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Abstract

The spatial resolution of electron probe microanalysis is currently restricted to a volume

larger than the volume of interaction between beam electrons and the sample, because the

utilized models to predict k-ratios assume a homogeneous chemical composition inside that

volume. The chemical composition of the sample is reconstructed by solving the inverse

problem of finding the composition such that a model best reproduces the k-ratios measured

within the experiment. To improve the spatial resolution, more sophisticated modeling of

the k-ratios is necessary. In this work, a model to calculate k-ratios based on the M1-Model

is considered. The M1-Model is solved using the finite volume library CLAWPACK and

the inverse problem is investigated for spatially varying chemical compositions within the

interaction volume. Furthermore the inverse problem for a particular sample is solved using

iterative gradient based optimization methods in combination with the adjoint state method

to calculate gradients.

Zusammenfassung

Die räumliche Auflösung der Elektronenstrahlmikroanalyse ist derzeit beschränkt auf ein

Volumen, das größer ist als das Interaktionsvolumen zwischen Strahlelektronen und der Probe,

da die verwendeten Modelle zur Berechnung der k-Ratios eine homogene chemische Zusam-

mensetzung innerhalb des Interaktionsvolumens annehmen. Die chemische Zusammensetzung

der Probe wird berechnet, indem das inverse Problem des Auffindens einer Zusammensetzung

gelöst wird, sodass ein Modell die experimentell bestimmten k-Ratios möglichst gut reprodu-

ziert. Um die räumliche Auflösung zu verbessern müssen ausgefeiltere Modelle zur Berechnung

der k-Ratios benutzt werden. In dieser Arbeit wird ein k-Ratio Modell betrachtet, das auf dem

M1-Modell basiert. Das M1-Modell wird mithilfe der Finite-Volumen Bibliothek CLAWPACK

gelöst und das inverse Problem wird für innerhalb des Interaktionsvolumens variierende che-

mische Zusammensetzungen untersucht. Außerdem wird das inverse Problem anhand einer

Beispielprobe mithilfe iterativer gradienten-basierter Optimierungsmethoden in Verbindung

mit der Adjungiertenmethode zur Berechnung der Gradienten gelöst.
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Introduction

Motivation The chemical composition of solid materials is a quantity of interest in many fields of

research. In geophysics the components of minerals are investigated to understand their origin and

formation, as well as to predict their utilization. Even meteorites are analysed to figure out their

origin. But most commonly it is of interest in engineering and material science to make predictions

about material properties, to perform fracture analysis or quality control.

Electron probe microanalysis (EPMA) is a method to determine the chemical composition of solid

materials on a micro scale without destroying its structure. A material sample gets excited by a

focused electron beam, causing the atoms to emit x-rays. The intensity of generated characteristic

x-rays is measured by a detector and normalized to so-called k-ratios. The composition of the

sample is reconstructed by solving the inverse problem of finding the specific set of chemical com-

positions such that a mathematical model reproduces the k-ratios measured within the experiment

best.

Currently the spatial resolution of EPMA is restricted to a volume larger than the volume of

interaction between beam electrons and the sample, because all models used for reconstruction

assume homogenity or a layered structure inside that volume[4]. To resolve mass concentrations on

a scale smaller than the interaction volume, more sophisticated models, that allow inhomogeneous

composition within the interaction volume, are neccessary. The goal of this work is the analysis

and solution of the inverse problem using a model based on the M1-Model[18], to reproduce the

k-ratios.

Overview Section 1 shows how k-ratios can be calculated from the electron fluence inside the

material. The quantities mass concentration and density are introduced and the physical pro-

cesses taking place inside the sample are described. In addition, the inverse problem is specified

mathematically which involves the definition of an objective function.

The computation of the electron fluence using theM1-Model is discussed in section 2. Section 2.1

describes the individual parts of the model and the modeling of the electron beam as an initial

or boundary condition. In addition, the M1-Model is formulated as a constraint to the objective

function. Section 2.2 explains the finite volume method (FVM) which we use to solve the M1-

Model and presents the implementation of the M1-Model in the FV-library CLAWPACK. Based

on this implementation, section 2.3 shows a numerical evaluation of the M1-Model.

Section 3 deals with the solution of inverse problem. Section 3.1 investigates the convexity of the

objective function with respect to different chemical compositions, detector positions, as well as

beam positions and energies. Section 3.2 briefly describes gradient based optimization methods to

solve the inverse problem and the fast and accurate gradient calculation using the adjoint state

method. In section 3.3 the adjoint state method is applied to our objective function. Finally in sec-

tion 3.4 the implementation of the adjoint state method is validated and the chemical composition

of an sample is reconstructed with high resolution.

INTRODUCTION 1



1 Electron Probe Microanalysis

In electron probe microanalysis the goal is to determine the chemical composition of solid materials.

For that purpose the fluorescence property of chemical elements, e.g. copper, nickel or chromium

are exploited. The specimen whose chemical composition is to be determined, is bombarded with

electrons generated by a electron source, that are accelerated and focussed as a beam. A sketch of

the method is shown in figure 1.

Sample

Interaction Volume

Electron Beam

e−

Atom

X-Ray

Detector

Figure 1: Sketch of EPMA

Electrons enter the sample and interact with the atoms inside the specimen. The physical pro-

cesses generating x-radiation inside the sample are bremsstrahlung and characteristic radiation.

Bremsstrahlung is generated by the deceleration of the electrons when interacting with the posi-

tive charged atom nuclei inside the specimen. The energy lost due to deceleration is emitted as

x-rays, therefore the spectrum is continuous and acts like a background noise in EPMA[18] and

will not be further regarded here.

Characteristic radiation results from beam electrons exciting inner shell electrons from atoms inside

the specimen. An atom gets ionized with a vacancy on its inner shell, which leaves it in an excited

state and it relaxes by filling the inner shell vacancy with an outer shell electron. The energy loss

of the electron falling from an outer onto an inner shell leads to the emittation of a x-ray whose

wavelength corresponds to the energy loss. As energy levels of electron shells are characteristic

for each atom, such x-rays are likewise characteristic and provide information on the chemical

composition of the specimen. Traveling through the material a part of the x-rays gets absorbed,

the remaining part is emitted and can be measured on a detector.

The energy levels of nickel with its shells K,L,M and subshells I - IV are shown in figure 2.

The arrows symbolise the transitions, the relaxiation by falling from a higher subshell, Kα and

Kβ.

1 ELECTRON PROBE MICROANALYSIS 2



1.1 Mass Concentration and Density

8332.8 eV KI

1008.1 eV LI

871.9 eV LII

854.7 eV LIII

111.8 eV MI

68.1 eV MII/III

3.6 eV MIV/V

Kα1 Kα2

Kβ

Figure 2: Energy levels of nickel with subshells and Kα, Kβ transitions

In this section we will introduce the physical quantities mass concentration and mass density, which

define the chemical composition of the sample and are the quantities to be reconstructed. Building

upon them and the electron fluence, which is the topic of section 2, we peruse the physical processes

occurring inside the sample. The section is finished with the calculation of k-ratios, the quantity

measured from experiments and the definition of the inverse problem that arises in electron probe

microanalysis.

1.1 Mass Concentration and Density

In a solid material sample of volume Ω consisting of multiple chemical elements the mass concen-

tration is defined using an infinitesimally small control volume dx̄ around the position x̄ ∈ Ω. For

the total mass inside this control volume we write mtot and for the partial mass of each element

mi. The mass concentration of an element i inside dx̄ is

ci =
mi

mtot
. (1.1)

Mass is always positive and the sum of all partial masses has to add up to
∑
im

i = mtot. Therefore

we impose two constraints on the mass concentration

ci ≥ 0 and
∑

i

ci = 1 . (1.2)

Therefore only m− 1 mass concentrations can be chosen in an sample of m elements, such that for

the last element m the mass concentration is

cm = 1−
m−1∑

i

ci . (1.3)

Due to the formation of various atomic structures during the production of the material sample,

also the density varies

ρ =
mtot

dx̄
. (1.4)

We want to locally resolve both quantities, so the mass concentrations and the density are functions

of the position x̄

ci(x̄) : Ω→ R ρ(x̄) : Ω→ R . (1.5)

1 ELECTRON PROBE MICROANALYSIS 3



1.2 Ionization Cross Section

Additionally we will define the partial density of an element i as

ρi(x̄) =
mi

dx̄
= ci(x̄)ρ(x̄) . (1.6)

As we later want to approximate density and mass concentration numerically, we need to discretise

them. In this work we model the material in two spatial dimensions, so we can approximate mass

concentrations and density as a piece-wise constant function on grid cells T j

ci(x̄) = cij if x̄ ∈ T j (1.7)

ρ(x̄) = ρj if x̄ ∈ T j . (1.8)

In this work the quantities mass concentration and density are also referred to as parameters. As

a mathematical quantity we define both collectively in one parameter vector p

p =




c00
...

cm−1
0

c01
...

cm−1
1

...

ρ0

...








mass concentrations of grid cell T 0





mass concentrations of grid cell T 1

}
mass concentrations of grid cells T 2,...



 densities of all grid cells T j

. (1.9)

1.2 Ionization Cross Section

In this section we assume that the angular-average electron fluence ψ0(x̄, ε) at energy ε and position

x̄ is known as it will be the topic of section 2. Based on mass concentraions, density and the electron

fluence we now derive the detected intensity of x-rays.

The reason for the ionization of an atom is the collision with electrons. The number of electrons

hitting an atom of element i can be denoted by

N i
V (x̄)ψ0(x̄, ε) , (1.10)

where the number of atoms of element i per cubic meter N i
V (x̄) is

N i
V (x̄) = ρi(x̄)

NA
Ai

, (1.11)

with ρi(x̄) the partial density, Ai the atomic mass of element i and NA Avogadro’s constant.

