
The Architecture is the Center of the
Software Development Process
Manfred Nagl

Department of Computer Science
Technical Report

Aachener Informatik-Berichte (AIB) | ISSN 0935-3232 | AIB-2021-08
RWTH Aachen University | Department of Computer Science | July 2021

The publications of the Department of Computer Science of RWTH Aachen University are
in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

1

The Architecture is the Center of the
Software Development Process

Manfred Nagl

Software Engineering
RWTH Aachen University, 52074 Aachen, Germany

Abstract
The purpose of this paper is to explain the specific role architectures have in software devel-
opment processes: The processes are only possible by extracting the essentials and denote
them separately on architecture level. The architecture is the most important collection of arti-
facts, as the architecture influences most of the results gained in the process in a more or less
deep way. The architecture not only determines the structure, the quality, and the clearness of
the system to be constructed or maintained. It also determines the structure, quality, and
clearness of the code, the quality assurance, the documentation, and also of the process organ-
ization.
To achieve these goals for the architecture and beyond, the architecture language has to offer
corresponding clear and expressive concepts and language constructs. Furthermore, three as-
pects of architectures are sketched in this paper: Their role for permanent changes of the sys-
tem, for even handling changes in the running development process, and for their importance
to improve systems by different forms of reuse.

Key words: Architecture as essential structure for the realization of a software system, adaptability
and long term properties, all development documents are determined/ influenced, the role in the
process w.r.t structure, coding, quality, documentation, changes, and reuse

1 Introduction

The architecture of a software system /BK 03, BM 96, BR 05, GS 94, SAD, Sc 13, SEI 10,
SG 96, SS 00, Wi SA/, unites different and important aspects, as already explained in some
textbooks on architectures. We just enumerate them here and omit lengthy explanations, as
they are obviously and commonly available /TP 2016/.

The aspects are the following: The architecture exposes the essential structure and hides de-
tails. It realizes all use cases and scenarios and it addresses the requirements of different
stakeholders. Together, it both handles functional as well as nonfunctional requirements (re-
strictions and demanded quality attributes). It reduces the goal of system ownership and
strengthens the organization¶s market position. It helps to improve the quality and functionali-
ty offered by the system. It improves external confidence in either the organization or the sys-
tem. Altogether, it reduces the business risks associated with building a technical solution and
builds a bridge between business and a technical solution.

Another argument for the importance of architectures is that the architecture of a software
system has to be known by different members of the development team - not only by the archi-
tect(s) - at least to some extent. It is important for designers of subsystems, for programmers

2

of components, for quality engineers to check whether the requirements are met or to handle
integration tests, for project managers to organize the group work, etc. The architecture also is
the basis for discussions between different stakeholders of the system: developer, business
manager, project manager, owner, end user, etc.

Another introductory remark corresponds to the role of abstraction, which is the main reason
for the importance of software architectures. Nobody is able to grasp many details. The ab-
straction eliminates the details and extracts the essentials of a software system. There is no
chance to design a system and to organize its development process without this step of ab-
straction and compaction. The missing details are delivered afterwards in the development
process and at the right time.

A fourth remark corresponds to the variety of concepts of software architecture modelling:
We find a rather different understanding of architectures /SEI 10/: (a) There is literature in-
fluenced by practice and industry /BK 03, BR 05, HK 07, Ru 12/, or (b) by theory as /GG 07,
Gu 76, LZ 74, PH 12/, or (c) by programming languages having a built-in module intercon-
nection language as Ada /Bu 84, Na 03/, Eiffel /Me 91, Me 97/, or (d) by patterns/ styles /BM
96, GH 95, GS 94, SG 96/, (e) object orientation /JC 92/, or (f) model-based development /BF
10/, (g) domain- driven /Ev 04/ or (h) service-oriented /KM 04/, etc. Introductory and histori-
cal papers to the field among others are /DK 76, HP 80, Pa 72/. In this paper, we rely on a
more classical component/ relation approach /Na 90-20, PW 92/. This, however, is not im-
portant for the message of this paper.

The term architecture comes from house building. There, the essentials are also determined
and planned before the physical construction starts. A similar role has the architecture of a
software system. Today architects ± of whatever domain they belong to ± are supported by
systems for document writing / retrieval and by tools helping to build up the design and con-
struction. The role of architectures and the way of thinking in architectures have long tradi-
tion, shown for the design gothic cathedrals and comparing it to architectures of software en-
gineering in /Na 19/.

The architecture of a software system should not be nice conceptual pictures as often found
/So 18/, nor a sheer collection of building blocks belonging to the environment for software in
a car /EN 93/, nor a DB schema without its operating application, nor a accumulation of dif-
ferent artifacts with more or less loose connection /BR 05/. On the contrary, it is a precise
build plan containing all essential design decisions and a structure, by which we can study
most of the problems occurring in the later realization, evaluate the main quality characteris-
tics, and estimate the effort of the realization or of changes.

This paper is mostly on motivation and explanation level. The reader should be convinced that
the architecture is the key point of software development. Technical details, as how to achieve
this development, how to support it by a suitable notation or corresponding helpful tools, are
not the main focus of this article.

The contents of this paper are as follows: In section 2, we introduce a model ± different from
usual lifecycle models ± by which we explain the different tasks and resulting products occur-
ring in software engineering, as well as the relations between these different tasks and results.

3

The next two sections 3 and 4 discuss the importance of software architectures by quantitative
and qualitative arguments. The following two sections 5 and 6 show that architectures are the
key to handle changes of a system, even dynamic situations in the development process. Two
further dimensions are introduced in the next two sections: Section 7 makes clear that we have
different and ordered architectures in a project, from abstract to that, which describes the
shipped system. Section 8 explains the reuse dimension of different and consecutive projects,
which is the main source for program families. Section 9 concludes the paper by summarizing
the main ideas and naming open problems.

2 The Working Area Model and its Dependences

The waterfall model is well known and often criticized /Wi WM/. It orders activities accord-
ing to their timely occurrence from analysis to maintenance. It is an idealization as no devel-
opment follows a linear order in time. In practice, we have forward steps (thinking about fu-
ture realization), backward steps (backtracking, if there was a mistake), and also iterations.
The same is true for the V-model /Wi VM/, which goes down (detailing) from analysis to im-
plementation and then up (integrating) to operation and maintenance. Despite of their prob-
lems, these models are widely used, not as a true mapping of reality but as simplification and
idealization.

These models have the disadvantage that modeling on a certain level is done at different plac-
es of the timely order. For example, architecture activities are done in in analysis; when think-
ing about the future realization, in design when building up the architecture incrementally, but
also in integration, installation and especially in maintenance.

Therefore, we introduce here a different model, which we call working area model /Na 90-
20/. Its essence is to look on which logical level we model, and to give up the distinction be-
tween development, change, and maintenance, as development means more often to change or
iterate than to develop straightforward. We clearly distinguish what and where we model, but
also what the relations between these levels are, see fig. 1.

