
Machine Learning for Electronic Intelligence

Von der Fakultät für Elektrotechnik und Informationstechnik
der Rheinisch–Westfälischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades
eines Doktors der Ingenieurwissenschaften

genehmigte Dissertation

vorgelegt von
Sabine Apfeld, M. Sc.

aus Köln

Berichter: Universitätsprofessor Dr.-Ing. Gerd Ascheid
Universitätsprofessor Dr.-Ing. Dirk Heberling
apl. Professor Dr. rer. nat. Wolfgang Koch

Tag der mündlichen Prüfung: 19.10.2021

Diese Dissertation ist auf den Internetseiten
der Universitätsbibliothek online verfügbar.

Acknowledgements

First of all, I would like to thank my supervisor Prof. Gerd Ascheid for giving me the
opportunity to write this thesis at RWTH Aachen University and for his valuable feed-
back throughout the preparation. I would also like to thank Prof. Dirk Heberling for
his interest and for agreeing to review this work. A special thank you to my depart-
ment head Prof. Wolfgang Koch from Fraunhofer FKIE for his constant enthusiasm
and belief in me.

I am very grateful for the support I received from my research group Sensor
and Resources Management at Fraunhofer FKIE. I would like to thank Dr. Alexander
Charlish, Dr. Snezhana Jovanoska, Folker Hoffmann, and Hans Schily for many dis-
cussions and their critical questions. A very special thank you to Dr. Isabel Schlangen,
who never got tired to provide helpful comments on my work. I really enjoyed our
discussions about the formal definition of top k accuracy, passive voice, and hyphens.
After more than one and a half years of working from home, I look forward to seeing
all of you in person again when this pandemic is over!

Furthermore, I would like to thank the sponsor of the two projects that are the
basis of my investigations. Being allowed to use the results helped a lot to reconcile
this thesis and the project work conducted at Fraunhofer FKIE. I would also like to
express my appreciation to Fraunhofer for giving me the opportunity to carry out this
thesis at work and providing a supportive environment.

Last but not least, I would like to thank my husband, my parents, and my sister
for being there for me in stressful times and bringing much needed distraction.

Rösrath, 22/10/2021

Abstract

Electronic intelligence is concerned with gathering information about radar emitters
by intercepting and analysing their signals. By collecting this information, character-
istic features are found that can be exploited to recognise known emitters. Traditional
analysis and identification approaches rely on databases, which contain descriptions
of the radars’ operational modes. In conventional radar systems, modes are designed
to fulfil a certain function and exhibit constant patterns of the waveform paramet-
ers. Agile multifunction radars, however, optimise their waveform parameters for the
specific situation and therefore, they do not exhibit constant patterns. Consequently,
traditional databases cannot effectively represent their emission characteristics. More-
over, they are unable to efficiently capture the relationships between emissions and
hence, they cannot model the emitters’ behaviour.

This thesis suggests a new emission model, which understands the radar emis-
sions as a language with an inherent hierarchical structure of the five modelling
levels letters, syllables, words, commands, and functions. Such an emission model al-
lows exploiting machine learning methods, which are designed for natural language
processing and in particular for the field of representation learning. Based on this
approach, methods are developed for the four tasks of emission prediction, the iden-
tification of the emitter type, the learning of behavioural models, and the recognition
of unknown emitters. To this end, predictive models are created that capture the be-
haviour of agile radar emitters. In addition, several architectures are investigated that
combine multiple emitter models into an ensemble. Two contrasting approaches are
compared for all four tasks throughout this thesis, namely the “memoryless” Markov
chain and the Long Short-Term Memory recurrent neural network, which is designed
to “remember” the past.

The hierarchical structure of the emission model significantly increases the per-
formance of all considered tasks in comparison to traditional signal analysis methods.
These process radar pulses, i.e. letters, based on which emitter identification and re-
cognition of unknown emitters are not successful. Moreover, it is shown that machine
learning methods provide large benefits in comparison to conventional approaches in
the majority of the settings.

Zusammenfassung

Ziel der elektronischen Aufklärung ist das Zusammentragen von Informationen über
Radaremitter durch die Erfassung und Analyse ihrer Signale. Mithilfe der gesammel-
ten Informationen werden charakteristische Merkmale gefunden, anhand derer ein
bereits bekannter Emitter identifiziert werden kann. Traditionelle Ansätze zur Analy-
se und Identifikation benötigen Datenbanken, die Beschreibungen der operationellen
Modi der Radarsysteme enthalten. Bei herkömmlichen Radarsystemen sind solche
Modi speziell für die Erfüllung einer Funktion ausgelegt und weisen konstante Mus-
ter in ihren Wellenform-Parametern auf. Agile Multifunktionsradare optimieren ihre
Wellenform-Parameter hingegen für die vorgefundene Situation und zeigen daher
keine konstanten Muster. Traditionelle Datenbanken können agile Emissionscharak-
teristiken aus diesem Grund nicht effektiv repräsentieren. Zusätzlich sind sie nicht in
der Lage, die Beziehungen zwischen Emissionen effizient darzustellen und sind somit
nicht für die Modellierung des Emitterverhaltens geeignet.

Die vorliegende Arbeit schlägt ein neues Emissionsmodell vor, das die Radaremis-
sionen als eine Sprache mit einer inhärent hierarchischen Struktur begreift, bestehend
aus den fünf Modellierungsebenen Buchstaben, Silben, Wörter, Befehle und Funktionen.
Solch ein Emissionsmodell erlaubt es, die Vorteile von Methoden des maschinellen
Lernens aus dem Gebiet der natürlichen Sprachverarbeitung im Allgemeinen und des
Repräsentationslernens im Speziellen zu nutzen. Basierend auf diesem Ansatz wer-
den in dieser Arbeit Methoden für die vier Aufgaben der Emissionsvorhersage, der
Identifikation des Emittertyps, des Lernens von Verhaltensmodellen sowie der Erken-
nung unbekannter Emitter entwickelt. Zu diesem Zweck werden Vorhersagemodelle
erstellt, die das Verhalten von agilen Radaremittern darstellen können. Zusätzlich
werden verschiedene Architekturen zur Kombination von mehreren Emittermodellen
zu einem Ensemble untersucht. Für alle vier Aufgaben werden zwei gegensätzliche
Methoden betrachtet, die „gedächtnislose“ Markow-Kette und das Long Short-Term
Memory rekurrente neuronale Netz, das speziell dafür entwickelt wurde, sich an die
Vergangenheit zu „erinnern“.

Die hierarchische Struktur des Emissionsmodells steigert die Performanz für alle
vier angeführten Aufgaben im Vergleich zu klassischen Methoden der Signalanalyse
erheblich. Traditionell werden die Pulse der Radare, d.h. die Buchstaben, analysiert,
anhand derer die Emitteridentifikation und die Erkennung unbekannter Emitter nicht
gelingen. Zudem wird gezeigt, dass in der Mehrheit der Szenarien Methoden des
maschinellen Lernens große Vorteile gegenüber konventionellen Ansätzen bieten.

Contents

1 Introduction 1
1.1 Scope and Related Work . 2
1.2 Main Findings . 4
1.3 Structure of the Thesis . 5
1.4 Publications . 5
1.5 General Notation . 6
1.6 Copyright Notice . 6

2 Electronic Intelligence 7
2.1 Radar Basics . 7

2.1.1 Moving Target Indication & Pulse Doppler 8
2.1.2 Multifunction Radar . 9

2.2 Traditional ELINT Processing Chain . 9
2.2.1 Interception & Detection . 9
2.2.2 Pulse Descriptor Word Extraction 10
2.2.3 Deinterleaving . 11
2.2.4 Parameter Extraction . 12
2.2.5 Database Lookup . 14

2.3 Proposed ELINT Processing Chain . 14
2.4 The Five Problems of Electronic Warfare 15

3 Modelling & Learning of Sequential Data 17
3.1 Formal Languages & Grammars . 17
3.2 Finite State Machines . 20
3.3 Petri Nets . 22
3.4 Stochastic Processes . 24

3.4.1 Markov Chains . 24
3.4.2 Hidden Markov Models . 25
3.4.3 Observable Operator Models . 30
3.4.4 Predictive State Representations 34

3.5 Neural Networks . 36
3.5.1 Activation & Output Functions . 37
3.5.2 Error Functions . 39

i

ii CONTENTS

3.5.3 Training . 39
3.5.4 Evaluation Metric . 41
3.5.5 Recurrent Neural Networks . 42
3.5.6 Long Short-Term Memory . 43
3.5.7 Gated Recurrent Unit . 45

4 Modelling of Agile Radar Emissions 47
4.1 Introduction . 47

4.1.1 Hierarchical Emission Model . 47
4.1.2 Word Embedding . 48
4.1.3 Contributions . 50

4.2 Adapted Hierarchical Emission Model . 51
4.3 Modelling the Emissions of Example Emitters 52
4.4 Word Embedding for the Radar Language 55
4.5 Summary . 56

5 Prediction of Radar Emissions 59
5.1 Introduction . 59

5.1.1 Related Work . 59
5.1.2 Contributions . 60

5.2 Approaches . 61
5.2.1 Long Short-Term Memory . 62
5.2.2 Markov Chain . 64
5.2.3 Comparison Methods . 64

5.3 Experimental Results . 64
5.3.1 Evaluation Under Ideal Conditions 65
5.3.2 Evaluation with Missing and Additional Symbols 68
5.3.3 Evaluation of the Impact of Input Encoding 71

5.4 Summary . 72

6 Identification of the Radar Emitter Type 75
6.1 Introduction . 75

6.1.1 Related Work . 76
6.1.2 Contributions . 77

6.2 Approaches . 78
6.2.1 Long Short-Term Memory . 79
6.2.2 Markov Chain . 81
6.2.3 Comparison Methods . 82

6.3 Experimental Results . 82
6.3.1 Evaluation Under Ideal Conditions 83
6.3.2 Evaluation with Missing and Additional Symbols 87

6.4 Summary . 91

7 Ensembles of Predictive Models 93
7.1 Introduction . 93

CONTENTS iii

7.1.1 Contributions . 94
7.2 Ensemble Architectures . 95

7.2.1 Mixture of Experts . 95
7.2.2 Sparsely-Gated Mixture of Experts 95
7.2.3 Stacking (with Input) . 96
7.2.4 Online Accuracy-Based Weighting 97
7.2.5 Model Averaging . 97

7.3 Ensembles of Long Short-Term Memory Experts 98
7.3.1 Data . 98
7.3.2 Implementation . 100
7.3.3 Experimental Results . 105

7.4 Ensembles of Predictive Radar Models . 111
7.4.1 Implementation . 111
7.4.2 Experimental Results . 112

7.5 Summary . 118

8 Recognition of Unknown Radar Emitters 121
8.1 Introduction . 121

8.1.1 Related Work . 122
8.1.2 Contributions . 124

8.2 Training Cases . 124
8.2.1 Generation of Known Unknown Emitters 125

8.3 Approaches . 126
8.3.1 Long Short-Term Memory with Cross-Entropy Loss 128
8.3.2 Long Short-Term Memory with Entropic Open-Set Loss 128
8.3.3 Long Short-Term Memory with Deep Open Classification Loss . 129
8.3.4 Long Short-Term Memory as Unknown Gate 130
8.3.5 Markov Chain . 131
8.3.6 Markov Chain as Unknown Gate 131

8.4 Experimental Results . 132
8.4.1 Evaluation Under Ideal Conditions 134
8.4.2 Evaluation with Missing and Additional Symbols 147

8.5 Summary . 150

9 Conclusions 153
9.1 Future Work . 155

A Appendix: Additional Material 157
A.1 Identification of the Radar Emitter Type 157
A.2 Ensembles of Predictive Models . 159
A.3 Recognition of Unknown Radar Emitters 173

List of Acronyms 181

List of Symbols 183

iv CONTENTS

List of Figures 187

List of Tables 191

List of Publications 195

Bibliography 197

Chapter 1

Introduction

Electronic intelligence (ELINT), a part of the broader field of electronic warfare (EW),
is concerned with collecting information about radar emitters by intercepting and
analysing their signals. Therefore, “it is the remote sensing of remote sensors” [1, p. 1].
This is a completely passive process, in which the ELINT receiver does not produce
any emissions and hence, it cannot be detected based on any own radiation. The
gathered information is used to infer the capabilities of the radars, as well as to de-
termine their type and purpose, which allows to estimate the threat that they pose.
In addition, characteristic properties of the radars’ emissions are found such that
they can be recognised if they are encountered again. This is especially important
for devices like radar warning receivers, which are mounted onto platforms in order
to warn about the presence of signals coming from hostile radars, e.g. missile guid-
ance systems. Traditionally, the information about the radars is stored in databases.
Each radar is therein described by its operational modes, which are characterised by
constant patterns of the waveform parameters. Modes are predefined, hence not ad-
aptive, and specially designed to fulfil a certain function, e.g. long-range search or
track update. Moreover, the number of modes a radar can have is limited.

Since its invention, the way a radar operates has undergone major changes (see
Figure 1.1). In the first radars, the operational mode was selected by a human op-
erator and therefore, the emission parameters changed slowly. Afterwards, radars
became semi-agile in the sense that the mode was selected by a software and hence,
fast switching between different emission patterns became possible. Nowadays, agile
multifunction radar systems are employed more often. This kind of radar does not
have operational modes any more, but chooses the waveform parameters adaptively
and optimised for the encountered situation and task [2–6]. Moreover, with the in-
troduction of active electronically scanned array (AESA) antennas [7, 8], a mechanical
rotation for steering the radar’s beam was replaced by electronic means. Therefore,
modern radars are capable of almost instantaneously steering their beams into nearly

Non-agile Radar

Operator selects mode

Semi-agile Radar

Software selects mode

Agile Radar

Software selects parameters

Figure 1.1: The evolution of radars from non-agile to agile. Operational modes con-
stitute a set of predefined parameters, while agile radars can choose more
flexibly.

1

2 Chapter 1. Introduction

any direction. These capabilities allow agile multifunction radars to perform many
different tasks in a time-multiplexed way.

Agile radars pose several challenges to the traditional ELINT approaches. As
their emissions do not show constant patterns, they cannot be effectively represented
in traditional databases. In addition, databases are not able to efficiently capture
the relationship between different waveform parameters and, as a consequence, are
unable to model the radars’ behaviour. However, many steps in the conventional
ELINT processing chain depend on or benefit from the existence of database entries,
e.g. emitter identification by a database lookup [1]. Consequently, there is a need for
new representations of the signals and the behaviour of agile radars, as well as new
methods for processing them.

In recent years, many successes have been achieved through machine learning
approaches, which are defined in [9, p. 1] as algorithms that “automatically improve
with experience”. They have become very powerful tools, also for tasks that seemed to
be impossible for computers to solve. Consequently, machine learning is a promising
approach for countering the challenges posed by agile radars. This thesis aims to
investigate this direction, whereby mainly exploring two approaches. The first one is
a Markov chain (MC) [10], which was described long before the term machine learning
was introduced. Still, if the transition probabilities of an MC are estimated from
data, it fulfils the requirement to improve with experience. The second approach is a
Long Short-Term Memory (LSTM) neural network [11]. In contrast to the MC, which
does not have a memory, the LSTM is specially designed to keep information about
previous inputs in its internal state.

1.1 Scope and Related Work

This thesis considers the four tasks of learning behavioural emitter models, predict-
ing the next emission of a radar, identifying its type based on the received signal,
and recognising unknown emitters. Predictions facilitate several functions of an EW
device, like sorting the incoming signals by emitter (deinterleaving) [1] or tracking an
emitter in signal space, and are essential to other functions like generating tailored
signal interferences to degrade the performance of the radar (jamming). As stated
above, a reliable identification of the emitter type is crucial for the operation of a
radar warning receiver.

The basis for all presented methods is to consider the radar emissions as a lan-
guage that has an inherent hierarchical structure. The works [12–21] present and
further develop this emission model. The radar language described therein contains
the four levels letters, words, commands, and tasks. To improve the applicability for
ELINT, this thesis extends the language by syllables and replaces the tasks by the more
general category of functions. The definition of tasks by the previous work requires
knowledge of the internal workings of the radar which cannot be obtained solely
from intercepted emissions. An approach from the field of representation learning in
natural language processing (NLP), called word embedding [22], is employed to learn

1.1. Scope and Related Work 3

a dense vector representation of the radar language symbols, i.e. the different letters,
syllables, words, commands, and functions. Several algorithms for learning these
representations exist, e.g. [23–28], while this thesis focuses on the software package
word2vec [23, 24].

Throughout the thesis, the evaluations are performed with simulation data of an
airborne multifunction radar that employs three different resource management meth-
ods of varying complexity. Since the resource management method highly influences
the frequency and agility of the emissions, the radar is regarded as three individual
emitters with the same vocabulary but a different grammar. The signals of the emit-
ters are mapped to a stream of discrete symbols. In an actual application, several
emitters are usually active at the same time and therefore, the received signals need
to be deinterleaved. After this step, separated sequences are obtained, but no inform-
ation about the emitters’ identities is given. Consequently, the overall symbol stream
consists of alternating data of several emitters. In the context of machine learning,
this is referred to as streaming data with sudden, recurring concept drifts [29–33]. For
the application considered in this thesis, a concept corresponds to an emitter.

For predicting the next emission, emitter models are developed using MCs and
LSTMs. In the works on the hierarchical radar language [12–21], an emitter model is
introduced, which is optimised to decode the internal state of the radar but can-
not be used to predict the emissions. In contrast to these works, using machine
learning approaches has the advantage that only data and no prior knowledge of
the radar’s behaviour is required. Other publications on predicting radar emissions
are sparse and the emitters used for evaluation are less complex than in this thesis.
The authors of [34] employ the hierarchical emission model of [12–21] in combin-
ation with predictive state representations (PSRs) [35]. Apart from this model, the
work [36] proposes to use a type of recurrent neural network (RNN), a Gated Recur-
rent Unit (GRU) [37], to predict the next pulse, which corresponds to a letter in the
emission model of this thesis. The radars used for evaluation can emit nine different
words in [34] and at most 100 words (estimated from the description of the emitters)
in [36]. In contrast, the example radars in this thesis use up to 34 440 words. By com-
paring MCs and LSTMs, the present work investigates whether memory is important
for this task.

To identify the type of an emitter, MCs and LSTMs are employed as well. The
identification with RNNs like LSTMs and GRUs is also considered in [36, 38–41].
However, different representations of the signals are used, which makes the meth-
ods only partly comparable to those presented in this thesis. The authors of [42]
employ the hierarchical radar language of [12–21] together with a hidden Markov
model (HMM) [43]. The evaluation is performed at the word level with two radars,
which can make use of the same six words. In contrast, this thesis provides results
for all modelling levels and more complex emitters. In addition, it evaluates how the
length of the intercepted signal, which maps to the number of consecutive symbols
received from the same emitter, influences the identification accuracy.

Moreover, the predictive emitter models are combined into multi-model systems,
which are also called ensembles [44]. Ensemble architectures employ two different

4 Chapter 1. Introduction

concepts in general, which are classifier fusion and classifier selection. In classifier
fusion, the individual predictions of all models, which are also called experts in some
approaches [45, 46], are combined to yield an overall system output [45, 47]. It was
shown that fusing the output of models that fulfil the same task can increase the
overall performance [44]. In classifier selection, only a subset of experts is chosen to
make a prediction [46, 48, 49]. To increase the informative value, this thesis performs
evaluations with a public data set [50] in addition to the combination of the predictive
emitter models into an ensemble. No previous publications on ensembles of predic-
tive radar models are available to the best of the author’s knowledge. Therefore, this
thesis investigates different general concepts [29–32, 45–47].

The present work extends the identification approach to recognise if an input
does not belong to any of the known emitters. In the literature, detecting an un-
known input is generally referred to as open-set or open-world recognition [51–56].
However, there is not much literature on recognising unknown emitters and it partly
lacks details which prohibits a comparison [57–59]. Therefore, this thesis investig-
ates six approaches from the general machine learning literature as a solution to this
problem, whereby four of them are based on LSTMs and two on MCs. In addition to
the conventional cross-entropy loss for training an LSTM, two loss functions are con-
sidered, which are specially designed for open-set recognition [54, 56]. A challenge
in open-set recognition is that training data is only available for “known unknown”
classes, of which the type and structure are known in advance. However, “unknown
unknown” input is encountered only during the deployment of the system. Therefore,
the classifiers are trained with the known unknown data, which should help them to
also recognise unknown unknown input. In addition to the evaluation of different
methods, this thesis presents methods to generate known unknown data.

1.2 Main Findings

By investigating these tasks and approaches, this thesis makes the following main
findings:

• Machine learning approaches developed in the field of NLP can be employed
for representing the signals of agile multifunction radars.

• Modelling the radar signals at different levels in a hierarchical language signific-
antly facilitates the prediction of the multifunction radars’ emissions. Moreover,
this representation is what makes the identification of the emitter types and the
recognition of unknown emitters possible.

• Machine learning approaches provide a large benefit compared to conventional
methods for multiple tasks.

• An approach with an internal memory like the LSTM only has advantages over
an approach without memory like the MC for more complicated tasks. In sim-
pler settings, the less complex approach outperforms the method with memory.

1.3. Structure of the Thesis 5

• Ensembles of predictive emitter models increase the prediction accuracy if the
ensemble architecture is chosen appropriately. Otherwise, the performance de-
creases by corrupting the internal state of the LSTM emitter models.

1.3 Structure of the Thesis

This thesis contains nine chapters, which describe the application of machine learn-
ing approaches in the field of ELINT. Chapter 2 provides an overview of the basics
on radar and an introduction to ELINT. This chapter highlights the challenges in-
troduced by agile radars into the traditional processing chain and suggests a suitable
alternative to circumvent these challenges. Chapter 3 provides background inform-
ation about methods for modelling sequential data like radar signals and compares
them in terms of modelling power or expressiveness. In addition, the corresponding
learning procedures are presented.

The main part of the thesis describes the hierarchical emission model, as well as
the machine learning methods employed. Chapter 4 provides details on the emis-
sion model, which considers the radar emissions as a language with a hierarchical
structure. Furthermore, it presents the applications of the emission model and an al-
gorithm from the word2vec package on the signals of the example emitters. Chapter 5
introduces the predictive emitter models using MCs and LSTMs, which are trained
to predict an emitter’s next letter, syllable, word, command, or function. It gives
the implementation details and information about the learning procedure. More-
over, it provides the evaluation of the methods, both with ideal and corrupted data,
and shows the benefits of employing word embeddings. Chapter 6 presents meth-
ods to identify an emitter based on the symbols it uses. Again, LSTMs and MCs
are compared. The chapter details the training of the LSTMs, which is conducted
with different sequence lengths, i.e. numbers of consecutive symbols received from
the same emitter. Additionally, this chapter provides the evaluation of the methods
with ideal and corrupted symbol sequences. Chapter 7 gives an introduction to en-
semble methods for predictive models processing streaming data in general and for
predictive radar models in particular. It provides the implementation details and the
evaluation of the approaches with the public dataset, as well as with the predictive
emitter models. The latter are additionally evaluated with corrupted data. Chapter 8
introduces several approaches for recognising if an input does not belong to any of the
known emitters. It gives the details on the generation of the known unknown data, as
well as on the implementation of six methods, and presents the evaluation with ideal
and corrupted data. Finally, Chapter 9 provides the summary and conclusions of the
thesis, as well as possible directions for future work.

1.4 Publications

During the work on this thesis, the following publications were made or are currently
under review. Parts of Chapter 4 have been published in [60], as well as parts of

6 Chapter 1. Introduction

Chapter 5. Chapter 6 has been partly published in [61]. The publication [62] presents
content from Chapter 5 and Chapter 6. A paper on the content of Section 7.3 [63] has
been accepted for publication and a paper on the content of Section 7.4 [64] is cur-
rently under review. The findings from Chapter 8 are published in [65]. In addition,
the author of this thesis published the papers [66–68], which are related to the topic
of this thesis but out of scope.

1.5 General Notation

In this thesis, the following general conventions are used. Vectors are denoted with
bold lower case letters and matrices with bold capitals, e.g. a or A, respectively. The
cardinality of a set A, i.e. the number of its elements, is written as |A|. Estimates are
marked with a hat, e.g. â. The letters i and j are used to index sequences, while time
is indexed with the notation t.

1.6 Copyright Notice

Parts of this work have been published or accepted for publication in IEEE [60–63]
© 2019/2020/2021 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creat-
ing new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Chapter 2

Electronic Intelligence

Electronic intelligence (ELINT) deals with the interception, detection, analysis, local-
isation, classification, and identification of radar signals. In contrast to communication
intelligence (COMINT), signals used for communication are not of interest. The pur-
pose of ELINT is to establish situational awareness by identifying signal characterist-
ics which help in determining the functionality, capability, and hence the threat level
of the emitter, and also to provide information which can be used to recognise an
emitter if it is encountered again. ELINT belongs to the broader field of electronic
warfare (EW), which additionally contains electronic attack (or countermeasures) and
electronic protection (or counter-countermeasures).

This chapter gives a short introduction on radar. Afterwards, it describes de-
tails on the traditional ELINT processing chain for emitter identification. Finally, it
presents the ELINT processing chain proposed in this thesis.

2.1 Radar Basics

Before describing the methods used by ELINT, the basics of radar operation are given.
Only the parts relevant for understanding this thesis are discussed, for a more detailed
description see e.g. [7].

Radio detection and ranging (radar) systems work by emitting electromagnetic
energy, which is scattered by a target into many directions. If enough energy is
reflected back to the radar’s receiver, the target is detected. By measuring the time
between the emission of the energy te and the reception of the echo tr and knowing
that electromagnetic signals travel with speed of light c, the distance or range to the
target R is determined by

R =
c(tr − te)

2
. (2.1)

This equation is only strictly true in a vacuum. If the signals propagate through a
medium like air, the speed reduces slightly [7].

Many radar systems work with pulses. The time between two pulses is called the
pulse repetition interval (PRI). It determines the maximum unambiguous range Ru,
which is the maximum range at which the echo from the target is received before a
new pulse is emitted. It is given by

Ru =
c · PRI

2
. (2.2)

7

8 Chapter 2. Electronic Intelligence

It is also common to characterise a waveform by the reciprocal of the PRI, which is
the pulse repetition frequency (PRF),

PRF =
1

PRI
. (2.3)

Echoes of pulses with the same PRI and radio frequency (RF) can be integrated
over time to increase the detection probability. A repetition of pulses with identical
parameters is called a burst or batch or, in the case of coherent integration with pulse-
to-pulse phase coherence, a coherent processing interval (CPI). The amount of time a
radar transmits pulses into the direction of a single target is called the dwell time.

The range resolution ∆R, which is the minimum distance between two targets
such that they can be detected individually, depends on the signal bandwidth (BW) BS,

∆R =
c

2BS
. (2.4)

While the radar is emitting a pulse, its receiver is inactive. Therefore, echoes that
arrive at the radar while it is sending cannot be received. This effect is called eclipsing
and the chance of its occurrence increases with decreasing PRI.

2.1.1 Moving Target Indication & Pulse Doppler

Moving target indication (MTI) and pulse Doppler systems use the Doppler effect to
discriminate between radar echoes returned by moving targets and those by static
objects like buildings, mountains, or the ground, if the radar is airborne. Moreover,
it is used to measure the radial velocity vr between the target and the radar. The
Doppler effect causes a frequency shift fd, depending on the RF of the radar and vr,

fd =
2 · vr · RF

c
. (2.5)

The maximum unambiguous velocity vu a radar can measure depends on its PRI
and RF,

vu =
c

2 · PRI · RF
, (2.6)

where it is assumed that the direction of the movement, i.e. receding or approach-
ing, is known. Velocities that are equal to vu and integer multiples of it are called
blind speeds in MTI systems because they lead to a phase shift of zero and there-
fore, targets moving at these radial velocities are rejected as stationary. Unfortunately,
the maximum unambiguous range Ru increases with increasing PRI whereas vu in-
creases with decreasing PRI. Therefore, the selection of the PRI always comes with a
compromise between unambiguous range and unambiguous velocity measurement.

Traditionally, MTI and pulse Doppler systems were characterised by the way they
performed the filtering of echoes coming from stationary targets [7]. However, in
modern systems, the filtering methods became similar and therefore, a different defin-
ition is applied. According to [7], an MTI radar is a system that operates with a PRI
high enough to provide unambiguous range measurements. On the other hand, pulse

2.2. Traditional ELINT Processing Chain 9

Doppler radars use a low PRI that causes ambiguous range, but unambiguous velocity
measurements. This categorisation can also be expressed in terms of low, medium,
or high PRF systems [8]. Low PRF radars are characterised by unambiguous range
measurements with PRFs between 0.1 kHz and 4 kHz. High PRF systems employ
PRFs from about 30 kHz to 100 kHz and higher, while providing unambiguous velo-
city measurements. Everything in between belongs to the medium PRF regime. Of
course, these values vary between systems as they depend on the furthest range and
highest velocity of potential targets and should only serve as a rough reference.

2.1.2 Multifunction Radar

Directional radars concentrate the transmitted power into a specific direction, whereby
the (main) beam is defined by the sector between the half-power points. With the em-
ployment of active electronically scanned array (AESA) antennas, radars gain the cap-
ability to almost instantaneously steer their beam into almost any direction. AESAs
consist of many radiating elements, which are individually controllable in phase and
amplitude [7]. By doing so, the radar beam can be pointed without mechanically
moving the antenna.

In addition to the fast steering of AESAs, the rapid growth of computational power
and miniaturisation of electronic devices make software controlled, agile multifunc-
tion radars possible. Based on the situation, the software of agile radars adaptively
selects the waveform parameters. For example, if less energy is returned by a target,
e.g. because it is far away, the number of pulses that are transmitted into the direc-
tion of the target is increased to increase the reflected energy. Moreover, blind speeds
and eclipsing can be avoided by adaptively selecting the PRI and RF based on the
target’s range and relative velocity. As the software selects the waveform parameters
adaptively, multifunction radars cannot be described in terms of predefined modes.

Sophisticated radar resource management methods assign the radar resources, e.g.
time or energy, to different tasks. These can be highly adaptive and based on different
parameters, like task priority and utility [6, 69]. For example, efficient radar resource
management allows the radar to spend less energy and time on targets that follow a
straight and therefore predictable trajectory and more on manoeuvring targets.

2.2 Traditional ELINT Processing Chain

Figure 2.1 shows the conventional processing chain for emitter identification. The
individual steps are detailed in the following subsections.

2.2.1 Interception & Detection

The first step in the processing chain is to intercept and detect signals. An inter-
cept occurs if the receiver is tuned to the RF band of the emitter and the emitter
is transmitting into the direction of the receiver. If the ELINT receiver’s antenna is
not omni-directional, it must be directed towards the emitter. If the received signal
strength is sufficiently large, the signal is detected.

10 Chapter 2. Electronic Intelligence

Interception &
Detection

PDW Extraction Deinterleaving
Parameter
Extraction

Database
Lookup

Emitter IDs

Figure 2.1: The traditional ELINT processing chain for emitter identification.

Achieving both a high probability of intercept and detection requires properties of
the receiver that cannot be met at the same time with acceptable costs. Radar systems
operate in a wide frequency range and usually at least the frequencies from 2 GHz to
18 GHz are of interest. Covering the complete frequency range at once with a single
wideband receiver results in a high probability of intercept but reduced sensitivity
and hence, a lower probability of detection. Another approach is using several chan-
nels in the receiver to cover the RF range of interest. The resulting system has a high
probability of intercept and detection, but is expensive, large, and heavy. A common
solution to the problem is to use a relatively narrowband receiver with high sens-
itivity and to divide the frequency range into bands of the receiver’s instantaneous
bandwidth. Now, either an operator can manually search for emissions on the differ-
ent bands or an automatic search can be performed, which visits the RF bands in a
predefined order. A search strategy defines this order, along with the duration of the
visit, which is called the (receiver) dwell time. A common strategy is the band sweep,
which visits the frequency bands periodically from lowest to highest. However, it
bears the risk of a synchronisation between emitter and receiver, such that the emitter
is always sending in a direction away from the receiver when the receiver is tuned
to the correct frequency and therefore, an intercept never occurs. In the literature,
several approaches for optimising search strategies with different goals can be found,
e.g. [70–73]. Two of them are provided by the author of this thesis [66, 67].

2.2.2 Pulse Descriptor Word Extraction

After a signal is intercepted and detected, pulse descriptor words (PDWs) are extrac-
ted from it. Each PDW contains information about a single pulse. Usually, at least
the time of arrival (TOA), RF, and pulse width (PW) are given (see Figure 2.2). Since

PRI

PW

RF

TOA

time

Figure 2.2: Visualisation of the waveform parameters TOA, RF, PW, and PRI.

2.2. Traditional ELINT Processing Chain 11

the PRI is a parameter based on two pulses, it cannot be assigned to the PDWs dir-
ectly. However, it is an important property and further analysed in the subsequent
processing steps. Other common parameters are the angle of arrival (AOA) and
amplitude (Amp) of the signal, as well as the modulation on pulse (MOP), which
describes a change of phase, Amp, or RF within a single pulse.

2.2.3 Deinterleaving

Usually, there is more than one emitter operating within a frequency band. Hence,
the received PDWs must be sorted by emitter in order to analyse them. This process
is called deinterleaving and a schematic representation is shown in Figure 2.3. If
AOA information is available, PDWs can be clustered according to it in a first step.
Since an emitter cannot change the AOA of its signals very fast, the information is
valuable. Also RF can be used for clustering. Per cluster, further analysis of the PDWs
is performed. By calculating the differences of TOA between different PDWs t1 and
t2 with t1 < t2, possible PRIs P̂RI are determined,

P̂RI = TOAt2 −TOAt1 . (2.7)

The difference in TOA is calculated for every pair of PDWs and a histogram, called
the delta-T histogram, is built, which comes with several issues. First of all, many har-
monics, i.e. integer multiples of the true PRI, are observed. A reduction of harmonics
is achieved by the complex delta-T histogram [74]. Instead of adding a count of one
for each occurrence of a possible PRI, a complex phase factor φ(t2, t1) is determined

φ(t2, t1) = exp
(

2πi TOAt2

TOAt2 −TOAt1

)
, (2.8)

where i is the imaginary unit. This factor is chosen such that the counts of the integer
multiples of the true PRIs distribute over the unit circle and almost sum up to zero.

However, another issue that is shared by both histogram methods is the flattening
of the peaks when a modulation on the PRI is used (more details on modulations
are given in the following Section 2.2.4). A comparison of both methods is shown in
Figure 2.4. The input data consists of PDWs from three emitters, two with a stable PRI
of 750 µs and 900 µs, respectively, and one that uses a jittered PRI with values that are
randomly chosen between 330 µs and 390 µs. In the figure, the true PRIs are marked
in red. The two emitters with stable PRI induce clear peaks in both histograms. In the

Sorted pulsesIntercepted pulses

Deinterleaving

Figure 2.3: Schematic representation of the deinterleaving process.

12 Chapter 2. Electronic Intelligence

0 500 1000 1500 2000 2500 3000 3500 4000
TOA difference [µs]

0

250

500

750

1000

1250

1500

1750

Co
un

t

Delta-T Histogram

0 500 1000 1500 2000 2500 3000 3500 4000
TOA difference [µs]

0

250

500

750

1000

1250

1500

1750

Va
lu
e

Complex Delta-T Histogram

Figure 2.4: Comparison of the delta-T and the complex delta-T histogram for finding
possible PRIs in a stream of PDWs. The true PRIs are marked in red.

delta-T histogram, however, there are many harmonics as well. These are suppressed
by using the complex delta-T histogram. The jittered PRI is spread over several bins
with both methods and cannot be clearly detected.

After potential PRIs have been identified by peaks in the histogram, the sequences
of PDWs belonging to the PRIs must be found. This is accomplished by a sequence
search [75]. For each of the candidate PRIs it is checked whether a sequence of PDWs
with this PRI can be found, starting from the PDW with the lowest TOA. In each
step, the candidate PRI is added to the TOA of the current PDW and it is checked
if a PDW with the resulting TOA exists. If some minimum number of matching
PDWs is found, a sequence is declared and the PDWs are removed from the stream.
This procedure is repeated with all candidate PRIs or until less than the required
minimum number of PDWs are left. Information about the possible emitters improves
the deinterleaving results a lot since a sequence search can be performed with the PRIs
given in the database or the bin size of the histogram can be increased when looking
for a jittered PRI.

2.2.4 Parameter Extraction

After the PDWs are deinterleaved into separated sequences, the waveform character-
istics are further analysed in order to match them to a mode or to infer the capabilities
of the radar. Modes are characterised by constant waveform parameters, which are
not adaptive and specially designed to fulfil a certain function. The main parameters
used to describe a mode are the PRI or PRF, RF, and PW, as well as the modulation of
each feature. Examples for common PRI modulations are shown in Figure 2.5. Similar
inter-pulse modulation types are applied to RF and PW.

To determine which modulations are present in the deinterleaved PDW sequence,
it is checked if the characteristics match the description of the common modulations.
For example, to declare a stable PRI, RF, or PW, the standard deviation of the corres-
ponding values from the mean is compared to a threshold. For a stagger PRI, there
must be a constant frame rate in the sequence, which corresponds to the sum of the

2.2. Traditional ELINT Processing Chain 13

0 20 40 60 80
Pulse number

140

145

150

PR
I[
µs

]

Stable / Constant

0 20 40 60 80
Pulse number

50
100
150
200
250
300
350

PR
I[
µs

]

Stagger

0 20 40 60 80
Pulse number

150
160
170
180
190
200

PR
I[
µs

]

Stepped / Dwell and Switch

0 20 40 60 80
Pulse number

400

450

500

PR
I[
µs

]

Jittered / Random

0 20 40 60 80
Pulse number

100

150

200

250

300

PR
I[
µs

]

Sawtooth

0 20 40 60 80
Pulse number

143

145

147

PR
I[
µs

]

Sine

Figure 2.5: Examples of different PRI modulation types.

individual PRI levels in each repetition. Similar characteristics can be exploited for
recognising other modulation types, see e.g. [68,76–79]. The type of radar and its cap-
abilities can be inferred based on the estimated parameters and modulations. Table 2.1
lists the typical purposes of different PRI modulation types. If the PRI modulation of
the intercepted signal is known, the most likely type of the radar is obtained. Further
analysis of the waveform parameters give insight to the capabilities of the radar [1,7].
As described in Section 2.1, the maximum unambiguous range Ru and velocity vu can
be inferred from the measured PRI and RF. Moreover, the range resolution ∆R can
be estimated from the measured bandwidth. From the choice of the PRI, it can be
inferred whether the radar is designed for accurate range or velocity measurements.
If a stepped PRI modulation is observed, it can be concluded that the radar’s goal is
to measure both range and velocity with a good accuracy. The usage of a high PRI
and a stagger modulation, however, indicates that it is an MTI radar.

Table 2.1: Purpose of different PRI modulation types [1].

Modulation Purpose

Stable Search or track, MTI, pulse Doppler

Stagger Elimination of blind speeds (MTI)

Stepped Resolution of ambiguities in range or velocity (pulse Doppler)

Jittered Reduction of jamming effects, complication of PRI analysis

Sliding
(e.g. Sawtooth)

Assurance of a constant altitude coverage while scanning in
elevation, avoidance of eclipsing

Wobulated
(e.g. Sine)

Missile guidance, avoidance of eclipsing, ranging

14 Chapter 2. Electronic Intelligence

Table 2.2: Simplified example of an emitter mode database.

PRI [µs] RF [GHz] PW [µs]

Emitter Mode min max mod min max mod min max mod

Em01
M01 740 760 stable 10.0 11.0 stepped 7 8 stable

M02 400 460 jittered 9.5 9.8 stable 4 5 jittered

Em02
M01 855 905 stable 4.5 5.0 stable 8 9 stable

M02 200 700 stagger 4.5 5.5 stable 2 7 stagger

M03 300 900 sine 4.5 5.0 stable 3 9 sine

Em03
M01 880 920 stable 4.7 5.3 stable 8 9 stable

M02 900 1800 sawtooth 4.0 5.0 stable 9 18 sawtooth

2.2.5 Database Lookup

To finally identify an emitter, the parameters of the deinterleaved PDW sequences are
matched against an emitter mode database [1]. A simplified example of such a data-
base is given in Table 2.2. Real databases contain more information like the number
of pulses per level of a stepped PRI or the individual levels of a stagger modulation.
A range of values is given for each parameter because of measurement uncertainties
and the emitters’ ability to change their parameters within certain limits. If the para-
meters of a PDW sequence match a certain mode, the corresponding emitter ID and
possibly mode ID are provided at the output of the system. However, there might be
ambiguities in the data. For example, when receiving a PDW sequence with a stable
PRI of 900 µs, a stable RF of 5 GHz, and a stable PW of 8 µs, it is not clear whether
this sequence belongs to mode M01 of emitter Em02 or mode M01 of emitter Em03.

2.3 Proposed ELINT Processing Chain

Figure 2.6 shows a schematic visualisation of the processing chain as proposed in
this thesis. The first three steps are identical to the traditional processing chain (see
Figure 2.1). The parameter extraction step is replaced by a symbol extraction step.
As the behaviour of agile multifunction radars cannot be effectively represented in a
traditional database, the emission model presented in this thesis describes the radar
emissions as a language with a hierarchical structure. The symbol extraction step
maps the deinterleaved PDW sequence to the symbols of the radar language. After-
wards, the symbol sequence is processed by an emitter identification approach, which
in this thesis is either a Long Short-Term Memory (LSTM) or a Markov chain (MC).
One of the outputs of the overall processing chain is then the determined emitter ID
or several IDs with the corresponding probabilities. If the input data belongs to a

2.4. The Five Problems of Electronic Warfare 15

In
te

rc
ep

ti
o

n
 &

D

et
ec

ti
o

n

P
D

W
 E

xt
ra

ct
io

n

D
ei

n
te

rl
ea

vi
n

g

Sy
m

b
o

l E
xt

ra
ct

io
n

Em
it

te
r

Id
en

ti
fi

ca
ti

o
n

A
n

al
ys

is

Emitter IDs

Em
it

te
r

M
o

d
el

s

Emission
Prediction

known

unknown

Figure 2.6: The processing chain for emitter identification and emission prediction
proposed in this thesis.

known radar, a single emitter model or an ensemble of those is activated to make a
prediction on the next emission of the radar. Otherwise, the signal is recorded for
further analysis. The steps covered in this thesis are the emission prediction using the
emitter models, the identification of emitters based on their symbols, and the recog-
nition of unknown emitters. In addition, strategies for combining the emitter models
into an overall system are presented.

2.4 The Five Problems of Electronic Warfare

The four problems of EW are defined in [80] as:

1. Classification/Identification: Given a sequence of observations and several radar
models: How to chose the radar model which best describes the observations?

2. Decoding: Given a sequence of observations and a radar model: How to chose
a sequence of internal radar states that best explains the observations?

3. Prediction: Given a sequence of observations and a radar model: How to com-
pute the next expected observation and its probability?

4. Learning/Training: Given only a sequence of observations: How to adapt the
parameters of the radar model (or train the radar model) to fit the observations?

This thesis introduces a fifth problem:

5. Unknown Emitter Recognition: Given a sequence of observations and several
radar models: How to recognise if none of the radar models is suitable to de-
scribe the observations?

The present work provides new solutions to the first, third, fourth, and fifth problem.

Chapter 3

Modelling & Learning of Sequential
Data

This chapter presents different general possibilities for modelling systems that pro-
duce sequential data like radar signals. If training procedures are available, which
adapt the model parameters based on data, this chapter also highlights the corres-
ponding methods. One of the most commonly used system category is the discrete
event system (DES). DESs are defined in [10] as systems with a discrete state space
for which the evolution of states only depends on the occurrence of asynchronous or
clocked events. In addition, they are dynamic (the output depends on previous in-
puts), time-invariant (the behaviour does not change over time) and nonlinear. Mod-
elling these kinds of systems is part of system theory, which is an area of engineering.
The following section introduces formal languages and grammars as they are strongly
linked to modelling DESs with e.g. finite state machines (FSMs) and hidden Markov
models (HMMs).

3.1 Formal Languages & Grammars

A formal language is a collection of sentences of finite length, which are constructed
based on symbols from a finite alphabet [81]. A grammar can be regarded as a pro-
cedure that lists the sentences of a language. Formally, a grammar G is defined as [82]

G = (N , Σ, P, S), (3.1)

with

N finite set of nonterminal symbols, i.e. the symbols that are replaced according
to the production rules and are not part of the final words,

Σ finite set of terminal symbols, i.e. the grammar’s alphabet,

P set of production rules,

S S ∈ N , start symbol.

From the grammar’s production rules, one can infer the words that can be gener-
ated. A production rule may be of the form Λ → γ with Λ ∈ N and γ ∈ (N ∪ Σ)∗.
This rule means that a nonterminal symbol Λ can be replaced by a sequence of other
symbols. On the left hand side of a production rule, there must be at least one nonter-
minal symbol in addition to some optional terminal symbols. The star operator ∗ is
called the Kleene closure or Kleene star. It describes the set of all words which can be

17

18 Chapter 3. Modelling & Learning of Sequential Data

formed by arbitrary combinations of the language’s symbols and words. This set also
contains the empty word χ. In this case, the expression γ ∈ (N ∪ Σ)∗ means that γ is
an arbitrary sequence of nonterminal and terminal symbols.

The production rules are best explained using an example. Let a grammar G =
(N , Σ, P, S0) be defined as

N = {S0, S1}, (3.2)
Σ = {a, b, c}, (3.3)
P = {S0 → aS1|b, (3.4)

S1 → cS0|a}. (3.5)

The first production rule (3.4) defines that the start symbol S0 can either be replaced
by the sequence consisting of the terminal symbol a and the nonterminal symbol S1 or
the terminal symbol b. Analogously, the second rule (3.5) means that the nonterminal
symbol S1 can either be replaced by the sequence consisting of the terminal symbol c
and the nonterminal symbol S0 or the terminal symbol a. By applying these rules,
one can derive, amongst others, these sequences of the language

S0 ⇒ b,
S0 ⇒ aS1 ⇒ aa,
S0 ⇒ aS1 ⇒ acS0 ⇒ acb,
S0 ⇒ aS1 ⇒ acS0 ⇒ acaS1 ⇒ acaa,
S0 ⇒ aS1 ⇒ acS0 ⇒ acaS1 ⇒ acacS0 ⇒ acacb.

This grammar defines a language with an infinite number of sequences or words of
finite length. Words of the language either start with a or b while the word starting
with b only consists of this one symbol. In addition, all words with two or more
symbols end with aa or cb.

In 1959, Noam Chomsky divided formal grammars into different categories based
on the properties of their production rules [81]. This classification is known as the
Chomsky hierarchy and is shown in Figure 3.1. The regular grammars are the least
expressive ones, in terms of the restrictions posed on the production rules described

context-sensitive

context-free

regular

unrestricted

Figure 3.1: Visualisation of the Chomsky hierarchy for classes of formal grammars.

3.1. Formal Languages & Grammars 19

below, whereas the unrestricted grammars are equivalent to Turing machines. The
less restricted grammars contain the more restricted ones as proper subsets. A Turing
machine is a mathematical model of computation which is especially important for
computability theory in the area of theoretical computer science. It is a purely theoret-
ical model used for analysing what a computer can actually compute and is therefore
not further considered here. In the following sections it is only used for comparison
of expressiveness. Details on Turing machines can be found in [83].

An overview of the classes of formal grammars and examples of models, that are
able to represent them, is shown in Table 3.1. The Chomsky hierarchy defines the
classes as follows [15, 81]:

• Regular grammar. Only production rules of the form Λ → aΠ or Λ → a are
allowed, with Λ, Π ∈ N and a ∈ Σ. This means that the left hand side of the rule
can only consist of one nonterminal symbol and no others symbols. The right
hand side can consist of only one terminal symbol or one nonterminal symbol
followed by a terminal symbol. This is the only type of grammar which can be
represented by FSMs, MCs, and HMMs (see Sections 3.2, 3.4.1, and 3.4.2).

• Context-free grammar. Only production rules of the form Λ → β with Λ ∈ N
and β ∈ (N ∪ Σ)∗, β ̸= χ are allowed. On the left hand side, there must be
one nonterminal symbol and on the right hand side, any sequence of symbols is
allowed except for the empty word. This type of production rules includes the
regular grammars. This can easily be seen as β is only restricted by exclusion
of the empty word. Hence, it can be replaced by aΠ or a, which converts the
production rules to those of regular grammars. Context-free grammars can be
represented by pushdown automata, which are purely theoretic and therefore
not considered here. An introduction can be found in [83].

• Context-sensitive grammar. Production rules of the form α1Λα2 → α1βα2 are
allowed, with Λ ∈ N , α1, α2, β ∈ (N ∪ Σ)∗, and β ̸= χ. This means that the
replacement of Λ can be dependent on the context given by α1 and α2. By
excluding the empty word for β, the deletion of symbols is prohibited. For the
context α1, α2 the empty word is not excluded, such that this type of grammar
includes the regular and context-free grammars. Context-sensitive grammars
can be represented by linear-bounded Turing machines.

• Unrestricted grammar. All production rules of the form α1Λα2 → γ are allowed.
It holds that α1, α2, γ ∈ (N ∪ Σ)∗ without any restrictions. These grammars can
be represented by Turing machines and recurrent neural networks (RNNs) (see
Section 3.5.5).

In addition to this categorisation, the self-embedding property is important. A gram-
mar is self-embedding if a derivation of the form Λ ⇒ · · · ⇒ α1Λα2 can be achieved
by the application of potentially several production rules, with Λ ∈ N , α1, α2 ∈
(N ∪Σ)∗, and α1, α2 ̸= χ. The work [84] shows that a non self-embedding context-free
grammar defines a regular language.

20 Chapter 3. Modelling & Learning of Sequential Data

Table 3.1: Chomsky hierarchy of formal grammars with suitable models.

Grammar Model

Regular Finite state machine, Markov chain, hidden Markov model

Context-free Pushdown automaton

Context-sensitive Linear-bounded Turing machine

Unrestricted Turing machine, recurrent neural network

As an extension to (deterministic) grammars, a stochastic variant can be defined.
Therein, every production rule is assigned a probability, while the probabilities of the
rules with identical left hand side must sum to 1. The probability of a derivation, i.e.
one specific way to reach the final output from the start symbol, is equal to the product
of the probabilities of the applied production rules. For example, the deterministic
grammar in (3.2) to (3.5) can be converted to a stochastic grammar defined by

N = {S0, S1}, (3.6)
Σ = {a, b, c}, (3.7)

P = {S0
0.8−→ aS1, (3.8)

S0
0.2−→ b, (3.9)

S1
0.7−→ cS0, (3.10)

S1
0.3−→ a}. (3.11)

3.2 Finite State Machines

A possible model for DESs is the finite state machine (FSM). A deterministic FSM H
is defined by [10]

H = (X ,F , fX , Γ, x̌0,Xm), (3.12)

with

S4S1 S2

S3

a

b

a

a c

b

c

Figure 3.2: A state diagram of an FSM. The set of states is X = {S1, S2, S3, S4},
the set of events is F = {a, b, c}, the initial state is x̌0 = S1, the set of
accepting states is Xm = {S4}.

3.2. Finite State Machines 21

X set of states (for FSMs, this is a finite set),

F finite set of events in H,

fX fX : X ×F → X , state transition function,

fX (x̌, ě) = x̌′ means that event ě in state x̌ causes a transition to x̌′,

Γ Γ : X → P(F), function of active or feasible events,

Γ(x̌) is the set of events ě for which fX (x̌, ě) is defined,

P(F) power set of F ,

x̌0 initial state,

Xm set of marked or accepting states, Xm ⊆ X .

Figure 3.2 shows the state diagram of an FSM. The set of states X consists of S1,
S2, S3, and S4. S1 is the initial state and marked by an arrow. The only accepting state
in Xm is S4, which is marked by a circle with two lines. F = {a, b, c} defines the set
of events. As e.g. the event c is not feasible in state S3 and therefore Γ(S3) = {a, b},
the state transition function fX is only partially defined.

DESs like FSMs are commonly represented by formal languages defined on the
set of events F . This language consists of a sequence of symbols, which correspond
to words, of finite length which are generated from the set of events [10]. Based on
the set F = {a, b, c} from Figure 3.2, different languages can be defined, e.g.

L1 = {χ, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc}. (3.13)

This language contains all words up to a length of two, including the empty word χ.
However, an infinite number of words of finite length can be defined on an alphabet,
which is in this case the set of events, e.g.

L2 = {χ, a, b, c, d, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, aac, aba, abb, . . . }. (3.14)

Using the representation as a formal language, the automaton in Figure 3.2 only
accepts those words starting with an a as only those can leave state S1. In addition,
the words need to end with b or c to reach the only accepting state S4. For example,
this FSM accepts the word aaccb but not acc as this word ends in S3.

Up to now, every event causes a clearly defined state transition. When modelling
a system of which the dynamics are not entirely known, stochastic FSMs can be used.
In general, these are defined in the same way as deterministic automata, except for
the state transition function fX , which returns a set of possible next states instead of
a single one. Hence, it is defined as fX : X ×F → P(F). In addition, the initial state
can be composed of a set of possible initial states.

FSMs have restricted expressiveness. For example, it is not possible to construct
an FSM which only accepts the language of palindromes, i.e. words which are the
same forwards and backwards. The reason is that an FSM does not have a memory.
At a certain point in time, it only knows its current state but not the sequence of
states which led to it. Therefore, an FSM which accepts the palindrome aabaa would

22 Chapter 3. Modelling & Learning of Sequential Data

also accept the sequence aaba. Of course, one could design an FSM in which the
number of states corresponds to the number of symbols in the palindrome aabaa.
However, this FSM could not accept palindromes of arbitrary length, e.g. it would not
accept the palindrome aaabbaaa. In general, FSMs can only accept the class of regular
grammars. The grammar of the palindrome language, however, is context-free and
self-embedding.

3.3 Petri Nets

DESs can as well be modelled by Petri nets, which were developed in the 1960s by
Carl Adam Petri. In general, a Petri net is represented by a graph that consists of two
different types of nodes, the places and the transitions. Only nodes of different types
can be connected to each other. Formally, a Petri net graph GP is defined by [10]

GP = (P, T, A, fw), (3.15)

with

P finite set of places,

T finite set of transitions,

A A ⊆ (P× T) ∪ (T× P), set of arcs connecting places and transitions in GP,

fw fw : A→ {1, 2, 3, ...}, weight function for the weights of the arcs.

Places can be interpreted as conditions that need to be fulfilled for a transition,
which resembles an event. To mark the fulfilment of conditions, tokens are used. A
marked Petri net graph Gm

P is therefore defined as [10]

Gm
P = (P, T, A, fw, x), (3.16)

with definitions as above and

x marking of the places P = {p1, p2, . . . , p|P|},
x = [x(p1), x(p2), . . . , x(p|P|)] ∈N|P|.

This means that x is a vector that stores the number of tokens for every place in P.
Figure 3.3a shows an example of a Petri net graph with three tokens. Places are visu-
alised by circles and transitions by vertical lines. The set of places is P = {p1, p2, p3, p4}
and the set of transitions is T = {t1, t2, t3}. The place p1 has two tokens, represented
by triangles, and p4 has one. As the weights of the arcs are all 1, they are not shown.

