
Scaffolding Decentralized Community Information
Systems for Lifelong Learning Communities

Von der Fakultät für Mathematik, Informatik und
Naturwissenschaften der RWTH Aachen University zur Erlangung
des akademischen Grades eines Doktors der Naturwissenschaften

genehmigte Dissertation

vorgelegt von

Peter Marcel de Lange, M.Sc.

aus Eschweiler, Deutschland

Berichter: Univ.-Prof. Dr. rer. pol. Matthias Jarke
Priv.-Doz. Dr. rer. nat. Ralf Klamma
Univ.-Prof. Dr. phil. Martina Ziefle

Tag der mündlichen Prüfung: 20.07.2021

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar.

ii

iii

Abstract

Initially, theWeb was developed as a decentralized system of information reposito-
ries that facilitate organizational knowledge transfer by allowing anyone to create
and access content. However, Web publishing required both technical expertise
and hardware infrastructure. With the rise of the Web 2.0, social networking sites
and content management systems enabled all users to create Web content. But
it simultaneously put the users at the mercy of the platform operators. Services
could be shut down, erasing content and disrupting communities.
Decentralized community information systems radically change this dynamic by
establishing participants as equal peers, which form a self-governing community.
This way, a community regains control over their data, while being able to scale
the infrastructure according to their needs.

In this dissertation, we followed a design science approach that provides support
for communities to create and host their own decentralized community informa-
tion systems. On the one hand, we produced several artifacts to provide possible
answers to the question of what properties such an infrastructure needs to fulfill.
With the blockchain-based decentralized service registry, we propose a solution
for making community knowledge accessible in a secure and verifiable way. On
the other hand, we transfer the metaphor of educational scaffolding to the do-
main of service development. It is based on the idea, that a scaffold serves as
a temporary supporting structure during a building’s construction phase. As the
construction site develops and the building gets completed, the scaffold gradually
gets removed up to the point, that it is not needed anymore. With the community
application editor, communities are provided with such a scaffolding environment
for requirements elicitation, wireframing, modeling and coding their decentralized
community applications. Once deployed on the infrastructure, those applications
and development efforts remain available, even after the contributing members
might have left, serving as the community’s long term memory.

We demonstrated and evaluated our artifacts on a European scale, with three
longitudinal studies conducted within several communities from different areas of
technology enhanced learning, such as the European voluntary service, vocational
and educational training providers and in higher education mentoring scenarios.
All in all, this shift from data being stored in centralized repositories to a decen-
tralized infrastructure, hosted by community members, opens up possibilities for
a more democratic and egalitarian management of community knowledge.

iv

v

Kurzfassung

DasWebwurde ursprünglich als dezentrales System von Informationen entwickelt,
welches organisationalen Wissensaustausch durch alle ermöglichen sollte. Dieser
Austausch erforderte jedoch technische Expertise und Hardware Infrastruktur.
Mit dem Schritt zum Web 2.0 wurde das Erstellen und Teilen von Inhalten durch
das Aufkommen sozialer Netzwerke und Content Management Systemen allen
Nutzern ermöglicht. Hierdurch wurde jedoch gleichzeitig eine Abhängigkeit zu
den Plattformanbietern eingegangen. Dienste konnten jederzeit eingestellt werden,
was zum Verschwinden von Inhalten führen und schlussendlich Gemeinschaften
auseinander bringen kann. Dezentrale Community-Informationssysteme verän-
dern diese Dynamik, indem sie untereinander gleichberechtigte Teilnehmer einer
selbstverwalteten Gemeinschaft etablieren. Auf diese Weise erhält eine Gemein-
schaft dieKontrolle über ihreDaten zurück und kann die Infrastruktur entsprechend
den eigenen Anforderungen skalieren.
Diese Dissertation verfolgt einen Design Science Ansatz, der Gemeinschaften
dabei unterstützt, ihre eigenen dezentralen Community-Informationssysteme zu
Erstellen und zu Hosten. Zum einen haben wir mehrere Artefakte erstellt, um
die Eigenschaften einer solchen Infrastruktur zu erfüllen. Mit der Blockchain-
basierten Service Registry schlagen wir eine Lösung vor, die Wissen auf sichere
und überprüfbare Weise zugänglich macht. Zum anderen übertragen wir die
Metapher des Educational Scaffolding (dt.: Bildungs-Gerüstbau) auf den Bereich
der Dienst-Entwicklung. Dieses basiert auf der Idee, dass ein Gerüst während
der Bauphase eines Gebäudes als temporär unterstützende Struktur dient. Mit
dem Community Application Editor erhalten Gemeinschaften eine solche Scaf-
folding Umgebung für das Ermitteln von Anforderungen, das Wireframing, die
Modellierung und das Programmieren ihrer dezentralen Anwendungen. Einmal in
der Infrastruktur bereitgestellt, bleiben diese Anwendungen auch nach dem Ver-
lassen der beitragenden Mitglieder verfügbar und dienen als Langzeitgedächtnis
der Gemeinschaft.
Wir haben unsere Artefakte im Europäischen Kontext demonstriert und evaluiert.
Drei Längsschnittstudien wurden in mehreren Gemeinschaften aus verschiede-
nen Bereichen des technologiegestützten Lernens durchgeführt, unter anderem
dem europäischen Freiwilligendienst, mit Anbietern und Nutzern von Weiter-
bildungsmaßnahmen, sowie in Mentoring-Szenarien für die Hochschulbildung.
Zusammenfassend öffnet diese Verlagerung von Daten in eine selbst-gehostete,
dezentrale Infrastruktur Möglichkeiten für ein demokratischeres und egalitäreres
Management von Wissen.

vi

vii

Acknowledgments

With this (too) short text, I would like to express my deepest gratitude to all who actively
helped and contributed to pushing my work forward, who cheered me up when I didn’t see
any value in moving forward, who adjusted my path when I was moving into the wrong
direction, or who were just there for me to walk a step along this way together. One really
cannot do this alone.
I would like to start by providing my gratitude to my dissertation committee. My

appreciation goes out to Prof Dr. Matthias Jarke, for granting me the opportunity to
start (and finish) my research at i5. I still recall many wise words and thoughts from our
conversations that shaped the way I see some things – professionally and scientifically –
now. I want to thank PD Dr. Ralf Klamma for providing me a place to work. Starting as a
working student back in 2012, I spend my whole academic professional life in his group,
and it surely shaped me. From time to time, I know I can be stubborn and react strongly
to criticism, and Ralf always found a way to get through to me and put me back on track.
I am deeply grateful for this. Furthermore, I would like to thank Prof. Dr. Martina Ziefle
for providing an additional perspective on my work from an external position. Finally, I
thank PD Dr. Walter Unger for accepting my request to act as examiner and Prof. Dr.
Matthias Müller for being a very relaxed and ensuring head of exam.
My appreciation goes out to my colleagues at ACIS, who created a very unique

working atmosphere, which I enjoyed very much. Following the order appearance to me, I
would like to start by thanking Dr. Dominik Renzel, who provided me the student worker
opportunity that started my life at i5. I am deeply grateful to Dr. Petru Nicolaescu, who
not only supervised my Master thesis before becoming a colleague and mentor for my
first three years, but who also became a great friend during and beyond this time. I’d
like to thank Dr. István Koren (which I’d never forget mentioning here) for challenging
me professionally from time to time during my first years, and for providing invaluable
practical help and tips throughout the final stages of my thesis work. Furthermore, I
would like to thank Dr. Mohsen Shahriari, Dr. Milos Kravcik, Georgios Toubekis, Katja
Neulinger, and Michal Słupczyński. Anyone of you has provided me with help in some
way throughout these years and I am truly grateful for that.
My gratitude goes out to Tatjana Liberzon and Reinhard Linde, for their assistance on

technicalmatters. EspeciallyReinhardwas often challenged bymewith short term requests
that he always fulfilled to the fullest. I thank Daniele Glöckner, Claudia Puhl, Leany
Maassen and Romina Reddig for always providing exceptional administrative services.
Furthermore, I want to thank Alexander Neumann, Lars Gleim and Sascha Welten. I

thank Alex for providing me support on many technical matters, and generally for being
a great help throughout my final years at the chair. I thank Lars for being such a great
colleague when we “took over” the organization of the database lecture exercise class, and
I thank Sascha for later taking over these responsibilities from us. Of this group, I shared

viii

the longest walk with Alex, who started his student worker career as my first “HiWi” back
in 2016, and continued to be first my Master thesis student, then colleague, and in some
way successor in the ACIS group. But – and really this is most important – I want to
thank each of you equally for being part of this unholy alliance of four, which shaped my
working (and some of my private) life during my final two years at the chair.
My gratefulness also goes out (again in the order of appearance to me) to Kim

Fidomski, Felix Schwinger, Stefan Braun, Johannes Lipp and Yongli Mou for being such
great colleagues. I have fond memories of our evenings at the chair and in Aachen’s Kiste.
As well, I want to thank Prof. Dr. Stefan Decker for providing me the opportunity

to continue my work at the chair after he took over. Being able to finish the work started
under a different head of institute is by no means guaranteed and Prof. Decker did an
excellent job in this transitioning phase for all of us doctoral thesis workers.
My acknowledgment section would not be complete without mentioning two external

colleagues that shaped this work so much. My highest appreciation goes out to (soon to
be) Dr. Bernhard Göschlberger and Dr. Tracie Farrell, who provided so much input to
this thesis and to my personal development. I am grateful for Bernhard’s work on the
technical parts of our project, and I am grateful for Tracie’s exceptional evaluation- and
writing skills of course, but I am even more grateful for the personal support they provided
me on countless occasions. Another unholy alliance that was, really.
I would like to thank all those students that decided to do their thesis with me. In

order of appearance, I am grateful for the contributions of Thomas Winkler [Wink16], Jan
Benscheid [Bens16], Adam Brunmeier [Brun17], Mario Rosenstengel [Rose17], Melisa
Cecilia [Ceci18], Alexander Neumann [Neum18], Tom Janson [Jans19], Philipp Hoss-
ner [Hoss19], Philipp Roytburg [Royt19], Niels Wiessner [Wies19], Michal Słupczyń-
ski [Slup20], Philipp Dolif [Doli20], Aaron Conrardy [Conr20], Julius Rickert [Rick20],
Lennart Bengtson [Beng20] and Erdzan Rastoder [Rast21]. Moreover, my appreciation
goes out for the work done by all the student workers that worked under my supervision.
In alphabetical order, I would like to thank Enes Aldemir, Frederik Basels, Jan Benscheid,
Thomas Cujé, Aaron Conrardy, Navid Rahimi Danesh, Philipp Dolif, Boris Jovanovic,
Jonas Könning, Michael Kretschmer, Leonardo daMatta, Mallika Mewar, Jasper Nalbach,
Alexander Neumann, Erdzan Rastodor, Klea Sanka, as well as all those students who
supported me in my teaching activities.
Last, but by no means least, I want to thank my family and friends. I have been blessed

with a wonderful wife, the best family one can wish for, and friends with whom I can not
only enjoy the good times, but on whom I can always count on when times go hard. I
value this dearly.
So, with that being said..it has been an interesting ride. Never boring, often fun, always

educational. Off to new horizons then, Reinbügeln and Cheers!

Munich, July 2021
Peter de Lange

Contents

1 Introduction 1
1.1 Motivating Use Case . 2
1.2 Solution Concepts and Research Questions 3
1.3 Thesis Contribution and Research Context 5
1.4 Thesis Outline . 8

2 Research Context 9
2.1 Decentralized Architectures . 9

2.1.1 P2P Networks . 9
2.1.2 Microservices . 11

2.2 Microservice Registry and Discovery 12
2.3 Distributed Consensus . 15

2.3.1 Consensus Mechanisms and the Blockchain 16
2.4 Incentivation and Reputation . 19

2.4.1 Trust . 21
2.4.2 Reputation Systems . 21

2.5 Scaffolding . 24
2.5.1 Usage in Digital Learning Environments 24
2.5.2 Scaffolding of Community Information Systems 26

2.6 Social Bots . 29
2.7 Learning in CoPs . 30

2.7.1 Monitoring of Learning Analytics Data 31
2.7.2 Knowledge Building . 32

3 Decentralized CIS Infrastructures 35
3.1 Methodology . 36
3.2 Concept and Technical Foundation 37
3.3 Microservice Discovery with API Metadata 40

ix

x CONTENTS

3.3.1 Motivation . 41
3.3.2 Concept . 41
3.3.3 Realization . 44
3.3.4 Evaluation . 46

3.4 Decentralized Service Registry 48
3.4.1 Motivation . 48
3.4.2 Concept . 51
3.4.3 Realization . 53
3.4.4 Evaluation . 56

3.5 Community Contribution Incentivization 59
3.5.1 Motivation . 59
3.5.2 Concept . 60
3.5.3 Realization . 62
3.5.4 Evaluation . 67

3.6 Verification and Consent Management of LA Data 70
3.6.1 Motivation . 70
3.6.2 Concept . 72
3.6.3 Realization . 74
3.6.4 Evaluation . 76

3.7 Discussion and Conclusion . 80

4 Scaffolding Decentralized CIS 83
4.1 Methodology . 84
4.2 Motivation for Model-Driven Scaffolding 86
4.3 Conceptual Overview . 88

4.3.1 View-based MDWE . 88
4.3.2 Web Application Metamodel 90
4.3.3 Role-based Project Management 92
4.3.4 A NRT Evaluation Center 94
4.3.5 Model Synchronization for Live Code Editing 96
4.3.6 Integration of Wireframing Support for MDWE 97

4.4 Realization . 100
4.4.1 User Interface . 100
4.4.2 Versioning System . 103
4.4.3 Architectural Overview 104
4.4.4 Wireframe Model Transformations 106

4.5 Evaluation . 108
4.5.1 Initial Evaluation . 108

CONTENTS xi

4.5.2 Evaluation with Heterogeneous Teams 109
4.5.3 Evaluation in a Lab Course 110
4.5.4 Live Code Editor Evaluation 111
4.5.5 Wireframing User Evaluation 112
4.5.6 Wireframing Activity Evaluation 113
4.5.7 Service Success Measurement Evaluation 114
4.5.8 Project Management Evaluation 115

4.6 SBF: The Social Bot Framework 117
4.6.1 Motivation . 118
4.6.2 Concept: A Metamodel for Social Bots 118
4.6.3 Realization: Social Bot Life-Cycle 120
4.6.4 Evaluation . 124

4.7 Discussion and Conclusion . 127

5 Distributed Learning in Decentralized CIS 129
5.1 A Virtual Vocational Training Center 131

5.1.1 Introduction . 131
5.1.2 Use Case: Educational Vocational Training 133
5.1.3 Realization . 134
5.1.4 Evaluation . 138
5.1.5 Summary . 147

5.2 Infrastructure for Knowledge Building 147
5.2.1 Introduction . 147
5.2.2 Methodology . 148
5.2.3 Digital Question-Based Dialog For Ignorance Modeling . 150
5.2.4 Realizing the Distributed Noracle 151
5.2.5 Evaluation . 156
5.2.6 Summary . 171

5.3 A Distributed Mentoring Architecture 172
5.3.1 Introduction and Motivation 172
5.3.2 Architecture . 173
5.3.3 Summary and Outlook 175

5.4 Discussion and Conclusion . 175

6 Conclusion and Future Work 177
6.1 Conclusion . 177
6.2 Future Work and Outlook . 180

xii CONTENTS

References 183

List of Figures 209

List of Tables 213

Appendices 215
Appendix A List of Abbreviations 215
Appendix B Own Publications . 223
Appendix C Curriculum Vitae . 229

Chapter 1

Introduction

When Tim Berners-Lee proposed the Web in 1989, he envisioned a decentralized
system of information repositories that facilitate organizational knowledge transfer
by allowing anyone to create, reference, and access content [Bern89]. However,
Web authoring and publication required both technical expertise and hardware
infrastructure. With the rise of the Web 2.0 in the early 2000s, Social Networking
Sites (SNS) and Content Management Systems (CMS) enabled all users to create
Web content [ORei07]. But it simultaneously put the users at the mercy of the
platform operators. Services could suddenly be shut down, erasing content and
disrupting communities. As well, private data is often stored insecurely, used for
commercial purposes, or even revealed in data breaches. The proprietary nature of
the vast majority of these platforms leaves users little bargaining power to change
those terms.
Decentralized Community Information System (CIS) radically change this

dynamic by establishing participants as equal peers, which form a self-governing
community. APeer to Peer (P2P) structure can provide scalability and distribute the
utilization of computing resources. In combination with public key cryptography,
it allows users to sign messages and store private data securely, providing privacy
without relying on trusted infrastructure. It is clear that these properties are
especially appealing to online Communities of Practice (CoPs) [Weng98]. These
communities are not bound together by an organization, but rather by sharing
a common craft or profession, with the desire to learn from each other through
knowledge sharing and knowledge building.
In practice though, only few CoPs have the size and influence to get tools

tailored to their needs. The long tail [Ande06] of CoPs does not possess the
resources, such as hosting infrastructures or shared budget. In their working

1

2 CHAPTER 1. INTRODUCTION

practices, most CoPs adopt publicly available tools (e.g. social software) and re-
purpose them according to their needs, mitigating the tools’ technical shortcomings
through socially enforced usage policies. These (mostly unwritten) policies include
the knowledge necessary to navigate within the digital community space and are an
entry barrier for novices aswell as a hindrance to community coherence. Moreover,
the CoP becomes dependent on the tool provider and also loses control over its
data. Even if a CoP manages to establish a centralized infrastructure, this often
results in dependencies on single, knowledgeable members or institutions and does
not account for dynamic membership, a common characteristic of CoPs.

1.1 Motivating Use Case
As an introductory example, we consider a community of young European youth
workers, which are preparing for participation in a European-funded training
course on “creative leadership”. The participants are an international group,
with different levels of experience, from multiple organizations and countries.
While they may not yet constitute a CoP, these young adults form a Community
of Inquiry (CoI) as a precursor to identifying areas of shared practice [LYPe14],
eventually leading to a CoP. The trainer team must create learning content that
appeals to this diverse group and meets their needs, which is a challenge, given the
complexity of both creativity and leadership as learning subjects. In addition, the
three trainers providing the course are distributed across different countries and
organizations as well, with no possibility to meet beforehand. Since the whole
CoP neither shares a geographic location, nor central infrastructure or budget, this
use case stands exemplary for the needs and challenges of distributed CoPs. To
help establish the boundaries of the participants’ knowledge and identify common
ground or potential conflicts, the trainers want to find out which questions the
participants have about creative leadership and how those questions relate to one
another. In its analog form, this involves an on-scene session at the start of the
training course, where the community has a limited time-frame to establish their
community ignorance by writing down questions they have. A digital version of
the concept, hosted decentrally by the community itself, could be applied already
before the community meets.
As a consequence, we claim that a suitable infrastructure for CoPs needs to

be decentralized and managed by the community members themselves. It should
be easily deployable, extensible and flexible in terms of scalability and accessibil-
ity from the outside. The microservice paradigm with loosely coupled services,

1.2. SOLUTION CONCEPTS AND RESEARCH QUESTIONS 3

bound together by lightweight protocols, fits these demands perfectly. Combined
with an underlying P2P network of nodes managed by the CoPs themselves, the
microservices should self-replicate through the network according to the commu-
nity’s current needs.
A scaffold serves as a temporary supporting structure during a building’s con-

struction phase. As the construction site develops and the building gets completed,
the scaffold gradually gets removed up to the point, that it is not needed anymore.
The metaphor of using educational scaffolding, a term first coined in the 70s by
Wood et al. [WBRo76], describes the process of teachers assisting students in their
learning process. By applying the principles of scaffolding from the educational
domain to the domain of service development for CoPs, we provide communi-
ties with the means to develop these microservices collaboratively, integrating all
members into the requirements analysis, design and success evaluation. Once de-
ployed on the infrastructure, those services and development efforts should remain
available, even after the contributing member has left the CoP. Like the ship in
the Theseus paradox, a community should be able to persist, even though all of its
members have changed over time, as long as there are people willing to engage.
Serving as a community’s long termmemory, the infrastructure allowsmembers to
learn from their “ancestors”, much like we can observe in scientific communities.
Just like opening the water tap, using a certain learning environment should be
available to every community member at all times. Thus, we propose a Learning
as a Utility approach, which makes it possible for all community members to
equally engage in development, hosting and using learning applications.

1.2 Solution Concepts and Research Questions
In this dissertation, we propose a decentralized approach for designing and oper-
ating CIS. Based on modern Web development standards, we provide two areas
of contribution to the domain of CIS research. The first is a methodology and
scaffolding support to collaboratively create decentralized applications, as well
as the infrastructure to run it on. Our development methodology combines the
strengths of proven Model-Driven Web Engineering (MDWE) techniques with re-
quirements collection and analysis support, as well as service success evaluation.
We add to this decentralized application development cycle the possibilities of col-
laborative wireframing to further integrate all CoP members into the development
process. The role of social bots as a means to interact with an application is also
investigated.

4 CHAPTER 1. INTRODUCTION

Our second contribution is the decentralized CIS infrastructure, based on the
P2P paradigm. It is supported by blockchain technology for immutable and tamper-
proof access to the CoP’s collective knowledge. Here, we investigate the role of
a decentralized service registry and discovery, and propose means to incentivize
community contributions, based on blockchain currency reimbursements.
Our approach has been evaluated within three large demonstrations in the do-

main of Technology Enhanced Learning (TEL), and these evaluations also built
the basis for many requirements and research questions continuously answered
during the course of this dissertation. These evaluations, next to the contributions
to scaffolding and operating decentralized CIS, build the third pillar of this disser-
tation and have been performed in the domains of educational vocational training,
the European voluntary service and within university mentoring processes. With
our contributions, we aim at answering the following research questions:

RQ 1 - Decentralized Infrastructures: What properties does a decentralized,
self-hosted infrastructure for CIS need to fulfill? As mentioned, current tool
support for CoPs usually is based on centralized infrastructures. While decen-
tralization and self-hosting bears potential for these communities, the challenges
of P2P-based approaches have to be investigated. This includes aspects like se-
curity and privacy, as well as incentivization models for community members to
contribute to the infrastructure.

RQ 2 - Scaffolding: How to support the creation of decentralized CIS with
the help of Web-based tool support? The unique properties of both CoPs and
decentralized CIS open up new areas of research for supporting communities in
developing for this new type of infrastructure. Scaffolding, in particular in the
form of MDWE, allows to provide supportive structures for communities from the
requirements engineering phase up to the success evaluation of the application.

RQ 3 - Learning: How can learning communities benefit from using a de-
centralized CIS? Finally, this third research question investigates the impact a
decentralized CIS has on learning communities. We investigate how well both
the development and the hosting of the infrastructure and the applications running
on it are received. The question how these new approaches perform, and how
lifelong learning communities benefit from them, is the overarching theme of this
dissertation.

1.3. THESIS CONTRIBUTION AND RESEARCH CONTEXT 5

1.3 Thesis Contribution and Research Context
This thesis explores the opportunities and challenges decentralized CIS provide,
with a certain focus on the design and deployment of backendmicroservices as their
infrastructure. Following a design science approach as described in [HMPR04]
and [PTRC07], we developed multiple artifacts, all individually demonstrated and
evaluated, which together form the outcome of this dissertation.

Figure 1.1: Overarching design science process of this dissertation.

Fig. 1.1 provides an overview on the overarching design science process we
followed that lead to this dissertation. As one can see, the three main areas, de-
centralized infrastructure, scaffolding support and learning community integration
build three separate iteration cycles, interwoven by requirements stemming from
the progress of each individual cycle, and thereby influencing one another. To give
a better impression on the developed artifacts, their connections and integration
into an overall decentralized CIS approach, we provide such an overview with
Fig. 1.2, sorted along the lines of the three main chapters.
The two chapters “Infrastructure” and “Scaffolding” (cf. Chapter 3 and 4) are

depicted in the upper part, with the third chapter “Demonstration and Evaluation”
(cf. Chapter 5) depicted in the lower part of the figure. From a scaffolding
perspective, we produced and extended two main artifacts during the scope of

6 CHAPTER 1. INTRODUCTION

Figure 1.2: Overview on the artifacts produced in this dissertation.

this dissertation. The first is the Community Application Editor (CAE), a MDWE
environment with it’s two large extensions of collaborative Wireframing and the
NRT Evaluation Center. The second is the Social Bot Framework (SBF), of which
themost prominent example introduced in this dissertation is theNoracle Bot. It has
to bementioned, that all these artifacts base on las2peer [KRLJ16], a decentralized,
Open Source Software (OSS) environment for community-oriented microservice
development, deployment and monitoring. For the “Infrastructure” part of this
dissertation, las2peer not only builds the basis for technical development, but it
also provides the conceptual grounds for undertaking the research in the domain of
decentralized CIS infrastructures. Here, the main artifacts produced are las2peer’s
Microservice Discovery mechanism, as well as the Accompanying Blockchain.
Combining these two artifacts, we created the concept and implementation of a
Decentralized Service Registry, which based on the conceptual findings of the

1.3. THESIS CONTRIBUTION AND RESEARCH CONTEXT 7

microservice discovery mechanism and uses the blockchain technology. As well,
the Community Incentivization approach of las2peer is based on the blockchain,
introducing L2Pcoin as the blockchain-backed community currency. Finally, the
Verification of LA Data as the third artifact that makes use of the blockchain was
developed. Themicroservice discoverymechanism also influenced our scaffolding
research, with its ability to show the mash-up/interface compatibility of multiple
services directly integrated in the CAE.

This dissertation features three large evaluations and demonstrations, all in
different fields of the TEL domain (cf. Chapter 5). The virtual training center
platform Virtus Virtual VET Center (V3C) blends Web-based formally-certified
virtual training courses with self-regulated and social learning in synchronous and
asynchronous learning phases. It uses the model-driven scaffolding techniques
to design learning units on the Web, directly within the same platform as the
training center itself. The resulting learning courses provide a Massive Open
Online Course (MOOC) style learning environment that gets combined with infor-
mal social learning. The NRT evaluation center provides an integrated Learning
Analytics (LA) approach to collect, store, analyze and visualize data for different
purposes like certification, interventions and gradual improvement of the platform.
The V3C was used within a certification program for vocational training in the
domain of “Tourism and Hospitality” and “Social Entrepreneurship”. The second
evaluation and demonstration was conducted in the domain of the European Vol-
untary Service (EVS), specifically in preparation and reflection workshops at the
start and end of the participants engagement within the program. Here, we provide
a decentralized infrastructure for knowledge building, together with an application
developed on top of it, called “Distributed Noracle”. It helps the participants to
reflect on their progress within the program, highlight open questions and facilitate
their discussion. It is based on las2peer and uses both the decentralized service
registry, as well as the Near Real-Time (NRT) evaluation center and the SBF, with
the “Noracle Bot” being specifically developed for this application. Finally, our
third and ongoing evaluation and demonstration is based within the domain of
digital mentoring processes in university settings. Here the infrastructure, based
on a fusion of las2peer and a kubernetes cluster is used to provide the verified
LA data approach, which collects data from multimodal learning sources. We
extensively apply the SBF within this demonstration to create various social bots
that build the primary interface for both mentors and mentees. While we started
evaluating this infrastructure already within multiple large university courses, it is
an ongoing project and this dissertation only covers the first half of it.

8 CHAPTER 1. INTRODUCTION

1.4 Thesis Outline
This dissertation is structured as follows:

• Chapter 2: Research ContextThis chapter gives an overview on the context
this dissertation was conducted in. We discuss related work on (decentral-
ized) architectures for CIS, service registries and distributed consensus, as
well as incentivization, scaffolding and MDWE. Finally, we provide an
overview on the topics of (technology enhanced) learning we make use of
in this dissertation, such as social learning bots and LA.

• Chapter 3: Decentralized CIS Infrastructures This chapter presents the
decentralized infrastructure we developed. We start by describing las2peer,
the technical foundation of our implementations, which we both used and
extended during the course of this dissertation. Then, the microservice
discovery and the community contribution incentivization are presented.
Finally, we introduce the blockchain-based verification of LA data extracted
from multimodal sources.

• Chapter 4: Scaffolding Decentralized CIS This chapter discusses the
different approaches we took to enable the scaffolding of decentralized CIS
with its two main contributions: the Community Application Editor (CAE),
a MDWE environment and the Social Bot Framework (SBF).

• Chapter 5: Distributed Learning in Decentralized CIS This chapter de-
scribes the real-world application of the artifacts presented in the previous
two chapters. In three evaluations and demonstrations, we apply and evalu-
ate various parts of the decentralized CIS infrastructure and its scaffolding
parts. We start with a large application in the domain of educational vo-
cational training. The second demonstration is conducted in the domain of
European youth workers, with a special focus on the EVS. We conclude
this chapter with presenting a distributed mentoring architecture, based-on
the contributions of this dissertation, which is used in student mentoring
processes at universities.

• Chapter 6: Conclusion and Future WorkHere, we summarize the contri-
butions of this dissertation and reflect on the stated research questions. We
conclude by providing an outlook for promising future work.

Chapter 2

Research Context

The term Community of Practice (CoP), coined by Étienne Wenger in the early
1990s [LaWe91], describes a group of people who share a concern or a passion for
something they do and who interact regularly to learn how to do it better [Weng98].
Community Information System (CIS) research [Klam10] tries to provide CoPs
with methodologies and tool support to fulfill these goals. In this chapter, we
present the research context this thesis is embedded in, which can be roughly split
up into the domains ofHuman-Computer Interaction (HCI),Web Engineering and
Technology Enhanced Learning (TEL). Fig. 2.1 describes the interplay between
these domains in the context of this dissertation.
In the following, we cover each of these domains with a specific focus on those

aspects that built the background of this work. This includes research on decen-
tralized architectures (Sec. 2.1), microservice registry and discovery (Sec. 2.2),
distributed consensus (Sec. 2.3), incentivation and trust (Sec. 2.4), scaffolding
(Sec. 2.5), social bots (Sec. 2.6) and learning in CoPs (Sec. 2.7). With the over-
arching goal of this dissertation being the support of distributed lifelong learning
CoPs, this chapter thereby lays the foundation for this work.

2.1 Decentralized Architectures

2.1.1 Peer to Peer Networks
In general, Peer to Peer (P2P) describes a decentralized set of clients (nodes)
that do not rely on a centralized management (self-managed). Since the approach
neglects any central unit, it can be seen as the opposite of the common client-server

9

10 CHAPTER 2. RESEARCH CONTEXT

Figure 2.1: Venn diagram that shows the interplay between the three main research
areas this dissertation is embedded in.

architecture. The information infrastructure [BBMR10] of a P2P information
system consists of the physical infrastructure, the P2P storage overlay network and
the P2P service overlay network.
As a result of the decentralization, it is necessary to give clients information

about the network topology. This can be done in various ways. There are solutions
where each node only knows a set of its neighbors as well as solutions where each
node has information about the whole network topology. In this case, the term
neighbors is referring to nearby nodes, based for example on distance or connection
speed. The main advantage of the P2P concept is independence from a central
server and therefore being more resistant to failure of single network entities.
P2P approaches can be divided into two categories: structured and unstruc-

tured networks. In the beginning of the broad use of the Web, P2P networks were
mostly used for file sharing applications like eMule or KaZaa. These file shar-

2.1. DECENTRALIZED ARCHITECTURES 11

ing platforms usually use an unstructured approach that allows for unconstrained
placement of files within the network and a decentralized lookup scheme that only
floods file requests throughout the network. While the advantages are based on
the easier handling of the network, the main disadvantage is that it does not guar-
antee the finding of the requested (existing) artifact. Structured networks usually
use Distributed Hash Tables (DHTs) to store node location information at each
node [RoDr01]. In comparison to unstructured networks, the finding of artifacts
is guaranteed within certain boundaries of network hops.
The ability to distribute tasks, which file sharing platforms make use of by

splitting up the source of the file download to multiple nodes, makes the P2P
approach also interesting in areas other than file sharing. The emergence of
mobile terminals with sufficient speed to serve as infrastructure of information
systems lead to P2P-structured, smartphone-powered “Mobile Hosts” [SJPr06],
which coined the term “Mobile Web Services” (Mob-WS) [AHWa07].
The question of system maturity, flexibility and also interoperability has been

and is still an active research area also in the domain of TEL [OcTe17]. The idea of
using P2P -based information systems for sharing of educational resources came
up first with the creation of EDUTELLA [NWQ*02], a network for exchanging in-
formation about learning objects. Another active research domain is the use of P2P
information systems for (decentralized) social networks (e.g. [NJM*12, GAS*16]),
as the P2P conceptual architecture is closer to the actual nature of communica-
tion and collaboration in online communities [BuDa09]. Further development
in this area is driven by the InterPlanetary File System (IPFS) [Bene14] project,
which describes itself as a peer-to-peer hypermedia protocol and shares the con-
cern for increasing consolidation of control [on the Web], or the The Invisible
Internet Project (I2P)1, which tackles the problems of privacy and data own-
ership. Related development approaches have been characterized as P2P cloud
computing [BaMa14] and edge-centric computing [GME*15].

2.1.2 Microservices
Microservices [Newm15] have emerged from the Domain Driven Design (DDD)
approach in designing a system architecture. The DDD approach focuses on
creating boundaries between business functions and model them into several sep-
arate models that are loosely coupled. By using this approach, a system can be
divided into several small fine-grained services which are called microservices.

1https://geti2p.net/

https://geti2p.net/

12 CHAPTER 2. RESEARCH CONTEXT

Each microservice works autonomously and serves one specific functionality.
Microservices focus on modularity and decentralization of government, to ease
scalability, availability and maintainability. On the frontend side, the concept
of DDD applies to Web components. The approach focuses on encapsulation
and separation of functionalities of frontend Web elements or Document Object
Model (DOM) [OvSt15].

Microservice Frameworks

Nowadays, microservices build on top of virtualization technologies like Amazon
Web Services (AWS)2, build the basis for cloud architectures of big software com-
panies. Examples are Netflix with their Spring Cloud Netflix3, Spotify’s Apollo4

or Twitter’s Finagle5. Commonly, these main drivers of microservice architec-
tures use container-based deployment. Although it has to be noted that these
companies have released their framework as open-source, the resulting infrastruc-
tures remain mostly black boxes. Another downside of these environments is
their reliance on provider-owned, centralized data centers, regardless of the ser-
vice model they are based on. As ownership drives centralization, it is hard to
imagine a business model for storage/computing capacity providers in a purely
decentralized architecture, although projects like the SAFE Network6 show how
even this can be achieved. Existing approaches either focus on (open-source)
microservices architectures in the cloud or on purely P2P-based architectures to
enforce privacy and data ownership. In comparison to related research that mainly
focuses on the redesign of monolithic applications into microservice architectures
(e.g., [BHJa15]), we focus on lowering the entry barriers in community-based
microservice development for and on the Web by introducing established software
engineering methodologies, such as model-driven techniques.

2.2 Microservice Registry and Discovery
At its most basic, a Service Registry maps the name of a service to a network
location (e.g., a Uniform Resource Locator (URL)). In other words, it is a name

2https://aws.amazon.com/
3https://cloud.spring.io/spring-cloud-netflix/
4http://spotify.github.io/apollo/
5http://finagle.github.io/
6https://safenetwork.org/

https://aws.amazon.com/
https://cloud.spring.io/spring-cloud-netflix/
http://spotify.github.io/apollo/
http://finagle.github.io/
https://safenetwork.org/

2.2. MICROSERVICE REGISTRY AND DISCOVERY 13

service (cf. the Domain Name System [MoDu88]). However, this functionality
arguably does not merit the term “discovery”, as the servicemust already be known
by name and the service requester is hardcoded to its exact interface.

Service Discovery encompasses varying degrees of functionality, depending
on the context. In its most basic form, it refers to the publication and lookup of
the network location of a service which is already known by name in a registry
(service location discovery). This registry may also allow the retrieval of services
matching a formal description (semantic service discovery or matchmaking), and
thus requires that services publish a machine-interpretable description of their
capabilities. This meaning is central to the vision of the Semantic Web [BHLa01],
in which data stored in potentially disparate sources (e.g., published in different
formats, by different communities) can be automatically discovered, processed,
and to some degree understood by machines [W3C13]. Finally, end user service
discovery goes beyond programmatic discovery and aims to help users find Web
services relevant to their interests, e.g., by employing recommender systems or the
user’s physical and logical context [LMC*16].
Most service discovery systems include a service description in the service

announcement. In his description of the Service Location Protocol (SLP) in 1999,
Guttman envisions this as “well-known attributes”, defined in service templates,
forming a common “vocabulary” across vendors [Gutt99]. In the same year,
Sycara et al. introduced Larks [SKWL99], an “agent capability description lan-
guage”, which allows semantic matchmaking using inferences based on a local
ontology. As example they give a simple subclass relationship, where a request
for information on AirMissions yields a database of AWAC-AirMissions. In
the following years, a multitude of related specifications were introduced (e.g.,
[CCMW01, UDDI00, ABH*02, MPM*05, AFM*05]), but despite being the fo-
cus of extensive research, none of them gained widespread industrial adoption,
presumably due to the steep learning curve. Instead, Web service developers
embraced the RESTful paradigm, which – in line with a general trend toward
lightweight, human-friendly standards – utilizes well-known and easy to use stan-
dards and tools [PZLe08] and in particular largely eliminate the need for defining
communication endpoints and message exchange formats.
The concept of Representational State Transfer (REST), introduced by Roy

Fielding [Fiel00], has some similarities to and is in principle compatible with
the Semantic Web: both focus on resources and their relationships (expressed as
links) [PRMa11]. By means of hypermedia controls, a RESTful API indicates
all possible actions on the resource in question, allowing a client to dynamically
discover them and automatically interoperate with the service. In theory, that is,

14 CHAPTER 2. RESEARCH CONTEXT

because just like Berners-Lee’s, Roy Fielding’s vision remains largely unrealized:
The vast majority of APIs only follows a subset of Fielding’s rules [RSKl12,
Fowl10], despite his emphatic insistence that they are essential and mandatory in
their entirety [Fiel08].
For RESTful Web services, the service description method with the largest de-

veloper mindshare is the OpenAPI Specification (OAS) (formerly Swagger), which
“allows both humans and computers to discover and understand the capabilities”
of a service and specifically the generation of interactive documentation, client
and server-side code, and unit test stubs [Open18]. OAS documents are written
in the YAML Ain’t Markup Language (YAML) format or equivalent JavaScript
Object Notation (JSON), which makes them easy to read and write even with
little technical knowledge, but nevertheless well-defined and machine-readable.
This enables stakeholders to design and agree on the Application Programming
Interface (API) ahead of its implementation, providing the authoritative single
source of truth during all phases of development. Service matchmaking based on
OpenAPI descriptions can help developers find compatible endpoints and facilitate
component reuse in a microservice architecture.
A great variety of architectures for service discovery has been proposed. They

are often classified according to the degree of centralization of the registry [Klus08,
RKLB09]. However, the most simple scheme is to not use a registry at all,
but to propagate service queries or advertisements via flooding. It is clear that
the communication overhead of this approach prevents it from scaling to large
networks, instead it was suggested for home networks or even in cars, where the
number of participating devices was presumed to be very small [Gutt99, BeRe01].
For medium-sized networks, a single central registration server may be used. The
API of such a registry consists of service publication and service lookup. The
registry simply caches the service description published by the service provider
until some time-out is met and answers the service requesters’ queries accordingly.
While this approach can work well in controlled environments, several issues
arise when attempting to serve large, geographically distributed, or heterogeneous
networks: First, having a single registry server is neither fault-tolerant nor scalable.
Further, if services should be accessible from across the globe, latency may be
an issue. Finally, the registry is under the control of and must be maintained by
a single entity. Out of these considerations emerged distributed service registry
architectures, which can be classified into three domains according to the way they
store service descriptions and state information:

1. Replicating [SLKe04], where registries attempt to have the same, complete

2.3. DISTRIBUTED CONSENSUS 15

state.

2. Distributed or Federated, where registries only store information about local
services, but forward queries about other services to a cooperating registry.

3. Peer-to-peer [TSNe03,Klus08], where information is also stored decentrally,
but all participating registries use a common P2P protocol, negating the need
for manually configuring and setting up sharing agreements between them.

Each of these is appropriate for certain use cases. Current commercial systems
such as Netflix’s Eureka7 and HashiCorp’s Consul8 fall into the first two categories
(or some hybrid combining both), with local registries assigned to each data
center or region. P2P service registries have to our knowledge been primarily
the subject of academic inquiry rather than deployed in practice. Most of them
utilize a DHT, where service descriptions are addressed by the hash of their
contents. However, unstructured P2P registries have also been proposed [Klus08].
In both cases queriability is a crucial issue, specifically the search capabilities
of the P2P storage beyond exact match lookup and even completeness, i.e., the
guarantee that an existing entry can be located. Much effort has been put into
extending structured P2P overlays to allow attribute, wildcard-based and other
advanced queries (e.g., [PSNS03, SGA*05, SSDN02, ScPa04, YaZh04]), but these
limitations remain a major obstacle.

2.3 Distributed Consensus
When we discussed distributed service registries in the previous section, we im-
plicitly assumed that all nodes comprising the system are trustworthy, i.e., oper-
ating correctly without either accidental or malicious misbehavior. For corporate
networks and many other use cases this is a reasonable assumption. But for a
decentralized system that is open for anyone to participate in, as a peer among
equal peers, a different approach is required. We use the term open decentralized
system to denote exactly that: A system of autonomous peers, who may join or
leave at any time, and whose goals may not align with one another. Further, there
is no single centralized authority, which could coordinate or serve as a universally
trusted entity in the system. A fundamental problem of such decentralized systems

7https://github.com/Netflix/eureka
8https://www.consul.io/intro/

https://github.com/Netflix/eureka
https://www.consul.io/intro/

16 CHAPTER 2. RESEARCH CONTEXT

is how to ensure that received information is up-to-date and authentic, despite be-
ing unable to trust any particular node [Matt16]. This is an instance of a consensus
problem, which has been in the focus of distributed systems research since the
early 1980s [PSLa80]. More recently the topic has come into the spotlight due
to the apparent success of cryptocurrencies, which purport to solve the problem
on a global scale. In essence, a functioning decentralized system needs to agree
on a common state. The nodes of a distributed database need to agree on the
contents and order of the applied operations, while cryptocurrencies deal with
the specific case of tracking the participants’ account balances. Thus a secure,
scalable consensus algorithm lies at the heart of decentralized systems. This often
requires independent modules to collaborate to agree on some shared data, to reach
distributed consensus [PSLa80, LSPe82].

2.3.1 Consensus Mechanisms and the Blockchain

A blockchain is a mathematical structure that represents a growing list of data
blocks which are cryptographically linked and signed. This architecture provides
a decentralized data structure with a synchronizationmechanism to continue reach-
ing distributed consensus over additions and modifications to the shared resource.
Blocks are added in a linear manner, meaning that each block has one predecessor
and successor. Each block contains the cryptographic hash of its predecessor, the
timestamp of its addition to the chain and a list of generic transactions. While
reading values can be done without additional costs, introducing changes to the
blockchain requires computational power to validate and add the requested trans-
actions to the ever-growing list, which is technically represented by transaction
fees. Participating nodes of the chain are mathematically incentivized to verify
and maintain the network, in other words, mining nodes get rewarded with the
transaction fees contained in the block they helped verify. Usually, the chain of
blocks is implemented by means of a Merkle Tree [Merk79] to allow for efficient
processing. Different levels of privacy to access the chain provide different ben-
efits and drawbacks. The levels are categorized in two dimensions – public vs.
private and open vs. closed. The first duality describes write access permissions,
while the latter is concerned with data access rights. In other words, a public chain
means there are no restrictions on who can add blocks, while an open chain means
the data is publicly readable. Public chain providers need to concern themselves
with content moderation and incentives, since the user-base is unknown, while
private chain operators can rely on the fact, that they know who their users are.

2.3. DISTRIBUTED CONSENSUS 17

Types of Consensus Mechanisms

While themost prominent consensusmechanismby far is the Proof ofWork (PoW),
due to its usage in cryptocurrencies, there are a few others which we also want to
present here.

Proof of Work The PoW consensus has been introduced in the 1990s as a
system to combat spam or deter denial of service attacks [DwNa93, JaJu99]. The
main idea of a PoW consensus relies on a service requester providing proof that
some work was completed, typically through computations. A key feature of this
scheme is asymmetry—while the work must be moderately hard on the requester,
it should be easy to verify for the service provider. A major downside of PoW
consensus is the large overhead generated by each transaction. One of the most
influential technologies which made PoW consensus popular, is the blockchain-
based Bitcoin [Naka08], a cryptocurrency which combats the double-spending
problem of digital tokens. This technology is based on a PoW consensus protocol
in which the voting power is proportional to the computational power of the node.
Even though in Bitcoin’s implementation, the blockchain is only used to store
monetary transactions based on the Bitcoin currency, the blockchain in general
can store arbitrary types of data.

Proof of Space and Proof of Resource Another approach to solve distributed
consensus is Proof of Space [DFKP15]. A participating user must show that she
has legitimate interest in a service by allocating a substantial amount of disk space.
This is similar to PoW, but uses storage instead of computation, leading to more
energy efficiency, due to the general-purpose nature of storage. A variation of
this mechanism is Proof of Resource [Maid14], in which the ability of a node to
store data blocks is measured in a zero-knowledge proof, spanning bandwidth,
computing power, disk space and online time.

Proof of Stake In Proof of Stake (PoS) systems, the creator of the next block
of the chain is chosen via a combination of random selection and optionally coin
wealth, or so-called node age, i.e., her “stake” in the system. While selection
by wealth alone would lead to centralization, as the richest nodes would receive
permanent advantages, age-based algorithms can distribute the selection among
the oldest nodes, while adding a time window to disallow repeated choice of a
single node [KiNa12]. A big advantage of PoS systems as opposed to PoW, is that

18 CHAPTER 2. RESEARCH CONTEXT

in stake-based proofs, miners always own the coins, while PoWminers potentially
own none of the currency as they only add the transactions. However, a major
downside of PoS is that nothing-at-stake miners have nothing to lose from voting
on multiple block chains, thereby preventing consensus, as there is very little cost
for working on several chains in parallel.

Smart Contracts

Ethereum [Wood14] is an open-source project, which employs blockchain tech-
nology. As a so-called second generation cryptocurrency, it utilizes a PoW-based
consensus scheme. But instead of being only used as a cryptocurrency (like for
example Bitcoin), Ethereum sees itself as a general purpose platform for decen-
tralized applications. This is reflected technically in the syntax of its transactions.
These can include code in a Turing-complete, stack-based bytecode language,
whereas the transactions in Bitcoin’s blocks are deliberately less expressive. This
allows Ethereum users to write and upload scripts to the network, whose functions
can be invoked by sending special transactions. Such scripts are called Smart
Contracts. This concept describes self-executing programs, which run in the net-
work in a decentralized fashion, hosted at a specific address on the blockchain.
Each deployed smart contract consists of its program code, a data store, as well as
an account containing Ether, Ethereum’s currency. When a transaction triggers a
smart contract function, the miner that includes the transaction executes the code
and includes the updated state in the new block. All other nodes must also execute
the code in order to determine whether the new block is valid (includes the correct
result of the computation). Given certain restrictions on the computing power of
an attacker in comparison to the nodes behaving correctly, this approach provides
an immutable history of transactions.
It is clear that this massively redundant code execution is expensive in terms

of resources. Ethereum charges a dynamic fee based on the number of executed
instructions, which must be paid for by the transaction’s sender. If its funds
are insufficient, the execution is stopped. It should be noted that the cost of
executing smart contracts limits Ethereum’s scalability (in terms of throughput),
and there are numerous proposals to alter the Ethereumprotocol in order to improve
performance, including radical changes to the consensus system [Bute17]. It is
thus not economically feasible to deploy computationally expensive code or to
directly store large amounts of data. Nevertheless, it enables a robust basis for
decentralized applications, which can use smart contracts as the backing storage
for both their data and the app code, securely distributed among participating nodes

2.4. INCENTIVATION AND REPUTATION 19

on the chain. Examples of smart contract applications currently in use include
financial contracts, games of chance, and notary applications [BaPo17], which
can largely be implemented with very simple program logic, while documents can
sometimes be stored elsewhere (e.g., via IPFS [Bene14]) and securely referenced.
While smart contracts could be used to manage funds, this is usually done

in form of an ERC-20 [VoBu15] token contract, meaning that the generation
of tokens in this context is based on minting, which cannot be directly used to
pay for blockchain transaction fees. The difference between minting and mining
cryptocurrency is analogous with the real-world usage of these two words. Mining
requires a significant amount of resources (computational power, electricity) to
“unearth” new currency. This cost of electricity gives the currency its backing,
while limits on the issue rate make sure of its rarity, and thus value. In blockchain
applications, mining describes the process of validation and verification of all
transactions to be put in a block that is to be added to the current chain of blocks.
In contrast, minting requires no additional resources and is effectively inflating
some token value unrelated to the “cryptofuel” used for transaction fees on the
blockchain.

