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Abstract  
The closure of the turbulence problem in reacting flows is challenging since it is strongly affected by heat release. 
Moreover, the models developed, in general, have been created for non-reacting flows. Innovative machine learning 
algorithms allow to develop data-driven models able to capture the interaction of turbulence and heat release at 
different regimes. In this work, the Enhanced Super-Resolution Generative Adversarial Network architecture is 
proposed as technique to reconstruct the subfilter scales for two planar premixed flames at different Karlovitz number. 
 
Introduction 

In Large Eddy Simulation (LES) of turbulent 
reacting flows the closure of the advection terms and 
mass source terms in the governing equations is an active 
area of research, and predictive models remain elusive. 
For the mass source term in the scalar equation (filtered 
chemical source term), many classes of models have been 
developed for both premixed and non-premixed 
combustion and applied to systems of different 
complexity with varying degrees of success [1]. The 
advection terms in the equations for the momentum and 
the species mass fractions represent unresolved turbulent 
mixing of the momentum (subfilter stresses) and the 
scalar (subfilter scalar fluxes).  

The models for these terms were, in general, 
developed for non-reacting flows and then adapted to 
reacting flows, without any concern for the assumptions 
in these models. This approach does not accurately 
account for the effect of heat release on turbulence and 
precludes the achievement of predictive LES, even with 
perfect combustion models [2].  

Deep neural networks thrive in situations where 
structural relations between input and output are 
presumably present but unknown. The reconstruction of 
subgrid information with deep neural networks is a 
promising approach to link the large-scale results, 
obtained from filtered equations, to the actual flow fields. 
Among various kind of neural networks developed, 
Super-Resolution Generative Adversarial Networks 
(SRGANs) have typically been applied to image 
enhancement, where the input to the generator is a low-
resolution image and the model learns to enhance the 
image and reconstruct it with more details. During 
training of the SRGAN, the generator learns to generate 
realistic images, whereas the discriminator becomes 
more effective at distinguishing the generated images 
from the real ones. Similarly, in the context of turbulent 
combustion, SRGANs can be used to generate high-
wavenumber detail of lower resolution simulations [3]. 

The analysis of two turbulent premixed 
hydrogen/air spatially-evolving planar jet flames at 
different Karlovitz number (Ka) [4] highlighted the 
presence of different physical mechanisms driving the 
heat release-turbulence interaction.  

In particular, the turbulent kinetic energy budget shows 
that, below a critical Karlovitz number, the dominant 
source of kinetic energy is the velocity-pressure gradient 
correlation linked to the dilatation induced by 
combustion heat release. While above the critical 
Karlovitz number, the turbulent kinetic energy budget is 
similar to a non-reacting flow. The invariant maps of the 
anisotropic portion of the strain-rate tensor and of the 
Reynolds stress tensor at high Ka corresponds to pure 
shear between the central jet and the coflow; for the lower 
Ka, the dilatation from combustion heat release causes a 
lengthening of fluid elements.  

Data from these DNS calculations are utilized to both 
train and test a modified SRGAN to then realize a set of 
predictive data driven models having different 
characteristics: low-Karlovitz, high-Karlovitz. The 
models are evaluated with different flames in order to 
assess their predictive capabilities across different 
combustion regimes as well as turbulent regimes. This 
work constitutes the base for the construction of a 
predictive model for multi-regime turbulent combustion 
based on a SRGAN enriched with physics-based features. 

 
Database 

The Direct Numerical Simulation (DNS) database 
considered in this work is constituted by two spatially-
developing turbulent premixed planar jet flames at Re = 
5000 and having different Ka [4]. They are composed of 
a central jet, which is separated by thin walls from 
primary coflow jet. Flow in the central jet was initialized 
from auxiliary DNS calculations of fully-developed 
turbulent channel flow. Secondary low-velocity bulk 
coflows isolate the central and coflow jets from the 
domain boundaries. For these cases, fully-developed 
laminar velocity profiles are specified at the inlet for the 
primary coflow jets, and the use of laminar coflows or 
turbulent coflows was found not to significantly affect 
the turbulence budgets within the flame.  