Only a fraction of those collisions lead to ionization of atoms. The fraction is called the ionization

cross section σion. It is specific to each element and we also have to distinguish the subshells, as the

released energy differs (see figure 2). In this work we will only consider ionization of K-shell (the

1 ELECTRON PROBE MICROANALYSIS 4



1.3 Fluorescence Yield

innermost shell) electrons, so σi,jion denotes the fraction of ionization events leading to a electron

transition j (e.g Kα1). σi,jion is given in [24] with

σi,jion(ε) =
ZKa

2
HFR

2ΨΦ ln υ

E2
Kυ

, (1.12)

where υ = ε
EK

is the ratio of beam electon energy ε to edge energy EK of the bound electrons. ZK

is the ground state occupancy of the shell, aH the Bohr radius and R the Rydberg energy. The

other quantities are

Ψ =

(
EK
R

)(−0.0318+ 0.3160
υ − 0.1135

υ2 )

(1.13)

Φ = 10.57e−
1.736
υ + 0.317

υ2 (1.14)

F =

(
2 + I

2 + T

)(
1 + T

1 + I

)2(
(I + T )(2 + T )(1 + I)2

T (2 + T )(1 + I)2 + I(2 + I)

)3/2

(1.15)

I =
EK
mc2

(1.16)

T =
ε

mc2
. (1.17)

1.3 Fluorescence Yield

Besides from releasing the energy, which got availiable from the electron transition, as an x-ray,

there is the chance of releasing the energy by the ejection of another electron from an outer shell.

This is called the Auger effect. For x-ray radiation this means, that only a fraction of ionization

events leads to x-ray emission. This fraction is called fluorescence yield ω.

As our interest lies in ionization events of the K-shell only, the fluorescence yield of the K-shell

ωK will be considered here. An approximation of ωiK by a polynomial in the atomic number Zi,

is given by [10] [11]

ωiK =

4∑

n=0

αn(Zi)n , (1.18)

with experimentally determined coefficients αn given in Table 1.

an a0 a1 a2 a3 a4

Z ∈ [11, 19] 1.4340e−1 −2.5606e−2 1.3163e−3 0 0

Z ∈ [20, 99] −7.6388e−1 5.4070e−2 −4.0544e−4 −1.4348e−6 1.8252e−8

Table 1: Tabulated coefficients for the fluorescence yield

Combined with the ionization cross section this yields the fraction of collisions resulting in the

generation of characteristic x-rays

σi,jemiss(ε) = ωiKσ
i,j
ion(ε) . (1.19)

We obtain the intensity I0,i,j of generated x-rays j characteristic for element i generated at position

1 ELECTRON PROBE MICROANALYSIS 5



1.4 Mass Attenuation

x̄ from integration over all energies

I0,i,j(x̄) = N i
V (x̄)

∫

ε

σi,jemiss(ε)ψ
0(x̄, ε) dε . (1.20)

1.4 Mass Attenuation

While traveling through the material the x-rays get attenuated according to Beer-Lambert’s law[30]

dIi,j(x̄)

dx̄
= −µ(x̄, Ei,j)Ii,j(x̄) . (1.21)

The linear attenuation coefficient µ(x̄, Ei,j) in a compound is defined in [12] as

µ(x̄, Ei,j) =
∑

k

ck(x̄)ρ(x̄)

(
µ

ρ

)k

Ei,j
=
∑

k

ρk(x̄)

(
µ

ρ

)k

Ei,j
(1.22)

where
(
µ
ρ

)k
Ei,j

is the mass attenuation coefficient specific to element k, which also depends on the

x-ray energy Ei,j . The mass attenuation coefficients have been determined by experiments and are

tabulated in [12].

To model the mass attenuation of x-rays generated at x̄, we define a linear path from each position

x̄ inside the specimen to the detector x̄d

d(x̄) = {x̄+ λ(x̄d − x̄), λ ∈ [0, 1]} . (1.23)

The intensity on the detector then reads

I0,i,j(x̄)e−
∫
d(x̄)

µ(y,Ei,j) dy , (1.24)

which is a solution to Beer-Lambert’s law.

1.5 Detector Intensity

To calculate the detected intensity we need to take x-rays generated at all positions into account.

Thereby the total intensity of x-rays j characteristic to element i is given by the integral over the

whole domain Ω

Ii,j =

∫

Ω

I0,i,j(x̄)e−
∫
d(x̄)

µ(y,Ei,j) dy dx̄

=

∫

Ω

N i
V (x̄)e−

∫
d(x̄)

µ(y,Ei,j) dy
∫

ε

σi,jemiss(ε)ψ
0(x̄, ε) dε dx̄ .

(1.25)

This assumes that every x-ray generated inside the specimen travels towards the detector or every

x-ray leaving the sample gets detected. A legit assumption because the generated x-rays do not

have a preferred direction and the intensities will be normalized later (k-ratios).

1 ELECTRON PROBE MICROANALYSIS 6



1.6 K-Ratios

1.6 K-Ratios

The fraction of detected x-rays is proportional to the size of the detector. But also additional

uncertainties, e.g. the efficiency of the detector influence Ii,j . Those uncertainties can be eliminated

if we normalize the intensities using standard intensities Istd measured by the same experimental

setup but with samples which chemical composition is known. The normalized intensities are called

k-ratios.

ki,j =
Ii,j

Ii,jstd
. (1.26)

In this work only artificial measurements from simulations of the experiment were used instead of

real experiments. The uncertainties were not modeled by the simulation, therefore we can neglect

them here and calculate the k-ratios using Ii,jstd = const.

In EPMA an experiment is typically conducted with multiple beam energies and beam positions.

Especially for the spatial resolution, the inclusion of multiple beam positions is important. For

various positions, the electrons interact in different parts of the sample and all of these experiments

yield different k-ratios. Therefore we introduce a new subscript ·ex which indicates the relation of

different quantities to a specific experiment. The k-ratio for an experiment ex, x-ray j of element

i is called ki,jex . The k-ratio ki,jex is a function of the parameters p, but for the sake of clarity I drop

the parenthesis (p).

1.7 The Inverse Problem

Previously we have shown how to calculate k-ratios ki,jex from the electron fluence (section 2) and

the samples mass concentration and density. Given this mathematical model, we now want to take

actual measurements of the k-ratios into account. We call the measured k-ratios k̃i,jex .

To quantify the difference of measured and simulated k-ratios, we define a objective function

J(p) =
∑

ex

Jex(p) =
∑

ex,i,j

1

2
(ki,jex − k̃i,jex )2 . (1.27)

This is the least squares error of the simulated k-ratios with respect to the measured k-ratios. As the

simulated k-ratios depend on the parameters, the objective function is a function of the parameters

p. Per definition the objective function is ≥ 0. If the objective function is minimal we consider the

related parameters to this minimum as the real mass concentrations and density.

We formulate the inverse problem of reconstructing the chemical composition of the material sample

as a minimization problem of the least-squares error (1.27): Find the parameter set p∗, such

that

p∗ = arg min
p

J(p) = arg min
p

∑

ex,i,j

1

2
(ki,jex − k̃i,jex )2 . (1.28)

1 ELECTRON PROBE MICROANALYSIS 7



2 Modeling the Electron Fluence

The derivation of the equations for the intensities/k-ratios (equation (1.25)) assumed that the

electron fluence ψ0(x̄, ε) inside the sample is known. It mainly determines the creation of x-

radiation.

In section 2.1 the M1-Model will be introduced, a mathematical model to describe angular mo-

ments of the electron density distribution function resolved in position and energy. It will also be

incorporated into the inverse problem by formulating it as a constraint. In section 2.2 the finite

volume method, which is used to solve the M1-Model, is presented together with the framework

CLAWPACK, a Python/Fortran finite volume library. Finally we present numerical experiments

in section 2.3.

2.1 M1-Model

The description of the M1-Model is subdivided in a brief derivation in section 2.1.1, a detailed

analysis of the terms of the model in section 2.1.2 and the relation to the electron beam in section

2.1.3. Then we take up the inverse problem again to incorporate the model into it.

2.1.1 Derivation

The M1-Model is derived from the Boltzmann Transport Equation[18], which describes the evo-

lution of a thermodynamic particle system. In our case that is the electrons inside the sample.

Rather than describing each particle independently, they are interpreted as a statistical quantity

on a larger scale. To calculate the k-ratios, the quantity of interest is the angular-average electron

fluence ψ0, which is a function of space x̄ and energy ε. Its progression is governed by advection

of electrons in space and scattering with the background medium (in our case e.g. metal atoms).

The Boltzmann equation handles these discontinuous events averaged, such that predictions for

the electron fluence are possible.

Using a continuous-slowing-down approximation for the energy loss of the electrons, the equation

can be further simplified[18]. In EPMA it is also possible to consider the stationary state, as it

arises quickly after the initial beam exposure. The initial phase can be neglected over the whole

irradiation period.

The M1-Model, which will be used to calculate the electron fluence in this work, is a moment

approximation of these equations with a minimum entropy closure after the first moment. A

detailed derivation and justification of the closure of the M1-Model can be found in [6] [18] [19]

[23].

2.1.2 M1-Model

The M1-Model(2D) is a hyperbolic partial differential equation given by

−∂ε(S(x̄, ε)U(x̄, ε)) + ∂xFx(U(x̄, ε)) + ∂yFy(U(x̄, ε)) = −T (x̄, ε)U(x̄, ε)

∀x̄ ∈ Ω, ε ∈ [εcutoff , εinitial] ,
(2.1)

where S is the stopping power, T the transport coefficient and F are flux functions. In this work

we will consider two spatial dimensions, so the physical domain is Ω ⊂ R × R and is defined as
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2.1 M1-Model

Ω = [x0, x1] × [y0, y1]. The energy ε lies in an interval [εcutoff , εinitial], where the cutoff energy

εcutoff typically is chosen lower than the minimal energy needed to ionize any element inside the

specimen. The initial energy εinitial has to be chosen greater of equal than the energy of beam

electrons, such that the whole process can be modelled.

The state variable U : Ω× [εcutoff , εinitial]→ R3, is defined as

U(x̄, ε) =



ψ0(x̄, ε)

ψ1
x(x̄, ε)

ψ1
y(x̄, ε)


 =



u1(x̄, ε)

u2(x̄, ε)

u3(x̄, ε)


 , (2.2)

where ψ0 denotes the zeroth moment, the angular-average electron fluence and ψ1 the first mo-

ment.

In the following paragraphs the individual terms and quantities of the model equation (2.1), such

as the stopping power S, the flux functions Fx and Fy and the transport coefficient T will be

introduced and explained. To define the mathematical problem uniquely, initial and boundary

conditions are necessary. They and their correlation to the electron beam are dealt with in the

next section 2.1.3.

