
1
  Chair for Digital Additive Production at RWTH Aachen University 

2 Fraunhofer Institute for Laser Technology ILT 

M.SC. SEBASTIAN DIRKS 1, PROF. DR. JOHANNES HENRICH SCHLEIFENBAUM 1,2 

 

 

ADAPTION OF COST CALCULATION METHODS FOR 

MODULAR LASER-POWDER BED FUSION (L-PBF) MACHINE 

CONCEPTS 

 

 

Abstract  

 

Methods for cost calculation of Laser-based Additive Manufacturing (LAM) have 

evolved over the last two decades. Starting from a rapid prototyping manufacturing method, 

cost calculation over time included more than single part production for small series or mixed 

batches. New machine developments nowadays aim at large scale production and introduce 

modular machine designs that give LAM factory operators more decision freedom on machine 

configurations and expansibility. To leverage this new possibilities, LAM costing methods must 

be adapted to calculate and visualize the economic consequences of different module 

configurations. 

In this work a modelling architecture of L-PBF machines using virtual modules is 

presented. Using principles of the industry 4.0 communication standard OPC UA, a virtual 

machine is set up, parametrized and connected to the AM digital process chain. Two different 

views on the cost information are used, optimized for different use cases. 

First, the product view allows detailed analysis of cost allocation to parts in mixed 

batches and the layered geometry of the part. Second, the machine view tracks utilization of all 

machine modules, divided into the states idle, active, off and maintenance. The theoretical 

Overall Equipment Effectiveness (OEE) is calculated on a module basis, enabling economic 

analysis and optimization of module composition as well as module improvements and new 

modular machine constellations. This allows focusing research and development on most 

valuable improvements. By calculating different scenarios like spare part production, mass 

production or rapid prototyping, the part portfolio to be manufactured can be considered. 
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1. Introduction 

 

Laser-based Additive Manufacturing (LAM) is seeing an ongoing trend towards larger 

scale, series production systems. Most major market players already offer or plan to offer 

modular, scalable systems that can be configured by their customers. Examples include the 

MetalFAB1 by Additive Industries [1], the M400 by EOS Electro Optical Systems [2], the M 

Line Factory by GE Additive [3], the SLM 500 by SLM Solutions Group AG [4] and the 

TruPrint 3000 by TRUMPF Laser- und Systemtechnik GmbH [5]. 



 

These modular systems are configurable by the AM factory operator. They consist of 

machine modules and auxiliary systems (e.g. sieving and unpacking stations) that can be 

combined in various constellations. They are scalable by adding modules and can be ordered in 

different expansion levels (e.g. the MetalFAB1 offers optic modules with 1-4 laser units). These 

systems follow different machine concepts, and the economic viability for the use case of each 

individual company is not easily defined. On the one hand the flexibility of the concepts 

increases possible combinations and thus AM investment planning complexity. On the other 

hand the economic benefit strongly depends on the geometry and constellation of the part 

portfolio to be manufactured on this machines.  

In this paper a new approach in LAM cost calculation that is adapted to this new machine 

concepts is presented. A virtual machine consisting of modules is integrated into the digital 

process chain of AM manufacturing, enabling modelling of modular concepts and calculation 

of machine viability on a scenario basis as well as analyzing the Overall Equipment 

Effectiveness (OEE) on a module basis.  

 

 

2. Short AM Cost Calculation History 

 

Cost calculation for Laser-based Additive Manufacturing (LAM) has evolved over time, 

just like the production method itself. Additive manufacturing has its roots in the rapid 

prototyping of parts, where builds consisted mostly of single parts. This short overview 

highlights some cost calculation models that have gained some traction in the literature [6], and 

lists them in chronological order of their publishing dates. 

The early cost model by Alexander et al. [7] uses an analytical approach. This model 

calculates the build costs of a single part by calculating input parameters from the geometry of 

the part. The cross section area of the part in each layer is the main input, the processing time 

is estimated with a simple model of equidistantly spaced paths. The part volume determines the 

material costs. Support volume is estimated by the area of downwards-facing surfaces and 

calculated in the same way. 

The activity based costing approach by Hopkinson and Dickens [8] focusses on small 

series production. It includes indirect costs into the calculation, like cost for build preparation, 

set-up time and post-processing of parts. The model assumes a production of the same part for 

one year with the maximum possible parts per build. 

