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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Deep learning model to predict the bat
tery future degradation pathway in one 
shot. 

• Digital battery passport enabling degra
dation monitoring in first- and second- 
life. 

• Accurate early-life prediction capability 
for end-of-life points and knee-points. 

• Robust capacity error handling capacil
ity validated by processor-in-the-loop 
tests. 

• Computation burden decreased by 15 
times compared with the iterative 
approaches.  
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A B S T R A C T   

The degradation of batteries is complex and dependent on several internal mechanisms. Variations arising from 
manufacturing uncertainties and real-world operating conditions make battery lifetime prediction challenging. 
Here, we introduce a deep learning-based battery health prognostics approach to predict the future degradation 
trajectory in one shot without iteration or feature extraction. We also predict the end-of-life point and the knee- 
point. The model correctly learns about intrinsic variability caused by manufacturing differences, and is able to 
make accurate cell-specific predictions from just 100 cycles of data, and the performance improves over time as 
more data become available. Validation in an embedded device is demonstrated with the best-case median 
prediction error over the lifetime being 1.1% with normal data and 1.3% with noisy data. Compared to state-of- 
the-art approaches, the one-shot approach shows an increase in accuracy as well as in computing speed by up to 
15 times. This work further highlights the effectiveness of data-driven approaches in the domain of health 
prognostics.   
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1. Introduction 

Lithium-ion batteries (LIBs) are electrochemical systems which are 
increasingly used in many sectors, especially in electric mobility [1]. 
Their performance degrades with usage and time, and the degradation 
can usually be divided with a ‘knee-point’ into an early life section and 
then a later life section with accelerated degradation [2]. The end-of-life 
(EOL) of LIBs is usually defined, e.g. for electric vehicles (EVs), as the 
point where the remaining capacity falls below 80% of the nominal 
capacity. Some cells can then also be used in second-life applications 
with an extended EOL/remaining useful life (RUL). Accurate prediction 
of the remaining capacity of the cells at an early stage not only benefits 
maintenance, safety and asset optimization but also serves as a starting 
point for the technical and economic analysis of possible second-life 
applications. However, accurate prediction of the future degradation 
of LIBs is not a trivial task, as the ageing of LIBs is a complex nonlinear 
process with various internal mechanisms whose dynamics are highly 
challenging to measure and model accurately. 

There has been extensive research in the field of capacity degrada
tion prediction in LIBs. Observation of existing literature reviews, such 
as [3–5], highlights various approaches for tackling the degradation 
modelling problem, which can be divided into either mathematical 
model-based or data-driven methods. Mathematical model-based 
methods use a physics-based battery model to describe the degrada
tion behaviour of the cells considering battery dynamics. The model can 
be either an equivalent circuit model (ECM) [6–14], an electrochemical 
model (EM) [15–21], or an empirical model [22–25]. These battery 
models are then parameterized via various methods. However, adequate 
parameterization of such models so that all the underlying degradation 
mechanics of the battery are captured is an open research topic, and 
these models are either too complex to be used in online applications 
with cheap embedded hardware or may not capture the real-life varia
tions in degradation accurately. 

Data-driven approaches are a possible solution to the parameteri
zation problem since they don’t depend upon a physical model but 
instead generate the model directly from the data. There have been 
various approaches using data-driven models, as well as other types of 
models parameterized using data-driven tools. One approach [26–28] 
fits EOL (or RUL) as an output using features from early cycling data as 
an input. Since these models output a point prediction of the EOL or 
RUL, rather than a prediction of the degradation trajectory, they are 
usually better suited for broad screening of cells, rather than accurate 
tracking of degradation. For ongoing tracking of ageing, a more so
phisticated approach is to predict the entire degradation curve of the 
battery iteratively from one or more pre-determined points during the 
battery life. Several approaches use past capacity series up to a certain 
point in the life of the cell to develop a parameterized model that is 
trained using a fixed size rolling input window on the capacity history. 
This model can then predict the subsequent future capacity points iter
atively up to the EOL of the battery. These models can be based on 
various data-driven approaches such as Gaussian processes [29–34], 
support vector machines [35–37], relevance vector machines [38–40], 
and neural networks [41–49]. The main advantage of the iterative 
prediction approach is that it is flexible and can be used to model 
changing usage patterns. However, the major disadvantage of these 
types of models is the associated computing speed and costs, since these 
models need to run many times to get the prediction of the degradation 
curve. Moreover, since these models are usually trained with data just 
from the early parts of the cell’s degradation, multiple retraining is 
needed to update the model as new cell data becomes available over 
time so that the model can predict the present degradation trends 
appropriately. 

