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Abstract

Primary care systems are generally considered to be the backbone of universal health care.
However, as the population ages and the number of primary care physicians declines, this
foundation is starting to crumble. There result increasing access distances, waiting times,
and workloads up to the point where the system’s functioning can no longer be guaranteed.
To counteract these developments, representatives from the government, insurances, and
associations discuss an array of novel supply concepts and policy changes. This thesis aims to
advance this discussion by providing suitable decision support tools, algorithms, and theoretic
results. Special attention is thereby put on rural primary care systems, as these are particularly
vulnerable due to their geographic-demographic facts. The resulting contributions can be
categorized into three main groups and we summarize them hereinafter.

The first part of this thesis addresses the fundamental question of how the quality of primary
care systems can be quantified. Due to the inherent complexity and micro-level detail of
primary care systems, this turns out to be a highly non-trivial problem and the predominant
method of choice is therefore still an assessment of the physician-to-population ratio. To
facilitate a more refined analysis, this thesis introduces the hybrid agent-based simulation
model SiM-Care. SiM-Care models and tracks the micro-interactions of patients and primary
care physicians on an individual level. The model thereby enables decision makers to access
several performance indicators such as patient waiting times and physician utilization that
can serve as a sound basis for the assessment and comparison of primary care systems.
Furthermore, it becomes possible to evaluate changes in the infrastructure, patient behavior,
and service design which is impossible with purely ratio-based assessments.

The second part of this thesis examines mobile medical units (MMUs) for the supply of
primary care services in rural environments. MMUs are customized vehicles fitted with
medical equipment that are easy to relocate and therefore enable a demand-oriented and
local provision of health services. Prior to their operation, MMUs necessitate a complex
prelaunch strategy to ensure their effectiveness and sustainability. To devise such strategies,
this thesis contributes an integrated multi-phased optimization framework. Novel to this
framework is the consideration of two types of patient demands, namely patients who seek
health services through a centralized appointment system as well as walk-ins who do not
announce their visits. Moreover, the framework allows for the incorporation of uncertainties
in both types of patient demands which was previously unconsidered.

The third part of this thesis studies two matching problems that derive from the application
of MMUs in primary care. It is shown that very restricted variants of these matching problems
are already strongly NP-hard. Consequently, this thesis focuses on restricted graph classes
and contributes a range of polynomial and pseudo-polynomial algorithms.
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Zusammenfassung

Die hausärztliche Versorgung gilt als das Rückgrat der allgemeinen Gesundheitsversorgung.
Da die Bevölkerung jedoch altert und die Zahl der Hausärzte zurückgeht, beginnt dieses
Fundament zu bröckeln. Die Folge sind zunehmende Anfahrtswege, Wartezeiten und Arbeits-
belastungen bis zu einem Punkt, an dem die Versorgung nicht mehr gewährleistet werden
kann. Um diesen Entwicklungen entgegenzuwirken, diskutieren Vertreter von Regierung,
Krankenkassen und Verbänden eine Reihe neuer Versorgungskonzepte und politischer Verän-
derungen. Diese Arbeit möchte durch die Bereitstellung von Entscheidungsunterstützungssys-
temen, Algorithmen und theoretischen Ergebnissen zu dieser Diskussion beitragen. Beson-
deres Augenmerk wird dabei auf den ländlichen Raum gelegt, da dieser aufgrund seiner
geographisch-demographischen Gegebenheiten besonders anfällig ist. Die entstandenen
Resultate lassen sich in drei Hauptgruppen unterteilen und werden nachfolgend diskutiert.

Der erste Teil dieser Arbeit befasst sich mit der grundlegenden Frage, wie die Qualität der
hausärztlichen Versorgung quantifiziert werden kann. Da das Gesundheitswesens äußerst
komplex ist, erweist sich dies als eine nicht-triviale Fragestellung. Die vorherrschende Metho-
de der Wahl ist daher auch weiterhin die Bewertung des Arzt-Bevölkerungs-Verhältnisses. Um
eine verfeinerte Analyse zu ermöglichen, wird in dieser Arbeit das hybride agentenbasierte
Simulationsmodell SiM-Care vorgestellt. SiM-Care modelliert die Mikrointeraktionen von
Patienten und Hausärzten auf individueller Ebene. Dadurch wird Entscheidungsträgern der
Zugang zu mehreren Schlüsselindikatoren wie Patientenwartezeiten und Ärzteauslastung
ermöglicht, die als Grundlage zur Bewertung des Versorgungsgrades dienen können. Darüber
hinaus ermöglicht es das Modell, Veränderungen der Infrastruktur und des Patientenverhal-
tens zu analysieren, was mit etablierten Methoden nicht möglich ist.

Der zweite Teil dieser Arbeit untersucht den Einsatz rollender Arztpraxen (MMUs) in
ländlichen Gebieten. MMUs sind mit medizinischen Geräten ausgestattete Fahrzeuge, die
leicht zu verlegen sind und somit eine wohnortnahe Gesundheitsversorgung ermöglichen.
Zur Vorbereitung der Inbetriebnahme von MMUs, muss ein komplexer Planungsprozess
durchgeführt werden. Um diesen Planungsprozess zu automatisieren, führt diese Arbeit
einen integrierten mehrphasigen Optimierungsansatz ein. Neuartig an diesem Ansatz ist,
dass wir zwischen Patienten die ein zentralisiertes Terminsystem verwenden sowie Patienten
ohne Termin, sogenannter Laufkundschaft, unterscheiden. Darüber hinaus ermöglicht es der
Optimierungsansatz, Unsicherheiten in beiden Patiententypen zu berücksichtigen, was bisher
nicht untersucht wurde.

Der dritte Teil dieser Arbeit untersucht zwei Matching Probleme, die aus der Einsatzplanung
von MMUs hervorgegangen sind. Es wird gezeigt, dass beide Matching Probleme stark
NP-schwer sind. Folglich konzentriert sich diese Arbeit auf eingeschränkte Graphenklassen
und entwickelt eine Reihe von polynomiellen und pseudo-polynomiellen Algorithmen.
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Introduction 1
„Good health is essential to sustained economic and

social development and poverty reduction. Access to
needed health services is crucial for maintaining and
improving health.

— World Health Organization, 2020b

1.1 Motivation and Research Question

Health is the foundation for the prosperity and well-being of a society (Dodd, 2005). In
recognition of this fact, all member states of the World Health Organization have committed
themselves to ensure everyone’s access to health services without the risk of impoverish-
ment (Dye et al., 2013). Working towards this goal, the majority of member states have
established so-called primary care systems which have proven to be a reliable and effective
mean of achieving universal health coverage (World Health Organization, 2019). Primary
care systems “serve as the patient’s first point of entry into the health care system and the
continuing focal point for all needed health services” (American Academy of Family Physi-
cians, 2019). As such, they are the backbone of efficient, equitable, and resilient health
systems (Bitton et al., 2017). The range of primary care services is broad and includes diverse
measures such as health promotion, disease prevention, patient education, and counseling
as well as the diagnosis and treatment of acute and chronic illnesses (American Academy of
Family Physicians, 2019).

Demographic changes in the structure of populations around the world challenge the func-
tioning of today’s primary care systems. Medical and technological progress paired with
improved living conditions and reduced birth rates have led to an increased share of elderly
citizens in virtually every country of the world (United Nations, Department of Economic and
Social Affairs, Population Division, 2019). In the United States for example, the percentage
of individuals over the age of 65 is predicted to exceed 21 % of the total population by
2030 (United States Census Bureau, 2017). In Germany, this demographic shift is even more
pronounced with citizens aged 65 and above being expected to account for more than a
fourth of the total population by 2030; compare Figure 1.1. As populations age, their demand
for primary care services tends to increase due to the prevalence of chronic illnesses which
disproportionately affect the elderly (Mann et al., 2010; Alemayehu and Warner, 2004).
Simultaneously, physicians providing these services are also getting older, e.g., 34.1 % of all

1



0% 0.2% 0.4% 0.6% 0.8%

Women

0%0.2%0.4%0.6%0.8%

Men

2000

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

0% 0.2% 0.4% 0.6% 0.8%

Women

0%0.2%0.4%0.6%0.8%

Men

2030

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

Fig. 1.1.: Age structure in Germany in the year 2000 and projected age structure in the year 2030 under
the assumption that birth rates and life expectancy develop moderately and immigration is
low (Setting G2-L2-W1) (Bechtold et al., 2019).

primary care physicians in Germany were 60 years or older by the end of 2017 and thus on the
verge of retirement (Kassenärztliche Bundesvereinigung, 2017). As fewer medical students
are interested in practicing primary care (Mann et al., 2010), let alone willing to invest in a
privately-owned primary care practice (Jacob et al., 2015), many retiring physicians will be
missing a successor and eventually leave a gap in the primary care supply.

Rural communities, which have always exhibited a substantially lower number of primary
care physicians per capita compared to urban areas, are particularly vulnerable to these
developments (Mann et al., 2010; Bodenheimer, 1969). The main reason for this is that the
low density of health professionals and thus long access distances exacerbate the negative
effects that result from the growing imbalance between demand and supply of primary
care services (Huigen et al., 1986). However, there are several additional factors that can
aggravate the situation in rural settings, e.g., negative migration rates with the younger
generation relocating to the urban centers (Huigen et al., 1986) or the absence of adequate
public transportation (Murray et al., 1998).

Altogether, this hints at an impending crisis that poses a significant risk of multiplying the
existing barriers to rural health services (Mann et al., 2010; Bodenheimer, 1969). In order
to manage this crisis and counteract the growing distances between patients and health
services, existing primary care systems have to be fundamentally adjusted (Pfaff et al., 2017).
However, it is not yet clear what these adjustments might look like. Moreover, all adjustments
must be made with the utmost caution, as primary care systems are highly complex and the
smallest changes can have disastrous consequences (Fone et al., 2003). This raises a question
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of utmost public interest, which emphasizes the special standing of rural primary care in this
context and motivates this thesis:

How can the access to primary care services in rural areas be ensured in light of an
aging population and a declining number of primary care physicians?

Questions of such magnitude are intrinsically political and can obviously not be answered
by Mathematics. Nevertheless, we are convinced that Mathematics can contribute to the
ongoing discussion between statutory health insurances, governments, and the Associations
of Statutory Health Insurance Physicians on new concepts and policies that can potentially
maintain the standard of health care provision (Rosenbrock and Gerlinger, 2014; Mann et al.,
2010). Hence instead of single-handedly taking on the Herculean task of answering the
guiding question of this thesis, we develop decision support tools, algorithms, and theory that
can hopefully advance the joint efforts to provide solutions. We thereby employ and combine
methods from three interrelated fields: simulation sciences, mathematical optimization, and
graph theory. The resulting contributions can be structured and grouped into three parts on
which we elaborate in the following.

1.2 Contribution of Thesis

In this thesis, we investigate three interrelated subquestions that derive from the guiding
question of this thesis. These questions address the quantification of the quality of primary
care systems, the operational planning of mobile medical units, and the complexity of
specialized matching problems. Accordingly, we structure the contributions of this thesis into
three parts and provide an overview of the main results of each part in the following.

Part I: Agent-based Modeling for Primary Care

The planning, analysis, and adaptation of primary care systems is a highly non-trivial problem
due to the systems’ inherent complexity, unforeseen future events, and scarcity of data.
To support the search for solutions, Part I of this thesis introduces the hybrid agent-based
simulation model SiM-Care. SiM-Care models and tracks the micro-interactions of patients
and primary care physicians on an individual level. At the same time, it models the progression
of time via the discrete-event paradigm. Thereby, it enables modelers to analyze multiple
performance indicators such as patient waiting times and physician utilization to assess and
compare primary care systems. Moreover, SiM-Care can evaluate changes in the infrastructure,
patient behavior, and service design. To showcase the strengths of SiM-Care and its validation
through expert input and empirical data, we present a case study for a primary care system
in the northern Eifel region of Germany. Specifically, we study the immanent implications of
demographic change on rural primary care and investigate the effects of an aging population
and a decrease in the number of physicians, as well as their combined effects.

1.2 Contribution of Thesis 3



Part II: Operational Planning for Mobile Medical Units

Mobile medical units (MMUs) are customized vehicles fitted with medical equipment that are
used in the provision of primary care in rural environments. As MMUs can be easily relocated,
they enable a demand-oriented, flexible, and local provision of health services. In Part II of
this thesis, we investigate the operational planning of an MMU service in three sequential
phases to which we refer as Phase 1, Phase 2, and Phase 3.

Phase 1 considers the strategic planning problem for MMUs (SMMU) – a capacitated set
covering problem that includes existing practices and two distinct types of patient demands:
i) steerable demands representing patients who seek health services through a centralized
appointment system and can be steered to any treatment facility within a given consideration
set and ii) unsteerable demands representing walk-ins who always visit the closest available
treatment facility. We propose an integer linear program for the SMMU that can be solved
via Benders decomposition and constraint generation. Starting from this formulation, we
focus on the uncertain version of the problem in which steerable and unsteerable demands
are modeled as random variables that may vary within a given interval. Using methods from
robust optimization and duality theory, we devise exact constraint generation methods to
solve the robust counterparts for interval and budgeted uncertainty sets.

In Phase 2, we address the planning of MMUs at the tactical level. To that end, we investigate
a bottleneck partitioning variant of the k-center problem that we call the tactical partitioning
problem for MMUs (TPMMU). We show that the metric TPMMU is NP-hard to approximate
within a constant approximation factor 1 < α < 2 and subsequently derive a mixed-integer
linear programming formulation. Moreover, we show that all our results from Phase 1 for the
SMMU translate to a session-specific problem extension that combines strategic and tactical
planning and thereby enables for a joint consideration of Phases 1 and 2.

The final Phase 3 is devoted to the vehicle routing of MMUs. For a single depot, we reduce
the problem to a minimum weight perfect matching problem in a bipartite graph which
can be solved in polynomial time. In the multi-depot setting, we show that the vehicle
routing of MMUs is a special case of the so-called budgeted colored bipartite perfect matching
problem which we subsequently prove to be strongly NP-hard. To solve the vehicle routing
problem for MMUs with multiple depots, we derive a compact integer linear programming
formulation.

Last but not least, we evaluate the entire three-phased optimization framework in a computa-
tional study based on a set of instances that we generate from the rural primary care system
in Germany that we considered in Part I of this thesis.

