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Abstract

The closure of the turbulence problem in reacting flows is challenging since it is strongly affected by heat release.
Moreover, the models developed, in general, have been created for non-reacting flows. Innovative machine learning
algorithms allow to develop data-driven models able to capture the interaction of turbulence and heat release at
different regimes. In this work, the Enhanced Super-Resolution Generative Adversarial Network architecture is
proposed as technique to reconstruct the subfilter scales for two planar premixed flames at different Karlovitz number.

Introduction

In Large Eddy Simulation (LES) of turbulent
reacting flows the closure of the advection terms and
mass source terms in the governing equations is an active
area of research, and predictive models remain elusive.
For the mass source term in the scalar equation (filtered
chemical source term), many classes of models have been
developed for both premixed and non-premixed
combustion and applied to systems of different
complexity with varying degrees of success [1]. The
advection terms in the equations for the momentum and
the species mass fractions represent unresolved turbulent
mixing of the momentum (subfilter stresses) and the
scalar (subfilter scalar fluxes).

The models for these terms were, in general,
developed for non-reacting flows and then adapted to
reacting flows, without any concern for the assumptions
in these models. This approach does not accurately
account for the effect of heat release on turbulence and
precludes the achievement of predictive LES, even with
perfect combustion models [2].

Deep neural networks thrive in situations where
structural relations between input and output are
presumably present but unknown. The reconstruction of
subgrid information with deep neural networks is a
promising approach to link the large-scale results,
obtained from filtered equations, to the actual flow fields.
Among various kind of neural networks developed,
Super-Resolution Generative Adversarial Networks
(SRGANs) have typically been applied to image
enhancement, where the input to the generator is a low-
resolution image and the model learns to enhance the
image and reconstruct it with more details. During
training of the SRGAN, the generator learns to generate
realistic images, whereas the discriminator becomes
more effective at distinguishing the generated images
from the real ones. Similarly, in the context of turbulent
combustion, SRGANs can be used to generate high-
wavenumber detail of lower resolution simulations [3].

The analysis of two turbulent premixed
hydrogen/air spatially-evolving planar jet flames at
different Karlovitz number (Ka) [4] highlighted the
presence of different physical mechanisms driving the
heat release-turbulence interaction.

In particular, the turbulent kinetic energy budget shows
that, below a critical Karlovitz number, the dominant
source of kinetic energy is the velocity-pressure gradient
correlation linked to the dilatation induced by
combustion heat release. While above the critical
Karlovitz number, the turbulent kinetic energy budget is
similar to a non-reacting flow. The invariant maps of the
anisotropic portion of the strain-rate tensor and of the
Reynolds stress tensor at high Ka corresponds to pure
shear between the central jet and the coflow; for the lower
Ka, the dilatation from combustion heat release causes a
lengthening of fluid elements.

Data from these DNS calculations are utilized to both
train and test a modified SRGAN to then realize a set of
predictive data driven models having different
characteristics: low-Karlovitz, high-Karlovitz. The
models are evaluated with different flames in order to
assess their predictive capabilities across different
combustion regimes as well as turbulent regimes. This
work constitutes the base for the construction of a
predictive model for multi-regime turbulent combustion
based on a SRGAN enriched with physics-based features.

Database

The Direct Numerical Simulation (DNS) database
considered in this work is constituted by two spatially-
developing turbulent premixed planar jet flames at Re =
5000 and having different Ka [4]. They are composed of
a central jet, which is separated by thin walls from
primary coflow jet. Flow in the central jet was initialized
from auxiliary DNS calculations of fully-developed
turbulent channel flow. Secondary low-velocity bulk
coflows isolate the central and coflow jets from the
domain boundaries. For these cases, fully-developed
laminar velocity profiles are specified at the inlet for the
primary coflow jets, and the use of laminar coflows or
turbulent coflows was found not to significantly affect
the turbulence budgets within the flame.

The central jet consists of a gaseous mixture of
hydrogen and oxygen at the stoichiometric equivalence
ratio, diluted 80.9% by mass with nitrogen, at 7o =300 K
and po = 1 atm. Equilibrium products of combustion of
the same mixture issue from the coflow jets at 7. = 2047.5
K and p. = 1 atm. A nine species hydrogen chemical



kinetic model [5] is used. The critical Karlovitz number
separates two different regimes. For Ka lower than the
critical value, (case K1), pressure-dilatation induced by
the flame is the primary source of turbulent kinetic
energy because it represents the small scales source;
conversely, for Ka larger than the critical value, (case
K2), mean shear is the dominant source of turbulent
kinetic energy.

To generate the DNS database, the Navier-Stokes
equations are solved in the low Mach number limit using
a semi-implicit iterative algorithm of Desjardins et al. [6],
implemented in the code NGA. The species equations are
solved with a monolithic scheme using an approximately
factorized exact Jacobian.

