Adaption of cost calculation methods for modular Laser Powder Bed Fusion (LPBF) machine concepts

Sebastian Dirks RWTH Aachen University – Digital Additive Production DAP Aachen, Germany

25.11.2019 @MAMC Sweden

- 1 Motivation
- 2 DAP Cost Simulation Model Approach
- 3 Model Perspectives
- 4 Model Verification
- 5 Outlook

Motivation

Two advantages of Additive Manufacturing (AM) are complexity for free and individualization

Laser AM (LAM) cost calculation is as complex and individual as the geometry and technology itself!

Motivation

Modular concepts for LPBF series production are emerging

Trumpf

SLM Solutions

Additive Industries

*no claim for completeness

- 1 Motivation
- 2 DAP Cost Simulation Model Approach
- **3** Model Perspectives
- 4 Model Verification
- 5 Outlook

Historical approaches: Analytical

analytical approaches are estimates, best suited for use cases based on limited data (e.g. quoting)

Historical approaches: Analytical

- 1. Coater costs are divided evenly between all parts
- 2. Coater costs are divided evenly between parts 1 & 2
- 3. Coater costs will refer to Part 1 only

[3]

sources:

- [1] Alexander, P.; Allen, S.; Dutta, D. (1998): Part orientation and build cost determination in layered manufacturing. In: CAD Computer Aided Design, 1998, Vol.30(5), pp.343-356 30 (5). DOI: 10.1016/S0010-4485(97)00083-3.
- [2] Rickenbacher, L.; Spierings, A.; Wegener, K. (2013): An integrated cost-model for selective laser melting (SLM). In: Rapid Prototyping Journal, 19 April 2013, Vol. 19(3), pp.208-214 19 (3). DOI: 10.1108/13552541311312201.
- [3] Hopkinson, N.; Dickens, P. (2003): Analysis of rapid manufacturing Using layer manufacturing processes for production. In: Proceedings of the Institution of Mechanical Engineers, 2003, Vol.217(1), pp.31-40 217 (1).

Historical approaches: Statistical

statistical models use regression to adapt to reality, but need machine-specific historical data

The AM Process Chain

The AM Process Chain

DAP Approach: virtual modular simulator

simulation model results are highly accurate, but need more preparation

- 1 Motivation
- 2 DAP Cost Simulation Model Approach
- **3** Model Perspectives
- 4 Model Verification
- 5 Outlook

Machine View

The machine view enables cost driver detection and benchmarking of machine improvements

Product View

Example: Additive manufactured breaking system with quality assurance parts

The product view enables benchmarking of part design, supports, placement and orientation

Product View

Example: Additive manufactured breaking system with quality assurance parts

The product view enables benchmarking of part design, supports, placement and orientation

- 1 Motivation
- 2 DAP Cost Simulation Model Approach
- **3** Model Perspectives
- **4** Model Verification
- 5 Outlook

Model Verification

Model performance

- The model was verified by layer-wise analysis of the machine log timestamps of 9 real-word build jobs
- Mean Average Percentage Error (MAPE) of 0.28 %
- example MAPE for statistical approaches found in literature is 8,2% [1]
- Deviation below 7 min for all jobs, including 70 hours run time jobs

The model shows high precision for real world build jobs

source:

[1] Rudolph, Jan-Peer: Emmelmann, Claus (2017): A Cloud-based Platform for Automated Order Processing in Additive Manufacturing. In: Procedia CIRP 63, S. 412–417

Model Verification

Layer-wise performance

- layer-wise comparison of execution time (sum of exposure, recoating and platform movement time) to log timestamps
- average deviation per layer below ±0.2%
- standard deviation below ±1%

Low standard deviation for all layers shows geometry independence

Model Verification

Analysis of influencing factors

- different model parameters have been varied by ±10% and time deviation to the log timestamps is reavaluated
- the maximum deviation
 percentage of ± variations on the
 average time deviation of all test
 files is shown

sky writing time and jump speed are the most important settings for typical build jobs time calculation

- 1 Motivation
- 2 DAP Cost Simulation Model Approach
- **3** Model Perspectives
- 4 Model Verification
- 5 Outlook

Outlook

Future use cases

digital shadow of real machines

Acknowledgements

Acknowledgements

This research has been financed by the German ministry of Research and Education in the Digital Photonic Production Direct (13N13710) project as part of the "Research Campus – Public-Private Partnership for Innovation" initiative and continued in the Industrialization and Digitalization of Additive Manufacturing for automotive serial processes (13N15084) project.

Thank you for your attention!

M.Sc. Sebastian Dirks
RWTH Aachen University – Digital Additive Production DAP
Steinbachstraße 15
52074 Aachen
+ 49 241 8906-8325
sebastian.dirks@dap.rwth-aachen.de