Part III: Variations of the Matching Problem

Assignment problems are among the most famous combinatorial optimization problems and
have been studied in many variations. In Part III of this thesis, we consider two such variations
which are motivated by the vehicle routing and staff assignment for MMUs.
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The first variation is a weighted matching problem with k independent edge cost functions
called the multi-budgeted matching problem (mBM). The total cost of a matching with
respect to each cost function must not exceed a corresponding budget. We show that the
mBM is strongly NP-hard on paths with uniform edge weights and budgets. Subsequently,
we propose a dynamic program for series-parallel graphs with pseudo-polynomial running
time for a fixed number of budget constraints. As an extension, we show how this algorithm
can be used to solve the mBM on trees using a graph transformation. Realizing that both
these graph classes have a bounded treewidth in common, we introduce a dynamic program
based on tree decompositions. This approach leads to a pseudo-polynomial algorithm for the
mBM with fixed number of budget constraints on graphs of bounded treewidth.

The second matching problem that we study is the minimum color-degree perfect b-matching
problem (Col-BM) which represents a new extension of the perfect b-matching problem to
edge-colored graphs. The objective of the Col-BM is to minimize the maximum number of
differently colored edges in a perfect b-matching that are incident to the same node. We show
that the Col-BM is strongly NP-hard on two-colored bipartite graphs and that there exists
no α-approximation algorithm for 1 < α < 2 unless P = NP. Still, we identify a class of
two-colored complete bipartite graphs on which we can solve the Col-BM in polynomial time.
Furthermore, we use dynamic programming to devise polynomial-time algorithms solving
the Col-BM with a fixed number of colors on series-parallel graphs and simple graphs with
bounded treewidth.

1.3 Outline of Thesis

At the beginning of this thesis, we introduce the employed notation and discuss some
basic prerequisites (Chapter 2). The main thesis is then structured into three parts: Part I
considering the agent-based modeling for primary care, Part II investigating the operational
planning for mobile medical units, and Part III studying two variations of the matching
problem. Each individual part commences with an introduction that motivates the considered
research question in the context of this thesis. We then provide a detailed overview over
each part’s contributions and discuss the related work. Subsequently follow the technical
chapters of each part. As many of these results arose from successful collaborations which
have already been published in scientific journals, conference proceedings, and preprints,
we inform on the use of previously published materials at the beginning of each part and
explicitly name all co-authors in this context. At the end of each part, we conclude and reflect
on the presented results before we provide directions for further research.

1.4 Acknowledgment of Funding
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1.3 Outline of Thesis 5



the Volkswagen Stiftung and the German research council (DFG) Research Training Group
2236 UnRAVeL. We furthermore received funding from the German Federal Ministry of
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Facility Location, Covering and Transport” as well as congress and traveling grants from the
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Preliminaries 2
The aim of this chapter is to repeat some of the most fundamental prerequisites of this thesis.
Our notation and the majority of the topics that we cover here are most likely familiar to the
audience of this thesis. We therefore invite the reader to skip this chapter and suggest to
come back here whenever a particular notation or concept is unknown. For a comprehensive
and much more extensive review of the basics on which this thesis builds, we refer to the
excellent textbook by Korte and Vygen (2012).

2.1 General Notation

In this section, we introduce some of the very general notation that is going to be used
throughout this thesis.

We denote the set of all integers by Z and the set of all non-negative integers or natural
numbers by N, i.e., we assume that the natural numbers begin by 0. The set of all real
numbers will be denoted by R and we refer to the non-negative real numbers as R≥0.

Whenever we refer to sets, we try to use upper case letters while we denote the elements
of a set by lowercase letter, e.g., A = {a1, . . . , an}. We denote the power set of set A by
P(A) := {A′ : A′ ⊆ A}. The cardinality of set A will be denoted by |A| ∈ N. Given a mapping
f : A→ B, we will sometimes abbreviate f(a) =: fa for a ∈ A to ease notation.

2.2 Graphs and their Properties

Graphs are discrete structures that play a central role in this thesis. In the following, we
introduce them along the lines of Korte and Vygen (2012).

An undirected graph is an ordered tuple G = (V,E) consisting of a set of nodes (or vertices)
V and a set of edges E ⊆ {{v, w} : v, w ∈ V, v 6= w}. If the nodes and edges of G
are not explicitly defined, we refer to them as V (G) and E(G), respectively. For an edge
e = {v, w} ∈ E, we call the nodes v and w the endpoints of e. Moreover, we say that the
nodes v and w are adjacent and call w a neighbor of v and vice versa. If v ∈ V is an endpoint
of e ∈ E, i.e., e = {v, w}, we say that e is incident to v. Two distinct edges e1, e2 ∈ E are
called adjacent if they share an endpoint, i.e., e1 ∩ e2 6= ∅. We denote the set of edges that are
incident to v ∈ V as δG(v) := {e ∈ E : v ∈ e} and write δ(v) if the corresponding graph G
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is clear from context. The number of edges |δ(v)| incident to v ∈ V is called the degree of
v. If |δ(v)| = k for all v ∈ V , we call the graph G k-regular. All (|V | − 1)-regular graphs in
which each pair of nodes is adjacent are called complete. For ease of notation, we denote the
complete graph with n = |V | nodes by Kn.

A directed graph is an ordered tuple G = (V,A) consisting of a set of nodes (or vertices) V and
a set of arcs (or directed edges) A ⊆ {(v, w) : v, w ∈ V, v 6= w}. In comparison to undirected
graphs, the unordered edges are thus replaced by the ordered arcs that have a direction.
If the nodes and arcs of G are not explicitly defined, we refer to them as V (G) and A(G),
respectively. For an arc a = (v, w) ∈ A, we call the node v the tail and the node w the head of
a. Moreover, we say that arc a leaves v and enters w. We denote the set of all arcs that leave
v ∈ V as δ+

G(v) := {(v, w) ∈ A} and write δ+(v) if the corresponding graph G is clear from
context. Analogously, we denote the set of all arcs that enter v ∈ V as δ−G(v) := {(w, v) ∈ A}
and shortly write δ−(v). The number of leaving arcs |δ+(v)| is called the out-degree of v ∈ V
and the number of entering arcs |δ−(v)| is called the in-degree of v ∈ V . For a set of nodes
S ⊆ V , we denote the set of all leaving arcs as δ+(S) := {(v, w) ∈ A : v ∈ S,w ∈ V \ S} and
the set of all entering arcs as δ−(S) := {(w, v) ∈ A : v ∈ S,w ∈ V \ S}.

When we refer to a graph, we either mean a directed or undirected graph. Graphs, as
we defined them above, are also called simple graphs to distinguish them from so-called
multi-graphs which may contain multiple copies of edges and so-called loops in which both
endpoints coincide. If not stated otherwise, we generally assume graphs to be simple.

For an undirected (directed) graph G, a sequence W = v1, e1, v2, . . . , vk, ek, vk+1 with k ≥ 0
and {vi, vi+1} ∈ E(G) ((vi, vi+1) ∈ A(G)) for all i ∈ {1, . . . , k} is called an edge progression in
G. If we additionally have that ei 6= ej for i 6= j, we call W a walk in G. The sequence W is
called closed if v1 = vk+1. The graph P = ({v1, . . . , vk+1}, {e1, . . . , ek}) for a given walk W =
v1, e1, v2, . . . , vk, ek, vk+1 with vi 6= vj for i 6= j is called a path from v1 to vk+1 of length k. The
graph C = ({v1, . . . , vk}, {e1, . . . , ek}) for a given closed walk W = v1, e1, v2, . . . , vk, ek, v1

with vi 6= vj for i 6= j is called a cycle in G of length k.

An undirected graph G is called connected if there exists a path between any two nodes
v, w ∈ V (G) with v 6= w; otherwise we call G disconnected.

An undirected graph G is called a forest if it does not contain a cycle. If a forest is additionally
connected, we call it a tree. The nodes of a tree with degree one are called leaves. A tree
T = (V,E) with a designated node r ∈ V is known as a rooted tree and we call r the root of T .
The edges of a rooted tree can be naturally oriented away from the root. Based on this natural
order, we call the successors of a node v ∈ V the children of v and the unique predecessor of
v the parent of v. In general, such directed trees are also known as arborescences, however
we will not cover them in the extent of this thesis.

If the nodes of an undirected graph G = (V,E) can be partitioned into two sets VA, VB ⊆ V
such that VA ∩ VB = ∅, VA ∪ VB = V , and E ⊆ {{v, w} : v ∈ VA, w ∈ VB}, we call G bipartite
and write G = (VA ∪ VB, E). In a bipartite graph, all edges have one endpoint in VA and one
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endpoint in VB. If all nodes in VA are pairwise adjacent to all nodes in VB, we say that G
is completely bipartite. We denote the complete bipartite graph with m = |VA| and n = |VB|
nodes by Km,n.

Finally, we define a weighted undirected (directed) graph as a pair of an undirected (directed)
graph G and a function w : E(G) → N (w : A(G) → N) that assigns a weight w(e) to all
edges of G.

2.3 Matchings

Matchings define a simple structure on graphs and we cover them in this separate section
due to their significance in this thesis.

Let G = (V,E) be an undirected graph. We call a set of edges M ⊆ E a matching if all edges
e ∈M are pairwise disjoint. Hence, if we denote the set of edges in an edge subset M ⊆ E
that are incident to v ∈ V as δM (v) := δ(v) ∩M , the edge subset M is a matching if and only
if |δM (v)| ≤ 1 for all v ∈ V . For a matching M ⊆ E and node v ∈ V , we say that v is matched
by M if |δM (v)| = 1; otherwise call v unmatched. We call |M | the size of the matching M and
if |M | ≥ |M ′| holds for all matchings M ′ ⊆ E, we call M a maximum matching. In the special
case that M matches all nodes in V , i.e., |M | = |V |/2, we call M a perfect matching.

A generalization of matchings to undirected graphs G = (V,E) with a balance function
b : V → N are known as b-matchings. A b-matching is an edge subset M ⊆ E such that each
node v ∈ V is incident to at most b(v) edges in M , i.e., |δM (v)| ≤ b(v). As a result, matchings
are special b-matchings with b(v) = 1 for all v ∈ V . We call |M | the size of the b-matching M
and if |M | ≥ |M ′| holds for all b-matchings M ′ ⊆ E, we call M a maximum b-matching. In
the special case that |δM (v)| = b(v) for all v ∈ V , we refer to M as a perfect b-matching.

Both matchings and b-matchings can be extended to weighted graphs and are well studied. A
summary of the most important results can be found in Korte and Vygen (2012).

2.4 Complexity Theory

Complexity theory is a highly technical field that revolves around alphabets, languages, and
(non-)deterministic Turing machines. As such a deep understanding is not necessary in this
thesis, we try to keep it as simple as possible. The interested reader is referred to Garey and
Johnson (1979) for a more formal take at the topic. This brief summary of the most basic
concepts is in structure and content closely related to Korte and Vygen (2012).

The elementary problems studied in complexity theory are so-called decision problems –
problems which only allow for a Yes or No answer.

2.3 Matchings 9



Definition 2.1. A decision problem is a pair Π = (I,J ) where the elements of I are called
the instances of Π, the elements of J ⊆ I are called the Yes-instances, and the elements of
I \ J are called the No-instances. The decision problem Π asks for given I ∈ I whether I is a
Yes-instance, i.e., whether I ∈ J .

To decide or solve a decision problem, we generally look for an algorithm that can determine
whether a given instance is a Yes-instance or not. Formally, this leads to the following
definition.

Definition 2.2. An algorithm for the decision problem Π = (I,J ) is a functionA : I → {0, 1}
that is defined by A(I) = 1 if I ∈ J and A(I) = 0 if I ∈ I \ J .

A key property of an algorithm is the number of elementary steps (e.g., assignments, arith-
metic operations, or comparisons) required to compute A(I) which depends on the given
instance I ∈ I, in particular its “size”.

Instances I ∈ I usually consist of a list of numbers that are encoded as binary strings. The
length of this binary encoding, i.e, the number of bits required to represent I, is known as the
encoding size of I that we denote by size(I) ∈ N. For example, an integer n ∈ Z has encoding
size size(n) = blog2(|n|)c+ 2 if we use a binary representation plus an extra bit to represent
the sign of n. Encodings are generally not unique, e.g., integers are usually represented using
an alternative encoding known as two’s complements; compare Java (Oracle, 2018). In the
following, we will not explicitly discuss the employed encoding but simply assume that it
is efficient which means that its length is polynomially bounded by the minimum possible
encoding length. We can now define the running time of an algorithm.

Definition 2.3. Let A : I → Z be an algorithm and let f : N→ N be a computable function.
If there exists c ∈ N such that A terminates in at most c · f(size(I)) elementary steps for each
instance I ∈ I, we say that A runs in O(f(size(I))) time. Also, we say that the running time
of A is in O(f(size(I))).

The running time of an algorithm is a measure of how long it will (in the worst case) take
to decide instance I ∈ I using algorithm A. Obviously, we are mostly interested in fast and
efficient algorithms that we define as follows.

Definition 2.4. An algorithm A : I → Z runs in polynomial time, if there exists a polynomial
p : N → N such that A runs in O(p(size(I))) time for all I ∈ I. We then say that A is a
polynomial-time algorithm.

Polynomial algorithms are the ones that efficiently decide decision problems. As a result, we
define the set of all decision problems for which such a polynomial-time algorithm exists.
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Definition 2.5. The class P consists of all decision problems Π for which a polynomial-time
algorithm exists.

We will now introduce another class of decision problems for which we no longer require a
polynomial-time algorithm, but instead the existence of a so-called certificate that allows us
to decide all Yes-instances in polynomial time.

Definition 2.6. The class NP consists of all decision problems Π = (I,J ) such that for each
Yes-instance I ∈ J there exists a certificate c(I) ∈ {0, 1}size(I) such that I can be decided in
polynomial time when c(I) is given.

As all instances of a decision problem Π ∈ P can be decided in polynomial time, it obviously
follows that P ⊆ NP. However, whether P = NP or if P 6= NP is the longstanding open
question that is central to complexity theory and worth one million dollars to the one solving
it (Devlin, 2002). In this thesis, we work under the assumption that P 6= NP, however we
try to repeat this assumption wherever it is required or implied.

For many decision problems in NP it is unknown whether they have a polynomial-time
algorithm. In the following, we introduce a concept that allows us to conclude that some
problems in NP are at least as hard as all other problems in NP. The foundation of this
concept are the so-called polynomial reductions.