Rickenbacher et al. [9] use a cost model that includes building of different part 

geometries in one job. The model includes seven steps: Cost for preparing geometry data, cost 

for the build job assembly, machine set up costs, cost of building the part, cost for removing the 

part from the L-PBF machine, cost for separating the parts form the substrate plate and costs 

for post processing. The build time is estimated with the following regression formula: 

∑ 𝑇𝐵𝑢𝑖𝑙𝑑(𝑃𝑖) = 𝑎0 + 𝑎1 ∗ 𝑁𝐿 + 𝑎2 ∗ 𝑉𝑡𝑜𝑡 + 𝑎3 ∗ 𝑆𝑠𝑢𝑝𝑝𝑡𝑜𝑡
+ 𝑎4 ∗  ∑ 𝑁𝑖 + 𝑎5 ∗ 𝑆𝑡𝑜𝑡

𝑖𝑖

 
(

(1) 

The building time 𝑇𝐵𝑢𝑖𝑙𝑑 for the part with ith geometry is calculated with the regression 

coefficients 𝑎0 to 𝑎5. Input parameters are the number of layers 𝑁𝐿, the total volume of the 

build job 𝑉𝑡𝑜𝑡, the total surface area of the support structures 𝑆𝑠𝑢𝑝𝑝𝑡𝑜𝑡
, the quantity of parts with 

ith geometry 𝑁𝑖 and the total surface area of the build job 𝑆𝑡𝑜𝑡. The regression coefficients are 

derived from 24 build jobs on one machine. 𝑎2 to 𝑎5 are used as well to allocate the total build 

time to each part, while 𝑎0 and 𝑎1 are distributed among all parts equally. The layer dependent 

𝑎1 is only distributed among parts that still have geometry in the layer, causing parts with less 

height that would allow the job to finish earlier to be priced fairly. 



 

Recent online cost estimation tools as described e.g. by Rudolph et. al. [10,11] focus on 

the fast, fully automated calculation of an estimated price based on an uploaded STL part 

geometry. Similar tools can be found on most 3D printing service provider platforms. The 

described model uses similar formulas as Rickenbacher et al. using build height, volume and 

surface area as inputs. The performance of the estimation shows a mean absolute percentage 

error (MAPE) of 8.2% on the build time in part screening. 

None of the reviewed cost models takes scalable, modular multi-laser systems into 

account. Most cost models are not considering mixed batches of e.g. spare parts that are an 

important use case of additive manufacturing (AM). The allocation of costs to parts is based 

only on substitute quantities like volume, not on the time the machine spends to produce 

geometry belonging to this part. Modular machine concepts can’t be represented with the 

models. The build time estimation precision presented in [10] shows a MAPE of 8,2%. The 

estimation is only valid for one machine, and additionally build job length data from this 

machine must be available to conduct the regression. To overcome these shortcomings, a new 

modular benchmarking approach on the basis of a virtual machine module architecture is 

presented in this paper. 

 

 

3. Basic Software Architecture Model 

 

The proposed benchmarking software acts as a machine emulator that gets fully 

integrated into the digital L-PBF process chain (Fig. 1). It uses the same interfaces as real 

additive manufacturing machines. The software reads different formats of the layered 2,5D 

geometry data that controls the galvanometer scanner and replaces the real machine in the 

“execution of vectors” step. This data is created from 3D modelling data in the “slicing” process 

step. Opposed to analytic cost models, the use of the full set of machine control data enables a 

highly precise time estimation. The knowledge of the process, material and machine dependent 

parameters is essential for the model. And even more importantly, all geometry dependent 

factors in the digital process chain are included in the calculation. This allows the benchmarking 

of every single software component in the digital process chain with different input scenarios 

(e.g. mixed batch spare parts, small series or large parts). Exemplary geometry dependent use 

cases are the benchmarking of different manufacturing parameter sets, the performance of 

multi-laser scan field allocation algorithms or the cost effectiveness of different job nesting 

algorithms. 

 

 

 
Fig. 1: Digital process chain for L-PBF 



 

The downside of using the layered data is that it usually has to be prepared manually, 

which makes the approach less viable for a quick automatic quoting based on a 3D STL input. 

An automatic slicing of the input is possible, but may lower the precision depending on the 

discrepancies between automated digital process chain and the manual chain the part is 

following in production.  

The results of the cost analysis as well as the parametrizing of the machine emulator is 

conducted via an self-describing Open Platform Communications Unified Architecture (OPC 

UA) interface. OPC UA is gaining traction as an Industry 4.0 standard for the communication 

between manufacturing machines in the shop floor and higher-level control systems [12]. 