2.4 Incentivation and Reputation
In the context of online communities, research on why users participate stems
mainly from a socio-psychological perspective. Forte and Bruckmann argue, that
a sense of authorship and the so-called cycle of credit are to be attributed to the
motivation behind the majority of the contributions in the Wikipedia commu-
nity [FoBr05]. A valuable aspect of this is credibility, which, even though it is a
lengthy process to obtain, allows users to assume more central roles in the commu-
nity. Indirectly, credit can be used as a reward mechanism to log the contributions
of a user. In this context, the authors also mention that community leaders should
rise from the community and that they should be voted in, based on the credibility
they gained.
Smith et al. argue, that reputation in itself is a motivating factor for user contri-

butions, as userswill be inclined to increase their rank in the community [SmKo99].
Additionally, when users have the feeling that their contributions have an actual
impact on the environment, they feel a sense of efficacy and their contributions
will likely increase.
On the opposite side of the spectrum, one can assume that user actions are

driven by altruism or simply need, meaning the individual or the community

20 CHAPTER 2. RESEARCH CONTEXT

requires the produced artifact to fulfill some action. An additional possible mo-
tivation is the commitment or attachment of the individual to the community, in
which case contributions to the community are done because it is best for the
community. Here, individual and collective needs are merged, even though com-
plete devotion to a community is rare. Some contributions are also a byproduct of
individual behavior and are shared only because they have already been produced
in a different context, as redistribution has costs close to zero [SmKo99].
In the context of social psychology, discrete emotions are emotions such as joy,

sadness, fear or anger [DPR*04]. Each of these has theories connected with them,
however the usage of fear is deemed most useful in the context of user persuasion.
Based on this theory, a viable strategy would be to first spark fear by implying
that some privilege would be taken away from the user, then to provide them with
information on how to avoid this problem. This solution will then become more
persuasive and will convince users to contribute to the community. However, the
case of the now-closed Limewire showed, that denying users access to system
resources when they do not meet sharing requirements caused the communities to
be more exclusive and failed to motivate the users in the long run.
Vassileva et al. suggest a number of theorieswith background in social psychol-

ogy that can be transferred from real life communities to virtual ones [ChVa05].
One of these is called reciprocation theory. When we ask another person to do
something for us, we are expected to provide appropriate rewards for their favors.
This means that users should benefit from a P2P community if they are expected
to join, participate in, and contribute to it. A community which does not provide
benefits that outweigh the costs of resources, time and energy to contribute, is not
sustainable and will degrade over time [Butl01]. Reciprocation systems reward its
users for participation. To improve the effectiveness of the motivating strategies,
two key questions need to be considered. On the one hand side, user participation
and contribution need to be measured and evaluated. This is due to the fact, that
the amount of retribution depends on user activity. On the other hand, the type of
reward needs to be deliberated. If users do not associate value with the provided
rewards, they will not be stimulated to contribute. P2P file sharing systems like
KaZaA and Torrent use reciprocation to motivate their users to share files, by
rewarding them with a better quality of service. The more a user shares, the higher
her possible download rate is. Since the benefits are proportional to the amount
of resources shared with the community, users are compelled by this strategy to
stay online, contribute and share files. It even motivates to be concerned about
the quality of contributions, to maximize demand for them. However, an adverse
effect can also be observed. Users sharing uncommon files receive low quality

2.4. INCENTIVATION AND REPUTATION 21

of service and are discouraged from further participation, thus decreasing the
diversity of shared files in the network.

2.4.1 Trust
Trust can be thought of as being able to rely on the actions of another party and thus
is closely linked to reciprocity. Hawlitschek et al. identified three fundamental
targets of trust [HTWe16]. The first is trust towards peer and describes which
information about a peer is needed to build up enough trust to enter a transaction
with her. Strategies to facilitate trust towards peers typically include user profile
completion, identity verification, screening/vetting and reputation. The second
target is trust towards platform. Research shows that trust towards the platform is
more important for consumers than trust in individual peers [HoCh11]. In other
words, users rely on the owner of a platform to provide a safe environment. The
last target of trust is trust towards product. Transactions in a decentralized sharing
economy often mean hiring a professional that will never be met in person, or
buying an item without the ability to see it before the transaction is complete.
Strategies like product photo verification or third party certificates to indicate skill
can be employed here to enhance trust towards the product or service provided.
The Trust-Confidence-Distrust model [GJK*01] was one of the first approaches
that implicitly models distrust as an own entity, instead of treating it as the opposite
of trust. Both trust and distrust between two peers can exist simultaneously. In the
context of P2P, trust defines how much people are willing to contribute without
direct personal gain from these contributions, or even without the guarantee that
their contribution will be used by the community.

2.4.2 Reputation Systems
A reputation system allows users to determine the reliability of their peers. The
higher the reputation, the higher the trust. The history of past behavior of an
individual in a community will heavily influence the expectation that peers have
of future interactions [RKZF00]. An intuitive conclusion is thus the usage of
reputation to differentiate the quality of service. Reputation systems can act as a
central anchor of trust. For a reputation system to be valuable, peers should be
able to verify each other’s reputation without direct interaction [FLSC04]. One
can approach this problem by making the log of related reputation transactions
public. This allows to recalculate the reputation score, based on the weights
coming from the amount of trust towards certain nodes in the system. Since

22 CHAPTER 2. RESEARCH CONTEXT

actions in the community usually require two or more actors, reputation attached
to each transaction builds a Web of trust.

Examples of Reputation Systems

A number of reputation systems have been proposed in literature, most notably:

EigenTrust [KSGa03] computes global trust values of peers by aggregating local
trust values, based on the notion of transitive trust, similar to the PageR-
ank [BrPa98] algorithm.

PeerTrust [LiLi04] evaluates a trust metric by measuring five factors: the feed-
back obtained by peers, the total number of transactions of each node, the
credibility factor for feedback sources, the transaction context factor (critical
vs. non-critical transactions) and a community context factor. A decentral-
ized trust management service calculates each peer’s trust value.

VectorTrust [ZhLi13] establishes the notion of a trust vector and trust transfer
over a trust overlay network architecture. A trust propagation scheme called
Trust Vector Aggregation Algorithm only requires communication between
neighboring peers in the overlay network. Additionally, an adaptive time
window mechanism takes malicious fluctuations in trust values into account
to accommodate for peers suddenly loosing reputation, making the reputation
hard to build, but easy to loose.

PRIDE [DeDa04] employs a local database of verified peers as a caching mech-
anism, while a self-certification mechanism similar to SDSI [RoLa96] pro-
vides cryptographic verification by exchanging signatures alongwith a rating
after each transaction. An IP-based safeguard is employed to mitigate the
“liar farm” vulnerability against “ballot stuffing” or spreading false repu-
tation. The fundamental security assumption is, that it is difficult for an
attacker to maliciously generate a non-contiguous IP address range, so the
system should increase the security distance between peers to decrease the
probability that the opponent has a liar farm. This however decreases the
accuracy of reputation.

StackExchange employs reputation to let their community moderate contribu-
tions [MMSF13]. Convincing peers that the provided contributions are
legitimate will gain the users reputation, e.g., an up-vote on a question
yields 10 points, while a received down-vote costs 5 points. A sliding time

2.4. INCENTIVATION AND REPUTATION 23

window (a maximum of 200 points gained per day) prevents further abuse.
At any time, users can see their progress in the reputation system and inspect
the privileges they earned.

GNS [WSGr14], the decentralized name system of GNUnet, securely and asyn-
chronously manages and shares sets of user attributes. Access to user data
in GNS is managed via identity tokens. The tokens are used for a Diffie-
Hellman-based key exchange to obtain and orchestrate access tickets to user
data. The resulting attribute-based encryption mechanism allows users to
selectively grant and revoke access to sensitive data in the decentralized net-
work. Attributes get queried based on the requested context, meaning that,
e.g., a mailing list would be given access to the user’s email, however not
to more sensitive data like medical records. Such a personal query requires
additional trust relationships to be formed prior to sharing. This is done by
means of a privacy-friendly protocol, which does not rely on central servers
to provide user identity management. GNS is used to authenticate servers in
a decentralized network and essentially to supersede the currently prevalent
Domain Name Server (DNS) infrastructure and the X.509 Certificate Au-
thorities (CA) that come with it [SBSc18]. Abusive user patterns in GNUnet
are detected by a supervised learning algorithm [GBGr16], combined with
a protocol for privacy-preserving queries for the classification agent to be
able to operate.

Challenges of Reputation Systems

A fundamental assumption for reputation systems to actually provide meaningful
insights is, that inputs and outputs of the system have to be contextually relevant
to the field they are applied to [Farm14]. In other words, a credit score which
measures financial aspects of an individual will most likely be a poor indicator of
her potential benefit as employee or her taste in music [Cohe09]. An important
factor to take into consideration is the focus on the quality of content, as opposed
to its quantity. Solely rewarding the latter will lead to a significant drop in quality,
in favor of empty or meaningless content generated in troves. Being exposed
to peers casting possibly negative votes can make a daunting impression on new
users, so an opt-in mechanism for the reputation system can be used to make the
participation in mutual rating a conscious decision.
An interesting problem concerning rating and reputation systems is the so-

called normative conformity – users subconsciously tend to conform to norms to

24 CHAPTER 2. RESEARCH CONTEXT

“fit in”. In other words, a well-received rating subject will likely continue to receive
good reviews, as long as users trust in the collective choice of the community. This
is not necessarily a bad thing, as social anthropologists argue that this concept is
crucial to the formation of cultures [Hodg14]. However, while divergence is also
a prevalent occurrence, human interactions should not be simplified to a duality
between conformity and divergence, as even small children show behavior that
follows a more dialogical interaction with their surrounding, as opposed to an
individual learning experience.

2.5 Scaffolding
Coming from the construction domain, a scaffold is set around a building as a
temporary supporting structure during its construction phase. As the construction
site develops and the building gets completed, the scaffold gradually gets removed
up to the point, that it is not needed anymore. The metaphor of using educational
scaffolding, a term first coined in the 70s by Wood et al. [WBRo76], describes
the process of teachers assisting students in their learning process. As students
advance, the “scaffold” is more and more removed, such that students learn to
work independently. During the last 20 years, the term has gained a lot of traction
in the domain of educational research [HaGi05]. In the domain of computer
science, this term can also be found and here it describes Web frameworks that
help developers to reduce boilerplate code and to ease the maintenance of code
bases across projects.
However, in this dissertation, we take the term scaffolding a step further by

unifying the ideas fromboth the domain of education and computer science. On the
one hand, we use scaffolding to describe template-based development scenarios
for a decentralized CIS platform. On the other hand, we also interpret it in a
more pedagogical sense and use it to describe the processes and best practices
for CoPs to develop their applications. In the following, we present related work
on Model Driven Development (MDD),Model-Driven Web Engineering (MDWE)
and wireframing as means of scaffolding in the development of CIS.

2.5.1 Usage in Digital Learning Environments
The utilization of MDD creates a model during the process, which generates an
implementation via transformations. This procedure also focuses on the develop-
ment of the respective model [WHRo14]. In software development, a conceptual

2.5. SCAFFOLDING 25

model is seen as an abstraction of the software. Schmidt emphasizes that abstrac-
tions of the solution are created instead of abstractions of the problem [Schm06].
Accordingly, the focus of the developers is on the modeling environment and the
translation of a model into an executable solution, while domain experts are re-
sponsible for modeling and creating the solution. Using this system, different user
groups such developers or project managers can develop abstract models together.
The modeling of concepts is also conceivable for online learning domains, by

using it to model concepts withinMOOCs or webinars. For learning environments
as the medium, the goal of individualized learning is to deliver “the right content,
to the right person, at the proper time, in the most appropriate way” [ShTo03].
Through monitoring, the system should be able to interpret the learner’s activities
based on a domain-specific model [PaLo04], such that it can infer the user’s
requirements and preferences. Furthermore, the system interacts with the learner
in a way that it facilitates the user’s learning process. In both variants of learning,
the traditional face-to-face learning and e-learning, the three main factors are the
teacher, the content and the learner [BeAd10].
To focus on scalable personalized teaching, we rely onAdaptive Learning Envi-

ronments (ALE). Paramythis and Loidl-Reisinger describe the domain-, learner-,
group- and adaptive model as the typical models encountered in virtual learning
environments [PaLo04]. The domain model represents the course itself and can
also contain information like workflows, participants, roles and the like. Thewhole
knowledge of a domain is formed of a set of knowledge elements. Brusilovsky
and Millán claim that prerequisite links between those knowledge elements are the
most significant ones because they represent the idea of learning a related concept
before learning another [BrMi07]. The learner model can be implemented in a
different way depending on the ALE, but all learner models share the capability
of monitoring the live status of a learner. In particular, the model has information
about interaction time and stores the interaction history. Thus, the model has as-
sessment information which can be used for analyzing the performance and to draw
conclusions on upcoming learning steps of the student. Multiple learners can be
clustered by the learners’ characteristics (e.g, behavior). These clusters are created
dynamically due to their changing characteristics over time. To show the learner
“what” to learn “when” and “how”, the adaptive model provides the subsequent
instructions. During usage, the model can acquire the system’s behavior with
the information provided by the content model. Through the model, the current
progress of the learner can be monitored and the model can determine the subse-
quent instructions by analyzing the relationships between the knowledge elements.
These definitions and learning flows can be a difficult and challenging task. As

26 CHAPTER 2. RESEARCH CONTEXT

one solution to this, Nicolaescu et al. presented SyncLD, a system that supports
Web-based, NRT collaborative editing of “learning design” models [NDKl13].
This system was built for CoPs and enabled end users to create learning flows.

2.5.2 Scaffolding of Community Information Systems
While there are multiple ways of introducing scaffolding support to CIS (ser-
vice) development, this dissertation lays its scope on MDWE to lead and support
community members throughout the development process. Closely related, wire-
framing serves as a means to integrate less technical community members closer
into the (MDWE) development process.

Model-Driven (Web) Engineering

MostMDWEapproaches follow the philosophy of separation of concerns [Kent02].
Based on a comprehensive metamodel, certain views are defined to reflect specific
aspects of a Web application. One of the first MDWE approaches that obeyed the
separation of concerns idea in MDWE was OOHDM [ScRo98], with the goal of
dealingwith the increasing complexity ofWeb applications. It described amethod-
ology for systematic guidance to design large scale, dynamic Web applications.
The main activities of the OOHDMmethodology comprised a conceptual, naviga-
tional and abstract user interface design and proposed how they are implemented
in the final Web application. A slightly more recent, as well as ongoing, MDWE
methodology is the UML-based Web Engineering (UWE) [KoKr02], which was
conceived as a conservative extension of the UML. Thus, already existing con-
cepts of the UML are not modified, the new extensions are just related to existing
concepts. The first extensions are UML stereotypes, which are used to define
new semantics for model elements, e.g. a navigation link. The Object Constraint
Language (OCL) is used to define constraints and invariants for classes. UWE
follows the separations of concerns principle to split up the modeling process into
the conceptual-, navigational- and presentation modeling part. WebML is an-
other MDWE approach developed in 2000 [CFBo00]. It does not propose another
language for data modeling, but also extends the UML and is compatible with
classical notations of ER-diagrams and others. WebML as well emphasizes the
concept of separation of concerns. Therefore, the development process is divided
into four distinct modeling phases. The structural model represents the content of
the site expressed as UML class- or ER diagram, the hypertext model consists of
a composition- and navigation model. The former one describes which entities of

2.5. SCAFFOLDING 27

the structural model are composed by a certain page and the latter one specifies
the links between pages. The third one is the presentation model which expresses
the layout and graphical appearance of pages. Finally, the personalization model
defines user and/or user group specific content. In 2013, WebML emerged into
the Interaction Flow Modeling Language (IFML) [BrFr14] and was adopted as a
standard by the Object Management Group (OMG).
ArchiMate is an enterprise architecture modeling language [Lank13]. Al-

though not not directly a MDWE approach, it is relevant related work for our
approach, because of its interpretation of the separation of concerns paradigm. It
separates the content and visualization of the view. The main advantage of this
is the usage of different visualizations on the same modeling approach and vice
versa. The content of a view is derived from the base model and expressed in the
same modeling concept. The visualization on the other hand can be completely
different from the actual representation of the model. ArchiMate allows to define
a set of modeling actions, that alter the content of the model. These modeling
actions are mapped to operations on a specific visualization of the view. This
additional abstraction level allows to define any sort of visualization, like videos
or dynamic charts. In this contribution, we use this concept of view separation to
map certain operations on the wireframing editor to operations on the modeling
canvas, which alter the current state of the wireframing-, respectively the modeling
view.

Wireframing

In Web engineering, a wireframe is an agile prototyping technique to sketch
the skeletal structure of a Web application [AABe10]. There exist a plethora
of wireframing and mockup tools on the Web. We here exemplary introduce
Balsamiq9 (as one of the most used ones) and Mockingbird10 (as it features NRT
collaboration and is Web-based). The idea behind Balsamiq is not to build large
and fully interactive prototypes, which take hundreds of hours to develop and may
lead to costly refinements if something can not be realized as intended. Instead,
Balsamiq follows a more rapid development philosophy. This has the advantage
that developers gain experience and evaluate components of the wireframe directly
on a very early version of the Web application, which can also involve end user
feedback. This feedback is used to tweak the wireframes and the implementation
process starts again. Therefore, Balsamiq offers only limited interactivity features

9https://balsamiq.com/
10https://www.gomockingbird.com/

https://balsamiq.com/
https://www.gomockingbird.com/

28 CHAPTER 2. RESEARCH CONTEXT

on a wireframe. Mockingbird is a Web-based wireframing application that offers
NRT collaborative editing. The graphical editor offers the most common User
Interface (UI) elements of today’s Web applications, which can be rearranged and
resized freely on a page. Similar to Balsamiq, it is possible to link pages and
preview them to demonstrate the Web application’s interactivity flow.

Mockup Driven Development (MockupDD) is a hybrid, model-based and agile
Web engineering approach [RRG*11]. The main goal of MockupDD is to extract
and combine the advantages of MDWE methodologies and the rapid collabora-
tive design process of wireframing, to add agility to existing MDWE approaches.
MockupDD describes a transformation approach from a mockup to a compre-
hensive model that is further transformed to the specific models of an arbitrary
MDWE approach. In most related approaches, wireframes are not considered as
models and their impact declines in later development stages. MockupDD tackles
this with a generic approach to integrate mockups directly into the whole MDWE
development process. An additional computational instance builds the bridge from
the output of an arbitrary wireframing tool to an arbitrary MDWE approach. The
MockupDD methodology begins by creating UI mockups with an arbitrary tool,
e.g. Balsamiq or Mockingbird. The resulting mockup file is then parsed, validated
and analyzed with regard to a Structural UI (SUI) metamodel, which denotes each
UI control element, their compositions and hierarchical structures. The goal is
to obtain a “sufficient enough” structural model of the UI. Based on this SUI
model, another transformation approach to the specific model of the used MDWE
methodology is required. To further enrich the representational strength of a SUI
model, MockupDD includes a tagging mechanism. A tag is simple specification
that is applied over a concrete node of the SUI model and consists of a name
and an arbitrary number of attributes. The main purpose of a tag is to define
functional or behavioral aspects of a certain UI element. It allows the designer
to construct more complex wireframe specifications. A UI element may have an
arbitrary number of tags assigned to it. A SUI model enriched with tags is also
called a Structural UI with Tags (SUIT) model. The concept of MockupDD has
been adapted to various modeling languages and domains (WebML [RRG*11],
UWE [RGR*12], IFML [RiRo13], and specifically focusing on mockups of touch
user interfaces [Ange16]).

2.6. SOCIAL BOTS 29

2.6 Social Bots
Research of bots already started in the 1960s with the development of “Eliza” by
JosephWeizenbaum [Weiz66]. More recent research and especially developments
of social bots in the domain of learning technologies started around the year 2005,
with Fryer and Carpenter using chatbot technology to support the acquisition
of language skills [FrCa06]. These early works of modern bot development
were quite limited and only able to reply to specific questions with predefined
answers. Kerly et al. used a chatbot to support the self-assessment and reflection
of learners [KHBu07], where learners were able to discover and negotiate their
own learner model by using the chat tool. In order to bring the relevance of bots
closer to students, these bots were also integrated into introductory courses for
CS students [Shaw12]. A team from the University of Edinburgh used a chatbot
for one of their courses [Bayn15]. The bot replied to Twitter tweets, thereby
taking the role of a teacher. The replies were based on keywords in the students’
request. As an example, the bot was able to answer questions regarding the
submission deadline of assignments. The idea of this approach was to overcome
possible shyness of students through conversation with a bot instead of a human
teacher [BKCr18]. Krafft et al. used bots as virtual confederates, which behaved
like human confederates in experimental situations [KMPe17]. In their work they
gave four different ways to experiment on the bots. They proposed to randomize
bot actions, attributes, behavior and the artificial which is created by multiple bots.
Dibitonto et al. presented the design of LiSA, a social bot for Facebook which
conducts surveys with students [DLTM18]. The bot interviewed the students
mainly about the way they obtained information about the university.
The role of a mentor can be taken over by a chatbot, a software program con-

ducting auditory or textual conversations. Natural LanguageUnderstanding (NLU)
can be applied to analyze speech, and intelligent responses can be created by de-
signing an engine to provide appropriate human-like responses. The results of a
systematic literature review show that chatbots have only recently been introduced
in education, but they offer opportunities to create individual learning experi-
ences [WiSo18]. This can lead to an increase in learning outcomes and can
support lecturers, as well as their teaching staff. Chatbots have also been extended
in the field of mixed reality, which describes a spectrum between the real world
and a purely computer generated world with the intermediate forms of augmented
reality and augmented virtuality [MiKi94].
TheXML-compliant languageArtifical IntelligenceMarkupLanguage (AIML)

[Wall03] consists of categories which contain a stimulus, or pattern, and a tem-

30 CHAPTER 2. RESEARCH CONTEXT

plate for the response. Categorical patterns within the stimulus are matched in
order to produce the best response to the user’s input. The potential of bots using
this language was recognized relatively early and different dialog systems have
been suited with AIML to enhance applications within the fields of medicine and
education [MBL*09, REB*12].
Fischer and Lam introduced a social bot that asks the user questions to per-

form a medical diagnosis [FiLa16]. Here, it was evident that the chatbot was
leading the conversation and yes/no questions limit the user with their response.
AutoTutor [GCHO05] is another approach using predefined conditions for natural
language processing in order to simulate a human tutor. CalmSystem [KEBu08]
also included a social bot in the domain of e-learning which supports the meta-
cognitive goals of self-assessment and reflection. With the presented concept,
individuals can access their learning model and make inquiries via the chatbot.
Latham et al. introduced “Oscar” a Conversational Intelligent Tutoring Sys-

tem (CITS), which utilizes a conversational bot that adapts to the student’s learning
style [LCM*10]. Lundqvist et al. used an SQL database as storage for data struc-
tures in combinationwithOwlLang, a script language for injecting knowledge from
ontologies into AIML, for their implementation of an AIML chatbot [LPWi13].
The presented chatbot was used as a survey tool inside a learning platform to col-
lect data on the quality. More recent approaches, such as the social bot introduced
by Lim and Goh [LiGo16], are still based on AIML. The bots mentioned until
now are categorized by Barbar et al. as retrieval-based bots [BLEr17], while the
following, more recent bots are considered as generative bots which are based on
deep learning technologies [DeYu14] and the content is generated based on the
context of the users’ inquiry.
Varghese and Pillai propose a system for closed domains where they use a

Recurrent Neural Network (RNN) for generating the response as a law assis-
tant [VaPi18]. The inclusion of non-technical users can be done for example with
SOCIO [PGLa18]. Perez-Soler et al. present a system where users can make col-
laborative requests and the system returns the corresponding class diagram after
each change [PGLa18]. The collaboration of the participants and the recording of
the requirements takes place in an Online Social Network (OSN).

2.7 Learning in Communities of Practice
This section introduces two important aspects of learning in CoPs, namely mon-
itoring of LA data and knowledge building. While we make heavy use of the

2.7. LEARNING IN COPS 31

former in this dissertation to gather the data needed in all three applications and
evaluations of Chapter 5, the latter is of special importance for our second case
study of the Distributed Noracle application in Sec. 5.2.

2.7.1 Monitoring of Learning Analytics Data
Vocational training and technological support for CoPs adapted to the digital,
virtual domain not as fast as e-learning conducted in higher education at university
level for example. Although its potential was first mentioned already at the end
of the last century [Scha97], its adoption is still in its infancy. The result of this
is that studies performing LA [Ferg12], to the best of our knowledge, consider
either university/college or schools as the educational setting [NDKl15]. From a
technological point of view, most LA approaches use data generated by MOOCs
created by open source course management system, with the most famous one
being Moodle [DoTa03].
Using standardized data formats [BSFM13] to apply LA on, like the Learning

Record Store (LRS) or the eXperience API (xAPI) standard [KeRy16], is an
active research topic. The LRS is a server responsible for receiving, storing and
accessing learning activities. It can be operated as a stand-alone system, but it can
also be integrated into a Learning Management System (LMS). In the latter case,
the LMS takes over the reporting and analysis using the data of the LRS, while
the LRS connects to other activity providers. It also provides the possibility to
connect to another LRS for further analysis of data from other sources. A LRS
builds the basis for an xAPI ecosystem, an OSS specification of a data format
for learning data. Any interaction from a tool via the xAPI is done through the
LRS, allowing the system to store and retrieve xAPI statements. Those statements
contain information about the actor, verb, and object. When an actor interacts with
the tracked system, the verb describes the type of activity and the object describes
what is being interacted with. In addition to these predefined data fields of the
xAPI, several extensions are available to allow a highly customizable storage.
Having a well-defined data (exchange) format allows for an easier handling

of the data to be analyzed, but it does not solve the question what data needs
to be collected to understand past and predict future students behavior and react
accordingly. Techniques like Educational Process Mining (EPM) can be used to
retrospectively derive meaning of collected data logs. Bogarín et al. have used
this technique together with clustering to predict success rates of students taking a
Moodle course [BRCS14]. Click-based analysis is also very often applied to LA in
Virtual Learning Environments (VLEs), like for example the authors of [WZNP13]

32 CHAPTER 2. RESEARCH CONTEXT

used the General Unary Hypothesis Automaton (GUHA) method, a data mining
technique, to predict student drop-out rates. In general there can be concluded,
that most studies consider the prediction and improvement of assessment results,
activities and drop-out rates [SKD*14] as their main goal. While the first two are
of equal importance in a Self-Regulated Learning (SRL) context, the drop-out rate
problem is more bound to the MOOC context.

2.7.2 Knowledge Building
This dissertation focuses on the support of CoP learning processes in the digital
space. We understand it as a social process that involves negotiation of meaning
and social construction of knowledge. With respect to learning as a social process,
we apply the CoP concept to describe the emergence, transfer and preservation of
knowledge [Weng98].
Question asking is seen as one of the most important skills for knowledge

building, contributing to lateral thinking and better problem solving [Sloa17].
Question-based dialog is viewed as a specific type of a sense-making tool that
is also representation-centric [MPOR18]. To help structure discourse analysis,
computational linguistics has offered frameworks to examine collaborative sense-
making in virtual environments [IQLB16]. For example, argumentation platforms
offer a representation-centric approach to collaboration. Contributions are visually
represented, categorized as issues, claims, premises and evidence, with modifying
functions to support or refute other constituents of the argument. Cohesion graphs
of discussion threads, which represent contributions as nodes at different levels,
can examine lexical chains in discourse analysis to understand influence on conver-
sation and identify key issues in conversation. Related work in this domain mostly
deals with the issue of how face-to-face scenarios differ from online discussions
and how to aggregate community knowledge [Meye03]. Instead of representing
knowledge in the form of arguments, in the scope of this dissertation, we built the
Distributed Noracle (cf. Sec. 5.2) to examine the gaps in community knowledge
in the form of questions.
In the domain of school education, a theory that specifically focuses on social

configuration for knowledge creation is the theory of Knowledge Building by Scar-
damalia and Bereiter [ScBe06]. The rationale behind it is that the knowledge called
“state-of-the-art” is the sum of the knowledge of the community. Knowledge work
therefore is the advancement of the state of knowledge within a CoP. Knowledge
building explicitly focuses on the community knowledge advancement and stresses
the temporary nature of ideas and theories. Every idea is improvable and every

2.7. LEARNING IN COPS 33

theory can be refined, redefined or replaced by a new improved theory. To work
on ideas, knowledge building uses a form of discourse that can be characterized
as a cooperative process where participants are committed to progress, seek com-
mon understanding and expand the base of accepted facts. Knowledge building
assumes that learners’ understanding is emergent and that the development of com-
plex cognitive structures for complex concepts is achieved by self-organization:
“new conceptual structures [. . .] emerge through the interaction of simpler ele-
ments [. . .]” [ScBe06]. This is also applicable to knowledge of ignorance, which
can rather be expressed by questions then by idea statements.
Coming from the field of organizational studies and knowledge management,

the SECI model developed by Nonaka and Takeuchi [NoTa95] and its adaption to
the Web 2.0 [CKJA07] describe the process of knowledge creation in four cyclic
steps:

1. Socialization (tacit to tacit): the process of sharing tacit knowledge by
collaboration and practice, through which learners develop a shared mental
model.

2. Externalization (tacit to explicit): make this knowledge explicit, e.g., by
writing it up, revealing the tacit knowledge.

3. Combination (explicit to explicit): combine explicit knowledge sources to
create new knowledge.

4. Internalization (explicit to tacit): by using the explicit knowledge sources,
the knowledge is internalized.

For emergent knowledge, revealed ignorance plays a pivotal role in both the the-
ory of knowledge building [Scar02] and the SECI model (here especially in the
“externalization” step, where both knowledge and ignorance can be revealed).
The learning process of Inquiry-based Learning (IBL) starts with a question or
statement of curiosity, sometimes called the “wonder moment” [STKS15]. Once
an unanswered question is asked within a community, it challenges the ideas and
theories of the community. A collective model of community ignorance results
from the subsequent discourse.

34 CHAPTER 2. RESEARCH CONTEXT

Chapter 3

Decentralized Community
Information Systems Infrastructures

Summary

This chapter lays its focus on the development of the decentralized infras-
tructure used as a platform for the realization of the artifacts created in
the following chapters. We present the decentralized service registry and
its application in both service verification, community contribution incen-
tivization and LA data verification.
Contributions ⇒ RQ 1. Keywords: Decentralized Infrastructure; Service
Registry; Blockchain; Incentivization; LA. The results presented here have
been partially published in [KRLJ16, LFGK17, LJKl19, LGFK18, LGF*20,
LSKl20, LBNK21]. This chapter contains partially information and content
extracted from these publications.

In this chapter, we present the decentralized CIS infrastructure we developed
during the course of this thesis work. It builds the basis for both the work
presented in Chapter 4, as well as the applications and evaluations presented
in Chapter 5. We start by presenting the design science process followed for
the contributions presented in this chapter (Sec. 3.1), before we introduce the
concepts and technical foundations for this chapter. Here, we present las2peer
as the technical foundation, which both builds the technical basis of this thesis’
implementation part, as well as it is itself treated as artifact that was extended and
evaluated throughout this work (Sec. 3.2). The chapter continues with the first

35

36 CHAPTER 3. DECENTRALIZED CIS INFRASTRUCTURES

iteration of las2peer’s microservice discovery implementation in Sec.3.3, before
we introduce the decentralized service registry and discovery mechanism, based
on blockchain technology (Sec. 3.4). Basing on this, we present the decentralized
community contribution incentivization in Sec. 3.5, and conclude this chapter with
a description of the blockchain-based verification and consent management of LA
data (Sec. 3.6).

3.1 Methodology
Our design science process for this chapter is depicted in Fig. 3.1. It consists of
five iterations. Our initial motivation for this research was the problem of the
lack of microservice discovery for decentralized scenarios. Without them, service
discovery in terms of browsing and also verification is not possible. We began
tacking this issue by first developing a microservice discovery with API metadata
and information taken from our MDWE scaffolding support (see also Chapter 4).
The main evaluation results pointed to the fact, that we should tailor the service
discovery (also) more to end users, additional to the still standing need to decen-
tralize the technical side of the service discovery mechanism. Stemming from this,
and with the knowledge gained from the initial internal user evaluation, we devel-
oped a decentralized service registry, based on blockchain technology [LJKl19].
Our evaluation was based on an artificial community setting and also integrated
technical evaluations, with regard to blockchain computing power and storage con-
sumption. The outcome from an end user’s point of viewwas the Service Explorer,
which we then evaluated in the next iteration step in one of our real-world case
studies [LGF*20] (see also Chapter 5). With this, we were able to prove the useful-
ness of the service registry for service discovery in decentralized learning settings.
Still, a standing problem was the need to pay for transaction costs. Additionally
to hosting a service, the operator of a P2P node had to pay with computing power
for service announcements on the blockchain for the service to be visible and
verifiable throughout the network. Our solution to this was monetizing the mined
blockchain-blocks and to develop an incentivization system on top of it. With this,
it is possible to reimburse service developers and hosters according to their con-
tribution to the infrastructure, as well as it introduced a verifiable, reciprocal user-
and service rating mechanism, which is used to increase the trust in community
contributions within the decentralized network, based on their community ratings.
Results of our evaluation were communicated in [LSKl20]. Our final contribution
of this chapter is closely coupled to the third application and evaluation presented

3.2. CONCEPT AND TECHNICAL FOUNDATION 37

in Sec. 5.3 and introduces the verification of LA data, collected from multimodal
data sources [LBNK21], via the blockchain mechanisms developed in the previous
iterations of this design science methodology.

Figure 3.1: Iterations of the design science process we followed in Chapter 3.

3.2 Concept and Technical Foundation
One of the main themes of this dissertation is the decentralization of CIS for
several reasons, both already spoken of in the introduction’s exemplary use case,
as well as in the motivation for every single design science iteration described
in this chapter. Conceptually, this means a shift from previous CoP-supporting
infrastructures, which envisioned a centralized metadata repository at the heart of
the CIS [Klam10]. Centered within the triangle of CoP, Practices and Technolo-
gies, this main “source of truth” retained the evolving community’s “long term
memory”. In a decentralized CIS, we replace this centralized repository with de-
centralized microservice infrastructures. Instead of relying on a single repository,

38 CHAPTER 3. DECENTRALIZED CIS INFRASTRUCTURES

the data is now distributed among the community’s network of knowledge-sharing
nodes. The knowledge is not stored in a (custom-tailored) database anymore, but
lives within the microservices. In a way, this shift from a metadata repository
to a shared microservice infrastructure can be viewed as putting the metadata to
action. This shift from a monolithic CIS to a decentralized approach transfers as
the overarching idea throughout this chapter. Fig. 3.2 depicts this transformation.

Figure 3.2: The transformation of a monolithic CIS ([Klam10], left) to a decen-
tralized CIS (right).

To technically achieve this, we base our work on las2peer, an open source
P2P framework for implementing and hosting Java microservices. A high-level
description of the P2P architecture of las2peer can be seen in Fig. 3.3. As it
can be seen, las2peer spans up a network of individual nodes, connected to each
other, organized as a structured P2P network. Every acting entity of las2peer is
an agent. Different types of agents exist for services, users, groups and more.
Conceptually, all communication of las2peer takes place between these agents.
E.g., if a developer deploys her service on a node, las2peer will register it as a
service agent, if a user registers at a las2peer node, she is treated as a user agent.
This way, the communication between a user and a service is conceptually handled
the same as communication between services or users.
Every las2peer node consists of at least two components. The first is the

Distributed Storage. This storage is partitioned and partly duplicated throughout
the network, allowing for a shared, yet synchronized data store. Technically, we
base our storage and inter-node communication mechanisms on Pastry [RoDr01],
a P2P overlay network that provides both a messaging system as well as a DHT
storage system. To ensure privacy, security and data protection, we added end-to-

3.2. CONCEPT AND TECHNICAL FOUNDATION 39

Web
Connector

Distributed
Storage

Figure 3.3: las2peer basic architecture [KRLJ16] (adapted).

end encryption in form of an Envelope system on top of it, ensuring each message
and all data stored on the infrastructure is encrypted. The second component a node
has to integrate is the so-called Web Connector. It realizes the communication
to the outside, with the capability of routing RESTful calls to an application’s
(gateway) interface.
Our framework is capable of load balancing requests to microservices in the

entire network, may it be because the service simply does not exist on the local
node, or the node is currently overloaded with requests and offloads the task to
other nodes in the network. Upstarting services register themselves to the network
by calling a specific routine of the node, which then manages their location in the
distributed storage for all nodes to look-up. This Sidecar Pattern-like [Newm15]
service registration and discovery ensures that a connector will find the nearest
service that currently is flagged as being capable of taking requests.
The communication between microservices is realized using a Message Ori-

40 CHAPTER 3. DECENTRALIZED CIS INFRASTRUCTURES

ented Middleware (MOM) [BCSS99] that is based on the Publish & Subscribe
Pattern [EFGK03]. Each node registers all running services as subscribers to
their corresponding “Service Topic”. If a service wants to call another service, it
performs a Remote Method Invocation (RMI) that is sent throughout the network.
A node hosting a corresponding service that receives this request will route it to
the service, which will handle it. The answer is then sent again in the same way
throughout the network. Several timeout mechanisms and an acknowledgment
system prevent messages with missing receiver to be forwarded endlessly or mes-
sages being answered by multiple services. By using the P2P network to enforce
an Event-Driven Architecture (EDA) of microservice-based applications [Rich15],
we target the needs of fast-changing topologies in CoPs, where complete knowl-
edge of the network might both not be available or even desirable. Nodes can join
and leave the network at any time, and the network keeps a persistent distributed
storage with Eventual Consistency (following the BASE model of modern cloud
computing architectures [Prit08]), regardless of the current topology. Besides
this, it is of course possible for a microservice to implement and maintain its own
database, separately of the distributed storage.
las2peer features its own logging, monitoring and evaluation suite, called

Mobile Community Information System Oracle for Success (MobSOS). Each node
in the network monitors local events and sends them (encrypted) via the P2P
network to a trusted central data collection sink, called the Monitoring Node.
This monitoring node, in itself no different to other las2peer nodes, contains two
services to handle data processing and provide data provision via a Web frontend.
It not only features monitoring data, but also provides community service success
measurement. A detailed description of the extensions made to the evaluation
suite will be discussed with the introduction of the NRT Evaluation Center in the
next chapter (see Sec. 4.3.4).

3.3 Microservice Discovery with API Metadata
While las2peer featured the possibility to browse services running on the local
node, as well as services running on nodes known to the local node, there existed
no registry or discovery mechanism for users to browse available services in
the network. This issue is not limited to las2peer, but recognized as a general
problem of decentralized systems based on DHTs [DaMa09], as they usually lack
ranged queries. As a first step to tackle this identified problem, we implemented a
microservice discovery system, based on API metadata.

3.3. MICROSERVICE DISCOVERY WITH API METADATA 41

3.3.1 Motivation
Our initial use case is connected with the MDWE environment we developed
for scaffolding decentralized CIS (see also Chapter 4). Here, CoPs develop and
mash up new applications, and deploy them within a network of las2peer nodes,
decentrally and directly form the Web-based environment. As today’s Web appli-
cations usually are not developed independently, but are tightly integrated within
an ecosystem of existing services, which they use and collaborate with [LZHS14],
it is of high interest to the community, which existing services can be leveraged
in the creation of the new community application. While our scaffolding envi-
ronment included a basic service browsing mechanism to select the microservices
that should be included in the application to be created and deployed, it lacked two
crucial features.
1. Service Metadata: It did not contain any additional information about the
services that could be used. Thus, the community had to be already knowl-
edgeable about the service interface, origin or functionality, which renders
the usage of externally developed services more-or-less infeasible.

2. Deployment Information: While the idea of deploying the complete in-
frastructure for each application by the community itself might have their
specific use cases and can sometimes be desired (see also Sec. 3.4), informa-
tion about already deployed services can help the community to make use
of these deployments to not spend additional resources on re-deployment.

With these two shortcomings identified, we developed a microservice discov-
ery mechanism that is based on API metadata1, collected by las2peer’s service
scaffolding environment CAE. It is capable of visualizing the interface of mi-
croservices, using the OpenAPI specification. It also stores metadata of a service’s
deployment status within the decentralized architecture. Finally, it provides a CoP
with a first overview about the connectivity potential ofmicroservices, bymatching
the collected API documentation of two services and calculating possible interface
compatibility on a technical level.

3.3.2 Concept
Our concept is divided into two parts. First, we generate servicemetadata, by using
API metadata and information taken from the service scaffolding environment.

1The prototype implementation was partially supported by a master thesis [Ceci18] under
supervision of the author.

42 CHAPTER 3. DECENTRALIZED CIS INFRASTRUCTURES

This is persisted alongside information about the current deployment of a service.
Second, we use this metadata to provide users with information about available
services running in the network. This also includes information about service
interfaces and their possible connection and mashup potential for users to judge,
which services work together or have the potential to easily be connected to each
other.

Generating Service Metadata

Figure 3.4: Metadata extraction from service model and metadata widget.

3.3. MICROSERVICE DISCOVERY WITH API METADATA 43

We extract the service metadata from two sources. The first is the service’s
model of the CAE, specifically the RESTful Resource and the HTTP Method with
its connected Payload and Response objects. The second source of information is
theMetadata Editor, which we developed to gain additional information that could
not be extracted directly from the model. Fig. 3.4 provides an overview on the
data extracted from the model and metadata editor. It is split up into service and
method information. While the former provides global information valid for the
whole service, the latter is collected for each method – and thus for each RESTful
endpoint – of the service.
The metadata editor also contains a Schema Editor. Its purpose is to manage

in- and output Schemas (according to the OpenAPI 3.0 standard2), which are used
for the metadata extraction, OpenAPI specification creation, service matching and
code generation. Since these are specific to a single RESTful endpoint, they
are provided in the method information section, although implementation-wise
they are managed on a service level for re-usability purposes throughout different
methods of the service.

Service Matching Support

Figure 3.5: Exemplary matching levels of two service endpoints.

2https://swagger.io/docs/specification/data-models/

44 CHAPTER 3. DECENTRALIZED CIS INFRASTRUCTURES

We use the collected information described in the previous section to not
only show community members the services available in the network, but also
to provide information about their API interface and matching level in terms of
interface compatibility. We decided to use a rather simple, yet intuitive traffic
light system to indicate the matching potential for each RESTful method of a
service with another one. Fig. 3.5 provides an example of the three different
matching levels. Here, the red matching level would be shown for two services’
methods whose OpenAPI schemas match only in names, but apart from that are
both different in the amount of parameters and parameter types. The example
here shows that the calling service’ method provides the correct schema names
and also consumes the correct output of the service to be called, but the schema’s
data types do not match. A yellow matching level indicates compatibility in data
types, but the schema names of both methods do not match. While this technically
does not pose a problem, it could indicate an “accidental” technical match that
might semantically not provide the desired output. A green match finally indicates
a matching both the schemas’ name and data types. Here, the potential of two
services of being capable of working together is rather likely.

3.3.3 Realization
We implemented this first iteration of amicroservice discovery system as a las2peer
service with access to a relational database that persists the service metadata. This
Service Registry service, integrated with the CAE (cf. Chapter 4), connects to the
various microservices that make up the functionality of the scaffolding environ-
ment to extract data from models and the metadata editor. Services developed and
deployed fromwithin the CAE are registered with this service, and the information
is available to all community members from within the scaffolding environment.
The resulting implementation can roughly be split up into its two functionalities.
The first is the Metadata Collection, which is done by using the Metadata Editor
and the information extracted from the CAEmicroservicemodel. The second is the
Microservice Discovery and Matching, which is implemented by the Deployment
Viewer and the Service Matching Viewer.
Fig. 3.6 shows a screenshot of the metadata editor. As one can see, it consists

of the “basic information” section that collects additional data from the service
developer, as well as the aforementioned schema editor. This schema editor allows
for creating arbitrary schemas according to the OpenAPI 3.0 standard, which can
then be used across multiple HyperText Transfer Protocol (HTTP) payloads or
responses of the service API. Schemas and basic service information are then

3.3. MICROSERVICE DISCOVERY WITH API METADATA 45

Figure 3.6: Screenshot of the metadata editor.

persisted in a relational database for later reference.

Figure 3.7: Screenshot of the deployment viewer.

Fig. 3.7 shows a screenshot of the deployment viewer. It displays both informa-

46 CHAPTER 3. DECENTRALIZED CIS INFRASTRUCTURES

tion regarding the current deployment status of a service, as well as it’s API, either
directly from the deployed service, or, if the service is currently not deployed, from
the stored metadata described in the previous section.

Figure 3.8: Screenshot of the service matching viewer.

Finally, Fig. 3.8 shows a screenshot of the service matching viewer. Once a
user selects a certain microservice in the CAE’s “Microservice Select Widget”,
the service matching viewer displays all RESTful endpoints of all services in
the registry that provide a possible matching. From left to right, it provides the
matching service name, the path and type of the matching service method, the
method that matches the one of the currently selected service, its default return
status code and schema type, and its matching level.

3.3.4 Evaluation
We conducted a small user evaluation, mainly to test the functionality of our
approach and gain first feedback on the adaption of the microservice registry in
general.

Participants and Procedure

During the evaluation, we asked the participants to complete a simplified col-
laborative playlist sharing application. A music microservice and frontend were
already prepared beforehand and ready to use. After a short introduction to the

3.3. MICROSERVICE DISCOVERY WITH API METADATA 47

concept, participants were given the task to work on an incomplete album cover
microservice model and conclude the scaffolding process with deploying this ser-
vice. We recruited 14 participants, who were divided into groups of two, with
each evaluation session lasting 60 minutes.
After the evaluation, participants were handed out a questionnaire, which

used a five-point Likert scale. Most of the users were familiar with REST-APIs
and Web services, shown by average responses of 4.64 and 4.57, with Standard
Deviations (SDs) of 0.84 and 0.94, respectively. Most were also familiar with the
concept of microservices (AVG 4.20, SD 0.91). Regarding the usage of OpenAPI
specifications, the participants had very different experience levels, indicated by
an average of 3.43 and also confirmed by the high SD of 1.83.