Definition 2.7. Let Π1 = (I1,J1) and Π2 = (I2,J2) be two decision problems. We say that
Π1 polynomially reduces to Π2 is there exists a function f : I1 → I2 that can be computed in
polynomial time such that f(I) ∈ J2 for all I ∈ J1 and f(I) ∈ I2 \ J2 for all I ∈ I1 \ J1.

The key observation to polynomial reductions is the following.

Corollary 2.8. If Π1 polynomially reduces to Π2, every polynomial-time algorithm for Π2

implies a polynomial-time algorithm for Π1.

We can now define the class of all decisions problems that are at least as hard as all other
problems in NP.

Definition 2.9. A decision problem Π ∈ NP is called NP-complete if all problems in NP
polynomially reduce to Π.

As a result of Corollary 2.8, the existence of a polynomial-time algorithm for anyNP-complete
problem implies that P = NP. This motivates us to perceive NP-complete problems as
being the “hard” problems opposed the “easy” problems in P.

Fundamental to the concept of NP-completeness is obviously that there are NP-complete
problems and indeed, Cook (1971) showed that the well-known satisfiability problem SAT is
NP-complete.
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2.5 Parameterized Complexity Theory

Parameterized complexity theory is an extension of the previously introduced complexity
theory. In this section, we provide a brief introduction into this extension that is mostly based
on Koster (2017).

Parameterized complexity theory studies so-called parameterized problems that extend the
previously introduced decision problems by a parameter.

Definition 2.10. A parameterized problem is a pair (Π, κ), where Π = (I,J ) is a decision
problem and κ : I → N is a polynomial-time computable function called parameter.

A core concept in study of parameterized problems is the so-called fixed parameter tractability
that requires a polynomial-time algorithm in the input size but allows for a non-linear factor
that depends on the parameter.

Definition 2.11. Let (Π, κ) be a parameterized problem with Π = (I,J ). An algorithm
A is called fixed parameter tractable (FPT ) with respect to parameter κ, if there exists a
computable function f : N → N and a polynomial p : N → N such that for every instance
I ∈ I the running time of A is in O(f(κ(I)) · p(size(I))). We call a parameterized problem
(Π, κ) fixed parameter tractable (FPT ) if there exits an FPT -algorithm with respect to κ.

It is crucial to the definition of fixed parameter tractability that the non-linear term in the
algorithm’s running time is independent of the encoding size. In the following, we relax this
requirement and allow for polynomials in the encoding size for which the degree may depend
on the parameter.

Definition 2.12. Let (Π, κ) be a parameterized problem with Π = (I,J ). An algorithm A is
called an XP-algorithm with respect to parameter κ, if there exists a computable function
f : N → N such that for every instance I ∈ I, the running time of A is in O(size(I)f(κ(I))).
We call a parameterized problem (Π, κ) XP if there exits an XP-algorithm with respect to κ.

Clearly, if a parameterized problem is FPT it is also XP. A more refined analysis of
parameterized problems can be achieved through the so-called W hierarchy (Downey and
Fellows, 1999) on which we will not elaborate as this is beyond the scope of this thesis.

2.6 NP-hardness

Up to this point, we exclusively considered the complexity analysis of decision problems.
However, most problems in combinatorial optimization do not seek for a Yes/No answer, but
instead a feasible solution that optimizes a given objective. As we are going to see in this
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section, most of the previously described concepts transfer to optimization problems. The
following outline of the resulting formalisms is along the lines of Korte and Vygen (2012).

To begin with, we formally define what we understand by an optimization problem.

Definition 2.13. An optimization problem is a tuple Π = (I, (SI)I∈I , c, goal), where I is the
set of instances; SI are the feasible solutions for instance I ∈ I; c(I, x) ∈ Z is the solution
value of x ∈ SI for I ∈ I; and goal ∈ {min,max}. We define the optimal solution value of an
instance I ∈ I as OPT(I) := goalx∈SI c(I, x).

An (exact) algorithm A for an optimization problem Π = (I, (SI)I∈I , c, goal) computes for
every instance I ∈ I with SI 6= ∅ an optimal solution A(I) ∈ SI with c(I,A(I)) = OPT(I).
Polynomial reductions naturally extend to optimization problems and we define the following
class of problems.

Definition 2.14. An optimization or decision problem Π is called NP-hard if all problems in
NP polynomially reduce to Π.

By definition, all NP-complete decision problems are also NP-hard.

Next, we introduce a concept that allows us to classify NP-hard optimization or decision
problem even further. To that end, recall that a unary encoding represents instances I ∈ I as
strings composed of a single symbol (often denoted by 1) and blanks. Unary encodings are
usually much longer binary encoding. For example, a natural number n ∈ N is represented
by n repetitions of the symbol (11 . . . 1). Hence, size(n) = n in unary encoding. By using
a unary encoding of instances, we artificially reduce the running time requirements of
polynomial-time algorithms. This gives rise to the following class of algorithms.

Definition 2.15. Let Π be a decision or optimization problem. An algorithm A for Π is said
to run in pseudo-polynomial time, if it runs in polynomial time when we use a unary encoding
of the instances I. We then say that A is a pseudo-polynomial algorithm.

Pseudo-polynomial algorithms are generally not polynomial-time algorithms, as their running
times can be exponential in the encoding size with respect to an efficient binary encoding.
Nevertheless, pseudo-polynomial algorithms may be useful in practice which gives rise to the
following definition.

Definition 2.16. An NP-hard optimization or decision problem Π is called weakly NP-hard
if it has a pseudo-polynomial algorithm.

Given the existence of a pseudo-polynomial algorithm, weakly NP-hard problems can be
considered as the “easier” NP-hard problems. As a counterpart, we consider the so-called
strongly NP-hard problems.
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Definition 2.17. An optimization or decision problem Π is called strongly NP-hard if it
remains NP-hard even if we use a unary encoding of the instances I.

By definition, strongly NP-hard problems cannot have a pseudo-polynomial algorithm unless
P = NP. In that sense they are “harder” than the weakly NP-hard problems.

Parameterized complexity theory can also be extended to optimization problems, however
we refrain from doing within the scope of this thesis.

2.7 Approximation Algorithms

Approximation algorithms are polynomial-time algorithms that are not exact but instead only
ensure a relative performance guarantee, i.e., the obtained solution value may differ from
the optimal solution value by at most a multiplicative factor. The following formalization of
the concept of approximation algorithms is based on the one in Korte and Vygen (2012).

The notion of approximation algorithms is clearly only meaningful for optimization problems.
Therefore, let Π = (I, (SI)I∈I , c, goal) be an optimization problem with non-negative solution
values, i.e., we assume in the following that c(I, x) ≥ 0 for all I ∈ I and all x ∈ SI . As before,
we denote the optimal solution value of instance I ∈ I by OPT(I). Moreover, we denote the
solution value for instance I ∈ I obtained by algorithm A as A(I) := c(I,A(I)). We can now
formalize an approximation algorithm.

Definition 2.18. Let Π = (I, (SI)I∈I , c, goal) be an optimization problem with non-negative
solution values and α > 1. An α-approximation algorithm for Π is a polynomial-time algorithm
A for Π such that

1
α

OPT(I) ≤ A(I) ≤ α OPT(I) (2.1)

for all instances I ∈ I. We call α > 1 the performance ratio or performance guarantee of A.

The first inequality in (2.1) applies if Π is a maximization problems (goal = max), while
the second applies when Π is a minimization problem (goal = min). For all instances I ∈ I
with OPT(I) = 0, the definition above requires an optimal solution, i.e., it must hold that
A(I) = 0.

Note, that our definition of approximation algorithms excludes 1-approximation algorithms
as these are the exact polynomial-time algorithms of an optimization problem Π.
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Part I

Agent-based Modeling for Primary Care
The Decision Support Tool SiM-Care





Introductory Remarks and
Contribution

3
„Primary health care has been proven to be a highly

effective and efficient way to address the main causes
and risks of poor health and well-being today, as well
as handling the emerging challenges that threaten
health and well-being tomorrow.

— World Health Organization, 2020a

3.1 Motivation and Research Question

The simultaneous rising of the demand for primary care services and decreasing supply
of health professionals require fundamental adjustments of primary care systems (Pfaff
et al., 2017). Statutory health insurances, governments, and the Associations of Statutory
Health Insurance Physicians therefore discuss and explore a variety of new concepts and
policies to uphold the current standard of health care provision (Rosenbrock and Gerlinger,
2014; Mann et al., 2010). These adjustments are commonly classified into i) microsystem
improvements, which aim at enhancing a single server of the system and can be implemented
at an individual level, and ii) macrosystem reforms, which are fundamental system-wide
changes that affect all servers and must be implemented by policy makers (Zhong et al.,
2016). In the context of primary care, microsystem improvements focus on single practices
and consider changes that can be implemented independently by primary care physicians
(PCPs), e.g., new appointment scheduling strategies or work-flows. Macrosystem reforms on
the other hand, are more holistic and consider, e.g., the distribution of PCPs, compensation
schemes, or patient transportation.

What is common to both types of system changes, is that they need to be validated and
evaluated prior to their potentially costly implementation (Pfaff et al., 2017). Naturally, this
leads to the following pressing question:

How can the quality of primary care systems and the effects of changes made to them
be quantified?

In German legislation, this question is addressed by the 2012 GKV-Versorgungsstrukturgesetz
(Gemeinsamer Bundesausschuss, 2012), which defines adequate health care supply on the
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basis of profession-specific ratios. The law subdivides Germany into zones and specifies
the required population-to-provider ratio for each medical specialization. For example,
the predefined nominal ratio of primary care physicians is one PCP per 1,609 inhabitants
(Gemeinsamer Bundesausschuss, 2012, §11(4)). This base indicator can be adjusted to
account for a zone’s individual demographic and geographic characteristics (Gemeinsamer
Bundesausschuss, 2012, §2). If the actual ratio of a zone is significantly higher than the
nominal ratio, closing practices will not be replaced. If it is significantly lower, new practices
are permitted to be opened.

Beyond Germany, we can find similar ratio-based measures in other European countries
like Bulgaria, Estonia, Italy, and Spain (Kringos et al., 2015). In the United States, the
Health Resources and Services Administration (HRSA) defines adequate health care supply
based on profession- and region-specific population-to-provider ratios. If the predefined
population-to-provider ratio of a geographic area is exceeded, HRSA designates it a health
professional shortage area to which National Health Service Corps personnel is directed with
priority. Specifically, for primary care this predefined ratio is 3,500 to 1 which can be lowered
to 3,000 to 1 if a region’s needs are unusually high (Bureau of Health Workforce, Health
Resources and Services Administration (HRSA), 2020).

Obviously all these ratio-based assessments have several shortcomings. Even after adjustment,
population-to-provider ratios can only provide a very rough estimate of the actual demand
for health services. Furthermore, adjustment criteria are highly dependent on the definition
of the underlying zones or geographic areas. Factors such as the accessibility of practices and
the PCPs’ individual workloads are completely neglected. Finally, ratio-based assessments
cannot account for new health care delivery concepts such as telemedicine, mobile medical
units, or centralized appointment scheduling as these do not affect the evaluated population-
to-provider ratios.

To overcome these limitations, a new approach to model the dynamic effects in primary care
systems is required. However, analyzing and evaluating health care systems is a complex and
complicated task due to the large number of involved individuals and uncertain nature of
health care processes, e.g., fluctuating demands, arrival times of patients, emergency patients,
and durations of treatments. There result so-called wicked problems (Rittel and Webber,
1973); problems that stem from a “world of diverse, pluralistic and dynamic changes that is
ill-suited to traditional optimization and equilibrium modeling” (Zellner and Campbell, 2015).
As agent-based modeling (ABM) can account for individual agents and their interactions
on the micro-level, some consider it a promising paradigm to model the type of complex
systems that cause wicked problems (Zellner and Campbell, 2015). A general introduction to
the concept of ABM is provided in Gilbert (2008). Existing studies implementing ABM have
considered diverse social systems. Examples include matters such as tobacco control (Rigotti
and Wallace, 2015) and educational policy research (Maroulis et al., 2010). There are also
numerous applications of ABM in the field of health care (Barnes et al., 2013), e.g., for
accountable care organizations (Alibrahim and Wu, 2018; Liu and Wu, 2016), for medical
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Physicians

Patients

Fig. 3.1.: Geo-social system of patients and physicians.1

workforce forecasting (Lopes et al., 2018), and in epidemiology (Patlolla et al., 2006; Meng
et al., 2010).

In the following, we employ the concept of agent-based modeling to develop a novel simula-
tion tool that is designed to support the assessment of primary care systems.

SiM-Care – A Simulation Model for Primary Care

This thesis introduces the hybrid agent-based simulation tool SiM-Care (Simulation Model for
Primary Care) to model the dynamics of primary care systems. SiM-Care models patients and
PCPs on an individual level as illustrated by Figure 3.1: Patients and PCPs are modeled via a
geo-social system in which patients decide whether and where to request an appointment
based on their preferences and state of health; and PCPs handle appointment requests,
manage patient admissions, and treat patients. By tracking the resulting interactions in SiM-
Care, planners can identify dependencies of different subproblems, evaluate new planning
approaches, and quantify the effects of interventions on the basis of multiple meaningful
performance measures. From empirical data, we develop realistic test scenarios including a
controllable degree of uncertainty realized via stochastic simulation experiments.

Before we discuss existing work in the field of decision support for health care planning that
is related to SiM-Care, we summarize our contributions.

1Map tiles by Humanitarian OSM Team under CC0. Data by OpenStreetMap, under ODbL.
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3.2 Contribution

The main contribution of Part I of this thesis can be summarized as follows. We introduce the
simulation model SiM-Care, which provides decision makers with a versatile decision support
tool for primary care planning. SiM-Care is a generic model that can be easily modified and
extended to meet each modeler’s needs. Patients and physicians are modeled as individuals
who follow their own objectives, learn, and adjust. To ensure computational tractability, the
model incorporates a global event queue at its core. As such, SiM-Care can be considered as
an integrated hybrid simulation model that combines paradigms from agent-based modeling
and discrete event simulation. Based on empirical data from a German primary care system,
we illustrate how scenarios for the simulation model can be generated. Finally, we showcase
the opportunities of SiM-Care through a case study and perform a sensitivity analysis. To the
best of our knowledge, SiM-Care is the first model of its kind that captures entire primary care
systems with all physicians and patients as individual agents and allows for the simultaneous
consideration of microsystem improvements as well as macrosystem reforms. The open source
release of our Java (Oracle, 2018) implementation of SiM-Care is currently in preparation.