The distribution of the tokens, i.e. the vector x, constitutes the current state of
the Petri net. State transitions are represented by moving the tokens through the net,
which happens when a transition “fires”. A transition can only fire if all places that
are input to the transition have at least as many tokens as connecting arcs multiplied
by the arc weights. For example, the transition t2 in Figure 3.3a needs one token from

3.3. Petri Nets 23

p1

p2

p3

p4t1

t2

t3

(a) A Petri net graph with three tokens.

p1

p2

p3

p4t1

t2

t3

(b) State of the Petri net after firing of
transition t1.

Figure 3.3: Example of a Petri net graph in different states. The places are P = {p1,
p2, p3, p4}, the transitions are T = {t1, t2, t3}. All arc weights are one.

the place p2 and another one from p3 to fire. The state in Figure 3.3a allows firing
of transitions t1 or t3. The order of firing is not defined for Petri nets. Considering
the scenario of t1 firing, the next state is shown in Figure 3.3b. Since transition t1 is
connected to two places p2 and p3, it provides one token to each of these places, i.e.
the number of tokens increases. Conversely, the number of tokens can also decrease.
As a consequence, Petri nets have an infinite state space.

Formally, the transition function fT : N|P| × T → N|P| of a Petri net (P, T, A, fw, x)
is defined for a transition tj ∈ T if and only if [10]

x(pi) ≥ fw(pi, tj) for all pi ∈ I(tj). (3.17)

Here I(tj) is the set of places that are input to transition tj. If fT(x, tj) is defined, the
new state x′ = fT(x, tj) is given by

x′(pi) = x(pi)− fw(pi, tj) + fw(tj, pi), i = 1, . . . , |P|. (3.18)

context-free

regular

unrestricted

Petri

context-sensitive

context-free

regular

Figure 3.4: The relationship between Petri net languages and the Chomsky hier-
archy.

24 Chapter 3. Modelling & Learning of Sequential Data

Due to their infinite state space, Petri nets are more expressive than FSMs, i.e. for
every FSM an equivalent Petri net can be designed but not vice versa [10]. To de-
termine an accepted language analogous to FSMs, states of the Petri nets are specified
as accepting. However, Petri nets are not able to accept the language of palindromes
either [85]. The Petri net language cannot be exactly mapped to the Chomsky hier-
archy. The author of [86] shows that all Petri net languages are subsets of the context-
sensitive languages but there exists context-free languages which are not Petri net
languages, e.g. the palindrome language. Figure 3.4 visualises this relationship.

3.4 Stochastic Processes

If not all circumstances that lead to a certain system state are known, the process
seems to be random to an observer. Such sequences of states can be described by
the mathematical concept of stochastic or random processes. A family of random
variables {Xt}t∈T indexed by T ⊆ [0, ∞) is called stochastic or random process. Usu-
ally, the index is interpreted as time. If T = N (or T = N0), then {Xt}t∈T is a
discrete-time and if T = [0, ∞) a continuous-time process [87].

3.4.1 Markov Chains

A special variant of a stochastic process is the Markov process, which is in the case
of a discrete state space also called Markov chain (MC). A Markov process describes
the evolution of systems that can take on different states. It has the “memoryless”
property, i.e. the probability of the next state only depends on the current state but
not on the previous states. For modelling of DESs, the definition of a discrete-time
MC is of importance [87]. A stochastic process {Xt}t∈N0 , which can take on values in
an at most countable state space X is called MC or fulfils the Markov property if

P(Xt+1 = x̌t+1|Xt = x̌t, Xt−1 = x̌t−1, . . . , X1 = x̌1, X0 = x̌0)

=P(Xt+1 = x̌t+1|Xt = x̌t)
(3.19)

holds for all t ∈ N0, all x̌0,x̌1,. . . ,x̌t,x̌t+1 ∈ X , if the conditional probabilities are well
defined, i.e. if P(Xt = x̌t, ..., X1 = x̌1, X0 = x̌0) > 0. Otherwise, a division by 0 would
occur according to Bayes’ rule. In the following, the random variable is omitted and
the above formula abbreviated by

P(x̌t+1|x̌t, x̌t−1, . . . , x̌1, x̌0) = P(x̌t+1|x̌t). (3.20)

The transition probabilities from state x̌t to state x̌t+1 are defined in a transition
matrix A ∈ R|X |×|X |. To determine the state transition probabilities for every state
x̌i, x̌j ∈ X from data, the number of transitions between x̌i and x̌j are counted and
normalised by the total number of transitions from state x̌i to every other state in X ,

P(x̌j|x̌i) = aij =
count(x̌i, x̌j)

∑x̌∈X count(x̌i, x̌)
, (3.21)

where count(x̌i, x̌j) is the number of state transitions from x̌i to x̌j.

3.4. Stochastic Processes 25

cloudy

sunny

rainy

0.5

0.4

0.2
0.4

0.5

0.4

0.1

0.4 0.1

Figure 3.5: Example of an MC that describes the transition probabilities of the
weather between “sunny”, “cloudy”, and “rainy”.

The Markov property states that only the immediate predecessor state influences
the current state. Moreover, the duration of the state is irrelevant as well. An example
is given in [10]: Assume the process has made a transition to state x̌i at time t1. At
time t2 > t1 the process is still in state x̌i, hence no transition took place. Based on the
Markov property, trying to predict the next state based on the information “the state
at time t2 is x̌i” must yield the same result as a prediction based on the information
“the state at time t2 is x̌i and it was x̌i in the interval [t1, t2]”. It follows that the
retention times are described by an exponential distribution. The proof can be found
in [10]. Semi-Markov processes do not have this restriction, i.e. the retention time in
each state can be described by an arbitrary distribution. However, if an event occurs,
these processes behave like conventional Markov processes such that the transition
probability to another state only depends on the current state.

MCs can be represented by state diagrams, as shown in Figure 3.5. The three
states of this chain are “sunny”, “cloudy”, and “rainy”. The values attached to the
arrows between the states show the transition probabilities.

To equip the MC with more “memory”, higher order variants are defined, for
which the probability of the next state does not only depend on the current state but
on the last n states,

P(x̌t+1|x̌t, x̌t−1, . . . , x̌1, x̌0) = P(x̌t+1|x̌t, x̌t−1, . . . , x̌t−n+1). (3.22)

However, the size of the transition matrix A grows from dimension |X | × |X | for a
first order MC to |X |n × |X | with order n.

3.4.2 Hidden Markov Models

A hidden Markov model (HMM) introduces another layer to an MC. In an HMM, the
states {Xt} of the process are not directly observable but only its “emissions” {Yt}.
The sequence of hidden states is described by an MC. In every state a symbol from
the alphabet Y is “emitted” with a certain probability. These symbols are observable.
Formally, a first order HMM is defined by [43]

λ = (X ,Y , A, B, π), (3.23)

26 Chapter 3. Modelling & Learning of Sequential Data

cloudy

sunny

rainy

0.5

0.4

0.2
0.4

0.5

0.4

0.1

0.4 0.1

umbrella sunglasses

0.6 0.4

0.1 0.9
0.20.8

Figure 3.6: Example of an HMM based on the MC from Figure 3.5. It models the ob-
servations “sunglasses” and “umbrella” depending on the hidden states
of the weather.

with

X set of states, i.e. the possible values of {Xt},
Y alphabet of the observations,

i.e. the possible values of the emissions {Yt},
A ∈ R|X |×|X | matrix of the transition probabilities between states

of the underlying Markov chain,

B ∈ R|X |×|Y| matrix of emission probabilities,

π ∈ R|X | probability distribution of the initial state.

As the entries of both matrices A and B represent probabilities, they must be non-
negative and the rows must sum up to 1.

As an example the MC from Figure 3.5 is extended. Assume a person spends a
few days in a room without a window and cannot observe the weather directly. Based
on the observations that a visitor carries sunglasses or an umbrella, the person can
calculate the probabilities of the hidden states of the weather. Figure 3.6 shows the
HMM with the observations and the corresponding emission probabilities in blue.
Here, X = {x̌s, x̌c, x̌r} with x̌s = sunny, x̌c = cloudy, and x̌r = rainy. The set of
observations corresponds to Y = {y̌s, y̌u} with y̌s = sunglasses and y̌u = umbrella.

Three problems have been defined [43], which got to be known as the classical
problems of HMMs:

1. Evaluation: Given a sequence of observations O and an HMM λ. How can the
probability that the model generated the sequence P(O|λ) be computed? This
problem is solved by the forward algorithm.

3.4. Stochastic Processes 27

2. Decoding: Given a sequence of observations O and an HMM λ. How can a
sequence of internal states {Xt} that describes the observations best, i.e.

argmax{Xt} P(O|{Xt}, λ), (3.24)

be selected? A solution is found by the Viterbi algorithm.

3. Learning/Training: Given a set of sequences of observations and an HMM. How
can the parameters of the HMM be adapted such that the probability that it
generates the sequences is maximised? A solution can be found using the Baum-
Welch algorithm.

For the solution of the first problem, the evaluation, an example is given. Assume
that for the HMM in Figure 3.6 the observations O = y̌uy̌uy̌s are made for three con-
secutive days. To determine the probability of this sequence P(O|λ), the probabilities
of all possible sequences of internal states that can lead to O need to be summed.
The probability of the state sequence is calculated by the product of the transition
probabilities between the states given by A and the emission probabilities in each
state given by B. Let the distribution for the initial state be 1/3 for each of the states,
i.e. π = (πx̌s , πx̌c , πx̌r) = (1/3, 1/3, 1/3). For easier readability, the dependency on
the model λ is implicitly assumed in the following such that e.g. P(x̌s|x̌c) is written
instead of P(x̌s|x̌c, λ). The probability of the sequence O for the sequence of internal
states x̌s x̌c x̌s is then calculated by

P(O|x̌s, x̌c, x̌s) = πx̌s · P(y̌u|x̌s) · P(x̌c|x̌s) · P(y̌u|x̌c) · P(x̌s|x̌c) · P(y̌s|x̌s)

= 1/3 · 0.1 · 0.4 · 0.6 · 0.4 · 0.9 = 0.00288.
(3.25)

To determine the probability for the given sequence, the probabilities of all state se-
quences need to be summed,

P(O|λ) =P(O|x̌s, x̌s, x̌s) + P(O|x̌s, x̌s, x̌c) + P(O|x̌s, x̌s, x̌r) + P(O|x̌s, x̌c, x̌s)+

P(O|x̌s, x̌c, x̌c) + P(O|x̌s, x̌c, x̌r) + P(O|x̌c, x̌s, x̌s) +
(3.26)

Since this naive approach is very inefficient, a more sophisticated method called the
forward algorithm was developed [43]. It uses techniques of dynamic programming
to store intermediate results and hence prevents calculating the same probabilities
multiple times. The steps are as follows:

1. Calculate the initial probability for every state x̌ ∈ X based on the first obser-
vation, P(x̌|y̌1). For example for the state “cloudy” and the observation “um-
brella”,

P(x̌c|y̌u) = πx̌c · P(y̌u|x̌c) = 1/3 · 0.6 = 0.2. (3.27)

2. Calculate the probability for every possible state transition, depending on the
second observation. For example for the state “cloudy” with the probability 0.2
obtained in the first step and the second observation “umbrella”, the probability
for a state transition to the state “sunny” is given by,

P(x̌s|x̌c) = P(x̌c|y̌u) · P(x̌s|x̌c) · P(y̌u|x̌s) = 0.2 · 0.4 · 0.1 = 0.008. (3.28)

28 Chapter 3. Modelling & Learning of Sequential Data

3. For the third observation, the probability of the state is computed by the sum Psum
of the possible state transitions obtained in the second step. This sum corres-
ponds to the probability of a certain state given the observations seen so far.
Apart from that, the procedure is the same as in the step before. The sum Psum
is called forward probability.

4. Repeat the calculation of the probabilities of the state transitions and observa-
tions until the end of the observation sequence.

5. The final result is the sum of the sum [sic] of the state probabilities in the last
step.

A solution to the calculation of the most probable sequence of internal states given
the observations, i.e. the decoding problem, is provided by the Viterbi algorithm,
which uses dynamic programming [43]. The algorithm works as follows:

1. Calculate the initial probability for every state based on the first observation.
For example for the state “cloudy” and the observation “umbrella”,

P(x̌c|y̌u) = πx̌c · P(y̌u|x̌c) = 1/3 · 0.6 = 0.2. (3.29)

2. Calculate the probability for every possible state transition, depending on the
second observation. For example for the state “cloudy” with the probability 0.2
obtained in the first step and the second observation “umbrella”, the probability
for a state transition to the state “sunny” is given by

P(x̌s|x̌c) = P(x̌c|y̌u) · P(x̌s|x̌c) · P(y̌u|x̌s) = 0.2 · 0.4 · 0.1 = 0.008. (3.30)

3. For the third observation the probability of the state is assumed to be the max-
imum Pmax of the possible state transitions obtained in the second step. For the
state “sunny” this is the state transition from “cloudy”. Apart from that, the
procedure is the same as in the step before.

4. Repeat the calculation of the probabilities of the state transitions and observa-
tions until the end of the observation sequence.

5. Determine the final state with the largest probability and trace back the path
that led to this state. This path is the most probable sequence of hidden states.
In this example, it is x̌r x̌c x̌s.

As can easily be seen, this algorithm is very similar to the forward algorithm. The first
two steps are even identical. However, in the third step the maximum of probabilities
and not the sum is used. Of course, the procedures differ in the last step as the goals
of the calculations are different.

The third problem, i.e. training, is solved by the Baum-Welch algorithm [43]. It is
an iterative procedure and a variant of the expectation-maximisation (EM) algorithm,
which is used to estimate the matrix of state transition probabilities A and the matrix

3.4. Stochastic Processes 29

of emission probabilities B. Since the states of an HMM cannot be directly observed,
the state transition probabilities cannot be determined by counting according to (3.21)
but need to be estimated. For a given observation sequence O = y̌1y̌2...y̌|O| the prob-
ability that the HMM is in state x̌i at time t and performs a transition to state x̌j at the
next time step t + 1 is calculated for every time step t. This probability is normalised
by the summed probabilities for a transition to all states x̌ ∈ X ,

P̂(x̌j|x̌i) = âij =
∑|O|−1

t=1 P(Xt = x̌i, Xt+1 = x̌j|O, λ)

∑|O|−1
t=1 ∑x̌∈X P(Xt = x̌i, Xt+1 = x̌|O, λ)

. (3.31)

The term P(Xt = x̌i, Xt+1 = x̌j|O, λ) is commonly abbreviated by ξt(x̌i, x̌j) in the
literature. It is given by

ξt(x̌i, x̌j) =
P(x̌i, y̌1, . . . , y̌t|λ) · P(x̌j|x̌i) · P(y̌t+1|x̌j, λ) · P(y̌t+1, . . . , y̌|O||x̌j, λ)

P(O|λ) . (3.32)

Here, the term P(y̌t+1, y̌t+2, . . . , y̌|O||x̌j, λ) is called backward probability in analogy
to the forward probability defined by Psumt(x̌i) = P(x̌i, y̌1, y̌2, . . . , y̌t|λ) as described
above. It is calculated analogously to the forward probability. Determining the de-
nominator P(O|λ) is the problem of evaluation, which is solved by the forward al-
gorithm. The estimation of the transition probability contains the transition probab-
ility as well, which is the value from the previous step. If no a-priori information is
available, the parameters are initialised randomly. To estimate the emission probabil-
ity of every state, the probability that the HMM is in state x̌i at time step t is needed,

γt(x̌i) = P(Xt = x̌i|O, λ) =
P(x̌i, O|λ)

P(O|λ) =
P(x̌i, y̌1, . . . , y̌t|λ) · P(y̌t+1, . . . , y̌|O||x̌i, λ)

P(O|λ) .

(3.33)
Now, the above probabilities for every emission y̌ ∈ Y need to be summed, whereby
the observation y̌t needs to be equal to the emission y̌. An auxiliary variable is defined,

γt(x̌i, y̌) =

{
γt(x̌i) if y̌t = y̌,
0 else.

(3.34)

Afterwards, normalisation by the probabilities of every emission is performed,

P̂(y̌|x̌i, λ) = b̂x̌i(y̌) =
∑|O|t=1 γt(x̌i, y̌)

∑|O|t=1 γt(x̌i)
. (3.35)

The iterative procedure for estimating the transition and emission probabilities
works as follows:

1. Initialise A, B.

2. Calculate ξt(x̌i, x̌j) for every time step t and every state x̌i, x̌j according to (3.32).

30 Chapter 3. Modelling & Learning of Sequential Data

S0 S1R0 R1

ab c a

1 1 1 1

0.2

0.8

0.7

0.3

Figure 3.7: The HMM corresponding to the stochastic grammar defined in (3.6) to

(3.11). The production rules are P = {S0
0.8−→ aS1, S0

0.2−→ b, S1
0.7−→ cS0,

S1
0.3−→ a}. The states S0 and S1 represent the nonterminal symbols while

states R0 and R1 are terminating.

3. Calculate γt(x̌i) for every time step t and every state x̌i according to (3.33).

4. Update the estimate âij for every state x̌i, x̌j according to (3.31).

5. Update the estimate b̂x̌i(y̌) for every state x̌i and every emission y̌ according
to (3.35).

6. Repeat steps 2-5 until convergence of the estimates.

In the EM algorithm, steps 2 and 3 are called E-step and steps 4 and 5 M-step.
HMMs and MCs can as well be used to model grammars and are especially well

suited for stochastic variants. In an HMM, the observed output corresponds to the ter-
minal symbols, whereas the states of the underlying MC and the transitions between
them describe the stochastic production rules. An example for the grammar from (3.6)
to (3.11) is shown in Figure 3.7. As all emission probabilities are equal to 1, also an
MC is suitable to model the grammar. However, HMMs and MCs can only represent
the class of (stochastic) regular grammars.

3.4.3 Observable Operator Models

Observable operator models (OOMs) are introduced in [88] as a generalisation of
HMMs. In contrast to HMMs, the model trajectory is not understood as a sequence of
internal states, but as a sequence of linear operators. As a consequence, only methods
from linear algebra and stochastics are needed to represent them. This leads to an
efficient learning algorithm, which allows for adapting the model parameters based
on training data.

A comparison of the different views of HMMs and OOMs is shown in Figure 3.8.
On the left hand side the HMM view is depicted. The trajectory of the model is
understood as a sequence of states x̌a x̌b x̌a x̌b which is generated by the application
of the same operator T . On the right hand side the OOM view is shown, which
interprets the sequence x̌a x̌b x̌a x̌b as being generated by the application of different
operators Ta and Tb to an initial vector w0, i.e. Tb(Ta(Tb(Ta(w0)))). In this case the
operators are the observable part of the model, hence the name.

3.4. Stochastic Processes 31

T T T

𝑥𝑎 𝑥𝑏 𝑥𝑎 𝑥𝑏

(a) HMM view.

Ta Tb Ta Tbw0 w1 w2 w3 w4

(b) OOM view.

Figure 3.8: The HMM view of the model trajectory as a sequence of states and the
OOM view as a sequence of linear operators [88].

The definition of HMMs can be reformulated to get to the definition of OOMs,
which is shown in [88]. For HMMs, the probability of an observation can be calcu-
lated using matrices A and B from (3.23), which describe the state transition and the
emission probabilities in each state, respectively. Based on B, the matrix of emission
probabilities By̌i for some possible emission y̌i ∈ Y is defined as a diagonal matrix
with the emission probabilities for y̌i in every state of the HMM on the diagonal.
For example, the emission matrix B of the HMM in Figure 3.6 with the states sunny,
cloudy, and rainy and the emissions umbrella and sunglasses is given by

B =


0.1 0.9

0.6 0.4

0.8 0.2

 . (3.36)

Then, the emission matrix By̌s with y̌s = sunglasses is constructed as

By̌s =


0.9 0 0

0 0.4 0

0 0 0.2

 . (3.37)

Using this matrix, an operator for an HMM can be defined as Ty̌i := AT · By̌i , with
T being transposition. By adding the matrices of emission probabilities for every
possible emission, the unit matrix results,

∑
y̌∈Y

By̌ = id =


1 0 . . . 0

0 1 . . . 0
... . . .

0 0 . . . 1

 . (3.38)

This arises from the condition that the probabilities of possible emissions in every
state must sum up to 1. It follows that the matrix of state transition probabilities A
can be reconstructed from the defined operators Ty̌i ,

AT = AT · id = AT · (By̌1 + · · ·+ By̌|Y|) = Ty̌1 + · · ·+ Ty̌|Y| . (3.39)

32 Chapter 3. Modelling & Learning of Sequential Data

Consequently, HMMs can be defined based on the operators by λ = (Rn, (Ty̌)y̌∈Y , π).
By relaxing some constraints of this formulation and replacing the Ty̌ of HMMs by τy̌,
the definition of OOMs results. An n-dimensional OOM is defined by

A = (Rn, (τy̌)y̌∈Y , w0), (3.40)

with

w0 ∈ Rn initial state vector,

τy̌ : Rn 7→ Rn linear operators,

Y alphabet of the observations with |Y| = n,

and the following constraints

1. 1w0 = 1, i.e. the values in w0 sum up to 1,

2. The columns of the matrix µ = ∑y̌∈Y τy̌ sum up to 1,

3. For all sequences y̌i0 . . . y̌ij it holds: 1τy̌ij
◦ · · · ◦ τy̌i0

w0 ≥ 0.

Here 1 = (1, ..., 1) is the n-dimensional row vector consisting of 1 and ◦ the concaten-
ation of the operators. For HMMs, w0 corresponds to the probability distribution of
the initial state π. Since it is a probability distribution, no negative values are allowed.
For the w0 in OOMs, only the first condition that the values sum up to 1 must hold.
However, negative values are possible. Similarly, the matrix µ corresponds to the
matrix A of state transition probabilities in HMMs, which is a stochastic matrix. For
OOMs, the matrix µ might as well contain negative values. According to the second
condition above, the values must only sum up to 1. The third condition makes sure
that positive values result when the OOM is used for calculating probabilities.

From this derivation of OOMs from HMMs by relaxing some of the limitations, it
is clear that OOMs are a generalisation of HMMs. Moreover, in [88] it is shown that
every two-dimensional OOM and every OOM with only positive entries in w0 and µ

is an HMM.
To learn an OOM from data, the dimension n needs to be set. If it is selected too

low, the model is not able to represent the data. If it is selected too high, overfitting
on the training data might occur. In the case of overfitting, memorisation of the
training data leads to a loss of the ability to generalise and hence worse performance
for unseen data. The same problem also exists for HMMs and neural networks (see
Section 3.5).

For the estimation of the linear operators τy̌ and the initial vector w0 from data,
so-called characteristic events Ai are required. These are defined by a partition of the
set of output sequences of length ko, Oko , with ko suitably large, into n subsets with n
being the dimension of the underlying stochastic process,

Oko = A1 ∪ · · · ∪ An. (3.41)

3.4. Stochastic Processes 33

For the subsets Ai to be characteristic events, there must exist sequences y1, . . . , yn,
where yi = y̌1 . . . y̌|yi| denotes a sequence of symbols, such that the matrix of dimen-
sion n× n (

P
[

Ai|yj

])
i,j

(3.42)

with
P
[

Ai|yj

]
= ∑

a∈Ai

P
[

a|yj

]
(3.43)

is nonsingular, i.e. possesses an inverse.
Based on the characteristic events A1, . . . , An an OOM A(A1, . . . , An) can be con-

structed, which is equivalent to an arbitrary OOM of the same stochastic process, but
has the property of being interpretable. Interpretability is defined as the property
that the n state vectors describe the probability of the occurrence of the n character-
istic events, i.e. if the OOM is in state wt = (w1

t , . . . , wn
t) at time step t, the probability

of the characteristic event Ai should be equal to

P [Ai|wt] = wi
t. (3.44)

Interpretable OOMs A(A1, . . . , An) possess properties that are required for the learn-
ing procedure, which are

1. w0 = (P [A1] , . . . , P [An]),

2. τyw0 = (P [yA1] , . . . , P [yAn]),

where τy = τy̌n ◦ · · · ◦ τy̌0 . Besides choosing the dimension n, the characteristic
events Ai need to be selected in order to design the interpretable OOM. After this
is done, the initial state vector w0 and the operators τy̌ need to be estimated from the
data. Based on a sequence O = y̌0y̌1 . . . y̌|O|, the initial state vector w0 is calculated. It
follows from the properties of interpretable OOMs that ŵ0 =

(
P̂[A1], . . . , P̂[An]

)
is a

good first estimate. The probabilities of the characteristic events P̂[Ai] are estimated
by counting the occurrences in the sequence O,

P̂[Ai] =
count(ai ∈ O)

count(a ∈ O)
, ai ∈ Ai. (3.45)

The operators are estimated next. To do so, the second property of interpretable
OOMs is needed. It follows from this property that for every sequence yj it holds

τa(τyj
w0) =

(
P[yjaA1], . . . , P[yjaAn]

)
. (3.46)

From linear algebra it follows that an n-dimensional linear operator is uniquely de-
termined by the values it takes on for n linearly independent vectors. From this, an
estimate of the operator τa for some a ∈ Y is derived. First, n linearly independent
vectors vj := τyj

w0 are estimated,

v̂j =
(

P̂[yj A1], . . . , P̂[yj An]
)

, j = 1, . . . , n. (3.47)

34 Chapter 3. Modelling & Learning of Sequential Data

Similar to the procedure above, the P̂[yj Ai] are estimated by counting,

P̂[yj Ai] =
count(yai ∈ O)

|O| − |yj| − ko + 1
, ai ∈ Ai. (3.48)

Here, |O| is the length of sequence O, |yj| is the length of sequence yj and ko the
length of the characteristic events Ai. The results of applying the linear operator τa
are determined as

P̂[yjaAi] =
count(yaai ∈ O)

|O| − |yj| − ko
, ai ∈ Ai. (3.49)

From this, two matrices are estimated,

V̂ =
(

v̂1 . . . v̂n

)
, (3.50)

Ŵa =
(

v̂′
1 . . . v̂′

n

)
, (3.51)

with v̂′
j =

(
P̂[yjaA1], ..., P̂[yjaAn]

)
. Finally the estimation of the linear operator τa is

given by
τ̂a = ŴaV̂−1. (3.52)

In [88] extensions of this basic idea of the learning procedure that make it more
efficient are described. A problem of this learning procedure is that it cannot guaran-
tee the third condition of the above definition of OOMs (3.40). Therefore, models that
output negative “probabilities” are possible. The author argues that such “almost-
OOMs” are nevertheless useful in practice.

3.4.4 Predictive State Representations

Predictive state representations (PSRs) are developed and refined in [35, 89, 90] and
are closely related to OOMs. The key idea of PSRs is to represent the state of the
system as a prediction of the future observations. Let yh be a sequence of obser-
vations yh = y̌0y̌1 . . . y̌t called the history up to time step t. A test is a sequence
yt = y̌′t+1y̌′t+2 . . . y̌′t+n of possible future observations. A prediction for a test yt corres-
ponds to the probability that the test will “succeed”, i.e. that the actual observations y̌i
will be equal to the predicted observations y̌′i and is denoted by P(yt|yh).

Both an uncontrolled and a controlled version, in which the state of the system
can be influenced by taking actions, are defined. For the application considered in
this thesis, only the uncontrolled variant is of interest. The uncontrolled version can
be regarded as a controlled system with only a single action, which can therefore be
omitted from the system equations.

In [89], the system-dynamics matrix D is introduced, which is a theoretical mat-
rix that contains an infinite number of rows and columns. The rows are indexed by
all possible histories yh including the empty history ϕh, while the columns corres-
pond to all possible tests yt. The tests and histories are sorted by increasing length

3.4. Stochastic Processes 35

and in lexicographical order within the same length. Each entry Dij corresponds to
P(yt(i)|yh(j)), where yt(i) denotes the ith test in the set of all possible tests and yh(j)
the jth history from all possible histories,

D =

yt(1) . . . yt(i) . . .

yh(1) = ϕh P(yt(1)|yh(1)) . . . P(yt(i)|yh(1)) . . .

yh(2) P(yt(1)|yh(2)) . . . P(yt(i)|yh(2)) . . .
...

yh(j) P(yt(1)|yh(j)) . . . P(yt(i)|yh(j)) . . .
...

. (3.53)

The (non-unique) set of linear core tests Q = {yt(i1), yt(i2), . . . } is defined as the
tests corresponding to the columns in D such that all columns of D are linearly de-
pendent on the columns corresponding to the tests in Q. Analogously, the set of core
histories H = {yh(j1), yh(j2), . . . } is defined as a set of histories corresponding to the
rows of D such that all rows in D are linearly dependent on the rows corresponding
to the histories in H. These sets are the maximal set of linearly independent columns
or rows in D. A PSR model is then defined by [90]

APSR = (Q,Y , P(Q|ϕh), {∀y̌ ∈ Y : My̌}, {∀y̌ ∈ Y : my̌}) (3.54)

with

Q set of core tests,

Y alphabet of the observations,

P(Q|ϕh) initial prediction vector/state,

ϕh empty or null history,

{∀y̌ ∈ Y : My̌}, {∀y̌ ∈ Y : my̌} model update parameters.

The ith entry of the initial prediction vector P(Q|ϕh) is defined to be P(qi|ϕh) for all
core tests qi ∈ Q. Moreover, my̌ is a column vector such that P(Q|yh)my̌ = P(y̌|yh) for
all histories yh. The matrix My̌ is defined to be a |Q| × |Q| matrix with the ith column
being my̌qi such that P(y̌qi|yh) = P(Q|yh)my̌qi for all histories yh. By this definition,
the state of the system after history yh is P(Q|yh) for all yh. The update equation for
the prediction vector upon seeing a new observation after history yh is given by

P(Q|yhy̌) =
[P(y̌qi|yh) . . . P(y̌q|Q||yh)]

P(y̌|yh)
=

P(Q|yh)My̌

P(Q|yh)my̌
. (3.55)

For learning a PSR model, the Suffix-History algorithm is proposed in [90]. At
first, an estimate of the system dynamics matrix D̂ is required, from which the set of
core tests Q̂ and core histories Ĥ can be determined by finding linearly independent
components. Based on these estimates, the model update parameters are found by

mz = P̂−1(Q̂|Ĥ)P̂(z|Ĥ), z ∈ {y̌, y̌qi}. (3.56)

36 Chapter 3. Modelling & Learning of Sequential Data

To estimate D̂, the training sequence of observations y = y̌0y̌1 . . . y̌|y| is divided into
suffixes that are treated as independent training sequences. Then, the entries of D̂ are
determined by

P̂(yt|yh) =
count(yh, yt)

count(yt)
, (3.57)

where count(yh, yt) is the number of times that the history yh is followed by the
test yt and count(yt) the number of times that yt appears in the training sequence.
However, as the entries of D̂ are only estimates of the true values in D, the test for
linear independence of the rows and columns cannot be performed with strict criteria.
Therefore, the singular values of D̂ with a threshold on the uncertainty are used as
the linear independence test instead and finally, Q̂ and Ĥ are obtained to yield the
model update parameters as defined in (3.56).

It is shown in [89] that uncontrolled PSRs are equivalent to interpretable OOMs,
whose characteristic events resemble the PSRs’ tests. Hence, PSRs possess more ex-
pressive power than HMMs.

3.5 Neural Networks

The initial idea of artificial neural networks was to reproduce the functionality of the
brain, in which neurons receive stimuli from other neurons. If a certain threshold is
crossed, a neuron “fires” and passes the stimulus on to the next neuron. In doing so,
a stimulus can be reinforced or inhibited. Artificial neurons have a similar function-
ality. They receive “stimuli” in the form of numerical values at their inputs which are
transmitted to other neurons using connections. The inputs are summed and passed
through an activation function, which determines how strongly the inputs are passed
on to the output, i.e. to what degree the neuron is activated. In addition, the connec-
tions between neurons have weights by which values that are transmitted using the
connections are multiplied. If a weight is greater than 1, it has a reinforcing effect,
otherwise it is inhibiting.

Neural networks are classified based on the structure of the connections between
the neurons, which is part of the architecture of the network. Feedforward networks
only have connections between neurons in consecutive layers and only into the direc-
tion of the output layer. An example of such a feedforward neural network is shown
in Figure 3.9. The network depicted consists of one input layer, one hidden layer,
and one output layer. The input layer has three neurons, such that the network can
take three values x = (x1, x2, x3) as input. The input neurons only pass on the in-
puts without altering them. The output layer of the example network consists of two
neurons, therefore the output of the network comprises two values ŷ = (ŷ1, ŷ2). The
connections between the neurons have weights ui. For improved readability, these
are only partly shown. In addition to the network’s input x, the hidden layer has
an additional input, called the bias, that is constantly set to 1 with weighted connec-
tions b. It enables the network to output a value different from 0 when the input is
all 0. In this example, each neuron is connected to every neuron in the next layer. This

3.5. Neural Networks 37

h1

h2

h3

h4

x1

x2

x3

y1

y2

Input layer Hidden layer Output layer

u1

u4
u5
u6
u7
u8

1 b

u2
u3

ෝ

ෝ

Figure 3.9: A simple feedforward neural network with one hidden layer.

is the typical architecture, which is called fully-connected or dense. However, other
architectures with different kinds of connections exist.

The first neuron in the hidden layer calculates its activation h1, as follows,

h1 = f (inh1) = f (u1 · x1 + u2 · x2 + u3 · x3 + b). (3.58)

Here, the activation function f can be one of the functions described in the next section
and inh1 = u1 · x1 + u2 · x2 + u3 · x3 + b represents the input that the neuron receives
over its connections to the input neurons. Based on the results of the neurons in the
hidden layer, the first output neuron calculates the following function to obtain ŷ1,

ŷ1 = f (inŷ1) = f (u4 · h1 + u5 · h2 + u6 · h3 + u7 · h4). (3.59)

Depending on the task, the number of hidden layers as well as the number of
neurons per layer must be chosen appropriately. If the task is to classify images,
one neuron per pixel is required in the input layer of a standard neural network
architecture and one neuron per class that the images are supposed to be divided into
in the output layer.

3.5.1 Activation & Output Functions

One of the common activation functions is the logistic function σ(x) which belongs to
the class of sigmoid functions,

σ(x) =
1

1 + exp(−x)
. (3.60)

It is common because of its simple derivative which is needed for the training pro-
cedure (see below),

σ′(x) = σ(x)(1− σ(x)). (3.61)

38 Chapter 3. Modelling & Learning of Sequential Data

−10 0 10
x

0.00

0.25

0.50

0.75

1.00

σ
(x
)

(a) Sigmoid/logistic func-
tion.

−10 0 10
x

−1.0

−0.5

0.0

0.5

1.0

ta
nh

(x
)

(b) Hyperbolic tangent.

−10 0 10
x

0.0

2.5

5.0

7.5

10.0

re
lu

(x
)

(c) Rectifier function.

Figure 3.10: Examples for activation functions. Note the different scaling of the y-
axis. The sigmoid function restricts the output to the interval [0, 1], the
hyperbolic tangent to [−1, 1]. The rectifier function is unbounded in
positive direction.

Just like the logistic function, the hyperbolic tangent tanh(x) belongs to the class
of sigmoid functions,

tanh(x) = 1− 2
exp(2x) + 1

. (3.62)

The derivative is very simple as well,

tanh′(x) = 1− tanh2(x). (3.63)

Recently, the rectifier function is commonly applied. In the context of neural
networks, it is also called rectified linear unit (ReLU),

relu(x) = max(0, x), (3.64)

with the derivative

relu′(x) =

{
1 x > 0,
0 else.

(3.65)

The three functions are shown in Figure 3.10 with example input values x ∈
[−10, 10]. The logistic function, which is in the context of neural networks usually
called sigmoid function, squashes the output into the interval [0, 1], while the hyper-
bolic tangent transforms it into the interval [−1, 1]. The rectifier function sets negative
values to 0 and leaves other values unmodified.

Neural networks employed for classification or prediction should usually output
a probability for each of the possible output values or classes c ∈ {1, 2, . . . , C}. There-
fore, the last layer most often consists of the softmax function to normalise the output
of the second to last layer to represent a probability distribution. In the context of
neural networks, the unnormalised activations of the second to last layer are com-
monly called the logits ỹ = (ỹ1, . . . , ỹC). The softmax function is given by

ŷc =
exp(ỹc)

∑C
i=1 exp(ỹi)

, c = 1, 2, . . . , C. (3.66)

3.5. Neural Networks 39

3.5.2 Error Functions

The goal of training a network is to adjust the connection weights ui between the
neurons such that the error between the desired and the actual output is minimised.
To do so, an error (or loss) function needs to be defined. One possibility is the mean
squared error (MSE),

MSE(y, ŷ) =
1
2

1
M

M

∑
m=1

(ym − ŷm)
2. (3.67)

Here, ŷ = (ŷ1, ŷ2, . . . , ŷM) is the actual output of the network and y = (y1, y2, . . . , yM)
the desired one. The factor 1/2 is introduced to simplify the derivative.

Another common error function is the cross-entropy. It describes the difference
between two probability distributions P and Q as

H(P, Q) = −Ex∼P log Q(x), (3.68)

where E is the expected value. In the context of neural networks, P describes the true
probability distribution that is to be learnt and Q the distribution estimated by the
network. For details on probability and information theory see [91].

3.5.3 Training

Neural networks are most commonly trained using a procedure called “Backpropaga-
tion of Error”, which is based on gradient descent. Consider the function h(x), which
resembles the MSE, and its gradient h′(x) shown in Figure 3.11. The goal of gradi-
ent descent is to find the minimum of h(x). To do so, the gradient h′(x) for some x
is calculated. If it is positive, like in the right half of the figure, x needs to be de-
creased to move closer to the minimum and if the gradient is negative, x needs to be
increased, i.e. xnew ∝ x − h′(x). Usually, the error “landscape” of neural networks is
very complex with many local minima and saddle points.

Training neural networks consists of two steps. In the first step, the input is
propagated “forwards” from the input neurons through the neurons in the hidden
layers to the output neurons. At the output, the actual result ŷ is compared to the
desired output y. From these, the error function calculates the error E, which is
then propagated “backwards” from the output neurons through the neurons in the
hidden layers to the input neurons. On the way, the contribution of each connection
weight ui to the error is calculated and the weights are updated accordingly. From
this backwards step, the procedure gets its name.

To determine the contribution of a weight ui to the error E, the derivative of the
error function at the weight is calculated. For the network shown in Figure 3.9, the
derivative at e.g. weight u4 is

∂E
∂u4

=
∂E

∂inŷ1

· ∂inŷ1

∂u4
. (3.69)

40 Chapter 3. Modelling & Learning of Sequential Data

−3 −2 −1 0 1 2 3
x

−1

0

1

2

3

4
h(x) =

1

2
x2

h′(x) = x

Figure 3.11: A function and its gradient.

With
inŷ1 = u4 · h1 + u5 · h2 + u6 · h3 + u7 · h4 (3.70)

it follows
∂iny1

∂u4
= h1. (3.71)

From using the chain rule and the MSE error function defined by (3.67) with M = 1
it results

∂E
∂u4

=
∂E
∂ŷ1
· ∂ŷ1

∂inŷ1

· ∂inŷ1

∂u4
(3.72)

= (y1 − ŷ1) · f ′(inŷ1) · h1.

The weight u4 is then updated by

u4,new = u4 − η
∂E
∂u4

. (3.73)

Here, η is called the learning rate. It is set to a value smaller than 1 since a learning
rate that is chosen too big can lead to overshooting the desired goal. However, if
it is chosen too small, convergence is slow. Selecting the learning rate and possibly
adapting it during training is a complex topic in itself. Several optimisers have been
proposed, while the Adam optimiser presented in 2015 [92] is a popular choice. It ad-
apts the initial learning rate individually for different parameters based on estimates
of the first and second order moments of the gradient. The algorithm got its name
from the term “adaptive moment estimation”. An overview of several optimisers is
given in e.g. [91].

For weights that are not directly connected to an output neuron, the chain rule
needs to be applied multiple times. In addition, the error of each other neuron con-
nected in the forward direction needs to be considered. For example, the first neuron

3.5. Neural Networks 41

in the hidden layer with weight u1 is connected to the output ŷ1 and ŷ2. Therefore it
follows

∂E
∂u1

=
∂E
∂ŷ1
· ∂ŷ1

∂inŷ1

· ∂inŷ1

∂h1
· ∂h1

∂inh1

· ∂inh1

∂u1
+

∂E
∂ŷ2
· ∂ŷ2

∂inŷ2

· ∂inŷ2

∂h1
· ∂h1

∂inh1

· ∂inh1

∂u1

= (y1 − ŷ1) · f ′(inŷ1) · u4 · f ′(inh1) · x1 + (y2 − ŷ2) · f ′(inŷ2) · u8 · f ′(inh1) · x1

=
(
(y1 − ŷ1) · f ′(inŷ1) · u4 + (y2 − ŷ2) · f ′(inŷ2) · u8)

)
· f ′(inh1) · x1 (3.74)

For deep neural networks, i.e. networks with several hidden layers, the terms expand
accordingly. Backpropagation is a very efficient procedure for error minimisation
since the intermediate results of the derivatives can be stored in the neurons and only
need to be calculated once on the way back from the output to the input. To determine
the exact error, the complete data would need to be processed by the network and the
overall error calculated. However, this is computationally intense. On the other hand,
the gradient of a single example is very inexact and noisy. As a compromise, the
training data is usually divided into batches which comprise e.g. M = 1024 examples.
When doing so, the training procedure is referred to as stochastic gradient descent.

One big problem of training neural networks is overfitting, in which case the
network memorises the training data and is not able to generalise. This leads to very
poor performance for data not seen during training. To obtain a good estimate of
the network’s performance on unseen input, a part of the available data is kept as
a test set and not used for training. Usually, the data is further divided to obtain
a validation set. This validation set is not used for training either but serves for
fine-tuning the network architecture like the number of neurons and layers. When
doing so, the network is indirectly adapted to the validation set. Therefore, only
the performance on the test set, which did not influence the training in any way, is
an objective estimate of the network’s performance on new data. Overfitting can be
recognised by an increasing accuracy on the training set and a decreasing performance
on the validation set. As mentioned above, the test set should not be used to monitor
the training progress.

Several methods to avoid overfitting have been proposed. A commonly used pro-
cedure is the so-called dropout, which is presented in [93]. Dropout deactivates a
certain percentage of randomly chosen neurons during training. In each run, differ-
ent neurons are selected such that the network needs to learn how to compensate for
these failures, which leads to better generalisation capabilities. When the network
is employed, the dropout layer is inactive. See e.g. [91] for an overview of further
methods to prevent overfitting.

3.5.4 Evaluation Metric

One of the usual metrics to measure the performance of neural networks is the top k
accuracy. It provides the percentage of cases that the true class is among the top k
outputs of the network sorted by probability. Given a number of examples M, the
model outputs a set of vectors Ŷ ={ŷ1, ŷ2, . . . , ŷM}. Each vector ŷm = (ŷm,1, . . . , ŷm,C)
represents the result of the softmax operation for the number of classes C. Suppose

42 Chapter 3. Modelling & Learning of Sequential Data

that πŷm denotes a (non-unique) permutation of {1, . . . , C} which sorts the elements
of ŷm by size, i.e.

πŷm : {1, . . . , C} → {1, . . . , C}, (3.75)
i 7→ j = πŷm(i) (3.76)

such that ŷm,πŷm (i) ≥ ŷm,πŷm (j) ∀ 1 ≤ πŷm(i) < πŷm(j) ≤ C.

Then, the top k elements Tk of ŷm are defined as the inverse permutation π−1
ŷm

of the
first k indices, k ≤ C, of the vector y′

m = (y′m,1, . . . , y′m,C) = (ŷm,π−1
ŷm (1), . . . , ŷm,π−1

ŷm (C)), i.e.

Tk(ŷm) = (π−1
ŷm

(1), . . . , π−1
ŷm

(k)). (3.77)

Given the set Y = (y1, y2, . . . , yM) of true labels ym ∈ {1, . . . , C} for each of the M
examples, the top k accuracy for k ≤ C is defined as

acc(Ŷ, Y, k) =
1
M

M

∑
m=1

1Tk(ŷm)(ym) · 100 %, (3.78)

where 1A(x) denotes the indicator function

1A(x) =

{
1 if x ∈ A,
0 otherwise.

(3.79)

3.5.5 Recurrent Neural Networks

Recurrent neural networks (RNNs) differ from feedforward neural networks in having
neurons that are connected to themselves, i.e. they use their own output ht−1, which
is sometimes referred to as the hidden state of the network, as an extra input in the
next time step t,

ht = f (ht−1, xt), (3.80)

see also Figure 3.12. Because of this feedback they are especially well suited to process
sequential data. To visualise how the input from the previous time steps is incorpor-
ated into processing the current time step, Figure 3.13 shows an RNN unrolled over
time. In this figure, each grey box represents the same RNN in different time steps.

For training RNNs, backpropagation is used with some modifications, which is
called backpropagation through time [95]. The network needs to be unrolled as shown
in Figure 3.13 and the connections must be trained together because these are actually
the same connections in different time steps. In the end, there must only be one weight
value per connection.

RNNs are very powerful tools in theory. In [96, 97] it is shown that an RNN with
finitely many neurons and sigmoid activation resembles a Turing machine. However,
it was soon noticed that RNNs are hard to train using backpropagation through time,
e.g. [98]. The main problem is that an RNN behaves like a very deep feedforward
neural network when unrolled over many time steps. When using backpropagation

3.5. Neural Networks 43

ht

xt

Figure 3.12: RNNs have connections which form a feedback from their own output
to their input [94].

ht

xt

h0

x0

h1

x1

ht

xt

h2

x2

…=

Figure 3.13: An RNN unrolled over time [94].

through time, this can lead to two situations. If parts of the gradient are big, continu-
ous multiplication by applying the chain rule leads to an exploding overall gradient.
This problem can easily be solved by clipping the error signal, which sets the gradient
to a pre-defined value if a certain threshold is crossed. Much worse is the second case,
the vanishing gradient. If small values below 1 are multiplied for many time steps,
the gradient vanishes and learning is no longer possible. The update equation for the
weights in (3.73) shows that the gradient is multiplied by the learning rate and then
subtracted from the current weight. If the gradient - in this example ∂E

∂u4
- is very close

to 0, the weight does not change noticeably and no learning takes place. The problem
of many multiplications can already be anticipated from (3.74) for only one hidden
layer. To overcome this problem, Long Short-Term Memory networks were developed
by Hochreiter and Schmidhuber in 1997 [11]. This variant of an RNN is presented in
the following section.

3.5.6 Long Short-Term Memory

Long Short-Term Memory networks (LSTMs) were introduced in the year 1997 [11]
as a solution to the vanishing gradient problem. However, they gained importance,
especially in the field of speech processing, only recently when big companies like
Google, Apple, and Amazon started to incorporate LSTMs into their products in the
years 2015/2016 [99–102].

44 Chapter 3. Modelling & Learning of Sequential Data

+

x

x

σ σ

x

tanhσ σ

x

σ σ

x

+

x

tanh

tanh

+

σ σ

x

tanh

tanhσ

x

x

tanh

+

ht

xt

ht-1

xt-1 xt+1

ht+1

Figure 3.14: Internal structure of an LSTM cell, unrolled over three time steps [94].

LSTMs got their name from an interpretation of short- and long-term memory
in neural networks. In [11], the connection weights are considered as the long-term
memory since they change rather slowly during training and are fixed afterwards.
The short-term memory is defined as the activation of the neurons depending on the
current input and, through the recurrent connections, also on the previous input. The
long short-term memory of the presented LSTMs refers to their ability to keep more
time steps of the current sequence in memory than standard RNNs.

In their work, Hochreiter and Schmidhuber present a new architecture and a
new gradient based training procedure. They combine a variant of backpropagation
through time and an adapted version of real-time recurrent learning [103] for training.
An improved training procedure is later introduced in [104]. LSTMs contain so-called
memory cells, which allow a constant error flow without vanishing gradients. Con-
sequently, LSTMs can learn long-term dependencies of about 1000 time steps in the
input without loosing the ability to cope with shorter time dependencies.

The main parts of an LSTM cell (see Figure 3.14) and the way the vanishing gradi-
ent problem is solved, are the gates. These are input, output, and forget gate, whereby
the forget gate was introduced two years later in [105]. In Figure 3.14, the gates are
represented by the blue rectangles with the σ symbol for the sigmoid function. The
left gate is the forget gate, the middle one is the input gate, and the right one the out-
put gate. The forget gate processes both the output from the previous time step ht−1
and the current input to the network xt. These are concatenated before being input to
the sigmoid function.

Every LSTM cell has an internal state Ct, which is controlled by the gates. In
Figure 3.14, the state is represented by the line at the top which goes straight through
the cell from left to right. The state from time step t is input for the time step t + 1.
During training, the gates learn to decide which information is important and should
be included in the state. The forget gate learns when the state of the cell should be
reset, i.e. forgotten. In the field of speech processing this is necessary when translating
texts, for example. If a sentence is completely translated and the content of the next
sentence is not related to the previous one, the internal state of the LSTM should be
reset and the previous sentence forgotten.

3.5. Neural Networks 45

The update equations for the output of the forget gate f , the input gate i, and the
output gate o, as well as the cell state C and the output h are defined by

ft = σ(W f [ht−1, xt] + b f), (3.81)

it = σ(Wi[ht−1, xt] + bi), (3.82)
Ct = ftCt−1 + it tanh(WC[ht−1, xt] + bC), (3.83)
ot = σ(Wo[ht−1, xt] + bo), (3.84)
ht = ot tanh(Ct), (3.85)

where Wj are the weight matrices, bj the biases with j ∈ { f , i, c, o}, xt is the input,
and [..., ...] represents vector concatenation. In [106], “peephole connections” were
introduced to allow the gates to see the cell state. The update equations for the gates
are then given by

ft = σ(W f [Ct−1, ht−1, xt] + b f), (3.86)

it = σ(Wi[Ct−1, ht−1, xt] + bi), (3.87)
ot = σ(Wo[Ct, ht−1, xt] + bo). (3.88)

By the design of the LSTM cell, it is possible to keep the internal state constant
over many time steps. It is therefore protected from the problems which arise from
a vanishing gradient. LSTMs are, as RNNs in general, not restricted in their express-
iveness and equivalent to universal Turing machines. Therefore, they can learn the
language of palindromes, which is shown in [107, 108].

3.5.7 Gated Recurrent Unit

Inspired by the LSTM, the Gated Recurrent Unit (GRU) was proposed in 2014 [37].
It uses gates as well to mitigate the vanishing gradient problem of standard RNNs.
However, it is much simpler than the LSTM. Instead of three gates, the GRU only uses
two, which are called reset and update gate, i.e. GRUs do not have an output gate.
Like the forget gate in LSTMs, the reset gate learns when the current state of the GRU
should be reset, and the update gate determines how much of the hidden state ht−1
is kept in the current state ht. Figure 3.15 shows the internal structure. Here, the two
boxes labelled σ are the gates with the left one being the reset and the right one being
the update gate.

The update equations for the reset gate r, the update gate z, the candidate out-
put h̃, and the actual output h are given by

rt = σ(Wrxt + Urht−1), (3.89)
zt = σ(Wzxt + Uzht−1), (3.90)

h̃t = tanh(Whxt + Uh(rt ⊙ ht−1)), (3.91)

ht = ztht−1 + (1− zt)h̃t, (3.92)

where Wj, Uj are weight matrices with j ∈ {r, z, h} and ⊙ denotes element-wise
multiplication.

46 Chapter 3. Modelling & Learning of Sequential Data

ht

xt

ht-1

xt-1 xt+1

ht+1

x

σ

+

1-

σ

x x

tanh

x

σ

+

1-

σ

x x

tanh

x

σ

+

1-

σ

x x

tanh

Figure 3.15: Internal structure of a GRU cell, unrolled over three time steps.

Studies that evaluate the differences between gated RNN architectures like LSTM
and GRU show that none of them is fundamentally superior to the other [109, 110],
although the LSTM is assumed to be the more powerful architecture. Since it has
more parameters and is therefore harder to train, the difference might not be relevant
in practice.

Chapter 4

Modelling of Agile Radar Emissions

This chapter describes the existing emission model, which can be found in the open
literature. Afterwards, this chapter introduces the concept adapted for this thesis and
demonstrates it using example emitters. Parts have been published in [60].

4.1 Introduction

As described in Chapters 1 and 2, the information gathered about radar systems is
traditionally stored in databases. However, modern radars are becoming more agile as
they perform multiple tasks simultaneously and choose waveform parameters adapt-
ively. The emissions are not based on operational modes any more and the relation-
ships between different emission patterns cannot be efficiently represented in static
databases. Therefore, new techniques for modelling the emissions of multifunction
radars are needed. In the following, a possible solution is described.

4.1.1 Hierarchical Emission Model

The works [12–21] present and extend a model that considers the radar emissions as
a language with an inherent hierarchical structure. A visualisation of this model is
shown in Figure 4.1. On the lowest level there are pulses, represented by rectangles.
In analogy to natural language, pulses correspond to letters. On the next level, the
letters are used to form words, which in turn can be used to form commands. A
sequence of commands constitutes a task on the highest level.

Letters

Words

Commands

Tasks Target identification for an existing track

Alert
Nonadaptive

Track
Range

Resolution

a b c c cd

Figure 4.1: Hierarchical model of the emissions of a multifunction radar [20]. The
radar emissions are modelled as a hierarchical language.

47

48 Chapter 4. Modelling of Agile Radar Emissions

Command Words Command Words

Four-word search

[w1w2w4w5]

Track maintenance

[w1w7w7w7]

[w2w4w5w1] [w2w7w7w7]

[w4w5w1w2] [w3w7w7w7]

[w5w1w2w4] [w4w7w7w7]

Three-word search
[w1w3w5w1] [w5w7w7w7]

[w3w5w1w3] [w6w7w7w7]

[w5w1w3w5] [w1w8w8w8]

Acquisition (ACQ)

[w1w1w1w1] [w2w8w8w8]

[w2w2w2w2] [w3w8w8w8]

[w3w3w3w3] [w4w8w8w8]

[w4w4w4w4] [w5w8w8w8]

[w5w5w5w5] [w6w8w8w8]

Nonadaptive track (NAT)
or

Track maintenance

[w1w6w6w6] [w1w9w9w9]

[w2w6w6w6] [w2w9w9w9]

[w3w6w6w6] [w3w9w9w9]

[w4w6w6w6] [w4w9w9w9]

[w5w6w6w6] [w5w9w9w9]

Range resolution
[w7w6w6w6] [w6w9w9w9]

[w8w6w6w6] Fine track
maintenance (FTM)

[w7w7w7w7]

[w9w6w6w6] [w8w8w8w8]

ACQ, NAT or FTM [w6w6w6w6] [w9w9w9w9]

Table 4.1: Possible combinations of words of the “Mercury” emitter and the connec-
tion to commands [20].

The modelling is shown using an example emitter called “Mercury”, which is
based on a real anti-aircraft defence multifunction radar that was modified such that
it could be published. This emitter can make use of nine different words, which
mainly differ in the values of the PRF. The connection between sequences of words
and the commands of the radar is shown in Table 4.1.

