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Abstract
Doors to Darkness: Phenomenology of Dark Matter Portal

Interactions

by Saniya HEEBA

The Dark Matter (DM) question has taken centre-stage in modern-day particle physics and
cosmology, with the microphysical nature of DM remaining stubbornly elusive. In this thesis,
we explore different classes of particle DM models based on the interactions of DM with the
Standard Model (SM). Our interests lie in obtaining accurate relic density estimates with the
inclusion of finite temperature corrections and other in-medium effects, as well as in detailing
the detection prospects of these models using direct detection experiments and accelerator
searches. We will focus on the so-called portal models, in which a single type of interaction
connects the DM particle to the SM. We will distinguish between the case where this portal
interaction arises from the exchange of a scalar, the Higgs Portal, and from a vector particle, the
vector portal.
For the Higgs portal, we consider a scalar singlet DM model where the relic abundance is set
by the leakage of energy from the SM thermal bath (the so-called freeze-in mechanism), and
where the dominant contribution does not arise from Higgs boson decays. The latter can be
achieved if such decays are kinematically forbidden or if the reheating temperature is much
smaller than the Higgs boson mass.
For the vector portal, we consider two dark photon models. One, with a kinetically mixed
dark photon where the relic abundance is set by resonantly enhanced annihilations during
or after freeze-out, i.e., when DM decouples from the thermal bath. And the second, where
both the SM and DM are gauged under an additional U(1)′, and the relic abundance is set by
freeze-in.
Further, mediators in both scalar and vector portal models may also give rise to long-range
DM-DM interactions, potentially alleviating the tensions between astrophysical observations
and predictions from collisionless cold DM. To discuss these effects, we provide a new quantum-
mechanical treatment of such self-interactions and derive analytic results for the momentum
transfer and viscosity cross-section for the case of interactions arising from a Yukawa poten-
tial.
Through these representative models, we make the following observations: i) Thermal correc-
tions, in-medium effects and a proper treatment of the electroweak and QCD phase transition
are highly relevant for relic density calculations especially for the case of freeze-in, and ii)
some of the simplest models with light and/or feebly coupled DM can be probed in a com-
plementary fashion at ongoing and upcoming direct detection and accelerator experiments,
spelling exciting times for the future of DM research.
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Zusammenfassung
Pforten zur Finsternis: Phänomenologie von
Portal-Wechselwirkungen dunkler Materie

von Saniya HEEBA

Die Thematik um die dunkle Materie (DM) steht im Mittelpunkt der modernen Teilchen-
physik und Kosmologie, wobei sich uns bislang die mikrophysikalische Natur der DM hart-
näckig entzieht. In dieser Dissertation werden unterschiedliche Modelle von DM-Teilchen
und ihren Wechselwirkungen mit dem Standardmodell (SM) eingehend untersucht. Der Fokus
liegt hierbei einerseits darauf, korrekte Abschätzungen der Reliktdichte zu bestimmen, wofür
die Berücksichtigung von temperaturabhängigen Korrekturen sowie weiteren In-Medium-
Effekten notwendig ist. Andererseits wird die Überprüfbarkeit dieser Modelle durch Beschleu-
niger und direkte Detektionsexperimente detailliert diskutiert. Konkret werden sogenannte
Portalmodelle diskutiert, in denen eine einzige Art von Wechselwirkung das DM-Teilchen an
das SM koppelt. Dabei werden zwei Fälle betrachtet: eine Wechselwirkung über ein skalares
Austauschteilchen (das Higgs-Portal) und über ein Vektorteilchen (das Vektorportal).

Für den Fall des Higgs-Portals wird ein skalares Singlet-DM-Modell betrachtet. Die Relikt-
dichte wird hierbei durch das Austreten von Energie aus dem SM-Wärmebad generiert (der
sogenannte Freeze-In-Mechanismus), wobei Zerfälle des Higgs-Bosons nicht den dominanten
Beitrag ausmachen. Letzteres kann entweder dadurch realisiert werden, dass der Zerfall kine-
matisch nicht erlaubt ist oder dass die Temperatur beim Wiederaufheizen des Universums
kleiner ist als die Masse des Higgs-Bosons. Für den Fall eines Vektorportals werden zwei
konkrete Dunkle-Photon-Modelle betrachtet. Im ersten Szenario wird ein dunkles Photon
im Kontext kinetischer Mischung diskutiert, wobei die Reliktdichte über resonant verstärkte
Annihilationen während oder nach dem Freeze-out, d.h. dem Entkoppeln von DM aus dem
Wärmebad, erzeugt wird In dem zweiten Modell sind hingegen sowohl das SM als auch die
DM unter einer zusätzlichen U(1)′-Symmetrie geladen und die Reliktdichte wird über Freeze-
in erzeugt. Des Weiteren können Austauschteilchen in Skalar- und Vektorportal-Modellen
zu langreichweitigen DM-DM-Wechselwirkungen führen. Dies ermöglicht es insbesondere
viele der Diskrepanzen zwischen astrophysikalischen Observationen und Vorhersagen für
kalte DM zu mildern. Um diese Effekte zu diskutieren, wird für den Fall einer Wechsel-
wirkung über ein Yukawa-Potential ein neuer quantenmechanischer Ansatz für solche Selb-
stwechselwirkungen vorgestellt sowie analytische Ergebnisse für den Impulsübertrags- und
Viskositätswirkungsquerschnitt hergeleitet. Mit Hilfe dieser repräsentativen Modelle kön-
nen folgende Schlussfolgerungen gezogen werden: i) Temperaturabhängige Korrekturen, In-
Medium-Effekte und eine richtige Behandlung des elektroschwachen und QCD-Phasenübergangs
sind hochrelevant für die Berechnungen der Reliktdichte, insbesondere für Freeze-In-Szenarien.
ii) Einige der einfachsten Modelle mit leichter und/oder gänzlich schwach wechselwirkender
DM können auf eine komplementäre Weise mit aktuellen sowie zukünftigen Experimenten
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an Beschleunigern und mit solchen zum direkten Nachweis von DM getestet werden, sodass
der DM-Forschung eine aufregende Zukunft bevorsteht.
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1

Prelude

We do not know what eighty percent of the Universe is made of [5].

This is not an exaggeration. We have stared into the cosmos for millennia, reshaped the world
we inhabit in irreversible ways, brought home carved-out pieces of other worlds as well,
but we do not know what eighty percent of the Universe is made of. Here is another fact,
commonly stated yet always surprising: there are more stars in the Universe than grains of
sand on the Earth. And what I am telling you is when you add all of that up, all of those
stars, all of those grains of sand, everything you can see, touch, manipulate, you can explain
the constitution of only about twenty percent of what is actually out there. What I am telling
you is that we are only at the surface of what there is to know, that while we’ve dug our heels
and made ourselves comfortable in our little corner of the Universe, there still remains much
room to leap.

We do not know what eighty percent of the Universe is made of but we are curious and
passionate and determined. We call the missing eighty percent Dark Matter and we have
spent the last several decades sketching out its shape [6]. We know it is stable. We know
it interacts very weakly, if at all, with the kind of matter we are familiar with. The only
interactions we are sure about are gravitational. We’ve buried experiments deep into the
heart of the Earth and sent satellites into space in an effort to see something. But even though
we know it is there, from the structure of our universe, from the movement of stars, from
tiny fluctuations in ancient light, it eludes our experiments, its microphysical properties just
slightly out of reach.

The last fifty years have seen a tremendous increase in both the theoretical and experimen-
tal sides of dark matter research: better, more precise experiments exploring a diversity of
what-ifs proposed by solid theoretical modelling. From using gravitational waves [7]—literal
ripples in space time—to exoplanets [8], we are exploring every avenue. But the absence of a
clear, uncontested dark matter signal, and the range of possibilities have made it imperative
that we rethink our approach toward dark matter modelling. Theoretical research into the
question of dark matter has now become an exercise in balance: between the unique features
offered by each model and the degeneracies in phenomenology and detection prospects it
shares with others. The complementarity of search strategies demand a complementarity in
model phenomenology and therefore in model-building.

In this thesis, I will approach the dark matter question from the perspective of its possible
connections to visible matter. Non-gravitational interactions between the dark and the visible
sectors, if present, are necessarily small. But these can result in observable signatures at scales
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ranging from the very big (in the structure of the universe) to the very small (in properties
of visible sector particles). The imprints that dark matter leaves on our Universe span our
entire cosmological history, culminating in the experiments we build today that target a whole
host of potential properties dark matter could have. Keeping in mind this range of scales as
well as the myriad model possibilities that may map onto the same physical observables, the
discussion of models in this thesis is structured along the axis of cosmological time.

In Part I, The Beginning, I describe the happenings in the Universe at the earliest timescales
both in the visible and the dark sectors, specifying what is known, what is posited, and what
is assumed. Chapter 1 provides an introduction to the Standard Model of Particle Physics,
including a description of particle interactions at finite temperature, as well as a brief review
of the cosmological history of the universe. Chapter 2 provides a more formal introduction
to dark matter and establishes mechanisms of dark matter production and evolution. It also
discusses how dark matter affects our cosmological history and therefore how observations
of the early universe can be used to make statements about its particle nature.

In Part II, The Middle, we meet dark matter in the middle and discuss two different portals
between the dark and the visible sectors. Chapter 3 serves as a brief introduction to what
follows. Then, using the formalism developed in Part I, Chapters 4 and 5 describe scalar and
vector portals respectively, and their early universe phenomenology. Particles that mediate
the interactions between the two sectors can also result in self-interactions within the dark
sector, affecting the structures of galaxies and galaxy clusters. Chapter 6 elaborates on these
self-interactions and their phenomenological consequences.

Finally, in Part III, The Now, we discuss our attempts to look for dark matter with terrestrial
experiments, focusing on the models discussed in Part II. Chapter 7 introduces three different
search strategies for dark matter, discussing in detail two of them: direct detection and accel-
erator searches. The general conclusions are presented in Chapter 8 along with a brief outlook
into what the future holds.
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Part I

The Beginning
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Chapter 1

Touched By Light: The Past We Can See

The cosmological history of the universe is usually presented in units of temperature— a
measure of the energy contained in the Standard Model (SM) heat bath. Some of these tem-
peratures are known to a high degree of accuracy from cosmological and astrophysical obser-
vations (such as the temperature at which the universe became transparent or at which light
nuclei such as helium began to form), while some only have upper (or lower) bounds inferred
from our current understanding of cosmology (such as the temperature of reheating).

To understand how the universe came to be, and to establish notational convention, we begin
this chapter with a brief introduction to the SM of particle physics in Section 1.1. Since the
SM particles and fields are generally described at zero-temperature (or in vacuum), which the
early universe was decidedly not, we take a small detour in Section 1.2 to understand how
the field theory machinery of SM is modified at finite-temperature. In doing so, we discuss
phase-transitions in the SM and other in-medium effects for particles in a thermal bath. We
then shift scales and provide a short overview to Particle Cosmology in Section 1.3, sketching
out the kinds of calculations needed to quantify cosmological interaction rates. Finally, we put
everything together in Section 1.4 and summarise the cosmological history of the universe.

The following sections are largely based off of the references [9–13]. Additional references,
when used, are cited in-text.

1.1 Standard Model in a Nutshell

The Standard Model of particle physics, also called the Glashow-Weinberg-Salam model, pro-
vides a prescription for describing the fundamental particles in the universe and three of the
four forces which connect them.1 The particles in the SM can be classified into fermions and
bosons on the bases of their spin. Elementary fermions and their bound states such as protons
and neutrons comprise the entirety of the visible sector of our universe. Bosons act as me-
diators of the three different forces: the photon, γ, mediates the electromagnetic interaction,
the W - and Z- bosons mediate the weak interaction, and the gluons, g, mediate the strong
interaction. Lastly, the Higgs boson generates the mass of all particles except neutrinos which

1Gravity is yet to be included in the SM.
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FIGURE 1.1: A sketch of the particles in present in the SM with their approx-
imate masses. The shading between particles indicates fermion generations.

(Sketch adapted from a talk by K. Schutz.)

in the current formulation of the SM remain massless. Taken together, these particles describe
everything we can quite literally "see".

The mathematical construction of the SM is based in a relativistic quantum field theory (QFT)
framework. Relativistic quantum fields realised in nature satisfy certain global symmetries,
for example, invariance under translations, rotations and boosts in space and time. The
translational and Lorentz invariance is grouped under the Poincaré symmetry. Additionally,
fields in the SM satisfy certain internal or local symmetries which then determine the possi-
ble interactions (forces) between these fields or equivalently between the various SM parti-
cles. Mathematically, these local symmetries are represented by the non-abelian gauge group
SU(3)C × SU(2)L × U(1)Y . The generators of each group correspond to the mediators of the
strong, weak and electromagnetic interactions respectively. The indices C, L, and Y corre-
spond to the particle properties of colour, chirality and hypercharge as detailed below.

Also known as the colour group, the SU(3)C gauge symmetry characterises the strong interac-
tions in the SM called Quantum Chromodynamics (QCD). A fermion’s charge under SU(3)C

classifies it as a quark or a lepton. Quarks are triplets under SU(3)C meaning that each quark
can have 3 possible "colours": red, blue and green.2 This triplet representation also implies
that quarks interact via the strong force. These interactions are mediated by the gluons, as
mentioned previously, which are the generators of this gauge group. On the other hand, lep-
tons are singlets under the colour group and thus do not have strong interactions.

2This has nothing to do with actual colour but instead should be thought about as an intrinsic property or an
additional degree of freedom. Ref. [14] provides an insightful commentary on how certain terms in physics, like
colored particles, are a stark reflection of the social context in which physics is done.
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The electromagnetic and weak interactions are unified under the SU(2)L × U(1)Y symmetry.
The SM is a chiral theory meaning that left- and right- handed particles have different inter-
actions, represented by the different transformation properties of these particles under the
electroweak gauge group. The left-handed leptons and quarks are arranged in weak isodou-
blets (i.e., charged under both SU(2)L and U(1)Y ),

L =

(
ν

e

)

L

; Q =

(
u

d

)

L

(1.1)

while the right-handed ones are in weak isosinglets (charged only under U(1)Y ): eR, uR, dR.
Note that right-handed neutrinos do not exist in the current formulation of the SM, although
they are often invoked as an explanation for neutrino masses [15]. Both quarks and leptons
have 6 different flavours grouped into three generations or families. The second and third
generations of leptons can be represented as L2 = (νµ, µ)L, eR2 = µR and L3 = (ντ , τ), eR2 =

τR respectively. Similarly for the quarks we have Q2 = (c, s), uR2 = cR, dR2 = sR and Q3 =

(t, b), uR3 = tR, dR2 = bR

The SM particle content and interactions are summarised in Fig. 1.1. Once the various fields
and their respective charges are defined, the SM Lagrangian is constructed by including all
terms of mass dimension four or less that are allowed by the respective gauge symmetries and
satisfy Lorentz invariance.

In the simplest form, the SM Lagrangian can be written as

L =− 1

4
GaµνG

µν
a −

1

4
W b
µνW

µν
b −

1

4
BµνB

µν

+ iL̄Dµγ
µeR + iQ̄Dµγ

µQ+ iūRDµγ
µuR + id̄RDµγ

µdR

+ (DµΦ)†DµΦ− V (Φ) + (−λeL̄ΦeR − λdQ̄ΦdR − λuQ̄Φ†uR + h.c.) . (1.2)

The first line contains the kinetic terms for the gauge bosons with the indices a and b represent-
ing the eight and three generators of SU(3)C and SU(2)L respectively. The second line con-
tains the fermion kinetic terms as well as their interactions with the gauge fields (contained in
the covariant derivative Dµ).3 The final line represents the interactions of the complex Higgs
doublet, Φ, with the gauge bosons (first term), with itself (second term) and with the fermion
fields (last term). The Higgs-fermion interactions are also known as Yukawa interactions.

From Eq. 1.2, we immediately notice the absence of mass terms for the fermions and the gauge
bosons. Since the SM is chiral, i.e., left- and right-handed fields have different transformation
properties, any mass term of the form Ψ̄Ψ = (ΨLΨ̄R+ΨRΨ̄L) manifestly breaks gauge invari-
ance. Similarly, a gauge boson mass term also violates the local SU(2)L × U(1)Y symmetry.4

Particle masses in the SM have to be therefore generated via the Higgs mechanism. The Higgs

3Dµ = ∂µ − igsTaG
a
µ − ig2TbW

b
µ − ig1YqBµ/2 where gs,1,2 are the coupling constants for the various gauge

interactions, G, W, B are the field strengths for the gluon, weak boson and hypercharge fields, and Ta,b are the
generators of the gauge groups.

4This can be seen by applying the transformation Aaµ → Aaµ − fabcAbµ(x)ωc(x) + 1
g
∂µω

a(x) to the kinetic term in
Lwhere fabc are the structure constants for SU(N) and ω is an infinitesimal parameter.



8 Chapter 1. Touched By Light: The Past We Can See

mechanism postulates the spontaneous breaking of the SU(2)L ×U(1)Y symmetry to a resid-
ual U(1)Q, where Q denotes electric charge. The complex Higgs doublet with 4 degrees of
freedom (dof) reduces to a scalar Higgs field (1 dof), and the remaining 3 dof are absorbed
to produce the weak gauge boson masses. The photon, of course, remains massless. Addi-
tionally the Yukawa interactions with the Higgs which relate left- and right- handed fermions
simplify to produce mass terms for the fermions.

The breaking of the electroweak symmetry is caused by a phase transition. Apart from the
electroweak phase transition, the SM has another phase transition in the strong sector known
as the QCD phase transition. We summarise these briefly in the next section.

1.1.1 Phase Transitions in the SM

The QCD Phase Transition

Although we have defined the QCD sector in terms of quarks and gluons, at low energies,
free quarks and gluons do not exist. Instead, the strong interaction between them leads to
the formation of colour-neutral bound states, called hadrons, in a process called confinement.
Hadrons can either be formed from a quark-antiquark pair, known as mesons, or from three
quarks, called baryons.

The exact mechanism for confinement is not properly understood but it stems from the non-
abelian nature of SU(3) [16]. In particular, the QCD phase transition is linked to the breaking
of the chiral symmetry—which is an exact symmetry in the limit of massless quarks—and
the formation of a quark condensate in vacuum, 〈qq̄〉. Qualitatively, the energy required to
separate a pair of quarks rises linearly with distance. As a result, at some point it becomes en-
ergetically cheaper to generate a new quark pair from the vacuum to form two colour-neutral
bound states, than to have free quarks. Additionally, QCD is asymptotically free implying
that the strength of interactions between quarks and gluons decreases with increasing ener-
gies. Put differently, at very high energies the strong coupling constant tends to zero. Taken
together, this results in confinement at low energies whereas free, deconfined particles exist at
high energies.

As a result of confinement, we cannot use the standard QCD Lagrangian at low energies. In-
stead, we use an effective field theory framework to construct a Lagrangian which includes
baryons and mesons as the relevant degrees of freedom. This is done using Chiral Perturba-
tion Theory [17]. The QCD phase transition is not directly relevant for this thesis apart from
the fact that one should be mindful of the relevant degrees of freedom at a given temperature
(or energy) scale when describing interactions. We will elaborate on this further in Chapter 4.
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The Electroweak Phase Transition

To understand the phase transition in the electroweak sector (or the Higgs mechanism), it
is necessary to first understand the phenomenon of spontaneous symmetry breaking (SSB). SSB
occurs when the ground state of a theory is asymmetric under certain transformations even
though the Lagrangian (which determines the dynamics of the theory) remains symmetric.
The simplest example for when SSB is realised in nature is that of a ferromagnet. The theory
which describes how two neighbouring spins interact is rotationally invariant, however, the
ground state of a ferromagnet consists of spins aligned in a certain direction which explicitly
breaks the rotational symmetry.

The Higgs mechanism is conceptually similar. To start with, we write down the Lagrangian
for a set of N scalar fields, φi(x),

L =
1

2
(∂µφ

i)2 +
1

2
µ2(φi)2 − λ

4
[(φi)2]2 , (1.3)

with an implicit sum over i. This Lagrangian is symmetric under a rotation in N dimensions,

φi → Rijφj . (1.4)

The lowest energy field configuration, or the ground state of the system, is then defined such
that the potential

V (φi) = −1

2
µ2(φi)2 +

λ

4
[(φi)2]2 , (1.5)

is minimized, which results in

(φi0)2 =
µ2

λ
. (1.6)

Eq. 1.6 shows that the given set of fields φi can have a non-zero global value, called the vacuum
expectation value (vev), at this minima. Since Eq. 1.6 specifies the magnitude of the vector φi0
but not the direction, it is possible to choose

φi0 = (0, 0, . . . , 0, v) with v =
µ√
λ
. (1.7)

We can then define a set of shifted fields

φi(x) = (πk(x), v + σ(x)) , k = 1, . . . , N − 1 , (1.8)

and rewrite the Lagrangian 1.3 in terms of the π and σ fields.

L =
1

2
(∂µπ

k)2 +
1

2
(∂µσ)2 − 1

2
(2µ)2σ2−

√
λµσ3 −

√
λµ(πk)2σ − λ

4
σ4 − λ

2
(πk)2σ2 − λ

4
[(πk)2]2 . (1.9)
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Comparing Eqs. 1.3 and 1.9, we see that the original O(N) symmetry is hidden (manifest only
in how the coefficients in Eq. 1.9 relate to the two parameters, µ and λ, in Eq. 1.3), leaving only
the O(N − 1) symmetry which rotates the π fields among themselves.

Additionally, the only massive degree of freedom is σ as the π fields remain massless. The ap-
pearance of massless fields is a key feature of SSB, described by the Goldstone Theorem which
states that a theory must contain one massless particle for each spontaneously broken contin-
uous symmetry. In the example above, we go from O(N) which has N(N − 1)/2 independent
continuous transformations to O(N − 1) which has (N − 1)(N − 2)/2.5 Essentially, we break
N − 1 symmetries corresponding to the appearance of N − 1 π fields.

In the SM, the Higgs field, a complex scalar doublet, breaks the SU(2)L ×U(1)Y symmetry to
a residual U(1)Q by acquiring a vev. The three broken symmetries give rise to three massless
Goldstone bosons, and the shifted Higgs field can be written as

Φ =
1√
2

(
φ1 + iφ2

v + h+ iφ3

)
, (1.10)

where h is the broken Higgs fields, v is the vev and φi are the Goldstone bosons. It is possible
to show that the Higgs doublet can be rotated to

Φ→ 1√
2

(
0

v + h

)
(1.11)

such that the Goldstone bosons are "absorbed" into the SM gauge bosons, W± and Z, pro-
viding them with a mass. Further, the Yukawa interaction in Eq. 1.2 for leptons and quarks
simplify to give mass terms. To illustrate, we consider the electron Yukawa term

L ⊃− λeL̄1ΦeR1 + h.c (1.12)

which after SSB reduces to

L ⊃ − 1√
2
λev ēLeR + h.c + . . . , (1.13)

resulting in the electron mass me = λev/2.

SSB, therefore, provides a simple mechanism to account for fermion and boson masses. How-
ever, we still have steered clear of answering how the symmetry breaking occurs. In our ex-
ample of the ferromagnet, the reason that the rotational invariance of the system is broken at
low energies is related to the temperature of the system. Below a critical temperature, we find
that the spins in a ferromagnet align in a particular direction. It would not be unreasonable to
guess then that the reason for SSB in the SM is also related to external effects. Put another way,
to deduce the electroweak scale, or "when" SSB happens, we need to figure out the dynamics
of our theory beyond the vacuum-only description we have studied so far.

5For N = 1, we do not have any rotations, for N = 2, we can perform a rotation in a single direction, for N = 3,
in 3 directions and so on.
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1.2 The Standard Model at Finite Temperature

Conventional field theory presupposes that interactions happen in vacuum6, an ideal approxi-
mation to calculate observables such as cross-sections or event rates at experiments. However,
as discussed in the introduction to this chapter, the early universe comprised of a hot dense
plasma of particles and therefore interactions happened in the presence of a background ther-
mal bath. These interactions alter the phenomenology of particles in-medium in substantive
ways. For instance, positive mass-corrections to particles in-medium result in the opening up
of decay channels not available at zero-temperature.7 Formulating a finite temperature field
theory (FQFT) can be used to include these background effects into cosmological calculations.
It also provides an answer to the question asked at the end of Section 1.1.1: At what scale
does the SM electroweak symmetry spontaneously break? In this section, we provide a short
summary of the methods of FQFT before revisiting the electroweak phase transition.

1.2.1 Quantum Systems in Thermal Equilibrium: Imaginary Time Formalism

We begin by first thinking about a description of quantum particles in equilibrium. From
statistical physics, we know that such an ensemble of particles with temperature, T = 1/β,
can be described completely in terms of its partition function,

Z(β) ≡ Tr ρ(β) = Tr e−βH =

∫
dx〈x|e−βH|x〉 , (1.14)

where ρ(β) is the density matrix,H is the Hamiltonian of the system, and Tr represents a trace
(or a sum over the expectation values in any complete basis as shown in the final equality).
Any observable is then given by an ensemble average

〈A〉β =
1

Z(β)
Tr ρ(β)A =

1

Z(β)
Tr e−βHA . (1.15)

Further, the correlation function of any two observables is given by the thermal average,
〈AB〉β = Z−1(β)Tr ρ(β)AB. The cyclicity of the trace leads to an interesting identity for the
correlation function. For Heisenberg operators, AH(t) = eiHtA(0) e−iHt, we can write

〈AH(t)BH(t′)〉β =
1

Z(β)
Tr e−βHAH(t)BH(t′)

=
1

Z(β)
Tr e−βHBH(t′)e−βHAH(t)eβH

=
1

Z(β)
Tr e−βHBH(t′)AH(t+ iβ)

=〈BH(t′)AH(t+ iβ)〉β , (1.16)

6Incidentally, physics also does not happen in vacuum and how we do science is shaped by the societies we do
science in [18].

7This is a well-known result from stellar physics in the context of photon masses [19], but it can be generally
applied to any particle in-medium.
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where in the third line we have used the time evolution specified above to obtain AH(t) =

eiHtA(0) e−iHt ⇒ e−βHAH(t)eβH = AH(t + iβ). This is known as the KMS (Kubo-Martin-
Schwinger) relation and it plays a major role in finite temperature field theories.

The connection between this statistical system and QFT can be seen clearly by considering the
path integral formalism for zero-temperature QFT. In the path integral formalism, transition
amplitudes at zero temperature are written as

〈φ(~x1, t)|φ(~x2, 0)〉 = 〈φ1|e−iHt|φ2〉 = N ′
∫
DφeiS , (1.17)

where φ is the quantum field variable, N ′ is a normalization constant determined from the
"vacuum-to-vacuum" transition and S is the action defined by the Lagrangian of the system,

S[φ] =

∫
dt

∫
d3xL (1.18)

The crucial observation is that the operator e−βH in the definition of the partition function
in Eq. 1.14, is equivalent to the time evolution operator e−iHt in Eq. 1.17. In other words,
the partition function of a quantum system at equilibrium can be described in a path integral
formulation by making the replacement, t→ iβ [20],

Z(β) =Tr e−βH =

∫
dφ1〈φ1|e−βH|φ1〉

=N ′
∫
Dφ e−SE (1.19)

where SE [φ] =
∫ β

0 dt
∫

d3xL[φ] is the Euclidean (imaginary time) action defined over a finite
time interval (corresponding to the inverse temperature of the system). Additionally, to rep-
resent a trace, the initial and final state should be the same. This means that the field variables
must satisfy the periodicity and anti-periodicity conditions

φ(~x, β) = ±φ(~x, 0) , (1.20)

for boson and fermion fields respectively. Note that the second component corresponds to
imaginary time. The path integral representation of the partition function depicts the par-
allels between zero-temperature and finite-temperature QFT. In zero-temperature QFT, the
end points in the path-integral formulation of the correlation function are not integrated over,
however at finite temperature this very integration gives rise to the (anti-) periodicity condi-
tions for the fields resulting in discrete energy levels as we shall see below.

It is possible to show that the thermal two-point Greens function, Gβ(τ, τ ′), where τ, τ ′ denote
imaginary times, depends only on the difference, τ − τ ′. Additionally, since τ, τ ′ ∈ [0, β], one
can use Eq. 1.16 to show that the two-point function in this formalism is also (anti-)periodic8

8This (anti-) periodicity is not directly related to the (anti-) periodicity in the field variables but instead comes from
the KMS relation. See [11] for details.
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[11],

Gβ(~x, τ) = ±Gβ(~x, τ + β) . (1.21)

Since the Greens functions are defined on finite time, their Fourier transform involves discrete
frequencies,

G̃β(~p, ωn) =

∫ β

0
dτ

∫
d3x ei(ωnτ−~p.~x)Gβ(~x, τ) , (1.22)

Gβ(~x, τ) =
1

β

∞∑

n=−∞

∫
d3p

(2π)3
e−i(ωnτ−~p.~x)G̃β(~p, ωn) . (1.23)

Denoted by ωn, these are referred to as the Matsubara frequencies and are determined by the
(anti-) periodicity conditions of the Greens function from Eq. 1.21,

ωn =





2nπ
β , for bosons,

(2n+1)π
β , for fermions, .

(1.24)

The propagators in momentum space can then be calculated in the usual way by performing
a Wick rotation,

G̃boson
β (~p, ωn) =

1

~p2 +m2 + ω2
n

,

G̃fermion
β (~p, ωn) =

γ0 + ~γ.~p+m

~p2 +m2 + ω2
n

, (1.25)

It follows from this discussion that finite temperature QFT looks like zero-temperature QFT
with finite imaginary time.

To summarise, the imaginary time formalism consists of defining a partition function in the
path integral representation with a Euclidean action over finite time. The Feynman rules can
then be read off the path integral. The vertices remain the same as in the zero temperature
Euclidean theory but the propagators pick up a non-trivial temperature dependence as a result
of the (anti-) periodic boundary conditions. Finally, the loop integrals can be generalised by
using the transformation,

∫
d4p

(2π)4
f(~p, ωn)→ 1

β

∞∑

n=−∞

∫
d3p

(2π)3
f(~p, ωn) . (1.26)
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1.2.2 Masses at Finite Temperature

We illustrate this method by calculating the one-loop mass correction to a particle in a self-
interacting scalar field theory described by the Lagrangian

L =
1

2
∂µφ∂

µφ− m2

2
φ2 − λ

4!
φ4 (1.27)

The corrections to the mass term come from a simple one-loop diagram arising from the four-
vertex in the Lagrangian (see left panel of Fig. 1.2). Using the propagator for a scalar field and
rotating to the Euclidean space we get

∆m2 =
λ

2β

∑

n

∫
d3p

(2π)3

1

(2nπ
β )2 + ~p2 +m2

=
λ

2β

(
β

2π

)2∑

n

∫
d3p

(2π)3

1

n2 + (
βωp
2π )2

, (1.28)

where

ωp = (~p2 +m2)1/2 . (1.29)

By using

∞∑

n=−∞

1

n2 + y2
=
π

y
cothπy , (1.30)

we can calculate the one-loop mass correction as

∆m2 =
λ

4

∫
d3p

(2π)3

1

ωp
coth

(
βωp

2

)

=
λ

4

∫
d3p

(2π)3

1

ωp
+
λ

2

∫
d3p

(2π)3

1

ωp

1

eβωp − 1

= ∆m2
0 + ∆m2

β . (1.31)

The first term in the equation above, is the usual zero-temperature one-loop correction whereas
the second term is the temperature dependent correction. Although it is difficult to obtain a
closed-form expression for the second term, we can make a high-temperature expansion to
obtain a positive mass correction,

∆m2
β ≈

λ

24β2
=
λT 2

24
, (1.32)

Intuitively, this is what we would expect for a particle moving in a medium.
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p

k − p

k

p

FIGURE 1.2: One loop correction to the mass term of a simple scalar field (left),
and to the photon self-energy (right).

Effective Masses for Massless Particles

In-medium effects are also responsible for generating an effective mass for particles that are
massless in vacuum. The most well-known example of this is the appearance of massive pho-
tons, called plasmons, in stellar systems [19]. This mass term can be traced back to a modifica-
tion of the photon self-energy as a result of its interactions with the particles in the medium:
the response of the plasma to a propagating electric field and the dynamical shielding of that
field.

The photon self-energy in vacuum (assuming only electron-positrons in the loop) is given by,

Πµν(p) = −ie2

∫
d4k

(2π)3
Tr[γµG(−q)γνG(k)] (1.33)

where G(x) represent the electron propagators in the loop and q = p − k, with the various
momenta as defined in the right panel of Fig. 1.2. As a result of the ward identity, pµΠµν(p) =

0, the self-energy has two independent components: the longitudinal (L) and transverse (T)
mode corresponding to electric and magnetic interactions respectively,

ΠL(p) = Π00(p), ΠT(p) =
1

2

(
δij −

pipj
p2

)
Πij(p), (i, j = 1, 2, 3). (1.34)

We can reformulate Eq. 1.33 in the imaginary time formalism to obtain

Πµν(p) = −4e2

β

∞∑

n=∞

∫
d3k

(2π)3
(kµqν − qµkν − gµν)G(k)G(−q) , (1.35)

where the sum runs over the discrete Matsubara frequencies, k0 = (2n + 1)π/β. It is difficult
to obtain a closed form expression for this equation although in the high temperature limit
(T � me, p

0), it is possible to solve for ΠL and ΠT [21, 22],

ΠL(p) = −3m2
γ

[
1− p0

2p
ln
p0 + p

p0 − p

]
(1.36)

ΠT(p) =
3

2
m2
γ

p2
0

p2

[
1−

(
1− p2

p2
0

)
p0

2p
ln
p0 + p

p0 − p

]
(1.37)
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where mγ = eT/3 denotes the effective thermal mass. The effective photon propagator will
then have longitudinal and transverse contributions which in the static limit (p0 → 0) read

D∗L(p) =
1

p2 + 3m2
γ

, (1.38)

D∗T(p) = − 1

p2
(1.39)

These equations tell us that the long range electric interaction is shielded in the infrared limit
by the Debye mass, m2

D = 3m2
γ , whereas the magnetic interaction is not.

The expression for the photon thermal mass can be readily generalised to include additional
relativistic particles in the loop [23],

m2
γ =

∑

f

e2q2
f

9
T 2 , (1.40)

where the sum runs over all relativistic fermions each with a U(1) charge given by qf .

Similar to the photon self-energy, the fermion self-energies also get dressed in-medium. While
calculating the fermion thermal masses, it is important to keep in mind that before the elec-
troweak phase transition left- and right- handed fermions belong to different representations
of the SM gauge group. This leads to different thermally induced masses. For the leptons we
have [24],

m2
`,L =

m2
Z + 2m2

W +m2
` +m2

`′

2v2
h

T 2 , (1.41)

m2
`,R =

m2
Z −m2

W + 1
2m

2
`

2v2
h

T 2 , (1.42)

where m`, `′ are the zero-temperature masses of the leptons belonging to the same SU(2) dou-
blet, vh is the Higgs vacuum expectation value, and mZ and mW denote the zero-temperature
masses of the Z and W bosons. In particular, the masses of left-handed fermions belonging to
the same SU(2) doublet are equal. For the first-generation of quarks we get,

m2
q,L =

1

6
g2
sT

2 +
3m2

W + 1
9(m2

Z −m2
W ) +m2

u +m2
d

8v2
h

T 2 , (1.43)

m2
u,R =

1

6
g2
sT

2 +
4
9(m2

Z −m2
W ) + 1

2m
2
u

2v2
h

T 2 , (1.44)

m2
d,R =

1

6
g2
sT

2 +
1
9(m2

Z −m2
W ) + 1

2m
2
d

2v2
h

T 2 , (1.45)

where mu,d are the zero-temperature masses of up and down quarks and gs is the strong-
coupling constant. The induced masses for the other two generations can be analogously
defined.
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After the phase transition, the mass corrections are simply [24],

∆m2
` =

e2 T 2

8
, (1.46)

∆m2
q =

g2
sT

2

6
. (1.47)

We end this section with a few comments on symmetries in the Finite Temperature QFT frame-
work. Evidently, introducing a thermal bath of particles destroys Lorentz invariance since the
rest frame of the bath is always preferred. Nevertheless, finite temperature field theory can
in fact be formulated in a Lorentz covariant way in terms of the four-velocity of the system,
uµ = (1, 0, 0, 0), and its (Lorentz-invariant) temperature, T . Given uµ, any four-vector, e.g.,
the particle four-momentum pµ, can be decomposed into a component parallel to it and one
perpendicular to it.

pµ‖ = (p.u)uµ ≡ ωuµ

pµ⊥ = pµ − ωuµ . (1.48)

Then, in the rest frame of the heat bath where uµ = (1, 0, 0, 0), the energy of a particle is given
by p0 = ω, and its three-momenta by ~p = pµ⊥. Therefore, ω can be understood as a Lorentz
invariant energy and pµ⊥ as the Lorentz invariant spatial momentum. This formulation has
interesting consequences in terms of phenomenology. For instance, as we have already seen,
the self-energy of particles in-medium now depend independently on two parameters (ω and
pµ⊥) instead of just on pµ, which leads to distinct plasmon masses and screening lengths.

Secondly, finite temperature effects, especially the positive mass correction as derived above,
are crucial for restoring symmetries at high temperatures. The best example for this the
restoration of the spontaneously broken SU(2)L×U(1)Y in the SM, which we discuss in detail
in Section 1.2.3.

Finally, note that in the imaginary time formalism discussed above, we have traded the time
variable for temperature. Consequently, this formalism can only be used to describe static
systems. To track both time and temperature, we instead use real time formalisms in which we
add a temperature variable to our theory [11, 13]. What this means in practice is a doubling
of the Hilbert space to go from a purely vacuum ground state |Ω〉 to a thermal vacuum given
by |Ω, β〉. Qualitatively, the result of using a real-time formalism is similar: we end up with
temperature dependent propagators but in this case we can clearly separate the temperature-
dependent and -independent parts. At the level of the Lagrangian, we end up doubling the
degrees of freedom to have "ordinary" (or in-vacuum) vertices as well as "thermal" vertices for
the interactions. Observables can then be calculated in the standard way of QFT. Real time for-
malisms are useful in studying dynamical systems but are far more technically complicated.
For this thesis we will limit ourselves to an imaginary time formalism.
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1.2.3 Electroweak Phase Transition Revisited

In Section 1.1.1, we reviewed the process of spontaneous symmetry breaking and the genera-
tion of particle masses in the Standard Model. In this section, we will quantify the scale of the
electroweak phase transition.