3.3 Related Work

Decision support for health care planning is an area with increasing importance (Hamrock
et al., 2013). To analyze health care systems, decision support tools have to deal with the
detail complexity that is inherent to the health care sector: Patients schedule appointments
based on their preferences and state of health, while PCPs offer appointments and treat
patients. Micro-interactions thereby affect macro-level indicators as agents observe, learn and
adapt, decide and act, and – as a group – determine the system’s behavior (Gilbert, 2008).
When a system’s status depends on such micro-interactions, its behavior becomes difficult
to predict and a “wide range of possible outcomes may arise from any policy change” (Fone
et al., 2003). Simulation modeling can deal with this kind of complexity by “simulating the
life histories of individuals and then estimating the population effect from the sum of the
individual effects” (Fone et al., 2003). As such, simulation models represent a powerful tool
to inform policy makers: They can provide valuable insights into the dependencies within
health care systems and allow for the prediction of the outcome of a strategy change ahead
of a potentially costly and risky real-world intervention (Fone et al., 2003; Hamrock et al.,
2013).

Given these potentials, the use of computer simulation in health care delivery has significantly
increased over the recent years (Zhong et al., 2016). The resulting body of literature is rich, as
shown by several surveys of existing contributions. Examples include Fone et al. (2003) and
Brailsford et al. (2009), who review the use of simulation modeling for health care in general.
Other surveys are mostly focused on a particular simulation paradigm, e.g., system dynamics
(SD) (Homer and Hirsch, 2006; Brailsford, 2008), discrete event simulations (DES) (Hamrock
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et al., 2013; Jacobson et al., 2006), agent-based modeling (Barnes et al., 2013; Tracy et al.,
2018), and hybrid simulations (Brailsford et al., 2019; Brailsford et al., 2010).

As background for the primary contribution of presenting a novel simulation system, we
consider several examples of the computational study of primary care systems. The related
references stem from a literature search featuring the keywords {simulation, decision support,
system dynamics, discrete event, agent based model} + {primary care, health care}. Table 3.1
lists the resulting references and differentiates the simulation paradigm, the modeling objec-
tive, and information on stakeholder involvement and maintenance. Accordingly, we broadly
partition the considered models into two groups: those studying microsystem improvements
and those investigating macrosystem reforms. To allow for a direct comparison between
these models and SiM-Care, we also include the latter in Table 3.1.

Simulation models aimed at studying microsystem improvements in primary care systems
mostly include a detailed model of a single (specific) outpatient practice and focus on a
predefined subset of potential improvements. Zhong et al. (2016) present a discrete event
simulation for a pediatric clinic at the University of Wisconsin Health. Their model includes a
very detailed representation of the sequential stages during a patient’s visit. In a set of “what-
if‘” scenarios, the authors investigate how the overall performance of the clinic is impacted
by different scheduling templates, a change in the medical assistant to physician ratio, and
the pairing of resident doctors with clinicians. Shi et al. (2014) develop a discrete event
simulation model for a primary care clinic of the Department of Veteran Affairs. Within the
model, the different patient flow routes for appointment patients, walk-ins, and nurse-only
patients are distinguished. In a scenario analysis, the authors investigate how the clinic’s
performance is affected by six distinct factors that include walk-in and no-show rates as well
as the double booking of appointments. Cayirli et al. (2006) use empirical data collected at a
primary care clinic in New York to devise a discrete event simulation of a generic single-server
primary care practice. The model distinguishes new and returning patients and accounts for
walk-ins, no-shows, patient punctuality, and service time variations. In a simulation study,
the authors evaluate 42 appointment systems that vary in the implemented sequencing- and
appointment rules. A similar discrete event simulation of a generic single-server primary
care practice is introduced by Schacht (2018). In the author’s model, all arriving patients
have a stochastic willingness to wait and always request an appointment. If the access time
for this appointment exceeds a patient’s willingness to wait, they become walk-ins. The
arrival rate of patients depends on the session, day, and month to model seasonality. In a
case study, the author evaluates a class of appointment systems that can account for seasonal
variations in demand through reconfigurations. Further simulation models aimed at the study
of microsystem improvements in primary care practices can be found in Wiesche et al. (2017),
Oh et al. (2014), and Giachetti et al. (2005).

In contrast to SiM-Care, all of the models above include only one single primary care practice
out of the many providers that make up a primary care system. Moreover, all of these
models adopt a different approach to the representation of patients: While SiM-Care models
a persistent patient population that is shared by all providers, the previous models perceive
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Tab. 3.1.: Classification of related simulation models in primary care.
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patients as non-persistent, i.e., patients are generated as they arrive at the practice and cease
to exist as soon as they are discharged. As a result, the previous models cannot account
for the effects of individual microsystem improvements on the entire primary care system
itself.

Simulation models that investigate macrosystem reforms of primary care systems mostly
include an entire primary care system, however they are usually much more high level.
To that end, Matchar et al. (2016) use the methodology of system dynamics to develop a
simulation model to aid primary care planning in Singapore. The model captures the causal
relationships between the stakeholders’ aims and the provision of services in an analytical
framework. The authors evaluate three policy changes that constitute in reducing the service
gap, reducing the out-of-pocket costs, and increasing the number of physicians. While this and
comparable system dynamics models do not consider the same level of micro-detail offered by
agent-based simulations, they create fewer requirements with regard to computational effort
and may provide a more concise model that is easier to communicate to stakeholders.

Homa et al. (2015) present an agent-based model to investigate the so-called paradox of
primary care in which patients, PCPs, and specialists are represented as individual agents.
Every patient has a health status that changes over time: The contraction of illnesses leads to
a (temporary) decrease in the patients’ health; the treatment of acute illnesses by PCPs and
specialists as well as regular check-ups (performed exclusively by PCPs) lead to an increase
in the patients’ health. Tracking the evolution of the patients’ average health status over time,
the authors investigate how public health is affected by the interplay of different mechanisms
in primary care. As such, their model has a different objective than SiM-Care: While the
former investigates the external effects of treatments in primary care on the entire health
care system, SiM-Care focuses on the processes within primary care systems. To that end,
SiM-Care models the scheduling of appointments, the patients’ actual practice visits that
result in waiting times through the interaction of patients, and the physicians’ treatments of
patients with variable service times which are not part of the model by Homa et al. (2015).

To the best of our knowledge, there is no previous work on simulation models for the evalua-
tion of primary care systems that allows for the simultaneous consideration of microsystem
improvements and macrosystem reforms as in SiM-Care.

3.4 Outline and Use of Published Materials

Part I of this thesis is structured as follows. Chapter 4 introduces SiM-Care on the basis
of the Overview, Design concepts, and Details (ODD) framework by Grimm et al. (2010).
In Chapter 5, we subsequently present a case study based on empirical data to aid model
validation and showcase how SiM-Care can be applied to support health care planning.
Finally, Chapter 6 discusses the potential applications and entry requirements of SiM-Care
and provides directions for future work.
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All chapters of Part I are based on the publication Comis et al. (2021) and are thus joint work
with my supervisors Christina Büsing and Catherine Cleophas.
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A Simulation Model for Primary
Care

4
Creating a simulation model means both formalizing what the model includes and deciding
what to leave out (Tracy et al., 2018).. Therefore, this section first discusses the process of
creating the model and the involvement of stakeholders before listing the resulting model
assumptions and limitations. Subsequently, we delve into a more technical description of all
modeled components and relationships based on the ODD framework described by Grimm
et al. (2010).

SiM-Care is designed to meet the requirements of various stakeholders. Researchers access the
model to evaluate outcomes from prescriptive planning approaches based on mathematical
modeling. The modeling team regularly consulted with health care practitioners including
primary care physicians, health insurance representatives, as well as representatives from
industry associations and administrative authorities. Generally, we find that explaining the
simulation model through the agent-based paradigm and presenting results from related
studies allows for in-depth discussions, where the simulation provides a helpful tool for
illustration.

At an early modeling stage, it became evident that the model would never be able to mirror
all intricacies of a primary care system. Therefore, development focused on the idea of
“modeling the problem, not the system", as recommended by Northridge and Metcalf (2016).
Here, the primary problem is evaluating the macro-level effects from combining of health
care supply in the form of a population of physicians versus a demand in the form of a
population of patients. Thereby, we model the trade-offs between the objectives pursued
by three stakeholder groups: patients, PCPs, and policy makers. SiM-Care assumes that
PCPs strive to efficiently utilize their time, whereas patients strive for a quick response to
their health concerns. Thereby, the model illustrates the trade-off between efficiency and
patient-centered care. Policy objectives can range from minimizing the cost of health care to
maximizing the degree of patient-centered care. Policy makers are not represented by agents
within SiM-Care. Instead, policy decisions set relevant model parameters such as the number
of physicians in the system and treatment standards. To model interactions on a micro-level,
SiM-Care thus features two populations of agents: potential patients P and PCPs G.

Every patient ρ ∈ P resides at a specific location, belongs to a certain age group and has an
individual health status and treatment preferences; compare Figure 4.1. Patients develop
acute illnesses that depend on their age and health status and require treatment. Additionally,
patients may suffer from chronic illnesses, which need to be monitored by a physician. To
receive medical attention, patients either schedule an appointment or visit a PCP’s practice

25



Patients

• location

• age class

• health status

• preferences

Physicians

• location

• opening hours

• strategies

→ request appointments
→ visit with appointment
→ visit as walk-ins

↔ adjust preferences
and strategies

← assign appointments
← manage admission
← perform treatments

� develop
illnesses

Fig. 4.1.: Concept of SiM-Care showing both types of agents with their main attributes as well as
interactions between agents.

without prior notice. Patients’ decisions depend on their individual preferences and health
status. These factors determine the choice of physician, the type of the visit (walk-in/
appointment), and the time of the visit.

All PCPs φ ∈ G practice at a certain location and have weekly recurring opening hours;
see Figure 4.1. Moreover, every physician φ ∈ G follows individual strategies that govern
how they manage appointments, admit patients, and perform treatments. As patients and
physicians interact, they influence each other and adjust their preferences and strategies.

Intrinsically, it is difficult – if not infeasible – to list all implicit assumptions underlying a
model. Nevertheless, we list limitations that may restrict the application of SiM-Care in the
following.

SiM-Care focuses on the adult population and neither models pediatric care nor gender
differences. While we do differentiate patients by health status, age, and illnesses, we assume
that all patients implement the same strategies when arranging appointments or becoming
walk-ins. Furthermore, the model assumes that all patients attend their appointments, i.e.,
there are no no-shows patients.

As it stands, the model does not consider cross-effects between illnesses that may occur, e.g.,
when a chronic illness worsens the progression of an acute illness. As there is no model of
direct patient interaction, SiM-Care does not include an explicit infection model, i.e., the
probability of a patient developing an acute illness is independent of their interaction with
other patients and physicians. While patients who suffer from illnesses seek treatment, the
duration of an illness is not directly affected by treatments.

On the provider side, we do not model a relationship between primary care systems and
specialists or hospitals. Physicians do not differentiate patients according to their insurance
policy. The physicians’ service times do not depend on the patients’ number or types of
illnesses and physicians do not offer home visits. We assume that PCPs are never late
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or absent and the model includes neither seasonality nor holidays. Finally, we assume
independence of surrounding municipalities, such that the modeled primary care system is a
closed system.

To concisely highlight the interaction of the model’s relevant components, we order and
group the design questions given by the ODD framework as follows. First, Section 4.1 defines
the temporal and geographical scales within SiM-Care. Second, Section 4.2 describes the
representation of the relevant entities and state variables, including patients and physicians
with their sensing, predicting, adapting, interacting, and learning actions. Third, Section 4.3
provides process overviews and describes matters of scheduling. Fourth, Section 4.4 explains
how and where the model captures the uncertain nature of health care systems through
stochastic parameters. Fifth, Section 4.5 briefly reviews the indicators that result from running
the simulation and explains their emergent properties. Sixth, Section 4.6 discusses the
initialization of a simulation experiment. Seventh, Section 4.7 documents the submodels that
implement, e.g., the PCP’s strategies to handle appointments. Finally, Section 4.8 describes
our structural validation as well as our approach to verification taken when implementing
the model.

4.1 Simulation Environment

SiM-Care’s environment entails the geographical and temporal structure as well as policy
effects. Within the model, locations ` ∈ L := [−90, 90] × [−180, 180] are represented using
the geographic coordinates latitude and longitude indicating the north-south and east-west
position, respectively.

The modeled time period is considered as a continuum structured by points in time and
durations. For any time object (point in time or duration) t = (δ, η) ∈ T := N×[0, 1), attribute
δ ∈ N indicates the day and attribute η ∈ [0, 1) =: H specifies the time as an increment of
day known as decimal time. That is, we use the same encoding for points in time and
durations as context uniquely defines which of the former a time object refers to. For example,
(38, 0.55) ∈ T corresponds to day 38 and 24 · 60 · 0.55 = 792 minutes, i.e., 1:12 p.m. as a
point in time or, analogously, to a duration of 38 days, 13 hours, and 12 minutes. To ease
notation, we associate every point in time and duration (δ, η) ∈ T with the non-negative
value δ + η ∈ R≥0 which yields a bijection between T and R≥0.

In addition to the continuous representation of time, we structure each day into a morning
and an afternoon session as it is common practice in primary care (Klassen and Rohleder,
1996). Each session λ = (δ, γ) ∈ Λ := N × {0, 1} is uniquely defined by a day δ ∈ N and a
binary indicator γ ∈ {0, 1}. Thereby, the binary indicator γ defines whether it is the morning
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(γ = 0) or the afternoon (γ = 1) session. Sessions recur on a weekly basis which yields an
equivalence relation ∼ on the set of sessions Λ via

(δ1, γ1) ∼ (δ2, γ2) :⇔ δ1 ≡ δ2 mod 7 ∧ γ1 = γ2.

The resulting equivalence class for a session λ ∈ Λ defined as [λ] := {λ′ ∈ Λ : λ′ ∼ λ}
contains all sessions sharing the same day of the week and time of the day, e.g., all Thursday
afternoon sessions. Thus, we model and distinguish 14 sessions each week, i.e., Monday to
Sunday with a respective morning and afternoon session that we associate with the set of all
equivalence classes Λ/∼ := {[λ] : λ ∈ Λ}. Particularly, this allows for a distinction between
sessions on weekdays and weekends.