Stopping Power The term −∂ε(S(x̄, ε)U(x̄, ε)) follows from modelling the energy loss of electrons

as a continuous process, where the stopping power S describes the average energy loss of electrons

travelling with energy ε. The stopping power for a compound is given in [18] as

S (x̄, ε) = ρ(x̄)
∑

i

ci(x̄)

Ai
2πe4Zi

(4πε0)
2
ε

ln(b
ε

J i
) , (2.3)

where ρ is the density and ci is the mass concentration. The remaining quantities are constants:

the vacuum permittivity ε0, the elementary charge e, a relativistic constant b =
√

e
2 as well as the

atomic mass Ai and the atomic number Zi.
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Figure 3: Stopping power for homogeneous elements

The mean ionization potential J i for an element i can be calculated from its atomic number

Zi

J i = e





9.76Zi + 58.8(Zi)−0.19 , Z > 6

11.5Zi , Z ≤ 6
. (2.4)

Figure 3 shows the stopping power for copper, nickel and chromium on a energy range from 5 to

15keV.

Transport Coefficient The source term on the right hand side −T (x̄, ε)U(x̄, ε) with

T (x, t) = diag (0, Tin+el (x, t) , Tin+el (x, t)) (2.5)

is called the inelastic and elastic transport coefficient. In our application elastic collisions dominate

the changes in the direction of electron movement, therefore we neglect the inelastic transport

coefficient[18]. It can be calculated by

Tin+el(x̄, ε) ≈ Tel(x̄, ε)

=
2πe4ρ(x)

16(4πε0)2ε2

∑

i

ci(x)(Zi)2

Ai

(
8

cos(θi0(ε))− 3
+ 4(ln(3− cos(θi0(ε)))− ln(1− cos(θi0(ε))))

)
,

(2.6)

where θi0 is the screening angle, Ri is the screening radius and λ the de Broglie wavelength

θi0(ε) =
λ(ε)

2πRi
, Ri = aH(Zi)

−1/3 , λ (ε) =
h√

2m0ε
. (2.7)

2 MODELING THE ELECTRON FLUENCE 10



2.1 M1-Model

Constants used in this equations are the Bohr radius aH , Planck’s constant h, the electron rest mass

m0, the elementary charge e and the vacuum permittivity ε0. In figure 4 the transport coefficient

is shown for copper, nickel and chromium.
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Figure 4: Transport coefficient for homogeneous elements

Flux Function The mathematical flux functions for a two dimensional system are given by

Fx(U) =




u1

u0

(
1−χ(|α|)

2 +
u2

1

u2
1+u2

2

3χ(|α|)−1
2

)

u0

(
u1u2

u2
1+u2

2

3χ(|α|)−1
2

)


 (2.8)

Fy(U) =




u2

u0

(
u1u2

u2
1+u2

2

3χ(|α|)−1
2

)

u0

(
1−χ(|α|)

2 +
u2

2

u2
1+u2

2

3χ(|α|)−1
2

)


 , (2.9)

where χ is the Eddington factor. The mathematical flux F (U) couples the equations for u1, u2

and u3. To calculate the Eddington factor, we need to define the anisotropy parameter

α =
ψ1

ψ0
=

1

u1

(
u2

u3

)
(2.10)

and its length

|α| =
√
u2

2 + u2
3

u1
. (2.11)

In [18] it has been proven, that the anisotropy parameter is bounded by |α| ≤ 1. The Eddington

factor implicitly depends on |α| and will be approximated[18] by a rational function in |α|

χ(|α|) ≈ a6|α|6 + a4|α|4 + a2|α|2 + a0

|α|4 + b2|α|2 + b0
. (2.12)
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2.1 M1-Model

The coefficients ai and bi are given in table 2.

i 6 4 2 0

ai 0.720371 −0.139318 0.348509 0.621529

bi - - −1.32002 1.87095

Table 2: Tabulated coefficients for the Eddington factor

2.1.3 Electron Beam as Initial or Boundary Condition

Until now the developed model only describes the electron interactions inside the specimen, but

we also need to model the electrons from the beam. As they enter from outside the specimen, the

obvious idea is to use boundary conditions.

For theM1-Model there are two possibilities considered here, one modeling the beam as a boundary

condition, another modeling it as an initial condition.

Boundary Condition We assume, that the beam electrons are normally distributed in energy, so

we can write the intensity of electrons as

I(ε) = e(−bε(ε−εbeam)2) . (2.13)

In this equation εbeam is the beam energy and bε is a constant, which defines the beams variance

in energy. The beam hits the sample from positive x direction and is assumed to be normally

distributed in its spatial dimension, so as a boundary condition we suggest

U(x̄, ε) =



I(ε)e(−bx(x−xbeam)2)

−I(ε)e(−bx(x−xbeam)2)

0


 x ∈ δΩ . (2.14)

xbeam is the x-position of the beam center, x is the first component of x̄ =

(
x

y

)
and bx defines

the width of the beam. Due to the boundary condition for the first moment ψ1 the beam electrons

move only in negative x-direction. ψ1 is chosen as large as possible, but must not violate the

condition |α| ≤ 1. The boundary condition (equation(2.14)) should only be set on the boundary

where electrons enter the sample, otherwise U(x̄ ∈ δΩ, ε) = 0.

The initial state is U(x̄, ε = εinitial) = 0 in this case, which means that no electrons with εinitial

are in the material. The initial energy should be chosen εinitial > εbeam, such that I(εinitial) ≈ 0

and the boundary condition does not introduce a discontinuity.

Initial Condition Another approach is to model the beam as an initial condition εinitial =

εbeam

U(x̄, ε = εinitial) =



e(−bx(x−xbeam)2)e(−by(y−ybeam)2)

0

−e(−bx(x−xbeam)2)e(−by(y−ybeam)2)


 , (2.15)

with boundary conditions U(x̄, ε) = 0 ∀x̄ ∈ ∂Ω. Physically this means, that the electrons start
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2.1 M1-Model

traveling inside the specimen, but we can choose the position xbeam, ybeam close to the sample

surface to make it realistic.

Congruity with the M1-Model As the equations inside the domain (equation 2.1) also define

the information flow over the boundary, our boundary conditions are not congruous to the model

equations. Only the characteristics flowing into the domain should be set by boundary conditions.

Our approach of modeling the beam as a boundary condition or setting the boundary to zero

violates this condition. But if we request, that the computational domain Ω is large enough so

electrons do not travel out of it, they work in practice (see section 2.3). Due to the large domain,

the boundary has little effect on the solution.

It is also possible to extrapolate the solution at the boundary and obtain similar results, but all

examples in this work use zero as a boundary condition.

2.1.4 M1-Model as a Constraint to the Optimization Problem

The solution of the M1-Model is dependent on beam position (xbeam, ybeam) and energy (εbeam),

which were previously defined by an experiment ex. With ∇x̄ =

(
∂x

∂y

)
and F =

(
Fx

Fy

)
we can

denote the M1-Model as

Gex(U, p) = −∂ε(S(x̄, ε)U(x̄, ε)) +∇xF (U(x̄, ε)) + T (x̄, ε)U(x̄, ε) = 0

∀x̄ ∈ Ω, ε ∈ [εcutoff , εinitial] .
(2.16)

If Gex(Uex, p) = 0, Uex is a solution to the M1-Model with parameters p and for an experiment

ex. Gex depends on the parameters p, because the material properties S and T depend on p. We

can refer to Gex as a constraint to the optimization problem defined in section 1.7

min
p

J(c) = min
p

∑

ex,i,j

1

2
(ki,jex − k̃i,jex )2

Gex(Uex, p) = 0 ∀ex .

(2.17)

Both equations are coupled, because the k-ratios ki,jex depend on the electron fluence, which is the

first component of Uex.
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2.2 The Finite Volume Method in CLAWPACK

2.2 The Finite Volume Method in CLAWPACK

TheM1-Model, which was presented in the previous section, can be mathematically classified as a

hyperbolic partial differential equation. A common method to solve hyperbolic equations are finite

volume methods (FVM)[15][27]. In this section the theory of FVM is briefly presented and the

implementation of the M1-Model using the FV-framework CLAWPACK will be outlined.

In 1D finite volume methods are designed to solve problems of the type

∂tU(x, t) + ∂xF (U(x, t)) = 0 ∀x ∈ Ω, t ∈ [0, T ] , (2.18)

where U : Ω×[0, T ]→ Rn is the state variable, ∂t and ∂x denote the partial derivatives with respect

to time and position and F (·) : Rn → Rn is a flux function. An initial condition is given at time

t = 0 by

U(x, t = 0) = U0(x) ∀x ∈ Ω . (2.19)

As a spatial discretization, the domain Ω is divided into cells Ci with constant size ∆x. The center

point of each cell is xi and the interfaces are at xi± 1
2
. Finite volume methods only keep track of

the solution by the mean value Ui of the solution U(x, t) inside a grid cell Ci

Ui(t) =
1

∆x

∫

Ci

U(x, t) dx . (2.20)

The time is discretized by time steps ∆t, such that the numerical approximation is piece-wise

constant in space for every time step

Unum(x, t) = {Uni if x ∈ Ci and t ∈ [tn, tn+1)} . (2.21)

The objective is to describe the evolution of the solution U regarding the jumps at cell inter-

faces, which are arising in the non-trivial case. This motivates the investigation of Riemann

problems.

2.2.1 Riemann Problem

Consider the Riemann problem

∂tU(x, t) + ∂xF (U(x, t)) = 0 ∀x ∈ Ω, t ∈ [0, T ]

U(x, t = 0) = U0(x) =




UL x ≤ x0

UR x > x0

.
(2.22)

The initial condition U0(x) consists of two states UL and UR, left and right of a given x0 ∈ Ω,

hence there is a jump ∆U = UR − UL at x0.

In the following various hyperbolic equations are considered, differentiated by their flux function

F . The case of a linear scalar, a multivariable and a non-linear flux function are examined.
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2.2 The Finite Volume Method in CLAWPACK

Linear Scalar For a linear scalar case, U : Ω×[0, T ]→ R, n = 1, the flux function reads F (U) = aU

with a ∈ R. The exact solution to this scalar advection problem is

U(x, t) = U0(x− at) . (2.23)

The jump ∆U is propagated through space with constant velocity a, meaning, that at time t̃ the

jump is at x0 + at̃ (see figure 5).

x

U

x0 x0 + at̃

UL

UR

at̃

Figure 5: Linear scalar advection at t = 0 and t = t̃

One can think of the jump ∆U as a wave, traveling through the solution.

Linear System For a linear system, n ∈ N, the flux function is F (U) = AU , where A ∈ Rn×n

is a diagonalizable matrix with real eigenvalues Λ = diag(λ1, λ2, . . . ) and eigenvectors T =

(v1, v2, . . . ).