Including this interface enables the future integration of the emulator into OPC UA based 

manufacturing execution systems (MES). All functions of the emulator are called via OPC UA 

method calls. The results of the benchmarks are summarized into two different views: The 

machine view, which shows the usage of every module of the machine, and the product view, 

which distributes the costs of the build job among the parts printed in the job (Fig. 2). 

 

 

 
Fig. 2 Basic architecture of the machine emulator (UML component diagram) 

 

4. Machine view 

 

The machine view enables the detailed analysis of the overall equipment effectiveness 

of a LAM machine on the basis of a module concept. The primary use case of this view is the 

benchmarking and improvement of machine concepts by identifying cost drivers among the 

modules. It is also possible to evaluate the consequences of specific machine improvements. 

This includes replacing parameters like adapting the coater speed, but also highly geometry 



 

dependent improvements like non-state of the art scanning strategies. The primary user of this 

view is the machine manufacturer, although it can be used by advanced customers with in-depth 

process know-how as well. 

 

 

4.1 Modules 

 

Every component of the machine as well as the whole machine is considered a module. 

Each module has its own state machine with the four basic states active, idle, off and 

maintenance. The modules measure their activity time in each state, which enables analysis of 

the OEE on a module basis. E.g. the overall laser on-time of each laser in a multi laser machine 

can be tracked. The states are associated with energy consumption, e.g. the laser module keeps 

track of its time in the active state with the energy consumption depending on the laser power 

defined by the current process parameters. The module types implemented in the module 

framework can be found in Fig. 3. The types have been derived from the state of the art in 

modular machine concepts [1–5]. 

 

 
Fig. 3: module types of the simulator 

 

The OEE of different module types is influenced by the geometry of the manufactured 

parts in varying degrees. For the scanners and their associated lasers in a multi-laser machine 

this influence is the strongest, as they execute the vectors that form the geometry. The scanners 

have to be synchronized to each other before recoating for the next layer, which can result in 

idle times when the vectors are not evenly allocated to every scanner. The coater module is 

influenced significantly as well, its usage depends on the part height, layer thickness as well as 

the ratio between exposure and coating time associated with the filling degree of the layer cross 

sections. 

All other modules are influenced indirectly by the overall build time of the jobs, since 

most of the post processing modules (e.g. heat treatment, removal of parts, surface milling) are 

shared by multiple build chambers in most machine concepts to increase their utilization ratio. 

Modules associated with the powder cycle (powder storage, powder feed and overflow, sieving, 

filter) are influenced by the volume of the parts that are build. 



 

 

 

4.2 Services 

 

To obtain flexibility in implementing the modules, the software architecture uses the 

concept of services. Each module implements services associated with functions in the 

procedural control of the LAM build process. The services are the connection between the 

digital process chain and the module implementation. Procedural controls are not unique, 

different variants are possible that offer different service slots. As an example, a procedural 

control that is multi-laser capable needs to take the scan field locations and overlap of different 

laser-scanner units into account and has to allocate vectors to the lasers. 

Different variants of modules can implement the same service, being controlled by the 

same interface but with different implementations. This offers flexibility in benchmarking new 

module concepts, where a calculation needs to be integrated into the virtual module. 

The basic procedural control implemented is oriented on the classical L-PBF process 

cycle [13]. It controls the modules coater, build chamber with inert atmosphere flooding and 

preheater, powder feed and unload, platform lift and multiple laser scanner units. It receives the 

2,5D layered geometry data and executes the L-PBF process by flooding the build chamber and 

concurrently preheating. For each layer powder is feed and recoated, then the laser-scanner 

units are executing the exposure. After exposure, the platform is lowered by the platform lift 

and the cycle starts anew until all layers are finished. After the build job is finished, the inert 

atmosphere is released and the powder and substrate plate is unloaded. 

The user of the software can create virtual machines using a module tree. Child modules 

are dependent on their parent and will be synced to a timestamp when their parent is synced, 

e.g. a substrate plate in a build volume will be used exactly as long as the build volume itself. 

The modules in the tree can then be connected to a service interfaces they implement called by 

the procedural control. All this actions are realized using OPC UA method calls. 

 

 

4.3 Parameter Sets 

 

Each module has a specific set of parameters that define its performance (e.g. the coating 

speed of the coater, the delays the scanner uses etc.). The software concepts allows for the 

creation of multiple parameter sets independent of modules and associating parameter sets of 

the correct type to each module. Modules can share the same parameter set, e.g. one set of 

scanning parameters for every scanner in a multi-laser machine. Parameter sets are published 

in the OPC UA interface and can be set by OPC UA read and write functions. 