4.2 Entities and State Variables

Modeled as interacting agents, patients ρ ∈ P and PCPs φ ∈ G are the active entities in the
simulation. Their interaction is motivated by patients’ suffering from illnesses and therefore
seeking treatment with PCPs via appointments or walk-in visits. Both patients and PCPs are
complex individuals featuring characteristics that represent entities themselves. Going from
simple to more elaborated, we begin by describing the self-containing entities of SiM-Care
and end with the description of the agents representing patients and physicians.

4.2.1 Objectives

When patients suffer from an acute illness, they want to be treated as soon as possible,
ideally by their preferred physician. For the continuous treatment of chronic illnesses and the
follow-up care of acute illnesses, patients prefer treatment by the same physician through
appointments in regular intervals. Physicians, on the other hand, aim at efficiently utilizing
their available time while minimizing overtime. Thus, patients’ and physicians’ objectives
are in conflict as it is ineffective for physicians to fully comply with patient demands: To
ensure that all short-notice appointment requests can be accommodated, PCPs would have
to withhold too much treatment time. Providing follow-up appointments in strict intervals
would prevent PCPs from reacting to demand fluctuations.

Policy makers, while not explicitly modeled, follow a multitude of conflicting objectives.
On the one hand, they need to ensure a certain minimum standard in health care quality
to guarantee patients are treated when necessary. On the other hand, they cannot afford
to subsidize an excessive number of physicians. Thus, policy makers necessarily aim at a
trade-off: A purely patient-based system that disregards efficiency is likely to turn out to be
unaffordable, a health system optimized only for efficiency might lead to unacceptable waiting
and access times. SiM-Care represents policy decisions through their resulting parameter
values, e.g., the number of physicians and their distribution.
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Tab. 4.1.: Summary of attributes and their units
for illnesses i ∈ I .

Attribute Type Unit

seriousness si ∈ [0, 1]
illness family fi ∈ F
duration di ∈ T [days]
willingness to wait ωi ∈ T [days]
follow-up interval νi ∈ T [days]

4.2.2 Illnesses and Families of Illnesses

Illnesses are health concerns that cause discomfort to patients and require treatment. They
belong to a certain illness family (e.g. cold or heartburn), have a certain seriousness (e.g.
mild or severe), persist over a certain period of time, and require an initial treatment within
an acceptable time frame as well as subsequent follow-up visits in regular time intervals. In
SiM-Care, we formalize illnesses as tuples i = (si, fi, di, ωi, νi) ∈ I with attributes as shown
in Table 4.1. Thereby, si ∈ [0, 1] defines the seriousness of the illness, fi ∈ F defines the illness
family of the illness, and di ∈ T defines the duration of the illness. The parameter ωi ∈ T
defines the illness’ willingness to wait, which is the patient’s maximum accepted waiting time
for the initial treatment. The parameter νi ∈ T defines the illness’ follow-up interval, which
specifies the frequency of the required aftercare that follows the initial treatment. When we
use this representation to model health concerns that are not strictly illnesses like the need
for vaccination, the characteristics duration and follow-up interval may not apply. In such
cases, setting parameter values di = ∅ and νi = ∅ indicates that the respective characteristic
is not applicable for i ∈ I .

Families of illnesses serve as the classification system of illnesses within SiM-Care. While
emerging illnesses vary in their manifestation, families of illnesses define the common constant
traits of all illnesses belonging to the same illness family. In our model, the common constant
traits of all illnesses i ∈ I with seriousness si ∈ [0, 1] belonging to illness family fi ∈ F are
the expected duration Dfi(si) ∈ T , the expected willingness to wait Wfi(si) ∈ T , and the
follow-up interval Nfi(si) ∈ T . The expected duration Dfi(si) and expected willingness to
wait Wfi(si) are exclusively used during the generation of new emerging illnesses and serve
as the means for the distributions from which we sample each illness’ stochastic duration di
and stochastic willingness to wait ωi. Thus for all emerged illnesses i ∈ I , it generally holds
that di 6= Dfi(si) and ωi 6= Wfi(si). Only the follow-up interval of emerged illnesses i ∈ I

derives from the illness family in a deterministic way, i.e., νi = Nfi(si).

In order to define the common traits of emerging illnesses, families of illnesses f ∈ F
are formally specified by three functions. A linear function Df : [0, 1] → T that defines
the expected duration Df (s) in days for all emerging illnesses with seriousness s ∈ [0, 1]
that derive from illness family f ∈ F . Moreover, linear functions Wf : [0, 1] → T and
Nf : [0, 1]→ T that analogously define the expected willingness to wait in days and follow-up
interval in days; see Table 4.2. As above, we indicate the inapplicability of the characteristics
duration or follow-up interval to families of illnesses by setting Df = ∅ and Nf = ∅,
respectively.
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Tab. 4.2.: Summary of attributes of fam-
ilies of illnesses f ∈ F .

Attribute Type

lin. function for exp. duration Df : [0, 1]→ T
lin. function for exp. willingness Wf : [0, 1]→ T
lin. function for follow-up interval Nf : [0, 1]→ T
chronic attribute κf ∈ {0, 1}

To illustrate the concept of illnesses and families of illnesses, consider the illness family “com-
mon cold” with expected illness duration defined by Df (s) = 10 s+ 3, expected willingness
to wait defined by Wf (s) = −3 s + 3, and follow-up interval defined by Nf (s) = −2 s + 7.
When a patient develops a mild (si = 0.2) “common cold”, the illness family “common cold”
defines the expected duration, expected willingness to wait, and follow-up interval of the
mild cold as Df (si) = 5 days, Wf (si) = 2.4 days, and Nf (si) = 6.6 days. The actual duration
and willingness to wait of the developed mild “common cold” are stochastic and vary around
their expected counterparts, e.g., di = 5.5 days and ωi = 2.7 days. The illness’ follow-up
interval is deterministic and derives from the illness family via νi = Nfi(si) = 6.6 days. The
particular mild cold in this example will thus not require a follow-up visit as its duration is
shorter than the follow-up interval, i.e., di < νi.

To model chronic health concerns such as diabetes that persist over an extended period
of time, a chronic attribute κf ∈ {0, 1} identifies families of chronic illnesses. Thereby, κf
partitions F into the set of acute families of illnesses Fact := {f ∈ F : κf = 0} and the set of
chronic families of illnesses F chro := {f ∈ F : κf = 1}. This directly induces a partition of
the set of illnesses I into the set of acute I act and the set of chronic illnesses I chro.

Acute illnesses i ∈ I act develop and subside over time and patients ρ ∈ P can simultaneously
suffer from an arbitrary number of acute illnesses Iact

ρ ⊆ I act. Chronic illnesses ς ∈ I chro

are conceived as static by the model – they neither develop nor heal in the modeled time
period. Instead, each patient ρ ∈ P either suffers from exactly one chronic illness ςρ ∈ I chro

throughout the modeled time period, i.e., Ichro
ρ = {ςρ} ⊆ I chro, or no chronic illness at all,

i.e., Ichro
ρ = ∅. To distinguish patients suffering from a chronic illness from those who do not,

we refer to the former as chronic patients.

4.2.3 Appointments

Appointments specify the point in time at which the treatment of a specific patient is scheduled
to take place. To that end, appointments b ∈ B are defined by the time of the appointment
tb ∈ T , the attending physician φb ∈ G, and the patient ρb ∈ P receiving treatment. At any
point in time, non-chronic patients can have at most one scheduled appointment bact ∈ B,
called the acute appointment. Acute appointments are intended for the initial treatment of
acute illnesses, the follow-up treatment of acute illnesses, or both. Chronic patients, may
have a regular appointment breg ∈ B to treat their chronic illness in addition to the acute
appointment to treat their acute illnesses. While chronic illnesses are only treated during
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Tab. 4.3.: Summary of attri-
butes of age classes
a ∈ A.

Attribute Type

lin. function for exp. annual acute illnesses Ia : [0, 1]→ R≥0
deviation from exp. illness duration ∆d

a > 0
deviation from exp. willingness to wait ∆ω

a ≥ 0
probability to cancel appointments pa ∈ [0, 1]

regular appointments, acute illnesses are treated during any appointment. Thus, all of a
patients’ acute illnesses Iact are treated during every appointment.

4.2.4 Age Classes

Age classes group the modeled set of patients and serve the purpose of defining the common
characteristics of patients within the respective classes. For patients of age class a ∈ A, these
characteristics are the deviation from the expected illness duration ∆d

a > 0, the deviation
from the expected willingness to wait ∆ω

a ≥ 0, the probability to cancel an appointment
after full recovery pa ∈ [0, 1], and the expected number of annual acute illnesses defined
through the linear function Ia : [0, 1]→ R≥0; see Table 4.3. The deviation from the expected
illness duration ∆d

a is a multiplicative factor, that determines whether the expected illness
duration Dfi(si) ∈ T extends (∆d

a > 1) or shortens (∆d
a < 1) for patients of age class a ∈ A.

Analogously, the deviation from the expected willingness to wait ∆ω
a , determines how the

expected willingness to wait Wfi(si) ∈ T of an illness changes for patients of age class
a ∈ A. The linear function Ia : [0, 1] → R≥0 defines the expected number of annual acute
illnesses Ia(c) ∈ R≥0 for patients in age class a ∈ A which depends on the patient’s individual
health condition c ∈ [0, 1] that can range from perfectly healthy (c = 0) to extremely delicate
(c = 1).

4.2.5 Age Class-Illness Distribution

The age class-illness distribution πact : A×Fact → [0, 1] builds the connection between the
set of age classes A and the set of acute families of illnesses Fact. To that end, πact defines
the expected distribution of acute illness families for each age class, i.e., among all developed
acute illnesses by patients of age class a ∈ A, a fraction πact(a, fi) ∈ [0, 1] is expected to belong
to illness family fi ∈ Fact. As a result, πact defines a discrete probability distribution on the
set of acute families of illnesses Fact for fixed age class a ∈ A, i.e.,

∑
fi∈Fact πact(a, fi) = 1.

4.2.6 Patients

Patients are the driving force of the simulation, as their health concerns trigger the events that
underly most of the simulation’s processes. All non-chronic patients ρ ∈ P are characterized
by their geographical location `ρ ∈ L, health condition cρ ∈ [0, 1], acute illnesses Iact

ρ ⊆ I act,
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age class aρ ∈ A, acute appointment bact
ρ ∈ B, and preferences. While the location, health

condition, and age class of each patient remain constant throughout a simulation experiment,
a patient’s acute illnesses, acute appointment and preferences are variable and change
over time. Chronic patients possess all the characteristics of non-chronic patients, but are
additionally identified by a constant chronic illness Ichro

ρ = {ςρ} ⊆ I chro and a variable
regular appointment breg

ρ ∈ B. We denote all of a patient’s illnesses by Iρ := Iact
ρ ∪ Ichro

ρ .

Patients’ preferences determine when, where and how they pursue treatment. Specifically,
each patient ρ ∈ P considers a set of PCPs Gcon

ρ ⊆ G and never seeks treatment with PCPs out-
side the consideration set. Since continuity in the treatment of chronic illnesses is particularly
important, chronic patients select a distinguished family physician φfam

ρ ∈ Gcon
ρ with whom all

regular appointments breg
ρ ∈ B are exclusively arranged. While every patients’ consideration

set Gcon
ρ remains constant throughout the modeled time period, patients reevaluate and vary

their family physician. Naturally, patients have personal schedules and cannot attend all
weekly sessions. Thus, the model assumes that each patient has a constant set of weekly-
recurring session availabilities given by αρ : Λ/∼ → {0, 1}, where 0 encodes unavailability.
Finally, every patient ρ ∈ P maintains an individual appointment rating rapp

ρ (φ) ≥ 0 as well
as a session-specific walk-in rating rwalk

ρ (φ, [λ]) ≥ 0 for every weekly session [λ] ∈ Λ/∼ and
every considered physician φ ∈ Gcon

ρ .

Ratings are the means by which patients express their satisfaction with a physician’s services.
Whenever a patient seeks consultation, the choice of physician is determined by the patient’s
current ratings. To that end, ratings incorporate the patients’ sense of geographic distance,
matching of opening hours with availabilities, and previous positive and negative experiences.
As patients adjust their ratings over time, they adjust their choice of PCP. If a physician is
unable to meet an appointment request, causes excessive waiting times, or rejects patients
due to capacity overruns, patients reduce their rating. Positive experiences such as successful
appointment arrangements or short waiting times increase ratings. In other terms, through
their sensing of the quality of treatment and the adaptation of their ratings, patients learn
about the quality of PCPs throughout the simulation cycle.

When patients begin to suffer from a new illness, they always seek treatment. To that
end, patients ρ ∈ P first request an appointment from the set of considered PCPs Gcon

ρ .
Appointment requests are one of the ways in which patients and PCPs interact. Patients
attempt up to two appointment requests in order of the appointment rating rapp

ρ (φ) ≥ 0
they assign to the considered physicians φ ∈ Gcon

ρ . If both requested PCPs fail to offer a
feasible appointment within the patient’s willingness to wait, patients resort to their second
way of interacting with physicians: They forgo an appointment and visit a PCP as a walk-in.
The selection of the PCP for the walk-in visit is based on the corresponding walk-in rating
rwalk
ρ (φ, [λ]) of the targeted session λ ∈ Λ.

Upon arrival, patients may be rejected by physicians due to, e.g., capacity overloads. Following
a rejection, patients update their rating of the rejecting PCP and attempt a new visit as walk-in
at the then-highest-rated PCP. Rejected patients are flagged as emergencies (ερ = 1) for as
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Tab. 4.4.: Summary of attributes of (chronic) patients ρ ∈ P.

Attribute Domain Type

location `ρ ∈ L constant
health condition cρ ∈ [0, 1] constant
age class aρ ∈ A constant
acute illnesses Iact

ρ ⊆ I act variable
emergency flag ερ ∈ {0, 1} variable
acute appointment bact

ρ ∈ B variable
considered PCPs Gcon

ρ ⊆ G constant
availabilities αρ : Λ/∼ → {0, 1} constant
appointment ratings rapp

ρ (φ) ≥ 0, ∀φ ∈ Gcon
ρ variable

walk-in ratings rwalk
ρ (φ, [λ]) ≥ 0, ∀φ ∈ Gcon

ρ , ∀[λ]∈Λ/∼ variable

chronic illness Ichro
ρ = {ςρ} ⊆ I chro constant

regular appointment breg
ρ ∈ B variable

family physician φfam
ρ ∈ Gcon

ρ variable

long as they unsuccessfully continue to seek treatment. In our model, this emergency state
does not enforce a particular PCP behavior. Instead, PCPs may include the emergency state in
their decision making.

