attribute by carrying out pairwise com-
parisons of the attributes, which is done by the decision-makers or ex-
perts. The importance of an attribute is directly proportional to its
weight. It breaks down the problem into a hierarchical structure of the
goal, attributes (or criteria) and alternatives as shown in Fig. 7.

The steps for calculating the weights for the attributes are explained
below.

(1) Create a pairwise comparison matrix A. The matrix A is a m � m
matrix where m is the number of attributes (or criteria). In matrix
A, each item aij represents the importance of jth attribute in rela-
tion to ith attribute. The numerical value assigned to each item in
matrix A is derived from Table 1 [16].

Γ¼

2
664
1
1=a21
:
1=an1

a12
1
…

1=an2

…

…

1
…

a1n
a2n
:
1

3
775 (1)

(2) Calculate the priority vector(PV) for each application depending
on the requirements of the application can be done as shown in Eq.
(2)

PVj ¼
Pm

l¼1pjl
m

where pjk ¼
Γðj; kÞPm
l¼1Γðl; kÞ

and m : number of criteria (2)

In the second step the priority vector obtained from the AHP process
for each application is then used to rank the set of capable Runtimes
using the Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS) method. A generic set of equations that govern the TOPSIS
based ranking of the alternatives are given below.

1. For t alternatives and m number of criteria calculate the decision
matrix D as shown below in Eq. (3)

D¼
2
4 d11
⋮
dt1

…

…

…

d1m
⋮
dtm

3
5 (3)

(2) Then calculate the weighted normalized decision matrix as in Eq.
(4), integrating the priority vector, calculated in Eq. (2).

vij ¼PVjrijwhere rij ¼ dijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1d

2
ij

q (4)

3. Calculate the positive ideal solution (Aþ) and the negative ideal so-
lution (A�) where B is a set of Benefit criteria and C is a set of Cost
criteria.



Fig. 7. Decision problem.

Table 1
Pairwise comparison scale.

Intensity of Importance
(aij)

1 3 5 7 9 2,4,6,8

Interpretation Equal
Importance

Moderate
Importance

Strong
Importance

Very Strong
Importance

Extreme
Importance

Intermediate values between the two
adjacent
judgments
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Aþ ¼ vþ1 ; ::v
þ
m where vþj ¼ max vij if j2B;min vij if j2C (5)
� � � � � � � �

A� ¼�
v�1 ; ::v

�
m

�
where v�j ¼�

min
�
vij
�
if j2B;max

�
vij
�
if j2C

�
(6)

The purpose to calculate the Aþ and A� is to measure the distance of
the alternatives from the positive ideal solution and negative ideal so-
lution. The best alternative would be the one that is as close to the pos-
itive ideal solution and as far as from the negative ideal solution.

(4) In order to rank the alternatives, the relative closeness is then
calculated as in Eq. (7)

Cþ
t ¼ Sþt

Sþt þ S�t
where Sþt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

�
vij � vþj

�2
s

and S�t

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

�
vij � v�j

�2
s (7)

(5) Rank the alternatives according to their relative closeness. Higher
the value of the Cþ

t better is the alternative.

Smart contract selects the runtime (or alternative) with the highest
relative closeness and then the selected actor is migrated to this runtime.
Therefore, whenever there is an actor which needs to be migrated, smart
contract performs logic based on the MADM approach to determine the
best or the optimal runtime for application placement.

4. Implementation

In this section, an introduction of Hyperledger Fabric and Hyper-
ledger composer is provided that is used for implementation. Further-
more, a detailed explanation of the system configuration of the
distribution grid automation devices (SAUs) and their associated roles as
different Blockchain entities is provided. Finally, a complete transaction
flow diagram of a migration process from the detection of loss of an SAU
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till the complete migration of its grid operation function to a healthy SAU
is presented.