Consider the tree-level Higgs Potential,

V0(φc) = −m
2

2
φ2
c +

λ

4
φ4
c (1.49)

specified in terms of the classical background field, φc, defined such that the complex Higgs
doublet is given by

Φ =

(
φ1 + iφ2

φc+h+iφ3
√

2

)
. (1.50)

Here, φi are the Goldstone bosons as before and h is the Higgs field. Note that the tree level
minimum is defined by the vev, v2 = m2/λ. Here, we shall express the masses in terms of the
constant background field φc as

m2
h(φc) = 3λφ2

c −m2

m2
χ(φc) = λφ2

c −m2 (1.51)

For φc = v, we obtain the usual expressions m2
h(v) = 2λv2 = 2m2, and m2

χ(v) = 0. Similarly,
we can re-express the gauge boson and fermion masses in terms of φc,

m2
W (φc) =

g2

4
φ2
c

m2
Z(φc) =

g2 + g′2

4
φ2
c

m2
f (φ2

c) =
y2
f

2
φ2
c . (1.52)

We make this distinction between φc and v to elucidate how temperature effects can change φc,
thus always reserving v for the zero-temperature, tree-level minimum of the Higgs potential.
To calculate the scale of the phase transition, we need to evaluate the one-loop effective Higgs
potential in the finite temperature theory framework,

V β
eff = V0(φc) + V β

1 (φc) (1.53)

where V β
1 (φc) includes the one-loop contributions from scalars, gauge bosons and fermions
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to the tree-level Higgs potential at finite temperature. At zero-temperature, we have the fol-
lowing contributions from scalars, fermions and gauge bosons

V scalar
1 (φc) =

1

2

∫
d4p

(2π)4
log[p2 +m2(φc)]

V vector
1 (φc) = g̃gb

1

2
Tr

∫
d4p

(2π)4
log[p2 +M2

gb(φc)]

V fermion
1 (φc) =− 2g̃f

1

2
Tr

∫
d4p

(2π)4
log[p2 +M2

f (φc)] (1.54)

where Mgb and Mf are the diagonal mass matrices of the gauge bosons and fermions respec-
tively. The prefactors count the degrees of freedom of the particles in the loop, g̃gb = 3 for
gauge bosons, and g̃f = 1(2) for Weyl (Dirac) fermions. Note that these integrals need to be
regularised to cancel out divergences.

We can now reformulate these integrals in the imaginary time formalism.

Scalar Fields

Using the replacement from Eq. 1.26, we obtain for the scalar field contribution,

V β
1 (φc) =

1

2β

∞∑

n=−∞

∫
d3p

(2π)3
log(ω2

n + ω2) , (1.55)

where ωn are the bosonic Matsubara frequencies and we have defined ω2 = ~p2 +m2(φc). The
sum over the logarithm can be simplified to [10]

V β
1 (φc) =

∫
d3p

(2π)3

[
ω

2
+

1

β
log
(

1− e−βω
)]

. (1.56)

The first term in the integral is the temperature-independent part and is exactly equal to the
standard one-loop correction in zero-temperature QFT. The temperature-dependent part can
be expressed in the form of a thermal bosonic function JB ,

1

β

∫
d3p

(2π)3
log
(

1− e−βω
)

=
1

2π2β4
JB[m2(φc)β

2] , (1.57)

with,

JB[m2β2] =

∫ ∞

0
dxx2 log

(
1− e−

√
x2+β2m2

)
. (1.58)

JB has closed forms for both high- and low- temperature expansions which are particularly
useful in analytically examining the evolution of the Higgs potential in the early universe. We
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find

JB

(
m2

T 2

)
=

T�m
− π4

45
+
π2

12

m2

T 2
− π

6

(
m2

T 2

)3/2

− 1

32

m4

T 4
log

m2

abT 2

− 2π7/2
∞∑

l=1

(−1)l
ζ(2l + 1)

(l + 1)!
Γ

(
l +

1

2

)(
m2

4π2T 2

)l+2

, (1.59)

JB

(
m2

T 2

)
=

T�m
−
∞∑

l=1

1

l2
m2

T 2
K2

(
l m

T

)
, (1.60)

where ab = 16π2 exp(3/2 − 2γE) (log ab = 5.4076), ζ is the Riemann ζ- function and K2 is the
modified Bessel function of the second kind.

Fermion fields

Similarly, for the fermion fields we can write,

V β
1 (φc) = − 2g̃

2β

∞∑

n=−∞

∫
d3p

(2π)3
log(ω2

n + ω2) , (1.61)

with ωn being the fermionic Matsubara frequencies and ω = ~p2 +M2
f . Once again, the integral

splits into a temperature-independent and a temperature-dependent part,

V β
1 (φc) = −2g̃

∫
d3p

(2π)3

[
ω

2
+

1

β
log
(

1 + e−βω
)]

, (1.62)

with the latter being expressed in the form of a thermal fermionic function JF ,

−2g̃
1

β

∫
d3p

(2π)3
log
(

1 + e−βω
)

= −2g̃
1

2π2β4
JF [M2

f (φc)β
2] , (1.63)

JF [m2β2] =

∫ ∞

0
dxx2 log

(
1 + e−

√
x2+β2ω2

)
. (1.64)

The high- and low- temperature expansions for JF are given by,

JF

(
m2

T 2

)
=

T�m
7π4

360
− π2

24

m2

T 2
− 1

32

m4

T 4
log

m2

afT 2

− π7/2

4

∞∑

l=1

(−1)l
ζ(2l + 1)

(l + 1)!
(1− 2−2l−1)Γ

(
l +

1

2

)(
m2

π2T 2

)l+2

, (1.65)

JF

(
m2

T 2

)
=

T�m
−
∞∑

l=1

(−1)l

l2
m2

T 2
K2

(
l m

T

)
, (1.66)

with af = π2 exp(3/2− 2γE) (log af = 2.6351).
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FIGURE 1.3: The one-loop effective Higgs potential as a function of tempera-
ture. The critical temperature, Tc, is defined as the temperature for which the
zero-temperature minimum of the potential becomes unstable. For smaller tem-

peratures, the SU(2)× U(1) symmetry is broken.

Vector fields

Analogously, the gauge boson contribution is given by,

V β
1 (φc) = 3

1

2

(∫
d3p

(2π)3
log[p2 +M2

gb(φc)] +
1

2π2β4
JB[M2

gb(φc)β
2]

)
. (1.67)

The evolution of the Higgs potential with temperature

Now that we have everything in place, we can finally study the part temperature plays in elec-
troweak symmetry breaking. We can construct the effective one-loop Higgs potential at finite
temperature using Eqs. 1.55, 1.61, 1.67 and assuming that only heavy particles contribute. The
zero-temperature part can be evaluated in a given regularisation scheme. For example, in
cut-off regularisation,

V1(φc) =
1

64π2

∑

i

ni

(
m4
i (φc)

(
log

m2
i (φc)

m2
i (v)

− 3

2

)
+ 2m2

i (φc)m
2
i (v)

)
, (1.68)

where the sum runs over all particle species which give a large enough contribution, i.e.,
particles with large zero-temperature masses or large Yukawa couplings, i = W±, Z, t, h,
and ni are the particle degrees of freedom, nW = 6, nZ = 3, nh = 1, nt = −12. In the
high-temperature limit, we can approximate the temperature dependent part by the thermal
bosonic and fermionic functions.9 The total effective Higgs potential at high-temperatures can

9This analytic expression for the potential necessarily breaks down at zero-temperature where the high-
temperature expansions are invalid. This can be quite clearly seen in the formulation of λ(T ) which has a di-
vergence at T = 0.
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then be simplified to

V β
eff,high−T = D(T 2 − T 2

0 )φ2
c − ETφ3

c +
λ(T )

4
φ4
c , (1.69)

with

D =
2m2

W +m2
Z + 2m2

t

8v2
,

E =
2m3

W +m3
Z

4πv3
,

T 2
0 =

m2
h − 8Bv2

4D
,

B =
3

64π2v4
(2m4

W +m4
Z − 4m4

t ) ,

λ(T ) = λ− 3

16π2v4

(
2m4

W log
m2
W

ABT 2
+m4

Z log
m2
Z

ABT 2
− 4m4

t log
m2
t

AFT 2

)
, (1.70)

where logAB = log ab− 3/2 and logAF = log af − 3/2, with aF and ab defined as before. Note
that we have removed the φc-independent terms from the potential.

Fig. 1.3 shows this potential for different values of the temperature. What we are interested in
is the equilibrium value of φc given by the minimum of V β

eff . (Remember that a minimum at
zero means that the SU(2)L × U(1)Y symmetry is unbroken.) Notably, this minimum is now
a function of temperature, 〈φc(T )〉 implying that even if the field has a non-zero minimum at
zero-temperature, the minimum can shift to zero as the temperature is increased. Or in other
words, symmetry can be restored at large temperatures. From Fig. 1.3, we can already see
that for temperatures smaller than a critical temperature, the minimum at φc = 0 becomes
unstable. A quick glance at Eq. 1.68 shows that this should happen for T . T0 ≡ Tc when the
prefactor of the φ2

c term changes sign.

This symmetry breaking is exactly what happens when we look at the cosmological history.
The early universe was hot and dense leading to the Higgs field having a minimum at absolute
zero. During this time, all particles only had thermal masses, consequence of their interactions
with the plasma as discussed in section 1.2.2. As the universe expanded and cooled, the tem-
perature dropped below a certain critical temperature causing the minimum to shift to a new
non-zero value and leading to a phase transition. The nature of the phase transition—whether
it was first- or second-order (discontinuous or continuous)—is determined by the exact La-
grangian used. The SM phase transition with the current known particles and interactions is
believed to be second order. We can estimate the temperature of the phase transition analyti-
cally by using the high-temperature expansion of the potential described in Eq. 1.69.

The critical points of the potential can be calculated in the standard way,

∂Veff,high−T(φc, T )

∂φc

∣∣∣
φ

= 2D(T 2 − T 2
0 )φ− 3ETφ2 + λ(T )φ3 = 0

⇒ φ =
3ET ±

√
9E2T 2 − 8Dλ(T )(T 2 − T 2

0 )

2λ(T )
, (1.71)



1.2. The Standard Model at Finite Temperature 23

so that we can define the critical temperature more accurately by, Tc = T1, where T1 is the
temperature at which a local minimum appears defined by,

T 2
1 =

8λ(T1)DT 2
0

8λ(T1)D − 9E2
. (1.72)

This equation can be numerically solved for SM values of the parameters to obtain T1 ≈
163 GeV. For T > T1, the potential is symmetric and has a single minimum at φ = 0. For
smaller temperatures, the minimum shifts to non-zero values, approximately given by

φ2
c(T ) =

2D(T 2
0 − T 2)

λ(T )
, (1.73)

relaxing to the one specified by the vev as T → 0. Note that in this expression we have
assumed λ(T ) to be approximately constant. This analytic formulation of the temperature-
dependent vev is therefore not valid as T → 0. Additionally, there are some subtleties regard-
ing this calculation which we have skipped over. The presence of the cubic term implies that
this transition will be first order. This means that at T = T1, a potential barrier develops be-
tween the local minimum and the minimum at the origin. T0 then is the temperature at which
this barrier disappears. In the SM model, the value of E, which determines the strength of the
cubic term, is negligible as a result of higher order corrections which we have ignored. What
this means in practice is that to a very good approximation T0 ≈ T1 ≡ TEW.

The temperature dependence of the vev implies that the Higgs mass and indeed all other
particle masses after the phase transition are also functions of temperature. Before the phase
transition, the complex Higgs has a thermal mass given by

m2
H(T ) =

d2Veff, high−T

dφ2
c

∣∣∣∣∣
φc=0

= 2D(T 2 − T 2
0 ) . (1.74)

As we move toward smaller temperatures, the high-temperature expansion used to arrive at
Eq. 1.69, begins to break down. Nevertheless, we can approximate the Higgs mass in terms of
the temperature-dependent vev from Eq. 1.73,

m2
h(T ) ≈ 2λ(T )φ2

c(T ) = 4D(T 2
0 − T 2) . (1.75)

A more accurate result for the temperature-dependent Higgs mass and vev at low tempera-
tures can be obtained by numerically minimising the full effective potential and not just the
high-temperature expansion. We compare the numerical results with the analytic formulas
discussed above in Fig. 1.4. As expected, the two show a remarkable agreement at large
temperatures but differ considerably as T → 0.

The SM particle masses also pick up a temperature dependence after the phase transition
from the Higgs vev (given by the formulas in Eq. 1.52). This temperature dependence is
independent of the thermal fermion masses that arise as a result of particle interactions in
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FIGURE 1.4: The evolution of the Higgs vev (left) and the Higgs mass (right) as a
function of temperature. The red line corresponds to the analytic approximation
as discussed in the text, and the blue line results from a numerical implementa-

tion of the effective Higgs potential.

the plasma. For sufficiently large Yukawa couplings, the Higgs-induced masses generally
dominate over the thermal mass correction at low temperatures.

A Note On Divergences

In this section, we have ignored completely the question of possible ultraviolet (UV) or in-
frared (IR) divergences in FQFT. It turns out that temperature does not introduce any new
UV divergences in our theory. This can be seen, for instance, in the temperature dependent
part of the mass correction in Eq. 1.31 which is well behaved as T → ∞ (β → 0). The UV di-
vergences present at zero-temperature, of course, have to be regularised in the usual manner.
IR divergences in FQFT, on the other hand, get significantly worse. These are related to the
appearance of the so called ring or daisy diagrams that, in order to regulate the divergences,
need to be resummed to all orders. In fact, these diagrams are exactly the reason the cubic
term in the effective potential vanishes, leading to a smooth transition. A proper calculation
of the phase transition, therefore, involves additional technicalities which we have skipped
over. In particular, not accounting for these effects is why the Higgs mass in our prescription
has a value of around mh ≈ 10 GeV at the critical temperature instead of zero (see Fig. 1.4).
These details, although interesting, are irrelevant for the kinds of calculations we will be doing
in this thesis.

With a handle on the temperature evolution at very small scales, i.e., a formulation of finite
temperature quantum field theory, we now turn our attention to significantly larger scales and
see how the universe collectively evolved throughout its history.

1.3 Particle Cosmology in a Nutshell

Organising the universe in a form that is not stupendously overwhelming appears to be a
daunting task and yet, over centuries and with the help of many, oft-unrecognised, scientists,
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FIGURE 1.5: Left: CMB anisotropies as measured by Planck [25]. The temper-
ature fluctuations across the field of view are of the order of 10−5 K. Right:
Galaxy survey by Sloan Digital Sky Survey. Each dot is a galaxy and the colour

bar shows the local density. Image from www.sdss.org.

we have arrived at the Standard Model of Cosmology. Commonly called ΛCDM —denoting
the two currently unknown but most abundant components of the universe: dark energy (Λ)
and cold dark matter (CDM)— it manages to describe all of our observations with a handful
of parameters.

The foundational principle behind ΛCDM is the Cosmological Principle which states that
the universe at sufficiently large scales should be homogenous and isotropic. This is well-
supported by evidence, for example by the minuteness of temperature fluctuations in the Cos-
mic Microwave Background (CMB), and by the uniformity of structure as captured by galaxy
surveys (Fig. 1.5). It is, of course, important to note that inhomogeneities and anisotropies
exist at small scales, for instance galaxy clusters are very different from cosmic voids. In fact
these small perturbations amidst a homogenous background turn out to be exceptional tests
for both ΛCDM as well as any proposed additions to it. They are particularly useful in studies
of non-cold dark matter models as we shall discuss in Chapter 2. For the moment, however,
we will only consider the homogenous background in order to flesh out the mathematical
framework we would require later.

As opposed to its spatial homogeneity, we know for a fact that the universe is evolving in
time. We have already made a passing reference to the evolution of the universe as a function
of its temperature. Additionally, we know that spacetime itself is constantly expanding— the
farther out we look into space, the faster the galaxies appear to be moving away from us.
We also know that this expansion has been happening throughout the history of the universe
and therefore the equations which govern the universe must account for it. The expanding
universe, as formulated by using general relativity, can be best described by defining comoving
coordinates in a Friedmann-Lemaitre-Robertson-Walker (FLRW) metric

ds2 = −c2dt2 + a(t)2(dx2 + dy2 + dz2) (1.76)
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FIGURE 1.6: The dilution of radiation, matter and dark energy density as a
function of time.

where a is a time-dependent scale factor encapsulating the expansion of the universe. In this
metric, Einstein’s equationa

Gµν = 8πGTµν − Λgµν (1.77)

relate the properties of spacetime (encoded in Einstein’s tensor Gµν) to the properties of mat-
ter (given by the stress-energy tensor Tµν). G is the universal gravitational constant and the
second term on the right represents the contribution of the cosmological constant Λ with gµν
being the Minkowski metric. Under the assumptions of homogeneity and isotropy, one can
then derive the Friedmann relation [26], quantifying the expansion rate of the universe

H2(t) ≡
(
ȧ

a

)2

=
8πG

3
(ρR + ρM)− k

a2
+

Λ

3
, (1.78)

in terms of the radiation and matter energy densities ρR and ρM, the comoving spatial cur-
vature k and the cosmological constant Λ. All of the terms on the right of Eq. 1.78 (except
the last) depend either implicitly or explicitly on the scale factor a; the implicit dependence in
the first term can be obtained by considering energy conservation in an expanding universe,
which gives ρR ∝ a−4 and ρM ∝ a−3.

In essence, the Friedmann equation tells us that the rate of expansion of the universe changes
depending on which of these terms dominate. Using the scaling relations, we can already
sketch out the contribution of radiation, matter and dark energy to the total energy density of
the universe as a function of time, or equivalently the scale factor a, where a→ 0 denotes the
earliest timescales at which our theories work. We plot the evolution of these energy densities
in Fig. 1.6. This is an important puzzle piece in studying the thermal history of the universe,
since the rate of expansion, which is related to which terms dominate in Eq. 1.78, is closely
tied with the efficiency of interaction rates in the early universe.
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From Fig. 1.6, we see that the universe was dominated by radiation for the first several tens
of thousand years. During this time we can ignore the contribution from the matter and dark
energy densities. Additionally, our universe has been observed to be spatially flat. Therefore,
we can write the Hubble rate at these early times as,

H2 ≈ 8πG

3
ρR . (1.79)

In the following section, we will discuss the analytic form of ρR and thereby arrive at a simple
analytic formula for H .

The Friedmann equation allows us to deduce the scale factor a(t) (or the Hubble parameter
H) at any time once we have measured ρR, ρM, Λ and H today. The observed spatial flatness
of our universe defines a critical density given by

ρc(t) =
3H2(t)

8πG
, (1.80)

which allows us to define a density parameter, Ω ≡ ρ/ρc. The Friedmann equation can then
be reformulated in terms of the present day energy densities as

H2(t)

H2
0

= Ω0,Ra
−4 + Ω0,Ma

−3 + Ω0, ka
−2 + Ω0,Λ , (1.81)

where H0 and Ω0, i correspond to present-day values of the Hubble parameter and densities
respectively.

1.3.1 Phase Space Distributions in Equilibrium

The earliest timescales that we can currently formulate (without a theory of quantum gravity)
correspond to a regime in which the universe was extremely hot and dense. This means that
the universe can be studied as a thermodynamic system in (or near) equilibrium characterised
by a temperature T . The expansion of the universe leads to a subsequent drop in this tem-
perature, resulting in various non-equilibrium phenomena that are crucial in explaining the
structure of the universe we see today.

To understand the evolution of the universe, from a hot and dense plasma to the formation of
light elements and beyond, we need to track how various particle densities evolve in time and
how reactions between particles which deplete or enhance their densities proceed. Essentially,
we need to compare the rate of these reactions, Γ, with the expansion rate of the universe, H ,
to determine when and for how long these reactions are efficient. Generally, if Γ � H , the
timescale of the given process, t = 1/Γ, is much smaller than the characteristic timescale of
expansion 1/H , making these processes efficient and in equilibrium. On the other hand, if
Γ� H , the universe expands much faster causing the particles to decouple.

Calculations of interaction rates are central to particle cosmology. The first step in any such
calculation is to define a phase-space distribution function for the particle under study, fχ(t, p)
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which is a function only of the absolute value of the particle momentum p and time, t.10 From
the phase-space distribution we can calculate the particle number and energy densities as
functions of time

nχ(t) = gχ

∫
d3p

(2π)3
fχ(t, p) (1.82)

ρχ(t) = gχ

∫
d3p

(2π)3
Eχfχ(t, p) , (1.83)

where gχ represents the internal (spin) degrees of freedom of χ. The exact form of fχ depends
on the system under study. For particles in thermal equilibrium with a given temperature T ,
as is the case for the SM in the early universe, fχ is known from statistical mechanics to have
the form

fχ =
1

e
E−µ
T ± 1

(1.84)

where E =
√
p2 +m2

χ is the energy of the particle, µ is the chemical potential, and the + (−)
sign is for fermions (bosons). Note that in this formulation the time dependence is encoded in
the temperature variable, T . Assuming µ = 0, we can solve the integrals in Eqs. 1.82 and 1.83
in the relativistic (T � mχ) and non-relativistic (T � mχ) limits.

For T � mχ:

nχ =
ζ(3)

π2
gχT

3 ×
(

3

4

)
(for fermions) , (1.85)

ρχ =
π2

30
gχT

4 ×
(

7

8

)
, (1.86)

where ζ is the Riemann-zeta function. Conversely, for T � mχ:

nχ = gχ

(
mχT

2π

)3/2

e−mχ/T , (1.87)

ρχ = mχnχ . (1.88)

Using the relativistic equation for energy density and Eq. 1.79, we can now write down a
simple expression for the Hubble expansion during radiation domination,

H ≈ 1.66
√
gρ∗

T 2

MPl
, (1.89)

where MPl = 1.22 × 1019 is the Planck mass (related to the gravitational constant by MPl =

1/
√
G) and gρ∗ represents the effective relativistic degrees of freedom contributing to the radi-

ation energy density.

10This dependence can be deduced from the Cosmological Principle. Homogeneity implies that fχ should be the
same everywhere and therefore independent of x. Isotropy implies that fχ should be the same in every direction
and therefore only dependent on the modulus of the momentum and not on its direction.
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FIGURE 1.7: The effective energetic and entropic degrees of freedom in the SM
as functions of temperature.

When discussing particle cosmology, another quantity of interest is the total entropy density
given by

s =
ρ+ P

T
, (1.90)

where ρ and P are the total energy density and pressure of the species in the thermal bath.
During radiation domination, P = ρ/3 and the entropy density has the simple form,

s =
2π2

45
gs∗T

3 , (1.91)

where gs∗ are effective number of relativistic degrees of freedom contributing to the entropy.
The importance of this parameter lies in the fact that the total entropy density in a comoving
volume remains conserved (as opposed to the number density). This conservation implies that
gs∗T

3a3 = constant. Therefore, as long as gs∗ is constant, the temperature scales as T ∝ a−1.
However, if gs∗ changes (for example, if one or many particles become non-relativistic), the
temperature instead varies as T ∝ (gs∗)

−1/3a−1.

It is important to note that the entropic and energetic degrees of freedom, gs∗ and gρ∗ , are not
necessarily equal. In particular, if any of the particle species have a temperature Tχ different
from the temperature of the background thermal bath T , we have

gs∗ =
∑

rel.bosons

gχ

(
Tχ
T

)3

+
7

8

∑

rel. fermions

gχ

(
Tχ
T

)3

, (1.92)

gρ∗ =
∑

rel.bosons

gχ

(
Tχ
T

)4

+
7

8

∑

rel. fermions

gχ

(
Tχ
T

)4

. (1.93)

This difference in the evolution of gs, ρ∗ in the SM is plotted in Fig. 1.7. The various features in
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the plot correspond to particles becoming non-relativistic. Although the two degrees of free-
dom follow each other closely, differences arise at smaller temperatures when heavier parti-
cles begin to decouple from the thermal bath. We will qualitatively investigate this decoupling
in the following section.

1.3.2 Quantifying Interaction Rates

As mentioned previously, we are interested in the interaction rate Γ ∼ nσv, where n is the
number density of the particle, σ is its interaction cross-section and v its average velocity. At
sufficiently large temperatures, T > O(100 GeV), all particles are ultra-relativistic, meaning
that v ∼ 1 and the number density scales as T 3 (from Eq. 1.85). Consider a simple 2 → 2

interaction mediated by a massless gauge boson. The cross-section of this process can be
written as σ ∼ α2/T 2 where α = λ2/4π is the gauge coupling squared. The interaction rate is
then

Γ ∼ α2T . (1.94)

At these early times, the universe would still be dominated by radiation and therefore, from
Eq. 1.89, H ∼ T 2/M2

Pl. Comparing the interaction rate with the Hubble rate we get

Γ

H
∼ α2MPl

T
∼ 1016 GeV

T
, (1.95)

assuming a typical weak-scale value for the coupling, α ∼ 0.01. It is clear from this equation
that SM particles, which have order one couplings, remain in equilibrium for T ∼ 100 − 1016

GeV.

Additionally, we can redo the calculation at a smaller temperature to illustrate when particles
decouple. After the Electroweak Phase Transition, weak interactions are mediated by massive
gauge bosons, W± and Z. The interaction can be approximated by a four-point interaction
such that the cross-section is given by σ ∼ G2

FT
2, where GF = α/m2

W is Fermi’s constant and
the 1/mW comes from the low-momentum limit of the propagator. Once again comparing the
interaction with Hubble11, we get

Γ

H
∼ α2MPlT

3

m2
W

∼
(

T

1 MeV

)3

. (1.96)

This ratio drops below 1 at temperatures of around 1 MeV, indicating that particles interacting
via the weak force decouple from the thermal bath at this temperature. After decoupling, the
number density of the particles "freezes-out". If the particles are stable, this number then gives
the cosmological relic abundance of particles today.

In this section, we have only approximated interaction rates and decoupling temperatures. A
more rigorous treatment is needed in order to determine relic abundances accurately. This

11Note that the universe is still dominated by radiation and therefore the expression for H remains the same.
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FIGURE 1.8: An outline of the major epochs in our universe’s cosmological his-
tory.

is done by solving a Boltzmann Equation, which determines the rate of change of a given
phase-space distribution by accounting for all possible interactions causing the change. We
will elaborate on the Boltzmann Equation in Chapter 2 in the context of dark matter.

1.4 From The Earliest Times Until Today

We are finally ready to present a brief account of the thermal history of the universe. Fig. 1.8
summarises the various events along with the relevant times and temperatures. An asterisk
(*) after the name represents hypothesised events, the exact natures of which are yet to be
worked out. A dagger (†), on the other hand, indicates events expected to have occurred
based on the current understanding of the SM but which have not yet been experimentally
confirmed.

• Inflation*:
The inflationary paradigm was hypothesised to provide an explanation for the apparent
fine-tuning of the initial conditions of our universe. Qualitatively, it sought to explain
why causally disconnected regions in space are homogenous (the Horizon Problem) and
why the universe is flat (the Flatness Problem), by postulating a period of exponential
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expansion in the very early universe. This expansion could be triggered by a scalar field
which dominated the energy density of the universe at the time undergoing a phase
transition. Once inflation ends, the energy density of this field gets transferred to the
particles of the SM in a process called reheating. The interactions between the particles
then thermalise the SM with a given temperature known as the reheating temperature,
TRH. From our current understanding of cosmology, the value of the reheating tempera-
ture can be anywhere between∼ 1016 GeV to∼ O(MeV), where the upper bound comes
from inflationary models and the lower bound from the requirement of formation of
light elements (nucleosynthesis) [27].
Technically, Inflation precedes the "Hot Big Bang era": a term colloquially used to de-
scribe the universe once the SM has thermalised. We mention it as part of the thermal
history only for completeness and to introduce the idea of reheating temperature, which
will be useful in the discussion of dark matter models in the following chapters.

• Baryogenesis*:
Mechanisms of Baryogenesis aim to address the matter-antimatter asymmetry of the
universe. If baryons and anti-baryons were equally abundant in the primordial thermal
bath, efficient annihilations would result in our current universe being entirely popu-
lated by radiation. Instead we see an abundance of baryons. Viable models of Baryoge-
nesis postulate that this asymmetry was likely generated before the electroweak phase
transition but none have currently been experimentally confirmed [28, 29].

• Electroweak Phase Transition†:
As discussed in Sec. 1.2.3, a phase transition happens in the SM at a temperature of
around 160 GeV from the breaking of the SU(2) × U(1) symmetry, resulting in various
particles becoming massive.

• QCD Phase Transition†:
A second phase transition happens in the SM at T . 150 GeV when quarks and gluons
confine to hadrons, as mentioned in Sec. 1.1.1

• Neutrino Decoupling:
As the temperature drops further, interactions in the SM begin to lose efficiency. Neutri-
nos only interact with other particles in the SM via the weak interactions and therefore
they are the first SM particles to decouple at T ∼ 1 MeV, following the calculation pre-
sented in Sec. 1.3.1. Once the neutrinos leave thermal equilibrium, their distribution
remains "frozen" and their temperature scales simply with the scale factor, Tν ∝ a−1.

• Electron-Positron Annihilation:
Shortly after neutrinos decouple, the temperature drops below the electron/positron
mass, me ∼ 0.5 MeV. This implies that while electrons and positrons can annihilate
efficiently into photons, the inverse process, i.e., creation of electron-positron pairs,
γγ → e+e− is less likely. As a result, the number density of electrons and positrons
decreases until nearly all positrons vanish and a small fraction of electrons remain to
maintain electric neutrality of the plasma. Additionally, the photon temperature, or
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equivalently, the temperature of the thermal bath, rises slightly because of this energy
injection. The total radiation density at this point is given by the density of photons and
neutrinos and can be written using Eq. 1.86 as:

ρR =
π2

30
gγT

4
γ +

π2

30
gν

7

8
T 4
ν (1.97)

=
π2

30

(
2 +

7

4
Neff

(
4

11

)4/3
)
T 4
γ , (1.98)

where we have used entropy conservation12 to evaluate Tν/Tγ . Neff is the effective num-
ber of neutrino species in the universe and is sensitive to the presence of any additional
relativistic particles in the thermal bath. Current measurements from Planck [25] places
a bound onNeff = 3.00+0.57

−0.53 highly compatible with the theory prediction ofNeff = 3.044

[30].13 We will discuss how Neff can be used as a probe of DM in Chapter 2.

• Big Bang Nucleosynthesis (BBN):
Roughly 3 minutes after the end of inflation, protons and neutrons began to combine
resulting in the formation of nuclei of light elements such as hydrogen, helium, lithium
and their isotopes. Heavier elements were formed later in stellar cores. Measurements
of the abundances of these light elements provide a very precise way to test both ΛCDM
and the SM of particle physics since the formation of these elements is sensitive to par-
ticle properties such as the proton mass and weak coupling as well as to the expansion
rate of the universe. Through BBN, we can access the universe at the earliest timescales
thus making it a useful tool also in the context of beyond-the-standard-model (BSM)
studies. We discuss this briefly in the context of dark matter in Chapter 2.

• Recombination:
After nucleosynthesis, the thermal plasma contains photons, non-relativistic electrons,
hydrogen nuclei, and helium nuclei. Electromagnetic interactions keep all of these par-
ticle species in equilibrium. Additionally, there are interactions to produce as well as
ionise hydrogen of the form ep ↔ Hγ. As the temperature drops, the photons lose
energy and cannot efficiently ionise Hydrogen, resulting in a net production of neutral
Hydrogen atoms.

• Photon Decoupling:
As long as free electrons are present in the plasma, Thomson scattering e−γ → e−γ is
efficient enough to thermalise the photons. After recombination, the number density
of electrons drops causing the photons to decouple and freestream. These photons are
observed today as the CMB and provide a snapshot of the universe 380,000 years after
the end of inflation. The CMB is also sensitive to new physics and is therefore very
useful to constrain the same. Further discussion is provided in Chapter 2.

12The total entropy in a comoving volume, i.e., the number of possible states, remains conserved.
13The SM has three neutrino species which would give Neff = 3. However, neutrino decoupling is not instanta-

neous and Tν receives some contribution from e+e− annihilation thus altering Neff slightly.
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• Reionization:
After photons decouple, the universe remains relatively dark and undisturbed until the
first stars begin to form. These emit photons which partially reionize hydrogen. How-
ever, this reionization is not enough to re-establish thermal equilibrium and only a frac-
tion of the CMB photons scatter off the newly freed electrons. Nevertheless, reionisation
marks the end of the "Dark Ages" of the universe with the lighting of the first stars.

• Today:
And so we end up today, with a universe that is mostly empty, mostly dark, but with
enough mystery to have kept us hooked for centuries. Our Standard Models for both
particle physics and cosmology have worked out excellently so far, but there are still
many details to be worked out. In particular, the "dark components" of ΛCDM –dark
matter and dark energy– are relatively unknown. We will now turn our attention toward
dark matter and see how it has managed to dramatically affect the cosmology of our
universe while simultaneously remaining frustratingly elusive.
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Chapter 2

Whispers from the Dark: Hidden
Sectors In The Early Universe

For the last several pages, we have been alluding to the presence of non-baryonic or dark
matter (DM). The aim of this chapter is to describe the evolution of DM in detail, in particular
to discuss production mechanisms that saturate the DM abundance we see in the universe. We
begin in section 2.1 with a brief, somewhat historical, review of the evidences of DM gleaned
from cosmology and astrophysics along with a discussion of properties DM particles should
have. Next, in section 2.2 we discuss the production of DM in the early universe in two limits:
when DM is in thermal equilibrium with the SM heat bath and when it is not. Finally, we close
this chapter by detailing how BBN and CMB probe DM cosmology and what they say about
the microphysics of DM (section 2.3).

2.1 Evidence and Properties of Dark Matter

Discussions on DM, which now span several timescales as well as length-scales, arose initially
as a result of curious anomalies that popped up in studies of astrophysical systems. In 1933,
Fritz Zwicky noted that the velocity dispersion of stars in the Coma Cluster was much higher
than what one would expect from its observed mass [31]. To ensure the stability of the system
despite the large velocities of its constituents, its mass would have to be much larger than the
observed mass. Similar discrepancies were noted in other clusters [32] and so the problem of
the "missing mass" gained traction.

Many decades later, Vera Rubin and Kent Ford published what became the most striking
evidence for "hidden mass" [33]. They looked at rotation curves for spiral galaxies, i.e., the
variation of stars’ orbital velocities with their distance from the centre. From standard New-
tonian gravity, the orbital velocity of a star is inversely proportional to its distance from the
centre,

vc(r) =

√
GM

r
.
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FIGURE 2.1: Galactic rotation curves as measured by V.C Rubin and K. Ford.
The curves flatten out at large distances instead of decreasing as would be ex-

pected. Image taken from [33].

Here, M is the enclosed mass of the system and G is the gravitational constant. For distances
larger than the size of the galactic disk (where the visible mass is concentrated) M should be
constant and so vc ∝ r−1/2. Instead, Rubin and Ford found that the velocities of stars in the
outer regions of spiral galaxies saturate to a constant value hinting at the presence of some
invisible mass which extends far beyond the galactic disk (Fig. 2.1).

Owing to these observations it soon became evident that there must exist a different kind of
matter, one which was weakly interacting and massive. It began to be known as Dark Matter
and although, invisible matter would have been a more accurate description, the name stuck.1

Through the years, the evidence favouring the existence of this mysterious matter has only
grown.

In 1964, Arno Penzias and Robert Woodrow Wilson made the first observation of the CMB
[35]. As mentioned in Chapter 1, the CMB is relic radiation from the Big Bang and therefore
provides a snapshot of the universe 380,000 years ago. The power spectrum extracted from
the CMB map (shown in Fig. 2.2) depicts the fluctuation in the CMB temperature at different
angular scales in the sky. Its (very specific) shape is the result of oscillations in the hot gas of
the early universe. These oscillations depend on the total matter to radiation ratio: radiation
pushes the baryonic matter out of gravitational potential wells whereas gravity (or equiva-
lently concentration of mass) pulls it back in. Since the amount of radiation is fixed in the
Standard Model, the amplitudes and frequencies of these oscillations are highly sensitive to
the matter content and so the dark matter density of the universe [36]. In fact, analysis of
the CMB is what quantified the missing mass of the universe to be around eighty percent,
ΩDMh

2 = 0.1200± 0.0012 [5].

Another piece of evidence demonstrating the weakly interacting nature of dark matter comes
from colliding galaxy clusters. The most notable of these is the Bullet Cluster collision, a
high-energy collision which took place some hundred million years ago and is now touted

1Although Zwicky is frequently credited with coining the term Dark Matter (or Dunkle Materie in German), "dark"
or invisible objects had frequently been invoked in the preceding century, under the label of Dark Matter, to
explain anomalies in motions of planets and stars. See [34] for a short review.
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FIGURE 2.2: Planck CMB power spectra. Image taken from [5].

as a smoking gun signature of dark matter, not least because of its unusual shape (Fig. 2.3).
Cluster collisions are a fascinating place to look for hidden or dark matter because different
components of a cluster behave differently during a collision. The galaxies themselves pass
through unhindered since they occupy a tiny volume compared to the total volume of the
cluster. On the other hand, the particles present in the hot galactic plasma (which make most
of the baryonic matter of a cluster) smash and ricochet and therefore, radiate a lot of energy
in the form of X-rays. It is then possible to create a mass-profile of the clusters from this radi-
ated energy. It is also possible to create a second mass-profile by using gravitational lensing:
studying how the light from background objects is distorted because of the clusters’ masses
[37]. If the matter content of the clusters were to be purely baryonic (or visible), these two
profiles would overlap. What is found instead, is that they are in exact opposition [38].

In Fig. 2.3, the pink regions represent the concentration of the baryonic mass. The blue regions
denote the concentration of the total mass. The zero-overlap between the two implies the
presence of a non-baryonic, invisible, non-interacting source of mass; non-interacting matter
would pass right through during the collision while the baryonic mass interacts and gets
tangled up at the centre of the collision. Moreover, a study of the Bullet Cluster purports that
since the total mass of the two colliding clusters is concentrated at the edges of the collision,
most of its mass is non-baryonic or dark. The separation between the clumps of non-baryonic
mass of the two clusters further goes on to show that dark matter does not interact too strongly
with itself either. If particles in the dark sector were to be strongly interacting, they would be
caught up in the middle much like the baryons.2

Yet another source of evidence for dark matter is structure formation. The idea behind struc-
ture formation is simple. Small fluctuations in the early universe result in regions of under-
and over-densities. As the universe expands, these fluctuations also grow on account of grav-
ity and result in clumping of matter which eventually forms stars, galaxies, galaxy clusters,
etc. However, the early universe is radiation dominated, as discussed in chapter 1, and ra-
diation exerts pressure which tends to homogenise or wash out these fluctuations. In the

2We will return to the question of DM self-interactions in Chapter 6.
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FIGURE 2.3: Bullet Cluster: X-ray image (pink) superimposed over the mass
distribution calculated by gravitational lensing (blue). Image taken from chan-

dra.harvard.edu

absence of something like dark matter which doesn’t interact with radiation, structure forma-
tion would be highly suppressed. Moreover, structure formation also constrains the velocity
or kinetic energy of dark matter. Relativistic dark matter would also wash out fluctuations
and cause the suppression of structure [39]. And so, to explain the present-day structure of
the universe, invoking cold, dark matter is necessary.

To summarise, observational evidence implies the following DM properties:

1. By definition, it is stable and electrically neutral. If it does have a charge this would be
significantly smaller than the charge of an electron.

2. It is non-baryonic with a relic abundance given by ΩDMh
2 = 0.12.

3. It is dissipationless and collisionless (meaning it does not lose energy through radiation
or collisions) as well as cold (non-relativistic).