Analysis and Outcomes

The majority of the participants found that the implementation of microservice
discovery with API metadata helps them to get a better overview on which services
are running and how they could be used (AVG 4.78, SD 0.47). The microservice
registry supported participants in deciding which microservice to deploy (AVG
4.43, SD 0.65). Participants also felt that the endpoint details and OpenAPI
document in the CAE helped them to be informed about available microservices,
with an average of 4.36 and a SD of 0.74. After deploying the microservice,
the majority of participants was able to test the API directly in the deployment
viewer (AVG of 4.07, SD of 0.92). Participants valued the benefit of having access
to this information directly in the browser and not having to actually access the
deployment server (AVG of 4.07, SD of 1.07). Regarding the matching process
that utilizes the metadata store via the service registry, users found that showing
the endpoint information and matching aided them in scaffolding their application,
shown by an average of 4.0 and a SD of 0.68.
Overall, the evaluation showed that the microservice discovery system was

appreciated by the participants as a first step towards a complete overview on
services developed with las2peer (and deployed decentrally in las2peer networks).
Nevertheless, the implementation, with a relational database at it’s core cannot
keep the advantages of the decentralized architecture las2peer foresees. Thus, the
microservice discovery based on API metadata can only be seen as a first step
towards providing (end user) service discovery in decentralized architectures.

48 CHAPTER 3. DECENTRALIZED CIS INFRASTRUCTURES

3.4 Decentralized Service Registry
While the microservice registry based on API metadata provided a way for users
to easily explore available services in the network, it was centralized around a
database of collected information, stored on single node in the las2peer network,
transferring the power over this information solely into the hands of a single node
operator. In distributed systems, this type of service registry implementation is
not uncommon, as most of them provide a publish-lookup API facilitating service
discovery and interoperation. But transferring this concept into the setting of
open, decentralized systems is a technical challenge, since the architecture of tra-
ditional service registries relies on trusted servers, while existing P2P approaches
compromise queriability and security. Beyond this technical challenge, it also
raises research questions regarding end user service discovery in the context of
online communities. In this section, we introduce the concept of a Decentralized
Service Registry and Discovery Mechanism3 by exploiting the tamper-proofness
of blockchain technology for our decentralized P2P microservice infrastructure.

3.4.1 Motivation
Our use case stemmed mainly from the development of our application and eval-
uation of building an Infrastructuring for Knowledge Building (cf. Sec. 5.2),
where we used a las2peer-based setup to support a CoP preparing for a training
course of the EVS program. To cope with the diverse background of the partic-
ipants, the trainers used a form of question-based dialog some days before the
actual (on-premise) training course started. This application, consisting of a set
of microservices and a Web frontend, enabled users to participate in a sort of
mind-mapping process. Our infrastructure allowed members of the community to
start a node and all services needed to locally run the application, or only start the
node and access services of other members via the network. Another possibility
was to just access the Web frontend of another community member to participate.
This scenario fulfilled the need for the whole infrastructure being distributed only
among the community itself without the need for any central authority.
However, during our evaluations, we identified several shortcomings, once

one takes a look at the “bigger picture”. In Fig. 3.9 we depict this scenario.
In this example, Community A stands for the above mentioned CoP, whilst a

3The prototype implementation was partially supported by a master thesis [Jans19] under
supervision of the author.

3.4. DECENTRALIZED SERVICE REGISTRY 49

second Community B also participates in the network. Additionally, we consider a
malicious actor Eve. This raises several problems, which we point out next.

Distributed

Storage

Bob’s
Service

Eve’s
Service

Community A

Alice

Bob

Carol

Bob’s
Service

Eve’s
Service

Malicious Actor

Eve’s
Service

Eve

Community B

Faye Gene

?

service
release
service
instance
service
usage
service
discovery

Figure 3.9: Usage scenario without decentralized service registry.

1. How to explore services available in the network? WhenCommunity B joins
the network, there neither exists an overview of available service releases nor
information on currently deployed service instances in the network. To new
communities and community members, the network appears “empty”, and
information about services of interest has to come from external sources,
like overview websites. While the microservice discovery based on API
information introduced in the previous section provides additional service
information, this is collected in a centralized way and tightly integrated with
las2peers scaffolding environment, which renders it unfeasible for larger,
dynamically scaling P2P networks.

2. Where can I find more information about that service? The knowledge
of services existing in the network might not always be enough to get an
impression of what usage possibilities exist. Additional information, like
service descriptions, source code location, available frontends, or even usage
patterns by other communities may be of relevance to new members or
new communities entering the network. Also, the identity of the service
developer is of relevance, since trust in a service is highly dependent on
its author. In the above example, members of Community B might for
example be interested in seeing service releases by a particular developer of

50 CHAPTER 3. DECENTRALIZED CIS INFRASTRUCTURES

Community A, e.g., because she is a member of both communities and forms
a binding link between them.

3. How to verify the integrity and origin of a service? Once a community has
established both the knowledge of which service might be worth exploring
and where a running instance can be found, P2P networks offer no way of
verifying the integrity and origin of services. Specifically, that a remotely
running service instance is in fact an unmodified instance of the service
release it claims to be. Even when replicating a service locally and checking
its integrity via its cryptographic signature, in the absence of a registration
authority, the signing key cannot be linked to the (real-life or pseudonymous)
identity of the service release’s author. This could result in a malicious
service instance being executed on the community member’s node. In the
above example, Bob has published the initial “correct” service release, while
Eve publishes amalicious service release that imitates this one. Since there is
no way of tracing the origin of a service instance or its release in the network,
both communities could accidentally call a malicious service instance. This
is depicted by Alice and Carol calling Eve’s Service Instance, instead of the
“correct” one published by Bob.

Derived Requirements for Decentralized Service Discovery From the above
use case, a number of requirements arise regarding service discovery in decen-
tralized systems. It should enable both end users and developers to easily find
service releases, verify their origin and either use remote instances or replicate
the release to their own node. Although most of these requirements can be solved
by using some kind of central service registry (see also Sec. 2.2), this approach
has one major drawback: It redirects the power over the infrastructure from the
community to the maintainer of this centralized component and thus contradicts
the whole idea of decentralization. Without the knowledge of available services
and also the ability to authorize service releases, the community relies on the
service registry to forward their discovery requests, which raises the same issues
a decentralized infrastructure tries to tackle. To be in line with the concept and
preserve its advantages, a decentralized service registry has to be governed by the
whole community in terms of authorizing service releases and validating service
instances. The blockchain approach fits this idea perfectly.

3.4. DECENTRALIZED SERVICE REGISTRY 51

3.4.2 Concept
Our approach proposes a decentralized service registry based on a private blockchain
that enables the discovery of services and the secure verification of their re-
lease metadata. Combining the completeness and time-preserving properties of a
blockchain with space-efficient distributed storage allows us to utilize the strengths
of each technology and compensate their respective weaknesses. Specifically, the
registry consists of two smart contracts for both services and users. The data
written to the blockchain belongs to four types, which are shown along with their
respective fields in Fig. 3.10. Because storing data “on-chain” is inefficient and
expensive, only essential fields are stored directly on the blockchain, while sup-
plemental fields (marked in italics) are stored “off-chain” in the distributed storage
and securely referenced by their hash.

User Contract

User Registration
username
agent ID
public key

Ethereum address
timestamp

email address

Service Contract

Service
Registration
package name
author
timestamp

Service Release
package name
version
timestamp

title
description
default class

source code repository
frontend entrypoint

Service
Announcement
class name
package name
version
node ID
timestamp

Figure 3.10: The registry smart contract data.

The User Contract serves as a decentralized identity management system that
ties usernames to their (online) identities via public key cryptography. In contrast
to a centralized public key infrastructure, the user has direct control (ownership)
of their entry, including the decision to reveal personal data. Thus some users may
reveal their real life identities in order to facilitate trust, while others may choose
to remain pseudonymous. Registered users can then use the Service Contract to
publish service releases. This encompasses reserving a service name and linking
specific releases to additional metadata. Just like the usernames, these entries
are owned by their author by linking them to the author’s public key. Finally,
we allow the announcement of service instances, indicating that a user is running
a publicly usable instance of the service on their node. Storing this data in a
blockchain provides an immutable, auditable historic record of the registry entries

52 CHAPTER 3. DECENTRALIZED CIS INFRASTRUCTURES

and ensures that they can only be updated by their owners, while also making the
data readily available and queryable to all peers.

Distributed
Storage

Bob’s
Service

Eve’s
Service

Block-
chain

Bob’s
Service

Eve’s
Service

Community A

Alice

Bob

Carol

Bob’s
Service

Malicious Actor

Eve’s
Service

Eve

Community B

Faye Gene

registry
entry
service
release
service
instance
service
usage
service
discovery

Figure 3.11: Usage scenario with decentralized service registry.

Returning to our motivational usage scenario – with the now blockchain-based
service registry – in Fig. 3.11, Bob registered both a username and the name of
his service in the network’s decentralized registry. The registry entry for Bob’s
Service is linked to his username and key pair, which Bob uses to sign his service
releases. Eve can still store her malicious, modified release of Bob’s Service in
the distributed storage. However, she is unable to register it under the same name,
nor can she attach Bob’s name to it. All network participants can access the
blockchain to see published services and their running instances, and can perform
arbitrary queries (e.g., a keyword search over the service metadata). Thus Faye
can easily discover Bob’s Service even if they are part of disjoint communities.
Just like Alice and the other members of Community A, Faye also sees the running
instance of Bob’s Service. If she feels she can trust the user who sent the service
announcement and operates the instance, she can access it directly. Otherwise,
she can replicate the service locally. By fetching the service release from the
distributed storage and comparing its signature against the registry entry, she can
verify that the service she starts was in fact authored by Bob.

3.4. DECENTRALIZED SERVICE REGISTRY 53

las2peer Node

Registry
Gateway

Blockchain
Smart
Contracts

Distributed
Storage
DHT

Service
Instances

Web Frontend

Service
Browser

announce

deployments view / publish services

Figure 3.12: Architecture and information flow during common operations.

3.4.3 Realization
Fig. 3.12 provides an overview of las2peer’s extended architecture, the new infor-
mation flow and the integration of the blockchain-based service registry. There
are three main components realizing the decentralized service registry:

1. Smart Contracts: The foundation of the registry is implemented asEthereum
smart contracts that store and retrieve data from the blockchain. The con-
tracts are written in Ethereum’s high-level scripting language Solidity4. In
addition to the user and service smart contracts described above, a small
library contract is employed to handle the verification of signatures for del-
egated function calls.

2. Registry Gateway: Every node contains a registry gateway for accessing the
Ethereum blockchain. It transparently stores and fetches the supplemental
data fields in the distributed storage, realized as a DHT, and combines them
with the data retrieved from the blockchain to utilize the benefits of both
storage types. The registry gateway also caches service information to
provide efficient lookup.

3. Service Explorer: The node’s Web frontend contains a Service Explorer

4https://solidity.readthedocs.io/

https://solidity.readthedocs.io/

54 CHAPTER 3. DECENTRALIZED CIS INFRASTRUCTURES

that allows viewing and uploading service releases, as well as managing
local service instances and accessing their frontends. Fig. 3.13 gives an
impression of it. This particular example shows two applications, of which
one, the “Distributed Noracle” application (see also Sec. 5.2) is only partly
deployed in the network (four of six microservices running remotely in the
network), while none of the services are deployed on the node the user is
accessing. The user can now decide to either start the two remaining services
on her node or start all of the services that realize the application locally.

Figure 3.13: Screenshot of the service explorer, depicting two applications cur-
rently available in the network.

3.4. DECENTRALIZED SERVICE REGISTRY 55

Interacting with the Registry

The user and service smart contracts are essentially name registries that assign
human-friendly names on a first come, first served basis. As such, the user
contract provides functions to check the availability, register, and look up the
data associated with a username. An important concept of smart contracts is the
distinction between state-changing functions and those that are “read-only”. The
former are processed as transactions appended in a new block (and thus transmitted
to and executed by all nodes), while the latter are executed locally and immediately
return a value.

User Registration When a user wishes to register a username, a read-only
function is used to check whether the desired name is still available. If so, we
call the registration function, which is state-changing: The call data, consisting of
the function name and the arguments, is encoded and broadcast in the form of a
transaction signed by the user. When a miner processes the transaction to include
it in a block, the arguments are extracted and the call is executed. The smart
contract code again checks whether the name is already assigned to someone (e.g.,
in case that someone else attempted to register the name at nearly the same time).
If not, the user entry is created.
We also allow a pattern called delegated function call, in which the user does

not sign the transaction herself, but rather prepares a signed certificate of authority
(Fig. 3.14). This also contains the call data and is signed by the user. Now any
user can prepare a transaction that passes this certificate to a special function of the
user contract, which unpacks the arguments, verifies the signature, and registers
the username on behalf of the original user. The advantage of this pattern is that
it transfers the burden of paying any transaction fees from the user wishing to
register to the user who actually sends the transaction. In our use case, we expect
that established community members who operate a node may offer to cover the
registration fees for users who are unable to run their own node. If the registration
was successful, a file containing the supplemental data fields is uploaded to the
distributed storage.

Service Registration, Discovery, and Replication The service contract operates
using the same principles as the user contract. Once again we employ the delegated
function call pattern to allow users to cover the transaction fees for a service author.
The registration of a service name and publication of a service release is analogous
to the user registration procedure. When the deployment of a service instance is

56 CHAPTER 3. DECENTRALIZED CIS INFRASTRUCTURES

User
Registry
Gateway

Blockchain
Smart Contracts

Distributed
Storage

request username
check availability

sign registration certificate
present certificate

verify signature

register name

User ContractUser Contract

store supplemental user data

Figure 3.14: Delegated username registration with signed smart contract call.

requested (e.g., through a node’s Web frontend), the service release is fetched
from the distributed storage. Through two subsequent smart contract calls, first
the username of the author of the service release is looked up in the service
contract, then her public key is looked up in the user contract, enabling the system
to verify the signature of the service release. Once its authenticity is established,
the service is started.

3.4.4 Evaluation
We carried out a user evaluation to gather feedback for our decentralized user
registry. We were especially interested whether users are able to differentiate

3.4. DECENTRALIZED SERVICE REGISTRY 57

between concepts of service ownership and service publishing. Additionally, we
wanted to see if users did understand the difference between and services running
locally and services running on different nodes than the one that is currently
accessed by the user.

Participants and Procedure

We carried out five evaluation sessions with two to three participants each, with
a total of 11 participants. The network setup consisted of five permanent nodes
and up to three additional nodes started during the session by the participants.
Technically, the nodes were started as Docker containers on a single server in order
to simulate ideal network conditions. Further, we used amodified version of theGo
Ethereum client, geth. Since we did not focus on the technical parameters of the
blockchain network in this evaluation, we started the client with a very low mining
difficulty, leading to short block creation intervals (the “block time”). While
many of the participants had experience with software development, the majority
was unfamiliar with las2peer, our decentralized community service infrastructure.
After a brief introduction to las2peer and its service registry, the participants were
given written tasks that included finding existing services as well as registering a
user and publishing their own service. During these tasks, the users first accessed
the Web frontend of one of the permanent nodes. Later they accessed a newly
started node, that joined the existing network. This hands-on experience lasted
about 30 minutes. Afterwards, participants filled out a questionnaire.

Analysis and Outcomes

Fig. 3.15 shows the results of our questionnaire. As one can see, most of the
participants were able to understand the basic concepts of the approach and were
also able to fulfill the given tasks. We received lowest scores for the question
regarding node ownership. This is due to the fact that the majority of participants
were not very familiar with P2P infrastructures andmixed up concepts like running
services and nodes. Another quite low rating was received for the question about
the ease of publishing own services in the network. This was mostly colored by
the fact that it was necessary to post exact class names and frontend URLs, that
were not checked for correctness in our initial prototype. The remaining questions
received quite high scores, which confirms the usability of our developed service
registry and its user interface in form of the service explorer. We also asked
free-text questions about the relevance of (verified) service authorship. Most of

58 CHAPTER 3. DECENTRALIZED CIS INFRASTRUCTURES

1 1.5 2 2.5 3 3.5 4 4.5 5

Easy to see what services are available in the network

Easy to start services published by someone else

Clear by whom each service was published

Interface helped understand where services are running

Easy to start own services

Easy to publish own service in the network

Understood node ownership

4.64

4.64

4.45

4.27

4.27

3.27

3

1: “strongly disagree”, 5: “strongly agree”

Av
er
ag
e
U
se
rR
at
in
g
(n

=
11
)

Figure 3.15: Evaluation of the decentralized service registry: questionnaire re-
sponses.

the participants stated that this depended highly on the context, and was only
relevant for sensitive data. This is in line with our expectations that decentralized
infrastructures are valued particularity in the context of sensitive data exchange.
We also received interesting statements regarding the question of contribution to
the infrastructure, e.g., in terms of computing power. The majority of responses
stated that they would support “their” community if resources were sparse and
highly in need. Finally, we asked the participants about the trade-off between
response time and required storage space. On average, participants were willing
to wait up to ten minutes (although a large minority voted for ten seconds or less)
for their actions, e.g., service releases and announcements, to be visible on the
blockchain.

Technical Evaluation A technical aspect that required some additional evalua-
tion was the trade-off between required storage space and block time, as well as
between Central Processing Unit (CPU) usage and security, i.e., the integrity of
the blockchain data. The block time used in our user evaluation was set to an
extremely low value (1 s with a difficulty of 1) that is not feasible for real-world
settings, since it requires about 500 MB of space for each node per day, regardless

3.5. COMMUNITY CONTRIBUTION INCENTIVIZATION 59

of the amount of information stored in the blocks. This amount scales inversely
with the block time. To study this further, we started modified versions of the
Ethereum client with more “realistic” difficulties of 4 × 105 and 128 × 105. These
numbers are to be interpreted as the average number of hashes required before a
new, valid block is found. We ran these clients over a period of a week, letting each
mine with a single core of an Intel Xeon E5-4627 v4 CPU, resulting in an average
block time of 9.3 s (for the lower difficulty) and 271 s (for the higher difficulty),
respectively. Both of these block times are within the acceptable range for the
majority of our evaluation participants. Over six days, the blockchain size on disk
was 61 MB and 2.1 MB, respectively, which certainly is a more manageable and
scalable requirement.

3.5 Community Contribution Incentivization
Although improving the security and usage experience of the system, aspects that
received little attention in the development of the decentralized service registry
presented in the previous section are transaction fees and incentives to participate
in the mining process. The blockchain’s currency is specific to its corresponding
network and does not have any economic value in itself. Our next iteration of
the design science process thus dealt with the question, if it is possible to make
the currency represent status in the community. Here, we are both allowing users
to provide bounties for certain actions in the network, like the development or
deployment of needed services, as well as we are rewarding service developers
and hosters for their services within the community, based on the value of their
contributions5.

3.5.1 Motivation
To provide an overview on the challenges blockchain-based decentralized service
registries bear, consider the following usage scenario. Alberta and Bryan are part
of a CoP that uses las2peer to run its online community services. Alberta has
started a las2peer node and has given Bryan access to it, who has developed a new
service, which provides a means of securely exchanging messages between peers.
Bryan only has access to a relatively weak computer and he knows that Alberta’s
computer is stronger and has a faster internet connection, so he deploys the service

5The prototype implementation was partially supported by a master thesis [Slup20] under
supervision of the author.

60 CHAPTER 3. DECENTRALIZED CIS INFRASTRUCTURES

on the node hosted by Alberta. To increase security and visibility of the service,
the binary of the deployment is verified via the blockchain before its instance is
launched. Other users join Bryan in using the messaging service and start to share
messages via the service daily, as well as regularly sharing large images and other
files via the service. While the las2peer infrastructure is capable of automatically
scaling up heavily used services throughout all nodes in the network, these services
then are not regularly announced on the blockchain (as transaction costs apply)
and thereby not discoverable by end users of the system. Thus, as much as Bryan’s
contribution in developing, preparing and registering the service was valuable, it
is now up to Alberta, to not only provide computational resources for the running
service, but also to pay the transaction fees for announcing the service deployment
along with its verification value to the blockchain. This leads to the problem of
duplicate resource spending for users who are contributing infrastructure to the
community.
Reimbursing service hosters and developers for their efforts and costs provides

a way of alleviating this issue. Therefore, we concentrate on a remedy for the
duplicate resource spending issue of hosters, while also creating an incentive
for service authors to continue developing services for their communities. A
user reputation system creates an additional layer of motivation to provide and
develop high quality content. Constraining the cryptocurrency and reputation to
the decentralized infrastructure network is in line with the assumption that online
reputation systems should by design be context-specific to remain relevant.

3.5.2 Concept
This section describes our approach how to incentivize contribution in a decen-
tralized architecture. We describe the improvements our contribution delivers
to the usage scenario we described earlier, how the developed reputation system
uses cryptocurrency to incentivize community members, and how the payout is
calculated.

Community Currency - L2Pcoin

Revisiting the usage scenario, to motivate Alberta to remain an active member
of the community and incentivize others to follow her and provide their share
of computational resources to the community’s infrastructure, a system based on
reciprocity should reward users for their contributions to the community. Both
Bryan and Alberta, as developer and hoster, should be entitled to a fair share of

3.5. COMMUNITY CONTRIBUTION INCENTIVIZATION 61

cryptocurrency in return for their input. To prevent users from abusing the payback
system and also to provide a direct way of user feedback, a karma rating system is
integrated in the calculation of the reward.
Since the amount of reputation, which is paid out to hosters and service de-

velopers, should not only be based on the karma of the requester, but also on
the value their services are providing to the community, we renamed the Ether
cryptocurrency in the context of las2peer and use the acronym L2Pcoin instead.
While the application of a reputation system is to directly incentivize users for their
contribution to the community, the paid out cryptocurrency requires a backing in
the community to actually provide value to the users. The simplest form of such
backing is the restriction of certain actions in the community to users who have
not yet accumulated a certain amount of reputation, i.e. introducing a ranking
system. However, one major argument against the introduction of such a system
is the exclusion of new users from key parts of the system. Instead, the concept of
a bounty or reward is used as a more advanced mechanism to provide backing for
L2Pcoin. Here, users can receive or send direct rewards either in response to, or
in anticipation of, actions in the community. Service developers could automate
and categorize such rewards in their applications and specifically reward commu-
nity users for their contributions in form of, for example, popular blog posts or
insightful wiki entries. Sending developersL2Pcoin can be used to motivate them
to fix bugs or extend the functionality of their services.

Calculating the Payout

To calculate the payout for each participant of the network, we focused on three
fundamental factors of the decentralized service provisioning network: Service
Development Value (SDV), Service Hosting Value (SHV), and User Rating
(UR). Their range is a floating point value of 0, 5, mapped to a 5-star Likert-scale
rating. While the values needed to calculate the UR are provided through karma
voting via a node’sWeb frontend (see also Sec. 3.5.3) and stored on the blockchain,
SDV and SHV have to be specified and agreed on by the community. Here, we
make use of las2peer’s NRT Evaluation Center (see also Sec. 4.3.4), and specify
two success factors called Service Hosting and Service Development, which the
community has to integrate into their corresponding service success model. Our
reputation system queries these to calculate SDV and SHV , respectively.
To remedy restricting voting power to members of the community, the reputa-

tion payout value is multiplied by the global user rating of the requesting agent.
Both the author of the service and the hoster of a node are advertised in the Web

62 CHAPTER 3. DECENTRALIZED CIS INFRASTRUCTURES

frontend of a node, so users can directly see the rating of authors and developers to
establish a trusted interaction with the service. In summary, the reputation payout
formula for each service a user has either authored or is currently hosting on her
node is obtained as follows:

u ∗ UR ∗ d ∗ n ∗ SDV h ∗ m ∗ SHV

UR is the average user rating, i.e. the ratings received by the user, divided by the
amount of votes received. This value is set to 1 if the user does not have a
registered reputation profile (i.e. cannot have received any votes) to allow
fresh users to be paid out L2Pcoin for service hosting and development
before they have the funds to pay for the transaction required to register a
reputation profile.

SDV is the service development value of the service.

SHV is the service hosting value of the service.

n, m are the amount of (blockchain) announcements for this particular service
since the last payout request. These values are set to 0, if the requesting user
is not the author or hoster of this service, respectively.

u, d, h are weights which can be used to influence the impact of UR, SDV and
SHV . These values are fixed at the first node’s startup and can be used
to fine-tune the calculations according to specific community needs. They
are deliberately not modifiable at runtime to provide a consistent reputation
payout to increase user trust in the platform.

3.5.3 Realization
This section describes the major parts of the implementation, which consists of
a reputation system and a payout mechanism to reimburse service hosters and
developers for their community contribution.
Fig. 3.16 provides an overview on the functionality. A user visiting a las2peer

node frontend can login or register a new account and thus becomes a registered
user of the community. This automatically creates an Ethereum Wallet and assigns
it to the user profile. Now, the user can participate in the reputation system by
choosing to opt-in. This allows her to see a list of other users in the network and
provides the ability to rate them. Sending cryptocurrency (rewarding others) is

3.5. COMMUNITY CONTRIBUTION INCENTIVIZATION 63

anonymous
usage

Anonymous User
<<extends>>

<<extends>>

reputation
profile

Evaluate
SDV and SHV

Send
Karma Rating

List
Reputation Profiles

Request
Reputation Pay-Out

Request
Reputation Opt-In

<<extends>>

Register/LoginCreate
Reputation Wallet

Use
Community service

Registered User

Send
Reward Transaction

See
Transaction Log
(Received/Sent)

See
Reputation Wallet

Host or Develop
Community Service

logged-in
usage

Figure 3.16: System overview of the incentivization system.

not restricted to the opt-in reputation system, so users can do that regardless of
the opt-in status of the sender or recipient. Users can become service developers
by authoring a Web service and uploading the associated service binary through
the node’s Web frontend. Becoming a service hoster requires running a las2peer
node, which has the user email address that is provided at startup linked to the
corresponding Ethereum wallet. Once a service has been started on a node, it
begins emitting its announcements to the blockchain. Additionally, registered
users can see the history of their interactions with peers and the system via v the
transaction log.

Calculating Service Uptime

As the reputation payout is tied to a user action (i.e. a button click), this could
be abused by triggering the button multiple times. A time-lock mechanism seems
an intuitive solution, but relying on a time-based solution to prevent abuse of
the payout system would require all nodes in the network to have a common
time source. Clock synchronization in networks is a well known problem in
computer science [LLSW10], yet its solution is non-trivial, especially in large and
decentralized networks.
To remedy this, we chose a different approach and use the amount of service

announcements since the last payout. As services get periodically announced

64 CHAPTER 3. DECENTRALIZED CIS INFRASTRUCTURES

on the blockchain, we can base our calculations on this frequency, as even if a
service would be announced too frequently or rarely, this is easily detected, as all
announcements are public on the blockchain. Since time-based calculations on the
blockchain are not exact, determining the payout time window has been indirectly
based on the number of blocks that have been mined since the last request.
A Red-Black tree [Hank99] was employed to provide a three-layered data

structure. The topmost layer (which gets used in the sorting of the tree) is the
increasing block number. In the second layer, a list of services which were
announced during this block is saved. The leaf set is comprised of a collection of
nodes hosting the services of the second layer. This data structure has been chosen
due to the ability to filter the first layer in such a way, that only those blocks that
have a larger block number than the provided parameter are returned. The ability
to partition the first layer of the transaction log tree to query only values larger
than a certain threshold (called the TailMap) is used to only process blocks which
are relevant to the payout time window.

The Reputation Registry

To realize the reputation functionalities, we introduce the Reputation Registry,
a smart contract. It enables user voting and keeps track of reward transaction
metadata. The following events occur in the life-cycle of the smart contract:

User Profile Created This event carries information about the mapping between
the Ethereum agent and the relevant reputation profile in the smart contract.
Successfully registering a profile triggers this event.

Transaction Score Changed This is used to listen for changes in the score of a
reputation profile. This event gets triggered every time a user’s reputation
changes and includes information about the vote sender, recipient and the
new score of the profile.

Transaction Count Changed This is used to listen for changes in the transaction
count of a reputation profile. This event gets triggered whenever the number
of transactions sent or received by a user has changed.

Transaction Added Every time a user rating transaction is sent, this event gets
triggered to notify about the sender / recipient pair, to indicate the transaction
timestamp and to show the grade and new total score of the recipient.

3.5. COMMUNITY CONTRIBUTION INCENTIVIZATION 65

Generic Transaction Added This is needed to implement the reputation reward
mechanism that allows users to attach metadata to a L2Pcoin transfer. The
event gets triggered on every generic transaction in the system and includes
a sender / recipient pair, the timestamp of the transaction, a message, its type
and the transferred amount with its transaction hash.

Reputation Dashboard

To introduce the frontend for the community contribution incentivization system,
las2peer node’s frontend was extended with a Reputation Dashboard. The landing
page of the dashboard is depicted in Fig. 3.17. Participating users can vote others
or send them rewards in this part of the UI. The user list shows the count of sent
and received votes of the user, along with their average score. Users can hover over
this score to cast their votes. The “Actions” button provides the ability to directly
send L2Pcoin to this user. A tabbed interface provides access to incoming and
outgoing voting history and the list of all previous reputation payout values.

Figure 3.17: Reputation dashboard landing page, showing a list of community
members together with their reputation.

To allow users to differentiate howmuch trust they have in the author and hoster
of a service, we extended the service explorer’s UI to encompass the ratings of
both service author and hoster (see Fig. 3.18). The reputation wallet view shows
a user’s L2Pcoin balance along with her user rating score (see Fig. 3.19). Here,
users can request the reimbursement for their community contribution to be paid
out and choose which community to have their services rated by. Additionally,
users can see the balance of the coinbase account, which is used for the reputation
payout and represents the total amount of L2Pcoin that can be transferred by
means of this mechanism. The opt-in button (not depicted in the screenshot
because the user has already opted-in) of the reputation system can be found
underneath the reputation payout button. Still, users can request a payout without

66 CHAPTER 3. DECENTRALIZED CIS INFRASTRUCTURES

Figure 3.18: Service author and hoster reputation, integrated into the service
explorer of the decentralized service registry.

being opted-in to the reputation system. This decision has been made, as opt-in
(i.e. registering a reputation profile) requires cryptocurrency for its transaction
fees. Without existing accounts transferring funds to a newly registered profile,
acquiring enough currency to pay these fees (through the system UI) can currently
only be acquired by requesting a reputation payout. To welcome new users, this
payout defaults to a small amount of L2Pcoin on its first trigger, that will allow
the users to opt-in and participate in a few transactions to generate more. When

Figure 3.19: Reputation wallet view.

a user requests her reputation to be paid out, the system calculates the amount of
contribution the requesting user has provided (see Fig. 3.20). The time-window for

3.5. COMMUNITY CONTRIBUTION INCENTIVIZATION 67

this calculation is the time since the last payout, or since the start of the blockchain,
whichever is more recent. The payout formula, together with the user’s (hosted
and/or developed) services, as well as the individual scores for each value taken
into consideration while calculation the payout, are presented transparently to the
user to further increase the trust in the system.

Figure 3.20: Reputation payout confirmation dialog.

3.5.4 Evaluation
We conducted a user evaluation to test the applicability of our community incen-
tivization system. The main goal was to gather feedback regarding the usability of
our approach from an end user perspective, as well as to validate, that the approach
is understood and users see the proposed value of it.

Participants and Procedure

Our evaluation involved 14 sessions with one participant each. Participants were
recruited from the faculty for computer science, both students and researchers.
A hands-on session of about 30 minutes was followed by a questionnaire the
participants had to fill in. The questionnaire consisted of questions to be answered
on a 5-point Likert scale. The participants were first given a short tour of the
system’s functionality. After that, the participants were asked to perform tasks
like to review services running in the network, opt-in to the reputation system,

68 CHAPTER 3. DECENTRALIZED CIS INFRASTRUCTURES

register a new (already prepared) service and upload it to the network, rate users
and observe received ratings (fabricated by the evaluation facilitator).

Analysis and Outcomes

The results (Fig. 3.21) show that most users understood the interface and the
functionality it represents. We received the lowest responses on the question

1 1.5 2 2.5 3 3.5 4 4.5 5

Clear by whom a service is authored

Easy to see how much L2Pcoin I have

Easy to rate others

Clear by whom a service is hosted

Interface helped distinguish trustworthy services

Clear by whom a node is hosted

I like having to opt-in to be rated by others

Could motivate me to develop or host a service

System too complex

4.57

4.43

4.29

4.14

3.93

3.79

3.64

3.57

2.43

1: “strongly disagree”, 5: “strongly agree”

Av
er
ag
e
U
se
rR
at
in
g
(n

=
14
)

Figure 3.21: Evaluation of the community incentivization system: questionnaire
responses.

of reputation complexity, however the answers indicate a double-negative (par-
ticipants disagree that it is too complex, meaning they indicate that it is not
over-complicated), so overall the result is positive. Other lower scores have been
awarded to the questions ofmotivation to contribute by hosting or developing a ser-
vice and the opt-in to the reputation system. A low score on the question whether
users feel motivated by this system to develop or host a service can be attributed
to the fact that service developers did not feel that their reward was adequate for
their time and expertise necessary to develop a service, as they did not see value
in the reimbursement. In other words, participants often quoted the lack of things
to spend L2Pcoin on. This is mainly due to the artificial setting of our evaluation
and we will have to meet this challenge in future work on this topic. The opt-in
mechanism to the reputation has been met with mixed responses, as some users

3.5. COMMUNITY CONTRIBUTION INCENTIVIZATION 69

expressed their concern, that users who do not participate in the system are most
likely those who deserve a rating the most, and usually it is a low one. However,
with average scores of 3.57 and 3.64, the responses to these questions are still
high enough to lead us to the conclusion, that the first reactions to our proposed
approach are positive.

Figure 3.22: Evaluation of the community incentivization system: For which
reasons would you consider hosting a service for a community?

To gain a better understanding of the reasons for community service hosting,
a multiple-choice question was posed at the end of the evaluation (see Fig. 3.22).
The vast majority of participants declared they would be inclined to contribute
their computational resources to their community, if there was a deficit preventing
the efficient functioning of the community. 36% of the participants would provide
resources in form of a participating node to host the requested service if it is not
running on any other nodes in the network. Slightly short of a third (29% each)
would host services to either verify their authenticity, or to develop and test them.
Other options included gainingL2Pcoin, obtaining feedback about self-developed
services, learning more about the decentralized architecture and making sure that
the service in question is really available.

70 CHAPTER 3. DECENTRALIZED CIS INFRASTRUCTURES

3.6 Blockchain-Based Verification and Consent
Management of Learning Analytics Data

Our final contribution in this chapter extends the blockchain infrastructure devel-
oped in the course of the last two sections (and design science iterations) to verify
collected LA data and provide blockchain-based consent management. Applied
in a large scale mentoring scenario (see also Sec. 5.3), we here introduce the
infrastructure of this application6.

3.6.1 Motivation
Despite being a vital component of educational processes, mentoring relationships
in today’s higher education are hard to maintain. This is caused by the mismatch
of the number of mentors in relation to the number of mentees enrolled in higher
education programs. Consequently, this creates the need for scalable technical
support for automated mentoring processes. In addition to the right tools, LA
that require students’ personal data, make mentoring effective. This LA data is
sensitive, as it reflects the learning behavior, which involves personal information
such as grades. Consequently, the consent of each individual learner has to be
requested prior to the extraction and analysis of their personal data. Security and
transparency measures are required for collection and processing of the data, to
fulfill data processing regulations such as the European GDPR7.
In order to show which issues arise with these settings, we consider a typical

LA data collection situation as shown in Fig. 3.23. Our use case stems from the
large application and evaluation within a scalable mentoring architecture described
in Sec. 5.3 and assumes the there given infrastructure, without limiting the here
depicted issues to this particular scenario. For the scope of this example, we
consider LA data stemming only fromLMS, althoughwe acknowledge and support
the collection from multimodal sources in a very similar way. Additionally, we
assume thementoring process being conducted by a so-called intelligentmentoring
bot (cf. Sec. 4.6) that provides the learners with feedback, based on the collected
LA data. Learners are informed that behavioral data, generated in the LMS
they use in their class, will be analyzed to provide personal mentoring. Prior
to the beginning of the course (and thus the mentoring process), the students

6The prototype implementation was partially supported by a bachelor thesis [Beng20] under
supervision of the author.

7https://gdpr.eu/

https://gdpr.eu/

3.6. VERIFICATION AND CONSENT MANAGEMENT OF LA DATA 71

Learning
Management

System
Course

Learning
Record
Store

Social Bot
Interface

Analysis
ToolsStaff Alice

Bob

Flow of
LA data

Flow of
consent
data

Data
storage

System/
Service

Figure 3.23: Usage scenario without verified LA data.

are asked for their consent to the processing and analysis of their data. The
student Alice consents to the collection and use of her data while the student
Bob does not consent (e.g., due to personal privacy concerns). Their consent
is manually managed by members of the mentoring team (or within a separate
system). The students then proceed to interact with the course material in the
LMS. As the course progresses, Alice receives personalized feedback based on
the data provided. The recommendations are generated based on the analysis of
data that has been transmitted from the LMS to, in our example, a LRS. Assuming
that Alice does not agree with the feedback or is curious as to what the basis for
the feedback is, she wishes to access the stored data or revoke her consent. Based
on this usage scenario, several concerns and questions arise in the collection and
processing of the learners’ LA data.

1. How to better specify and handle student consent? While the current process
can generally be aligned with the principles for privacy in LA, it requires
manual work on the side of the mentoring team. Furthermore, if not in-
tegrated into the data extraction process itself, it is even harder (although
possible) to differentiate which type of personal data the learner agrees for
the collection and processing. This usually implies that there is only one
uniform consent collected from all learners within a mentoring process. A
limitation of consent to specific data - for instance to grades and submissions
only - is usually not done or requires substantial manual effort. Moreover,
if a learner revokes her consent after the beginning of the course, this can
again only be managed with manual effort.

72 CHAPTER 3. DECENTRALIZED CIS INFRASTRUCTURES

2. How to verify, that only consent-given LA data is persisted? Personalized
mentoring recommendations, as well as the general implications of the
analysis carry weight for students and educational institutions alike. As
a consequence, depending on the learners’ trust in these recommendation,
manipulation of the underlying data in the LRS could harm the students’
learning process and results. While giving learners the ability to access the
stored personal data is surely beneficial, it can not be expected that learners
themselves verify whether all data contained is correct.

Ideally, solving these two issues also increases the learners’ trust in and accep-
tance of automated mentoring by keeping their data in their hands, confidential
and secure. In the following, we tackle the issue of enforcing the learners’ pref-
erences on data processing by using a blockchain-based consent management and
verification of LA data. Thereby, we maintain a record of the learners’ accessed
personal data and record their consent to the collection and processing of LA data.

3.6.2 Concept
On a conceptual level, the approach consists of three main parts. The first two
are extensions of las2peer’s accompanying blockchain, namely the verification of
LA data and the consent management. The third is the chatbot as conversational
interface for learners to access their LA data logs and manage their consent,
which we developed using the SBF (described in detail in Sec.4.6). It has to be
mentioned here, that this bot must not necessarily be tied to the actual mentoring
process itself (although it could be the same bot), but can exist on its own, with the
sole responsibility of managing the consent and providing an insight into stored
LA data.
To achieve the verification, we use the blockchain-based registry that stores

references to all LA data extracted from the LMS. This is vital for the verification,
as the creation of immutable references on the blockchain enables the detection of
changes in the data that would go unnoticed otherwise. This process of storing a
reference and comparing against that reference later is a widely established use-
case for blockchain technology. By storing hashes for reference only and relying
on the irreversible nature of hash-functions, we discourage access to personal data
on the blockchain. Thus, although blockchain data is immutably, it only stores
references and once the data itself is deleted, no personal data of a learner remains
in the system.

3.6. VERIFICATION AND CONSENT MANAGEMENT OF LA DATA 73

For consent management, we provide learners with an interface that allows
direct interaction with the system. Issued consent is stored on the blockchain and
is integrated into the extraction process to restrict access to personal data, for which
no consent was given. This is done by querying learners’ consent before their data
is extracted from the LMS. Our concept includes a chatbot for students to use the
features for consent management and verification of LA data. This bot enables the
storage and revocation of students’ consent, the display of their currently supplied
consent and a listing of the collected their personal data.

Learning
Management

System
Course

Learning
Record
Store

Intelligent
Mentoring

Bot

Analysis
Tools

Alice

Bob

Flow of
LA data

Flow of
Consent
Data

Data
Storage

System/
Service

Consent
Registry

Conditional
Extraction

Verification
Registry

Verification
Verified

Data

Unverified
Data

Figure 3.24: Usage scenario with verified LA data.

Revisiting the usage scenario described above in Fig. 3.24, we can see that
these new processes and features help to cope with the raised issues. First of
all, we eliminate the need for manual interference of staff members for consent
handling. At the beginning of the course, Alice and Bob are both informed that
their consent is required before they can use the personalized LA features. Alice
now stores her consent to the collection of her personal learning data from the
LMS with the help of the mentoring bot interface, while Bob does not give his
consent. However, they then proceed to use the same learning course room. Before
data is extracted, Alice’s and Bob’s consent is queried from the Consent Registry.
With only Alice having given her consent, only her data is extracted and stored in
the LRS. Alice and Bob both can ask the bot to display their collected personal
data from the LRS at any time. The bot then provides this data and based on a
comparison with the reference in the verification registry, it is indicated whether

74 CHAPTER 3. DECENTRALIZED CIS INFRASTRUCTURES

the data can be traced back to an extraction from a source respecting the learner’s
consent (verified data) or not (unverified data). Based on a comparison with the
reference in the verification registry, it is indicated to her whether the data can be
traced back to an extraction from a valid source – in this case the LMS course
room.

3.6.3 Realization
Our realization is based on a las2peer network with four services, a bot running
within it and MobSOS used as a forwarding mechanism for the LA data. An
overview of the system can be seen in Fig. 3.25. A las2peer Data Proxy service is
responsible for extracting data from a LA data source, by using the API it provides.
This process is very platform specific. As an exemplary data proxy, the Moodle
Data Proxy accesses its LMS by periodically calling the RESTful API of Moodle
for data extraction. The data proxy service then transfers the raw, system specific
data, into xAPI statements. It has to be noted, that the implementation supports the
extraction (and aggregation) of LA data from multimodal sources, thus there can
be multiple data proxy services, which can extract data from different sources. The
direct transformation into a unified data format allows fo the LA data to be treated
equally from this point on, regardless of its origin. As these data proxy services
often reside at the premise of the data source, further sending of the data to the LRS
is done via the las2peer end-to-end encrypted communication system, to allow for
secure data transportation. Here, we make use of MobSOS to send data from the
proxy services to the Learning Record Store Proxy service. This service analyses
the data and provides and unifies the learners’ data from multimodal sources to
provide a unified view on each learner. From here on, the data can be analyzed
and used for automated mentoring.
The process depicted up to this point does not yet take the verification and

consent management into account and could be seen as a realization of the sce-
nario depicted in Fig. 3.23. As the central point of managing both consent and
verification of LA data, the LA Verification service can store, show and revoke
consent, and it is responsible to check learners’ consent whenever services request
to collect or process data. Furthermore, the service handles the verification of
stored LA data and the display to the user.
For storage and retrieval of learners’ consent, a smart contract, the Consent

Registry, is used. Using a social bot, learners give their consent, based on pre-
configured consent options and the LA verification service stores this consent on
the blockchain. Whenever LA data is extracted from a data source, the learners’

3.6. VERIFICATION AND CONSENT MANAGEMENT OF LA DATA 75

MobSOS

Data Proxy

Learning Analytics
Verification Service

Learning Record
Store Proxy

LA Verification Bot

Consent Registry

Verification
Registry

LA Data

Consent
Data

System

las2peer

Smart
Contract

Storage and Retrieval
of Consent Data

Retrieval of
LA Data

Request of Consent
Prior to Transmission

Storage and
Retrieval of

xAPI-Statements

Transmission of
xAPI-Statements

Create
Records and
Query Data

from On-Chain
Storage

Retrieval of LA
Data upon
Request

Extraction
of Raw
LA Data

Learning Record
Store

LA Data Source

Conversational
Interface

Forwarding

LA Data Cluster

Legend

Figure 3.25: Architectural overview of the LA data verification system.

consent is checked by a call of the data proxy service before the data is transmitted.
If the consent is given, the previously described process of transmission through
las2peer using the MobSOS pipeline and the LRS proxy service is carried out, and
the data is stored in the LRS. In addition, a hash is created in the LA verification
service and this hash is stored in the Verification Registry on the blockchain. The
hash is generated based on a string that contains the actor (identified by an email-
address), the action (verb of the xAPI statement), the object used in the interaction,
and a timestamp. When students request access to their stored LA data, the LA
verification service calls the LRS proxy service. The obtained data is hashed
again and it is checked if this hash has previously been recorded in the verification
registry.
Both the verification registry and the consent registry follow a similar approach

as the existing smart contracts in las2peer. Only essential data such as hashes and
timestamps are recorded on the blockchain, while other data is stored off-chain. In
the case of the service registry, data is stored in the shared storage of the las2peer
network, while in the case of the verification registry, the LA data is stored in the

76 CHAPTER 3. DECENTRALIZED CIS INFRASTRUCTURES

LRS in the form of xAPI statements.
One of the key characteristics of using blockchain is the immutability of data.

This is a challenge for the revocation of consent. While it is advantageous for
learners to know that the consent is securely stored on the blockchain and cannot
be changed, learners still have to be able to revoke their consent. However, the
main requirement in this case is that services do not access the previously stored
consent anymore. This is achieved by using the a revoke consent function in the
consent registry to store an empty consent for the given user. While this does
not delete the previous consent entirely, as the data would still be available in the
transactions stored on the blockchain, it effectively voids the consent from the
perspective of the LA verification service. Consequently, each subsequent query
for consent of the learner will trigger a rejection as no consent levels are stored for
the learner.

User Interface

The LA verification bot serves as the interface for the student to interact with the
implemented features for consent management and verification. Based on pre-
defined intents, the bot handles user commands to navigate to both the menu for
consent management as well as the display functionality for verified LA data. In
addition to the main functionality, the bot displays introductory information for
students that explains the basic concepts and implications of the given consent and
verification of their data.
Communication with the bot is expected to be rather infrequent. After all, the

consent will be given once initially and not revoked or updated often. Due to this,
the menu is designed to allow precise execution of given commands and uses short
text- and number-based input for choosing from different options in the consent
menu. At the same time, it is still necessary, to supply information for learners
to understand the services that are available to them. Fig. 3.26 shows an example
of a conversation between learner and LA verification bot for the storage of the
learner’s consent. Due to the nature of the application the bot was evaluated in, it
was developed with a German language body.

3.6.4 Evaluation
We evaluated the approach in a small user evaluation, with a focus on two aspects.
On the one hand, we aimed to evaluate the usability of the overall system. On the

3.6. VERIFICATION AND CONSENT MANAGEMENT OF LA DATA 77

Figure 3.26: Sample conversation with the LA verification bot.

other hand, we were interested in how the features effected the learners’ perceived
control over and security of their data.

78 CHAPTER 3. DECENTRALIZED CIS INFRASTRUCTURES

Participants and Procedure

We evaluated our approach with both mentees (students) and mentors (teaching
staff). Altogether, we recruited 10 students and 6 faculty members of multiple
universities. During the evaluation, first a usage scenario without the blockchain-
based verification was presented (roughly as sketched in Fig. 3.23), to show the
motivation behind the added features. Then, the verification of LA data using
blockchain technologywas explained. After the introduction, participants received
a list of tasks for them to execute while screen sharing was active, so that the
individual steps could be observed. The participants went through the complete
process as depicted in our exemplary usage scenario in Fig. 3.24. After the
evaluation, participants were handed out a questionnaire, which used a five-point
Likert scale. All evaluations were carried out online.