We distinguish between three technical working areas, namely (a) Requirements Engineering
(RE), where we model the outside requirements and behavior, (b) Architectural Design (AR),
where we make decisions for the realization on abstract levels, corresponding to structure and
also other determinations, and (c) Programming in the Small or Implementation (PS), where
the program code of components is developed. Furthermore, there are areas as (d) Quality
Assurance (QA), (e) Documentation (DOC) (see /CB 02/ for the various aspects of documen-
tation), and (f) Project Organization and Management (PO), which accompany these tech-
nical areas.

All edges between working areas of fig. 1 define a dependency relation in the sense that the
second working area has to follow some result of the first, or in other words, its result in some
way has to be consistent with the result of the first. Any of these dependency relations means
something different as we see from table 2 and the following discussion.

4

Fig. 1: Working area model and relations between working areas, in red all corresponding
relations corresponding to architecture modeling /Na 90/

(1) RE - AR: Arch is a possible structure to fulfil the requirements, however Arch is not determined by
the requirements
(2) RE - PO: The work packages of RE are fixed and determined, who is working for them as well as
how the group of requirements engineers is built up, the total effort and the risks are determined.
(3) RE - QA: The requirements are checked for completeness, internal consistency, for the possibility
to check, whether a system can be built along these requirements. This all is usually done by human
inspections
(4) RE - DOC: The essential functional and nonfunctional requirements are described and explained in
the documentation. Specific internal relations within these parts and between these parts are ex-
plained.
(5) AR - PS: The architecture determines the structure of the final program system, programming adds
the details for the bodies
(6) AR - PO: During and after the architecture is built up, the tasks for realizing the system can be
planned more precisely: Who is doing what and in which order. The total effort can be estimated, as
well as the price to find out later, whether the contract will end with a positive financial result.
(7) AR - QA: The architecture is internally checked for completeness, validity, checked as a suitable
structure for the requirements, or able to be programmed
(8) AR - DOC: The design decisions for components and relations between components, for the big
parts of the architecture and their internal structure are given in the documentation.
(9) PS - PO: The programming activities have to be planned, can be estimated according to their ef-
fort, and can be checked for risks, etc.
(10) PS - QA: test by black or white box test for components, integration test in addition using the ar-
chitecture, formal verification or whatever QA approach is used
(11) PS - DOC: The realization ideas of the internals of components are sketched as well as the pur-
pose of a component in the system
(12) QA - PO: All QA activities have to be organized (planned, estimated, checked for risks)
(13) QA - DOC: The QA methods taken have to be explained and documented
(14) DOC - PO: The documentation activities have to be organized
(15) DOC - QA: The documentation has to be checked for completeness, expressiveness, and con-

RE

AR

PS

QA

DOC

PO

RE

AR

PS

QA

DOC

PO(20) (18)

(19)

(12)
(16)

(3)

(2)

(6)

(9)

(4) (8) (11)(14)
(17)

(13)
(15)

(7)

(10)

(1)
RE

AR

PS

QA

DOC

PO(20) (18)

(19)

(12)
(16)

(3)

(2)

(6)

(9)

(4) (8) (11)(14)
(17)

(13)
(15)

(7)

(10)

(1)

(5)

5

sistency
(16) PO - QA: The PO activities have to be quality checked
(17) PO - DOC: The PO activities have to be explained and documented
(18) QA - QA: The quality assurance activities themselves have to be approved in the sense of quality
assurance (completeness, coverage, and a suitable relation of effect and price)
(19) DOC - DOC: The specific forms chosen for documentation have to be documented.
(20) PO - PO: The work in PO has to be organized as well.

Table 2: Different consistency relations between working areas

All the above relations are different in their nature, what we now explain: From RE to AR:
Construct something new consistent with the RE result, which usually is not similar; from AR
to PS: construct the bodies to the components of AR and therefore extend them; from RE,
AR, and PS to QA: check corresponding artifacts by using appropriate QA methods; from RE,
AR, and PS to DOC: Describe the essential ideas and why they have been taken; from RE,
AR, and PS to PO: estimate, plan, organize, and monitor the corresponding technical work;
from QA to PO and DOC: organize and document the QA activities; from DOC to QA and
PO: assure the quality and organization of documentation; from PO to QA and DOC assure
the quality of PO and document the PO activities. Finally, the loops at QA, DOC, and PO
mean that QA itself has to be quality assured, the different forms of documentation have to be
documented, and PO has to be organized as well. We see: Any of the dependency relations
means something different corresponding to the term consistency.

All the above working areas and relations are important for a software project. Especially im-
portant in order to avoid a complete breakdown of the project are: RE in the sense of to build
Whe ³Uight´ V\VWem, AR to build a system ³UighW´ (namel\ with long-term properties like
adaptability, portability and reuse), and PO for determining the costs, avoid chaos, and evalu-
ating risks.

The graph of fig. 1 is completely symmetric. It allows to describe and explain backtracking
steps in a development process. For example to go back to RE, if an error has been detected in
PS which forces to correct the requirements, then going forward to architecture modeling to
change according to the changed requirements. More explanation is given later. After that, we
go to PS, to change the corresponding bodies and relations between components. All these
steps are accompanied by corresponding QA, DOC, and PO steps.

The working area model can also be used for any classical lifecycle model. Even more, it fa-
cilitates modern life cycle models, as for example agile, interactive, incremental, or spiral
lifecycle models, as it is clear where and what to do in a working area and what the dependen-
cy relations between different working areas mean. It helps to better understand what to do on
which level and which dependences have to be regarded, as it makes activities and dependen-
cies clearer. It also helps to keep track, if a working area is taken up again, and where to
change and extend.

The working area model is applicable not only to software engineering, but also to any engi-
neering discipline. These disciplines usually distinguish between conceptual design (compa-
rable to architecture modeling of this paper) and detail design (in software engineering corre-
sponding to implementation, here called PS). However, as these disciplines usually create

6

material products (which by the way contain more and more software), their life cycle also
and in addition regards production preparation, the execution of the production, and later on
hardware maintenance.

Software is immaterial and, therefore, easy to morph. It can be used for any application, and
is often misused to correct mistakes of hardware construction. Software developers are like
general engineers, because they more often change the application area and often have less
knowledge or experience in and of a domain. This altogether also applies to the working area
AR µarchitectural design¶, which is the center of this paper.

3 Architecture Modelling is the Most Important Part

We start with a quantitative investigation and later go to the qualitative side.

A big Part of the Development Depends Directly on the Architecture

We go back to fig. 1 and there the technical activities and their relation to the accompanying
activities and consider the workload of different working areas, see fig. 2.a. The thickness of
Whe ZoUking aUeaV¶ bXbbleV UegaUdV, Zhich amoXnW of ZoUk is spent for the corresponding
working area in a software development process. Without going into details, we assume that
PS and QA take about 25% of the overall amount of work. As QA is split into QA of a devel-
oper made by him/ herself and QA made externally by a member of the QA team, we get the
rough figure of fig. 2.a. The same is done for documentation, which also is a common activity
of the technical developers and a documentation group. By reason of simplicity, we assume
that all the other remaining working areas need the same effort.