Additionally, assuming that DM is composed of particles,3 it is possible to obtain bounds on
its mass [42]. One of the best known lower bounds comes from phase-space considerations
of DM particles confined to a halo. Known as the Tremaine-Gunn bound, it quantifies the
extent to which fermionic DM particles can be compressed into a halo (based on the Pauli
Exclusion Principle) and results in mDM ≥ 0.27+0.30

−0.14 keV at 95% CL [43, 44]. A weaker lower
bound on bosonic DM can be obtained from the observed structure of the universe. If the
DM is extremely light, its de Broglie wavelength would be large enough to impact structure
formation. This results in mDM & 10−21 eV [45, 46]. On the other end of the spectrum, DM is
only essentially limited by the Planck scale with mDM ≤MPl [47].

3Of course, dark matter does not have to be a particle. Theories exist which attribute the evidence of dark matter
to manifestations of gravity [40] or non-particle objects such as primordial black holes [41]. But particle physics
models of dark matter remain the favoured explanation.
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The fact that the DM mass can vary over such staggering orders of magnitude coupled with
the the lack of other constraints means that a whole host of models can act as viable DM candi-
dates. Furthermore, given the diversity of particles in the visible sector, it is not unreasonable
to assume that DM is also organised in a complicated dark sector. All of this results in an
expansive DM model space with DM models having different particle phenomenologies even
though their macroscopic behaviour remains degenerate. The benefit, of course, is that we
can talk about DM cosmology in a somewhat model-independent fashion. In the rest of this
chapter, we will do exactly this and discuss the evolution of the dark sector based on some
simplifying assumptions, followed with the effects of DM on cosmological probes.

2.2 Production Mechanisms of Dark Matter

The Planck data postulates the relic abundance of DM to be ΩDMh
2 = 0.12 [5]. The question

then is how does one devise a production mechanism for DM which explains this abundance.
From the last chapter, we know that the way certain particles in the SM, such as the neutrinos,
get their present-day abundance is by freeze-out, i.e., annihilations in equilibrium compete
with the expansion rate of the universe until they become inefficient.4 If DM were to be a
part of the SM heat bath, or a thermal relic, it would undergo a similar evolution. However, it
is quite possible that the interactions between the dark and the visible sectors are not strong
enough for them to equilibrate. In such a scenario, DM can be produced "out-of-equilibrium"
by decays or annihilations of SM particles until these processes lose out to the expansion rate
of the universe. This is known as freeze-in [48].

In this section, we study the evolution of DM in these two limiting regimes. We begin with
a more rigorous calculation of the rate of change of the number density of a generic particle
species in section 2.2.1, followed with a discussion on freeze-out and freeze-in in sections 2.2.2
and 2.2.3 respectively. We conclude with a few statements on DM production beyond freeze-in
and freeze-out in section 2.2.4.

2.2.1 The Boltzmann Equation

The evolution of the phase-space density for any particle species is obtained by solving the
Boltzmann equation. In its simplest form, the Boltzmann equation can be written as [26],

L[fχ] = C[fχ] , (2.1)

where fχ denotes the phase-space distribution of the particle under consideration, L is the
Liouville operator representing the time rate of change of fχ, and C is the Collision operator
denoting the number of particles lost or gained per unit time per phase-space volume due to
collisions or decays.

4Note that all SM particles do not obtain their abundances this way. Instead, as pointed out in Chapter 1, the
abundance of most of them is set by an initial asymmetry (baryogenesis).
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The covariant form of the Liouville operator is,

L = pα
∂

∂xα
− Γαβγp

βpγ
∂

∂pα
. (2.2)

Since the phase-space density fχ is homogenous and isotropic, as mentioned in Chapter 1,
fχ = fχ(|p|, t) = fχ(E, t), and in the FLRW metric,

L[fχ] = E
∂fχ
∂t
− ȧ

a
|p|2∂fχ

∂E
. (2.3)

Using the definition of number density from Eq. 1.82, we can write down the Boltzmann
equation from Eq. 2.3 as,

ṅχ + 3Hnχ = gχ

∫
d3p

(2π)3

C[fχ]

E
. (2.4)

where H is the standard Hubble parameter defined in Chapter 1,5

H = 1.66
√
gρ∗

T 2

MPl
. (2.5)

It is conventional to treat the decrease in the number density due to the expansion of the
universe implicitly by considering the comoving number density, Yχ = nχ/s, instead, with s
being the total entropy density of the universe as previously defined,

s = gs∗
2π2

45
T 3 . (2.6)

Since s and nχ both scale as a−3 (in the limit of no collisions and gs∗ ≈ constant), the comoving
number density Y is scale-invariant.

Additionally, we can further simplify the Boltzmann equation by considering a dimensionless
variable for the temperature, x = mχ/T . With these changes, and assuming that the total
degrees of freedom in the universe remains constant over the temperature regions of interest,6
dg∗
dT ∼ 0, we get:

ṅχ + 3H nχ = sHx
dYχ
dx

. (2.7)

Note that when evaluating the Boltzmann equation numerically, as we shall do for specific
DM models in Part III, we will be considering the complete evolution of gs, ρ∗ as discussed in
Chapter 1 and plotted in Fig. 1.7.

5Note that we are still using the definition of H during radiation domination. For DM production calculations,
as we shall see below, the temperature ranges of interest almost always correspond to a radiation dominated
universe.

6This can be for example, if most of dark matter is produced at a given temperature (due to resonance) or within
a range of temperatures where no particles become non-relativistic.



2.2. Production Mechanisms of Dark Matter 41

Next, we consider the collision term. For a general process χ+ a1 + a2 + a3 + · · · ↔ b1 + b2 +

b3 + . . . , the collision term for a particle χ is [26]:

gχ

∫
d3pχ

(2π)3Eχ
C[fχ] =−

∫
d3pχ

(2π)32Eχ

d3pa1

(2π)32Ea1

d3pa2

(2π)32Ea2

. . .
d3pb1

(2π)32Eb1

d3pb2
(2π)32Eb2

. . .

(2π)4δ(4)(pχ + pa1 + pa2 · · · − pb1 − pb2 − . . . )
[|M|2χ+a1+a2+a3+···→b1+b2+b3+...fχfa1 ...(1± fb1)(1± fb2)...

− |M|2b1+b2+b3+···→χ+a1+a2+a3+...fb1fb2 ...(1± fχ)(1± fa1)...] (2.8)

where statistical dependence enters through the (1 ± f) factors with (+) for bosons and (−)

for fermions (corresponding to Bose-enhancement and Pauli-blocking effects respectively),
andM is the square of the matrix element summed (not averaged) over the initial and final
state spins. Eq. 2.1 is then formulated as:

sHx
dYχ
dx

=−
∫

d3pχ
(2π)32Eχ

d3pa1

(2π)32Ea1

d3pa2

(2π)32Ea2

. . .
d3pb1

(2π)32Eb1

d3pb2
(2π)32Eb2

. . .

(2π)4δ(4)(pχ + pa1 + pa2 · · · − pb1 − pb2 − . . . )
[|M|2χ+a1+a2+a3+···→b1+b2+b3+...fχfa1 ...(1± fb1)(1± fb2)...

− |M|2b1+b2+b3+···→χ+a1+a2+a3+...fb1fb2 ...(1± fχ)(1± fa1)...] , (2.9)

and the DM number density is obtained by integrating this equation from the reheating tem-
perature, TRH, to the temperature today, T0 ∼ 0.

For a DM particle with massmχ, the present-day DM energy density is given by ρ0
χ = mχn

0
χ =

mχ Y
0
χ s

0, wheres0 = 2891.2 cm−3 is the entropy density today. The DM relic abundance can
therefore be calculated as:

ΩDM =
ρ0
χ

ρ0
c

,

⇒ΩDM =
Y 0
χ mχs

0

ρ0
c

, (2.10)

where, ρ0
c = 1.053×10−5 h2 GeV cm−3 is the critical energy density today as defined in Chapter

1.

Note that the right-hand side of Eq. 2.9 still appears substantially difficult to solve. In the
following sections, we will review how to simplify this for both freeze-out and freeze-in along
with mentioning a few caveats. In doing so, we will be focusing primarily on 2 → 2 interac-
tions. Decays can be included in a completely analogous way (see, for example, [48, 49]).

2.2.2 Freeze-out: Conventions and Caveats

We begin our discussion following the model of a SM particle, i.e., we assume that DM was
part of the SM thermal bath at early times. Considering a simple process of the type 1 + 2 ↔
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Figure 2. The two basic mechanisms for DM production: the freeze-out (left panel) and freeze-in
(right panel), for three di↵erent values of the interaction rate between the visible sector and DM
particles � in each case. The arrows indicate the e↵ect of increasing the rate � of the two processes.
In the left panel x = m�/T and gray dashed line shows the equilibrium density of DM particles. In
the right panel x = m�/T , where � denotes the particle decaying into DM, and the gray dashed line
shows the equilibrium density of �. In both panels Y = n�/s, where s is the entropy density of the
baryon-photon fluid.

n = 0 for s-wave annihilation, n = 1 for p-wave annihilation, and so on. Here we assumed
that the freeze-out occurs when DM is non-relativistic.

Eq. (3.6) has an important feature: the present abundance is inversely proportional to
the DM annihilation cross section. This can be understood by recalling that in the freeze-out
scenario DM particles are initially in thermal equilibrium with the visible sector and the
stronger the interaction between them is, the longer the DM particles remain in equilibrium
and thus the more their abundance gets diluted before the eventual freeze-out. This can also
be seen in the left panel of Fig. 2.

3.3 Freeze-in

The above discussion was based on the assumption that the DM initially reached thermal
equilibrium with the visible sector. However, if the coupling between the visible sector and
DM particles is very small, typically y ' O(10�7) or less [258, 259], interactions between them
are not strong enough for DM to reach thermal equilibrium and freeze-out cannot happen.
Instead, the observed DM abundance can be produced by the freeze-in mechanism [15, 19].
In this case, the particle undergoing the freeze-in is referred to as a FIMP (Feebly Interacting
Massive Particle) [19], as opposed to the WIMP.

In the simplest case, the initial number density of DM particles is either zero or negligibly
small, and the observed abundance is produced by bath particle decays, for instance by
� ! ��, where � is a particle in the visible sector heat bath [15, 17–19, 240, 260–265].
The freeze-in yield is active until the number density of � becomes Boltzmann-suppressed,
n� / exp(�m�/T ). The comoving number density of DM particles � then becomes a constant
and the DM abundance freezes in. This is depicted in the right panel of Fig. 2.

– 10 –

�λDM−SM

Yeq(x)

Freeze-out

FIGURE 2.4: Representative sketch of DM freeze-out, with the DM comoving
number density Y , plotted as a function of inverse temperature, x = m/T . The
different colours correspond to different values of the DM-SM coupling with
larger coupling values resulting in delayed freeze-out and thereby a smaller

final DM density. Figure adapted from [50].

3 + 4, the collision term for particle 1 is [51],

g1

∫
C[f1]

d3p1

(2π)3
= −

∫ 4∏

i=1

d3pi
(2π)3 2Ei

(2π)4δ4(p1 + p2 − p3 − p4)

× f1f2(1± f3)(1± f4) |M12→34|2 − f3f4(1± f1)(1± f2) |M34→12|2 .
(2.11)

Assuming the annihilation products quickly equilibrate, we can make the replacement f3f4 =

f eq
3 f eq

4 . Additionally, the principle of detailed balance allows us to write f eq
3 f eq

4 = f eq
1 f eq

2 ,
which simplifies the equation above to

g1

∫
C[f1]

d3p1

(2π)3
= −〈σvmøl〉(n1n2 − neq

1 n
eq
2 ) , (2.12)

where n1, 2 are particle number densities with neq
1, 2 specifying their equilibrium values and

〈σvmøl〉 is the thermally averaged cross-section inclusive of all final states, σ =
∑

f σ12→f ,
given by

〈σvmøl〉 =

∫
σvmøle

−E1/T e−E2/Td3p1d3p2∫
e−E1/T e−E2/Td3p1d3p2

, (2.13)

where the Møller velocity is an explicitly covariant quantity defined by

vmøl ≡
√

(p1.p2)2 −m2
1m

2
2

E1E2
. (2.14)
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Note that in these formulas we have implicitly assumed a Maxwell-Boltzmann distribution
for the particles, f = e−E/T , and ignored the statistical factors of (1 ± f). This is a good
assumption for when E > T .

For the case of annihilation of identical particles, m1 = m2 = m, the thermal average can be
solved for analytically [51],

〈σvmøl〉 =
1

8m4T 2K2(m/T )

∫ ∞

4m2

ds σ (s− 4m2)
√
sK1

(√
s

T

)
(2.15)

where K1,2 are the modified Bessel functions of the second kind. From now on, we shall
suppress the subscript møl and assume vmøl → v. Finally, in terms of the comoving num-
ber density, Y , and the inverse temperature, x, we have the following compact form of the
Boltzmann equation,

dY (x)

dx
= −s 〈σv〉

H x

(
Y 2(x)− Y 2

eq(x)
)

(2.16)

Factors of two: The Boltzmann equation is notorious for having apparently strange factors of
two pop up every now and then mostly because of the presence of multiple phase-space inte-
grals and the implicit definition of the cross-section. The way it is conventionally formulated,
as in the landmark paper by Gondolo and Gelmini [51], is as follows: First, looking at only the
collision term, the cross-section is the usual one, summed over final spins and averaged over
initial spins without a factor 1/2 for identical initial particles. (The symmetry factor for final
state particles is, however, included.) For identical particles in the initial state, n1 = n2 = n,
Eq. 2.16 remains unchanged. For non-identical particles however, the total particle density
is given by n = n1 + n2. Since for particles in chemical equilibrium, n1 = n2, this implies
n = 2n1, resulting in an overall factor of 1/2 on the right hand side of Eq. 2.16.

Thermal freeze-out is an attractive scenario for DM production. One of the reasons for this is
that weak-scale values of couplings and masses generically reproduce the observed DM abun-
dance. This can be easily seen from Eq. 2.16 under certain assumptions [42]. First, the non-
relativistic thermally averaged cross-section can be expanded in powers of x, 〈σv〉0 ∼ σ0x

−n

where n = 0 for s-wave annihilation, n = 1 for p-wave annihilation, and so on. Additionally,
the DM density follows the equilibrium distribution before freeze-out, Y (x . xf ) ' Yeq(x),
and is much larger than the equilibrium distribution afterwards, Y (x & xf ) � Yeq(x)) (see
Fig. 2.4 ). Hence, assuming a cross-section that is dominantly s-wave, 〈σv〉 = σ0, and neglect-
ing Yeq, we can obtain the DM density by integrating the simplified Bolztmann equation,

dY

dx
' − λ

x2
Y 2, (2.17)

where we have made the x-dependence explicit in the prefactor by defining,

λ ≡ σ0s0

H(mχ)
, (2.18)
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with s = s0x
−3 and H(mχ) = H(x)x2. Integrating from freeze-out until today yields,7

Ytoday '
xf
λ
. (2.20)

The freeze-out temperature is defined approximately by the condition, 〈σv〉neq(xf ) ' H(xf ).
For a particle species that is non-relativistic at freeze-out, this is

〈σv〉
(
m2
χ

2πxf

)3/2

e−xf =
√
gρ∗

1.66m2
χ

MPl x
2
f

, (2.21)

which results in xf ∼ 20− 30 for mχ ∼ O(GeV) and 〈σv〉 ∼ α2/m2
χ for α ∼ 10−3 − 10−2. The

correct DM abundance then places a bound on the thermally averaged cross-section,

Ωχh
2 =

3× 10−26 cm3 s−1

〈σv〉 , (2.22)

which is naturally satisfied by a weak-scale cross-section, 〈σv〉 = α2
χ/m

2
χ, with αχ ∼ 0.01 and

mχ ∼ 100 GeV.8 This is known as the WIMP miracle and DM so produced is called a WIMP
(Weakly Interacting Massive Particle).

Although Eq. 2.16 is fairly general, there do exist DM models for which the relic abundance
calculation departs from the one presented above. First pointed out by Griest and Seckel [52],
these exceptions arise when DM models have any of the following properties:

1. Resonances: In models where the mass of the DM particle lies close to a resonance,
mA ' 2mχ, the annihilation cross-section is enhanced for temperatures close to the
resonance. This demands a proper treatment of the temperature integral in the Boltz-
mann equation since resonant annihilations might still be efficient after freeze-out. Phe-
nomenologically, such models are interesting since they allow for a suppression of an-
nihilation rates at late times and might alleviate certain constraints. We will discuss the
Boltzmann equation for resonant annihilation next and elaborate on its phenomenolog-
ical implications in the context of a specific model in Chapter 5 (see also [53]).

2. Thresholds: Thresholds also affect the relationship between the annihilation cross-section
today and its value at freeze-out. For example, if DM dominantly annihilates into a
slightly heavier state, φ, the annihilation has an exponential phase-space suppression
since this annihilation is kinematically forbidden at small temperatures. Since the relic
abundance is inversely proportional to the cross-section, this suppression results in an
enhancement in the final relic density. Such DM is categorised as forbidden dark matter
(see, for example, [54]).

7Note that in general, we need to perform the full calculation,

Ytoday ∝
[∫ ∞

xf

〈σv〉
x2

]−1

, (2.19)

to obtain the DM density.
8For a Dirac DM candidate the numerator in Eq. 2.22 has an additional symmetry factor of 2, resulting in 6 ×
10−26 cm3 s−1.
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3. Co-annihilations: Co-annihilations are important for models where the annihilating
partner for DM is a particle with a mass close to the DM mass. Additionally, the co-
annihilation cross-section is large enough for the freeze-out of the two species to be inter-
connected. In this case, the thermally averaged cross-section can be either enhanced or
suppressed depending on whether or not the co-annihilating partner annihilates effi-
ciently as compared to DM [55].

Relic Abundance For Resonant Annihilations:

We now turn our attention to the first exception to the relic density calculation. Consider a
generic DM model where the DM particle, χ, has a mass close to resonance, 2mχ ' mA

′. For
the moment, we remain agnostic about the underlying properties of both these particles.9 We
can parametrise how close we are to resonance by

εR =
m2
A′ − 4m2

χ

4m2
χ

. (2.23)

The DM relic abundance is then set by the process, χχ→ A′ → ff where f denotes a SM final
state. For the total decay width of the mediator given by ΓA′ , we can use a Breit-Wigner form
for the annihilation cross-section,

σvlab = F (ε)
mA′ΓA′

(s−m2
A′)

2 +m2
A′Γ

2
A′
, (2.24)

where ε = (s − 4m2
χ)/4m2

χ is a dimensionless measure of the kinetic energy of the collision,
vlab = 2

√
ε (1 + ε)/(1 + 2ε) is the relative velocity in the rest frame of one of the two annihilat-

ing particles, and F (ε) is a model-dependent prefactor which includes the relevant couplings
and masses for the initial and final states under consideration. In terms of these parameters10,
the thermally averaged cross-section in Eq. 2.15 is given by,

〈σv〉 =
2x

K2
2 (x)

∫ ∞

0
σv
√
ε(1 + 2ε)K1(2x

√
1 + ε) dε . (2.25)

Previously, we saw that DM is generally non-relativistic at freeze-out, xf = mχ/T ∼ O(10).
This implies that we can use the non-relativistic limit, ε� 1, to get

〈σv〉 =
2x3/2

π1/2

∫ ∞

0
σv
√
εe−x ε dε . (2.26)

Additionally, by approximating F (ε) ≈ F (0), we can perform the integration above numeri-
cally to obtain

〈σv〉n.r. ≈
x3/2π1/2

2m2
χ

F (0)Re
[
z

1/2
R w(z

1/2
R x1/2)

]
, (2.27)

9Although the A′ should already hint at the kind of model we will be interested in later!
10Note that we are now using v = vlab and not vmøl
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where

w(z) =
2i z

π

∫ ∞

0

e−t
2

z2 − t2 dt , (2.28)

is the Fadeeva function and zR = εR + i (1 + εR)γA′ where we have defined a dimensionless
decay width γA′ ≡ ΓA′/mA′ .

The non-relativistic limit mentioned above might not be valid over the entire range of param-
eter space. For instance, for an incredibly narrow width, γA′ � 1, and for εR ∼ 1, it is possible
to obtain a substantial contribution from DM particles in the relativistic tail of the distribution
(that have the energy to produce the mediator on-shell). In such a scenario, it is better to use
the narrow-width approximation for the cross-section:

σv ≈ π

m2
A′
F (εR)δ(ε− εR) , (2.29)

yielding

〈σv〉res. =
π

m2
A′
F (εR)

2x

K2
2 (x)

√
εR (1 + 2εR)K1(2x

√
1 + εR) . (2.30)

These two approximations, Eq. 2.27 and Eq. 2.30, can capture the behaviour of the thermally
averaged cross-section in the entire domain.11 Using Eq. 2.17 for the general cross-sections
discussed above, the relic abundance is given by

Ωh2 ≈ 1.7× 10−10GeV−2

(∫ x0

xf

√
geff
〈σv〉
x2

dx

)−1

, (2.31)

with geff ∼ gρ∗ denoting the effective degrees of freedom present in the thermal plasma. The
freeze-out temperature, xf , is defined by

63
√

5x
−1/2
f e−xf gχ
32π3

1

g
1/2
eff

mχmPl〈σv〉 = 1 , (2.32)

where gχ denotes the spin degrees of freedom of χ, and MPl = 1.22 × 1019 GeV denotes the
Planck mass.

To demonstrate the effect of resonant annihilations, we plot in Fig. 2.5 the thermally averaged
cross-section as a function of x in three different cases: s-wave annihilation (〈σv〉 = σ0), p-
wave annihilation (〈σv〉 = σ0x

−1), and resonant annihilation (Eq. 2.27). For each case, we nor-
malise the cross-section so as to reproduce the correct value of the relic abundance.12 From

11For a given model, the validity of this statement can be explicitly checked by calculating 〈σv〉 numerically. We
will do exactly this when talking about a concrete model in Chapter 5.

12Note that this necessarily requires some assumptions with respect to the underlying DM model. For the purposes
of this plot, we assume mχ ∼ 50 MeV. Additionally, for the calculation of 〈σv〉resonant we use εR = 0.001 and
consider a kinetically mixed dark photon model (discussed in detail in Chapter 5).
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FIGURE 2.5: Thermally averaged cross-section as a function of x corresponding
to s-wave, p-wave and resonant annihilations.

Fig. 2.5, it is easy to see that resonant annihilations can substantially reduce the DM abun-
dance after decoupling, thereby decreasing the DM-SM couplings required to reproduce the
relic abundance. This has interesting phenomenological consequences in terms of viable pa-
rameter space for thermal DM models— a topic that we will address in Chapter 5.

2.2.3 Freeze-in: The Old And The New

Although thermal freeze-out is an attractive mechanism for DM production, it is by no means
the only one. The foundational assumption of freeze-out—thermal equilibrium with the SM—
is, in the end, simply an assumption, and one that is simple to violate. In principle, one can
propose DM models with extremely tiny (weaker than weak) couplings to the SM that ensure
that the two sectors never equilibrate. In this limit, DM is called a FIMP (Feebly Interacting
Massive Particle). Additionally, we can use this disparity in couplings along with the fact that
DM does not have a thermal abundance to make the assumption that the initial phase space
density of DM is negligible, fχ � 1. DM is then produced by a leakage of energy from the SM,
i.e., by SM particles annihilating or decaying, until these processes lose out to the expansion
rate of the universe (see Fig. 2.6). Conversely to freeze-out, this mechanism is known as freeze-
in.

We can obtain obtain a rough order-of-magnitude estimate for freeze-in couplings from the
condition of non-equilibrium, Γff→χχ . H , where Γff→χχ ∼ σvnf and f denotes a SM state.
Since this condition must hold at the earliest times, we can approximate the particles to be
relativistic, therefore assuming v ∼ 1 and nf ≈ T 3/π. Additionally, the cross-section for a
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Figure 2. The two basic mechanisms for DM production: the freeze-out (left panel) and freeze-in
(right panel), for three di↵erent values of the interaction rate between the visible sector and DM
particles � in each case. The arrows indicate the e↵ect of increasing the rate � of the two processes.
In the left panel x = m�/T and gray dashed line shows the equilibrium density of DM particles. In
the right panel x = m�/T , where � denotes the particle decaying into DM, and the gray dashed line
shows the equilibrium density of �. In both panels Y = n�/s, where s is the entropy density of the
baryon-photon fluid.

n = 0 for s-wave annihilation, n = 1 for p-wave annihilation, and so on. Here we assumed
that the freeze-out occurs when DM is non-relativistic.

Eq. (3.6) has an important feature: the present abundance is inversely proportional to
the DM annihilation cross section. This can be understood by recalling that in the freeze-out
scenario DM particles are initially in thermal equilibrium with the visible sector and the
stronger the interaction between them is, the longer the DM particles remain in equilibrium
and thus the more their abundance gets diluted before the eventual freeze-out. This can also
be seen in the left panel of Fig. 2.

3.3 Freeze-in

The above discussion was based on the assumption that the DM initially reached thermal
equilibrium with the visible sector. However, if the coupling between the visible sector and
DM particles is very small, typically y ' O(10�7) or less [258, 259], interactions between them
are not strong enough for DM to reach thermal equilibrium and freeze-out cannot happen.
Instead, the observed DM abundance can be produced by the freeze-in mechanism [15, 19].
In this case, the particle undergoing the freeze-in is referred to as a FIMP (Feebly Interacting
Massive Particle) [19], as opposed to the WIMP.

In the simplest case, the initial number density of DM particles is either zero or negligibly
small, and the observed abundance is produced by bath particle decays, for instance by
� ! ��, where � is a particle in the visible sector heat bath [15, 17–19, 240, 260–265].
The freeze-in yield is active until the number density of � becomes Boltzmann-suppressed,
n� / exp(�m�/T ). The comoving number density of DM particles � then becomes a constant
and the DM abundance freezes in. This is depicted in the right panel of Fig. 2.
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FIGURE 2.6: Representative sketch of DM freeze-in, with the DM comoving
number density Y , plotted as a function of inverse temperature, x = m/T .
The different colours correspond to different values of the DM-SM coupling.
In contrast with freeze-out, freeze-in relies on DM production and hence larger
couplings imply larger values of the relic abundance. Figure adapted from [50].

portal coupling λ will scale as σ ∼ λ2/T 2. This results in,

Γff→χχ
H

∼ λ21016 GeV

T
. (2.33)

Assuming that the two sectors are not in equilibrium at the electroweak phase transition,
yields λ < 10−7, which is much smaller than the weak scale coupling. Nevertheless, such tiny
couplings may arise naturally in many BSM theories like supersymmetry or string theory as
pointed out initially in [48].

FIMP models have gathered a lot of interest in the last few years primarily due to the absence
of a clear DM signal at detection experiments which probe order one (or thermal) couplings
between DM and SM. We will further elaborate on detection strategies in Chapter 7, but for
now, our interests lie in simplifying the Boltzmann equation from Eq. 2.9 for the case of freeze-
in.

As in the previous section, we start with a simple 2 → 2 process of the form, 12 → 34. Since
freeze-in relies on DM production, we are interested in tracking the number density of the final
state particles. Additionally, if the final state comprises of FIMPs, f3, f4 � 1. The collision
term for this process is

g3

∫
C[f3]

d3p3

(2π)3
=

∫ 4∏

i=1

d3pi
(2π)3 2Ei

(2π)4δ4(p1 + p2 − p3 − p4)× f1f2 |M12→34|2

=

∫
dn1dn2σ12→34vmøl , (2.34)
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where in the second line we have used the definition of the Møller velocity from Eq. 2.14 as in
the freeze-out case, and the standard definition of the unpolarised cross-section for the given
process. By using the usual definition for the thermal average,

〈σvmøl〉 =

∫
σvmøl f1f2 d3p1d3p2∫

f1f2 d3p1d3p2
, (2.35)

we can write down Eq. 2.34 as 〈σvmøl〉neq
1 n

eq
2 , resulting in the Boltzmann equation,

dYχ
dx

= Cab
s〈σv〉
Hx

(
Y eq

SM

)2
, (2.36)

where we have introduced Cab = 1(2) to account for identical (non-identical) DM particles
and 〈σv〉 is defined as in Eq. 2.15 (with the particle masses relating to the SM particles in the
initial state). Note that Y eq

SM is the equilibrium density for an identical SM initial state f . If the
SM particles are non-identical, the total equilibrium density for f would be Y eq = Y eq

f +Y eq

f̄
=

2Y eq
f and therefore we will have an additional factor of 1/4 on the right if we use Y eq.13

Conventional descriptions of freeze-in follow the methodology laid out above to calculate
relic abundances. However, as we show below, an equivalent framework can be derived by
formulating our equations in terms of the DM annihilation cross-section, 〈σv〉χχ→SMSM, instead
of the production cross-section. At first sight, this might appear to add an unnecessary degree
of complexity in the phenomenological understanding of Eq. 2.36. However, in certain cases,
the annihilation cross-section may be easier to calculate while maintaining a higher degree of
numerical accuracy (see Chapter 4 for one such model).

Additionally, until now we have assumed a Maxwell-Boltzmann distribution for the particle
phase space and neglected the statistical factors, (1 ± f), in the collision term to arrive at the
analytic formulas listed above. For standard thermal freeze-out, such an assumption is robust
since freeze-out occurs for temperatures smaller than the DM mass. However, inclusion of
proper statistics becomes necessary when DM is produced dominantly at larger temperatures.
Further, massless particles have to always be described by the relevant Fermi-Dirac or Bose-
Einstein statistics. In such a case, one can usually rely on numerical tools like MICROMEGAS

5.0 [56] or DARKSUSY [57] to solve the Boltzmann equation. However, as we shall show
below, it is still possible to derive semi-analytic results. We will perform this calculation for
the case when we also reformulate the collision term in the Boltzmann equation in terms of
DM annihilation, since this results in a slightly simpler expression. For the standard freeze-in
calculation, see references [58] and [59].

Reformulating Freeze-in In Terms of DM Annihilation

Consider a freeze-in process, ψψ → χχ, where ψ denotes generic SM initial states and χ

denotes DM, and we remain agnostic as to whether any of the particles are identical or not.
To clean up notation, we will denote the four-momenta of the DM particles with (E, p) and

13Of course, factors of 2 continue to be annoying even for freeze-in.
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(Ẽ, p̃), and that of the SM particles with (ω, k) and (ω̃, k̃). The SM initial states will have a
thermal distribution given by,

g(ω) =
1

eω/T − εψ
, (2.37)

where εψ = +1(−1) for bosons (fermions). A negligible initial abundance for FIMPs implies
that fχ � 1. Additionally, since the DM abundance is always sub-thermal, f � g. Therefore,
in the notation presented above, the collision term (Eq. 2.34) can then be written as,

C[fχ] =

∫
d3p

(2π)32E

∫
d3p̃

(2π)32Ẽ

∫
d3k

(2π)32ω

∫
d3k̃

(2π)32ω̃
(2π)4δ(4)(p̃+ p− k̃ − k)

× |M|2ψψ→χχ g(ω)g(ω̃) . (2.38)

We are interested in expressing the equation above in terms of DM annihilation cross-section.
Since the matrix element is invariant under time (or equivalently under CP), |M|2ψψ→χχ =

|M|2χχ→ψψ. Additionally, it is possible to write,

g(ω)g(ω̃) = g(ω)g(ω̃)e(ω+ω̃)/T e−(E+Ẽ)/T = (1−εψg(ω)) (1−εψg(ω̃)) fMB
χ (E) fMB

χ (Ẽ) , (2.39)

where the first equality arises from energy conservation and in the second equality we intro-
duce a Maxwell-Boltzmann distribution for DM particles,14

fMB
χ (E) = e−E/T . (2.40)

This results in the collision term,

C[fχ] =

∫
d3p

(2π)32E

∫
d3p̃

(2π)32Ẽ

∫
d3k

(2π)32ω

∫
d3k̃

(2π)32ω̃
(2π)4δ(4)(p̃+ p− k̃ − k)

× |M|2χχ→ψψ fMB
χ (E) fMB

χ (Ẽ) (1−εψg(ω)) (1−εψg(ω̃)) , (2.41)

which is identical to the annihilation term in the case of freeze-out, Eq. 2.11, but with the
inclusion of statistical factors. The in-medium DM annihilation cross-section in the centre-of-
mass (CMS) frame is given by

σχχ→ψψ(p, p̃) =
(2π)4

4NψF

∫
d3k

(2π)32ω

∫
d3k̃

(2π)32ω̃
δ(4)(p̃+ p− k̃ − k)

∣∣M
∣∣2 (1−εψg(ω)) (1−εψg(ω̃)) ,

(2.42)

where
∣∣M
∣∣2 = |M|2 /g2

χ is the usual spin-averaged amplitude, F =
√

(p.p̃)2 −m4
χ, and Nψ =

1(2) for non-identical (identical) SM states. Using this definition of the cross-section and the

14Note that this distribution is not physical, i.e., this is not the real DM distribution which for the case of freeze-
in will never be thermal. Instead, we introduce this quantity as a hypothetical distribution that a DM particle
would have if it were thermal.
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standard expression for the Møller velocity, vmøl = F/(EẼ), Eq. 2.41 can be written as

C[fχ] = g2
χ

∫
d3p

(2π)3

∫
d3p̃

(2π)3
fMB
χ (E) fMB

χ (Ẽ)σχχ→ψψvmøl

= 〈σv〉
(
nMB
χ

)2
, (2.43)

where once again we have suppressed the subscript for the Møller velocity and defined the
thermally averaged cross-section as

〈σv〉χχ→ψψ ≡
g2
χ(

nMB
χ

)2
∫

d3p

(2π)3

∫
d3p̃

(2π)3
fMB
χ (E)fMB

χ (Ẽ) vmølσχχ→ψψ(p, p̃) . (2.44)

nMB
χ is the equilibrium number density for a Maxwell-Boltzmann distribution of particles,

given by Eq. 1.82,

nMB
χ =

gχm
2
χT

2π2
K2

(mχ

T

)
. (2.45)

The difference between the thermally averaged cross-section in Eq. 2.44, and the usual one in,
for example, Eq. 2.13 is that the former explicitly depends on the frame of reference through
the statistical factors (1 − εψg) included in the in-medium cross-section. The distribution
functions g(ω) only take the form of Eq. 2.37 in the cosmic rest frame, where the four-velocity
is given by uµ = (1, 0, 0, 0)T . In a general frame, the distribution functions will have the form
g(u · k), where u is the four-velocity of the cosmic fluid and k is the particle four-momentum.
Therefore, the in-medium thermally averaged cross-section is, in general, a function of two
parameters: the centre of mass energy s, and a boost parameter, η, that specifies the relation
between the cosmic rest frame and the centre of mass frame,15

σχχ→ψψ = σχχ→ψψ(s, η) . (2.46)

In usual studies of DM production in which the statistical factors are ignored, the cross-section
is simply the centre-of-mass cross-section, σCMS

χχ→ψψ = σ
εψ→0
χχ→ψψ. It is worth emphasising that

in-medium effects are a consequence of background particle densities and are therefore en-
coded in the particle distribution functions that enter while calculating reaction amplitudes
and rates. If the particle distributions are assumed to be always Maxwell-Boltzmann, the dis-
tinction between fermions and bosons is lost and hence also the modification of the available
phase-space for a given process due to Pauli-blocking or Bose-enhancement.

The freeze-in Boltzmann equation in terms of DM annihilation has the form,

dYχ
dx

= C̃ab
s〈σv〉
Hx

(Y MB
χ )2 , (2.47)

with C̃ab = 1/2 (1) for non-identical (identical) DM particles.16

15We can compare this to the covariant formulation of finite temperature field theory as discussed in Chapter 1.
16The symmetry factor for ψi, j is already accounted for in the definition of the cross-section as we shall discuss.
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Additionally, as is derived in Appendix A, the in-medium cross-section has the following
simplified form,

σχχ→ψψ(s, γ) =
1

8πsNψ

|kCM|√
s− 4m2

χ

∫ 1

−1

d cos θ

2

∣∣M
∣∣2 (s, cos θ)G(γ, s, cos θ) , (2.48)

where γ = cosh η specifies the boost from the cosmic rest frame to the CMS frame and the
statistical factors are encapsulated in the function G defined as

G−1 ≡ (1− εψg(u · k))−1
(

1− εψg(u · k̃)−1
)−1

= 1− ε2
ψe
−2Eγ/T − 2εψe

−Eγ/T cosh

[
|kCM| cos θ

√
γ2 − 1

T

]
. (2.49)

This results in the thermal average,

〈σv〉χχ→ψψ =
8x2

K2
2 (x)

∫ ∞

1
ds̃
√
s̃(s̃− 1)

∫ ∞

1
dγ
√
γ2 − 1e−2x

√
s̃γσχχ→ψψ(s, γ) , (2.50)

This general form reproduces the standard thermally averaged cross-section when εψ = 0,
resulting in σ(s, γ)→ σ(s). In this case, the γ integral can be solved analytically,

∫ ∞

1
dγ
√
γ2 − 1e−2x

√
s̃γ =

1

2x
√
s̃
K1(2x

√
s̃) , (2.51)

resulting in the exact Bessel function as in the integrand of Eq. 2.15, and therefore the usual
thermally averaged cross-section.

In this section, we have discussed the general form of the freeze-in Boltzmann equation as
well as provided an alternate formulation for the same in terms of the DM annihilation cross-
section. The latter is more convenient to use for models with well-described annihilation
cross-sections especially when these have already been calculating to higher orders. We will
return to this formulation in Chapter 4 in the context of a Higgs portal DM model.

2.2.4 WIMPs, FIMPs, and Other Things

Both WIMPs and FIMPs have been targets of extensive study in the last decade, explore as
they do opposing limits of DM-SM coupling strengths. In the last few sections, we have devel-
oped the mathematical framework required to calculate the DM relic abundance in both these
cases, along with discussing caveats that such calculations entail. However, the DM density
at the end of production is not guaranteed to be equal to the DM abundance today. Instead,
if interactions within the dark sector are efficient enough, a second phase of annihilation or
production could be triggered changing the DM density [49]. For example, if equilibrium
is established within the dark sector while DM is being produced by freeze-in, DM may be-
gin to annihilate. This simultaneous production and annihilation can then result in a period of
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quasi-static equilibrium before the DM density eventually freezes-out [60]. Such non-standard
evolution histories already arise even in very "simple" DM models like the scalar singlet [61].

Furthermore, as might be expected, the DM model space is not limited to generic WIMPs
and FIMPs. The relic abundance of DM could be generated through a variety of different
mechanisms such as by number changing processes in the dark sector (Self-Interacting Dark
Matter [62] and Strongly Interacting Massive Particles [63]), by annihilations of kinetically
decoupled DM (Elastically Decoupling Relics [64]), or by even more exotic processes such as
the evaporation of primordial black holes [65]. The point is, of course, that it is possible to
devise a whole host of production mechanisms as long as one ensures the reproduction of the
measured DM relic abundance17 and consistency with other constraints.