Here, we propose a deep learning model with multiple long short- 
term memory (LSTM) layers in both encoder and decoder blocks, aim
ing to bridge the aforementioned research gap by predicting the entire 
capacity degradation trajectory in one shot. The model was trained 

using all the lifetime data of the training cells, rather than just point 
predictions, and therefore it is able to accurately follow trend changes at 
any point in the cell’s life without frequent retraining. The major points 
of interest in the cell’s life can be predicted accurately, such as the points 
when the remaining capacity of the cell reaches 80% (EOL80), and then 
65% of the nominal capacity (EOL65), as well as the knee-point, after 
which degradation accelerates. This makes the model useful not only for 
present EV applications but also for second-life applications. Moreover, 
the model can work with capacity data gathered from any standard SOH 
estimation model even with estimation errors and can be dynamically 
updated when new estimates become available. We propose an online 
prognostics framework that trains models in the cloud and serves trained 
models to devices present in battery management systems (BMSs) in 
EVs. This framework enables a health ‘cell passport’ system, where each 
cell is individually tagged and the prognostics data from the model for 
that cell can be carried forward with it over its lifetime. Processor-in-the- 
loop validation of the model was carried out in a machine learning 
capable embedded system, demonstrating the viability of the approach 
not only in the cloud but also onboard future EVs. The model was found 
to be accurate and robust while handling non-ideal capacity data gath
ering methods. Finally, the ‘one-shot’ nature of the trajectory prediction 
leads to huge gains in computing times, which are almost up to 15 times 
faster than similar models using iterative point-by-point prediction 
approaches. 

2. Ageing test and dataset 

The battery dataset for training the prognostics model can be gath
ered from experiments in the laboratory or battery management systems 
in the field. The battery dataset used in this work is from in-house ageing 
experiments conducted at RWTH Aachen University. The experiments 
originally aimed to classify a batch of nominally identical 48 Panasonic/ 
Sanyo UR18650E LIB cells based on intrinsic manufacturing variations 
by finding dependencies between the initial performance of each cell 
and its cycle lifetime. Compared with the dataset provided in Ref. [28], 
where cells were tested under different stress factors resulting in large 
variability in degradation, our dataset here was generated with a large 
number of cells all under a same ageing scenario, exploring intrinsic cell 
manufacturing variability and small temperature differences (see Fig. S1 
and Fig. S2) in battery packs during operation [50]. As the variability in 
the degradation trends of the cells in early-life is quite small and only 
starts to increase greatly from the mid-life of the cells onwards, the ac
curate prediction of the whole degradation trajectory from early-life 
data is non-trivial, and even more challenging than in Ref. [28], 
where high variability of the degradation trends already existed in the 
early-life. The cells underwent cycling ageing, consisting of character
ization tests and cycling tests. A brief analysis of the dataset used here, 
Fig. 1, highlights several interesting features. Fig. 1a shows a flowchart 
of the test procedure (see Methods for details). Fig. 1b shows the 
degradation curves of all the cells in the dataset, highlighting their 
variability in end-of-life points and knee-points (see Note S1) especially 
after 700 cycles. The 80% and 65% EOL criteria and knee-points are 
marked, and we note that predicting down to the 65% limit and pre
dicting the knee-points from the early-stage. 