Furthermore and seen again in fig. 2.a, we look at the dependency relations and regard their
degree of determination for the target working area. Initially, the relation RE to Arch is drawn
by a thin arrow, as there can be quite different architectures for a system fulfilling the re-
quirements. Therefore, there is rather little determination. On the other hand, this relation is
intensively looked at in the backward direction, as the architect after essential steps always
looks, whether the architecture is consistent with the requirements. Putting both arguments
together, the arc from RE to AR is made a bit thicker. The relation of AR to PS is very thick,
as the coarse structure of Whe V\VWemV¶ code iV completely determined in the architecture. As
already discussed, PS delivers the bodies of the components defined in AR. The relation AR
to QA is thick, as the architecture plays a big role for QA (human inspection whether the sys-
tem is consistent to RE, whether the architecture fulfills long-term properties as adaptability/
portability, traceability for changes, the architecture determines the order of components of an
integration tests, etc.). This is true for the work done by the architect (internal QA) as well as
that of the QA engineer (external QA). The relation AR to PO is thick, as after a preliminary
architecture the PO activities become clearer and after the architecture the PO activities (esti-
mating effort and price, workload assignment, risk calculation, etc.) have a solid ground. In a
similar sense, the relation AR to DOC is important.

If we now put both arguments together, the amount of work in working areas and the degree
of determinations of relations, we can conclude: AR does not represent the biggest workload
but it determines by its design decisions a big part of the overall workload. This was the first

7

part of the quantitative discussion. The second statement, which we can derive from fig. 2.a,
is that the architecture modelling is the central part of the whole development/ maintenance
process.

Fig. 3: (a) Workload of working areas, determination of the influence of the architecture, (b)
indirect influence

Also Indirect Dependence of the Architecture

We have learned from the arguments of above that the architecture has a strong and direct
influence on PS, and also a direct influence on QA, DOC, and PO. As PS, QA, and DOC also
influence PO, we can conclude, that the indirect influence of AR on PO even emphasizes and
strengthens the importance of PO, see yellow-brown relations in fig. 2.b. It even strengthens
the dependency of PO on itself (PO has to be organized, which gets more complicated by
these indirect dependences).

The same arguments can also be applied to get an indirect dependency of AR on QA, and in
the same way on DOC.

In a smaller amount this even applies to RE, as the first step of AR is to sharply look at RE to
learn the requirements. Later on, the architect permanently looks on RE in order to find out,
whether the requirements are met, when building up the architecture. So, also here, we have
some indirect dependence of RE via AR.

Summing up we can argue: The architecture has to map the requirements, but there are differ-
ent ways to find the right architecture. The architecture determines the long-term properties of
the program system. A good architecture also makes QA, DOC, and PO easier. A big part of
the development work is more or less determined by the architecture, either directly or indi-
rectly. This is true not only for the technical activities, but also for the activities in QA, DOC,
and PO, via transitive relations.

b)a)

RE

AR

PS

QA

DOC

PO

RE

AR

PS

QA

DOC

PO

RE

AR

PS

QA

DOC

PO

(20) (18)

(19)

(12)
(16)

(3)

(2)

(6)

(9)

(4) (8) (11)(14)
(17)

(13)
(15)

(7)

(10)

(1)

(5)

8

4 And also the Most Influential Part

Above we have argued from the viewpoint of quantity. Now, we switch to a qualitative per-
spective. Let us go back to the graph model of fig. 1 and come to the question what parts are
determined by architecture modeling, see table 4. Thereby, we can recognize that these parts
are very influential.

(a) Internal Influence on design level

The architecture defines the essential structure (a clear abstraction from the code) of the system to be
developed or to be maintained. It reflects all the essential decisions made on design level. The struc-
ture is complete (all components, relations, and layers).
The architecture explains the structure and makes it understandable: This part is functional, that part
object-oriented, that part reflects layers of data/ detail abstractions. We can see, which parts of the
system have been taken from outside, e.g. from a library, and which parts are developed in the run-
ning project. We also find the architecture of an underlying old system (in most cases not well de-
signed), which gets new interfaces to be able to add new parts with a clear interface structure to the
system.
We immediately detect micro patterns (as three components forming a model-view-controller MVC
pattern), patterns for data abstraction layers often at the bottom, patterns for input or output structures,
those for coupling systems, or even global patterns for the whole system corresponding to a structure
class (as batch systems, interactive systems, or embedded systems) or an application domain (as
business administration, automotive, etc.).
The architecture can be evaluated, e.g. for long-term internal properties, as adaptability (by looking on
all the places where data/ detail abstraction should have been used), portability (by looking on all the
realization changes which might hinder), reuse (by checking whether all potential places have been
seen), etc.
Even more, the architecture can be evaluated, whether we have found a good example for explanation
and teaching. We need good examples in a company to get some conformity for the solutions of that
company, and we also need it in a lecture. Software architecture modeling does not exhaust the pos-
sibilities and potentials of good examples. Architects of houses learn from good examples. Even in
software engineering or architecture books you can find examples, from which you cannot learn very
much.

(b) Influence on other working areas

The architecture is the build plan for the code of the system. All the above qualitative arguments of (a)
therefore also hold for the code, which is programmed according to the architecture. In the working
area programming and coding (PS) no architecture decisions in the sense of this paper are made. The
decisions made are only on the level how to structure the internals of components. The essential code
quality is to a certain extent already determined on architecture level. AR modeling is restricted: If in
architecture modeling we use concepts, which are not available in the programming language (e.g.
OO: programming by extension, variant programming, and dispatching for an old Fortran version), we
would have to extend the programming system, which is not reasonable.
The architecture determines most of the form and quality of quality assurance: module tests according
to the white or black box approach, covering of test cases, integration tests, order of these tests, eval-
uating runtime traces or formal verification. The architecture also determines the organization of quali-
ty assurance, either of the work done by developers themselves, or quality assurance done by the
quality assurance group.
The documentation should contain the explanations what has been decided, but also where and why
these decisions have been made. Therefore, the quality of documentation is already mostly deter-

9

mined on architecture level, as there the main and essential decisions are taken. The design rationale,
often commonly written by the designer and a person of the documentation group, often gets its struc-
ture 1:1 from the architecture.
Architectures and project organization are closely connected. This has the implication that the role of
the architect is often not clearly distinguished from the role of the project organizer / manager. A clear
architecture facilitates PO, and an unclear architecture hinders PO. The reason is that in a good archi-
tecture work packages are clearly defined and the relations between work packages are simple to
handle, if the components’ relations are loose.
The architecture has to follow the decisions made in requirements engineering. This is checked during
and after architecture modeling. Thereby, we detect over-specification (unnecessary determination) as
well as under-specification (items, which should have been specified). Especially, in the nonfunctional
requirements specification we assure aspects of the process (a certain methodology to follow) as well
as for the product (a certain software component to be used, the system has to run on certain hard-
ware, etc). To a big part, his can be verified or falsified on architecture level.
Finally, we have indirect influences according to indirect relationships and even loops (both shown in
yellow brown in fig. 2.b). So, we also have corresponding indirect and significant influences from the
architecture side to all these working areas being the target of such a yellow-brown relationship.