4.1. Hyperledger Fabric & Hyperledger composer: configuration

4.1.1. Hyperledger fabric
Hyperledger Fabric [24] is a platform for implementing permissioned

blockchain applications, written in general purpose languages such as
Java, Go, or Node.js. Permissioned blockchain means that all the mem-
bers that participate in the network are associated with an identity pro-
vided by the membership service provider (MSP). In the Fabric, there is
no in-built cryptocurrency, and it has an append-only ledger which is
replicated on all the peers and can track the history of executed trans-
actions. Furthermore, the chaincode (or smart contract) implements the
business or application logic which is installed on each peer. It allows
interaction with the ledger and facilitates the exchange of assets between
the transacting members. In the Fabric, a single blockchain network is a
channel. There could be multiple blockchain networks possible which
mean different channels, among the network participants. Each channel
involves certain transacting members/participants and peers, who are
authorized to access that channel. Every channel has its own shared
ledger and is isolated from the other channels. A chaincode is installed on
the peers and instantiated on the channel and it is possible that the same
chaincode is deployed onmultiple channels, but each instance is isolated.
Whenever a transaction occurs within a channel, a consensus takes place
by the peers on the channel. Transactions occurring in one channel are
not visible to members of the other channels. Thus, the Fabric provides
confidentiality (or data partition mechanism) among members or par-
ticipants on the same Fabric network.

In the Hyperledger Fabric, there are three types of nodes [24]:

● Client: An application that submits the transaction proposal to the
endorsing peers, and later broadcasts the endorsed transactions to the
ordering service.

● Peer: A node that manages the ledger as well as the chaincode. There
are two types of roles that a peer can take up:
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i. Endorser: A peer which executes the chaincode for the submitted
transactions, endorses (cryptographically signed) the results, and
also has the properties of Committer peer.

ii. Committer: A peer which verifies the endorsements and validates
the transactions.

● Ordering Service: A node that arranges the transactions into blocks
and then delivers the blocks to all the peers for validation. The Fabric
offers different implementations of ordering service:
i. Solo: Centralized, mainly used for prototype development.
ii. Kafka: Offers Crash Fault Tolerance (CFT).
iii. BFT-SMarT [25] Offers Byzantine Fault Tolerance (BFT).

In the Hyperledger Fabric [26] the general flow of transactions starts
when two or more participants join the network (or a channel). They
agree upon the details of the chaincode, which is then deployed on all the
peers in the channel. In addition, in the Endorsement Policy, the condi-
tion of endorsement (cryptographically signing the data) is specified, for
example, a condition like A and B or C and D means either Peer A and
Peer B should endorse the transaction, or Peer C and Peer D should
endorse the transaction. These peers become endorsers. As depicted in
Fig. 8 [24], the Client sends the transaction proposal to the peers
mentioned in the endorsement policy. The transaction proposal includes
the Chaincode ID, Client ID, Timestamp, and Transaction payload. Each
endorsing peer executes the specified chaincode (or smart contract) and
generates a read-write set based on their current blockchain state. Then
each peer signs the results (contain read-write set, endorser ID, trans-
action ID) and returns them to the client. At this stage, peers do not
perform any updates to the ledger. The Client sends the transaction (re-
sults), satisfying the endorsement condition, to the ordering service. The
ordering service collects multiple transactions and groups them into
blocks depending upon configuration parameters (such as Batch Timeout
and Batch Size). The Ordering service just arranges the transactions but
does not see the details of transactions. It delivers the blocks to all the
peers for validation and commitment to the ledger. All peers (Committers
as well as Endorsers) receive the blocks and for each transaction in a
block, they verify the endorsements (signatures) and validate if the read
Fig. 8. Transaction
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set is still valid based on the current ledger state. Then they accept or
reject the transaction and, in the end, the block is appended to ledger.
Furthermore, the Client is also informed by peers when the transaction is
accepted or rejected, and when the block gets committed to the ledger.

4.1.2. Hyperledger composer
The Hyperledger Composer [27] is an open-source framework which

simplifies and accelerates the development of blockchain applications.
Using the Composer, a blockchain business network can be designed
rapidly, built, and deployed on top of the blockchain platform i.e.
Hyperledger Fabric. A Composer business network definition consists of
the following components:

● Model File: In the Composer blockchain network, there are mainly
four entities or resources, such as Assets, Participants, Transactions,
and Events. Participants submit the transactions in order to exchange
assets between each other and also the participants can subscribe to
events which can be emitted from the transaction logic. All of these
entities are defined in this file using the Composer modeling
language.