The central jet consists of a gaseous mixture of 
hydrogen and oxygen at the stoichiometric equivalence 
ratio, diluted 80.9% by mass with nitrogen, at T0 = 300 K 
and p0 = 1 atm. Equilibrium products of combustion of 
the same mixture issue from the coflow jets at Tc = 2047.5 
K and pc = 1 atm. A nine species hydrogen chemical 
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kinetic model [5] is used. The critical Karlovitz number 
separates two different regimes. For Ka lower than the 
critical value, (case K1), pressure-dilatation induced by 
the flame is the primary source of turbulent kinetic 
energy because it represents the small scales source; 
conversely, for Ka larger than the critical value, (case 
K2), mean shear is the dominant source of turbulent 
kinetic energy. 

To generate the DNS database, the Navier-Stokes 
equations are solved in the low Mach number limit using 
a semi-implicit iterative algorithm of Desjardins et al. [6], 
implemented in the code NGA. The species equations are 
solved with a monolithic scheme using an approximately 
factorized exact Jacobian.  

The domain for case K1 has dimensions 12H0 x 
24H0 x 3H0 (with H0 the height of the central jet) in the 
streamwise (x), cross-stream (y), and spanwise (z) 
directions, respectively. The computational grid has 
768×586×256 points. Case K2 has a longer domain, 
24H0 x 16H0 x 3H0, and a finer grid with 1536×576×256 
points. The boundary conditions are, in both cases, 
inflow on the -x face, outflow on +x face, free slip-on y 
faces, and periodic in the z-direction.  

The subdomain considered for the analysis in case K1 
has dimensions 7H0×4H0×H0, or rather 390×316×86 
grid points, in the x-, y-, and z-directions, respectively. 
The subdomain contains about 10.6 million grid points, 
so the number of degrees of freedom per snapshot is 
about 42 million since four variables (three velocity 
components, u, v, w, and temperature) are considered. 
The number of snapshots considered is 401, and the space 
LQ�WLPH�ǻW� ���ȝV��6XEVHTXHQWO\��Ior this analysis, up to 
about 17 billion data values are used, or rather more than 
300 GB. 

In the case of K2, the subdomain considered has 
dimensions 8H0×4H0×H0, or rather 454×310×86 grid 
points, containing about 12.1 million grid points. The 
number of degrees of freedom for each snapshot is about 
48 million, and for the complete analysis, 19 billion 
values are used. The snapshots have been taken with an 
LQWHUYDO�RI�ǻW� ������ȝV� 

 
Methods 
Model description 
The network is based on the architecture of Turbulence 
Super-Resolution Generative Adversarial Network 
Architecture (TSRGAN) by Bode et. al [7], which itself 
is based on a 3D Tensorflow [8] implementation of the 
Enhanced Super-Resolution Generative Adversarial 
Network Architecture (ESRGAN) [9] originally 
developed for single image super-resolution tasks. 
Compared to the original ESRGAN generator, no up-
sampling blocks are used, only one residual-in-residual 
dense block is employed and an additional convolutional 
layer is added at the end. The TSRGAN generator heavily 
relies on the use of three-dimensional convolutions layers 
in combination with leakly rectified linear units 
(LeaklyReLU) [10] as activation function. 
The discriminator architecture differs from the 
(65*$1¶V� GLVFULPLQDWRU� E\� WKH� DGGLWLRQ� RI� D� GURSRXW�

layer and a different last but one dense block to account 
for the additional neurons of the 3D architecture.  
 
Data preparation 
To obtain LES-like solutions of the simulations, the 
datasets were filtered with a truncated Gaussian filter 
with width ¨ = 8dx, resulting in resolved energy levels, 
defined as 

ழ଴Ǥହ�௨ഢതതത௨ഢതതതவ
ழ଴Ǥହ�௨೔௨೔வ

, 
of approximately 86.3% for the flame K1, and 88.2% for 
the flame K2. There is no downsampling of the domain 
in this process, and hence the number of points in the 
DNS and filtered DNS solutions are the same.  