Until an illness i ∈ Iact
ρ subsides, patients continuously try to arrange follow-up appoint-

ments to the initial treatment with the attending physician in the follow-up interval νi ∈ T .
Analogously, chronic patients ρ ∈ P continuously try to arrange regular appointments with
their family physician φfam

ρ ∈ Gcon
ρ in the follow-up interval νςρ ∈ T of their unique chronic

illness ςρ ∈ Ichro
ρ . Only if the arrangement of a follow-up or regular appointment fails and

the aftercare is endangered, do patients seek follow-up treatment as walk-ins. As a result,
a patient’s chronic illness ςρ ∈ Ichro

ρ can be treated by a physician other than the family
physician φfam

ρ ∈ Gcon
ρ , but only through a walk-in visit triggered by the unavailability of a

regular appointment.

In SiM-Care, patients do not directly interact with other patients. However, an indirect
form interaction emerges as patients compete with each other for timely treatment by their
preferred PCP.

The attributes shared by all patients as well as the attributes specific to chronic patients are
summarized in Table 4.4. In the following, we will regularly omit the indices of the patients’
attributes to ease notation.

4.2.7 Primary Care Physicians

PCPs operate practices featuring an uncapacitated waiting room to offer medical services
to patients in need. The model characterizes physicians φ ∈ G by their geographic location
`φ ∈ L, opening hours, as well as an individual set of strategies to schedule appointments,
manage patient admissions, and organize treatments.
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Fig. 4.2.: Schematic representation of the morning (λ0) and afternoon (λ1) session of PCP φ ∈ G
visualizing service-, idle- and overtime.

SiM-Care assumes that all physicians φ ∈ G operate in clinical sessions. Opening hours
for these sessions are weekly recurring and therefore defined for the sessions of the week
via oφ : Λ/∼ → H × H where H denotes the set of decimal times defined in Section 4.1.
Opening hours specify for each session λ ∈ Λ the time window oφ([λ]) := [oφ([λ]), oφ([λ])]
during which physician φ ∈ G generally admits patients for treatment. The beginning
of session λ = (δ, γ) ∈ Λ is defined as oφ(λ) := (δ, oφ([λ])) ∈ T , the session’s end as
oφ(λ) := (δ, oφ([λ])) ∈ T . To encode that PCP φ ∈ G is closed for a weekly session [λ] ∈ Λ/∼,
we set oφ([λ]) = ∅. Physicians utilize the first hour after the end of each session as time buffer
to compensate for possible delays and walk-ins. Buffers are considered anticipated working
time so that only service time that extends beyond the buffer constitutes overtime. Figure 4.2
provides a schematic visualization of a PCP’s working day.

PCPs implement a set of strategies to schedule appointments, decide on patient admissions,
and organize the treatment of patients. These strategies govern the physicians’ interactions
with patients and incorporate all of their sensing, predicting, adapting, and learning.

The PCP’s appointment scheduling strategy Sφ ∈ Sapp defines how consultation time is allocated
to appointment slots and how the resulting slots are assigned to requesting patients. The
feasible set of appointment scheduling strategies Sapp is defined via the interface shown
in Figure 4.3. That is, every appointment scheduling strategy S ∈ Sapp has to provide the
functionality to answer appointment requests with an appointment suggestion (that can be
empty). Thereby, every appointment request specifies the requesting patient, earliest possible
appointment time, willingness to wait, whether the request is for a regular appointment, and
whether the patient’s availabilities have to be respected. Furthermore, every appointment
scheduling strategy S ∈ Sapp has to provide the functionality to schedule previously offered
appointments as well as the functionality to cancel previously scheduled appointments.
Finally, every appointment scheduling strategy S ∈ Sapp has to be able to compute the
number of upcoming appointments within a session that are scheduled to take place after a
specified point in time.

The PCP’s treatment strategy Sφ ∈ S tmt defines the order of treatment among patients from
the waiting room. Physicians sense their patients’ waiting times as input for their strategy.
To account for the observation that physicians consciously or unconsciously adjust service
times depending on demand (Gupta and Denton, 2008), treatment policies define when and
how physicians adjust their consultation speed and thereby service times. The feasible set
of treatment strategies S tmt is defined via the interface shown in Figure 4.3. That is, every
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1 public interface IAppointmentSchedulingStrategy {
2 public Optional < Appointment > findAppointment ( AppointmentRequest

rq);
3 public void scheduleAppointment ( Appointment b);
4 public void cancelAppointment ( Appointment b);
5 public int upcomingAppointmentAfter (Time t);
6 }
7
8 public interface ITreatmentStrategy {
9 public void handleArrival ( ArrivalEvent ae);

10 public int [] waitingPatients ();
11 public void sessionStarted ();
12 public Optional < ArrivalEvent > getNextPatient ();
13 public float getConsultationSpeed ();
14 }
15
16 public interface IAdmissionStrategy {
17 public boolean acceptPatient ( ArrivalEvent ae ,

IAppointmentSchedulingStrategy as , ITreatmentStrategy ts);
18 public void adaptPolicy ( Session session , ITreatmentStrategy ts);
19 }

Fig. 4.3.: Interfaces implemented by PCPs’ strategies.

Tab. 4.5.: Summary of attributes of PCPs φ ∈ G. Attribute Type

location `φ ∈ L
opening hours oφ : Λ/∼ → H×H
appt. scheduling strategy Sφ ∈ Sapp

admission strategy Sφ ∈ Sadm

treatment strategy Sφ ∈ S tmt

treatment strategy S ∈ S tmt has to keep track of admitted patients, count the number of
waiting patients with and without appointment, and define how the treatment strategy is
affected by the beginning of a session. Moreover, every treatment strategy S ∈ S tmt has to
determine the next patient to be treated (that might not exist) as well as the PCP’s current
consultation speed which is thoroughly discussed in Section 4.7.4.

The PCP’s admission strategy Sφ ∈ Sadm determines whether a physician admits or rejects an
arriving patient based on the current workload. Admitted patients await their treatment in
the physician’s waiting room. In SiM-Care, PCPs are required to treat all admitted patients.
Thus, physicians underestimating their workload due to faulty predictions might have to work
overtime as they accept too many patients. On the other hand, physicians that overestimate
their workload reject too many patients and fail to fully utilize their available time. At
the end of every session’s buffer, physicians learn by reevaluating their predictions and
adapting their admission policy. The feasible set of admission strategies Sadm is defined via
the interface shown in Figure 4.3. That is, every admission strategy S ∈ Sadm has to be
able to decide whether an arriving patient is admitted or not given the PCP’s treatment and
appointment scheduling strategy. Moreover, every admission strategy S ∈ Sadm has to define
the adaptive traits that are performed at the end of every session’s buffer and depend on the
PCP’s treatment strategy.
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Fig. 4.4.: Progression of time induced by the processing of event queue Q via the discrete event
paradigm.

Physicians do not directly interact with other physicians. However, an indirect form of interac-
tion emerges as PCPs compete for the patients’ favor while striving for optimal utilization.

The attributes of PCP’s are summarized in Table 4.5. As for patients, we generally omit the
indices for the physicians’ attributes to ease notation.

4.3 Process Overview and Scheduling

Within SiM-Care, the progression of time is modeled via the discrete event paradigm. That is,
time is a continuum which is traversed between discrete events at which the system state is
updated. The model stores events of the form (t, e) in a sequential queue Q where t ∈ T is
the point in time an event of type e ∈ E occurs.

Events in Q happen chronologically, i.e., Q = {(t1, e1), . . . , (tn, en)} with ti ≤ ti+1 for
1 ≤ i ≤ n− 1. As soon as an event (ti, ei) ∈ Q occurs, the simulation advances from time ti−1

to time ti, compare Figure 4.4. The simulation terminates at a specified point in time T ∈ T ,
i.e., when the first element (ti, ei) ∈ Q with ti ≥ T occurs.

Any event (t, e) ∈ Q can generate new events or delete existing ones. To be introduced or
affected by event (t, e) ∈ Q, events (t′, e′) ∈ Q must happen after time t, i.e., we require
t′ > t, so that time progresses in a consistent fashion.

By construction, Q never runs empty. Every simulation run follows the structure depicted in
Figure 4.5, chronologically processing events in Q until time T ∈ T is reached. In this, the
specific process depends on the event type e ∈ E . We now detail these event types.

Arrival events are indicated by earv(φ, ρ). As illustrated in Figure 4.6(a), they mark the
event of patient ρ arriving at the practice of physician φ, either for an appointment or as a
walk-in. The physician’s decision to admit or reject arriving patients depends on admission
strategy of φ. Every admitted patient is guaranteed to receive treatment and enters the
physician’s waiting room. If the physician is currently idle, this triggers the physician’s
treatment strategy and treatment commences.
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Fig. 4.5.: Structure of simulation run
with time horizon T .

Follow-up events are indicated by efol(φ, ρ, i).
Some families of illnesses fi ∈ F cannot be treated
via a single visit. Instead, the related illnesses i ∈ I
require follow-up treatments at a frequency defined
by the parameter νi 6= ∅. Ensuring continuous
follow-up treatments, patients always try to arrange
a follow-up appointment immediately after the treat-
ment of illnesses requiring follow-up consultation.
To account for the fact that no feasible follow-up
appointment might be available, SiM-Care gener-
ates a follow-up event efol(φ, ρ, i) at time ttreat + νi

every time illness i ∈ I with νi 6= ∅ suffered by pa-
tient ρ ∈ P is treated by physician φ ∈ G at time
ttreat ∈ T . Follow-up events serve as the patient’s
reminder to actively re-pursue follow-up consulta-
tion for illness i after the duration of the follow-up
interval. Triggered by a follow-up event efol(φ, ρ, i),
patient ρ reattempts to arrange a follow-up appoint-
ment with physician φ. Should φ once again be
unable to provide a suitable appointment, ρ seeks
follow-up consultation as a walk-in; compare Fig-
ure 4.6(b). Every follow-up treatment of an illness
i ∈ I invalidates all associated existing follow-up
events, as the follow-up interval is reset. Therefore,

SiM-Care deletes all existing follow-up events efol(φ, ρ, i) ∈ Q associated with illnesses i ∈ I
that were treated during a visit before the new follow-up events are generated. As a result,
follow-up events only trigger if an illness has not been treated for the duration of its follow-up
interval νi ∈ T .

Release events are indicated by erel(φ, ρ). As illustrated in Figure 4.6(c), release events
mark the event of physician φ releasing patient ρ after a treatment is performed. Whenever a
new treatment begins, the sampled service time determines the time of the subsequent release
event erel(φ, ρ). All treated illnesses i ∈ Iact without duration (di = ∅) are cured through a
one-time treatment and thus removed from Iact. Subsequently, all existing follow-up events
corresponding to treated illnesses are deleted and new follow-up events are generated in
the previously described manner. The successful treatment revokes existing emergency flags,
i.e., we set ε = 0. If the patient’s chronic illness ς ∈ I was treated, the next recurrent
regular appointment breg ∈ B with physician φfam is requested at time ttreat + νς . Then,
patients request an acute appointment bact ∈ B with physician φ for the follow-up treatment
of the persisting acute illness i∗ = argmini∈Iact:νi 6=∅ νi with smallest follow-up interval. The
requested appointments ensure the follow-up treatment of all illnesses suffered by patient ρ
and will preempt the previously generated follow-up events. Finally, physicians implement
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Fig. 4.6.: Processing of (a) arrival events earv(φ, ρ), (b) follow-up events efol(φ, ρ, i), (c) release events
erel(φ, ρ), and (d) illness events eill(ρ); φ ∈ G, ρ ∈ P, and i ∈ I.

their treatment strategy to select the next patient from the waiting room if the latter is non-
empty. Otherwise, physicians remain idle until the next arrival event triggers the treatment
strategy. As a result of this behavior, physicians are never intentionally idle.

Illness events are indicated by eill(ρ). As illustrated in Figure 4.6(d), they describe that
patient ρ starts to suffer from a new acute illness. This means that the model generates a new
acute illness i ∈ I act with stochastic qualities that depend on the patient’s age and health
condition and adds it to the patient’s set of illnesses I. To treat emerged illnesses, patients
request an appointment from their preferred physicians or, in case this does not succeed,
directly visit the preferred physician as a walk-in. As a result, each illness event generates a
corresponding arrival event earv(φ, ρ) and adds it to the queue Q. Finally, each illness event
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generates a future illness event eill(ρ) for patient ρ and adds it to the queue Q to mark the
next point in time patient ρ develops an acute illness.

Recovery events are indicated by erec(ρ, i). They mark the event of patient ρ recovering
from acute illness i ∈ Iact. Whenever the model generates a new acute illness i ∈ I act with
di 6= ∅, it also generates a corresponding recovery event erec(ρ, i) at time till+di, where till ∈ T
is the point in time illness i is developed. Illnesses without duration (di = ∅) do not require
a recovery event as they are immediately cured through their initial treatment. A recovery
event removes illness i from I and deletes any associated follow-up event efol(φ, ρ, i) ∈ Q. If
patient ρ does not suffer from acute illnesses following the removal of illness i, i.e., Iact = ∅,
the model revokes existing emergency flags by setting ε = 0 and assumes that ρ may cancel
scheduled acute appointments. Such cancellations occur with the patient’s age-class specific
probability pa ∈ [0, 1] and consequently delete the associated arrival event earv(φ, ρ). As a
result, some patients keep their existing acute appointment for a final debriefing. Should
patient ρ be currently seeking walk-in treatment due to persisting chronic illness ς ∈ I, this
effort is continued. Otherwise, the current walk-in attempt is canceled and the associated
arrival event earv(φ, ρ) is deleted.

Open- and close events are indicated by eopn(φ) and eclo(φ), respectively. They mark the
beginning and ending (including buffer) of a session λ ∈ Λ operated by physician φ. They
ensure that treatment strategies become aware of a session’s beginning, e.g., to allow for
strategies that do not treat early-arriving patients before o(λ), and that overtime is incurred
for all treatments performed beyond the anticipated buffer time of λ.

4.4 Modeling Variability

SiM-Care relies on stochastic values to both approximate real-world variability and control
the frequency of events. This applies to aspects of illnesses as well as to patient arrivals,
appointment cancellations and service times. In consequence, every simulation experiment
includes multiple stochastic repetitions of the modeled time period, termed simulation
runs. When examining simulation output, we account for the resulting variability through
confidence intervals.

Table 4.6 lists all aspects of the model that are probabilistic. In the following, we detail the
parameterization of the distributions underlying the random values.