Data is incredibly challenging because of the tiny variations amongst 
the cells before 500 cycles and the change in the degradation trends over 
time. This reaffirms the need for an online method that can follow and 
adapt to individual cell degradation trends. In Fig. 1e and f, the variation 
in the EOL80 cycle number is indicated with the average EOL80 cycle at 
1175 cycles with the variations at that point being within 0.3 Ah. 
Similarly, the average EOL65 cycle number is found at 1350 cycles with 
the variation within a range of 0.5 Ah at that cycle number. The average 
knee-point cycle number of 48 cells, as seen in Fig. 1i, was found to be 
1088 cycles, with variations within 0.25 Ah. This highlights the varia
tions present in the cells’ degradation trajectories with ageing, at 
different points of the cell’s life, as well as the variations in the three 
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Fig. 1. Ageing experiments used for supervised learning. (a) Flowchart of the cyclic ageing process. (b) Capacity degradation curves of 48 cells, highlighting the 
knee-points and the variations in the two different EOL cycle numbers. (c) Current and voltage response of one ageing cycle. (d) Current and voltage response of one 
characterization test. (e) Variation in the cycle number where EOL80 is reached. (f) Variation in the remaining capacity at the average cycle number of reaching the 
EOL80. (g) Variation in the cycle number where EOL65 is reached. (h) Variation in the remaining capacity at the average cycle number of reaching the EOL65. (i) 
Variation in the cycle number where the knee-point of capacity degradation is reached. (j) Variation in the remaining capacity at the average cycle number of 
reaching the knee-point. 
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points of interest in the cell lifetimes. 

3. Prognostics framework 

Our approach enables the real-time serving of prediction models to 
BMSs present in EVs or stationary energy storage systems from a cloud 
server to be then used for local inference. This framework is considered 
as a part of a ‘digital twin’ concept for battery systems [10] operating in 
the field, with battery data being collected for analysis and control over 
their lifetime. An overview of the framework is given in Fig. 2a, which 
contains three major steps. The ageing experiments are performed first 
on several cells of a similar type to the intended use-case, obtaining a 
dataset for supervised learning. This dataset is then sent to the training 
server which has computing power for model training and distribution. 
The server’s next task after training is sending the best performing 
model to embedded devices. The connection is bidirectional since de
vices also transmit their prediction data and other metrics to the server, 
which can be used for future model updates. Since each cell’s data is sent 

to the server tagged with a particular ID, a unique ‘cell-passport’ can be 
created, which is useful to track performance over the entire lifetime, 
and also makes providing updates-over-the-air to the models present in 
the BMSs a trivial task. The cloud connectivity is a key factor that en
ables the model to be continuously updatable, and the low computation 
burden of the model also enables it to run locally on BMSs. The model 
output can be sent to various systems, e.g. supporting energy manage
ment, predictive maintenance and full-life cost analysis as needed. 

The model’s input is the capacity time series until the present time 
point. No other features or feature selection process is required. The 
model then outputs the future capacity time series of the cell until the 
EOL. The capacity of the cells can be measured directly with capacity 
tests in the training dataset, or estimated with any standard SOH esti
mation models [51–53] onboard a battery management system. Fig. 2b 
shows the choice of input, as well as the sampling process of the input 
data that was undertaken before feeding to the model. The input 
approach is an increasing window of the remaining capacity array, from 
the beginning of life (BOL) of the cell, to the present time point. This 

Fig. 2. (a) The overview of the proposed framework for the online prediction of battery capacity degradation for cells. The three main sections to the framework are 
namely, the collection of training data, model training in the cloud, and the operation of the model in both the first and second life of the batteries. (b) Choice of input 
to the model and the approach of increasing the input window with the time. (c) The general architecture of the sequence-to-sequence neural network. 
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input series increases in size as more historical data becomes available, 
and the model uses the increased information to generate improved 
predictions. Since both the input and output series lengths are generally 
constant in LSTM networks, a normal LSTM is insufficient to perform 
this task. However, RNN-based sequence-to-sequence (S2S) models [54] 
are specially designed for sequence prediction problems. The S2S 
approach has a better performance compared with other RNN archi
tectures and performs especially well in predicting sequences of variable 
length [54], which is the target use case of this work since battery 
degradation history can be viewed as a variable-length sequence. Fig. 2c 
highlights the general architecture of the S2S model, which requires two 
multi-layer LSTM architectures working together. The encoder encodes 
the input sequence into a static embedding vector, which is then fed to 
the decoder which decodes the embedding vector and processes it to 
provide the output sequence desired. The model performance was 
validated with processor-in-the-loop tests with both normal and noisy 
capacity data, as shown in Fig. 3. The mean absolute percentage error 
(MAPE) during curve prediction and absolute cycle number errors for 
the knee-point and the two EOLs are used to evaluate the prediction 
performance of the models, as defined in the ‘Evaluation criteria’ 
section. 