Table 4: Influence of the architecture: (a) internal and (b) on other working areas

The arguments of the second part of section 3 and those of section 4 strengthen the statement
of above that architecture modeling is the center of the development and the maintenance
process. However, we also have further conclusions.

A good architecture is the result of an intellectual challenge, it never comes for free. In those
rare areas, where everything is clear and where we have advanced reuse mechanisms (in the
extreme case generating the system or parts of it from a specification), the challenge has been
solved by several projects beforehand, with many good designs, by corresponding reusable
structures, by tools like generators, etc. see /Na 21e/.

We need corresponding concepts for the notation of architectures, either graphical (for over-
views) or textual (module interconnection language for details), which have to offer an inte-
grated whole and not a variety of different and unrelated languages. We only touch this brief-
ly in this paper, for more details see /Na 21a/. The variety is spanned by: components for
functional and date abstraction, components on object and on type level, components of dif-
ferent granularity (modules and subsystems), relations for different purposes as local, general
and object-oriented use, generic (parametrized) components, altogether in a combined lan-
guage, where relations between artifacts are clear and not up to the imagination of developers.

Architectures should be able to deal with the problems of practice, like maintenance, reverse
or reengineering, and extension. Architectures should be independent of the programming
language, but we cannot map all architectural concepts to all old programming languages. The
notations should be able to cover architectures for different domains (BA, automotive sys-
tems, etc.), and also different structure classes (batch, interactive, and concurrent systems).
Furthermore, and as to be seen below, the architecture goes through different stages, from
rather abstract to very concrete and technical. It is the integrated view on architectures, which
makes the difference.

10

Software architectures had a great importance in our group in the past, in software engineer-
ing ± and its subdisciplines as architecture modelling /Bö 94, Kl 00, Le 88, Na 90-20/, but
also variant/ version control, nonstandard data base systems, authoring support, and tool con-
struction. We also made research in different engineering domains, as mechanical engineering
/NW 03/, process engineering /NM 08/, but also automation, embedded systems, eHome, house
construction, telecom systems, ranging from construction support to reverse/ reengineering, see /Na
21a/ section 5 for a summary.

Patterns play an important role in architecture modeling. They range from micro patterns
between few components (the mostly known form of patterns /GH 95/), over basic layers,
input/ output parts, integration mechanisms for connecting different systems, to global pat-
terns how to structure a system (multiphase compiler) out of a structure class (batch systems)
and/or a domain (systems programming).

5. Architectures and Mastering the Changes

The term architecture paradigm describes an idealized situation, which never appears in prac-
tice: We build up an architecture, which contains all layers, all components of these layers of
whatever architectural granularity, all relations between components, before implementation.
Then we program all these components. Mostly there are changes of the architecture on the
way from architectures to implementation of components in detail. However, the idealization
is unavoidable, if we want to be able to divide labor, to check quality in advance (e.g. by hu-
man inspections), or to think in reuse before we go to realization. Thus, changes will always
come up. Thereby, the architecture is changed as well.

No complex technical system is correct. This is not only true for software but for any com-
plex technical system. Incorrectness means that there are errors, but we do not know, where
and when they become evident. Traceability to estimate the effort of changes, and also to car-
ry out the changes, are important. So, again, changes are unavoidable and necessary. This also
applies to assure quality afterwards and to keep the architecture in a state that future changes
are possible again.

The key to handle changes is abstraction. That means that we define interfaces, below which
we forget about changes of data representation (data abstraction, e.g. how a complex record is
built up, which files are used, which layout, style, or UI system is used, etc.) and also of a
different physical, chemical, electrical, or protocol realization of an abstract functionality
(functional abstraction) in embedded systems. In both cases, we forget about details. So, de-
tail abstraction is the key to get clear and flexible architectures.

Abstraction always belongs to layers. The underlying form of hierarchy is not important. It
might be driven by locality, general usability, or object-orientation. It might belong to a flat
architecture (as above) or to enclosing something by a wall, i.e. the body of a component or a
subsystem (component granularity).

The discussion of ³What can change?´ is very important for making architectures stable w.r.t.
changes. There are two discussions: (a) Changes of the requirements, after having determined
these requirements. This opens our mind for more general solutions on architecture level. We

11

do not only design an architecture for the given requirements. We also try to think about slight
changes and build the architecture to cover these changes as well. A good architecture never
relates 1:1 to the requirements, but it already takes care for some possible and future changes
of the requirements.

The second discussion is about (b) changes of the realization after having worked out the ar-
chitecture. That leads to all parts of the architecture, where we should have used detail (data
or functional) abstraction. Such abstractions make the architecture stable: Changes are within
the body or at most below of an interface, and they do not go up in the architecture to client
components. Thus, changes stay within a certain range.

We discuss a simple example to clarify both changes (a) and (b) and the importance of an
architecture making use of abstractions, see fig. 5. We introduce a simple batch system Tele-
gram Counting System. The component Telegram_Input provides the data of different tele-
grams. Every telegram has a telegram identification (TID) and following words. We count the
number of postal words (of a certain maximum length, otherwise we split; a punctuation word
STOP is not counted). The price is determined depending on the number of postal words.
Both is done by Comp_Telegram. The computed data of the telegrams are stored in Tele-
gram_Data. The component Prepare_Print produces a paper list of the telegram data ordered
by their TID. The component TD_Computation controls the program.

Fig. 5 shows the resulting architecture. We see functional layers on top and data abstraction
layers at the bottom. Although we have data abstraction components and even abstract data
types, object-orientation in the strict sense (classes and modelling commonalities and differ-
ences of these classes) plays no role in this architecture.

We first discuss changes of the realization, part (b) of above, to demonstrate the stability
against realization changes. The Telegram_Input has two data abstraction interfaces, one for
getting the data of a single telegram (get_TID, get_NextWord, Was_Last_Word, etc.), and one
for the collection of telegrams (get_Next_Telegram, Was_Last Telegram, etc.). Both inter-
faces prevent that details of how to store a telegram or the collection of telegrams are used by
the clients. The same is true for the interface of Telegram_Data. Prepare_Print uses the inter-
face of Layout_Indep_Output, which hides all the layout and style details of the print list. All
the bottom components make use of devices or files, which is only shown at the right side of
fig. 5. We conclude: Any realization change has no effect up of the interface, but only below
of it.

Let us now discuss changes of the requirements, so (a) of above. We assume an extension of
the telegram system, such that the input also contains the data of the sender and the receiver
of the telegram, a change of the functionality of the system. Thus, the interface for single tele-
grams is extended. We see by the import relation that Comp_Telegram can take these data. If
this component does not make use of these new data, nothing further is changed. If it makes
use, then the computed data are changed. These data then are usually stored in Tele-
gram_Data, which means that the interface has to be changed. If this extended interface is not
used in Prepare_Print, we are done. If they are used, the interface of Layout_indep_Output

12

has to be changed. We see that we can trace within the architecture to discuss and control the
extensions according to changed requirements.

These discussions of above also lead us to estimate the changes w.r.t. time, costs, and plan-
ning of personnel.