Frequency of Acute Illnesses. The occurrence of acute illnesses in SiM-Care is modeled
via a Poission process. Patients develop acute illnesses at a frequency that depends on their
age and health condition. For patients ρ ∈ P of age class a ∈ A with health condition
c ∈ [0, 1], the expected number of acute illnesses per year is given by the parameter Ia(c).
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Tab. 4.6.: Probabilistic model aspects. Aspect Distribution

frequency of acute illnesses exponential dist.
type of acute illnesses age class-illness dist.
seriousness of acute illnesses triangular dist.
duration of acute illnesses log-normal dist.
patients’ willingness to wait Weibull dist.
patient punctuality normal dist.
walk-in arrivals beta dist.
service times log-normal dist.
appointment cancellations binomial dist.

The intensity (or rate) of the Poission proccess is thus Ia(c)/364 per day. Moreover, the
duration between two consecutive illness events eill(ρ) for patient ρ can be sampled from an
exponential distribution with rate Ia(c)/364; see Daley and Vere-Jones (2003, Chapter 2).

Type of Acute Illnesses. Whenever an illness event eill(ρ) occurs and patient ρ ∈ P falls
ill, the model generates an acute illness i ∈ I act according to the patients’ age class a ∈ A
and health condition c ∈ [0, 1]. The model assumes a probabilistic link between illness family
fi ∈ Fact and the patient’s age class a that is expressed via the age class-illness distribution
πact; see Section 4.2.5. To that end, any emerging acute illness of patient ρ is randomly
assigned to an illness family according to the discrete probability distribution f 7→ πact(a, f)
for f ∈ Fact.

Qualities of Acute Illnesses. For any new illness i ∈ I act of family fi ∈ F generated
through SiM-Care, its seriousness si ∈ [0, 1] depends on a triangular distribution defined
on the closed interval [0, 1]. The distribution’s mode is the health condition c ∈ [0, 1] of the
patient ρ ∈ P developing illness i. Thus, patients with a bad health condition tend to develop
more serious illnesses.

The duration di ∈ T of illness i depends on a log-normal distribution. Given i’s family of
illnesses fi ∈ Fact, seriousness si ∈ [0, 1], and the patient’s age class a ∈ A, we define the
age-adjusted expected duration of illness i as Eda(fi, si) := ∆d

a · Dfi(si). Therefore, SiM-
Care samples the illness’ duration di from a log-normal distribution with sdlog σ = 0.3 and
meanlog µ = log(Eda(fi, si))− σ2/2.

The willingness to wait of patient ρ for the initial treatment of illness i as specified by ωi ∈ T
depends on a Weibull distribution. Given i’s family of illness fi ∈ Fact, seriousness si ∈ [0, 1],
and the developing patient’s age class a ∈ A, the age-adjusted expected willingness to wait
of illness i is defined as Eωa (fi, si) := ∆ω

a ·Wfi(si). Analogous to Wiesche et al. (2017), we
sample ωi from a Weibull distribution with shape parameter p = 2 and derive the scale
parameter from the age-adjusted expected willingness to wait as q = Eωa (fi, si)/Γ(1 + (1/p))
where Γ denotes the gamma function. Figure 4.7 visualizes the resulting density functions
for various choices of the age-adjusted expected willingness to wait.
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Patient Punctuality. Patients do not always arrive on time for their scheduled appointments
b ∈ B. Instead, SiM-Care allows for patient arrivals to vary around the scheduled time tb ∈ T
of the appointment by including an arrival deviation. As suggested by Cayirli et al. (2006),
the arrival deviation from tb depends on a normal distribution. We choose a mean arrival
deviation of µ = −5 minutes and standard deviation of σ = 6 minutes such that roughly 20%
of all patients are expected to arrive late for their appointments which is consistent with the
observations reported in Fetter and Thompson (1966).

Walk-in Arrivals. Walk-ins have no prespecified time at which they are expected to arrive.
Instead, SiM-Care defines for every walk-in an earliest arrival time a ∈ T as well as a latest
arrival time b ∈ T which are both situational and were thoroughly discussed in Section 4.7.3.
The walk-ins’ actual arrival within the given feasible arrival interval [a, b] depends on a beta
distribution. Specifically, we fit a beta distribution using maximum likelihood estimation
to the empirical arrival rates reported by Wang et al. (2018). As a result, we sample the
arrival times of walk-ins from the interval [a, b] of feasible arrival times according to a beta
distribution with shape parameters p = 1.93 and q = 2.94; cf. Figure 4.8.

Service Time. SiM-Care treats the service time per patient, i.e., the duration of treatments,
as a random parameter. To sample service times, we collected a set of 21 service times in
a local primary care practice. As suggested in literature (Wiesche et al., 2017; Cayirli and
Veral, 2003), we divide the sample into patients with and without appointment and apply a
log-normal maximum likelihood fit. Histograms of our empirical samples and the resulting
distributions for patients with appointment and walk-ins are depicted in Figures 4.9 and 4.10,
respectively. Based on the fitted distributions, we sample the service times of patients with
appointment from a log-normal distribution with meanlog µ = 1.82 and sdlog σ = 0.692 and
the service times for walk-ins from a log-normal distribution with a meanlog µ = 1.254 and
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sdlog σ = 0.723. As our collected data set does not incorporate transition times, we prolong
all sampled service times by one minute.

Appointment Cancellations. Patients that recover from all their current acute illnesses,
i.e., Iact = ∅, cancel their existing acute appointment bact ∈ B with the age-class specific
probability pa ∈ [0, 1]; compare Section 4.2.4. As long as patients suffer from acute illnesses,
they only cancel their acute appointment if they require earlier treatment due to a newly
emerged acute illness. All patients that have not canceled their appointment will arrive for it.
As chronic illnesses are static within the model, regular appointments are never canceled.

4.5 Emergence and Observation

SiM-Care tracks performance indicators from the point of view of patients, physicians, and
policy makers. Thereby, it aims to illustrate the trade-offs between the stakeholders’ objectives.
As these indicators emerge from agent interactions based on the patients’ evolving preferences
and the physicians’ evolving strategies, they are difficult to predict in general.

From the patients’ point of view, performance indicators include access time, access distance,
and waiting time. Access time measures the time a patient has to wait for an appointment,
i.e, given the earliest acceptable appointment time t ∈ T and the time of the arranged
appointment tb ∈ T it is defined as ac-time := tb − t. The access distance measures the
one-way distance patient ρ ∈ P has to travel when visiting physician φ ∈ G, i.e., ac-dist :=
dist(`ρ, `φ), where dist(`1, `2) denotes the driving distance between locations `1 ∈ L and
`2 ∈ L in kilometers. The patient’s waiting time measures the time spent on-site before the
actual treatment commences. For walk-ins, we define the waiting time for given walk-in
arrival tarr ∈ T and treatment commencement ttreat ∈ T as wait-time := ttreat − tarr. For
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patients with appointment, we define the waiting time for given time of the appointment
tb ∈ T , patient’s arrival at the practice tarr ∈ T , and treatment commencement ttreat ∈ T as
wait-time := max{ttreat −max{tb, tarr}, 0}. To evaluate patient’s indicators, SiM-Care keeps
track of the total access time of arranging acute and regular appointments, the total number
of arranged acute and regular appointments, the total number of attended appointments, the
total number of walk-ins, the total distance traveled by patients to access physicians, and the
total waiting time for both patients with appointment and walk-ins.

From the physicians’ point of view, performance indicators include the utilization, overtime,
number of treatments, and number of rejected patients with and without appointment. A
physician’s utilization describes the percentage of the available working time spent treating
patients, i.e., for a session λ ∈ Λ with total treatment duration t ∈ T it is defined as
util := t/(o(λ) − o(λ) + 1

24). Note that our definition of utilization clearly underestimates
a physician’s actual utilization as we do not account for additional tasks such as reporting,
accounting, and answering phone calls that are not modeled in SiM-Care. Overtime describes
the physician’s working time beyond the anticipated buffer, i.e., if the last patient in session
λ ∈ Λ is released at time trel ∈ T it is defined as over := max{trel − o(λ) − 1

24 , 0}; see
Figure 4.2. To evaluate the physician’s indicators, SiM-Care collects on physician level the
total service time spent treating patients, the total number of performed treatments, the total
overtime, and the total number of rejected patients with and without appointment. The
total available working time per physician that is required to compute the utilization can be
derived from the opening hours o : Λ/∼ → H×H and the modeled time horizon T ∈ T .

4.6 Input, Initialization, and Warm-Up

SiM-Care codes a large number of values as flexible parameters. Setting up a simulation
experiment requires an input scenario to specify these parameter values. Each simulation
scenario represents a particular setting, in which a specific set of patients interacts with a
specific set of physicians under specific circumstances.

As part of every simulation scenario, the modeler specifies the families of illnesses F , the
age classes A, the age class-illness distribution πact, and the set of physicians G with all their
attributes. The set of patients P is only partially defined through the simulation scenario:
Each scenario specifies the total number of chronic and non-chronic patients. Moreover,
every patient’s location ` ∈ L, health condition c ∈ [0, 1], age class a ∈ A, availabilities
α : Λ/∼ → {0, 1}, and (for chronic patients) a chronic illness ς ∈ I chro are given. The
remaining attributes of patients, e.g., ratings and acute illnesses, are initialized as described
below.

At initialization, patients do not suffer from acute illnesses, i.e., Iact = ∅ and are not con-
sidered emergencies, i.e., ε = 0. Furthermore, all patients are initialized without scheduled
appointments, i.e., bact = breg = ∅. The consideration set of physicians Gcon ⊆ G per patient
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Algorithm 1: Determine patient’s considered PCPs

Input: Patient ρ ∈ P, set of PCPs G
Output: Patient’s consideration set Gcon

1 set Gcon = ∅
2 for φ ∈ G do
3 if dist(`ρ, `φ) < 15 km then
4 add φ to Gcon

5 else
6 if rand(20) < 1 then
7 add φ to Gcon

8 return Gcon

ρ ∈ P is determined according to Algorithm 1 where rand(x) for x > 0 denotes a uniformly
distributed float from the half-closed interval [0, x). As a result, each patient considers all
physicians within a 15 km driving radius. Physicians outside this radius are considered with
a 5 % chance as some patients may choose their physician according to criteria other than
proximity to their home, e.g., for historical reasons or personal recommendations.

To initialize the appointment ratings rapp(φ) and walk-in ratings rwalk(φ, [λ]) of patient ρ ∈ P
for every considered physician φ ∈ Gcon and weekly session [λ] ∈ Λ/∼, we denote the number
of matches between the physician’s opening hours and ρ’s availabilities by m(ρ, φ) := |{[λ] ∈
Λ/∼ : α([λ]) ∧ o([λ]) 6= ∅}|. Moreover, let distmax := maxρ∈P minφ∈G dist(`ρ, `φ) denote the
maximal shortest access distance. The model then initializes appointment ratings as

rapp(φ) =

3m(ρ, φ)− dist(`ρ, `φ) + rand(2 distmax) + 100 if m(ρ, φ) > 0

0 else.

Walk-in ratings rwalk(φ, [λ]) are session specific as immediate care requires physicians to be in
service. Thus, sessions in which a physician is closed are not feasible for walk-in visits which
is encoded by an empty rating. The model initializes walk-in ratings as

rwalk(φ, [λ]) =

rand(distmax)− dist(`ρ, `φ) + 100 if o([λ]) 6= ∅
∅ else.

From the initialized ratings, SiM-Care subsequently determines the family physician for
chronic patients as the physician from the consideration set that has the highest appoint-
ment rating, i.e., φfam = argmaxφ∈Gcon rapp(φ) which completes the setup of all simulation
entities.

At this point in the initialization process, the global event queue Q is still empty and therefore
running a simulation experiment would result in no agent actions. To make physicians take
up their work, the model generates open- and close events eopn(φ) and eclo(φ) for every
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session operated by physician φ ∈ G and adds these to Q. To start the process of patients
continuously developing acute illnesses, the model generates an initial illness event eill(ρ) for
every patient ρ ∈ P and adds it to Q. Finally, to start the regular treatments of a patient’s
chronic illness ς ∈ Ichro, an initial follow-up event efol(φfam, ρ, ς) is generated at a randomly
chosen point in time within ς ’s follow-up interval νς ∈ T according to a uniform distribution
and subsequently added to Q.

When creating a simulation experiment in a system such as SiM-Care, modelers can broadly
choose one of two approaches: initializing the simulation with an empty system state or with
an interim state. An empty system state is inherently unrealistic, as it sets all parameters
that are subject to simulation dynamics to zero. For example, an initially empty system
state in SiM-Care means that there are no patients with acute illnesses at the start of the
simulation. Acute illnesses only arise as simulation time progresses and eventually reach a
steady-state when new and subsiding illnesses are in balance. In contrast, initializing a system
to an interim state would mean setting all parameters to a value that seems realistic for the
simulated system. Revisiting the initialization of acute illnesses, this means that at the start
of the simulation, a realistic proportion of patients already suffers from different stages and
severities of acute illnesses. Ideally, initializing the system with interim values would mean
that there is no period when the system state does not align with the real-world observations.
However, such an interim initialization creates additional challenges for validation, as it
requires validated values for further parameters. For a structurally valid simulation, these
should automatically emerge from an empty-state initialization after a warm-up period.
Therefore, we rely on an empty-state initialization and allow for a warm-up period where
the simulation state does not align with any plausible real-world state. The duration of the
warm-up and the length of the modeled time horizon are both variable and specified by the
modeler through the input scenario.

In a further note, this does not correspond to solely analyzing a steady state, as the agents’
emergent interactions can result in the development of meaningful trends in the data. For
example, even a real-world system may not feature a steady state when it is subject to trends,
such as a continuously increasing number of elderly patients, or cycles, such as seasonally
changing intensities of certain illnesses. In the examples featured in this thesis, we exclude
such trends and cycles and only consider deliberate parameter changes.

4.7 Submodels

We consider different aspects of SiM-Care that rely on an internal logic as submodels. One of
the most basic submodels describes the logic of distances and travel times. More complex
examples include the logic underlying patients’ behavior when requesting appointments and
visiting practices as walk-ins, as well as the physician’s strategies which are submodels by
themselves. As SiM-Care allows for modular PCP strategies, we exemplify each strategy
through the specific approach that is used in the case study. Further submodels describe
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the consequences of rejecting patients, service time reductions, patients’ rating adjustments,
patients’ choice of their family physician, and treatment effects.