● Script File; The logic (or transaction processing function) for each
transaction is defined in this file and it is coded in JavaScript. Basi-
cally, it’s a smart contract of the blockchain application.

● Query File: Queries can be defined to fetch filtered data of resources
(assets, participants and even transactions) from the ledger. Queries
can be executed by transaction processing functions or the Composer
REST server.

● 4. ACL: Rules defined for participant roles (present in the Composer
model) which describe the permissions to perform operations (i.e.
create, read, update and delete) on the network resources (assets,
participants, or transactions).

A Composer business network is defined for the selected scenario as
shown in Fig. 9. Runtime is a participant (representing the SAU) which is
uniquely identified with uuidNode. Each runtime contains the list of
actors (grid operation functions), actorList, running on it. An actor is an
flow in Fabric.



Fig. 9. Composer business network.
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asset which is uniquely identified with uuidActor and each actor is linked
with one runtime, represented by runtime field, which means that the
actor is being executed on that particular runtime at that moment. In
addition, there are many other variables in the actor and runtime
structure which are used in the transaction processing logic that are
mentioned in Section.3.3.

In the Composer network, events are defined in the model file and are
emitted by the specified transactions in their respective transaction
processing function. In this model, an external application, i.e. Node-
RED, is subscribed to defined events in order to get some important in-
formation when a specified transaction is committed to the ledger and
utilizes the emitted data to process another transaction. Different trans-
actions are defined in .js script file.
4.2. System configuration

The Fabric network consists of different entities namely the peer
nodes, ordering service nodes and client nodes from different organiza-
tions. To implement the proposed solution the SAUs are considered to act
as both client and a peer in the Fabric network. Each SAU is installed in a
Primary substation (Medium Voltage Substation) (from Now on called as
PSAU) and Secondary Substation (LV substation) (From now on called as
SSAU). According to the IDE4L architecture, several SSAUs report data
from their secondary substation to a set of PSAUs for coordination of the
automation of a section of the distribution grid. Furthermore, PSAUs
interact with each other to coordinate the complete distribution grid
automation. Since the PSAUs play a major role in coordination, the
computational resources, memory storage resources and network con-
nectivity of the PSAUs are generally higher than that of the SSAUs.
Furthermore, the number of PSAUs in a distribution grid is lower than the
number of SSAUs. This is due to the inherent radial design of distribution
grids.

Taking these aspects of the PSAUs into consideration, the peer hosted
by the PSAUs are configured as an endorsing peer and that of the SSAUs
are configured as committing peer. To separate the critical ordering
functions from the endorsers, separate ordering service nodes need to be
deployed. A detailed explanation on the deployment specifics of the
ordering nodes is out of scope, however, it is assumed that appropriate
configuration of OSNs and the Kafka/Zookeeper clusters, as suggested in
Ref. [28], is done to enable efficient management of the broadcasted
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transactions from the PSAUs and SSAUs.
An overview of the entities involved in the Fabric network is as given

Fig. 10 The transaction flow in Hyperledger has four major phases [28].

â€¢ Endorsement phase: The clients in SSAUs and the PSAUs generate
transaction proposals signed with their credentials to all PSAUs in
the same distribution grid area. The endorsing peer of the PSAU
checks if the client is authorized to invoke such a transaction and
signs the transaction response and replies it to the respective cli-
ents. The client checks if the transaction response bears the
signature of the endorsing peer.

â€¢ Ordering phase: After the check the client generates a well-formed
transaction and broadcasts it to the ordering service. An Ordering
Service Node (OSN) participates in the consensus protocol and
cuts a block of transactions which is delivered to the peers by a
gossip communication protocol.

â€¢ Validation phase: All peers (endorsing and committing) check for
the identity of the orderer from the blocks of transaction that were
received from the ordering service and perform validation as
mentioned in Ref. [28].