Choosing characteristic variables W (x, t) = T−1U(x, t), equation (2.22) transforms to

∂tW (x, t) + Λ∂xW (x, t) = 0 . (2.24)

While the original equations were coupled, the characteristic variables can be solved (as seen

in the previous paragraph) independently as n scalar advection equations with initial conditions

W0(x, t) = T−1U0(x, t). The velocities of the characteristic variables are the eigenvalues λ1, λ2, . . .

of A. The solution in characteristic variables then reads

W (x, t) =




...

w0
i (x− λit)

...


 . (2.25)

The transformation back to the original variables is given by U(x, t) = TW (x, t).

The initial jump ∆U in the solution U is split up and propagated. When splitting up the jump

∆U using the eigenvectors {v1, v2, . . . }
∑

i

αivi = ∆U α = T−1∆U , (2.26)

one can identify n waves, with height αi and direction vi.
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Example To give an example of this behavior, choose

A =




1 1 0

0 2 0

0 0 −1


 UL =




1

0.5

2.5


 UR =




3

1.5

1.5


 x0 = 0 . (2.27)

The eigenvectors T and eigenvalues Λ of A as well as the wave heights α are

T =




1
√

2/2 0

0
√

2/2 0

0 0 1


 Λ =




1

2

−1


 α =




1√
2

−1


 . (2.28)

The positions of the waves are illustrated in the following figure 6. From the single discontinuity at

(x0, t = 0) the three waves propagate with constant velocity λi such that at a later point in time

t, the wave is at position xt = x0 + λit.

x
x0

t λ2λ3 λ1

Figure 6: Propagation of waves originating from a single discontinuity

In figure 7 the solution of the specified linear Riemann problem is plotted at time t = 0 (solid line)

and t = 1 (dashed line). When looking through the solution from left to right, one can identify the

three waves and the states in between

UL, UL + α3v3, UL + α3v3 + α1v1, UL + α3v3 + α1v1 + α2v2 = UR . (2.29)
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0.5

1.0

1.5

2.0

2.5

3.0 U1
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Figure 7: Plot of the solution at t = 0(solid) and t = 1(dashed)

Non-Linear System For an arbitrary flux function F we can write the Riemann problem, using

the jacobian DF of F with respect to U , as follows:

∂tU(x, t) +DF (U(x, t))∂xU(x, t) = 0 . (2.30)

In the linear system, the jacobian DF simply was the system matrix A and did not depend on U . In

the non-linear case, the jacobian depends on U and therefore also its eigenvalues and eigenvectors.

Because of the jump in ∆U it even is not clear where to evaluate DF .

If we find an approximation to the jacobian, the theory of linear systems can be applied, with the

difficulty, that there is a different matrix for each Riemann problem. One possible approximation

is the Roe matrix. A Roe matrix Ã(UL, UR) fulfills the conditions to be

• diagonalizable with real eigenvalues,

• consistent: if UL, UR → U also Ã(UL, UR)→ DF (U) and

• conserving: Ã(UL, UR)(UR − UL) = F (UR)− F (UL).

Then the non-linear system can be treated similar to the linear system. Nevertheless it is dif-

ficult to construct such a matrix for arbitrary flux functions F (U). In [15] the simplification

Ã(UL, UR) = DF (UL+UR
2 ) is stated. Later I will use this approach in the numerical solution of the

M1-Model.

2.2.2 Wave Propagation Method

Now we want to extend the analysis of Riemann problems, to regard multiple jumps. Recall that

finite volume methods keep track of the solution only by the mean value inside a grid cell Uni , so a

jump cannot be described at an arbitrary position. From a given solution Uni at time tn the goal is
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to construct the solution Un+1
i at tn+1. The following description refers first to a linear problem,

but the methods can later be extended to nonlinear ones.

Upwind Method for a Linear System Consider a cell Ci with its neighboring cells Ci±1 and their

respective mean values Ui and Ui±1 with jumps at the two interfaces ∆Ui± 1
2

(cf. figure 8).

CiCi−1 Ci+1

UiUi−1 Ui+1

∆Ui− 1
2

∆Ui+ 1
2

∆x∆x ∆x

Figure 8: Three cells Ci−1, Ci, Ci+1

From each of the interfaces there are waves propagating into their neighboring cells. For recon-

struction of Un+1
i we only need to consider waves traveling into Ci, thus waves Wλ>0

i− 1
2

originating

from ∆Ui− 1
2

with positive wave speeds λW > 0 and waves Wλ<0
i+ 1

2

originating from ∆Ui+ 1
2

with

negative wave speeds λW < 0. At time tn+1 = tn + ∆t the waves have propagated ∆tλ into cell

Ci. The average value changed to

Un+1
i = Uni −

∑

W∈Wλ>0

i− 1
2

∆t

∆x
λWαW vW −

∑

W∈Wλ<0

i+ 1
2

∆t

∆x
λWαW vW , (2.31)

where λW is the wave speed, αW = T−1∆U the wave height and vW the wave’s direction. With

the introduction of A+ and A− as the recombination of an eigenvector T and eigenvalue Λ decom-

position of A regarding only the positive Λ+ /negative Λ− eigenvalues

A+ = TΛ+T−1 = T diag(max(0, λi))T
−1 (2.32)

A− = TΛ−T−1 = T diag(min(0, λi))T
−1 , (2.33)

equation (2.31) can be written as

Un+1
i = Uni −

∆t

∆x




∑

W∈W
i− 1

2

max(0, λW )αW vW +
∑

W∈W
i+ 1

2

min(0, λW )αW vW




= Uni −
∆t

∆x

(
A+∆Ui− 1

2
+A−∆Ui+ 1

2

)

= Uni −
∆t

∆x

(
A+
(
Uni − Uni−1

)
+A−

(
Uni+1 − Uni

))
.

(2.34)

This method (equation(2.34)) is called upwind method for a linear system, because eg. for a wave

moving to the right (positive eigenvalue), the left jump is used for approximation of ∂xU .

Another common notation for finite volume methods is

Un+1
i = Uni +

∆t

∆x
(F̃i− 1

2
− F̃i+ 1

2
) , (2.35)

where F̃i± 1
2

is the numerical flux which has to be reconstructed from the two states of U surrounding
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the interface i± 1
2 . The numerical flux function for the upwind method is[15][27]

F̃i− 1
2

= A+Uni−1 +A−Uni (2.36)

F̃i+ 1
2

= A+Uni +A−Uni+1 , (2.37)

which is the flux function evaluated at an interim state U∗
i± 1

2

F̃i− 1
2

= F (U∗i− 1
2
) . (2.38)

The interim state U∗
i± 1

2

is the state of the solution at xi± 1
2

directly after tn. It can be constructed

using the eigenvectors and eigenvalues

U∗i+ 1
2

= Uni +
∑

W∈Wλ<0

i+ 1
2

αW vW = Uni+1 −
∑

W∈Wλ>0

i+ 1
2

αW vW (2.39)

U∗i− 1
2

= Uni−1 +
∑

W∈Wλ<0

i− 1
2

αW vW = Uni −
∑

W∈Wλ>0

i− 1
2

αW vW . (2.40)

Lax Wendroff Method The upwind method is first order accurate[15]. A method of second order

is the Lax Wendroff Method. If we write equation (2.18) as

∂tU = −A∂xU , (2.41)

the second partial derivative with respect to time can be deduced

∂ttU = ∂t(−A∂xU) = A2∂xxU . (2.42)

The Taylor series in time of the solution U at a point x is

U(x, t+ ∆t) = U(x, t) + ∆t∂tU(x, t) +
∆t2

2
∂ttU(x, t) +O(∆t3) , (2.43)

which is, by replacing temporal with spatial derivatives (2.41) and (2.42)

U(x, t+ ∆t) = U(x, t)−∆tA∂xU(x, t) +
∆t2

2
A2∂xxU(x, t) . (2.44)

Using finite difference approximations for the spatial derivatives of U , this can be written as

Un+1
i = Uni −

∆t

2∆x
A(Uni+1 − Uni−1) +

∆t2

2∆x2
A2(Uni−1 − 2Uni + Uni+1) . (2.45)

Although the derivation is based on a finite difference scheme, the Lax Wendroff Method can be

written in conservative finite volume form [15]

Un+1
i = Uni +

∆t

∆x
(F̃i− 1

2
− F̃i+ 1

2
) , (2.46)
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together with the numerical flux

F̃i− 1
2

=
1

2
A(Uni−1 + Uni )− ∆t

2∆x
A2(Uni − Uni−1) . (2.47)

The numerical flux F̃i+ 1
2

can be derived from equation (2.47) by changing i→ i+ 1. Since in the

Taylor series terms higher than order 2 got omitted, the Lax Wendroff Method is second order

accurate.

Limiters It is known, that second order schemes tend to oscillate around discontinuities [8] [15].

To maintain second order accuracy in smooth regions of the solution and prevent oscillations around

discontinuities, there is the concept of flux limiting.

If we, asides from A+ and A−, define |A| = A+ −A− the ”absolute value” of A = A+ +A−, it can

be proved that A2 = |A|2. The Lax Wendroff flux (equation (2.47)) can be, using the binomial

formula and the previously derived properties of |A|, written as

F̃i− 1
2

= A+Uni−1 +A−Uni +
1

2
|A|(I − ∆t

∆x
|A|)(Uni − Uni−1) . (2.48)

The first two summands are the same as in the flux for the upwind method (2.36). The upwind

method is first order accurate, so we can interpret the last summand as second order correction

terms. One can also split up the correction term and write a correction for each independent

wave

F̃i− 1
2

= A+Uni−1 +A−Uni +
1

2

∑

W∈W
i− 1

2

|λW | (1−
∆t

∆x
|λW |)αW vW . (2.49)

To reduce the order of accuracy of the flux to first order at discontinuities, a limiter variable Φ is

introduced. The idea is to limit each wave independently

F̃i− 1
2

= A+Uni−1 +A−Uni +
1

2

∑

W∈W
i− 1

2

|λW | (1−
∆t

∆x
|λW |)ΦWαW vW . (2.50)

If ΦW = 0 the correction term for the wave W vanishes and the flux is first order accurate, otherwise

if Φ = 1 the second order accuracy is retained.

ΦW should depend on a measure of discontinuity of each wave W ∈ Wi− 1
2
, therefore we intro-

duce

θW =
αV
αW

V ∈WI− 1
2

I =




i− 1 λW > 0

i+ 1 λW < 0
. (2.51)

V is the wave of the same family as W , meaning they both arise from the same eigenvalue/vector,

but from the neighboring interface I − 1
2 . The direction of travel decides whether to take the right

or left i± 1− 1
2 neighboring interface.