4. Results and discussion 

4.1. Model performance 

Model validation was undertaken on five random cells that were kept 
aside for blind testing. Validation was first undertaken with normal 
input data, serving as the nominal operation scenario. Subsequently, a 
validation with noisy inputs was done to test the robustness of the model 
facing capacity estimation errors, which are common in BMSs. The noisy 
inputs were generated by adding a zero-mean white Gaussian noise 
(AWGN) with a standard variance (σ) of 0.005 to the capacity inputs. 
Table S1 highlights the results obtained from the validation of the model 
in the best- and worst-cases, for all the above-mentioned metrics, along 
with the maximum computation times, for both the normal and the 
noisy input scenarios. 

From the results, the model is able to predict the capacity degrada
tion trajectory accurately. The predictions are sufficiently accurate even 
with input data only up to the first 100 cycles of the cell, which roughly 
amounts to 7% of the cell’s total lifetime, assuming an average cycle life 
of 1500 cycles for the cell type used in the dataset. The initial error at 
100 cycles and mean error in the worst-case cell is 4.2% and 3.1%, 
respectively, which can be considered to be a good performance, being 
below 5% error. In the best case, the initial and mean errors are 1.8% 
and 1.2%, respectively, both values well under the 5% error band. The 

median of the errors is also satisfactory with the best-case median MAPE 
being 1.1%, and worst-case 3.1%. Fig. 4a shows the predictive ability of 
the model in the best-case, with increasing input size, as more capacity 
degradation history is available to the model. Similarly, Fig. 4b shows 
the curves from the worst-case cell. 

The adaptive ability of the model is demonstrated, with the pre
dictions getting more accurate as the model receives more input data. 
The metrics indicate similar performance for all the highlighted points of 
interest, with a trend of larger errors at the beginning of life corre
sponding to minimum input data to the model and improving prediction 
quality as more data becomes available. The trend is more evident in the 
worst-cases rather than the best-cases, with some metrics being 
extremely accurate even in the early stages in the best-case cells and 
generally more fluctuations evident over a reduced error-band. This is 
also confirmed by Fig. 4c, which shows the progression of the MAPE of 
the predicted curves over the cell’s lifetime for the best- and worst-cases, 
respectively (see Fig. S5 for all test cells). The spike of inaccuracy at the 
very end of the error progression can be attributed to the model having 
very few meaningful points to predict and, therefore, the errors between 
those few points being amplified. It is also observed that the most 
inaccurate prediction doesn’t occur at the first prediction point, but a 
short distance from the beginning of life. The MAPE of the predictions 
follow a decreasing trend with a wavelike progression, and it is hy
pothesized that this occurs because the model tries to minimize the 
average error of the whole curve by predicting an averagely correct 
curve when input is low. As the input increases, the model updates the 
average curve to fit more closely to the data, which leads at first to 
bigger errors since not all parts of the curve are improved simulta
neously, which is then followed by a significant decrease in the overall 
error. 

Fig. 4d and e shows histograms of the errors in prediction for all the 
curves predicted over the lifetime of the best- and worst-case cell, with 
the median and the 95th percentile error marked. Fig. 4f, g, and 4h show 
the progression of error like Fig. 4c, but for the three highlighted metrics 
of interest, namely the EOL80 error, EOL65 error and the knee-point 
error, respectively (see Fig. S6 for all test cells). Finally, Fig. 4i, j and 
4k show the initial, mean and maximum error values for the three 
metrics for all five cells. The model is shown to have good performance 
at all the points of interest, as is clear from the metrics analysis. 