â€¢ Ledger update phase: Once the validation is done the transaction
is updated in the local ledger.
4.3. Software architecture of the prototype

The architecture of the implemented prototype is shown in Fig. 11.
Calvin IoT [17] platform is used for developing and deploying SAUs
functionalities and its applications. Calvin is a distributed IoT framework
made available as an open source package by Ericsson. It combines the
idea of the Actor model and flow based programming [18]. CALVIN
provides a simplified framework which eases the development of the
application for distributed systems. The framework consists of the
three-architecture layers including runtime, actors and an application.
An application in the CALVIN framework can be implemented as a
combination of the actor. A detailed explanation of the implementation
of the grid operation functions as Calvin actors is provided in Ref. [7].
Hyperledger Composer [19] is used for building blockchain business
network whereas Node-RED [20] tool is used to integrate blockchain
with Calvin platform. Node-RED is specifically used to integrate Calvin
REST API with Hyperledger Composer blockchain network. Moreover,



Fig. 10. Macro architecture of Fabric entities for resilient distribution grid automation design.

Fig. 11. System design IoT: Internet of Things; SAUs: substation automa-
tion units.

Table 2
Hardware configuration and required development tool.

Operating System Ubuntu Linux 16.04 LTS (64-bit)

Memory 8 Gb
Processor Intel core i-3
Clock rate 2.20 GHz
Docker engine Version 17.3
Node-Red 8.9
Hyperledger Composer V 0.19.1
Fabric network V1.1.0
Npm V5.x
Python 2.7.x
Code Editor VSCode
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external an package i.e. node-red-contrib-composer is used which pro-
vides nodes required to interact with Composer network in order to
perform activities as follows:

â€¢ Submit blockchain transaction
â€¢ Read, update and delete assets and participants
â€¢ Subscribe to events

The internal mapping is shown in Fig. 11. For each Calvin runtime, a
participant is created in the blockchain and for each Calvin application
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(grid operation functions denoted as actors), an asset is created. In Node-
RED, in-built nodes are used to receive data from Calvin runtimes or vice-
versa, and to submit transactions to Composer blockchain network. The
specifics of the computational hardware and the associated software used
for implementing the prototype are tabulated in Table 2.
4.4. Migration of the grid operation functions

The complete migration of the grid operation functions is carried out
in three steps.

â€¢ Step 1: Identification of Lost SAU
â€¢ Step 2: Initiation of the Migration Transaction to trigger the Smart

contract for optimal selection of SAU.
â€¢ Step 3: Perform the migration of the grid operation function
â€¢ Step 4: Updating the ownership of the grid operation functions to

the new SAU by using a smart contract logic
â€¢ Step 5: Finally with a smart contract logic a check is made to

determine if either all functions of the lost SAU have been
migrated or no more Functions could be migrated due to lack of
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sufficient new SAUs to hos them. After a successful check, a
Migration Done event is emitted to end the migration process.

The Step 1 is carried out by the CALVIN Runtimes and the blockchain
clients. The Step 2 is performed by the blockchain clients and the Step 3 is
performed by the CALVIN runtimes considering the output of the smart
contract.

For the first step, a heartbeat-based identification of the lost SAU
using the CALVIN framework is implemented. Each SAU is CALVIN
Runtime (in addition to being a blockchain peer and a client) that hosts
the grid operation functions and the heartbeat function as actors. A
detailed explanation the virtualization of all grid operation functions
with CALVIN is presented in [7]. The heartbeat function retrieves the list
of SAUs in its distribution grid by querying the blockchain and sends a
ping command to all of them periodically. A lost SAU is identified by
another SAU when the latter does not receive an acknowledgement
message back from the former. A detailed explanation of generating the
ping command and processing the response from all the other SAUs using
the CALVIN is presented in [7].

Generally, the Master Calvin node is responsible for orchestrating the
migration of the actors from one runtime to the other using the API of
CALVIN framework. Though this increases the risk of single point of
failure, sufficient redundant master nodes ensure reliable orchestration
of the migration of grid operation functions (Calvin Actors). This study
just utilizes CALVIN for a proof of concept implementation, all the
architectural drawbacks such as this single point of failure should be
avoided by utilizing fail tolerant migration orchestration frameworks.
However, to partially tackle this single point of failure and possible
corruption of the data sent by a single master node a set of master nodes
are utilized in validating the SAUs that are lost in the First step.