 

 

5. Product view 

 

The product view is a different perspective on the same data calculated in the machine 

modules. Its primary user is the AM factory operator. In this view the costs of the build job are 

allocated to the parts of the job. In contrast to a simple allocation using the volume, surface or 

other simple variables to split the costs [9], the allocation is based on the sum of the exact time 

each vector block in the layered geometry data has taken for execution on the machine. All 

vector blocks are associated to one 3D part only by definition. Times per layer which are not 



 

associated to one part, mainly coating and platform lowering, are split evenly upon all parts that 

have geometry in the layer. This results in the same cost split used by Rickenbacher et al. [9]. 

Times associated to the build job as a whole, e.g. preheating, inerting the atmosphere or 

unloading the substrate plate are evenly distributed among all parts in the job. 

 

 

6. Verification of the model 

 

The most crucial component for the verification of the model is the calculation of the 

exposure time. This time component is heavily influenced by the part geometry and takes most 

of the manufacturing time of an L-PBF machine. Thus the galvanometer scanner model is the 

most complex in all the modules. All parameters set in the virtual scanner have to be set 

correctly. Parameters included in the model calculation are jump speed, delay times (jump 

delay, mark delay, polygon delay, laser on- and off-delay), sky writing pre- and post run 

including geometric vector extension, jump start and end point recalculation as well as limit 

angle between vectors for applying sky writing. The implementation includes multi-laser 

machines, using multiple scanner modules to execute the exposure in parallel and syncing all 

scanners correctly to the longest exposure execution. 

The calculated times are compared to the timestamps of the machine log file on a layer 

basis for nine real-life build jobs on a dual laser machine. The overall results of the verification 

are shown in Fig. 4. The deviation is between -0.42 % and 0.67 %, resulting in variations form 

-7 to +6 minutes in the predicted build time. This results in a MAPE of 0.28 %. 
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Fig. 4 Deviation between calculated and real build time in percent and minutes per build job file 



 

The average deviation of the exposure time per layer from the machine log for the same 

files is shown in Fig. 5. The absolute deviations are below 0.2 % on average for every single 

layer of the file, and also show a low standard deviation below 1 %, showing the accuracy of 

the model is geometry independent and thus able to also predict unknown or unusual build jobs 

with the same precision. 
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Fig. 5 Layer-wise average and standard deviation between simulated and real exposure time per build job file 

 

 

7. Summary and outlook 

 

In this work a new approach on L-PBF cost calculation has been presented. It adapts to 

the trend of modular AM machines using virtual modules. The shortcomings of past cost 

calculation methods are analyzed: no support of scalable multi-laser systems, mixed batches 

are not included and the cost is imprecisely split upon parts in the job.  

The virtual module emulator approach uses the full L-PBF digital process chain and 

replaces the real machine in the “execution of vectors” step by processing layered 2,5D 

geometry data. Several module types are identified from the state of the art modular systems 

and implemented in a common framework. A procedural control executes the L-PBF process 

cycle by calling services. These services are implemented by different module variants, leading 

to a service-orientated architecture. Modules can be quickly parametrized by using parameter 

sets independent of modules. 



 

The machine module tree is build up and the parameters are set via an OPC UA interface, 

enabling integration into industry 4.0 environments. The benchmark results are presented via 

OPC UA as well, using two different perspectives: The machine view shows the OEE on a 

module basis, the product view shows the cost split on the parts in the job based on the execution 

time of the sum of vector blocks of each part. 

The calculated build time of the emulator is verified by comparing it layer-wise to log 

timestamps of a dual laser L-PBF machine with nine real-life build jobs. The MAPE reaches 

0.28 % for the model, a huge improvement over regression models found in literature with 

8.2 % MAPE [10]. The layer-wise analysis shows an average deviation below 0.2 % with a 

standard deviation below 1 %, concluding in a nearly geometry independent prediction of build 

time. 

As the next step, the verified machine model based on the physical components will be 

used as a basis for simulation studies of various parameter changes in the model and their effect 

on the cost of building a given part portfolio in a manufacturing scenario. The model will enable 

the prediction of economic benefits of different machine improvements and will function as a 

tool to optimize build job nesting. Due to its OPC UA interface it can be integrated into future 

OPC UA based Manufacturing Execution Systems (MES) to set up a full virtual factory of L-

PBF machines. 
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