Noisy input validation results demonstrate that the model is stable to 
handle capacity estimation errors without large degradations in per
formance. The best- and worst-case cells generally remain the same after 
noise is added, which leads to the conclusion that the model’s output 
depends much more on the features of the data from the cells and the 
noise is relatively easier to ignore. The performance of the model 
worsens in every respect, which is to be expected since the input is non- 

Fig. 3. (a) Workflow of the processor-in-the-loop test. (b) Two types of evaluation done with the model.  
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Fig. 4. Validation results for normal input. Firstly, (a) and (b) the predicted future capacity degradation curves for the best and the worst-case cells, respectively, 
highlighting prediction quality in three different stages of the cell’s life, which corresponds to three different rates of input availability. In the figures, the reference 
curve is given in red, the prediction curve is in blue, and the green vertical lines show the starting point of the prediction. (c) Shows the progression of the MAPE with 
the availability of input increasing as the cell ages, for both the best and the worst cases of the cell. (d) and (e) shows the histogram of the curve prediction error for 
the best and worst-case cell, respectively, with the median and 95th percentile error lines marked. Finally, (f), (g) and (h) show the best and worst-case progressions 
for the EOL80, EOL65 and the knee-point errors, respectively, whereas (i), (j) and (k) show the initial, mean and max error metrics for the three metrics. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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ideal. The initial, mean, and median MAPE error in the worst-case cell is 
4.9%, 4.1% and 3.6%, respectively, whereas in the best-case, the initial, 
mean and median errors are 0.7%, 1.5% and 1.3%, respectively. Inter
estingly even with noisy input data, the model does not output noisy 
predictions but outputs the best possible smooth curve of the cell’s 
lifetime similar to the normal input case. A possible rationale is that the 
labels that the model learns from are smooth in nature, and while pre
dicting, smooth curves are the optimal predictions from the model. A 
similar set of figures are given for the noisy validation scenario in Fig. 5. 
As expected, more capacity degradation history available to the model 
over time leads to a better quality of predictions. Notably, the addition 
of noise has only a small effect on the mean accuracy of the model over a 
particular cell’s lifetime. However, the major difference is seen in the 
progression of the error metrics over the cell’s lifetime, with fluctuations 
becoming much more common and individual high error outliers being 
present in the data, such as the mean curve prediction error progression 
over the cell’s lifetime. This indicates that individual erroneous pre
dictions become more error-prone and the accuracy may fluctuate with 
the random nature of the noise, but over the cell’s lifetime, the noise is 
handled smoothly. 

Finally, the model was compared with a typical LSTM-RNN iterative 
prediction model (see Methods for details). The results in Fig. 6 show the 
S2S model as the better performer in predictive ability in both the best- 
and worst-cases in all metrics, as well as faster than the LSTM model. 
This is expected since the complexity of the S2S model is almost double 
of that of the LSTM model, which results in the iterative model taking 
less training time. However, the iterative nature of the LSTM model 
requires it to run many times during implementation to provide the full 
curve output, whereas the S2S model can provide the entire curve in one 
shot, thereby significantly reducing the computation time, up to almost 
15 times in average. The detailed evaluation and comparison can be 
found in Fig. S7 and Table S2. 

4.2. Applications and outlook 

The main applications of the model are degradation analysis and 
failure predictions for improved maintenance, ensuring safe and reliable 
operation of battery systems. The model can also be used to analyze 
battery packs with various topologies by identifying inter-pack cell 
degradation variations and pointing out the strongest and weakest cells 
within each battery branch. The noise handling capability of the model 
reaffirms the application on real-world data, where the capacity esti
mation may have uncertainties that need to be considered. The ‘cell- 
passport’ also adds value to first- and second-life applications from the 
collection of usage information during the whole life of each cell, 
introducing exciting developments for battery warranties and insurance. 
Furthermore, digital certificates can be provided along with the cell- 
passports for various second-life applications. 

Whilst this paper has presented a proof of concept, several challenges 
still exist in degradation prediction using these methods, and are aimed 
to be further investigated in the future. First, data generation in the 
laboratory needs to be designed considering not only the intrinsic 
manufacturing variations in cells, but also the variabilities in working 
conditions and dynamics in load profiles in real-world applications. 
Second, data-driven models should be able to be transferred to new cells 
and chemistries with limited testing time and a limited number of cells, 
which is required by industry due to the fast development of new battery 
materials. Third, synthetic data generation methods based on the limited 
testing data available might help to reduce the testing time and cost 
further while increasing the model performance and providing useful 
ground truth for comparison. 