4.1.2 Word Embedding

In order to process the radar language by an algorithm, a numerical representation
is needed. The same holds true for words of a natural language, for which several
approaches have been suggested. The simplest solution to convert words to vectors
is the so-called one-hot encoding (see left part of Figure 4.2). In this encoding, the
dimension of the word vector equals the number of words in the vocabulary. Each
word is assigned a position in the vector such that the vector consists of all zeros
except for a single one at the position of the represented word.

4.1. Introduction 49

Berlin

Paris

Germany

France

= [1, 0, 0, 0, 0, 0, 0, 0, …, 0]

= [0, 1, 0, 0, 0, 0, 0, 0, …, 0]

= [0, 0, 1, 0, 0, 0, 0, 0, …, 0]

= [0, 0, 0, 1, 0, 0, 0, 0, …, 0]

Dimension = vocabulary size = huge

Berlin

Paris

Germany

France

= [0.85, 0.52, 0.12, …, 0.37]

= [0.83, 0.54, 0.11, …, 0.92]

= [0.27, 0.71, 0.81, …, 0.39]

= [0.28, 0.73, 0.83, …, 0.94]

Dimension = n << vocabulary size

One-Hot Encoding Word Embedding

Figure 4.2: Examples for the numerical representation of words using one-hot en-
coding and word embedding.

One-hot encoding is simple but very inefficient. Moreover, relations between
words are not represented as every word has the same distance in vector space to
every other word. One solution for solving these problems is to use word embed-
dings, which are dense vector representations of words (see right part of Figure 4.2).
Several algorithms for learning word embeddings were suggested, e.g. [23–28]. This
thesis focuses on a software package patented by Google, called word2vec [23, 24]. A
visualisation of the architectures contained in word2vec is shown in Figure 4.3. Both
architectures represent a neural network. With continous bag-of-words (CBOW), it is
trained to predict a target word from its context words. Here, the order of the context
words is not important, which resembles the bag-of-words representation sometimes
encountered in natural language processing (NLP). Skip-gram, which is a kind of
language model as well and further described below, uses the opposite approach and
learns to predict the context words from the target word. After training, the matrix W
acts as a lookup table for the vector representations. These algorithms use the idea
that similar words should appear in similar contexts and therefore create context-
dependent vector representations. By training a neural network to predict a target
word from its context words (or vice versa), embeddings are found in which similar
words are close to each other.

In this thesis, the Skip-gram model is used with negative sampling to learn vector
representations for the radar language. The objective of Skip-gram is to maximise the
average log probability of the context words given the target word,

1
ks

ks

∑
s=1

∑
−kc≤j≤kc,j ̸=0

log P(ws+j|ws), (4.1)

with w1w2 . . . wks a sequence of ks training words and kc the size of the context. Since
the cost of computing P(ws+j|ws) using the softmax function as defined in (3.66)
is proportional to the vocabulary size, less computationally intense alternatives are
suggested. One of them is negative sampling, which defines a new objective in the
training. With negative sampling, the goal is to learn to distinguish between true

50 Chapter 4. Modelling of Agile Radar Emissions

ws-2

ws-1

ws+1

ws+2

ws

∑

W

W

W

W

W‘

W‘

W‘

W‘

W‘

W

ws-2

ws-1

ws+1

ws+2

ws

(a) CBOW (b) Skip-gram

Figure 4.3: The architectures for learning word embeddings contained in
word2vec [23].

context words ws+j and “noise” words wi (negative samples). To do so, the term
log P(ws+j|ws) in (4.1) is replaced by

log σ(v
′ T
ws+j

vws) +
kn

∑
i=1

Ewi∼Pn(w)

[
log σ(−v

′ T
wi

vws)
]

. (4.2)

Here, σ(·) is the sigmoid function as defined in (3.60) and vw corresponds to the
word vector of w defined by W , whereas v′w corresponds to the vector representation
defined by W ′ (see Figure 4.3). Pn(w) represents the noise distribution for the negative
samples and the number of negative samples is given by kn. The objective defined
by (4.2) therefore encourages the maximisation of the probability that the target word
and the context words occur together, while minimising the estimated probability that
the target word and the noise words occur together.

To determine how similar two words wi and wj are, the cosine similarity between
the vectors vwi and vwj is used, which is defined as the cosine of the angle between
the corresponding word vectors,

cossim(wi, wj) =
vwi vwj

∥vwi∥2∥vwj∥2
. (4.3)

The authors of [25] observe that semantic relationships between words are cap-
tured by word embeddings. For example, the vector offset between word pairs that
represent singular and plural are almost constant, e.g. vapple − vapples ≈ vcar − vcars.
Moreover, it is noticed that the word closest (in terms of cosine similarity) to the vector
resulting from calculating vking − vman + vwoman is vqueen and vParis − vFrance + vItaly ≈
vRome.

4.1.3 Contributions

The hierarchical emission model described in Section 4.1.1 is adapted to better suit
the needs of ELINT and an additional modelling level is introduced. Furthermore,
word embeddings, as described in Section 4.1.2, are employed for the symbols of the

4.2. Adapted Hierarchical Emission Model 51

P
R

I

time

Word w1 Word w2

SyllablesLetters

Figure 4.4: Example for modelling the different PRI levels as syllables [60].

radar language. As word embeddings are context-dependent vector representations,
they allow for the context-based analysis of radar signals.

Section 4.2 describes the adapted hierarchical emission model in detail and Sec-
tion 4.3 presents an example. Section 4.4 details the implementation of word embed-
dings for the language of the example emitters and Section 4.5 provides a summary.

4.2 Adapted Hierarchical Emission Model

For modern multifunction radars, which perform several functions in parallel by us-
ing time-multiplexing, the hierarchical emission model described above seems to be
well suited in general. However, the work presented in Section 4.1.1 assumes that it is
known how the modelled radar functions internally, which is most often not the case
in an ELINT application. Without this knowledge, radar tasks and commands cannot
be modelled in the way it is suggested in the presented publications. For example, the
task and commands given in Figure 4.1 cannot be defined based on knowledge ac-
quired only from the emissions. The hierarchical emission model is therefore adapted
to better suit the needs of ELINT.

In the adapted emission model, tasks are replaced by a broader category of func-
tions. Moreover, the definition of a command is changed. Commands are now di-
vided into categories, based on how many syllables they contain and whether the
corresponding pulses/letters make use of a high, medium, or low PRF.

For some structures of radar emissions, a level between letters and words might
be useful. An example is a radar that uses a stepped PRI modulation (see Figure 4.4).
Each word is formed by combining some PRI values from a set of possibilities. Some
words can contain the same PRIs, but without a level between pulses and words,
this relationship cannot be modelled. Therefore, another level is introduced, which is
called syllables in analogy to natural language.

52 Chapter 4. Modelling of Agile Radar Emissions

2-Syll.-MPRF 2-Syll.-MPRF 3-Syll.-HPRF

Search Track Track

s7 s3 s23 s42 s3 s9 s3

w35 w11 w3

Letters
(Pulses)

Syllables
(Bursts)

Words
(Dwells)

Commands

Functions

Figure 4.5: The adapted hierarchical emission model.

In summary, the following levels of modelling are used (see also Figure 4.5):

• Letters: Letters are characterised by the pulse parameters of the radar, e.g. PRF,
RF, and PW, as well as the modulations for each or a MOP.

• Syllables: Letters are combined to form syllables, which correspond to radar
bursts or CPIs.

• Words: Common combinations of syllables form words, e.g. radar dwells.

• Commands: Commands can be regarded as word types or classes.

• Functions: Functions describe the purpose of the emissions, e.g. searching or
tracking targets.

Like in a natural language, words are combinations of syllables that have a meaning,
but if two words share a syllable they do not necessarily have the same meaning. In
that analogy, commands correspond to parts of speech.

4.3 Modelling the Emissions of Example Emitters

The emission model is shown using simulations of an airborne radar, which were de-
veloped during a study on radar resource management at Fraunhofer FKIE. For the
simulations, eight different scenarios were defined. These contain, amongst others,
scenarios with raids of hostile aircraft, fighters, jamming, and missiles. Three differ-
ent radar resource management algorithms were implemented. The method used for
resource management determines how the radar distributes the available resources,
e.g. time, across different tasks and how it chooses the waveform parameters. Con-
sequently, it determines the complexity and agility of the emissions. The first resource
management technique implemented uses a Quality of Service (QoS) approach. For
every task, a performance model calculates how much utility is obtained by assigning
resources to it. A central resource manager allocates the resources to the different
tasks such that the utility is maximised. The approach is described in [69]. The other

4.3. Modelling the Emissions of Example Emitters 53

Table 4.2: Number of symbols used by the different resource management methods.

Symbol QoS Rules-v1 Rules-v2

Letter 18 13 18

Syllable 25 380 103 27 786

Word 26 653 21 34 440

Command 10 2 10

Function 3 3 3

resource management methods use one of two different sets of rules to choose the
waveform parameters and allocate time to different tasks. The more sophisticated
version of the rules is described in [6].

Because the resource management algorithm highly influences the structure of the
emissions, the radar can be regarded as three distinct radars with the same vocabulary
but a different grammar. This means that letters, syllables, words, commands, and
functions are the same. What differs is the number of symbols that are actually used
and the order in which they appear, as well as the agility and frequency. In the
following, the three radar versions are abbreviated with QoS, Rules-v1, and Rules-v2
for the more sophisticated version of the rule-based approaches.

Based on the pulse parameters saved during the simulations of the radars, the
emission model is developed. Table 4.2 depicts the number of symbols that are ac-
tually emitted by each radar type, while Tables 4.3 to 4.5 show the letters, syllables,
words, and commands of the radars. The QoS and the Rules-v2 radar use a great
variety of different emissions, while the Rules-v1 is rather simple.

Table 4.3 shows the letters that can be used, ordered by ascending PRF and num-
bered from 1 to 18. These letters correspond to pulses and are characterised by PRF,
RF, and PW. The definition based on these features is specific to the example radar. If
the radar used e.g. a MOP, it would need to be considered in the definition of letters.
The example radar emits pulses in the medium pulse repetition frequency (MPRF)
and high pulse repetition frequency (HPRF) range as defined in Section 2.1.1. The
MPRF range contains the letters l1 to l8, all other letters belong to the HPRF range.
The values are taken from the open radar literature (see Chapter 5 in [7]) to avoid
dealing with sensitive data.

From the letters, syllables can be formed. The possible combinations are shown in
Table 4.4. The radar modelled here chooses a certain number of repetitions of letters
for each syllable. For example, s1 consists of 16 times l1, s2 repeats l1 17 times, and
so on. The letters in the MPRF range can be repeated up to 256 times and those in
the HPRF range up to 4096 times. As is typical for an airborne radar, it integrates
many repetitions of the same pulse. This behaviour can be seen from the way the
syllables are constructed. For ground- or sea-based radars the emission model would
be different. In total, the airborne example radar can make use of 40 338 different

54 Chapter 4. Modelling of Agile Radar Emissions

Table 4.3: Letters of the example
radar.

Name PRF [Hz] RF [MHz] PW [µs]

l1 8880 10 000 12.387

l2 10 850 10 000 10.138

l3 12 040 10 000 9.136

l4 12 820 10 000 8.580

l5 14 110 10 000 7.795

l6 14 800 10 000 7.432

l7 15 980 10 000 6.883

l8 16 770 10 000 6.559

l9 75 420 10 000 1.201

l10 77 930 10 000 1.201

l11 79 310 10 000 1.201

l12 82 210 10 000 1.201

l13 86 150 10 000 1.201

l14 90 200 10 000 1.201

l15 96 200 10 000 1.201

l16 98 512 10 000 1.201

l17 100 120 10 000 1.201

l18 105 380 10 000 1.201

Table 4.4: Syllables of the ex-
ample radar.

Name Combination

s1 - s241 {16, 17, . . . , 256} · l1
s242 - s482 {16, 17, . . . , 256} · l2
s483 - s723 {16, 17, . . . , 256} · l3
s724 - s964 {16, 17, . . . , 256} · l4
s965 - s1205 {16, 17, . . . , 256} · l5
s1206 - s1446 {16, 17, . . . , 256} · l6
s1447 - s1687 {16, 17, . . . , 256} · l7
s1688 - s1928 {16, 17, . . . , 256} · l8
s1929 - s5769 {256, 257, . . . , 4096} · l9
s5770 - s9610 {256, 257, . . . , 4096} · l10

s9611 - s13451 {256, 257, . . . , 4096} · l11

s13452 - s17292 {256, 257, . . . , 4096} · l12

s17293 - s21133 {256, 257, . . . , 4096} · l13

s21134 - s24974 {256, 257, . . . , 4096} · l14

s24975 - s28815 {256, 257, . . . , 4096} · l15

s28816 - s32656 {256, 257, . . . , 4096} · l16

s32657 - s36497 {256, 257, . . . , 4096} · l17

s36498 - s40338 {256, 257, . . . , 4096} · l18

syllables, of which 25 380 appear in the simulation data of the QoS radar, 27 786 in the
data of the Rules-v2 radar, and only 103 in the data of the simple Rules-v1 radar.

Syllables are combined to form words. The simulated radar is able to combine
all MPRF and all HPRF syllables of the same length, respectively. When doing so, it
adheres to the following rules. In the MPRF range, no syllables occur more than once
in a word. Also, the syllables are only combined in ascending order of the PRF. Words
in the HPRF range repeat a syllable only in the beginning of the word or the complete
word consists of only one syllable. Moreover, only one syllable can occur more than
once in each word. Based on these rules, 26 101 507 different words can be formed. In
the simulation data of the QoS radar, only a small fraction consisting of 26 653 words
occurs. The Rules-v2 radar uses 34 440 words, and the Rules-v1 only 21. Note that the
emission model presented in Section 4.1.1 uses the Mercury emitter with nine words
as an example. Although only a small fraction of the words are actually used, all of
them are considered in the emission model to keep the flexibility. Table 4.5 shows
a summary for words and commands. For example, w1 contains the syllables s1

4.4. Word Embedding for the Radar Language 55

Table 4.5: Words and commands of the example radar.

Command Word

MPRF

2-Syllable Word w1 - w6748

3-Syllable Word w6749 - w20244

4-Syllable Word w20245 - w37114

5-Syllable Word w37115 - w50610

6-Syllable Word w50611 - w57358

7-Syllable Word w57359 - w59286

8-Syllable Word w59287 - w59527

HPRF
2-Syllable Word w59528 - w443627

3-Syllable Word w443628 - w3593247

4-Syllable Word w3593248 - w26101507

and s242, which repeat the letters l1 and l2 16 times, respectively. Because of the very
large number of words, a complete table connecting them to syllables is not shown
here. Instead, Table 4.5 displays them organised by commands, which form the next
hierarchy level. These are characterised by a separation into MPRF and HPRF as well
as the number of syllables they contain.

Functions are on the next and highest level of the hierarchy. The radar performs
the functions “search”, “confirm”, and “track”, along with “calibration” and “missile
link”. The last two, however, are only executed from time to time and do not create
interceptable radar emissions. Therefore, gaps are introduced in the simulation data
where those functions would have been performed and consequently, they are not
considered in the modelling. The function “track” shows the most diversity when
choosing the waveform parameters. For the functions “search” and “confirm” only
the words with eight and four syllables of the MPRF and HPRF range are used.
Besides the diversity, there are only a few words - in total 30 of the 26 653 words
contained in the QoS simulation data - which are used by more than one function.

4.4 Word Embedding for the Radar Language

The simulation data of the three resource management versions is divided into a
training, a validation, and a test set. The training set contains six of the eight scen-
arios with 1440 Monte Carlo runs per emitter type. The validation set consists of two
scenarios with 240 runs per emitter type. For testing, all eight scenarios are used
with 480 Monte Carlo runs per emitter type. For letters, a very large amount of data
is available and hence, only two runs per scenario and emitter type are considered for
training and testing. The word vectors are learnt with the TensorFlow [111] frame-

56 Chapter 4. Modelling of Agile Radar Emissions

Table 4.6: word2vec parameters used. Values for the QoS and Rules-v2 radars are
shown before and those for the Rules-v1 after the slash. Batch size and
skip window are the same for all.

Parameter Letter Syllable Word Command Function

Embedding size 8/8 64/16 64/8 4/2 2/2
Batch size 128 128 128 128 128
Skip window 30 30 30 30 30
Num sampled 4/4 64/4 64/4 2/1 1/1

work for Python [112] on the training and validation set with the word2vec example
implementation1 by the TensorFlow authors as a basis. The implementation employs
Skip-gram with negative sampling. See Table 4.6 for the parameters used.

When using word embeddings, an additional word vector for unknown symbols
(represented as UNK) is introduced. In NLP, infrequent words like names are re-
placed by UNK. In the considered application, the word vector for UNK allows for
more flexibility with handling new symbols which did not appear in the training or
validation data. As the data from the test set is not used to create the word embed-
dings, a few syllables and words appear that are mapped to UNK. In the test data
of the QoS radar, there are 917 unknown syllables (0.013 % of the test data) and 2931
unknown words (0.21 %). The test data of the Rules-v2 radar contains 612 unknown
syllables (0.007 %) and 2400 unknown words (0.139 %). For the Rules-v1 radar, there
are no unknown symbols and no unknown letters, commands, or functions appear
for all radars.

As a result of learning the embeddings, a dictionary of the symbols of each emitter
is obtained. Let ω be a symbol in the set of symbols Ωl at modelling level l ∈ {letters,
syllables, words, commands, functions}, including the UNK symbol. For each emit-
ter e in the set of emitters E = {QoS, Rules-v1, Rules-v2}, the set Ωl

e only contains
the symbols that appear in its training or validation set. Here, Ωl =

⋃
e∈E Ωl

e corres-
ponds to the global dictionary containing the symbols from all emitters, while Ωl

e is
the individual dictionary of emitter e.

4.5 Summary

Multifunction radars can be modelled as systems that speak a language. Like a natural
language, the radar language consists of different levels, which are called letters,
words, commands, and tasks in the original approach described in the literature. To
better suit the needs of ELINT, the emission model is adapted in this thesis to contain

1 https://android.googlesource.com/platform/external/tensorflow/+/
2db2230841e851e80374b6c5d9e6d9d7f35e0384/tensorflow/examples/tutorials/word2vec/
word2vec_basic.py

4.5. Summary 57

letters, syllables, words, commands, and functions. The adapted emission model
is shown using three variants of a simulated airborne radar with different resource
management methods of varying complexity.

In NLP, word embeddings are used to represent words as dense vectors, which
are learnt by a neural network. The resulting word embedding contains context-
dependent vector representations of the words and also captures semantic relation-
ships, which allows for calculations like vking − vman + vwoman ≈ vqueen. This thesis
applies word embeddings to the symbols (i.e. letters, syllables, words, commands,
and functions) of the radar language to enable context-dependent analysis of radar
signals and take advantage of the dense vector representation when further processing
the radar symbols with neural networks.

Chapter 5

Prediction of Radar Emissions

This chapter provides an overview of the literature on predicting radar emissions.
Afterwards, it presents the approaches proposed in this thesis and provides an eval-
uation. According to the definitions given in Section 2.4, predicting the emissions
constitutes the third problem of EW. This chapter also addresses the fourth problem
of learning or training a model. Parts have been published in [60, 62].

5.1 Introduction

The goal of ELINT is to collect information about radar emitters that helps to identify
their type and purpose and hence the threat that they pose to a platform. Based
on the gathered information, models of the radar emitters can be built, which al-
low for the prediction of future emissions. These forecasts are especially useful for
sorting simultaneously received signals by emitter (deinterleaving, see Section 2.2.3)
and generating tailored signal interference to degrade the performance of the radar
(jamming).

For non-agile or semi-agile radars, the prediction of the next emission is much
easier than for modern agile radars since they do not change their mode and hence
their waveform parameters very often. Agile radars, however, are capable of ad-
apting their waveform parameters to the current situation such that the emissions
change rapidly and repeatedly. Therefore, more sophisticated methods for prediction
are needed. In the following sections, solutions for this problem are presented and
evaluated.

5.1.1 Related Work

The authors of the hierarchical emission model presented in Section 4.1.1 suggest to
define a formal radar grammar, which can be used to generate an FSM and an HMM
(see Chapter 3). In [12–21], the focus is set on solving the second problem of EW (see
Section 2.4), the decoding of the radar’s internal state sequence, which corresponds
to a sequence of commands defined in Table 4.1 of Section 4.1.1. The modelling
suggested in the PhD thesis by Visnevski [15] requires the manual definition of the
grammar, including the production rules, by an expert. The resulting syntactic model
is optimised to explain the radar’s emissions and as a consequence, it can generate
emissions that are not part of the actual radar language. Therefore, it cannot be used
to predict upcoming radar symbols.

59

60 Chapter 5. Prediction of Radar Emissions

Based on the emission model suggested by Visnevski et al. [12–21], the authors
of [34] present a method for predicting radar emissions. Like Visnevski et al., they use
the Mercury emitter (see Section 4.1.1) for evaluation. Instead of using HMMs, PSRs
(see Section 3.4.4) are employed for state recognition and prediction. The goal is to
predict a combination of words that form a command. First, they estimate the current
functional state of the radar. To do so, they follow the same approach as [12–21],
i.e. for every model, they determine the probability that it has generated the current
sequence of words. Afterwards, the PSR for every state makes a prediction. These are
fused based on the probabilities assigned to each state to yield the final results.

Apart from the hierarchical emission model, the authors of [36] predict radar emis-
sions based on a discretised PDW representation, consisting of PRI and PW. After dis-
cretisation, PRI and PW are encoded into one-hot vectors individually. Afterwards,
embeddings are learnt to reduce the dimensionality. This is also done separately for
PRI and PW, however, the authors do not provide details about the embedding. The
embedded representations are concatenated and input to a GRU (see Section 3.5.7),
which learns to predict the next discretised value of PRI and PW. To make the pre-
diction more robust, the GRU is trained with corrupted data. Each pair of PRI and
PW is tagged to belong to a radar pulse or noise segment, while the training labels
are only generated from pulses. For evaluation, five different “stream classes” are
defined. These correspond to waveform parameters with constant statistical features
up to some variation of the PRI within certain limits. For each class, a GRU is trained
to make predictions. The considered sequences are rather short and consist of 20 to 25
pulses.

5.1.2 Contributions

Based on the adapted hierarchical emission model presented in Chapter 4, methods
for predicting the next emission of a radar emitter are proposed. As opposed to the
work by Visnevski et al. [12–21], the radar model does not require manual definitions
by an expert but it is instead learnt from the available data sequences.

Two methods are of particular interest, the LSTM and the MC. This compar-
ison is especially interesting since the two approaches are in contrast to each other in
terms of memory. The LSTM possesses an internal state (its “memory”) and employs
a gating mechanism to mitigate the vanishing gradient problem of standard RNNs.
Consequently, it is able to learn about long-term dependencies in the input. In con-
trast to LSTMs, MCs exhibit the “memoryless” property, i.e. the probabilities for the
next state of the MC only depend on the current state and not on the previous states.
This chapter demonstrates whether memory is important for predicting the signals of
a multifunction radar by a thorough comparison of LSTMs and MCs, both with ideal
and corrupted data.

In contrast to [34], which also employs the hierarchical emission model, the presen-
ted evaluations consider all modelling levels. Moreover, the examined emitter types
are much more complex than those considered in the previous work. The emitter
in [34] can make use of nine words, while the radar types considered in this thesis

5.2. Approaches 61

Table 5.1: Training, validation, and test set per emitter type. The numbers in brack-
ets correspond to the reduced number of runs for letters.

Training Validation Test

[runs] [h] [runs] [h] [runs] [h]

1440 (12) 64.0 480 (12) 25.3 480 (16) 19.3

use up to 34 440 words. Also the method using GRUs presented in [36] is evaluated
with less complex data. Although it does not use the hierarchical emission model, the
methods are directly comparable on the lowest level, i.e. pulses or letters. For parts of
the other modelling levels, the complexity can at least be estimated. The five classes
defined in [36] resemble commands in the adapted hierarchical emission model and
the specific realisations of the emissions correspond to words. The authors state that
for each class, 5000 training sequences are generated with random PRI. However,
for the class with the maximal difference between the upper and lower bound of the
PRI, which is 500 µs, this results in at most 100 different realisations after discretisa-
tion with steps of 5 µs. For the other classes, the number of possible realisations (or
words) is even less.

As a result of this chapter, behavioural models of the example emitters at different
modelling levels are obtained. Moreover, the impact of corrupted data as well as the
input encoding is shown. Section 5.2 provides details on the implementation and
training of the LSTMs and the MCs. Section 5.3 describes and presents the evaluation,
and Section 5.4 summarises the chapter.

5.2 Approaches

Using the simulations of the example emitters presented in Section 4.3, LSTMs and
MCs are learnt as behavioural models of the emitters. For training or learning the
models, the data is split into training, validation, and test set (see Table 5.1). The
same sets were also used for learning the vector representations (see Section 4.4), i.e.
six of the eight scenarios are used for training, the other two for validation, and all
eight scenarios are used for testing. The validation set is only used for the LSTMs
since for the MCs, there is no need to try several parameters. For the letters, a very
large amount of data is available which would have taken several month to train.
Hence, the LSTMs and MCs for predicting letters are only trained and tested on two
runs per scenario.

Tables 5.1 and 5.2 provide an overview over the number of runs, the duration of
the simulations, as well as the amount of data available per emitter. Table 5.2 shows
that there is a slight data imbalance in the simulations because the syllables of the QoS
radar tend to contain more letters, which results in less syllables, words, commands,
and functions.

62 Chapter 5. Prediction of Radar Emissions

Table 5.2: Amount of data in the sets of each emitter. The values for letters are the
reduced amount.

Symbol Radar Train. [MB] Val. [MB] Test [MB]

Letter
QoS 713.2 811.2 993.3
Rules-v1 613.8 711.1 850.3
Rules-v2 661.1 795.3 924.4

Syllable
QoS 149.1 46.9 49.2
Rules-v1 187.5 66.5 63.6
Rules-v2 185.1 64.9 62.7

Word
QoS 58.7 18.4 19.3
Rules-v1 68.2 23.3 22.8
Rules-v2 71.1 25.2 24.0

Command
QoS 34.4 10.9 11.3
Rules-v1 40.9 14.2 13.7
Rules-v2 42.0 14.6 14.1

Function
QoS 16.0 5.1 5.3
Rules-v1 18.9 6.6 6.4
Rules-v2 19.4 6.8 6.6

5.2.1 Long Short-Term Memory

Per resource management technique and modelling level, one LSTM is trained, res-
ulting in 15 different and independent networks. The LSTMs are implemented using
Python and TensorFlow. Figure 5.1 shows the general architecture of the networks.
The input consists of sequences of strings that are read from a text file containing
the names of the symbols according to the definitions given in Tables 4.3 to 4.5 of
Section 4.3. The word embedding layer maps the strings to vectors, which are arrays
of floating point values. Those are then processed by the LSTM layers with peephole
connections (see (3.86) to (3.88)), which are followed by a dropout layer with a rate
of 50 % to mitigate overfitting. Since this layer is only active during training, it is de-
picted in grey. The final dense layer before softmax consists of one neuron per symbol
of the modelling level (e.g. 103 for the syllables of the Rules-v1 radar, see Table 4.2)
and ReLU activation is applied. The activations of the dense layer (often called the
“logits” of the network) are normalised by the softmax layer to yield a probability
distribution over the possible next symbols. For training, the input consists of symbol
pairs (ωi, ωj) where ωi, ωj ∈ Ωl are symbols in the set of symbols Ωl at modelling
level l ∈ {letters, syllables, words, commands, functions}, including the UNK symbol.
Given the symbol ωi, the label corresponds to the next symbol ωj. It is encoded into
a one-hot vector such that it can be interpreted as a probability distribution to match
the desired output of the network and allow for training with the cross-entropy loss.

For each network, a batch size of 120 is used except for those trained on the letters,
for which the batch size is set to 12. Batch sizes of 120 and 12 were chosen because

5.2. Approaches 63

D
en

se

LS
TM

So
ft

m
ax

D
ro

p
o

u
t

(5
0

%
)

Sy
m

b
o

l

P
re

d
ic

ti
o

n

W
o

rd
 E

m
b

ed
d

in
g

Figure 5.1: General architecture of the networks for prediction. The dropout layer is
shown in grey since it is only active during training.

they are common factors of 1440 and 480. With a batch size of 120, 120 simulation
runs are fed to the network in parallel with one symbol per run and batch. This means
that the input to the network consists of a 120 dimensional symbol vector containing
the symbols from each simulation run at a given time, i.e. for step t

Bt = (ω1
t , ω2

t , . . . , ω120
t) (5.1)

and for step t + 1
Bt+1 = (ω1

t+1, ω2
t+1, . . . , ω120

t+1), (5.2)

with the superscript denoting the number of the simulation run. For an easier ex-
planation, the runs are displayed in the order 1, 2, . . . , 120 here, but actually appear
shuffled. The batches B are input to the network in parallel such that there exist 120
internal states and a vector of 120 error values, for which the gradient is calculated. As
described in Section 3.5.3, batch training is a compromise between the computation-
ally expensive procedure of calculating the error on the complete data and updating
the weights based on a noisy gradient due to a low sample size. The networks are
trained using the Adam optimiser with a learning rate of 0.002 and the cross-entropy
loss (see (3.68)), and 50 % dropout after the last LSTM layer. The LSTM cell state is
kept between batches. Table 5.3 shows the number of layers and the number of cells
per layer employed for each modelling level. The values were found by testing several
architectures and choosing the one with the smallest loss on the validation set.

Table 5.3: LSTM parameters for the different modelling levels of the example radars.

Radar Parameter Letter Syllable Word Command Function

QoS # layers 2 2 2 2 1
cells/layer 256 128 256 32 16

Rules-v1 # layers 1 1 2 1 1
cells/layer 64 64 32 4 4

Rules-v2 # layers 2 2 2 2 1
cells/layer 32 32 64 16 16

64 Chapter 5. Prediction of Radar Emissions

5.2.2 Markov Chain

As a second approach, an MC is implemented per radar and modelling level, also
resulting in 15 different and independent MCs. A first order MC is used, which means
that only the current state x̌t influences the probability of the next state x̌t+1 according
to (3.20). Due to the large number of syllables and words emitted by the QoS and
Rules-v2 radar, higher order MCs would rapidly cause memory and performance
issues.

Based on the data in the training set, which consists of tuples (ωi, ωj) as defined
above, the probability of the next symbol ωj given the symbol ωi is estimated for
every symbol pair ωi, ωj ∈ Ωl and every emitter e in the set of emitters E = {QoS,
Rules-v1, Rules-v2} by

P̂e(ωj|ωi) =
count(ωi, ωj)

∑ω∈Ωl count(ωi, ω)
, (5.3)

where count(ωi, ωj) is the number of times that ωj follows ωi in the training set of
emitter e.

The symbols ωi are mapped to integers before they are input to the MC. This
is done based on the index of the symbol in the embedding matrix and hence, the
transition matrices of the MCs also contain the index of the UNK symbol. However,
as it does not appear in the training data P̂e(UNK|ωi) = 0 for all e ∈ E . If the data is
corrupted and therefore contains symbols from a different emitter, those are mapped
to UNK.

An MC and not an HMM was chosen for predicting the next symbol because
the estimation of the internal state, which would be the functions search, confirm, or
track, introduces additional complexity which is not necessary to solve the task.

5.2.3 Comparison Methods

For further performance assessment, the LSTMs and MCs are compared to three
simple prediction strategies. The first one is random guessing with uniform probab-
ility for the symbols. The second strategy predicts the symbols that most frequently
appear in the training data, hence the prediction is always the same. The third one
consists of repeating the last symbols seen.

5.3 Experimental Results

In the first part of the evaluation, the data is ideal, i.e. without missing or addi-
tional symbols which potentially belong to a different radar. Corrupted data might be
caused by missed detections of the emitters’ signals and errors made in the deinter-
leaving or symbol extraction step (see Section 2.3). In the second part, the evaluation
is performed with data containing missing and additional symbols.

The results are obtained on the test set, which was not used for training the LSTMs
and the MCs. Given are the top 1, top 5, top 10, and top 20 prediction accuracies

5.3. Experimental Results 65

acce(Ŷ, Y, k), k = 1, 5, 10, 20 (see Section 3.5.4). Here, Ŷ = (ŷ1, . . . , ŷM) with the batch
size M ∈ {12, 120} is the actual output of the prediction method for the data of emit-
ter e and Y = (y1, . . . , yM) the desired output, i.e. the labels. The values for guessing
represent the probabilities that the correct symbol is among the randomly chosen
ones if 1, 5, 10, or 20 symbols are selected. For letters, commands, and functions
there are less than 20 symbols to choose from such that an accuracy of 100 % can be
easily achieved. From the way the word embedding is designed, it follows that the
LSTMs and the MCs can always predict one extra symbol (UNK). To keep the com-
parison fair, the UNK symbol is accounted for in the results for the random guessing
strategy. The strategy of always predicting the most frequent symbols chooses the
most frequent symbol for the top 1 accuracy, the 10 most frequent symbols for top 10
accuracy, and so on. For repeating the last symbols, the top 20 accuracy is obtained
by predicting the last 20 symbols in reversed order. These might not necessarily be
20 different symbols such that an accuracy of less than 100 % is achieved for letters,
commands, and functions.

5.3.1 Evaluation Under Ideal Conditions

Figure 5.2 shows the prediction accuracies for the different strategies with ideal data.
Detailed results for the MCs and the LSTMs are given in Tables 5.4 and 5.5. Table 5.4
additionally shows the results of the repeating strategy for letters, syllables, words,
and commands since it is the best simple strategy in terms of top 1 accuracy for
these symbols except for the commands of the QoS radar. In Table 5.5, the results of
the strategy that predicts the most frequent symbols for commands and functions is
shown in comparison to the results of the MCs and LSTMs. This approach is the best
simple strategy for the commands of the QoS radar and the functions of all emitter
types.

As is typical for an airborne radar, the simulated emitter integrates many pulse
repetitions. For example, word w26101507 consists of 16 384 repetitions of the same
letter l18. If the radar repeats this word, the sequence of that letter becomes even
longer. As one can see from the top 1 accuracy of always predicting the most common
letter l18, it makes up more than 85 % of the test data (see Figure 5.2) and repeating
the last letter results in a top 1 accuracy of more than 99.9 %, as seen in Table 5.4.
These sequences seem to be too long for an LSTM to learn. For all simulated radar
variants, smaller networks learnt to always predict l18. Larger networks were able to
predict l18 if it was correct. However, if l18 was not the next letter, the larger LSTMs
predicted all possible letters with equal probability. Hence, the LSTMs could learn
when l18 was not the right answer but could not tell which letter was correct. Further
increasing the network size did not solve the problem. The reason for this might be
the heavily imbalanced training data. Both outcomes from training basically result
in the same performance as always predicting the most frequent letters. However,
this emitting behaviour is specific to airborne radars and the results will be much
different for ground radars. In contrast to the LSTMs, the MCs are able to predict the
next letter with a top 1 accuracy of about 99.9 % and achieve the exact same results

66 Chapter 5. Prediction of Radar Emissions

QoS Rules-v1 Rules-v20

20

40

60

80

100

Pr
ed

ic
tio

n
ac
cu
ra
cy

[%
]

Letter

Rand.
Top 1
Top 5
Top 10
Top 20

Freq.
Top 1
Top 5
Top 10
Top 20

Rep.
Top 1
Top 5
Top 10
Top 20

MC
Top 1
Top 5
Top 10
Top 20

LSTM
Top 1
Top 5
Top 10
Top 20

QoS Rules-v1 Rules-v2

Syllable

QoS Rules-v1 Rules-v2

Word

QoS Rules-v1 Rules-v20

20

40

60

80

100

Pr
ed

ic
tio

n
ac
cu
ra
cy

[%
]

Command

QoS Rules-v1 Rules-v2

Function

Figure 5.2: Prediction accuracies of the different methods, which are random guess-
ing (Rand.), predicting the most frequent symbols (Freq.), repeating the
last symbols (Rep.), as well as MC and LSTM.

as the repeating strategy (see Table 5.4). The entries on the diagonal of the MCs’
transition matrices are all very close to 1, which means that the MCs basically repeat
the last letter. Considering the data, this seems to be the best strategy.

For the QoS radar, the LSTM and the MC achieve a large improvement for the
syllables with a top 1 accuracy of 82.8 % and 82.24 %, respectively (see Table 5.4). The
best simple strategy, namely repeating the last syllable, reaches 37.11 % accuracy. As
the number of syllables used by the QoS and the Rules-v2 radar is very large, no
bar can be seen for random guessing in Figure 5.2 because the top 20 accuracy is
below 0.1 %. Also for predicting the syllables of the other two radars, the MCs and
LSTMs clearly achieve higher accuracies than the simple strategies. For the syllables
of the QoS radar, the LSTM provides slightly better results, but the differences are not
notable. The MCs outperform the LSTMs for the syllables of the two rule-based emit-
ters. From the results for the syllables of the Rules-v2 radar, it is seen that although it
uses 27 786 different syllables, the 20 most frequent make up 75.88 % of the test data.
For the QoS radar, this value is 49.92 %, which is also significant when considering
that it uses 25 380 different syllables during the simulation runs.

Words are hardest to predict, but the LSTMs and the MCs still outperform the
simple strategies, while the LSTMs achieves a higher accuracy than the MCs for all
emitter types. As seen in Table 5.4, the LSTM can improve the result from 20.29 %

5.3. Experimental Results 67

Table 5.4: Prediction accuracies [%] of the MCs, the LSTMs, and the repeating
strategy. The best results are marked in bold.

QoS Rules-v1 Rules-v2

MC LSTM Rep. MC LSTM Rep. MC LSTM Rep.

Le
tt

er

Top 1 99.93 85.78 99.93 99.90 90.59 99.90 99.92 88.99 99.92
Top 5 100.00 92.55 99.93 100.00 93.38 99.90 100.00 93.29 99.92
Top 10 100.00 96.20 99.93 100.00 98.02 99.90 100.00 96.84 99.92
Top 20 100.00 100.00 99.93 100.00 100.00 99.90 100.00 100.00 99.92

Sy
lla

bl
e Top 1 82.24 82.80 37.11 96.15 92.14 42.49 95.36 93.27 46.18

Top 5 89.77 90.12 38.86 99.59 96.81 42.59 98.81 96.43 46.75
Top 10 93.81 93.91 47.03 99.87 97.78 84.09 99.08 96.59 87.15
Top 20 97.44 97.14 55.58 99.92 98.28 86.56 99.20 96.71 88.36

W
or

d

Top 1 24.83 28.02 20.29 78.80 85.12 78.42 79.03 83.54 77.85
Top 5 52.25 58.69 44.34 97.74 98.48 84.11 93.71 92.88 81.78
Top 10 70.02 76.32 58.33 99.39 99.60 86.30 94.81 94.04 83.14
Top 20 85.84 87.95 72.17 99.93 99.99 88.34 95.36 96.19 84.50

C
om

m
an

d Top 1 57.72 57.78 51.88 93.38 94.16 93.37 93.41 93.94 91.30
Top 5 99.19 98.85 87.86 100.00 100.00 97.50 99.81 99.54 96.14
Top 10 100.00 99.90 95.49 100.00 100.00 98.23 100.00 99.96 96.87
Top 20 100.00 100.00 98.17 100.00 100.00 98.71 100.00 100.00 97.60

top 1 accuracy achieved by repeating the last word to 28.02 % for the QoS radar. The
MC provides 24.83 % accuracy here. Nevertheless, these accuracies are much lower
than for the prediction of syllables and could possibly be improved based on the
prediction of syllables. Again, no bar is visible in Figure 5.2 for the random guessing
strategy for the QoS and the Rules-v2 radar since the number of emitted words is very
large. However, despite the large number of different words used in general, also here
the 20 most frequent ones constitute the majority of the test data (74.02 % for the QoS
and 96.23 % for the Rules-v2 radar).

For the commands and functions, the results of the best simple strategies, the
LSTMs, and the MCs are very similar. Mainly, the radars search for new targets, as
shown by the top 1 accuracy of prediction the most frequent function of 85.92 % to
94.85 % (see Table 5.5).

The results suggest that the performance gain when using an LSTM or an MC
is largest if there are many different symbols in use and the order in which they
are emitted is rather complex. For simple resource management algorithms or few
symbols, there are simpler strategies which can achieve high prediction accuracy and
the effort for training an LSTM or MC might not be worth it. However, for complex
resource management with many symbols, the gain can be very large. In general, it is

68 Chapter 5. Prediction of Radar Emissions

Table 5.5: Prediction accuracies [%] of the MCs, the LSTMs, and the strategy that
predicts the most frequent symbols. The best results are marked in bold.

QoS Rules-v1 Rules-v2

MC LSTM Freq. MC LSTM Freq. MC LSTM Freq.

C
om

m
an

d Top 1 57.72 57.78 57.91 93.38 94.16 62.51 93.41 93.94 63.59
Top 5 99.19 98.85 98.56 100.00 100.00 100.00 99.81 99.54 99.70
Top 10 100.00 99.90 100.00 100.00 100.00 100.00 100.00 99.96 100.00
Top 20 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Fu
nc

ti
on

Top 1 85.94 86.20 85.92 92.37 92.89 92.81 94.58 94.48 94.85
Top 5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Top 10 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Top 20 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

observed that the LSTM outperforms the MC if the symbols are hard to predict, like
it is the case for words. If the prediction is simpler, the MC has an advantage over the
LSTM. By definition, the syllables that form a word often occur together in a specific
order. Therefore, it is not surprising that sequences of syllables exhibit a pattern that
is easier to predict than that of words.

5.3.2 Evaluation with Missing and Additional Symbols

In reality, the received signal is probably not ideal. Symbols might be missing or
additional symbols from the same or another radar might be inserted. Hence, the
performance of the LSTMs and the MCs is assessed when faced with corrupted data
after training with ideal data. For guessing and predicting the most frequent symbols,
missing and additional symbols do not change the predictions. For repeating the last
symbol, these cases impact the prediction a lot. Therefore, the evaluation is restricted
to a comparison of the LSTMs, the MCs, and the repeating strategy.

Figure 5.3 visualises what happens when symbols are missing or additional sym-
bols are inserted. As it is not expected that any strategy can predict missing symbols,
one prediction error would be the best case. For an additional symbol, at least two
errors are expected. Two scenarios are considered in the evaluation. In the first one,

ω1 ω2 ω3 ω4 ω5 ω6 ω7

x

(a) Missing symbol.

ω1 ω2 ω3 ωx ω4 ω5 ω6

x x

(b) Additional symbol.

Figure 5.3: With a missing or additional symbol, at least one or two prediction er-
rors, respectively, are expected to be made.

5.3. Experimental Results 69

Table 5.6: Mean ± standard deviation of the relative top 1 prediction accuracy
accrel(E) [%] with missing or additional syllables.

Syllable

Rate MC LSTM Repeating

M
is

si
ng

1 % −0.59± 0.04 −1.71± 0.07 −0.10 ± 0.08
5 % −2.94± 0.22 −7.86± 0.34 −0.56 ± 0.43
10 % −5.90± 0.45 −14.22± 0.36 −1.19 ± 0.89
20 % −11.93± 0.99 −24.60± 0.31 −2.68 ± 2.01

M
is

si
ng

in
bl

oc
ks

1 % −0.14± 0.02 −0.39± 0.06 −0.08 ± 0.05
5 % −0.72± 0.11 −1.82± 0.09 −0.38 ± 0.26
10 % −1.42± 0.22 −3.59± 0.23 −0.76 ± 0.46
20 % −2.86± 0.44 −7.00± 0.48 −1.55 ± 0.96

A
dd

it
io

na
l 1 % −1.95 ± 0.02 −2.77± 0.17 −1.96± 0.03

5 % −9.42 ± 0.10 −12.69± 0.64 −9.47± 0.10
10 % −17.95 ± 0.22 −23.31± 1.25 −18.03± 0.21
20 % −32.92 ± 0.39 −40.15± 2.69 −33.10± 0.36

A
dd

it
io

na
l

in
bl

oc
ks

1 % −1.18 ± 0.01 −1.44± 0.06 −1.18 ± 0.01
5 % −5.69± 0.04 −6.53± 0.32 −5.65 ± 0.05
10 % −10.86± 0.04 −12.34± 0.58 −10.84 ± 0.11
20 % −19.91± 0.07 −22.90± 0.95 −19.85 ± 0.21

single symbols are randomly removed or inserted. In the second scenario, missing
or additional blocks of five symbols are considered. The data is randomly created
from the test set with 1 %, 5 %, 10 %, and 20 % missing or additional symbols. The
additional symbols are randomly chosen from the symbols of all emitters. Here, only
the results for syllables and words are presented as these are the most interesting
modelling levels considering the results obtained with ideal data.

Tables 5.6 and 5.7 show the mean relative top 1 accuracies accrel(E) and the
standard deviations for syllables and words of the MCs, the LSTMs, and the repeat-
ing strategy with respect to the results for ideal data and averaged over all emitter
types e ∈ E ,

accrel(E) =
acccorrupt(E)− accideal(E)

accideal(E)
· 100 %, (5.4)

with

acc(E) = 1
|E | ∑

e∈E
acce(Ŷ, Y, k), k = 1. (5.5)

In addition, Figure 5.4 depicts a comparison of the absolute top 1 accuracies of
the three methods for the syllables and words of the QoS radar. Note that the results

70 Chapter 5. Prediction of Radar Emissions

Table 5.7: Mean ± standard deviation of the relative top 1 prediction accuracy
accrel(E) [%] with missing or additional words.

Word

Rate MC LSTM Repeating

M
is

si
ng

1 % −0.14± 0.03 0.76 ± 1.55 −0.15± 0.01
5 % −0.78± 0.09 −0.70 ± 1.50 −0.83± 0.03
10 % −1.60 ± 0.26 −2.41± 2.01 −1.72± 0.11
20 % −3.57 ± 0.54 −5.76± 4.00 −3.85± 0.18

M
is

si
ng

in
bl

oc
ks

1 % −0.08± 0.01 −0.01 ± 0.51 −0.08± 0.01
5 % −0.38± 0.16 −0.04 ± 1.58 −0.39± 0.15
10 % −0.80 ± 0.26 −1.29± 2.53 −0.86± 0.19
20 % −1.60 ± 0.55 −3.86± 2.63 −1.66± 0.51

A
dd

it
io

na
l 1 % −1.87± 0.07 −0.69 ± 1.25 −1.94± 0.04

5 % −9.14± 0.27 −6.45 ± 2.08 −9.35± 0.26
10 % −17.47± 0.56 −11.64 ± 2.50 −17.85± 0.49
20 % −32.02± 1.05 −21.72 ± 2.85 −32.71± 0.84

A
dd

it
io

na
l

in
bl

oc
ks

1 % −1.17± 0.01 −0.65 ± 1.47 −1.18± 0.03
5 % −5.67± 0.10 −6.63± 2.82 −5.59 ± 0.12
10 % −10.82± 0.10 −11.51± 2.89 −10.62 ± 0.29
20 % −19.72± 0.18 −20.37± 3.22 −19.57 ± 0.54

cannot be directly related to those presented in Tables 5.6 and 5.7 since the tables
display the mean over all emitters.

Figure 5.4 and Tables 5.6 and 5.7 show that blocks of missing or additional syl-
lables in general cause less harm than single ones for all strategies. Interestingly,
the LSTMs’ accuracies for additional syllables in blocks are better than for missing
single syllables. Missing words do not have much impact on the performance and,
as expected, additional words are worse than missing ones. However, the difference
between the single and blockwise case is not as clear for the LSTMs with words as it
is for syllables. The MCs are more robust than the LSTMs with respect to missing and
additional syllables (see Tables 5.6 and 5.7). For single additional words, the LSTMs’
accuracies exhibit less decrease. However, the differences are small if the additional
words occur in blocks of five. The results of the LSTMs vary more per emitter, es-
pecially for words, as seen by the standard deviation depicted in Table 5.7, which
is higher than that of the MCs in most cases. The repeating strategy is most robust
with corrupted data regarding syllables. For single additional syllables, the MCs are
slightly better, but not notably. However, the absolute accuracies of the MCs and
LSTMs are still higher than those of the repeating strategy. For words, the LSTMs are
the most robust models in most cases.

5.3. Experimental Results 71

0 1 5 10 20
Missing / additional syllables [%]

30

40

50

60

70

80

To
p
1
pr
ed

ic
tio

n
ac
cu

ra
cy

[%
]

Syllable

0 1 5 10 20
Missing / additional words [%]

14

16

18

20

22

24

26

28

To
p
1
pr
ed

ic
tio

n
ac
cu

ra
cy

[%
]

Word

Missing, single
LSTM
MC
Repeating

Missing, blocks
LSTM
MC
Repeating

Additional, single
LSTM
MC
Repeating

Additional, blocks
LSTM
MC
Repeating

Figure 5.4: Comparison of the impact of missing and additional syllables and words
on the top 1 accuracy of the LSTMs, the MCs, and the repeating strategy
for the QoS radar.

5.3.3 Evaluation of the Impact of Input Encoding

Figure 5.5 shows a comparison of the course of training and validation loss while
training the LSTM with word embedding and one-hot encoding for the syllables of
the QoS radar. Several training runs were performed and they all showed similar
behaviour. It is observed that the results with word embedding are slightly better.
An interesting aspect is the instability of training with one-hot encoding. This could
probably be resolved by adapting the training parameters, but here the differences
in training under the same conditions are to be demonstrated. Moreover, training
is faster with word embedding (per epoch about 130 min vs. 165 min) due to the
smaller input sizes. The one-hot encoding results in a 25 380 dimensional vector, while
the embedded representation has 64 dimensions. Of course, generating the word
embedding also takes some time, but to find the best model, several architectures
and parameters need to be tested. Therefore, the training is repeated several times
and faster training of the networks is important. Moreover, for a stable training,
neural networks prefer vectors with only small differences between the values of the
entries. Using a word embedding provides an advantage here since it resembles a
normalisation of the input data.

72 Chapter 5. Prediction of Radar Emissions

0 20 40 60 80 100 120 140 160 180
Index

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
Cr

os
s e

nt
ro

py
 lo

ss
train (word embedding)
val. (word embedding)
train (one-hot encoding)
val. (one-hot encoding)

Figure 5.5: Course of training and validation loss for syllables of the QoS radar
with word embedding and one-hot encoding [60]. The index on the
x-axis represents 8534 batches with 120 syllables each. (E.g. index 20
corresponds to 20 · 8534 · 120 = 20 481 600 processed syllables.)

5.4 Summary

This chapter presents methods for predicting a radar’s next emission. To this end,
a simulated airborne multifunction radar with three different resource management
methods is employed. The basis for the prediction is the adapted hierarchical emission
model of understanding the radar emissions as a language, which is described in
Chapter 4.

One of the presented methods, an MC, exhibits the memoryless property. In
contrast, the other one, an LSTM, is specially designed to remember the past input
sequence. The results show that it depends on the complexity of the task whether an
approach with or without memory is to be preferred. Both the MCs and the LSTMs
are well suited for emission prediction, even with corrupted data. Only for the most
complex task of predicting radar words, the LSTMs provide notably better results.

Both approaches are compared to simple prediction strategies, namely random
guessing, repeating the last symbols, and predicting the most frequent ones. The
LSTMs and MCs achieve very good performance for complex behaviour with many
possible emissions. For more regular behaviour with less symbols, the simpler meth-
ods achieve almost as good or better results. Nevertheless, for syllables of the example
radars, the improvement in top 1 prediction accuracy of the LSTMs and MCs can be
more than 120 % compared to the best simple strategy.

5.4. Summary 73

Sequences in the order of 10 000 repetitions of the same letter are too long for an
LSTM to learn. Also the MC learns to predict the last letter and therefore provides
the same accuracy as the repeating strategy. Hence, the GRU based method presented
in [36] is not expected to work well either for the data given in this thesis. Here, the
hierarchical emission model provides an advantage. As the syllables can be predicted
very well, the next letter can be determined by mapping the predicted syllable to its
letters. A disadvantage is that many pulses need to be received before a syllable can be
detected with high certainty. A possible solution is to use an approach that maintains
several hypotheses about the underlying syllables while receiving the letters.

If there are missing and additional symbols in the data, the prediction accuracy
decreases, while missing and additional symbols in blocks are less harmful than single
ones. Moreover, the results show that the repeating strategy is very robust with re-
spect to corrupted data for syllables, but still provides worse results than the LSTMs
and the MCs. In this case, the MCs are also more robust than the LSTMs. For words,
however, the LSTMs exhibit less accuracy decrease in most cases.

In addition, this chapter shows that the application of a word embedding instead
of one-hot encoding for representing the symbols of the radar language has advant-
ages regarding the training speed and stability, as well as the performance achieved.
This is due to the much smaller input size and a normalisation performed by the
embedding.

Chapter 6

Identification of the Radar Emitter Type

This chapter presents methods to identify the radar emitter type based on its emis-
sions. First, it gives an introduction and a literature overview. Afterwards, it describes
and evaluates the proposed methods, both under ideal conditions and with corrup-
ted data. Identifying the radar type corresponds to the first problem of EW (see
Section 2.4), the classification. Parts of the chapter have been published in [61, 62].

6.1 Introduction

Identification of the radar emitter type from a stream of pulses is an important aspect
in the field of EW as it provides information about the threat an emitter poses to a
platform. As described in Section 2.2, emitter identification is traditionally performed
by comparing the parameters stored in a database to the ones measured from the
received signal. However, modern multifunction radars are agile such that simple
pattern matching methods do not provide satisfactory identification accuracy any
more. Therefore, new methods for the identification of agile radars are presented and
compared in this chapter.

Data from different radars is collected by listening to a specific RF for a certain
amount of time, which is called the (receiver) dwell time. Usually, several emitters
are active simultaneously and hence, pulses from different radars are received at the
same time. The first processing step therefore consists of deinterleaving the pulses
into sequences that should contain PDWs from one emitter only (see Section 2.2.3).
After this step, separated PDW sequences are obtained, but no information about the
emitters’ identities is given. Consequently, it is not possible without major effort to
combine several short sequences received in different dwells into a longer sequence of
PDWs of the same emitter. Longer sequences, however, can improve the identification
accuracy. Effectively, data from different emitters is alternating in the input to the
identification method. Figure 6.1 provides a visualisation. The input to the identi-

Sorted pulsesIntercepted pulses

Sequence 1Sequence 2

Deinterleaving

Sequence 3

Figure 6.1: The input to the identification method is a stream of sequences that con-
sist of deinterleaved pulses from potentially different emitters [61].

75

76 Chapter 6. Identification of the Radar Emitter Type

fication method or classifier is shown on the right. It contains three separated PDW
sequences that the classifier processes sequentially. However, it is not known whether
the sequences belong to one, two, or three emitters and usually, the classifier’s input
consists of deinterleaved PDW sequences from different emitters.

6.1.1 Related Work

With the rise of machine learning and especially neural networks, several methods for
emitter type identification have been proposed. First attempts date back to 1990 [113],
but since then radars have become more complex and neural networks more power-
ful. More recent approaches include the use of deep learning techniques [114–116].
However, the methods presented in these papers need a fixed-length representation of
their input and are therefore not efficiently applicable for processing streaming data.