There are many different functions for Φ(θ), two commonly used limiters are

• minmod: Φ(θ) = max(0,min(1, θ)) and

• superbee: Φ(θ) = max(0,min(2θ, 1),min(θ, 2)) .
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2.2 The Finite Volume Method in CLAWPACK

CFL Condition Waves from an interface may only affect their neighboring cells. So the time step

has to be chosen such that

∆t ≤ ∆x

|λ| , (2.52)

where |λ| is the maximum wave speed in the solution[15] [27]. From this we can derive the CFL

condition that must be met for each time step

CFL =
|λ|∆t
∆x

≤ 1 . (2.53)

This means that ∆t and ∆x cannot be chosen independently of each other.

Extension to Non-Linear Systems The wave propagation method has been described for a linear

system, but it can be extended to non-linear systems [15]. As the jacobian then depends on U , it

has to be approximated (eg. with a Roe matrix) and different waves λW , αW have to be calculated

for each interface. Then the second order update for each cell can be done using the equation

(2.35) with the flux function (2.51).

2.2.3 2D Implementation in CLAWPACK

The FVM framework CLAWPACK[17] implements the previously presented method. In this sec-

tion I comment on the implementation of CLAWPACK and my implementation of theM1-Model

with CLAWPACK.

CLAWPACK Implementation of FVM In its 2D Version the finite volume library CLAWPACK

[5] [15] [17] solves equations of the form

κ(x, y, t)∂tU(x, y, t) + ∂xFx(U(x, y, t)) + ∂yFy(U(x, y, t)) = ψ(x, y, t) (2.54)

with an initial condition

U(x, y, t = 0) = U0(x, y) . (2.55)

CLAWPACK uses a splitting approach and first solves the x-direction ∂xFx(U), then the y-direction

∂yFy(U) and finally the source term ψ, which can also depend on U . The capacity coefficient κ

can be specified before each time step. The wave propagation method described above is used with

first or second order accuracy, together with a limiter function.

To implement a custom problem, one has to define

• the discretization and simulation properties: the computational domain, number of grid cells,

end time, desired CFL number, etc.,

• a Riemann solver: a function returning the waves, wave speeds and ”fluctuations” A±∆U ,

for a 1D slices through the solution in x/y-direction,

• a before-step function,which sets the capacity coefficient, and precalculates other properties

used in the Riemann solver or the source function and

• a source function, which given a solution U and a time step dt this function integrates the

source term and adds it to the solution.
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M1-Model Implementation Now the M1-Model is to be tailored, such that it fits the CLAW-

PACK form (equation (2.54)). The M1-Model has the following structure

− ∂ε(S(x̄, ε)U(x̄, ε)) + ∂xFx(U(x̄, ε)) + ∂yFy(U(x̄, ε)) = −T (x̄, ε)U(x̄, ε) . (2.56)

The energy ε is transformed to a pseudo time variable t, as it acts like the temporal derivative in

equation (2.54)

t(ε) = εinitial − ε (2.57)

ε(t) = εinitial − t . (2.58)

Then the derivative reads

∂εf(t(ε)) = ∂tf(t)
dε(t)

dt
= −∂tf(t) (2.59)

and the pseudo time domain is

t ∈ [t(εinitial), t(εcutoff )] = [0, T ] . (2.60)

Using the chain rule and the pseudo-time transformation, equation (2.56) can be written in the

CLAWPACK conform way

S(x̄, t)∂tU(x̄, t) + ∂xFx(U(x̄, t)) + ∂yFy(U(x̄, t)) = (T (x̄, t)− ∂tS(x̄, t))U(x̄, t) . (2.61)

Comparison with the CLAWPACK model equation (2.54) yields

• S = κ the stopping power as the capacity coefficient and

• (T − ∂tS)U = ψ as the source term.

To implement a Riemann solver for CLAWPACK the eigenvalues and eigenvectors of the jacobian

of the flux functions Fx and Fy are required. The jacobian matrices are derived for a 2D System

in [18]. The eigensystem decomposition as well as the inversion of the eigenvector matrix is done

numerically using the Linear Algebra PACKage (LAPACK)[1] in FORTRAN.

2.3 Evaluation of the M1-Model

The previously developed method is used to exemplary simulate the interaction of electrons in an

sample of nickel (Z = 28, A = 58.6934 g
mol ) and chromium (Z = 24, A = 51.9961 g

mol ). The electron

beam has an energy of εbeam = 12 keV and hits the specimen on the upper boundary at position

xbeam = 0. The computational domain has the dimensions [−500 nm, 500 nm]× [−700 nm, 0 nm]

discretized by a 50 × 50 grid and the detector is in the origin (0 nm, 0 nm). The electrons are

simulated in a range from εinitial = 13 keV to εcutoff = 5.2 keV. CLAWPACK is set up to use its

second order reconstruction.

The material is vertically divided in the middle. In the left and right part, the mass concentrations

are

cNi,l = 0.2 cCh,l = 0.8 cNi,r = 0.8 cCh,r = 0.2 . (2.62)

The density ρ = 8.96× 103 kg
m3 is constant in the whole material.
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In figure 9 the electron fluence u1 is plotted for multiple energies. While the high energy electrons

are concentrated near the point of beam exposure, lower energy electrons are diffused deeper in

the sample. If the right and left sides are examined closely, the effects of the different mass

concentrations can be identified. Chromium has a lower stopping power and also a lower transport

coefficient than nickel, therefore the electrons penetrate slightly deeper on the left side.
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Figure 9: The electron fluence at different energies
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Figure 9 (cont.): The electron fluence at different energies

With the electron fluence we can, as explained in section 2.1, calculate an effective intensity of

generated x-rays for every grid cell. These are shown in figure 10 for the Kα x-rays of nickel and
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chromium. The attenuation is already included in these pictures. Here the separation in left and

right mass concentrations emerges more clearly.
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Figure 10: Characteristic x-ray intensities of nickel and chromium

It is important to choose the energy steps of the finite volume method around the beam energy

small enough, such that the electron beam is captured sufficiently. In figure 11 the energy steps

are plotted onto the beam intensity.
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Figure 11: Plot of the FV energy steps and the beam intensity

When choosing a standard intensity Istd = 1×10−27 to scale the k-ratios, the simulation yields

kNi = 0.25 and kCh = 1.2 . (2.63)

From a given set of mass concentrations and densities we are able to calculate the k-ratios for

different elements. But the goal is to solve the inverse problem, to reconstruct mass concentrations
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and density from given k-ratios. In the following section 3 we will use this model to solve the

inverse problem.
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3 Solving the Inverse Problem

In section 1 the calculation of k-ratios ki,j from the electron fluence ψ0(x̄, ε) was derived. In section

2 the M1-Model was detailed to calculate the electron fluence ψ0(x̄, ε). This section deals with

solving the inverse problem using gradient based optimization methods. Those methods are best

suited for convex functions, therefore our objective function J should be convex at least in an

interval around its minimum.

Recall that the inverse problem (equation (3.1)) introduced in section 1.7 and extended by a

constraint in section 2.1.4 reads

min
p

J(c) = min
p

∑

ex,i,j

1

2
(ki,jex − k̃i,jex )2

Gex(Uex, p) = 0 ∀ex .

(3.1)

In this section the objective function J is analyzed, then gradient based methods to solve opti-

mization problems are presented and finally a fast and accurate way to calculate the gradient of

the objective function using the adjoint state method is presented.

3.1 Analysis of the Objective Function

To get an idea of the behavior of the objective function, several numerical experiments with dif-

ferently characterized mass concentration in the domain Ω were performed.

Homogeneous Mass Concentration The considered sample consists of nickel and chromium with

a homogeneous mass concentration cNi and cCr in the whole domain Ω. Other settings are chosen

according to section 2.3. Recall that the concentrations always have to add to one, so for two

elements one variable is sufficient (section 1.1).

The measured k-ratios k̃i,jex were simulated using concentrations of c̃Ni = p̃ = 0.5 and c̃Cr = 1− p̃ =

0.5, therefore the minimum of the objective function is at p = 0.5. In figure 12 the plot shows the

objective function for a range of parameters p ∈ [0, 1].
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Figure 12: Objective function for a homogeneous material of nickel and chromium

Left and Right Mass Concentrations In the second example the sample is, as in section 2.3,

vertically divided. We need two parameters describing the left pl and the right pr mass concentra-

tions.

For a single electron bombardment at the center xbeam = 0, the objective function does not provide

a unique minimum. Since the detector is at position (0 nm, 0 nm) and cannot measure the origin

of detected x-rays, the problem is symmetric, meaning that the k-ratios are the same for pl, pr

and p̂l = pr, p̂r = pl. In 2.3 k-ratios for pl = 0.2 and pr = 0.8 were calculated. If we set

pl = 0.8 and pr = 0.2 exactly the same k-ratios are obtained. They are also very similar when

concentrations are chosen such that the mean concentration pl+pr
2 matches the mean concentration

of the reference.

To account for those problems, two different experiments with different beam positions are used.

One where the beam position was set left to the detector xbeam = −100 nm and one where xbeam =

100 nm. In doing so the objective function provides a unique minimum for the reference parameters

p̃l = 0.8 and p̃r = 0.4, shown in figure 13. For pl = 0.4 and pr = 0.8 no minimum is visible,

consequently the problem with symmetry is solved with two beam positions.
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Figure 13: Objective function for a vertically divided material of nickel and chromium

Mass Concentrations defined on a Small Grid Another point of interest is the question whether

it is possible to resolve the mass concentrations on a scale smaller then the size of the interaction

volume. Therefore the domain is vertically and horizontally divided in 10 grid cells and four

parameters p0, p1, p2 and p3 are chosen which describe the mass concentrations of nickel and

chromium in four cells inside the domain. Two beam positions, −100nm and 100nm as well as

two beam energies, 8keV and 15keV were used. This setup is sketched in figure 14, where the four

cells, the two beam positions and the impact zones of the electrons for both beam energies are

shown.

p0

p1

p2

p3

15keV impact zone

8keV impact zone

Figure 14: Four variable cells, the positions of the beam and the impact zones of the electrons

The measured k-ratios k̃i,jex were calculated with the parameters set to p̃ = (0.4, 0.6, 0.7, 0.2)T . In

figure 15 the objective function is plotted for variable concentrations p0 and p2. You can see that the

cells can partially balance each other out, so that if e.g. p0 contains less and p2 contains more nickel,

the target function remains small. But a minimum is clearly visible at p0 = 0.4, p2 = 0.7.
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Figure 15: Objective function varying p0 and p2

For two cells p0 and p1 lying below each other, it is more challenging to visualize a minimum.