Fig. 5: (a) data abstraction makes the architecture stable, (b) traceability of interface changes

Summing up: The organization of the development process and, especially, of changes in that
process is facilitated by a good architecture making use of detail abstractions. In other words,
a good design has / or errors in the design have a tremendous influence not only in architec-
ture modelling, but also on the whole development process, as already argued above.

The biggest mistakes are (i) to construct an architecture, which is a 1:1 mapping of the re-
quirements. The reason is that any change of requirements then induces a change of the archi-
tecture. The other big mistake is (ii) to ignore abstractions and use many details in the archi-
tecture. Again, in this case, any change of details implies a nontrivial and often far-reaching
change of the architecture.

6 The Architecture and its Role for Dynamic Changes of the Development Process

Building up the architecture of a software system and realizing the corresponding software
system is not a linear and steady activity. We see steps, which say how to go further and we
face mistakes, which have to be corrected. Altogether, we cannot plan the activities in PO
beforehand by a static description. We call this phenomenon the dynamics of the development
process, as the corresponding information is only available in the running process /HH 10, HJ
08/.

f

ff

ff

ado SS

ado / adt

ado / adtado

TD_
Computation

Comp_
Telegram

Compute_
No_of_Words

Compute_
Price_of_T

Telegram_
Input

Prepare_
Print

Layout_Indep._
Output

Virtual_
Printer

simplified
Entry-Collection

(1)

(2)
(3)

(4)

(5)

(6)

(1) Open / Close / File empty
(2) Read Telegram Data Components
(3) Store Triple
(4) Open / Close / Sort
(5) Reset / Read Current Triple
(6) Open / Close

Discuss:
• Realization Change
• Functionality Change
• Estimate Changes

Telegram_
Data

f functional object
ado abstract data object
adt abstract data type

general usability

local usability

13

The evolving plan depends primarily on the architecture. After we have designed a part of the
architecture, we see how many and which components are introduced and how they are con-
nected to each other. We see what has to be implemented, tested, integrated, documented, etc.
We call this evolution dynamics /HJ 96/. This part of the architecture allows to define a sub-
process, which now can be planned corresponding to time, money, division of labor, etc. This
planning should not be done on fine-grained code level. This would be too detailed. We need
the essential structure, namely the architecture.

Another situation is that when building up the architecture or even realizing the corresponding
part of the software system, we detect, that there was a serious error/ mistake done before. So,
we have to go back in the development history to find the place, where we have to correct.
Then, there are different possibilities how to proceed forward, after having corrected: (1) the
correction takes place within one component and the rest is untouched. That is the best case.
(2) A part of the development process results after the mistake remains valid, other parts have
to be changed. (3) The correction was so fundamental that all the results after the change have
to be given up (worst case). We call such situations backtracking dynamics. Again, we need
the architecture level to handle such cases.

A further case is that in the running development process a decision comes up to use a certain
bigger component from outside. This usually has some implications around this new compo-
nent (other imports, other form of usage of this component). Let s call this case replacement
dynamics. The situation is first covered on architecture level.

So, the architecture is the right level to study these different forms of dynamics. We need a
description of the tasks, which corresponds to the management level: What to do, who is do-
ing it, connection to other tasks, collecting of activities for a group of developers. The archi-
tecture has the necessary degree of granularity. On requirements (RE) level, we do not know
enough for the organization of the realization, on the level of programming (PS) we have too
many details.

There are further forms of dynamics to be sketched below.

7 Different Forms of Architectures in a Project

Up to now, we only discussed one architecture, which is usually called conceptual architec-
ture. It is the most abstract form of the architecture and, therefore, the form, which ignores
most details. Starting from this conceptual architecture we go, step by step, to more concrete
forms of the architecture building up different further views of the architecture. Thus, there is
not only one architecture, we have to look at. Architectures appear in sequences in a devel-
opment process. We only give a sketch of these different architecture forms here, for more
details see /Na 21b/.

Let us explain this by an example of an embedded system /Na21c/. After (i) having elaborated
the conceptual architecture, we determine, which parts of the system are (ii) executed concur-
rently (process components). Consequently and in addition, we have to assign synchronization
protocols to those resource components, which can be accessed by these processes. The next
step is (iii) that an embedded system has to be explicitly started and has to be explicitly shut

14

down. After explicit start and before explicit stop iW ³UXnV foU eYeU´. This start and stop is usu-
ally done by further control processes. In embedded systems, which e.g. control a plant, fur-
thermore, we have to do something (iv) for emergency handling. This means that normal exe-
cution is abandoned to avoid that the plant is destroyed. We accept some (data) damage to
avoid a more serious (hardware) damage. The next step is to (v) distribute and deploy the sys-
tem, (vi) to introduce technical concurrency due to distribution and (vii) further transfor-
mations to improve the runtime efficiency of the system. The sequence starts with the concep-
tual architecture and ends with the form of the architecture corresponding to the shipped sys-
tem. Every step in between adds further information.

There might be more than the 7 stages of the embedded system example sketched above. The
question comes up, what is the suitable order of these different architectural occurrences and
what should these occurrences express? What is before what and what is behind what? /Na
21b/ describes some rules for ordering the architecture sequence.

All stages are handled on the architecture level. Which stages occur depends on the domain
of the system, the system complexity, the constraints the system has to obey, etc. In any case,
we order according to rules, as e.g., that more likely changes are done after more stable situa-
tions. Summing up, we have ordered architectures according to time in one project, with the
aim to minimize change effort.

All these stages determine the final system after development or maintenance. So, all these
stages of the architecture are important, as well as the transformations from stage to stage.
We need an annotation language (extending artifacts) or, connection language (to relate to
other artifacts) to express the mutual relations between the different stages: concurrency,
runtime behavior, semantics, distribution etc. /Na 21b/.

8 Reuse Ideas in Different Projects and Families of Systems

Reuse /Co 98, ICSR, LS 09/ is usually a bottom-up endeavor across different projects. The
knowledge about reuse grows from project to project. The first projects profit from doing a
similar task more than once, from project to project the experience and the competence is
growing. We do it similar but better /PC 95/ and more productive /SZ 19/ (shallow reuse). The
architecture runs through incremental improvement steps.

Then, we start to think about the process for a solution, what we have learned, what we can do
better, how we can reorganize the process or even, where there is room for steps of automa-
tion. This is usually done in different projects. Again, experience and competence is growing,
but now in major steps. We call this deep reuse /Na 21e/. Deep reuse changes the architecture
such that after a series of changes the architecture looks completely different and the steps to
be ³manXall\´ done shrink dramatically.

Another and even more complicated situation is, if we design, plan, and realize families of systems, or
product lines /CN 07, Ja 00, PB 05, PK 09/. In this case, we do not think about one system, but about a
set of systems, where the members share some similarity relation. And we try to make use of this simi-
larity in the development process. This is another form of deep reuse.

15

These forms of deep reuse are rare in industry. Deep reuse demands for time, intelligent peo-
ple, money, and the clear insight and commitment of the management that the advantage in
the longer run is worth the spent money. The effect can be dramatic, but also the costs.