Analysis and Outcomes

Our first set of questionwas targeted towards the general opinion regarding personal
data collection by Web services. Even though most of the participants were
skeptical about access to their personal data (AVG of 3.56, SD of 1.17), only half
of the participants expressed confidence in their ability to make informed decisions
about giving their consent to the collection and processing of their personal data
(AVG=3.00, SD of 1.00). Interestingly, the group of mentees felt more confident
in their ability to make informed decisions with a median of 3.5 compared to a
median of 2 for mentors. Results also showed that the right to request access to
the stored personal data from institutions or companies is known, but only about
half of the participants stated that they have previously used that right (9 out of
16). Interestingly, some participants that agreed to being skeptical, also answered
that they did not make informed decisions and that they did not request their
stored personal data before. We interpret this discrepancy in the attitude towards
collection of personal data and the ability to make informed decisions, as well as
the willingness to take control over personal data, as a need for transparency on
the side of services that process personal data.
Fig. 3.27 shows selected results of our questionnaire. Here we can see, that

most participants understood the process of verification and the implications of
the provided information on their verified data, with a slightly higher agreement
in the group of mentees. Among the comments received on the verification, one
participant suggested to supply additional information on the blockchain in general,
as well as the verification process through the chat bot on mentees’ request. This

3.6. VERIFICATION AND CONSENT MANAGEMENT OF LA DATA 79

1 1.5 2 2.5 3 3.5 4 4.5 5

Consent self-management increases perceived control over personal data

Blockchain-verification of stored data increases trust in data processing

Access to verified personal data in-creases trust in personalized feedback

Chatbot provided low barrier access to both features

Implications of giving consent were clear

Preference towards choosing from different consent options

Implications of verification were clear

4.63

4.31

4.19

4.19

4

4

3.63

1: “strongly disagree”, 5: “strongly agree”

Av
er
ag
e
U
se
rR
at
in
g
(n

=
16
)

Figure 3.27: Evaluation of the verification system: questionnaire responses.

is backed up with the observations from the evaluation sessions, where several
questions were directed at the nature of the process and meaning of the verification
in particular. Another interesting observation was, that some participants that
initially disagreed to have a basic understanding of blockchain agreed that the
presented verification using the blockchain increases their trust.
In both groups of stakeholders, the participants agreed to the statement that

they preferred the more fine granular consent management over the decision to just
consent or not consent, with slightly stronger agreement in the group of mentees.
Two mentees explicitly mentioned that they liked the idea of being able to restrict
the extend of data that is recorded in the system.
The evaluation showed the applicability of our approach and both mentees and

mentors valued the idea of having verifiable consent-management and LA data
processing. The chatbot provided low barrier access to both features. Even if
only applied in a simulated mentoring environment, participants found the consent
self-management functionalities increasing their perceived control of what LA
data was recorded and stated that the trust towards the secure handling of their LA
data was increased due to the verification features.
The results from the questionnaire and the observations from the evaluation

sessions indicate, that there is an interest in the provided functionality of consent
management and verification and that this can contribute towards improving the

80 CHAPTER 3. DECENTRALIZED CIS INFRASTRUCTURES

transparency and control of students over their datawithin the scope of LAprojects.
While the sample size in the evaluation was considerably small, the participants
directly matched the very specific target group of the implemented features. We
take these results as an indication that this form of consent self-management does
increase the perceived control of learners over their data. Therefore, also based on
the agreement to the statements, that the added transparency through verification
of stored personal LA data increases the trust in the processing of personal data and
in the feedback generated based on the stored data, we conclude that this approach
of verification can benefit the trust of learners within LA projects.

3.7 Discussion and Conclusion

ConsentRegistry

Consent
email hash

consent level ID
timestamp

authorized services
authorized data types

VerificationRegistry

Learning Analytics
Reference
email hash
xAPI hash
timestamp

xAPI statement

Contract

contract address
contract binary

User
username
agent ID

public key
Ethereum
address

timestamp
email address

UserRegistry
Service Release
package name

version
timestamp

title
description

default class
source code repo

frontend entrypoint

Service
Registration

package name
author

timestamp

Service
Announcement
package name

author
timestamp

ServiceRegistry

Reputation
agent ID

cumulative score
transactions received

transactions send

ReputationRegistry

Figure 3.28: All smart contracts developed in this chapter.

This chapter introduced a decentralized infrastructure for CoPs. Based on
las2peer as the technical foundation, we followed a design science approach to
determine the advantages this approach bears and rigorously address the short-
comings it had. The introduced API metadata-based service discovery build the

3.7. DISCUSSION AND CONCLUSION 81

basis for developing a blockchain-based decentralized service registry. Using
smart contracts for storing both service releases and announcing currently running
services for each node, this approach added verifiable browsing of services to
P2P-based, decentralized CIS. To address the challenges introduced by blockchain
transaction costs, we developed a smart-contract based reputation registry, that
build the basis for our incentivization system. The final contribution of this chap-
ter is the introduction of verifiable LA data collection and consent management.
This blockchain-based mechanism enables learners to both manage their consent
to data extraction from multimodal LA data sources, as well as the verification of
their stored data. Fig. 3.28 provides an overview on all smart contracts introduced
in this chapter.
With these contributions, we provided answers to our first research question

“What properties does a decentralized, self-hosted infrastructure for CIS need to
fulfill?” by consequently addressing sub-questions in the corresponding sections
of this chapter. Now having presented the basis for CoPs to deploy and host their
infrastructure, the next chapter deals with our second research question of how we
can support the creation of decentralized CIS and the applications running on it.

82 CHAPTER 3. DECENTRALIZED CIS INFRASTRUCTURES

Chapter 4

Scaffolding Decentralized
Community Information Systems

Summary

This chapter presents theWeb-based scaffolding environment for our decen-
tralized CIS platform. We present the enhancement of a MDWE approach
with collaborative live coding and wireframing, which was then further
extended to also support the model-driven creation of social learning bots.
Integrated into it is also an extensive project management layer and a NRT
service success evaluation suite.
Contributions ⇒ RQ 2. Keywords: Scaffolding; MDWE; Wirefram-
ing; Service Success Evaluation; Social Bots. The results presented here
have been partially published in [LND*16, LNKK16, LNKJ17, LNWK18,
NLKl19, LNRK19, LNNK20, NLK*20]. This chapter contains partially
information and content extracted from these publications.

This chapter deals with the scaffolding environment we built around the
las2peer concept to support CoPs in developing their decentralized CIS. It de-
scribes the creation and evaluation of two main artifacts. The first is the Commu-
nity Application Editor (CAE), with its extensions of Collaborative Wireframing
Support, the NRT Evaluation Center and the Web-based project management en-
vironment. The second is the Social Bot Framework (SBF), which builds on top
of the CAE principles to generate social bots. These create new interaction pos-
sibilities with applications (not only) running in the decentralized CIS, leveraging

83

84 CHAPTER 4. SCAFFOLDING DECENTRALIZED CIS

communication channels already established with many CoPs.
Analog to the previous chapter, we start by describing our design science

process in Sec. 4.1. Then, diverging from that structure, we introduce this chapter’s
main contributions in a more unified way. We start with a motivational example
that builds a case for the usage of MDWE techniques for scaffolding decentralized
CIS in Sec. 4.2. Sec. 4.3 describes the overall conceptual approach of the CAE
and Sec. 4.4 describes its realization. We settled for this structure due to the
highly interwoven parts of the single contributions made to the CAE during the
course of this dissertation. Following our design science process, we present
the iterative evaluations of the CAE in Sec. 4.5. Finally, as the second main
contribution of this chapter, with Sec. 4.6, the SBF is introduced. Built on top of
the lessons learned in developing the CAE, we present its concept, realization and
usability evaluation. The real-world evaluations of applications of both the CAE
(for scaffolding a decentralized CIS architecture and evaluating it) and the SBF
(for providing additional interaction possibilities with the decentralized CIS) then
build the subject of the next chapter.

4.1 Methodology
Fig. 4.1 depicts the methodology we followed in this chapter. It consists of nine
iterations, of which the first four were also already included in [Nico18]. We
nevertheless shortly cover them here to draw a complete picture of the research
conducted in the scope of this design science process.
We started with the initial question, how to integrate end users more into

development, to close the gap in requirement elicitation. This led to the devel-
opment of the initial CAE prototype, which we used to redesign an existing Web
application that showcased its usability. These results were communicated in a
demo paper [LND*16]. The first usage of the CAE clearly pointed out that a more
defined development process was needed. Thus, we started to create the agile
and cyclic development process that the CAE approach currently implements. We
first evaluated this approach in multiple evaluation sessions with teams of mixed
professions, as well as that we observed the usage of it within a longer timespan
in a university software development lab course. Results were communicated
in [LNKK16, LNKJ17]. These evaluations showed a lack of expressiveness of
the modeling language for certain aspects of a Web application, which we tackled
by developing the Live Code Editor. The results of the evaluation with student
developers were published in [LNWK18].

4.1. METHODOLOGY 85

Figure 4.1: Iterations of the design science process we followed in Chapter 4.

As both the live code editor and the collaborative modeling are still rather

86 CHAPTER 4. SCAFFOLDING DECENTRALIZED CIS

abstract, especially for frontend development, our next step was the integration
of the collaborative Wireframing Editor, which we published in [LNRK19]. We
continued measuring the impact of the wireframing by evaluating the time spent
in different views of the CAE. To integrate the framework more closely with the
overarching las2peer methodology, our next step was to integrate las2peer’s ser-
vice success evaluation frameworkMobSOS into the CAE bymaking it possible to
specify and integrate different service successmeasures already during the applica-
tion’s design process. This lead to the development of the NRT Evaluation Center,
a Web-based framework that enables CoPs to collaboratively create success mod-
els for their services. It also serves as the platform for the collaborative negotiation
of a service’s value for the payout of our community contribution incentivization
(cf. Sec. 3.5.2). The framework was first evaluated in an artificial community
setting to test its usability, before we applied it in two real-world applications
and evaluations presented in the next chapter. The results were communicated
in [LNNK18, LGF*20, LNNK20]. As our environment did not feature any real
project management, in the way this term is used in the DevOps world with its ever-
growing tool support, we introduced a role-based project management layer to the
CAE. This integrates GitHub projects, supports external dependency inclusion,
semantic versioning, and commit-based history-browsing of CAE applications.
The final contribution of this chapter is the Social Bot Framework (SBF),

which was created with two ideas in mind. The first is that CoPs often already
use conversational interfaces, and the utilization of these to connect and interact
with community applications bears the potential to raise awareness for actions
within the applications, even if the community member is currently not logged in.
The second idea that lead to the creation of the SBF concerned the development
process of social bots. Here, using a model-driven approach provides the same
benefits that hold true for MDWE principles: it lowers the barrier for integrating
end-users into the development process, one core goal of this chapter. Results
were communicated in [NLKl19, NLK*20, LGF*20]. The combined results are
published in this dissertation.

4.2 Motivation for Model-Driven Scaffolding
Current MDWE approaches try to increase productivity by enabling the gener-
ation of Web applications, based on information usually specified in the form
of conceptual models [KMM*08]. Corresponding to a certain domain-specific
metamodel, the models reflect the structure of Web frontends and abstract the

4.2. MOTIVATION FOR MODEL-DRIVEN SCAFFOLDING 87

pagination and the navigation of applications. Based on certain templates and
incorporated, framework-specific best practices, the resulting applications can be
specified and instantiated accordingly. By splitting the metamodel into separate
views that reflect separate parts of the application, different stakeholders can focus
on different parts of application design, according to their background, expertise
and interest. If used in a NRT collaborative fashion, this approach bears the po-
tential to involve non-technical stakeholders better into the development process
and thereby also serves as a means to improve requirements elicitation.
However, modeling alone often cannot depict the complexity of a Web appli-

cation. Certain parts of an application are very specific, and while a metamodel
can enforce the overall architecture of a Web application, often manual code edit-
ing is still needed to implement the complete application functionality. To adapt
to this, a collaborative MDWE approach has to support development cycles with
rapid changes in the model-based architecture and the corresponding source code,
both being simultaneously edited. Hence, traditional methods that enable the
synchronization between model and code need to be adapted to this collaborative
setting.
On the other hand, modeling (and especially manual code editing) still requires

a rather good and specific development knowledge, in order to be able to model and
modify the generated software artifacts. Software prototyping, often also called
wireframing, is a popular software engineering method to quickly conceive the
most important aspects of a software application at the early stages of software
development. It is a collaborative and social process, that involves designers, end
users, developers and other stakeholders. In contrast to a conceptual model, that
consists of rather abstract nodes and edges, a wireframe provides a closer repre-
sentation of the final Web application’s visual design. Consequently, a wireframe
is more intuitive and feels more familiar to non-technical stakeholders. Such an
application promises a lower learning curve, with less required knowledge about
Web development. In order to achieve such a novel collaborative frontend devel-
opment practice, live synchronization between models and wireframes has to be
implemented.
To illustrate this concept, we want to sketch a use case that integrates this

novel MDWE practice. A professional community of medical doctors uses videos
and images as main study and documentation objects in their training practice.
We now assume that this community wants to integrate 3D objects (e.g., highly
detailed digital representations of anatomical objects) in their training practices.
Such features cannot be easily implemented without technical knowledge. On
the contrary, they are also hard to explain to developers without deeper domain

88 CHAPTER 4. SCAFFOLDING DECENTRALIZED CIS

knowledge. Thus, the community uses a Web-based MDWE approach for require-
ments elicitation with (possibly external) developers. Doctors and developers can
now distribute according to their domain-specific knowledge to work on the cor-
responding views. For example, doctors could produce wireframes to explain the
developers their proposed extension of the current system. Directly transform-
ing these wireframes into models, developers start working on the corresponding
models and source code, all directly in the browser and in NRT. At all times,
the Web application is automatically generated and deployed on the Web, thus the
community can follow along and provide direct feedback on the current state of
the prototype, via an integrated success evaluation suite.
The Community Application Editor (CAE) was developed to fulfill these re-

quirements. It integrates both Live Code Editing and Collaborative Wireframing,
all in a NRT collaborative setting on the Web. Source code is directly pushed to
GitHub, a Project Management layer provides user- and component management
specifically tailored to the needs of CoPs, and the CAE integrates with the over-
arching development methodology of las2peer by integrating the Requirements
Bazaar [RBKJ13] andMobSOS directly from within the Web-based environment,
unifying them under the new NRT Evaluation Center app. In the following, we
present the concept, realization and evaluation of these works.

4.3 Conceptual Overview
In this section, we provide an overview on the conceptual underpinnings that
we followed when realizing the CAE. We start with a description of the different
views and phases that make up our scaffolding environment in Sec. 4.3.1. Next, we
introduce CAE’s Web application metamodel in Sec. 4.3.2, before we come to the
role-based project management layer of the CAE (Sec. 4.3.3). We continue with
the conceptual integration of the NRT Evaluation Center (Sec. 4.3.4) within our
scaffolding environment. Then, shortly the live code editor integration is covered
in Sec. 4.3.5, beforewe describe in detail the integration of thewireframing support
(Sec. 4.3.6).

4.3.1 View-based Model-Driven Web Engineering
Our approach follows the separation of concerns principle [Kent02] and defines
four orthogonal views [NRD*18] for the modeling of Web applications, based on
a comprehensive metamodel:

4.3. CONCEPTUAL OVERVIEW 89

Figure 4.2: Overview of the MDWE approach.

• TheFrontend Component View, represented by amodel of aWeb component.

• The Backend Component View, represented by a model of a microservice.

• The Wireframing View, a visual representation of a frontend component.

• The Application View, the metamodel of the complete Web application.

The development process itself can be split up into four main phases, namely
the Modeling, the Coding, the Wireframing and the Project Management phase.
Fig. 4.2 gives an overview of these development phases, their corresponding

90 CHAPTER 4. SCAFFOLDING DECENTRALIZED CIS

views, as well as their connections with each other. Based on this modeling
– coding – wireframing – project management cycle, the approach enables the
cyclic, collaborative, model-driven creation of Web applications.

(a) Modeling (b) Wireframing

(c) Coding (d) Preview

Figure 4.3: Different representations of the same frontend component.

To illustrate this concept, Fig. 4.3 depicts four representations of the same
frontend component. Fig. 4.3a shows the conceptual model. Fig. 4.3b depicts the
wireframe visualization of the frontend component model. Both the wireframe
model and the conceptual model are used as input for the code generation to
generate the code artifacts depicted in the Live Code Editor of Fig. 4.3c. Finally,
Fig. 4.3d shows a live preview of the resulting application, based on the generated
code artifacts.

4.3.2 Web Application Metamodel
Although our general approach could be used for arbitrary MDWE frameworks
and Web applications, in the scope of this dissertation, we consider Web applica-
tions composed of HTML5 and JavaScript frontends, and RESTful microservice
backends. Fig. 4.4 depicts the Web application metamodel. The central entity of
a microservice is a RESTful Resource. It contains HTTP Methods, which form

4.3. CONCEPTUAL OVERVIEW 91

Figure 4.4: The underlying Web application metamodel used in the CAE.

the interface for communication either via a RESTful approach, but also via an
Internal Service Call from one HTTP method to another, possibly between dif-
ferent microservices. To enable service monitoring, each HTTP method can be
enhanced with multiple Monitoring Messages. According to the idea of polyglot
persistence, each microservice can have access to its own Database instance.
The central entity of a frontend component is a Widget. This widget consists

of Functions and HTML Elements. HTML elements can either be static, meaning
that they are not modified by any other element or functionality of the component,
or dynamic, meaning that they either are created or updated by one of the frontend
component’s elements. Both static and dynamic HTML elements can trigger
events, which can for example be a mouse click, that cause function calls. The
second option to trigger a function call is via an Inter Widget Communication (IWC)
Response object, that waits for an IWC Call to be triggered. These calls are again
part of a function, which initiates them. A function is able to update or create
a dynamic HTML element. The last part of the frontend component view is
the communication and collaboration functionality, which includes the already

92 CHAPTER 4. SCAFFOLDING DECENTRALIZED CIS

mentioned IWC call - response mechanism, as well as microservice calls that
are triggered by a function. HTML elements can also be instrumentalized with
collaborative support, making it possible for elements to share the same state in
the Web browser of all participating users, propagating changes in NRT.

4.3.3 Role-based Project Management
To enable multiple CoPs to collaborate on multiple community applications at
the same time, the CAE contains an extensive project management layer1 on top
of the four modeling, coding and wireframing views. This layer has two main
features. The first is access management, which enables a CoP to restrict write
access to certain projects, as well as to assign certain roles to community members.
The second is component and dependency handling, which allows for versioned
management of frontend and backend components of a community application.
Additionally, the project management layer also integrates the CAE deeper with
current DevOps development practices, by supporting GitHub’s issuemanagement
environment directly from within the UI of the CAE. This allows using a Kanban
board to plan which development tasks should be done and to inform every project
member on the current development state.
Fig. 4.5 shows the Entity Relationship (ER) diagram of the CAE. As one

can see, the connection to external services, namely the Requirements Bazaar
and GitHub are depicted in green, while those entities that are metamodel-based
are depicted in blue. The latter are stored in the database following the format
described in Sec. 4.3.2, or the corresponding wireframing SUIT model, which
will be introduced in Sec. 4.3.6. Since the source code corresponding to a model
representation is solely stored on GitHub, it is not reflected in this diagram.
The central entity of the CAE is a Project. It belongs to a CoP and thus is

created and maintained by its members, which can have different Roles within the
development process. Note, that it is possible for a User to have different roles in
different projects and/or communities. Users have theirGitHub Account connected
to the CAE to be able to access GitHub’s issue management environment. Each
project in the CAE is connected to a GitHub Project. Initially it is initialized with
a simple Kanban board containing the three columns “To do”, “In progress” and
“Done”.
Projects consist of several Applications. While from a practical point of view,

1The prototype implementation was partially supported by a bachelor thesis [Doli20] under
supervision of the author.

4.3. CONCEPTUAL OVERVIEW 93

Component

Frontend
Component

Microservice
Component

isA t

includes

Dependency

Project

m n

Name User

Role

Version

hasm n

Application

consistsOf
1

m

Version CoP

memberOf

n

Connection to external services

belongsTo

m

1

n

1

connectedTo

GitHub
Project

connectedTo

1

1

Requirements
Bazaar

1

1

connectedTo

GitHub User
Account

0..1

1

includes

External
Dependency VersionURL

m

n

Legend:

Metamodel-based

Figure 4.5: ER diagram of the CAE.

there exists only one application for each project, each application’s version is
treated as a new application within the scope of this ER diagram. Each applica-
tion includes several Components. These versioned components each include a
Requirements Bazaar connection, depicting a category in that project representing
the component. Components are either Frontend- or Microservice Components,
corresponding to the CAE metamodel. If a component of another project is used,
it is included as a dependency, making it immutable from within the modeling
environment. Besides using components of other projects as dependencies, there
is also the possibility to include External Dependencies from a GitHub repository.
We restrict these here to Web widgets for frontend- and las2peer services for mi-
croservice dependencies, such that they can be easily embedded in the deployment
process (see Sec. 4.4).
After a project was created, members of the CoP can invite each other via an

invitation mechanism, using their OpenID Connect (OIDC) username. As a list of
all project members is shown, the complete CoP is aware of their members which
are currently working on the project and its components. This increases the social
awareness (or rather the availability awareness [XhPo10]), since a user receives
information on the presence of other people in the shared environment. Following
the inclusive spirit of OSS, users who are not members of the CoP can still view
the project and its components (although without editing rights) before joining the

94 CHAPTER 4. SCAFFOLDING DECENTRALIZED CIS

community.
As already stated, the CAE features a role-based access management. Based

on a user’s role, view elements of the CAE are highlighted or hidden. This allows
the four views of the CAE to be tailored more specifically to the individual user.
With this, we aim at reducing the deterrence of non-technical users, because the
UI elements that require more technical expertise can be hidden from them. The
UI element highlighting and hiding mechanism improves the guidance of users
through theMDWEprocess of theCAE, as it helps them to focus on theUI elements
that are of importance to them. Each user gets assigned one role per project and
every role is linked to a configuration of UI elements which is shown to users
with this role assigned. The assignment of roles to users and the configuration of
the UI elements is done in the project management layer. These roles are fully
customizable by all community members.

4.3.4 A NRT Evaluation Center
Whatmetrics are important and how to calculate a service success score varies from
community to community and from service to service. These parameters can also
change over time within the same context. Thus, evaluation parameters must be
constantly adapted not only to a changing implementation, but also to a constantly
developing understanding of the term success within a CoP. MobSOS, as the
success evaluation framework of las2peer, takes these changing requirements into
account by providing custom tailored service success models for each community
service and each community. Following the “observe, where possible; only survey,
where inevitable” idea [RKJa15], MobSOS also contains a module for creating
questionnaires, calledMobSOS Surveys, which the community can use to evaluate
those parts of their service that cannot easily be measured from within the service
itself.
However, although MobSOS allows non-technical users to see visualizations

of success dimensions like quality and impact, it relies on service developers to
directly code the measures into their services, and upload service success models
in a rather technical format to a las2peer node directly. There exists no mechanism
to discuss the success factors within the community. Furthermore, MobSOS
Surveys is not directly integrated into the service success model. There is no
graphical UI for reviewing or editing the processes behind the community success
evaluation. Thus, the community must rely on developers to correctly comprehend
and implement the community’s understanding of success. If developers fail to do
so, the success evaluation results are distorted and a successful service might be

4.3. CONCEPTUAL OVERVIEW 95

discontinued or an unsuccessful community service might be kept alive.
This lead us to the development of the NRT Evaluation Center, a Progressive

Web App (PWA) that bundles the services MobSOS provides2. It offers a Web-
based user interface enabling the end user to create and maintain success eval-
uation, all in NRT. The overarching goal was enabling communities to define
and continuously adapt the success evaluation process in las2peer with as much
involvement of non-technical community members as possible. We approached
this goal by integrating the success evaluation closer into the development process
of the CAE. The direct link to the Requirements Bazaar, which we introduced with
the project management in the previous section, enables the discussion of not only
the service (model), but also its success model in an end user approachable way.
We also extended MobSOS to integrate a survey’s questions within the service
success model itself.
Additionally, we extended the CAE’s microservice metamodel with modeling

elements for different types of Monitoring Messages. Specifically, Monitoring
Messages can be connected to an HTTP Method, which then logs its processing
time, to anHTTP Payload, which logs the payload content, or to anHTTP Response,
to log the response content. These measures are available to be extended in
the Live Code Editor or to be directly used in the service success modeling.
These additions led to an integrated service success evaluation flow that is tightly
integrated within the CAE’s development methodology, implementing core ideas
of the DevOpsUse [LNKK16, Kore20] life-cycle.
Fig. 4.6 depicts this integration of the NRT Evaluation Center into the devel-

opment process of the CAE. The process starts with the decision, if the app is
still used. If so, the application is monitored during its usage, using the NRT
Evaluation Center, until the need for better or changing success awareness is iden-
tified. This decision, as well as the consensus of what do measure and how to
interpret these measures is discussed in the Requirements Bazaar, either directly
from within the NRT Evaluation Center, or from the Requirements Bazaar inter-
face. Once consensus is reached, it has to be evaluated, if the service in question
already sends the needed monitoring data to MobSOS. If that is not the case, the
CAE can be used to modify the service’s model and source code to emit the needed
data. The process continues with the CoP identifying and modifying/creating the
missing measures collaboratively in the NRT Evaluation Center. Finally, the circle
starts again with the usage and monitoring of the application with the now-updated

2The prototype implementation was partially supported by a master thesis [Hoss19] under
supervision of the author.

96 CHAPTER 4. SCAFFOLDING DECENTRALIZED CIS

Find a consensus what
to measure and how to

interpret it
(ReqBaz)

Service
sends

needed
information

to
MobSOS?

Modify service to emit
needed messages

(CAE)

no

Save & Deploy
(CAE & CI/CD)

Identify need for better
success awareness
(Evalution Center)

Identify missing
measures

(Evaluation Center)

yes

Measures
missing?

yes
no

Edit success model
(Evaluation Center)

Create measures
(Evaluation Center)

Usage (application) &
monitoring

(Evaluation Center)

Community

App still
deployed?

yes

no

Developer

Developer
Community

Community

Figure 4.6: Screenshot of the NRT Evaluation Center flow.

success evaluation model.

4.3.5 Model Synchronization for Live Code Editing
We unify the architecture of applications developed with our approach through the
usage of protected segments that enforce a certain base architecture, facilitating
future service and frontend orchestration, maintenance and training efforts for new
developers3. Protected segments in the source code describe a functionality that
is reflected by a modeling element. In order to encourage the reuse of software
components, we allow changes which modify the architecture only in modeling
phases. Since our approach offers a cyclic development process, this can be done
instantly by switching to modeling, changing the corresponding element and re-
turning to a new coding phase. To further enforce this methodology, before source
code changes are persisted, a model violation detection is performed. This informs
the user about source code violating its corresponding model, e.g., architecture
elements manually added to the source code instead of beingmodeled. Concerning
the synchronization between the code and the model, our collaborative MDWE
process uses a trace-based approach. Changes in the code produce traces, which
are used in the model-to-code (re)generation in order to keep the corresponding
code synchronized to the model elements. This way, the process can be reflected
without the need to implement a full Round-Trip Engineering (RTE) approach.

3The prototype implementation was partially supported by a bachelor thesis [Wink16] under
supervision of the author.

4.3. CONCEPTUAL OVERVIEW 97

More information on the realization of the model to code synchronization strate-
gies of the CAE can be found in [Nico18, LNWK18, LNNK20].

4.3.6 Integration of Wireframing Support for MDWE
Inspired by the concepts of MockupDD and following the view separation of
ArchiMate (both presented in Sec. 2.5.2), we developed a SUIT model for the
wireframing integration4 and defined the transformations of this model to the
frontend component metamodel, depicted in Fig. 4.7. The SUIT model of the

Figure 4.7: Mapping of the SUIT- to the MDWE metamodel.

wireframing editor comprises the most common HyperText Markup Language
(HTML) elements of the current HTML5 standard. It offers simple structural
elements like buttons, text boxes and containers. Furthermore, media elements like
the HTML5 video and audio player and custom Polymer elements5 are supported.
Also compositions of elements are defined, like a checkbox with a label. Each UI
control element of the SUIT model has its own set of attributes defined, according
to the HTML5 standard. We also introduced a so called ’SharedTag’, that can be
assigned to any UI control element to add NRT collaborative behavior to it.
Conceptually, an instance of the SUIT model is a labeled tree. We formally

define such a tree as a connected, acyclic and labeled graph. An arbitrary element
v ∈ V always has the signature v = l, t, A, where l ∈ Σ is the label, with Σ

being a finite alphabet of vertex and edge labels. t ∈ T is the type of the node,
where T is either a UI control element or a tag defined in the SUIT metamodel, as

4The prototype implementation was partially supported by a master thesis [Rose17] under
supervision of the author.

5https://www.polymer-project.org

https://www.polymer-project.org

98 CHAPTER 4. SCAFFOLDING DECENTRALIZED CIS

depicted in Fig. 4.7. For example T might consist of the following elements: UI =

{Text, Button, V ideo, Canvas, ..} and Tag = {SharedTag, DynamicTag, ..}
with T = UI ∪ Tag. A is a finite set of properties related to an UI control element
or tag and each a ∈ A is a key-value-pair k, v with k, v ∈ Σ. The tree always
consists of a distinguished vertex r, which is also called the root. The root is
always of type Widget. The parentv function is a helper function that yields the
parent-vertex for a vertex of the SUIT tree. If the vertex v is the root, the root will
be returned.

Definition 1 A SUIT model is a labeled tree with SUIT = V, E. V is a finite,
non-empty set of vertices. V is always initialized with the root r. E is a set of
unordered pairs of distinct vertices v1, v2 with v1 ≠ v2, which constitutes the
edges of the tree.

For the integration into our MDWE approach, a SUIT model is mapped to an
instance of the frontend component view. Let V P = V, E be an acyclic, directed
graph that represents an arbitrary view. An edge e ∈ E of such a graph has the
signature l, t, v1, v2, A, where l ∈ Σ, t is the type of the edge, v1, v2 ∈ V and A
is a set of key-value-pairs that constitute the attributes of the edge.

Definition 2 An instance M of a view of V P is an acyclic, directed graph with
M = V ′, E′. For each v ∈ V ′ holds typev ∈ labelV , with type and label being
helper functions defined as:
type : V 7→ Σ : l, t, A 7→ t and label : V 7→ Σ : l, t, A 7→ l.
Analogously, these functions are defined for an edge e ∈ E′ of a view.

Now let V Pwireframe be the acyclic directed graph representing an arbitrary in-
stance of the wireframe view and WSUIT a SUIT model representing a concrete
wireframe. An instance of the SUIT model is mapped to an instance of the
wireframe view with function φ:

φ : WSUIT 7→ V Pwireframe = V, E 7→ ϕV , γE

where ϕ is defined as follows:

ϕV = {ϕv|v ∈ V } with

ϕ : V 7→ V ′ = l, t, A 7→ l′, t′, A′ :

4.3. CONCEPTUAL OVERVIEW 99



l, t, A 7→ l,HTML Element,
A ∪ {type, t, static, true, collaborative, false},

for t ∈ UI

l,SharedTag, ∅ 7→ l′,HTML Element, sharedA′, for l′ = parentl
l,DynamicTag, ∅ 7→ l′,HTML Element, dynamicA′, for l′ = parentl
l,Widget, A 7→ l,Widget, A, otherwise

where shared and dynamic are functions that are applied to every attribute in A
of the referenced ’HTML Element’-node. These helper functions change the value
of the ’collaborative’- respectively ’static’-attribute for the referenced ’HTML
Element’-node. All other attributes are left untouched. Thus, shared is defined as

sharedA = {shared′a|a ∈ A}

with

shared′ : A 7→ A :
{

k, false 7→ k, true, for k = collaborative
k, v 7→ k, v, otherwise

and dynamic is defined as

dynamicA = {dynamic′a|a ∈ A}

with
dynamic′ : A 7→ A :

{
k, true 7→ k, false, for k = static
k, v 7→ k, v, otherwise.

The relationships between the nodes in the wireframe view are generated with γ:

γE = {γe|e ∈ E}

with
γ : E 7→ E′ = v1, v2 7→ l, t, v′

1, v′
2, A :

v1, v2 7→ l,Wid. To El., v1, v2, A, for v1 = r, typev2 ∈ UI

v1, v2 7→ {l, hasChild, v1, v2, A},
for typev1 ∈ UI, typev2 ∈ UI

and v1 ≠ v2 ≠ r

With φ, we only map the UI elements of the SUIT model to the wireframe view.
An ’HTML element’ node of the frontend component-, respectively wireframe
view, consists of the four properties id, type, static and collaborative. The id of the
HTML element is automatically generated by the mapping approach. The value of
the type attribute is an element from the UI. The static and collaborative attributes
are the only attributes represented as tags in the SUIT model. Furthermore,

100 CHAPTER 4. SCAFFOLDING DECENTRALIZED CIS

they are simple Boolean attributes and therefore have no own attributes defined.
Additionally, the tags are unique and thus they only appear once for a certain UI
element.
A node of the SUIT tree is mapped with ϕ to a certain ’HTML Element’ or

’Widget’ node. An arbitrary UI element of the SUITmodel is always mapped to an
instance of the ’HTML Element’ node class, where the label of the UI element is
the label of the node. The type of the UI element is mapped to the type-attribute of
the node. By default, the ’static’ attribute is true and the ’collaborative’ attribute
is false. To change the values of these attributes, a DynamicTag- respectively
SharedTag element is mapped to the corresponding attribute in the ’HTML El-
ement’ node. For each tag a function is required, which alters a certain aspect
of the signature of an ’HTML Element’ node (e.g. type or attribute). For the
definition of the current mapping approach, the two helper functions shared and
dynamic are defined, which change the Boolean value of the associated attribute.
The root-element of the SUIT tree is always mapped to the ’Widget’-node, where
the label of the root is also the label of the ’Widget’-node. The same holds for the
attributes. With function γ, the relationships between nodes are generated. The
function comprises two cases. If the UI element is a direct child from the root,
a single ’Widget To HTML Element’ edge is created (abbreviated in the function
with ’Wid. To El.’, due to space restrictions). For the second case, we assume that
v1 is a parent of v2 and v1 and v2 are not the root. Then, the ’hasChild’ relationship
is generated.

4.4 Realization
In this section, we present the user interface of the overall CAE (Sec. 4.4.1), with a
special focus on themodel versioning system (Sec. 4.4.2). We continue introducing
CAE’s general architecture (Sec. 4.4.3) and conclude with the integration of the
wireframing (Sec. 4.4.4).

4.4.1 User Interface

Fig. 4.8 shows a screenshot of the frontend component modeling space of the CAE.
TheWireframing View is depicted in the upper-, theModeling Canvas in the lower-
left, while the Live Code Editor can be found in the lower-right. The upper-center
depicts the Live Preview and the selected modeling element’s Property Window,

4.4. REALIZATION 101

Figure 4.8: Screenshot of the frontend component modeling space.

and on the outer right the Modeling Palette, Activity Widget and Requirements
Bazaar Integration are displayed.
The CAE supports common utility functions, like copy&paste, deletion of an

arbitrary number of selected elements and an undo&redo functionality for both
the Modeling Canvas, Live Code- and Wireframing Editor. It uses an automatic
save functionality: each altering in the editor saves the current state of all models
to the shared editing framework in the Yjs shared data space (cf. Sec. 4.4.3).
The editor provides awareness features to support the collaboration. The

activity widget shows all collaborators currently working in one of the different
views. If a remote user selects one or more elements, each element is highlighted

102 CHAPTER 4. SCAFFOLDING DECENTRALIZED CIS

with a surrounding frame and marked with the image of their OIDC profile they
used to log into the CAE. This holds for both the modeling canvas, as well as for
the wireframing view and the live code editor.

Figure 4.9: Screenshot of the CAE project management features.

Fig. 4.9 shows a screenshot of the project management layer of the CAE. The
left side gives an overview about those projects the user is assigned to and also
provides the possibility to browse all existing projects. For those projects the user
is a member of, the interface also shows other members of the community currently
online and working on these projects. The right side provides details of a currently
selected project. This includes a listing of all users and their roles, as well as
the possibility to change those. A link to the corresponding Requirements Bazaar
category and to the corresponding GitHub project can be found here as well. Here,
it is also possible to create new components or to enter the development space of
already existing components of a project.
Fig. 4.10 shows two (partial) screenshots of the NRT Evaluation Center PWA.

The left side shows the main overview of a success model for an application.
On the top, one can enable the editing mode and invite new users to the success
modeling group, and also accept incoming invitations. Below, both the option to
connect a questionnaire from the MobSOS Surveys module, as well as a success
dimension (“System Quality”), with its connected measure (“Performance”) is
shown. The right side shows parts of an exemplary success model for a “Mensa
App”. Here, the visualizations and Key Performance Indicators (KPIs) that were
collaboratively defined in the NRT Evaluation Center are visualized.

4.4. REALIZATION 103

(a) Main View. (b) Success model.

Figure 4.10: Screenshot of the NRT Evaluation Center PWA.

4.4.2 Versioning System
To provide an overview on the changes in the modeling, wireframing and live
coding, and to allow reverting these changes, as well as to version the individual
stages of a component, the CAE contains a versioning system. As in Git, this
versioning system is commit-based. Therefore, both the commit messages and
version tags entered in the CAE are reflected in a corresponding Git repository.
Fig. 4.11 shows two screenshots of the versioningwidget, depicting the changes

of a microservice component. The left screenshot shows a list of previous commits
made to the component and the details of the selected commit. As one can see,
it depicts both the commits automatically pushed to the Git repository by the live
code editor, as well as manual commits, created by a community member. For
each commit, the modeling elements are listed, together with the changes done to
the attributes of each element. The versioning system allows to load the model
and wireframe of a previous commit, by just clicking on an item in the commit list.
The canvas widget also moves to the position of the highlighted element so that
the user does not have to search for it in the model. Besides that, the versioning
widget allows to roll back the changes which were done since the last commit.

104 CHAPTER 4. SCAFFOLDING DECENTRALIZED CIS

(a) Changes of a previous commit. (b) New commit.

Figure 4.11: Screenshots of the versioning widget.

The right screenshot shows the creation of a new (manual) commit. Here, the
user can select, which changes that should be included in this commit. All changes
that are not reflected in the commit will of course still be stored in the current
version of the component (within the shared frontend data space), but will not be
reflected in the corresponding Git repository and relational database that manages
the different versions of a model. A commit saves the changes to the component
and can be named. Besides that, it is possible to tag a commit with a version
number, which then also gets set as a tag on the corresponding Git repository. The
users are nudged to use the Semantic Versioning format [RDVi14]. When a user
updates a field of the semantic version number, a popup appears that asks the user
to verify that the version change is justified. This should ensure that the semantic
versioning format is used correctly. Following a nudging approach [KoHe15],
different versioning formats are still allowed.

4.4.3 Architectural Overview
Fig. 4.12 provides an overview of the complete architecture. Our frontend is
composed of HTML5 Web components and (apart from the wireframe model,
which uses an Extensible Markup Language (XML) representation) uses JSON
representations of the models. We use a lightweight meta-modeling framework,
called SyncMeta [DNE*15], to realize the collaborative modeling functionalities

4.4. REALIZATION 105

of the CAE. It supports NRT collaborative modeling by using Yjs [NJDK16],
a Conflict-free Replicated Data Type (CRDT) framework. For communication
with the backend, we use a REST API. The backend, realized as a las2peer

Figure 4.12: Architecture of the CAE.

network, is composed of three services. The Model Persistence service manages
the persistence of themicroservice- and frontend component models (together with
their enriching wireframe SUIT models, if existing, see Sec. 4.4.4) in a relational

106 CHAPTER 4. SCAFFOLDING DECENTRALIZED CIS

database. A template engine forms the main component for trace generation and
model synchronization. It is used for both the initial code generation, as well
as for further model synchronization processes [Nico18, LNNK20]. The Code
Generation service implements both the synchronization with the trace models, as
well as it is responsible to generate the resulting source code from the models and
trace models. The source code is directly pushed to a GitHub repository, using
commit messages to create a history of the modeling process for later reference.
We use a Jenkins - Docker continuous deployment pipeline to deploy the resulting
services in a las2peer network, directly from the modeling environment. Finally,
the Project Management service manages on a backend level the write access to
different components and provides project metadata to the corresponding frontend
components via the REST API.

4.4.4 Wireframe- and Frontend Component Model Transfor-
mations

Wireframe- and frontend component models are persisted next to each other, as
the SUIT model enriches the HTML elements of the frontend component model
with additional metadata and type-specific attributes. Thus, for code generation, a
frontend component model is always required, while the SUIT model is optional.
A Wireframe to Model Transformation and a Model to Wireframe Transformation
were developed to transform the SUIT wireframe model to a frontend component
model and vice versa. The two transformations are only needed, if one of the
two frontend component representations is not existing. After that, the two model
states are kept synchronized by the Live Mapper.

Wireframe to Model Transformation The wireframe to model transformation
takes as input an instance of a wireframe model and the frontend component
metamodel. The output of the transformation is a JSON object of the frontend
component model. The implementation uses templates of a node-, edge- and
attribute-representation in JSON of the frontend component model. First, the
transformation algorithm generates the ’Widget’-node, which represents the root
element of the frontend component model. Then, it recursively traverses the
wireframe model and creates a corresponding ’HTML Element’-node for each UI
control element. The ’type’-attribute of the node is set to the value of the ’HTML
Element’-node name of the corresponding UI control element. Furthermore, the
’HTML Element’-node is marked as static and the ’id’-attribute of the node is

4.4. REALIZATION 107

automatically generated. The value of the id is composed of the ’type’-attribute
value and unique. The identifier of the UI control element is reused for the
resulting node, which allows to trace back an ’HTML Element’-node to the UI
control element. This is necessary for the awareness features and the live mapper.
For each node, a ’Widget to HTML Element’-edge is generated, because each
node has a connection to the ’Widget’-root node. If the parent of the UI control
element is not the root, additionally a ’hasChild’-edge is added to the set of edges.
This edge type denotes the hierarchical structure of the wireframe. It connects the
parent UI control element to one of it’s child elements. If a UI control element has
the ’shared’-tag assigned to it, the ’collaborative’-attribute of the corresponding
’HTML Element’-node is set to true as well. Since the frontend component
metamodel allows every HTML Element to be collaborative, the wireframing
editor allows this as well. The result of this transformation is a valid instance of
the frontend component metamodel. However, the HTML attributes specified for
a certain UI control element are lost, because the frontend component metamodel
does not offer a way to represent them. Additionally the width, height and position
of the UI control element in the wireframing editor are not related in any way to
the position and dimension of corresponding ’HTML Element’-node. Therefore
it is necessary to apply an auto-layout for directed graphs to the model, so that it
is displayed correctly in the modeling canvas.

Model to Wireframe Transformation The input for this transformation is a
JSON representation of the frontend component model and an instance of the
wireframe editor. The latter is required to map the ’type’-attribute of an ’HTML
Element’ node to the correct UI control element. Since the wireframe only rep-
resents the HTML elements of the frontend component model, we only have to
consider the ’Widget’ node (for the size of the whole frontend component) and
those ’HTML Element’ nodes that are connected to the ’Widget’-node and marked
as static. All other node and edge types of the frontend component model can be
ignored for this transformation. As already described in the previous transforma-
tion algorithm, certain UI layout information (for example the size and position
of elements) is not present in the frontend component model. Thus, we initialize
these attributes with default values defined in the wireframe model. Finally, the
transformation algorithm assigns the ’shared’-tag to every ’HTML Element’-node
which has the ’collaborative’-attribute set to true. The result of the transforma-
tion approach is an XML document that represents the wireframe model. The
resulting model is then stored in the shared data space alongside with the frontend

108 CHAPTER 4. SCAFFOLDING DECENTRALIZED CIS

component model.

Live Mapper The live mapper listens to events of the Modeling Canvas of the
frontend component modeling view and to the Wireframing Editor. In contrast
to the two previously described transformations, the live mapper directly applies
changes to the wireframe and frontend component model and visualizes the results
in NRT. Additionally, the livemapper provides awareness features for the selection
of entities on both the Modeling Canvas and the Wireframing Editor. To give an
example of the live mapping, the creation of a button element in the Wireframing
Editor leads to five to six operations on the Modeling Canvas. First, the node is
created on the Modeling Canvas, the ’type’-, ’id’-, and ’static’-attributes are set
and the new node is connected to the ’Widget’-node. If the button is placed in a
container, an additional edge is created between the ’HTML Element’-node rep-
resenting the container and the new node that represents the button. Furthermore,
it is possible to edit the wireframe model through the frontend component model
view. For example one can create any UI control element in the Wireframing Ed-
itor though the Modeling Canvas by creating an ’HTML Element’-node, connect
it to the ’Widget’-node and set the ’static’-attribute to true. After each action on
the Wireframing Editor, an auto layout algorithm for directed graphs is applied to
the Modeling Canvas, only manipulating those elements that were updated.

4.5 Evaluation
We evaluated the CAE in several evaluations, according to the our methodology
as presented in Sec. 4.1. In this section, we describe each evaluation step in detail.

4.5.1 Initial Evaluation
We successfully used the CAE to redesign an existing collaborative Web applica-
tion used for graph-based storytelling [LND*16]. While this evaluation was only
conducted internally, we used it as a first proof-of-concept usage scenario for the
CAE6. It provided initial feedback on the usability and acted as a first and ongoing
test case that lead to several necessary improvements of the framework, before we
were able to apply it in the following user evaluations.

6https://github.com/wth-acis/CAE-Example-Application

https://github.com/wth-acis/CAE-Example-Application

4.5. EVALUATION 109

4.5.2 Evaluation with Heterogeneous Teams
After we successfully defined the agile and cyclic development approach that
builds the basis for development with the CAE, we conducted our first user evalu-
ation [LNKJ17].

Participants and Procedure We considered groups of two to three people with
various technical backgrounds. We carried out 13 sessions, with a total number of
36 participants. The groups consisted of at least one experienced Web developer
and at least one member without any technical experience in Web development,
who received a description of the application to be designed. During the evaluation
session, the non-technical members had to communicate the requirements to the
developer team and collaboratively implement the application using the CAE.
Each session lasted for about 45 minutes. The goal of this study was to assess the
role of NRT collaboration for the development process, and whether our approach
improves the integration of non-technical community members into the design and
development of Web applications.

Analysis and Outcomes In general, we received high ratings from non-technical
members in terms of methodology (“Understanding of separation of concerns”
AVG of 3.91, SD of 0.97; “Understanding how application was built” AVG of
4.36, SD of 0.89), and developers felt theywere able to implement the requirements
formulated by the non-technical members (AVG of 4.64, SD of 0.49). Most non-
technical members felt integrated well into the NRT development process (AVG
of 4.27, SD of 0.98) and the oral interviews revealed that they could follow the
development process well. Although the question, if non-technical members took
an active role in the development process received the lowest score, the result
is still pretty high (AVG of 3.82, SD of 0.96). From the developer survey, we
received the highest ratings for questions regarding the concept of CAE and its
usability (“Understanding functionality” AVG of 4.79, SD of 0.43; “Understanding
separation of concerns” AVG of 4.71, SD of 0.83). Collaborative aspects were also
rated rather high by both groups. The oral interviews revealed that most developers
felt both the need for requirement analysis improvements regarding the inclusion
of non-technical stakeholders as well as that the CAE can be used for this purpose.
The evaluation showed the usefulness of the CAE to integrate non-technical

members better into the development process. Developers saw the benefit of CAE’s
MDWE approach to contribute to a unified community application landscape. A
particularly often requested feature was the introduction of a second abstraction

110 CHAPTER 4. SCAFFOLDING DECENTRALIZED CIS

tier for the frontend component view, which could hide too technical aspects from
non-technical members, concentrating more on the “visible” elements, putting the
functionality into a second component view, which would then be used by the
developers only. Another issue mentioned by the developers was the need to adjust
the generated source code to fully reflect the requirements, and then having no
possibility to return to the modeling environment, since the modified code would
be overwritten when the code was regenerated by the framework. We used this
feedback to start developing the Live Code Editor, as well as the Wireframing
Editor, which tackle these issues from different angles, but both use the same idea
of providing different views on the same model.

4.5.3 Evaluation in a Lab Course

While we were developing the aforementioned live coding and wireframing exten-
sions, we in parallel started to validate our MDWE process with its modeling and
development phases over a longer period of time, by studying the impact it has on
Web developers [LNKK16, LNKJ17]. Therefore, it was necessary to extend the
CAE with automated deployment features, such that the created applications could
be used in practice, to validate their functionality.