To reach the lower cell p0 the electrons always have to travel through the upper cell p1, therefore

changes in p1 have a much stronger effect on the target function. By different weighting of the

target function of the two experiments with 8keV and 15keV a minimum is visible here

J(p) = J15keV(p) + 1000J8keV(p) . (3.2)
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Figure 16: Objective function varying p0 and p1
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Figure 16 shows the weighted objective function for variable concentrations p0 and p1.

It is not possible to visualize the objective function and vary all four parameters. But it can be

checked whether the hessian of the objective function is positive definite at the reference values,

which yields at least a local minimum. The eigenvalues of the hessian at the minimum p =

(0.4, 0.6, 0.7, 0.2)T are

λ0 = 7.25× 10−3 λ1 = 6.70× 10−4 λ2 = 4.74× 10−6 λ3 = 5.62× 10−7 (3.3)

and are all greater than zero, therefore the hessian is positive definite.

Difficulties with the density When varying the density ρ only very small variation in the objective

function is visible. After investigating the dependence of the density in the M1-Model equations,

we found that the stopping power and the transport coefficient depend linearly on the density ρ,

therefore division by ρ introduces 1
ρ in the flux term. That means that for a homogeneous density

ρ(x) = ρconst, only the ”velocities of the waves” (section 2.2) get scaled and simultaneously the

impact zone of the electron inside the material. For a higher density, the electrons lose energy

faster and the impact zone shrinks.

increasing density ρ

electron beam

Figure 17: Impact zone of the electrons for different densities

If we think of the k-ratios as an integral over the electron fluence, a variation in the density cannot

be seen in the objective function. Although theM1-Model distinguishes between different densities

(the electron fluence varies), the detector cannot measure this difference, as it detects all generated

x-rays. Therefore it is not possible to reconstruct the density with our method and all future

analysis in this work will only concern mass concentrations.

3.2 Optimization

In the previous section the expected minimum was known and the objective function was observed

in order to find out whether this minimum is locatable. Now it is assumed, that the actual minimum

is unknown and should be reconstructed by minimization of the objective function.
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3.2.1 Gradient Based Optimization

To solve an optimization problem there are a range of methods based on a simple iterative scheme.

Given an initial estimate p0, the parameters p are updated using

pk+1 = pk + αk∆pk (3.4)

until the objective function J(pk) does not decrease further, such that a minimum can be consid-

ered. Two common examples are

the steepest descend method ∆pk = −∇pJ(pk) and

the conjugate gradient method ∆pk = −∇pJ(pk) + βk∆pk−1,

where αk and βk are step sizes. Both methods exploit the gradient of the objective function

∇pJ(pk) with respect to p to find the increment ∆pk[20]. There is a variety of more sophisticated

optimization methods to solve this problem, but many of them require the gradient of the objective

function. In this work, the optimization function of the Python package SciPy [13] is used, which

acts like a wrapper to the optimization methods implemented in SciPy. The methods the user has

to define are

• the objective function,

• the gradient of the objective function and

• the initial parameters.

The method then chooses which optimization algorithm to use. But we still need to serve the

gradient of the objective function.

3.2.2 Gradient of the Objective Function

As the objective function J is a sum of the experiment specific objective function

J(p) =
∑

ex

Jex(p) , (3.5)

also the gradient of the objective function can be written as a sum of

∇pJ(p) =
∑

ex

∇pJex(p) . (3.6)

This means that it is sufficient to find an expression for the experiment specific gradient ∇pJex(p),

which can be calculated independently. Therefore all quantities in the following sections refer to

one specific experiment.

3.2.3 Finite Difference Approximation

We can aproximate the gradient using a finite difference approximation. The gradient with respect

to p contains the derivatives of the objective functional J(p) with respect to every element of p.

Recall that the parameters p in our problem are the material parameters in each cell we want to
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reconstruct. A finite difference approximation can be written as

∂pkJ(p) =
J(p+ hek)− J(p)

h
h << 1 , (3.7)

where h has to be chosen small enough to achieve sufficient accuracy. This has to be evaluated

for every parameter dimension, and therefore the objective function together with the constraint

has to be computed. Evaluating the constraint means solving a PDE system, which is expensive.

Another method to calculate the gradient is preferrable.

3.2.4 Adjoint Gradient Calculation

An alternative to calculate the gradient is the adjoint state method. It is in no sense restricted to

the inverse problem considered in this work. With many uses in geophyics and engineering it is

often used as a faster alternative to finite differences. In [7] this method is used in aerodynamic

shape optimization where the goal was to construct a aircraft wing shape such that the drag, the

lift and the pitching moment are optimized. In seismic analysis the adjoint state method is used

[20] [22] to discover the structure of the sea floor.

In this section the derivation of this method is described using a generalized objective func-

tion

J(p) = h(Up, p) , (3.8)

where the objective functional h(Up, p) = J(p) demonstrates the dependency of the objective

function from the state variable Up, the solution of G(Up, p) = 0.

The goal is to calculate the gradient of the objective function ∂J(p)
∂p . With h we can write

∂J(p)

∂p
= 〈δh(Up, p)

δu
,
∂Up
∂p
〉+

∂h(Up, p)

∂p
. (3.9)

In a discrete evaluation, the derivative
∂Up
∂p would mean, to differentiate every discrete grid value

with respect to every parameter. Especially with a high number of parameters this calculation is

computationally intensive, but can be avoided using the adjoint state method.

For its derivation the adjoint operator and the functional derivative are of importance. The adjoint

operator T ∗ allows us to isolate variables in the scalar product[28]

〈Tx, y〉 = 〈x, T ∗y〉 . (3.10)

The functional derivative δF (U)
δU is a generalization of the derivative for functionals[28].

Derivation from the Lagrange Functional The Lagrange functional in constrained optimization

reads

L (U, λ, p) = h (U, p)− 〈λ,G (U, p)〉 , (3.11)

where λ is referred to as the adjoint state variable. If U solves the PDE-constraint G(U, p) = 0 we

can conclude U = Up and the Lagrange functional coincides with the objective function J(p)

L (Up, λ, p) = h (Up, p)− 〈λ, F (Up, p)︸ ︷︷ ︸
=0

〉 = h (Up, p) = J (p) . (3.12)
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Since equation (3.12) holds for every parameter p if U = Up, the gradient of the Lagrange functional

also coincides with the gradient of the objective function

dL(Up, λ, p)

dp
=
∂J(p)

∂p
. (3.13)

To derive
dL(Up,λ,p)

dp , L is perturbed with δpk, a small change in the k-th parameter. Up is related

to p through G(Up, p) = 0, hence the perturbation δpk causes a perturbation in δUp =
∂Up
∂pk

δpk.

Inserting Up + δUp and p+ δpk into the Lagrange functional yields

L (Up + δUp, λ, p+ δpk)

= h (Up + δUp, p+ δpk)− 〈λ,G (Up + δUp, p+ δpk)〉

≈ h (Up, p) + 〈δh (Up, p)

δU
, δUp〉+ 〈∂h (Up, p)

∂pk
, δpk〉

− 〈λ,G (Up, p) +
∂G (Up, p)

∂U
δUp +

∂G (Up, p)

∂pk
δpk〉

= L (Up, λ, p) + 〈δh (Up, p)

δU
, δUp〉 − 〈λ,

∂G (Up, p)

∂U
δUp〉

︸ ︷︷ ︸
〈 δL(Up,λ,p)

δU ,δUp〉

+ 〈∂h (Up, p)

∂pk
, δpk〉 − 〈λ,

∂G (Up, p)

∂pk
δpk〉

︸ ︷︷ ︸
〈 ∂L(Up,λ,p)

∂pk
,δpk〉

.

(3.14)

The perturbation δUp =
∂Up
∂p δpk still contains the expensive term

∂Up
∂p

, but if λ is chosen such

that
δL (Up, λ, p)

δU
= 0 , (3.15)

the first scalar product of equation (3.14), 〈 δL(Up,λ,p)
δU , δUp〉 = 0 and the gradient of the objective

function would simplify to
∂J(p)

∂pk
=
∂L(Up, λ, p)

∂pk
. (3.16)

With equation (3.15) λ is chosen such that at Up the derivative of the Lagrange functional with

respect to U is zero. This means the Lagrange functional does not change locally if U changes,

so the derivative of the Lagrange functional with respect to the parameter p, where usually the

perturbation in Up has to be considered, can be written as equation (3.16). The three main steps

to calculate the gradient of the objective function then are

• solving the forward equation G(Up, p) = 0 for Up,

• solving the adjoint equation (equation (3.15)) for λ and

• calculating the scalar product for ∇pJ(p).

Solving the forward equation for Up To obtain the physical solution Up for parameters p, the

PDE constraint has to be solved for Up

G(Up, p) = 0 . (3.17)
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Solving the adjoint equation for λ In equation (3.14) the relation

〈δL (Up, λ, p)

δU
, δUp〉 = 〈δh (Up, p)

δU
, δUp〉 − 〈λ,

∂G (Up, p)

∂U
δUp〉 (3.18)

was found. Using the adjoint operator
∂G(Up,p)

∂U

∗
the functional derivative of the Lagrange functional

L can be written as
δL (Up, λ, p)

δU
=
δh (Up, p)

δU
− ∂G (Up, p)

∂U

∗
λ = 0 . (3.19)

Finding the adjoint operator ∂G
∂U

∗
involves boundary integrals, which have to be considered carefully.

A detailed example is given in the derivation of these equations for the M1-Model in section

3.3.

Solving the scalar product for ∇pJ(p) In equation (3.14) also the following relation was de-

rived

〈∂L (Up, λ, p)

∂pk
, δpk〉 = 〈∂h (Up, p)

∂pk
, δpk〉 − 〈λ,

∂G (Up, p)

∂pk
δpk〉 . (3.20)

This can be used to express the gradient of the objective function J

∂J(p)

∂pk
=
∂L (Up, λ, p)

∂pk
=
∂h (Up, p)

∂pk
− 〈λ, ∂G (Up, p)

∂pk
〉 . (3.21)

Improvement over Finite Differences To calculate the gradient using the adjoint method two

PDE solutions are necessary, the solution of the forward equation Up and the adjoint equation λ.