Again, we only give a sketch for an example here, see /Na 21e/ for more details. There the
construction of a multi-phase compiler /AS 06, WG 84/ was studied as the running example. It
started with shallow reuse, learning and doing better. Then the deep reuse steps followed: The
basic layers, the global architecture of the compiler, the framework for the compiler as reusa-
ble product, such that only the specific phase components have to be developed. Learning
about formalization and automation of these phases followed, and finally ended producing
generators, Zhich do Whe phaVe¶V WUanVlaWion automatically (compiler-compiler approach). The
different steps and their transition can be described by process interaction diagrams (PIDs)
/Na 21d/.

As argued above, reuse is usually improved from project to project. In rare cases, we also
have dramatic changes within one project. An example is that we have a core component,
which was planned to be developed internally. As this failed, something from outside had to
be used, which demanded a different program structure. This subsequently induced a dynamic
change of the process due to reuse within the development, as discussed for other examples in
section 6. Another possibility is that this component is delivered by a subcontractor project,
which is decided in the development process. This implies a different form of organization
and cooperation /Jä 03, He 08, He 11/.

Knowledge about the development method and process usually grows from project to project.
The same applies in in the case of deep reuse. So, in both cases, dynamic changes are mid and
not short term. In some, usually rare cases it can happen in the running development process
(a new and important component or tool is introduced, from an old system we derive a
framework for the new). In these cases, we have dynamic changes within the development, as
for the examples of above /Sc 04/.

9 Summary, Importance, and Open Problems

Summary and Lessons Learned

The essential ideas and statements of this paper are the following.

x The architecture of a software system unites different aspects and it has to be known by
different members of a development team (not necessarily by the same level of deep-
ness). It is based on the concept of abstraction (architecture paradigm). It has to have a
clear syntax and semantics (not often formally defined). Thus iW iV noW a ³concepWXal pic-
WXUe´. IWV Uole VhoXld be commonl\ accepWed, aV iW iV Whe caVe foU hoXVe bXilding.

x We inWUodXced a ³pUoceVV´ model, which is organized along levels of modeling, not re-
garding the timely order or a difference of construction and change, see fig. 1. This yields
clear working areas, and also clear relations between them, see table 2. The model is
symmetric and it can also be used for engineering projects.

x By looking where the main structural decisions are made, regarding the part of work be-
ing determined by these decisions, and estimating the amount of work for these parts, we

16

concluded that architecture modelling is in the center of the development process. This
was studied corresponding to quantity and also quality.

x Development means permanent changes of results. The architecture is the artifact to mas-
ter the changes. The changes can be determined by brainstorming discussions on two lev-
els, requirements and realization. A good architecture handles realization changes by
having used detail abstraction for all corresponding situations. Requirements changes are
facilitated on architecture level by looking on changed interfaces and on traceability of
use edges.

x A good architecture is never a 1:1 extension of the requirements specification, has hidden
all details which can evidently be changed, and is also stable if minor requirements
change.

x There are dynamic changes within a development process and also from project to pro-
ject, i.e. in successive processes. The architecture is the key level to study these dynamic
changes, as e.g. evolution dynamics or backtracking dynamics.

x There exist different forms of architectures in a project, from abstract to detailed. These
architectures have to be ordered by reasons of clearness but also by reasons of minimiz-
ing the total change effort. Thus, we do not study one architecture, but different ones,
their order, and their transformations from step to step.

x Reuse can happen in a shallow and in a deep form. The base for the latter are transfor-
mations of the architecture. Any transformation increases the value of reuse. In the case
of the architectures with reuse, we regard variations according to requirements, which
sustain the similarity between the systems. We speak of families of systems or product
lines if we regard solutions for a set of systems. .This makes architecture modeling even
harder. For reuse as well as for families/ lines, the architecture is the right level for dis-
cussions.

In this paper, we did not study the transformations between working areas, even not those,
where the architecture is directly involved as, for example, the transformation from the re-
quirements to the architecture. These transformations will probably be studied in a forthcom-
ing paper.

The Open Problems

There is no standard model of architectures. Object-oriented architectures in BA applications
and data flow architectures in embedded systems seem to have not very much in common.
There are ideas of unifying these different architectural notations/ styles by a component- and
relation-oriented approach /PB 16/ or a classical module/ subsystems and usability relations
approach /Na 21a/, which both are not often used in industry. It is evident that we have no
standardizations as it is for the architecture of houses, where we find ground plan, flor plans,
views and perspectives from different directions, and refinements for installation, plumbing,
etc. An initiative for a standard in house building has got more attention in recent times /ET
08/.

Architectures also have a central role in all engineering disciplines. Again, the commonalities
of architectures in electrical engineering and subdisciplines as layout plans, in mechanical
engineering for machines and also factories, in process engineering for plants together with

17

their automation and control are not worked out. We only find first ideas in that direction /NM
08, NW 99, NW 03/. There is much room for initiatives bridging the different disciplines.

In all the above domains, the architecture has a central role for the development process and
even further, as pointed out for software systems in this paper. If there are different opinions
about architectures in various domains. A less ambitious question could be: Is there at least
some agreement which questions the architecture of different engineering domains should
answer or which problems should be solved by using the architecture?

There is a strong link with an even growing importance for all engineering domains, namely
the software part of engineering systems. Could that part be the starting point of thinking in
commonalities in a deeper way? A trend of this kind has started in architecture of houses and
civil engineering for some time /KN 07, Rü 07/.

In any of the above disciplines, there is furthermore room for intelligent tools /Na 96, NM 08/,
more than painting or writing tools. We need intelligent tools, which support the work in
depth by syntactical and semantical support for specific working areas. Especially w need
tools by integrating the different aspect- and domain-specific artifacts. Here again, we have a
huge field for future activities.

10 References

/AS 06/ A. V. Aho/ M. S. Lam/ R. Sethi/ J. D. Ullman: Compilers: Principles, Techniques, and Tools,
Addison-Wesley, 2nd ed. (2006)

/BF 10/ M. Broy/ M. Feilkas/ M. Herrmannsdoerfer/ S. Merenda/ D. Ratiu: Seamless Model-based
Development: From Isolated Tools to Integrated Model Engineering Environments, Proc. IEEE, 98, 4,
526-545 (2010)

/BK 03/ L. Bass/ P. Clements et al.: Software Architecture in Practice, 2nd ed. Addison Wesley (2003),
3rd ed. Pearson (2013)

/BM 96/ F. Buschmann/ R. Meunier et al.: Pattern-oriented Software Architecture- A System of Pat-
terns, Wiley (1996):

/Bö 94/ J. Börstler: Programming in the large: Languages, Tools, Reuse (in German), Doct. Diss.
RWTH Aachen University, 205 pp. (1994)

/BR 05/ G. Booch/ J. Rumbaugh et al.: The Unified Modeling Language User Guide, Addison Wesley
(2005)

/Bu 84/ R. Buhr: System Design with Ada, Prentice Hall (1984)

/CB 02/ P. Clements/ F. Bachmann et al.: Documenting Software Architectures, Views and Beyond,
Addison Wesley/ Pearson Education , 485 pp. (2003)