Since the entire domain is too large to be used as 
input to the network due to memory limitations, cropping 
operations were applied to the domain similar to the 
patches employed in the single image super-resolution 
tasks. In order to reduce the likelyhood of the network 
learning an inverse filtering operation, the cropping size 
ZDV� VHW� WR� D� IL[HG� VL]H� RI� �¨� LQ� HDFK� GLUHFWLRQ� RI� WKH�
cropped boxes, resulting in a box size of 16 grid points. 
These boxes were randomly selected from subdomains 
previously described. For each snapshot, 4000 boxes 
were taken. To artificially increase the dataset size 
further, random flipping and rotation operations were 
employed during dataset loading. The boxes were taken 
at the same location for the filtered DNS data - used as 
input to the network - and for the DNS data used as label 
data.  

 
Training strategy  
The generator was initially trained independently of the 
discriminator (pretraining) using the mean squared error 
(MSE) of the pixel loss. 

Later the GAN was trained in a supervised fashion, 
using a combination of the MSE of the pixel loss, the 
MSE of the spatial gradient of the pixel loss and the 
relativistic adversarial loss [11].  

The network was trained on three different datasets: 
K1 data only, K2 data only and a mixture of the two using 
both datasets completely. Snapshots were selected 
randomly and eight of them (32000 boxes) were loaded 
as a dataset at any given time during the training. The 
generator was trained for 10 epochs on these 8 snapshots, 
then the next 8 snapshots were loaded and the training 
process continued for the same number of epochs until 
there were no more snapshots left. In the same fashion, 
the GAN was trained afterward. To speed up this training 
process, the model was trained on the RWTH cluster 
using 4 NVidia V-100 GPUs on two nodes using the 
Horovod library [12] for parallelization. The generator 
was trained with a batch size of 16 whereas the GAN was 
trained with a mini-batch size of 12.  

Two configurations were investigated:  
1. Training using only velocity components  
2. Training using velocity components, and 

temperature.  
The initial learning rate for the generator was set to 

ͷǤͲ ൈ ͳͲିହ , with the exception of the case K1 in the 
configuration with only velocity components where it  
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Fig. 1. Velocity fields for K1 case. Top row: DNS (left), filtered-DNS (right); center row: reconstructed fields 

using model trained with velocity components from K1 data only (left), and a mixture of both datasets (right); bottom 
row: reconstructed fields using model trained with velocity components and temperature from K1 data (left), and a 
mixture of both datasets (right). 

 
 

was set to ͵ǤͲ ൈ ͳͲିହ. For both networks of the GAN, 
instead, the initial learning rate was set to ͳǤͲ ൈ ͳͲିହ. A 
learning rate scheduler that halves the learning rate every 
10k iterations (50k iterations for the first time) is 
employed. The learning rate was optimized with the 
Adam optimizer [13].  

To normalize the dataset while keeping the relation 
of the velocity components to another, the maximum and 
minimum of all velocity components of the entire DNS 
dataset were used to normalize the velocity components 
with the same values. Temperature was normalized 
independently to be between 0 and 1 using their 
respective minima and maxima from the DNS dataset.  

 
Results and Discussion 

In Figure 1 a planar cut of the DNS database of case 
K1is visualized, along with the corresponding filtered 
DNS field obtained applying the Gaussian filter as 
described above. Some turbulence structures are still 
fairly well clear in the filtered field, however the amount 
of kinetic energy contained corresponds to the one 
resolved in a LES. The following panel (center row left) 
in Figure 1 visualizes the reconstructed field obtained 

training the TSRGAN with the velocity field of the same 
case. The RSME of the axial component of the velocity, 
u, is 0.117m/s, this high accuracy demonstrated the 
capability of the TSRGAN in learning the flow features 
at smaller scale. Introducing an additional variable in the 
training procedure, namely temperature, it seems that 
more details in the velocity field are reconstructed 
(bottom row left). Instead, evaluating the RMSE for u 
yields a slightly higher, 0.191 m/s.  