5. Conclusions 

In this paper, a one-shot battery degradation trajectory prediction 
model was proposed for batteries under real-world operations, coupled 

with a cloud-based prognostics framework. The model is based on 
sequence-to-sequence learning and is trained and validated on a 48 
NMC/graphite cell dataset. Model training requires only measured 
operational data without the need for additional parameterization or 
feature engineering. The model provides a ‘one-shot’ prediction of the 
entire future degradation trajectory, which decreases the computational 
burden almost 15 times compared with current iterative prediction ap
proaches. An early prediction capability from as few as 100 cycles is 
possible not only for degradation prediction but also for the endpoints of 
both first- and second-life and the degradation knee-point. The perfor
mance of the model and its robust noise handling capability is validated 
by processor-in-the-loop tests with 1.8% mean error in the best-case and 
7.8% maximum error in the worst-case. This work primarily serves as a 
proof of concept for the use of modern deep learning-based architectures 
in the domain of battery prognostics. In general, the health prognostics 
framework in this work can not only be applied in batteries with 
different materials but also further in other energy storage systems, e.g. 
fuel cells and super-capacitors. 

Methods 

Data availability 

The raw experiment dataset and processed dataset of 48 cells used in 
this study is publicly available at https://git.rwth-aachen.de/isea/batter 
y-degradation-trajectory-prediction. The raw dataset consists of the data 
from initial characterization tests (multi-pulse test, capacity test and 
qOCV test), cycling ageing tests (high-resolution data of current, 
voltage, capacity, energy and temperature) and regular characterization 
tests (multi-pulse test, capacity test and qOCV test). The processed 
dataset consists of analyzed data of 48 cells during ageing tests and the 
change of cell capacity, resistances at different frequency domains and 
temperature during ageing are provided. 

Code availability 

Code for experiment data analysis and pre-processing prior to model 
training is publicly available at https://git.rwth-aachen.de/isea/batter 
y-degradation-trajectory-prediction. Code for the modelling work is 
available from the corresponding authors upon request. 

Ageing experiment 

Table S3gives the cell specifications. One characterization test was 
undertaken at the BOL for each cell and then repeated periodically be
tween cycling tests until the cells reached their EOL. The experiment was 
continued well beyond the cell’s industry specified EOL of 80% of the 
nominal capacity, to generate a comprehensive dataset of the progres
sion of the capacity degradation throughout the life of the cell. We 
highlight two specific EOL criteria, the first being 80% of the nominal 
capacity, and the second being 65% of the nominal capacity. There 
were, on average, 17 characterization tests in each cell’s life. Out of the 
48 available cells, 42 (90%) were kept for model training and five cells 
(10%) were selected randomly and kept aside for blind testing of the 
model. One cell had an incomplete capacity degradation curve and was 
therefore discarded from the training batch. Apart from the capacity 
checkups under various current rates, a quasi-open-circuit voltage test 
and hybrid-pulse power characterization test were also carried out in 
each characterization round (see Fig. S8). In the cycling tests, the cells 
underwent a 30 min constant current constant voltage (CC-CV) 
charging-discharging regime, with the CC phase at 2C until the cut-off 
voltage of 3.9 V, followed by a CV phase until 30 min was reached. 
Both the voltage-over-time curves in CC phase and current-over-time 
curves in CV phase highlight the changes during degradation (see 
Fig. S9 and Fig. S10). There were, on average, 160 charging-discharging 
cycles in each cycling round. 
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Fig. 5. Validation results for noisy input. Like in the previous figure, (a) and (b) show the predicted future capacity degradation curves for the best and the worst- 
case cells, respectively, highlighting prediction quality in three different stages of the cell’s life, which corresponds to three different rates of input availability. In the 
figures, the reference curve is given in red, the prediction curve is in blue, and the green vertical lines show the starting point of the prediction. Like in the previous 
case, (c) shows the progression of the MAPE with the availability of input increasing as the cell ages, for both the best and the worst cases of the cell, (d) and (e) 
shows the histogram of the curve prediction error for the best and worst-case cell respectively, with the median and 95th percentile error lines marked, (f), (g) and 
(h) show the best and worst-case progressions for the EOL80, EOL65 and the knee-point errors respectively and finally, (i), (j) and (k) show the initial, mean and max 
error metrics for the three metrics. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