Participants and Procedure We evaluated our approach in a lab course of 15
undergraduate computer science students. The students had basic programming
knowledge, in particular in Java (AVG of 4.60, SD of 0.63) from their first pro-
gramming lectures, but our pre-survey also indicated that none of them were really
familiar with Web development (AVG of 1.67, SD of 1.29) or microservice archi-
tectures (AVG of 1.73, SD of 0.95). During a two week period, the students were
asked to model and deploy the basic framework of their lab course prototype.

Analysis and Outcomes In this evaluation, we were especially interested in how
the CAE can help developers that are not yet familiar with the present development
environment. Our questionnaire thus focused on the learning effects the CAE
has on developers that have to integrate into a new development process. Our
results indicate a high learning effect in terms of understanding the underlying
Web development concepts of microservices (AVG of 4.43 vs 1.73, SD of 0.65
vs 0.95) and frontend components (AVG of 4.50 vs 2.60, SD of 0.52 vs 1.45).
We received rather high ratings in terms of MDWE easing the learning of new

4.5. EVALUATION 111

concepts and techniques (AVG of 3.86, SD of 0.77) and MDWE improving the
understanding of the generated application (AVG of 3.71, SD of 0.99).
Occurring problems during this evaluation were mainly due to the use of an

experimental prototype which was never tested in an environment with more than
a handful of people using it at the same time. Boundary conditions and network
latency problems lead to a cycle of fixes, version incompatibilities and newly
introduced problems. Even though this might have clouded the participants’
impression of CAE use, it finally lead to major technical improvements of our
framework. These first results of a more realistic usage setting showed promising
applications of the CAE as a tool to teach developers of different domains the
development of Web applications with a P2P microservice architecture.

4.5.4 Live Code Editor Evaluation
Due to the feedback received in the previous two evaluations, we developed the
Live Code Editor. On this, we performed a usability study with student developers
to assess how it integrates into our collaborative MDWE methodology and how
well it performs and is received in practice [LNWK18].

Participants and Procedure We carried out eight user evaluation sessions with
two participants each. After receiving a short introduction and filling out a pre-
survey to asses their experiences inWeb development, the participants were seated
in the same room and asked to extend an existing application, which consisted of
two frontend components and two corresponding microservices. As expected, the
pre-survey rating of the familiarity with Web technologies (AVG of 4.00, SD of
0.48) was rather high. However, only a minority of our participants were familiar
with MDWE (AVG of 2.67, SD of 0.37) or had used collaborative coding for
creating Web applications before (AVG of 2.40, SD of 0.69). Each evaluation
session took about 30 minutes of development time. Afterwards we asked the
participants to respond to a questionnaire consisting of questions on a 5-point
Likert scale.

Analysis and Outcomes The participants rated connections between our two
collaborative phases, namely the access to the code editor from the model (AVG
of 4.67, SD of 0.32) and the reverse process with the synchronization enabled
(AVG of 4.40, SD of 0.25) very high. Even though the chosen application was,
due to the time constraints of a live evaluation setting, quite simple, the evaluation

112 CHAPTER 4. SCAFFOLDING DECENTRALIZED CIS

participants mostly saw cyclic development in general as relevant (AVG of 4.13,
SD of 0.43) and also rated the benefits of a cyclic MDWE process high (AVG of
4.00, SD of 0.44). Moreover, all participants identified the advantages of code
and model synchronization (AVG of 4.33, SD of 0.37). We considered the results
of this evaluation as a proof-of-concept, that the Live Code Editor technically
fulfills it’s purpose as a way to integrate live coding into the cyclic development,
mitigating the need to manually change the generated source code and thereby
break the MDWE cycle.

4.5.5 Wireframing User Evaluation
After we developed and integrated the Live Code Editor, we tackled the feedback
gained in our evaluation with heterogeneous teams (see Sec. 4.5.2) and developed
the Wireframing Editor. We then evaluated it to gain user feedback on how well it
integrates into the process and how it changes the way applications are developed
with the CAE [LNRK19].

Participants and Procedure We recruited eight student developers as partici-
pants, which were split up into groups of two, resulting in four evaluation sessions
that each lasted about 60 minutes. As in the Live Code Editor evaluation, the
pre-survey revealed a high familiarity with Web development (AVG of 4.50, SD
of 0.53). Also, a rather high familiarity with MDWE concepts was observed
(AVG of 3.13, SD of 1.13), but wireframing editors were not very familiar to the
participants (AVG of 2.75, SD of 1.58). The participants were asked to develop
a frontend for an already existing microservice backend. A specification for both
the existing RESTful API, as well as the desired Web frontend was handed out to
the participants at the beginning of the session.

Analysis and Outcomes Fig. 4.13 depicts the most interesting results of our
evaluation. With an average of 4.00 (SD of 2.62), most participants found the
wireframing editor was easy to use and with an average of 4.13 (SD of 1.98) and
4.25 (SD of 1.41), the participants found both their application reflected in the live
preview widget as it was designed by them, as well as that they were aware of what
their collaborator did in the wireframing editor. Also, participants mostly agreed
that the modeling canvas and the wireframing view reflected the samemodel (AVG
of 4.25, SD of 2.33). With an average rating of 4.25 (SD of 1.77), the majority
of the participants thought the wireframing editor a useful extension for MDWE

4.5. EVALUATION 113

1 2 3 4 5

Wireframing editor was easy to use

Live preview widget appropriately reflected the UI as designed in the wireframing editor

I was aware of what my collaborator was doing in the wireframing editor

Wireframing editor is a useful extension for the frontend development

The modeling canvas correctly showed all elements in the wireframing editor and vice versa

I understood the relationship between wireframe and model

4

4.13

4.25

4.25

4.25

4.38

1: “strongly disagree”, 5: “strongly agree”

Av
er

ag
e

Us
er

Ra
tin

g
(n

=
8)

Figure 4.13: Results of the wireframing user evaluation.

frontend development and the integration of the wireframe into the process was
understood quite well (AVG of 4.38, SD of 1.04).

4.5.6 Wireframing Activity Evaluation
To gain a deeper understanding about the collaboration process and working be-
havior of the participants, we monitored the participants’ activities in the CAE.

Participants and Procedure We monitored five sessions with two participants
each. Each time a participant switched the widget, the time spend in the widget
was logged. Furthermore, if a participant altered the wireframe, model or code,
an additional event was logged. For each participant the time spend in each editor
was aggregated and the total amount of altering activities a participant issued was
counted.

Analysis and Outcomes Tab. 4.1 depicts for each participant the relative time
spend in a certain widget, as well as the number of absolute activities in this
widget. A particular activity can be a create-, move-, resize-, delete- or attribute
change event of an element in the Wireframing Editor or Modeling Canvas, or
a value change activity in the Live Code Editor. These results show that the
participants spend the most time in the Modeling Canvas. One explanation for

114 CHAPTER 4. SCAFFOLDING DECENTRALIZED CIS

Participant 1 Participant 2
Wireframe Model Code Wireframe Model Code

Session 1 20.1%, 20 26.1%, 180 53.1%, 14 38.9%, 18 27.4%, 87 33.7%, 2
Session 2 7%, 3 81.3%, 104 11.7%, 4 15.4%, 10 41.7%, 133 42.9%, 15
Session 3 7.1%, 12 79.6%, 291 13.4%, 20 17.6%, 3 65%, 288 17.4%, 6
Session 4 11.9%, 0 51.5%, 169 36.6%, 11 9.4%, 8 57.7%, 116 32.9%, 5
Session 5 53.8%, 20 44.6%, 61 1.6%, 0 34.8%, 19 56.1%, 78 9.1%, 0

Table 4.1: Results of the wireframe activity evaluation for each session and par-
ticipant. The relative time spend in each widget, as well as the absolute number
of activities for each widget is given.

this might be that the participants had to get familiar with the modeling language
first, which corresponds with our observations, that during the first few minutes
participants did not use it productively, but experimented with different modeling
elements, until they were familiar with them. With an average ofAV Gmodel = 188
activities, the modeling part was also the most demanding task. With an average
of AV Gcode = 13 activities the coding task was less work intensive. One reason
for that might have been that all participants had some development experiences.
The average number of activities to complete the wireframing task was quite low
with AV Gwireframe = 10, and also the time spend in the Wireframing Editor was
quite short, compared to the time spend in the Modeling Canvas. The participants
of the fifth session were not able to generate the code, which is why there is almost
no activity and usage time recorded in the Live Code Editor.
These results indicate that theWireframing Editor was easy to use and required

little time to get familiar with, which was a major goal and a key requirement of
the editor. Nevertheless it has to be mentioned, that the evaluation of time spend
in each editor and activity monitoring is tightly coupled with the evaluation task,
and thus influenced by it.

4.5.7 Service Success Measurement Evaluation

Our service success measurement evaluation concerned the integration of the CAE
in the overarching las2peer methodology, with a special focus on the Require-
ments Bazaar integration and the usage of service success measurement modeling
elements, which then were used for visualization in las2peer’s monitoring and
evaluation suite.

4.5. EVALUATION 115

Participants and Procedure We recruited thirteen participants from the com-
puter science department and conducted thirteen evaluation sessions. Participants
were given an existing Web service for image uploading, which had a certain, yet
obvious, flaw. It contained an (artificial) delay in the upload process. The service
itself was already developed with the CAE and a corresponding Requirements
Bazaar project existed, that already documented the flaw. The workflow of the
evaluation contained first reading the documentation of the issue in the Require-
ments Bazaar, and then reacting by first measuring the image uploading time via a
modeled monitoring message extension and finally correcting it in the Live Code
Editor. The resulting improvement could then also visually be confirmed in in the
NRT Evaluation Center.

Analysis and Outcomes While the evaluation was concerned with several as-
pects of the NRT Evaluation Center, three questions were posed to specifically
justify the Requirements Bazaar and monitoring integration into the CAE. With
an average score of 4.32, most participants found the Requirements Bazaar well
integrated into the CAE. Our observation was, that participants had no problems
browsing the requirements connected to the modeling project directly from the
CAE’s interface. Another question to verify this was, if participants were able to
distinguish the responsibilities of the CAE, the Requirements Bazaar and the NRT
Evaluation Center. This was answered with an average score of 3.83, which, taking
into account the short time the participants had to get familiar with the concept, is
a clear sign that the responsibilities of the individual components were understood.
Finally, we asked, if the combination of the three components was perceived as a
way to make monitoring features more transparent to non-technical stakeholders,
which was answered with an average score of 3.71. Taking these results together,
we perceive the NRT Evaluation Center well integrated into the CAE.

4.5.8 Project Management Evaluation
Finally, we evaluated the general usability and usefulness of the versioning system
and the project management layer of the CAE. Therefore, we designed a Web
application which then was collaboratively extended by the participants during the
evaluation sessions.

Participants and Procedure The evaluation comprised seven sessions with two
to three participants. We recruited both participants with a background in Web

116 CHAPTER 4. SCAFFOLDING DECENTRALIZED CIS

development, as well as participants without any prior knowledge in this domain,
which our demographic questions showed (“Web development experience using
HTML and JavaScript” was answered with an average of 3 (SD of 1.71). In total
we had 16 participants, and except of two sessions which were held in presence,
all sessions were held online. We took care that the conditions for both the online
sessions and the presence sessions were comparable. After a short introduction
into the tasks and the Web application to be developed, the participants used
the given task sheet to start the development of the planned application. The
goal was to model a frontend component that allows to display a list of song
titles after a button gets clicked, making use of an already existing microservice
backend. To evaluate the versioning functionalities for viewing previous versions
of a component and for comparing different versions, an update of the backend
microservice was then simulated. The participants were asked to compare both
versions and to identify how the extensions of the music service could be used to
improve their own application. After the evaluation, participants were handed out
a questionnaire which used a five-point Likert scale.

Analysis and Outcomes The evaluation showed that the way of how the invi-
tations to projects work was familiar to the users. The corresponding statement
was rated with an average of 4.63 (SD of 0.50). The question regarding the under-
standing, that projects bundle frontend components and microservices of a single
Web application reached an average of 4.38 (SD of 0.72), while the question on the
understanding of what dependencies are used for was rated with an average of 4.69
(SD of 0.60). This shows that the terminology used in the project management
was easy to understand for the users.
The next category of questions focused on the versioning system. With an

average of 4.38 (SD of 0.72) the participants agreed that the combination of the
versioning widget together with the models displayed in the canvas helped to
see the differences between two service versions. Very similarly rated was the
statement if the users could identify how the model of the music service developed
between the two versions (AVG of 4.38, SD of 0.81). Most of the groups were
able to identify both differences between the two versions without additional help.
In general, the participants saw the advantage of using a versioning system in a
Web-based collaborative tool for building Web applications (AVG of 4.88, SD of
0.34). Besides that, with an average of 4.75 (SD of 0.45) the participants agreed
that a versioning system can help to support the awareness of changes done to the
model by other users.

4.6. SBF: THE SOCIAL BOT FRAMEWORK 117

For the evaluation of the general usability of the extension, the System Usabil-
ity Scale (SUS) [Broo96] was used. It aims at measuring the subjective assessment
of usability by taking effectiveness, efficiency, and satisfaction into account. We
mention here the most interesting results. The statement “I found the project man-
agement or the versioning system of the CAE unnecessarily complex” received an
average of 1.50 (SD of 0.63), indicating the ease of understanding the project man-
agement view of the CAE. The next statement “I thought the project management
and versioning system of the CAE were easy to use” was rated with an average
of 4.38 (SD of 0.72), which showed that the users found the CAE extensions easy
to use. The statement “I found the various functions in the project management
and versioning system of the CAE were well integrated” was rated with an average
of 4.50 (SD of 0.63). The participants also agreed, that users could get familiar
with the extensions quickly. The statement “I would imagine that most people
would learn to use the project management and versioning system of the CAE very
quickly” got an average of 4.56 (SD of 0.63). The third statement “I found the
project management or versioning system of the CAE very cumbersome/difficult
to use” was rated with an average of 1.38 (SD of 0.50) and the statement “I felt
very confident using the project management and versioning system of the CAE”
received an average of 4.31 (SD of 0.70). The final statement of the second part “I
needed to learn a lot of things before I could get going with the project management
and versioning system of the CAE” was rated with an average of 2.25 (SD of 1.24).
All in all, we interpret these results as a sign that the project management layer is
well integrated into the CAE and serves its purpose of structuring the development
process.

4.6 SBF: The Social Bot Framework
Nowadays, virtual personal assistants are omnipresent. “General personal assis-
tants” like Alexa, Siri and Google Assistant are used for simple tasks like providing
the weather report, as well as personalized content, as for example the next sched-
uled appointment [YCCI16, DLTM18]. People often communicate with these
personal assistants on a daily basis and their usage and thus their assistance is
deeply rooted in many daily lives.
Besides these general assistants, there are also specialized versions tailored

to solve domain-specific tasks. The vast majority of these are domain-focused
chatbots [DALE16]. These technologies are widespread, as Facebook for example
provides an own API to create chatbots, mostly used by celebrities or companies,

118 CHAPTER 4. SCAFFOLDING DECENTRALIZED CIS

that can answer common questions automatically [FVD*16]. Most of these chat-
bots use predefined rules to answer user inquiries and are called “retrieval-based”
bots [BLEr17]. In contrast, bots that are capable of adapting to the user and,
for example, understand natural language are called “generative” bots [BLEr17].
Generative content depends on the current context and takes into account the re-
cent history between the bot and the user. Utilizing machine learning techniques,
these bots learn from this history and can answer arbitrary questions based on
it [SSG*17, VaPi18]. Generative bots are not as widespread as retrieval-based
ones, due to their higher technical complexity. In fact, in 2018, less than a third of
Facebook’s most popular chatbots used natural language processing [PeDi18].

4.6.1 Motivation
Developing a bot for a particular Web application that directly collaborates with
the user is a task that requires deep technical understanding of both the application
and bot development. Requirements, that especially CoPs often do not fulfill.
But the utilization of social bots in these communities provides a level of support
that is, due to the lack of available resources, otherwise often not feasible to
provide [RANR03].
Following the core ideas of the CAE, by using MDD for developing social

bots, we can raise the abstraction level of development and thereby allow a deeper
integration of end users into the bot creation process. Using a similar Web-based
model-driven environment for social bots, we aim at providingCoPswith themeans
to create their own learning assistants, much like the CAE provides CoPs with the
means to create their own Web applications. With the Social Bot Framework,
we present a domain-independent framework, which utilizes RESTful APIs with
OpenAPI specifications to define the social bot actions within an application7.
CoPs can use the SBF to create their own social bots for their own (self-hosted
and/or decentralized) CIS.

4.6.2 Concept: A Metamodel for Social Bots
Analog to the CAE, the SBF is based on a well-defined metamodel. To introduce
this, Fig. 4.14 shows an example model of a social bot, used in one of our eval-
uations. The central entity of a social bot model is the VLE Instance element,

7The prototype implementation was partially supported by a master thesis [Neum18] under
supervision of the author.

4.6. MOTIVATION 119

Figure 4.14: Screenshot of a social bot model.

which represents the learning environment (the application) the bot should act in.
VLE Users act within this VLE Instance. These VLE Users are either human users
or Bots. Hence, there exists a difference between User Actions and Bot Actions,
which can be performed by these acting entities. A User Action refers to an action
within the service. It is specified by the action name (e.g., the function call of that
service). This can lead to the trigger of a Bot Action. These actions can both be
actions of the bot within the service (analog to a user action, but performed by
the bot), but they can also lead to the sending of a message via a conversational
interface. Bot- and User Actions have Action Parameters. These relate either to
typical arguments of a service call like method names and types, or in the case
of a Bot Action, they can contain the message that should be returned via the
conversational interface. Bot Actions are initiated by a trigger, which represents
the instructional rules from the VLE and can be a VLE Routine or a User Action.
A VLE Routine is a time-controlled trigger (e.g., a workday or a specific time). If
no static value has been defined, the content is either taken over directly or can be
manipulated using If-Then Statements or one of the two content generators Classi-
fier and TextToText, which are utilizing deep learning technologies. With If-Then
Statements, the retrieval-based approach is pursued, whereby content generators
follow the generative approach. The latter technology requires training data for
their deep learning model, which can be specified after the initialization of the bot.
The concrete example of Fig. 4.14 depicts the a botmodel used in our evaluation

of the SBF (cf. Sec. 4.6.4). It utilizes the Distributed Noracle application, and
built the basis for the Noracle Bot, which we evaluated within our real-world

120 CHAPTER 4. SCAFFOLDING DECENTRALIZED CIS

application of a knowledge-building infrastructure as well (cf. Sec. 5.2.4). This
bot can rate questions, based on their fitting to a certain category, as well as
sending users notifications of interesting questions. Here, the VLE Instance holds
the deployment endpoint URL of the Noracle service, and the bot is modeled as
a user of the service. The User Action holds the function to create a question
and requires two parameters: the corresponding learning space and the content of
the question. Creating a question triggers two bot actions. The first evaluates the
created question and the second sends a notification to a specified channel of a
conversational interface. The rating of a question requires as parameter a score,
which is defined by the classifier. The notification via a conversational interface
requires as parameters the respective channel and the content of the message.

4.6.3 Realization: Social Bot Life-Cycle

Figure 4.15: Social bot life-cycle.

This section describes the life-cycle of a social bot, which is also depicted in
Fig. 4.15. A bot life-cycle evolves around its Knowledge (depicted at the center
of the figure) and consists of three Phases (depicted as yellow boxes around it).
The creation of the bot happens in the Forge, where it is equipped with its initial
knowledge. This initialized bot is then send to the Training Ground, where it is

4.6. MOTIVATION 121

consequently trained, based on the knowledge database. When the bot’s training
is done, it is send into Action. Here, the bot acquires further knowledge through
its action, which it in term uses to improve its behavior within its deployment. In
the following, we describe each of the three phases of this metaphor in technical
detail.

Bot Forge

The Forge is derived directly from the CAE. Thus, it is a Web-based environment,
based on SyncMeta, which uses Yjs to realize the NRT collaboration. It contains
the same frontend UI elements for modeling as the CAE, namely the palette,
the modeling canvas and the activity widget, albeit with the SBF metamodel we
presented earlier on in this section. The backend is based on a las2peer service.
Here, the bot model is created. During the modeling process, the collaborators
specify the deployment endpointURLof theVLE instance, and the forge fetches the
available methods of the service. These methods are then displayed interactively
in the modeling environment and provide the collaborators with an overview of
interaction possibilities of the bot with the application (see Fig. 4.16). With this,
arbitrary Web services that follow the OpenAPI specification can be used by the
bot to interact with. Integration of community tools like Discourse8 or LMS like
Blackboard9 is thus possible.
As a conceptual member of the CoP, the bot then can be told to interact with

the learning service by using the modeling element Bot Action, to act within a
learning environment as other (human) members would. The actions of a social
bot are initiated by modeled Triggers (see also Fig. 4.14). To avoid endless loops,
a bot is not allowed to respond to its own actions. The result of this modeling
process is a bot in the state of being “initialized”.

Bot Training Ground

When it comes to advanced queries, retrieval-based bots reach their limits. There-
fore, we utilize the open source deep learning technology TensorFlow [ABC*16]
to create generative content. This happens in the Bot Training Ground. The pre-
requisite for this training is a social bot that has been initialized so that one can
create a Knowledge Model for it. The use of deep learning elements is suitable for
adequate actions, but they must be fed with training data to provide appropriate

8https://docs.discourse.org/swagger.json
9https://developer.blackboard.com/portal/displayApi

https://docs.discourse.org/swagger.json
https://developer.blackboard.com/portal/displayApi

122 CHAPTER 4. SCAFFOLDING DECENTRALIZED CIS

Figure 4.16: Screenshot of the method browser, in this example depicting the
available methods of the Distributed Noracle service.

results. In order to turn the information from a las2peer service into training data
sets, we hook into theMobSOSmonitoring pipeline. By extracting service specific
data and linking it in a coherent way, the training data is generated.
To give an example, when evaluating a text, this text can be seen as input and

the evaluation as expected output. This results in a String-to-Int relation which
can be forwarded to a text classifier [Kim14]. Text generation, for example, can
use a response to a text as training data. This results in a String-to-String relation.
The data is split into a training- and a validation set.
The openness of integrating with arbitrary (external) Web services enables a

variety of additional possibilities. To be able to access training data from third-
party providers, we assume that these materials can be retrieved with the help of
REST API calls. List. 4.1 shows a query used in our evaluation that retrieves
example training data for the domain of “Java” related questions. The query refers
to questions from Stack Overflow10 and was used with the data explorer of Stack
Exchange11. The name of the programming language is replaced by an integer
value to obtain the appropriate data format. After the classification, the value can
be mapped back again to the respective string.

10https://stackoverflow.com
11https://data.stackexchange.com/stackoverflow

https://stackoverflow.com
https://data.stackexchange.com/stackoverflow

4.6. MOTIVATION 123

Listing 4.1: Query for the 10,000 most upvoted Java questions on Stack Overflow.
select top 10000 p.title , ’java ’
from votes v
inner join posts p on p.id=v. postid
inner join PostTags on PostTags . Postid =v. postid
inner join Tags on Tags.id= PostTags .Tagid
where PostTypeId = 1 and Tags like ’%<java >%’
group by v.postid ,p.title , p.tags
order by count (v. postid) desc

A simple classifier can then, for example, decide whether Java questions are
involved or not, by mapping the query from List. 4.1 to “1” and setting other
programming languages to “0”. These training data sets are then forwarded to the
open source deep-learning technology. Currently, we use both a text classifier12
and a text generator13, but there are various other possibilities (e.g, image to text)
that could be explored in the future as well.
Fig. 4.17 shows the Web interface of the Bot Forge. It allows the user to

browse available generative elements of the previously modeled bot. The status,
whether the element has to be trained, is in training, or has finished the training,
can be fetched with the help of the “Check” button. Starting the training initiates
a Python instance where the deep learning model acquires knowledge from the
specified training set. The number of training units depends on the respective
training set and the deep-learning technology. These steps require some kind of
expertise, so for training a bot with deep learning techniques on “newly generated”
training sets, domain experts or data scientists are required. For available training
sets, or previously trained bots from a similar domain, users can select to train the
bot the same way by clicking the corresponding button.

Bot in Action

Once the first training session has been completed, the bot is ready to be deployed
and set to action. In order to be able to interact with the CoP, the social bot must
register in the learning space it was developed for. This is done, for example,
by the community who adds the bot to a learning room. The bot then waits for
a trigger as described in Sec. 4.6.3. Every action of a social bot is also tracked
by the monitoring pipeline and can be used in combination with incoming user
data for continuous training of the deep learning model. The bot can interact

12https://github.com/dennybritz/cnn-text-classification-tf
13https://github.com/karpathy/char-rnn

https://github.com/dennybritz/cnn-text-classification-tf
https://github.com/karpathy/char-rnn

124 CHAPTER 4. SCAFFOLDING DECENTRALIZED CIS

Figure 4.17: Screenshot of the Bot Forge Web interface.

within the VLE and also send notifications in external conversational interfaces.
The framework attempts to automatically match the VLE user with the user of
the external communication channel. A prerequisite for this to work is either
the same username or email address. It is thus possible to send messages to a
predefined channel (group of users) or to a specific user. The communication
channel implemented within the SBF is modular and offers an analog integration
of other messengers. In its current state it integrates with Slack and Rocket.Chat.

4.6.4 Evaluation

A user evaluation gave a group of participants the opportunity to create a simple
social bot, that interacted with a learning service. As already mentioned in the
previous sections, we used the Distributed Noracle application (cf. Sec. 5.2) as
evaluation scenario.

4.6. MOTIVATION 125

Participants and Procedure The evaluation comprised six sessions with two
participants per session. Thus, it involved 12 users, recruited from members and
students of university departments in the fields of medicine, business administra-
tion and computer science. The participants were asked to load a template of a bot
model, adjust the parameters and extend it. Each session was conducted locally,
with participants being in the same room together with one facilitator, and the
participants were allowed to talk to each other during the modeling process. A
brief introduction to the system was given at the beginning. The task was divided
into two parts, first the bot should evaluate the questions created in the space,
and second notify the users in a provided conversational channel when someone
reacted to a question. The necessary attributes for the conversational integration
were available to the participants as an excerpt of the API. Since there was no
previous learning space with enough information to evaluate the questions, we
created and populated a learning space consisting of questions from programming
languages (data sets were obtained as described in Sec. 4.6.3) in advance. Thus,
training data sets were transferred to the monitoring system of our microservice
architecture and could be selected by the users. Finally, participants were asked
to complete a questionnaire. The questions were formalized as a 5-point Likert
scale.

Analysis and Outcomes The following results refer to the outcomes of the
survey and the observations made during the evaluation process. The questions
are divided into two categories. For evaluating the usability of our approach
we used the SUS questionnaire. The second category contained answers to free
text fields and three additional questions regarding the framework’s functionality.
Overall, we received 11 responses. Our pre-survey revealed a moderate familiarity
with RESTful Web services, with an average score of 3.80. A similar familiarity
was observed forWeb application development with an average rating of 3.70. The
question whether users were familiar with social bot generation platforms resulted
in an average of 2.10. As expected, only few mentioned that they had already
created a social bot for Telegram or Facebook Messenger.
The results of the SUS questionnaire can be found in Fig. 4.18 (latter ten

questions). The test persons did not belong to any common CoP using the service,
so that only partial interest was addressed here. Some users were also unfamiliar
with the used service and the introduction phase turned out to be a bit short. But it
is noteworthy that, with the exception of one group, all groups managed to model
a functioning social bot. The well-established integration and low inconsistency,

126 CHAPTER 4. SCAFFOLDING DECENTRALIZED CIS

1 1.5 2 2.5 3 3.5 4 4.5 5

Too much inconsistency

Very awkward to use

Unnecessarily complex

Easy to use

I’d like to use framework frequently

Felt very confident using the framework

Requires a lot of foreknowledge

I need the support of a technical person

Most people would learn to use it quickly

Various functions in the framework were well integrated

Recommend the framework to other people

I was able to create and initialize a bot model

I was able to interact with the service and trigger the bot

2.36

2.46

2.64

3

3.09

3.09

3.09

3.18

3.27

3.91

3.36

4.09

4.18

1: “strongly disagree”, 5: “strongly agree”

Av
er
ag
e
U
se
rR
at
in
g
(n

=
11
)

Figure 4.18: Results of the SBF user evaluation.

show that users quickly became familiar with the system and the semantics behind
the model did lead to the desired outcome. There were a few users who thought
the system was a bit laborious to use, but the majority accepted the complexity
of the framework as manageable. This shows that our prototype is already in a
usable state, although there is still room for improvement regarding the usability
of the modeling environment. One group at a certain point started to try out all
functionalities of the modeling tool without following a specific goal. We track
these “insecure actions” back to the aforementioned short introduction. The users
had a steep learning curve to get familiar with the service which the bot had to be
modeled for.
In addition to the SUS statements, three additional statements were added, the

first addressed whether the participants would recommend the framework to other

4.7. DISCUSSION AND CONCLUSION 127

people or not. The final two questions relate to the success of modeling and using
the social bot. The initialization and triggering in the last two questions refer to
both tasks. All but one group were able to complete the first task to load and adapt
the template model. Only two groups were not able to trigger the bot in the second
task on their own. As an exemplary reason for these problems, one of the groups
forgot the connection of a User Action triggering a Bot Action. But issues like
these were fixed with the help of the evaluator already during the evaluation and
the participants then acknowledged they understood the then facilitated outcome.
Our general impression during the sessions was that the users felt neither

overly confident nor unsure. Users did state that they would have liked a longer
introductory phase or a more detailed tutorial on the framework in order to be able
to work better with it. The observation also showed that the people with a higher
level of technical skill tried to understand the whole concept, whereas groups
with a less technical background just used the framework without questioning its
inner workings. Overall, we can state that the SBF proved to be a usable tool to
create social bots for VLEs and that it is for the most parts usable by non-technical
community members. Further evaluation of the process of social bot creation
using the SBF is currently undertaken and also subject to future work [NLK*20].

4.7 Discussion and Conclusion
In this chapter, we introduced a methodology and Web-based tool support to fos-
ter the scaffolding of decentralized CIS for CoPs. We introduced and evaluated
two main artifacts, the CAE and the SBF. The CAE, with its combination of
of project-based service development management, requirements engineering and
wireframing support, and its capabilities of service success evaluation of running
services, covers the complete application life-cycle of a community application,
deployed in a decentralized CIS infrastructure. The SBF on the other hand con-
centrates on opening up new interaction possibilities with Web-based community
applications, focusing on supporting and scaffolding learning scenarios by leverag-
ing conversational interfaces that are already well-established within the supported
communities. Combining these two approaches, we provided an answer to our
second overarching research question “How to support the creation of decentral-
ized CIS with the help of Web-based tool support?” by providing different levels
of scaffolding throughout different stages of the application development and life-
cycle. In the upcoming chapter, we validate both the frameworks created within
this and the previous chapter, by applying the methods and the tools created within

128 CHAPTER 4. SCAFFOLDING DECENTRALIZED CIS

three large application and evaluations.

Chapter 5

Distributed Learning in
Decentralized Community
Information Systems

Summary

In this chapter, we present three real-world demonstrations and evaluations
of the tools and methodologies we presented in the previous two chapters.
The first is a virtual VET center, created with a model-driven methodology
and using las2peer’s monitoring and evaluation suite. The second is a
decentralized infrastructure for knowledge-building, created for an EVS
training course. The final and still ongoing demonstration implements an
infrastructure for scaling up digital mentoring processes.
Contributions ⇒ RQ 3. Keywords: TEL; VET; LA; Distributed Learning
Infrastructure; Community Knowledge Building; Scalable Mentoring. The
results presented here have been partially published in [LNKl17, LFGK17,
LGFK18, LNNK18, LGF*20, NLKK19, KLN*20, NLK*20, LBNK21].
This chapter contains partially information and content extracted from these
publications.

To apply and evaluate the decentralized CIS infrastructure together with its
scaffolding tools and methodologies we presented until now in this dissertation,
we performed three real-world demonstrations and evaluations within the domain
of TEL. More specifically, we conducted a study in the domain of Vocational

129

130 CHAPTER 5. DISTRIBUTED LEARNING IN DECENTRALIZED CIS

Educational Training (VET), where we created a model-driven LMS to create
Personal Learning Environments (PLEs) that feature both synchronous class-style
learning and asynchronous, SRL. This low-level entry barrier modeling environ-
ment was used by multiple vocational training companies across Europe to create
two training courses in the domains of Social Entrepreneurship and Tourism &
Hospitality. Apart from applying a derived version of our model-driven method-
ology for end user training course creation on the Web, we also applied the NRT
evaluation center to compare SRL with a synchronous, webinar-driven learning
mode, both applied in the same platform. The second real-world demonstration
and evaluation was performed in the domain of EVS training. We created a fully
decentralized digital version of a proven method for ignorance modeling, named
question-based dialog. The outcome, the “Distributed Noracle”, was evaluated
in multiple iterations and integrated most of the infrastructure, scaffolding tools
and methodologies introduced in this dissertation. Using las2peer as basis for
application development, we also used the CAE to create a first scaffold for an
initial prototype of the Distributed Noracle. In subsequent iterations, we integrated
both the service explorer, the NRT evaluation center and the SBF into the applica-
tion. Requirements for developing and improving various parts of this dissertation
stemmed largely from the iterative evaluations, as was the development of the
Distributed Noracle in terms influenced by the new availability of the tool support
developed during the course of the dissertation. Finally, our third demonstration
presents a distributed architecture for scaling up mentoring processes. This still
ongoing effort is applied in the scope of a large German research project and
integrates las2peer into a kubernetes-based infrastructure, together with various
applications developed by other partners of the consortium. It combines and opens
up the las2peer ecosystem with external tools, dependencies and (development)
methodologies by integrating it in a large ecosystem of an heterogeneous appli-
cation landscape. Here, the blockchain-based verification of LA, as well as the
SBF are applied at a large scale. The testbed-based structure of the project allows
for large evaluation setups with hundreds of participants, of which much is still
ongoing works. Still, the initial steps were made in the course of this dissertation
and lay the groundwork for future promising research outcomes in the domain of
decentralized and distributed scaling of (university) mentoring processes.

5.1. A VIRTUAL VOCATIONAL TRAINING CENTER 131

5.1 A Virtual Vocational Training Center
In this section, we present the development and evaluation of the Virtus Virtual
VET Center. Although we refrain to present a complete design-science method-
ology for it, we first presented the center as a demonstration paper in [LNKl17].
The feedback gathered from this demonstration, together with the feedback we
received from the project partners and evaluation participants led us to developing
and tailoring MobSOS and the NRT evaluation center more closely to the created
PLEs. While doing this, and after our first evaluations also presented it more
clearly, we identified the presence of two very different learning modes within the
same platform, something we deemed pretty unique to our use case. Thus, we
investigated this topic by comparing the learning modes side by side, using (and
further extending) the monitoring capabilities of the underlying platform. The
results of this study were published in [LNNK18]. The combined results of these
works make up the complete demonstration and evaluation of the V3C that is
presented here.

5.1.1 Introduction
The digital transformation is affecting vocational training as any other business
these days. A virtual vocational training center is a hosted solution for the im-
plementation of training courses in the form of for example webinars. There are
many undeniable advantages comingwith the utilization of virtual training centers,
both for training providers and trainees. Training providers can save the rent for
training facilities including the procurement of furniture, media technology and
training materials. Furthermore, they can expand their business to other regions.
Scaling their business is important for many training providers, in case their busi-
ness is threatened by economic up- and downturns or by changing demands in
job descriptions. They can enter other markets, e.g., translate electronic training
materials, adjust materials to different job descriptions or cooperate with other
training providers in larger virtual training centers at low front-off costs. Trainees
can save travel time and costs and take parts in training programs offered outside
their living areas. However, the virtualization of training has also downsides, most
important the loss of social interaction with other learners and the informal ex-
change of information before, during and after the training. So, the goal of a virtual
training center is not only the formal implementation of training courses with the
necessary training, testing and certification procedures but also a re-establishment
of informal and social learning opportunities.

132 CHAPTER 5. DISTRIBUTED LEARNING IN DECENTRALIZED CIS

A state-of-the-art virtual vocational training center has to combine a LMSwith
a PLE [Harm06]. The LMS has to be designed to be usable by all stakeholders
responsible for course (content) creation, thus it has to have a low technical entry
barrier. The PLE should allow for both synchronous, class-style learning and
asynchronous SRL at the same time, to cope with the requirements that voca-
tional training brings. Whilst both the need for classical teaching via webinars is
needed in this domain, vocational training needs to take into account asynchronous
learning, since many students are working full-time at different companies, only
connected to each other as a CoP, making it impossible for them to participate in
each teaching session. A platform that supports both learning modes needs to have
the possibility for a live video chat, as well as for static content that is available all
the time, like slidesets, videos and online assessment tools that provide feedback
to both learners and tutors about the students’ progress. Additionally, the system
should track the learning progress of the students in form of data collection in
the background. This data and its aggregation, clustering and evaluation allows
for LA, which in term can provide valuable insights for both trainees and training
providers to either improve their learning or teaching (material) accordingly.
As the main outcome of the European Erasmus+ project “VIRTUS”, we there-

fore developed the Virtus Virtual VET Center (V3C). It offers webinar-style
training courses with the facilitation of trainers in a synchronous manner as well
as self-regulated, asynchronous learning spaces, where learners can learn in a
self-paced, socially-aware way together with other learners or alone.
One main goal of this study was to apply and tailor the model-driven method-

ology for a Web-based editor that creates vocational training courses supporting
both synchronous webinar-style (or MOOC-style) learning and informal SRL in
vocational training. The resulting PLE, generated from the model-driven creation
process, is realized as a flexible Web-based platform that fulfills the business goals
of vocational training centers as well as learning goals of small- and medium-sized
companies.
From a TEL perspective, we were interested in measuring the impact of the

different learning modes on the learning outcomes. We developed and applied
several LA methods, based on the principles of the NRT evaluation center we
presented in the previous chapter. These methods are utilized and combined in a
way to get insights into both synchronous and asynchronous learning modes, using
different data collectionmethods based on the different interaction possibilities and
also different data analysis and visualization procedures, combining them to an
integrated holistic LA approach for vocational training centers. This blending of
learning modes makes it possible to track the learners’ progress throughout the

5.1. A VIRTUAL VOCATIONAL TRAINING CENTER 133

different learning phases and enables both learners and tutors to see differences and
similarities in the learning outcomes, thereby reflecting on the learning progress.
We evaluate our approach with a focus on the comparison of the two learn-

ing modes with a large number of participants in two training courses. These
training courses, created by specialist companies of different European nations,
are European Credit System for Vocational Education and Training (ECVET) cer-
tified and translated into several language, used by an international audience of
vocational training attendees.

5.1.2 Use Case: Educational Vocational Training
To give an overview on the usage scenario the V3C fulfills, we here sketch a
use case that depicts a typical situation it is used in. As owner of the Gourmet
Travel Agency (GTA), Chris, a V3C customer, needs to train his employees in
using digital technology to book complete packages online. He therefore navi-
gates to the V3C platform and finds a basic travel agent course offered by the
V3C provider Traveling Agents Training Services (TATS), including the option
of a later ECVET certification. Based on his needs, Tanja, a trainer at TATS,
negotiates a customization of the course to his particular business needs. She of-
fers to reuse a basic course by adding GTA-specific metadata to the V3C platform
which contains three modules: “flight booking”, “hotel booking” and “rental car
booking”, each of them featuring both synchronous and asynchronous elements.
Synchronous elements involve NRT communication and collaboration technology
and moderation by a designated trainer at TATS. Asynchronous elements involve
different kinds of multimedia content delivery elements for knowledge acquisition:
a slide presenter, a document viewer, a data upload widget and a video player. The
course furthermore offers intermediate assessments after each module, as well as a
final assessment at the end of the course. Chris asks for an additional course mod-
ule for training gourmet restaurant booking, including information on Michelin
categories, and books a full course.
Together with the TATS team of professional trainers, Tanja designs this new

course module, including curriculum, multimedia contents, custom interactive
course elements and the quizzes for each unit. The elements are added by drag-
ging and dropping existing widgets to the course units. Quizzes are developed
based on the targeted skills and the requirements of the ECVET certification. For
Chris’ several international employees, English and German are added as sup-
ported languages. Upon completion of the new custom gourmet module, Tanja
creates/exports the course using the V3C platform into the PLE. Each unit is

134 CHAPTER 5. DISTRIBUTED LEARNING IN DECENTRALIZED CIS

available as a separate activity under the course space address, the widgets under
each activity reflecting the design view from the LMS component. Chris’ employ-
ees at GTA navigate to the V3C platform to take the new course over a period of
several weeks under Tanja’s supervision. During the whole process, both Tanja
and Chris’ employees can view their performance analyzed by the integrated LA
module. Upon course completion, learners are directed to an external certification
platform for examination and official certification.

5.1.3 Realization

We realized our platform as a hyper learning environment consisting of a LMS
and a PLE. Since the modeling environment had to fulfill a very specific use
case, we decided to re-implement it from scratch instead of reusing the CAE itself.
While following the same principles our scaffolding environment follows, this
allowed us to create a very custom-tailored experience for training course creators
in the domain of VET, which could be used without any prior Web development
knowledge or introduction to it.
The LMS, consisting of both the (also) employee-facing course selection and

the modeling environment is based on a stack of well-established Web develop-
ment languages and protocols, such as PHP, a MariaDB database, JavaScript,
and HTML5. The PLE, implemented by the courses generated by our LMS of
our platform are represented as “learning spaces”, realized using the Responsive
Open Learning Environment (ROLE) platform [RKKN15] and also implements
techniques like Extensible Messaging and Presence Protocol (XMPP) and Web
Real-Time Communication (WebRTC) that realize the collaborative features like
the textual and video chat platform. The monitoring was realized using an early
version of the NRT evaluation center.
The LMS allows for a model-driven drag-and-drop design of course rooms.

This eases the creation of courses, especially for non-technical learning design-
ers, since it shows the learning room already in a What You See Is What You
Get (WYSIWYG) fashion. To given an impression of the functionality of the
modeling environment and the corresponding generated PLE, Fig. 5.1 shows an
example screenshot. Here, one can see in the upper part the modeling environ-
ment. Here, there are four widgets currently added to the course room (depicted
in the background) and the a editing dialog is currently opened. The lower part
shows the PLE generated from this view, with the four widgets deployed within a
course room.

5.1. A VIRTUAL VOCATIONAL TRAINING CENTER 135

Figure 5.1: Above: The modeling view of the V3C. Below: The resulting PLE.

Fig. 5.2 shows one of the learning activities of the course “Social Entrepreneur-
ship”. Each space represents a designed module, with its individual learning units
being represented as “learning activities” of the space. Each course is divided first
into several modules, which again are divided into multiple learning units. This re-

136 CHAPTER 5. DISTRIBUTED LEARNING IN DECENTRALIZED CIS

Figure 5.2: A course room of the V3C platform.

alizes a separation between the individual units which are part of a course, enables
activity and progress tracking for individual units and allows for assessment via
quizzes of the respective units’ learning outcomes. V3C users can autonomously
join spaces via the respective course unit in their LMS. Each course unit may
consist of a video chat, slide presentations, various multimedia content such as
audio recordings, videos and images, and self-assessment quizzes. Tutors and
other learners can intervene into the learning process at any point via video or text
chat, available for each course.
Since our target group for both learning designers and learners consists of

people from Italy, Austria, Greece and Spain, the V3C is developed with extensive
translation functionality, providing opportunities to offer and translate learning
units into different languages, as can be seen in Fig. 5.3. Finally, our platform is
linked to the European Certification and Qualification Association (ECQA), which
then conducts and assesses the final certified exams. For data protection, we use
the OIDC standard to feature a unified login for both the LMS and the PLE, as
well as for the certification process at the ECQA.
The LMS of the V3C platform has a per-module LA section where tutors can

see usage statistics as well as progress reports of the course participants. While
learners use the PLE, usage information is logged into a MariaDB database. We
track user interactions as clicks on differentHTMLelements. We also implemented
a routine which measures the time spent on the respective module unit. All

5.1. A VIRTUAL VOCATIONAL TRAINING CENTER 137

Figure 5.3: The basic course edit view, showing both the multi-language feature
and the translation option in the learning-designer view.

visualized information shown on the platform are real-time LA. The analytics
section is split up into three different views (participants, feedback and activity).
The first view contains information about individual participant results in the
learning module selected. It shows the total number of participants of the module
and lists them. Since during the creation progress of a module and its units, the
tutor has specified the ECVET points that are later granted to students passing the
final test of the course, weweight these points with a factor, resulting in aminimum
duration the user has to interact with the platform to have a “full completion rate”
of the course. Another information to be observed in this view is the assessment
of the module. At the end of each module, the user has to complete a quiz. By
clicking on a participant, the tutor can inspect the monitored data, split up into
the module’s units. It also shows the previously described data of each unit, as
well as how much of the quiz was completed and how many correct answers were

138 CHAPTER 5. DISTRIBUTED LEARNING IN DECENTRALIZED CIS

given. In the second view, tutors can see feedback of the learners. The feedback
widget is optional for the learners and serves as a means for the learners (especially
when using the platform in the asynchronous, SRL mode) to get in contact with
the course designer to mention problems with, for example, understanding the
content. The last view of the analytics section displays the “activity graph” of
the module. All interactions tracked by the system and the overall activity of the
module is displayed here. This visual analytics support enables tutors to track the
activity of their modules over time, being able to see at what times students engage
themselves most in the platform or which courses are more frequently visited.
The graph is auto-scaled and shows the whole activity since the beginning of the
module, but it also offers the option to select a desired time period. We show a
screenshot of these graphs later in the evaluation in Fig. 5.4.

5.1.4 Evaluation
In the following, we describe the evaluation of the usage of the V3C platform.
Here, we follow an established practice of data analysis [JMRy11]. Starting with a
hypothesis, which shapes our research questions, we then describe the data sources
and our method of analysis. We continue by presenting our results, of which the
questionnaire results are based on a technical report created by the VIRTUS project
consortium in [Fond17]. We close this evaluation with the interpretation of the
results and limitations of our study.

Hypotheses

In order to evaluate our collected data and gain insightful conclusion regarding
the usefulness of our approach, we formulate two research questions we want to
answer with our evaluation.
RQ1: How well does platform immanent monitoring of student behavior re-
flect the learning process and how well does the data collection work? This
question for one aims at evaluating the effectiveness of our implemented solution
regarding its technical capabilities of dealing with learner-generated amounts of
big data. Second, it aims at identifying its capability to successfully make pre-
dictions regarding future assessment results, based on the learners activity, with a
special focus on at-risk students.
RQ2: How does asynchronous, SRL perform, compared to synchronous,
webinar-driven learning modes, if applied in the same platform? Here, we
want to compare the two contrary learning modes, to evaluate their differences in

5.1. A VIRTUAL VOCATIONAL TRAINING CENTER 139

final assessment results, drop-out rates and activity or engagement with the plat-
form. As our clustering of students into synchronous and asynchronous “evaluation
groups” is done at random, our question is not aiming at categorizing students into
different “types of learners”, but at evaluating what effect on the learning outcomes
can be seen when replacing mandatory, tutor-supported synchronous learning ses-
sions with additional time for SRL. Since our platform allows the evaluation of
the two groups in the same learning rooms, we can achieve comparable results.