Emitter identification with RNNs, either an LSTM or a GRU, is suggested in [36,
38–41]. RNNs have the advantage that they are able to process sequences of varying
length by feeding their own output back as an input (see Section 3.5.5).

In [38], a sequence of n PDWs with several features (PRI, RF, PW, BW, Amp,
RF shift) is projected to a higher dimension and averaged by a trainable layer before
being processed by a GRU. The evaluation is performed with 14 emitters in four
classes. Emitters in the same class are hard to distinguish because of ambiguities in the
waveform parameters, while emitters in different classes are easily separable. Some
of the emitters exhibit long-term agilities, which should be captured by the GRU.

The authors of [39] use the features PRI, RF, and PW. Two types of input norm-
alisation are performed and the results concatenated, which are then used as input
to parallel layers of LSTM cells that process different features separately. The first
normalisation approach is called min-max normalisation. It uses the global min-
imum and maximum of the training data distribution to convert the features into the
range [−1, 1]. The second approach is called per-sequence normalisation, which only
uses the minimum and maximum of the current sequence. The method is evaluated
with 17 emitter classes, however, no details on the waveform parameters are provided.

In [36], the same method that is used for prediction (see Section 5.1.1) is also
used for identification. The considered features of the pulses are PRI and PW. These
are discretised with reference to a global maximum, embedded into a vector, and
input to a GRU network. Based on this previous work, the author of [40] uses an
iterative clustering approach to sort the PDWs by function (called mode in the paper).
Here, the PRI is used as the only parameter. The idea is to give more weight in
the identification process to pulse groups that provide more discriminative features,
which is measured by the expected loss of the classifier. The author states that the
algorithm aggregates information from the stream of pulses to obtain more data for
identification. However, no explanation is provided on how it is ensured that the
aggregated information actually represents a single emitter.

Attention [117] is introduced in [41] to reduce the effect of missing and additional
pulses on the identification accuracy. Missing pulses cause harmonics of the PRI in
the stream, e.g. a single missing pulse induces a PRI that is twice the original value.

6.1. Introduction 77

With additional pulses, the measured PRI value is smaller than the true one. The
attention mechanism in the proposed method learns to ignore those corrupted PRI
values. The PDW stream consists of PRI and PW, which are input to separate GRUs
for identification. The processing path for the PRI contains the attention block, which
is inserted before the GRU. The evaluation is performed with nine emitters that
exhibit waveform parameters with constant statistical features.

An HMM (see Section 3.4.2) is used for radar type identification in [42]. The
presented approach is based on the hierarchical emission model introduced by Vis-
nevski et al. (see Section 4.1.1) and the focus is set on radar words. The hidden states
of the HMM correspond to the true words, while the observations represent the de-
tected ones. To improve the robustness, the emission probabilities are set such that
the observed word is only identical to the true word with a probability of 65 %. For
every emitter type, an HMM is learnt. Then, identification corresponds to determin-
ing which model most likely generated the received data. The approach is evaluated
with two emitters that use six different words, which are shared by both radars.

6.1.2 Contributions

This chapter develops two methods for identification, which are applicable to the
adapted hierarchical emission model as described in Chapter 4. As also done for
prediction (see Chapter 5), MCs as introduced in Section 3.4.1 without memory and
LSTMs that are specially designed to remember are compared to see whether memory
is important for the identification of the emitter type.

The emission parameters of the example emitters used throughout this thesis (see
Section 4.3) highly overlap. It is evaluated whether the LSTMs and the MCs are able to
distinguish between the emitter types and therefore identify the resource management
method. Moreover, it is demonstrated which level of the emission model is best suited
for identification. Both methods are compared to two simple strategies and evaluated
under several conditions.

As described above, the input to the classifier consists of a stream of alternating
sequences from different emitters (see Figure 6.1). None of the previous works thor-
oughly investigates how the length of a consecutive sequence of data from the same
emitter influences the identification accuracy. This chapter shows how the identifica-
tion accuracy depends on this length, which is called the sequence length. The impact
of the sequence length on training the LSTMs and testing all approaches is evaluated.

The method presented in [42] also employs the hierarchical emission model. How-
ever, only the word level is considered, while all modelling levels are evaluated in this
chapter. In addition, the example emitters used in this thesis are much more complex
than those presented in [42], which only make use of six words as opposed to the
maximum of 34 440 words considered here.

Section 6.2 provides details about the data and the implementation of the methods,
Section 6.3 presents the evaluation, and Section 6.4 gives the summary.

78 Chapter 6. Identification of the Radar Emitter Type

Table 6.1: ”Overlap matrix” for syl-
lables [%]. Rv1 = Rules-
v1, Rv2 = Rules-v2.

Target
QoS Rv1 Rv2

So
ur

ce QoS 100.00 0.41 96.50
Rv1 100.00 100.00 100.00
Rv2 88.14 0.37 100.00

Table 6.2: ”Overlap matrix” for
words [%]. Rv1 = Rules-
v1, Rv2 = Rules-v2.

Target
QoS Rv1 Rv2

So
ur

ce QoS 100.00 0.06 80.07
Rv1 80.95 100.00 100.00
Rv2 61.97 0.06 100.00

6.2 Approaches

With the data obtained from the simulations of the example radars, LSTMs and MCs
are trained to identify the underlying emitter type. The same training, validation, and
test sets are used as for learning the word embedding in Chapter 4 and predicting the
emissions in Chapter 5. An overview is given in Tables 5.1 and 5.2 of Chapter 5.

To provide an estimate on the similarity of the example emitters and hence the
difficulty of separating them, Tables 6.1 and 6.2 show the “overlap matrices” for syl-
lables and words. Here, the rows indicate the “source” and the columns the “target”,
e.g. the row “Rv2” and the column “QoS” of Table 6.1 say that 88.14 % of the syllables
used by the Rules-v2 radar are also emitted by the QoS radar. A large portion of
the syllables and words are used by several emitters with the Rules-v1 radar being
an exception. For letters, commands, and functions, the overlap is even bigger. The
QoS and the Rules-v2 radar employ all of the 18 letters and 10 commands, resulting
in 100 % overlap for these two emitters. The Rules-v1 radar uses less letters and com-
mands, but all of them are emitted as well by the other two radars. The functions
exhibit a 100 % overlap for all three emitter types.

Figure 6.2 shows a schematic overview of the processing chain after deinterleav-
ing. The sorted PDWs are mapped to the defined symbols by the symbol extraction
step. Sequences of symbols are then processed by the identification method and an
emitter ID is output per sequence. In reality, the length of the sequences received from
the same emitter, i.e. the number of symbols with the same colour in the figure, varies.
Therefore, the impact of the sequence length on training and testing is evaluated in
the following.

Symbol
extraction

ID methods123 s7s12 s42 s78

Symbols

Em42Em01

IdentificationSorted pulses

Sequence 1Sequence 2

Figure 6.2: Symbols are extracted from the deinterleaved PDW sequences, which are
then input to the identification method.

6.2. Approaches 79

D
en

se

LS
TM

So
ft

m
ax

D
ro

p
o

u
t

(5
0

%
)

Sy
m

b
o

l

Em
it

te
r

ID

W
o

rd
 E

m
b

ed
d

in
g

Figure 6.3: General architecture of the networks for identification. The dropout layer
is shown in grey since it is only active during training.

6.2.1 Long Short-Term Memory

Figure 6.3 shows the general architecture of the networks, which is the same as for
prediction, except for the last dense layer and the labels. As for prediction, the input
consists of sequences of strings containing the name of the symbol. These strings
are mapped to dense vectors of floating point values by the word embedding layer,
which are then processed by the LSTM layer with peephole connections (see (3.86) to
(3.88)). After the LSTM layer, a dropout of 50 % is applied (see Section 3.5.3). It is
followed by a feedforward layer in which every neuron is connected to every output
of the dropout layer, which is called a dense layer. It employs linear activation and
maps the output of the LSTM layer to activations for each emitter type. The number
of neurons in the dense layer corresponds to the number of emitters, i.e. three. The
softmax layer normalises the output of the dense layer to yield a probability distribu-
tion over the emitter’s class indices (see Section 3.5.1). For training, the input consists
of pairs (ω, idx(e)) where ω ∈ Ωl is a symbol at modelling level l and idx(e) the class
index of the emitter e ∈ E with idx(e) ∈ {0, 1, 2}. The label idx(e) is represented as a
one-hot vector such that it can be interpreted as a probability distribution and allows
for training with the cross-entropy loss as defined in Section 3.5.2.

Three network types, that are trained with different sequence lengths, are de-
veloped. To simulate the alternating sequences from different emitters (see Figure 6.2),
the input is changed to symbols from another emitter after the specified sequence

Table 6.3: LSTM parameters for the different modelling levels and network types.

Type Parameter Letter Syllable Word Command Function

LSTM10
layers 1 1 1 1 1
cells/layer 16 4 4 4 4

LSTMrand
layers 1 1 1 1 1
cells/layer 16 4 4 4 4

LSTMscen
layers 1 1 1 1 1
cells/layer 4 4 8 16 16

80 Chapter 6. Identification of the Radar Emitter Type

Algorithm 1 Train or test with a random sequence length.

Input: Set of emitters E , minimum len_min and maximum len_max sequence length
Global variable: seq_len chosen for all chunks

1: global initialisation of e ∈ E for all chunks
2: seq_len← random ∈ [len_min, len_max]
3: s← 0
4: while training or testing not finished do
5: data← next symbol from emitter e
6: train or test network with data
7: s← s + 1
8: if s = seq_len then
9: e← random ∈ E \ e

10: seq_len← random ∈ [len_min, len_max]
11: s← 0
12: end if
13: end while

length is reached. Per network type, the number of LSTM layers and cells are op-
timised independently by trying several configurations and keeping the one with the
lowest loss on the validation set. The networks are implemented using Python and
TensorFlow. One network type is trained with a sequence length of ten symbols,
which is called LSTM10. Another one is trained with random sequence lengths in the
interval [1, 1400], it is called LSTMrand. The third network type is trained with the
complete scenarios and is called LSTMscen. The complete scenarios consist of about 5
to 15 million letters each, those are mapped to about 7000 to 30 000 syllables and
about 1400 to 6000 words, commands, and functions. Per symbol level, i.e. letter,
syllable, word, command, and function, an LSTM is trained. In total, there are 15 in-
dependent networks, one per symbol level and sequence length used during training.
The parameters of these networks are shown in Table 6.3.

The networks are trained with the Adam optimiser, a learning rate of 0.0002,
and the cross-entropy loss. During training, batches containing the symbols of 120
simulation runs are fed in parallel to the networks. The amount of data needed
to be reduced for letters because otherwise the training would have taken too long.
Therefore, the batch consists of 12 simulation runs. The state of the LSTM layer is
kept between batches. In each batch, several emitters need to be represented because
otherwise, the network parameters are adapted to always identify the emitter of the
current batch and training never converges. Therefore, each batch B is split into
chunks of 40 symbols from each emitter (4 for letters), i.e. for step t

Bt = (ω
r1,1
t , . . . , ω

r40,1
t︸ ︷︷ ︸

e1

, ω
r1,2
t , . . . , ω

r40,2
t︸ ︷︷ ︸

e2

, ω
r1,3
t , . . . , ω

r40,3
t︸ ︷︷ ︸

e3

), (6.1)

6.2. Approaches 81

and for step t + 1

Bt+1 = (ω
r1,1
t+1, . . . , ω

r40,1
t+1︸ ︷︷ ︸

e1

, ω
r1,2
t+1, . . . , ω

r40,2
t+1︸ ︷︷ ︸

e2

, ω
r1,3
t+1, . . . , ω

r40,3
t+1︸ ︷︷ ︸

e3

). (6.2)

Here, ri,j is the simulation run ri of emitter ej. Like in the training for prediction,
the runs actually appear in a shuffled order and are only shown sorted here for an
easier visualisation. At initialisation, the batch is evenly divided to contain 40 runs
for each of the emitters. However, after the specified sequence length is reached, the
next emitter for each chunk is randomly chosen. Hence, there is no guarantee that
every emitter is represented in each batch, but as there are several million batches
generated during training, the data from every emitter is equally often used on av-
erage. Algorithm 1 depicts the pseudocode for this procedure employed for training
or testing with a random sequence length. If len_min = len_max = 10, the algorithm
corresponds to training with a sequence length of ten symbols. The same procedure
is employed independently for validation.

6.2.2 Markov Chain

In the MC approach, the probability for each emitter type is estimated based on the
probability that the emitter generated the input sequence. Let e ∈ E be an emitter
and ω ∈ Ωl a symbol as defined above. For a sequence of symbols ω = ω1 . . . ω|ω|,
the probability of emitter ei is determined by Bayes’ rule,

P̂(ei|ω) =
P̂(ω|ei) · P̂(ei)

P̂(ω)
. (6.3)

The probability of the data ω given the emitter ei is calculated by

P̂(ω|ei) = P̂ei(ω1) ·
|ω|−1

∏
t=1

P̂ei(ωt+1|ωt), (6.4)

where P̂ei(ω1) is estimated from counting the occurrences count(ωj) of each symbol
in the data of emitter ei,

P̂ei(ωj) =
count(ωj)

∑ω∈Ωl count(ω)
, (6.5)

and P̂ei(ωt+1|ωt) is obtained from (5.3) in Chapter 5. It is assumed that the prior
probability of each emitter is the same, i.e. P̂(ei) =

1
|E | for all emitters. The probability

of the sequence P̂(ω) is determined by marginalisation,

P̂(ω) = ∑
e∈E

P̂(ω|e). (6.6)

82 Chapter 6. Identification of the Radar Emitter Type

6.2.3 Comparison Methods

Two simple methods are employed for comparison. The first one checks for each
emitter e ∈ E if the current input is in its individual set of symbols Ωl

e, i.e. it performs
a dictionary lookup to estimate the probability

P̂d(e|ωj) =

{
1 if ωj ∈ Ωl

e,
0 otherwise.

(6.7)

If the current symbol can be found in the dictionaries of more than one or none of the
emitters, the probability is equally distributed. Which emitter is the top 1 prediction
is randomly chosen. This method resembles matching the waveform parameters to a
database without considering the temporal structure of the emissions. For a sequence
of symbols ω, the probability for emitter e is determined as

P̂d(e|ω) = κ
|ω|
∏
t=1

P̂d(e|ωt), (6.8)

where κ is a normalisation factor. The second simple method is random guessing
with a probability of 1

|E | ≈ 33.33 % for each emitter.

6.3 Experimental Results

Since the identification accuracy is influenced by the number of consecutive sym-
bols received from the same emitter, both methods are tested with different sequence
lengths in the set S = {1, 10, 50, 100, 200, 400, 600, 800, 1000, 1200, 1400}. The
shortest scenarios contain 1400 symbols, therefore this is chosen to be the maximum.
In the adapted hierarchical emission model, 1400 words correspond to about 1.5 min
to 3 min, 200 words last about 35 s to 45 s. On average, a word consists of five to six
syllables, therefore 1400 syllables correspond to about 25 s to 50 s, 200 to about 6 s
to 9 s. These values are only intended for a rough reference since they strongly de-
pend on the scenarios and the emitters. A short reaction time is not important for an
ELINT application and therefore, the decision can usually be made based on longer
sequences of symbols.

The results are obtained at the end of a sequence of length s ∈ S . As the data
is slightly imbalanced (see Table 5.2), the mean of the identification accuracies per
emitter are reported,

acc(s) =
1
|E | ∑

e∈E
acc(e, s), (6.9)

with
acc(e, s) = acc(Ŷs, Ye, k), k = 1. (6.10)

Here, Ŷs corresponds to the output of the identification method after having pro-
cessed s symbols and Ye to the set of labels, which only contains the idx(e) for the

6.3. Experimental Results 83

1 200 400 600 800 100012001400
Sequence length

20

30

40

50

60

70

80

90

100

Id
en

tifi
ca
tio

n
ac
cu
ra
cy

[%
]

Letter

1 200 400 600 800 100012001400
Sequence length

Syllable

1 200 400 600 800 100012001400
Sequence length

Word

1 200 400 600 800 100012001400
Sequence length

20

30

40

50

60

70

80

90

100

Id
en

tifi
ca
tio

n
ac
cu
ra
cy

[%
]

Command

1 200 400 600 800 100012001400
Sequence length

Function

LSTM10

LSTMrand

LSTMscen

MC

Dictionary lookup
Random guessing

Figure 6.4: Identification accuracies of the different methods on the test data of all
emitters.

data of emitter e. The methods are evaluated under ideal conditions and with corrup-
ted data, in which symbols are missing or additional symbols that potentially belong
to a different emitter are inserted.

6.3.1 Evaluation Under Ideal Conditions

The identification accuracies are displayed in Figure 6.4, while the exact results of the
MCs and the LSTMs for syllables, words, and commands are given in Table 6.4. As can
be observed, the LSTMs are not able to identify the emitter types based on their letters
and the results are equal to random guessing. Since the simulated radar is airborne, it
integrates many pulses and therefore sequences of the same letter are very long (e.g.
word w26101507 consists of 16 384 repetitions of the same letter). If words are repeated,
the sequences become even longer and are too long for an LSTM to learn. The MC
does not perform much better either. Since the most common letter l18 is shared by
all three radars, the results of the dictionary lookup equal random guessing as well.

For syllables, the dictionary lookup achieves much better results than guessing.
For a single syllable, however, the accuracy is only 47.37 %. The LSTM10 provides a
much higher identification accuracy than the other LSTMs when tested with only one
syllable (60.5 % vs. 34.37 % for the LSTMscen and 41.36 % for the LSTMrand). However,
with increasing sequence length the other two LSTMs come close or are even better.

84 Chapter 6. Identification of the Radar Emitter Type

Table 6.4: Identification accuracies [%] of the MCs and LSTMs at different sequence
lengths for selected modelling levels.

Sequence length

1 10 50 100 200 400 600 800 1000 1200 1400

Sy
lla

bl
e MC 64.52 70.49 75.82 79.23 83.00 86.32 87.79 88.85 89.97 90.65 90.86

LSTM10 60.50 62.63 62.60 62.67 62.67 62.61 62.78 62.58 62.37 62.75 62.76
LSTMrand 41.36 60.83 62.96 63.00 63.00 63.10 63.22 63.11 63.13 63.29 63.10
LSTMscen 34.37 50.10 65.82 67.81 69.70 70.06 70.07 70.46 69.95 69.97 70.67

W
or

d

MC 64.42 74.97 84.42 87.19 89.79 91.04 91.33 91.65 91.37 91.56 91.82
LSTM10 57.64 67.10 66.72 66.62 66.78 67.06 66.53 67.48 66.46 66.70 67.59
LSTMrand 41.58 67.23 71.83 76.63 82.47 87.58 89.33 92.56 93.12 94.11 95.62
LSTMscen 40.09 65.16 71.01 74.00 78.83 81.40 85.96 86.83 89.94 92.24 89.17

C
om

m
an

d MC 38.18 63.98 79.91 83.99 86.89 88.86 88.92 89.30 88.82 88.97 88.24
LSTM10 36.52 57.57 57.72 57.90 57.47 56.83 57.10 57.06 57.46 57.62 56.03
LSTMrand 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33
LSTMscen 33.31 33.32 33.45 33.82 34.97 37.20 42.43 46.26 44.89 45.53 49.43

Qo
S

Rv
1

Rv
2

Predicted label

QoS

Rv1

Rv2

Tr
ue

la
be

l 99.47 0.02 0.52

0.00 21.46 78.54

0.04 8.88 91.08

LSTMscen

Qo
S

Rv
1

Rv
2

Predicted label

QoS

Rv1

Rv2

Tr
ue

la
be

l 99.02 0.20 0.78

0.09 81.37 18.54

0.44 7.37 92.19

MC

Figure 6.5: Confusion matrices of the LSTMscen and the MC at a sequence length
of 1400 syllables. Rv1 = Rules-v1, Rv2 = Rules-v2.

The confusion matrices of the networks show that the Rules-v1 radar is not recognised
with high accuracy, regardless of the sequence length (see Figure 6.5 for the confusion
matrix with a sequence length of 1400 syllables). All syllables of the Rules-v1 radar are
also contained in the dictionaries of the other radars (see Table 6.1). However, the MC
is able to distinguish between the three emitters. Even for a single syllable, the MC
outperforms the LSTM10 with an accuracy of 64.52 %. Figure 6.5 shows the confusion
matrices of the LSTMscen and the MC at a sequence length of 1400 syllables, while the
confusion matrices for all sequence lengths can be found in Figures A.1 and A.2 of
the appendix.

6.3. Experimental Results 85

QoS

Rv1

Rv2

Tr
ue

la
be

l 86.43 0.02 13.54

60.57 0.18 39.25

61.80 0.07 38.12

Seq. length 1
99.16 0.00 0.84

0.02 4.54 95.44

0.16 1.85 97.99

Seq. length 10
99.26 0.00 0.74

0.00 22.99 77.01

0.05 6.71 93.24

Seq. length 50
99.33 0.00 0.67

0.00 38.53 61.47

0.03 7.94 92.03

Seq. length 100
99.27 0.00 0.73

0.00 59.57 40.43

0.04 11.40 88.56

Seq. length 200

QoS

Rv1

Rv2

Tr
ue

la
be

l 99.24 0.00 0.76

0.00 71.16 28.84

0.00 7.66 92.34

Seq. length 400

Qo
S

Rv
1

Rv
2

Predicted label

99.21 0.00 0.79

0.00 78.68 21.32

0.08 9.81 90.11

Seq. length 600

Qo
S

Rv
1

Rv
2

Predicted label

99.11 0.00 0.89

0.00 83.73 16.27

0.00 5.17 94.83

Seq. length 800

Qo
S

Rv
1

Rv
2

Predicted label

99.04 0.00 0.96

0.00 86.37 13.63

0.14 5.90 93.96

Seq. length 1000

Qo
S

Rv
1

Rv
2

Predicted label

99.17 0.00 0.83

0.00 87.38 12.62

0.00 4.23 95.77

Seq. length 1200

Qo
S

Rv
1

Rv
2

Predicted label

QoS

Rv1

Rv2

Tr
ue

la
be

l 99.76 0.00 0.24

0.00 92.25 7.75

0.00 5.15 94.85

Seq. length 1400

0 20 40 60 80 100

Figure 6.6: Confusion matrices at different sequence lengths of the LSTMrand for
words [61]. Rv1 = Rules-v1, Rv2 = Rules-v2.

QoS

Rv1

Rv2

Tr
ue

la
be

l 88.41 4.32 7.26

0.01 33.44 66.55

2.22 26.39 71.40

Seq. length 1
98.09 0.89 1.02

0.14 33.50 66.36

1.12 5.54 93.34

Seq. length 10
98.19 0.85 0.96

0.15 64.19 35.66

1.14 7.96 90.90

Seq. length 50
98.12 0.86 1.02

0.14 73.01 26.85

0.99 8.57 90.44

Seq. length 100
98.22 0.76 1.02

0.18 79.93 19.90

1.09 7.68 91.23

Seq. length 200

QoS

Rv1

Rv2

Tr
ue

la
be

l 97.93 1.12 0.95

0.10 83.18 16.72

1.04 6.94 92.02

Seq. length 400

Qo
S

Rv
1

Rv
2

Predicted label

97.85 1.25 0.90

0.14 84.11 15.75

1.32 6.65 92.03

Seq. length 600

Qo
S

Rv
1

Rv
2

Predicted label

98.10 0.86 1.03

0.19 84.64 15.17

1.11 6.69 92.20

Seq. length 800

Qo
S

Rv
1

Rv
2

Predicted label

97.70 0.93 1.36

0.18 84.37 15.45

0.81 7.14 92.05

Seq. length 1000

Qo
S

Rv
1

Rv
2

Predicted label

97.59 1.12 1.29

0.29 84.75 14.96

1.04 6.62 92.34

Seq. length 1200

Qo
S

Rv
1

Rv
2

Predicted label

QoS

Rv1

Rv2

Tr
ue

la
be

l 98.49 0.60 0.90

0.08 83.63 16.29

0.73 5.93 93.34

Seq. length 1400

0 20 40 60 80 100

Figure 6.7: Confusion matrices at different sequence lengths of the MC for words.
Rv1 = Rules-v1, Rv2 = Rules-v2.

86 Chapter 6. Identification of the Radar Emitter Type

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 UN
K

ωt+1

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

UNK

ω
t

0.38 0.00 0.00 0.00 0.00 0.00 0.18 0.03 0.06 0.35 0.00

0.00 0.18 0.00 0.00 0.00 0.00 0.21 0.01 0.08 0.52 0.00

0.00 0.00 0.13 0.01 0.02 0.01 0.20 0.02 0.21 0.39 0.00

0.00 0.00 0.01 0.27 0.04 0.02 0.15 0.01 0.20 0.31 0.00

0.00 0.00 0.01 0.03 0.40 0.03 0.12 0.01 0.17 0.23 0.00

0.00 0.00 0.00 0.00 0.04 0.37 0.14 0.01 0.15 0.28 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.03 0.04 0.53 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.19 0.06 0.50 0.00

0.00 0.02 0.02 0.02 0.01 0.00 0.20 0.03 0.28 0.42 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.04 0.05 0.65 0.00

0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

QoS

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 UN
K

ωt+1

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

UNK
ω
t

0.38 0.00 0.00 0.00 0.00 0.00 0.11 0.01 0.02 0.49 0.00

0.00 0.30 0.00 0.00 0.00 0.00 0.14 0.01 0.02 0.53 0.00

0.00 0.01 0.27 0.02 0.01 0.00 0.07 0.02 0.15 0.45 0.00

0.00 0.00 0.01 0.32 0.02 0.01 0.07 0.01 0.14 0.41 0.00

0.00 0.00 0.01 0.02 0.40 0.03 0.03 0.01 0.11 0.39 0.00

0.00 0.00 0.01 0.01 0.03 0.33 0.04 0.01 0.14 0.42 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.01 0.02 0.01 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.06 0.05 0.62 0.00

0.00 0.01 0.00 0.00 0.00 0.00 0.23 0.01 0.15 0.60 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.95 0.00

0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

Rules-v2

c7 c10 UN
K

ωt+1

c7

c10

UNK

ω
t

0.92 0.08 0.00

0.05 0.95 0.00

0.33 0.33 0.33

Rules-v1

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6.8: Transition matrices for the commands of the different emitter types.

Also for words, the MC’s identification accuracy is higher than that of the LSTMs
if the sequence length is short. With increasing length, the accuracies converge and
eventually, the LSTMrand provides better results. For only one word, the LSTM10
provides a higher accuracy than the other LSTMs. However, the accuracy does not
improve with increasing sequence length since the network has not learnt to make
use of longer sequences. And still, it is outperformed by the MC. Figure 6.6 shows
the confusion matrices of the LSTMrand for words at different sequence lengths. The
QoS radar is identified with a very high accuracy also with short sequences. As
the two rule-based approaches are more similar in their behaviour regarding words,
longer sequences are needed to discriminate between them. In Figure 6.7, the con-
fusion matrices of the MC are shown. The higher accuracy in comparison to the
LSTMrand is achieved because it is able to distinguish between the two rule-based
emitters already with shorter sequence lengths. However, with a sequence length
of 600 symbols and more, the results do not increase any more. The dictionary lookup

6.3. Experimental Results 87

performs comparably to the LSTMs and the MC at short sequence length of up to 100
symbols. With longer sequences, however, the other methods provide better results.

For syllables and commands, the MCs achieves much higher accuracies than the
LSTMs. The reason why the MC outperforms the LSTMs by such a large amount is
not directly clear. In general, the LSTMs were hard to train and no improvement of the
accuracy could be seen for several choices of the number of layers and number of cells
per layer. The LSTM training procedure is very susceptible to the adjustable variables
and is possibly too complex for this kind of data. For the commands, for example,
one can see clear differences in the transition matrices of the three radar versions (see
Figure 6.8). The commands that appear most often (c7, c10) are also those with the
largest differences in the transition probabilities for the QoS and the two rule-based
radars, making the emitters distinguishable for an MC. Since the Rules-v1 radar uses
much less commands than the Rules-v2 radar, they can be separated as well with
longer sequence lengths.

For functions, the identification accuracy is basically identical to random guessing.
Since the radars only use three different functions (search, confirm, track) and their
behaviour is similar, they cannot be distinguished based on the functions. Only the
MC achieves better results than random guessing, but the transition matrices of the
radars differ only slightly, which makes them hard to separate.

6.3.2 Evaluation with Missing and Additional Symbols

To simulate the imperfections of an actual application, the methods are tested with
corrupted data that contains missing or additional symbols. The additional symbols
are randomly selected from the global dictionary Ωl, i.e. also symbols from different
emitters are inserted. Two cases are considered for the evaluation. In the first one,
single symbols are randomly removed or inserted into the data of the test set. In
the second case, symbols are removed or inserted in blocks of five. Both cases are
evaluated with 1 %, 5 %, 10 %, and 20 % corrupted data. Since the LSTMs’ results for
letters, commands, and functions are already unsatisfactory for ideal data, only the
results for syllables and words are presented.

Using the formulation developed in Section 6.2.2, the MCs are not robust with
respect to corrupted data. The transition matrices for syllables and words obtained
from Chapter 5 are very sparse with only a few transitions of high probability. There-
fore, when calculating P̂ei(ωt+2|ωt) in (6.4) instead of P̂ei(ωt+1|ωt) because of a miss-
ing symbol, this probability has a high chance of being zero. The data shows that
words are more often repeated. Therefore, missing words do not cause a difference
if ωt+2 = ωt+1. For syllables, however, repetitions are not common and ωt+2 ̸= ωt+1
most often. Also additional symbols either from the same or from a different emit-
ter can cause P̂(ω|ei) in (6.4) to be zero for the complete sequence, resulting in a
very large accuracy decrease. Therefore, for comparison, an MC is learnt for which
P̂ei(ωj|ωi) is set to a small value ε = 0.001 if it is 0. Hence, the rows of the transition
matrices do not sum up to 1 any more. If they are normalised, all entries become
small due to the sparsity, resulting in a low overall accuracy as shown below. The

88 Chapter 6. Identification of the Radar Emitter Type

Table 6.5: Mean ± standard deviation of the relative top 1 identification accuracy
accrel(S) [%] with missing or additional syllables.

Syllable

Rate MC MCε LSTM10 LSTMrand LSTMscen

M
is

si
ng

1 % −7.34± 4.59 −0.22± 0.74 0.19± 0.18 0.18± 0.14 0.36 ± 0.31
5 % −14.90± 6.97 −3.55± 2.94 0.20± 0.17 0.16± 0.09 0.43 ± 0.40
10 % −19.08± 8.03 −6.85± 5.35 0.15± 0.30 0.29± 0.17 0.68 ± 0.37
20 % −23.91± 9.07 −10.05± 6.91 0.28± 0.28 0.55± 0.26 0.70 ± 0.54

M
is

si
ng

in
bl

oc
ks

1 % −2.28± 1.98 0.08± 0.13 0.19± 0.18 0.09± 0.13 0.34 ± 0.42
5 % −6.34± 4.26 0.13± 0.17 0.00± 0.16 0.21± 0.18 0.51 ± 0.41
10 % −8.56± 5.04 0.05± 0.28 −0.03± 0.14 0.18± 0.19 0.36 ± 0.56
20 % −11.51± 5.96 −0.18± 0.72 0.21± 0.10 0.19± 0.22 0.62 ± 0.54

A
dd

it
io

na
l 1 % −10.01± 5.93 −0.98± 0.51 −0.28± 0.25 0.01± 0.09 0.43 ± 0.51

5 % −19.76± 8.27 −5.09± 2.97 −1.69± 0.26 −0.66± 0.33 0.22 ± 0.93
10 % −25.64± 8.99 −8.63± 3.86 −2.90± 0.54 −3.05± 0.93 −0.42 ± 1.16
20 % −33.19± 9.56 −13.25± 4.55 −5.64± 0.77 −5.64± 1.67 −4.03 ± 5.06

A
dd

it
io

na
l

in
bl

oc
ks

1 % −4.37± 3.01 −0.36± 0.17 −0.42± 0.17 −0.03± 0.10 0.33 ± 0.36
5 % −12.03± 5.93 −2.73± 1.63 −1.79± 0.25 −0.90± 0.31 0.31 ± 0.99
10 % −17.00± 6.95 −5.18± 2.34 −3.70± 0.30 −2.06± 0.67 −0.19 ± 1.55
20 % −23.50± 7.54 −8.88± 2.88 −7.07± 0.41 −6.18± 1.81 −1.18 ± 2.29

probability for each emitter is still normalised after calculating it according to (6.3).
This version is called MCε.

Tables 6.5 and 6.6 show the accuracy accrel(S) averaged over all sequence lengths
in the set S and relative to the results obtained with ideal data

accrel(S) =
acccorrupt(S)− accideal(S)

accideal(S)
· 100 %, (6.11)

with

acc(S) = 1
|S| ∑

s∈S
acc(s). (6.12)

The higher the relative accuracy, the more robust the methods are with respect to
corrupted data. However, this metric does not reflect the absolute accuracies with
missing and additional symbols. Figure 6.9 presents a comparison of the absolute
accuracies of the LSTMscen, the MC, and the MCε with corrupted data, for easier
readability only with single missing or additional symbols.

6.3. Experimental Results 89

1 200 400 600 800 100012001400
Sequence length

30

40

50

60

70

80

90

100

Id
en

tifi
ca
tio

n
ac
cu

ra
cy

[%
]

Syllable

1 200 400 600 800 100012001400
Sequence length

Word
Missing symbols [%]

0, LSTMscen

0, MC
0, MCε

1
5
20

1 200 400 600 800 100012001400
Sequence length

30

40

50

60

70

80

90

100

Id
en

tifi
ca
tio

n
ac
cu

ra
cy

[%
]

Syllable

1 200 400 600 800 100012001400
Sequence length

Word
Additional symbols [%]

0, LSTMscen

0, MC
0, MCε

1
5
20

(a) Identification accuracies with missing (top row) or additional (bottom row) symbols [62].

200 400 600 800 1000 1200 1400
Sequence length

69.6
69.8
70.0
70.2
70.4
70.6
70.8
71.0
71.2
71.4

Id
en

tifi
ca

tio
n
ac

cu
ra
cy

[%
]

Syllable

200 400 600 800 1000 1200 1400
Sequence length

88.2
88.7
89.2
89.7
90.2
90.7
91.2
91.7
92.2

Word

(b) Zoom into the plots for missing syllables or words.

Figure 6.9: Identification accuracies of the LSTMscen, the MC, and the MCε with
missing or additional symbols.

90 Chapter 6. Identification of the Radar Emitter Type

Table 6.6: Mean ± standard deviation of the relative top 1 identification accuracy
accrel(S) [%] with missing or additional words.

Word

Rate MC MCε LSTM10 LSTMrand LSTMscen

M
is

si
ng

1 % −0.32± 0.30 −0.16± 0.14 −0.24± 0.81 −0.13± 0.53 0.21 ± 1.37
5 % −0.32± 0.29 −0.32± 0.26 0.77 ± 1.12 −0.11± 1.05 0.01± 1.47
10 % −0.28± 0.49 −0.12± 0.24 0.19 ± 0.47 −0.08± 0.72 0.15± 1.15
20 % −1.13± 0.96 −0.37± 0.54 0.09± 0.63 0.46± 0.94 0.57 ± 1.53

M
is

si
ng

in
bl

oc
ks

1 % −0.98± 0.69 −0.21± 0.22 0.38 ± 0.54 −0.35± 0.65 −0.36± 1.43
5 % −2.42± 1.64 −0.37± 0.36 0.36 ± 0.46 −0.24± 0.54 −0.02± 2.00
10 % −3.35± 2.16 −0.50± 0.44 0.18± 0.63 0.01± 0.75 0.24 ± 1.47
20 % −5.02± 2.97 −0.78± 0.55 0.23± 0.85 0.38 ± 0.94 −0.36± 2.91

A
dd

it
io

na
l 1 % −6.99± 3.34 −0.80± 0.41 −0.19 ± 0.77 −6.98± 5.35 −1.12± 1.81

5 % −16.92± 6.23 −3.12± 1.04 0.00 ± 1.30 −14.51± 9.70 −1.21± 1.28
10 % −22.82± 7.22 −5.52± 1.07 −0.84± 1.46 −16.61± 10.47 −0.44 ± 1.50
20 % −30.74± 8.24 −9.92± 1.47 −2.14 ± 2.55 −18.30± 11.03 −2.30± 1.41

A
dd

it
io

na
l

in
bl

oc
ks

1 % −2.82± 1.36 −0.81± 0.38 0.51 ± 1.01 −4.30± 3.33 −0.03± 2.15
5 % −9.06± 3.39 −2.03± 0.78 −0.52 ± 1.22 −11.43± 7.70 −0.84± 2.51
10 % −14.28± 4.56 −3.82± 1.04 −1.20± 1.50 −14.84± 9.17 −1.14 ± 2.46
20 % −21.14± 5.53 −7.05± 1.15 −3.09± 2.31 −18.15± 10.04 −2.73 ± 1.81

All LSTMs are in general very robust with respect to missing and additional sym-
bols, the LSTMrand with additional words being an exception. Both for syllables and
words, the LSTMscen is the LSTM-based method that achieves the best trade-off with
respect to accuracy and robustness. Additional symbols cause a bigger decrease in
accuracy than missing ones, which have little impact. The difference between single
additional symbols and additional symbols in blocks of five is small.

Also the accuracy of the MC does not change much with missing words (see
Figure 6.9). With missing syllables, however, the accuracy rapidly decreases. The MCε

achieves much better results than the MC. Although the MCε provides the overall
highest accuracies for syllables, it is not robust with respect to corrupted data as it
exhibits a large accuracy decrease. In contrast, the LSTM can take into consideration
that the rest of the symbols matches a specific emitter because it has a memory.

Figure 6.10 shows a comparison of the MC and different variants, which are the
MCε as defined above, a version MCnorm

ε , for which the rows of the transition mat-
rix are normalised after adding ε, and two versions that set the entries that are 0
to 10ε = 0.01, both in an unnormalised MC10ε and a normalised MCnorm

10ε variant. For
syllables, all MC variants perform comparably with ideal data, while the MCε slightly
outperforms the other versions. It is also the most robust version, i.e. increasing the

6.4. Summary 91

1 200 400 600 800 100012001400
Sequence length

30

40

50

60

70

80

90

100

Id
en

tifi
ca
tio

n
ac
cu

ra
cy

[%
]

Syllable

1 200 400 600 800 100012001400
Sequence length

Word
Missing symbols [%]

0, MC
0, MCε

0, MC10ε

0, MCnorm
ε

0, MCnorm
10ε

20

1 200 400 600 800 100012001400
Sequence length

30

40

50

60

70

80

90

100

Id
en

tifi
ca
tio

n
ac
cu

ra
cy

[%
]

Syllable

1 200 400 600 800 100012001400
Sequence length

Word
Additional symbols [%]

0, MC
0, MCε

0, MC10ε

0, MCnorm
ε

0, MCnorm
10ε

20

Figure 6.10: Identification accuracies of the different MC variants with missing (top
row) or additional (bottom row) symbols.

new value ε for entries in the transition matrix with a probability of 0 does not in-
crease the robustness. The same is observed for words, however, in this case the MC10ε

variant and those using normalisation also provide much worse results for ideal data.
Therefore, altering the values in the transition matrices makes the MC more robust
up to some point, but at the same time the criterion for an identification of the emit-
ter type is weakened and eventually, all emitters become equally likely. The same
effect would be achieved by training the MCs with corrupted data. In this case, the
percentage of missing or additional symbols influences the value of ε.

6.4 Summary

This chapter presents methods to distinguish between different radar emitter types.
They are based on LSTMs and MCs, which use the adapted hierarchical emission
model of a radar language as introduced in Chapter 4. The comparison between
LSTMs and MCs is especially interesting as they are in contrast to each other in terms
of memory. The evaluation is performed using the data of a simulated multifunction
radar with three different resource management methods of varying complexity.

92 Chapter 6. Identification of the Radar Emitter Type

The symbols emitted by the different radar types highly overlap. Nevertheless,
both the LSTM and the MC are able to identify the emitter type based on the fre-
quency and agility of its emissions and are therefore capable of recognising the re-
source management method. Moreover, they clearly outperform simple methods like
a dictionary lookup, which resembles matching the waveform parameters to a data-
base as it is traditionally done (see Section 2.2). The highest improvement compared
to the dictionary lookup is achieved for syllables, words, and commands and ranges
from 19 % for words with the LSTM to 80 % for commands with the MC. Furthermore,
it is seen that radar words, which correspond to radar dwells, are the modelling level
best suited for identification.

The evaluations show that the identification accuracy depends on the length of
consecutive emissions received from the same radar and that longer sequences are
needed to discriminate between similar emitter types. The sequence length also influ-
ences the training of the LSTM and hence, three different variants are implemented.

For identification with ideal data, the MC outperforms the LSTM. Especially for
syllables and commands, the identification accuracy of the MC is much higher. How-
ever, if symbols are missing or there are additional symbols in the data, the accuracy
of the MC rapidly decreases while the LSTM can take advantage of its memory and is
very robust, despite of being trained with ideal data only. By adapting the transition
probabilities of the MCs used to model the emitters, the identification accuracy can
be made more robust with respect to corrupted data. However, this needs to be done
carefully and has its limitations as it influences the accuracy for ideal data. Since in
an actual application corrupted data is very likely, LSTMs are to be preferred because
of their inherent robustness.

In addition, the advantages of the hierarchical emission model are demonstrated.
None of the methods is able to identify the emitters based on their letters. With
syllables and words, however, high accuracies are achieved.

Chapter 7

Ensembles of Predictive Models

This chapter suggests and evaluates several approaches to combine multiple predic-
tive models, like the radar models presented in Chapter 5, into an overall system. To
provide more general guidelines for the selection of the architecture, the methods are
compared with a public dataset first. Based on the gained insights, the evaluation is
afterwards performed using the radar data presented in the previous chapters. Parts
of this chapter have been accepted for publication in [63] and are under review for
publication in [64].

7.1 Introduction

To employ the predictive emitter models presented in Chapter 5, they need to be
combined into a multi-model system or an ensemble, for which several options are
available. Research on methods for combining multiple classifiers, which are called
experts in some approaches, considers two basic principles: classifier fusion and clas-
sifier selection. Classifier fusion is usually applied to leverage the effect that the errors
made by the individual models tend to “average out”. Therefore, the performance is
increased by considering the predictions of an ensemble of models that fulfil the same
task, see e.g. [44]. In classifier selection, the model (or subset of models) that has the
highest probability of making the best prediction for a given input is selected, see
e.g. [46, 48, 49].

In the scenario considered in this thesis, the input to the ensemble of radar models
is a stream of sequences that consist of deinterleaved pulses from potentially differ-
ent emitters (see Figure 6.1). Therefore, the data from different sources is alternating
in the input stream. In the context of processing streaming data, a time-dependent
change of the underlying data distribution is called a concept drift in the literat-
ure [29–33], which can be observed in many real world applications. For example,
the occurrence of weather events is influenced by the season, the statistical features of
spam on Twitter change because spammers try to avoid detection [118], and the inter-
net traffic caused by video-on-demand services is affected by the time of the day, the
day of the week, public holidays, the weather, or a pandemic. Depending on the ap-
plication, a concept corresponds, e.g. to the season of the year or, as in the application
considered in this thesis, an emitter type.

In general terms, the next element in a stream of discrete symbols is to be pre-
dicted. Apart from the next emission of a radar, these symbols might as well corres-
pond to the next word in a sentence, the next protein in a sequence, or the next action
of a road user (e.g. turn left, switch lane). In the considered scenario, the streaming

93

94 Chapter 7. Ensembles of Predictive Models

data exhibits sudden and recurring concept drifts, which means that the underlying
data distribution changes abruptly and repeatedly. For each distribution, which cor-
responds to a concept, an expert is learnt. In classifier selection approaches, the best
expert, i.e. the one trained for the current concept, needs to be chosen to make the
prediction when new data arrives. If the current concept can be identified based on
the received data, it is clear which expert to choose. However, if the stability period of
the concept is short, i.e. the number of consecutive symbols following the same distri-
bution is small, or the concepts are very similar, the identification accuracy might be
low and hence, classifier fusion might be the preferred option. Here, stability period
is the general term for sequence length used in Chapter 6. This chapter demonstrates
the properties of several ensemble architectures with respect to prediction accuracy in
different settings.

In order to increase the informative value of the evaluation and because no data
from different multifunction radars than the presented example emitter is available,
the evaluation of ensemble methods with LSTM experts is performed with a public
dataset that exhibits useful properties. Afterwards, the insights are used to present a
case study on ensembles of predictive radar models, both with LSTM and MC experts.

7.1.1 Contributions

Based on the evaluation with the public dataset, this chapter answers the following
questions:

1. Under which conditions should classifier fusion or selection be preferred?

2. How does the length of the stability period influence the accuracy?

3. Depending on the architecture, the LSTM experts need to process data produced
by a different concept. How does this affect their internal state?

4. In which situations is a state reset of the experts beneficial or harmful?

By answering these questions, several contributions are made. Firstly, new imple-
mentations of six different ensemble architectures using either classifier fusion or se-
lection are proposed. These architectures are implemented in several configurations,
including different options for a state reset of the LSTM experts, a weight reset for
online weighting methods, and the number of selected experts for classifier selection
approaches. To the best of the author’s knowledge, these are the first implementa-
tions of the presented ensemble architectures with independent LSTMs that perform
different tasks. Secondly, through the evaluation of the architectures and configura-
tions in six scenarios with different properties, this chapter provides guidelines for
the selection and configuration of the proposed networks. These guidelines consider
the availability of drift detection, the achieved identification accuracy, and the length
of the stability period. Additionally, to confirm the guidelines obtained from the eval-
uation on the public dataset, a case study with ensembles of predictive radar models
is presented for the best architectures and configurations.

7.2. Ensemble Architectures 95

Section 7.2 presents the architectures that are compared in this chapter. Section 7.3
gives the details on the implementation for the public dataset, as well as the evalu-
ation. Section 7.4 contains details on the ensemble approaches for the predictive radar
models and Section 7.5 provides the summary of the chapter.

7.2 Ensemble Architectures

7.2.1 Mixture of Experts

In the Mixture of Experts (MoE) approach [45] (see Figure 7.1), every expert e in the set
of experts E = {e1, e2, ..., e|E|} is provided the current input s and makes a prediction
ŷe = (ŷe1, ..., ŷeC), where C is the number of output classes. An additional classifier,
called the gating network, is trained to recognise which expert most probably makes
the best prediction for a given input. The gating network outputs a weight ge for the
prediction of each expert and the final output ŷ is obtained by a weighted sum of the
individual outputs,

ŷ = ∑
e∈E

ge · ŷe. (7.1)

7.2.2 Sparsely-Gated Mixture of Experts

In [46], the sparsely-gated MoE layer is introduced. Here, the MoE is not designed
to be the complete architecture but a general purpose layer in a network with many
other layers. The output of the gating network g = (g1, g2, ..., g|E|) is constrained to
be a sparse vector, containing only d non-zero entries. This is ensured by keeping
only the d largest values. The motivation is to reduce the computational cost of large
models since only d experts need to be activated to do the computation.

Expert 1

Expert 2

∗

∗

∗

∑

…

g1

g2

g|E|

y1

y2

y|E|

y

Gating
Network

s

ෝ

ෝ

ෝ

ෝ

Expert |E|

Figure 7.1: Mixture of Experts [63].

96 Chapter 7. Ensembles of Predictive Models

s

Expert 1

Expert 2

…

Control

y1

y2

∗

∗

∗

∑

g1

g2

y

Gating
Network

g|E|

Expert |E|
y|E|

ෝ

ෝ

ෝ

ෝ

Figure 7.2: Sparsely-Gated Mixture of Experts [63].

For the presented comparison, the sparsely-gated MoE layer is adopted and em-
ployed as another multi-model architecture (see Figure 7.2). With d = 1, the gating
network in the sparsely-gated MoE architecture only routes the input sequence s to
the expert ei with the highest weight. The overall output ŷ is then equal to the output
of this expert

ŷ = ŷei with ei = argmax
e∈E

ge, (7.2)

where g is considered to be a function assigning weights to the experts e. For d > 1,
a mixing between the d experts with the highest weights is performed analogously to
the weighted sum in (7.1).

7.2.3 Stacking (with Input)

In the stacking architecture [47] (see Figure 7.3a), a combiner (sometimes also called
meta-learner or generaliser) is employed to fuse the outputs of the individual experts
for the input sequence s. The parameters of the combiner are adapted based on the
experts’ output. The final output ŷ is a (usually learnt) function of the output of each
expert ŷe,

ŷ = fc (ŷe1 , ŷe2 , . . . , ŷe|E|) . (7.3)

In a variant of the stacking architecture (see Figure 7.3b), the input s is also used to
adapt the parameters of the combiner. The final output ŷ is a function of the experts’
output ŷe as well as the input s,

ŷ = fs (ŷe1 , ŷe2 , . . . , ŷe|E| , s) . (7.4)

To avoid overfitting of the combiner on the output of the experts for the training
data, it should not be trained on the same data as the experts. There are two ways to
achieve this goal. The first is to split the training data into K parts and, analogously
to K-fold cross-validation, train the experts on K − 1 of them. This is done for every

7.2. Ensemble Architectures 97

Expert 1

Expert 2

…

y1

y2

y|E|

y

s

Combiner

ෝ

ෝ

ෝ

ෝ

Expert |E|

(a) Stacking.

Expert 1

Expert 2

…

y1

y2

y|E|

y

s

Combiner

ෝ

ෝ

ෝ

ෝ

Expert |E|

(b) Stacking with Input.

Figure 7.3: The two variants of the stacking architecture [63].

part of the training data, resulting in K experts per concept in the case considered
here. All experts then make predictions on the part of the training data that they were
not trained on. These predictions are used to train the combiner. Afterwards, each
expert is trained with the complete training data to obtain the final experts. In this
procedure, K + 1 training runs per expert are needed.

The second much less computationally demanding option is to split the training
data into two parts and then train the experts on one part and the combiner on the
other. The disadvantage of this method is that less training data is available. If the
combiner is trained on a hold-out part of the training data and not using the K-fold
procedure described above, the method is sometimes referred to as blending.

7.2.4 Online Accuracy-Based Weighting

Online accuracy-based weighting is commonly applied to account for concept drift
when processing streaming data, e.g. [29–32]. As the name suggests, the weights for
the experts are determined online and based on the expected accuracy (see Figure 7.4).
The final result is a weighted sum of the individual outputs, analogous to (7.1).

7.2.5 Model Averaging

In the model averaging architecture (see Figure 7.5), the output of the experts ŷe for
the input sequence s is averaged to yield the final result ŷ,

ŷ =
1
|E| ∑e∈E

ŷe. (7.5)

Since all experts are always assigned the same weight, this approach does not adapt
to the expected accuracy or the current input.

98 Chapter 7. Ensembles of Predictive Models

Expert 1

Expert 2

∗

∗

∗

∑

…

g1

g2

y1

y2 y

Weighting
Function

g|E|

Expert |E|
y|E|

ෝ

ෝ

ෝ

ෝ

s

Figure 7.4: Online Accuracy-Based
Weighting [63].

Expert 1

Expert 2

∗

∗

∗

∑

…

y1

y2 y

s

1

|𝐸|

1

|𝐸|

1

|𝐸|

Expert |E|
y|E|

ෝ

ෝ

ෝ

ෝ

Figure 7.5: Model Averaging [63].

7.3 Ensembles of Long Short-Term Memory Experts

This section presents the implementation and evaluation of the different ensemble
architectures with LSTM experts on a public dataset. The data and the scenarios that
are analysed are described in Section 7.3.1. In Section 7.3.2, details on the implement-
ation of the experts, the ensemble architectures and configurations are provided and
the experimental evaluation is presented in Section 7.3.3.

7.3.1 Data

The different architectures are evaluated using the Sequence Prediction Challenge
(SPiCe) data1 [50]. It consists of 15 different sequential problems from several do-
mains, which include NLP, biology, and software engineering. Each problem contains
sequences of discrete symbols, which are numbered starting from 0. The alphabets of
the problems differ in the number of symbols within a range of 10 to 6722. The spe-
cial symbol −1 marks the end of a sequence and is not part of the alphabet since it is
artificially inserted and not generated by the underlying process. For each problem, a
training, a validation, and a test set are defined. Table 7.1 provides a rough overview
of the problems, for more details see [50].

The SPiCe data is adapted to suit the needs for simulating streaming data. It was
originally divided into several sequences per problem. However, here it is interpreted
as one long stream and a −1 is inserted between the last symbol of a sequence and
the first symbol of a new sequence. Moreover, there are several problems on synthetic
data, e.g. problems 1 to 3 are generated by non-stationary HMMs. For this data,
the test set of SPiCe contains the probability distribution for the next symbol instead
of a concrete sample. To perform the evaluation in terms of top k accuracy (see

1 https://spice.lis-lab.fr/

https://spice.lis-lab.fr/

7.3. Ensembles of Long Short-Term Memory Experts 99

Table 7.1: Overview of the problems defined in SPiCe.

Problem Alphabet size Domain

1 20 synthetic (HMM)
2 10 synthetic (HMM)
3 10 synthetic (HMM)
4 33 NLP
5 49 NLP
6 60 partly synthetic, software engineering
7 20 biology
8 48 NLP
9 11 partly synthetic, software engineering

10 20 biology
11 6722 NLP
12 21 synthetic
13 702 NLP
14 27 partly synthetic, NLP
15 32 partly synthetic, NLP

Section 3.5.4), a concrete next symbol in the sequence is obtained by sampling from
the given distribution. This is done once and the result is saved as the test set.

To evaluate different aspects of the architectures, subsets of the problems are com-
bined into scenarios. The definitions of the scenarios are given in Table 7.2. They
are chosen such that the selection results in different properties of the combined
problems. Between the scenarios, the difficulty of identifying the current problem
or concept is varied as well as whether the problems represent the same domain.
Moreover, for the bad scenario, the problems were chosen such that the scenario con-
tains combinations of experts that are especially bad at predicting the symbols of
other problems in the scenario.

Table 7.2: Definition of the scenarios as subsets of the problems.

Scenario Problems Id. difficulty Domain

HMM 1, 2, 3 medium same
NLP 4, 5, 8, 11, 13 easy same
Hard 1, 2, 3, 7, 9, 12 hard mixed
Easy 6, 8, 9, 11, 14, 15 easy mixed
Bad 1, 5, 7, 9, 10, 11, 12 medium mixed
All 1 to 15 hard mixed

100 Chapter 7. Ensembles of Predictive Models

D
en

se

LS
TM

So
ft

m
ax

D
ro

p
o

u
t

(5
0

%
)

Sy
m

b
o

l

P
re

d
ic

ti
o

n

O
n

e-
H

o
t

En
co

d
in

g
Figure 7.6: The general architecture of the experts [63]. The dropout layer is only

active during training and therefore shown in grey. The architecture
corresponds to the one used for the radar models in Chapter 5, except
for the one-hot encoding.

7.3.2 Implementation

In the following sections, the details on the implementation of the different archi-
tectures are given. All architectures are implemented using Python and TensorFlow.
For the neural-network-based methods, several architectures are trained, which differ
in the number of layers and number of cells or neurons per layer. During training,
checkpoints are created when the current validation loss is smaller than all previous
validation losses. The checkpoint with the best validation loss is kept and the final
architecture is chosen based on the validation loss of its best checkpoint.