The domain for case K1 has dimensions 12HO x
24H0 x 3HO (with HO the height of the central jet) in the
streamwise (X), cross-stream (y), and spanwise (z)
directions, respectively. The computational grid has
768x586%256 points. Case K2 has a longer domain,
24H0 x 16HO x 3HO, and a finer grid with 1536x576x256
points. The boundary conditions are, in both cases,
inflow on the -x face, outflow on +x face, free slip-on y
faces, and periodic in the z-direction.

The subdomain considered for the analysis in case K1
has dimensions 7H0x4HOxHO, or rather 390x316x86
grid points, in the x-, y-, and z-directions, respectively.
The subdomain contains about 10.6 million grid points,
so the number of degrees of freedom per snapshot is
about 42 million since four variables (three velocity
components, u, v, w, and temperature) are considered.
The number of snapshots considered is 401, and the space
in time At = 4 ps. Subsequently, for this analysis, up to
about 17 billion data values are used, or rather more than
300 GB.

In the case of K2, the subdomain considered has
dimensions 8HO0x4HO0xHO, or rather 454x310x86 grid
points, containing about 12.1 million grid points. The
number of degrees of freedom for each snapshot is about
48 million, and for the complete analysis, 19 billion
values are used. The snapshots have been taken with an
interval of At=3.25 ps.

Methods

Model description

The network is based on the architecture of Turbulence
Super-Resolution  Generative Adversarial Network
Architecture (TSRGAN) by Bode et. al [7], which itself
is based on a 3D Tensorflow [§8] implementation of the
Enhanced Super-Resolution Generative Adversarial
Network  Architecture (ESRGAN) [9] originally
developed for single image super-resolution tasks.
Compared to the original ESRGAN generator, no up-
sampling blocks are used, only one residual-in-residual
dense block is employed and an additional convolutional
layer is added at the end. The TSRGAN generator heavily
relies on the use of three-dimensional convolutions layers
in combination with leakly rectified linear units
(LeaklyReLU) [10] as activation function.

The discriminator architecture differs from the
ESRGAN’s discriminator by the addition of a dropout

layer and a different last but one dense block to account
for the additional neurons of the 3D architecture.

Data preparation
To obtain LES-like solutions of the simulations, the
datasets were filtered with a truncated Gaussian filter
with width A = 8dx, resulting in resolved energy levels,
defined as
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of approximately 86.3% for the flame K1, and 88.2% for
the flame K2. There is no downsampling of the domain
in this process, and hence the number of points in the
DNS and filtered DNS solutions are the same.

Since the entire domain is too large to be used as
input to the network due to memory limitations, cropping
operations were applied to the domain similar to the
patches employed in the single image super-resolution
tasks. In order to reduce the likelyhood of the network
learning an inverse filtering operation, the cropping size
was set to a fixed size of 2A in each direction of the
cropped boxes, resulting in a box size of 16 grid points.
These boxes were randomly selected from subdomains
previously described. For each snapshot, 4000 boxes
were taken. To artificially increase the dataset size
further, random flipping and rotation operations were
employed during dataset loading. The boxes were taken
at the same location for the filtered DNS data - used as
input to the network - and for the DNS data used as label
data.

Training strategy

The generator was initially trained independently of the
discriminator (pretraining) using the mean squared error
(MSE) of the pixel loss.

Later the GAN was trained in a supervised fashion,
using a combination of the MSE of the pixel loss, the
MSE of the spatial gradient of the pixel loss and the
relativistic adversarial loss [11].

The network was trained on three different datasets:
K1 data only, K2 data only and a mixture of the two using
both datasets completely. Snapshots were selected
randomly and eight of them (32000 boxes) were loaded
as a dataset at any given time during the training. The
generator was trained for 10 epochs on these 8 snapshots,
then the next 8 snapshots were loaded and the training
process continued for the same number of epochs until
there were no more snapshots left. In the same fashion,
the GAN was trained afterward. To speed up this training
process, the model was trained on the RWTH cluster
using 4 NVidia V-100 GPUs on two nodes using the
Horovod library [12] for parallelization. The generator
was trained with a batch size of 16 whereas the GAN was
trained with a mini-batch size of 12.

Two configurations were investigated:

1. Training using only velocity components
2. Training wusing velocity components, and
temperature.

The initial learning rate for the generator was set to
5.0 x 1075, with the exception of the case K1 in the
configuration with only velocity components where it
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Fig. 1. Velocity fields for K1 case. Top row: DNS (left), filtered-DNS (right); center row: reconstructed fields
using model trained with velocity components from K1 data only (left), and a mixture of both datasets (right); bottom
row: reconstructed fields using model trained with velocity components and temperature from K1 data (left), and a

mixture of both datasets (right).

was set to 3.0 X 107>, For both networks of the GAN,
instead, the initial learning rate was set to 1.0 X 1075, A
learning rate scheduler that halves the learning rate every
10k iterations (50k iterations for the first time) is
employed. The learning rate was optimized with the
Adam optimizer [13].