Their solution efforts are typically similar. Additionally the scalar product has to be calculated,

but its effort can usually be neglected. In comparison to the calculation of the gradient using

finite differences, where dim(p) + 1 PDE solutions are required, the effort can be reduced to two

solutions. This is particularly advantageous when the parameter dimension is large.

This improvement can be observed most notably when using a gradient-based optimization ap-

proach, in which even multiple evaluations of the gradient are necessary.

3.3 Adjoint Equations for the M1-Model

To use the adjoint method for the gradient of the problem specific objective function, the equations

(3.17), (3.19) and (3.21) have to be derived specific to our inverse problem, which includes the

M1-Model. This is partially very technical, therefore some steps will be denoted in abbreviated

form.

3.3.1 Forward Equation

The forward equation (3.17) has to be solved in order to calculate the physical solution Up to the

given set of parameters p. This is done by evaluating the PDE-constraint G(Up, p) = 0, which

in the M1-Model is the model equation (2.1) together with the boundary and initial conditions

described in section 2.1.3

− ∂ε(S(p)Up) + ∂xFx(Up) + ∂yFy(Up) = −T (p)Up . (3.22)
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3.3.2 Adjoint Equation

We have seen, that descriptions of the terms
∂G(Up,p)

∂U δUp and
∂G(Up,p)
∂pk

δpk are necessary in equations

(3.19) and (3.21). For simplicity we neglect the ∂y terms in the PDE-constraint G in this derivation,

but these can be handled analogously to the ∂x terms. I will also drop the notation ·(x̄, ε) for

functions of x̄ and ε and introduce ·(p) for quantities depending on the parameter p.

Variations of the Constraint To find the variation of the constraint

G(Up, p) = −∂ε(S(p)Up) + ∂xFx(Up) + T (p)Up , (3.23)

we insert Up + δUp and p+ δp

G(Up + δUp, p+ δpk)

=− ∂ε(S(p+ δpk)(Up + δUp)) + ∂xFx(Up + δUp) + T (p+ δpk)(Up + δUp) .
(3.24)

For the stopping power S and the transport coefficient T analytical expressions are given, so

S(p+ δpk) = S(p) + ∂pkS(p)δpk and (3.25)

T (p+ δpk) = T (p) + ∂pkT (p)δpk . (3.26)

For the flux function Fx we use a linearization and write

Fx(Up + δUp) ≈ Fx(Up) +DFx(Up)δUp . (3.27)

Combining equation 3.24 with equations 3.25, 3.26 and 3.27 yields for the variation

G(Up + δUp, p+ δpk) = G(Up, p) +
∂G(Up, p)

∂U
δUp +

∂G(Up, p)

∂pk
δpk +O(||δUpδp||) , (3.28)

where

∂G(Up, p)

∂U
δUp = −∂ε(S(p)δUp) + ∂x(DFx(Up)δUp) + T (p)δUp (3.29)

∂G(Up, p)

∂pk
δpk = [−∂ε(∂pkS(p)Up) + ∂pkT (p)Up]δpk . (3.30)

Variations of the Objective Functional Since we need expressions for 〈 δh(Up,p)
δU , δUp〉 and

∂h(Up,p)
∂pk

δpk,

variations of the objective functional also are necessary. Therefore the dependency of the k-ratios

ki,j from Up is needed (section 1). For simplification of following equations I will introduce a

post-processing operator Ri,j , that computes the k-ratios for a given U

ki,j = Ri,j(U) . (3.31)
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The operator R has the form (cf. section 1.5 and 1.6)

Ri,j(U) =

∫ εinitial

εcutoff

∫

Ω

ξi,j(x̄, ε)u1(x̄, ε) dxd ε , (3.32)

where ξi,j is a scalar that accounts for the physical quantities from section 1. Then the objective

function can be written as

h(Up, p) =
∑

i,j

1

2
(Ri,j(Up)− k̃i,j)2 . (3.33)

Inserting the perturbations δpk and δUp into equation (3.33) yields

h(Up + δUp, p+ δpk) =
∑

i,j

1

2
(Ri,j(Up + δUp, p+ δpk)− k̃i,j)2 . (3.34)

Using the linearity of R in U , the bionomial theorem and the similarity of the operator R to the

scalar product in U, equation (3.34) can be transformed to

h(Up + δUp, p+ δpk) = h(Up, p) + 〈δh(Up, p)

δU
, δUp〉+

∂h(Up, p)

∂pk
δpk +O(||δUpδp||) , (3.35)

where

〈δh(Up, p)

δU
, δUp〉 = 〈




∑
i,j(R

i,j(Up, p)− k̃i,j)ξi,j(x̄, ε, p)
0

0


 , δUp〉 (3.36)

∂h(Up, p)

∂pk
δpk =

∑

i,j

[(Ri,j(Up, p)− k̃i,j)∂pkRi,j(Up, p)]δpk . (3.37)

The derivative of the post-processing operator ∂pkR
i,j reads

∂pkR
i,j(Up, p) =

∫ εinitial

εcutoff

∫

Ω

∂pkξ
i,j(p)u1,p dxd ε . (3.38)

The derivative of the scalar ξi,j(p) is

∂pkξ
i,j(p) =

σi,jemiss
Ii,jstd

(
e−

∫
d(x̄)

µ(y,Ei,j) dy∂pkN
i
V (x̄) +N i

V (x̄)e−
∫
d(x̄)

∂pkµ(y,Ei,j) dy
)

, (3.39)

where the remaining derivatives with respect to pk are calculated based on case decisions regarding

the grid cells and elements.

Adjoint Operator For the calculation of the adjoint state variable λ, the adjoint operator ∂G
∂U

∗

has to be derived. With equation (3.29) we can replace
∂G(Up,p)

∂U δUp in equation (3.18)

〈λ, ∂G(Up, p)

∂U
δUp〉 = 〈λ,−∂ε(S(p)δUp) + ∂x(DFx(Up)δUp) + T (p)δUp〉 . (3.40)

To find the adjoint operator, δUp must be isolated so that all operators act on λ. I will treat each

linearization independently and use partial integration to relocate the partial derivatives. For the
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first summand

〈λ,−∂ε (S (p) δUp)〉 = −
∫ εinitial

εcutoff

∫

Ω

λT∂ε (S (p) δUp) dxdε

=−
[∫

Ω

λTS (p) δUp dx

]εinitial

εcutoff

+

∫ εinitial

εcutoff

∫

Ω

∂ε
(
λT
)
S (p) δUp dxdε

=−
[∫

Ω

λTS (p) δUp dx

]εinitial

εcutoff

+ 〈S (p) ∂ελ, δUp〉 .

(3.41)

For the second summand

〈λ, ∂x (DFx (Up) δUp)〉 =

∫ εinitial

εcutoff

∫

Ω

λT∂x (DFx (Up) δUp) dxdε

=

∫ εinitial

εcutoff

[∫ y1

y0

λTDFx (Up) δUp dx

]x1

x0

−
∫

Ω

∂xλ
TDFx (Up) δUp dxdε

=

∫ εinitial

εcutoff

[∫ y1

y0

λTDFx (Up) δUp dx

]x1

x0

dε− 〈DFx (Up)
T
∂xλ, δUp〉 .

(3.42)

And for the third summand, with T (p)
T

= T (p)

〈λ, T (p) δUp〉 =

∫ εinitial

εcutoff

∫

Ω

λTT (p) δUp dx dε

=

∫ εinitial

εcutoff

∫

Ω

(T (c)λ)
T
δUp dx dε

=〈T (c)λ, δUp〉 .

(3.43)

Requiring the boundary integrals arising from partial integration to be zero, after summation the

adjoint operator
∂G(Up,p)

∂U

∗
is obtained

〈λ, ∂G (Up, p)

∂U
δUp〉

=〈S (p) ∂ελ−DFx (Up)
T
∂xλ+ T (p)λ, δUp〉 = 〈∂G (Up, p)

∂U

∗
λ, δUp〉 .

(3.44)

The requirenment to set the boundary integrals to zero will be discussed later.

Adjoint Equation From equations (3.36) and (3.44) we identify all parts of the adjoint equation,

we have to solve for λ
δh (Up, p)

δU
− ∂G (Up, p)

∂U

∗
λ = 0 , (3.45)

S (p) ∂ελ−DFx (Up)
T
∂xλ+ T (p)λ =




∑
i,j(R

i,j(Up, p)− k̃i,j)ξi,j(x̄, ε, p)
0

0


 . (3.46)

Like theM1-Model, the adjoint equation is also a hyperbolic partial differential equation, therefore

we can use the theory developed in section 2.2 to solve for the adjoint state variable λ.
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Adjoint Initial and Boundary Conditions In the derivation of the adjoint equation, the boundary

integrals were demanded to be zero. To meet the first requirement

−
[∫

Ω

λTS (p) δUp dx

]εinitial

εcutoff

= 0 (3.47)

the integral over the domain Ω has to be zero at energies εcutoff and εinitial. At initial energy

εinitial the solution U(x̄, εinitial) is defined by its initial condition. Therefore also a perturbation

U(x̄, εinitial) + δU(x̄, εinitial) equals the same initial condition. We can conclude

δU(x̄, εinitial) = 0 ∀x̄ ∈ Ω . (3.48)

At cutoff energy εcutoff no statement about δU is possible and we have to demand for the adjoint

state variable

λ(x̄, εcutoff ) = 0 ∀x̄ ∈ Ω . (3.49)

This yields an initial condition for the adjoint state variable. Its definition is at the opposite site

of the energy interval [εcutoff , εinitial], therefore we have to calculate the adjoint state variable

backwards.

The second requirement ∫ εinitial

εcutoff

[∫ y1

y0

λTDFx (Up) δUp dx

]x1

x0

dε (3.50)

yields boundary conditions for λ. In section 2.1.3 two different boundary conditions for the M1-

Model were introduced. None of them was congruous to the model equations, thus we were not

able to construct correct boundary conditions for the adjoint state variable. Similar to the initial

condition it can be reasoned, that if Up is fixed at the boundary, δUp = 0 and the bounary integral

vanishes, but then no statement would be possible for λ. As a workaround we suggest to extrapolate

λ at the boundary. These conditions still produce acceptable results if none of the electrons travel

close to the boundary (cf. section 3.4).