7.3.2.1 Long Short-Term Memory Experts

For each problem p = 1, . . . , 15, an LSTM expert ep is trained to predict the next
symbol in the sequence. The input to the LSTM is a stream V = v1v2 . . . of one-hot
encoded vectors vi with dim(vi) = Cp, where Cp is the number of symbols used
in problem p, including the end-of-sequence symbol −1. In this encoding, −1 ≡
(1, 0, . . . , 0), 0 ≡ (0, 1, 0, . . . , 0), 1 ≡ (0, 0, 1, . . . , 0), and so forth. The experts are trained
on 70 % of the training data per problem, the remaining 30 % are used to train the
combiner in the two variants of the stacking architecture.

Table 7.3: LSTM parameters of the experts.

Problem # LSTM layers # Cells/layer

4 1 16
1, 2 1 32
3, 13, 15 1 128
6 1 256
11 2 32
7, 8, 9, 12 2 64
5, 10, 14 2 128

7.3. Ensembles of Long Short-Term Memory Experts 101

The general architecture of the experts is shown in Figure 7.6. Each expert con-
tains one or two LSTM layers (see Table 7.3 for details) with peephole connections as
defined in (3.86) to (3.88). A dropout layer with 50 % dropout rate is used and a dense
layer with ReLU activation (see (3.64)). The logits ỹep = (ỹep

1 , . . . , ỹep
Cp
) obtained from

the dense layer are normalised using the softmax function (see (3.66)) to obtain the
final output ŷep = (ŷep

1 , . . . , ŷep
Cp
) of expert ep.

For training, the Adam optimiser is used to minimise the estimated cross-entropy
loss H(P, Q) between the true distribution P and the distribution Q learnt by the
network. A learning rate of 0.002 and a batch size of 128 are applied. Each example in
the batch consists of one symbol with the corresponding next symbol in the sequence
as the label. The state of the LSTM layers is kept between batches.

7.3.2.2 (Sparsely-Gated) Mixture of Experts

In the original publication on the MoE architecture [45], the experts and the gating net-
work are trained together. A special error function leads to a partition of the problem
space into subspaces which are handled by the individual experts. However, different
approaches were suggested to divide the problem space into subspaces before train-
ing (e.g. [119, 120]). Based on the partitioning strategy applied, the approaches are
classified into two categories [121]. These are Mixture of Implicitly Localised Experts
(MILE) and Mixture of Explicitly Localised Experts (MELE). In the case considered
here, the experts are trained individually to perform different tasks, hence these in-
stantiations of the network belong to the MELE category.

In the considered application, the gating network needs to identify the current
problem (or concept) in order to decide which expert makes the best prediction. Since
the input is sequential, an LSTM is trained for the identification task. One gating
network is needed per scenario defined in Table 7.2. The gating networks have the
same architecture as the experts, which is shown in Figure 7.6. They are trained with
a learning rate of 0.0002, cross-entropy loss using the Adam optimiser, and a batch
size of

⌊
128
|S|

⌋
· |S| with |S| the number of problems (equal to the number of experts |E|)

in the scenario. The first batch is initialised to contain the same number of symbols
per problem. In each training step, one symbol is provided with the corresponding

Table 7.4: LSTM parameters of the gating networks.

Scenario # LSTM layers # Cells/layer # Neurons (dense)

HMM 1 32 3
NLP 1 16 5
Hard 1 16 6
Easy 1 16 6
Bad 2 64 7
All 1 16 15

102 Chapter 7. Ensembles of Predictive Models

problem p as the label. Also here, the state of the LSTM layer is kept between batches.
The number of LSTM layers, the number of cells per layer and the number of neurons
in the dense layer are shown in Table 7.4. The size of the dense layer corresponds to
the number of problems |S| in the scenario.

The identification accuracy is influenced by the stability period of a concept, i.e.
the number of consecutive symbols originating from the same concept before a change
occurs. To study this effect, the networks are trained with different stability periods
of randomly chosen lengths, ranging from 1 to 1000 symbols. After the specified
number of symbols was processed for one problem, data of a different problem is
used for training and the stability period is set to a new random length. This is done
analogously to training the LSTMs for identification of the emitter type as described
in Chapter 6 (see Algorithm 1). Note that the same problem p in scenario S can
be selected more than once, but not twice in a row. Algorithm 1 is executed for
each chunk of size

⌊
128
|S|

⌋
in the batch. Due to the randomness, not every problem is

necessarily represented in all batches.
For the MoE and the sparsely-gated MoE, the gating networks are identical, the

only difference between the architectures being in the “wiring”. A normalisation of
the d weights in the sparsely-gated MoE is performed before mixing such that they
sum up to 1. All values for d = 1, . . . , |S| − 1 are tested, with |S| the number of experts
in the scenario. For d = |S|, MoE and sparsely-gated MoE are identical. All ensemble
architectures implemented in this section perform the mixing on the top 20 output
of the experts. If the vocabulary size of the problem is smaller than 20, the output
is reduced correspondingly, i.e. k = min(Cp, 20) for each problem p. The same holds
true for the other investigated architectures presented in the following.

7.3.2.3 Stacking (with Input)

Two versions of the combiner are implemented per variant of the stacking architec-
ture. One consists of an LSTM, the other one is built with a feedforward network. As
stated above, the combiner is trained with 30 % of the training data per problem. The
experts are not trained on this part.

Both versions of the combiner take as input the top 20 predictions of the ex-
perts. These consist of the indices of the predicted symbol and the probability as-

D
en

se

So
ft

m
ax

To
p

 2
0

 p
re

d
ic

ti
o

n
s

o
f

ex
p

er
ts

P
re

d
ic

ti
o

n

Figure 7.7: The general architecture of the feedforward combiner [63]. The number
of dense layers is given in Table 7.6.

7.3. Ensembles of Long Short-Term Memory Experts 103

Table 7.5: Parameters of the LSTM combiner.

Scenario With input # LSTM layers # Cells/layer # Neurons (dense)

HMM no 1 32 21
yes 1 8 21

NLP no 2 64 6723
yes 1 256 6723

Hard no 2 32 22
yes 1 16 22

Easy no 2 64 6723
yes 2 64 6723

Bad no 1 32 6723
yes 2 64 6723

All no 1 32 6723
yes 1 128 6723

signed to each symbol. For stacking with input, the current symbol in the stream
is used in addition to the top 20 predictions, hence the dimension of the input is
1 + 2 ∑p min(Cp, 20) in this case and otherwise, it is 2 ∑p min(Cp, 20), where p ∈ S

are the problems in scenario S. The combiners are also trained with random stability
periods (analogous to Algorithm 1), a batch size of

⌊
128
|S|

⌋
· |S|, the Adam optimiser

with cross-entropy loss, and a learning rate of 0.002.
The LSTM combiner follows the architecture shown in Figure 7.6, except for the

one-hot encoding since the input consists of the top 20 predictions of the experts. The
feedforward combiner is built as shown in Figure 7.7, with ReLU used as activation.
Tables 7.5 and 7.6 show the number of LSTM or dense layers and the number of cells
or neurons of each combiner per scenario. The number of neurons in the last dense
layer corresponds to the maximum vocabulary size of the problems contained in the
scenario, i.e. maxp∈S(Cp).

Unfortunately, the LSTM combiner is very hard to train. The time needed per 1000
batches, which is measured during training, varies between 1 h to 3 h depending on
the scenario and the network size. For the feedforward combiner, the time per 1000
batches lies between 1 min to 2 min. The long training time of the LSTM combiner was
the reason to train the combiner on the top 20 output of the experts and not the full
output. To keep the comparison fair, the same is done for the feedforward combiner.

7.3.2.4 Online Accuracy-Based Weighting

Online accuracy-based weighting is implemented with two different weighting func-
tions. The first one uses the top k accuracy and the second one a performance estimate
based on the MSE. Both methods are described in the following.

104 Chapter 7. Ensembles of Predictive Models

Table 7.6: Parameters of the feedforward combiner.

Scenario With input # Layers # Neurons/layer

HMM no 1 21
yes 2 64, 21

NLP no 8 7× 128, 6723
yes 8 7× 256, 6723

Hard no 1 22
yes 1 22

Easy no 8 7× 64, 6723
yes 4 3× 64, 6723

Bad no 8 7× 64, 6723
yes 8 7× 64, 6723

All no 2 32, 6723
yes 2 32, 6723

Weighting Based on Top k Accuracy. Each expert ep is assigned its mean top k
accuracy, which is defined in Section 3.5.4 as an evaluation metric, on the last M
input symbols as the weight. The top k accuracy is determined after M + 1 symbols
have been processed such that the correct predictions are known. Weighting based on
the top k accuracy is implemented for k = 1, 5, 10, 20.

Weighting Based on Mean Squared Error. The authors of [29] suggest a weighting
based on the MSE of each expert in comparison to random guessing. The symbols
used by problem p are assumed to be uniformly distributed such that the MSE for
random guessing is given by

MSEp
rand =

(
1− 1

Cp

)2

. (7.6)

For each expert ep, the MSE corresponds to

MSEep =
1
M

M

∑
m=1

(
1− ŷep

m,ym

)2
, (7.7)

with M the number of processed symbols and ŷep
m,ym the probability assigned by ex-

pert ep to the correct next symbol in the sequence, where ym denotes the label of
example m. The MSE is determined when symbol M + 1 arrives such that the cor-
rect predictions for the last M symbols are known. The weight of expert ep is then
proportional to

ŵp = max(MSEp
rand −MSEep , 0). (7.8)

7.3. Ensembles of Long Short-Term Memory Experts 105

Both variants of the online accuracy-based weighting assign the same weight 1
|S|

to all experts at initialisation. Also, the weights are normalised to sum up to 1 and
the final output of the ensemble is calculated on the top 20 outputs of each expert.

The choice of M is important when considering concept drift. Two configurations
for both variants are examined, which represent two extreme cases. In the first, all
symbols processed so far are used to compute the MSE, i.e. M grows with time. In
the second configuration, the weights are reset when the concept changes, i.e. the
weights are only calculated on the symbols originating from a single concept and M
corresponds to the stability period. This configuration can be applied in situations
where a concept drift can be reliably detected.

Methods for detecting concept drift usually analyse how the accuracy of the model
varies, e.g. [122]. Recently, a method based on an independence test between windows
on the data stream was suggested [33]. Moreover, context knowledge about the data
might be available and used for drift detection. For example, in the application of
predicting radar emissions, start and end of a deinterleaved PDW sequence are known
due to the signal sorting process. This context knowledge can be used to perform a
weight reset at the end of a sequence.

7.3.2.5 Model Averaging

Like in the other architectures, the top 20 predictions of the experts are averaged. All
symbols not contained in the top 20 prediction are assigned a probability of 0 since
it is assumed that their influence on the final result is negligible. Consequently, the
computational efficiency is increased. After averaging the outputs, the final prediction
is obtained by computing the top 20 predictions on the new symbol probabilities.

7.3.3 Experimental Results

All architectures are tested with several constant stability periods per scenario, namely
1, 5, 10, 50, 100, 200, 400, 600, 800, 1200, 1600, and 2000 symbols. Although the experts
are only trained with a stability period of up to 1000 symbols, longer periods are
included because some effects are better visible for those. For each stability period,
a sequence with alternating data from the different problems is randomly generated
from the test data that is defined in the SPiCe dataset. The sequence generation is
done analogously to Algorithm 1, but with a fixed stability period, i.e. len_min =
len_max. The generated sequences are stored such that each architecture is tested
with the exact same data. Sequences from problems with less data are repeated such
that the test data contains an equal number of periods per problem. With a batch
size of 128, at least 128 stability periods per problem are used for evaluation. Each
example in a batch starts with a different offset into the sequential data of the problem
such that each sequence is different.

In some applications, a concept drift can be detected by using a drift detector,
e.g. [33,122], or by exploiting context knowledge. Each architecture is therefore tested
with and without a state reset of the LSTM experts at the end of a stability period.

106 Chapter 7. Ensembles of Predictive Models

1 200 400 600 800 1000 1200 1400 1600 1800 2000
Length of stability period [#symbols]

10

20

30

40

50

60

70

80

90

100

To
p
1
id
en

tifi
ca
tio

n
ac
cu
ra
cy

[%
]

Scenario
HMM
NLP
Hard

Easy
Bad
All

Figure 7.8: Top 1 identification accuracies of the gating networks used in the MoE
variants for the different scenarios [63].

Moreover, the two variants of the online accuracy-based weighting architecture are
evaluated with and without a weight reset at this point.

To give a reference for the prediction accuracy of the individual experts, the
sparsely-gated MoE architecture is also included with d = 1 and perfect identification.
This means that the gating network outputs the labels and hence, the expert that was
trained on the current concept is always selected for the prediction. Of course, this
architecture cannot be used in a real application as the labels are not available.

To show what the identification difficulty of a scenario means, the identification
accuracies of the gating networks in the different scenarios are shown in Figure 7.8.
The problems in the NLP and easy scenario can be identified with a probability close
to 100 %, also with a short stability period. For the problems in the HMM and bad
scenario, longer stability periods are needed to reliably distinguish between them.
The problems in the hard and all scenario cannot be identified with the high accuracies
observed for the other scenarios.

For better readability, the results of the methods performing best in general are
displayed in Figure 7.9, while showing only the results of selected values for d in the
sparsely-gated MoE architecture. The results of the methods with lower accuracies
are shown in Figure 7.10. Both figures contain the results of the sparsely-gated MoE
with perfect identification as a reference. Detailed result tables can be found in Ap-
pendix A.2, as well as a single figure containing all results (Figure A.3). The accuracies
are reported at the end of a stability period, i.e. after all parts of the ensemble have
processed all symbols originating from the current concept.

As can be seen from the Figures 7.9 and 7.10, the MoE variants and the MSE-
based weighting with a weight reset after a stability period provide better results
than all other methods in all scenarios. An exception is the HMM scenario, in which
no clear best method can be identified. However, also in this scenario the MSE-based
weighting with weight reset performs slightly better than the other methods for most
stability periods.

7.3. Ensembles of Long Short-Term Memory Experts 107

1 400 800 1200 1600 2000
Length of stability period [#symbols]

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pr
ed
ic
tio
n
ac
cu
ra
cy
[%
]

HMM

1 400 800 1200 1600 2000
Length of stability period [#symbols]

10

15

20

25

30

35

Pr
ed
ic
tio
n
ac
cu
ra
cy
[%
]

NLP

1 400 800 1200 1600 2000
Length of stability period [#symbols]

5

10

15

20

25

Pr
ed
ic
tio
n
ac
cu
ra
cy
[%
]

Hard

1 400 800 1200 1600 2000
Length of stability period [#symbols]

10

20

30

40

Pr
ed
ic
tio
n
ac
cu
ra
cy
[%
]

Easy

1 400 800 1200 1600 2000
Length of stability period [#symbols]

10

15

20

25

30

Pr
ed
ic
tio
n
ac
cu
ra
cy
[%
]

Bad

1 400 800 1200 1600 2000
Length of stability period [#symbols]

5

10

15

20

25

30

Pr
ed
ic
tio
n
ac
cu
ra
cy
[%
]

All

MoE
MoE, state rst
Sparse MoE, d=1
Sparse MoE, d=2
Sparse MoE, d=4

Sparse MoE, d=1, state rst
Sparse MoE, d=2, state rst
Sparse MoE, d=4, state rst
Online Weighting (MSE)
Online Weighting (MSE), weight rst

Online Weighting (MSE), state rst
Online Weighting (MSE), state & weight rst
Sparse MoE (perfect id), d=1
Sparse MoE (perfect id), d=1, state rst

Figure 7.9: Top 1 prediction accuracies of the MoE variants and the MSE-based
weighting [63].

In situations in which a drift detection is possible and the identification accuracy
is low, the MSE-based weighting with weight reset clearly outperforms every other
method (hard, all in Figure 7.9). Furthermore, this method has the advantage that it
does not need to be trained. However, if the detection of a concept drift is not possible
and therefore no weight reset can be performed at the end of a stability period, the
results of the MSE-based weighting are much worse. In these situations, the MoE or
sparsely-gated MoE are to be preferred. If the identification accuracy is high (NLP,
easy in Figure 7.9), the MoE variants perform better, but there is not much difference
to the MSE-based weighting with weight reset.

108 Chapter 7. Ensembles of Predictive Models

1 400 800 1200 1600 2000
Length of stability period [#symbols]

8

10

12

14

16

18

Pr
ed
ic
tio
n
ac
cu
ra
cy
[%
]

HMM

1 400 800 1200 1600 2000
Length of stability period [#symbols]

10

20

30

Pr
ed
ic
tio
n
ac
cu
ra
cy
[%
]

NLP

1 400 800 1200 1600 2000
Length of stability period [#symbols]

5

10

15

20

25

Pr
ed
ic
tio
n
ac
cu
ra
cy
[%
]

Hard

1 400 800 1200 1600 2000
Length of stability period [#symbols]

10

20

30

40

Pr
ed
ic
tio
n
ac
cu
ra
cy
[%
]

Easy

1 400 800 1200 1600 2000
Length of stability period [#symbols]

5

10

15

20

25

30

Pr
ed
ic
tio
n
ac
cu
ra
cy
[%
]

Bad

1 400 800 1200 1600 2000
Length of stability period [#symbols]

5

10

15

20

25

30

Pr
ed
ic
tio
n
ac
cu
ra
cy
[%
]

All

Stacking (LSTM)
Stacking (LSTM), state rst
Stacking with Input (LSTM)
Stacking with Input (LSTM), state rst
Stacking (FF)
Stacking (FF), state rst
Stacking with Input (FF)
Stacking with Input (FF), state rst
Online Weighting (Top 1)
Online Weighting (Top 1), weight rst
Online Weighting (Top 1), state rst
Online Weighting (Top 1), state & weight rst
Online Weighting (Top 5)
Online Weighting (Top 5), weight rst

Online Weighting (Top 5), state rst
Online Weighting (Top 5), state & weight rst
Online Weighting (Top 10)
Online Weighting (Top 10), weight rst
Online Weighting (Top 10), state rst
Online Weighting (Top 10), state & weight rst
Online Weighting (Top 20)
Online Weighting (Top 20), weight rst
Online Weighting (Top 20), state rst
Online Weighting (Top 20), state & weight rst
Model Averaging
Model Averaging, state rst
Sparse MoE (perfect id), d=1
Sparse MoE (perfect id), d=1, state rst

Figure 7.10: Top 1 prediction accuracies of the stacking variants, the online weight-
ing based on top k accuracy, the model averaging, and the sparsely-
gated MoE with perfect identification [63]. FF = feedforward.

7.3. Ensembles of Long Short-Term Memory Experts 109

1 200 400 600 800 1000 1200 1400 1600 1800 2000
Length of stability period [#symbols]

5

10

15

20

25

Pr
ed

ic
tio

n
ac
cu
ra
cy

[%
]

Hard Stacking (LSTM)
Stacking (LSTM), state rst
Stacking with Input (LSTM)
Stacking with Input (LSTM), state rst
Stacking (FF)
Stacking (FF), state rst
Stacking with Input (FF)
Stacking with Input (FF), state rst
Full Stacking (LSTM)
Full Stacking (LSTM), state rst
Full Stacking with Input (LSTM)
Full Stacking with Input (LSTM), state rst
Full Stacking (FF)
Full Stacking (FF), state rst
Full Stacking with Input (FF)
Full Stacking with Input (FF), state rst
Online Weighting (MSE), state & weight rst

Figure 7.11: Comparison of the top 1 prediction accuracies of the different stacking
variants for the hard scenario [63]. The results of the MSE-based weight-
ing are shown for reference. FF = feedforward.

Also in situations with low identification accuracy (hard, all), it is better to use the
sparsely-gated MoE with some d > 1 instead of the full MoE if no drift detection is
available. With drift detection and a state reset at the end of a stability period, the
sparsely-gated MoE with d > 1 and the full MoE perform more or less the same.

The online weighting based on top k accuracy provides the best performance
for k = 1 (see Figure 7.10). However, it is outperformed by the MoE variants and
the MSE-based weighting with weight reset. With increasing k, the prediction accur-
acy even decreases.

Stacking does not perform well for the scenarios in general as shown by the results
in Figure 7.10. The LSTM combiner provides better results than the feedforward
combiner in most of the scenarios, but is still not comparable to the results of the best
methods. To see whether this is due to the decision to train on the top 20 predictions
of the experts, the evaluation is repeated with combiners that are trained on the full
output of the experts. However, this could not be done for every scenario since in
most of them the input size is very large and training would have taken months. The
size of the full output of the experts equals the sum of the individual vocabulary
sizes. Nevertheless, to give an impression on the performance of full stacking, the
combiners for the hard scenario are trained since here the sum of the vocabulary sizes
is only 98 and not 7559 as for example in the NLP scenario. The results are shown
in Figure 7.11, with the accuracies of the MSE-based weighting with state and weight
reset given for reference. Full stacking performs significantly better than stacking
based on the top 20 predictions, however, the accuracy is still much lower than that
of the MoE variants and the MSE-based weighting with weight reset.

The results achieved by model averaging are also much worse than those of the
best methods (see Figure 7.10). This could be expected since this architecture does not
adapt to the estimated accuracies of the experts.

110 Chapter 7. Ensembles of Predictive Models

1 200 400 600 800 1000 1200 1400 1600 1800 2000
Length of stability period [#symbols]

5

10

15

20

25

30

Pr
ed

ict
io

n
ac

cu
ra

cy
 [%

]

MoE

Bad
Bad, state rst
All
All, state rst

Figure 7.12: Top 1 prediction accuracies of the MoE architecture for the bad and all
scenario with and without state reset [63].

1 200 400 600 800 1000 1200 1400 1600 1800 2000
Length of stability period [#symbols]

10

15

20

25

30

35

40

45

Pr
ed

ict
io

n
ac

cu
ra

cy
 [%

]

Easy

Sparse MoE, d=1
Sparse MoE, d=1, state rst

Figure 7.13: Top 1 prediction accuracy of the sparsely-gated MoE with d = 1 for the
easy scenario with and without state reset [63].

When looking at the accuracy of the MoE with and without a state reset of the
LSTM experts, one can see that a state reset is especially beneficial in the bad and
the all scenario (plotted individually in Figure 7.12). In these scenarios, the internal
states of the LSTM experts are corrupted by the irrelevant data. The bad scenario was
chosen such that it is particularly challenging for the experts to predict symbols of
other concepts. Consequently, the variety among the sequences is much higher, which
therefore leads to a worse corruption of the internal state. In the other scenarios, the
effect is not as big since there are less problems or the problems are more similar.

However, a state reset is not always advantageous as can be seen from the top 1
accuracy of the sparsely-gated MoE with d = 1 for the easy scenario in Figure 7.13.

7.4. Ensembles of Predictive Radar Models 111

Here, the identification accuracy is high also with short stability periods. Hence, the
LSTM experts only process the data from the problem that they were trained on when
employing the sparsely-gated MoE with d = 1. Therefore, keeping the LSTM states
improves the performance since the experts are provided more information about the
current sequence. This effect is visible up to a stability period length of 400 symbols.
If the stability period becomes even longer, it already contains enough information
such that a state reset does not cause harm.

The influence of the length of the stability period on the prediction accuracy de-
creases with increasing length for all methods except for the MSE-based weighting
without weight reset (see Figures 7.9 and 7.10, as well as the result tables in the
appendix). For very short periods of only 1 or 5 symbols, the prediction accuracy
of all methods is much lower than for longer periods, but rapidly increases until it
converges to a maximum. The low accuracy with short stability periods was to be
expected since less symbols from the same concept provide less information for the
weighting and the predictions made by the experts.

7.4 Ensembles of Predictive Radar Models

This section presents different approaches for ensembles of predictive radar models.
Based on the results obtained in the previous section, selected architectures are im-
plemented and evaluated. Section 7.4.1 provides details on the implementation of the
architectures and Section 7.4.2 presents the experimental results.

7.4.1 Implementation

In Chapter 5, predictive radar models are developed using LSTMs and MCs with
the hierarchical emission model. It is shown that syllables and words are the most
interesting modelling levels because for letters, commands, and functions, simple
prediction strategies like repeating the last symbol provide results comparable to MCs
and LSTMs. For syllables, the MC approach provides better results while LSTMs are
to be preferred for words. Therefore, in this section, ensembles of MC experts for
syllables and LSTM experts for words are implemented and evaluated. The results of
the previous section show that the MoE, the sparsely-gated MoE, and the MSE-based
weighting with weight reset provide the best results from all architectures tested.
Hence, the evaluation in this section is restricted to these approaches.

The MC experts for syllables are those developed in Section 5.2.2. For the MoE
and sparsely-gated MoE architecture, the LSTMscen for identification as presented in
Section 6.2.1 is employed as the gating network. Although the MC provides better
results for the identification based on syllables, it is not used here since it is not robust
with respect to missing and additional syllables. As the MC experts do not have a
memory, a state reset is not meaningful. For the same reason, the weighted mean
of the prediction accuracies of the MCs accw is taken as a reference for the expected
ideal case instead of the sparsely-gated MoE with perfect identification and d = 1.

112 Chapter 7. Ensembles of Predictive Models

The weights are set to the amount of test data available for each emitter type e in the
set of emitters E , data(e), as given in Table 5.2, i.e.

accw =
∑e∈E data(e) · acce(Ŷ, Y, k)

∑e∈E data(e)
, k = 1, (7.9)

with acce(Ŷ, Y, k) being the top k accuracy as defined in (3.78).
For words, the experts are the LSTMs presented in Section 5.2.1. In the MoE and

sparsely-gated MoE architecture, the LSTMscen developed in Section 6.2.1 is employed
as the gating network because it is more robust with respect to additional words than
the LSTMrand, which provides the best results with ideal data. Both MoE variants,
as well as the MSE-based weighting, are evaluated with and without a state reset
after the sequence length. The MSE-based weighting is implemented as described in
Section 7.3.2.4, both for syllables and words, where Cp corresponds to the number of
syllables and words used by each emitter, respectively.

7.4.2 Experimental Results

The following sections present the results for the different ensemble architectures for
syllables and words. At first, the approaches are evaluated under ideal conditions
and afterwards with corrupted data that contains missing and additional symbols.
The top 1 prediction accuracies are given as defined by (3.78) with k = 1.

7.4.2.1 Evaluation Under Ideal Conditions

A mistake in the estimated probabilities for the experts leads to the selection of the
wrong emitter model in the sparsely-gated MoE network with d = 1 and a disadvant-
ageous assignment of weights in the other architectures. To see how much impact a
wrong identification has on the prediction performance, the emitter models are tested
with the data of all three radar variants. The results are shown in Figure 7.14. On the

QoS Rules-v1 Rules-v2
Data source

0

20

40

60

80

100

Pr
ed

ic
tio

n
ac
cu

ra
cy

[%
]

Syllable (MCs)

QoS Rules-v1 Rules-v2
Data source

ModelWord (LSTMs)
QoS
Top 1
Top 5
Top 10
Top 20

Rules-v1
Top 1
Top 5
Top 10
Top 20

Rules-v2
Top 1
Top 5
Top 10
Top 20

Figure 7.14: Prediction accuracies of the emitter models on the data of all emit-
ters [64].

7.4. Ensembles of Predictive Radar Models 113

0 200 400 600 800 1000 1200 1400
Sequence length [#symbols]

78

80

82

84

86

88

90

92

Pr
ed
ic
tio
n
ac
cu
ra
cy
[%
]

Syllable
MoE
Sparse MoE, d=1
Sparse MoE, d=2
Online Weighting,
weight rst
Weighted Mean

Figure 7.15: Top 1 prediction accuracy of the different ensemble architectures with
MC experts for syllables [64].

x-axis of each plot, the emitter that is the source of the data is shown. The colour of
the bars indicates which emitter model is used to make the prediction. For example,
the leftmost red bar in each plot shows the prediction accuracy of the model for the
Rules-v1 radar on the data of the QoS radar.

Although the Rules-v2 radar uses many more syllables and words than the Rules-
v1 radar, the Rules-v1 model is able to predict the Rules-v2 emissions with a top 1
accuracy of 94 % for syllables and 84.84 % for words. The Rules-v2 model also achieves
a high accuracy for the symbols of the Rules-v1 radar, especially for the syllables, for
which the difference to the top 1 accuracy of the Rules-v2 model is just −0.14 per-
centage points. The results of Chapter 5 already suggested that although the Rules-v2
radar can emit many different syllables and words, the most frequently used symbols
dominate the data. The fact that the prediction accuracy is that high also implies that
the two rule-based radars are hard to distinguish. Since the behaviour of the QoS
radar regarding syllables and words is much different to the rule-based approaches,
none of the rule-based emitter models is capable of predicting the syllables and words
of the QoS radar and also the QoS model achieves much lower prediction accuracies
for the data of the other radars than the corresponding models. Consequently, a
confusion between the two rule-based emitters in an ensemble does not cause much
harm, however, the correct identification of the QoS radar is important.

Syllables with MC Experts. Figure 7.15 shows the results for the different archi-
tectures and Table 7.7 provides the detailed values. The accuracies of all ensembles
are very similar at longer sequence lengths. The MSE-based weighting achieves the
lowest accuracy with 85.1 % at a sequence length of 1400 syllables, while the sparsely-

114 Chapter 7. Ensembles of Predictive Models

Table 7.7: Top 1 prediction accuracy [%] of the ensemble architectures (arch.) in
different configurations (cfg.) with MC experts for syllables. S = State,
W = Weight.

Reset Sequence length

Arch. Cfg. S W 1 10 50 100 200 400 600 800 1000 1200 1400

MoE
(LSTMscen) 82.4 87.1 89.6 86.7 86.4 86.8 87.0 87.4 86.2 87.0 86.2

Online
Weighting MSE x 90.4 88.2 88.4 85.6 85.0 85.5 85.3 86.5 85.3 86.6 85.1

Sparse
MoE

(LSTMscen)

d=1 78.6 85.7 89.3 86.3 86.4 86.4 86.3 86.3 86.8 86.7 86.6

d=2 81.8 86.2 89.8 86.6 86.6 86.9 86.5 86.9 86.2 87.1 87.1

Weighted
Mean 92.0 92.0 92.0 92.0 92.0 92.0 92.0 92.0 92.0 92.0 92.0

gated MoE with d = 2 achieves the highest accuracy with a value of 87.1 %. Only
for a sequence length of one symbol, the MSE-based weighting clearly outperforms
the other methods with an accuracy of 90.4 % compared to the second best result
of 82.4 % obtained by the MoE. In general, the sparsely-gate MoE with d = 2 provides
slightly better results than the other architectures. As seen from Figure 7.14, the two
rule-based radar models are able to predict each other’s emissions very well and
consequently, an ensemble of these models is beneficial for the accuracy. For the
same reason, the difference to the configuration with d = 1 is very small, although
the LSTMscen employed as the gating network assigns about 60 % to 80 % of the syl-
lables of the Rules-v1 radar to the Rules-v2 radar, depending on the sequence length.
However, none of the methods achieves the theoretically best value estimated by the
weighted mean of the prediction accuracies of the emitter models of 92 %. The drop
in accuracy from a sequence length of 50 to 100 syllables is due to misclassifications
with high confidence by the LSTMscen. With a sequence length of 100 syllables and
more, the QoS radar is given a much higher weight. If now the two rule-based radars
are misclassified as the QoS emitter, the prediction of the expert for the QoS radar
dominates the weighted sum provided in the output of the MoE variants. As seen
in Figure 7.14, the QoS emitter model achieves a lower prediction accuracy on the
syllables of the rule-based emitters and hence, the accuracy of the overall ensemble
decreases.

7.4. Ensembles of Predictive Radar Models 115

0 200 400 600 800 1000 1200 1400
Sequence length [#symbols]

0

10

20

30

40

50

60

70

Pr
ed
ic
tio
n
ac
cu
ra
cy
[%
]

Word
MoE
MoE, state rst
Sparse MoE, d=1
Sparse MoE, d=2
Sparse MoE, d=1,
state rst
Sparse MoE, d=2,
state rst
Online Weighting,
weight rst
Online Weighting,
state & weight rst
Sparse MoE
(perfect id), d=1
Sparse MoE
(perfect id), d=1,
state rst

Figure 7.16: Top 1 prediction accuracy of the different ensemble architectures with
LSTM experts for words [64].

Words with LSTM Experts. Figure 7.16 shows the results of the different ensemble
architectures with LSTM experts for words. In Table 7.8, the detailed values are given.
As is the case for syllables, the sparsely-gated MoE with d = 2 outperforms the other
methods in general. However, the difference to the other architectures is larger than
for syllables. The highest accuracy of 68.9 % with 1400 words is given by the sparsely-
gate MoE without a state reset and d = 2. This is even higher than the accuracy
of 63.5 % for the sparsely-gated MoE with perfect identification. Here, the positive
effect of an ensemble of experts, in this case the two rule-based models, is observed.

The impact of a state reset after a sequence length can clearly be seen. At shorter
sequence lengths of up to 100 words, a state reset results in a large decrease in the
prediction accuracies for the MoE architecture. With a sequence length of 10 words,
the state reset causes a drop from 65.2 % to 30.3 % prediction accuracy. At a sequence
length of 200 words, the results with and without a state reset are about the same
(60.0 % vs. 60.5 %). With longer sequences, the variant with state reset clearly out-
performs the MoE without reset, for which the accuracy decreases with increasing
sequence length. Also for the MSE-based weighting, this behaviour can be observed.
The sparsely-gated MoE, however, does not benefit from a state reset. This matches
the observations made in the previous section with the SPiCe data. With shorter
sequences, it is better to keep the LSTM state since then, the experts receive more
information. As seen from the results of the sparsely-gated MoE with perfect iden-
tification and state reset, the accuracies of the radar models improve with increasing
sequence lengths. At the same time, however, the state is corrupted by irrelevant data
in the classifier fusion architectures, which are MoE and MSE-based weighting in this
case. An improvement might be achieved by “warming up” the LSTMs with parts of
the training data after a state reset.

116 Chapter 7. Ensembles of Predictive Models

Table 7.8: Top 1 prediction accuracy [%] of the ensemble architectures (arch.) in
different configurations (cfg.) with LSTM experts for words. S = State,
W = Weight.

Reset Sequence length

Arch. Cfg. S W 1 10 50 100 200 400 600 800 1000 1200 1400

MoE
(LSTMscen)

43.6 65.2 67.2 64.3 60.5 57.9 54.6 51.1 50.8 51.9 50.7

x 43.6 30.3 44.4 54.1 60.0 63.4 66.9 64.3 65.0 62.1 64.2

Online
Weighting

MSE x 42.2 58.2 58.4 59.6 57.0 53.6 54.1 53.6 48.4 48.0 51.8

MSE x x 43.6 24.2 41.3 52.2 60.7 63.4 63.2 63.8 65.2 53.5 67.7

Sparse
MoE

(LSTMscen)

d=1 22.2 59.4 63.4 64.5 63.7 67.2 67.2 65.2 63.3 65.8 64.4

d=2 36.9 65.5 67.2 68.0 68.4 69.7 68.9 69.4 65.8 69.3 68.9

d=1 x 2.1 21.8 34.5 46.1 54.4 60.5 59.8 60.1 61.6 65.6 59.4

d=2 x 19.8 29.9 44.6 54.0 58.3 65.0 65.2 63.7 66.0 63.7 65.9

Sp. MoE
(perfect id)

d=1 65.8 65.8 65.6 66.7 68.0 67.7 69.4 66.3 66.9 65.2 63.5

d=1 x 28.3 27.1 41.3 49.5 57.2 62.8 61.2 58.2 61.3 66.3 65.0

7.4.2.2 Evaluation with Missing and Additional Symbols

This section presents the relative results with missing or additional symbols and
words with respect to the results obtained for ideal data. Here, the scenario with 20 %
corrupted data is exemplarily shown as this is the worst case scenario for the predic-
tive models and the identification approaches in the Chapters 5 and 6. For improved
readability, only the results at a sequence length of 1400 symbols are given. The
relative differences are defined by

accrel =
acc(Ŷcorrupt, Ycorrupt, k)− acc(Ŷ, Y, k)

acc(Ŷ, Y, k)
, k = 1, (7.10)

with acc(Ŷ, Y, k) as defined in (3.78).

Syllables with MC Experts Figure 7.17 shows the accuracies as well as the relative
differences with missing or additional syllables. It is seen from the figure that all
ensemble architectures are more or less equally robust and exhibit less decrease of the
accuracy than the weighted mean of the emitter models’ results. Still, the absolute ac-
curacy of the weighted mean is higher. For additional syllables, the accuracy decrease
is the same for all architectures. For missing symbols, the MSE-based weighting is the
most robust, however, the decrease of 6 % is very close to the worst loss of 8 % by the
two sparsely-gated MoE configurations.

7.4. Ensembles of Predictive Radar Models 117

MoE Sparse
MoE, d=1

Sparse
MoE, d=2

Online
Weight. (MSE),
weight rst

Weighted
Mean

0

20

40

60

80

100

Pr
ed
ic
tio
n
ac
cu
ra
cy
[%
]

-7%

-29%

-8%

-29%

-8%

-29%

-6%

-29%

-12%

-33%

Syllable, sequence length 1400

Ideal
Missing
Additional

Figure 7.17: Top 1 prediction accuracy of the different ensemble architectures with
MC experts for syllables and 20 % corrupted data at a sequence length
of 1400 symbols [64].

MoE MoE,
state rst

Sparse
MoE, d=1

Sparse
MoE, d=2

Sparse
MoE, d=1,
state rst

0

20

40

60

80

100

Pr
ed
ic
tio
n
ac
cu
ra
cy
[%
]

1%
-18%

-4%
-18% -10%

-28%
-12%-18% 0%

-17%

Word, sequence length 1400

Sparse
MoE, d=2,
state rst

Online
Weight. (MSE),
weight rst

Online
Weight. (MSE),
weight & state rst

Sparse MoE
(perfect id),

d=1

Sparse MoE
(perfect id),
d=1, state rst

0

20

40

60

80

100

Pr
ed
ic
tio
n
ac
cu
ra
cy
[%
]

-13%
-23% 9%

-14%

-10%
-29%

-9% -11%
-2%

-14%

Ideal
Missing
Additional

Figure 7.18: Top 1 prediction accuracy of the different ensemble architectures with
LSTM experts for words and 20 % corrupted data at a sequence length
of 1400 symbols [64].

Words with LSTM Experts Figure 7.18 shows the results of the ensembles of LSTM
experts with 20 % corrupted data and at a sequence length of 1400 words. For missing
words, the MSE-based weighting without a state reset exhibits an increase of 9 %
relative to the results with ideal data. Nevertheless, the absolute accuracy of 56.48 %

118 Chapter 7. Ensembles of Predictive Models

is worse than the best result with missing words, which is 61.4 % and achieved by the
MoE with state reset. However, with a state reset, the MSE-based weighting comes
close with an accuracy of 61.14 %, followed by the sparsely-gated MoE with d = 2
and 60.83 %. With additional words, the sparsely-gated MoE with d = 2 clearly
outperforms the other methods with an accuracy of 56.37 %, although it is not the
most robust architecture, which is again the MSE-based weighting without state reset.
The second best result with additional words is provided by the MoE with 52.84 %.

7.5 Summary

This chapter presents and evaluates ensemble architectures of predictive models. In
the first part, the architectures are compared for processing streaming data via LSTMs
with sudden, recurring concept drift under different conditions and configurations
with a public dataset. Based on the insights gained from this evaluation, the second
part presents three selected approaches for the predictive radar models developed in
Chapter 5. In the considered application, the data from different concepts, which cor-
respond to the emitters, is alternating. Due to the properties of the ELINT processing
chain, start and end of a deinterleaved PDW sequence are known, i.e. a concept drift
can be detected. Therefore, it is possible to perform a state and a weight reset after a
sequence length or stability period.

The evaluations of the first part show that the sparsely-gated MoE architecture is
in general a good choice when employing LSTMs, also if the change of the concept
cannot be detected. However, the number of experts d that should be activated for the
prediction needs to be chosen and a gating network needs to be trained. In situations
with high identification accuracy, d can be smaller than in situations with low identi-
fication accuracy. This finding is confirmed by the evaluations with predictive radar
models in the second part, for which the sparsely-gated MoE with d = 2 and without
a state reset provides the overall best results. In the case of the radar models, the MoE
is equal to the sparsely-gated MoE with d = 3, for which the results for words are
worse than with d = 2. Since the gating network is able to identify the QoS radar with
high accuracy but only confuses the two rule-based emitters, d = 2 is a good choice.

If drift detection is available and the identification of the current concept is not
possible with high accuracy, the MSE-based weighting appears to be the most effect-
ive method on the SPiCe data. Here, the benefits of classifier fusion can clearly be
seen. With a weight reset at the end of a stability period, the MSE-based weighting
outperforms every other method and has the advantage that no additional training
is required. Also in situations with high identification accuracy, it comes close to the
results of the MoE variants. This is as well observed for the ensembles of MC radar
models for syllables, for which the identification accuracy is lower than that of words.
For ensembles of LSTM experts for words, however, the identification accuracy is
rather high and the sparsely-gated MoE with d = 2 provides much better results.

The evaluation on the SPiCe data shows that the internal states of the LSTM ex-
perts are clearly affected by the data of different concepts. Therefore, a state reset

7.5. Summary 119

after a stability period is beneficial in situations where a concept drift can be detected
and classifier fusion is employed. If no drift detection can be performed, a method
that uses classifier selection like the sparsely-gated MoE without a state reset might
provide better results. With classifier selection, the corruption of the internal states is
minimised since not all of the experts process all data. In the case of the predictive
radar models, it is observed that the two rule-based emitters are able to predict each
other’s emissions very well, which means that they behave in a very similar manner.
Consequently, the state is not corrupted as badly as with the data of the QoS radar.
Since the QoS radar can be identified with high accuracy, the sparsely-gated MoE
with d = 2 performs a fusion of the results of the two rule-based approaches if the
input belongs to one of them, which is beneficial for the prediction accuracy.

With corrupted data, all ensembles of MC radar models for syllables are equally
robust, while the LSTM ensembles exhibit a larger variety. The most robust model is
the MSE-based weighting with weight reset, however, the absolute results are worse
than those of the others. With missing words, the MoE with a state reset provides the
best absolute accuracy, while the sparsely-gated MoE with d = 2 is the best method
for additional words. However, for missing words the result of the sparsely-gated
MoE is also very close to that of the MoE.

Chapter 8

Recognition of Unknown Radar
Emitters

This chapter presents several approaches for recognising if a received signal belongs
to an unknown emitter. It provides an introduction and a literature review on the
general topic of open-set recognition, as well as detailed descriptions of the different
methods and a thorough evaluation under several conditions. Parts of this chapter
have been published in [65].

8.1 Introduction

As the goal of ELINT is to collect information about radar systems, recognising un-
known emitters is of great importance. If unknown radars are detected, the corres-
ponding signals need to be prioritised and recorded such that further analysis can
be performed and possibly models of the emitters’ behaviour can be learnt. How-
ever, classifiers like neural networks are generally trained to identify a set of known
classes, which is sometimes called the closed-set assumption. Recognising if an input
does not belong to any of the known classes is referred to as open-set or open-world
recognition, e.g. [51–56]. Table 8.1 provides a characterisation of open-set recognition
in comparison to classification and anomaly detection. The major differences are the
goal, the available training data, and the output that the classifier provides in each
task. Approaches from the area of anomaly detection could as well be used to clas-
sify input as unknown, however, an anomaly detector does not distinguish between

Table 8.1: Characterisation of classification, anomaly detection, and open-set recog-
nition [55].

Classification Anomaly detection Open-set recognition

Goal Discrimination
between known classes

Detection of abnormal
data

Identification of data
from known classes

Training
data

Data of all known
classes

Typical data and few
or no outliers

Data of known classes
and few or none of
unknown classes

Output Label of a known class Anomaly: yes/no Label of a known class
or “unknown”

121

122 Chapter 8. Recognition of Unknown Radar Emitters

several known classes. A combination of an anomaly detector with a classification
approach therefore results in a method for open-set recognition. The authors of [52]
define the different types of input classes that a classifier for open-set recognition
needs to handle as:

• Known classes: The classes that the classifier should recognise and identify. The
set of known classes is denoted by K in the following.

• Known unknown classes: Input belonging to known unknown classes, denoted
by V, should be classified as unknown/rejected. Type and structure are known
and either training data is available or can be generated.

• Unknown unknown classes: Data of unknown unknown classes, denoted by U,
should as well be classified as unknown, but is unavailable at training time and
only encountered at test time.

As an example, consider a classifier that should detect and identify traffic signs in
images for an autonomous driving application. The known classes are the different
traffic signs, for which training data is available. The known unknown class consists
of example images without traffic signs. The classifier can as well be trained with
these images. However, the known unknown class cannot cover the complete range
of images without traffic signs encountered in the real world, which are the members
of the unknown unknown class.

Open-set recognition can be regarded as a learning task with these properties [55]:

• If the input x belongs to a known class kc ∈ K, which is denoted by class(x) = kc,
then the label y corresponds to the class index idx(kc) = c, otherwise y = ∅,
with ∅ meaning “unknown”.

• The goal of the learning process is to train a classifier ĉ that returns ĉ(x) = c for
all x with class(x) = kc ∈ K and ĉ(x) = ∅ otherwise.

• Predicting the class ĉ(x) = ∅ is referred to as the reject option. The learning
process is supposed to adjust the selection of this option by the classifier.

8.1.1 Related Work

There are two alternative principles employed for open-set recognition. The first one
is to compare the output values ŷ = (ŷ1, . . . , ŷC) for each class kc ∈ K = {k1, . . . , kC}
to a threshold δ and reject the input as unknown if none of the values exceeds it, i.e.

ĉ(x) =

{
T1(ŷ) if max(ŷ) ≥ δ,
∅ else,

(8.1)

where T1(ŷ) denotes the index of the top 1 entry in ŷ as defined in (3.77), which
corresponds to the index c of the most probable known class kc. The second approach
is to add an extra class with index C + 1 called “unknown” to the possible output

8.1. Introduction 123

classes. The classifier can be trained on the known and known unknown classes, but
obviously not on the unknown unknown classes.

The work presented in [53] introduces OpenMax, which estimates the probability
that the input belongs to an unknown class, to replace the commonly used softmax
layer in a neural network (see (3.66)). The basis is the analysis of the logits, i.e. the
activations ỹ of the final dense layer before softmax. Per class, the logits of every
correctly classified training input, which consists of images in [53], are combined into
a mean activation vector to yield a single representation of the class. Based on the
logits and the corresponding mean activation vector, a Weibull distribution is fitted
for each class with

fWeibull(x) = λκ(λx)κ−1 exp(−(λx)κ), (8.2)

where λ and κ need to be estimated from the data. OpenMax then adapts the top k
logits by scaling them according to the Weibull probability of the distance between the
input x and the mean activation vector of the class. In addition, a pseudo-activation
of the unknown class is determined from the original logits and the Weibull model.
Afterwards, the revised logits and the pseudo-activation are normalised through the
softmax function. If now the probability for the unknown class is the highest or all
values are below a threshold, the input is rejected as unknown.

Although achieving good performance in comparison to directly using the soft-
max function with a threshold, it is not clear how to apply OpenMax to sequential
data. The mean activation vector would need to be calculated for many sequences
with different offsets and lengths to capture the general distribution of the logits for
a certain class, which does not seem to be practical.

A network to generate data of the known unknown classes is proposed in [123],
which is designed to find data samples that are close to the known classes but that are
still rejected. Afterwards, the classifier’s training data is augmented with this known
unknown data, which, together with the defined loss function, results in a regular-
isation of the network by increasing the uncertainty for unknown input. The work
presented in [56] follows a similar idea and introduces a new loss function, which
is called the entropic open-set loss, to evenly distribute the probability across known
classes if the input belongs to an unknown class. This loss function is employed in
this chapter and therefore, the details are described in Section 8.3. The same applies
for the approach called deep open classification described in [54], which replaces the fi-
nal softmax layer by a layer of independent sigmoid functions and combines it with a
new loss function. In addition to the entropic open-set loss, the work [56] introduces
the objectosphere loss as an extension. The application in [56] is image classification
and hence, a convolutional neural network specially designed for processing images
is employed. The objectosphere loss targets the “deep feature layer” that exists in all
convolutional neural networks, but not in the LSTM architecture of this thesis and
therefore, the evaluations of this chapter are restricted to the entropic open-set loss.

Literature on recognising an unknown emitter or signal for an ELINT applica-
tion is very sparse. Moreover, most of the existing papers either use methods that
have not established themselves and were replaced by neural network types like
LSTMs [57, 124, 125] or exhibit a lack of details on how training for the unknown

124 Chapter 8. Recognition of Unknown Radar Emitters

class is performed [57, 58]. In [59], the class probability output network as introduced
in [126] is employed. It is a method for normalising the output of a classifier in order
to obtain probability values, i.e. an alternative to using the softmax function.

8.1.2 Contributions

This chapter provides a thorough investigation of six approaches in several config-
urations to recognise unknown emitters based on the hierarchical emission model
presented in Chapter 4. Four of the methods employ LSTMs and two are based on
MCs. The LSTMs are implemented with three different loss functions, which are
cross-entropy, entropic open set, and deep open classification. To the best of the au-
thor’s knowledge, this is the first implementation of the entropic open-set loss with
LSTMs in general and the first implementation of deep open classification with uni-
directional LSTMs. Moreover, it is also the first application of LSTMs and MCs for the
task of unknown emitter recognition.

In addition, an MC-based method for generating known unknown data is pro-
posed. All considered classifiers for unknown emitter recognition are trained with
five training cases, which differ in the contained known unknown data. An addi-
tional training case that resembles the conventional training for classification in terms
of the closed-set assumption is employed for the LSTM with cross-entropy loss and
the MC as described in Chapter 6. The evaluation is performed with ten different
test cases, which consist of several combinations of unknown classes. It is investig-
ated how the generated known unknown data influences the rejection accuracy for
unknown input.

A compromise between the true and false rejection rate, as well as the accuracy
for discriminating between known classes, needs to be found. This is achieved by
selecting the configuration of the method, which consists of the training case as well
as the value of the threshold δ, if a threshold is used. This chapter provides estimates
on the expected performance for the distinction between known and unknown input
when choosing the best configuration for the identification of known classes and vice
versa. Moreover, this chapter investigates whether a single classifier is enough for a
good accuracy for all metrics or a hierarchical combination of different classifiers is to
be preferred. An evaluation with corrupted data additionally provides estimates on
the robustness of the classifiers.

Section 8.2 describes the cases employed for training the approaches introduced
in Section 8.3. Section 8.4 presents the results and Section 8.5 provides the summary.

8.2 Training Cases

Table 8.2 gives an overview of the different training cases defined for the classifi-
ers considered in this chapter. Cases 0 and I contain all three example emitters as
introduced in Section 4.3 as the known classes, while case 0 corresponds to the con-
ventional training as employed in Chapter 6 and case I contains additional known

8.2. Training Cases 125

Table 8.2: Training cases employed for unknown emitter recognition.

Training Case

Emitter 0 I II III IV V

kn
ow

n QoS x x x x x x

Rules-v1 x x x x x x

Rules-v2 x x

kn
ow

n
un

kn
ow

n

UNKs x x x x

Random x x x x

QoSalt x x x

Rules-v1alt x x

unknown data. Cases II to V do not include the Rules-v2 radar in the set of known
emitters because it is used as an unknown unknown for testing later on. Therefore,
the dictionary used by the open-set recognition approach does not contain the sym-
bols exclusively emitted by the Rules-v2 radar in these cases, which are about 12 %
of its syllables and 38 % of its words (see Table 6.1 and Table 6.2 of Chapter 6). For
simplicity, the unknowns are also referred to as “emitters” although the data might be
artificially generated. Several combinations of known unknown emitters are defined
in the different training cases. The generation of the corresponding data is described
in the following section.

8.2.1 Generation of Known Unknown Emitters

There are three possibilities for the signal of an unknown emitter,

1. it only contains unknown symbols,

2. it contains known and unknown symbols,

3. it only contains known symbols.

In the first case, the input sequence to the open-set recognition method always consists
of UNK symbols introduced by the word embedding (see Chapter 4) and is hence
known in advance. Consequently, this case falls in the known unknown category and
can be included in the training of the classifier. If a completely unknown signal is
received, the symbol extraction step (see Figure 6.2 of Chapter 6) cannot connect it to
any of the symbols in the global dictionary Ωl at modelling level l and needs to assign
new symbols to it. As these are not part of the dictionary, no vector representations
exist and the word embedding layer of the LSTMs presented in Figure 6.3 maps them
to the special symbol UNK. Also the MC approach fails to find the input string in

126 Chapter 8. Recognition of Unknown Radar Emitters

the dictionary and it therefore maps it to UNK. Consequently, a signal that does
not contain any known symbols is always represented as a sequence consisting of
UNK symbols only. In Table 8.2, it is referred to as “UNKs”. Of course, recognising
a sequence of UNK symbols as unknown does not require a sophisticated method,
however, it is included here for completeness.

Based on the data from the known unknown classes, the classifier is supposed
to learn to distinguish between known and unknown input. If the unknown input
is similar to the known classes, this task is more complicated. In the application
considered in this thesis, the classifier should also be able to tell that an emitter is un-
known if it uses the same symbols as the known classes but with different frequencies
and agility. Therefore, known unknown emitters that make use of known symbols
are needed. The most straightforward way to achieve this is to generate random se-
quences of known symbols. This approach is referred to as “Random” in Table 8.2.
To make the known unknown data even more similar to the known classes, altered
versions of the QoS and the Rules-v1 radar are created. The data of the Rules-v2
radar is not used here since it is employed as an unknown unknown emitter later on.
In Table 8.2, the altered versions are called “QoSalt” and “Rules-v1alt”, respectively.
The altered data is created from the MC emitter models developed in Chapter 5 by
modifying the symbol transition matrices and sampling from the new distribution
P̂alt

e (ωj|ωi) with ωi, ωj ∈ Ωl
e being symbols in the dictionary of emitter e. Each row

of the transition matrix is altered by randomly choosing one of three different opera-
tions. The first one reverses the order of the n most probable entries, while n is chosen
randomly in

[
2, 3, . . . ,

⌊
1
2

∣∣Ωl
e
∣∣⌋]. For example, with n = 2, the second most probable

next symbol is assigned the probability of the most probable symbol and vice versa.
With n = 3, reversing the order of the entries equals swapping the first and the third
entry. The second operation reweights the entries by adding random values between 0
and N, followed by a normalisation of the row. Due to the normalisation, the choice
of N is irrelevant as long as N > 0. The third operation leaves the row unchanged.
The transition matrices are modified 16 times per radar version and afterwards, data
is sampled from the altered distributions to create the known unknowns.

8.3 Approaches

As described in the introduction, two alternative approaches can be applied to per-
form open-set recognition, which are employing a threshold or adding an extra un-
known class. In this thesis, both approaches are investigated, as well as a classifier
that only distinguishes between known and unknown, i.e. an anomaly detector. Ac-
cording to the classification given in Table 8.1, this approach is not a method for
open-set recognition, but it can be turned into one in combination with a method
that performs classification. An overview of the methods is given in Table 8.3, while
the details are provided in the following sections. Since the identification accuracies
for letters, commands, and functions are not satisfactory for the LSTMs even without
unknown emitters (see Chapter 6), only syllables and words are considered here,

8.3. Approaches 127

Table 8.3: Overview of the methods employed for unknown emitter recognition.
Rv1 = Rules-v1.