2.3 Early Universe Probes of Dark Matter

Until now we have treated the visible and the dark sectors separately: a useful categorisation
to clearly demarcate the known and the unknown (more or less). However, as we have seen
from this chapter, our production framework for DM always includes some form of (non-
gravitational) coupling to the SM as a result of which the two sectors are not strictly indepen-
dent. Indeed, it is quite possible for DM to leave an imprint on early universe cosmology. The
fact that we have an incredible understanding of the universe in this era, along with extremely
precise cosmological measurements, means that we can already search for these imprints and
derive general bounds on the microphysics of DM. In this section, we will provide a quali-
tative description on how to use BBN and the CMB to calculate largely model-independent
bounds on DM particle properties. For a more rigorous treatment of the same, see [66] and
[67].

We will mostly be interested in the case of thermal relic DM, only providing a few caveats
for non-thermal DM as we go along. From Chapter 1, we know that BBN is sensitive to the
evolution of the heat bath at temperatures in the MeV range, i.e., when various SM particle
species begin to decouple. We also know from section 2.2.2, that DM freeze-out occurs for
x ∼ 20, which corresponds to a temperature of T ∼ MeV for DM masses, mχ . 20 MeV.
Additionally, the CMB is sensitive to new physics around and after recombination at eV scales.
This implies that light thermal DM can be constrained by cosmology.

In Fig. 2.7, we sketch the temperature evolution of the SM heat bath around the times relevant
for BBN, along with the major reactions describing each temperature range. We start with
temperature of a few MeV when all particles are in thermal equilibrium. The neutrons and
protons are already non-relativistic at this point with their relative number densities given by

17Or, at the very least, ensure that DM is not over-abundant. Production mechanisms which lead to dark sub-
components may still be interesting.
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FIGURE 2.7: A sketch of the relevant processes that occur in the SM heat bath
for times relevant for BBN. See text for details.

the equilibrium distribution,

(
n

p

)

eq

∼ e−(mn−mp)/T . (2.52)

At around 2 MeV, neutrinos decouple from the thermal bath, setting the neutrino temperature
Tν . At slightly lower temperatures neutrons and protons freeze-out, determining the final n/p
abundance. This number directly relates to the final abundance of light nuclei and therefore
is a sensitive probe for any new physics. Soon after, at around a temperature of 0.5 MeV,
electrons and positrons annihilate thereby increasing the photon temperature Tγ . Finally, nu-
cleosynthesis occurs by processes such as, pn → Dγ and D → 4He. This is followed with
recombination (at much lower temperatures) that sets the observed value of Tγ .

With this incredibly brief and qualitative review of the important processes, we can now ask
the question: what exactly do the cosmological probes constrain? As mentioned in Chapter
1, measurements of the CMB constrain the effective relativistic degrees of freedom Neff ∼
(Tν/Tγ)4. Further, we also have very precise measurements for the primordial helium and
deuterium abundances, denoted by YP and D/H|P, respectively which are related to the n/p
ratio and therefore dependent on the physics of BBN.

Adding light thermal species can then change these observations in various ways.
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Figure 2. Bounds on the mass of a thermal DM particle annihilating into e+e� and/or �� (left

panel), or into electromagnetic final states and neutrinos with the same branching ratio (right

panel). The region excluded by (under-) overproduction of D/1H is shown in gray (orange), and

similarly for Yp in pink and blue, respectively. Constraints from the CMB are shown in purple and

dark red (see text for details).

branching ratios into electromagnetic final states and neutrinos. For each type of DM

particle, the constraints from BBN are shown in gray and orange for D/1H and in pink and

blue for Yp;
3He does not appear as it leads to less stringent constraints on this scenario.

The CMB bounds corresponding to modified values of N
(CMB)
e↵ and Yp are shown in purple

and dark red, respectively. In the former case, we only employ data from Planck, lensing

and BAO, implying a rather large range of allowed values for the helium abundance [35].

In the latter case, we additionally impose the constraint from the direct observation of Yp,

corresponding to Eq. (3.1).

With the exception of a real scalar annihilating into e+e� or ��, we find that the

BBN bounds from D/1H are nearly identical to the corresponding constraints from the

CMB: depending on the DM type and annihilation channel, both observations rule out

thermal DM with a mass m� . (7� 10) MeV. Crucially, this bound applies to both s- and

p-wave annihilating DM. It is important to stress that the constraint obtained from BBN

is significantly more robust. Specifically, for the scenario of DM annihilating exclusively

into electromagnetic final states, the CMB constraint arises from a value of N
(CMB)
e↵ smaller

than the observed one, which can quite easily be compensated by invoking additional (dark)

degrees of freedom contributing to the energy density. On the other hand, the BBN bound

mainly arises from the additional contribution of the DM particle to the Hubble rate, which

would only get stronger in the presence of dark radiation. The BBN bound can therefore

be considered model-independent unlike the constraint from the CMB.

For DM annihilations into electromagnetic final states, the CMB bounds shown in the

left panel of Fig. 2 are in good agreement with [36], while they are slightly stronger than the

– 9 –

FIGURE 2.8: Bounds on a thermal DM particle annihilating into elec-
trons/positrons (left) and additionally into neutrinos (right). The "high" and
"low" correspond to over- and under-production of light elements. See the

source of the figure, Ref. [67], for additional details.

2.3.1 Big Bang Nucleosynthesis

The prediction of light element abundances from the SM is modified in the presence of addi-
tional light species due to one (or more) of the following reasons:

1. Contributing to the Hubble rate: Any light species will contribute to the radiation den-
sity of the universe and therefore the Hubble rate, H ∝ √ρR. This contribution could
be significant enough to change the temperature at which neutrons freeze-out, thereby
altering the neutron abundance and consequently the final helium abundance. Our mea-
surements of the helium abundance then place a bound on the number density of this
additional species, which translates directly into a bound on particle mass if it is in ther-
mal contact with the SM heat bath.

2. Destroying light element abundances: Annihilations into photons or electro-positron
pairs can induce an electromagnetic cascade producing energetic photons, which can
destroy light abundances by photo-disintegration through processes such as Dγ → pn.
The exact calculation for these processes is quite involved and here we only quote the
results from [67] in Fig. 2.8 for scalar, vector and fermion DM candidates.

3. Delaying neutrino decoupling: Additional interactions between any extra degree of
freedom and neutrinos can keep the latter in thermal equilibrium with the SM heat
bath for longer, delaying neutrino decoupling and decreasing Tν . This changes Neff

and therefore also the predictions of BBN.

As can be deduced, these effects are interlinked and the strength of each effect depends on
the specifics of the DM model. However, it turns out that for thermal DM, these effects give
a soft lower bound on the DM mass, mχ & 10 MeV irrespective of whether DM is a scalar,
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FIGURE 2.9: Efficiency function needed to calculate CMB constraints as a func-
tion of DM mass calculated using the energy injection spectra from three differ-
ent numerical tools. Dotted lines represent extrapolation beyond the range of

validity of each code.

vector or fermion. This is shown in Fig. 2.8 which we reproduce from [67]. The only assump-
tions made on the DM model in the two panels of this figure is whether DM annihilates only
electromagnetically into e+e−/γγ (left) or also into neutrinos (right).

2.3.2 Cosmic Microwave Background

The CMB photons are a treasure trove of information for early universe physics. As mentioned
previously, the CMB is sensitive to Neff and therefore can be used alongside BBN to constrain
DM models that change Tν and/or Tγ (see [68] for a comprehensive review). Additionally,
CMB anisotropies can be used to constrain any DM model that injects energy into the plasma
during or after recombination through annihilations or decays.

For a particle of mass mχ, the rate of energy injected in the photon-baryon plasma is charac-
terised by the effective parameter constrained by Planck [25],

pann = Cχfeff

(
Ωχh

2

Ωχ,Planckh2

)2 〈σv〉CMB

mχ
< 3.2× 10−28 cm3 s−1 GeV−1 (2.53)

where Cχ = 1/2 (1) for identical (non-identical) particles, feff denotes the fraction of energy
deposited in the plasma and 〈σv〉CMB is the thermally averaged annihilation cross-section at
recombination. Additionally, since pann is generally quoted under the assumption that the
additional thermal species saturates the DM abundance, we introduce a density fraction to
generalise the above relation to a thermal species which is only a DM subcomponent.
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The fraction of energy deposited in the plasma, feff , has to be calculated as a function of
the DM mass. For this, we require the energy injection spectra from DM annihilations into
positrons and photons, dNe+/dE and dNγ/dE respectively, which can be convoluted with
energy-dependent efficiency factors [3, 69] to obtain,

feff(mχ) =
1

2mχ

∫ mχ

0
dE E

[
2fe

+

eff (E)
dNe+

dE
+ fγeff(E)

dNγ

dE

]
. (2.54)

The injection spectra for electrons and muons can be calculated analytically but the calculation
for taus and quarks is more involved. In particular for 0.25 GeV < mχ < 5 GeV, the effects
of various QCD resonances have to be included. These calculations can be performed using
different public tools in different mass ranges. We depict the results from three of them in
Fig. 2.9: PPC4DMID [70], HERWIG4DM [71, 72] and HAZMA [73].

With this calculation of feff and for a given DM model, Eq. 2.53 can be translated to a bound on
DM mass and coupling. We will return to this equation in the context of a dark photon model
in Chapter 4 but we can already see from Eq. 2.53 that a vanilla MeV-scale WIMP model with
a thermal s-wave cross-section, 〈σv〉 ∼ 10−26 cm3 s−1 is excluded.

Our main takeaway here is that it is incredibly difficult to have thermal DM lighter than a few
MeV. Any lighter DM particles then necessarily have to be out-of-equilibrium during recom-
bination. This is easily achieved in FIMP models where the DM density is always smaller than
its equilibrium value. This is, however, not to say that such limits on the DM mass cannot be
obtained for FIMPs. Indeed, cosmological probes can be used to constrain freeze-in DM mod-
els, as was shown in [74] for the case of vector mediators. Particularly, non-thermal light DM
models can be constrained by studying their impact on the formation of structure. In general,
however, these constraints are significantly weaker and can be easily evaded.
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Chapter 3

Mediators Galore

With the foundation that we have developed over the last two chapters, we are now ready
to concretely explore the DM model space from a particle physics perspective. Many DM
models were initially derived from varied attempts to solve other outstanding problems in
the SM [75]. For instance, WIMP candidates naturally appear in supersymmetric extensions
of the SM developed in response to the hierarchy problem [76]. In the same vein, there are
sterile neutrino DM models which serve to additionally explain neutrino masses and baryon
asymmetry [77], and axion DM models that solve the strong CP problem [78]. In the last few
years, however, DM phenomenology has found its own niche independent of its relationship
to these problems.

Most experimental searches for DM rely on its assumed non-gravitational coupling to the
SM. One of the most convenient ways to categorise DM models is then through the potential
nature of these interactions. This results in different "portals" based on the mediating particle
between the two sectors. In this thesis, we will be interested in the two most studied portals:
the Higgs Portal which, as the name suggests, has the Higgs boson as the mediator, and the Dark
Photon Portal which, likewise, has a vector mediator [79–83]. The DM candidate itself could
be a scalar, vector or fermion, and the strength of the portal interaction determines whether or
not the DM is thermally produced. Additionally, the mediating particle can be searched for at
experiments independent of its connection to DM, making the portal interpretation of these
mediators a complementary addition to existing searches looking for BSM physics [84–92].

Furthermore, the presence of a mediator necessarily implies interactions within the dark sec-
tor. These self-interactions can result in interesting phenomenology at large scales and there-
fore provide another avenue to search for new physics [93]. Contrary to DM phenomenology
at terrestrial experiments, these effects would be independent of the mediator coupling to the
SM and hence any derived constraints would be complementary.

In this next part, we will explore all of these effects in detail. Chapters 4 and 5 will discuss the
Higgs portal and the Dark Photon portal respectively. Chapter 7 will elaborate on DM self-
interactions in a model-independent fashion accounting for both scalar and vector mediators.
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Chapter 4

Higgs Portal

The lowest dimension gauge-invariant operator in the SM consisting of the Higgs field, Φ†Φ, is
uniquely situated to couple to additional particles in a renormalisable or superrenormalisable
fashion [83]. This gives rise to the Higgs Portal, which for a renormalisable theory has the
form,

L ⊃ λhs
2
|Φ|2 S2 , (4.1)

where S is a scalar singlet neutral under SU(3)c×SU(2)L×U(1)Y .1 Higgs portal DM models
with a scalar singlet have been extensively studied both in the case of freeze-in and freeze-out
[94, 95]. In these models, the scalar singlet may be the DM candidate itself or simply a media-
tor coupled to the true DM candidate [96, 97]. These models offer a very rich phenomenology.2

Indeed, even very simple scalar singlet DM models lend themselves to exciting cosmological
histories as well as interesting low-energy behaviour [61, 82, 98–101].

In this chapter, we will explore the parameter space of a scalar singlet DM model in the con-
text of freeze-in. In particular, we are interested in looking at the phenomenology of such
a model away from the Higgs resonance, i.e., away from the mass range where the scalars
are produced dominantly via Higgs decays. Further, we will include higher-order effects and
non-perturbative corrections in our calculations for the DM relic abundance along with ac-
counting for the electroweak and the QCD phase transition.

For the rest of this chapter we will distinguish between in-medium effects corresponding to the
inclusion of the appropriate statistical factors in the Boltzmann equation, and thermal effects
corresponding to finite temperature corrections to particle masses and the Higgs vev.

1One could also have a Higgs portal coupling to vectors, |Φ|2 AµAµ, or to fermions, |Φ|2 χχ̄, but models with such
interactions necessarily demand a UV completion because of the gauge boson mass term in the former and the
explicitly non-renormalisable coupling in the latter.

2As can be seen from the number of papers that have been written about them.
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Φ

Φ

S

S

h∗

f

f̄ S

S

FIGURE 4.1: Dominant production channels before (left) and after (right) the
electroweak phase transition.

4.1 Scalar Singlet Dark Matter

We consider the most general, renormalisable Lagrangian for a scalar singlet, S, stabilised by
a Z2 symmetry [102–104],

L =
1

2
∂µS∂

µS +
1

2
µ2
SS

2 +
1

2
λhsS

2|Φ|2 +
1

4
λsS

4 . (4.2)

After the electroweak phase transition, |Φ|2 → (v + h)2/2, the Lagrangian has the form,

L =
1

2
∂µS∂

µS +
1

2
(µ2
S +

1

2
v2λhs)S

2 +
1

2
vλhs hS

2 +
1

4
λhsh

2S2 +
1

4
λsS

4 , (4.3)

where the scalar picks up a mass correction. As discussed in Chapter 1, the Higgs vev is a
function of temperature. Therefore, the scalar mass becomes a function of temperature (inde-
pendent of whether or not the scalar is in thermal equilibrium with the SM heat bath),

mS(T ) =

√
µ2
S +

1

2
λhsv(T )2 . (4.4)

As mentioned previously, we are interested in the case in which the scalar is produced through
freeze-in. Consequently, the condition for non-equilibrium demands that the interaction rate
of the scalars is always sub-Hubble. For sufficiently large reheating temperatures, this sim-
ply translates into the requirement λhs . 10−7, as discussed in section 2.2.3. However, much
larger values of the couplings are allowed if the reheating temperature is small, in which case
the sub-Hubble nature of the rates is guaranteed by the Boltzmann suppression of the inter-
acting particles. The scalar quartic coupling, λs is largely irrelevant to the phenomenology,
and therefore the parameters of interest for this model are simply ms and λhs.

From Eqs. 4.2 and 4.3, it can be clearly seen that the phenomenology of this model differs be-
fore and after the electroweak phase transition. In particular, to first order in portal coupling,
the only production channel before the phase transition is ΦΦ† → SS (left panel of Fig. 4.1).
In contrast, after the phase transition, a whole host of channels open up from Higgs decays (if
kinematically allowed) to annihilation of SM particles, ff̄ → h∗ → SS (right panel of Fig. 4.1).
This implies that the Boltzmann equation for the comoving number density of the scalar, Ys,
has to be solved independently in two separate regimes, T & TEW and T . TEW with the
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continuity of Ys imposed as a boundary condition. Additionally, we know from Chapter 1,
that a second phase transition occurs in the QCD sector of the SM at a temperature of roughly
T ∼ 150 MeV corresponding to the confinement of free quarks and gluons into hadrons. This
results in another change in the available degrees of freedom in the model—the production
channels will now have hadronic initial states instead—and therefore we must make another
distinction between TEW & T & TQCD and T . TQCD.

As discussed in Chapter 2, the Boltzmann equation for freeze-in is conventionally formu-
lated in terms of the DM production cross-section, σff̄→SS . However in this case, for reasons
discussed below, it is much more precise to use the alternate formulation of the Boltzmann
equation given by Eq. 2.47,

dYχ
dx

=
s〈σv〉SS→ff̄

Hx
(Y MB
χ )2 , (4.5)

that depends on the DM annihilation cross-section.3 This is useful not only because we have a
semi-analytic formula for 〈σv〉 that naturally includes the in-medium Bose-enhancement/Pauli-
blocking effects (Eq. A.19), but also because we can formulate the DM annihilation cross-
section into generic SM final states (except into hh) in terms of the off-shell Higgs decay width,
Γh∗(
√
s), as [95],

σvrel =
2λ2

hsv
2

√
s

Γh∗(
√
s)

(s−m2
h)2 +m2

hΓ2
h(mh)

. (4.6)

Here, Γh(mh), is the total decay width of the Higgs boson (including h → SS if allowed),
and vrel is the relative velocity in the centre-of-mass frame. The benefit of such a formulation
is that next-to-leading order effects on the SM side (for instance radiative corrections) can
be easily included by using state-of-the-art calculations for the off-shell Higgs decay width.
We will discuss exactly these effects in the following sections, along with discussing the finite
temperature modifications to the partial off-shell Higgs decay widths. All of these calculations
have been implemented in an upcoming release of DARKSUSY [57].

4.1.1 Off-shell Higgs Decays

To begin with, let us discuss the relevant off-shell Higgs decay modes at zero temperature
and sufficiently large centre-of-mass energies

√
s & 2 GeV. The second condition ensures that

we always have free quarks and gluons in the final state. The tree-level decay widths into
fermions and gauge bosons is given by,

Γ(h→ ff̄) =
Ncm

2
f

√
s

8πv2
(1− 4ηf )3/2 , (4.7)

3Note that we have used C̃ab = 1 for the case of scalar singlet DM.
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Γ(h→ V V ) =

√
s

3

32v2π
δV
√

1− 4ηV (1− 4ηV + 12η2
V ) , (V = W±, Z) (4.8)

where ηX = m2
X/s, Nc = 1 (3) for leptons (quarks), δW = 2 and δZ = 1. Additionally, the

leading-order (loop-induced) decay width into gluons is given by [105],

Γ(h→ gg) =
α2
s(
√
s)
√
s

3

72v2 π3

∣∣∣3
4

∑

q

Ah1/2

(
1

4ηq

)∣∣∣
2
, (4.9)

where αs(
√
s) denotes the running strong coupling and

Ah1/2(τ) = 2(τ + (τ − 1)f(τ))τ−2 , (4.10)

with

f(τ) =





arcsin2√τ τ ≤ 1

−1
4

(
log 1+

√
1−τ−1

1−
√

1−τ−1
− iπ

)2
τ > 1 .

(4.11)

The decay width into photons can be written in an analogous way but gives a negligible
contribution to the total decay width.

The analytic decay widths presented above receive significant higher-order corrections [105].
In particular, for large centre-of-mass energies,

√
s � v, when the decay into gauge bosons

dominates, next-to-leading order (NLO) corrections arise from the emission of additional
gauge bosons. Furthermore, for small centre-of-mass energies, QCD corrections to the quark
final states become significant [95, 106]. These effects can be easily captured by calculating the
off-shell decay widths using HDECAY [107, 108].

However, the results from HDECAY cannot be used in the calculation of the thermally aver-
aged cross-section in certain regions of the parameter space. In particular,

• for large centre-of-mass energies,
√
s & 1 TeV, the off-shell decay widths calculated by

HDECAY become unphysical, and,

• for small centre-of-mass energies,
√
s . 2 GeV, and for temperatures below the QCD

phase transition, HDECAY cannot be used to calculate the decay widths into the rele-
vant degrees of freedom, i.e., hadrons.

We will next discuss how to resolve these issues.

4.1.2 Cross-sections at Large Energies: Unitarity Considerations

To see that the off-shell decay widths obtained from HDECAY are unphysical, we note that
in the lab frame the DM annihilation cross-section into various SM final states can be written
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FIGURE 4.2: The DM annihilation cross-section at large centre of mass ener-
gies at tree level (dashed line), including NLO electroweak corrections (dotted
line), and unitarised as described in text (solid line). The grey dotted and solid
lines represent the NLO and the unitarised cross-section respectively at finite

temperature, T = 150 GeV (v ≈ 100 GeV).

as,

σ(SS → hh)vlab =
λ2
hs

32πs
, (4.12)

σ(SS → XX)vlab =
λ2
hsv

2

√
s

1

(s−m2
h)2 +m2

hΓ2
h

Γh∗(
√
s) , (4.13)

where vlab =
√
s(s− 4m2

S)/(s − 2m2
S), and the second expression includes higher-order cor-

rections in the SM couplings. Now, in order to ensure unitarity, a cross-section has to fall at
least as fast as 1/s in the limit s → ∞, which implies that in the cross-sections stated above,
Γh∗(
√
s) should grow at most as s3/2. This is exactly the case if we use the analytic expres-

sion for the decay widths presented in Eqs. 4.7–4.9. In particular, using these expressions, we
recover the cross-section in the unbroken theory in the limit s→∞,

σ(SS → hh) + σ(SS → XX)tree → σ(SS → Φ†Φ) . (4.14)

However, the NLO electroweak corrections implemented in HDECAY predict a more rapid
growth for Γh∗(

√
s) (see the dotted line in Fig. 4.2). This implies that higher-order effects

become increasingly more important at large
√
s.

Since these corrections are non-trivial to evaluate, we regulate this divergence in the follow-
ing way. Using the approach from [109], we replace the on-shell Higgs decay width in the
propagator by the off-shell Higgs decay width,

σ(SS → XX)unitaryvlab =
λ2
hsv

2
0√
s

1

(s−m2
h)2 +m2

hΓh∗(
√
s)2

Γh∗(
√
s) , (4.15)



68 Chapter 4. Higgs Portal

to ensure that the cross-section is well-behaved as s → ∞. However, this modification forces
the cross-section to fall faster than 1/s at large s and we no longer recover the result from the
unbroken theory (see the dashed-dotted line in Fig. 4.2). Therefore, we implement the total
cross-section as,

σ(SS → XX)total = max
[
σ(SS → XX)tree, σ(SS → XX)unitary)

]
, (4.16)

thereby ensuring that the NLO electroweak corrections are captured for
√
s . 1 TeV, unitar-

ity is not violated for
√
s & 1 TeV, and that the tree-level result in the unbroken theory is

recovered in the limit
√
s→∞.

In general, the cross-section defined above can be compared to the usual unitarity bound on
the DM annihilation cross-section [110], which for relativistic particles reads,

σannvlab <
4π

√
s
√
s− 4m2

s

. (4.17)

This results in a bound on λhs as a function of
√
s which turns out to be the strongest for

√
s ≈ 2.2 TeV, yielding, λhs < 10.9. This bound is stronger than the tree-level bound, λhs < 8π,

derived by considering the scattering process Sh → Sh in the limit
√
s → ∞ [111], although

still much larger than the freeze-in couplings relevant for our calculations.

Such a discussion on unitarity becomes important even for relatively small centre of mass
energies when one includes temperature corrections to the theory. In particular, the relevant
scale of this problem, i.e., when these bounds kick in, is not determined by

√
s but instead

by the ratio,
√
s/v. This is evident when looking at the analytic expressions for the off-shell

Higgs decay width, Eqs. 4.7–4.9, which all scale as Γ ∝ vf(
√
s/v) for different functions f(x).

Therefore, the off-shell decay width at finite temperature can be written in terms of the zero-
temperature one as

Γh∗(T,
√
s) = Γh∗

(√
s
v(0)

v(T )

)
v(T )

v(0)
. (4.18)

It is evident then that the limit
√
s → ∞ is degenerate with the limit v(T ) → 0 implying

that the modifications introduced above become relevant for much smaller
√
s close to the

temperature of the electroweak phase transition (see for example the grey lines in Fig. 4.2). In
particular, these modifications are what ensure a smooth transition between the broken and
the unbroken phase.

4.1.3 Cross-Sections at Small Energies: The Effects of Chiral Symmetry Breaking

As mentioned before, for temperatures smaller than the electroweak phase transition, the
decay into free quarks and gluons is forbidden. For

√
s & 2 GeV, however, it is a very good

approximation to assume such decays with subsequent hadronisation. This treatment fails for
√
s . 2 GeV and instead we require the off-shell decay width into QCD bound states. These
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FIGURE 4.3: The off-shell Higgs decay width into various final states at small
centre-of-mass energies. The total off-shell decay width at T ≤ TQCD (T >
TQCD) is given by the solid indigo (dashed red) line. Right: The thermally aver-
aged annihilation cross-section as a function of inverse temperature for different
values of the DM mass accounting for the QCD phase transition (solid lines) and

otherwise (dashed lines).

can be calculated using chiral perturbation theory with the relevant form factors evaluated
using a dispersive analysis [112].

In the left panel of Fig. 4.3, we plot the off-shell Higgs decay width into free quarks and
hadrons with the vertical grey line at

√
s = 2 GeV representing the limit at which the disper-

sive analysis used to calculate the hadronic decay width breaks down. Additionally, a light
blue line indicates the limit at which calculations from HDECAY for quark and gluon final
states cannot be trusted. For T ≥ TQCD, we always use the off-shell decay channels into free
quarks and gluons (the total decay width is represented by dashed red line). On the other
hand, for T ≤ TQCD, we use the hadronic decay width for

√
s < 2 GeV and the decay into free

quarks otherwise (solid indigo line).

The resulting difference in the thermally averaged cross-section can be seen in the right panel
of Fig. 4.3 for different DM masses, where the solid lines correspond to hadronic final states
and the dotted lines to quark ones. Note that for this plot we ignore the in-medium effects
in the calculation of the thermal average which is a good approximation for small temper-
atures. The temperature of the QCD phase transition is indicated by the grey vertical line.
The discontinuity in 〈σv〉 at the phase transition directly follows from the discontinuity in the
total decay width between the free quark and hadronic approximations (left panel of Fig. 4.3).
The lack of the light quarks and gluon decay channels when accounting for the QCD phase
transition results in a substantial suppression of the total cross-section for MeV-scale DM at
small temperatures. This might have a significant impact on the freeze-in abundance if the
reheating temperature is small, as we will discuss in section 4.2.2.
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FIGURE 4.4: The thermally averaged DM annihilation cross-section (left) and
the DM production rate (right) as a function of inverse temperature for two
values of DM mass. The dotted lines represent the same quantities but without

including in-medium effects.

4.2 Freeze-in Production

We now have all the necessary tools required to calculate the freeze-in abundance for a scalar
singlet DM model. For mS < mh/2, the dominant production happens at a temperature
T ∼ mh/2 via Higgs decays. The resulting relic abundance of the scalars can be easily cal-
culated and receives only small corrections from thermal and in-medium effects [61, 113].
We will instead be focusing our attention on the case when the contribution from Higgs de-
cays is subdominant. This can be either when such decays are kinematically forbidden, i.e.,
mS > mh/2, or if the reheating temperature is small such that the density of Higgs bosons is
exponentially suppressed, mS , TRH � mh. We discuss these two scenarios below.4

4.2.1 High Reheating Temperature

For TRH � mS , mh, the freeze-in production is independent of the reheating temperature.
This follows directly from the discussion in section 4.1.2: since the DM production cross-
section is proportional to 1/s, the production rate scales proportional to T and is therefore
sub-Hubble for high enough temperatures.

In Fig. 4.4, we plot the thermally averaged annihilation cross-section (left) and the DM pro-
duction rate (right) as a function of temperature for two DM masses, mχ = 10 GeV and
mχ = 300 GeV. The dotted lines represent the case when in-medium effects are ignored.
For mχ = 10 GeV, the dominant production is through the production of an on-shell Higgs
and therefore the rate falls rapidly once the typical centre-of-mass energy in the thermal bath
is smaller than the Higgs mass, T < mh. On the other hand, for mχ = 300 GeV, the DM
production is always via an off-shell Higgs boson. In this case, the temperature scaling of the

4Note that while we have focused on 2 → 2 processes, there is an interesting discussion to be had regarding the
1 → 2 process in a plasma and the corresponding modification of the propagator for the Higgs boson at finite
temperature.
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FIGURE 4.5: The coupling required to reproduce the relic abundance as a func-
tion of DM mass with and without accounting for thermal effects. The dotted

lines denote the case when in-medium effects are ignored.

thermally averaged annihilation cross-section becomes trivial. However, the production rate
gets exponentially suppressed as the temperature drops below the DM mass, T . 300 GeV, as
is expected from looking at the right hand side of Eq. 4.5. For both masses, we see that the in-
medium effects amount to an enhancement in the annihilation cross-section and therefore the
production rate at large temperatures. Additionally, our implementation of thermal masses
and vev ensures a smooth transition at the electroweak phase transition (solid grey line).

For a given value of λhs and mS , integrating the production rate gives us the DM abundance
today. In Fig. 4.5 we plot the coupling values required to reproduce the observed DM abun-
dance as a function of DM mass when considering and ignoring in-medium effects (solid and
dotted lines respectively). As expected, in-medium effects are less relevant when production
happens via an on-shell Higgs (mS < mh/2), whereas significant deviations arise in the op-
posing limit,mS > mh/2. Further, thermal effects also become important for large DM masses
in which case production happens at high temperatures.

4.2.2 Low Reheating Temperature

For the case of small reheating temperatures, the final freeze-in abundance becomes sensi-
tive to TRH. This is because the production can be written in terms of effective dimension-5
operators,

L ⊃ 1

Λf
ff̄S2 , (4.19)

where Λf = m2
h/(λhsmf ), resulting in a cross-section that becomes constant at large centre-

of-mass energies and therefore a production rate dominated by the largest accessible temper-
atures, (see also right panel of Fig. 4.3). A lower bound on the reheating temperature is set
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FIGURE 4.6: The coupling required to reproduce the relic abundance as a func-
tion of mass for different values of the reheating temperature. The dotted lines
indicate the case in which the QCD phase transition is ignored and production
via free quarks and gluons in allowed. The exclusion bound from searches for

invisible Higgs decays is shown in grey.

at T ∼ 5 MeV by the abundance of light elements [27], as also discussed in Chapter 1. From
the right panel of Fig. 4.3, it is clear that for MeV-scale reheating temperatures, the effects of
the QCD phase transition on DM production will become relevant. In particular, the suppres-
sion in the annihilation cross-section for small DM masses means that larger couplings will be
required to saturate the DM abundance. Interestingly, such large couplings (for small scalar
masses) mean that the SM Higgs decay width would be modified enough to be observable at
colliders. In particular, LHC searches for invisible Higgs decays constrain the branching ratio
[114],

BR(h→ inv) =
Γ(h→ SS)

Γ(h→ SS) + Γh,SM
< 0.11 (4.20)

where,

Γ(h→ SS) =
λ2
hsv

2

32πmh

√
1− 4m2

S

m2
h

, (4.21)

resulting in a bound on the portal coupling, λhs < 0.01.

This is shown in Fig. 4.6 where we plot the coupling values that reproduce the DM abundance
as a function of DM mass for different values of the reheating temperature. As expected, for
sufficiently small reheating temperatures, there is a substantial difference between when we
account for the QCD phase transition (solid lines) and when we do not (dotted lines). Addi-
tionally, the production rate for DM masses larger than the reheating temperature is exponen-
tially suppressed resulting in a steep rise in the coupling. In such a case, the unitarity bound
on the coupling, λhs < 10, becomes relevant. On the other hand, for small DM masses as well
as low reheating temperatures, the couplings required to reproduce the DM abundance are
substantially larger than the standard freeze-in couplings. Interestingly, the smallest masses
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and couplings considered here are already excluded by LHC data.

4.3 Conclusions

The scalar singlet, as one of the simplest viable DM models, has received a lot of attention in
the literature. In this chapter, we looked at improved estimates for the freeze-in abundance of
these scalars focusing on the parameter space where the scalar production via Higgs decays
is negligible. This could be either if the decays are kinematically forbidden or if the reheat-
ing temperature is small enough to ensure the exponential suppression of the density of the
Higgs bosons. In both these scenarios, accurate relic density calculations rely on the inclu-
sion of higher-order effects as well as a proper treatment of the electroweak and QCD phase
transitions.

Higher order effects in the cross-section can be simply included in the relic density calcula-
tion by reformulating the Boltzmann equation in terms of the DM annihilation cross-section
(as opposed to the conventional production cross-section). Since the annihilation cross-section
is proportional to the partial off-shell Higgs decay width, an improved estimate of the DM
production rate can be obtained by evaluating this decay width at NLO with the help of nu-
merical tools such as HDECAY. Since these decay widths depend on the ratio

√
s/v, this

prescription can be easily generalised for use at finite temperature. There are two caveats to
these calculations. First, for large centre-of-mass energies,

√
s/v & O(TeV), the NLO cross-

section tends to diverge and we need to use a "unitarised" cross-section to ensure our results
are always physical. On the other hand, at small centre-of-mass energies,

√
s . O(GeV), QCD

corrections become important. In particular, for temperatures below that of the QCD phase
transition, the relevant degrees of freedom are hadrons instead of quarks, and the off-shell
decay width has to be calculated using chiral perturbation theory.

In-medium effects, corresponding to the statistical factors in the Boltzmann equation, can
be easily included by a redefinition of the thermal average which we already discussed in
Chapter 2. Thermal effects, accounting for the electroweak and QCD phase transitions, on
the other hand, can be incorporated by simply replacing all masses with their temperature-
dependent values as well as by solving the Boltzmann equation separately in three separate
regimes: before the electroweak phase transition, after the electroweak phase transition but
before the QCD phase transition, and after the QCD phase transition respectively.

We find that thermal and in-medium effects are highly relevant for large DM masses, mS >

mh/2 and can change the DM abundance by upto a factor of 2 (Fig. 4.5). Additionally, for small
DM masses, mS ∼ O(MeV), accounting for the QCD phase transition results in a substantial
difference in the relic density estimate when considering low reheating temperatures. This
difference can be as large as a few orders of magnitude in coupling for TRH & 5 MeV (Fig. 4.6).
Surprisingly, the smallest masses and couplings considered here are already excluded by the
LHC data.
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Our calculations demonstrate the necessity of including in-medium and thermal effects in relic
density calculations, as well as a need for numerical tools to obtain accurate and fast results.
To this end, we have implemented all of these effects in an upcoming version of DARKSUSY,
which can now be used to carry out precise freeze-in calculations.
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Chapter 5

Dark Photon Portal

Another simple way to extend the SM is by adding particles charged under a new U(1)′ gauge
symmetry. Interactions with the SM can then be mediated through a kinetic mixing between
the field strengths of this U(1)′ and the SM hypercharge, represented by [79, 115] ,

L ⊃ −κ
2
FµνY F ′µν , (5.1)

where κ denotes the coupling strength. Rotating the fields into the mass basis couples the
gauge boson of the U(1)′—the dark photon—to the SM fermions thus providing a portal be-
tween the two sectors. Alternately, it is also possible for the SM particles to be explicitly
charged under the new U(1)′. This is equivalent to saying that one of the remaining global
symmetries of the SM is gauged. This could be, for instance, baryon number, U(1)B , differ-
ence between baryon and lepton number, U(1)B−L, or differences in family-lepton number
U(1)Li−Lj (where i, j = e, µ, τ ) [116–118].1

In this chapter, we will study DM models employing both versions of the dark photon portal.
We begin with a brief overview of kinetic mixing and mass mixing between the visible and
dark photons in section 5.1. We then discuss the case of kinetic mixing in a light thermal
DM model in section 5.2, making our calculations for the DM abundance and cosmological
constraints from Chapter 2 more rigorous. We present the case where the SM is also gauged
under the new U(1)′ in section 5.3 and map out the viable parameter space for such a model
assuming DM is produced via freeze-in. The conclusions follow in section 5.4

Sections 5.2 and 5.3 closely follow the discussion in [3] and [1].

1Note that these gauge symmetries are only physically viable if the fermion spectrum of the theory is anomaly free.
This implies that in the SM only one of the U(1)Li−Lj symmetries is simultaneously viable [119]. Additionally,
U(1)B−L can be made anomaly-free by adding three right-handed neutrinos. For anomaly free models of gauged
baryon number, see [120].
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5.1 The Structure of a Dark Photon Lagrangian

5.1.1 Kinetic Mixing

We will begin with a general description of a new U(1)′ gauge boson referred to as the dark
photon. Under the assumptions of Lorentz invariance, we can write a mixing term between
this U(1)′ and the SM hypercharge, as in Eq. 5.1. Next, we have to define whether or not this
gauge boson is massive. From Chapter 1, we know that explicit mass terms for gauge bosons
are prohibited by gauge symmetries. Nevertheless, it is possible to include massive dark
photons in a theory by assuming that they obtain a mass via a secondary mechanism. One way
to do this is by postulating a dark higgs mechanism, i.e., adding a scalar field that spontaneously
breaks the U(1)′ symmetry yielding a mass term for the dark photon. The parameters of the
theory can generally be chosen such that the phenomenology of the dark higgs is irrelevant to
the low-energy description of the theory.2 Another popular way to generate the dark photon
mass without the addition of any new degrees of freedom is through the Stuckelberg mechanism
[122, 123]. Since the Stuckelberg mass is not associated with the breaking of a symmetry, it is
a free parameter of the model not subject to constraints from the scalar sector.

From this discussion, one can write down the following Lagrangian in complete generality,

L = −1

4
BµνB

µν − 1

4
F ′µνF ′µν −

κ̃

2
BµνF ′µν +

m2
A′

2
A′µA′µ − gJµSMBµ , (5.2)

where Bµ represents the SM hypercharge and JµSM the SM charged current. The canonical
kinetic terms are obtained by the transformation [84],



Bµ

W 3
µ

A′µ


→




1 0 − κ̃√
1− κ̃2

0 1 0

0 0
1√

1− κ̃2






Bµ

W 3
µ

A′µ


 , (5.3)

where W 3
µ is the neutral gauge boson of SU(2)L. The resulting mass matrix, M2, can be

diagonalised by two rotations,

R1(ξ)R2(θW ) =




1 0 0

0 cos ξ sin ξ

0 − sin ξ cos ξ







cos θW sin θW 0

− sin θW cos θW 0

0 0 1


 , (5.4)

2For extremely light dark photons, it is not possible to disentangle the effects of the dark Higgs (which in such a
case would also be extremely light) from the phenomenology of the theory. In particular formA′ ∼ O(eV), strong
constraints arise on the kinetic mixing parameter as a result of the stellar production of this light dark higgs and
the associated stellar cooling [121].