For the identification of the lost SAUs, all the master nodes retrieve
the list of SAUs from the ledger which are deployed in the same distri-
bution grid area and send periodic heartbeat signals to all of them. For
retrieving the data from the ledger, the Calvin Runtimes configured as
Master nodes post a request via the Node-Red to retrieve the information
from the blockchain. The master nodes then send a heartbeat signal to all
the SAUs using the Calvin API. The information retrieval from the ledger
and the sending the heartbeat signal is done periodically. When an
acknowledgement message from specific SAUs is not received within the
pre-defined timeout time, the specific SAUs are declared dead by the
master nodes and a DEAD SAU Transaction with the ID of the Lost SAUs is
published. A smart contract logic is used to determine if more than 50%
Fig. 12. Mapping between calvin a
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of the master nodes publish DEAD SAU transaction for the same SAU ID
to emit the SAUs Lost Event is emitted after appending the list of the
DEAD SAUs in the ledger. This process reduces the risk of single point of
failure in determining the lost SAUs. However, once the Lost SAUs are
determined, upon the reception of the SAUs Lost event, the master node
with the highest priority index then submits the Migration analysis
Transaction and initiates the Step 2. A flow diagram of this process is
shown in Fig. 13.

In Step 2 the smart contract is triggered by the reception of the
Migration analysis Transaction. It determines the optimal SAU for host-
ing the functions of one of the lost SAUs and emits the Migration Noti-
fication Event with the ID of the lost SAU and the ID of the destination
SAU.

In Step 3, the Migration Notification is received by all the blockchain
clients (PSAUs and SSAUs). All the SAUs stop their periodic update of the
states (that are regularly requested by the blockchain client from the
Calvin Runtime) to the blockchain. The blockchain client of the Calvin
Master Node will raise a request the blockchain client to query the latest
state of the grid operation functions from the blockchain. The blockchain
client queries the ledger (using the query: Select Actors by Runtime) and
provides the states of the different grid operation functions to the Calvin
master node The Calvin master node then initializes the grid operation
function in the new SAU. The detailed steps involved in the selection of
the optimal SAU and the migration of the grid operation functions of the
lost SAU is depicted in Fig. 14.

Finally, the new SAU Runtime, to which the grid operation functions
were migrated, posts to its blockchain client about its new status change.
The blockchain client then submits a Migrate Actor transaction(with the
ID of the Lost SAU, ID of the new SAU, ID of the grid operation function
and time of start of the migration) for each grid operation function
(Calvin Actor) that was migrated. This triggers a smart contract logic that
transfers the ownership of the migrated grid operation functions to the
new SAUs. An Actor Migration Done event is emitted notifying the end of
the migration of a grid operation function. After this update is done, the
smart contract checks if all the grid operation functions of the lost SAUs
have been migrated, if they have been then it emits the Migration Done
Event, else, Step 2 to Step 4 are repeated. Finally once theMigration Done
event is received by the master node, it sends the final transaction:
Migration Complete to trigger the event: Commence Normal operation,
that enables all the other runtimes to resume their periodical actions. The
detailed sequence of processes involved in the Step 4 is depicted in
Fig. 15.
nd blockchain via Node-RED.



Fig. 13. Identification of lost SAUs (substation automation units) flow diagram: Step 1.

Table 4
Priority vector: Input to TOPSIS.

Attribute Weight

%CPU Availability
*Clockrate

0.1323

RAM 0.2663
Bandwidth Utilization 0.1323
RTT 0.3584
Cores 0.0554
Network Bandwidth 0.0554
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5. Test case and results

5.1. Test scenario description

For evaluating the actor migration process, a four peer blockchain
network is created using the Hyperledger Fabric and then the Composer
application is deployed to the blockchain network. Using Node-RED
flows, four runtimes (i.e. participants) are created in the ledger and
then four actors (i.e. assets) are created for each runtime. Furthermore,
data is updated for all the runtimes and actors by submitting the trans-
actions via Node-RED flows. For the actor to be migrated, the AHP
pairwise comparison matrix is created by the decision-maker and then
the priority vector are as shown in Table 3 and Table 4 respectively.