Method Case Dictionary Thres. Classes

LSTM -
Cross-Entropy

0 Ωl yes QoS, Rules-v1, Rules-v2
I Ωl no QoS, Rules-v1, Rules-v2, unknown

II-V Ωl
QoS ∪Ωl

Rv1 no QoS, Rules-v1, unknown

LSTM -
Entropic Open Set

I Ωl yes QoS, Rules-v1, Rules-v2
II-V Ωl

QoS ∪Ωl
Rv1 yes QoS, Rules-v1

LSTM -
Deep Open Class.

I Ωl yes QoS, Rules-v1, Rules-v2
II-V Ωl

QoS ∪Ωl
Rv1 yes QoS, Rules-v1

LSTM -
Unknown Gate

I Ωl no known, unknown
II-V Ωl

QoS ∪Ωl
Rv1 no known, unknown

MC
0 Ωl yes QoS, Rules-v1, Rules-v2
I Ωl no QoS, Rules-v1, Rules-v2, unknown

II-V Ωl
QoS ∪Ωl

Rv1 no QoS, Rules-v1, unknown

MC -
Unknown Gate

I Ωl no known, unknown
II-V Ωl

QoS ∪Ωl
Rv1 no known, unknown

i.e. l ∈ {syllables, words}. For the same reason, only LSTM- and MC-based methods
are examined and the dictionary lookup is not included.

The LSTM-based methods are similar to those described in Chapter 6 with the
general architecture as shown in Figure 6.3. They are trained with a batch size of

⌊
120
|K∪V|

⌋
· |K∪V|, (8.3)

where each batch is split into chunks of size |K ∪V| such that several emitters are
represented in each batch and on average, the same amount of data for each emitter
is used during training (see Section 6.2.1). The Adam optimiser is employed with a
learning rate of 0.0002, and training, validation, and test sets for the example emitters
are the same as in the previous chapters. A basic batch size of 120 is chosen because
it is a common factor of the number of simulation runs in each of these sets (see
Chapter 5). By training several networks with different parameters, the number of
layers and number of LSTM cells per layer are found. During training, checkpoints
are created when the current validation loss is lower than all previous values. The final
architecture then corresponds to the checkpoint with the lowest loss on the validation
set. For all methods, also the MC-based approaches, the dictionary only contains the
symbols from the known emitters and consequently also from the known unknown
emitters as the data is generated from the symbols of the known emitters.

128 Chapter 8. Recognition of Unknown Radar Emitters

Table 8.4: Parameters of the LSTM architecture with cross-entropy loss.

Training Case

Symbol Parameter 0 I II III IV V

Syllables
layers 1 1 1 1 2 1
cells/layer 8 16 16 8 32 16

Words
layers 1 1 1 1 1 1
cells/layer 4 8 8 16 16 8

8.3.1 Long Short-Term Memory with Cross-Entropy Loss

The LSTM using the cross-entropy loss defined by (3.68) is considered in two vari-
ants. The first one is equal to the network used for identification developed in
Chapter 6, which corresponds to the training case 0 defined in Table 8.2. In this
case, a threshold δ needs to be applied for rejection. The second one, described by the
training cases I to V, contains an extra “unknown” class in the output. It is trained
with the cross-entropy loss as well, while the data from the known unknown emitters
is labelled to belong to the unknown class. Therefore, the training data consists of
pairs (ω, idx(e)) where ω ∈ Ωl is a symbol at modelling level l and idx(e) is the class
index c of the emitter e ∈ K ∪V. Here, idx(QoS) = 1 and idx(Rules-v1) = 2. In
training case 0 and I, idx(Rules-v2) = 3 and idx(e) = 4 ∀e ∈ V. In the other training
cases, idx(e) = 3 ∀e ∈ V.

Section 6.2.1 presents the architectures and training procedure with different se-
quence lengths employed for the LSTMs in the training case 0. For syllables, the
LSTMscen trained on the complete scenarios is shown to provide the best results and
is hence used here. For words, the LSTMrand, which is trained with random sequence
lengths, achieves the highest accuracies with ideal data. However, it is not as ro-
bust with respect to corrupted data as the LSTMscen. The LSTMrand is nevertheless
employed for words in this chapter because the conducted investigations serve as
a feasibility study for recognising a very similar emitter, like the Rules-v2 radar, as
unknown and therefore require high accuracies with ideal data. Table 8.4 lists the
parameters of the LSTMs in the different training cases, while the parameters for
training case 0 are repeated here for convenience.

8.3.2 Long Short-Term Memory with Entropic Open-Set Loss

The authors of [56] introduce the entropic open-set loss for training a classifier that
can recognise if something is unknown. This new loss function forces the classifier to
uniformly distribute the class probabilities for unknown input such that it is possible

8.3. Approaches 129

Table 8.5: Parameters of the LSTM architecture with entropic open-set loss.

Training Case

Symbol Parameter I II III IV V

Syllables
layers 1 1 1 1 2
cells/layer 16 16 16 16 16

Words
layers 1 1 1 1 1
cells/layer 8 8 32 8 8

to define a threshold on the confidence for rejection. The function of the entropic
open-set loss JE is given by

JE(x) =

{
− log ŷc if class(x) = kc ∈ K,
− 1
|K| ∑kc∈K log ŷc if class(x) ∈ V,

(8.4)

where ŷc is the estimated probability value obtained by the softmax function for
class kc ∈ K as defined in (3.66). For an input x with class(x) = kc ∈ K, the en-
tropic open-set loss is equal to the cross-entropy loss as defined in (3.68). Hence, it is
not trained with training case 0. Table 8.5 lists the parameters of the architecture for
the cases I to V.

8.3.3 Long Short-Term Memory with Deep Open Classification
Loss

Usually, the logits ỹ = (ỹ1, . . . , ỹC) of a neural network are normalised by the softmax
function as defined in (3.66) such that the output can be interpreted as a probability
distribution. By this definition, the network is forced to output a probability greater
than 0 for at least one class. However, if the input does not belong to any of the
known classes, the correct output might be a probability of 0 for all the known classes.
Therefore, [54] replaces the softmax layer by a layer of independent sigmoids σ(ỹc)
∀c ∈ {1, . . . , C} as given by (3.60). In this approach, the probability assigned to
each known class kc is considered individually and therefore, the probabilities of all
classes do not need to sum to 1. The corresponding loss function JDOC for training
the network is defined by

JDOC(x) = ∑
kc∈K

−1kc(class(x)) log(σ(ỹc))− (1− 1kc(class(x))) log(1− σ(ỹc)), (8.5)

where 1a(x) is a variation of the indicator function from (3.79) to determine equality
instead of set membership,

1a(x) =

{
1 if x = a,
0 otherwise.

(8.6)

130 Chapter 8. Recognition of Unknown Radar Emitters

Table 8.6: Parameters of the LSTM architecture with deep open classification loss.

Training Case

Symbol Parameter I II III IV V

Syllables
layers 2 1 2 1 1
cells/layer 64 64 16 64 128

Words
layers 1 1 1 1 1
cells/layer 256 256 512 512 512

This loss function corresponds to the binary cross-entropy loss with the result of the
indicator function 1kc(class(x)) as the label. For an input x with class(x) ∈ V, the
desired output of the network consists of all 0. To reject an input as unknown, a
threshold needs to be defined.

Unfortunately, the LSTMs are hard to train using the deep open classification loss
in some cases, as will be seen as well in the evaluation below. For example, the best
validation loss for training case I with syllables was achieved directly after random
initialisation of the weights and diverged afterwards. No architecture could be found
that solved the problem. Moreover, the mean probability assigned to the correct class
is below 0.1 during testing. Table 8.6 provides details on the number of layers and
number of LSTM cells per layer for each training case. The networks are much larger
than with the other architectures. Also the LSTMs with deep open classification loss
are not trained with case 0 since it is specially designed to handle unknown input and
the experience with the complicated training suggests that it would not provide better
results than the LSTMs with cross-entropy loss for data without unknown emitters.

8.3.4 Long Short-Term Memory as Unknown Gate

Adding an extra output class might decrease the accuracy on the known emitters.
Therefore, a classifier that only distinguishes between known and unknown is trained.

Table 8.7: Parameters of the LSTM architecture employed as unknown gate.

Training Case

Symbol Parameter I II III IV V

Syllables
layers 1 1 1 1 1
cells/layer 16 16 8 16 16

Words
layers 1 1 1 1 1
cells/layer 4 8 16 32 8

8.3. Approaches 131

It can act as a gate that only passes the known data to the classifier that distinguishes
between different known classes. The LSTM-based unknown gate is trained with the
cross-entropy loss, while the training data consists of pairs (ω, idx(e)) with idx(e) = 1
if e ∈ K and idx(e) = 2 if e ∈ V. It is only trained with the cases I to V since case 0
does not contain any known unknown emitters and hence idx(e) = 1 for the complete
training data. Table 8.7 provides the number of layers and the number of LSTM cells
per layer in the architecture of the unknown gate.

8.3.5 Markov Chain

Like in the previous chapters, an MC-based approach is implemented in comparison
to the neural networks. The basic principle is the same as described in Section 6.2.2
and the MC trained with case 0 is equal to the approach from Section 6.2.2. In this
training case, a threshold δ is applied to reject an input as unknown. For the other
training cases, the output classes of the MCs are extended to contain an “unknown”
class, like for the LSTMs with cross-entropy loss. For every known emitter e ∈ K, the
transition matrix P̂e(ωj|ωi) that describes the probability that symbol ωj is the next
symbol having observed ωi, is estimated as defined in (5.3). Based on this matrix,
the probability that the emitter generated the input sequence ω = ω1ω2 . . . ω|ω| is
determined by Bayes’ rule, as given in (6.3) and repeated here for convenience,

P̂(ei|ω) =
P̂(ω|ei) · P̂(ei)

P̂(ω)
. (8.7)

The probability of the unknown class is obtained in the same way,

P̂(∅|ω) =
P̂(ω|∅) · P̂(∅)

P̂(ω)
. (8.8)

Here, P̂(ω|∅) needs to be estimated based on the data from the known unknown
emitters. A common symbol transition matrix is learnt for the known unknown emit-
ters because calculating ∑e∈V P̂(ω|e) to obtain P̂(ω|∅) would result in a probability
of 0 for most of the unknown unknown emitters since they did not actually gener-
ate the data. With a common transition matrix, the data of the unknown unknown
emitter does not need to specifically match one of the known unknown emitters, but
only the common distribution, which is what is desired. The different training cases
hence influence the estimated unknown distribution. The probabilities P̂(∅) and P̂(e)
for e ∈ K are set to 1

|K|+1 . Note that obtaining P̂(∅|ω) by 1− ∑e∈K P̂(e|ω) without

estimating P̂(ω|∅) is not possible since P̂(ω) is computed by marginalisation

P̂(ω) = P̂(ω|∅) + ∑
e∈K

P̂(ω|e). (8.9)

8.3.6 Markov Chain as Unknown Gate

Analogous to the LSTM employed as an unknown gate, an MC is learnt for the same
purpose. The probability for the unknown class is determined as described above,

132 Chapter 8. Recognition of Unknown Radar Emitters

while the probability for the known class is calculated by summing the probabilities
of the known emitters,

P̂(known|ω) = ∑
e∈K

P̂(e|ω). (8.10)

Therefore, the MC is basically identical to the one described in the section before,
except for the summation of the known emitters’ probabilities.

8.4 Experimental Results

The classifiers are tested with several combinations of known unknown and un-
known unknown emitters. The test cases 1a to 5a for the classifiers trained with
the cases 0 and I are displayed in Table 8.8 and the test cases 1b to 5b for the other
classifiers are given in Table 8.9. The difference is in the role of the Rules-v2 radar,
which belongs to the known classes in the test cases ‘a’ and to the unknown unknown
emitters in the test cases ‘b’. Test case 2a corresponds to the evaluation performed
in Chapter 6 and is included to see whether training with an extra unknown class
decreases the performance in a scenario without unknown emitters. The only known
unknown emitter contained in the test cases is the sequence consisting only of the
UNK symbol since this is expected to actually appear during deployment of the sys-
tem, in contrast to the other known unknown emitters. In addition to the Rules-v2
radar, four other unknown unknown emitters are employed, which are artificially

Table 8.8: Test cases for classifiers
trained with cases 0 or I.

Test Case

Emitter 1a 2a 3a 4a 5a

kn
ow

n

QoS x x x x x

Rules-v1 x x x x x

Rules-v2 x x x x x

kn
ow

n
un

k UNKs x x x x

un
kn

ow
n

un
kn

ow
n

Unk-1 x x

Unk-2 x x

Unk-3 x x

Unk-4 x x

Table 8.9: Test cases for classifiers
trained with cases II to V.

Test Case

Emitter 1b 2b 3b 4b 5b

kn
ow

n QoS x x x x x

Rules-v1 x x x x x

kn
ow

n
un

k UNKs x x x x

un
kn

ow
n

un
kn

ow
n

Rules-v2 x x x x x

Unk-1 x x

Unk-2 x x

Unk-3 x x

Unk-4 x x

8.4. Experimental Results 133

generated. They make use of known and unknown syllables and words, while emit-
ters that employ more than one symbol randomly switch between them. The four
emitters are defined by:

• Unk-1: One known word consisting of one known syllable, w26101507 = (s40338,
s40338, s40338, s40338).

• Unk-2: One known word consisting of eight known syllables, w59399 = (s113,
s354, s595, s836, s1077, s1318, s1559, s1800).

• Unk-3: Two known words w24501141 = (s37607, s37607, s37607, s37607) and w6749 =
(s1, s242, s483) consisting of one or three known syllables and one unknown word
wunk1 = sunk1 consisting of one unknown syllable.

• Unk-4: One known word w24901379 = (s38290, s38290, s38290, s38290) consisting of
one known syllable and two unknown words wunk2 = (s1, s499, s772), wunk3 =
(s346, s595, s828, s1559, s1792) consisting of three or five known syllables.

Note that the Unk-1 emitter makes use of the most common word in the data of the
known radars, and hence their syllables.

The methods that need a threshold for accepting the current input (see Table 8.3)
are evaluated with the values δ ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The minimum is
chosen to be 0.4 as with three known emitters, a lower confidence value comes close
to random guessing. For the methods with an extra unknown class in the output, the
threshold can be interpreted as being equal to 0.0. Therefore, each approach exists in
several configurations, which consist of a training case and an acceptance threshold.
As it is done in Chapter 6, the methods are tested at different sequence lengths in
the set S = {1, 10, 50, 100, 200, 400, 600, 800, 1000, 1200, 1400}. Two different
evaluation metrics are employed because in several test cases there are more unknown
emitters than known ones, resulting in a high overall accuracy by rejecting every
input as unknown. The metrics are called the distinction and the identification accuracy.
The distinction accuracy accdist is defined as the mean accuracy of distinguishing
between known and unknown, while ignoring confusions between known emitters.
It is composed of two parts, which are called the acceptance accuracy accacpt and the
rejection accuracy accrej, with

accacpt(s) =
1
|K| ∑

ei∈K

∑
ej∈K

acc(Ŷei
s , Yej , k), k = 1, (8.11)

and

accrej(s) =
1

|V∪U| ∑
e∈V∪U

acc(Ŷe
s , Yunk, k), k = 1. (8.12)

Here, Ŷe
s corresponds to the output of the classifier for the data of emitter e after a

sequence of s symbols and Ye is the set of labels containing only idx(e), while Yunk

134 Chapter 8. Recognition of Unknown Radar Emitters

is the set of labels only containing the index of the unknown class. The top k accur-
acy acc(Ŷ, Y, k) is given by (3.78). The distinction accuracy is then defined as

accdist(s) =
1
2
(
accacpt(s) + accrej(s)

)
. (8.13)

The identification accuracy accid is given by the mean classification accuracy for the
emitters in the known classes,

accid(s) =
1
|K| ∑

e∈K

acc(Ŷe
s , Ye, k), k = 1. (8.14)

8.4.1 Evaluation Under Ideal Conditions

Distinction Accuracy. Table 8.10 provides an overview of each method’s configura-
tions that achieve the highest mean distinction accuracy. These are obtained by aver-
aging the accuracies for each configuration over the test cases 1a to 5a and 1b to 5b,
respectively, and choosing the configuration with the best performance. The sequence
lengths of 1, 600, and 1400 symbols are exemplarily shown. For most of the methods
using a threshold, a higher value of δ = 0.5 is beneficial to distinguish between known
and unknown input (see also Figure 8.1). The majority of the approaches achieves the
best results using the same configuration with the sequence lengths of 600 and 1400
symbols. Only in two cases the best configurations are different for these sequence

Table 8.10: Configurations (training case, δ) that achieve the highest distinction ac-
curacies, averaged over the test cases 1a to 5a and 1b to 5b, respectively.

Syllable Word
Sequence length Sequence length

Method 1 600 1400 1 600 1400

Te
st

ca
se

s
‘a

’

LS
TM

Cross-Entropy (I, 0.0) (0, 0.5) (0, 0.5) (I, 0.0) (I, 0.0) (I, 0.0)
Entropic Open Set (I, 0.5) (I, 0.5) (I, 0.5) (I, 0.5) (I, 0.5) (I, 0.5)
Deep Open Class. (I, 0.4) (I, 0.4) (I, 0.4) (I, 0.5) (I, 0.5) (I, 0.4)
Unknown Gate (I, 0.0) (I, 0.0) (I, 0.0) (I, 0.0) (I, 0.0) (I, 0.0)

M
C MC (0, 0.4) (0, 0.4) (0, 0.5) (0, 0.4) (0, 0.5) (0, 0.5)

Unknown Gate (I, 0.0) (I, 0.0) (I, 0.0) (I, 0.0) (I, 0.0) (I, 0.0)

Te
st

ca
se

s
‘b

’

LS
TM

Cross-Entropy (IV, 0.0) (IV, 0.0) (IV, 0.0) (II, 0.0) (III, 0.0) (III, 0.0)
Entropic Open Set (IV, 0.6) (IV, 0.8) (IV, 0.7) (II, 0.6) (IV, 0.8) (IV, 0.8)
Deep Open Class. (IV, 0.4) (IV, 0.4) (IV, 0.4) (II, 0.4) (IV, 0.6) (II, 0.5)
Unknown Gate (II, 0.0) (IV, 0.0) (IV, 0.0) (V, 0.0) (V, 0.0) (V, 0.0)

M
C MC (III, 0.0) (IV, 0.0) (IV, 0.0) (II, 0.0) (IV, 0.0) (IV, 0.0)

Unknown Gate (III, 0.0) (IV, 0.0) (IV, 0.0) (II, 0.0) (IV, 0.0) (IV, 0.0)

8.4. Experimental Results 135

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold δ

0

10

20

30

40

50

60

70

80

90

100

M
ea

n
di
st
in
ct
io
n
ac

cu
ra
cy

[%
]

Syllable

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold δ

0

10

20

30

40

50

60

70

80

90

100

M
ea

n
di
st
in
ct
io
n
ac

cu
ra
cy

[%
]

Word

Test cases ’a’
Test cases ’b’
LSTM - Cross-Entropy
LSTM - Entropic Open Set
LSTM - Deep Open Class.
MC

Figure 8.1: Dependency of the distinction accuracy on the threshold at a sequence
length of 1400 symbols [65].

lengths, both for syllables and words. For syllables, this concerns the MC with test
cases ‘a’ and the LSTM with entropic open-set loss with test cases ‘b’. For words, it
applies to the best configurations of the LSTM with deep open classification loss, both
in cases ‘a’ and ‘b’. For syllables, the best configuration for a sequence length of one
symbol differs from the configuration with 600 symbols in five out of twelve cases.
For words, it is different in six scenarios, which corresponds to 50 % of the cases. The
LSTM with cross-entropy loss and the MC are the only methods that are trained with
case 0. For both, the best results in the test cases ‘a’ are most often obtained with
training case 0 when using syllables. For words, however, the training case I works
best for the LSTM with cross-entropy loss but not for the MC.

For the test cases 1b to 5b, the highest distinction accuracies with syllables are
most often achieved with training case IV. This shows that to distinguish between
known and unknown, training with all known unknown emitters provides an ad-
vantage. The results are not as clear for words as for syllables. However, four of the
six methods provide the best results with training case IV at a sequence length of 600
words and three methods at 1400 words. The LSTM with cross-entropy loss achieves
the highest accuracies with training case III for words, which only contains the altered
version of the Rules-v1 and the QoS radar as known unknowns, but not the UNKs or
random sequences. Still, it is able to reject the UNKs sequence as shown in Figure 8.10
below. The LSTM trained with entropic open-set loss applies high thresholds of up
to 0.8. The relation between threshold and distinction accuracy is shown in Figure 8.1
for a sequence length of 1400 symbols. Only the results of the methods with a best
configuration that employs a threshold are depicted for the training case of that best
configuration. As is seen, the variation of the accuracy with respect to the selected
threshold depends very much on the method.

136 Chapter 8. Recognition of Unknown Radar Emitters

LSTM -
Cross-
Entropy

LSTM -
Entropic
Open Set

LSTM -
Deep Open

Class.

LSTM -
Unknown
Gate

MC MC -
Unknown
Gate

0

20

40

60

80

100

M
ea

n
di
st
in
ct
io
n
ac
cu
ra
cy

[%
]

58

70 71

60

72 72

55
64 65

58

74 74 72
77 77

71 73 73

Syllable

Seq. length
1
600
1400

LSTM -
Cross-
Entropy

LSTM -
Entropic
Open Set

LSTM -
Deep Open

Class.

LSTM -
Unknown
Gate

MC MC -
Unknown
Gate

0

20

40

60

80

100

M
ea

n
di
st
in
ct
io
n
ac
cu
ra
cy

[%
]

66

83 84

70

81 81

64

76 76
67

79 79 77 81
81

76 78 79

Word

Seq. length
1
600
1400

Figure 8.2: Mean distinction accuracies of the best configurations [65].

Figure 8.2 presents the mean distinction accuracies of the best configurations, av-
eraged over all test cases 1a to 5a and 1b to 5b. As also observed in Chapter 6, the MC
outperforms all other methods for syllables, especially for a sequence length of only
one symbol. However, the LSTM-based unknown gate provides higher accuracies
than the MC-based unknown gate with longer sequence lengths. For words, the MC
provides the highest accuracies with only one symbol, but the MC-based unknown
gate comes very close. With increasing sequence lengths, the LSTM with cross-entropy
loss is the best method on average. The LSTM with entropic open-set loss and the MC
achieve about the same results. Also the LSTM-based and the MC-based unknown
gate provide very similar accuracies. The LSTM with deep open classification loss
achieves slightly lower accuracies than the other methods. The values for the distinc-
tion accuracies per test case are provided in Tables A.7 to A.10 of Appendix A.3.

Overall, the distinction accuracies are higher when using words. The reason is
that the unknown emitters have less words than syllables in common with the known
emitters, which shows the benefit of the hierarchical emission model.

8.4. Experimental Results 137

Table 8.11: Configurations (training case, δ) that achieve the highest identification
accuracies, averaged over the test cases 1a to 5a and 1b to 5b, respectively.

Syllable Word
Sequence length Sequence length

Method 1 600 1400 1 600 1400

Te
st

ca
se

s
‘a

’

LS
T

M

Cross-Entropy (0, 0.4) (0, 0.4) (0, 0.4) (0, 0.4) (0, 0.4) (0, 0.4)
Entropic Open Set (I, 0.4) (I, 0.4) (I, 0.4) (I, 0.4) (I, 0.4) (I, 0.4)
Deep Open Class. (I, 0.4) (I, 0.4) (I, 0.4) (I, 0.4) (I, 0.4) (I, 0.4)

MC (0, 0.6) (I, 0.0) (I, 0.0) (0, 0.4) (I, 0.0) (I, 0.0)

Te
st

ca
se

s
‘b

’

LS
TM

Cross-Entropy (III, 0.0) (III, 0.0) (III, 0.0) (II, 0.0) (II, 0.0) (II, 0.0)
Entropic Open Set (II, 0.4) (II, 0.4) (II, 0.4) (II, 0.4) (IV, 0.4) (IV, 0.4)
Deep Open Class. (II, 0.4) (IV, 0.4) (IV, 0.4) (II, 0.4) (II, 0.4) (II, 0.4)

MC (II, 0.0) (II, 0.0) (II, 0.0) (II, 0.0) (II, 0.0) (II, 0.0)

LSTM -
Cross-Entropy

MC
0

20

40

60

80

100

M
ea

n
id
en

tifi
ca

tio
n
ac

cu
ra
cy

[%
]

70

13

91 91

Syllable

Training Case
0
I

LSTM -
Cross-Entropy

MC
0

20

40

60

80

100

M
ea

n
id
en

tifi
ca
tio

n
ac
cu

ra
cy

[%
]

96

55

91 92

Word

Training Case
0
I

Figure 8.3: Comparison of the mean identification accuracies in the test cases ‘a’
with training case 0 or I at a sequence length of 1400 symbols [65].

Identification Accuracy. Table 8.11 depicts the configurations that provide the best
identification accuracies. In contrast to the distinction accuracy for syllables, the
identification accuracy is highest with training cases that do not contain all known
unknown emitters in the test cases ‘b’ for most of the methods. Especially for the
LSTM with cross-entropy loss, the training case 0, which is the conventional training,
provides the highest identification accuracies. A comparison between the accuracies
of the training cases 0 and I is shown in Figure 8.3. Note that these training cases are
only employed in the test cases ‘a’ and therefore, the results in this figure are different
from the mean over all test cases ‘a’ and ‘b’ presented in Figure 8.5 below.

138 Chapter 8. Recognition of Unknown Radar Emitters

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold δ

0

10

20

30

40

50

60

70

80

90

100

M
ea

n
id
en

tifi
ca

tio
n
ac

cu
ra
cy

[%
]

Syllable

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Threshold δ

0

10

20

30

40

50

60

70

80

90

100

M
ea

n
id
en

tifi
ca

tio
n
ac

cu
ra
cy

[%
]

Word

Test cases ’a’
Test cases ’b’
LSTM - Cross-Entropy
LSTM - Entropic Open Set
LSTM - Deep Open Class.

Figure 8.4: Dependency of the identification accuracy on the threshold at a sequence
length of 1400 symbols [65].

LSTM -
Cross-
Entropy

LSTM -
Entropic
Open Set

LSTM -
Deep Open

Class.

MC
0

20

40

60

80

100

M
ea

n
id
en

tifi
ca

tio
n
ac

cu
ra
cy

[%
]

42

85 85

42

79 80

32 35
37

79

94 95

Syllable

Seq. length
1
600
1400

LSTM -
Cross-
Entropy

LSTM -
Entropic
Open Set

LSTM -
Deep Open

Class.

MC
0

20

40

60

80

100

M
ea

n
id
en

tifi
ca
tio

n
ac
cu

ra
cy

[%
]

47

93 95

47

81 81

41
46 46

79

95 95

Word

Seq. length
1
600
1400

Figure 8.5: Mean identification accuracies of the best configurations [65].

With only one exception, all methods that apply a threshold for rejection use
the smallest value of 0.4 for a high identification accuracy, which reduces the false
rejection rate. Figure 8.4 shows the dependency of the identification accuracy on the
threshold at a sequence length of 1400 symbols. The training case that is part of the
best configuration is depicted for each method that applies a threshold. Most of the
methods reject every input with δ = 1.0. Especially the LSTM with entropic open-set
loss shows a distinctive behaviour for syllables in the test cases ‘b’. Both the QoS and

8.4. Experimental Results 139

the Rules-v1 radar are correctly identified with a confidence of at least 0.9, but they
are rejected as unknown with a threshold of 1.0.

For the identification accuracy, the MC achieves much higher results than all other
approaches (see Figure 8.5) when considering syllables. The difference is even bigger
than observed for the distinction accuracy. For words, the LSTM with cross-entropy
loss is the only method that achieves about the same accuracy as the MC at a se-
quence length of 1400 words. In the other cases, the MC significantly outperforms all
other methods, especially for a sequence length of only one symbol. This confirms
the results from Chapter 6. Both methods clearly outperform the other two LSTM-
based approaches. The LSTM with deep open classification loss achieves much lower
accuracies than the other methods. The values for the identification accuracies per
test case are provided in Tables A.11 to A.14 of Appendix A.3.

Rejection and Acceptance Accuracy. A high rejection accuracy might be accompan-
ied by a low acceptance accuracy and vice versa. Figure 8.6 depicts these accuracies
for each method and each test case at a sequence length of 1400 symbols. In an ELINT
application, there is no need for a short reaction time and hence, longer sequences can
be processed before making a decision. The exact values are provided in Tables A.7
to A.10 of Appendix A.3. Test case 2a does not contain any unknown emitters, there-
fore its rejection accuracy is set to 100 %. It is clearly seen from the figure that most
of the methods provide an acceptance accuracy of more than 90 % for syllables and
more than 80 % for words, while the rejection accuracy varies greatly between the test
cases. The LSTM with deep open classification loss, however, tends to reject nearly
every input sequence for the test cases ‘a’ when using syllables and also achieves a
lower acceptance accuracy than the other methods in the test cases ‘b’. Nevertheless,

0 10 20 30 40 50 60 70 80 90 100
Rejection accuracy [%]

0
10
20
30
40
50
60
70
80
90

100

Ac
ce

pt
an

ce
ac

cu
ra
cy

[%
]

Syllable

0 10 20 30 40 50 60 70 80 90 100
Rejection accuracy [%]

0
10
20
30
40
50
60
70
80
90

100

Ac
ce
pt
an

ce
ac
cu
ra
cy

[%
]

Word

Test cases ’a’
Test cases ’b’
LSTM - Cross-Entropy
LSTM - Entropic Open Set
LSTM - Deep Open Classification
LSTM - Unknown Gate
MC
MC - Unknown Gate

Figure 8.6: Rejection and acceptance accuracies for the different test cases at a se-
quence length of 1400 symbols [65].

140 Chapter 8. Recognition of Unknown Radar Emitters

it achieves much higher rejection accuracies for syllables. As some of the unknown
emitters are very similar to the known ones, correctly rejecting the unknown emit-
ters also results in a false rejection of some of the known sequences. The LSTM with
entropic open-set loss applies a high threshold of 0.8 in the test cases ‘b’ for words,
which leads to a lower acceptance accuracy. However, it is seen that more than 80 %
of the input sequences are accepted with a value greater or equal 0.8. Overall, higher
rejection accuracies are achieved with words than with syllables. For the majority of
the test cases and methods, the rejection accuracies are above 25 % with words, while
the majority lies between 10 % to 60 % for syllables.

1a 3a 4a 5a
0

25

50

75

100

Re
je
ct
io
n
ac

cu
ra
cy

[%
]

97

UNKs

3a 5a
0

25

50

75

100

Re
je
ct
io
n
ac

cu
ra
cy

[%
]

0 0

94

0 0 0 3 0 0 0 0

Unk-1

3a 5a
0

25

50

75

100

Re
je
ct
io
n
ac

cu
ra
cy

[%
]

0 0

94

0 0 0 0 0 0 0 0

Unk-2

4a 5a
0

25

50

75

100

Re
je
ct
io
n
ac

cu
ra
cy

[%
]

37
23

12
4

36
25

13
4

Unk-3

4a 5a
0

25

50

75

100

Re
je
ct
io
n
ac

cu
ra
cy

[%
]

7
0

98

0

77

0
8

0 0

77

0

Unk-4

1a 3a 4a 5a
0

20

40

60

80

100

Re
je

ct
io

n
ac

cu
ra

cy
 [%

] 97
UNKs

LSTM - Cross-Entropy
LSTM - Entropic Open Set

LSTM - Deep Open Class.
LSTM - Unknown Gate

MC
MC - Unknown Gate

Figure 8.7: Rejection accuracies for the unknown emitters in the test cases ‘a’ at a
sequence length of 1400 syllables [65].

8.4. Experimental Results 141

1b 3b 4b 5b
0

25

50

75

100

Re
je
ct
io
n
ac

cu
ra
cy

[%
]

96 96 97 98

UNKs

3b 5b
0

25

50

75

100

Re
je
ct
io
n
ac

cu
ra
cy

[%
]

11
0

68

0 0 0 0 0

72

0 0 0

Unk-1

3b 5b
0

25

50

75

100

Re
je
ct
io
n
ac

cu
ra
cy

[%
]

78

0

43

21

0 0
14

0

65

33

0 0

Unk-2

4b 5b
0

25

50

75

100

Re
je
ct
io
n
ac

cu
ra
cy

[%
]

42

93

5652
38

9599

5652

Unk-3

4b 5b
0

25

50

75

100

Re
je
ct
io
n
ac

cu
ra
cy

[%
]

2

20

96

34
46

31

0

18

91

4446
31

Unk-4

1a 3a 4a 5a
0

20

40

60

80

100

Re
je

ct
io

n
ac

cu
ra

cy
 [%

] 97
UNKs

LSTM - Cross-Entropy
LSTM - Entropic Open Set

LSTM - Deep Open Class.
LSTM - Unknown Gate

MC
MC - Unknown Gate

Figure 8.8: Rejection accuracies for the emitters UNKs, Unk-1, Unk-2, Unk-3, and
Unk-4 in the test cases ‘b’ at a sequence length of 1400 syllables [65].

Rejection Accuracies for the Unknown Emitters. Figure 8.7 shows the rejection ac-
curacies with syllables individually for each unknown emitter in the test cases ‘a’ and
Figure 8.8 provides the same metrics for the test cases ‘b’. This excludes the Rules-v2
radar, for which the results are shown separately in Figure 8.11 (top). The figures
consider a sequence length of 1400 syllables and the configurations that work best
for the distinction accuracy. The bars without a label represent an accuracy of 100 %.
All methods reliably reject the UNKs sequences with at least 96 % accuracy in all test
cases. As the LSTM with deep open classification loss classifies nearly every input
sequence as unknown in the test cases ‘a’, it provides a high rejection accuracy for
all unknown emitters. For the Unk-3 and the Unk-4 emitter, the MC achieves high
accuracies as well. The Unk-1 and the Unk-2 emitter, however, are not rejected. Both

142 Chapter 8. Recognition of Unknown Radar Emitters

1a 3a 4a 5a
0

25

50

75

100

Re
je
ct
io
n
ac

cu
ra
cy

[%
] UNKs

3a 5a
0

25

50

75

100

Re
je
ct
io
n
ac

cu
ra
cy

[%
]

0 0 0 0 0 0 0 0 0 0 0 0

Unk-1

3a 5a
0

25

50

75

100

Re
je
ct
io
n
ac

cu
ra
cy

[%
]

0 0 0 0 0 0 0 0 0 0 0 0

Unk-2

4a 5a
0

25

50

75

100

Re
je
ct
io
n
ac

cu
ra
cy

[%
]

71

99

71

8889

46

74
60

9189

46

Unk-3

4a 5a
0

25

50

75

100

Re
je
ct
io
n
ac

cu
ra
cy

[%
]

56

88

51

82
96

42
58

90

58

84
96

42

Unk-4

1a 3a 4a 5a
0

20

40

60

80

100

Re
je

ct
io

n
ac

cu
ra

cy
 [%

] 97
UNKs

LSTM - Cross-Entropy
LSTM - Entropic Open Set

LSTM - Deep Open Class.
LSTM - Unknown Gate

MC
MC - Unknown Gate

Figure 8.9: Rejection accuracies for the unknown emitters in the test cases ‘a’ at a
sequence length of 1400 words [65].

make only use of known syllables, while the Unk-3 and the Unk-4 emitter also emit
unknown syllables, which makes the rejection easier.

As seen in Figure 8.8, the rejection accuracies are much higher in the test cases ‘b’
than in the cases ‘a’. Only the accuracies of the MC significantly decrease. The
Rules-v2 emitter is considered as an unknown unknown here, which helps the LSTM-
based approaches to distinguish known from unknown. The rejection accuracies for
the Rules-v2 radar, however, are low (see Figure 8.11, top). Only the LSTM with deep
open classification loss achieves accuracies of more than 40 %, while wrongly rejecting
at least 25 % of the known sequences.

Figures 8.9 and 8.10 provide the individual rejection accuracies with words of the
emitters UNKs, Unk-1, Unk-2, Unk-3, and Unk-4 per method for the test cases ‘a’

8.4. Experimental Results 143

1b 3b 4b 5b
0

25

50

75

100

Re
je
ct
io
n
ac

cu
ra
cy

[%
] UNKs

3b 5b
0

25

50

75

100

Re
je
ct
io
n
ac

cu
ra
cy

[%
]

0 0 0 0 0 0 0 0 0 0 0 0

Unk-1

3b 5b
0

25

50

75

100

Re
je
ct
io
n
ac

cu
ra
cy

[%
]

34

0 0 5 8

66

0 0 6 11

Unk-2

4b 5b
0

25

50

75

100

Re
je
ct
io
n
ac

cu
ra
cy

[%
]

73

9999

74

9998

Unk-3

4b 5b
0

25

50

75

100

Re
je
ct
io
n
ac

cu
ra
cy

[%
]

50 46

Unk-4

1a 3a 4a 5a
0

20

40

60

80

100

Re
je

ct
io

n
ac

cu
ra

cy
 [%

] 97
UNKs

LSTM - Cross-Entropy
LSTM - Entropic Open Set

LSTM - Deep Open Class.
LSTM - Unknown Gate

MC
MC - Unknown Gate

Figure 8.10: Rejection accuracies for the emitters UNKs, Unk-1, Unk-2, Unk-3, and
Unk-4 in the test cases ‘b’ at a sequence length of 1400 words [65].

and ‘b’, respectively. The UNKs sequences are rejected with an accuracy of 100 % by
all methods. Also when using words, the Unk-1 and Unk-2 emitters are not rejected
in the test cases ‘a’. In the cases ‘b’, the LSTM with entropic open-set loss reliably
rejects the Unk-2 emitter and the LSTM with cross-entropy loss also achieves higher
accuracies than in the test cases ‘a’. All methods are able to classify the Unk-3 and
the Unk-4 emitters as unknown with more than 40 % accuracy in all test cases. The
Unk-1 and Unk-2 emitters make use of known words only, while the Unk-3 and the
Unk-4 emitters also use some unknown words.

Figure 8.11 provides a comparison of the rejection accuracies for the Rules-v2
radar with syllables or words. It is observed that words are much better suited to
reject this emitter than syllables. This is also true for the other unknown unknown

144 Chapter 8. Recognition of Unknown Radar Emitters

1b 2b 3b 4b 5b
0

25

50

75

100

Re
je
ct
io
n
ac

cu
ra
cy

[%
]

1 2

54

0
1414

0 2

41

1
1414

3 1

53

0
1414

1 2

67

1
1414

0 2

59

1
1414

Syllable, Rules-v2

1b 2b 3b 4b 5b
0

25

50

75

100

Re
je
ct
io
n
ac

cu
ra
cy

[%
]

68

39

1 1

2927

67

39

1 1

2827

70

39

1 1

2927

66

39

1 2

2827

68

41

1 2

2827

Word, Rules-v2

1a 3a 4a 5a
0

20

40

60

80

100

Re
je

ct
io

n
ac

cu
ra

cy
 [%

] 97
UNKs

LSTM - Cross-Entropy
LSTM - Entropic Open Set

LSTM - Deep Open Class.
LSTM - Unknown Gate

MC
MC - Unknown Gate

Figure 8.11: Rejection accuracies for the Rules-v2 emitter at a sequence length
of 1400 words or syllables [65].

radars. Although the Rules-v2 radar is very similar to the known emitters, it is rejected
with an accuracy of about 70 % by the LSTM with cross-entropy loss, which is enough
to recognise that there is something unknown in the intercepted data. With syllables,
the best rejection accuracy is 3 % for this method. One reason for this higher accuracy
is that the Rules-v2 radar has less words than syllables in common with the other
known emitters and therefore more words are mapped to UNK. This highlights again
the benefits of the hierarchical structure of the emission model.

The overall results show that the rejection accuracies of the LSTM-based methods
for the unknown emitters depend on the test case. In contrast, the performance of
the MC-based approaches is stable except for small statistical deviations due to some
randomness in the test case generation. As an MC does not have a memory, processing
the data of other emitters in the scenario does not influence the classification decision.
For the LSTMs, however, also the past sequences affect their internal state.

Impact of the Configuration. The results discussed above represent the accuracies
that can be achieved if the best configuration for the specific evaluation metric is
chosen for each method. Table 8.12 provides “evaluation matrices” for syllables that
depict the mean accuracies obtained by different combinations of configuration and
evaluation metric. The row of each matrix represents the configuration that works

8.4. Experimental Results 145

Table 8.12: Evaluation matrices at a sequence length of 1400 syllables. The rows
represent the configuration that works best for the specified metric and
the columns denote the metric that it is evaluated with. All values in [%].

(a) LSTM with cross-entropy loss.

Evaluation metric

accdist accid mean

Be
st

co
nfi

g. accdist 71.14 75.34 73.24

accid 56.25 84.88 70.56

mean 64.35 82.80 73.57

(b) LSTM with entropic open-set loss.

Evaluation metric

accdist accid mean

Be
st

co
nfi

g. accdist 72.11 76.07 74.09

accid 55.86 79.86 67.86

mean 71.46 79.74 75.60

(c) LSTM with deep open classification loss.

Evaluation metric

accdist accid mean

Be
st

co
nfi

g. accdist 65.04 37.49 51.27

accid 65.04 37.49 51.27

mean 65.04 37.49 51.27

(d) MC.

Evaluation metric

accdist accid mean

Be
st

co
nfi

g. accdist 76.94 93.31 85.13

accid 71.80 95.24 83.52

mean 76.86 94.53 85.70

best for the specified metric while the columns denote the metric that the config-
uration is evaluated with. For example, the row “accdist” in combination with the
column “accid” provides the mean identification accuracy of the configuration that
is best for the distinction accuracy. The values on the diagonal are the accuracies of
“matching” configuration and evaluation metric. The accuracies are displayed for a
sequence length of 1400 syllables and averaged over all test cases ‘a’ and ‘b’. The label
“mean” refers to the mean of the identification and the distinction accuracy. The cor-
responding best configurations are given in Table 8.13. For the LSTM with deep open
classification loss, whose results are shown in Table 8.12c, the best configuration is
always the same and hence, the results do not change when choosing a different eval-
uation metric. For the other LSTM-based methods, the distinction accuracy decreases
especially when the configuration that is best for the identification accuracy is chosen.
By selecting a configuration, a decision between true and false rejection rate needs to
be made. As new information is supposed to be collected in an ELINT application, it
is most probably better to reject some of the known sequences than to classify some-
thing unknown as known. However, if too many of the known sequences are rejected,
the amount of required time-consuming manual analysis increases.

146 Chapter 8. Recognition of Unknown Radar Emitters

Table 8.13: Configurations (training case, δ) that achieve the highest mean of dis-
tinction and identification accuracy, averaged over the test cases 1a to 5a
and 1b to 5b, respectively.

Syllable Word
Sequence length Sequence length

Method 1 600 1400 1 600 1400

Te
st

ca
se

s
‘a

’

LS
TM

Cross-Entropy (I, 0.0) (0, 0.5) (0, 0.5) (I, 0.0) (0, 0.5) (0, 0.5)
Entropic Open Set (I, 0.5) (I, 0.5) (I, 0.5) (I, 0.4) (I, 0.5) (I, 0.5)
Deep Open Class. (I, 0.4) (I, 0.4) (I, 0.4) (I, 0.4) (I, 0.4) (I, 0.4)

MC (0, 0.4) (0, 0.5) (0, 0.5) (0, 0.4) (0, 0.5) (0, 0.5)

Te
st

ca
se

s
‘b

’

LS
TM

Cross-Entropy (II, 0.0) (III, 0.0) (III, 0.0) (II, 0.0) (III, 0.0) (III, 0.0)
Entropic Open Set (IV, 0.6) (II, 0.9) (II, 0.9) (II, 0.6) (IV, 0.6) (IV, 0.7)
Deep Open Class. (II, 0.4) (IV, 0.4) (IV, 0.4) (II, 0.4) (II, 0.9) (II, 0.5)

MC (II, 0.0) (IV, 0.0) (IV, 0.0) (II, 0.0) (IV, 0.0) (IV, 0.0)

Table 8.14: Evaluation matrices at a sequence length of 1400 words. The rows rep-
resent the configuration that works best for the specified metric and the
columns denote the metric that it is evaluated with. All values in [%].

(a) LSTM with cross-entropy loss.

Evaluation metric

accdist accid mean

Be
st

co
nfi

g. accdist 83.96 73.84 78.90

accid 64.41 95.15 79.78

mean 82.30 94.07 88.19

(b) LSTM with entropic open-set loss.

Evaluation metric

accdist accid mean

Be
st

co
nfi

g. accdist 80.85 73.42 77.14

accid 66.15 81.01 73.58

mean 79.07 79.11 79.09

(c) LSTM with deep open classification loss.

Evaluation metric

accdist accid mean

Be
st

co
nfi

g. accdist 75.75 45.57 60.66

accid 75.73 45.57 60.65

mean 75.75 45.57 60.66

(d) MC.

Evaluation metric

accdist accid mean

Be
st

co
nfi

g. accdist 80.92 93.55 87.24

accid 77.03 95.36 86.19

mean 80.92 93.55 87.24

8.4. Experimental Results 147

Table 8.14 shows the evaluation matrices with different metrics at a sequence
length of 1400 words. Similar patterns are observed as for syllables. The config-
uration that is best for the identification accuracy provides much worse results for
the distinction accuracy for the LSTMs with cross-entropy and entropic open-set loss.
However, the configuration optimised for the average of both metrics seems to be a
good compromise if no hierarchical combination of an unknown gate and a classifier
for the known classes is desired. For the MC, the decrease of the distinction accuracy
is less visible. The LSTM with deep open classification loss obtains its best results for
all metrics with the same configuration in most cases and therefore, the results do not
change much.

8.4.2 Evaluation with Missing and Additional Symbols

Since in the real world, the data is not ideal, the methods are tested with corrup-
ted data. As an example, the evaluation on sequences of length 1400 is presented
with 20 % missing or additional symbols, which is the worst case scenario as shown
in Chapter 6. The symbols are either removed or inserted randomly, while the ad-
ditional symbols are chosen from the global dictionary that contains the symbols of
all emitters. Therefore, also symbols of other emitters might be inserted into the
sequences.

Distinction Accuracy. Figure 8.12 shows the results of the best configurations for the
distinction accuracy with missing or additional syllables in comparison to the results
obtained with ideal data. The labels of the bars represent the accuracies relative to
the ideal case, analogous to (6.11). All LSTM-based methods are very robust with
respect to missing syllables, while the LSTMs trained with cross-entropy loss and
entropic open-set loss only exhibit a small accuracy decrease with additional syllables
as well. As also observed in Chapter 6, the MC is not as robust as the LSTM-based
methods. The MC-based unknown gate is much more robust than the MC, but still
provides worse results than the LSTMs. All methods are able to reliably reject the
UNKs sequences, even if they contain 20 % known syllables. Hence, if the symbol
extraction step wrongly maps an unknown input sequence to a known syllable, it
does not change the result as long as there are sufficiently many UNK symbols. The
rejection accuracy of the LSTM-based methods is still 100 %, while the accuracies of
the MC and the MC-based unknown gate in test case 5b reduce slightly to 99.71 %
and 99.77 %, respectively.

Figure 8.13 depicts the distinction accuracies using words with corrupted data
in comparison to the ideal case. All LSTM-based methods are trained with random
sequence lengths because this variant provides the best accuracy for ideal data. How-
ever, as also observed in Chapter 6, it is not as robust with respect to additional words
as the LSTM trained with the complete scenarios. This can be seen for the LSTM with
cross-entropy and entropic open-set loss, but the other two approaches are also very
robust with additional words. Missing words cause no accuracy loss for any of the
LSTM-based methods. Also the MC-based approaches only exhibit a slight decrease.

148 Chapter 8. Recognition of Unknown Radar Emitters

LSTM -
Cross-
Entropy

LSTM -
Entropic
Open Set

LSTM -
Deep Open

Class.

LSTM -
Unknown
Gate

MC MC -
Unknown
Gate

0

20

40

60

80

100
M
ea

n
di
st
in
ct
io
n
ac
cu

ra
cy

[%
]

-1% -5%
1% -2%

0%
-10%

-1%
-12% -14%

-27%

-5% -9%

Syllable, sequence length 1400

Ideal
Missing
Additional

Figure 8.12: Mean distinction accuracies of the best configurations with 20 % missing
or additional syllables, respectively [65].

LSTM -
Cross-
Entropy

LSTM -
Entropic
Open Set

LSTM -
Deep Open

Class.

LSTM -
Unknown
Gate

MC MC -
Unknown
Gate

0

20

40

60

80

100

M
ea

n
di
st
in
ct
io
n
ac
cu

ra
cy

[%
]

0%

-12%
0%

-17%
0% -1% 0%

-6%
-3%

-20%

-2%

-15%

Word, sequence length 1400

Ideal
Missing
Additional

Figure 8.13: Mean distinction accuracies of the best configurations with 20 % missing
or additional words, respectively [65].

With additional words, however, the accuracy decreases significantly. This was to be
expected when considering the results obtained in Chapter 6. With additional words
and the distinction accuracy, the LSTM with cross-entropy loss is outperformed by the
LSTM with deep open classification loss and the LSTM-based unknown gate. With
missing words, it still provides the best average performance. Although the UNKs se-
quences contain 20 % known symbols, they are still rejected with an accuracy of 100 %
by the LSTM with cross-entropy loss. The rejection accuracy of the MC decreases
by 0.32 percentage points in the test case 5b, which is negligible.

8.4. Experimental Results 149

LSTM -
Cross-
Entropy

LSTM -
Entropic
Open Set

LSTM -
Deep Open

Class.

MC
0

20

40

60

80

100

M
ea

n
id
en

tifi
ca

tio
n
ac

cu
ra
cy

[%
]

1%

-12%
0%

-21%

-2%

-62%

-25%

-34%

Syllable, sequence length 1400

Ideal
Missing
Additional

Figure 8.14: Mean identification accuracies of the best configurations with 20 %
missing or additional syllables, respectively [65].

LSTM -
Cross-
Entropy

LSTM -
Entropic
Open Set

LSTM -
Deep Open

Class.

MC
0

20

40

60

80

100

M
ea

n
id
en

tifi
ca

tio
n
ac

cu
ra
cy

[%
] 1%

-22%
0% -4%

-2% -6%

-2%

-33%

Word, sequence length 1400

Ideal
Missing
Additional

Figure 8.15: Mean identification accuracies of the best configurations with 20 %
missing or additional words, respectively [65].

Identification Accuracy. Figure 8.14 displays the results for syllables of the best con-
figurations for the identification accuracy with corrupted data. As before, the labels of
the bars correspond to the accuracies relative to the results obtained with ideal data.
Also in this case, missing syllables do not cause much difference in the accuracies for
the LSTM-based methods, but the accuracy of the MC decreases significantly. This is
mainly because of a confusion between the known emitters. With additional syllables,
the MC also rejects some of the known sequences, while at the same time accepting
about 25 % of the UNKs sequences in some test cases. The LSTM with cross-entropy

150 Chapter 8. Recognition of Unknown Radar Emitters

loss is the most robust method and also provides higher average accuracies than the
MC. The other two LSTM-based methods exhibit a higher accuracy decrease with
additional syllables. Especially the LSTM with deep open classification loss is not
robust and rejects the complete input in some of the test cases.

The results for words of the methods’ best configurations for the identification
accuracy are shown in Figure 8.15. Also here, missing words do not cause much
harm. For additional words, however, the MC exhibits a very large accuracy decrease
of 33 %. This is partly due to a higher false rejection rate, but also because the known
emitters are more often confused. Also the accuracy of the LSTM with cross-entropy
loss decreases significantly with additional words because it wrongly assigns 19.48 %
of the QoS radar’s sequences to the Rules-v1 radar. The best configuration for the
identification accuracy of the LSTM with entropic open-set loss is much more robust
than the variant for the distinction accuracy and it provides the highest accuracy with
missing and additional words, but its performance is much lower than the best values
with ideal data.

8.5 Summary

This chapter investigates six methods in several configurations for determining if an
input does not belong to any of the known emitter classes. This is especially import-
ant for an ELINT application because the goal of ELINT is to collect new informa-
tion about radar emitters. In the literature, this problem is referred to as open-set
recognition and several solutions are suggested. The general challenge in open-set
recognition is that no training data for the “unknown unknown” classes exists but
the classifier needs to be trained with “known unknown” data, which hopefully al-
lows for the rejection of the unknown unknown input. This chapter suggests several
approaches for the generation of known unknown data, which includes sampling
random sequences from the emitters’ dictionaries or altering an MC that is trained
to predict the emissions of the radar (see Chapter 5). It is shown that to improve the
capability of the classifier to distinguish between known and unknown, training with
all available known unknown sequences provides the best results for all approaches
when using syllables. For words, the best training case is not as clear, but with a
sequence length of 600 and 1400 words, at least half of the methods also provide the
highest distinction accuracy when trained with all available known unknown data.

The evaluation shows that all of the methods are able to reject sequences consisting
only of the special symbol UNK when employed in their best configuration, even
though not all of them are trained with it. Rejecting the UNKs sequences is also
successful with the LSTM trained with cross-entropy loss and only the known classes,
which is the conventional training. It reaches an accuracy of more than 97 % in the
test cases 1a to 5a for syllables, while obtaining 100 % in all but one of them. This
is achieved with a threshold on the network’s confidence values of 0.5. Although
“thresholding softmax” is claimed to be problematic because the softmax function
can cause neural networks to be overconfident [56], it works very well for this kind of

8.5. Summary 151

input. Consequently, a completely unknown emitter can be reliably detected as such,
also if the classifier is not trained to do so. The results with additional symbols show
that this is even possible when the UNKs sequences contain 20 % known symbols.

Emitters that are more similar to the known classes are less reliably recognised as
unknown, while higher rejection accuracies are achieved based on words. For four
of the five unknown unknown emitters, the best rejection rates are above 65 % with
words, which is sufficient to tell that there are active unknown emitters.

For syllables, the MC achieves the highest average accuracy with ideal data, both
for the identification and the distinction accuracy. The LSTM with cross-entropy loss
provides the best performance for words with the distinction accuracy at longer se-
quence lengths, while the MC achieves better results with a sequence length of only
one word. However, the evaluation shows that there is no method that outperforms
every other approach in all test cases.

Both LSTMs trained with the loss functions that are specially designed for recog-
nising unknown input provide a lower average accuracy for classifying known classes
than the LSTM trained with cross-entropy loss. Also the configurations that work
best for the distinction between known and unknown provide a lower identification
accuracy. However, most of the configurations which are optimal for the average of
the identification and the distinction accuracy provide a good compromise between
the two metrics. Therefore, it depends on the situation whether it is worth the addi-
tional computational effort to combine a classifier to distinguish between known and
unknown with a classifier for the known classes.