W. Li et al.                                                                                                                                                                                                                                       



Journal of Power Sources xxx (xxxx) xxx

9

Data pre-processing 

The model proposed in this work provides a ‘one-shot’ prediction. To 
make the model training and prediction efficient, we have not used the 
entire data length, but rather data sampled from the full capacity curves 
at regular intervals to form both the training input as well as the training 
output labels for the model. To this end, after the raw dataset was ob
tained, the capacity checkups were interpolated in MATLAB via the 
piecewise cubic hermetic interpolating polynomial (PCHIP) function 
[55]. After interpolation, while creating the training and testing data
sets, the input capacity series was sampled in the form of one capacity 
label every five cycles, whereas the output capacity series was resam
pled in the form of one capacity label every 50 cycles. The present se
lection serves as a proof of concept of the proposed method. The input 
and output data density selection were made to optimize dataset and 
network sizes and to ensure sufficient data for network learning and 
output prediction. Other checkup frequencies, such as one capacity label 
per cycle at the most data-rich case, are also possible and the choice of 
data density depends on the application and the available hardware. 

The supervised learning dataset for each cell was set up to have a 
minimum amount of input capacity samples, signifying the earliest point 
in the cell’s life that the model can generate predictions. Since this work 
proposes a model that can obtain predictions very early in the cell’s life, 
the minimum amount of data selected here is data up to 100 cycles of the 
cell’s life. The input size was then increased from that point until up to 
90% of the cell’s capacity data until its EOL was in the input vector. 
Since the deep learning model is trained with the entire degradation 
curve set, no retraining is needed for the same cell type in different 
lifetimes. Finally, the dataset was divided into a training dataset con
sisting of 42 cells, and five cells were kept for blind testing the network. 

Network architecture and training 

As described in Refs. [56,57], the LSTM cell, along with the hidden 
cell state, has a memory pipeline which allows it to preserve long term 
temporal correlations. The various gates and valves of every time step of 
the LSTM network can be seen as a one-layer neural network themselves, 
which transforms various parts of the input according to their opera
tions. The equations that govern the LSTM-RNN operation, from 
Ref. [56], are given below, where wall are weight matrices, ball are biases, 
σ (x) is the sigmoid operator, tanh(x) is the hyperbolic tangent operator, 
it and C̃t are intermediaries to the new memory C̃t and ht is the new 
output state of the cell. 

ft = σ
(
wf ⋅ [ht− 1, xt] + bf

)
(1)  

it = σ(wi ⋅ [ht− 1, xt] + bi) (2)  

C̃t = tanh(wC ⋅ [ht− 1, xt] + bC) (3)  

Ct = ft*Ct− 1 + it*C̃t (4)  

ot = σ(wo ⋅ [ht− 1, xt] + bo) (5)  

ht = ot*tanh(Ct) (6) 

The structure of the LSTM cell and the various connections of the cell 
with its sub-networks are given in Fig. S11. The LSTM cell takes the 
previous memory cell state Ct− 1 , the previous output state ht− 1, and the 
input vector for the current time step xt as input. The forget gate decides 
which part of the old memory to forget and pushes the forgetting vector 
ft to the cell pipeline. The new memory valve contains two networks, one 
to decide the influence of the new memory on the current cell state, 
called the input gate, which pushes the influencing vector it, and the 
other to generate the new memory for the current time step as C̃t, called 
the memory generator. The operations of the forget valve and the new 
memory valve together update the memory cell state, which is then 
forwarded to the next time step as Ct. Finally, the output gate generates 
the current output state vector ot, which is then updated in accordance 
with the new memory state Ct to push the new output state ht, which 
becomes the output of the current time step. 

The network consists of four LSTM layers in both the decoder and 
encoder, with the encoder layers having the hidden dimension size as 
the maximum length of the training input series and the decoder layers 
having the hidden dimension size as the maximum length of the desired 
output series, as shown in Fig. S12. The network was trained with the 
learning managed by the Adam optimizer [58] utilizing mean absolute 
error as the cost function or loss, modified to be able to mask the lagging 
zero paddings of the target series. The training was divided into two 
phases, with different learning rates. The first phase has a larger learning 
rate of 0.0004 to converge to the approximate parameter region within 
1000 epochs and the second phase has a lower learning rate of 0.00025 
to explore the possibility of minimizing the training validation loss 
within the region when trained for another period of 1000 epochs while 
checking for overfitting (see Fig. S13). Additionally, a random 15% of 
the training data was used as validation data for each epoch. After the 
first phase, the model had seemingly settled with a training validation 
loss of around 0.04. The second phase of training proved to be effective 
in lowering the training validation loss further. The best validation loss 
achieved by the S2S network while training was 0.0312, after which 
further improvements were not seen. The training data contained 10497 
samples, with a mini-batch processing size of 300 samples. This model 
was then chosen to perform in the different validation scenarios. 