5.1. The Structure of a Dark Photon Lagrangian 77

such that diag (m2
γ , m

2
Z , m

2
A′) = R1(ξ)R2(θW )M2R2(θW )TR1(ξ)T where θW is the weak mix-

ing angle, cos θ = mW /mZ , and ξ is an additional angle,

tan 2ξ =
2κ̃ sin θW

1−m2
A′/m

2
Z

. (5.5)

Using these transformations, we end up in a basis where the photon is massless and the dark
photon and Z-boson receive small mass corrections of order κ2. To leading order in κ the
transformations above are equivalent to the replacement [80, 124],



A

Z

A′


→




A− κA′

Z − κ tan θW
m2
A′

m2
Z

A′

A′ + κ tan θW
m2
Z

m2
Z −m2

A′
Z ,




(5.6)

where κ ≡ κ̃ cos θW .3 This implies that the SM charged current couples to the dark photon
with a strength proportional to eκ. The neutral current (which couples to the Z-boson) also
picks up a coupling to the dark photon, but one that is suppressed by an additional factor of
m2
A′/m

2
Z in the regime mA′ < mZ . Further, any particle that couples to the dark photon—

for instance, a dark fermion charged under U(1)′—will invariable pick up a coupling to the
Z-boson, although this will be suppressed by the fermion’s coupling to the dark photon, gDM.

To summarise, we can always write the vacuum Lagrangian for a light kinetically mixed dark
photon as,

Lvac = −1

4
FµνFµν −

1

4
F ′µνF ′µν +

m2
A′

2
A′µA′µ + JµSM(eAµ + eκA′µ) + gDMJ

µ
DMA

′
µ , (5.7)

where JµDM denotes a dark current and we have ignored the dark photon and dark current
coupling to the Z-boson as argued above.

5.1.2 Light Dark Photons In-Medium: Effects on Masses and Couplings

We will now extend the discussion above to include in-medium effects on the masses and
couplings of dark photons. We consider the Lagrangian,

L ⊃ −
∑

f

(
eqf f̄γ

µfAµ + g′q′f f̄γ
µfA′µ

)
, (5.8)

where qf and q′f denote the fermion charges under U(1) and U(1)′ respectively, and the sum
over f, f̄ , includes the complete fermion spectrum of the model, i.e., both the SM fermions and
the dark fermions. For the moment, we will be interested in the case when g′ � e. Note
that this Lagrangian is completely general to leading order in coupling since we have some

3Note that one can always start with the definition of kinetic mixing as κ̃ = κ/ cos θW in Eq. 5.2 and indeed, this is
what is implicitly assumed while studying phenomenology (see for example, [80]).
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A′
µ

f̄

f

Aµ

FIGURE 5.1: In-medium mass mixing between the visible and dark photon.

freedom in the definition of g′q′f to include the effects of any explicit kinetic mixing at the level
of the Lagrangian.

From Chapter 1, we know that the SM photon develops an in-medium mass as a result of its
interactions with the thermal plasma, (see right panel of Fig. 1.2):

m2
A ≈

∑

f

e2q2
f

9
≡ qeff

e2T 2

9
. (5.9)

In this equation, the sum includes only relativistic fermions and qeff denotes the effective num-
ber of charge degrees of freedom. A dark photon in-medium will similarly obtain a thermal
mass correction given by,

∆m2
A′ ≈

∑

f

g′2q′2f
9

T 2 . (5.10)

This correction is, however, negligible for massive dark photons and small values of the cou-
pling g′. Plasma effects will additionally induce a mass-mixing between the visible and the
dark photons, as shown in Fig. 5.1,

L ⊃ δm2AµA′µ , (5.11)

which can be similarly parameterised4

δm2 ≈
∑

f

eg′qfq′f
9

T 2 ≡ q′eff

eg′T 2

9
. (5.12)

The effective mixing degrees of freedom, q′eff , differ from the charge degrees of freedom, qeff

since the latter always monotonically increase with the temperature (as more and more par-
ticles become relativistic). In contrast, q′eff can have negative contributions if qf and q′f have
opposing signs. Additionally, since g′ � e by assumption, the mass mixing is always smaller
than the plasmon mass, δm2 � m2

A.

4Eq. 5.12 reduces to the known forms in certain limits. For example it can be compared to Eq. (D2) in [125] if the
plasma is assumed to be composed primarily of electrons.
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This induced mass mixing can be removed through the rotation, A → A − θA′ and A′ →
A′ + θA, with the mixing angle defined by,

θ =
δm2

m2
A −m2

A′
, (5.13)

resulting in the Lagrangian,

L ⊃ −
∑

f

[
eqf f̄γ

µf(Aµ − θA′µ) + g′q′f f̄γ
µf(A′µ + θAµ)

]

= −
∑

f

[
(eqf + θg′q′f )f̄γµfAµ + (g′q′f − θeqf )f̄γµfA′µ

]
. (5.14)

In the limit of extremely light dark photons, mA′ � mA, the mixing angle reduces to

θ =
g′

e

q′eff

qeff
=
g′

e

q′f
qf

(5.15)

such that if the dark charges are proportional to the electromagnetic charges, q′f = κqf , as is the
case for models with kinetic mixing, the dark photon coupling to the SM fermions vanishes,

g′q′f − θeqf = g′κqf −
g′

e

κqf
qf

eqf = 0 . (5.16)

This is exactly the reason why kinetically mixed light dark photons evade thermalisation and
therefore the strong constraints coming from BBN and CMB. In general, however, the temper-
ature induced mixing is a non-trivial function of temperature.

We end this section by mentioning a few additional subtleties to be kept in mind while con-
sidering in-medium effects. First, as we have pointed out elsewhere in this thesis, it is always
important to separate the physics before and after the electroweak phase transition. In the
context of the photon-dark photon phenomenology, this results in replacing the particles and
couplings with their unbroken counterparts. In particular, before the electroweak phase tran-
sition, the massive photon is replaced by a massive hypercharge boson with a mass given by
[23],

m2
Y = qeff

g2
Y T

2

9
. (5.17)

Here, gY is the hypercharge gauge coupling and qeff are the effective charge degrees of free-
dom before the phase transition,

qeff =
∑

fL

Y 2
fL

+
1

2

∑

fR

Y 2
fR

+ 2Y 2
H , (5.18)

with Yi representing the hypercharge assignments for left (L)- and right (R)- handed fermions,
and the complex Higgs doublet (H). The medium-induced mass mixing is then between this
gauge boson and the dark photon. Additionally, the SM fermions are replaced with their chiral
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counterparts with different masses for the left- and right- handed components as discussed in
section 1.2.2.

Second, just like in the case of kinetic mixing studied in section 5.1, in-medium effects after
the phase transition will also induce a mixing between the dark photon and the Z-boson. This
mixing, however, will be suppressed by the Z-boson mass following a similar line of reasoning
as before and can therefore be neglected. Additionally, before the phase transition, one could
in principle, think about a mixing between the third electroweak gauge boson W 3

µ and the
dark photon, however the diagrams contributing to such a mixing cancel out [126].

Finally it is important to address when these in-medium effects are important. We re-emphasise
that for extremely light photons mA′ . keV, these effects ensure that models of kinetic mixing
are viable [125]. Additionally, they are important while calculating stellar constraints on dark
photons where the temperature scales of interest are large. In the context of thermal WIMP
models with sufficiently heavy dark photons (MeV-scale masses or larger), these corrections
are of little consequence since DM production happens dominantly at small temperatures.

In the following sections, we will study two dark photon models: one where DM production
is via thermal freeze-out and we can therefore ignore these temperature corrections, and one
where temperature-induced couplings are necessary to ensure the FIMP nature of DM.

5.2 Resonant Dark Photon Model

5.2.1 Relic Abundance Calculation

We first consider a DM model with a Dirac fermion, χ, and a kinetically mixed dark photon,
A′, specified by the Lagrangian [3, 53],

LDM = −1

4
F ′µνF

′µν +
1

2
m2
A′A

′2 − κeA′µ
∑

f

qf f̄γ
µf + χ̄(i/∂ −mχ)χ− gχA′µχ̄γµχ , (5.19)

where the couplings are as defined in the previous section. We are interested in the case of
sub-GeV DM where DM is produced via freeze-out.5 As we have seen in section 2.3, sub-GeV
DM faces strong cosmological constraints: BBN bounds dictate that any thermal particle must
have a mass larger than a few MeV, whereas measurements of the CMB anisotropies strongly
exclude the s-wave WIMP annihilation cross-section of 〈σv〉 ∼ 10−26 cm3 s−1. From the latter,
it is easy to deduce that light WIMP models are only viable if there exists a mechanism to
suppress annihilations at late times. In the model outlined above, such a velocity suppression
can be achieved by considering resonantly-enhanced DM annihilation. If the dark photon
mass is close to twice the dark matter mass, mA′ ≈ 2mχ, DM annihilations to fermions, χχ→
A′ → ff , will be resonantly enhanced at centre of mass energies close to mA′ . The correct relic

5This can be motivated by stringent terrestrial constraints on the WIMP DM parameter space as we will discuss in
Chapter 7.
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abundance can therefore be obtained for relatively small values of the couplings which result
in suppressed annihilations at the time scales relevant for the CMB.

Additionally, since the CMB constraints are proportional to the square of the DM density (see
section 2.3), they can be further alleviated if we assume that the Dirac fermion only constitutes
a DM subcomponent. We can quantify this fractional abundance in terms of a free parameter,

R ≡ Ωh2

0.12
. (5.20)

Before calculating the relic abundance, let us have a quick look at the various parameters of
interest in this model. We will limit ourselves to the casemA′ & 2mχ such that the dark photon
can decay both invisibly and visibly. The leptonic decay width is given by,

Γ`` =
κ2e2mA′

12π

√
1−

(
2m`

mA′

)2(
1 +

2m2
`

m2
A′

)
. (5.21)

The hadronic decay width can be characterised in terms of the ratio σ(e+e− → hadrons)/σ(e+e−→
µ+µ−) for off-shell photons with centre-of-mass energy

√
s, given by R(

√
s). The total SM de-

cay width of the dark photon is therefore given by,

ΓSM = R(mA′)Γµµ +
∑

`

Γ`` . (5.22)

The invisible decay width is simply,

ΓDM =
g2
χmA′

12π

√
1−

(
2mχ

mA′

)2
(

1 +
2m2

χ

m2
A′

)
. (5.23)

Finally, we define the following parameters,

ΓA′ = ΓSM + ΓDM , (5.24)

γA′ =
ΓA′

mA′
, (5.25)

Be =
Γee
ΓSM

, (5.26)

corresponding to the total dark photon decay width, a dimensionless dark photon decay
width, and the branching ratio of a dark photon with a negligible invisible decay width into
electrons respectively.

Since we are interested in thermal freeze-out via a resonance, we will use the methods outlined
in the second half of section 2.2.2. We will once again parameterise the strength of the resonant
enhancement by the dimensionless quantity

εR =
m2
A′ − 4m2

χ

4m2
χ

, (5.27)
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and the total cross-section as,

σvlab = F (ε)
mA′ΓA′

(s−m2
A′)

2 +m2
A′Γ

2
A′
, (5.28)

with,

F (ε) =
8πακ2g2

χ

12π ΓA′mA′mχ

(2ε+ 3)
(
m2
e + 2(ε+ 1)m2

χ

)√
(ε+ 1)m2

χ −m2
e

(2ε+ 1)
√
ε+ 1Be

(
2
√
ε+ 1mχ

) , (5.29)

Remember that ε = (s − 4m2
χ)/4m2

χ is the dimensionless kinetic energy of the collision and
vlab is the relative velocity in the rest frame of one of the particles.

We can then use Eq. 2.27 and Eq. 2.30 to obtain analytic results for the thermal average in the
non-relativistic (〈σv〉n.r.) and resonant limits (〈σv〉res.) respectively. The former is valid for suf-
ficiently small εR and when freeze-out occurs at low temperatures, whereas the latter works
for larger εR when we obtain significant contributions from the relativistic tail of the particle
distributions. On comparing with numerical results, we find that the non-relativistic approx-
imation works well for εR < 0.1 and γA′ > 0.01. For γA′ < 0.01, we use max(〈σv〉res., 〈σv〉n.r.).
We plot these approximations along with the full numerical calculation for 〈σv〉 in Fig. 5.2 as
functions of inverse temperature for a DM mass of mχ = 50 MeV. The purple dashed line is
the standard thermally averaged s-wave cross-section for WIMPs. We clearly see that the res-
onant annihilations remain active after freeze-out has occurred (the pink shaded bands) until
inverse temperatures close to ε−1

R . As expected, the non-relativistic approximation works very
well for small temperatures whereas the resonant approximation is more accurate for larger
temperatures.

Note that for a certain region of parameter space, when εR � 1 and γA′ � εR, it is possible to
make the narrow-width approximation in the non-relativistic limit to obtain,

〈σv〉 ≈ 2
√
πx3/2

4m2
χ

√
εRe
−xεRF (εR) . (5.30)

By then using the usual formula for the relic abundance,

Ωh2 ≈ 1.7× 10−10GeV−2

(∫ x0

xf

√
geff
〈σv〉
x2

dx

)−1

(5.31)

we get

Ωh2 = 1.7× 10−10GeV−2 1

g
1/2
eff

(
2π (1 + εR) Erfc(

√
εRxf )F (εR)

m2
A′

)−1

, (5.32)

which implies

Ωh2 ∝ 1

Erfc(
√
εRxf )F (εR)

εR�1∼ ΓA′

κ2 g2
χ

. (5.33)
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FIGURE 5.2: The thermally averaged cross-section as a function of temperature
for three different values of εR calculated using the full expression (solid line)
and the non-relativistic (dotted) and resonant (dashed) approximations. The
DM mass is fixed to mχ = 50 MeV, the dark coupling to gχ = 0.01 and the ki-
netic mixing is fixed for each εR to reproduce the DM relic abundance. The grey
shaded areas correspond to temperatures relevant for BBN and CMB with the
horizontal bars corresponding to cross-sections required to satisfy the respec-
tive constraints assuming an s-wave cross-section (purple dashed line). We also

indicate the temperature range relevant for freeze-out in light pink.

The equations above demonstrate some of the unique features of this DM model. First, we
see from Eq. 5.32 that the relic abundance is nearly independent of the freeze-out temperature
xf in the limit εR � 1. This is because for x > xf , the thermally averaged cross-section
continues to grow until x ∼ ε−1

R as can also be seen from Fig. 5.2. Hence the final value of
the relic abundance is independent of the lower bound on x. Second, from Eq. 5.33 we see
that the relic abundance becomes independent of gχ (κ) for gχ � κ (κ � gχ). This introduces
a degree of freedom in our model since one of the couplings can now be varied drastically
while keeping the relic density fixed.

To get a sense of the scale of couplings that reproduce the correct relic abundance, we consider
once again Fig. 5.2. For mχ = 50 MeV and gχ = 0.01, we obtain the correct relic abundance
for κ = [3.6 × 10−7, 8.0 × 10−7, 4.5 × 10−6] for εR = [0.001, 0.01, 0.1]. These couplings are
smaller than general WIMP couplings: a straightforward consequence of the resonant en-
hancement in the annihilation. Additionally, we check the validity of our approximations
by comparing the resulting relic abundance to the full numerical calculation for the parame-
ter combinations represented in Fig. 5.2. The numerically evaluated thermal averages yield
Ωh2 = [0.121, 0.129, 0.122], the approximate ones yield Ωh2 = [0.126, 0.124, 0.128], whereas
Eq. 5.32 returns Ωh2 = [0.127, 0.124, 0.130] for εR = [0.001, 0.01, 0.1], i.e., our analytic approx-
imations agree to within 5%.

We will next have a more detailed look at the cosmological constraints on this model.
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5.2.2 Cosmological Constraints

Big Bang Nucleosynthesis

From Chapter 2, we know that the formation of light elements in the early universe is sensitive
to the presence of sub-GeV particles in a number of ways. Their contribution to the Hubble
expansion rate of the universe sets largely model-independent bounds on their masses if these
particles have a thermal abundance. For Dirac fermions, this turns out to be mχ & 10 MeV
[66, 67] (see also Fig. 2.8).

Additionally, photo-disintegration sets a bound on DM annihilations at keV-scales. For velocity-
independent annihilation, one obtains σv < 5.2 × 10−25 cm3 s−1 [67]. To ensure that annihi-
lations in our model are sufficiently suppressed at these temperatures, we limit ourselves to
εR ≥ 0.001.

In Fig. 5.2, we shade the temperature region relevant for BBN with a light grey. The bound
from photo-disintegration on a velocity-independent cross-section is represented by a black
bar with an arrow denoting the allowed parameter space for cross-sections. Note that we cur-
rently evade all constraints from photo-disintegration by restricting ourselves to sufficiently
small resonant enhancements. These constraints would have to be accounted for properly if
one wants to extend the parameter space to include εR < 0.001.

Cosmic Microwave Background

We have also discussed the general form of the constraints arising due to energy injection in
the CMB by DM annihilations at late times in section 2.3. These are encoded in the effective
parameter [25],

pann =
R2

2
fχ
〈σv〉CMB

mχ
< 3.2× 10−28 cm3 s−1 GeV−1 , (5.34)

where the factor 1/2 accounts for the fact that the DM particle is not self-conjugate.

In this model, the cross-section at times relevant for the CMB constraints is approximately
s-wave (see Fig. 5.2). We can therefore take the limit v → 0 in Eq. 5.28 to obtain,

〈σv〉CMB =
4παg2

χκ
2

m3
A′ Be

(
mA′√
1+εR

) (1 + εR)3/2 (m2
A′ + 2 (1 + εR)m2

e)

(1 + εR)2 Γ2
A′ + ε2Rm

2
A′

√
m2
A′

1 + εR
− 4m2

e . (5.35)

From this equation (as well as from Fig. 5.2), it can be seen clearly that the CMB constraints
become stronger for smaller εR, since 〈σv〉CMB ∝ ε−1

R in the limit, γA′ � εR � 1.
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We can calculate the fraction of energy deposited in the SM plasma as a function of the DM
mass, fχ(mχ), in a similar way as outlined in Chapter 2 with the help of publicly avail-
able tools such as PPPC4DMID, HERWIG, and HAZMA [70–73]. This places a bound on
R2〈σv〉CMB as a function of DM mass.

It is possible to qualitatively estimate how the CMB bound translates to couplings. From
Eq. 5.34, we know that the CMB would constrain R2〈σv〉CMB. Assuming γA′ � εR � 1, we
can write using Eq. 5.33, R ∝ Ωh2 ≈ ΓA′/(κ

2 g2
χ). Additionally, in this limit, 〈σv〉CMB ∝ g2

χκ
2,

resulting in,

R2〈σv〉CMB ∝





κ2

g2
χ

ΓDM � ΓSM

g2
χ

κ2
ΓSM � ΓDM

(5.36)

These equations imply that the CMB constrains small values of κ if the dark photon decays
invisibly. Additionally, as we decrease εR, the CMB constraints are first weakened as annihi-
lations are enhanced around freeze-out and smaller couplings reproduce the relic abundance.
However, a further decrease in εR, results in resonant annihilations becoming efficient even
during recombination, thereby yielding stronger CMB constraints. This is also evident from
Fig. 5.2.

We will further discuss the complementarity of these constraints when we talk about terres-
trial experiments in Chapter 7. Additionally, astrophysical constraints on this model arise
from DM self-interactions which we discuss in detail in Chapter 6.

5.3 B − L Dark Photon Model

We will now turn our attention to dark photon models in the freeze-in regime. Generally, fee-
ble couplings of order 10−11, induced via a tiny kinetic mixing parameter, are used to ensure
freeze-in production of DM [49, 50]. However, it turns out that the freeze-in mechanism is
valid for even larger couplings provided that both the dark and the SM current couple weakly
to the dark photon. In such a scenario, the production cross-sections scale as the fourth power
of the coupling, g′4, and therefore the correct relic abundance can be reproduced for couplings
as large as g′ ∼ 10−6 [1, 127]. This coupling structure arises naturally in extensions of the
SM via an additional U(1)′ such that both the SM fermions and the dark sector carry U(1)′

charges.

We will exemplify this by taking the example of a B − L gauge boson. A U(1)B−L gauge ex-
tension of the SM, coupled with the addition of three-handed neutrinos (RHNs) is commonly
used to explain neutrino masses by the see-saw mechanism [77, 128]. We will, however, not
be interested in the additional neutrino species or the scalar which provides the A′ and RHNs
masses, and assume that these particles are sufficiently heavy to have no observable effects
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Particle Nc Nf Y B − L
qL 3 3 1/6 1/3

uR 3 3 2/3 1/3

dR 3 3 −1/3 1/3

eL 1 3 −1/2 −1

eR 1 3 −1 −1

νR 1 3 0 −1

H 1 1 1/2 0

TABLE 5.1: B − L and hypercharge assignments before EWSB.

Particle Nc Nf qf B − L
u 3 3 2/3 1/3
d 3 3 −1/3 1/3
e 1 3 −1 −1
νL 1 3 0 −1
νR 1 3 0 −1

TABLE 5.2: B − L and charge assignments after EWSB.

on the DM phenomenology.6 Instead, we will introduce a Dirac fermion χ with a U(1)B−L
charge q′χ as our DM candidate. We remain agnostic about the value of q′χ, instead assuming
the total χ − A′ coupling to be given by gDM. Importantly, for q′χ 6= −1, the stability of χ is
guaranteed by the B − L symmetry. Using Eq. 5.8, we have the Lagrangian,

L ⊃ 1

2
m2
A′A

′
µA
′µ −

∑

f, SM

gBLq
′
fA
′
µf̄γ

µf − gBLq
′
χ︸ ︷︷ ︸

gDM

A′µχ̄γ
µχ . (5.37)

Further, we can parameterise the DM charge as,

r ≡ gBL

gDM
=

1

q′χ
. (5.38)

The four free parameters of this model are mχ, mA′ , gBL and gDM.

Tables 5.1 and 5.2 present the B − L and U(1)Y charges of the SM fermions before and after
the phase transition respectively. We first look at the coupling structure before the phase
transition. In this case, following the discussion in section 5.1.2, and using Eq. 5.18, the mass-
mixing is defined by,

δm2 = q′eff

gY gBLT
2

9
= 4

gY gBLT
2

9
, (5.39)

resulting in,

θBL =
8

11

gBL

gY
. (5.40)

6Ref. [128] discusses in detail the case where the RHNs are the frozen in DM candidate.
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FIGURE 5.3: Freeze-in Production channels: Annihilations of SM fermions, f
and f̄ (left) and annihilations of dark photons, A′ (right).

After the phase transition, and for temperatures above the bottom quark mass, we instead
have,

θBL =
1

2

gBL

e
, (5.41)

where top quarks do not contribute to both qeff and q′eff on account of being non-relativistic.
The effective coupling of the dark photon to the SM fermions is then given by Eq. 5.14, which
for θBL given above vanishes for all up-type quarks,

gBLq
′
u − θBLequ = gBL ×

1

3
− 1

2

gBL

e
e× 2

3
= 0 . (5.42)

5.3.1 Relic Abundance Calculation

With a handle on the modifications to the coupling structure, we are now ready to investigate
the parameter space of this model. As mentioned, we are interested in the freeze-in regime,
where the dark sector is populated via decays and annihilations of particles in the thermal
bath. It has been shown that for mχ < 1 TeV and gBL & 10−7, dark photons thermalise with
the SM at the relevant temperature scales, T ≈ mχ, via processes of the kind qg → qA′ [80].
As long as gDM is sufficiently small, however, the DM candidate itself does not enter thermal
equilibrium and the conditions for freeze-in are still satisfied.

DM production then occurs via two kinds of processes differentiated by their coupling depen-
dence:

1. Annihilations or decays of SM particles:
These include processes of the form ff̄ → χχ̄ with cross-sections that scale as g2

BLg
2
DM

(left panel of Fig. 5.3). Additionally, in-medium effects imply that for large enough tem-
peratures, massive photons (plasmons) can decay into DM, A → χχ̄. Since the A − χ
coupling is induced via a thermal mixing, the decay width of this process also scales as
g2

BLg
2
DM.
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FIGURE 5.4: The DM abundance Ωh2 as a function of temperature for two dif-
ferent values of DM mass, (a) mχ = 30 GeV and (b) mχ = 300 GeV. The temper-
ature of the electroweak phase transition and the temperature at which plasmon

decays become kinematically inaccessible are indicated by vertical lines.

2. Annihilations of dark photons:
Since the dark photons are assumed to have a thermal abundance, processes of the kind
A′A′ → χχ̄, also populate the dark sector (right panel of Fig. 5.3). These processes scale
as g4

DM and dominate for gBL � gDM. We restrict ourselves to the regime where dark
photon decays into DM are forbidden, mA′ < 2mχ.

The total abundance of DM is then given by the solution to the Boltzmann equation

s

2

dYχ
dt

= 〈σff̄v〉n2
f + 〈σA′A′v〉n2

A′ + 〈ΓA→χχ̄〉nA , (5.43)

with the usual definitions for the different variables. Note that plasmon decays are active for
temperatures when mA(T ) ∼

√
20 e2T 2/27 > 2mχ corresponding to roughly T & 7mχ. On

the other hand, the annihilations are efficient until T ≈ mχ and typically dominate the total
yield. This of course changes for smaller dark matter masses, in which case plasmon decays
do in fact give the dominant contribution [129].

For T � mχ, the thermally averaged cross-sections scale as 〈σff̄ 〉 ∼ g2
BLg

2
DM/T

2 and 〈σA′A′〉 ∼
g4

DM/T
2 respectively, resulting in the yields,

Yff̄ ∝
g2

BLg
2
DMMPl

mχ
, (5.44)

YA′A′ ∝
g4

DMMPl

mχ
. (5.45)
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FIGURE 5.5: The total DM abundance as a function of DM mass for production
dominated by (a) dark photon annihilation and (b) SM particle annihilation.
The dashed and dotted lines represent the contribution to the total abundance

before and after the electroweak phase transition respectively.

Therefore, we expect the final DM abundance, Ωh2 ∝ Yχmχ, to be independent of the DM
mass.

The exact solution of the Boltzmann equation is, however, much more complicated as empha-
sised multiple times in this thesis. We need to account for the full statistical distributions of
the particles, distinguish between production before and after the phase transition, as well
as properly account for the thermal masses and induced couplings. We therefore solve this
equation numerically using a modified version of MICROMEGAS 5.0 where we additionally
implement temperature corrections to particle masses.

Fig. 5.4 displays the evolution of the DM abundance as a function of temperature for two DM
masses, using couplings that reproduce the correct relic density, gBL = gDM = 1.6 × 10−6.
For mA′ < 1 GeV, the relic abundance is independent of the dark photon mass. We see that
DM production is dominantly at T ≈ mχ and therefore before (after) the phase transition
for mχ = 300 (30) GeV. The dashed-dotted black line represents the point where plasmon or
hypercharge plasmon decays become forbidden. As argued above, this channel provides a
sub-dominant contribution in our parameter range of interest. The other two channels give
comparable contributions to the DM density although the dark photon channel turns out to
be slight more efficient.

We also plot the relic abundance as a function of DM masses considering only the dark pho-
ton channel (left) and only SM fermion channels (right) in Fig. 5.5. As expected, the total
abundance (solid green line) is largely independent of the DM mass. Further, heavier DM
particles are mostly produced before the phase transition (orange dashed line) in contrast to
lighter ones which are dominantly produced after the phase transition (blue dotted line). The
wiggles in the right panel for DM masses below 10 GeV correspond to the change in the SM
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FIGURE 5.6: The gauge coupling gBL that reproduces the observed value of the
DM relic abundance for different values of the coupling ratio, r = gBL/gDM,

plotted as a function of DM mass.

relativistic degrees of freedom that contribute to DM production. Neglecting the mass depen-
dence, the relic abundance can be parameterised in terms of the ratio of the two couplings,
as

Ωχh
2 ≈ (0.16 r−4 + 0.12 r−2)

(
gBL

2× 10−6

)4

. (5.46)

We can use this expression to estimate the magnitude of couplings required to obtain the
measured relic abundance, Ωχh

2 = 0.12. For r � 1, the first term in the expression above,
corresponding to dark photon annihilation, dominates. The correct relic abundance is ob-
tained for gBL ∼ 10−6r or equivalently gDM ∼ 10−6. In the opposite case, r � 1, SM particles
give the dominant contribution and the couplings are roughly given by gBL ∼ 10−6√r, or
gBLgDM ∼ 10−12.

In Fig. 5.6, we show the required values of gBL as a function of DM mass for different values
of the coupling ratio r. We restrict ourselves to 0.1 < r < 3 which correspond to reasonable
values for the dark matter charge, q′χ = 1/r. Intriguingly, gauge couplings in this regime are
probed by various terrestrial experiments. We will discuss these further in Chapter 7.

Note that there aren’t many cosmological constraints on this model. The small freeze-in cou-
plings imply that DM annihilations into SM particles are necessarily suppressed during re-
combination. Further, the BBN constraints on thermal dark photons are easily evaded in the
mass range of interest, mA′ & few MeV
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5.4 Conclusions

In this chapter, we have explored the cosmology of a dark photon portal in the context of
both thermal and non-thermal DM models. U(1)′ extensions of the SM have been extensively
studied in the literature. For a DM particle charged under such a U(1)′, interactions with
the SM particles can be established through a kinetic mixing between U(1)Y − U(1)′, or by
considering a U(1)′ under which the SM is also charged. In either case, the portal coupling
can be treated as a free parameter.

For the case of a light dark photon, plasma effects induce an additional non-negligible mass
mixing with the SM photon. As discussed in section 5.1, this mixing can result in a coupling
structure substantially different from the vacuum case, in particular resulting in couplings
that pick up a temperature dependence. For the case of a kinetically mixed dark photon,
such an effect ensures that ultralight dark photons never thermalise with the SM thereby sat-
isfying cosmological constraints. Even for a purely mass-mixed dark photon, this effect can
selectively decouple the dark photon from certain SM particles and, therefore, affect DM cos-
mology.

In terms of DM production mechanisms, the dark photon portal can be used in the context of
both WIMPs and FIMPs (sections 5.2 and 5.3 respectively). For WIMPs, models of light DM
can be made cosmologically viable provided that the DM mass is close to twice the dark pho-
ton mass, i.e., if we consider the parameter space in which DM annihilations are resonantly
enhanced. This resonant enhancement around freeze-out ensures that DM annihilations are
suppressed during recombination thereby evading the stringent constraints arising from the
CMB. Indeed, even moderate levels of enhancement can satisfy cosmological constraints, as
shown in Fig. 5.2. The resonant enhancement also implies that the couplings required to re-
produce the relic abundance are smaller than the traditional WIMP couplings. It is important
to note here that very small couplings might result in a dark sector not in kinetic equilibrium
with the SM thermal bath which would then require a modification of the relic density cal-
culation. Additionally in such a case, the BBN constraints arising from photo-disintegration
would also need to be evaluated properly. It is possible to do so by using specialised nu-
merical tools such as ACROPOLIS [130]. On the flip side, for small resonant enhancements,
εR > 0.1, and therefore large couplings, uncertainties in the relic abundance calculation might
arise from considering a fixed width of the dark photon propagator instead of a running one.
These large couplings, however, would ensure efficient annihilations during recombination
and therefore be excluded anyway.

For frozen-in heavy DM, on the other hand, MeV-scale thermal dark photons can easily repro-
duce the observed DM abundance with couplings that are substantially larger than the usual
feeble couplings, as shown in Fig. 5.6. DM is produced through the annihilation of SM par-
ticles and dark photons. Which of these channels dominate depends on the relative strength
of the A′-SM and A′-DM coupling. Additionally, plasmon and hypercharge plasmon decays
give a sub-dominant contribution to the DM abundance. Since the DM abundance is always



92 Chapter 5. Dark Photon Portal

sub-thermal, and DM is assumed to be heavy, cosmological constraints on DM do not apply.
The BBN constraints on the dark photon are also easily avoided in the mass range of interest.

In both these scenarios, it turns out that the couplings required to satisfy the relic abundance
requirement are exactly in the range of existing and future terrestrial searches (as we will de-
tail in Chapter 7). Considering the rich phenomenology at both cosmological and laboratory
scales, it is easy to see that the dark photon portal is an attractive avenue for both theoretical
and experimental research into DM.
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Chapter 6

Semi-Classical Treatment of Mediators

In the preceding chapters, we have focused primarily on DM-SM interactions. However, the
very same mediators that couple the SM to DM also generate DM-DM interactions. Indeed,
self-interactions are quite common in DM models. In particular, self-interactions mediated
by long-range forces have long been posited as a solution to a number of problems in the
collisionless cold DM paradigm. In this chapter, we will discuss a quantum-mechanical treat-
ment for DM self-interactions in this regime along with their phenomenological implications
on generic model parameters. We begin with a brief review of the so-called small-scale crisis
in ΛCDM in section 6.1. In section 6.2, we formulate non-relativistic DM self-interactions in
a quantum-mechanical way. Our calculations for long-range interactions and the resulting
phenomenology follow in sections 6.3-6.5 respectively. Finally, we present our conclusions in
section 6.6.

6.1 Small Scale Problems

Even though ΛCDM has proved to be an excellent success at predicting the large scale struc-
ture of the universe (& O(Mpc)), inconsistencies arise at smaller scales [93, 131, 132]. The pre-
dictions obtained from cosmological N-body simulations—which are necessary to explore this
regime as a result of the non-linearity of structure formation—differ from observations. In-
voking self-interacting DM (SIDM) is one way to alleviate these discrepancies [133], although,
as has been often pointed out, a more rigorous treatment of baryonic effects in simulations
might also do the same [134–136].

We list the main discrepancies between CDM predictions and observations below.

1. Cusp-Core Problem: This refers to a discrepancy in the dark matter density profiles
of dwarf galaxies obtained from DM-only numerical simulations and those obtained
from observed rotation curves [137–139]. Simulations predict a density profile which
increases like a steep power law toward the galactic centre, ρDM ∝ r−1, i.e., a cuspy
profile, whereas observations point to one that is flat or cored, ρDM ∝ r0.

2. Diversity Problem: This refers to observations of halos that have the same maximum
circular velocity but have significant variations in their inner density profiles [140].
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Structure formation in CDM is a self-similar process implying that halos of a given mass
should appear similar. Since the mass of a halo can be linked to its maximum circular
velocity, vmax, CDM predicts that halos with a given vmax should have the same den-
sities at all radii. This is disputed by observations of disc galaxies where inferred core
densities for similar vmax values, can vary by factor of O(10) [141].

3. Missing Satellites Problem: CDM halos have a rich substructure since structure forma-
tion is a hierarchical process where halos grow via mergers of smaller halos. CDM thus
predicts a number of satellites or small galaxies in our local group. However, far fewer
satellites have been observed [93]. We should note that whether or not the missing satel-
lite problem is still a problem is currently contested due to discoveries of more and more
low-surface brightness galaxies [142, 143].

4. Too-Big-To-Fail Problem: This corresponds to the fact that N-body simulations based
on ΛCDM predict a population of DM sub-halos around the Milky Way that are way too
dense and massive to host the brightest observed satellites [144, 145].

Self-scattering of DM particles can act as an effective energy transfer mechanism, thus turning
cusps into cores and changing the subhalo abundance. The missing satellite problem may also
be alleviated by including additional properties like warm [146, 147] or decaying DM [148].
Since such solutions would probe the properties of DM independent of its interaction with
the standard model, they offer interesting insights and constraints on possible DM models.
Further, a general treatment of self-interactions is useful since it provides an easy way to
map constraints onto different mediators. These will then be complementary to the mediator
constraints arising from terrestrial experiments that probe the mediator’s coupling to the SM.

Generally, constraints on SIDM are presented in terms of the velocity-averaged cross-section
over mass, 〈σv〉/m, as a function of average DM velocity, 〈v〉. Since the velocity dispersion
varies with halo mass, studying differently-sized systems from dwarf galaxies to galaxy clus-
ters provides a way to constrain self-interactions at different energy scales.

Fig. 6.1 shows the strength of self-interactions for different astrophysical systems as a function
of their mean velocities, with straight lines representing a contact (or velocity-independent)
self-interaction. The data in Fig. 6.1 appear to prefer a cross-section that is constant at small ve-
locities but turns over to have a Rutherford-like (v−4) dependence at large velocities. Further,
the order of magnitude for the cross-section, σ ∼ 1 cm2g−1 ≈ 10−24 cm2 (mχ/GeV) appears
to be much larger than the weak-scale cross-section of 10−36 cm2, therefore implying a medi-
ator mass lighter than the weak scale [149]. These properties are characteristic of long-range
interactions, for example, of the form,

Lint =




gχχ̄γ

µχφµ vector mediator ,

gχχ̄χφ scalar mediator .
(6.1)

Before we proceed to the functional forms of the cross-section for these interactions, we point
out two important questions that arise when making comparisons with data.
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2

our main conclusions.
II. SIDM halo model. Scattering between DM particles

is more prevalent in the halo center where the DM density is
largest. It is useful to divide the halo into two regions, sepa-
rated by a characteristic radius r1 where the average scatter-
ing rate per particle times the halo age (tage) is equal to unity.
Thus,

rate ⇥ time ⇡ h�vi
m

⇢(r1) tage ⇡ 1 , (1)

where � is the scattering cross section, m is the DM parti-
cle mass, v is the relative velocity between DM particles and
h...i denotes ensemble averaging. Since we do not assume
� to be constant in velocity, we find it more convenient to
quote h�vi/m rather than �/m. We set tage = 5 and 10 Gyr
for clusters and galaxies, respectively. Although Eq. (1) is a
dramatic simplification for time integration over the assembly
history of a halo, we show by comparing to numerical simu-
lations that it works remarkably well.

For halo radius r > r1, where scattering has occurred
less than once per particle on average, we expect the DM
density to be close to a Navarro-Frenk-White (NFW) profile
⇢(r) = ⇢s(r/rs)

�1(1+r/rs)
�2 characteristic of collisionless

CDM [26]. In the halo center, for radius r < r1, scattering
has occurred more than once per particle. Here, we expect
DM particles to behave like an isothermal gas satisfying the
ideal gas law p = ⇢�2

0 , where p, ⇢ are the DM pressure and
mass density and �0 is the one-dimensional velocity disper-
sion. Since the inner halo achieves kinetic equilibrium due
to DM self-interactions, the density profile can be determined
by requiring hydrostatic equilibrium, rp = �⇢r�tot. Here,
�tot is the total gravitational potential from DM and bary-
onic matter, which satisfies Poisson’s equation r2�tot =
4⇡G(⇢ + ⇢b), where G is Newton’s constant and ⇢b is the
baryonic mass density. These equations yield

�2
0 r2 ln ⇢ = �4⇡G(⇢+ ⇢b) , (2)

which we solve to obtain ⇢(r) assuming spherical symmetry.
We model the full SIDM profile by joining the isothermal

and collisionless NFW profiles together at r = r1:

⇢(r) =

⇢
⇢iso(r) , r < r1

⇢NFW(r) , r > r1
(3)

where ⇢iso is the solution to Eq. (2). We fix the NFW param-
eters (⇢s, rs) by requiring that the DM density and enclosed
mass for the isothermal and NFW profiles match at r1. Thus,
our SIDM halo profile is specified by three parameters: the
central DM density ⇢0 ⌘ ⇢(0), velocity dispersion �0, and
r1. Lastly, we note that this model exhibits a two-fold degen-
eracy in solutions for h�vi/m. We keep the smaller h�vi/m
solutions but note that this situation may be indicative of the
degeneracy between halo profiles with cores that are growing
or shrinking in time [5].