With corrupted data, the performance naturally decreases. As also found in the
previous chapters, missing symbols only have a small impact while additional sym-
bols can cause a very large accuracy decrease. Especially the MC is not robust, while
most of the LSTM-based methods exhibit less accuracy decrease. Both for syllables
and words, the LSTM outperforms the MC with corrupted data at longer sequence
lengths, although the MC’s accuracy in the ideal case is much higher for syllables and
comparable for words.

Chapter 9

Conclusions

This thesis proposes a new electronic intelligence (ELINT) processing chain for radar
emitter identification and emission prediction. It employs machine learning for hand-
ling the signals of agile multifunction radars that traditional processing approaches
are not able to manage effectively. The new processing chain provides solutions to
four of the five problems of electronic warfare (EW) as defined in Section 2.4, namely
the classification or identification of radars, the prediction of emissions, the learning
or training of behavioural models, and the recognition of unknown emitters.

The basis of all developed approaches is the representation of radars as systems
that speak a language, which is divided into the five modelling levels called letters,
syllables, words, commands, and functions. A similar kind of hierarchical emission
model was first introduced and extended in [12–21] with the four levels letters, words,
commands, and tasks, but the emission model is adapted in the present work to better
suit the needs of ELINT. This representation as a radar language allows for taking
advantage of methods developed in the field of natural language processing (NLP).
In this thesis, it is suggested to use word embeddings, which are dense vector rep-
resentations of the radar language symbols, i.e. the different letters, syllables, words,
commands, and functions. These representations are learnt by a neural network from
the context that the symbols appear in and they have been shown to capture semantic
relationships in NLP [25].

The two main approaches compared in this thesis are the Markov chain (MC)
without a memory about the past and a variant of a recurrent neural network (RNN),
the Long Short-Term Memory (LSTM), which is especially designed to remember pre-
vious inputs. Both are employed for predicting the emissions of the example emitters,
identifying the emitter type based on its emissions, and recognising if an input be-
longs to an unknown emitter. It is shown that for emission prediction, the MC and the
LSTM perform almost equally, while the LSTM outperforms the MC only for the most
complicated task of predicting words. Both approaches clearly provide better results
for syllables and words than simple methods like random guessing or repeating the
last symbol, with an improvement of up to 120 %. Due to the structure of the data,
though, simple methods provide similar results for letters, commands, and functions.

For identification of the radar emitter type, the MC provides notably better results
than the LSTM, but only with ideal data. If the data is corrupted, i.e. symbols are
missing or additional symbols are inserted, the accuracy of the MC rapidly decreases,
while the LSTM is very robust due to its memory. It is shown how the identification
accuracy depends on the number of consecutive symbols of a single emitter, both for
training the LSTM as well as testing the LSTM and the MC. Although the symbols

153

154 Chapter 9. Conclusions

used by the example emitters highly overlap, both methods are able to identify the
emitter type, while longer symbol sequences are needed to distinguish between very
similar radars. The results show that words are the modelling level best suited for
identification. In addition, it is demonstrated that for syllables and words, both the
MC and the LSTM clearly outperform a simple dictionary lookup, which resembles
the conventional approach of comparing the received waveform parameters to entries
in a database.

To actually employ the emitter models for prediction, they need to be combined
into a multi-model system or an ensemble, in which the individual predictive models
are called experts in the literature. There are two general principles for a combin-
ation, which are classifier fusion and classifier selection. This thesis investigates six
architectures in several configurations, which either perform classifier fusion or se-
lection. To increase the informative value, the architectures are first compared based
on a public dataset and afterwards, the three best methods are implemented with the
predictive emitter models as experts. In two of these architectures, the same LSTM
which is developed for identification of the radar type is employed to select the emit-
ter model(s) that should make the prediction for the current input. Since the experts
might be LSTMs, it is investigated how the prediction accuracy is influenced if they
need to process data that they were not trained with. It is shown that processing
the data of other experts corrupts the state of the LSTMs and therefore decreases the
prediction accuracy. There are two possibilities to solve this problem. The first one is
to perform a state reset of the experts when the concept has changed. However, this
requires the detection of such a change, which is called drift detection in the context
of machine learning. In an ELINT application, drift detection is available from context
knowledge because after deinterleaving, start and end of the sequences are known.
The second option is to employ classifier selection, which avoids the corruption of the
LSTM states by only routing the input to the expert that was most probably trained
with the correct data. However, this approach requires a high identification accuracy.
As a result of these evaluations, this thesis provides guidelines for the selection of an
architecture that takes the identification accuracy, the availability of drift detection,
and the length of the stability period, i.e. the number of consecutive symbols from the
same concept, into account.

As the goal of ELINT is to gather information about radars, recognising an un-
known emitter is very important. The classifiers are trained on the “known unknown”
data, which should help them to also reject the “unknown unknown” input. This
thesis suggests methods to generate known unknown training data and it shows that
in most cases, training with this data increases the accuracy of the methods to distin-
guish between known and unknown input. The evaluation is performed with several
unknown emitters, which differ in their similarity to the known radars. The most dif-
ferent emitter, which does not have any symbols in common with the known radars,
is reliably identified as unknown, even with corrupted data. The more similar the
unknown radars are to the known classes, the lower the rejection accuracy. As for
identification, words are best suited to recognise an emitter as unknown. With words,
four of the five unknown unknown emitters are recognised as such with an accuracy

9.1. Future Work 155

of more than 65 % and up to 100 %. This is high enough to at least be able to tell
that unknown signals are received. As is the case for identifying the emitter type,
MCs achieve the highest accuracies for syllables, but only with ideal data. The LSTMs
outperform the MC with syllables if the data is not ideal and are also to be preferred
for words.

Considering the radar emissions as a language with an inherent hierarchical struc-
ture provides advantages for all considered tasks. Since the example emitter is air-
borne, it integrates many pulse repetitions, which leads to very long sequences in the
order of 10 000 repetitions of the same letter. Neither the MC nor the LSTM is able to
predict the next letter if it is different from the current one. However, the next syllable,
which is composed of letters, can be predicted with high accuracy. Also the identifica-
tion based on letters is not possible, but high accuracies are achieved for syllables and
words. In addition, a comparison between emission prediction with the sparse vector
representation of the symbols via one-hot encoding and the dense representation via
word embeddings shows that word embeddings speed up the training process, while
at the same time increasing the stability and the achieved performance.

9.1 Future Work

This thesis provides solutions to several problems, but it also gives rise to new ques-
tions and opens new directions of research. First of all, this thesis shows that word
embeddings can be used to represent radar signals and that these representations
provide advantages in further processing the symbols with neural networks. How-
ever, the evaluation is restricted to the word2vec algorithm. A possible future direc-
tion of research is therefore to investigate which other methods from the field of rep-
resentation learning are applicable and provide the most advantages. These methods
might as well be applied to the raw signal or pulse descriptor word (PDW) sequences
and might therefore be useful in the deinterleaving step, too.

The five problems of EW, as defined in Section 2.4, also include the decoding
of the internal state of the radar, which is not addressed in this thesis. With the
adapted hierarchical emission model, it could be realised in a straightforward way. In
this approach, the decoding of the internal state corresponds to mapping the letters,
syllables, words, or commands to functions.

For the simulated airborne radar employed in this thesis, switching to a different
letter cannot be predicted because of the high number of repetitions. However, pre-
dicting the next letter, which corresponds to a pulse, is important in applications like
adaptive jamming. As syllables can be predicted very well, a possible solution to this
problem is to predict the next letter based on the syllables, but a very large number
of letters needs to be received in order to identify the current syllable. Therefore, an
approach that keeps several hypotheses about the current syllable while receiving the
letters is a future direction of research.

Another interesting direction is to investigate ensembles of different methods for
recognising unknown emitters in order to increase the rejection accuracy. Several

156 Chapter 9. Conclusions

approaches can be considered to achieve this goal, e.g. majority voting or (weighted)
averaging.

Since the example radar used in this thesis is simulated, as much data as needed
can be generated for training the MCs and LSTMs. In an actual application, this is
probably not the case. Hence, investigating how well the methods work with less
data is of interest. Finally, an evaluation of the presented approach with real data is
desirable. Unfortunately, the data from real multifunction radars is hard to obtain for
reasons of military secrecy.

Appendix A

Appendix: Additional Material

A.1 Identification of the Radar Emitter Type

This section contains the confusion matrices for syllables of the LSTMscen and the MC
to support the findings of Chapter 5.

QoS

Rv1

Rv2

Tr
ue

la
be

l 32.79 23.74 43.48

30.45 34.44 35.12

30.44 33.66 35.90

Seq. length 1
74.90 0.88 24.22

30.01 12.00 57.99

28.90 7.71 63.39

Seq. length 10
97.58 0.05 2.37

12.70 19.59 67.71

11.29 8.41 80.29

Seq. length 50
98.28 0.02 1.70

6.80 20.20 73.00

5.97 9.09 84.94

Seq. length 100
98.38 0.01 1.61

1.47 20.80 77.73

0.89 9.19 89.92

Seq. length 200

QoS

Rv1

Rv2

Tr
ue

la
be

l 98.33 0.02 1.65

0.00 21.24 78.76

0.05 9.35 90.60

Seq. length 400

Qo
S

Rv
1

Rv
2

Predicted label

98.65 0.00 1.35

0.00 21.09 78.92

0.08 9.44 90.47

Seq. length 600

Qo
S

Rv
1

Rv
2

Predicted label

99.44 0.01 0.56

0.00 21.38 78.62

0.03 9.41 90.56

Seq. length 800

Qo
S

Rv
1

Rv
2

Predicted label

98.28 0.02 1.70

0.00 21.44 78.56

0.07 9.80 90.12

Seq. length 1000

Qo
S

Rv
1

Rv
2

Predicted label

97.81 0.00 2.19

0.00 21.65 78.35

0.08 9.46 90.46

Seq. length 1200

Qo
S

Rv
1

Rv
2

Predicted label

QoS

Rv1

Rv2

Tr
ue

la
be

l 99.47 0.02 0.52

0.00 21.46 78.54

0.04 8.88 91.08

Seq. length 1400

0 20 40 60 80 100

Figure A.1: Confusion matrices of the LSTMscen at different sequence lengths for
syllables.

157

158 Chapter A. Appendix: Additional Material

QoS

Rv1

Rv2

Tr
ue

la
be

l 86.71 6.89 6.41

0.01 36.81 63.18

1.54 28.43 70.03

Seq. length 1
97.30 0.54 2.16

0.14 23.29 76.57

0.56 8.56 90.88

Seq. length 10
99.15 0.17 0.68

0.08 34.30 65.61

0.49 5.50 94.01

Seq. length 50
99.13 0.20 0.67

0.06 44.23 55.71

0.47 5.19 94.34

Seq. length 100
99.12 0.18 0.70

0.07 57.14 42.79

0.44 6.82 92.74

Seq. length 200

QoS

Rv1

Rv2

Tr
ue

la
be

l 99.16 0.19 0.64

0.06 68.69 31.25

0.48 8.43 91.09

Seq. length 400

Qo
S

Rv
1

Rv
2

Predicted label

99.04 0.24 0.72

0.14 72.55 27.31

0.53 7.68 91.79

Seq. length 600

Qo
S

Rv
1

Rv
2

Predicted label

98.74 0.38 0.88

0.07 76.01 23.92

0.52 7.69 91.79

Seq. length 800

Qo
S

Rv
1

Rv
2

Predicted label

98.67 0.40 0.93

0.06 78.98 20.96

0.46 7.29 92.26

Seq. length 1000

Qo
S

Rv
1

Rv
2

Predicted label

99.16 0.27 0.57

0.06 80.46 19.48

0.60 7.05 92.35

Seq. length 1200

Qo
S

Rv
1

Rv
2

Predicted label

QoS

Rv1

Rv2

Tr
ue

la
be

l 99.02 0.20 0.78

0.09 81.37 18.54

0.44 7.37 92.19

Seq. length 1400

0 20 40 60 80 100

Figure A.2: Confusion matrices of the MC at different sequence lengths for syllables.

A.2. Ensembles of Predictive Models 159

A.2 Ensembles of Predictive Models

This section of the appendix provides detailed results for each ensemble architecture
and each scenario. The highest prediction accuracies per stability period, i.e. per
column in the table, are marked in bold. The sparsely-gated Mixture of Experts (MoE)
architecture with perfect identification is excluded since this is not an ensemble that
could be actually used, but is only given for reference. The section also contains
additional figures that show the complete results of all architectures, the impact of a
state reset on the MoE architecture, as well as an individual comparison of the results
for the online weighting based on top k accuracy for different k.

Table A.1: Top 1 prediction accuracies [%] for the HMM scenario. FF = feedforward.

Reset Stability period [#symbols]

Arch. Cfg. S W 1 5 10 50 100 200 400 600 800 1200 1600 2000

MoE 8.7 12.9 15.1 15.9 15.2 15.0 16.1 14.7 16.7 16.4 19.0 19.3

x 9.2 12.4 15.0 15.9 15.6 14.7 15.5 15.4 16.5 16.1 17.7 18.8

Sparse
MoE

d=1 7.9 12.5 15.1 15.7 15.4 14.8 15.6 15.1 15.6 16.1 17.2 18.8

d=2 8.5 12.9 14.9 15.9 15.2 15.3 16.2 15.0 16.1 16.1 18.2 20.6

d=1 x 8.1 11.9 14.7 15.6 15.4 14.4 15.4 15.4 15.9 16.1 17.2 19.3

d=2 x 9.0 12.2 14.9 15.9 15.6 14.7 15.5 15.4 16.5 16.1 17.4 19.0

Stacking LSTM 10.8 11.6 12.6 13.6 13.6 13.4 14.2 13.3 14.8 14.1 13.5 12.8

LSTM x 11.4 13.1 13.3 13.9 13.7 13.2 13.5 13.2 15.1 13.5 14.8 11.7

FF 9.8 10.7 11.2 11.9 12.4 12.5 12.1 12.5 11.7 12.8 13.3 11.5

FF x 9.8 9.3 9.5 11.4 11.4 12.3 12.9 12.2 10.0 12.5 12.5 11.7

continued on next page

160 Chapter A. Appendix: Additional Material

continuation from previous page

Reset Stability period [#symbols]

Arch. Cfg. S W 1 5 10 50 100 200 400 600 800 1200 1600 2000

Stacking
with Input

LSTM 14.8 14.5 14.4 14.8 15.2 15.1 16.0 14.6 13.8 15.6 13.5 13.5

LSTM x 14.8 14.5 14.4 14.8 15.2 15.1 16.0 14.6 13.8 15.6 13.5 13.5

FF 9.8 10.7 11.5 11.8 11.2 10.6 11.2 11.3 12.2 11.7 12.0 12.5

FF x 10.8 7.4 8.8 11.7 12.1 11.2 12.2 11.5 10.8 11.5 11.5 12.8

Online
Weighting

k=1 10.3 12.6 14.2 15.2 14.9 15.1 15.6 14.6 14.5 16.4 15.9 16.9

k=5 10.2 13.3 13.8 14.6 14.9 14.0 15.7 14.5 14.6 17.4 14.1 18.5

k=10 10.8 14.3 14.5 15.3 15.7 15.3 16.7 15.1 15.1 18.0 16.7 18.0

k=20 10.9 14.6 14.7 15.4 15.6 15.5 16.1 15.8 14.8 17.4 16.1 18.0

k=1 x 11.5 12.5 12.9 14.0 14.8 13.8 15.5 15.8 14.8 15.9 15.9 15.1

k=5 x 11.4 13.1 13.1 13.5 13.8 13.3 15.2 15.6 15.1 16.7 16.4 18.2

k=10 x 12.5 13.5 13.5 14.9 15.2 14.5 16.9 15.8 15.4 16.4 16.4 18.0

k=20 x 12.2 13.1 13.4 15.0 15.0 15.1 16.8 15.1 14.7 17.4 16.4 18.8

k=1 x 13.5 13.6 14.4 15.2 14.8 14.5 14.8 14.5 15.5 16.4 15.9 16.9

k=5 x 13.5 13.8 14.1 14.7 14.5 14.2 15.7 14.6 14.3 17.4 14.1 18.5

k=10 x 13.5 13.8 14.3 15.1 15.6 15.0 15.5 14.1 15.8 18.0 16.7 18.0

k=20 x 13.5 13.9 14.5 15.2 15.7 15.2 15.9 13.7 15.5 17.4 16.1 18.0

k=1 x x 14.8 13.2 13.1 14.0 14.5 14.6 14.8 15.1 15.2 15.9 15.9 15.1

k=5 x x 14.8 13.6 13.3 13.8 14.2 14.1 14.5 14.1 14.3 16.7 16.4 18.2

k=10 x x 14.8 13.5 13.5 15.0 15.2 14.9 15.5 14.2 15.2 16.4 16.4 18.0

k=20 x x 14.8 12.9 13.4 15.0 15.7 14.9 15.5 15.1 15.4 17.4 16.4 18.8

MSE 5.2 5.1 5.3 5.5 5.6 8.9 14.8 16.1 8.3 18.2 13.3 12.2

MSE x 5.9 6.9 6.6 6.5 5.9 8.6 15.0 16.0 8.2 15.9 12.8 11.7

MSE x 13.5 13.9 15.1 16.9 16.7 16.7 17.3 15.4 17.6 18.0 19.3 18.8

MSE x x 14.8 13.2 14.1 16.4 16.5 16.3 16.3 16.1 16.8 17.4 19.3 18.5

Model
Averaging

13.5 13.4 13.6 14.3 14.8 15.0 15.7 12.9 14.2 16.4 13.5 13.3

x 14.8 13.0 12.8 14.1 14.8 14.7 15.6 14.5 14.6 16.7 13.8 13.5

Sparse MoE
(perfect id)

d=1 16.8 16.7 16.8 16.8 16.5 16.0 16.8 15.1 16.3 16.1 16.7 19.0

d=1 x 16.3 15.2 15.5 16.4 16.4 15.2 16.0 15.4 16.7 16.1 16.7 19.0

A.2. Ensembles of Predictive Models 161

Table A.2: Top 1 prediction accuracies [%] for the NLP scenario. FF = feedforward.

Reset Stability period [#symbols]

Arch. Cfg. S W 1 5 10 50 100 200 400 600 800 1200 1600 2000

MoE 9.8 28.5 33.8 35.4 35.4 35.3 35.8 34.8 37.0 35.9 36.1 35.2

x 10.6 28.8 33.8 35.4 35.6 35.6 35.8 35.4 37.4 36.5 36.8 35.1

Sparse
MoE

d=1 9.5 29.0 33.6 35.3 35.6 35.5 35.9 35.3 37.3 36.5 36.4 35.2

d=2 9.8 29.0 33.8 35.3 35.6 35.5 35.8 35.2 37.3 36.4 36.6 35.0

d=3 9.8 28.8 33.7 35.3 35.6 35.6 35.9 34.9 37.4 36.3 36.6 35.1

d=4 9.8 28.6 33.8 35.3 35.6 35.6 35.6 35.0 37.2 36.2 36.6 35.3

d=1 x 9.9 28.3 33.6 35.3 35.6 35.5 35.9 35.3 37.3 36.5 36.4 35.2

d=2 x 10.4 28.7 33.8 35.3 35.6 35.6 35.8 35.4 37.4 36.5 36.8 35.1

d=3 x 10.5 28.8 33.8 35.4 35.6 35.6 35.8 35.4 37.4 36.5 36.9 35.1

d=4 x 10.6 28.8 33.8 35.4 35.6 35.6 35.8 35.4 37.4 36.5 36.9 35.1

Stacking LSTM 7.3 14.1 17.6 19.5 19.5 19.6 19.7 18.7 19.8 20.2 19.2 19.3

LSTM x 7.8 14.8 17.9 19.5 19.6 19.3 19.9 19.5 20.1 19.9 18.8 19.3

FF 5.4 5.4 5.4 5.2 5.2 5.5 6.0 5.3 5.8 6.2 4.1 5.2

FF x 5.4 5.4 5.4 5.2 5.2 5.5 6.0 5.3 5.8 6.2 4.1 5.2

Stacking
with Input

LSTM 7.6 12.1 14.0 17.5 18.3 19.7 16.7 16.9 16.5 18.8 18.4 19.0

LSTM x 8.0 12.4 14.3 17.9 18.3 20.1 17.3 17.2 16.5 18.1 19.3 17.5

FF 5.4 5.4 5.4 5.2 5.2 5.5 6.0 5.3 5.8 6.2 4.1 5.2

FF x 5.4 5.4 5.4 5.2 5.2 5.5 6.0 5.3 5.8 6.2 4.1 5.2

continued on next page

162 Chapter A. Appendix: Additional Material

continuation from previous page

Reset Stability period [#symbols]

Arch. Cfg. S W 1 5 10 50 100 200 400 600 800 1200 1600 2000

Online
Weighting

k=1 6.2 24.4 29.9 29.9 29.8 29.6 30.1 29.5 30.4 29.5 30.3 29.5

k=5 5.8 26.5 28.5 28.3 27.9 27.8 28.5 27.9 28.4 28.0 28.8 28.6

k=10 5.9 24.9 26.5 26.3 25.9 25.9 26.1 26.0 26.8 26.4 26.2 26.8

k=20 6.4 22.0 23.3 23.1 23.0 22.9 23.0 22.3 23.3 22.3 23.5 23.4

k=1 x 6.2 25.3 29.9 29.9 30.1 30.0 29.8 29.3 30.9 29.9 31.0 29.2

k=5 x 5.4 27.1 28.5 28.5 28.0 28.2 28.2 27.7 28.6 28.6 29.2 28.0

k=10 x 5.6 25.3 26.4 26.4 26.3 26.1 25.9 25.5 27.2 26.0 26.6 27.0

k=20 x 6.4 22.2 23.2 23.2 23.3 23.0 23.1 22.7 23.9 22.4 23.0 23.8

k=1 x 9.5 26.5 30.2 30.0 30.0 29.7 30.2 29.6 30.7 29.6 30.5 29.5

k=5 x 9.5 28.6 29.2 28.4 27.9 27.8 28.5 27.5 28.4 28.0 28.8 28.6

k=10 x 9.5 27.8 27.7 26.5 26.0 25.9 26.1 25.7 26.8 26.4 26.2 26.8

k=20 x 9.5 25.2 24.6 23.3 23.1 22.9 23.0 22.0 23.3 22.3 23.5 23.4

k=1 x x 10.2 27.4 30.2 30.0 30.2 30.1 29.9 29.9 31.1 30.1 31.2 29.5

k=5 x x 10.2 29.1 29.1 28.6 28.0 28.2 28.2 27.6 28.6 28.6 29.2 28.0

k=10 x x 10.2 28.3 27.6 26.6 26.3 26.1 26.0 26.0 27.2 26.0 26.6 27.0

k=20 x x 10.2 25.5 24.6 23.5 23.5 23.0 23.1 22.4 23.9 22.4 23.0 23.8

MSE 9.3 12.8 14.5 16.2 15.7 16.1 17.4 18.0 19.4 22.4 20.6 24.9

MSE x 11.0 13.1 14.8 16.4 15.8 16.1 17.1 18.0 20.1 22.3 21.2 24.5

MSE x 9.5 30.5 33.9 34.8 35.1 35.1 35.5 35.1 36.1 35.4 35.9 34.6

MSE x x 10.2 31.3 34.0 34.8 35.3 35.5 35.4 35.5 36.3 35.6 36.4 34.7

Model
Averaging

9.5 14.1 14.9 14.7 14.7 14.9 14.2 14.8 14.0 14.8 15.2 15.4

x 10.2 14.3 14.9 14.8 14.6 14.8 14.8 14.9 14.1 14.9 15.2 15.7

Sparse MoE
(perfect id)

d=1 35.6 35.8 35.6 35.4 35.7 35.6 36.0 35.7 37.3 36.6 36.8 35.2

d=1 x 23.1 34.6 35.6 35.4 35.7 35.6 36.0 35.7 37.3 36.6 36.8 35.2

A.2. Ensembles of Predictive Models 163

Table A.3: Top 1 prediction accuracies [%] for the hard scenario. FF = feedforward.

Reset Stability period [#symbols]

Arch. Cfg. S W 1 5 10 50 100 200 400 600 800 1200 1600 2000

MoE 6.3 9.9 15.4 21.6 22.3 23.1 23.3 22.7 22.5 22.6 22.7 22.7

x 5.8 10.4 15.7 21.3 22.2 22.7 23.7 23.1 22.9 22.5 22.4 22.8

Sparse
MoE

d=1 5.9 7.9 11.9 21.0 22.3 22.5 23.4 22.7 22.8 21.3 21.6 22.5

d=2 6.2 9.5 14.8 21.5 22.5 23.1 23.4 22.8 22.8 22.0 21.9 22.7

d=3 6.3 9.9 15.6 21.7 22.5 22.9 23.3 23.0 22.2 22.5 22.3 23.0

d=4 6.3 10.0 15.6 21.5 22.3 23.0 23.4 23.1 22.7 22.7 22.9 22.5

d=5 6.3 9.9 15.5 21.6 22.3 23.0 23.4 22.8 22.4 22.5 22.8 22.7

d=1 x 5.1 8.2 11.9 20.8 22.0 22.4 23.4 22.7 22.8 22.1 22.0 22.7

d=2 x 5.5 9.7 14.8 21.3 22.2 22.8 23.7 23.0 22.9 22.4 22.4 22.8

d=3 x 5.7 10.2 15.5 21.3 22.2 22.7 23.7 23.1 22.9 22.5 22.4 22.8

d=4 x 5.7 10.4 15.7 21.3 22.2 22.7 23.7 23.1 22.9 22.5 22.4 22.8

d=5 x 5.8 10.4 15.7 21.3 22.2 22.7 23.7 23.1 22.9 22.5 22.4 22.8

Stacking LSTM 6.6 7.9 9.2 10.9 10.6 10.6 11.3 10.3 10.9 10.9 10.4 11.1

LSTM x 5.8 7.5 9.1 10.9 10.7 10.7 11.0 10.8 10.5 10.4 10.3 10.4

FF 8.0 11.0 12.1 12.5 12.6 12.6 13.2 12.9 12.9 12.4 12.5 13.2

FF x 8.1 8.5 10.2 12.0 11.8 12.7 12.7 13.2 12.6 12.7 13.0 13.3

Stacking
with Input

LSTM 10.6 11.8 11.8 11.9 11.7 11.8 12.0 12.9 12.0 11.7 11.2 10.4

LSTM x 10.4 11.7 11.9 11.9 11.8 12.0 12.1 13.2 12.0 12.1 11.8 10.4

FF 9.4 12.2 13.2 13.5 13.5 13.5 14.5 13.6 15.0 14.0 14.2 12.9

FF x 12.3 9.1 11.0 12.8 12.9 14.0 14.6 13.0 15.2 14.5 15.8 13.7

continued on next page

164 Chapter A. Appendix: Additional Material

continuation from previous page

Reset Stability period [#symbols]

Arch. Cfg. S W 1 5 10 50 100 200 400 600 800 1200 1600 2000

Online
Weighting

k=1 7.1 14.0 17.5 19.0 18.9 18.5 20.1 18.9 18.5 19.3 21.1 18.6

k=5 7.4 15.3 17.9 19.3 19.6 18.9 19.4 19.6 17.6 19.9 18.5 19.3

k=10 7.7 15.4 17.8 19.0 18.6 18.3 19.2 18.8 17.8 19.3 18.2 17.4

k=20 8.3 14.9 17.4 18.2 17.9 18.0 19.2 18.3 17.7 19.8 19.0 18.4

k=1 x 8.5 15.1 17.3 18.4 18.9 18.5 19.9 19.2 19.1 19.9 20.2 18.5

k=5 x 9.2 16.2 17.9 18.7 18.9 19.1 19.3 19.8 17.4 20.1 17.8 19.9

k=10 x 10.7 15.5 17.4 18.4 18.3 18.0 18.7 18.9 18.0 19.5 17.7 18.2

k=20 x 12.0 13.8 16.8 17.5 18.1 17.7 18.9 18.5 18.2 19.1 18.5 19.8

k=1 x 9.0 15.2 18.0 19.1 19.0 18.6 20.0 18.9 18.5 19.4 21.1 18.6

k=5 x 9.0 16.0 18.4 19.3 19.6 18.9 19.4 19.6 17.6 19.9 18.5 19.3

k=10 x 9.0 15.5 18.0 19.0 18.5 18.3 19.2 18.8 17.8 19.3 18.2 17.4

k=20 x 9.0 14.9 17.5 18.3 17.8 18.0 19.2 18.3 17.7 19.8 19.0 18.4

k=1 x x 13.6 16.2 17.9 18.5 18.9 18.6 19.9 19.3 19.1 20.1 20.2 18.5

k=5 x x 13.6 16.8 18.2 18.8 18.9 19.1 19.4 19.8 17.4 20.1 17.8 19.9

k=10 x x 13.6 15.7 17.6 18.4 18.3 18.0 18.7 18.9 18.0 19.5 17.7 18.2

k=20 x x 13.6 13.8 16.9 17.5 18.1 17.7 19.0 18.5 18.2 19.1 18.5 19.8

MSE 7.6 9.7 12.2 17.3 13.2 14.2 18.7 12.8 17.8 18.6 16.9 19.7

MSE x 9.3 11.6 14.8 17.3 13.1 14.2 18.5 12.8 18.2 19.5 16.9 19.9

MSE x 9.0 16.9 21.0 23.5 23.6 24.0 25.0 24.3 24.2 24.8 25.4 25.9

MSE x x 13.6 17.9 21.0 23.2 23.2 24.2 25.0 24.5 24.3 25.1 26.4 24.7

Model
Averaging

9.0 14.1 16.6 17.4 17.1 17.1 18.3 17.1 17.1 18.2 17.4 17.4

x 13.6 13.0 16.0 16.7 17.3 17.0 18.0 18.4 17.4 18.0 16.7 17.3

Sparse MoE
(perfect id)

d=1 24.8 24.9 24.9 24.9 24.5 24.2 24.8 24.5 24.4 24.8 25.3 25.1

d=1 x 18.7 21.8 23.6 24.4 24.2 24.1 25.1 24.5 24.9 25.3 25.3 25.1

A.2. Ensembles of Predictive Models 165

Table A.4: Top 1 prediction accuracies [%] for the easy scenario. FF = feedforward.

Reset Stability period [#symbols]

Arch. Cfg. S W 1 5 10 50 100 200 400 600 800 1200 1600 2000

MoE 9.1 33.3 41.1 42.4 42.5 42.6 42.2 41.9 41.3 43.2 42.3 38.8

x 11.9 32.0 39.0 41.7 42.3 42.7 43.2 43.8 43.0 43.5 42.1 41.3

Sparse
MoE

d=1 8.8 34.5 41.9 42.6 42.9 43.3 42.8 43.8 43.0 42.8 43.2 39.7

d=2 9.3 34.7 41.6 42.6 42.7 43.1 43.1 44.1 43.2 43.5 43.0 40.1

d=3 9.3 34.1 41.4 42.6 42.7 43.0 42.8 43.3 42.3 43.0 43.4 39.3

d=4 9.2 33.7 41.3 42.4 42.7 43.0 42.3 43.3 42.0 43.4 42.4 39.5

d=5 9.2 33.4 41.1 42.5 42.7 42.7 42.5 43.2 42.2 43.8 41.9 39.6

d=1 x 10.7 31.2 38.9 41.8 42.3 42.7 42.9 44.1 43.0 42.8 43.2 41.0

d=2 x 11.6 31.9 39.0 41.8 42.3 42.7 42.8 44.1 43.0 42.8 43.1 41.1

d=3 x 11.8 32.0 39.0 41.8 42.3 42.7 42.8 44.1 43.0 42.8 43.1 41.1

d=4 x 11.9 32.0 39.0 41.8 42.3 42.7 42.8 44.1 43.0 42.8 43.1 41.1

d=5 x 11.9 32.0 39.0 41.8 42.3 42.7 42.8 44.1 43.0 42.8 43.1 41.1

Stacking LSTM 8.5 16.1 19.7 22.2 22.2 22.8 22.9 23.3 22.2 22.4 21.9 21.7

LSTM x 10.1 14.0 17.4 19.9 20.5 22.1 21.5 22.5 22.1 22.3 23.2 22.1

FF 5.3 5.3 5.3 5.2 5.3 5.4 5.6 6.1 4.8 5.9 4.0 5.5

FF x 5.3 5.3 5.3 5.2 5.3 5.4 5.6 6.1 4.8 5.9 4.0 5.5

Stacking
with Input

LSTM 11.0 16.9 19.2 20.6 20.2 20.3 20.6 20.8 19.5 19.5 18.1 20.3

LSTM x 10.5 17.3 19.2 20.3 20.7 20.6 20.5 20.8 19.9 19.5 18.9 20.3

FF 6.5 6.5 6.5 6.2 6.3 6.6 5.6 6.1 5.1 5.5 4.6 4.8

FF x 6.5 6.5 6.5 6.2 6.3 6.6 5.6 6.1 5.1 5.5 4.6 4.8

continued on next page

166 Chapter A. Appendix: Additional Material

continuation from previous page

Reset Stability period [#symbols]

Arch. Cfg. S W 1 5 10 50 100 200 400 600 800 1200 1600 2000

Online
Weighting

k=1 6.1 27.8 35.6 36.8 36.4 37.4 37.7 36.7 36.8 37.8 35.0 33.2

k=5 5.6 28.9 33.4 33.9 33.9 34.0 34.2 33.5 33.7 34.6 32.8 29.7

k=10 6.0 27.0 30.7 31.2 30.7 31.0 31.5 30.7 30.9 31.0 28.6 28.1

k=20 6.7 23.3 26.4 27.5 27.1 27.5 28.2 27.6 27.1 25.7 25.9 25.3

k=1 x 7.3 26.4 32.9 35.9 36.3 37.1 37.8 38.5 36.1 38.7 36.2 34.8

k=5 x 6.5 26.5 30.4 32.8 33.0 33.6 33.4 34.2 33.1 33.5 33.3 30.7

k=10 x 7.2 24.1 27.7 29.9 30.2 30.6 30.8 30.9 29.6 31.0 29.6 29.6

k=20 x 8.8 20.7 23.4 25.9 26.4 26.4 26.5 27.2 26.0 27.1 25.5 24.6

k=1 x 9.1 29.9 36.1 36.9 36.6 37.5 37.7 36.7 36.8 37.9 35.2 33.3

k=5 x 9.1 31.4 34.4 34.2 33.9 34.1 34.2 33.5 33.7 34.6 32.8 29.7

k=10 x 9.1 29.4 31.9 31.5 30.9 31.2 31.5 30.7 30.8 31.0 28.6 28.1

k=20 x 9.1 25.6 27.7 27.7 27.2 27.6 28.2 27.7 27.1 25.7 25.9 25.3

k=1 x x 12.6 28.3 33.3 36.1 36.4 37.2 37.7 38.5 36.3 38.5 36.3 35.2

k=5 x x 12.6 28.8 31.3 33.0 33.2 33.6 33.4 34.2 33.1 33.5 33.3 30.7

k=10 x x 12.6 26.5 28.9 30.0 30.3 30.7 30.8 30.9 29.6 31.0 29.6 29.6

k=20 x x 12.6 22.6 24.5 26.2 26.4 26.5 26.5 27.2 26.0 27.1 25.5 24.6

MSE 8.1 15.8 18.6 19.4 19.9 24.3 25.1 26.4 27.7 26.3 29.2 27.7

MSE x 11.1 13.6 15.8 18.3 18.6 23.9 24.7 25.7 27.8 26.6 29.8 28.0

MSE x 9.1 33.8 40.6 42.4 42.6 42.8 42.4 43.2 41.9 43.8 42.1 40.4

MSE x x 12.6 31.8 38.3 41.7 42.3 42.9 42.7 44.1 43.1 42.7 43.4 41.1

Model
Averaging

9.1 17.6 19.9 19.7 19.9 19.5 19.7 19.7 19.7 19.4 20.2 18.8

x 12.6 14.7 17.2 18.4 18.3 18.4 18.9 18.8 18.6 20.2 19.9 19.0

Sparse MoE
(perfect id)

d=1 42.8 43.0 42.9 42.6 42.9 43.4 42.8 43.6 43.0 43.1 43.2 41.1

d=1 x 28.4 36.7 39.9 41.8 42.3 42.8 43.0 44.2 43.0 43.1 43.2 41.1

A.2. Ensembles of Predictive Models 167

Table A.5: Top 1 prediction accuracies [%] for the bad scenario. FF = feedforward.

Reset Stability period [#symbols]

Arch. Cfg. S W 1 5 10 50 100 200 400 600 800 1200 1600 2000

MoE 8.1 19.0 24.2 29.3 29.7 30.0 29.8 29.0 29.1 30.3 31.5 31.1

x 8.7 19.2 24.2 29.8 29.9 30.8 30.8 29.2 29.6 32.1 33.3 32.1

Sparse
MoE

d=1 8.0 19.6 23.9 29.9 30.1 30.8 30.8 29.1 29.4 32.1 33.0 32.1

d=2 8.3 19.9 24.6 30.0 30.2 30.9 30.9 29.2 29.5 31.9 33.2 32.0

d=3 8.3 19.8 24.6 30.0 30.1 30.8 30.9 29.2 29.4 31.9 33.3 32.1

d=4 8.3 19.7 24.5 30.0 30.1 30.7 30.6 29.3 29.5 31.9 33.2 32.0

d=5 8.3 19.5 24.3 29.9 30.1 30.7 30.6 29.3 29.4 31.9 33.0 32.0

d=6 8.2 19.2 24.2 29.8 30.1 30.7 30.8 29.3 29.4 31.7 32.8 32.1

d=1 x 8.0 18.6 23.6 29.8 29.8 30.7 30.8 29.1 29.7 32.3 33.0 32.1

d=2 x 8.5 19.1 24.2 29.8 29.9 30.8 30.9 29.2 29.7 32.2 33.2 32.1

d=3 x 8.6 19.2 24.2 29.8 29.9 30.8 30.9 29.1 29.7 32.2 33.2 32.1

d=4 x 8.6 19.2 24.2 29.8 29.9 30.8 30.9 29.1 29.7 32.2 33.3 32.1

d=5 x 8.7 19.2 24.2 29.8 29.9 30.8 30.9 29.1 29.7 32.2 33.3 32.1

d=6 x 8.7 19.2 24.2 29.8 29.9 30.8 30.9 29.1 29.6 32.2 33.3 32.1

Stacking LSTM 8.0 9.8 9.9 10.3 9.8 10.0 10.2 10.0 10.6 10.8 10.7 10.4

LSTM x 7.1 10.4 10.5 10.3 10.2 10.3 9.9 9.8 10.6 10.0 10.3 10.9

FF 8.2 8.2 8.2 8.1 8.0 8.3 8.5 8.0 8.0 8.4 8.0 8.9

FF x 8.2 8.2 8.2 8.1 8.0 8.3 8.5 8.0 8.0 8.4 8.0 8.9

Stacking
with Input

LSTM 10.6 11.8 12.1 12.4 12.8 12.9 12.9 12.0 12.1 11.9 13.0 13.3

LSTM x 10.8 11.6 12.3 12.4 12.8 12.8 13.0 12.0 12.1 11.9 12.9 13.1

FF 8.2 8.2 8.2 8.1 8.0 8.3 8.5 8.0 8.0 8.4 8.0 8.9

FF x 8.2 8.2 8.2 8.1 8.0 8.3 8.5 8.0 8.0 8.4 8.0 8.9

continued on next page

168 Chapter A. Appendix: Additional Material

continuation from previous page

Reset Stability period [#symbols]

Arch. Cfg. S W 1 5 10 50 100 200 400 600 800 1200 1600 2000

Online
Weighting

k=1 5.5 18.9 25.2 25.6 25.8 25.3 25.5 25.8 26.0 26.0 25.7 25.4

k=5 5.4 21.3 25.2 25.2 25.2 25.1 24.7 25.4 25.6 25.2 25.3 24.8

k=10 5.5 20.1 23.9 24.3 24.2 24.1 24.0 24.7 25.6 23.8 24.1 22.8

k=20 5.9 19.3 23.0 23.3 23.3 23.3 23.2 23.7 24.9 23.4 22.4 23.0

k=1 x 6.4 20.3 25.2 26.1 26.0 26.1 26.5 26.2 26.4 27.3 27.0 26.2

k=5 x 6.4 22.2 25.2 25.6 25.3 25.7 25.6 25.3 25.3 26.4 26.5 25.4

k=10 x 7.0 20.8 24.0 24.6 24.4 24.7 25.0 25.1 26.0 26.3 25.7 23.8

k=20 x 7.6 19.7 23.1 23.6 23.6 23.6 24.2 23.8 24.6 24.9 24.2 23.9

k=1 x 8.2 20.8 25.6 25.8 25.8 25.4 25.4 25.9 26.3 26.2 25.8 25.6

k=5 x 8.2 22.4 25.6 25.3 25.2 25.1 24.4 25.4 25.6 25.2 25.3 24.8

k=10 x 8.2 21.1 24.3 24.3 24.2 24.1 23.9 24.7 25.6 23.8 24.1 22.8

k=20 x 8.2 20.4 23.3 23.4 23.3 23.3 23.2 23.7 24.9 23.4 22.4 23.0

k=1 x x 10.8 22.0 25.7 26.2 26.1 26.2 26.6 26.4 26.4 27.5 27.2 26.3

k=5 x x 10.8 23.5 25.7 25.7 25.3 25.7 25.6 25.3 25.3 26.4 26.5 25.4

k=10 x x 10.8 22.1 24.3 24.6 24.4 24.7 25.0 25.1 26.0 26.3 25.7 23.8

k=20 x x 10.8 20.7 23.4 23.7 23.7 23.6 24.2 23.8 24.6 24.9 24.2 23.9

MSE 7.3 11.3 12.7 13.7 13.0 14.1 13.7 12.4 14.0 19.7 18.5 17.4

MSE x 8.1 11.8 13.1 14.6 13.8 15.2 14.9 13.2 14.5 21.4 20.5 18.1

MSE x 8.2 22.7 27.6 29.4 29.7 29.3 28.9 29.2 29.8 28.9 30.4 30.1

MSE x x 10.8 24.0 28.0 29.7 29.9 30.2 30.1 29.6 30.0 30.5 32.1 30.7

Model
Averaging

8.2 14.9 17.6 18.0 18.2 18.3 17.4 16.9 18.9 17.0 17.2 17.7

x 10.8 15.3 18.1 18.2 18.4 18.3 18.4 18.0 18.8 18.2 19.1 18.3

Sparse MoE
(perfect id)

d=1 32.1 32.3 32.2 32.1 32.2 32.0 31.8 31.8 32.3 32.4 33.5 32.3

d=1 x 19.3 28.3 31.3 31.8 31.8 31.9 32.0 31.6 32.4 32.5 33.5 32.4

A.2. Ensembles of Predictive Models 169

Table A.6: Top 1 prediction accuracies [%] for the scenario containing all problems.
FF = feedforward.

Reset Stability period [#symbols]

Arch. Cfg. S W 1 5 10 50 100 200 400 600 800 1200 1600 2000

MoE 6.2 15.8 21.7 24.6 24.1 24.0 23.7 23.2 24.3 26.3 24.2 23.9

x 7.7 15.6 20.8 24.9 24.3 24.6 24.9 25.5 25.8 28.3 25.8 25.7

Sparse
MoE

d=1 5.0 13.1 19.1 24.1 23.5 23.8 23.6 24.1 24.7 27.8 24.1 23.5

d=2 5.6 14.8 21.0 25.0 24.3 24.7 24.7 25.0 25.3 27.7 26.0 24.7

d=3 5.8 15.4 21.5 25.2 24.5 24.7 24.9 24.9 25.3 27.8 25.8 24.8

d=4 5.9 15.7 21.7 25.3 24.5 24.9 24.6 24.9 25.5 27.9 25.9 25.1

d=5 6.0 15.8 21.7 25.3 24.5 24.7 24.7 24.7 25.5 27.7 25.9 25.1

d=6 6.0 15.8 21.7 25.2 24.6 24.7 24.7 24.7 25.5 27.6 25.8 25.4

d=7 6.1 15.9 21.7 25.2 24.6 24.8 24.6 24.7 25.2 27.3 26.0 25.3

d=8 6.1 15.8 21.8 25.2 24.4 24.8 24.7 24.6 25.5 27.2 25.9 25.1

d=9 6.2 15.9 21.8 25.0 24.4 24.6 24.5 24.5 25.2 27.1 25.8 25.1

d=10 6.2 15.8 21.8 25.0 24.4 24.6 24.6 24.3 25.2 27.0 25.4 25.2

d=11 6.2 15.8 21.8 25.0 24.5 24.5 24.7 24.3 24.8 26.9 25.2 25.1

d=12 6.2 15.8 21.8 24.9 24.1 24.5 24.6 24.4 24.7 26.5 24.9 24.9

d=13 6.2 15.8 21.7 24.8 24.2 24.3 24.2 24.0 24.8 26.6 24.7 24.9

d=14 6.3 15.8 21.7 24.7 24.2 24.1 24.0 23.5 24.7 26.5 24.7 24.2

d=1 x 5.1 13.0 18.4 23.8 23.2 23.6 23.7 24.4 24.9 28.0 24.3 23.8

d=2 x 6.0 14.6 20.1 24.7 24.1 24.5 24.7 25.2 25.5 28.2 26.3 24.9

d=3 x 6.6 15.1 20.6 24.9 24.2 24.6 24.9 25.3 25.7 28.2 26.2 25.2

d=4 x 6.9 15.4 20.7 24.9 24.3 24.6 25.0 25.4 25.9 28.2 26.4 25.3

d=5 x 7.1 15.5 20.8 25.0 24.3 24.7 25.0 25.4 25.8 28.2 26.3 25.4

d=6 x 7.2 15.5 20.8 24.9 24.3 24.6 25.0 25.4 25.8 28.2 26.2 25.5

d=7 x 7.4 15.6 20.8 24.9 24.3 24.6 24.9 25.5 25.8 28.2 26.2 25.5

d=8 x 7.4 15.6 20.9 24.9 24.3 24.6 24.9 25.5 25.8 28.3 26.2 25.6

d=9 x 7.5 15.6 20.8 24.9 24.3 24.6 24.9 25.5 25.8 28.2 26.1 25.6

d=10 x 7.6 15.6 20.8 24.9 24.3 24.6 24.9 25.5 25.8 28.2 26.2 25.5

d=11 x 7.6 15.6 20.8 24.9 24.3 24.6 24.9 25.5 25.8 28.2 26.2 25.5

d=12 x 7.7 15.6 20.8 24.9 24.3 24.6 24.9 25.5 25.8 28.4 26.2 25.6

d=13 x 7.7 15.6 20.8 24.9 24.3 24.6 24.9 25.5 25.8 28.4 26.2 25.6

d=14 x 7.7 15.6 20.8 24.9 24.3 24.6 24.9 25.5 25.8 28.4 26.2 25.6

continued on next page

170 Chapter A. Appendix: Additional Material

continuation from previous page

Reset Stability period [#symbols]

Arch. Cfg. S W 1 5 10 50 100 200 400 600 800 1200 1600 2000

Stacking LSTM 5.7 7.1 7.8 8.7 8.8 8.8 8.8 8.2 8.2 8.9 8.5 7.9

LSTM x 6.7 7.4 8.2 8.5 8.6 8.6 8.8 8.2 8.6 8.8 8.6 8.2

FF 5.7 5.7 5.7 5.6 5.5 5.7 5.9 5.6 5.6 6.0 5.6 6.4

FF x 5.7 5.7 5.7 5.6 5.5 5.7 5.9 5.6 5.6 6.0 5.6 6.4

Stacking
with Input

LSTM 6.4 6.6 6.6 6.4 6.4 6.4 6.8 6.5 6.6 7.0 6.8 7.1

LSTM x 6.4 6.9 6.9 6.5 6.4 6.4 6.8 6.5 6.6 7.1 6.8 7.1

FF 5.8 5.9 5.8 5.7 5.7 5.5 5.5 5.5 5.9 5.2 5.4 5.4

FF x 5.8 5.9 5.8 5.7 5.7 5.5 5.5 5.5 5.9 5.2 5.4 5.4

Online
Weighting

k=1 4.3 17.3 21.5 21.4 21.2 20.3 20.8 20.9 21.1 22.2 20.2 20.2

k=5 4.5 17.7 20.4 20.3 20.0 19.1 19.5 19.3 19.3 20.7 19.5 19.8

k=10 4.8 16.2 18.7 18.6 18.3 17.9 18.1 17.7 18.4 19.8 17.9 18.3

k=20 5.1 13.9 16.0 16.0 15.9 15.4 15.6 15.1 15.9 16.5 15.1 15.3

k=1 x 4.5 17.2 20.5 21.9 21.9 22.4 22.4 23.2 22.7 23.8 22.6 21.1

k=5 x 4.9 17.3 19.5 20.6 20.5 20.7 20.7 21.4 21.0 21.6 21.4 20.4

k=10 x 5.4 15.8 17.8 18.7 18.5 18.8 19.0 19.6 19.5 20.0 19.0 18.7

k=20 x 5.7 13.5 15.3 16.0 16.1 15.9 16.4 16.4 16.2 16.9 16.6 15.8

k=1 x 6.2 18.8 22.0 21.4 21.3 20.3 20.9 21.0 21.1 22.2 20.2 20.3

k=5 x 6.2 19.6 21.2 20.4 20.1 19.1 19.5 19.3 19.3 20.7 19.5 19.8

k=10 x 6.2 17.9 19.5 18.7 18.3 17.9 18.1 17.7 18.3 19.8 17.9 18.4

k=20 x 6.2 15.4 16.5 16.1 15.9 15.5 15.6 15.1 15.9 16.5 15.1 15.3

k=1 x x 6.2 18.6 21.0 21.9 22.1 22.2 22.4 23.2 22.7 23.9 22.6 21.2

k=5 x x 6.2 19.0 20.2 20.7 20.5 20.8 20.7 21.4 21.0 21.6 21.4 20.9

k=10 x x 6.2 17.4 18.5 18.8 18.8 18.9 19.0 19.6 19.5 20.0 19.0 18.7

k=20 x x 6.2 14.6 15.8 16.1 16.1 16.2 16.4 16.5 16.2 16.9 16.6 16.1

MSE 5.6 6.9 7.6 8.2 8.4 9.6 8.6 8.2 13.0 10.2 11.0 10.0

MSE x 5.0 7.2 7.8 8.3 8.6 10.1 8.9 8.8 14.3 11.2 10.3 10.8

MSE x 6.2 21.2 26.5 28.4 28.6 27.7 27.7 26.9 28.1 28.5 27.2 27.4

MSE x x 6.2 20.9 25.8 29.1 29.4 29.6 29.7 30.0 29.9 30.4 29.4 29.2

continued on next page

A.2. Ensembles of Predictive Models 171

continuation from previous page

Reset Stability period [#symbols]

Arch. Cfg. S W 1 5 10 50 100 200 400 600 800 1200 1600 2000

Model
Averaging

6.2 10.0 10.9 11.2 10.8 10.6 10.2 10.0 10.5 10.7 10.6 11.0

x 6.2 9.4 10.3 10.7 10.9 10.9 11.3 10.8 10.9 11.5 11.2 11.9

Sparse MoE
(perfect id)

d=1 32.6 32.6 32.6 32.6 32.6 32.5 32.4 32.5 32.8 32.9 32.8 31.8

d=1 x 20.6 28.7 30.8 32.0 32.0 32.2 32.5 32.7 33.1 33.2 32.9 32.0

172 Chapter A. Appendix: Additional Material

1 400 800 1200 1600 2000
Length of stability period [#symbols]

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pr
ed
ic
tio
n
ac
cu
ra
cy
[%
]

HMM

1 400 800 1200 1600 2000
Length of stability period [#symbols]

10

20

30

Pr
ed
ic
tio
n
ac
cu
ra
cy
[%
]

NLP

1 400 800 1200 1600 2000
Length of stability period [#symbols]

5

10

15

20

25

Pr
ed
ic
tio
n
ac
cu
ra
cy
[%
]

Hard

1 400 800 1200 1600 2000
Length of stability period [#symbols]

10

20

30

40

Pr
ed
ic
tio
n
ac
cu
ra
cy
[%
]

Easy

1 400 800 1200 1600 2000
Length of stability period [#symbols]

5

10

15

20

25

30

Pr
ed
ic
tio
n
ac
cu
ra
cy
[%
]

Bad

1 400 800 1200 1600 2000
Length of stability period [#symbols]

5

10

15

20

25

30

Pr
ed
ic
tio
n
ac
cu
ra
cy
[%
]

All

MoE
MoE, state rst
Sparse MoE, d=1
Sparse MoE, d=2
Sparse MoE, d=3
Sparse MoE, d=4
Sparse MoE, d=5
Sparse MoE, d=6
Sparse MoE, d=7
Sparse MoE, d=8
Sparse MoE, d=9
Sparse MoE, d=10
Sparse MoE, d=11
Sparse MoE, d=12
Sparse MoE, d=13
Sparse MoE, d=14
Sparse MoE, d=1, state rst
Sparse MoE, d=2, state rst
Sparse MoE, d=3, state rst
Sparse MoE, d=4, state rst
Sparse MoE, d=5, state rst

Sparse MoE, d=6, state rst
Sparse MoE, d=7, state rst
Sparse MoE, d=8, state rst
Sparse MoE, d=9, state rst
Sparse MoE, d=10, state rst
Sparse MoE, d=11, state rst
Sparse MoE, d=12, state rst
Sparse MoE, d=13, state rst
Sparse MoE, d=14, state rst
Stacking (LSTM)
Stacking (LSTM), state rst
Stacking w/ Input (LSTM)
Stacking w/ Input (LSTM), state rst
Stacking (FF)
Stacking (FF), state rst
Stacking w/ Input (FF)
Stacking w/ Input (FF), state rst
Onl. Wght. (Top 1)
Onl. Wght. (Top 1), weight rst
Onl. Wght. (Top 1), state rst
Onl. Wght. (Top 1), state & weight rst

Onl. Wght. (Top 5)
Onl. Wght. (Top 5), weight rst
Onl. Wght. (Top 5), state rst
Onl. Wght. (Top 5), state & weight rst
Onl. Wght. (Top 10)
Onl. Wght. (Top 10), weight rst
Onl. Wght. (Top 10), state rst
Onl. Wght. (Top 10), state & weight rst
Onl. Wght. (Top 20)
Onl. Wght. (Top 20), weight rst
Onl. Wght. (Top 20), state rst
Onl. Wght. (Top 20), state & weight rst
Onl. Wght. (MSE)
Onl. Wght. (MSE), weight rst
Onl. Wght. (MSE), state rst
Onl. Wght. (MSE), state & weight rst
Model Averaging
Model Averaging, state rst
Sparse MoE (perfect id), d=1
Sparse MoE (perfect id), d=1, state rst

Figure A.3: Top 1 prediction accuracies of the different ensemble architectures [63].
FF = feedforward.

A.3. Recognition of Unknown Radar Emitters 173

A.3 Recognition of Unknown Radar Emitters

This section contains the detailed values of the results presented in Chapter 8. The
methods are sorted by highest distinction or identification accuracy, respectively.

Table A.7: Distinction, acceptance, and rejection accuracies in the test cases 1a to 5a
at a sequence length of 1400 syllables.