Data Sources

The data used in this evaluation was gathered from the platform immanent LA
mechanism, additionally complemented with the use of a questionnaire that ad-
dressed the general impressions participants had while using the platform. Our
evaluation participants were either alreadyworkers in the tourism sector or planned
to enter this vocational area. Therefore, the courses offered by the platform con-
cerned the two domains of (Social Entrepreneurship and Tourism & Hospitality).
We had a total of 114 learners from four different countries, namely Austria,
Italy, Greece and Spain. The evaluation period span two months. The syn-
chronous learning phase was performed in both courses, facilitated by partners of
the project. Due to practical reasons, we nevertheless only evaluated in detail the
first four modules of the course Tourism & Hospitality, which in total covered 18
units. Every module consisted of at least two units, with a maximum of up to
five units. We were able to recruit 15 learners for the synchronous and 72 for the
asynchronous evaluation. Each of the four vocational training webinars spanned
two hours and covered one module of the course, resulting in a four-day streak
of consecutive synchronous evaluation sessions. The tutor facilitating the syn-
chronous learning session spoke English and used the platform-immanent video
conference widget. Starting with the beginning of the first synchronous evaluation
session, learners who participated in this phase had two weeks time to complete
the course. The asynchronous learning phase began simultaneously with the syn-
chronous learning phase, but here learners had 60 days to complete the course.
Tab. 5.1 shows the number of learners participating in each module. Finally, we
invited the participants to fill out a questionnaire. We received 48 submissions
here, without clustering them into the two evaluation clusters.

140 CHAPTER 5. DISTRIBUTED LEARNING IN DECENTRALIZED CIS

Module Synchronous
Participants

Asynchronous
Participants

SE 1 0 42
SE 2 4 50
SE 3 0 37
SE 4 0 37
SE 5 3 34
TH 1 15 72
TH 2 14 58
TH 3 15 55
TH 4 14 54
TH 5 9 51

Table 5.1: V3C evaluation participants per module.
(SE = Social Entrepreneurship, TH = Tourism & Hospitality)

Method of Analysis

For collecting and public provision of our LA, we used the NRT evaluation center
(cf. Sec. 4.3.4). The MobSOS Query Visualizer (MobSOS QV) is used to embed
multiple measures together in a dashboard-like fashion, which we provide publicly
on the platform. The stored queries for those visualizations are parameterized and
can be used for every module and unit. For our analysis, we use the user activity
and the scored result of the user. We define an activity as any click interaction of
the learner with the PLE, e.g., a click on any button, watching a video or answering
a quiz.
During the synchronous evaluation sessions, participants were allowed to use

the whole platform. Although these sessions were conducted in English, partic-
ipants at this time also were able to use the platform in their desired language.
After each session, the tutor manually created an attendance list, which marked
the attendants as part of the synchronous evaluation group, allowing us to cluster
the participants into an asynchronous and a synchronous cluster.
Both asynchronous and synchronous learners used the same learning rooms

simultaneously. Amodule is marked as completed when the participant completed
the quiz at the end of it. We only consider learners who participated in eachmodule
of the course for the comparison of the scored result and the activity in the PLE.
The scored result of a learner is the percentage of the correct questions of all
modules. The activity is the percentage of all activities done by a user in the whole

5.1. A VIRTUAL VOCATIONAL TRAINING CENTER 141

course compared with the activities done by the learner who has been most active
in the course. We base the calculation of the dropout rate by only taking those
participants who finished all previous modules of a course, although our platform
offers the possibility to only attend single modules of a course without the need to
attend a previous module.
For further data which could not be derived by platform immanent monitoring,

we used additional five-level Likert items for yet missing, however relevant subjec-
tive factors. The questions of the survey were translated into the participants native
languages and were handed out in digital or printed format to the participants of
both phases. Questions regard both the platform as well as the teaching material,
and we focus on those that deal with user satisfaction of the system since this is
part of the success awareness. We have no means to link the questionnaire to
individual persons, nor do we cluster them into asynchronous and synchronous
participant answers.
While using the platform, all participants were aware of the monitoring of their

progress and behavior by our system, and they had the possibility to always review
the personal data we collected, such as quiz results and the time they spent in a
learning space. Only the overview of all participants of a module was restricted
to the tutor/learning designer, as well as the visualization of the aggregated and
anonymized learning room activity. This “Module Activity” view is also depicted
in Fig. 5.4 in the upcoming section.

Results

In this section, we present the results of our evaluation. It has to be noted that
we only consider the first four modules of the course Tourism & Hospitality
for analysis, since it is the only course where we have a substantial amount of
participants in the synchronous learning evaluation (also cf. Tab. 5.1), which
enables the comparison between the two learning modes.
As already mentioned in the previous section, our platform uses (parts of) the

NRT evaluation center to implement a visual LA feature for tutors, teachers and
learning designers to monitor the activity of their modules over time. Fig. 5.4
shows this view for the first four modules of the course. It displays the absolute
number of activities for these modules over time. The timespan in this figure was
chosen tomatch the sixty day evaluation span. It can be seen that two peaks in every
module exist, which correspond to the final assessment of both the synchronous
evaluation phase (after 14 days) and the one of the asynchronous evaluation around
six weeks later. As it can also be observed, there is a smaller, yet considerably

142 CHAPTER 5. DISTRIBUTED LEARNING IN DECENTRALIZED CIS

high activity over the whole evaluation cycle, which is an indicator for continuous
usage of the platform by the participants during our evaluation.

Module 1 Module 2

Module 4Module 3

Figure 5.4: V3C evaluation: Module activity over time.

Our next analysis compares the participants’ activity with their scored result
in the assessment. Fig. 5.5 shows this comparison. Here, we use relative values
for both activity and scored result to make them comparable, due to the different
number of participants in both evaluation phases. We only consider those learners
that took part in the whole course. The Pearson correlation coefficients over all
four modules are p = 0.4593 for the asynchronous phase and p = 0.3589 for the
synchronous phase.
Fig. 5.6 gives an overview about the final aggregated results of the participants

for both evaluations. Again, we use relative values here to make the results
comparable and clean the data from all prior drop-out participants.
Our last analysis concerns the drop-out rate of both synchronous and asyn-

chronous evaluation participants. Fig. 5.7 shows this statistic. The percentages
are always relative to the base number of participants (n = 15 and n = 72). As it
can be seen, here we have the complete participants of both evaluation groups of
the evaluated course. When subtracting these drop-outs from the base number of
participants, it shrinks to the number of the prior three analytic measures (n = 13
and n = 49).
Finally, Fig. 5.8 shows the result of the questionnaire. We aggregate both

synchronous and asynchronous participants together and also take into account

5.1. A VIRTUAL VOCATIONAL TRAINING CENTER 143

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Sc
or
ed
	R
es
ul
t

Activity
Synchronous	Learning	(n=13) Asynchronous	Learning	(n=49)

Figure 5.5: V3C evaluation: Activities compared to scored results.

0%

5%

10%

15%

20%

25%

30%

35%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Re
la
tiv
e	
N
um

be
r	o
f	P

ar
tic
ip
an
ts

Assessment	Result

Synchronous	Learning Asynchronous	Learning

Figure 5.6: V3C evaluation: Assessment results without drop-outs.

144 CHAPTER 5. DISTRIBUTED LEARNING IN DECENTRALIZED CIS

0%

5%

10%

15%

20%

25%

30%

Module	2 Module	3 Module	4

Dr
op

ou
t	R
at
e

Synchronous	Learning	(n=15) Asynchronous	Learning	(n=72)

Figure 5.7: V3C evaluation: Drop-out rate.

learners from the course Social Entrepreneurship, which we have not taken into
account for the prior analysis presented in this section.

Interpretation

Our evaluation aims at answering two research questions. RQ1 regarded the
effectiveness of our technical monitoring solution as well as its capability to
make predictions regarding the learning outcome. For the first part, we can
state that we were able to monitor all data that was produced by the learners in
the evaluation and our platform was capable of handling both synchronous data
streams of multiple people collaboratively using the same learning room, as well as
that it was robust against a long-term evaluation of twomonth for the asynchronous
evaluation phase. This is also backed by Fig. 5.4, which shows a constant activity
flow with the peaks clearly representing assessment deadline phases. For the
second part of RQ1, we have to be a little more cautions with our interpretation.
For one, Fig. 5.5 shows a rather clear correlation between activity in a learning
room and scored assessment results for participants of the asynchronous learning
cluster. The Pearson correlation also confirms this with its value close to 0.5,
which is considered as rather “correlation confirming” by most literature. For the
asynchronous learning phase though, the relation is not that clear. The Pearson
correlation again shows there is a slight correlation between both values, but the

5.1. A VIRTUAL VOCATIONAL TRAINING CENTER 145

Enough	interactive	elements	(4.15)

Platform	has	an	attractive	design	(4.22)

Training	content	 satisfaction	(4.24)

Platform	fulfills	expectations	(4.29)

General	satisfaction	with	the	platform	(4.29)

Easy	navigation	through	 the	platform	(4.49)

1 1,5 2 2,5 3 3,5 4 4,5 5
Average	Learner	Rating	(n=48)

Figure 5.8: V3C evaluation: Questionnaire results.

graph does not really allow for a clear prediction. Reasons for this might be the
smaller subset of the asynchronous cluster. With a larger amount of participants
here, the results might have been clearer. We also tried to evaluate the results
on a per-module basis (instead of the four-module aggregated view), but these
presented similar results.
For RQ2, which asked how synchronous and asynchronous learning modes

perform if applied in the same platform. What we can clearly state is that there
exists a trade-off between time provided to the participants and assessment results.
The cluster of asynchronous learners, which had about 75%more time to complete
the assessments, scored about 33.38% higher than the cluster of synchronous
learners. This can also be seen in Fig. 5.6. On the other hand, it has to be said
that reducing the time needed to train people by two-third results also in a very
high reduction of costs needed to be spend by employers to provide the training to
their employees. Ultimately, it has to be decided by the facilitators of vocational
training courses, if this trade-off between the time needed to train people and the
expected results is worth taking.
Regarding user acceptance of the platform, our questionnaire results (see also

Fig. 5.8) indicate a high satisfaction of the users with the platform itself. Since

146 CHAPTER 5. DISTRIBUTED LEARNING IN DECENTRALIZED CIS

all questions received similar high ratings, we will not discuss them in detail, but
it has to be said that these ratings might also result from the domain we chose
to evaluate our platform. People working or planning to work in the domain of
tourism, especially on a service level, might not be used to the support of their
training by the means of multimedia in general. So the availability of a platform
that provides them with the possibility to perform their training courses online
might have been perceived as very appealing, resulting in these high ratings of
user acceptance.

Limiting Factors

Performing synchronous evaluations that span multiple days is a resource consum-
ing task. Especially, when the participants have to be recruited from a particular
vocational domain, with full-time job schedules and limited time to spend in train-
ing that is not directly financed by their employer. Therefore, we limited the
comparison between the two learning modes presented in the previous section to
the Tourism & Hospitality course, and covered only four out of five modules here.
We decided to leave out the duration measure, which represents the time spent
for a module, due to some technical uncertainties we had with the results they
produced. This is definitely something we need to rethink and re-implemented in
possible future work.
Currently, our assessment is limited to the usage of multiple choice quizzes.

We are aware of the shortcomings of this approach regarding the capabilities of
multiple choice questions to assess learning success as a whole.
During the analysis, we noticed that two learners of the asynchronous phase

participated twice in a course, thus we removed both datasets of the participants
from the evaluation data. One thing we did find out when perform our analysis
was that it would have been interesting to also have a cluster of learners that had
the same time to finish the course as the synchronous learners had (two weeks),
but without providing them the opportunity to participate in the webinar. Finally,
we want to state that our user acceptance questionnaire only aimed at evaluating
the platform from a learner’s perspective. This results from the fact, that the
platform was developed as part of the same project where also the VET trainers
that provided the learning content via the platform were partners of. Thus, we
had no external VET providers that we could have interviewed to find our about
their opinions regarding the model-driven capabilities of the platform, although
we deem this an area worth of further research.

5.2. INFRASTRUCTURE FOR KNOWLEDGE BUILDING 147

5.1.5 Summary
We presented an integrated LA approach that allows to compare asynchronous and
synchronous learning phases and draw conclusions for certification, interventions
and gradual course improvement. It is embedded into a technical platform for
the creation, implementation, deployment and performance of virtual training
courses. We evaluated our contribution with two vocational training courses, one
for social entrepreneurship and one for tourism & hospitality. Based on an English
version, we translated both courses in four languages and conducted them with
114 learners from different European countries. Our main focus was the interplay
of synchronous and asynchronous learning phases to demonstrate the ability of the
platform to blend webinar-style course units with phases of SRL on the platform.
Additionally, we had an eye on important factors for both virtual training centers
offering courses, as well as companies sending their employees for vocational
training, e.g., the drop-out rates. The interpretation of our LA results shows that
the combination of webinars and SRL saved additional resources beyond the pure
availability of a virtual training center.

5.2 An Infrastructure for Community Knowledge
Building

In this section, we present our second real-world demonstration and evaluation,
which integrates all aspects of the architecture and tool support for decentralized
CIS. The outcome, named the “Distributed Noracle”, was evaluated in multiple
iterations and integrated most of the infrastructure, scaffolding tools and method-
ologies introduced in this dissertation. Using las2peer as basis for application
development, we also used the CAE to create a first scaffold for an initial proto-
type of the Distributed Noracle. In subsequent iterations, we integrated both the
service explorer, the NRT evaluation center and the SBF into the application and
the corresponding evaluations.

5.2.1 Introduction and Motivation
The vast majority of human learning happens outside of formal settings. Learning
activities may be quite informal, as found in incidental learning, SRL and social-
ization [Schu00]. Some learning may involve more structure or planning, which
is generally referred to as non-formal learning [Esha07]. A significant portion of

148 CHAPTER 5. DISTRIBUTED LEARNING IN DECENTRALIZED CIS

this learning happens in CoPs. While only few CoPs have the size and influence to
get tools tailored to their needs, the long tail [Ande06] of CoPs does not possess
the resources, such as central hosting infrastructures or shared budget.
Our use case stems directly from the community described in the introduction

of this dissertation (cf. Sec. 1.1). This community of young European youth
workers is preparing for participation in a European-funded training course on
“creative leadership”. Since the whole CoP neither shares a geographic location,
nor central infrastructure or budget, this use case stands exemplary for the needs
and challenges of distributed CoPs.
To help establish the boundaries of the participants’ knowledge and identify

common ground or potential conflicts, the trainers want to find out which questions
the participants have about creative leadership and how those questions relate to
one another. Specifically, the trainers implement a form ofQuestion-Based Dialog
called Noracle [FGMi16] before the training starts, to model and visually represent
their common space of ignorance about creative leadership. This special form of
IBL starts with a seed question raised by the trainers, which is then answered by the
participants by raising follow-up questions. This way, the Community Ignorance
becomes visible and the trainers gain insight about what the participants are
interested in and their views on the subject. As participants create this Problem
Space, they document the questions they have about creative leadership, their
assessments of the questions that others stated and any links they perceive between
them. In its analog form, this involves an on-scene session at the start of the
training course, where the community has a limited time-frame to establish their
community ignorance by writing down questions they have. A digital version of
the concept, hosted decentrally by the community itself, could be applied already
before the community meets. We state the following two research questions:

• RQ1: Does a digital version affect the community’s knowledge of their
ignorance?

• RQ2: Can such a decentralized learning infrastructure be managed by the
community?

5.2.2 Methodology
We followed the design science methodology throughout the complete process. As
it is heavily interwoven with multiple steps described in Chapter 3 and 4, certain
overlaps exist, since both the progress of these chapters was influenced by the out-
comes of this evaluation, as well as vice versa the DistributedNoracle implemented

5.2. INFRASTRUCTURE FOR KNOWLEDGE BUILDING 149

newly available features of both infrastructure and tool support developed during
the course of this dissertation. Fig. 5.9 describes this process. Our starting point

Figure 5.9: Infrastructure for Community Knowledge Building: Design science
process.

was the original, analog Noracle method [FGMi16] and its problem of scalability.
The preliminary evaluation, based on a paper prototype, led to the requirement
of a decentralized version of the application. We communicated these results in
a vision paper [LFGK17]. Our next phase was mainly concerned with getting
to know how people would interact with our newly developed prototype and the

150 CHAPTER 5. DISTRIBUTED LEARNING IN DECENTRALIZED CIS

interface evaluation marks the first evaluation of the digital artifact. We continued
with a first evaluation of the decentralized scenario in a workshop setting, which
disclosed technical shortcomings we tried to overcome and improve for the next
phase, the first real-world pedagogical usage evaluation of our artifact. This rather
large evaluation allowed us insights into manifold aspects of both infrastructure
and tool usage. The aggregated results of these three iterations were communi-
cated in [LGFK18]. Based on the outcomes of this first real-world evaluation,
we found several technical shortcomings of our approach that we addressed in the
following iteration. We established the seed network, improved the monitoring
facilities and developed the service explorer, which we evaluated in our technical
evaluation. These results were communicated in [LJKl19]. The lack of guidance,
especially with regards to larger question-based dialog spaces was addressed in the
following iteration by introducing the Noracle Bot, which we describe in our pilot
bot evaluation and finally our second real-world pedagogical usage evaluation.
Parts of these results build the basis for the use case in [NLKl19] and then were
covered in detail in [LGF*20].

5.2.3 Digital Question-Based Dialog For Ignorance Modeling
In this section, we describe the functionality of a digital and distributed version of
the Noracle method. It fulfills our use case and makes it possible to explore and
map community ignorance through question-based dialog, asynchronously and
without a formal infrastructure.
A space is the main view of the application (shown in Fig. 5.10). Users

can create a space and invite others to the space by sharing an invitation link.
The user interface provides a list of subscribed spaces such that users can switch
between spaces with two clicks. The space view consists of a canvas displaying
the questions and their relations as a graph of speech bubbles. It also features a list
of users subscribed to the space and a (collapsible) help section. Below the canvas,
users can select their current interactionmode. The “Select/Navigate”mode allows
users to define the portion of the graph that is displayed. Selected questions and
direct neighbors of selected questions are displayed. If a displayed question that is
not yet selected has neighbors that would be displayed upon selecting it, they are
symbolically indicated as additional speech bubbles behind the question. In the
“Drag/Zoom” mode, users can move questions around freely, as well as pan and
zoom, to either view parts of the graph in detail or get a birds eye view. The “Add
Question” and “Add Relation” mode allows users to add questions or relations by
clicking on one question (add a question) or two questions (add a relation). Then,

5.2. INFRASTRUCTURE FOR KNOWLEDGE BUILDING 151

Figure 5.10: Screenshot of the Distributed Noracle application, showing a
question-based dialog space used in one of our evaluations.

a dialog window opens that asks the user to enter the text of the question or the
type of the relation. For relations, we allow for both Follow Up relations (depicted
as small arrows indicating the direction), which is the default type of relation that
is created between a new question and its parent question, as well as Link relations
(depicted as straight lines) that display a certain connection of similar questions,
although they are not in a direct Follow Up relationship. Finally, the “Vote/Edit”
mode enables users to either modify their own questions and relations or to assess
the value of questions or relations of others. We use a coloring mechanism that
displays the entity according to its overall rated usefulness in a specific color,
ranging from green to red.

5.2.4 Realizing the Distributed Noracle
In the following, we describe the realization of the Distributed Noracle in more
detail. We start with introducing an exemplary usage scenario and continue with a
description of the realization of the Distributed Noracle. We close the section by
presenting the social bot integration we use in our later evaluations to guide users

152 CHAPTER 5. DISTRIBUTED LEARNING IN DECENTRALIZED CIS

through the question-based dialog.

Exemplary Usage Scenario

Figure 5.11: Exemplary usage scenario of the Distributed Noracle.

Fig. 5.11 shows an exemplary usage scenario of a Distributed Noracle session,
realized on the decentralized CIS infrastructure. While Bob’s node features the
set of microservices that realize the application, Alice has decided to start an
empty node without any services running on it. This can have several reasons,
including the lack of resources, both in terms of computing power or, especially in
mobile settings, energy. Carol’s node also contains a set of Noracle microservices,
whilst Dave has not started a node at all and uses Bob’s node to access the remote
Web frontend for participating in the collaborative session. As this scenario
demonstrates, this approach provides flexible access to the application with several
possibilities to join a session. Depending on the currently available resources
of a community member, las2peer allows to flexibly start and stop (parts of)
applications on a node. This usage scenario does not feature any centralized
component, like a master node or a central URL for the Web frontend. Rather, the
whole infrastructure is distributed among the community.

5.2. INFRASTRUCTURE FOR KNOWLEDGE BUILDING 153

Architecture of the Distributed Noracle

The Distributed Noracle application consists of a set of five microservices that
realize different functionalities of the application, and a gateway service to route
incoming requests. A Space Service handles the creation of spaces and their
members. The Question Service takes care of creating and updating questions,
while the Relation Service does the same for relations. The Vote Service handles
votes for both questions and relations. Finally, the Agent Metadata Service is
responsible for storing additional metadata (such as the name) for the members
of the CoP. Additionally to these five services, the Noracle Service serves as the
Gateway Service to the application that provides a RESTful API to the outside.
Being called by the connector, it distributes the requests to the set of microservices
we just described. The frontend of our application is based on the Angular frame-
work and it is part of the node, served from the distributed storage. Therefore, we
developed a File Service that provides a RESTful interface for storing and serving
Web frontends directly from the network, removing the need for an additional Web
server. Authentication is done using the OIDC standard.

Figure 5.12: A question creation process in the Distributed Noracle.

To give a concrete example of inter-microservice communication, consider

154 CHAPTER 5. DISTRIBUTED LEARNING IN DECENTRALIZED CIS

an incoming request for creating a question (see also Fig. 5.12). This RESTful
request is transferred from the RESTful Web Connector (1) to the Noracle Service
(2), which sends a request to the Question Service (3). This service in term
invokes the corresponding Space Service (4) for further details, for example if the
user is allowed to create a question in this particular space. Upon receiving the
answer from the Space Service (5), the Question Service creates a new Question
object in the distributed storage and calls the Relation Service (6) for creating the
corresponding relation between the newly created question and its parent. Finally,
the Question Service answers to the Noracle Service (7), which sends the reply
to the RESTful Web Connector (8), who forwards the HTTP Response to the Web
Frontend (9), whether the question has been successfully created.
This particular scenario is not necessarily limited to a single node, the mi-

croservices can be situated anywhere in the network and it is also neither needed
nor desired that a particular microservice knows which instance of the called mi-
croservice did handle the request. In the exemplary usage scenario depicted in
Fig. 5.11, if Alice’s node receives such a request, it is distributed throughout the
network, because Alice’s node does not host any of the application’s microservices.
Depending on their current load, the request would be processed by the node of
either Carol or Bob, and theirNoracle Servicewould possibly distribute the just de-
scribed sub-request again to microservices on other nodes. The flexible scalability
of the infrastructure also allows several instances of the samemicroservice residing
at a node, spawning automatically according to the current need. The infrastruc-
ture is designed for failure in such a way, that non-responding microservices are
automatically shut-down and replaced by new instances.
To provide CoP members with the software needed to start their own node,

we created a Node Package. It is a small folder that contains an empty node
preconfigured to connect to a network via a (configurable) Seed Node. It then
replicates the microservices of the application via the P2P network and starts them
locally. For requirement analysis and feedback, we used the Requirements Bazaar
to also include end users in improving the development of the application and
underlying framework itself. The complete application is released as OSS1.

Integration of Social Bots

As our evaluations grew larger, also did the resulting question-based dialog spaces.
We identified the need for more assistance for users of the tool to navigate their

1https://distributed-noracle.github.io

https://distributed-noracle.github.io

5.2. INFRASTRUCTURE FOR KNOWLEDGE BUILDING 155

way through the spaces. Thus, the most recent addition to the framework and
also the Distributed Noracle application is the integration of a social bot that
is capable of sending messages via a chat interface to users, informing them of
recent changes to the graph, and possibly interesting areas worth exploring. Here
we make use of the concept of nudging [KoHe15], by pointing users to areas in the
graph relevant to them, encouraging them to produce content and also to provide
relevant information to facilitate reflection.
Although the SBF, following the OSS approach of all software artifacts devel-

oped in this dissertation, uses Rocket.Chat as primary conversational interface, the
Noracle Bot uses Slack2, since our evaluation participants were already familiar
with it because of its widely spread use in professional communities. The mes-
sages are send daily and provide information about the community’s activity in
the Distributed Noracle within the last 24 hours. All questions mentioned in the
messages are provided as links directly to the corresponding Distributed Noracle
space, with only the linked question initially selected, such that the user starts
exploring the graph from this question when clicking on a link in the bot message.

Figure 5.13: An exemplary general bot message of the Distributed Noracle, as it
was send to the evaluators during our pilot bot evaluation.

Fig. 5.13 is an example of the general statistics that the bot sends to a public
channel, to be seen by all participants. It starts with the number of questions
created, followed by the question with the deepest path, the question that is most
distant from the seed question of the space. It is followed by the most active
user. The activity includes the creation of follow-up questions, relations and rating
questions. The next link directs to the most controversial question, which is the
question with the most votes in both directions (helpful/not helpful). Similar to

2https://slack.com

https://slack.com

156 CHAPTER 5. DISTRIBUTED LEARNING IN DECENTRALIZED CIS

the most active user, the message also provides the most active question which
caused the most follow-ups relations and votes. Finally, the question that caused
the most follow-up questions and the question with the most positive feedback are
presented to the community.

Figure 5.14: A personal botmessage of theDistributedNoracle send to an evaluator
during our pilot bot evaluation.

Fig. 5.14 shows a personalized message, send to a specific user as a private
message. The message gives information about the number of follow-up questions
the participant has created and how many follow-up questions the participant’s
questions have received. In addition, the question that got the most positive
feedback, the question that raised most follow-up questions and each individual
follow-up question of the user’s questions are displayed. Finally, the number of
votes received is provided.

5.2.5 Evaluation
We evaluated our application in multiple iterations, with different types of learning
communities. Following the design science methodology described in Sec. 5.2.2,
each evaluation had a certain focus that lead to a gradual improvement of our
approach and implementation. In the following, we present these evaluations and
finish this section with a discussion of the outcomes.

Preliminary Evaluation

In the preliminary evaluation, a Web science research group used a paper mock-
up of the Distributed Noracle for questioning current priorities in their research
field. The purpose of this evaluation was to determine whether the method could

5.2. INFRASTRUCTURE FOR KNOWLEDGE BUILDING 157

be transferred to a digital space and which features would be required. This
community was appropriate because of the shared interest in a topic, diverse levels
of experience, and a loose collaborative structure.

Participants and Procedure 8 members of the community took part in the
trial. Half of the participants were more experienced members of the team, as
determined by whether or not they were supervising PhD students. The other half
were PhD candidates or post-doctoral researchers. To represent a shared digital
space, the participants worked asynchronously on a large poster in the lab. A gen-
eral reflection question was posed as the seed question in the Distributed Noracle
mock-up: “What is the most relevant, open question for social semantics?" Each
participant received a differently colored marker to represent her contributions to
the poster. As participants added questions, they were also asked to circle ques-
tions they supported and draw links between questions to show their relationship.
Participants also starred those contributions they thought were most helpful. The
evaluation lasted for three days.

Analysis and Outcomes After concluding the exercise, the participants took part
in a short group discussion regarding the insights they could draw from looking at
the question graph. The main themes of the discussion were:

1. The tool could help to structure dialog more efficiently.

2. It encourages to consider broader or new perspectives.

3. Participants need assistance in interpreting the graph.

The participants also expressed thoughts about the overall value of the proposed
artifact. They emphasized the additional possibilities a digital version would
provide in terms of longer running efforts to structure their thoughts as a group.
The need to transfer the process of question-based dialog to a digital space to
increase its value was established through this evaluation.

Interface Evaluation

The first evaluation of the digital tool was conducted with participants on an “on
arrival” training for participation in the EVS program. The participants used the
Distributed Noracle to consider the future of European youth work in the context
of a project planning session. This community was appropriate because of the

158 CHAPTER 5. DISTRIBUTED LEARNING IN DECENTRALIZED CIS

ill-defined nature of the topics that participants were exploring and their lack of
having a central infrastructure.

Participants and Procedure 7 participants between the age of 20-25 from dif-
ferent European and Erasmus+ partner countries took part in the study. The
participants had similar levels of experience in the area of youth work (1-2 years).
In this evaluation, the participants worked synchronously. All participants used a
given link to access a single-node deployment of the Distributed Noracle. After a
project planning session in their face-to-face seminar, the participants joined the
space and continued their reflections online. They had a set period of time to
explore the application with the general reflection question posed to them “What is
the future of European Youth Work?". As participants added questions, they were
also asked to assess questions they found helpful and create links between differ-
ent questions to show their relationship. The exercise lasted for approximately 30
minutes, followed by semi-structured interviews with the participants regarding
usability and value of the digital tool.

Analysis and Outcomes Since this was the first evaluation of the digital version
we focused on the aspects that inherently differed from the face-to-face version.
In particular we looked at analytic features designed to help the individual to get a
sense of a question’s importance, quality and validity for the group. Examples for
this are the marking of questions where conflicts are present in red, or darkening
the circle that surrounds the topic as more and more contributors agree that the
question is relevant. All participants agreed that they understood the semantics of
these analytic features. Some participants suggested improvements regarding the
visual representation. The most frequently mentioned suggestions for improve-
ments concerned the layout and animations of the graph itself. Some participants
considered the automatic force-directed layouting system slightly disorientating at
times. We attributed this to the prototypical nature of the design artifact in this
first evaluation and improved the overall look and feel in further iterations.

Applicability Evaluation

The applicability evaluation was conducted with workshop participants of the
Joint European Summer School on Technology Enhanced Learning (JTELSS).
The purpose of this evaluation was to test the technical features of the tool, in
particular the decentralized architecture and it’s applicability within a group of

5.2. INFRASTRUCTURE FOR KNOWLEDGE BUILDING 159

people with diverse technical and non-technical backgrounds. The community was
considered appropriate for a this kind of evaluation because of their experience
with educational software.

Participants and Procedure Approximately 20 people attended the workshop.
First, the participants were given a short introduction to the method of question-
based dialog and to the application. As part of this introduction, participants
were instructed on how to start their own node and join the network. Participants
used their own devices to launch their nodes. We provided a local seed node that
participants could connect to. The participants were then given about 20 minutes
of time to explore the tool. We provided a general starting question in a sample
space. Participants were also asked to assess questions they found helpful and
create links between different questions to show their relationship. In addition,
they were invited to create their own space and invite other participants to join. In
the end, we asked participants to fill an online questionnaire.

Analysis and Outcomes We received 7 questionnaire responses. Participants
shared the same conceptual understanding about the possible usage context of the
tool: 5 responses were similarly themed around conceptual mapping, development
of a common understanding and knowledge expansion. The visual representation
played a significant role: 4 participants expressed the importance of question-
color and -size. Regarding usage monitoring, we were able to capture data from
12 workshop participants, of which 8 participants started their own node that
connected to our seed node. This network of nodes also provided access to the
application for the other 4 participants, who were unable to launch an own node
on their device. They used the Web frontend provided by another participant’s
node (cf. usage scenario Dave in Fig. 5.11). This demonstrated the capability
of our approach to overcome technical hurdles, such as firewall restrictions or
device security policies. The data we received from this evaluation was afterwards
used to improve the application, leading to a more stable version used in our first
pedagogical usage evaluation.

First Real-World Pedagogical Usage Evaluation

The first real-world pedagogical usage evaluation was conducted with the commu-
nity described in the initial use case (cf. Sec. 5.2.1). Participants of an European
training course on creative leadership were invited to take part in an experiment

160 CHAPTER 5. DISTRIBUTED LEARNING IN DECENTRALIZED CIS

using the Distributed Noracle to help prepare for the course and explore their
existing knowledge gaps about the topic. For the organizational team hosting the
training course, an orientation activity of this kind is conducted typically at the
beginning of a course. Depending on the methods used and the complexity of the
course, this can take several hours to achieve with participants. The incentive for
the host organization to take part was in improving the on-boarding process for
participants and gaining an initial understanding of their ideas. The purpose of
this evaluation was to test the application in a real asynchronous and distributed
setting, adding monitoring data to the qualitative verbal and written data.

Participants and Procedure 34 participants took part in the evaluation. The
participant group was diverse, with different nationalities, levels of experience and
knowledge about the subject of the training course,Creative Leadership. Oneweek
before the training course, participants were notified via email that an “experiment”
would be taking place, using a beta version of an application to help prepare for
the training. They were informed that their participation in the experiment was
completely voluntary, but that the training team and researchers felt the tool could
be helpful in establishing what this particular group of participants found most
confusing or difficult about the concept of creative leadership. The participants
received information on how to join the Distributed Noracle and were invited to
contribute their own questions to a specific reflection question (“What is creative
leadership?”).
Since the participants were locally distributed with prior contact only via

email, we created an artificial distributed setting by creating a network of nodes at
a university. We provided a URL to the participants that automatically distributed
them to their specific node. This created a scenario where each participant had her
own node, without the actual need for a technical setup procedure that would have
been unfeasible for this particular evaluation, especially regarding the evaluation
of the results. After the first 48 hours, participants were asked via email to review
the questions that other participants had posted so far and evaluate how important
or useful they are to the overall discussion. Participants were also encouraged to
make links between questions and add relevant follow-up questions to the questions
of other participants. Once the participants arrived at the training course, the entire
trainer team and the trainees participated in an analysis of the question graph and
an evaluation of the tool’s features. The evaluation included three items: What
insights can you draw from the graph? What features or functions might improve
the value of this tool for you? In which situations could you imagine to use it? Each

5.2. INFRASTRUCTURE FOR KNOWLEDGE BUILDING 161

individual had five minutes to review the graph and to take some notes. Then, the
facilitator gathered the insights in a plenary session, during which the participants’
statements were also clustered according to their shared theme.

Analysis and Outcomes With regard to the insights that could be drawn from
the graph, the participants found it quite easy to see what was most important to
the group, such as focusing on the development of creative skills. When asked
how they evidence this with the graph, the participants noted that many questions
related to this topic in some way. The graph also showed a considerable agreement
about the importance of questions related to this topic (as indicated by the green
color).
Participants stated, that the graph helped them to realize they had taken a very

individualistic perspective on creativity and leadership, with very few questions
having to do with social aspects of creative development. Considering that a large
part of the training course was founded on shared leadership and joint creativity,
this was important to the training team to have highlighted in the graph. The way
that questions were formulated allowed the participants to differentiate between
questions related to defining creativity (“what” questions) and questions related to
the process of developing or improving creativity (“how” questions).
The trainees agreed that the tool helped establish the interests of a group in

advance. This is useful in a variety of settings, in particular educational settings
that are blended or fully online. They also felt that participating in the experiment
was a valuable use of their time. Using the tool in this way saved the training
team an estimated three hours of time with the participants on the training course,
allowing them to more quickly engage with the subject.
The training team remarked, that instructions were important in helping the

participants to know how to use the application. Especially with new users, they
recommend facilitation to maintain the quality of the space by demonstrating
question-asking and some of the application’s additional features. Features that
participants felt were important to develop had to do with analytics to help uncover
other types of insights or consequences. For example, only one trainee had
noticed that similar questions were repeated several times in the graph. When
the training team highlighted this point to the group, they agreed that this was
valuable information that they missed as the graph became larger and less visually
manageable. In addition, a third of the participants said that they would find it
helpful if there was a way of knowing exactly how many people or a percentage of
people found a question useful. Participants felt this information could help them

162 CHAPTER 5. DISTRIBUTED LEARNING IN DECENTRALIZED CIS

identify questions they might find interesting or important. All of the participants
and the trainer team felt that the tool would be improved by having a way of
visualizing what insights or consequences could be drawn, for quick and easy
reference.
Beginning with this evaluation, we also began live monitoring the complete

network for user activities. We started the monitoring the day we sent out the
invitation mail, while we asked the participants to start their 48h collaboration
phase on the beginning of day three. With the help of the monitoring data, we
recorded high activity between day three and five, while it declined afterwards.
Still, the number of recorded activity before and after this “official” trial phase
shows the intrinsic motivation participants had to (re-)visit the problem space,
an important factor for learning activities in SRL scenarios. Another interesting
observation we made during analyzing the monitoring data was, that with an
average question depth of 1.9, a question was on average about two questions away
from the seed question. We perceive this as another indicator of the usefulness of
the graph-based visualization, since most questions did not connect directly to the
seed question, but to follow-up questions, demonstrating the evolving awareness
of the community ignorance, represented by the growth of the graph.
After this evaluation, we implemented the service registry with its service

explorer frontend (see also Sec. 3.4.3) to allow non-technical community mem-
bers easier handling of services and applications via a node-frontend, while also
verifying services running in the network and detecting the upload of malicious
services to the network. We then continued with a technical evaluation to measure
capabilities of our framework and application in terms of larger spaces and high
usage simulations.

Technical Evaluation

Apart from our user evaluations, we also evaluated the Distributed Noracle ap-
plication from a technical point of view. This work was mainly done in between
the first pedagogical usage evaluation and the integration and evaluation of the
Noracle Bot, but we continued to monitor usage activity thenceforward.

Procedure From the first pedagogical usage evaluation on, we maintained a
network of ten always-online “seed” nodes. This served two purposes. On the one
hand, these nodes acted as an entry point to the Distributed Noracle application
directly by providing multiple Web connector endpoints that are displayed on our
project’s Web page. On the other hand, they allowed to connect one’s own node

5.2. INFRASTRUCTURE FOR KNOWLEDGE BUILDING 163

to the network to participate. Additionally to these nodes, we installed a MobSOS
monitoring node that collected (anonymized) usage statistics of the Distributed
Noracle. The pedagogical implications of this monitoring data already were partly
covered in Sec. 5.2.5. But from there we went one step further and added pre-
processed monitoring data to the landing page of the application’s frontend, using
the NRT evaluation center. This way, each user that either started her own local
frontend, or used one of the provided ones, was able to see them.
Additionally to this, we wanted to test the technical capabilities of our applica-

tion and framework in terms of data processing and provision. Therefore, we took
a snapshot of the data of a Reddit megathread3 and processed it in a Distributed
Noracle space, measuring the time it took. It consisted of 163 users, posting
308 questions and answers. We interpreted each response, regardless of its type
(question or answer), as a follow up question to its parent.

Figure 5.15: Usage statistics of the one-year decentralized infrastructure deploy-
ment, continuously providing the Distributed Noracle application since our first
real-world pedagogical usage evaluation.

3https://www.reddit.com/r/NoStupidQuestions/comments/addb81/us_
government_shutdown_megathread/ (Snapshot taken on 22.01.2019)

https://www.reddit.com/r/NoStupidQuestions/comments/addb81/us_government_shutdown_megathread/
https://www.reddit.com/r/NoStupidQuestions/comments/addb81/us_government_shutdown_megathread/

164 CHAPTER 5. DISTRIBUTED LEARNING IN DECENTRALIZED CIS

Analysis and Outcomes Fig. 5.15 shows a screenshot of the usage statistics
collected in a roughly one-year period since the start of the first pedagogical
usage evaluation. Clearly visible is the peak of created questions on the day we
uploaded the Reddit data to the network, making up for about half of the 626
created questions in this time period. Interesting observations are that the majority
of people rather rate questions as helpful (positive) than neutral or not helpful
(negative). The average (median) number of questions per space is quite low with
only 16.5 questions stated per space. We interpreted this as a clue that guidance
and nudging support, as we introduce later with the addition of the Noracle Bot,
are crucially needed to handle larger spaces.

Regarding the Reddit megathread, the time it took to create all 163 users was
about 3minutes, whilst the creation of the 308 questions took about 100minutes. It
has to be noted, that the latter time is also the result of not being able to parallelize
the process, since a question could only be uploaded once its parent question
existed, so that it could be linked to it. Nevertheless, in a real use case of such a
big thread, multiple questions could be created in parallel, since many questions
have the same parent. This evaluation showed that the framework is technically
capable of processing large question-based dialog spaces. However, Fig. 5.2.5
shows a (partial) screenshot of the resulting graph. As one can see, the space is
very crowded. Apart from the more-or-less obvious seed question in the center
of the space, it would be very hard for users to find relevant areas in the graph.
Also, the visualization tended to re-render pretty often due to the large amount of
questions to be displayed on the screen. Especially in mobile usage scenarios, a
large space like this would become impractical to use.

On the basis of the now available technical evaluation data and the newly
implemented monitoring capabilities, we thought about ways of providing relevant
analytical information about the space to the community. The approach that
we felt made most sense to focus on, given the pedagogical and technological
underpinnings of the Distributed Noracle, as well as the improvements suggested
by participants, was the introduction of social learning bots. The diversity of
participant needs suggested that this new facilitating tool should guide the users
through the problem space, tailoring themselves to the user by analyzing the
previously monitored usage data. Bots offered a seamless choice for providing this
service on top of the existing application and framework.

5.2. INFRASTRUCTURE FOR KNOWLEDGE BUILDING 165

Figure 5.16: Visualization of a Reddit megathread as a Distributed Noracle space.

166 CHAPTER 5. DISTRIBUTED LEARNING IN DECENTRALIZED CIS

Noracle Bot Requirement Analysis

To gather requirements on what type of information the Noracle Bot should report,
we conducted a small study with five educational experts from the domain of our
first pedagogical usage evaluation. While we do not see this study being an “own”
iteration of our design science process, it provided us with the requirements that
influenced the development of the pilot bot iteration described in the next section.

Procedure In this study, we told the participants that we intended to create an
analytical tool to help users engage with the Distributed Noracle application. We
briefly explained the concept of a social bot, so that participants would understand
how to frame their requirements. We then asked them to engage with the tool
as part of a regular reflection activity and to observe the space, the users, and
the content they create. Following the activity with the Distributed Noracle, we
delivered a guided meditation, asking participants to consider what could happen
if the number of questions in the graph were to increase ten-fold, or if more users
were to participate. Finally, we asked them what they believed might happen if
users were engaged in multiple spaces with different types of seed questions at the
same time.

Analysis and Outcomes Participants mentioned capabilities that the bot should
have including informing you if someone interacted with one of your questions
or other contributions in the space. In addition, participants were interested in
seeing high quality information that helped them understand and navigate the
space. For example, participants were interested in which questions provoked the
most activity, agreement or disagreement in the space, as well as which question
threads appeared most dense. Finally, the bot should provide both general and
personalized reports related to different participants’ activity in the space.

Noracle Bot Pilot Evaluation

On the basis of this requirements analysis, we created the Noracle Bot, a social
bot for the Distributed Noracle, and conducted a pilot evaluation to test both
the capabilities of this first bot prototype, as well as our evaluation procedure
for the upcoming second real-world pedagogical usage evaluation. Following
recommendations from the first pedagogical usage evaluation, we facilitated a
Distributed Noracle space for this pilot evaluation and also included participants
who were familiar with the face-to-face or digital versions of the Distributed

5.2. INFRASTRUCTURE FOR KNOWLEDGE BUILDING 167

Noracle. In addition to facilitation by these researchers, these influencers’ role
was to help shape the activities of the pilot “community”. Participants were
invited to use the space as they might if they were actually working together on
a topic, and to observe the functionality of the Noracle Bot as the question-graph
expanded.

Participants and Procedure 9 participants from the researchers’ networks of
past participants and colleagues took part in the evaluation, with one participant
being in a location with an internet firewall that rejected the application and thus
not being able to participate. The participant group was diverse, with different
nationalities, levels of experience, domains of activity, age and knowledge about
the method of question-based dialog used in Distributed Noracle.
We provided a dummy seed question of “Do you have a question?" to allow

participants to choose which themes they wanted to bring up in their questioning.
After receiving instructions on how to participate in the Distributed Noracle space,
the evaluation began. We also asked participants to use the tool for five days during
the work week and to make at least three contributions per day.
At the end of the week, we prepared an anonymous online evaluation for

participants and invited more in-depth feedback both in-person and via e-mail.
The questions provided to participants in the evaluation were intended to refer
back to the basic requirements that previous participants mentioned: to provide
more information about one’s own activity in the space and to identify points of
interest in the graph, delivered in a way that users find manageable.

Analysis and Outcomes Three days into the evaluation, the question graph
grew so large that participation became very difficult. However, the evaluators
attempted to continue until we stopped the evaluation exercise one day early. Six
out of the eight participants who were able to participate in the evaluation had
positive impressions of the Noracle Bot from the evaluation, rating the quality
of information provided as “high” or “very high”. In addition, the majority of
participants believed that the bot was most likely necessary for navigating the
space effectively. With regard to the bot’s ability to provide information about
one’s own activity in the space, seven participants described it as “valuable” (one
participant offering a modifier of “highly valuable”). With regard to helpfulness in
identifying points of interest, the bot performed slightlyworse, with six participants
describing the bot’s performance as “helpful” and both one modifier of “very
helpful” and “neutral”. Concerning the delivery of messages, the diversity of

168 CHAPTER 5. DISTRIBUTED LEARNING IN DECENTRALIZED CIS

participant answers indicated that in the future, the timing of the bot’s messages
and the exact information it provides should be customizable. With the open
questions that we provided in the evaluation to gather more qualitative data, we
learned that the participants did evaluate theNoracleBot as beingmostly successful
at the capabilities it was designed to do and that participants found those things
useful in similar ways to those of the participants in the requirements evaluation.
One particular interesting improvement mentioned was to have the “flexibility in
when to call the stats and a deeper look at how many branches you created or how
many child relations came from one of your questions”.

Second Real-World Pedagogical Usage Evaluation

Our second real-world pedagogical usage evaluation took place in the context of
an Austrian student association training event for young people that lasted several
days. The trainers organizing the event were in a generational change, with some
of themore experienced trainers on the edge of retirement and some novice trainers
participating for the first time. Also the handover of the event management, which
took place after this years event, was announced well in advance. With this
background, many discussions were held about the future direction of the event.
Noracle was chosen as a method to support these discussions and open them up
to all staff members. We defined three main areas of discussion and formulated
open ended questions to initiate three predefined Distributed Noracle spaces.
The evaluation participants had the goal to create a comprehensive, collective
understanding of what their burning questions for the future of the event were.

Participants and Procedure Evaluation participants were ten trainers from this
event. The participants were male, aged between 20 and 30 years with different
professions. The event consisted of lectures, discussions, practical activities, and
evening events. Every trainer had a different schedule and different tasks during the
day, such that face-to-face group reflectionwas only possible after 10pm. The event
started on a Friday at 4pm. Scheduled event activities, debriefing and preparations
for Saturday kept the trainers busy till midnight. After that, the Distributed Noracle
was introduced as a tool to facilitate collaboration and group thinking, despite the
different schedules. Technical support and guidance was provided to ensure that
the system was working properly for all participants. They were instructed to use
the Distributed Noracle for the coming days of the event, and that they would
receive social bot messages regarding the activity of the question-based dialog
via Slack. The social bot was configured to send out messages at 10pm such

5.2. INFRASTRUCTURE FOR KNOWLEDGE BUILDING 169

that participants would also be able to discuss the provided information. The
evaluation ended on the next Wednesday’s morning and participants were asked
to fill a questionnaire.

Analysis and Outcomes The participants started creating questions on Friday
night. The last question was asked on Tuesday afternoon. Within this time frame
54 questions, linked with 58 relations, were asked and 22 votes were cast. Of those
54 questions, 34 were created between 8am and 10am, 10 between 4pm and 6pm.
Between 10am and noon, as well as between noon and 2pm, 3 questions were
created each. Finally, 4 questions were created between midnight and 2am, all on
the first night after the tool was introduced. This distribution of activity aligns
with the expectations we had from the different schedules of the trainers. As the
questions were asked over a period of about 85 hours, on average an average of
15 new questions were asked per day. Most activity was recorded on the second
full day of activity (Sunday). The ratio between new relations and new questions
rose from 0.75 new relations per new question on Saturday to 1.19 on Sunday and
peaked at 1.38 on Monday before falling to 1 on Tuesday.
To cover the difference in perception between single-space and multi-space

usage, we extended the questionnaire from the pilot evaluation, such that we could
compare the perceived differences in terms of sense making of what is happening,
understanding ones own activity and pointing to questions of potential interest.
Eight questionnaires were handed in. With respect to the multi-space evaluation,
participants perceived most value of “the Noracle Bot in pointing you to questions
of potential interest” across spaces, as compared to a single space scenario. Two
respondents perceived the Noracle Bot very valuable in this regard across multiple
spaces, but only somewhat valuable for a single space. Another respondent per-
ceived it extremely valuable across multiple spaces and very valuable for a single
space. The other five respondents found it equally valuable. This observed differ-
ence in perception on single and multi-space scenarios is not significant, but well
aligned with the intuition that the value of a bot raises with growing complexity.
From the open ended questions we extracted the following reoccurring themes

from the responses (occurrences in brackets):

• Question-based dialog as method triggers thinking in new structures (6). It
was noted however, that it may not suit every problem (1).