/CN 07/ P. Clements/ L.M. Northrop: Software Product Lines: Practices and Patterns, 563 pp., 6th ed.,
Addison Wesley (2007)

/Co 98/ B. Coulange: Software Reuse, 293 p., Springer (1998)

18

/DK 76/ F. DeRemer/ H.H. Kron: Programming in the Large versus Programming in the Small, IEEE
Transactions on Software Engineering, SE-2, 2, 80-86 (1976)

/EN 93/ ECMA/NIST: Reference model for frameworks of software engineering environments,
ECMA TR/55, ECMA, 1993. URL: http://www.ecma-international.org/publications/files/ECMA-
TR/TR-055.pdf

/ET 08/ C. Eastman/ P. Teicholz/ R. Sacks/ K. Liston: BIM Handbook. John Wiley & Sons, 2008

/Ev 04/ E. Evans: Domain-driven Design, Addison Wesley, 529 p. (2004)

/GG 07/ R. Grammes/ R. Gotzhein: Fundamental Approaches to Software Engineering. Lecture Notes
in Computer Science 4422, Springer. pp. 200±214 (2007)

/GH 95/ E. Gamma/ R. Helm/ R. Johnson/J. Vlissides: Design Patterns: Elements of Reusable Object-
Oriented Software, 395 pp. Addison Wesley (1995)

/GS 94/ D. Garlan/ M. Shaw: An Introduction to Software Architectures, TR CMU-CS-94-166 (1994)

/Gu 76/ J. Guttag: Abstract Data Types and the Development of Data Structures, Comm. ACM 20, 6,
396-404 (1977)

/He 08/ M. Heller: Dezentrales, sichtenbasiertes Management übergreifender Entwicklungsprozesse,
Diss. RWTH Aachen University, 501 pp. (2008)

/He 11/ Th Heer: Controlling Development Processes, Diss. RWTH Aachen University, 430 pp., AIB
SE 10 (2011)

/HH 10/ Th. Heer/ M. Heller/ B. Westfechtel/ R. Wörzberger: Tool Support for Dynamic Development
Processes, LNCS 5765, 621-654 (2010)

/HJ 96/ P. Heimann/ G. Joeris et al.: Dynamite: Dynamic Task Nets for Software Process Manage-
ment, in Proc. ICSE 96, IEEE Computer Society Press, 331-341 (1996)

/HJ 08/ M. Heller/ D. Jäger et al.: An Adaptive and Reactive Management System for Project Coordi-
nation, LNCS 4970, 300-366 (2008)

/HK 07/ C. Hofmeister/ Ph. Kruchten et al: A general model of software architectural design derived
from five industrial approaches, Journal of Systems and Software 80, 106-126 (2007)

/HP 80/ H.N. Habermann/ D. Perry: Well-formed System Compositions, TR CMU-CS-80-117, Carne-
gie-Mellon University (1980)

/ICSR/ International Conference on Software Reuse, Proc. from 1990 to 2017, see also Wikipedia
ICSR

/Ja 00/ M. Jazayeri et al. (eds.): Software Architecture for Product Families, Addison Wesley (2000)

/JC 92/ I. Jacobsen/ C. Magnus et al.: Object Oriented Software Engineering. 77-79, Addison-Wesley
ACM (1992)

/Jä 03/ D. Jäger: Unterstützung übergreifender Kooperation in komplexen Entwicklungsprozessen,
Diss. RWTH Aachen University, 260 pp., ABI 34 (2003)

http://www.ecma-international.org/publications/files/ECMA-TR/TR-055.pdf
http://www.ecma-international.org/publications/files/ECMA-TR/TR-055.pdf

19

/Kl 00/ P. Klein: Architecture Modelling of Distributed and Concurrent Software Systems Doct. Diss.
RWTH Aachen University, 237pp. (2000)

/KM 04/ I. Kruger/ R. Mathew: Systematic development and exploration of service-oriented software
architectures, 4th Working IEEE/IFIP Conference on Software Architecture (WICSA), 177-187 (2004)

/KN 07/ B. Kraft/ M. Nagl: Visual Knowledge Specification for Conceptual Design: Definition and
Tool Support, Journ. Advanced Engineering Informatics 21, 1, 67-83 (2007)

/Le 88/ C. Lewerentz: Concepts and tools for the interactive design of large software systems (in Ger-
man), Doct. Diss., 179 pp. RWTH Aachen University, Informatik-Fachberichte 194, Springer (1988)

/LS 09/ R. Land/ D. Sundmark et al.: Reuse with Software Components ± A Survey of Industrial State
of Practice, in Edwards/ Kulczycke (Eds.): ICSR 2009, LNCS 5791, 150-159 (2009)

/LZ 74/ B. Liskow/ S. Zilles: Specification Techniques for Data Abstractions, Int. Conf. on Reliable
Software, 72-87, IEEE (1975)

/Me 91/ B. Meyer: Eiffel: The Language, 300 pp. 1st ed. Prentice Hall (1991), 3rd ed. 2005

/Me 97/ B, Meyer: Object-oriented Software Construction, 2nd ed., Prentice Hall (1997)

/Na 90-20/ M. Nagl: Software Engineering- Methodological Programming in the Large (in German),
387 pp., Springer (1990), plus further extensions over the time for a lecture on Software Architectures
from 1990 to 2020

/Na 96/ M. Nagl (Ed.): Building Tightly Integrated Software Development Environments - The IP-
SEN Approach, LNCS 1170, 709 pp., Springer, Berlin Heidelberg (1996)

/Na 03/ M. Nagl: Introduction to Ada (in German), 348 pp., Vieweg (1982), /Na 03/ 6th ed. Software
Engineering and Ada (in German), 504 pp., Vieweg (2003)

/Na 19/ M. Nagl: Gothic Churches and Informatics (in German), 304 pp, Springer Vieweg (2019), see
pp. 179-187

/Na 21a/ M. Nagl: An Integrative Approach for Software Architectures, Techn. Report AIB 2021-02,
26 pp., Computer Science Dpt., RWTH Aachen University (2021)

/Na 21b/ M. Nagl: Sequences of Software Architectures, Techn. Report AIB 2021-03, 16 pp., Com-
puter Science Dept., RWTH Aachen University (2021)

/Na 21c/ M. Nagl: Embedded Systems: Simple Rules to Improve Adaptability, Techn. Report AIB
2021-04, 23 pp., Computer Science Dpt., RWTH Aachen University (2021)

/Na 21d/ M. Nagl: Process Interaction Diagrams are more than Process Chains and Transport Net-
works, Techn. Rep. AIB 2021-05, 18 pp., Computer Science Dpt., RWTH Aachen University (2021)

/Na 21e/ M. Nagl: Characterization of Shallow and Deep Reuse, Techn. Rep. AIB 2021-06, 17 pp.,
Computer Science Dpt., RWTH Aachen University (2021)

/NM 08/ M. Nagl/ W. Marquardt: Collaborative and Distributed Chemical Engineering ± From Under-
standing to Substantial Design Process Support, IMPROVE, LNCS 4970, 851 pp., Springer (2008)