3.3.3 Scalar Product

To calculate the gradient of the objective function, we have to combine the adjoint variable with

the solution as derived in equation (3.21)

∂J(p)

∂pk
=
∂h (Up, p)

∂pk
− 〈λ, ∂G (Up, p)

∂pk
〉 . (3.51)

With the M1-Model specific terms derived in equation (3.29) and (3.36) the scalar product

reads

∂J(p)

∂pk
=
∑

i,j

(Ri,j(Up, p)− k̃i,j)∂pkRi,j(Up, p)− 〈λ, (−∂ε(∂pkS(p)Up) + ∂pkT (p)Up)〉 . (3.52)

Knowing Up and λ, this expression can be directly calculated yielding the derivative for each

parameter pk, which can then be combined to the gradient of the objective function∇pJ(p).
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3.4 Optimization using the Adjoint Method

Notes on the Implementation The implementation of the FV-Method to solve the M1-Model is

mostly based on the Python library CLAWPACK [5], which uses FORTRAN procedures as its base.

The Riemann solver (section 2.2.3) is provided as FORTRAN Code, while the solver initialization

and call is implemented in Python. The methods to solve the adjoint model follow the same path.

All other calculations are written in Python employing the library NumPy. The methods available

in SciPy were used for the optimization.

While mathematical methods tend to be implemented in a procedural way, we implemented the

physical routines object-oriented, such that they can be extended or replaced by other implemen-

tations.

Plot of the Gradient As a test case the example of a homogeneous material from section 3.1 is

considered. As the objective function for this problem only depends on the mass concentration of

the material, the gradient reduces to the derivative with respect to the only parameter. In figure

18 the objective function is shown together with the gradient calculated with the finite difference

approach and the adjoint method.

0.0 0.2 0.4 0.6 0.8 1.0

parameter p

−2

−1
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1

2

objective function J

gradient(finite differences)

gradient(adjoint method)

Figure 18: Gradient of the objective function of a homogeneous material

In this plot both methods provide similar values for the derivative. For p → 0 the values for the

gradient differ more strongly, due to improper use of boundary values. p→ 0 means the material

contains more chromium, which has a lower stopping power, therefore electrons travel closer to or

beyond the boundary.

Optimization Example To construct an optimization example, we use the setting with multiple

concentrations on a 4× 4 grid inside the domain from section 3.1. In this example the detector is

moved to the top left corner of the sample [−300nm, 0nm]. Together with the optimization algo-
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rithms from SciPy[13], the reference parameters pref = (0.4, 0.6, 0.7, 0.2)T could be reconstructed

from initial values p = 0.5. The error ||pk − pref || of the parameters to the reference parameters is

shown over the iteration step in figure 19. In different color the error in each of the four parameters

is shown. The errors of parameter p1 and p3 decrease faster because their grid cells are closer to

the materials surface and the impact point of the electron beam.
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Figure 19: Plot of the errors for each iteration step of the optimization

In figure 20 the path of the optimization is plotted on top of the objective function for parameters

p0, p1 and p0, p2.

0.0 0.2 0.4 0.6 0.8 1.0
parameter p1

0.0

0.2

0.4

0.6

0.8

1.0

p
ar

am
et

er
p

0

Objective Function J

0.0 0.2 0.4 0.6 0.8 1.0
parameter p2

0.0

0.2

0.4

0.6

0.8

1.0

p
ar

am
et

er
p

0

Objective Function J

Figure 20: The iteration steps of the optimization

Occasionally the parameters move away from the minimum, but the objective function plots were

created with the other parameters (p2/p3 or p1/p3) fixed to its reference values, while in the

optimization all four parameters were variable. In the end the minimum is found exactly.
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Conclusion With the aim to improve the spatial resolution in electron probe microanalysis the

inverse problem of reconstruction using a k-ratio model based on the M1-Model has been inves-

tigated. In this work, a solver for the M1-Model and the modelling of k-ratios are presented, an

objective function based on this k-ratio model is analyzed and the chemical composition of a sam-

ple is reconstructed. Under suitable conditions (electron beam positions/energies) the objective

function reveals a unique minimum. The volumes in which the mass concentrations vary can be

smaller than the interaction volume of the beam electrons. Mass concentrations in a small area of

the sample were reconstructed using gradient based optimization methods. To calculate the gradi-

ent of the objective function, the adjoint state method offers a fast alternative to finite differences.

It allowed us to run the optimization on a conventional notebook in acceptable time, despite the

fact, that computational performance was not the primary goal during the implementation of this

method.

To accomplish a physical solution, our choice of boundary conditions should be reconsidered. At the

moment they are physically unfounded, but suitable to model the electron beam because the error

introduced by the boundary conditions is sufficiently small. Even though alternative boundary

and initial conditions to describe the electron beam should be derived which are congruous to the

equations of the M1-Model.

Outlook The objective function used in this work was based on artificial measurements, calcu-

lated by the same model as used in the reconstruction. This allowed us to reconstruct perfectly.

Real measurements from experiments include noise and models have a certain error. As a result,

the objective function could have a more inaccurate, misleading minimum or several local min-

ima. The effects of noisy measurements and model errors on the objective function should be

investigated.

Nevertheless, the presented method allowes studies on the shape and minima of the objective

function and the reconstructability of finely dissolved chemical compositions. Furthermore, the

application of the developed reconstruction algorithm should also be considered in a real experi-

ment.

I would like to thank my supervisor Jonas Bünger for introducing me to this topic, for the many dis-

cussions during my time as a research assistant on his project and my bachelor thesis. Many thanks

to my professor Manuel Torillhon, who taught my mathematics lecture almost every semester dur-

ing my studies and accepted me into his research group.

CONCLUSION AND OUTLOOK 41



References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-

baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for

Industrial and Applied Mathematics, Philadelphia, PA, third edition, 1999. ISBN 0-89871-

447-8 (paperback).

[2] Derek S. Bale, Randall J. LeVeque, Sorin Mitran, and James A. Rossmanith. A wave propaga-

tion method for conservation laws and balance laws with spatially varying flux functions. SIAM

Journal on Scientific Computing, 24(3):955–978, 2003. doi: 10.1137/S106482750139738X.

URL https://doi.org/10.1137/S106482750139738X.

[3] Christophe Berthon, Pierre Charrier, and Bruno Dubroca. An hllc scheme to solve the m

1 model of radiative transfer in two space dimensions. Journal of Scientific Computing, 31

(3):347–389, Jun 2007. ISSN 1573-7691. doi: 10.1007/s10915-006-9108-6. URL https:

//doi.org/10.1007/s10915-006-9108-6.

[4] Jonas Buenger, Silvia Richter, and Manuel Torrilhon. A deterministic model of electron

transport for electron probe microanalysis. IOP Conference Series: Materials Science and

Engineering, 304:012004, 01 2018. doi: 10.1088/1757-899X/304/1/012004.

[5] Clawpack Development Team. Clawpack software, 2017. URL http://www.clawpack.org.

Version 5.4.0.

[6] R Duclous, B Dubroca, and M Frank. A deterministic partial differential equation model for

dose calculation in electron radiotherapy. Physics in Medicine & Biology, 55(13):3843, 2010.

URL http://stacks.iop.org/0031-9155/55/i=13/a=018.

[7] Nicolas Ralph Gauger. Das Adjungiertenverfahren in der aerodynamischen Formoptimierung.

PhD thesis, Nov 2003. URL https://publikationsserver.tu-braunschweig.de/receive/

dbbs_mods_00001550.

[8] Jonathan B. Goodman and Randall J. LeVeque. A geometric approach to high resolution tvd

schemes. SIAM Journal on Numerical Analysis, 25(2):268–284, 1988. doi: 10.1137/0725019.

URL https://doi.org/10.1137/0725019.

[9] Amr G. Guaily and Marcelo Epstein. Boundary conditions for hyperbolic systems of partial

differentials equations. Journal of Advanced Research, 4(4):321 – 329, 2013. ISSN 2090-

1232. doi: https://doi.org/10.1016/j.jare.2012.05.006. URL http://www.sciencedirect.

com/science/article/pii/S2090123212000355.

[10] J. H. Hubbell, P. N. Trehan, Nirmal Singh, B. Chand, D. Mehta, M. L. Garg, R. R. Garg,

Surinder Singh, and S. Puri. A review, bibliography, and tabulation of k, l, and higher atomic

shell x-ray fluorescence yields. Journal of Physical and Chemical Reference Data, 23(2):339–

364, 1994. doi: 10.1063/1.555955. URL https://doi.org/10.1063/1.555955.

[11] J. H. Hubbell, P. N. Trehan, Nirmal Singh, B. Chand, D. Mehta, M. L. Garg, R. R. Garg,

Surinder Singh, and S. Puri. Erratum: “a review, bibliography, and tabulation of k, l, and

higher atomic shell x-ray fluorescence yields” [j. phys. chem. ref. data 23, 339 (1994)]. Journal

of Physical and Chemical Reference Data, 33(2):621–621, 2004. doi: 10.1063/1.1756152. URL

https://doi.org/10.1063/1.1756152.

REFERENCES 42

https://doi.org/10.1137/S106482750139738X
https://doi.org/10.1007/s10915-006-9108-6
https://doi.org/10.1007/s10915-006-9108-6
http://www.clawpack.org
http://stacks.iop.org/0031-9155/55/i=13/a=018
https://publikationsserver.tu-braunschweig.de/receive/dbbs_mods_00001550
https://publikationsserver.tu-braunschweig.de/receive/dbbs_mods_00001550
https://doi.org/10.1137/0725019
http://www.sciencedirect.com/science/article/pii/S2090123212000355
http://www.sciencedirect.com/science/article/pii/S2090123212000355
https://doi.org/10.1063/1.555955
https://doi.org/10.1063/1.1756152


[12] J.H. Hubbell and S.M. Seltzer. Tables of x-ray mass attenuation coefficients and mass energy-

absorption coefficients (version 1.4). National Institute of Standards and Technology, Gaithers-

burg, MD, 2004. [Online] Available: http://physics.nist.gov/xaamdi.

[13] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for

Python, 2001. URL http://www.scipy.org/.

[14] Randall J. LeVeque. Balancing source terms and flux gradients in high-resolution godunov

methods: The quasi-steady wave-propagation algorithm. Journal of Computational Physics,

146(1):346 – 365, 1998. ISSN 0021-9991. doi: https://doi.org/10.1006/jcph.1998.6058. URL

http://www.sciencedirect.com/science/article/pii/S0021999198960582.

[15] R.J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied

Mathematics. Cambridge University Press, 2002. ISBN 9780521009249. URL https://books.

google.de/books?id=QazcnD7GUoUC.

[16] R.J. LeVeque. Numerical Methods for Conservation Laws. Lectures in Mathematics. ETH
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