The aim in using both K1 and K2 databases for the 
training of the TSRGAN is to increase the range of 
applicability, since it should learn the characteristics of 
the flows at different flame regimes. The panels on the 
right side of Figure 1 report the results obtained. These 
are, in general, less accurate in comparison with the 
corresponding fields on the left side (RMSE of u equal to 
0.166 m/s and 0.535 m/s). However, the loss in accuracy 
is small in comparison with the possibility to extend the 
range of TSRGAN. 

Figure 2 shows the Joint Probability Density Function 
(JPDF) for the residual-stresses for the case K1 in the 
four configurations tested. The panels on the top row 
confirm that the velocity field is well reconstructed when  
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Fig. 2. JPDF of the residual-stress for case K1. Top row: reconstructed fields using model trained with velocity 
components from K1 data only (left), and a mixture of both datasets (right); bottom row: reconstructed fields using 
model trained with velocity components, and temperature from K1 data (left), and a mixture of both datasets (right). 

 

 

 
Fig. 3. Velocity fields for K2 case. Top row: DNS (left), filtered-DNS (right); center row: reconstructed fields 

using model trained with velocity components from K2 data only (left), and a mixture of both datasets (right); bottom 
row: reconstructed fields using model trained with velocity components, and temperature from K2 data (left), and a 
mixture of both datasets (right). 
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Fig. 4. JPDF of the residual-stress for case K2. Top row: reconstructed fields using model trained with velocity 
components from K2 data only (left), and a mixture of both datasets (right); bottom row: reconstructed fields using 
model trained with velocity components, and temperature from K2 data (left), and a mixture of both datasets (right). 

 
 

only the velocity components are used as input, 
independently on the databases used. The bottom row of 
Figure 2 highlights the loss of accuracy obtained adding 
the temperature as input. On the left side, when only data 
from K1 are used, there is a small shift to the towards 
lower values, while this is more marked on the right 
panel. From these results, it can be stated that the 
TSRGAN prediction does not improve by adding 
additional variables, probably because they introduce 
additional dynamics as well. It has been shown that the 
heat release and turbulence interaction is driven by 
different physical mechanisms in the two cases 
considered [14, 15]. Indeed, in the last plot of Figure 2 
the JPDF shows a larger deviation since the TSRGAN 
attempts to reconstruct different physical phenomena. 

Similarly, in Figure 3 and 4 the velocity fields and the 
JPDF of the residual-stress for the case K2 are reported. 
Also, in this case the training with the same test case 
produces more accurate results (RMSE of u 0.342 m/s) 
compared to the training based on a mixture of the two 
cases. It is worth to note that in this case adding the 
temperature in the training has not a large impact on the 
accuracy because the dynamics are similar to the one for 
a non-reacting flow. The use of a mixture of the two 
databases for the training, conversely, introduces a large 
error visible as high velocity regions in Figure 3, and as 
high value of the Reynolds stress in Figure 4 since it adds 
the effect of dilatation due to heat release which is typical 
of the case K1.  

 

Conclusions 
The TSRGAN model has been presented as possible 

closure model for turbulence for reacting flows at 
different regimes. 

The databases used for training and testing are two 
planar premixed flames of a hydrogen/air mixture at 
Re=5000 and at two different Karlovitz number. 

The TSRGAN has been proven to be reliable in the 
reconstruction of the small scales features for each case 
individually. Some limitation has been found when the 
TSRGAN is trained with a mixture of the two databases 
because they contain different physical mechanisms 
driving the interaction between turbulence and heat 
release. 

Similarly, when additional variables are used to train 
the network, the accuracy in the prediction of those 
decreases as they have different correlations and the 
TSRGAN cannot represent all at the same time. 

Further research has to be devoted in order to produce 
a universal model based on TSRGAN. The 
characterization of the flows through the non-
dimensional quantities, e.g. Re, Ka, has to be integrated 
in the model. 
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