20

/NW 99/ M. Nagl/ B. Westfechtel (Eds.): Integration of Development Systems in Engineering Appli-
cations ± Substantial Improvement of Development Processes (in German), 440 pp., Springer (1999)

/NW 03/ M. Nagl/ B. Westfechtel (Eds.): Models, Tools, and Infrastructures for the Support of Devel-
opment Processes (in German), 392 pp., Wiley VCH (2003)

/Pa 72/ D. Parnas: On the Criteria to be Used in Decomposing Systems into Modules, Comm. ACM
15, 12, 1053-1058 (1972)

/PB 05/ K. Pohl/ G. Böckle et al.: Software Product Line Engineering, 467 pp., Springer (2005)

/PB 16/ K. Pohl/ M. Broy/ M. Daemkes/ H. Hönninger (Eds.): Adavanced Model-based Engineering
of Embedded Systems ± Extensions to the SPES 2020 Methodology, Springer, 303 pp. (2016)

/PC 95/ M.C. Paulk/ V.V. Weber/ B. Curtis/ M.B. Chrissis: The Capability Maturity Model: Guide-
lines for Improving the Software Process. SEI series in software engineering. Reading, Mass.: Addi-
son-Wesley (1995)

/PH 12/ K. Pohl/ K. Hönninger/ H. Achatz/ R. Broy (Eds.): Model-based Engineering of Embedded
Systems ± The SPES 2020 Methodology, Springer, 304 pp. (2012)

/PK 09/ A. Polzer/ S. Kowalewski/ G. Botterweck: Applying Software Product Line Techniques in
Model-based Embedded Software Engineering, Proc. MOMPES¶09, 2-10 (2009)

/PW 92/ D. E. Perry / A. L. Wolf. Foundations for the Study of Software Architecture. ACM SIG-
SOFT Software Engineering Notes, 17:4 (1992).

/Ru 12/ B. Rumpe: Agile Modeling with UML (in German), 2nd ed., 372 pp. Springer (2012)

/Rü 07/ U. Rüppel: Vernetzt-kooperative Planungsprozesse im konstruktiven Ingenieurbau, Springer
(2007)

/SAD/ Software Architecture and Design Tutorial, TutorialRide.com,
https://www.tutorialride.com/software-architecture-and-design/software-architecture-and-design-tutorial.htm

/Sc 04/ A. Schleicher: Roundtrip Process Evolution Support in a Wide Spectrum Process Management
System, Diss. RWTH Aachen University, 330 pp. (2004)

/Sc 13/ R.F. Schmidt: Software Engineering ± Architecture-driven Software Development, 376 pp.
Elsevier (2013)

/SEI 10/ Software Engineering Institute of CMU: What Is Your Definition of Software Architecture,
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=513807

/SG 96/ M. Shaw/ D. Garlan: Software architecture: perspectives on an emerging discipline. Prentice
Hall (1996)

/So 18/ I, Sommerville: Software Engineering, 10th edition in German, Pearson (2018)

/SS 00/ D. Schmidt/ M. Stal et al.: Pattern-oriented Software Architectures, vol 2 Patterns for Concur-
rent and Networked Objects, Wiley (2000)

/SZ 19/ C. Sadowski/ T. Zimmermann (Eds.): Rethinking Productivity in Software Engineering,
Springer Science+Business Media (2019)

https://www.tutorialride.com/software-architecture-and-design/software-architecture-and-design-tutorial.htm
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=513807

21

/TP 2016/ Tutorials Point: Software Architecture & Design Tutorial, 74 pp, (2016)

/WG 84/ W. M. Waite/ M. Goos: Compiler Construction, Springer (1984)

/Wi WM/ Wikipedia: Waterfall Model, access April 2021

/Wi VM/ Wikipedia: V-Model (Software Development), access April 2021

/Wi SA/ Wikipedia: Software Architecture, https://en.wikipedia.org/wiki/Software_architecture

Prof. Dr.-Ing Dr. h.c. Manfred Nagl, Emeritus
Informatics Department, RWTH Aachen University
nagl@cs.rwth-aachen.de

https://en.wikipedia.org/wiki/Software_architecture

Aachener Informatik-Berichte

This list contains all technical reports published during the past three years. A complete

list of (more than 570) reports dating back to 1987 is available from

http://aib.informatik.rwth-aachen.de/

or can be downloaded directly via

http://aib.informatik.rwth-aachen.de/tex-files/berichte.pdf

To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

2018-02 Jens Deussen, Viktor Mosenkis, and Uwe Naumann: Ansatz zur vari-

antenreichen und modellbasierten Entwicklung von eingebetteten Sys-

temen unter Berücksichtigung regelungs- und softwaretechnischer An-

forderungen

2018-03 Igor Kalkov: A Real-time Capable, Open-Source-based Platform for Off-

the-Shelf Embedded Devices

2018-04 Andreas Ganser: Operation-Based Model Recommenders

2018-05 Matthias Terber: Real-World Deployment and Evaluation of Syn-

chronous Programming in Reactive Embedded Systems

2018-06 Christian Hensel: The Probabilistic Model Checker Storm - Symbolic

Methods for Probabilistic Model Checking

2019-02 Tim Felix Lange: IC3 Software Model Checking

2019-03 Sebastian Patrick Grobosch: Formale Methoden für die Entwicklung von

eingebetteter Software in kleinen und mittleren Unternehmen

2019-05 Florian Göbe: Runtime Supervision of PLC Programs Using Discrete-

Event Systems

2020-02 Jens Christoph Bürger, Hendrik Kausch, Deni Raco, Jan Oliver Ringert,

Bernhard Rumpe, Sebastian Stüber, and Marc Wiartalla: Towards an

Isabelle Theory for distributed, interactive systems - the untimed case

2020-03 John F. Schommer: Adaptierung des Zeitverhaltens nicht-echtzeitfähiger

Software für den Einsatz in zeitheterogenen Netzwerken

2020-04 Gereon Kremer: Cylindrical Algebraic Decomposition for Nonlinear

Arithmetic Problems

2020-05 Imke Drave, Oliver Kautz, Judith Michael, and Bernhard Rumpe: Pre-

Study on the Usefulness of Difference Operators for Modeling Languages

in Software Development

2021-01 Mathias Obster: Unterstützung der SPS-Programmierung durch Stati-

sche Analyse während der Programmeingabe

2021-02 Manfred Nagl: An Integrative Approach for Software Architectures

2021-03 Manfred Nagl: Sequences of Software Architectures

2021-04 Manfred Nagl: Embedded Systems: Simple Rules to Improve Adaptabil-

ity

http://aib.informatik.rwth-aachen.de/
http://aib.informatik.rwth-aachen.de/tex-files/berichte.pdf

2021-05 Manfred Nagl: Process Interaction Diagrams are more than Process

Chains or Transport Networks

2021-06 Manfred Nagl: Characterization of Shallow and Deep Reuse

2021-07 Martin Schweigler: Ground Surface Pattern Recognition for Enhanced

Navigation

2021-08 Manfred Nagl: The Architecture is the Center of the Software Develop-

ment Process

2021-09 Manfred Nagl: Architectural Styles: Do they Need Different Notations?