III. SIDM fits. To constrain DM self-interactions, we con-
sider a set of six relaxed clusters and twelve galaxies with
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FIG. 1: Self-interaction cross section measured from astrophysical
data, given as the velocity-weighted cross section per unit mass as
a function of mean collision velocity. Data includes dwarfs (red),
LSBs (blue) and clusters (green), as well as halos from SIDM
N-body simulations with �/m = 1 cm2/g (gray). Diagonal
lines are contours of constant �/m and the dashed curve is the
velocity-dependent cross section from our best-fit dark photon model
(Sec. V).

halo masses spanning 109 � 1015 M�. These objects ex-
hibit central density profiles that are systematically shallower
than ⇢ / r�1 predicted from CDM simulations. To determine
the DM profile for each system, we perform a Markov Chain
Monte Carlo (MCMC) scan over the parameters (⇢0, �0, r1)
characterizing the SIDM halo, as well as the mass-to-light ra-
tio ⌥⇤ for the stellar density. The value for ⇢(r1) determines
the velocity-weighted cross section h�vi/m from Eq. (1), as a
function of average collision velocity hvi = (4/

p
⇡)�0 for

a Maxwellian distribution. We also verify our model and
MCMC fit procedure using a mock data set from simulations.

Clusters. We consider the relaxed clusters from the data
set of Newman, et al. [19, 27] for which spherical modeling
is appropriate (MS2137, A611, A963, A2537, A2667, and
A2390). These clusters have stellar kinematics as well as
strong and weak lensing measurements allowing the mass pro-
file to be measured from stellar-dominated inner region (⇠ 10
kpc) out to the virial radius (⇠ 3 Mpc). The baryonic and
DM densities are disentangled by constraining ⌥⇤ through
the assumption that all the clusters share a similar star for-
mation history. The inferred DM density profile is consistent
with CDM expectations except in the inner O(10) kpc region
where a mass deficit is inferred [19]. These small core sizes
dictate the preference for a velocity-dependent cross section.

We model each cluster using Eq. (3) and fit directly to the
stellar line-of-sight velocity dispersion data [27]. We include
the gravitational effect of the stars following Eq. (2) and allow
for a ±0.1 dex spread in ⇢b to account for systematic uncer-
tainties [19, 27]. Further, as a proxy for fitting to the gravi-
tational lensing data at large radii, we fit to posteriors of the
maximum circular velocity Vmax and the corresponding radius
rmax that have been obtained from the lensing data [27].

Dwarf Galaxies 
Low Surface 

Brightness Galaxies 
Galaxy Clusters 

N-Body Simulations

FIGURE 6.1: The inferred self-interaction cross-section from measurements of
different astrophysical systems plotted as a function of their mean collisional
velocity 〈v〉. Diagonal lines are contours for constant σ/m. The dotted line is a
representative fit corresponding to a dark photon model. Figure adapted from

[133].

1. What do we mean by σ, i.e, what does the data actually constrain?
Many particle physics models of DM self-interactions predict a differential scattering
cross-section, dσ/dΩ, that depends non-trivially on both the scattering angle, θ, and the
velocity. To compare to data, we need to integrate out the angular dependence as well as
conduct a phase-space averaging. The total integrated cross-section, σ =

∫
dΩ (dσ/dΩ),

however, is not a good quantity to compare to since it receives a strong enhancement
in the forward scattering limit (cos θ → 1) for light mediators. This enhancement is
irrelevant for the DM distribution in a halo since it leaves the DM particle trajectories
unchanged. Instead, the momentum transfer cross-section [150, 151],

σT =

∫
dΩ (1− cos θ)

dσ

dΩ
, (6.2)

which regulates this enhancement is often used as a suitable proxy in the literature.
However, σT is also not a great figure of merit. It preferentially weights backward scat-
tering that leaves DM distributions unchanged. Additionally, it is not well defined for
identical particles as we shall show below. An alternative to σT is the viscosity cross-
section [149],

σV =

∫
dΩ sin2 θ

dσ

dΩ
, (6.3)

which weights forward and backward scattering equally and takes into account the fact
that perpendicular scatterings are the most efficient in thermalising a halo [152, 153].
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Additionally, it is well defined for both identical and non-identical particles.

In the following sections, we will discuss both σT and σV.

2. How do we perform the velocity averaging?
The rate of DM self-scattering in halos is proportional to 〈σv〉, where the angular brack-
ets denote a velocity average. However, halo dynamics are affected not by the rate of
DM self-scattering but instead by the rate of energy and momentum transfer. Usually
this is described by replacing σ with σT or σV in the velocity average. In reality, how-
ever, the momentum and energy transfer rates turn out to be proportional to 〈σTv

2〉 and
〈σVv

3〉 respectively. We expand upon this further in section 6.4.

A Quick Interlude

Before moving ahead, let us quickly revisit the resonant dark photon model presented in
Chapter 5 to better contextualise the phenomenology of DM self-interactions. For such a
model with Dirac fermion DM, two kinds of self-interactions are possible: particle-particle
scattering via a t- or u-channel exchange of a dark photon, and particle-antiparticle scattering
with an s- or t- channel dark photon exchange. Due to the resonant nature of the model,
the s-channel exchange will always be dominant and we can write the averaged momentum
transfer cross-section as,

σT =
1

2

∫ 1

−1
(1− |cos θ|)dσ(χχ̄→ χχ̄)

d cos θ
d cos θ , (6.4)

where the factor 1/2 indicates that only half of the collisions involve a particle-antiparticle
pair. Additionally, we have already solved one of the problems that arises when using σT,
i.e., the preferential weighting of backward scattering, by making the replacement, cos θ →
|cos θ|.1 Looking at Fig. 6.1, we see that the leading constraint comes from galaxy clusters that
probe velocities of the order of 1000 km s−1 ≈ 3 × 10−3c. These velocities are much smaller
than the resonant enhancement εR, and we can therefore approximate the velocity-averaged
self-interaction cross-section as the cross-section in the limit v → 0,

σT =
3g4
χ

64π(4m2
χε

2
R + (1 + εR)Γ2)

. (6.5)

Since we have generalised the model in Chapter 5 to include a DM subcomponent, we need
to compare the scattering rate inside a galaxy cluster for a fractional DM abundance. As a
benchmark, we consider the Bullet Cluster and parameterise the scattering rate as,

ΓSIDM = σT
RρBC

mχ
, (6.6)

1Note that we will not be using this replacement in the following sections since it cannot be generalised in the way
that σT can be.
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where ρBC is the DM density in the Bullet Cluster and R denotes the DM fraction. The bound
is then placed on the amount of mass lost during the cluster collision [154, 155],

R
∆N

N
= R(1− e−RσT

∑
BC /mχ) < 0.3 , (6.7)

where
∑

BC =
∫
ρBC dx ≈ 0.3 g cm−2 denotes the surface density of the bullet cluster. For

large cross-sections, the total mass lost can never exceed R and therefore the self-interaction
constraint from the bullet cluster disappears for R < 0.3. For small self-interactions, the effect
is proportional to R2 and the constraint can be written as

R2 σT

mχ
< 1 cm2 g−1 , (6.8)

which is easily translatable to the DM mass and coupling.

With this brief aside into a concrete example for DM self-interactions, we now move toward a
more general formulation and discuss in detail how to effectively parameterise SIDM.

6.2 Describing Non-Relativistic Interactions

The self-interactions we are interested in occur when DM is non-relativistic. In this case, we
can describe the two particle scattering as a single particle with a reduced mass scattering off
of a potential [156, 157]. The scattering cross-sections can then be evaluated either by solving
for classical particle trajectories in this potential to determine the scattering angle θ for a given
impact parameter, or by solving the Schroedinger Equation (SE) to determine the probability
of scattering from the particle wavefunction. In the literature, much attention has been paid to
the classical description [151, 158] even though it fails to account for certain phenomenological
effects.

We begin this section with a short summary of the classical calculation before proceeding to
the quantum-mechanical one. For the rest of this chapter, we will limit our discussion to
centrally symmetric potentials.

6.2.1 Classical Description

Classical scattering has been studied in great detail in the plasma literature. It rests on the
assumption that the de Broglie wavelengths of the scattering particles are much smaller than
the length scales involved in the interaction such that they can be approximated with hard
spheres. It is also characterised as the limit k → ∞, where k is the particle momentum in
the reduced system. The scattering angle, θ(b) for a given impact parameter b, in a central
potential U(r) is then given by [159],

θ(b) = π −
∫ ∞

r0

dr
2b

r2
√

1− U(r)/E − b2/r2
, (6.9)
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where,E = µv2/2 is the kinetic energy in the CMS frame for the reduced mass, µ = mχ/2, and
relative velocity, v. Additionally, the lower limit of the integration, r0, is the classical turning
point, given by the largest root of the equation in the square root.

The differential scattering cross-section can be expressed in terms of the impact parameter b,
dσ/dΩ = d2b/dΩ, which, from Eqs. 6.2 and 6.3, results in

σT =

∫
dΩ (1− cos θ)

d2b

dΩ
= 2π

∫ ∞

0
db b (1− cos θ(b)) , (6.10)

σV =

∫
dΩ sin2 θ

d2b

dΩ
= 2π

∫ ∞

0
db b sin2 θ(b) . (6.11)

Note that the lower limit of both the integrations above is set at b = 0. This is reflective of the
fact that in a classical calculation, all length and momentum scales can be determined to an
arbitrary degree of accuracy. This is in opposition to the quantum case where the uncertainty
principle necessarily restricts the impact parameter to be larger than the uncertainty in the
position ∆r,

b & ∆r & 1

2∆k
& 1

2k
. (6.12)

Therefore, the actual (quantum) cross-sections would be better approximated if the integration
regime is restricted to b & 1/2k. In the classical limit, k → ∞, of course, we re-obtain the
original expressions. This additional dependence of the cross-sections on the momentum is
the first point of departure between the classical and quantum-mechanical calculations.

6.2.2 Quantum-Mechanical Description

The quantum description of the scattering problem is more general than the classical one. For
one, it accounts for arbitrary particle momenta and potential strengths. It also generalises
readily for the scattering of identical particles as we will see below. Although, we will be
interested in the semi-classical regime2 for interactions so that we can compare to the classical
case, we will first provide a general framework for quantum calculations of elastic scattering.

Consider an incident, free particle described by a plane wave, ψ = e−ikz , where k = mχv/2

is the reduced momenta and z specifies the direction of motion. After scattering on a poten-
tial, the particle can be described at some large distance r by a spherical wave of the form
ψ = f(θ)eikr/r, where the scattering amplitude, f(θ), is a function of the scattering angle,
i.e., the angle between z-axis and the direction of motion of the scattered particle. The exact
wavefunction which must be a solution of the SE should then have the asymptotic form

ψ ≈ e−ikz + f(θ)
eikr

r
. (6.13)

2We provide an explicit definition for the semi-classical regime in section 6.3.
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The probability of scattering, or the scattering cross-section, is simply given by dσ = |f(θ)|2 dΩ

[157], where f(θ) can be determined by solving the SE.

For a centrally symmetric potential, any solution to the SE can be decomposed into a sum of
products of spherical harmonics, ψ ∝∑`R`(r)P`(cos θ), with radial wavefunctionsR`(r) that
satisfy,

1

r2

∂

∂r

(
r2∂R`

∂r

)
+

(
k2 −mχU(r)− `(`+ 1)

r2

)
R`(r) = 0 , (6.14)

whereR` has the asymptotic form

R` →
sin(kr − 1

2 lπ + δ`)

r
. (6.15)

Here, the microphysics of scattering is encoded in the phase shifts, δ`. Using this relation for
R`, the differential cross-section can be written as a sum over partial waves in the usual way
[149, 157]

dσ

dΩ
=

1

k2

∣∣∣∣∣
∞∑

`=0

(2`+ 1)eiδ`P` (cos θ) sin δ`

∣∣∣∣∣

2

, (6.16)

with the total cross-section obtained by an integral over all angles. Further, using the proper-
ties of Legendre polynomials, we get for the momentum transfer and viscosity cross-sections,

σT =
4π

k2

∞∑

`=0

(`+ 1) sin2(δ`+1 − δ`) , (6.17)

σV =
4π

k2

∞∑

`=0

(`+ 1)(`+ 2)

2`+ 3
sin2(δ`+2 − δ`) . (6.18)

Identical particles

We will now take a small detour to discuss the case of scattering of identical particles. The
total two-particle wave function of a system can be written as a product of a spatial part
and a spin part, Ψ(~r1, ~r2, s1, s2) = ψ(~r1, ~r2)ε(s1, s2). For identical bosons, the total wave
function should be symmetric under particle exchange, implying that the spatial part needs
to be even if the spin part is symmetric, and vice versa. Conversely, for fermions, the total
wave function should be antisymmetric, meaning that the spatial part should be odd if the
spin part is symmetric (and vice versa).

This is reflected in the partial wave expansion of the scattering cross-section which, for iden-
tical particles, can be written as,

dσ

dΩ
=

1

k2

∣∣∣∣∣
∞∑

`=0

(2`+ 1)eiδ` [P`(cos θ)± P`(− cos θ)] sin δ`

∣∣∣∣∣

2

, (6.19)
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where the second term accounts for the fact that if the particles are identical, a scattering by an
angle θ is equivalent to one with an angle π − θ. Further, the positive sign corresponds to an
even spatial wave function (ψ ∼ (f(θ) + f(π − θ))eikr/r), and the negative sign corresponds
to an odd spatial wave function (ψ ∼ (f(θ) − f(π − θ))eikr/r). Since P`(−x) = (−1)`P`(x), it
follows that the contribution from all odd phase shifts vanishes for the even case, while the
contribution from even phase shifts vanishes for the odd case. In other words, for identical
bosons in a symmetric (antisymmetric) spin state, only the even (odd) partial waves contribute
to the cross-section. Conversely, for identical fermions in a symmetric (antisymmetric) spin
state, only the odd (even) partial waves contribute. In both cases,

dσ

dΩ
(θ) =

dσ

dΩ
(π − θ) (6.20)

as expected. This implies that
∫

d cos θ dσ
dΩ cos θ = 0, and therefore, σT = σ. Hence, it is

straight-forward to see why σT is not useful for the scattering of identical particles.

6.3 Self-interactions in a Yukawa Potential

We are finally ready to study the long-range interactions of the form given in Eq. 6.1. In the
non-relativistic limit, these are well parametrised by a Yukawa potential,

U(r) = ±αχ
r
e−mφr , (6.21)

where αχ = g2
χ/4π is the dark fine structure constant and mφ is the mediator mass. The

potential can be attractive (+) or repulsive (−) depending on the nature of the DM particle χ
and the mediator φ. Scalar interactions (χ̄χ scattering) are purely attractive whereas vector
interactions can be both attractive (χ̄χ scattering) and repulsive (χχ scattering).

It is well-known from the literature that analytic solutions to the SE for a Yukawa potential
exist in the Born or perturbative regime, αχmχ/mφ � 1. It has also been shown that for small
momentum, k � mφ, s-wave (` = 0) scattering dominates and accurate analytic approxi-
mations can be derived both for a Yukawa potential and in a more general framework [149,
160]. In the large momentum limit, k & mφ, however, higher `−modes contribute making
the calculation of the cross-section increasingly numerically intensive as one approaches the
classical limit k/mφ → ∞ [149]. In this regime, analytic expressions for only the momentum
transfer cross-section have been previously found in the strictly classical limit following the
methodology laid out in section 6.2.1 [161]. These forms of the cross-section are necessarily
invalid in the semi-classical regime (k/mφ & 1) as well as for identical particles.

We parameterise these different regimes by introducing two dimensionless parameters,

κ =
k

mφ
, β =

2αχmφ

mχv2
, (6.22)
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FIGURE 6.2: A sketch of the different regimes for DM self-interactions for a
Yukawa potential in terms of the dimensionless parameters β and κ. See text for

details.

corresponding to the dimensionless momentum and the relative strength of the potential com-
pared to the kinetic energy respectively. The different regimes in terms of these parameters
are listed below and sketched in Fig. 6.2 where we also mention the different approximations
used for computing the scattering cross-section.

Weakly-coupled (β � 1) vs. Strongly-coupled (β � 1) ,

Born (2βκ2 � 1) vs. Non-perturbative regime (2βκ2 � 1) ,

Quantum (κ� 1) vs. Semi-classical (κ & 1) . (6.23)

In the remainder of this chapter we will explore the semi-classical regime using a quantum-
mechanical framework and derive analytic formulas for both σT and σV.

As mentioned previously, to determine the scattering cross-section, we need to first evaluate
the phase shifts, δ`. We start by rescaling the radial wave function, u`(R) = rR`(r). Parame-
terising the potential by using the definitions in Eq. 6.22, and introducing R = rmφ, the radial
part of the SE becomes,

d2u`
dR2

+K2(R)u`(R) = 0 , (6.24)

where

K2(R) = κ2

(
1− `(`+ 1)

κ2R2
∓ 2β

R
e−R

)
. (6.25)

The asymptotic form of the rescaled wave function,

u`(R) −−−−→
R→∞

sin

(
κR− `π

2
+ δ`

)
, (6.26)
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determines the phase shifts. In the semiclassical approximation3, the wave function has the
WKB form [159],

uWKB
` (R) =

2

K(R)1/2
cos

(∫ R

R0

dR′K(R′)− π

4

)
, (6.27)

where R0 = r0mφ determines the classical turning point. The phase shift is the difference
between the phase of this wave function and the phase of a free wave function, i.e., when
β = 0,

δ` = lim
R→∞

(∫ R

R0

dR′K(R′)− π

4

)
−
(∫ R

R0

dR′K(R′)− π

4

)

β=0

. (6.28)

However, the WKB approximation breaks down near the origin for potentials which are dom-
inated by the centrifugal term as r → 0. This can be seen clearly by evaluating the second
term in the equation above,

uWKB
` (R) −−−−→

R→∞
sin
(
κR− π

2

√
`(`+ 1) +

π

4

)
. (6.29)

This does not agree with the expected free wave function, u`(R) → sin(κR − `π
2 ), unless one

makes the approximation ` � 1. A solution to this problem was pointed out by Langer, who
noted that the WKB method is valid over the entire domain if one makes the replacement,√
`(`+ 1) → (` + 1/2) [162]. This is known in the literature as the Langer modification and

amounts to the substitution,

K2(R) −→ K2
eff(R) = κ2

(
1− (`+ 1

2)2

κ2R2
∓ 2β

R
e−R

)
. (6.30)

Using this modification, the phase shifts in Eq. 6.28 are given by,

δ` = κ

∫ ∞

R0

dR



√

1∓ 2β

R
e−R − (`+ 1

2)2

κ2R2
− 1


+

π(`+ 1
2)

2
− κR0 , (6.31)

where R0 is also determined using K2
eff .

With the phase shifts in hand, we now turn our attention back to σT and σV. In the semi-
classical limit, we are always interested in summing over a large range of ` modes, meaning
that we can interpret δ` as a continuous function of `, such that

δ`+1 − δ` ≈ δ′(`+ 1/2) , (6.32)

δ`+2 − δ` ≈ 2δ′(`+ 1) , (6.33)

3Here semiclassical refers to the fact that the wavefunctions, phase shifts and the scattering cross-sections are
obtained in the limit where Planck’s constant ~ is small compared to the action functions in the corresponding
classical problem. Since the quantum-to-classical transition is singular at ~ = 0, we cannot express quantum
properties, such as wavefunctions, as perturbation series where the first term is the classical analogue. Instead,
we use the semiclassical approximation where these singularities are accounted for. See Ref. [159] for a review.
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where

δ′(`) =
π

2
−
∫ ∞

R0

dR
`+ 1

2

κR2

√
1∓ 2β

R e
−R − (`+1/2)2

κ2R2

. (6.34)

This approximation also means that the cross-sections in Eqs. 6.17 and 6.18 can be written as
an integral over `,

σTm
2
φ ≈

4π

κ2

∫ ∞

0
d` (`+ 1

2) sin2 δ′(`)

=
4π

κ2

∫ ∞

1/2
d` ` sin2 δ′(`− 1/2) , (6.35)

σVm
2
φ ≈

4π

κ2

∫ ∞

0
d`

(`+ 1/2)(`+ 3/2)

2`+ 2
sin2 2δ′(`+ 1/2)

≈ 2π

κ2

∫ ∞

1
d` ` sin2 2δ′(`− 1/2) , (6.36)

where we have used (`+ 1/2)(`+ 3/2)/(2`+ 2) ≈ (`+ 1)/2 in the final step. This translation
from a sum to an integral is by no means unique but we find that it leads to results which are
in remarkable agreement with the full numerical solutions of the SE. Additionally, one can
show that the discrete sums are recovered when approximating the integrals by a Riemann
sum with partition size ∆` = 1.4

Before moving on, let us briefly discuss what happens to the formulas presented above in case
of scattering of identical particles. From the last section, we already know that the most useful
quantity that parameterises such a scattering is the viscosity cross-section σV. Additionally,
depending on the spin state of the incoming particles, only odd or even partial waves will
contribute. In general, we can write

σeven
V m2

φ =
8π

κ2

∞∑

`=0

(2`+ 1)(2`+ 2)

4`+ 3
sin2(δ2`+2 − δ2`) , (6.37)

σodd
V m2

φ =
8π

κ2

∞∑

`=0

(2`+ 2)(2`+ 3)

4`+ 5
sin2(δ2`+3 − δ2`+1) , (6.38)

where we have ensured that only even (odd) partial waves contribute by replacing ` → 2`

(` → 2` + 1), and added an overall symmetry factor of 1/2 to avoid double counting. Note

4From Ref. [2]: According to this approximation, an integral of the form I =
∫∞
`min

f(`)d` can be written as

I ≈
∞∑
i=0

f
(
`min +

(
i+ 1

2

)
∆`
)

∆` =
∞∑
`=0

f
(
`min + `+ 1

2

)
,

where in the second step we have taken ∆` = 1. Taking, for example, `min = 0 and f(`) = (` + 1/2) sin2 δ′(`) as
in Eq. (6.35) then yields Eq. (6.17) with the approximation from Eq. (6.32).
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that σeven
V + σodd

V = 2σV. Again, we can approximate the cross-section by an integral,

σeven
V m2

φ ≈
8π

κ2

∫ ∞

0
d`

(2`)(2`+ 1)

4`+ 1
sin2 2δ′(2`)

≈ 2π

κ2

∫ ∞

1/2
d` ` sin2 2δ′(`− 1/2) , (6.39)

σodd
V m2

φ ≈
8π

κ2

∫ ∞

0
d`

(2`+ 1)(2`+ 2)

4`+ 3
sin2 2δ′(2`+ 1)

≈ 2π

κ2

∫ ∞

3/2
d` ` sin2 2δ′(`− 1/2) . (6.40)

Realistically, incoming particles with a non-zero spin would always be unpolarised, i.e., the
total wave function maybe either symmetric or antisymmetric. Hence, we should perform an
averaging over the spin states which results in5

σV →





σeven
V scalar DM ,

1
4σ

even
V + 3

4σ
odd
V fermion DM ,

2
3σ

even
V + 1

3σ
odd
V vector DM .

(6.41)

We finally turn our attention to the analytic approximations for the cross-sections in the semi-
classical regime. Note that the following sections are quite technical and may be skipped in
favour of simply the summary of the final analytic results presented in section 6.3.2.

6.3.1 Cross-sections in the Semi-Classical Regime

In this section, we will derive the analytic forms for σT and σV in the weakly coupled (β � 1)
and strongly coupled regimes (β � 1). We will also discuss the intermediate regime β ∼ 1−50

and provide a fitting formula for the cross-section for the same. Note that we are always in
semi-classical regime, κ & 1. The general steps of our calculations are:

1. Determine the distance of closest approach, R0, i.e., the root of the effective potential,
K2

eff = 0 (Eq. 6.30), under the relevant assumptions.

2. Derive an analytic expression for δ` and/or δ′` as suitable.

3. Calculate the cross-sections by integrating over `. The integrals may be simplified by
limiting the ` range by heuristic arguments, resulting in analytic expressions.

5This can be simply done by counting the number of symmetric and antisymmetric states for a given two-particle
system. For example, scalars (bosons with 0-spin) only have a symmetric spin state. Identical fermions can either
be in a symmetric singlet state |stot, sz〉 = |00〉 or in one of the antisymmetric triplet states |11〉, |10〉 or |1 − 1〉.
Similarly for vectors, we will have 9 total states, 6 of which are symmetric and 3 antisymmetric.
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Weak Potential

For β � 1, the effective potential can be approximated as

1− (`+ 1
2)2

κ2R2
∓ 2β

R
e−R ≈ 1− (`+ 1

2)2

κ2R2
, (6.42)

which implies R0 ≈ (l + 1/2)/κ. Additionally, we can expand the square root in Eq. 6.31 in β
to get,

δ` ≈ ∓
∫ ∞

R0

dR
βκ

R
e−R

1√
1− (`+

1
2 )2

κ2R2

= ∓βκK0

(
`+ 1

2

κ

)
, (6.43)

where Ki denote the modified Bessel functions of the second kind and the negative (positive)
sign corresponds to an attractive (repulsive) potential. The derivative of the phase shift is
simply,

δ′(`− 1/2) ≈ ±βK1

(
`

κ

)
. (6.44)

The momentum transfer cross-section from Eq. 6.35 for both attractive and repulsive poten-
tials is then given by,

σT ≈
4π

κ2m2
φ

∫ ∞

1/2
` sin2

[
βK1

(
`

κ

)]
d` . (6.45)

This integral can be further simplified by noting that K1 is a monotonically decreasing func-
tion, and for βκ < 1/2,

βK1

(
`

κ

)
< βK1

(
1

2κ

)
< βK1(β) < 1 . (6.46)

Since ` > 1/2, the argument of sine is small in the entire range of integration and by using
sinx ≈ x, we can solve Eq. 6.45 to get

σT ≈
πβ2

2κ2m2
φ

[
−K1

(
1

2κ

)2

+K0

(
1

2κ

)
K2

(
1

2κ

)]
≡ 2πβ2

m2
φ

η

(
1

2κ

)
, (6.47)

where the second step defines η(x). For κ� 1,

η

(
1

2κ

)
≈ 2 log 4κ− 1− 2γE +

1− γE + log 4κ

4κ2
, (6.48)

where γE is Euler’s constant.
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A completely analogous calculation for σV follows, yielding,

σV ≈
2π

κ2m2
φ

∫ ∞

1
` sin2

[
2βK1

(
`

κ

)]
d` ≈ 4πβ2

m2
φ

η

(
1

κ

)
. (6.49)

If instead βκ > 1/2, the expansion in the equation for δ` is only valid for ` > `min ≡ βκ. For
small `, (δ`− δ`−1) becomes large and the integral over ` oscillates rapidly between 0 and 1. In
this regime, the integral is best approximated by assuming sin2 x ≈ 1/2,

4π

κ2m2
φ

∫ `min

1/2
` sin2 (δ` − δ`−1) d` ≈ π

κ2m2
φ

(
`2min −

1

4

)
. (6.50)

whereas for ` > `min, the previous approximation holds and we get,

4π

κ2m2
φ

∫ ∞

`min

` sin2

[
βK1

(
`

κ

)]
d` ≈ 2πβ2

m2
φ

η (β) . (6.51)

The momentum transfer cross-section is therefore

σT ≈
2πβ2

m2
φ

[
`2min − 1

4

2κ2β2
+ η (β)

]
. (6.52)

We can further expand Eq. 6.52 assuming βκ� 1, in which case σT becomes purely a function
of β,

σT ≈
2πβ2

m2
φ

[
2 log

2

β
− 1

2
− 2γE + β2

(
1− γE + log

2

β

)]
. (6.53)

The crucial point here is that for β < 1 and a constant κ, σT scales more steeply than simply
β2 log β−1, contrary to the classical result (Eq. 6.101).

The two cases outlined above, Eq. 6.47 and 6.52 can be combined by defining,

ζn(κ, β) ≡ max(n, βκ)2 − n2

2κ2β2
+ η

(
max(n, βκ)

κ

)
, (6.54)

which leads to

σT ≈
2πβ2

m2
φ

ζ1/2 (κ, β) . (6.55)

Analogously, for the viscosity cross-section the integration starts at ` = 1 and therefore we
need to use 2βK(`/κ) < 1 to ensure that the argument of sine is small. This implies,

σV ≈
4πβ2

m2
φ

ζ1 (κ, 2β) . (6.56)
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FIGURE 6.3: The effective potential as defined in Eq. 6.59 for two values of β.
For β & 13.2 a secondary barrier emerges resulting in a sudden jump in the

distance of closest approach, R0.

and similarly for the even and odd partial waves contributing we get,

σeven
V ≈ 4πβ2

m2
φ

ζ1/2 (κ, 2β) , (6.57)

σodd
V ≈ 4πβ2

m2
φ

ζ3/2 (κ, 2β) . (6.58)

Strong Potential

Once again, we start with the effective potential which we reframe as,

Ueff(R) =
(`+ 1

2)2

κ2R2
∓ 2β

R
e−R . (6.59)

so thatR0 is defined as the largest root of the equation Ueff(R) = 1. In this case,R0 depends on
the sign of β and is different for attractive and repulsive potentials. We will therefore discuss
these two case separately. Also note that for a strong potential, it can be shown numerically
that the final cross-section is independent of κ (see Fig. 6.4). This means we can always assume
κ� 1 or equivalently take the lower limit of the cross-section integrals at ` = 0.

1. Attractive Potential
For an attractive potential, the effective potential can develop a secondary potential bar-
rier for small values of `, leading to multiple roots (see Fig. 6.3). For β < 13.2, this effect
is small enough that a unique root for Ueff(R) = 1 can still be defined for all values of `.
For larger values of β however there will be multiple roots to the equation. In this case,
it is convenient to define ` = `max such that a unique root exists for ` < `max. This can be
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done by simultaneously solving the equations,

Ueff(R) ≡
(
`+ 1/2

κ

)2 1

R2
− 2β

e−R

R
= 1 (6.60)

dUeff(R)

dR
= 0⇒ e−R =

1

β

(
`+ 1/2

κ

)2 1

R(R+ 1)
, (6.61)

where the second equation reflects the fact that a local maxima appears at R > 0. From
these equations, we obtain,

(
`+ 1/2

κ

)
= R0

√
R0 + 1

R0 − 1
≈
R&1

1 +R0 +
1

2R0
(6.62)

⇒ R0 ≈
1

2


−1 +

`+ 1/2

κ
+

√
−1− 2`+ 1

κ
+

(
`+ 1/2

κ

)2

 . (6.63)

Substituting this value of R0 back in Eq. 6.61 we get,

`max = κ

(
1 + log β − 1

2 log β

)
− 1

2
. (6.64)

We can now find R0 for the case ` < `max. Since, in such a case, `/κ < 2β, the equation
Ueff = 1 can only be satisfied for R < 1 in which case the Yukawa potential can be
approximated with a Coulomb potential (e−R/R ≈ 1/R). This results in the simple
expression,

R0 ≈
`2

2βκ2
(` < `max) . (6.65)

In the opposite case, (` > `max), the largest root of the equation is for R � 1, or when
the Yukawa potential is exponentially suppressed, resulting in

R0 ≈
`

κ
(` > `max) . (6.66)

For ` > `max, the distance of closest approach is so large that the phase shifts are tiny.
These partial waves therefore do not contribute to the cross-sections and we can approx-
imate

σatt.
T m2

φ ≈
4π

κ2

∫ `max

0
` sin2 δ′(`)d` . (6.67)

We can now move on to calculating the phase shifts. In this case, it is easier to directly
evaluate the phase shift derivative δ′(`),

δ′(`) ≈ −π
2
− `

κ
γ(β) , (6.68)
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where
γ(β) ≡ W (2β) + 2

W (2β)2
(6.69)

with W (x) denoting the product logarithm. A detailed derivation is provided in Ap-
pendix A (reproduced from Ref. [2]). This approximation holds for `

κγ(β) < π/2. We
can therefore break the integral in Eq. 6.67 in two parts by defining `′ ≡ `

κγ(β),

σatt.
T m2

φ ≈
4π

γ(β)2

∫ π/2

0
`′ sin(π/2 + `′)2d`′ +

4π

κ2

∫ `max

πκ/(2γ(β))
` sin2 δ′(`)d` . (6.70)

such that the first term evaluates to (π2 − 4)/16, and in the second term we can once
again make use of the approximation sin2(x) ≈ 1/2. This yields,

σatt.
T m2

φ ≈
π

κ2

(
`2max −

κ2

γ(β)2

)
≈ π

[(
1 + log β − 1

2 log β

)2

− 1

γ(β)2

]
. (6.71)

For β � 1, γ(β) ≈ 1/W (2β) and W (2β) ≈ log β − log log β we obtain,

σatt.
T m2

φ ≈ 2π log β(log log β + 1) . (6.72)

The calculation for the viscosity cross-section follows analogously, and we get

σatt.
V m2

φ ≈
π

2κ2
`2max ≈

π

2

(
1 + log β − 1

2 log β

)2

, (6.73)

2. Repulsive Potential
For the repulsive case, β > 1 implies that the root of the equation Ueff(R) = 1 is larger
than one. We consider two regimes `/κ � 1 and `/κ � 1 which decide whether
the Yukawa potential or the centrifugal potential dominates in the effective potential,
Eq. 6.59. We can simply solve for R0 in these two cases,

R0 ≈W (2β) (`/κ� 1) , (6.74)

R0 ≈
`

κ
(`/κ� 1) . (6.75)

Once again, we can use `max to denote the transition between the two regions which
happens when W (2β) ≈ R0. This gives,

`max ≈ κW (2β) . (6.76)

A similar calculation as before results in the phase shift derivatives,

δ′(`) ≈ π

2
+
`

κ

∫ ∞

R0

dR

R2
≈ π

2
− `

`max
, (6.77)



110 Chapter 6. Semi-Classical Treatment of Mediators

and consequently a momentum transfer cross-section,

σ
rep.
T m2

φ ≈ πλTW (2β)2 , (6.78)

with λT ≡ (1 + cos 2 + 2 sin 2)/2 ≈ 1.20.

Analogously for the viscosity cross-section and for ` < `max, we have,

2δ′(`) ≈ π − 2`

`max
. (6.79)

Since this is close to π, the contribution of these phase-shifts is suppressed in the viscos-
ity cross-section and we need to extend the integration region beyond `max. For ` > `max,
we can use the approximation for the weak potential (since the centrifugal term in the
potential always dominates) and approximate

2δ′(`) ≈ 2βK1

(
`

κ

)
. (6.80)

Using these two equations, we can write for the viscosity cross-section

σ
rep.
V ≈ 2π

κ2m2
φ

[∫ `max

0
` sin2

(
π − 2`

`max

)
d`+

∫ ∞

`max

` sin2

(
2βK1

(
`

κ

))
d`

]
, (6.81)

where the first term evaluates to πλV W (2β)2 with λV = (9− cos 4− 4 sin 4)/16 ≈ 0.793,
and the second term can be calculated by noting that the argument for the sine becomes
small for ` > κ log 2β (and consequently, the contribution to the cross-section becomes
negligible for larger `’s).6 Hence,

σ
rep.
V m2

φ ≈ πλV W (2β)2 +
π

2

(
log2 2β −W (2β)2

)
(6.82)

≈ π log 2β (λV log 2β − (2λV − 1) log log 2β) . (6.83)

Finally, for β � 1, the scattering of identical particles becomes trivial as we always have
σeven

V ≈ σodd
V ≈ σV.

Intermediate regime

The approximations we have made so far do not work for potentials of the order β ∼ 1. In
particular, on numerically solving the SE, we find that the σT already starts to differ between
the attractive and repulsive potentials for β & 0.2 which cannot be accounted for by assuming
β � 1. Additionally, for β . 50, the momentum transfer cross-section exhibits a number
of oscillations as a result of the maximal value of the phase shift derivative approaching π

(π/2) which enhances (suppresses) σT. These cannot be accounted for in our treatment. In the

6For some ` > ˜̀
max, 2βK1(`/κ)→ 0. Since, β > 1⇒ `′/κ� 1⇒ K1(`/κ) ≈ e−`/κ

√
πκ/2`. ˜̀

max can be obtained
by solving 2βe−`/κ

√
πκ/2` = 1, which yields ˜̀

max ≈ κ log 2β.
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end, however, these peaks are irrelevant since the quantity of interest is always the velocity-
averaged cross-section in which these features get smeared out.

Nevertheless, for the regime 0.2 . β . 50, it is better to use an empirical fitting formula for
σT and σV instead of trying to extend our analytic treatment. This can be done by further
breaking this β regime into two: 1 . β . 50, where we know that the cross-sections are
independent of κ, and 0.2 . β . 1, where they are not.

For the former, we calculate the cross-sections numerically at β = 1 in the limit κ� 1 to obtain
σatt.

T m2
φ/π = 2.8 (σrep.

T m2
φ/π = 1.1) for the attractive (repulsive) case. Assuming that σTm

2
φ/π

scales as a log(β + b) for 1 < β < 50, we can find the values of a and b by ensuring that the
numerical result at β = 1 is reproduced as well as that the function connects continuously to
the analytic expressions for large β. This gives,

σatt.
T = 4.7 log(β + 0.82)

π

m2
φ

(1 < β < 50) , (6.84)

σ
rep.
T = 2.9 log(β + 0.47)

π

m2
φ

(1 < β < 50) . (6.85)

For 0.2 . β . 1, the non-negligible dependence on κ implies that a better approximation
for the fitting function is obtained by multiplying the analytic expressions with ec(β−0.2). We
determine c by demanding continuity at β = 1, leading to,

σatt.
T =

2πβ2

m2
φ

ζ1/2 (κ, β) e0.64(β−0.2) (0.2 < β ≤ 1) , (6.86)

σ
rep.
T =

2πβ2

m2
φ

ζ1/2 (κ, β) e−0.53(β−0.2) (0.2 < β ≤ 1) . (6.87)

An analogous calculation can be performed for the viscosity cross-section. Note that in this
case, the intermediate regime is shifted to slightly smaller values of β. For β = 0.5, numerical
evaluation of the cross-sections yields σatt.

V m2
φ/π = 1.1 (σrep.

V m2
φ/π = 0.73) for the attractive

(repulsive) potential, resulting in,

σatt.
V = 2.5 log(β + 1.05)

π

m2
φ

(0.5 < β < 25) , (6.88)

σ
rep.
V = 2.8 log(β + 0.80)

π

m2
φ

(0.5 < β < 25) , (6.89)

and

σatt.
V =

4πβ2

m2
φ

ζn (κ, 2β) e0.67(β−0.1) (0.1 < β ≤ 0.5) , (6.90)

σ
rep.
V =

4πβ2

m2
φ

ζn (κ, 2β) e−0.37(β−0.1) (0.1 < β ≤ 0.5) , (6.91)

where n = 1 for distinguishable particles and n = 1
2 (n = 3

2 ) for identical particles with even
(odd) spatial wave function.