Processor-in-the-loop test 

Validation was done by serving the trained model into an embedded 
system, Jetson Nano [59]. This small embedded hardware validation of 
the model is significant mainly to demonstrate the standalone ‘predic
tion on edge’ capability where the proposed model, after being fitted 
into a local vehicle can operate perfectly, generate and store results even 
without constant connectivity or remote access to external servers. The 
Nano functions as a mini-sized onboard computer with an NVidia 
CUDA-enabled GPU, which enables it to perform deep learning tasks. 
The board runs a Linux-based operating system that supports a full-sized 
TensorFlow environment; therefore, almost all functionalities of archi
tectures designed in other such systems can be ported. In the 

Fig. 6. Comparison results of the LSTM-RNN versus the S2S model.  

W. Li et al.                                                                                                                                                                                                                                       



Journal of Power Sources xxx (xxxx) xxx

10

‘processor-in-the-loop’ test [60], data arrays are fed to the Nano’s 
storage, from which it can run the model to validate the various vali
dation scenarios taking the sensor data sequentially following a real 
operation usage style. The validation in the Nano is done mainly to 
demonstrate the model accuracy, computing capability and the viability 
of using the device in future BMSs. 

Evaluation criteria 

The main output of the model is the prediction of the future degra
dation curve, which is compared with the true degradation curves of the 
test cells. The mean absolute percentage error (MAPE) of each curve is 
calculated, and the progression of the error is shown as more data be
comes available to the network to process, with the progression of the 
cell’s lifetime. The mean of the MAPE of all the curves from the entire 
lifetime of the cells is also taken as a representative metric. The formulae 
for the calculation of MAPE is given below, where y is the true output 
data point and ỹ is the predicted output data point of one predicted 
curve, respectively. 

APE =

⃒
⃒
⃒
⃒
(̃y − y)

y

⃒
⃒
⃒
⃒× 100% (7)  

MAPEcurve =

∑n
j=1APEj

n
(8)  

MAPEcell =

∑n
i=1MAPEcurvei

n
(9) 

Apart from the curve MAPE, absolute errors of three points of in
terest, namely EOL80, EOL65, and knee-point, are also looked at and 
compared to get the accuracy of the model’s prediction. Since the pro
posed model aims to have a comprehensive lifetime prediction ability, it 
is crucial to validate the results of these additional three metrics along 
with the prediction accuracy. 

Comparison with current iterative prediction approaches 

For comparison, a standard iterative LSTM-RNN model was trained 
on the same dataset, and the results were compared with our proposed 
model to serve as a benchmark. The benchmark LSTM consisted of four 
bidirectional LSTM layers with 90 hidden nodes in each layer and was 
trained on the dataset for 300 epochs before testing. The training length 
was determined through experimentation and was fixed when no further 
improvement to the model was seen upon increment. The iterative LSTM 
model was also trained on 100% of the training curves for the sake of fair 
benchmarking since the S2S model was also trained with 100% of the 
training curve data. The loss used for the training was an unmodified 
version of the ‘mean absolute error’ metric available from Keras, and the 
optimizer used is Adam, similar to the S2S model. 

The LSTM network follows an iterative rolling window approach, 
which is common in the literature [44,47]. The input window is set to 
100 cycles, the same as with the S2S model’s earliest input window. The 
key difference between the networks is that while the S2S model has the 
ability to accept dynamic window sizes and therefore does not need to 
sacrifice previous historical data while predicting with newer inputs, the 
LSTM network must roll the input window forward instead of increasing 
it, to keep a constant window size, which leads to loss of historical data. 
The comparison was made with three key metrics, the earliest, mean and 
maximum MAPE of the best- and worst-case cells, and the maximum 
computation time of a sample on the Jetson Nano (see Table S2). 
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