Along with the actor's state information, the priority vector is also
added in the ledger (or asset registry) and considered to be fixed for the
tested scenario. In addition, for testing purposes, the values of compu-
tation resources are assumed constant for each runtime as presented in
Table 5.

A subset of the actor's state as fetched from the ledger, namely the
Table 3
AHP (Analytical Hierarchy Process) pairwise comparison matrix.

Comparison Matrix % CPU Availability
*Clockrate

RAM Bandw

%CPU Availability
*Clockrate

1 1/3 1

RAM 3 1 3
Bandwidth Utilization 1 1/3 1
RTT 1 2 3
Cores 1/3 1/4 1/3
Network Bandwidth 1/3 1/4 1/3

TOPSIS: technique for order preference by similarity to ideal solution; RTT: round tr
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actor ID, actor name, current runtime and its name, a test scenario is
created as shown in Fig. 16 for evaluating the migration process.

Three test cases are presented. The first test case showing the opti-
mality of the MADM based runtime selection is presented. In test case 2
the performance metrics namely the latency and throughput of the pro-
totype implementation based on Hyperledger fabric are presented. The
impact of network scaling and batch time out time is explained.
idth Utilization RTT Cores Network Bandwidth

1/3 3 3

1/2 4 4
1/3 3 3
1 5 5
1/5 1 1
1/5 1 1

ip time.



Table 5
Resource data for testing: TOPSIS Data Matrix.

Resources % CPU
Availability
*Clockrate
(GHz)

RAM
(GB)

Bandwidth
Utilization
(%)

RTT Cores Network
Bandwidth

Runtime 1
(SAU 1)

72*2.2 13 70 13 4 1

Runtime 2
(SAU 2)

85*1.4 7 55 14 2 10

Runtime 3
(SAU 3)

67*2.6 10 28 9 2 10

Runtime 4
(SAU 4)

50*2.1 18 51 6 4 10

TOPSIS: technique for order preference by similarity to ideal solution; RTT:
round trip time; SAU: substation automation unit.
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5.2. Test case 1: performance of MADM based optimal runtime selection

The Migration Analysis transaction is triggered via Node-RED flow
created for a Runtime 3 which then executes the smart contract on all
four peers. From the smart contract's output (i.e. emitted event tabulated
in Table 6), it can be seen that Runtime 1, Runtime 2 and Runtime 4 were
qualified as the target runtimes for actor migration. Smart contract
applied TOPSIS technique on the data matrix as shown in Table 5, created
from selected runtime's data and then chose the runtime with highest
relative closeness. Therefore, from Table 6, it can be seen that Runtime 2
Fig. 14. Identification of optimal SAU (substation automation unit
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has the highest relative closeness and is chosen as the new destination
runtime for actor placement.

5.3. Test case 2: performance evaluation

In order to evaluate the performance, two peers and four peers
blockchain networks are setup using Fabric and also parameters such as
batch timeout and batch size are modified to change the Fabric network
configuration. The Batch Timeout is the waiting time after the arrival of
the first transaction for further transactions before creating a block and
the Batch Size parameter contains max_message_count which sets the
maximum number of transactions per block and absolute_max_byteswhich
limits the size of the block. In Composer business network running over
Fabric, four runtimes are created and then four actors for each runtime
are created. For the latency calculations, the data is collected for each
transaction as follows:

The transaction deployment time is the time (ISO 8601 format) when
the transaction is triggered via runtime's Node-RED flow. The transaction
completion time is the time (ISO 8601 format) when the block containing
respective transaction gets committed to the ledger. Latency is defined as
the time difference between transaction completion time and transaction
deployment time. The average latency is defined as the mean of latency
of transactions present in a data set created for a specific type of trans-
action. In the further sections, the variation in the average latency is
explored by changing the number of blockchain peers, batch timeout and
the number of transactions per block.
) and migration of grid operation functions: Step 2 and Step 3.