112 Chapter 6. Semi-Classical Treatment of Mediators

6.3.2 Summary

Our analytic results can be summarised as follows:

σatt.
T =

π

m2
φ

×





2β2ζ1/2 (κ, β) β ≤ 0.2

2β2ζ1/2 (κ, β) e0.64(β−0.2) 0.2 < β ≤ 1

4.7 log(β + 0.82) 1 < β < 50

2 log β(log log β + 1) β ≥ 50

(6.92)

σrep.
T =

π

m2
φ

×





2β2ζ1/2 (κ, β) β ≤ 0.2

2β2ζ1/2 (κ, β) e−0.53(β−0.2) 0.2 < β ≤ 1

2.9 log(β + 0.47) 1 < β < 50

λT(log 2β − log log 2β)2 β ≥ 50

(6.93)

with

ζn(κ, β) =
max(n, βκ)2 − n2

2κ2β2
+ η

(
max(n, βκ)

κ

)
, (6.94)

η(x) = x2
[
−K1 (x)2 +K0 (x)K2 (x)

]
, (6.95)

≈ −2 log
(x

2

)
− 1− 2γE + x2

[
1− γE − log

(x
2

)]
. (6.96)

σatt.
V =

π

m2
φ

×





4β2ζn (κ, 2β) β ≤ 0.1

4β2ζn (κ, 2β) e0.67(β−0.1) 0.1 < β ≤ 0.5

2.5 log(β + 1.05) 0.5 < β < 25

1
2

(
1 + log β − 1

2 log β

)2
β ≥ 25

(6.97)

σrep.
V =

π

m2
φ

×





4β2ζn (κ, 2β) β ≤ 0.2

4β2ζn (κ, 2β) e−0.37(β−0.1) 0.1 < β ≤ 0.5

2.8 log(β + 0.80) 0.5 < β < 25

log 2β (λV log 2β − (2λV − 1) log log 2β) β ≥ 25

(6.98)
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with

λT = (1 + cos 2 + 2 sin 2)/2 , (6.99)

λV = (9− cos 4− 4 sin 4)/16 , (6.100)

where n = 1 for distinguishable particles and n = 1
2 (n = 3

2 ) for identical particles with even
(odd) spatial wave function.

These expressions can be accessed via the online code CLASSICS (CalcuLAtionS of Self In-
teraction Cross Sections) available at https://github.com/kahlhoefer/CLASSICS.

Comparison with pre-existing results and numerical solutions

In the classical limit, analytic expressions for σT are known from the literature. For an attrac-
tive Yukawa potential, we have [163]

σT =





2π
m2
φ
β2 log(1 + β−2) β . 10−2

7π
m2
φ

β1.8+280(β/10)10.3

1+1.4β+0.006β4+160(β/10)10 10−2 . β . 102

0.81π
m2
φ

(1 + log β − (2 log β)−1)2 β & 102

. (6.101)

whereas for a repulsive Yukawa potential, the corresponding formulas are [163]:

σT =





2π
m2
φ
β2 log(1 + β−2) β . 10−2

8π
m2
φ

β1.8

1+5β0.9+0.85β1.6 10−2 . β . 104

π
m2
φ

(log 2β − log log 2β)2 β & 104

. (6.102)

In Fig. 6.4, we compare our results for the momentum scattering cross-section with the clas-
sical ones and with a full numerical solution of the SE for both attractive and repulsive po-
tentials and for different values of κ. Our results are in a much better agreement with the
numerical results for β . 1 where σT has a non-trivial κ-dependence. Further, one can see
clearly from Fig. 6.4, that our results approach the classical formulas in the limit κ→∞.

Going back to the point made at the beginning of this section, our results imply that nearly
complete analytic coverage of the parameter space for the Yukawa potential is now possible.
We demonstrate this in Fig. 6.5, where we plot both σTm

2
φ and σVm

2
φ as functions of κ for

different values of β. The dots once again represent the exact numerical solutions obtained
from the SE and span both the semi-classical (κ > 1) and the quantum regime (κ < 1). For
the former, the solid lines represent our analytic results once again in better agreement with
the full numerical results than the classical cross-sections. The quantum regime is usually
dominated by s−wave scattering and analytic formulas for the cross-section can be obtained
by using a Hulthén approximation,7 represented in Fig. 6.5 by dashed lines. Together with

7This treatment accurately captures the effects of resonances and antiresonances. See Ref. [149] for more details.

https://github.com/kahlhoefer/CLASSICS
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φ as a function of β, for
attractive and repulsive Yukawa potentials, for different values of κ. The solid
lines correspond to our analytic results, the dots correspond to cross-sections
obtained by numerically solving the SE, and the dashed lines reflect purely clas-

sical scattering.
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(long-dashed), whereas the other coloured lines correspond to identical scat-
tering, depending on the DM particle spin s = 0, 12 , 1. As before, solid lines

correspond to analytic results and dots to numerical ones.

our semi-classical results, it is now possible to analytically describe Yukawa scattering for
both κ . 1 and κ & 1. Note that both these treatments break down at κ = 1 but sensible
results for the cross-sections can still be obtained by a simple interpolation between the two
regimes.

Finally, we highlight the differences between scattering of identical and non-identical parti-
cles in Fig. 6.6, where we plot the cross-sections rescaled by β2, σT,Vm

2
φ/β

2 for two different
values of κ. The deviation arising due indistinguishability of particles is starkest for small
values of κ. In this regime, only a small number of phase shifts contribute and therefore the
differences between considering σeven

V or σodd
V are important. For κ = 5, using the momentum

transfer cross-section instead of the viscosity cross-section for identical particles can result in
a difference as large as a factor of 2.

6.4 Velocity Averaging

With an accurate description of the relevant cross-sections in hand, we now turn toward the
second question posed in section 6.1, i.e., what is the correct velocity-averaging procedure one
needs when wanting to compare to data. As mentioned previously, we are interested not in
the rate of scattering but in the rate of energy and momentum transfer.

To calculate this rate, consider a DM particle moving with a velocity v in a halo with a back-
ground particle density of ρ (currently assumed to be at rest). The probability of scattering for
this particle is ρσv/mχ. We now shift to the centre-of-mass frame for this interaction which
moves with a velocity vframe = v/2. The momentum and energy transfer during the collision
can be written in terms of the velocity transfer ∆v = vcms−v′cms, where vcms and v′cms denote
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the velocity of the incoming and outgoing DM particle in the cms frame. For a given scatter-
ing angle, θcms, it is possible to decompose ∆v into a parallel and a transverse component,
∆v‖ = vcms(1 − cos θcms), ∆v⊥ = −vcms(sin θcms cosφ, sin θcms sinφ), where φ is the azimuthal
angle. The parallel component is responsible for efficient transfer of momentum, whereas the
transverse component corresponds to an efficient transfer of energy. By noting that the distri-
bution of scattering angles is given by σ−1dσ/dθcms, we can calculate the expectation values
〈∆v‖〉 and 〈∆v2

⊥〉8:

〈∆v‖〉 =
vcms

σ

∫
dσ

dθcms
(1− cos θcms)dθcms =

σTv

2σ
, (6.103)

〈∆v2
⊥〉 =

v2
cms
σ

∫
dσ

dθcms
sin2 θcmsdθcms =

σVv
2

4σ
, (6.104)

where in the final equalities we have used the fact that the cms velocity for the DM particle is
half its velocity in the rest frame of the halo. This yields for the relative change in momentum
and energy,

ṗ

p
=

ρ

mχ

vσT

2

Ė⊥
E

=
ρ

mχ

vσV

4
. (6.105)

These formulas are generalisable for the more realistic case where the background particle
density is not at rest but has its own velocity distribution. In such a case, the rate at which
these particles encounter each other is ρσvrel/mχ, where vrel = v −w and w is the velocity of
the background particles. The centre of mass velocity is now given by vcms/2 which results in
the relative momentum and energy transfer rates

ṗ

p
=

ρ

mχ

v2
relσT(vrel)

2v
,

Ė⊥
E

=
ρ

mχ

v3
relσV

4v2
, (6.106)

where the additional factor of vrel/v accounts for the fact that the velocity transfer can never
exceed the relative velocity in a collision.

For DM particles in a halo, both the incoming DM particle and the background particle den-
sities approximately follow a Maxwell-Boltzmann distribution with a velocity dispersion v0

f(v) =

√
2

π

v2e−v
2/(2v2

0)

v3
0

, (6.107)

resulting in a typical momentum, 〈p〉 = 2
√

2/πmχv0, and energy 〈E〉 = 3
2mχv

2
0 . We can then

simply evaluate the momentum and energy transfer rates as,

Γp ≡
〈ṗ〉
〈p〉 =

ρ

mχ

〈σTv
2
rel〉

4
√

2/πv0

=
ρ

mχ

∫
dvrelσT(vrel)

v4
rel

8
√

2v4
0

e−v
2
rel/(4v

2
0) , (6.108)

ΓE ≡
〈Ė⊥〉
〈E〉 =

ρ

mχ

〈σVv
3
rel〉

6v2
0

=
ρ

mχ

∫
dvrelσV(vrel)

v5
rel

12
√
πv5

0

e−v
2
rel/(4v

2
0) . (6.109)

8〈∆v⊥〉 = 0 since the azimuthal angle is uniformly distributed.
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FIGURE 6.7: The averaged momentum transfer cross section (top) and viscosity
cross section (bottom) for the attractive (left) and repulsive (right) Yukawa po-
tential following different averaging prescriptions and for different values of κ.
Our averaging procedure is represented using solid lines, whereas dashed and

dotted lines correspond to alternatives approaches followed in the literature.

which can be reframed by defining,

σT =
〈σTv

2
rel〉

16
√

2v2
0/π

, σV =
〈σVv

3
rel〉

24/
√
πv3

0

, (6.110)

as,

Γp =
ρ

mχ
σT 〈vrel〉 , (6.111)

ΓE =
ρ

mχ
σV 〈vrel〉 . (6.112)

For cross-sections which can be written as σT,V = π
m2
φ
fT,V(β, κ), we can simplify the averages

to have the form

σT =
π

m2
φ

∫
dxe−x

2/4 x4

32
√

2/π
fT(β0/x

2, κ0x) ,

σV =
π

m2
φ

∫
dxe−x

2/4x
5

48
fV(β0/x

2, κ0x) , (6.113)

where x = v/v0, and β0 and κ0 are the effective parameters obtained when setting v = v0. For
κ0 � 1 the velocity averaged cross section hence depends only on β0 and (trivially) on mφ.

From the equations above, we see that rates of energy and momentum transfer place more
weight on collisions with larger velocities. Consequently, the effects of collisions with small
velocities is suppressed and we obtain a finite result for the rate even for the cases where the
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sponds to the range of cross-sections required to solve the core-cusp problem.

velocity scales as v−4. This is contrary to the naive velocity average 〈σTvrel〉 which diverges
for small velocities.

In Fig. 6.7, we compare our velocity averaging procedure with those existing in the literature.
The latter depend on either calculating σT at the average velocity in the halo 〈vrel〉 or by evalu-
ating 〈σTvrel〉/〈vrel〉. As a side note, we point out that the oscillations we mentioned in section
6.3 for β ∼ O(10), have been smeared out as a result of the averaging, highlighting the fact
that our analytic expressions are in perfect agreement with the numerical results.

6.5 Phenomenological implications

With an acceptable answer to both of the questions posed in section 6.1, we turn once again
to Fig. 6.1, using which we can easily pinpoint our velocity scale of interest. This ranges
from v0 = 20 km s−1 (dwarf galaxies) to v0 = 1000 km s−1 (galaxy clusters). Accommodat-
ing this range of velocities within the semiclassical regime demands the requirement κ(v0 =

20 km s−1) > 1, resulting in,

mφ

mχ
. 10−4 . (6.114)

We also note from Fig. 6.1 that the self-interaction cross-sections scale rather weakly with
velocities. This further restricts us to β & 1. Assuming then that σTm

2
φ ≈ c, where c is a

constant of roughly order 100,9 we can use the fact that σT/mχ ∼ 1cm2 g−1, to obtain mχm
2
φ ∼

0.02 GeV3. Coupled with Eq. 6.114, this impliesmφ . 10 MeV or light mediators are necessary

9This is a good approximation since the cross-section scales very weakly as log β and therefore the β dependence
can be neglected.
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TABLE 6.1: Velocity averaged self-interaction cross sections for mχ = 190 GeV,
mφ = 3 MeV, αχ = 0.5 at different astrophysical scales.

System 〈v〉 β0 κ0 σatt.
T /mχ σ

rep.
T /mχ σatt.

V /mχ σ
rep.
V /mχ

[cm2 g−1] [cm2 g−1] [cm2 g−1] [cm2 g−1]

Dwarf galaxy 50 2890 2.34 10.9 9.0 11.7 13.6
Galaxy 250 116 11.7 4.3 2.6 3.5 3.8
Galaxy group 1150 5.46 53.8 0.66 0.36 0.64 0.54
Galaxy clus-
ter

1900 2.00 88.9 0.20 0.14 0.23 0.19
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FIGURE 6.9: Self-interaction cross section at cluster scales (orange contours) and
at dwarf scales (blue contours) as a function of the DM mass mχ and the cou-
pling αχ (left), and as a function of the DM mass and the mediator mass mφ

(right). Shaded regions represent approximate bounds from astrophysical ob-
servations. The gray line indicates the transition between the quantum regime
(left) and the semi-classical regime (right) for dwarf galaxies. At cluster scales
self-interactions are always in the semi-classical regime. For concreteness, we
consider the viscosity cross section for a repulsive potential, but very similar
plots are obtained in the other cases. The red dot indicates the benchmark point

considered in Fig. 6.8 and Table 6.1.

to ensure that we obtain phenomenologically interesting cross-sections while staying in the
semi-classical regime. We know from our discussion in Chapter 2 that such light mediators
cannot be in thermal equilibrium with the SM heat bath owing to constraints arising from
BBN. Nevertheless, they can still be viable in models with out-of-equilibrium DM such as
freeze-in.

We condense this discussion in Fig. 6.8 and Table 6.1, where we represent the best-fit points
for DM masses and couplings so as to satisfy constraints on both dwarf and cluster scales.

Additionally, it is also interesting to see how the constraints from dwarfs and clusters apply
to the full parameter space of the model. In Fig. 6.9, we demonstrate such a parameter scan
for the viscosity cross-section for a repulsive potential holding mφ and αχ fixed respectively.
In the left panel, we fix mφ = 3 MeV and vary αχ and mχ. At dwarf scales, where β0 � 1

(shaded in blue), σV depends very weakly on both αχ and mχ (see Eq. 6.98) and therefore the
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dominant scaling comes from the overall factor ofm−1
χ . On cluster scales where β ≈ 1 (shaded

in orange), the dependence on the model parameters is more pronounced. The semi-classical
regime is denoted by the grey vertical line where we set κ = 1 at dwarf scales. Everything to
the right (left) of the line falls in the semi-classical (quantum) regime. As discussed before, we
are always in the semi-classical regime at cluster scales.

A similar plot can be made by fixing αχ = 0.5 and varyingmχ andmφ. From Eq. 6.98, it is easy
to see that the cross-section now depends strongly on mφ and we cannot obtain phenomeno-
logically interesting cross-sections for mφ > 10 MeV while staying within the semi-classical
regime (bottom right of the grey line).

Our best fit point from Table 6.1 is represented by the red dot. Note that similar plots can be
obtained for the other three cases: σatt.

T , σrep.
T , and σrep.

V .

6.6 Conclusions

Self-interacting DM can work to resolve tensions between astrophysical observations and N-
body simulations of CDM. In particular, self-interactions mediated by long range forces have
the correct behaviour to fit observations at both dwarf and cluster scales. When comparing
theoretical predictions of SIDM cross-sections to data, it is important to keep in mind the dif-
ference between the total cross-section and the cross-section that is relevant to the astrophysi-
cal processes under consideration. To this end, it is important to distinguish between the total
cross-section σ, the momentum transfer cross-section σT, and the viscosity cross-section σV.
σT is often used as a proxy for σ since it regulates the (irrelevant) forward scattering diver-
gence present for interactions via a light mediator, but it is ill-defined for identical particles
and preferentially weighs backward scattering which leaves particle distributions unchanged.
σV solves both of these issues while simultaneously being better suited for describing ther-
malisation processes within a halo. Additionally, it is equally important to specify how the
velocity averaged cross-sections enter in the scattering rate. In particular, the velocity aver-
aged cross-sections conventionally used in the literature, 〈σT,Vv〉 are imprecise and the rates
of energy and momentum transfer are instead proportional to 〈σVv

3〉 and 〈σTv
2〉 respectively.

As for the actual expressions for the cross-sections, these can be obtained by solving the
Schroedinger Equation for a Yukawa potential. However, in the phenomenologically inter-
esting semi-classical regime, i.e., when the de Broglie wavelength of the particles are small
compared to the characteristic length scales in the interaction, performing such a calcula-
tion is numerically intensive as it requires summing over a large number of partial waves.
Usually, one uses analytic classical cross-sections in this regime which assume scattering
of distinguishable particles in a hard-sphere approximation. These expressions necessarily
break down for identical particle scattering as well as for momentum transfers close to the
boundary of the semi-classical regime. A better approximation is to derive completely an-
alytic solutions for both σT and σV that capture the necessary quantum corrections in this
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regime by following the quantum-mechanical framework laid out in sections 6.2 and 6.3. Fur-
ther, the results so obtained are in excellent agreement with the full numerical solution of the
Schroedinger equation (as shown in Fig. 6.4 and 6.5), and lie in the phenomenologically in-
teresting regime—explaining both observations at dwarf and cluster scales—for sufficiently
small mediator masses (section 6.5)

Since analytic approximations for the cross-sections exist already in the Quantum and Born
regimes (as defined in Fig. 6.2), with the results presented in this chapter, a complete analytic
coverage of the Yukawa potential is possible. Additionally, the framework laid out above can
be generalised to other potentials to speed up calculations even in cases where the phase shifts
cannot be calculated analytically.

The analytical results presented in this chapter have been implemented in the new code
CLASSICS available at https://github.com/kahlhoefer/CLASSICS.

https://github.com/kahlhoefer/CLASSICS
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Chapter 7

Detection Strategies

Until now we have been interested in the cosmological manifestations of DM, studying in
detail what large scales in the universe can tell us about the particle properties of DM. Of
course, the ideal way to know the exact nature of DM would be through conducting repeatable
laboratories experiments, such that a clear DM signal could be used to resolve degeneracies
between various models. Three major search strategies are employed in this regard to look for
DM based on the kind of interaction that would give rise to a signal: indirect detection, direct
detection, and collider searches (see Fig. 7.1).

Indirect detection looks for DM decay or annihilation products in regions with large DM
densities such as the centres of galaxies [165]. These can be in the form of charged leptons,
anti-protons, gamma rays, or neutrinos. The last two channels are of particular interest since
both gamma rays and neutrinos travel through space relatively undisturbed owing to the
absence of charge- and weak- interactions respectively. In fact, one of the most promising
(potential) DM signals currently is a gamma ray excess originating from the Galactic centre
[166, 167]. However, deciphering such signatures of DM proves to be quite challenging owing
to the presence of large astrophysical backgrounds and associated uncertainties [168].

Direct detection looks for nuclear or electron recoil induced by a DM particle scattering off
a target [169]. We provide an introduction to direct detection discussing light DM signatures
from electron and nuclear scattering in section 7.1,

Accelerator searches look for DM produced as a result of the annihilation of SM particles at
colliders in the form of missing energy or displaced vertices [170]. These are discussed in
detail in section 7.2.

Using these descriptions, we constrain the dark photon models discussed in Chapter 5 in
sections 7.3 and 7.4. We summarise our results in section 7.5

7.1 Direct Detection

Our local DM density, ρ0 = 0.3 GeV/cm3, is large enough to generate a sizeable flux through
the Earth [171]. This means that even weakly interacting particles can lead to observable
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FIGURE 7.1: Different DM detection strategies, colloquially referred to as the
shake it, make it, break it approach corresponding to Direct Detection, Collider

Searches, and Indirect Detection respectively.

events as a result of scattering off a target. These could be in the form of heat (phonons pro-
duced in crystals), light (photons produced through excitation and de-excitation of target)
and/or charge (ionisation of the target). Through direct detection experiments, we attempt
to measure such signals. The quantity of interest is the differential scattering rate that pa-
rameterises the number of events observed at a specific energy per unit time and mass of the
detector material [172–174],

dR

dER
=

ρ0

mTmDM

∫

vmin

|~v| f(~v + ~vE)
dσ(v, ER)

dER
d3v . (7.1)

In this equation, mDM and mT are the DM and the target nucleus mass respectively, f(~v+ ~vE)

is the DM velocity distribution in the galactic rest frame, with ~vE being the relative velocity of
Earth to the Galactic centre, and dσ/dER is the differential particle scattering rate. The velocity
distribution for the DM wind is assumed to be Maxwell-Boltzmann truncated at the galactic
escape velocity, vesc = 544 km s−1 [171]. Further, the lower limit of the velocity integral, vmin,
denotes the minimum DM velocity required in order for the target to scatter with a recoil
energy ER and can be simply evaluated from kinematics,

vmin(ER) =

√
mNER

2µ2
, (7.2)

where µ = mTmDM/(mT +mDM) is the DM-target reduced mass.

The astrophysical and particle physics contributions to the scattering rate can be disentangled:
the former enters through the velocity distribution and the local DM density, and the latter
through the differential cross-section and a trivial normalisation in the prefactor. The astro-
physical contribution is described by the Standard Halo Model with the definitions of f(v)
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and ρ0 as specified above.1 The particle physics contribution is, of course, model-dependent.
It is convenient to make a distinction between heavy (mDM & GeV) and light (mDM . GeV)
DM depending on which particle interactions result in observable signals. Phenomenologi-
cally, we expect DM-nuclei scattering to be the dominant process for heavy DM particles and
DM-electron scattering for lighter ones. Conventional direct detection experiments have fo-
cused their attention on DM-nucleus scattering but recent years have seen a steady rise in
experiments specifically looking for DM-electron scattering [175].

DM-nucleon scattering

DM-nucleus scattering is further divided into spin-dependent (SI) and spin-independent (SD)
scattering depending on whether DM couples to nucleon number,A, or to the nucleon spin. In
the former case, the scattering is coherent on the nucleus and therefore the DM-nucleus cross-
section is enhanced byA2 with respect to the DM-nucleon cross-section, σNχ ∝ A2. In contrast,
the nucleon spins add incoherently inside the nucleus and therefore σNχ ∝ J(J + 1) for SD
scattering where J denotes the spin. With respect to concrete interactions, SI cross-sections
may arise from scalar and vector couplings to quarks. On the other hand, SD cross-sections
might originate from axial-vector couplings [171].2 For a given DM model, we can express the
differential cross-section in Eq. 7.1 in terms of a SI and a SD part,

dσ

dER
=

dσSI(v, ER)

dER
+

dσSD(v, ER)

dER
. (7.3)

The models discussed in this thesis do not have axial quark couplings and therefore we will
only talk about SI scattering from here on.

We can obtain a general functional form of dσSI/dER by reminding ourselves that a non-
relativistic two-body scattering can be modelled by a Yukawa potential (c.f. Chapter 6). For
DM-nucleus scattering, this would be given by the potential [177]

V (r) = αeff
e−mmedr

r
, (7.4)

where αeff is representative of the effective DM-nucleon coupling (that includes for instance
the number of nucleons that couple to DM). For a generic mediator which has SM and DM
couplings given by gSM and gDM respectively, we get αeff = gSMgDMA/4π where A is the
number of nucleons inside the target nucleus. For a dark photon which only couples to charge,
we will replace A with the number of protons, Z. Additionally, mmed is the mediator mass for
the interaction.The differential cross-section is then given by [178],

dσ(v, ER)

dq2
=

2mN α̃
2
eff

(q2 +m2
med)2

1

v2
F 2(ER) , (7.5)

1Note that there are some uncertainties in these quantities, see e.g., [171, 174].
2For a list of effective operators that result in SI and SD interactions, see [176].
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where α̃2
eff = 2πα2

eff/mN ,mN is the nucleus mass and q =
√

2mNER is the momentum transfer.
Additionally, we include a form factor F 2(ER) that parameterises the momentum-dependent
response of the nucleus to the scattering [179].

Under the assumption that DM couples equivalently to protons and neutrons, we can relate
the SI differential cross-section to a reference DM-proton cross-section σχp,

dσ(v, ER)

dER
=

mN

2µ2
χp

1

v2
A2σχp(ER)F 2(ER) , (7.6)

with,

σχp(ER) =
8α̃2

effmN

A2

µ2
χp

(q2 +m2
med)2

=
1

π

g2
SM g2

DM

(q2 +m2
med)2

µ2
χp . (7.7)

Bounds from direct detection experiments are typically presented as constraints on σχp (see
Fig. 7.2) with the implicit assumption that σχp is momentum-independent. This is true when
mmed � q2, (contact interaction) in which case the differential event rate can be simply written
as,

dR

dER
=
ρ0 σ

SI
χpA

2F 2(ER)

2µ2
χpmχ

g(vmin) , (7.8)

with the velocity integral, g(vmin) =
∫
vmin

d3vf(~v + ~vE)/v. The strongest constraint in this
limit is from the XENON1T experiment, which places a bound σχp . 10−47 cm2 for a 30

GeV DM particle [180] (see also Fig. 7.2). Since generic WIMP models predict larger cross-
sections—compare this, for instance, to the thermal cross-section discussed in section 2.2.2—
direct detection experiments spell trouble for WIMPs.

As these experiments constrict the parameter space further, it has become imperative to lay the
theoretical groundwork for DM models which naturally include tiny couplings and therefore
evade these constraints. As might be guessed, FIMP models do this rather easily. Assuming
a contact interaction, a generic FIMP coupling of order λ . 10−7 will result in a scattering
cross-section roughly equal to σχp ∼ µ2

χpαλ
2/m4 . 10−50 × (30 GeV/m)4, much below the

limit discussed in the preceding paragraph. At first sight, this might appear to make FIMPs
completely untestable, and therefore uninteresting, but fortunately for us, this turns out to not
be the case.

As mentioned before, the limits presented above are for a contact interaction, valid when the
mediator mass is much larger than the momentum transfer involved in the scattering. If the
mediator is light, the DM-nucleus scattering is long-range and the cross-section in Eq. 7.7
scales as E−2

R , resulting in an enhancement for small momentum transfers. Of course, ar-
bitrarily small recoil energies cannot be probed and therefore a cut is placed on this en-
hancement by the detector threshold, i.e., the smallest recoil energies that a given detector
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FIGURE 7.2: Direct detection limits on the spin-independent DM-nucleon scat-
tering cross-section as a function of DM mass from various experiments [180–
185]. The yellow shaded region represents the irreducible neutrino background
for the XENON experiment. Image created using the Dark Matter Limit Plotter

[186].

is sensitive to. For instance, XENON1T has a threshold of Eth = 1.1 keV meaning that for
mmed �

√
2mNEth ≈ 16 MeV, the differential event rate will always benefit from an enhance-

ment. This enhancement can then directly compensate for the tiny freeze-in couplings to
produce observable event rates at experiments [1, 187].

DM-electron scattering

It is unlikely for a light DM particle to induce detectable nuclear recoils in heavy target atoms
such as Xenon. The average nuclear recoil energy for a DM particle with a mass of 100 MeV
would be ER = q2/2mN ' 1 eV × (mχ/100 MeV)2 (10 GeV/mN ), close to or below threshold
for most of the conventional direct detection experiments like XENON1T. However, MeV
scale DM can trigger electron ionisation in the nucleus leading to potentially visible signatures
[188]. For a DM particle with massmχ transferring a momentum ~q to an electron that is bound
to a nucleus, energy conservation for the DM-atom system implies,

∆Ee +
|mχ~v − ~q|2

2mχ
+

q2

2mN
=

1

2
mχv

2 (7.9)

⇒ ∆Ee = ~q.~v − q2

2µNχ
, (7.10)

where ~v is the initial DM velocity and ∆Ee is the energy transferred to the electron. Note that
∆Ee is not equal to the electron recoil energy. Since the electron is in a bound state, the electron
recoil energy is actually the difference of the energy transferred and the binding energy Enl
of the electron, EeR = ∆Ee − Enl. A bound on ∆Ee comes from maximising Eq. 7.10 with
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respect to q,

∆Ee .
1

2
µNχv

2 '
mχ�mN

1

2
mχv

2 ∼ 1 eV
( mχ

1 MeV

)
, (7.11)

where in the final step we assume typical DM velocities of 10−3. This equation demonstrates
that the entire kinetic energy of the incoming DM particle can be transferred to the electron,
implying that for a given electron binding energy Enl, a measurable signal can be produced
for,

mχ & 1 MeV × Enl
1 eV

. (7.12)

Even lighter DM (meV - keV masses) can be probed by looking for DM absorption by electrons
in which case the DM mass can be directly converted into the electron recoil energy [175].

By building detectors using target material with a small binding energy, we can therefore
extend the search region to smaller and smaller DM masses. This has in fact been done using
semiconductors targets such as Germanium and Silicon which have the potential to probe
DM masses on sub-MeV scales, but even traditional detections such as XENON can probe
DM masses up to tens of MeV by increasing sensitivities to single-electron events [175, 189,
190].

Note that the bound state of the electron implies that the initial electron momentum is ar-
bitrary and therefore the momentum transfer q can take any value. Despite this arbitrari-
ness in q, momentum transfers larger than a typical scale—set by the electron’s momentum,
qtyp ∼ Zeffαme ∼ Zeff × 4 keV—are highly suppressed. Here Zeff is the effective charge seen
by the electron. This can be explicitly seen by calculating electron form factors which capture
the transition from one state to another

f1→2(~q) =

∫
d3xψ∗2(~x)ψ1(~x)ei~q.~x , (7.13)

where ψ1(~x) and ψ2(~x) are the initial bound state and final state wavefunctions respectively.
We plot these form factors for the Xenon 5p shell in Fig. 7.3 for two different values of ∆Ee and
therefore two values of the outgoing electron energy ∆Ee−E5p whereE5p ∼ 12.5×10−3 keV.3

As mentioned previously, the form factor drops at large momentum transfers.

Similar to the DM-nucleon scattering cross-section, the DM-electron scattering cross-section
is also parameterised in terms of a reference cross-section at a fixed momentum transfer,

σe ≡
µ2
χe

16πm2
χm

2
e

|Mχe(q)|2
∣∣∣
q2=α2m2

e

, (7.14)

3The calculations for these form factors are non-trivial and significant discrepancies can arise between different
approximations [191, 192].
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FIGURE 7.3: The electron ionisation form factor for a Xenon electron in the 5p
shell as a function of the momentum transfer, for two different values of ∆Ee.

under the assumption,

|Mχe(q)|2 = |Mχe(q)|2
∣∣∣
q2=α2m2

e

× FDM(q)2 , (7.15)

where |Mχe(q)|2 is the squared matrix element for DM-electron scattering averaged over the
initial and summed over final spin states. For a dark photon model, Eq. 7.14 simplifies to [188,
193],

σe =
16πµ2

χeααDM

(m2
A′ + α2m2

e)
2
'





16πµ2
χeαSMαDM

m4
A′

, mA′ � αme

16πµ2
χeαSMαDM

(αme)4
, mA′ � αme

, (7.16)

where αSM and αDM denote theA′-SM andA′-DM coupling respectively.4 The DM form factor
FDM(q) encodes the (directionless) momentum dependence of the interaction with FDM(q) = 1

and FDM(q) = (αme/q)
2 in the heavy (mmed � q) and light (mmed � q) mediator limits

respectively. The differential event rate is then given by the equation [192],

dR

d∆Ee
=

σe
8µ2

χe

∑

n, l

ρχ
mχ

1

∆Ee − Enl

×
∫

dq q |FDM(q)|2
∣∣fnl→(∆Ee−Enl)(~q)

∣∣2 g(vmin(q, ∆Ee)) , (7.17)

where the sum is over all initially occupied shells {n, l} and g(vmin) is the velocity integral as
defined before.

DM-electron scattering plays an incredibly important role in constraining sub-GeV DM mod-
els. The latest XENON1T result which shows a 3σ excess for electron recoil energies between
2− 3 keV has further reinvigorated theoretical as well as experimental research into light DM

4For example, for a kinetically mixed dark photon, αSMαDM = κ2ααDM.
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[194]. Although, a keV-scale excess cannot be explained by the standard DM-electron scatter-
ing discussed above without being in dramatic conflict with other lower threshold searches
such as SENSEI [195] and XENON1T [196], slightly more exotic models of DM fit the bill
quite well [192]. Inelastic DM has gained traction in this regard where a heavier DM state can
decay or a downscatter into a lighter one, thus converting a fraction of its mass into electron
recoil [192].

Both DM-nucleon and DM-electron scattering place stringent bounds on DM models. Al-
though we have talked about them independently, there is no clean divide between them.
This is most clearly evident in the phenomenon of Migdal scattering where electron recoils
arise as result of DM-nucleon interactions and the signature we search for includes a recoiling
atom and a promptly ionised electron [191, 197–199]. In simple terms, the energy transferred
by the DM to the target atom is distributed in such a way so as to induce a nuclear recoil as
well as a simultaneous electron ionisation. DM-electron scattering and Migdal scattering are
governed by the same sets of energy and momentum conservation equations. The difference
between the two can be entirely captured in the electron ionisation form factor since the mo-
mentum transferred to the electron differs between the two cases, i.e., the dynamics of the the
two processes are different depending on whether DM couples to the nucleus or directly to
the electron. In particular, it is found that the momentum transferred to the recoiling elec-
tron for Migdal scattering is suppressed compared to the momentum transferred to the entire
atom, ~qe = (me/mN )~q. This, coupled with the fact that the nuclear form factor does not have
a suppression for q . MeV, implies that the Migdal scattering spectrum is dominated by the
largest kinematically allowed momentum transfers. For mχ & 100 MeV, Migdal scattering
results in appreciable variations in the constraints on the DM-nucleon cross-section [200].

7.2 Accelerator Constraints

A complementary way to search for DM is by producing it at colliders and at beam-dump or
other fixed-target experiments. DM produced at accelerators can either escape leading to miss-
ing transverse energy, or decay into SM particles thereby providing a displaced vertex signature.
Dark photon searches at accelerators, in particular, have garnered significant interest over the
recent years with searches for sub-GeV dark photons seeing tremendous advancements [85,
201].

For light dark photons, mA′ . 1 GeV, the best sensitivity is provided by beam-dump and
fixed-target experiments. Beam-dump experiments involve dark photon production via brems-
strahlung off of protons or electrons or through decays of SM mesons (see Fig. 7.4). These dark
photons then travel through a length of detector material before decaying visibly or invisibly.5

The search signature has the form of a displaced vertex in the former case and missing energy
in the latter case. In fixed-target experiments, production is typically through bremsstrahlung
but the search signature is not a displaced vertex. Instead most experiments search for prompt

5Note that the invisible decay channel includes decays into DM as well as into neutrinos.
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Dark Photon 
Production

FIGURE 7.4: Representative sketch of a beam dump experiment. A dark pho-
ton is produced as a result of bremsstrahlung. It traverses a certain length of
the detector before decaying into SM final states. The "absorber", as the name

suggests, absorbs the SM background with the exception of neutrinos.

visible decays or kinematic features such as a resonance bump in the invariant mass spectrum,
as well as missing energy corresponding to invisible decays or long-lived particles [84, 202].
Beam-dump experiments provide an upper and lower bound on the dark photon coupling to
the SM (for an example, see Fig. 7.10). The upper bound is determined by the coupling for
which the dark photon lifetime become smaller than the detector length, i.e., the dark pho-
tons decay before reaching the detector. On the other hand, the lower bound arises because
smaller couplings correspond to a suppression in dark photon production once again making
the detector insensitive to the corresponding signals.

MeV to GeV scale dark photons can also be produced at e+e− colliders through radiative
return or meson decay, with searches being sensitive to decays into leptons or missing energy
in single-photon searches [203, 204]. Further, visibly decaying GeV scale dark photons are
constrained by a number of searches at the LHC [170, 205]. Collider constraints are dominant
for large dark photon masses and couplings.

As can be inferred from this discussion, the parameters of interest for accelerator searches
are the dark photon decay width and branching ratio. In both kinds of searches, the number
of signal events N is proportional to the product of the production cross-section σA′ and the
branching ratio into the relevant final state BRA′→F ≡ ΓF/ΓA′ ,

N ∝ σA′ BRA′→Fε , (7.18)

where we have also multiplied with the experimental efficiency ε that encapsulates the prob-
ability that the dark photon decays within the detector volume. Dark photon constraints in
the literature can be recast for specific models using available recasting procedures [202]. The
public code DARKCAST implements these calculations for visible decay channels. Our modi-
fied version of DARKCAST includes invisible decays as well [3].

We will now use the framework developed in this and the previous section to constrain the
dark photon models studied in Chapter 5.
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7.3 Constraining Resonant Dark Photons

The first model introduced in Chapter 5 consisted of a sub-GeV Dirac DM interacting with the
SM via a kinetically mixed resonant dark photon withmA′ ≈ 2mχ (section 5.2). As a reminder,
we present the free parameters of the model once again:

• mA′ : The dark photon mass. Because of BBN constraints on additional thermal degrees
of freedom in the early universe, we always assume mA′ & 10 MeV. Additionally to
ensure that the dark photon is kinematically accessible at B-factories, and that the Dirac
fermion evades stringent direct detection constraints for mχ > 5 GeV, we further choose
mA′ . 10 GeV.

• κ: The kinetic mixing between the dark and SM photons. In the dark photon mass range
specified above, accelerator constraints imply κ . 0.001 irrespective of whether the dark
photon decays visibly or invisibly [202].

• gχ: The dark photon-DM coupling. This is only constrained by perturbativity, gχ <
√

4π.

• εR: The strength of the resonant enhancement in the model. This also relates the DM
mass to the dark photon mass, εR = (m2

A′ − 4m2
χ)/4m2

χ. Although there are no con-
straints on εR a priori, both extremely small and extremely large values are disfavoured.
The former will result in extremely large annihilation rates during BBN while the latter
would imply large annihilation rates during recombination. We will, therefore, restrict
ourselves to the range 0.001 ≤ εR ≤ 0.1.

• R: Fractional DM abundance. Although not an intrinsic model parameter, we use R to
account for the case that the Dirac fermion only forms a fraction of DM.

Additionally, we reiterate from section 5.2 that for a strong resonant enhancement, εR � 1,
the relic abundance is approximately given by

Ωh2 ∼ ΓA′

κ2g2
χ

, (7.19)

where ΓA′ is the total dark photon decay width.

7.3.1 Accelerator Constraints

We start by describing the accelerator constraints. From Eq. 7.18, we know that the expected
signal events are proportional to σA′ BRA′→Fε. The dark photon production cross-section
scales proportionally to κ2. The dark sector parameters gχ and εR, on the other hand, enter
the equation not independently but only through the invisible decay width ΓDM. This means
that different combinations of gχ and εR that map on to the same ΓDM will result in the same
experimental constraints on κ and mA′ . Hence, we introduce the invisible dimensionless dark
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FIGURE 7.5: Exclusion bounds from fixed target and collider experiments for
different values of γinv and εR plotted on top of parameter points resulting in
Ωh2 ≤ 0.12. The colours of the different contours correspond to the dark pho-
ton production mechanism: bremsstrahlung (red), meson decay (green), e+e−

colliders (violet), and LHC (orange). The Planck excluded regions are shaded
grey.
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photon decay width,

γinv ≡
ΓDM

mA′
=

g2
χ

12π

(
1− 1

1 + εR

)1/2(
1 +

1

2(1 + εR)

)
(7.20)

and use it as a free parameter of the model instead of gχ. In the limit εR � 1, we have
γinv ∝ g2

χ
√
εR.