To normalize the dataset while keeping the relation
of the velocity components to another, the maximum and
minimum of all velocity components of the entire DNS
dataset were used to normalize the velocity components
with the same values. Temperature was normalized
independently to be between 0 and 1 using their
respective minima and maxima from the DNS dataset.

Results and Discussion

In Figure 1 a planar cut of the DNS database of case
Klis visualized, along with the corresponding filtered
DNS field obtained applying the Gaussian filter as
described above. Some turbulence structures are still
fairly well clear in the filtered field, however the amount
of kinetic energy contained corresponds to the one
resolved in a LES. The following panel (center row left)
in Figure 1 visualizes the reconstructed field obtained
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training the TSRGAN with the velocity field of the same
case. The RSME of the axial component of the velocity,
u, is 0.117m/s, this high accuracy demonstrated the
capability of the TSRGAN in learning the flow features
at smaller scale. Introducing an additional variable in the
training procedure, namely temperature, it seems that
more details in the velocity field are reconstructed
(bottom row left). Instead, evaluating the RMSE for u
yields a slightly higher, 0.191 m/s.

The aim in using both K1 and K2 databases for the
training of the TSRGAN is to increase the range of
applicability, since it should learn the characteristics of
the flows at different flame regimes. The panels on the
right side of Figure 1 report the results obtained. These
are, in general, less accurate in comparison with the
corresponding fields on the left side (RMSE of u equal to
0.166 m/s and 0.535 m/s). However, the loss in accuracy
is small in comparison with the possibility to extend the
range of TSRGAN.

Figure 2 shows the Joint Probability Density Function
(JPDF) for the residual-stresses for the case K1 in the
four configurations tested. The panels on the top row
confirm that the velocity field is well reconstructed when

N
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Fig. 2. JPDF of the residual-stress for case K1. Top row: reconstructed fields using model trained with velocity
components from K1 data only (left), and a mixture of both datasets (right); bottom row: reconstructed fields using
model trained with velocity components, and temperature from K1 data (left), and a mixture of both datasets (right).
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Fig. 3. Velocity fields for K2 case. Top row: DNS (left), filtered-DNS (right); center row: reconstructed fields
using model trained with velocity components from K2 data only (left), and a mixture of both datasets (right); bottom
row: reconstructed fields using model trained with velocity components, and temperature from K2 data (left), and a
mixture of both datasets (right).
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Fig. 4. JPDF of the residual-stress for case K2. Top row: reconstructed fields using model trained with velocity
components from K2 data only (left), and a mixture of both datasets (right); bottom row: reconstructed fields using
model trained with velocity components, and temperature from K2 data (left), and a mixture of both datasets (right).

only the velocity components are used as input,
independently on the databases used. The bottom row of
Figure 2 highlights the loss of accuracy obtained adding
the temperature as input. On the left side, when only data
from K1 are used, there is a small shift to the towards
lower values, while this is more marked on the right
panel. From these results, it can be stated that the
TSRGAN prediction does not improve by adding
additional variables, probably because they introduce
additional dynamics as well. It has been shown that the
heat release and turbulence interaction is driven by
different physical mechanisms in the two cases
considered [14, 15]. Indeed, in the last plot of Figure 2
the JPDF shows a larger deviation since the TSRGAN
attempts to reconstruct different physical phenomena.

Similarly, in Figure 3 and 4 the velocity fields and the
JPDF of the residual-stress for the case K2 are reported.
Also, in this case the training with the same test case
produces more accurate results (RMSE of u 0.342 m/s)
compared to the training based on a mixture of the two
cases. It is worth to note that in this case adding the
temperature in the training has not a large impact on the
accuracy because the dynamics are similar to the one for
a non-reacting flow. The use of a mixture of the two
databases for the training, conversely, introduces a large
error visible as high velocity regions in Figure 3, and as
high value of the Reynolds stress in Figure 4 since it adds
the effect of dilatation due to heat release which is typical
of the case K1.
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Conclusions

The TSRGAN model has been presented as possible
closure model for turbulence for reacting flows at
different regimes.

The databases used for training and testing are two
planar premixed flames of a hydrogen/air mixture at
Re=5000 and at two different Karlovitz number.

The TSRGAN has been proven to be reliable in the
reconstruction of the small scales features for each case
individually. Some limitation has been found when the
TSRGAN is trained with a mixture of the two databases
because they contain different physical mechanisms
driving the interaction between turbulence and heat
release.

Similarly, when additional variables are used to train
the network, the accuracy in the prediction of those
decreases as they have different correlations and the
TSRGAN cannot represent all at the same time.

Further research has to be devoted in order to produce
a universal model based on TSRGAN. The
characterization of the flows through the non-
dimensional quantities, e.g. Re, Ka, has to be integrated
in the model.
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