Accuracy [%]

Case Method accdist accacpt accrej

1a

LSTM - Unknown Gate 100.00 100.00 100.00
MC - Unknown Gate 100.00 99.99 100.00
LSTM - Entropic Open Set 99.78 99.56 100.00
MC 97.81 95.62 100.00
LSTM - Cross-Entropy 96.06 92.12 100.00
LSTM - Deep Open Class. 51.84 3.67 100.00

2a

LSTM - Unknown Gate 100.00 100.00 –
MC - Unknown Gate 99.99 99.99 –
LSTM - Entropic Open Set 99.62 99.62 –
LSTM - Deep Open Class. 98.31 98.31 –
MC 95.62 95.62 –
LSTM - Cross-Entropy 93.13 93.13 –

3a

LSTM - Unknown Gate 66.67 100.00 33.33
MC - Unknown Gate 66.66 99.99 33.33
LSTM - Entropic Open Set 66.44 99.54 33.33
MC 64.51 95.62 33.40
LSTM - Cross-Entropy 62.62 92.91 32.32
LSTM - Deep Open Class. 50.31 4.38 96.24

4a

MC 94.04 95.62 92.47
LSTM - Entropic Open Set 70.23 99.53 40.93
LSTM - Cross-Entropy 70.06 92.24 47.88
LSTM - Unknown Gate 68.66 99.99 37.32
MC - Unknown Gate 67.41 99.99 34.82
LSTM - Deep Open Class. 49.97 0.72 99.21

5a

MC 75.57 95.62 55.52
LSTM - Entropic Open Set 62.27 99.60 24.95
LSTM - Unknown Gate 61.27 99.98 22.56
LSTM - Cross-Entropy 61.27 93.28 29.25
MC - Unknown Gate 60.44 99.98 20.89
LSTM - Deep Open Class. 50.00 0.00 100.00

174 Chapter A. Appendix: Additional Material

Table A.8: Distinction, acceptance, and rejection accuracies in the test cases 1b to 5b
at a sequence length of 1400 syllables.

Accuracy [%]

Case Method accdist accacpt accrej

1b

MC 77.93 98.80 57.05
MC - Unknown Gate 77.84 98.84 56.84
LSTM - Cross-Entropy 75.04 99.79 50.30
LSTM - Unknown Gate 75.00 99.86 50.15
LSTM - Entropic Open Set 72.75 96.46 49.04
LSTM - Deep Open Class. 71.22 65.31 77.14

2b

LSTM - Deep Open Class. 56.48 72.12 40.85
MC 56.44 98.75 14.12
MC - Unknown Gate 56.26 98.84 13.69
LSTM - Unknown Gate 50.15 99.79 0.51
LSTM - Cross-Entropy 50.11 99.95 0.26
LSTM - Entropic Open Set 48.83 95.84 1.82

3b

LSTM - Cross-Entropy 73.06 98.15 47.96
LSTM - Deep Open Class. 67.69 69.48 65.90
LSTM - Unknown Gate 65.12 99.92 30.31
MC 63.66 98.78 28.53
MC - Unknown Gate 63.63 98.85 28.42
LSTM - Entropic Open Set 60.20 96.07 24.34

4b

LSTM - Unknown Gate 79.19 99.77 58.62
LSTM - Deep Open Class. 77.99 65.43 90.56
MC 76.40 98.81 54.00
LSTM - Entropic Open Set 74.63 96.51 52.74
MC - Unknown Gate 73.94 98.84 49.04
LSTM - Cross-Entropy 67.35 98.45 36.24

5b

LSTM - Deep Open Class. 76.60 72.24 80.97
LSTM - Unknown Gate 73.04 99.86 46.22
MC 67.40 98.76 36.04
LSTM - Entropic Open Set 66.33 97.03 35.64
MC - Unknown Gate 65.77 98.84 32.69
LSTM - Cross-Entropy 62.69 99.86 25.52

A.3. Recognition of Unknown Radar Emitters 175

Table A.9: Distinction, acceptance, and rejection accuracies in the test cases 1a to 5a
at a sequence length of 1400 words.

Accuracy [%]

Case Method accdist accacpt accrej

1a

LSTM - Unknown Gate 100.00 100.00 100.00
MC - Unknown Gate 99.93 99.85 100.00
LSTM - Deep Open Class. 99.49 98.98 100.00
LSTM - Cross-Entropy 99.46 98.91 100.00
MC 99.02 98.05 100.00
LSTM - Entropic Open Set 97.66 95.32 100.00

2a

LSTM - Unknown Gate 100.00 100.00 –
MC - Unknown Gate 99.81 99.81 –
LSTM - Cross-Entropy 99.38 99.38 –
LSTM - Deep Open Class. 99.16 99.16 –
MC 98.05 98.05 –
LSTM - Entropic Open Set 96.35 96.35 –

3a

LSTM - Unknown Gate 66.67 100.00 33.33
MC - Unknown Gate 66.58 99.82 33.33
LSTM - Deep Open Class. 66.49 99.47 33.52
LSTM - Cross-Entropy 66.27 99.20 33.33
MC 65.69 98.05 33.33
LSTM - Entropic Open Set 64.35 95.36 33.33

4a

MC 96.49 98.05 94.92
LSTM - Entropic Open Set 95.42 95.17 95.68
LSTM - Unknown Gate 95.08 99.98 90.17
LSTM - Cross-Entropy 87.32 98.92 75.73
LSTM - Deep Open Class. 86.65 99.37 73.94
MC - Unknown Gate 81.22 99.82 62.61

5a

MC 77.50 98.05 56.95
LSTM - Unknown Gate 77.45 100.00 54.91
LSTM - Entropic Open Set 76.67 95.32 58.02
LSTM - Cross-Entropy 72.71 99.08 46.35
LSTM - Deep Open Class. 71.62 99.38 43.87
MC - Unknown Gate 68.71 99.84 37.57

176 Chapter A. Appendix: Additional Material

Table A.10: Distinction, acceptance, and rejection accuracies in the test cases 1b to
5b at a sequence length of 1400 words.

Accuracy [%]

Case Method accdist accacpt accrej

1b

LSTM - Cross-Entropy 87.61 91.10 84.11
MC 80.35 96.44 64.26
MC - Unknown Gate 79.99 96.70 63.28
LSTM - Entropic Open Set 77.29 84.89 69.70
LSTM - Deep Open Class. 75.06 99.52 50.59
LSTM - Unknown Gate 74.88 99.23 50.53

2b

LSTM - Cross-Entropy 80.99 94.59 67.38
LSTM - Entropic Open Set 62.71 86.61 38.81
MC 62.38 96.40 28.35
MC - Unknown Gate 61.63 96.70 26.56
LSTM - Deep Open Class. 50.45 99.54 1.36
LSTM - Unknown Gate 50.23 99.62 0.83

3b

LSTM - Entropic Open Set 72.93 86.22 59.64
LSTM - Cross-Entropy 71.84 92.55 51.12
MC - Unknown Gate 65.17 96.65 33.69
MC 64.86 96.36 33.37
LSTM - Deep Open Class. 62.46 99.79 25.13
LSTM - Unknown Gate 62.45 99.70 25.19

4b

LSTM - Cross-Entropy 91.29 91.11 91.47
MC 88.96 96.31 81.61
MC - Unknown Gate 88.90 96.55 81.25
LSTM - Unknown Gate 87.31 98.99 75.62
LSTM - Entropic Open Set 85.34 85.89 84.79
LSTM - Deep Open Class. 77.78 99.65 55.92

5b

LSTM - Cross-Entropy 82.72 93.17 72.28
LSTM - Entropic Open Set 79.81 86.13 73.48
MC - Unknown Gate 76.28 96.65 55.91
MC 75.92 96.35 55.48
LSTM - Unknown Gate 74.83 99.38 50.29
LSTM - Deep Open Class. 68.33 99.79 36.87

A.3. Recognition of Unknown Radar Emitters 177

Table A.11: Identification accuracies in the test cases 1a to 5a at a sequence length
of 1400 syllables.

Case Method accid [%]

1a

MC 90.78
LSTM - Cross-Entropy 69.35
LSTM - Entropic Open Set 62.51
LSTM - Deep Open Class. 0.76

2a

MC 90.80
LSTM - Cross-Entropy 70.60
LSTM - Entropic Open Set 55.14
LSTM - Deep Open Class. 32.56

3a

MC 90.81
LSTM - Cross-Entropy 70.50
LSTM - Entropic Open Set 56.63
LSTM - Deep Open Class. 1.59

4a

MC 90.81
LSTM - Cross-Entropy 69.54
LSTM - Entropic Open Set 62.75
LSTM - Deep Open Class. 0.72

5a

MC 90.83
LSTM - Cross-Entropy 70.24
LSTM - Entropic Open Set 61.62
LSTM - Deep Open Class. 0.00

178 Chapter A. Appendix: Additional Material

Table A.12: Identification accuracies in the test cases 1b to 5b at a sequence length
of 1400 syllables.

Case Method accid [%]

1b

LSTM - Entropic Open Set 100.00
LSTM - Cross-Entropy 99.70
MC 99.69
LSTM - Deep Open Class. 64.87

2b

LSTM - Entropic Open Set 100.00
LSTM - Cross-Entropy 99.69
MC 99.65
LSTM - Deep Open Class. 68.06

3b

LSTM - Entropic Open Set 100.00
LSTM - Cross-Entropy 99.80
MC 99.66
LSTM - Deep Open Class. 69.34

4b

LSTM - Entropic Open Set 100.00
MC 99.67
LSTM - Cross-Entropy 99.66
LSTM - Deep Open Class. 65.41

5b

LSTM - Entropic Open Set 100.00
LSTM - Cross-Entropy 99.70
MC 99.68
LSTM - Deep Open Class. 71.64

A.3. Recognition of Unknown Radar Emitters 179

Table A.13: Identification accuracies in the test cases 1a to 5a at a sequence length
of 1400 words.

Case Method accid [%]

1a

LSTM - Cross-Entropy 95.69
MC 91.65
LSTM - Entropic Open Set 61.94
LSTM - Deep Open Class. 41.89

2a

LSTM - Cross-Entropy 95.18
MC 91.58
LSTM - Entropic Open Set 62.53
LSTM - Deep Open Class. 38.57

3a

LSTM - Cross-Entropy 96.38
MC 91.54
LSTM - Entropic Open Set 62.30
LSTM - Deep Open Class. 39.33

4a

LSTM - Cross-Entropy 96.30
MC 91.47
LSTM - Entropic Open Set 62.28
LSTM - Deep Open Class. 41.33

5a

LSTM - Cross-Entropy 96.52
MC 91.53
LSTM - Entropic Open Set 62.14
LSTM - Deep Open Class. 44.07

180 Chapter A. Appendix: Additional Material

Table A.14: Identification accuracies in the test cases 1b to 5b at a sequence length
of 1400 words.

Case Method accid [%]

1b

LSTM - Entropic Open Set 99.86
MC 99.07
LSTM - Cross-Entropy 95.39
LSTM - Deep Open Class. 50.03

2b

LSTM - Entropic Open Set 99.81
MC 99.16
LSTM - Cross-Entropy 87.71
LSTM - Deep Open Class. 50.14

3b

LSTM - Entropic Open Set 99.79
MC 99.20
LSTM - Cross-Entropy 95.00
LSTM - Deep Open Class. 50.17

4b

LSTM - Entropic Open Set 99.81
MC 99.41
LSTM - Cross-Entropy 96.32
LSTM - Deep Open Class. 50.06

5b

LSTM - Entropic Open Set 99.68
MC 98.94
LSTM - Cross-Entropy 97.05
LSTM - Deep Open Class. 50.14

List of Acronyms

AESA Active electronically scanned array

Amp Amplitude

AOA Angle of arrival

BW Bandwidth

CBOW Continous bag-of-words

COMINT Communication intelligence

CPI Coherent processing interval

DES Discrete event system

ELINT Electronic intelligence

EM Expectation-maximisation

EW Electronic warfare

FSM Finite state machine

GRU Gated Recurrent Unit

HMM Hidden Markov model

HPRF High pulse repetition frequency

LSTM Long Short-Term Memory

MC Markov chain

MoE Mixture of Experts

MOP Modulation on pulse

MPRF Medium pulse repetition frequency

MSE Mean squared error

MTI Moving target indication

NLP Natural language processing

OOM Observable operator model

PDW Pulse descriptor word

PRF Pulse repetition frequency

181

182 LIST OF ACRONYMS

PRI Pulse repetition interval

PSR Predictive state representation

PW Pulse width

QoS Quality of Service

Radar Radio detection and ranging

ReLU Rectified linear unit

RF Radio frequency

RNN Recurrent neural network

SPiCe Sequence Prediction Challenge

TOA Time of arrival

List of Symbols

A Transition probability matrix of a hidden Markov model (HMM)

A Observable operator model (OOM)

A Set of arcs in a Petri net

b Bias

B Emission probability matrix of an HMM

BS Signal bandwidth

Bt Batch of symbols at index t

c Speed of light, c = 299 792 458 m s−1

χ Empty word

C Number of classes

D System-dynamics matrix of a predictive state representation (PSR)

∆R Range resolution

η Learning rate

E Error

E Expected value

E Set of emitters

E Set of experts

f Activation function in a neural network

fX State transition function

fT Transition function of a Petri net

fd Doppler shift

F Set of events in a finite state machine (FSM)

G Formal grammar

Gp Petri net graph

Gm
P Marked Petri net graph

H Deterministic FSM

183

184 LIST OF SYMBOLS

H Set of core histories in PSRs

H Cross-entropy loss

id Identity matrix

i, j General indices

k Variable for top k accuracy

K Set of known emitters

l Modelling level, l ∈ {letters, syllables, words, commands, functions}
λ HMM

µ OOM matrix

N Set of nonterminal symbols

ω Symbol

Ωl Set of symbols at modelling level l

π Permutation

π Probability distribution of the initial state of an HMM

P Matrix or vector of probability distributions

P Set of production rules of a formal grammar

P(E) Power set of E

P Set of places in a Petri net

P, Q Probability distributions

P̂ Estimated probability distribution

Q Set of core tests in PSRs

R Range

Ru Maximum unambiguous range

s Input sequence

σ(x) Sigmoid function

S Start symbol of a formal grammar

S Set of sequence lengths

S Scenario

Σ Set of terminal symbols of a formal grammar

t Index in a time series

te, tr Emission and reception time

τv Linear operators of a OOM

T Operator in HMM view

T Set of transitions of a Petri net

LIST OF SYMBOLS 185

Tk Top k elements

u Weight

U Set of unknown unknown emitters

V Stream of one-hot encoded vectors

V Set of known unknown emitters

vr Relative velocity

vu Maximum unambiguous velocity

vw Word vector of word w

w Word

W Weight matrix

x Input vector

x Marking of the places in a Petri net

X Set of states

Xm Set of accepting states

{Xt}t∈T Family of random variables indexed by T
y Label, i.e. the desired output

ŷ Estimated label

Y Set of labels

Ŷ Set of estimated labels

Y Alphabet of the observations

{Yt} Set of emissions of an HMM

List of Figures

1.1 The evolution of radars from non-agile to agile. 1

2.1 The traditional ELINT processing chain for emitter identification. 10
2.2 Visualisation of the waveform parameters TOA, RF, PW, and PRI. 10
2.3 Schematic representation of the deinterleaving process. 11
2.4 Comparison of the delta-T and the complex delta-T histogram for find-

ing possible pulse repetition intervals (PRIs) in a stream of PDWs. . . . 12
2.5 Examples of different PRI modulation types. 13
2.6 The processing chain for emitter identification and emission prediction

proposed in this thesis. 15

3.1 Visualisation of the Chomsky hierarchy for classes of formal grammars. 18
3.2 A state diagram of an FSM. 20
3.3 Example of a Petri net graph in different states. 23
3.4 The relationship between Petri net languages and the Chomsky hierarchy. 23
3.5 Example of an MC that describes the transition probabilities of the

weather between “sunny”, “cloudy”, and “rainy”. 25
3.6 Example of an HMM based on the MC from Figure 3.5. 26
3.7 The HMM corresponding to the stochastic grammar defined in (3.6) to

(3.11). 30
3.8 The HMM view of the model trajectory as a sequence of states and the

OOM view as a sequence of linear operators [88]. 31
3.9 A simple feedforward neural network with one hidden layer. 37
3.10 Examples for activation functions. 38
3.11 A function and its gradient. 40
3.12 RNNs have connections which form a feedback from their own output

to their input [94]. 43
3.13 An RNN unrolled over time [94]. 43
3.14 Internal structure of an LSTM cell, unrolled over three time steps [94]. . 44
3.15 Internal structure of a Gated Recurrent Unit (GRU) cell, unrolled over

three time steps. 46

4.1 Hierarchical model of the emissions of a multifunction radar. 47
4.2 Examples for the numerical representation of words using one-hot en-

coding and word embedding. 49

187

188 LIST OF FIGURES

4.3 The architectures for learning word embeddings contained in word2vec. 50
4.4 Example for modelling the different PRI levels as syllables [60]. 51
4.5 The adapted hierarchical emission model. 52

5.1 General architecture of the networks for prediction. 63
5.2 Prediction accuracies of the different methods. 66
5.3 With a missing or additional symbol, at least one or two prediction

errors, respectively, are expected to be made. 68
5.4 Comparison of the impact of missing and additional syllables and words

on the top 1 accuracies for the Quality of Service (QoS) radar. 71
5.5 Course of training and validation loss for syllables of the QoS radar

with word embedding and one-hot encoding [60]. 72

6.1 The input to the identification method is a stream of sequences that
consist of deinterleaved pulses from potentially different emitters. . . . 75

6.2 Symbols are extracted from the deinterleaved PDW sequences, which
are then input to the identification method. 78

6.3 General architecture of the networks for identification. 79
6.4 Identification accuracies of the different methods on the test data of all

emitters. 83
6.5 Confusion matrices of the LSTMscen and the MC at a sequence length

of 1400 syllables. 84
6.6 Confusion matrices at different sequence lengths of the LSTMrand for

words [61]. 85
6.7 Confusion matrices at different sequence lengths of the MC for words. . 85
6.8 Transition matrices for the commands of the different emitter types. . . 86
6.9 Identification accuracies of the LSTMscen, the MC, and the MCε with

missing or additional symbols. 89
6.10 Identification accuracies of the different MC variants with missing and

additional symbols. 91

7.1 Mixture of Experts [63]. 95
7.2 Sparsely-Gated Mixture of Experts [63]. 96
7.3 The two variants of the stacking architecture [63]. 97
7.4 Online Accuracy-Based Weighting [63]. 98
7.5 Model Averaging [63]. 98
7.6 The general architecture of the experts [63]. 100
7.7 The general architecture of the feedforward combiner [63]. 102
7.8 Top 1 identification accuracies of the gating networks used in the MoE

variants for the different scenarios [63]. 106
7.9 Top 1 prediction accuracies of the MoE variants and the mean squared

error (MSE)-based weighting [63]. 107
7.10 Top 1 prediction accuracies of the stacking variants, the online weight-

ing based on top k accuracy, the model averaging, and the sparsely-
gated MoE with perfect identification [63]. 108

LIST OF FIGURES 189

7.11 Comparison of the top 1 prediction accuracies of the different stacking
variants for the hard scenario [63]. 109

7.12 Top 1 prediction accuracies of the MoE architecture for the bad and all
scenario with and without state reset [63]. 110

7.13 Top 1 prediction accuracy of the sparsely-gated MoE with d = 1 for the
easy scenario with and without state reset [63]. 110

7.14 Prediction accuracies of the emitter models on the data of all emitters [64].112
7.15 Top 1 prediction accuracy of the different ensemble architectures with

MC experts for syllables [64]. 113
7.16 Top 1 prediction accuracy of the different ensemble architectures with

LSTM experts for words [64]. 115
7.17 Top 1 prediction accuracy of the different ensemble architectures with

MC experts for syllables and 20 % corrupted data at a sequence length
of 1400 symbols [64]. 117

7.18 Top 1 prediction accuracy of the different ensemble architectures with
LSTM experts for words and 20 % corrupted data at a sequence length
of 1400 symbols [64]. 117

8.1 Dependency of the distinction accuracy on the threshold at a sequence
length of 1400 symbols [65]. 135

8.2 Mean distinction accuracies of the best configurations [65]. 136
8.3 Comparison of the mean identification accuracies in the test cases ‘a’

with training case 0 or I at a sequence length of 1400 symbols [65]. . . . 137
8.4 Dependency of the identification accuracy on the threshold at a se-

quence length of 1400 symbols [65]. 138
8.5 Mean identification accuracies of the best configurations [65]. 138
8.6 Rejection and acceptance accuracies for the different test cases at a se-

quence length of 1400 symbols [65]. 139
8.7 Rejection accuracies for the unknown emitters in the test cases ‘a’ at a

sequence length of 1400 syllables [65]. 140
8.8 Rejection accuracies for the emitters UNKs, Unk-1, Unk-2, Unk-3, and

Unk-4 in the test cases ‘b’ at a sequence length of 1400 syllables [65]. . . 141
8.9 Rejection accuracies for the unknown emitters in the test cases ‘a’ at a

sequence length of 1400 words [65]. 142
8.10 Rejection accuracies for the emitters UNKs, Unk-1, Unk-2, Unk-3, and

Unk-4 in the test cases ‘b’ at a sequence length of 1400 words [65]. . . . 143
8.11 Rejection accuracies for the Rules-v2 emitter at a sequence length of 1400

words or syllables [65]. 144
8.12 Mean distinction accuracies of the best configurations with 20 % miss-

ing or additional syllables, respectively [65]. 148
8.13 Mean distinction accuracies of the best configurations with 20 % miss-

ing or additional words, respectively [65]. 148
8.14 Mean identification accuracies of the best configurations with 20 % miss-

ing or additional syllables, respectively [65]. 149

190 LIST OF FIGURES

8.15 Mean identification accuracies of the best configurations with 20 % miss-
ing or additional words, respectively [65]. 149

A.1 Confusion matrices of the LSTMscen at different sequence lengths for
syllables. 157

A.2 Confusion matrices of the MC at different sequence lengths for syllables. 158
A.3 Top 1 prediction accuracies of the different ensemble architectures [63]. 172

List of Tables

2.1 Purpose of different PRI modulation types [1]. 13
2.2 Simplified example of an emitter mode database. 14

3.1 Chomsky hierarchy of formal grammars with suitable models. 20

4.1 Possible combinations of words of the “Mercury” emitter and the con-
nection to commands [20]. 48

4.2 Number of symbols used by the different resource management methods. 53
4.3 Letters of the example radar. 54
4.4 Syllables of the example radar. 54
4.5 Words and commands of the example radar. 55
4.6 word2vec parameters used. Values for the QoS and Rules-v2 radars are

shown before and those for the Rules-v1 after the slash. Batch size and
skip window are the same for all. 56

5.1 Training, validation, and test set per emitter type. 61
5.2 Amount of data in the sets of each emitter. 62
5.3 LSTM parameters for the different modelling levels of the example radars. 63
5.4 Prediction accuracies [%] of the MCs, the LSTMs, and the repeating

strategy. The best results are marked in bold. 67
5.5 Prediction accuracies [%] of the MCs, the LSTMs, and the strategy that

predicts the most frequent symbols. The best results are marked in bold. 68
5.6 Mean ± standard deviation of the relative top 1 prediction accuracy

accrel(E) [%] with missing or additional syllables. 69
5.7 Mean ± standard deviation of the relative top 1 prediction accuracy

accrel(E) [%] with missing or additional words. 70

6.1 ”Overlap matrix” for syllables [%]. Rv1 = Rules-v1, Rv2 = Rules-v2. . . 78
6.2 ”Overlap matrix” for words [%]. Rv1 = Rules-v1, Rv2 = Rules-v2. 78
6.3 LSTM parameters for the different modelling levels and network types. 79
6.4 Identification accuracies [%] of the MCs and LSTMs at different se-

quence lengths for selected modelling levels. 84
6.5 Mean ± standard deviation of the relative top 1 identification accuracy

accrel(S) [%] with missing or additional syllables. 88

191

192 LIST OF TABLES

6.6 Mean ± standard deviation of the relative top 1 identification accuracy
accrel(S) [%] with missing or additional words. 90

7.1 Overview of the problems defined in Sequence Prediction Challenge
(SPiCe). 99

7.2 Definition of the scenarios as subsets of the problems. 99
7.3 LSTM parameters of the experts. 100
7.4 LSTM parameters of the gating networks. 101
7.5 Parameters of the LSTM combiner. 103
7.6 Parameters of the feedforward combiner. 104
7.7 Top 1 prediction accuracy [%] of the ensemble architectures in different

configurations with MC experts for syllables. 114
7.8 Top 1 prediction accuracy [%] of the ensemble architectures in different

configurations with LSTM experts for words. 116

8.1 Characterisation of classification, anomaly detection, and open-set re-
cognition [55]. 121

8.2 Training cases employed for unknown emitter recognition. 125
8.3 Overview of the methods employed for unknown emitter recognition. . 127
8.4 Parameters of the LSTM architecture with cross-entropy loss. 128
8.5 Parameters of the LSTM architecture with entropic open-set loss. 129
8.6 Parameters of the LSTM architecture with deep open classification loss. 130
8.7 Parameters of the LSTM architecture employed as unknown gate. 130
8.8 Test cases for classifiers trained with cases 0 or I. 132
8.9 Test cases for classifiers trained with cases II to V. 132
8.10 Configurations (training case, δ) that achieve the highest distinction ac-

curacies, averaged over the test cases 1a to 5a and 1b to 5b, respectively. 134
8.11 Configurations (training case, δ) that achieve the highest identification

accuracies, averaged over the test cases 1a to 5a and 1b to 5b, respectively.137
8.12 Evaluation matrices at a sequence length of 1400 syllables. 145
8.13 Configurations (training case, δ) that achieve the highest mean of dis-

tinction and identification accuracy, averaged over the test cases 1a to 5a
and 1b to 5b, respectively. 146

8.14 Evaluation matrices at a sequence length of 1400 words. 146

A.1 Top 1 prediction accuracies [%] for the HMM scenario. 159
A.2 Top 1 prediction accuracies [%] for the NLP scenario. 161
A.3 Top 1 prediction accuracies [%] for the hard scenario. 163
A.4 Top 1 prediction accuracies [%] for the easy scenario. 165
A.5 Top 1 prediction accuracies [%] for the bad scenario. 167
A.6 Top 1 prediction accuracies [%] for the scenario containing all problems. 169
A.7 Distinction, acceptance, and rejection accuracies in the test cases 1a to

5a at a sequence length of 1400 syllables. 173
A.8 Distinction, acceptance, and rejection accuracies in the test cases 1b to

5b at a sequence length of 1400 syllables. 174

LIST OF TABLES 193

A.9 Distinction, acceptance, and rejection accuracies in the test cases 1a to
5a at a sequence length of 1400 words. 175

A.10 Distinction, acceptance, and rejection accuracies in the test cases 1b to
5b at a sequence length of 1400 words. 176

A.11 Identification accuracies in the test cases 1a to 5a at a sequence length
of 1400 syllables. 177

A.12 Identification accuracies in the test cases 1b to 5b at a sequence length
of 1400 syllables. 178

A.13 Identification accuracies in the test cases 1a to 5a at a sequence length
of 1400 words. 179

A.14 Identification accuracies in the test cases 1b to 5b at a sequence length
of 1400 words. 180

List of Publications

Published

S. Apfeld, A. Charlish, and W. Koch, “An Adaptive Receiver Search Strategy for Elec-
tronic Support,” Sensor Signal Processing for Defence (SSPD), 2016

——, “Quality of Service Resource Management for Search Strategy Design in Elec-
tronic Support,” Sensor Signal Processing for Defence (SSPD), 2017

F. Katsilieris, S. Apfeld, and A. Charlish, “Correlation based classification of complex
PRI modulation types,” Sensor Signal Processing for Defence (SSPD), 2017

S. Apfeld, A. Charlish, and G. Ascheid, “Modelling, Learning and Prediction of Com-
plex Radar Emitter Behaviour,” IEEE International Conference on Machine Learning and
Applications, 2019

——, “Identification of Radar Emitter Type with Recurrent Neural Networks,” Sensor
Signal Processing for Defence (SSPD), 2020

——, “The Value of Memory: Markov Chain versus Long Short-Term Memory for
Electronic Intelligence,” IEEE Radar Conference, 2021

S. Apfeld and A. Charlish, “Recognition of Unknown Radar Emitters with Machine
Learning,” IEEE Transactions on Aerospace and Electronic Systems (Early Access), 2021

Accepted for Publication

S. Apfeld, A. Charlish, and G. Ascheid, “Ensembles of Long Short-Term Memory
Experts for Streaming Data with Sudden Concept Drift,” IEEE International Conference
on Machine Learning and Applications (accepted), 2021

Under Review

S. Apfeld and A. Charlish, “Ensembles of Predictive Radar Models for Electronic In-
telligence,” IEEE Radar Conference (under review), 2022

195

Bibliography

[1] R. Wiley, ELINT: The Interception and Analysis of Radar Signals. Artech House,
2006.

[2] S. P. Sira, Y. Li, A. Papandreou-Suppappola, D. Morrell, D. Cochran, and
M. Rangaswamy, “Waveform-agile sensing for tracking,” IEEE Signal Processing
Magazine, vol. 26, no. 1, pp. 53–64, 2009.

[3] A. O. Hero and D. Cochran, “Sensor management: Past, present, and future,”
IEEE Sensors Journal, vol. 11, no. 12, pp. 3064–3075, 2011.

[4] A. Charlish, “Autonomous agents for multi-function radar resource manage-
ment,” Ph.D. dissertation, University College London, 2011.

[5] F. Katsilieris, “Sensor management for surveillance and tracking,” Ph.D. disser-
tation, TU Delft, 2015.

[6] A. Charlish and F. Hoffmann, “Cognitive radar management,” in Novel Radar
Techniques and Applications Volume 2: Waveform Diversity and Cognitive Radar, and
Target Tracking and Data Fusion. Institution of Engineering and Technology,
2017, pp. 157–193.

[7] M. Skolnik, Radar Handbook, 3rd ed. McGraw-Hill, 2008.

[8] M. A. Richards, J. A. Scheer, and W. A. Holm, Principles of Modern Radar: Basic
principles. Institution of Engineering and Technology, 2010.

[9] T. M. Mitchell, Machine Learning. McGraw-Hill, Inc., 1997.

[10] C. Cassandras and S. Lafortune, Introduction to Discrete Event Systems. Springer,
2008.

[11] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Compu-
tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[12] N. Visnevski, V. Krishnamurthy, S. Haykin, B. Currie, F. Dilkes, and P. Lavoie,
“Multi-Function Radar Emitter Modelling: A Stochastic Discrete Event System
Approach,” IEEE Conference on Decision and Control, 2003.

197

198 BIBLIOGRAPHY

[13] N. A. Visnevski, F. A. Dilkes, S. Haykin, and V. Krishnamurthy, “Non-self-
embedding context-free grammars for multi-function radar modeling - elec-
tronic warfare application,” IEEE International Radar Conference, 2005.

[14] N. A. Visnevski, S. Haykin, V. Krishnamurthy, F. A. Dilkes, and P. Lavoie, “Hid-
den Markov models for radar pulse train analysis in electronic warfare,” IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2005.

[15] N. A. Visnevski, “Syntactic Modeling of Multi-Function Radars,” Ph.D. disser-
tation, McMaster University, 2005.

[16] I. Arasaratnam, S. Haykin, T. Kirubarajan, and F. Dilkes, “Tracking the Mode of
Operation of Multi-Function Radars,” IEEE Conference on Radar, 2006.

[17] I. Arasaratnam, “Tracking the mode of operation of multi-function radars,”
Master’s thesis, McMaster University, 2006.

[18] N. A. Visnevski, V. Krishnamurthy, A. Wang, and S. Haykin, “Syntactic mod-
eling and signal processing of multifunction radars: A stochastic context-free
grammar approach,” Proceedings of the IEEE, vol. 95, no. 5, pp. 1000–1025, 2007.

[19] A. Wang and V. Krishnamurthy, “Threat estimation of multifunction radars:
Modeling and statistical signal processing of stochastic context free grammars,”
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2007.

[20] ——, “Signal Interpretation of Multifunction Radars: Modeling and Statistical
Signal Processing With Stochastic Context Free Grammar,” IEEE Transactions on
Signal Processing, vol. 56, no. 3, pp. 1106–1119, 2008.

[21] ——, “Modeling and interpretation of multifunction radars with stochastic
grammar,” IEEE Aerospace Conference, 2008.

[22] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A Neural Probabilistic Lan-
guage Model,” Journal of Machine Learning Research, vol. 3, pp. 1137–1155, 2003.

[23] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word
Representations in Vector Space,” International Conference on Learning Represent-
ations (ICLR), 2013.

[24] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed Repres-
entations of Words and Phrases and their Compositionality,” Advances in Neural
Information Processing Systems (NIPS), 2013.

[25] T. Mikolov, W.-T. Yih, and G. Zweig, “Linguistic Regularities in Continuous
Space Word Representations,” Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, 2013.

BIBLIOGRAPHY 199

[26] J. Pennington, R. Socher, and C. Manning, “GloVe: Global Vectors for Word
Representation,” Conference on Empirical Methods in Natural Language Processing,
2014.

[27] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching Word Vectors
with Subword Information,” Transactions of the Association for Computational Lin-
guistics, vol. 5, pp. 135–146, 2017.

[28] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations,” North American
Chapter of the Association for Computational Linguistics (NAACL), 2018.

[29] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining Concept-Drifting Data Streams
Using Ensemble Classifier,” ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2003.

[30] R. Elwell and R. Polikar, “Incremental learning of concept drift in nonstationary
environments,” IEEE Transactions on Neural Networks, vol. 22, no. 10, pp. 1517–
1531, 2011.

[31] D. Brzezinski and J. Stefanowski, “Reacting to different types of concept drift:
The accuracy updated ensemble algorithm,” IEEE Transactions on Neural Net-
works and Learning Systems, vol. 25, no. 1, pp. 81–94, 2014.

[32] Y. Lu, Y.-M. Cheung, and Y. Y. Tang, “Adaptive Chunk-Based Dynamic
Weighted Majority for Imbalanced Data Streams With Concept Drift,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 31, no. 8, 2020.

[33] F. Hinder, A. Artelt, and B. Hammer, “Towards non-parametric drift detection
via Dynamic Adapting Window Independence Drift Detection (DAWIDD),” In-
ternational Conference on Machine Learning (ICML), 2020.

[34] J. Ou, Y. Chen, F. Zhao, J. Liu, and S. Xiao, “Novel Approach for the Recognition
and Prediction of Multi-Function Radar Behaviours Based on Predictive State
Representations,” Sensors, vol. 17, no. 3, mar 2017.

[35] M. L. Littman, R. S. Sutton, and S. Singh, “Predictive Representations of State,”
Advances in Neural Information Processing Systems (NIPS), 2001.

[36] Z.-M. Liu and P. S. Yu, “Classification, Denoising, and Deinterleaving of Pulse
Streams With Recurrent Neural Networks,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 55, no. 4, pp. 1624–1639, 2019.

[37] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation,” Conference on Empirical
Methods in Natural Language Processing, 2014.

200 BIBLIOGRAPHY

[38] S. A. Shapero, A. B. Dill, and B. O. Odelowo, “Identifying Agile Waveforms with
Neural Networks,” in International Conference on Information Fusion (FUSION),
2018.

[39] P. Notaro, M. Paschali, C. Hopke, D. Wittmann, and N. Navab, “Radar Emit-
ter Classification with Attribute-specific Recurrent Neural Networks,” pre-print
arXiv: 1911.07683, 2019.

[40] Z. M. Liu, “Recognition of Multifunction Radars Via Hierarchically Mining and
Exploiting Pulse Group Patterns,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 56, no. 6, pp. 4659–4672, 2020.

[41] X. Li, Z. Liu, Z. Huang, and W. Liu, “Radar Emitter Classification with
Attention-Based Multi-RNNs,” IEEE Communications Letters, vol. 24, no. 9, pp.
2000–2004, 2020.

[42] W. Zhang, X. Yin, X. Cao, Y. Xie, and W. Nie, “Radar Emitter Identification Using
Hidden Markov Model,” IEEE Advanced Information Management, Communicates,
Electronic and Automation Control Conference, 2019.

[43] L. R. Rabiner and B. H. Juang, “An introduction to hidden Markov models,”
IEEE ASSP Magazine, vol. 3, no. 1, pp. 4–16, 1986.

[44] L. Rokach, “Ensemble-based classifiers,” Artificial Intelligence Review, vol. 33, pp.
1–39, 2010.

[45] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive Mixtures
of Local Experts,” Neural Computation, vol. 3, no. 1, pp. 79–87, 1991.

[46] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean,
“Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts
Layer,” International Conference on Learning Representations (ICLR), 2017.

[47] D. H. Wolpert, “Stacked Generalization,” Neural Networks, vol. 5, no. 2, pp. 241–
259, 1992.

[48] G. Giacinto and F. Roli, “Methods for dynamic classifier selection,” International
Conference on Image Analysis and Processing, 1999.

[49] A. H. Ko, R. Sabourin, and A. S. Britto, “From dynamic classifier selection to
dynamic ensemble selection,” Pattern Recognition, vol. 41, no. 5, 2008.

[50] B. Balle, F. M. Luque, A. Quattoni, and S. Verwer, “Results of the Sequence
PredIction ChallengE (SPiCe): a Competition on Learning the Next Symbol in a
Sequence,” International Conference on Grammatical Inference, 2016.

[51] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult, “Toward Open
Set Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 35, no. 7, pp. 1757–1772, 2013.

BIBLIOGRAPHY 201

[52] W. J. Scheirer, L. P. Jain, and T. E. Boult, “Probability Models for Open Set Re-
cognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36,
no. 11, pp. 2317–2324, 2014.

[53] A. Bendale and T. E. Boult, “Towards Open Set Deep Networks,” IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 1563–1572, 2016.

[54] L. Shu, H. Xu, and B. Liu, “DOC: Deep Open Classification of Text Documents,”
Conference on Empirical Methods in Natural Language Processing, 2017.

[55] D. O. Cardoso, J. Gama, and F. M. França, “Weightless neural networks for open
set recognition,” Machine Learning, vol. 106, no. 9-10, pp. 1547–1567, 2017.

[56] A. R. Dhamija, M. Günther, and T. E. Boult, “Reducing Network Agnostopho-
bia,” Neural Information Processing Systems (NeurIPS), 2018.

[57] L. Anjaneyulu, N. Murthy, and N. Sarma, “Radar emitter classification using
self-organising neural network models,” International Conference of Recent Ad-
vances in Microwave Theory and Applications, 2008.

[58] P. Fitch, “Pulse signal and source identification using fuzzy-neural techniques,”
IEEE Aerospace and Electronic Systems Magazine, vol. 28, no. 1, pp. 22–33, 2013.

[59] L. S. Kim, H. B. Bae, R. M. Kil, and C. H. Jo, “Classification of the trained and
untrained emitter types based on class probability output networks,” Neurocom-
puting, vol. 248, no. C, pp. 67–75, jul 2017.

[60] S. Apfeld, A. Charlish, and G. Ascheid, “Modelling, Learning and Prediction
of Complex Radar Emitter Behaviour,” IEEE International Conference on Machine
Learning and Applications, 2019.

[61] ——, “Identification of Radar Emitter Type with Recurrent Neural Networks,”
Sensor Signal Processing for Defence (SSPD), 2020.

[62] ——, “The Value of Memory: Markov Chain versus Long Short-Term Memory
for Electronic Intelligence,” IEEE Radar Conference, 2021.

[63] ——, “Ensembles of Long Short-Term Memory Experts for Streaming Data with
Sudden Concept Drift,” IEEE International Conference on Machine Learning and
Applications (accepted), 2021.

[64] S. Apfeld and A. Charlish, “Ensembles of Predictive Radar Models for Electronic
Intelligence,” IEEE Radar Conference (under review), 2022.

[65] ——, “Recognition of Unknown Radar Emitters with Machine Learning,” IEEE
Transactions on Aerospace and Electronic Systems (Early Access), 2021.

[66] S. Apfeld, A. Charlish, and W. Koch, “An Adaptive Receiver Search Strategy for
Electronic Support,” Sensor Signal Processing for Defence (SSPD), 2016.

202 BIBLIOGRAPHY

[67] ——, “Quality of Service Resource Management for Search Strategy Design in
Electronic Support,” Sensor Signal Processing for Defence (SSPD), 2017.

[68] F. Katsilieris, S. Apfeld, and A. Charlish, “Correlation based classification of
complex PRI modulation types,” Sensor Signal Processing for Defence (SSPD),
2017.

[69] A. Charlish and F. Katsilieris, “Array radar resource management,” in Novel
Radar Techniques and Applications Volume 1: Real Aperture Array Radar, Imaging
Radar, and Passive and Multistatic Radar. Institution of Engineering and Techno-
logy, 2017, pp. 135–171.

[70] B. Dutertre, “Dynamic Scan Scheduling,” IEEE Real-Time Systems Symposium,
2002.

[71] I. V. L. Clarkson, E. D. El-Mahassni, and S. D. Howard, “Sensor scheduling
in electronic support using Markov chains,” IEE Proceedings - Radar Sonar and
Navigation, vol. 153, no. 4, pp. 325–332, 2006.

[72] I. V. L. Clarkson, “Optimisation of Periodic Search Strategies for Electronic Sup-
port,” IEEE Transactions on Aerospace and Electronic Systems, vol. 47, no. 3, pp.
1170–1784, 2011.

[73] C. Winsor and E. J. Hughes, “Optimisation and evaluation of receiver search
strategies for electronic support,” IET Radar, Sonar & Navigation, vol. 6, no. 4,
2012.

[74] K. Nishiguchi and M. Kobayashi, “Improved algorithm for estimating pulse re-
petition intervals,” IEEE Transactions on Aerospace and Electronic Systems, vol. 36,
no. 2, pp. 407–421, 2000.

[75] C. Davies and P. Hollands, “Automatic processing for ESM,” IEE Proceedings F
(Communications, Radar and Signal Processing), vol. 129, no. 3, p. 164, 1982.

[76] Y.-J. J. Ryoo, K.-H. H. Song, and W.-W. W. Kim, “Recognition of PRI Modula-
tion Types of Radar Signals Using the Autocorrelation,” IEICE Transactions on
Communication, vol. E90-B, no. 5, pp. 1290–1294, 2007.

[77] M. Ahmadi and K. Mohamedpour, “A new method for recognizing pulse repe-
tition interval modulation,” International Conference on Signal Processing Systems,
2009.

[78] A. Mahdavi and A. M. Pezeshk, “A robust method for PRI modulation recogni-
tion,” International Conference on Signal Processing, 2010.

[79] G. Hu and Y. Liu, “An efficient method of pulse repetition interval modulation
recognition,” International Conference on Communications and Mobile Computing,
2010.

BIBLIOGRAPHY 203

[80] P. Lavoie, “Hidden Markov Modeling for Radar Electronic Warfare,” Tech. Rep.,
2001.

[81] N. Chomsky, “On certain formal properties of grammars,” Information and Con-
trol, vol. 2, no. 2, pp. 137–167, 1959.

[82] G. Wachsmuth and E. Visser, “Formal Grammars - language specification,” Lec-
ture Slides, TU Delft, 2017.

[83] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 2001.

[84] N. Chomsky, “A note on phrase structure grammars,” Information and Control,
vol. 2, no. 4, pp. 393–395, 1959.

[85] M. Parigot and E. Pelz, “A logical Approach of Petri Net Languages,” Theoretical
Computer Science, vol. 39, pp. 155–169, 1985.

[86] J. L. Peterson, Petri net theory and the modeling of systems. Prentice Hall, Engle-
wood Cliffs, 1981.

[87] G. Žitković, “Introduction to Stochastic Processes - Lecture Notes,” Department
of Mathematics, The University of Texas at Austin, 2010.

[88] H. Jaeger, “Observable Operator Models for Discrete Stochastic Time Series,”
Neural Computation, vol. 12, pp. 1371–1398, 2000.

[89] S. Singh, M. James, and M. Rudary, “Predictive State Representations: A New
Theory for Modeling Dynamical Systems,” Conference on Uncertainty in Artificial
Intelligence, 2004.

[90] B. Wolfe, M. R. James, and S. Singh, “Learning predictive state representations
in dynamical systems without reset,” International Conference on Machine Learn-
ing (ICML), 2005.

[91] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[92] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations (ICLR), 2015.

[93] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” Journal
of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

[94] C. Olah, “Understanding lstm networks,” [Online; accessed on March 13, 2019],
https://colah.github.io/posts/2015-08-Understanding-LSTMs/.

[95] D. Zipser and R. J. Williams, “Gradient-Based Learning Algorithms for Recur-
rent Networks and Their Computational Complexity,” in Back-propagation: The-
ory, Architectures and Applications. Hillsdale, NJ: Erlbaum, 1995, pp. 433–486.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

204 BIBLIOGRAPHY

[96] H. T. Siegelmann and E. D. Sontag, “Turing computability with neural nets,”
Applied Mathematics Letters, vol. 4, no. 6, pp. 77–80, 1991.

[97] ——, “On The Computational Power of Neural Nets,” Annual workshop on Com-
putational Learning Theory, 1992.

[98] J. Hochreiter, “Untersuchungen zu dynamischen neuronalen Netzen,” Diplo-
marbeit, Technische Universität München, 1991.

[99] F. Beaufays, “The neural networks behind google voice transcription,” [On-
line; accessed on March 13, 2019], https://ai.googleblog.com/2015/08/
the-neural-networks-behind-google-voice.html.

[100] P. Khaitan, “Chat smarter with allo,” [Online; accessed on March 13, 2019],
https://ai.googleblog.com/2016/05/chat-smarter-with-allo.html.

[101] A. Efrati, “Apple’s machines can learn too,” [Online; accessed
on March 13, 2019], https://www.theinformation.com/articles/
apples-machines-can-learn-too.

[102] W. Vogels, “Bringing the magic of amazon ai and alexa to apps on aws.” [Online;
accessed on March 13, 2019], https://www.allthingsdistributed.com/2016/11/
amazon-ai-and-alexa-for-all-aws-apps.html.

[103] A. Robinson and F. Fallside, The Utility Driven Dynamic Error Propagation Net-
work. University of Cambridge Department of Engineering, 1987.

[104] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist Tem-
poral Classification: Labelling Unsegmented Sequence Data with Recurrent
Neural Networks,” International Conference on Machine Learning (ICML), 2006.

[105] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to Forget: Continual
Prediction with LSTM,” International Conference on Artificial Neural Networks,
1999.

[106] F. Gers and J. Schmidhuber, “Recurrent nets that time and count,” IEEE Interna-
tional Joint Conference on Neural Networks, 2000.

[107] F. A. Gers and J. Schmidhuber, “LSTM Recurrent Networks Learn Simple Con-
text Free and Context Sensitive Languages,” IEEE Transactions on Neural Net-
works, vol. 12, no. 6, pp. 1333–1340, 2001.

[108] F. Gers, “Long Short-Term Memory in Recurrent Neural Networks,” Ph.D. dis-
sertation, École Polytechnique Fédérale de Lausanne, 2001.

[109] R. Jozefowicz, W. Zaremba, and I. Sutskever, “An Empirical Exploration of
Recurrent Network Architectures,” International Conference on Machine Learning
(ICML), 2015.

https://ai.googleblog.com/2015/08/the-neural-networks-behind-google-voice.html
https://ai.googleblog.com/2015/08/the-neural-networks-behind-google-voice.html
https://ai.googleblog.com/2016/05/chat-smarter-with-allo.html
https://www.theinformation.com/articles/apples-machines-can-learn-too
https://www.theinformation.com/articles/apples-machines-can-learn-too
https://www.allthingsdistributed.com/2016/11/amazon-ai-and-alexa-for-all-aws-apps.html
https://www.allthingsdistributed.com/2016/11/amazon-ai-and-alexa-for-all-aws-apps.html

BIBLIOGRAPHY 205

[110] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhuber,
“LSTM: A Search Space Odyssey,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 28, no. 10, pp. 2222–2232, 2017.

[111] Google Brain, “TensorFlow API Documentation, version 1.13.” [Online; accessed
on March 26, 2020], https://www.tensorflow.org/.

[112] Python Software Foundation, “Python language reference, version 3.7.” [Online;
accessed on March 26, 2020], https://docs.python.org/3.7/reference/.

[113] G. B. Willson, “Radar classification using a neural network,” SPIE Applications
of Artifical Neural Networks, 1990.

[114] I. Jordanov and N. Petrov, “Intelligent Radar Signal Recognition and Classifica-
tion,” in Recent Advances in Computational Intelligence in Defense and Security, ser.
Studies in Computational Intelligence. Springer International Publishing, 2016,
vol. 621.

[115] L. Cain, J. Clark, E. Pauls, B. Ausdenmoore, R. Clouse, and T. Josue, “Convolu-
tional Neural Networks for Radar Emitter Classification,” IEEE Annual Comput-
ing and Communication Workshop and Conference, 2018.

[116] H. Li, W. Jing, and Y. Bai, “Radar Emitter Recognition Based on Deep Learning
Architecture,” CIE International Conference on Radar, 2016.

[117] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly
Learning to Align and Translate,” International Conference on Learning Represent-
ations (ICLR), 2015.

[118] C. Chen, Y. Wang, J. Zhang, Y. Xiang, W. Zhou, and G. Min, “Statistical Features-
Based Real-Time Detection of Drifted Twitter Spam,” IEEE Transactions on In-
formation Forensics and Security, vol. 12, no. 4, pp. 914–925, 2017.

[119] B. Tang, M. Heywood, and M. Shepherd, “Input partitioning to mixture of ex-
perts,” IEEE International Joint Conference on Neural Networks, pp. 227–232, 2002.

[120] J. Goodband, O. Haas, and J. Mills, “A mixture of experts committee machine
to design compensators for intensity modulated radiation therapy,” Pattern Re-
cognition, vol. 39, no. 9, pp. 1704–1714, 2006.

[121] S. Masoudnia and R. Ebrahimpour, “Mixture of experts: A literature survey,”
Artificial Intelligence Review, vol. 42, no. 2, pp. 275–293, 2014.

[122] A. Bifet and R. Gavaldà, “Learning from Time-Changing Data with Adaptive
Windowing,” SIAM International Conference on Data Mining, 2007.

[123] I. Jo, J. Kim, H. Kang, Y.-D. Kim, and S. Choi, “Open Set Recognition by Reg-
ularising Classifier with Fake Data Generated by Generative Adversarial Net-
works,” IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2018.

https://www.tensorflow.org/
https://docs.python.org/3.7/reference/

206 BIBLIOGRAPHY

[124] E. Granger, S. Grossberg, P. Lavoie, and M. A. Rubin, “Comparison of classifi-
ers for radar emitter type identification,” Intelligent Engineering Systems Through
Artificial Neural Networks, vol. 9, pp. 3–11, 1999.

[125] E. Granger, M. A. Rubin, S. Grossberg, and P. Lavoie, “A What-and-Where
fusion neural network for recognition and tracking of multiple radar emitters,”
Neural Networks, vol. 14, no. 3, pp. 325–344, 2001.

[126] W. J. Park and R. M. Kil, “Pattern Classification With Class Probability Output
Network,” IEEE Transactions on Neural Networks, vol. 20, no. 10, pp. 1659–1673,
2009.

Curriculum Vitae

Name Sabine Apfeld
Date of birth 23. November 1988
Place of birth Cologne, Germany

since 08/2014 Research Associate
Fraunhofer Institute for Communication, Information
Processing and Ergonomics (FKIE), Wachtberg

06/2014 Degree Master of Science in Computer Science

„Development and implementation of an FPGA-based signal
processing system with adaptive waveform control of a
30 GHz radar for distance measurements“

Master thesis prepared at Fraunhofer Institute for High
Frequency Physics and Radar Techniques (FHR), Wachtberg

01/2012 Degree Bachelor of Science in Computer Science

„Weiterentwicklung des AccelKit PCIe Moduls zur
Unterstützung von nebenläufigen Downstream-Kanälen“

10/2008 - 06/2014 Study of Computer Science
University of Bonn

06/2008 Abitur
Paul-Klee-Gymnasium, Overath

	Title
	Acknowledgements
	Abstract
	Zusammenfassung
	Contents
	Introduction
	Scope and Related Work
	Main Findings
	Structure of the Thesis
	Publications
	General Notation
	Copyright Notice

	Electronic Intelligence
	Radar Basics
	Moving Target Indication & Pulse Doppler
	Multifunction Radar

	Traditional ELINT Processing Chain
	Interception & Detection
	Pulse Descriptor Word Extraction
	Deinterleaving
	Parameter Extraction
	Database Lookup

	Proposed ELINT Processing Chain
	The Five Problems of Electronic Warfare

	Modelling & Learning of Sequential Data
	Formal Languages & Grammars
	Finite State Machines
	Petri Nets
	Stochastic Processes
	Markov Chains
	Hidden Markov Models
	Observable Operator Models
	Predictive State Representations

	Neural Networks
	Activation & Output Functions
	Error Functions
	Training
	Evaluation Metric
	Recurrent Neural Networks
	Long Short-Term Memory
	Gated Recurrent Unit

	Modelling of Agile Radar Emissions
	Introduction
	Hierarchical Emission Model
	Word Embedding
	Contributions

	Adapted Hierarchical Emission Model
	Modelling the Emissions of Example Emitters
	Word Embedding for the Radar Language
	Summary

	Prediction of Radar Emissions
	Introduction
	Related Work
	Contributions

	Approaches
	Long Short-Term Memory
	Markov Chain
	Comparison Methods

	Experimental Results
	Evaluation Under Ideal Conditions
	Evaluation with Missing and Additional Symbols
	Evaluation of the Impact of Input Encoding

	Summary

	Identification of the Radar Emitter Type
	Introduction
	Related Work
	Contributions

	Approaches
	Long Short-Term Memory
	Markov Chain
	Comparison Methods

	Experimental Results
	Evaluation Under Ideal Conditions
	Evaluation with Missing and Additional Symbols

	Summary

	Ensembles of Predictive Models
	Introduction
	Contributions

	Ensemble Architectures
	Mixture of Experts
	Sparsely-Gated Mixture of Experts
	Stacking (with Input)
	Online Accuracy-Based Weighting
	Model Averaging

	Ensembles of Long Short-Term Memory Experts
	Data
	Implementation
	Experimental Results

	Ensembles of Predictive Radar Models
	Implementation
	Experimental Results

	Summary

	Recognition of Unknown Radar Emitters
	Introduction
	Related Work
	Contributions

	Training Cases
	Generation of Known Unknown Emitters

	Approaches
	Long Short-Term Memory with Cross-Entropy Loss
	Long Short-Term Memory with Entropic Open-Set Loss
	Long Short-Term Memory with Deep Open Classification Loss
	Long Short-Term Memory as Unknown Gate
	Markov Chain
	Markov Chain as Unknown Gate

	Experimental Results
	Evaluation Under Ideal Conditions
	Evaluation with Missing and Additional Symbols

	Summary

	Conclusions
	Future Work

	Appendix: Additional Material
	Identification of the Radar Emitter Type
	Ensembles of Predictive Models
	Recognition of Unknown Radar Emitters

	List of Acronyms
	List of Symbols
	List of Figures
	List of Tables
	List of Publications
	Bibliography