• Bot messages were informative (6) about structure (4), where questions
belong and connections should be modeled (2).

170 CHAPTER 5. DISTRIBUTED LEARNING IN DECENTRALIZED CIS

• Information provided by the bot needs to be (more) precise/specific (3) and
directly related to ones own questions or actions (2).

Responses to whether or not the participant would recommend using the Dis-
tributed Noracle to a friend or colleague, resulted in two detractors (those who
would not recommend), one passives (who would not agree to recommending or
not recommending) and five promoters (who would recommend).

Discussion

Improvements proposed by users mostly dealt with the interface and analytic
features, such as additional ways of visualizing other aspects of the dialog by
making nodes larger or smaller, allowing for certain questions to be marked as
“resolved” and additional ways of linking questions. Most of the users in all
evaluations said that such a tool can be useful in the planning stages of a project
and at the beginning of any complex task or assignment to gain orientation. In
addition, participants saw affordances for structuring group- and teamwork in
schools. Improvements suggested by the evaluators also included providing more
information about the tool and how to use it, to make the graph searchable by
keyword, and improving the interface.
From the technical point of view, the evaluations showed potential weak points

of our application, such as the stability and ease of starting a node. While we
were able to solve many technical challenges and improve the system during and
after each of the evaluations, we are still working on improving both points.
Nevertheless, the two real-world pedagogical usage evaluations proved that our
prototype is applicable in real-world usage scenarios.
The trainer team of the first real-world pedagogical usage evaluation stated

they were able to save considerable time in gathering important information on
the trainees’ expectations and knowledge. In a typical training scenario, a half
day would have been spent on these types of abstract questions about the program.
In this case, it only took 45 minutes of analyzing the resulting question-graph to
achieve an even better result. In addition, starting the process in advance seemed
to have the effect that the group took the exercise more seriously, which lead to
these better results. Possible reasons for this mentioned by the trainers were that
when the method is used in face-to-face settings, the participants are naturally
distracted by the person they have in front of them. The tendency to move towards
providing answers or advice makes it more difficult to keep them on task. Working
asynchronously with the participants appeared to have resolved this as it was not
necessary to always repeat that the participants should only ask questions.

5.2. INFRASTRUCTURE FOR KNOWLEDGE BUILDING 171

Our second real-world pedagogical usage evaluation did show the helpfulness
of the Noracle Bot, especially in a multi-space scenario. This is still a topic to
be explored further, since we only scratched the surface of the possibilities social
bots bear, and we did not evaluate the (potential) role a social bot plays in the
community itself by being a real member of the space and, e.g., creating questions
based on previous domain knowledge. These processes bear a lot of potential for
further investigation of user guidance and nudging in CoPs.

5.2.6 Summary

With the Distributed Noracle, we demonstrated and evaluated the application of a
decentralized CIS for knowledge building. The infrastructure, based on the tech-
nical and methodological contributions introduced in the previous two chapters,
can be managed by the community members themselves. The microservices re-
alizing the applications are based on las2peer, and thus are able to self-replicate
through the network according to the community’s current needs and provide the
necessary information. The introduction of the Noracle Bot, as an exemplary
utilization of the SBF, connects the decentralized learning environment infrastruc-
ture to already established tool support in CoPs. Our real-world pedagogical usage
evaluations proved the applicability of our approach in the domain of non-formal
learning communities. The evaluations also showed that a digital version of a
proven method for IBL affects the community’s knowledge of their ignorance,
which answers our first research question we posed, and can be build with our
presented infrastructure, managed by the community itself, answering the second
research question. The Distributed Noracle provides both potential time-saving
opportunities, as well as it enables question-based dialog sessions that would oth-
erwise just not be applicable because of spacial differences within the CoP, or the
lack of centralized, managed infrastructure. Our approach concentrates on taking
into account the specific attributes of CoPs, like temporal and spatial dynamics.
By consequently addressing these attributes, we support CoPs in their efforts to
share and acquire knowledge. As information remains available throughout the
communities’ existence and services evolve continuously at the same time, our
infrastructure ensures sustainability and adaptability, aptitudes we reckon to be
crucial in the development of a more democratic and egalitarian Web.

172 CHAPTER 5. DISTRIBUTED LEARNING IN DECENTRALIZED CIS

5.3 A Distributed Mentoring Architecture
We finish this chapter with our third and final demonstration, which provides an
outlook on future developments of the methodologies and tools developed during
the course of this dissertation. Set within a more formal learning scenario, we
embed the approaches presented in Chapter 3 and Chapter 4 in a larger, shared in-
frastructure for digital university mentoring. This still ongoing effort is conducted
in the scope of a long-running German research project. The testbed-based struc-
ture of the project allows for large evaluation setups with hundreds of participants,
of which much of is still ongoing work.

5.3.1 Introduction and Motivation
Mentoring is the process of the mentor supporting the mentee, in order to make
the learning experience more effective and efficient. Psychological and emotional
support are at the heart of the mentoring relationship, underpinned by empathy
and trust. Mentoring can provide multiple roles [RiSa12]: counseling, instruction,
training, activation, motivation, socio-emotional support, networking and exam-
ple. There are also other success factors that make mentoring effective, like similar
values, demographic proximity, trust and respect. Many of them have been al-
ready considered in existing approaches, including affect detection, meta-cognitive
support, lifelong mentoring or prediction [KSIg19].
In modern higher education institutes, mentoring has become challenging due

to the mass of students and the lack of resources. It has raised the interest in
socio-technical support for mentoring processes, which include peer mentoring
and technological processes. Intelligent Tutoring Systems (ITS) [BrPe03] have
already a rather long tradition in university teaching, and their role as virtual
mentors in mentoring processes has lately been recognized [HoWa15]. Topics like
peer mentoring, virtual mentors, affective and emotional support [TGDN18], but
also minorities [MCH*19] and modeling [DiBr16] are subject of recent research.
These topics were successfully applied especially in those areas, where domain

knowledge can be well formalized with the help of experts. However, motivations,
emotions and meta-cognitive competences play a crucial role in education. They
can be monitored through big educational data and a wide spectrum of available
sensors, bearing the potential to also improve the mentoring process.
In this application of the methodologies and tools developed during this dis-

sertation, we take a look at these various aspects and investigate how they can
be technologically supported, in order to satisfy the requirements for Intelligent

5.3. ARCHITECTURE 173

Mentoring System (IMS). Our use case for building the infrastructure mainly
stemmed from an accumulation of requirements that emerged during the course
of a project funded by the German Federal Ministry of Education and Research
(BMBF), called tech4comp4. In this project, a consortium of multiple universities
works together to develop a shared infrastructure for distributed, digital mentoring
processes. As each partnering university employs different LMS, as well as a va-
riety of multiple other data sources like sensors, questionnaires and interview/face
to face mentoring data, the need for a unified representation of this data for further
processing arises. Also, the combined efforts for a shared infrastructure brings up
questions with regards to data protection and privacy. Finally, as each partner uses
different systems for both generating the LA data used for mentoring, as well as
to actually provide the mentoring, the need for a unified interface for mentors and
mentees arises. While this project is not the only source of requirements, and there
are a few other research projects that now actually use the presented infrastructure,
this described usage scenario is the largest for now. In the long run, with this
demonstration we seek to answer the following research questions:

• RQ1: How can we design an infrastructure to exchange data between uni-
versities in a private and secure way to scale up on the inter-university level?

• RQ2: How can we integrate heterogeneous data sources to facilitate services
supporting mentoring processes?

5.3.2 Architecture
Fig. 5.17 gives an overview of our current infrastructure. Applications are installed
and operated within a kubernetes cluster. Handling of the data is done decentrally
by a las2peer network. This network resides partly within the cluster, as well as
on premise of the corresponding LMS, to ensure that the complete data transfer is
protected by asymmetric encryption. The blockchain-based LA verification ser-
vice (cf. Sec. 3.6) resides within the cluster. Our infrastructure is connected to the
learning toolchain via so-calledData Proxies for different LMS, which are located
at the institutions of the respective testbed. These form the external part of the
las2peer network, with the task to transfer the data from the respective LMS to the
cluster. Currently, this is integrated for the LMS Moodle and Opal. After running
through the verification system, the incoming data flow from the data proxies is ag-
gregated within the cluster via a monitoring pipeline and streams into a collection

4https://tech4comp.de/

https://tech4comp.de/

174 CHAPTER 5. DISTRIBUTED LEARNING IN DECENTRALIZED CIS

Social
Bot

RESTful
API

RESTful
API

Learning
Record
Store nAI

Tools

Mentoring
Workbench

Opal/
Onyx

xApi Statements

Data
Proxies

Learning
Record
Store 1

Data
Collector

Moodle

...

Microservice Adapter
(Reverse Proxy)

verified
xApi

Statements

Legend

Encrypted
Communication

las2peer

Data
Flow

Distributed
Storage

Container

Ethereum
Blockchain

Further
Data

Sources

Learning
Analytics

Verification
Service

hashed
xApi

statements

Figure 5.17: Mentoring support infrastructure.

of connected LRS. This data is currently analyzed by basic knowledge services,
which provide traditional models of domain, learner and pedagogy, based on both
rule-based and machine learning approaches. The service registry (cf. Sec. 3.4)
allows for securely archiving these services with different versions, which in turn
makes it easier to find and access them. In the future, smart assistance services
will use this data to implement a spectrum of supporting functionalities, including
personalized recommendations, categorizations, predictions and reflections.
As interface for both mentors and mentees, we used the SBF (cf. Sec. 4.6) to

create IntelligentMentoring Bots (IMBots) [NLK*20], chatbots tailored especially
for mentoring processes. They integrate into common messaging platforms and
provide just-in-time feedback. These IMBots are trained with the OSS RASA
NLU5. Additionally, a Mentoring Workbench [RAZS20] integrates back into the
respective LMS, providing the mentees with both the possibility to use the IMBot
from within their known environment, as well as giving them feedback on their
performance. We use an OIDC server to access all services in a modern and secure
fashion. By coupling the OIDC identity and end-to-end encryption, the need for a
central instance through which the communication takes place is eliminated.

5https://rasa.com/

https://rasa.com/

5.4. DISCUSSION AND CONCLUSION 175

5.3.3 Summary and Outlook
In this ongoing demonstration of the approaches developed during this disserta-
tion, we integrate our decentralized CIS infrastructure within a large heterogeneous
technical context, based on OSS standards. The cluster has been set up as a public
infrastructure and every external entity is able to connect to it. Data is currently
coming from several German universities in the scope of the tech4comp project
and from aMOOC supported by an ERASMUS+ project in the field of augmented
reality. Our infrastructure supports both mentor and mentee in various organiza-
tions, following different legislative and organizational procedures, different LMS,
as well as diverse target groups. Our development process, based on OSS commit-
ment, allows us to quickly react on changing user requirements and organizational
restrictions. Given the early status of the data processing, with first data sets
successfully evaluated [NLK*20], we provide a solid basis for future work.

5.4 Discussion and Conclusion
In this chapter, we applied and evaluated themethodologies and tool support devel-
oped during the course of this dissertation. Driven by our third research question
“How can learning communities benefit from using a decentralized CIS?”, our
real-world demonstrations and evaluations provided insights into the applicabil-
ity and usefulness of scaffolding and operating decentralized CIS infrastructures
and applications. The Virtus Virtual VET Center provided insights into the ap-
plicability of the MobSOS concept and MDWE techniques for course design of
vocational learning programs. The Distributed Noracle application, along with its
various artifacts developed alongside, most prominently the Noracle Bot, provided
evidence that a blockchain-backed decentralized infrastructure can be applied in
a distributed CoP. The self-managed infrastructure provided applicability in a
scenario, in which previously community members would have used SNS and
related tools to collaborate, ultimately relying on face-to-face meetings to apply
their developed techniques for collaborative knowledge building and sharing. Fi-
nally, our third demonstration showed the integration and synergy effects of the
artifacts developed within this dissertation with a larger infrastructure, based on
state-of-the-art OSS industry standards. The very heterogeneous software land-
scape within the project is merged seamlessly with the decentralized CIS presented
in this dissertation, showing the general applicability of our infrastructure within
larger contexts.

176 CHAPTER 5. DISTRIBUTED LEARNING IN DECENTRALIZED CIS

Chapter 6

Conclusion and Future Work

This chapter sums up and discusses the contents of this dissertation with respect to
the posed research questions. We then identify future work and provide an outlook
on the developments of decentralized CIS for lifelong learning communities.

6.1 Conclusion
In this dissertation, we tried to answer the question of how Decentralized Com-
munity Information Systems can support Communities of Practice. Rooted in
centralized CIS research [Klam10], taking into account findings from CIS suc-
cess awareness [Renz16], NRT collaborative modeling [Nico18] and requirements
elicitation [Kore20], we drive this research stream forward with a decentralized
and distributed perspective on CIS for lifelong learning communities.
Chapter 3 introduced the technical underpinnings to support CoPs with the

means to host their own, decentralized Web information system infrastructure.
This way, a CoP regains control over their data, while being able to scale the
infrastructure according to their needs. Following the design science principles,
we produced several artifacts to provide possible answers to the question of what
properties a decentralized, self-hosted infrastructure for CIS needs to fulfill. Our
microservice discovery mechanism introduces an API metadata-based approach to
provide communities with information on available services they could make use
of in their community application (development). Decentralizing this approach by
introducing las2peer’s accompanying blockchain, we propose a possible solution
for making this knowledge – which services are running on which nodes, what
functionality do they provide, and how could they be used in ones own community

177

178 CHAPTER 6. CONCLUSION AND FUTURE WORK

– accessible in a secure and verifiable way. This shift of the data being stored in
centralized community’s metadata repositories [Klam10] to a decentralized mi-
croservice infrastructure, hosted by community members, opens up possibilities
for a more democratic and egalitarianmanagement of community knowledge. This
self-hosted, decentralized infrastructure relies on the willingness of participants to
contribute. By incentivizing community members to participate in the hosting of
their community’s infrastructure, the burden of hosting a CIS can be distributed
among the whole community. As one possible solution to this, we proposed the
community contribution incentivation mechanism, based on reimbursing com-
munity members for their infrastructure and service development contributions.
Finally, we present the blockchain-based verification and consent-management
system for LA data. Thereby, we extend the decentralized knowledge infrastruc-
ture with means to connect to external, multimodal LA data sources, like sensors
and LMS.
Chapter 4 then introduced means to support CoPs in creating their decentral-

ized CIS. With the Community Application Editor, communities are provided
with both a methodology and tool support for requirements elicitation, wirefram-
ing, modeling and coding their community applications – all on the Web, all in
NRT. After deployment, we provide the NRT evaluation center for continuous
service success evaluation. At any time, the community has the ability to revisit
and modify their applications, the CAE supports the community throughout the
complete community application life cycle. The second contribution we presented
in Chapter 4 was the Social Bot Framework. It enables communities to create their
own bots, similarly to the methodology the CAE introduced, by using a model-
driven approach that reflects a complete social bot life cycle. By making use of
conversational interfaces, the SBF provides additional ways of interacting with
community applications.
Chapter 5 provided three demonstrations and evaluations of the infrastructure

and scaffolding support tools introduced in this dissertation. We presented the
V3C as a model-driven way of creating VET courses for PLEs. Evaluated on
a large European scale with both trainers and students, we provided an in-depth
evaluation of both model-driven principles and the NRT evaluation center. The
Distributed Noracle, as an example of an infrastructure for community knowledge
building, evaluated various aspects of the decentralized infrastructure introduced
in Chapter 3. Finally the distributed mentoring infrastructure marks the third
demonstration of our developed artifacts. This integration of a decentralized
infrastructure with centralized, more “common” cloud-based system shows the
flexible application of the solutions presented in this dissertation.

6.1. CONCLUSION 179

To sum up this dissertation, we have made the following contributions, sorted
along the lines of our three guiding research questions.

RQ 1 - Decentralized Infrastructures: What properties does a decentralized,
self-hosted infrastructure for CIS need to fulfill? Our main conceptual and
technical basis was the las2peer framework, our decentralized, self-hosted CIS
infrastructure [KRLJ16] with its accompanying blockchain. On top of it, we
created three main artifacts:

• The Decentralized Service Registry [LJKl19],

• a Community Contribution Incentivation mechanism [LSKl20]

• and the Verification and Consent Management of LA Data [LBNK21].

RQ 2 - Scaffolding: How to support the creation of decentralized CIS with
the help of Web-based tool support? Our contributions to answer this re-
search question base on the Community Application Editor [LNKK16, LND*16,
LNKJ17, LNNK20] as both our technical underpinning as well as our conceptual
backbone, while we extended and improved it with the following contributions:

• The Live Code Editing [LNWK18],

• the Role-based Project Management,

• a NRT Evaluation Center [LNNK18],

• its Wireframing Support [LNRK19, LNNK20]

• and the derived Social Bot Framework [NLKl19, NLK*20].

RQ 3 - Learning: How can learning communities benefit from using a decen-
tralized CIS? Finally, we integrated our approaches and developed artifacts in
various (informal) learning communities to observe their effects in practice. This
lead to the development of three larger artifacts, created from the artifacts of both
the decentralized infrastructure and the scaffolding support:

• The Virtus Virtual VET Center [LNKl17, LNNK18],

• our Infrastructure for Knowledge Building [LFGK17, LGFK18, LGF*20]

• and the ongoing Distributed Mentoring Architecture [KLN*20, NLK*20].

180 CHAPTER 6. CONCLUSION AND FUTURE WORK

6.2 Future Work and Outlook

In this dissertation, we have made a case for a decentralized take on CIS. While
we have shown in multiple applications the feasibility of this approach, this work
only covers the first steps towards a fully decentralized knowledge management for
CoPs. We identified several possibilities for future work, building on the outcomes
of this dissertation, which we want to discuss in the following.
In line with the ongoing work of the tech4comp project, the efforts of extending

the distributedmentoring infrastructure will most likely lead to a tighter integration
of the tools and approaches developed in the course of this dissertation with state-
of-the-art industrial cloud infrastructures. The already existing integration of
complete las2peer networks within kubernetes clusters, developed within the final
stages of this dissertation, will likely shape the development practices of las2peer
more towards enterprise-grade software development and delivery processes. This
is in-line with the goal of creating not only a platform that allows for decentralized,
secure self-hosting of community knowledge, but also providing communities with
an approach that allows allmembers – technical and non-technical – to create their
applications in the way most suited to their expertise. As a side-effect, but equally
as important, this research strand will improve the compatibility of our networks
with software developed outside of these practices, the capabilities of the SBF to
call external APIs is already a first step in this direction.
As a consequence, the scaffolding support of creating these community ap-

plications has to be tightly integrated within these new development scenarios.
While the project- and dependency management of the CAE is a first step towards
this, current research seeks ways to extended the support for more cluster-based
deployment and management options. Additionally, the meta-models of CAE have
to be constantly evolved to reflect current trends in Web engineering, which goes
along with the challenges to adapt the wireframing support to do the same. An area
worth investigating here is the integration of IFML, which would provide – if done
completely – a life cycle reflection of the application, already on the level of the
metamodel. Current research in this domain shows promising results [KKJa20],
and an adaption of these principles to a complete scaffolding environment like the
CAE could open up a new level of productivity of MDWE applied by CoPs.
With the rise of trends like the “Low Code / No Code” movement, the idea of

non-technical people conducting programming tasks gains traction. The obvious
reason of the lack of developers with an ever increasing demand for custom-tailored
software leaves the industry little choice but to accept the fact that “There just aren’t

6.2. FUTURE WORK AND OUTLOOK 181

enough developers to go round.”1 and extend software creation processes beyond
trained developers. With this dissertation, we acknowledged this fact and with the
CAE and the SBF, we provide both methodologies and tool support to include all
stakeholders into the development processes.
Taking a step back and looking at the overall picture of current trends and

developments, we see this work well embedded within the recent trend of decen-
tralization. As so nicely put in [Mont16], “centralization and decentralization fight
an eternal battle in many fields of the human culture”. While computing devices
came a long way from centralized mainframes to a more decentralized “personal
computing” approach, and now back to a more centralized approach with trends
like cloud-gaming with thin-clients2, the Web tells its own story of this battle.
While starting technically as a purely decentralized infrastructure of loosely con-
nected nodes, information-wise it started as a place where only technical-savvy
people were able to raise their voice. We then experienced the rise of the Web
2.0, which offered expressiveness power for all users, albeit at the cost of shifting
data ownership to centralized cloud storage providers and SNS giants. P2P ap-
proaches during that time were only used for shady file-sharing applications, and
DHT-based approaches never made it past the academic frontier.
However recently, this slowly seems to change. With the rise of blockchain

technology, largely driven by the public recognition of cryptocurrencies being here
to stay, there is a new case for decentralizing the Web once more. Projects like
IPFS and Solid3 gained traction in the academic- and lately also the developer
world, while projects like Holochain4, with their connection to the cryptocurrency
world, also connect to mainstream adaptation. They all share the idea of a decen-
tralized ecosystem of services, empowering communities to regain control over
their data once more, using P2P principles like blockchains and DHTs. With this
dissertation, we share and contributed to this vision. Last but not least, with recent
publications of very similar focus [HaCa19] and the recently started blockchain-
based verification project MyEduLife5 at the chair, we are confident that the ideas
and vision of this research will be taken further and beyond.

1https://thoughtworks.com/de/insights/articles/making_case_low-code_platforms
2https://stadia.google.com/
3https://solidproject.org/
4https://holochain.org/
5https://bmbf.de/de/karliczek-bmbf-gestaltet-den-digitalen-weiterbildungsraum-13828.

html

https://thoughtworks.com/de/insights/articles/making_case_low-code_platforms
https://stadia.google.com/
https://solidproject.org/
https://holochain.org/
https://bmbf.de/de/karliczek-bmbf-gestaltet-den-digitalen-weiterbildungsraum-13828.html
https://bmbf.de/de/karliczek-bmbf-gestaltet-den-digitalen-weiterbildungsraum-13828.html

182 CHAPTER 6. CONCLUSION AND FUTURE WORK

Bibliography

[AABe10] Jonathan Arnowitz, Michael Arent, and Nevin Berger. Effective Pro-
totyping for Software Makers. Elsevier Science, 2010.

[ABC*16] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irv-
ing, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Va-
sudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: A System for Large-Scale Machine Learning. In Operat-
ing Systems Design and Implementation (OSDI 2016), pages 265–283.
USENIX Association, 2016.

[ABH*02] Anupriya Ankolekar, Mark Burstein, Jerry R. Hobbs, Ora Lassila,
David Martin, Drew McDermott, Sheila A. McIlraith, Srini Narayanan,
Massimo Paolucci, Terry Payne, and Katia Sycara. DAML-S: Web Ser-
vice Description for the SemanticWeb. In The Semantic Web (SWC 2002),
volume 2342 of LNCS, pages 348–363. Springer, 2002.

[AFM*05] RamaAkkiraju, Joel Farrell, JohnMiller,MeenakshiNagarajan,Marc-
Thomas Schmidt, Amit Sheth, and Kunal Verma. Web Service Semantics
– WSDL-S. Technical report, W3C, 2005.

[AHWa07] Fahad Aijaz, Bilal Hameed, and Bernhard Walke. Towards Peer-to-
Peer Long-Lived Mobile Web Services. In Innovations in Information
Technologies (IIT 2007), pages 571–575. IEEE, 2007.

[Ande06] Chris Anderson. The Long Tail: Why the Future of Business Is Selling
Less of More. Hyperion, 2006.

183

184 BIBLIOGRAPHY

[Ange16] Michele Angelaccio. MetaPage: A Data Intensive MockupDD for
Agile Web Engineering. In Web Information Systems and Technologies
(WEBIST 2016), volume 292 of LNBIP, pages 315–317, 2016.

[BeAd10] Behram Beldagli and Tufan Adiguzel. Illustrating an Ideal Adaptive
e-Learning: A Conceptual Framework. Procedia-Social and Behavioral
Sciences, 2(2):5755–5761, 2010.

[BLEr17] Babar, Zia and Lapouchnian, Alexei and Yu, Eric SK. Chatbot Design
- Towards a Social Analysis Using i* and Process Architecture. iStar,
17:73–78, 2017.

[Bayn15] Sian Bayne. Teacherbot: Interventions in Automated Teaching. Teach-
ing in Higher Education, 20(4):455–467, 2015.

[BBMR10] Geoffrey C. Bowker, Karen Baker, Florence Millerand, and David
Ribes. Toward Information Infrastructure Studies: Ways of Knowing
in a Networked Environment. In International Handbook of Internet
Research, pages 97–117. Springer, 2010.

[BCSS99] Guruduth Banavar, Tushar Chandra, Robert Strom, and Daniel Stur-
man. ACase forMessageOrientedMiddleware. InDistributed Computing
1999, volume 1693 of LNCS, pages 1–18. Springer, 1999.

[BuDa09] Sonja Buchegger and Anwitaman Datta. A Case for P2P Infrastructure
for Social Networks - Opportunities & Challenges. In Wireless On-
Demand Network Systems and Services (WONS 2009), pages 161–168.
IEEE, 2009.

[Bene14] Juan Benet. IPFS - Content Addressed, Versioned, P2P File System,
2014.

[Bens16] Jan Benscheid. 3D Annotation for Collaborative Storytelling in Educa-
tion and Research. Bachelor Thesis, RWTH Aachen University, 2016.

[Beng20] Lennart Bengtson. Blockchain-based Verification of Learning Analytics
Data. Bachelor Thesis, RWTH Aachen University, 2020.

[BrFr14] Marco Brambilla and Piero Fraternali. Interaction Flow Modeling Lan-
guage: Model-Driven UI Engineering of Web and Mobile Apps with
IFML. The MK/OMG Press. Morgan Kaufmann, 2014.

BIBLIOGRAPHY 185

[BHJa15] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Migrating
to Cloud-Native Architectures Using Microservices: An Experience Re-
port. In Service-Oriented and Cloud Computing (ESOCC 2015), volume
567 of CCIS, pages 201–215. Springer, 2015.

[BKCr18] Aras Bozkurt, Whitney Kilgore, and Matt Crosslin. Bot-Teachers in
Hybrid Massive Open Online Courses (MOOCs): A Post-humanist Ex-
perience. Australasian Journal of Educational Technology, 34(3), 2018.

[Bern89] Tim Berners-Lee. Information Management: A Proposal. No. CERN-
DD-89-001-OC.

[BHLa01] Tim Berners-Lee, James A. Hendler, and Ora Lassila. The Semantic
Web. Scientific American, 284(5):28–37, 2001.

[BrMi07] Peter Brusilovsky and Eva Millán. User Models for Adaptive Hyper-
media and Adaptive Educational Systems. In The Adaptive Web, volume
4321 of LNCS, pages 3–53. Springer, 2007.

[BaMa14] Ozalp Babaoglu and Moreno Marzolla. The People’s Cloud. IEEE
Spectrum, 51(10):50–55, 2014.

[BrPa98] Sergey Brin and Lawrence Page. The Anatomy of a large-scale hyper-
textual Web Search Engine. In Computer Networks and ISDN Systems,
pages 107–117, 1998.

[BrPe03] Peter Brusilovsky and Christoph Peylo. Adaptive and Intelligent Web-
based Educational Systems. International Journal of AI in Education,
13:156–169, 2003.

[BaPo17] Massimo Bartoletti and Livio Pompianu. An Empirical Analysis of
Smart Contracts: Platforms, Applications, and Design Patterns. In Fi-
nancial Cryptography and Data Security (FC 2017), volume 10323 of
LNCS, pages 494–509. Springer, 2017.

[BeRe01] Christian Bettstetter and Christoph Renner. A Comparison of Service
Discovery Protocols and Implementation of the Service Location Proto-
col. In EUNICE 2000, 6th Open European Summer School. University of
Twente, 2001.

186 BIBLIOGRAPHY

[BRCS14] Alejandro Bogarín, Cristóbal Romero, Rebeca Cerezo, and Miguel
Sánchez-Santillán. Clustering for Improving Educational ProcessMining.
In Learning Analytics And Knowledge (LAK 2014), pages 11–15. ACM,
2014.

[Broo96] John Brooke. SUS: A Quick and Dirty Usability Scale. In Usability
Evaluation in Industry, volume 189, pages 189–194. Taylor & Francis,
1996.

[Brun17] Adam Brunnmeier. Release PLEase! - Setting Up an Application
Store based on an Agile Release Methodology for Personal Learning
Environments. Bachelor Thesis, RWTH Aachen University, 2017.

[Bute17] Vitalik Buterin. A Modest Proposal for Ethereum 2.0, 2017-11-01.

[Butl01] Brian S. Butler. Membership Size, Communication Activity, and Sus-
tainability: A Resource-Based Model of Online Social Structures. Infor-
mation Systems Research, 12(4):346–362, 2001.

[CCMW01] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva
Weerawarana. Web Services Description Language (WSDL) 1.1, 2001.

[Ceci18] Melisa Cecilia. Adding Microservice Discovery Support to a MDWE
Framework. Master Thesis, RWTH Aachen University, 2018.

[CFBo00] Stefano Ceri, Piero Fraternali, and Aldo Bongio. Web Modeling Lan-
guage (WebML): A Modeling Language for Designing Web sites. Com-
puter Networks, 33(1):137–157, 2000.

[CKJA07] Chatti, Mohamed Amine and Klamma, Ralf and Jarke, Matthias and
Naeve, Ambjörn. The Web 2.0 Driven SECI Model Based Learning
Process. In International Conference on Advanced Learning Technologies
(ICALT 2007), pages 780–782. IEEE, 2007.

[Cohe09] Steve Cohen. H.R.3149 - Equal Employment for All Act, 2009.

[Conr20] Aaron Conrardy. Chat Assessments with Social Bots. Bachelor Thesis,
RWTH Aachen University, 2020.

[ChVa05] Ran Cheng and Julita Vassileva. User Motivation and Persuasion Strat-
egy for Peer-to-Peer Communities. In Hawaii International Conference
on System Sciences (HICSS 2005). IEEE, 2005.

BIBLIOGRAPHY 187

[DALE16] Robert Dale. The Return of the Chatbots. Natural Language Engi-
neering, 22(05):811–817, 2016.

[DiBr16] Vania Dimitrova and Paul Brna. From Interactive Open Learner Mod-
elling to Intelligent Mentoring: STyLE-OLM and Beyond. International
Journal of AI in Education, 26(1):332–349, 2016.

[BSFM13] Ángel Del Blanco, Ángel Serrano, Manuel Freire, Iván Martínez-
Ortiz, and Baltasar Fernández-Manjón. E-Learning Standards and Learn-
ing Analytics. Can Data Collection be improved by using Standard Data
Models? InGlobal Engineering Education Conference (EDUCON 2013),
pages 1255–1261. IEEE, 2013.

[DeDa04] Prashant Dewan and Partha Dasgupta. Pride: Peer-to-Peer Reputation
Infrastructure for Decentralized Environments. In International World
Wide Web Conference - Alternate Track Papers & Posters - (WWW Alt.
2004), page 480. ACM, 2004.

[DFKP15] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and
Krzysztof Pietrzak. Proofs of Space. InAdvances in Cryptology (CRYPTO
2015), volume 9216 of LNCS, pages 585–605. Springer, 2015.

[DLTM18] Massimiliano Dibitonto, Katarzyna Leszczynska, Federica Tazzi, and
Carlo M. Medaglia. Chatbot in a Campus Environment: Design of LiSA,
a Virtual Assistant to Help Students in Their University Life. In Interna-
tional Conference on Human-Computer Interaction (HCI 2018), volume
10903 of LNCS, pages 103–116. Springer, 2018.

[DaMa09] Wang Dan and Li Maozeng. A range query model based on DHT in
P2P system. In Networks Security, Wireless Communications and Trusted
Computing (NSWCTC 2009), volume 1, pages 670–674. IEEE, 2009.

[DwNa93] Cynthia Dwork and Moni Naor. Pricing via Processing or Combatting
Junk Mail. In Advances in Cryptology (CRYPTO 1992), volume 740 of
LNCS, pages 139–147. Springer, 1993.

[DNE*15] Michael Derntl, Petru Nicolaescu, Stephan Erdtmann, Ralf Klamma,
and Matthias Jarke. Near Real-Time Collaborative Conceptual Modeling
on the Web. In Conceptual Modeling (ER 2015), volume 9381 of LCNS,
pages 344–357. Springer, 2015.

188 BIBLIOGRAPHY

[Doli20] Philipp Dolif. Versioning and Access Management in Web-Based Col-
laborative Model-Driven Web Engineering. Bachelor Thesis, RWTH
Aachen University, 2020.

[DPR*04] David DeSteno, Richard E. Petty, Derek D. Rucker, Duane T.Wegener,
and Julia Braverman. Discrete Emotions and Persuasion: The Role of
Emotion-induced Expectancies. Journal of Personality and Social Psy-
chology, 86(1):43, 2004.

[DoTa03] Martin Dougiamas and Peter Taylor. Moodle: Using Learning Com-
munities to Create an Open Source Course Management System. In Edu-
cational Multimedia, Hypermedia and Telecommunications (EDMEDIA
2003), pages 171–178. Association for the Advancement of Computing
in Education, 2003.

[DeYu14] Li Deng and Dong Yu. Deep Learning: Methods and Applications.
Foundation and Trends in Signal Processing, 7(3-4):197–387, 2014.

[EFGK03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-
Marie Kermarrec. The Many Faces of Publish/Subscribe. ACM Comput-
ing Surveys, 35(2):114–131, 2003.

[Esha07] HaimEshach. Bridging In-School andOut-of-School Learning: Formal,
Non-Formal, and Informal Education. Journal of Science Education and
Technology, 16(2):171–190, 2007.

[Farm14] Randy Farmer. Web Reputation Systems and the Real World, 2014.

[FoBr05] Andrea Forte andAmyBruckman. WhyDoPeopleWrite forWikipedia?
Incentives to Contribute to Open-Content Publishing. In Sustaining Com-
munity – Incentive Mechanisms in Online Systems, 2005.

[FrCa06] Luke Fryer and Rollo Carpenter. Bots as Language Learning Tools.
Language Learning & Technology, 10(3):8–14, 2006.

[Ferg12] Rebecca Ferguson. Learning Analytics: Drivers, Developments and
Challenges. International Journal of Technology Enhanced Learning,
4(5-6):304–317, 2012.

[FGMi16] Tracie Farrell-Frey, George Gkotsis, and Alexander Mikroyannidis.
Are you thinking what I’m thinking? Representing Metacognition with

BIBLIOGRAPHY 189

Question-based Dialogue. In Workshop on Awareness and Reflection in
Technology Enhanced Learning (ARTEL 2016), volume 1736 of CEUR
Workshop Proceedings. CEUR-WS.org, 2016.

[Fiel00] Roy T. Fielding. Architectural Styles and the Design of Network-based
Software Architectures. Dissertation, University of California, Irvine,
2000.

[Fiel08] Roy T. Fielding. REST APIs Must Be Hypertext-Driven, 2008.

[FiLa16] Michael Fischer and Monica Lam. From Books to Bots: Using Medical
Literature to Create a Chat Bot. In Workshop on IoT-enabled Healthcare
and Wellness Technologies and Systems (IoT of Health 2016), pages 23–
28. ACM, 2016.

[FLSC04] Michal Feldman, Kevin Lai, Ion Stoica, and John Chuang. Robust
Incentive Techniques for Peer-to-Peer Networks. In Electronic Commerce
(EC 2004), pages 102–111. ACM, 2004.

[Fond17] Fondo Formación Euskadi S.L.L. Virtus Evaluation Report First Round,
2017.

[Fowl10] Martin Fowler. Richardson Maturity Model: Steps toward the glory of
REST, 2010.

[FVD*16] Emilio Ferrara, Onur Varol, Clayton Davis, Filippo Menczer, and
Alessandro Flammini. The Rise of Social Bots. Communications of the
ACM, 59(7):96–104, 2016.

[GAS*16] Barbara Guidi, Tobias Amft, Andrea de Salve, Kalman Graffi, and
Laura Ricci. DiDuSoNet: A P2P Architecture for Distributed Dunbar-
based Social Networks. Peer-to-Peer Networking and Applications,
9(6):1177–1194, 2016.

[GCHO05] Arthur C. Graesser, Patrick Chipman, Brian C. Haynes, and Andrew
Olney. AutoTutor: An Intelligent Tutoring System With Mixed-Initiative
Dialogue. IEEE Transactions on Education, 48(4):612–618, 2005.

[GJK*01] Günter Gans, Matthias Jarke, Stefanie Kethers, Gerhard Lakemeyer,
Lutz Ellrich, Christiane Funken, andMartin Meister. Requirements Mod-
elling for Organization Networks - a (Dis-)Trust-based Approach. In

190 BIBLIOGRAPHY

IEEE International Requirements Engineering Conference (RE 2001),
pages 154–163. IEEE, 2001.

[GME*15] Pedro Garcia Lopez, Alberto Montresor, Dick Epema, Anwitaman
Datta, Teruo Higashino, Adriana Iamnitchi, Marinho Barcellos, Pascal
Felber, and Etienne Riviere. Edge-Centric Computing: Vision and Chal-
lenges. ACM SIGCOMM Computer Communication Review, 45(5):37–
42, 2015.

[GBGr16] Álvaro García-Recuero, Jeffrey Burdges, and Christian Grothoff.
Privacy-Preserving Abuse Detection in Future Decentralised Online So-
cial Networks. In Data Privacy Management and Security Assurance
(DPM 2016), volume 9963 of LNCS, pages 78–93. Springer, 2016.

[Gutt99] Erik Guttman. Service Location Protocol: Automatic Discovery of IP
Network Services. IEEE Internet Computing, 3(4):71–80, 1999.

[Hank99] Sabine Hanke. The Performance of Concurrent Red-Black Tree Algo-
rithms. In Algorithm Engineering (WAE 1999), volume 1668 of LNCS,
pages 286–300. Springer, 1999.

[Harm06] Mark vanHarmelen. Personal Learning Environments. In International
Conference on Advanced Learning Technologies (ICALT 2006, pages
815–816. IEEE, 2006.

[HoCh11] Ilyoo B. Hong and Hwihyung Cho. The Impact of Consumer Trust
on Attitudinal Loyalty and Purchase Intentions in B2C e-Marketplaces:
Intermediary Trust vs. Seller Trust. International Journal of Information
Management, 31(5):469–479, 2011.

[HaCa19] Kanisius Kenneth Halim and Muhammad Zuhri Catur Candra. Dicey:
A Blockchain Based Decentralized Service Registry. In International
Conference on Data and Software Engineering (ICoDSE 2019), pages
1–6. IEEE, 2019.

[HaGi05] Jennifer Hammond and Pauline Gibbons. What is Scaffolding. Teach-
ers’ Voices, 8:8–16, 2005.

[HMPR04] AlanR. Hevner, Salvatore T.March, Jinsoo Park, and SudhaRam. De-
sign Science in Information Systems Research. MIS Quarterly, 28(1):75–
105, 2004.

BIBLIOGRAPHY 191

[Hodg14] Bert H. Hodges. Rethinking Conformity and Imitation: Divergence,
Convergence, and Social Understanding. Frontiers in Psychology, 5:726,
2014.

[Hoss19] Philipp Hossner. Integrating End Users Into Service Success Evaluation
Processes. Master Thesis, RWTH Aachen University, 2019.

[HTWe16] Florian Hawlitschek, Timm Teubner, and Christof Weinhardt. Trust
in the Sharing Economy. Die Unternehmung, 70(1):26–44, 2016.

[HoWa15] Robert R. Hoffman and Paul Ward. Mentoring: A Leverage Point for
Intelligent Systems? IEEE Intelligent Systems, 30(5):78–84, 2015.

[IQLB16] Luca Iandoli, Ivana Quinto, Anna de Liddo, and Simon Bucking-
ham Shum. On Online Collaboration and Construction of Shared Knowl-
edge: Assessing Mediation Capability in Computer Supported Argument
Visualization Tools. Journal of the Association for Information Science
and Technology, 67(5):1052–1067, 2016.

[Jans19] Tom Janson. Decentralized Service Registry and Discovery in P2P
Networks with Blockchain Technology. Master Thesis, RWTH Aachen
University, 2018.

[JaJu99] Markus Jakobsson and Ari Juels. Proofs of Work and Bread Pudding
Protocols. In Secure Information Networks (CMS 1999), volume 23 of
IFIP, pages 258–272. Springer, 1999.

[JMRy11] Charles M. Judd, Gary H. McClelland, and Carey S. Ryan. Data
Analysis: A Model Comparison Approach. Routledge, 2011.

[KEBu08] Alice Kerly, Richard Ellis, and Susan Bull. CALMsystem: A Conver-
sational Agent for Learner Modelling. In Applications and Innovations
in Intelligent Systems (SGAI 2007), pages 89–102. Springer, 2008.

[Kent02] Stuart Kent. Model-Driven Engineering. In Integrated Formal Methods
(IFM 2002), volume 2335 of LNCS, pages 286–298. Springer, 2002.

[KHBu07] Alice Kerly, Phil Hall, and Susan Bull. Bringing Chatbots into Edu-
cation: Towards Natural Language Negotiation of Open Learner Models.
Knowledge-Based Systems, 20(2):177–185, 2007.

192 BIBLIOGRAPHY

[Kim14] Yoon Kim. Convolutional Neural Networks for Sentence Classification.
In Empirical Methods in Natural Language Processing (EMNLP 2014),
pages 1746–1751. Association for Computational Linguistics, 2014.

[KoKr02] Nora Koch and Andreas Kraus. The Expressive Power of UML-based
Web Engineering. In International Workshop on Web-oriented Software
Technology (IWWOST 2002), pages 105–119, 2002.

[KKJa20] István Koren, Ralf Klamma, and Matthias Jarke. Direwolf Model
Academy: AnExtensibleCollaborativeModeling Framework on theWeb.
InModellierung 2020 Workshops, volume 2542 of CEUR Workshop Pro-
ceedings, pages 213–216. CEUR-WS.org, 2020.

[Klam10] Ralf Klamma. Social Software and Community Information Systems.
Habilitation, RWTH Aachen University, 2010.

[KLN*20] Ralf Klamma, Peter de Lange, Alexander Tobias Neumann, Benedikt
Hensen,MilosKravcik, XiaWang, and JakubKuzilek. ScalingMentoring
Support with Distributed Artificial Intelligence. In Intelligent Tutoring
Systems (ITS 2020), volume 12149 of LNCS, pages 38–44. Springer, 2020.

[Klus08] Matthias Klusch. Semantic Web Service Coordination. In CASCOM:
Intelligent Service Coordination in the Semantic Web, pages 59–104.
Birkhäuser Basel, 2008.

[KMM*08] Nora Koch, Santiago Meliá-Beigbeder, Nathalie Moreno-Vergara,
Vicente Pelechano-Ferragud, Fernando Sánchez-Figueroa, and Juan-
Manuel Vara-Mesa. Model-driven Web Engineering. Upgrade-Novática
Journal, IX(2):40–45, 2008.

[KMPe17] Peter M. Krafft, Michael Macy, and Alex Sandy Pentland. Bots as
Virtual Confederates. In Computer Supported Cooperative Work and
Social Computing (CSCW 2017), pages 183–190. ACM, 2017.

[KiNa12] Sunny King and Scott Nadal. PPCoin: Peer-to-Peer Crypto-Currency
with Proof-of-Stake: PeerCoin Whitepaper, 2012.

[Kore20] István Koren. DevOpsUse: Community-driven Continuous Innovation
of Web Information Infrastructures. Dissertation, RWTHAachen Univer-
sity, 2020.

BIBLIOGRAPHY 193

[KeRy16] Jonathan M. Kevan and Paul R. Ryan. Experience API: Flexible, De-
centralized and Activity-Centric Data Collection. Technology, Knowledge
and Learning, 21(1):143–149, 2016.

[KRLJ16] Ralf Klamma, Dominik Renzel, Peter de Lange, and Holger Janßen.
las2peer – A Primer, 2016.

[KSGa03] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina.
The Eigentrust Algorithm for Reputation Management in P2P Networks.
In International Conference on World Wide Web (WWW 2003), pages
640–651. ACM, 2003.

[KSIg19] Milos Kravčík, Katharina Schmid, and Christoph Igel. Towards Re-
quirements for Intelligent Mentoring Systems. In International Workshop
on Personalization and Recommendation on the Web and Beyond (ABIS
2019), pages 19–21. ACM, 2019.

[KoHe15] Mark Kosters and Jeroen van der Heijden. FromMechanism to Virtue:
Evaluating Nudge Theory. Evaluation, 21(3):276–291, 2015.

[Lank13] Marc Lankhorst. Enterprise Architecture at Work: Modelling, Commu-
nication and Analysis. The Enterprise Engineering Series. Springer, 3rd
edition, 2013.

[LBNK21] Peter de Lange, Lennart Bengtson, Alexander Tobias Neumann, and
Ralf Klamma. Blockchain-based Data Verification and Consent Man-
agement for Trusted Learning Analytics Using Mentoring Chatbots. In
Learning Analytics & Knowledge (LAK 2021), 2021.

[LFGK17] Peter de Lange, Tracie Farell-Frey, Bernhard Göschlberger, and Ralf
Klamma. Transferring a Question-Based Dialog Framework to a Dis-
tributed Architecture. In Data Driven Approaches in Digital Education
(EC-TEL 2017), volume 10474 of LNCS, pages 549–552. Springer, 2017.

[LGF*20] Peter de Lange, Bernhard Göschlberger, Tracie Farrell, Alexander To-
bias Neumann, and Ralf Klamma. Decentralized Learning Infrastruc-
tures for Community Knowledge Building. Transactions on Learning
Technologies, 13(3):516 – 529, 2020.

[LGFK18] Peter de Lange, Bernhard Göschlberger, Tracie Farrell, and Ralf
Klamma. A Microservice Infrastructure for Distributed Communities

194 BIBLIOGRAPHY

of Practice. In Lifelong Technology-Enhanced Learning (EC-TEL 2018),
volume 11082 of LNCS, pages 172–186. Springer, 2018.

[LJKl19] Peter de Lange, Tom Janson, and Ralf Klamma. Decentralized Service
Registry and Discovery in P2P Networks Using Blockchain Technology.
In Web Engineering (ICWE 2019), volume 11496 of LNCS, pages 296–
311. Springer, 2019.

[LND*16] Peter de Lange, Petru Nicolaescu, Michael Derntl, Matthias Jarke,
and Ralf Klamma. Community Application Editor: Collaborative Near
Real-Time Modeling and Composition of Microservice-based Web Ap-
plications. InModellierung 2016 Workshop Proceedings, pages 123–127,
2016.

[LNKl17] Peter de Lange, Petru Nicolaescu, and Ralf Klamma. VIRTUS Virtual
VETCentre (V3C):ALearning Platform forVirtualVocational Education
and Training. In Data Driven Approaches in Digital Education (EC-TEL
2017), volume 10474 of LNCS, pages 500–503. Springer, 2017.

[LNKJ17] Peter de Lange, Petru Nicolaescu, Ralf Klamma, and Matthias Jarke.
EngineeringWebApplications Using Real-Time CollaborativeModeling.
InCollaboration and Technology (CRIWG 2017), volume 10391 of LNCS,
pages 213–228. Springer, 2017.