Fig. 15. Step 4 Updating the new statuses after migration.

Fig. 16. Test scenario.

Table 6
Relative closeness.

Resources Relative closeness

Runtime 1 (SAU 1) 0.3275
Runtime 2 (SAU 2) 0.6400
Runtime 4 (SAU 4) 0.6007

SAU: substation automation unit.
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5.3.1. Test case 2: Impact of network scaling
This test is performed with only one runtime invoking the trans-

actions via Node- RED, therefore, there is only one transaction per block
and there are no parallel transactions from other runtimes. By config-
uring two peers and four peers blockchain networks with configuration
i.e batch timeout (2 s), a data set containing 25 records (or blocks) for
each transaction is created for both networks. Then the average latency is
calculated individually for each data set. Thereafter, the comparison
between the average latency calculated for both networks for each
transaction is shown in Fig. 17. It is observed that the latency increases
with respect to the number of blockchain peers. The reason could be that
more time is required by the four peers network in reaching a consensus.
Since the evaluation is performed locally, the machine resources are now
shared by four peers, therefore, this could slow down the processing of
transactions at each peer. All blockchain peers process the transaction
and generate an output and only if the results from all the peers are
identical, will the transaction be committed to the ledger. Consequently,
the time to receive confirmations from all peers in a four peer network is
more than a two peer network. When peers are located separately,
resource allocation may not be a problem, but network delays could
affect the transaction latency. Therefore, keeping in mind the above
analysis, the effect of scaling the blockchain network should be taken into
account while designing the blockchain platform for grid applications.

5.3.2. Test case 2: Impact of batch time out
A four peers Fabric network with two different configurations i.e.

batch timeout set to 1 s and 2 s, are setup for this evaluation and only one
runtime is invoking the transactions via Node-RED in this test. For both
configured networks, a data set containing 25 records (or blocks) for each
transaction is created and then average latency is calculated individually
for each data set. Thereafter, the comparison between the average la-
tency calculated for both networks for each transaction is shown in
Fig. 18. It is observed that decreasing the batch timeout would improve



Fig. 17. Average Latency vs Number of peers.
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the latency. For example, in the implemented model, the migration
transactions (i.e. Migration Analysis and Migrate Actor) are always
processed as a single transaction per block therefore there is no need to
wait for further transactions to be added to the block. Hence, batch
timeout value equal to 1 s would be good if there is a need to minimize
actor migration time. However, this also reduces the throughput of the
network. Thus, while developing a blockchain platform for grid appli-
cations, it needs to be taken into consideration that batch timeout value
would affect the latency as well as throughput.

6. Conclusions

A novel approach for improving the resiliency of the grid automation
system by utilizing a blockchain-based smart contract was introduced
Fig. 18. Average Latenc
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and a prototypical implementation was demonstrated. This technique
could reduce the service downtime by migrating applications of attacked
or failed nodes, to new destinations. A blockchain development frame-
work i.e. Hyperledger Composer (along with Hyperledger Fabric) inte-
grated with the distributed IoT environment i.e. Calvin, was utilized to
realize the concept, validate the functioning of the prototype and
investigate the performance. The implemented application was validated
by performing application (or actor) migration for a predicted test sce-
nario. It was observed that the transaction latency increases with an in-
crease in the number of blockchain peers since peers took more time in
reaching a consensus. Secondly, the transaction latency was evaluated
with respect to batch timeout. It was observed that decreasing the batch
timeout improves the transaction latency. Lastly, it was observed that the
transaction latency increases with an increase in number of the
y vs Batch Timeout.
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transactions per block. This is due to the fact that as the number of
transactions per block increases, the block committing time also in-
creases. It can be concluded that it is possible to migrate the grid control
functions to different physical systems by utilizing the smart contract
solution. However, the performance of this solution would depend upon
the configurational and runtime parameters. Therefore, while designing
real world applications, the impact of these evaluated parameters as well
as other possible parameters, such as network delays, should be taken
into consideration.
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