In Fig. 7.5, we plot the accelerator constraints in the mA′ − κ parameter plane using fixed
values of γinv and εR. Additionally, for each point, we also calculate the relic abundance using
the formulas presented in section 5.2 denoting different relic densities by a colour gradient:
dark blue corresponds to when the relic density is saturated, Ωh2 = 0.12, whereas a lighter
blue denotes under-abundance. Parameter points which result in Ωh2 > 0.12 are excluded.

The rows in Fig. 7.5 correspond to different values of γinv with εR = 0.1 (slight resonant
enhancement) and εR = 0.001 (strong resonant enhancement) in the left and right columns re-
spectively. As mentioned above, the accelerator constraints for a fixed γinv are independent of
εR and the primary difference between the left and the right panels comes through differences
in the viable parameter space that satisfies the relic density requirement.

In the first row, we show plots for γinv = 10−13 which corresponds to values of gχ between
10−6 and 10−5 depending on the choice of εR. These values result in a dark photon that decays
dominantly into SM final states. This is represented by the location of the dotted line which
determines the couplings values for which the visible and invisible decay widths are equal.
The strongest constraints, therefore, arise from fixed-target experiments searching for visible
decays. Additionally, we can clearly see that for κ & 0.001, nearly the entire parameter space
is excluded by collider searches. Using Eq. 7.19, for a dark photon that decays visibly, we can
write

Ωh2 ∼ ΓSM

κ2g2
χ

∼ m2
A′

g2
χ

, (7.21)

meaning that the relic abundance becomes independent of κ. For a fixed gχ then, the relic
abundance is saturated for a particular value of mA′ which yields the sharp cutoff for mA′ ∼
100 MeV and mA′ ∼ few GeV in the left and right panels respectively. As we proceed to
the following rows of the plot corresponding to larger γinv, this cut-off disappears since we
transition to a regime where the dark photon decays invisibly, the relic abundance instead
scaling as,

Ωh2 ∼ ΓDM

κ2g2
χ

∼ m2
A′

κ2
. (7.22)

For dominant invisible decays, the strongest constraints arise, as expected, from invisible
searches such as NA64 [206].

Finally, in Fig. 7.5, we also show in grey the CMB constraints which place a bound onR2〈σv〉CMB.
As discussed in section 5.2.2, for a dark photon that decays invisibly, these constraints come
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FIGURE 7.6: Same as Fig. 7.5 but with a scan over εR. The shading corresponds
to the largest allowed value of Ωh2.

in from below. For large γinv and strong resonant enhancements the CMB rules out large parts
of the viable parameter space.

As mentioned before, for a fixed γinv, the accelerator constraints do not depend on εR. We can
therefore scan over εR keeping only those parameter combinations for which the cosmological
bounds and the relic density requirement, Ωh2 ≤ 0.12 are satisfied. We can additionally ensure
that the self-interaction constraints discussed in Chapter 6 are satisfied although it turns out
that regions of parameter space that have large self-interactions are already excluded by other
constraints. We present this scan in Fig. 7.6, once again in the mA′ − κ plane. This time the
shading represents the largest possible value for the relic abundance given the scan over εR.
For example, a point shaded dark blue means that there is at least one value of εR that saturates
the DM relic abundance while simultaneously being consistent with all other constraints.

In the left panel of Fig. 7.6, we set γinv = 10−13 and the resulting plot is as one would expect
from looking at Fig. 7.5. The boundary between the blue and the white regions is determined
by the lower boundary on εR. A smaller εR would shift the blue region further to the right and
to the bottom since a stronger resonant enhancement would decrease the couplings required
to produce the relic abundance. Note that in this case however, BBN bounds because of photo-
disintegration would become non-trivial as a result of efficient late-time annihilations.

The right panel of Fig. 7.6 is for γinv = 10−5. In this case, CMB constraints are highly relevant
for small values of κ and determine the lower boundary of the allowed parameter space. Since
decreasing εR would only increase the annihilation rate at recombination, εR < 0.001 will not
increase the viable parameter space in this plot. Additionally, we see that it is no longer
possible to satisfy the relic density requirement everywhere. For large κ and small mA′ , all
values of εR result in a DM subcomponent. Note that having a DM subcomponent does not
affect its ability to be observed at accelerator experiments since these rely on the production
of DM particles rather than the detection of a local DM flux.

We would now like to scan over the other parameters of the model. To do this, it is necessary
to shift to the direct detection parameter plane, i.e., σe −mχ, since the accelerator constraints
can only be calculated for a fixed value of γinv.
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FIGURE 7.7: Allowed parameter space in the direct detection plane, Rσe −mχ

with a scan over εR and γinv. The purple shading indicates parameter regions
completely excluded by accelerator experiments.

7.3.2 Direct Detection Constraints

For sub-GeV DM, as discussed in section 7.1, we will be interested in the bounds on DM-
electron cross-section, which from Eq. 7.16 can be written as,

σe =
4µ2

χeακ
2g2
χ

(m2
A′ + α2m2

e)
2
. (7.23)

Additionally bounds on DM-nucleon scattering cross-section (which kick in for DM masses
above a 100 MeV) can be converted to those on DM-electron scattering cross-section by a
rescaling,

σe =
A2

Z2

µ2
χe

µχp
σχp , (7.24)

where the additional factor reflects the fact that DM-nucleon scattering is conventionally as-
sumed to scale as A2 but for the case of dark photons, it actually scales as Z2. Finally, bounds
on the DM-nucleon cross-section arising from the Migdal effect can also be rescaled similarly
into bounds on σe. Note that since we accommodate the case when DM is under-abundant,
direct detection actually constraints Rσe instead of σe. This follows directly from Eq. 7.1 by
reducing the local DM density from ρ0 to Rρ0.

In this section, we will consider bounds on σe from XENON1T [182] and SENSEI [195].
Further, for σχp, we will consider CRESST-III [207], CDMSLite [208] and a recent search for
the Migdal effect in XENON1T [200].

Following the procedure laid out in the previous section, we now scan over the following
parameter ranges, where the upper and lower bounds are argued for in the preceding para-
graphs,
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FIGURE 7.8: Same as figure 7.6, this time with existing constraints. Solid lines
represent projected sensitivities of various experiments. The colours depend on

the dark photon production mechanism as in figures 7.5 and 7.6.

• mχ ∈ [10 MeV, 5 GeV]

• γinv ∈ [10−23, 0.1]

• κ ∈ [10−10, 0.001]

• εR ∈ [0.001, 0.1]

We present the viable parameter space with the scan outlined above in Fig. 7.7 with the same
convention of the shading as before, i.e, we plot the parameter combination which results in
the largest value of the relic abundance consistent with cosmological constraints. White re-
gions in the plot then correspond to where no combination of parameter points survive after
the application of cosmological and relic density constraints. Purple shaded regions represent
regions where no viable parameter points survive after applying accelerator constraints. Note
that accelerator bounds exclude points along the hidden dimensions in other regions of the
parameter space but it is always possible to find a combination of parameters that are viable
and map on to the same Rσe. We know from earlier discussions that the observed relic den-
sity requires smaller couplings when εR � 1 and larger ones when εR → 1. Since σe ∝ κ2g2

χ,
moving from top to bottom in Fig. 7.7 is equivalent to moving closer to resonance. The ac-
celerator constraints in the bottom left of the plot which exclude dark photon masses upto a
hundred MeV, correspond to ones coming from fixed-target experiments as can also be seen
in Fig. 7.5. The accelerator constraints on the top, on the other hand, come from both fixed-
target and e+e− colliders. Further, moving to the top of the plot (or going toward large εR)
means that larger couplings are required to reproduce the relic abundance which are then in
tension with CMB. As a result, the relic abundance cannot be saturated toward the top of the
plot (indicated by the lighter shading).

Fig. 7.7 demonstrates that a large amount of viable parameter space exists even for moderate
values of resonant enhancement (εR ≥ 0.001). This result is largely independent of the choice
of lower bound on εR with the viable parameter space shrinking insignificantly if, for instance,
we require ε ≥ 0.01 instead (see Appendix B of [3]).
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FIGURE 7.9: Same as figure 7.7 but this time with existing constraints shaded in
orange. Solid lines represent projected sensitivities. The parameter regions that
can be fully explored by future accelerator experiments are shaded in magenta.

Future experiments can further probe this parameter space for both large and small coupling
values. Accelerator experiments such as Belle II [209], FASER [210], HPS [211], LHCb [212,
213], SeaQuest [214] and SHiP [89] have the potential to deeply explore the parameter space
for visibly decaying sub-GeV dark photons. Belle II and LDMX [85, 215] with improved
single-photons and missing energy searches will additionally be highly sensitive to invisi-
ble decays. As for direct detection, SENSEI, DAMIC [216], Super-CDMS [217], NEWS-G [218]
and CRESST-III [219] will explore this parameter space further. We show these projections in
Fig. 7.8 and Fig. 7.9. The direct detection bounds are obtained from the Dark Matter Limit
Plotter [186], whereas the accelerator bounds come from our modified version of the DARK-
CAST code (see Appendix A of [3] for more details).

7.4 Constraining B-L Dark Photons

We will now consider the second dark photon model discussed in Chapter 5: that of U(1)B−L

dark photon with a thermally-induced mass mixing with the SM photon. The DM candidate
in this model is a frozen-in Dirac fermion charged under U(1)B−L. The free parameters in this
model are:

• mA′ : Mass of the dark photon. Since theA′ is assumed to be thermal, BBN places a lower
bound on its mass, mA′ > few MeV.

• mχ: Mass of the DM candidate. We are interested in the DM mass range, 1 GeV ≤ mχ ≤
1 TeV.

• gBL: The gauge coupling of the dark photon. The total coupling to any particle is then
given by gBLq

′
f , where q′f is the particle’s B − L charge. From relic abundance require-

ments, gBL ∼ 10−6 − 10−5.
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FIGURE 7.10: Exclusion bounds from fixed-target and beam-dump experiments
plotted on top of the relic density target for 0.3 < r < 3 and 1 GeV < mχ <

1 TeV in the mA′-gBL parameter plane.

• r ≡ gBL/gDM = 1/q′DM: The ratio of the gauge coupling to the total A′ − χ coupling.
Assuming that the B − L charge of the DM particle is of order unity, it is reasonable to
use, 0.3 < r < 3.

Further, the DM abundance in this model is approximately given by Eq. 5.46,

Ωχh
2 ≈ (0.16 r−4 + 0.12 r−2)

(
gBL

2× 10−6

)4

. (7.25)

7.4.1 Accelerator Constraints

The accelerator constraints on this model are straightforwardly obtained from the literature
[84]. Since the dark photon is lighter than the DM particle, the only decays are into SM final
states. Note that since neutrinos are charged underB−L, in this model we also obtain bounds
from neutrino experiments such as TEXONO [220] and CHARM-II [221].

We plot these constraints in Fig. 7.10 in the mA′ − κ parameter plane, along with the freeze-
in target which demarcates the coupling range required to reproduce the relic abundance for
1 GeV ≤ mχ ≤ 1 TeV and 0.3 < r < 3. Since the freeze-in production is independent of the
dark photon mass, the band is exactly horizontal. The width of the band reflects the spread
in DM masses and the coupling ratio (compare to Fig. 5.6). We reiterate that because of the
structure of this model, i.e., small couplings of the dark photon to both SM and DM particles,
we can have freeze-in production of DM while simultaneously having the capacity to produce
observable signals at fixed-target and beam-dump experiments.
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FIGURE 7.11: Parameter region excluded by XENON1T for different values of
the coupling ratio r = gBL/gDM. The green line depicts the projected sensitivity

of LZ for the case r = 3.

7.4.2 Direct Detection Constraints

As argued in section 7.1, freeze-in couplings can be probed at direct detection experiments
in the limit of light mediators which result in an enhancement of the direct detection cross-
section at low recoil energies. The DM-nucleus scattering cross-section for this model can be
written using Eq. 7.6 and Eq. 7.7,

dσN
dER

=
g2

BL g
2
DMmNA

2F 2(ER)

2πv2(2mNER +m2
A′)

2
, (7.26)

where the symbols have their usual meaning.6 This cross-section will be enhanced at low re-
coil energies in the limit, mA′ �

√
2mNER. The lowest observable recoil energy in XENON1T

is Eth = 1.1 keV which implies that for mA′ � 16 MeV, the differential event rate will be in-
dependent of the mediator mass and benefit from the same enhancement as in the massless
mediator limit, mA′ → 0. For larger mediator masses, the event rates would be suppressed by
m−4
A′ .

Using the publicly available code DDCALC [222, 223] and the XENON1T data, we place
bounds in themχ−mA′ parameter plane for different values of the coupling ratio r in Fig. 7.11.
At each point in the parameter plane, we fix the remaining parameter, i.e., gDM, so as to re-
produce the correct relic abundance. As expected, the constraints weaken for large values of
mA′ where the direct detection rates are suppressed. In terms of the couplings, for r � 1 (or
gBL � gDM), the direct detection constraints depend on the same coupling combination as

6Note that neutrons (with a udd quark composition) have a B−L charge and therefore couple to the dark photon.
This results in the factor of A2 instead of Z2 that is usually present in kinetically mixed dark photon models
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FIGURE 7.12: Complementarity of direct detection (blue) and accelerator
(peach) constraints for a FIMP dark matter model. The direct detection con-
straints depend on the DM mass (contours shown for mχ = 30 GeV and
mχ = 300 GeV) and the coupling ratio (fixed to r = 3). The right panel shows

projected sensitivities of various experiments.

the relic abundance, i.e., g2
BLg

2
DM (see Eq. 7.25). Hence, by fixing the coupling combination by

the relic density requirement, the direct detection constraints are only a function of mχ and
mA′ . This also results in the constraints saturating as r → 3. For r � 1 on the other hand,
the relic abundance scales as g4

DM whereas the direct detection cross-section scales as g4
DMr

2.
This implies that the event rate reduces for small r making this region more challenging to
probe. Nevertheless, we see that the parameter space of this model is constrained by current
experiments and is well within reach of future ones such as LZ (green line in Fig. 7.11) [224].

To demonstrate the complementarity between accelerator and direct detection searches for
this model, we can plot constraints from the latter in the mA′ − gBL plane for different values
of DM mass. We show this in the left panel of Fig. 7.12 for mχ = 30 GeV (for which we get the
strongest direct detection constraints) and mχ = 300 GeV. Once again, for each point in the
plane we fix the coupling ratio (or equivalently, gDM) in order to reproduce the correct relic
abundance. The excluded parameter region becomes independent of the coupling strength
for large gBL (corresponding to r � 1) and vanishes for small gBL (r � 1) as expected.

This plot can be immediately extended to include sensitivities of future experiments. In the
right panel of Fig. 7.12, we demonstrate the reach of upcoming accelerator and direct detec-
tion experiments. It is easy to see that direct detection and accelerator searches probe the
parameter space in complementary ways. Further, future experiments will carry out a thor-
ough exploration of large parts of the currently allowed parameter space, making this model
an attractive target for these searches.
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7.5 Conclusions

In the last several years, DM detection strategies have witnessed huge advancements in all
channels. With increasing sensitivities of these experiments, the traditional GeV-TeV WIMP
search window is being pushed to both smaller masses and couplings. In particular, sub-
GeV DM searches have gained a lot of traction with traditional direct detection experiments
such as XENON1T being optimised to detect DM-electron scattering along with completely
new experiments being set up to specifically look for electron recoil. At the same time, more
and more precise searches for hidden particles at accelerator experiments are exploring new
corners of parameters.

Dark photons arise naturally in the context of such searches since they provide a well-motivated
portal between the visible and dark sectors. Accelerator searches for dark photons in particu-
lar have seen a tremendous increase in sensitivity in both invisible and visible decay channels
quite independently of their connection to DM. This has resulted in a push toward developing
and studying DM models with a dark photon portal. For many DM models, the constraints
arising from accelerator and direct detection searches turn out to be highly complementary
to each other and to those arising from cosmology. In this chapter, we have looked at the
terrestrial constraints on two dark photon models representing two opposing DM production
mechanisms: a resonant DM model (production through freeze-out) and aU(1)′ extended DM
model (production via freeze-in).

In section 7.3, we showed that a resonant DM model can be probed in complementary ways
at accelerators and direct detection experiments while being cosmologically viable. To this
end, we conducted a global scan of the parameter space using state-of-the-art numerical tools
like DARKCAST. Our results show that the accelerator experiments are highly sensitive to
smaller couplings and therefore the case of a strong resonant enhancement, whereas the di-
rect detection experiments probe larger couplings and regions of parameter space where the
DM forms a subcomponent. These are summarised in Fig. 7.8 and Fig. 7.9 where the allowed
parameter space is shaded in blue with the gradient representing the largest possible value of
the DM abundance consistent with all constraints. Despite the complementarity of these con-
straints, however, large regions of parameter space remain viable, demonstrating that even
simple models of light thermal DM consistent with cosmological and terrestrial constraints
can be constructed with only moderate amounts of tuning. Additionally, while upcoming ex-
periments will probe this parameter space further, new strategies are required for a complete
and thorough exploration.

In section 7.4, we discussed direct detection and accelerator constraints for a FIMP dark mat-
ter model and showed that such models are highly testable despite the smallness of freeze-in
couplings. In particular, we looked at a model in which both the DM and the SM particles
are charged under an additional gauge group. In this case, accelerator constraints—which
are based on dark photon production—already probe the freeze-in parameter space. Addi-
tionally, direct detection experiments obtain a sensitivity to the freeze-in couplings due to an
enhancement in the scattering cross-section at low recoil energies. This is a direct result of
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having an MeV-scale gauge boson in the model which, in the limit of being lighter than the
smallest detectable momentum transfer, effectively acts as a massless mediator. While the
accelerator constraints are independent of the DM mass and only probe the dark photon cou-
pling to the SM, the direct detection constraints probe a combination of the two couplings,
gSM × gDM. These constraints are the strongest in the limit gSM > gDM in which the direct
detection cross-section and the relic abundance depends on exactly the same coupling combi-
nation. Our results are summarised in Fig. 7.12. Note that these constraints might differ if we
assume a U(1)′ extension different from B − L.

From this discussion, it is evident that terrestrial search strategies for DM hold enormous
promise for the future, and dark photons, in particular, make for an attractive target for BSM
physics.
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Chapter 8

Conclusions

We do not know what eighty percent of the universe is made of. Yet the story of DM is woven
through our cosmological history, its effects manifest in the very structure of our universe.
While this means that the macrophysics of DM is quite well understood—captured in the
cold, collisionless DM paradigm—its microphysics remains shrouded in mystery.

In this thesis, I have attempted to detail the phenomenological implications of a few different
DM models categorised according to their possible non-gravitational interactions with the
SM. In order to capture the relevant physics at all scales, I have used cosmological time as
a scaffolding, detailing the possible effects of DM on timescales ranging from a few seconds
after the Big Bang to today, billions of years later.

In Part I, I laid down the theoretical groundwork required in order to study this DM phe-
nomenology. Chapter 1 provided a brief review of the standard models of particle physics
and cosmology with a focus on the physics at very early times. To this end, we discussed the
framework of finite temperature field theory in order to accurately describe particle proper-
ties and interactions in a thermal plasma. In particular, we discussed the electroweak phase
transition in the SM detailing the temperature-dependent evolution of the Higgs mass and
vev. In Chapter 2, we reviewed the observational evidences for DM, and discussed the evo-
lution of the dark sector in the context of two different production mechanisms: freeze-out,
where the DM abundance is set by its annihilation and decay into SM particles, and freeze-in,
where it is set by production from the SM particles. Since particle production at early times
necessarily happens in a plasma, we presented a modified version of the freeze-in Boltzmann
equation accounting for the corresponding in-medium effects. We also elaborated on con-
straining DM in the early universe by cosmological probes such as BBN and CMB. BBN is
extremely sensitive to any additional light particles in the early universe and places an almost
model-independent bound on the DM mass if it has a thermal abundance. Additionally, DM
annihilations at late times can inject energy into the photon-baryon plasma and therefore DM
can be constrained quite effectively using the CMB. From the discussions in Part I, the calcu-
lations of relic abundances for specific DM models as well as relevant cosmological bounds
straightforwardly follow.

In Part II, we discussed the cosmology of concrete DM models grouped under two portals on
the basis of whether the mediating particle between DM and the SM is a scalar or a vector.
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After an extremely brief summary of portals in Chapter 3, we dove into the Higgs portal with
the example of a scalar singlet DM model in Chapter 4. We were interested in looking at the
scalar singlet in the freeze-in regime and in particular in regions of parameter space where
the relic abundance is not set by decays of the Higgs bosons. To ensure this, we considered
two scenarios: one, with a scalar mass larger than twice the Higgs mass, and second, with a
reheating temperature much smaller than the Higgs mass. In both cases, we demonstrated
that higher order corrections, in-medium and thermal effects are important in the relic den-
sity calculations. In particular, both the QCD and the electroweak phase transition in the SM
needed to be accounted for properly to obtain accurate results. We showed that all of these
effects can be simply included by reformulating the freeze-in Boltzmann equation in terms of
the thermally averaged DM annihilation cross-section, which is calculated at finite tempera-
ture with the relevant statistical phase space factors. Interestingly, the largest of the couplings
required to saturate the relic abundance for low reheating temperatures are already excluded
by terrestrial experiments.

As part of ongoing work, we have implemented these calculations in the public code DARK-
SUSY. It would be interesting to further extend (and implement) this framework to study
the evolution of other DM models at finite temperature. Of course, even though our work
focused on (the dominant) 2 → 2 processes, an interesting discussion is to be had regarding
1→ 2 processes at finite temperature and the equivalence (or lack thereof) between the two.

In Chapter 5, we shifted our attention to another commonly studied portal, namely the dark
photon portal. We studied the DM cosmology with a dark photon portal in both freeze-out
and freeze-in scenarios. In the case of thermal freeze-out, we were interested in the sub-GeV
DM regime. We demonstrated such light DM models can be cosmologically viable if the dark
photon mass is close to twice the DM mass. Consequently, DM annihilations are resonantly
enhanced at early times and smaller couplings are required to reproduce the DM relic abun-
dance. For a moderate resonant enhancement, these small couplings evade constraints from
BBN and CMB by suppressing late time annihilations. On the flip side, for the case of freeze-in,
we considered a U(1)′ extension to the SM and specified how a thermal mass-mixing between
the SM U(1) and this U(1)′ can result in temperature-dependent couplings. In-medium and
thermal effects were highly relevant for this model with DM production channels differing be-
fore and after the electroweak phase transition. In contrast to the previous model, we showed
that couplings larger than the standard freeze-in ones are needed to reproduce the relic abun-
dance. The two models together show that the conditions for freeze-in and freeze-out can be
satisfied by a range of couplings not necessarily similar to the conventionally assumed ones.

Dark photon models, in general, are open to a number of exciting directions in future work.
The parameter space for the resonant dark photon model discussed here can be expanded to
include much stronger resonant enhancements and therefore even smaller couplings. This
would require a more accurate calculation of the relic abundance, in particular accounting
for the fact that the DM may no longer be in kinetic equilibrium during freeze-out [225, 226].
Additionally, for strong resonant enhancements, BBN constraints arising as a result of photo-
disintegration become relevant, along with novel constraints arising from energy losses in
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supernovae [227]. For U(1)′ extensions, our framework can be used to evaluate abundances
and constraints on other specific realisations such as U(1)Lµ−Lτ or U(1)B .

Since the particles mediating the DM-SM interactions can also mediate DM-DM interactions,
we switched gears and explored DM self-interactions in Chapter 6. We discussed the sub-
tleties that crop up when comparing model predictions to data in terms of both the cross-
section to be used (momentum-transfer or viscosity), and the procedure for averaging over
velocities. The DM self-interactions constrained at various scales, from dwarf galaxies to
galaxy clusters, hint toward a long-range interaction which can be modelled by a Yukawa
potential. Additionally, many small-scale problems can be solved if these interactions fall
within the semi-classical regime. We therefore derived general analytic formulas for both the
momentum transfer and the viscosity cross-sections in the semi-classical regime from first
principles. Together with existing results in the literature, our results provide a complete an-
alytic coverage of self-interactions with a Yukawa potential.

Our framework for calculating these self-interactions can be used for interactions mediated by
other kinds of potentials. In particular, even if analytic results are difficult to obtain, numerical
evaluations of the phase-shift integrals may yield an accurate (and fast) approximation to
solving the full Schroedinger equation in the semiclassical regime. Additionally, our results
can be implemented in numerical simulations in order to better explore DM phenomenology
on small scales.

Finally, in Part III, we entered current timescales with a discussion on DM detection strate-
gies in Chapter 7. After introducing direct detection strategies and accelerator searches for
DM, we placed bounds on the dark photon models introduced in Part II. The bounds from
these two search strategies turned out to be highly complementary to each other as well as
to the cosmological bounds derived in Part II, constraining even the small couplings present
in freeze-in models. This is a remarkable result considering that models with light, extremely
weakly coupled particles appear, at first sight at least, to be undetectable, and provides hope
for the future with innovative and more precise experiments further exploring exactly these
regions of the parameter space.

It is evident from the discussions in this thesis that we have neither exhausted the scope of
existing ideas nor mapped out the full terrain of possibilities when it comes to DM. Even in
the few models studied here, there remain huge opportunities for future work. Further, the
recent XENON1T excess [194] has opened the door to even more exotic models of light DM.
In particular, models with inelastic DM—where the dark sector is composed of particles with a
small mass splitting—have gained a lot of traction [192]. The phenomenology of such models
at direct detection experiments, especially considerations on their phase-space after potential
upscatterings inside the Earth, poses an exciting direction for future work. Additionally, the
cosmology of such models may be non-trivial with late-time de-excitations in the dark sector
having potentially observable effects on structure formation.

Other anomalies in our measurements, such as the g − 2 anomaly [228], that compel us to
look for BSM particles also provide a rich ground for DM model-building. In the absence of
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a clear DM signal, and with increasingly precise experiments probing different corners of the
parameter space, we are, in a sense, limited only by our creativity. DM models which were
"exotic" a few years ago are now being regularly probed by experiments. Simultaneously, new
ideas are needed both on the theoretical as well as on the experimental side of DM research.
The story of DM is still being written and it is an incredible privilege to be able to contribute
to it, however small that contribution may be.

And lastly, finally, I would like to take a step back from the exciting world of DM research
and implore whoever is reading this thesis to also reflect on the broader state of our shared
planet and the conditions we do science in. While I was writing this thesis, the rivers of my
country were choked with bodies of people lost to the pandemic as a result of criminal mis-
management by a complacent state. This came after more than two years of constant, hideous
attacks on the dignity and freedoms and lives of marginalised groups there. A huge fraction
of my PhD was spent with a visceral awareness of this collective grief and helplessness. And
I am sure I was not the only one. These situations are truly international as was brought to
the fore with the Black Lives Matter movement last year and more recently in the struggle
for Palestinian liberation. My point is that while for much of the scientific community in the
West, it continued to be business-as-usual, it has (always) been a completely different story for
under-represented groups who do not have the luxury of detachment. My point is that as we
increasingly talk about diversity and inclusion in scientific communities, it is imperative that
we not limit these conversations to only when they are "safe" or convenient. Instead, we must
express unconditional solidarity with oppressed groups everywhere. We must ensure that our
community is not only welcoming but active and visible in its commitment to equality and
justice.

We cannot remain aloof. And we cannot, indeed should not, look away.
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Appendix A

In-medium Cross-Section And Thermal
Average

In this appendix, we will discuss how to reduce the 12-dimensional integral in the collision
term of Eq. 2.47, while making sure we include the frame-dependence at every step.

In-Medium Cross-Section:
The cross-section for a given process is most easily calculated in the CMS frame. The cross-
section in Eq. 2.42 is exactly the CMS cross-section apart from the statistical factors which
depend on the cosmic rest frame through (u · k) that enters in the distribution functions. We
can transform these to the CMS frame by applying a Lorentz boost to the comic four-velocity,
u, for each DM momenta p, p̃.

For any two momenta, p, p̃, in a general frame, we can introduce [58],

p =
p+ p̃

2
,

k =
p− p̃

2
, (A.1)

such that the CMS frame is defined by,

p=Λ(p)




E

0

0

0



, (A.2)

whereE =
√
s/2 is the particle energy in the CMS frame. For p = (p0, p3, p2, p1)T , the Lorentz

transformation can be written in terms of the rapidity, η and the angular variables θ, φ,

Λ(p)=




1 0 0 0

0 1 0 0

0 0 cosφ − sinφ

0 0 sinφ cosφ







1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1







cosh η sinh η 0 0

sinh η cosh η 0 0

0 0 1 0

0 0 0 1



,

(A.3)
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Λ(p)−1 =




cosh η − sinh η 0 0

− sinh η cosh η 0 0

0 0 1 0

0 0 0 1







1 0 0 0

0 cos θ − sin θ 0

0 − sin θ cos θ 0

0 0 0 1







1 0 0 0

0 1 0 0

0 0 cosφ sinφ

0 0 − sinφ cosφ



.

(A.4)

The 6 degrees of freedom in p, p̃ get converted into E, η and 4 angular variables θ, φ, θk̄, φk̄,
where θk̄, φk̄ denote the spherical coordinate angles parameterizing k. Because the DM parti-
cles are on-shell, k0

= 0 and
∣∣k
∣∣ =

√
E2 −m2

χ.

Using this Lorentz transformation, we can transform the distribution functions in Eq. 2.42 to
the CMS frame:

g(ω)= g(u · k)→ g((Λ−1u) · k) =
1

exp[k
0 cosh η+k3 sinh η

T ]− εψ
=

1

exp[ω cosh η+|kCM| cos θ sinh η
T ]− εψ

,

g(ω̃)= g(u · k̃)→ g((Λ−1u) · k̃) =
1

exp[ k̃
0 cosh η+k̃3 sinh η

T ]− εψ
=

1

exp[ ω̃ cosh η−|kCM| cos θ sinh η
T ]− εψ

,

(A.5)

where k, k̃ are the SM momenta in the CMS frame and in the final equality we have used,
k0(k̃0) = ω(ω̃) and k3 = −k̃3 = |kCM| cos θ, with the CMS momenta given by the usual
expression,

|kCM| =
1

2
√
s

√
(s− (mψ −mψ̄)2)(s− (mψ +mψ̄)2 . (A.6)

The statistical factors taken together can be expressed in terms of a function,

G−1 ≡ (1− εψg(u · k))−1
(

1− εψg(u · k̃)−1
)−1

= 1− ε2
ψe
−2Eγ/T − 2εψe

−Eγ/T cosh

[
|kCM| cos θ

√
γ2 − 1

T

]
, (A.7)

where we have defined γ = cosh η for convenience. In terms of dimensionless variables,
s̃ ≡ s/4m2

χ = E2/m2
χ and x = mχ/T , this becomes,

G−1(γ, cos θ, s)= 1 + ε2
ψe
−2
√
s̃xγ

− 2εψe
−
√
s̃xγ cosh


x cos θ

√
γ2 − 1

1

2
√
s̃

√
s̃−

(
mψ −mψ̄

2mχ

)2
√
s̃−

(
mψ +mψ̄

2mχ

)2



(A.8)
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which in the limit, mψ = mψ̄ reduces to,

G−1(γ, cos θ, s)= 1 + ε2
ψe
−2
√
s̃xγ − 2εψe

−
√
s̃xγ cosh


x cos θ

√
γ2 − 1

√
s̃−

m2
ψ

m2
χ


 . (A.9)

This yields the in-medium cross-section in the CMS frame,

σχχ→ψψ(s, γ) =
1

8πsNψ

|kCM|√
s− 4m2

χ

∫ 1

−1

d cos θ

2

∣∣M
∣∣2 (s, cos θ)G(γ, s, cos θ) , (A.10)

where we have reduced the phase space integrals to angular ones in the usual way. It can be
easily seen that this cross-section is equivalent to the vacuum CMS cross-section when εψ = 0

(which implies G = 1).

In-medium Thermal Average:
The thermal average in Eq. 2.44 can also be boosted to the CMS frame. We note that the
differential phase space corresponding to p, p̃ can be reformulated in the CMS frame in terms
of p and k as defined in Eq. A.1,

d3p

(2π)32E

d3p̃

(2π)32Ẽ
= 24 d4p

(2π)4

d4k

(2π)4
(2π)2δ

(
(p+ k)2 −m2

χ

)
δ
(
(p− k)2 −m2

χ

)
, (A.11)

where the δ functions ensure energy conservation. Since p is time-like in the CMS frame, we
can parameterise it in terms of the rapidity and CMS energy

p0 =

√
s

2
cosh η,

p1 =

√
s

2
sinh η sin θ sinφ,

p2 =

√
s

2
sinh η sin θ cosφ,

p3 =

√
s

2
sinh η cos θ, (A.12)

thereby reducing the p-integral as,

∫
d4p

(2π)4
=

1

(2π)4

∫
sinh2 η

( s
32

)
ds dη dΩp̄ , (A.13)

where Ωp̄ is the solid angle in p-space. Additionally, the δ-functions can be used to reduce the
k-integral,
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∫
d4k

(2π)4
(2π)2δ

(
(p+ k)2 −m2

χ

)
δ
(
(p− k)2 −m2

χ

)
=

22

(2π)2

∫
dΩk̄

1√
s

√
s

4
−m2

χ . (A.14)
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Eqs. A.13 and A.14 imply that for any function of momenta g(p, p̃), the integral over the phase-
space can be converted into the CMS frame through

∫
d3p

(2π)32E

∫
d3p̃

(2π)32Ẽ
g(p, p̃) =

m4
χ

(2π)6

∫ ∞

1
ds̃
√
s̃(s̃− 1)

∫ ∞

1
dγ
√
γ2 − 1

∫
dΩp̄dΩk̄ g(p, k)

∣∣∣
k

0
=0
,

(A.15)

where we have used γ = cosh η, and expressed everything in terms of the dimensionless
variable, s̃ = s/4m2

χ, as before.

To calculate the thermal average, we also need to boost the (hypothetical) Maxwell-Boltzmann
DM distribution, fMB

χ into the CMS frame. Following the same procedure as before, we have

u · p = (Λ−1u) · (p+ k) = E cosh η +
√
E2 −m2

χ sinh η cos θ ,

u · p̃ = (Λ−1u) · (p− k) = E cosh η −
√
E2 −m2

χ sinh η cos θ , (A.16)

which yields for the distribution functions,

fMB
χ (E)fMB

χ (Ẽ)→ e−
2E cosh η

T = e−2x
√
s̃γ . (A.17)

The thermal average can now be calculated using Eq. A.15 with,

g(p, p̃) =4g2
χσ(p, p̃)FfMB(p)χf

MB(p̃)

=
CMS

4g2
χσ(s, γ)m2

χ

√
s̃(s̃− 1)e−2x

√
s̃γ . (A.18)

Since the distribution functions, fMB
χ , do not have any angular dependence, the angular in-

tegrals in p- and k-space can be done trivially to obtain
∫

Ωp̄Ωk̄ = (4π)2. Note that this is a
particular feature of freeze-in reformulated in terms of DM annihilations, since we have in-
voked fMB

χ in an ad-hoc manner under the assumption that the actual DM distribution can be
ignored. If this weren’t true, we would instead have a Fermi-Dirac or Bose-Einstein distribu-
tion here for the SM particles with an explicit angular dependence (see [59]).

Using these substitutions, the thermally averaged cross-section has the form,

〈σv〉χχ→ψψ =
8x2

K2
2 (x)

∫ ∞

1
ds̃
√
s̃(s̃− 1)

∫ ∞

1
dγ
√
γ2 − 1e−2x

√
s̃γσχχ→ψψ(s, γ) . (A.19)
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Appendix B

Derivation of phase shifts

Note: This Appendix has been reproduced from [2].

We start from the integral

I` = κ

∫ ∞

R0(`)
dR

√

1 +
2β

R
e−R − (`+ 1

2)2

κ2R2
(B.1)

= κ

∫ Rcut

R0(`)
dR

√

1 +
2β

R
e−R − (`+ 1

2)2

κ2R2
+ κ

∫ ∞

Rcut

dR

√

1 +
2β

R
e−R − (`+ 1

2)2

κ2R2
(B.2)

≡ I`1 + I`2 , (B.3)

where R0 = (`+ 1/2)2/(2βκ2) and Rcut is chosen such that R0 � Rcut � 1.

In the first integral we can neglect the first term in the square root and approximate e−R ≈ 1,
leading to

I`1 = κ

∫ Rcut

(`+
1
2 )2/(2βκ2)

dR

√
2β

R
− (`+ 1

2)2

κ2R2
(B.4)

= (`+ 1
2)

∫ Scut

1
dS

1

S

√
S − 1 (B.5)

= (2`+ 1)
(√

Scut − 1− asec(
√
Scut)

)
, (B.6)

with Scut = Rcut(2βκ
2)/(`+ 1

2)2. For Scut � 1 we then find

I`1 − I`−1
1 = −π +

√
2

βRcut

`

κ
. (B.7)

In the second integral, we have (`+ 1
2)2 � κ2R2, such that we can approximate

I`2 ≈ κ
∫ ∞

Rcut

dR

√
1 +

2β

R
e−R − (`+ 1/2)2

2κ2

1√
1 + 2β

R e
−RR2

. (B.8)

We then find
I`2 − I`−1

2 ≈ − `
κ

∫ ∞

Rcut

dR
1√

1 + 2βe−R/RR2
. (B.9)
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To solve this integral, we again split it into two parts, separated atR = Rt defined by 2βe−Rt/Rt =

1, which can equivalently be written as Rt = W (2β):

I`2 − I`−1
2 ≈ − `

κ

∫ Rt

Rcut

dR
1√

1 + 2β
R e
−RR2

− `

κ

∫ ∞

Rt

dR
1√

1 + 2β
R e
−RR2

(B.10)

≈ − `
κ

∫ Rt

Rcut

dR
1√

2βe−RR3/2
− `

κ

∫ ∞

Rt

dR
1

R2
(B.11)

≈ − `
κ



√

2

Rcutβ
−
√

2eRt

Rtβ
+

√
π

β
erfi(

√
Rt/2) +

1

Rt


 , (B.12)

where erfi(x) denotes the imaginary error function. For Rt � 1 we can approximate

√
πerfi

(√
Rt/2

)
≈
√

2

Rt
eRt/2

(
1 +

1

Rt

)
. (B.13)

Now we make use of the defining property of Rt to substitute eRt = 2β/Rt and obtain

I`2 − I`−1
2 ≈ − `

κ

[√
2

Rcutβ
+
Rt + 2

R2
t

]
. (B.14)

As expected, the dependence on Rcut drops out when combining I1 and I2, giving

I` − I`−1 = −π − `

κ

W (2β) + 2

W (2β)2
≡ −π − `

κ
γ(β) . (B.15)

Adding π/2 following Eq. (6.31) yields Eq. (6.68).
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