[LNKK16] Peter de Lange, Petru Nicolaescu, Ralf Klamma, and István Koren.
DevOpsUse for Rapid Training of Agile Practices Within Undergraduate
and Startup Communities. In Adaptive and Adaptable Learning (EC-TEL
2016), volume 9891 of LNCS, pages 570–574. Springer, 2016.

[LNNK18] Peter de Lange, Alexander Tobias Neumann, Petru Nicolaescu, and
Ralf Klamma. An Integrated Learning Analytics Approach for Virtual
Vocational Training Centers. International Journal of Interactive Multi-
media and Artificial Intelligence, 5(2):32–38, 2018.

[LNNK20] Peter de Lange, Petru Nicolaescu, Alexander Tobias Neumann, and
Ralf Klamma. Integrating Web-Based Collaborative Live Editing and
Wireframing into a Model-Driven Web Engineering Process. Data Sci-
ence and Engineering, 5(3):240–260, 2020.

[LNRK19] Peter de Lange, Petru Nicolaescu, Mario Rosenstengel, and Ralf
Klamma. CollaborativeWireframing forModel-DrivenWebEngineering.

BIBLIOGRAPHY 195

InWeb Information Systems Engineering (WISE 2019), volume 11881 of
LNCS, pages 373–388. Springer, 2019.

[LNWK18] Peter de Lange, Petru Nicolaescu, Thomas Winkler, and Ralf
Klamma. Enhancing Model-Driven Web Engineering with Collabora-
tive Live Coding. In Modellierung 2018, 2018.

[LSKl20] Peter de Lange, Michał Słupczyński, and Ralf Klamma. Incentiviz-
ing Contribution in Decentralized Community Information Systems. In
Companion Proceedings of the Web Conference 2020 (WWW 2020), pages
636–644. ACM, 2020.

[LCM*10] Annabel M. Latham, Keeley A. Crockett, David A. McLean, Bruce
Edmonds, andKarenO’Shea. Oscar: An Intelligent Conversational Agent
Tutor to Estimate Learning Styles. In International Conference on Fuzzy
Systems (FUZZ 2010), pages 1–8. IEEE, 2010.

[LiGo16] Ser Ling Lim and Ong Sing Goh. Intelligent Conversational
Bot for Massive Online Open Courses (MOOCs). arXiv preprint
arXiv:1601.07065, 2016.

[LLSW10] Christoph Lenzen, Thomas Locher, Philipp Sommer, and Roger Wat-
tenhofer. Clock Synchronization: Open Problems in Theory and Practice.
In Theory and Practice of Computer Science (SOFSEM 2010), volume
5901 of LNCS, pages 61–70. Springer, 2010.

[LPWi13] Karsten O. Lundqvist, Guy Pursey, and Shirley Williams. Design and
Implementation of Conversational Agents for Harvesting Feedback in
eLearning Systems. In Scaling up Learning for Sustained Impact (EC-
TEL 2013), volume 8095 of LNCS, pages 617–618. Springer, 2013.

[LSPe82] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
Generals Problem. ACM Transactions on Programming Languages and
Systems, 4(3):382–401, 1982.

[LMC*16] Giuseppe La Torre, Salvatore Monteleone, Marco Cavallo, Valeria
D’Amico, and Vincenzo Catania. A Context-Aware Solution to Improve
Web Service Discovery and User-Service Interaction. In Conferences on
Ubiquitous Intelligence & Computing, Advanced and Trusted Computing,

196 BIBLIOGRAPHY

Scalable Computing and Communications, Cloud and Big Data Comput-
ing, Internet of People, and Smart World Congress, pages 180–187. IEEE,
2016.

[LaWe91] Jean Lave and Etienne Wenger. Situated Learning: Legimate Periph-
eral Participation. Cambridge University Press, 1991.

[LYPe14] Christine Lotter, Jan A. Yow, and Thomas T. Peters. Building a Com-
munity of Practice Around Inquiry Instruction Through a Professional
Development Program. International Journal of Science and Mathemat-
ics Education, 12(1):1–23, 2014.

[LZHS14] Chune Li, Richong Zhang, Jinpeng Huai, and Hailong Sun. A Novel
Approach for API Recommendation inMashup Development. In Interna-
tional Conference on Web Services (ICWS 2014), pages 289–296. IEEE,
2014.

[Maid14] MaidSafe. MaidSafe.net Announces Project SAFE to the Community:
SAFE Network Whitepaper. 2014.

[MMSF13] Dana Movshovitz-Attias, Yair Movshovitz-Attias, Peter Steenkiste,
and Christos Faloutsos. Analysis of the Reputation System and User
Contributions on a Question Answering Website. In Advances in Social
Network Analysis and Mining (ASONAM 2013), pages 886–893. ACM,
2013.

[Matt16] Juri Mattila. The Blockchain Phenomenon – The Disruptive Potential
of Distributed Consensus Architectures. (38), 2016.

[MBL*09] Fernando A. Mikic, Juan C. Burguillo, Martin Llamas, Daniel A.
Rodriguez, and Eduardo Rodriguez. CHARLIE: An AIML-based Chat-
terbot Which Works as an Interface Among INES and Humans. In Euro-
pean Association for Education in Electrical and Information Engineering
(EAEEIE 2009), pages 1–6. IEEE, 2009.

[MCH*19] Naja Mack, Robert Cummings, Earl Huff, Kinnis Gosha, and Juan
Gilbert. Exploring the Needs and Preferences of Underrepresented Mi-
nority Students for an Intelligent Virtual Mentoring System. In Interna-
tional Conference on Human-Computer Interaction (HCII 2019), volume
1088, pages 213–221. Springer, 2019.

BIBLIOGRAPHY 197

[MoDu88] Paul V.Mockapetris andKevin J. Dunlap. Development of the Domain
Name System. Communication Architecture and Protocols (SIGCOMM
1988), 18(4):123–133, 1988.

[Merk79] Ralph C. Merkle. Method of Providing Digital Signatures, 1982.

[Meye03] Katrina A. Meyer. Face-to-Face Versus Threaded Discussions: The
Role of Time and Higher-Order Thinking. Journal of Asynchronous
Learning Networks, 7(3):55–65, 2003.

[MiKi94] Paul Milgram and Fumio Kishino. A Taxonomy of Mixed Reality
Visual Displays. IEICE Transactions on Information and Systems, E77-
D(12):1321–1329, 1994.

[Mont16] Alberto Montresor. Reflecting on the Past, Preparing for the Future:
From Peer-to-Peer to Edge-centric Computing. In International Con-
ference on Distributed Computing Systems (ICDCS 2016), pages 22–23.
IEEE, 2016.

[MPM*05] David Martin, Massimo Paolucci, Sheila McIlraith, Mark Burstein,
Drew McDermott, Deborah McGuinness, Bijan Parsia, Terry Payne,
Marta Sabou, Monika Solanki, Naveen Srinivasan, and Katia Sycara.
Bringing Semantics to Web Services: The OWL-S Approach. In Seman-
tic Web Services and Web Process Composition, volume 3387 of LNCS,
pages 26–42. Springer, 2005.

[MPOR18] Clodagh McLoughlin, Kunal D. Patel, Tom O’Callaghan, and Scott
Reeves. The Use of Virtual Communities of Practice to Improve Inter-
professional Collaboration and Education: Findings from an Integrated
Review. Journal of Interprofessional Care, 32(2):136–142, 2018.

[Naka08] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.
Technical report, 2008.

[NDKl13] Petru Nicolaescu, Michael Derntl, and Ralf Klamma. Browser-based
Collaborative Modeling in Near Real-Time. In Networking, Applications
and Worksharing (CollaborateCom 2013), pages 335–344. IEEE, 2013.

[NDKl15] NicolaeNistor, Michael Derntl, andRalf Klamma. LearningAnalytics:
Trends and Issues of the Empirical Research of the Years 2011-2014. In

198 BIBLIOGRAPHY

Design for Teaching and Learning in a Networked World (EC-TEL 2015),
volume 9307 of LNCS, pages 453–459. Springer, 2015.

[Neum18] Alexander Neumann. Model-Driven Construction & Utilization of
Social Bots for Technology Enhanced Learning. Master Thesis, RWTH
Aachen University, 2018.

[Newm15] Sam Newman. Building Microservices: Designing Fine-Grained Sys-
tems. O’Reilly, 2015.

[Nico18] PetruNicolaescu. Engineering Web Community Information Systems via
Near Real-Time Collaborative Modeling Support. Dissertation, RWTH
Aachen University, 2018.

[NJDK16] Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma.
Near Real-Time Peer-to-Peer Shared Editing on Extensible Data Types.
In International Conference on Supporting Group Work (GROUP 2016),
pages 39–49. ACM, 2016.

[NJM*12] Shirin Nilizadeh, Sonia Jahid, Prateek Mittal, Nikita Borisov, and Apu
Kapadia. Cachet: A Decentralized Architecture for Privacy Preserving
Social Networking with Caching. In International Conference on Emerg-
ing Networking Experiments and Technologies (CoNEXT 2012), pages
337–348. ACM, 2012.

[NLKl19] Alexander TobiasNeumann, Peter de Lange, andRalf Klamma. Collab-
orative Creation and Training of Social Bots in Learning Communities. In
Collaboration and Internet Computing (CIC 2019), pages 11–19. IEEE,
2019.

[NLK*20] Alexander Tobias Neumann, Peter de Lange, Ralf Klamma, Norbert
Pengel, and Tamar Arndt. Intelligent Mentoring Bots in Learning Man-
agement Systems: Concepts, Realizations and Evaluations. In Learning
Technologies and Systems (ICWL 2020), volume 12511 of LNCS, pages
3–14. Springer, 2020.

[NLKK19] Alexander Neumann, Peter de Lange, Michael Kretschmer, and Ralf
Klamma. tech4comp Report zu AP 3.1: Technologiestudie einer Infras-
truktur zur verteilten Datenanalyse.

BIBLIOGRAPHY 199

[NRD*18] Petru Nicolaescu, Mario Rosenstengel, Michael Derntl, Ralf Klamma,
and Matthias Jarke. Near Real-time Collaborative Modeling for View-
based Web Information Systems Engineering. Information Systems,
74(1):23–39, 2018.

[NoTa95] Ikujiro Nonaka and Hirotaka Takeuchi. The Knowledge-Creating Com-
pany: How Japanese Companies Create the Dynamics of Innovation.
Oxford University Press, 1995.

[NWQ*02] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael
Sintek, AmbjörnNaeve,MikaelNilsson,Matthias Palmér, andToreRisch.
EDUTELLA: a P2PNetworking Infrastructure Based onRDF. In Interna-
tional World Wide Web Conference (WWW 2002), pages 604–615. ACM,
2002.

[Open18] OpenAPI Initiative. The OpenAPI Specification: Version 3.0.2, 2018.

[ORei07] Tim O’Reilly. What Is Web 2.0: Design Patterns and Business Models
for the Next Generation of Software. Communications & Strategies,
65:17–37, 2007.

[OvSt15] Jarrod Overson and Jason Strimpel. Developing Web Components: UI
From JQuery to Polymer. O’Reilly Media, Inc., 2015.

[OcTe17] Xavier Ochoa and Stefaan Ternier. Technical Learning Infrastructure,
Interoperability and Standards. In Technology Enhanced Learning, pages
145–155. Springer, 2017.

[PeDi18] Juanan Pereira and Oscar Díaz. A Quality Analysis of Facebook Mes-
senger’s Most Popular Chatbots. In Symposium on Applied Computing
(SAC 2018), pages 2144–2150. ACM, 2018.

[PRMa11] Kevin R. Page, David C. de Roure, and Kirk Martinez. REST and
Linked Data: a Match Nade for Domain Driven Development? In
International Workshop on RESTful Design (WS-REST 2011), pages 22–
25. ACM, 2011.

[PaLo04] Alexandros Paramythis and Susanne Loidl-Reisinger. Adaptive Learn-
ing Environments and e-Learning Standards. Electronic Journal of e-
Learning, 2(1):181–194, 2004.

200 BIBLIOGRAPHY

[Prit08] Dan Pritchett. BASE: An ACID Alternative. Queue, 6(3):48–55, 2008.

[PGLa18] Sara Perez-Soler, Esther Guerra, and Juan de Lara. CollaborativeMod-
eling and Group Decision Making Using Chatbots in Social Networks.
IEEE Software, 35(6):48–54, 2018.

[PSLa80] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching Agree-
ment in the Presence of Faults. Journal of the ACM, 27(2):228–234,
1980.

[PSNS03] Massimo Paolucci, Katia P. Sycara, Takuya Nishimura, and Naveen
Srinivasan. Using DAML-S for P2P Discovery. In International Con-
ference on Web Services (ICWS 2003), pages 203–207. CSREA Press,
2003.

[PTRC07] Ken Peffers, Tuure Tuunanen, Marcus A. Rothenberger, and Samir
Chatterjee. ADesign ScienceResearchMethodology for Information Sys-
tems Research. Journal of Management Information Systems, 24(3):45–
77, 2007.

[PZLe08] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. RESTful
Web Services vs. "Big" Web Services: Making the Right Architectural
Decision. In International Conference on World Wide Web (WWW 2008),
pages 805–814. ACM, 2008.

[RANR03] Claudia Roda, Albert Angehrn, Thierry Nabeth, and Liana Razmerita.
Using Conversational Agents to support the Adoption of Knowledge Shar-
ing Practices. Interacting with Computers, 15(1):57–89, 2003.

[Rast21] Erdzan Rastoder. Web-based Cluster Deployment for a Large-Scale
Distributed Infrastructure. Bachelor Thesis, RWTH Aachen University,
2021.

[RAZS20] Jana Riedel, Björn Adelberg, Julia Zawidzki, and Sylvia Schulze-
Achatz. Creating an Infrastructure to Integrate Specialized Services to
Proprietary LMS. In ICERI 2020 Proceedings, pages 1846–1854. IATED,
2020.

[RBKJ13] Dominik Renzel, Malte Behrendt, Ralf Klamma, and Matthias Jarke.
Requirements Bazaar: Social Requirements Engineering for Community-
Driven Innovation. In Requirements Engineering (RE 2013), pages 326–
327. IEEE, 2013.

BIBLIOGRAPHY 201

[RoDr01] Antony Rowstron and Peter Druschel. Pastry: Scalable, Decentralized
Object Location, and Routing for Large-Scale Peer-to-Peer Systems. In
International Conference on Distributed Systems Platforms (Middleware
2001), volume 2218 of LNCS, pages 329–350. Springer, 2001.

[Renz16] Dominik Renzel. Information Systems Success Awareness for Profes-
sional Long Tail Communities of Practice. Dissertation, RWTH Aachen
University, 2016.

[RGR*12] José Matías Rivero, Julián Grigera, Gustavo Rossi, Esteban Robles
Luna, and Nora Koch. Towards Agile Model-Driven Web Engineering.
In IS Olympics: Information Systems in a Diverse World: (CAiSE 2011),
volume 107 of LNBIP, pages 142–155. Springer, 2012.

[Rich15] Mark Richards. Microservices vs. Service-Oriented Architecture.
O’Reilly Media, 2015.

[Rick20] Julius Rickert. Secure and User-friendly Authentication for a Decen-
tralized Service Platform. Bachelor Thesis, RWTH Aachen University,
2020.

[RKJa15] Dominik Renzel, Ralf Klamma, andMatthias Jarke. IS Success Aware-
ness in Community-Oriented Design Science Research. In New Horizons
in Design Science: Broadening the Research Agenda (DESRIST 2015),
volume 9073 of LNCS, pages 413–420. Springer, 2015.

[RKKN15] Dominik Renzel, Ralf Klamma, Miloš Kravčík, and Alexander Nuss-
baumer. Tracing Self-Regulated Learning in Responsive Open Learning
Environments. InAdvances in Web-Based Learning (ICWL 2015), volume
9412 of LNCS, pages 155–164. Springer, 2015.

[RKLB09] Michael Rambold, Holger Kasinger, Florian Lautenbacher, and Bern-
hard Bauer. Towards Autonomic Service Discovery A Survey and Com-
parison. In International Conference on Services Computing (SCC 2009),
pages 192–201. IEEE, 2009.

[RKZF00] Paul Resnick, Ko Kuwabara, Richard Zeckhauser, and Eric Friedman.
Reputation Systems. Communications of the ACM, 43(12):45–48, 2000.

202 BIBLIOGRAPHY

[RoLa96] Ronald L. Rivest and Butler Lampson. SDSI: A Simple Distributed
Security Infrastructure. In Advances in Cryptology (CRYPTO 1996),
LNCS. Springer, 1996.

[Rose17] Mario Rosenstengel. A Near Real-Time Collaborative Wireframing Ed-
itor for Agile Model-Driven Web Engineering. Master Thesis, RWTH
Aachen University, 2017.

[REB*12] Peter van Rosmalen, Johan Eikelboom, Erik Bloemers, Kees van
Winzum, and Pieter Spronck. Towards a Game-Chatbot: Extending
the Interaction in Serious Games. In European Conference on Games
Based Learning (ECGBL 2012), pages 525–532. Academic Publishing
International Limited, 2012.

[Royt19] Philipp Roytburg. A Multimodal Mentoring Cockpit for Tutor Support.
Bachelor Thesis, RWTH Aachen University, 2019.

[RiRo13] José Matías Rivero and Gustavo Rossi. MockupDD: Facilitating Ag-
ile Support for Model-Driven Web Engineering. In Current Trends in
Web Engineering (ICWE 2013), volume 8295 of LNCS, pages 325–329.
Springer, 2013.

[RRG*11] José Rivero, Gustavo Rossi, Julián Grigera, Esteban Robles Luna, and
Antonio Navarro. From Interface Mockups to Web Application Models.
In International Conference on Web Information Systems Engineering,
pages 257–264, 2011.

[RiSa12] Angelica Risquez andMarife Sanchez-Garcia. The Jury is still out: Psy-
choemotional Support in Peer e-Mentoring for Transition to University.
The Internet and Higher Education, 15(3):213–221, 2012.

[RSKl12] Dominik Renzel, Patrick Schlebusch, and Ralf Klamma. Today’s Top
“RESTful” Services andWhyTheyAreNot RESTful. InWeb Information
Systems Engineering (WISE 2012), volume 7651 of LNCS, pages 354–
367. Springer, 2012.

[RDVi14] Steven Raemaekers, Arie van Deursen, and Joost Visser. Semantic
Versioning versus Breaking Changes: A Study of the Maven Repository.
In Source Code Analysis and Manipulation (SCAM 2014), pages 215–224.
IEEE, 2014.

BIBLIOGRAPHY 203

[ScBe06] Marlene Scarlia and Carl Bereiter. Knowledge Building: Theory, Ped-
agogy, and Technology. Cambridge Handbook of the Learning Sciences,
2006.

[SBSc18] Martin Schanzenbach, Georg Bramm, and Julian Schutte. reclaimID:
Secure, Self-Sovereign Identities Using Name Systems and Attribute-
Based Encryption. In International Conference On Trust, Security And
Privacy In Computing And Communications/International Conference On
Big Data Science And Engineering (TrustCom/BigDataSE 2018), pages
946–957. IEEE, 2018.

[Scar02] Marlene Scardamalia. Collective Cognitive Responsibility for the Ad-
vancement of Knowledge. Liberal Education in a Knowledge Society,
97:67–98, 2002.

[Scha97] Roger C. Schank. Virtual learning: A revolutionary approach to build-
ing a highly skilled workforce. Irwin Professional Publishing, 1997.

[Schu00] Daniel Schugurensky. The Forms of Informal Learning: Towards a
Conceptualization of the Field. NALL Working Paper. Centre for the
Study of Education and Work, 2000.

[Schm06] Douglas C. Schmidt. Model-Driven Engineering. Computer, 39(2):25–
31, 2006.

[SGA*05] Ozgur D. Sahin, Cagdas E. Gerede, Divyakant Agrawal, Amr El Ab-
badi, Oscar Ibarra, and Jianwen Su. SPiDeR: P2P-Based Web Service
Discovery. In Service-Oriented Computing (ICSOC 2005), volume 3826
of LNCS, pages 157–169. Springer, 2005.

[Shaw12] Alan Shaw. Using Chatbots to Teach Socially Intelligent Computing
Principles in Introductory Computer Science Courses. In Information
Technology - New Generations (ITNG 2012), pages 850–851. IEEE, 2012.

[SJPr06] Satish Narayana Srirama, Matthias Jarke, and Wolfgang Prinz. Mobile
Web Service Provisioning. In Advanced International Conference on
Telecommunications and International Conference on Internet and Web
Applications and Services (AICT-ICIW 2006), page 120. IEEE, 2006.

[SmKo99] Marc A. Smith and Peter Kollock. Communities in Cyberspace. Rout-
ledge, 1999.

204 BIBLIOGRAPHY

[SKD*14] José Luis Santos, Joris Klerkx, Erik Duval, David Gago, and Luis
Rodrìguez. Success, Activity and Drop-outs in MOOCs an Exploratory
Study on the UNED COMA Courses. In Learning Analytics and Knowl-
edge (LAK 2014), pages 98–102. ACM, 2014.

[SKWL99] Katia Sycara, Matthias Klusch, Seth Widoff, and Jianguo Lu. Dy-
namic Service Matchmaking Among Agents in Open Information Envi-
ronments. ACM SIGMOD Record, 28(1):47–53, 1999.

[SLKe04] Chenliang Sun, Yi Lin, and B. Kemme. Comparison of UDDI Registry
Replication Strategies. In International Conference on Web Services
(ICWS 2004), pages 218–225. IEEE, 2004.

[Sloa17] Paul Sloane. The Leader’s Guide to Lateral Thinking Skills: Unlock the
Creativity and Innovation in You and Your Team. Kogan Page, 2017.

[Slup20] Michal Slupczynski. Incentivizing Community Contributions in Decen-
tralized Information Systems. Master Thesis, RWTH Aachen University,
2020.

[ScPa04] Cristina Schmidt and Manish Parashar. A Peer-to-Peer Approach to
Web Service Discovery. World Wide Web, 7(2):211–229, 2004.

[ScRo98] Daniel Schwabe and Gustavo Rossi. An Object Oriented Approach to
Web-based Applications Design. TAPOS, 4(4):207–225, 1998.

[SSDN02] Mario Schlosser, Michael Sintek, Stefan Decker, and Wolfgang Nejdl.
A Scalable and Ontology-Based P2P Infrastructure for Semantic Web
Services. In Peer-to-Peer Computing (P2P 2002), pages 104–111. IEEE,
2002.

[SSG*17] Iulian V. Serban, Chinnadhurai Sankar, Mathieu Germain, Saizheng
Zhang, Zhouhan Lin, Sandeep Subramanian, Taesup Kim, Michael
Pieper, Sarath Chandar, Nan Rosemary Ke, Sai Rajeshwar, Alexandre
de Brebisson, Jose M. R. Sotelo, Dendi Suhubdy, Vincent Michalski,
Alexandre Nguyen, Joelle Pineau, and Yoshua Bengio. A Deep Rein-
forcement Learning Chatbot. CoRR, abs/1709.02349, 2017.

[ShTo03] Valerie Shute and Brendon Towle. Adaptive E-Learning. Educational
Psychologist, 38(2):105–114, 2003.

BIBLIOGRAPHY 205

[STKS15] Angel Suarez, Stefaan Ternier, Marco Kalz, and Marcus Specht. Sup-
porting Inquiry-based Learning with Google Glass (GPIM). Interaction
Design and Architecture Journal, 24:100–110, 2015.

[TGDN18] Ramón Toala, Filipe Gonçalves, Dalila Durães, and Paulo Novais.
Adaptive and Intelligent Mentoring to Increase User Attentiveness in
Learning Activities. In Advances in Artificial Intelligence (IBERAMIA
2018), volume 11238 of LNAI, pages 145–155. Springer, 2018.

[TSNe03] Uwe Thaden, Wolf Siberski, and Wolfgang Nejdl. A Semantic Web
based Peer-to-Peer Service Registry Network. Technical report, Learing
Lab Lower Saxony, 2013.

[UDDI00] UDDI Coalition. The UDDI Technical White Paper. Technical report,
2000.

[VoBu15] Fabian Vogelsteller and Vitalik Buterin. EIP 20: ERC-20 Token Stan-
dard, 2015.

[VaPi18] Enza Varghese and M. T. Rajappan Pillai. A Standalone Generative
Conversational Interface Using Deep Learning. In Information, Com-
munication and Computing Technology (ICICCT 2018), volume 835 of
CCIS, pages 1915–1920. Springer, 2018.

[W3C13] W3C. W3C Data Activity: Building the Web of Data, 2013.

[Wall03] Richard Wallace. The Elements of AIML Style, volume 139. 2003.

[WBRo76] DavidWood, Jerome S. Bruner, andGail Ross. TheRole of Tutoring in
Problem Solving. Journal of Child Psychology and Psychiatry, 17(2):89–
100, 1976.

[Weiz66] Joseph Weizenbaum. ELIZA – A Computer Program for the Study of
Natural Language Communication Between Man and Machine. Commu-
nications of the ACM, 9(1):36–45, 1966.

[Weng98] Etienne Wenger. Communities of Practice: Learning, Meaning, and
Identity. Learning in Doing. Cambridge University Press, 1998.

[WHRo14] Jon Whittle, John Hutchinson, and Mark Rouncefield. The State of
Practice in Model-Driven Engineering. IEEE Software, 31(3):79–85,
2014.

206 BIBLIOGRAPHY

[Wies19] Niels Wiessner. Chat Interfaces for Social Bots in a Peer-to-Peer Envi-
ronment. Bachelor Thesis, RWTH Aachen University, 2019.

[Wink16] Thomas Winkler. A Live Collaborative Editing and Deployment Ap-
proach for Model-based Community Applications. Bachelor Thesis,
RWTH Aachen University, 2016.

[Wood14] Gavin Wood. Ethereum: A Secure Decentralized Transaction Ledger.
Technical report, 2014.

[WiSo18] Rainer Winkler and Matthias Söllner. Unleashing the Potential of
Chatbots in Education: A State-Of-The-Art Analysis. In Academy of
Management Annual Meeting (AOM 2018), 2018.

[WSGr14] Matthias Wachs, Martin Schanzenbach, and Christian Grothoff. A
Censorship-Resistant, Privacy-Enhancing and Fully Decentralized Name
System. In Cryptology and Network Security (CANS 2014), volume 8813
of LNCS, pages 127–142. Springer, 2014.

[WZNP13] AnnikaWolff, ZdenekZdrahal, AndriyNikolov, andMichal Pantucek.
Improving Retention: Predicting At-risk Students by Analysing Clicking
Behaviour in a Virtual Learning Environment. In Learning Analytics and
Knowledge (LAK 2013), pages 145–149. ACM, 2013.

[LiLi04] Li Xiong and Ling Liu. PeerTrust: Supporting Reputation-based Trust
for Peer-to-Peer Electronic Communities. IEEE Transactions on Knowl-
edge and Data Engineering, 16(7):843–857, 2004.

[XhPo10] Fatos Xhafa and Alex Poulovassilis. Requirements for Distributed
Event-Based Awareness in P2P Groupware Systems. In Advanced In-
formation Networking and Applications (AINA 2010), pages 220–225.
IEEE, 2010.

[YCCI16] Mengting Yan, Paul Castro, Perry Cheng, and Vatche Ishakian. Build-
ing a Chatbot with Serverless Computing. In International Workshop on
Mashups of Things and APIs (MOTA 2016), pages 1–4. ACM, 2016.

[YaZh04] Feng Yan and Shouyi Zhan. A Peer-to-Peer Approach with Semantic
Locality to Service Discovery. InGrid and Cooperative Computing (GCC
2004), volume 3251 of LNCS, pages 831–834. Springer, 2004.

BIBLIOGRAPHY 207

[ZhLi13] Huanyu Zhao and Xiaolin Li. VectorTrust: Trust Vector Aggregation
Scheme for Trust Management in Peer-to-Peer Networks. The Journal of
Supercomputing, 64(3):805–829, 2013.

208 BIBLIOGRAPHY

List of Figures

1.1 Overarching design science process of this dissertation. 5
1.2 Overview on the artifacts produced in this dissertation. 6

2.1 Venn diagram that shows the interplay between the three main
research areas this dissertation is embedded in. 10

3.1 Iterations of the design science process we followed in Chapter 3. . 37
3.2 The transformation of a monolithic CIS ([Klam10], left) to a de-

centralized CIS (right). 38
3.3 las2peer basic architecture [KRLJ16] (adapted). 39
3.4 Metadata extraction from service model and metadata widget. . . 42
3.5 Exemplary matching levels of two service endpoints. 43
3.6 Screenshot of the metadata editor. 45
3.7 Screenshot of the deployment viewer. 45
3.8 Screenshot of the service matching viewer. 46
3.9 Usage scenario without decentralized service registry. 49
3.10 The registry smart contract data. 51
3.11 Usage scenario with decentralized service registry. 52
3.12 Architecture and information flow during common operations. . . 53
3.13 Screenshot of the service explorer, depicting two applications cur-

rently available in the network. 54
3.14 Delegated username registration with signed smart contract call. . 56
3.15 Evaluation of the decentralized service registry: questionnaire

responses. 58
3.16 System overview of the incentivization system. 63
3.17 Reputation dashboard landing page, showing a list of community

members together with their reputation. 65

209

210 LIST OF FIGURES

3.18 Service author and hoster reputation, integrated into the service
explorer of the decentralized service registry. 66

3.19 Reputation wallet view. 66
3.20 Reputation payout confirmation dialog. 67
3.21 Evaluation of the community incentivization system: question-

naire responses. 68
3.22 Evaluation of the community incentivization system: For which

reasons would you consider hosting a service for a community? . . 69
3.23 Usage scenario without verified LA data. 71
3.24 Usage scenario with verified LA data. 73
3.25 Architectural overview of the LA data verification system. 75
3.26 Sample conversation with the LA verification bot. 77
3.27 Evaluation of the verification system: questionnaire responses. . . 79
3.28 All smart contracts developed in this chapter. 80

4.1 Iterations of the design science process we followed in Chapter 4. . 85
4.2 Overview of the MDWE approach. 89
4.3 Different representations of the same frontend component. 90
4.4 The underlying Web application metamodel used in the CAE. . . . 91
4.5 ER diagram of the CAE. 93
4.6 Screenshot of the NRT Evaluation Center flow. 96
4.7 Mapping of the SUIT- to the MDWE metamodel. 97
4.8 Screenshot of the frontend component modeling space. 101
4.9 Screenshot of the CAE project management features. 102
4.10 Screenshot of the NRT Evaluation Center PWA. 103
4.11 Screenshots of the versioning widget. 104
4.12 Architecture of the CAE. 105
4.13 Results of the wireframing user evaluation. 113
4.14 Screenshot of a social bot model. 119
4.15 Social bot life-cycle. 120
4.16 Screenshot of the method browser, in this example depicting the

available methods of the Distributed Noracle service. 122
4.17 Screenshot of the Bot Forge Web interface. 124
4.18 Results of the SBF user evaluation. 126

5.1 Above: The modeling view of the V3C. Below: The resulting PLE. 135
5.2 A course room of the V3C platform. 136

LIST OF FIGURES 211

5.3 The basic course edit view, showing both the multi-language fea-
ture and the translation option in the learning-designer view. . . . 137

5.4 V3C evaluation: Module activity over time. 142
5.5 V3C evaluation: Activities compared to scored results. 143
5.6 V3C evaluation: Assessment results without drop-outs. 143
5.7 V3C evaluation: Drop-out rate. 144
5.8 V3C evaluation: Questionnaire results. 145
5.9 Infrastructure for Community Knowledge Building: Design sci-

ence process. 149
5.10 Screenshot of the Distributed Noracle application, showing a

question-based dialog space used in one of our evaluations. 151
5.11 Exemplary usage scenario of the Distributed Noracle. 152
5.12 A question creation process in the Distributed Noracle. 153
5.13 An exemplary general bot message of the Distributed Noracle, as

it was send to the evaluators during our pilot bot evaluation. 155
5.14 A personal bot message of the Distributed Noracle send to an

evaluator during our pilot bot evaluation. 156
5.15 Usage statistics of the one-year decentralized infrastructure de-

ployment, continuously providing the Distributed Noracle appli-
cation since our first real-world pedagogical usage evaluation. . . . 163

5.16 Visualization of a Reddit megathread as a Distributed Noracle space.165
5.17 Mentoring support infrastructure. 174

212 LIST OF FIGURES

List of Tables

4.1 Results of the wireframe activity evaluation for each session and
participant. The relative time spend in each widget, as well as the
absolute number of activities for each widget is given. 114

5.1 V3Cevaluation participants permodule. (SE=Social Entrepreneur-
ship, TH = Tourism & Hospitality) 140

213

214 LIST OF TABLES

Appendix A

List of Abbreviations

AIML Artifical Intelligence Markup Language 29

ALE Adaptive Learning Environments . 25

API Application Programming Interface 14

CA Certificate Authorities . 23

CAE Community Application Editor . 6

CITS Conversational Intelligent Tutoring System 30

CIS Community Information System . 1

CMS Content Management System . 1

CoI Community of Inquiry . 2

215

216 APPENDIX A. LIST OF ABBREVIATIONS

CoP Community of Practice . 1

CPU Central Processing Unit . 58

CRDT Conflict-free Replicated Data Type 105

DDD Domain Driven Design . 11

DHT Distributed Hash Table . 11

DNS Domain Name Server . 23

DOM Document Object Model . 12

ECQA European Certification and Qualification Association 136

ECVET European Credit System for Vocational Education and Training . . 133

EDA Event-Driven Architecture . 40

EVS European Voluntary Service . 7

EPM Educational Process Mining . 31

ER Entity Relationship . 92

GUHA General Unary Hypothesis Automaton 32

217

HCI Human-Computer Interaction . 9

HTML HyperText Markup Language . 97

HTTP HyperText Transfer Protocol . 44

IBL Inquiry-based Learning . 33

IFML Interaction Flow Modeling Language 27

IMBot Intelligent Mentoring Bot . 174

IMS Intelligent Mentoring System . 172

IFML Interaction Flow Modeling Language 27

IPFS InterPlanetary File System . 11

ITS Intelligent Tutoring Systems . 172

IWC Inter Widget Communication . 91

JSON JavaScript Object Notation . 14

JTELSS Joint European Summer School on Technology Enhanced Learning158

KPI Key Performance Indicator . 102

218 APPENDIX A. LIST OF ABBREVIATIONS

LA Learning Analytics . 7

LMS Learning Management System . 31

LRS Learning Record Store . 31

MDD Model Driven Development . 24

MDWE Model-Driven Web Engineering 3

MobSOS Mobile Community Information System Oracle for Success . . . 40

MobSOS QV MobSOS Query Visualizer 140

MockupDD Mockup Driven Development 28

MOM Message Oriented Middleware . 39

MOOC Massive Open Online Course . 7

NLU Natural Language Understanding . 29

NRT Near Real-Time . 7

OAS OpenAPI Specification . 14

OCL Object Constraint Language . 26

219

OIDC OpenID Connect . 93

OMG Object Management Group . 27

OSN Online Social Network . 30

OSS Open Source Software . 6

P2P Peer to Peer . 1

PLE Personal Learning Environment . 130

PoS Proof of Stake . 17

PoW Proof of Work . 17

PWA Progressive Web App . 95

REST Representational State Transfer . 13

RMI Remote Method Invocation . 40

RNN Recurrent Neural Network . 30

ROLE Responsive Open Learning Environment 134

RTE Round-Trip Engineering . 96

220 APPENDIX A. LIST OF ABBREVIATIONS

SBF Social Bot Framework . 6

SD Standard Deviation . 47

SLP Service Location Protocol . 13

SNS Social Networking Site . 1

SRL Self-Regulated Learning . 32

SUI Structural UI . 28

SUIT Structural UI with Tags . 28

SUS System Usability Scale . 117

TEL Technology Enhanced Learning . 4

UI User Interface . 28

URL Uniform Resource Locator . 12

UWE UML-based Web Engineering . 26

V3C Virtus Virtual VET Center . 7

VET Vocational Educational Training . 129

221

VLE Virtual Learning Environment . 31

WebRTC Web Real-Time Communication 134

WYSIWYG What You See Is What You Get 134

xAPI eXperience API . 31

XML Extensible Markup Language . 104

XMPP Extensible Messaging and Presence Protocol 134

YAML YAML Ain’t Markup Language 14

222 APPENDIX A. LIST OF ABBREVIATIONS

Appendix B

Own Publications

Relevant Refereed Publications

[KLN*20] Ralf Klamma, Peter de Lange, Alexander Tobias Neumann, Benedikt
Hensen, Milos Kravcik, Xia Wang, and Jakub Kuzilek. Scaling Men-
toring Support with Distributed Artificial Intelligence. In Intelligent
Tutoring Systems (ITS 2020), volume 12149 of LNCS, pages 38–44.
Springer, 2020.

[LBNK21] Peter de Lange, Lennart Bengtson, Alexander Tobias Neumann, and
Ralf Klamma. Blockchain-based Data Verification and Consent Man-
agement for Trusted Learning Analytics Using Mentoring Chatbots.
In Learning Analytics & Knowledge (LAK 2021), 2021.

[LFGK17] Peter de Lange, Tracie Farell-Frey, Bernhard Göschlberger, and Ralf
Klamma. Transferring a Question-Based Dialog Framework to a Dis-
tributedArchitecture. InData Driven Approaches in Digital Education
(EC-TEL 2017), volume 10474 of LNCS, pages 549–552. Springer,
2017.

223

224 RELEVANT REFEREED PUBLICATIONS

[LGF*20] Peter de Lange, Bernhard Göschlberger, Tracie Farrell, Alexander To-
bias Neumann, and Ralf Klamma. Decentralized Learning Infrastruc-
tures for Community Knowledge Building. Transactions on Learning
Technologies, 13(3):516 – 529, 2020.

[LGFK18] Peter de Lange, Bernhard Göschlberger, Tracie Farrell, and Ralf
Klamma. A Microservice Infrastructure for Distributed Communi-
ties of Practice. In Lifelong Technology-Enhanced Learning (EC-TEL
2018), volume 11082 of LNCS, pages 172–186. Springer, 2018.

[LJKl19] Peter de Lange, Tom Janson, and Ralf Klamma. Decentralized Service
Registry and Discovery in P2P Networks Using Blockchain Technol-
ogy. InWeb Engineering (ICWE 2019), volume 11496 of LNCS, pages
296–311. Springer, 2019.

[LND*16] Peter de Lange, Petru Nicolaescu, Michael Derntl, Matthias Jarke, and
Ralf Klamma. Community Application Editor: Collaborative Near
Real-Time Modeling and Composition of Microservice-based Web
Applications. In Modellierung 2016 Workshop Proceedings, pages
123–127, 2016.

[LNKl17] Peter de Lange, Petru Nicolaescu, and Ralf Klamma. VIRTUS Virtual
VET Centre (V3C): A Learning Platform for Virtual Vocational Edu-
cation and Training. In Data Driven Approaches in Digital Education
(EC-TEL 2017), volume 10474 of LNCS, pages 500–503. Springer,
2017.

[LNKJ17] Peter de Lange, Petru Nicolaescu, Ralf Klamma, and Matthias Jarke.
Engineering Web Applications Using Real-Time Collaborative Mod-
eling. InCollaboration and Technology (CRIWG 2017), volume 10391
of LNCS, pages 213–228. Springer, 2017.

[LNKK16] Peter de Lange, Petru Nicolaescu, Ralf Klamma, and István Koren.
DevOpsUse for Rapid Training of Agile Practices Within Undergrad-
uate and Startup Communities. In Adaptive and Adaptable Learning
(EC-TEL 2016), volume 9891 of LNCS, pages 570–574. Springer,
2016.

[LNNK18] Peter de Lange, Alexander Tobias Neumann, Petru Nicolaescu, and
Ralf Klamma. An Integrated Learning Analytics Approach for Vir-

tual Vocational Training Centers. International Journal of Interactive
Multimedia and Artificial Intelligence, 5(2):32–38, 2018.

[LNNK20] Peter de Lange, Petru Nicolaescu, Alexander Tobias Neumann, and
Ralf Klamma. Integrating Web-Based Collaborative Live Editing and
Wireframing into a Model-Driven Web Engineering Process. Data
Science and Engineering, 5(3):240–260, 2020.

[LNRK19] Peter de Lange, Petru Nicolaescu, Mario Rosenstengel, and Ralf
Klamma. CollaborativeWireframing forModel-DrivenWebEngineer-
ing. In Web Information Systems Engineering (WISE 2019), volume
11881 of LNCS, pages 373–388. Springer, 2019.

[LNWK18] Peter de Lange, Petru Nicolaescu, Thomas Winkler, and Ralf
Klamma. Enhancing Model-Driven Web Engineering with Collab-
orative Live Coding. In Modellierung 2018, 2018.

[LSKl20] Peter de Lange, Michał Słupczyński, and Ralf Klamma. Incentivizing
Contribution in Decentralized Community Information Systems. In
Companion Proceedings of the Web Conference 2020 (WWW 2020),
pages 636–644. ACM, 2020.

[NAK*21] Alexander Tobias Neumann, Tamar Arndt, Laura Köbis, Roy Meiss-
ner, Anne Martin, Peter de Lange, Norbert Pengel, Ralf Klamma,
and Heinz-Werner Wollersheim. Chatbots as a tool to scale mentor-
ing processes: Individually supporting self-study in higher education.
Frontiers in Artificial Intelligence, 4:64, 2021.

[NLKl19] Alexander Tobias Neumann, Peter de Lange, and Ralf Klamma. Col-
laborative Creation and Training of Social Bots in Learning Commu-
nities. In Collaboration and Internet Computing (CIC 2019), pages
11–19. IEEE, 2019.

[NLK*20] Alexander Tobias Neumann, Peter de Lange, Ralf Klamma, Norbert
Pengel, and Tamar Arndt. Intelligent Mentoring Bots in Learning
Management Systems: Concepts, Realizations and Evaluations. In
Learning Technologies and Systems (ICWL 2020), volume 12511 of
LNCS, pages 3–14. Springer, 2020.

225

Relevant Non-Refereed Publications

[KRLJ16] Ralf Klamma, Dominik Renzel, Peter de Lange, and Holger Janßen.
las2peer – A Primer, 2016.

[Lang19] Peter de Lange. Informationelle Selbstbestimmung durch Peer2Peer
Technologien: las2peer. In Albert Geukes, editor, Konferenzband
uni.digital 2019, pages 62–64. Freie Universität Berlin, 2019.

[NLKK19] Alexander Neumann, Peter de Lange, Michael Kretschmer, and Ralf
Klamma. tech4comp Report zu AP 3.1: Technologiestudie einer Infras-
truktur zur verteilten Datenanalyse.

Other Refereed Publications

[LBF*17] Peter de Lange, Boris Bähre, Christiane Finetti-Imhof, Ralf Klamma,
Andreas Koch, and Leif Oppermann. Socio-technical Challenges in the
Digital Gap between Building Information Modeling and Industry 4.0.
In Socio-Technical Perspective in IS Development (STPIS 2017), CEUR
Workshop Proceedings, pages 33–46. CEUR-WS.org, 2017.

[LNBK18] Peter de Lange, Petru Nicolaescu, Jan Benscheid, and Ralf Klamma.
Collaborative Non-linear Storytelling Around 3D Objects. In Advances
in Web-Based Learning (ICWL 2018), volume 11007 of LNCS, pages
88–98. Springer, 2018.

226

OTHER REFEREED PUBLICATIONS 227

[LNBK19] Peter de Lange, Petru Nicolaescu, Jan Benscheid, and Ralf Klamma.
Integrating 3D Objects in Collaborative Non-Linear Storytelling on the
Web. Journal of Universal Computer Science, 25(12):1608–1624, 2019.

[LSKl17] Peter de Lange,Mohsen Shahriari, andRalf Klamma. Einführung in das
wissenschaftliche Arbeiten und Publizieren mittels Blended Learning in
der informatischen Fachdidaktik. In Bildungsräume 2017 (DeLFI 2017),
pages 385–386. Gesellschaft für Informatik, 2017.

228 OTHER REFEREED PUBLICATIONS

Appendix C

Curriculum Vitae

Name: Peter Marcel de Lange

Birthday: January 8, 1988

Birth Place: Eschweiler, Germany

Address: Heisterner Straße 18
D-52249 Eschweiler, Germany

Email: lange@dbis.rwth-aachen.de

Language Skills: German (native), English (professional), Dutch (fluent)

Professional Experience: PhD Research & Project Work at Chair of Computer Science 5
(Databases & Information Systems), RWTH Aachen University
10/2018 - present: Project worker in BMBF tech4comp
12/2015 - 03/2018: Project worker in EU H2020 WEKIT
12/2015 - 12/2016: Project worker in EU FP7 IP Learning Layers
03/2011 - 10/2014: Student researcher at the Chair for Information
Systems and Databases, RWTH Aachen University

Academic Education: 12/2015 - present:
PhD Candidate at Faculty of Mathematics, Computer Science and
Natural Science, RWTH Aachen University
10/2013 - 09/2015:
M. Sc. Computer Science at RWTH Aachen University
10/2008 - 09/2013:
B. Sc. Computer Science at RWTH Aachen University

229

mailto:lange@dbis.rwth-aachen.de?subject=Dissertation

230 APPENDIX C. CURRICULUM VITAE

	Introduction
	Motivating Use Case
	Solution Concepts and Research Questions
	Thesis Contribution and Research Context
	Thesis Outline

	Research Context
	Decentralized Architectures
	P2P Networks
	Microservices

	Microservice Registry and Discovery
	Distributed Consensus
	Consensus Mechanisms and the Blockchain

	Incentivation and Reputation
	Trust
	Reputation Systems

	Scaffolding
	Usage in Digital Learning Environments
	Scaffolding of Community Information Systems

	Social Bots
	Learning in CoPs
	Monitoring of Learning Analytics Data
	Knowledge Building

	Decentralized CIS Infrastructures
	Methodology
	Concept and Technical Foundation
	Microservice Discovery with API Metadata
	Motivation
	Concept
	Realization
	Evaluation

	Decentralized Service Registry
	Motivation
	Concept
	Realization
	Evaluation

	Community Contribution Incentivization
	Motivation
	Concept
	Realization
	Evaluation

	Verification and Consent Management of LA Data
	Motivation
	Concept
	Realization
	Evaluation

	Discussion and Conclusion

	Scaffolding Decentralized CIS
	Methodology
	Motivation for Model-Driven Scaffolding
	Conceptual Overview
	View-based MDWE
	Web Application Metamodel
	Role-based Project Management
	A NRT Evaluation Center
	Model Synchronization for Live Code Editing
	Integration of Wireframing Support for MDWE

	Realization
	User Interface
	Versioning System
	Architectural Overview
	Wireframe Model Transformations

	Evaluation
	Initial Evaluation
	Evaluation with Heterogeneous Teams
	Evaluation in a Lab Course
	Live Code Editor Evaluation
	Wireframing User Evaluation
	Wireframing Activity Evaluation
	Service Success Measurement Evaluation
	Project Management Evaluation

	SBF: The Social Bot Framework
	Motivation
	Concept: A Metamodel for Social Bots
	Realization: Social Bot Life-Cycle
	Evaluation

	Discussion and Conclusion

	Distributed Learning in Decentralized CIS
	A Virtual Vocational Training Center
	Introduction
	Use Case: Educational Vocational Training
	Realization
	Evaluation
	Summary

	Infrastructure for Knowledge Building
	Introduction
	Methodology
	Digital Question-Based Dialog For Ignorance Modeling
	Realizing the Distributed Noracle
	Evaluation
	Summary

	A Distributed Mentoring Architecture
	Introduction and Motivation
	Architecture
	Summary and Outlook

	Discussion and Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work and Outlook

	References
	List of Figures
	List of Tables
	Appendices
	Appendix List of Abbreviations
	Appendix Own Publications
	Appendix Curriculum Vitae