4.7.1 Distances and Travel Times

SiM-Care does not feature a road network to compute travel distances and travel times.
Instead, it approximates the driving distance dist : L × L → R between two locations in
kilometers using the great circle distance computed through the haversine formula with a
detour factor of 1.417 as determined by Boscoe et al. (2012). This publication additionally
mentions that driving distances provide good approximations for travel times in minutes, i.e.,
we compute travel times by assuming a constant driving speed of 60 km/h. As a result we
define the travel time τ : L× L→ T as τ(`1, `2) := dist(`1,`2)

60·24 .

4.7.2 Patients Requesting Appointments

Patients ρ ∈ P request an appointment with a physician φ ∈ G, by specifying the earliest
acceptable appointment time t ∈ T and their willingness to wait for this appointment ω ∈ T .
As a result, newly-arranged appointments are feasible, if and only if they are scheduled in
the time interval [t, t+ ω].

The earliest acceptable appointment time t ∈ T depends on the request. The initial treatment
of acute illnesses i ∈ Iact is urgent so that patients seek to schedule an appointment as soon
as possible. Thus, for these initial treatments, the earliest acceptable appointment time is the
time of the request treq ∈ T plus a 30 minute buffer (corresponding to 1

48 in decimal time)
plus the direct travel time, i.e., t = treq + 1

48 + τ(`ρ, `φ). Follow-up treatments are planned at
regular intervals specified by the parameter νi ∈ T . Patients request follow-up appointments
in two ways: First, at the very beginning of the follow-up interval as every patient requests a
follow-up appointment directly after the treatment of illnesses that require aftercare. Second,
at the very end of the follow-up interval (triggered by a follow-up event) in case no feasible
appointment was available at the time of the previous treatment. In the latter case, the
request is urgent and therefore the earliest acceptable appointment time is defined as above,
i.e., t = treq + 1

48 + τ(`ρ, `φ). If the follow-up appointment is requested at the beginning of
the follow-up interval, the next follow-up appointment for illness i ∈ I should be scheduled
after the follow-up interval has passed, i.e., we set t = treq + νi.

The willingness to wait ω ∈ T defines the maximum acceptable waiting period between the
earliest acceptable appointment time and the actual time of the appointment. As a result,
it serves as an upper bound to the patient’s access time defined in Section 4.5. Patients’
willingness to wait for the initial treatment of acute illness i ∈ Iact is illness specific and
given by ω = ωi. Analogously, the maximum duration chronic patients are willing to wait
for their regular appointments depends on their chronic illnesses ς ∈ Ichro, i.e., ω = ως . If
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patients request a follow-up appointment for acute illness i ∈ Iact, the willingness to wait
is proportional to the length of the follow-up interval νi ∈ T . To ensure that the follow-up
interval is not exceeded by an excessive time span, the willingness to wait for follow-up
appointments regarding i ∈ Iact is ω = νi

5 + 1. Finally, emergency patients who were denied
treatment are exceptionally impatient and their willingness to wait is ω = 0.

Algorithm 2 describes how a patient requests an initial appointment for a newly emerged
acute illness. First, patients check whether they have a pre-existing appointment within
the acceptable time frame. From the patients’ point of view, pre-existing appointments
are particularly convenient as they require no further actions. Therefore, patients accept
pre-existing appointments as feasible, even if they exceed their willingness to wait by up to
12 hours (or 1

2 in decimal time); see lines 1 − 2. If the patient’s existing appointments are
infeasible for the newly emerged illness, the existing acute appointment is canceled to make
room for a new, earlier, acute appointment (compare line 4 and 5).

Patients ρ ∈ P request appointments from the two currently highest rated physicians φ1, φ2 ∈
Gcon in their consideration set (compare line 7). Physicians φ1 and φ2 are queried in order
of their rating, i.e., patients first request an appointment with the higher rated PCP φ1 and
only resort to φ2 if the request is unsuccessful. In case a physician cannot offer a fitting slot,
patients reduce their rating for the respective PCP.

When a patient’s willingness to wait is longer than three days (compare line 10), they only
accept appointments that fit their personal availability α : Λ/∼ → {0, 1} (cf. Section 4.2).
Otherwise, the request is so urgent that patients are always available.

If neither φ1 nor φ2 offer a feasible slot, the search for a feasible appointment is deemed
unsuccessful and patients resort to a walk-in visit.

When patients request follow-up appointments, they mostly follow the steps outlined in
Algorithm 2. The main difference concerns the inquiry process (cf. line 7 and 8), as new
follow-up appointments are exclusively arranged with the physician that performed the
previous treatment. Only pre-existing appointments can be used for follow-up visits although
they are not with the physician that performed the previous treatment; compare line 1. If
the follow-up appointment request is made at the end of the follow-up interval triggered by
a follow-up event, a failure initiates a walk-in attempt to ensure the patient’s aftercare. If
the follow-up appointment is requested immediately after treatment at the beginning of the
follow-up interval, a failure does not lead to a walk-in attempt as the corresponding follow-up
event will eventually lead to a reattempt at arranging a follow-up appointment.

Chronic patients’ regular appointments are essentially follow-up appointments and thus
arranged according to the same logic. The only difference concerns the evaluation of pre-
existing appointments. As regular appointments are exclusively arranged with the patient’s
family physician φfam ∈ Gcon, pre-existing acute appointments are only perceived as feasible
if they are with the family physician φfam (cf. line 1 and 2). Infeasible pre-existing acute
appointments are not canceled but instead an additional regular appointment is arranged with
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Algorithm 2: Arranging appointment for acute illness

Input: Patient ρ ∈ P, willingness to wait ω ∈ T , earliest appointment time t ∈ T
Output: Was a feasible appointment found or arranged?

1 if ρ has acute or regular appointment before time t+ ω + 1
2 then

2 return True
3 else
4 cancel acute appointment
5 delete associated arrival event earv(φ, ρ)
6 determine preferred physicians φ1, φ2 ∈ Gcon such that

rapp(φ1) ≥ rapp(φ2) ≥ rapp(φ) ∀φ ∈ Gcon \ {φ1, φ2}
7 for j = 1, 2 do
8 query φj for an appointment
9 if physician φj offers appointment within [t, t+ ω] ∧ (satisfying ρ’s availabilities

α ∨ ω ≤ 3) then
10 accept appointment # adapt rapp(φj)
11 add earv(φj , ρ) to Q
12 return True
13 else
14 refuse appointment # adapt rapp(φj)
15 continue

16 return False

the family physician φfam (cf. line 4 and 5). Only if the newly arranged regular appointment
is before or at most 12 hours after an existing acute appointment, i.e., tbreg ≤ tbact + 1

2 , the
latter is canceled as all acute illnesses will be treated at the regular appointment.

4.7.3 Walk-in Decision Making

Within SiM-Care, all walk-in visits are preceded by an unsuccessful appointment request.
As walk-in visits are per se urgent, the earliest possible time t ∈ T for a walk-in visit of
patient ρ ∈ P at physician φ ∈ Gcon is, analogous to Section 4.7.2, defined as the current time
tcurr ∈ T plus a 30 minute buffer plus the direct travel time, i.e., t = tcurr + 1

48 + τ(`ρ, `φ). The
patients’ willingness to wait for the walk-in visit is defined as the willingness to wait ω ∈ T
of the preceding appointment request. As a result, the patient’s walk-in visit takes place in
the time interval [t, t+ ω], unless this is impossible due to the physicians’ opening hours.

As part of the walk-in decision making, patients decide on a physician φ∗ ∈ Gcon and
session λ∗ ∈ Λ for their walk-in visit. To that end, SiM-Care computes all physician-session
combinations W ⊆ Gcon × Λ that fall into the interval [t, t + ω] and thus can be targeted
for a walk-in visit. If W = ∅, the model gradually increases the willingness to wait ω until
W 6= ∅.
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Patients select the physician-session combination (φ∗, λ∗) ∈W targeted for their walk-in visit
on the basis of their walk-in ratings rwalk via

(φ∗, λ∗) = argmax(φ,λ)∈W 0.95wt(λ) · rwalk(φ, [λ]),

where wt(λ) := o(λ) − t denotes the time difference between the earliest possible walk-in
time t ∈ T and the end of session λ ∈ Λ. This takes into account that walk-ins urgently
want to visit a physician by discounting the ratings based on the approximate access time
wt(λ) ≥ 0. Note that this discounting model yields undesired results if we allow for negative
ratings, motivating the models limitation to non-negative ratings.

Given the targeted physician-session combination (φ∗, λ∗) ∈W for the walk-in visit, the time
interval during which the actual visit at φ∗ may take place is defined as follows. The earliest
time for walk-ins to arrive in session λ∗ ∈ Λ is 15 minutes (or 1

96 in decimal time) before its
beginning o(λ∗) ∈ T , but obviously not before the earliest possible arrival t ∈ T . The latest
possible arrival in session λ∗ ∈ Λ is its ending o(λ∗) ∈ T , but not after the latest possible
arrival t+ ω. The resulting time interval for the patient’s walk-in arrival is[

max(o(λ∗)− 1
96 , t), min(o(λ∗), t+ ω)

]
.

The patient’s actual arrival within the feasible time interval is stochastic and sampled accord-
ing to the distribution specified in Section 4.4.

As long as patients actively pursue walk-in treatment, they never arrange new appointments.
That is, if a walk-in develops a new acute illness or seeks an immediate follow-up appointment
triggered by a follow-up event, their need for medical attention is met through the ongoing
walk-in visit.

4.7.4 Service Time Reduction

Physicians’ treatment strategies let them reduce service times to prevent congestion and
minimize overtime. Within the model, the service time reduction operationalizes via a
multiplicative factor ζ ∈ [0, 1]. Thus, a treatment with an original service time of 10 minutes
(sampled from the log-normal distribution described in Section 4.4) takes only 8 minutes
when performed by a physician with current consultation speed ζ = 0.8. When there is no
effort to reduce service times, i.e., ζ = 1, the actual services time coincide with the sampled
original service times.

4.7.5 Consequences from Rejection of Patients

Whenever a patient visits a physician either with an appointment or as a walk-in, the physi-
cian’s admission strategy determines whether the patient is admitted or rejected. Following
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Tab. 4.7.: Adaptation of patient ratings rapp and rwalk, where ω ∈ T describes patient’s willingness to
wait and ζ ∈ [0, 1] the physician’s consultation speed.

Positive Event Adjust

waiting time < 7 min +5
successful arrangement of appt. +4
successful treatment as walk-in +3ζ
successful treatment with appt. +2ζ

Negative Event Adjust

waiting time > 30 min −10
no appt. within willingness available −ω
rejected as walk-in −10
rejected with appt. −20

a rejection, patients reduce their personal ratings rapp or rwalk depending on whether they
arrived for an appointment or as a walk-in. As rejected patients have been denied treatment,
they are subsequently flagged as emergencies, i.e, ε = 1. In order to be treated, rejected
patients then start a walk-in attempt with reduced willingness to wait ω = 0, i.e., they visit
their preferred physician according to the updated walk-in preferences rwalk in the earliest
possible session; compare Section 4.7.3. A patient’s emergency flag is only revoked after the
next successful treatment or if the patient fully recovers from all acute illnesses.

4.7.6 Rating Adjustments

Throughout the simulation, patients adjust their ratings of physicians according to their
experiences via additive factors. To that end, patients increase ratings based on positive
experiences and decrease ratings following negative experiences. Thereby, patients with
an appointment update their appointment ratings rapp while walk-ins update their walk-in
ratings rwalk. Table 4.7 lists all events that trigger a rating adjustment.

In SiM-Care, only the effect of a failed appointment request and the effect of a successful
treatment are parameterized. All other event effects are hard-coded to represent the following
intuition about patient perceptions: Unanticipated events cause a stronger adjustment, while
anticipated events only cause a slight adjustment. For example, visiting a physician with
an appointment and not being admitted is considered highly unlikely and therefore highly
penalized. Furthermore, patients react more strongly to negative experiences, reflecting the
so-called negativity bias (Baumeister et al., 2001).

In case a physician fails to offer a fitting appointment, the negative adjustment depends on
the patient’s associated willingness to wait ω ∈ T . As ω ≥ 0, the adjustment −ω is always
non-positive. If the willingness to wait is high, the expectation of receiving a fitting slot is
also high, so that the resulting disappointment leads to a stronger negative adjustment.

When physicians reduce their service time as part of their treatment strategy, patients feel
rushed. Therefore, the model scales the positive adjustment following a successful treatment
as dependent on the physician’s current consultation speed. For example, at a consultation
speed of ζ = 0.5 a successful treatment with appointment increases rapp only by a value of
0.5 · 2 = 1; compare Table 4.7.
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Algorithm 3: Reevaluation of family physician

Input: Chronic patient ρ ∈ P
Output: Family physician φfam

1 let φ∗ = argmaxφ∈Gcon rapp(φ)
2 if rapp(φ∗) ≥ 1.2 · rapp(φfam) then
3 φfam = φ∗

4 return φfam

To ensure the desired behavior of discounting ratings as described in Section 4.7.3, we bound
all ratings from below by zero, i.e., we enforce rapp(φ) ≥ 0 and rwalk(φ, [λ]) ≥ 0 for all ρ ∈ P,
φ ∈ G, and [λ] ∈ Λ/∼. As a result, negative adjustments have no effect on physicians with
rating zero.

4.7.7 Family Physician Adjustments

Every time chronic patients adjust their appointment ratings rapp(φ) for φ ∈ Gcon, they simul-
taneously reevaluate their family physician φfam according to Algorithm 3. Thereby, chronic
patients change their family physician as soon as another physician from the consideration
set has a rating that is at least 20 % higher than the current family physician’s rating.

4.7.8 Treatment Effects

Physicians treat all of a patient’s current acute illnesses i ∈ Iact during the same appointment.
As a result, all scheduled follow-up events efol(φ, ρ, i) for i ∈ Iact are deleted. Moreover, all
illnesses i ∈ Iact that require only a single treatment, as indicated by di = ∅, are cured and
thus removed from Iact. Finally, new follow-up events are scheduled for all illnesses i ∈ Iact

that still require follow-up consultation as indicated by a positive follow-up interval νi > 0.

Chronic illnesses are only treated during the recurrent regular appointments or during walk-in
visits triggered by the unavailability of a feasible regular appointment. If ς ∈ Ichro is treated,
any existing follow-up event efol(φ, ρ, ς) ∈ Q is deleted and replaced by a new, updated one.

Finally, the successful treatment revokes any emergency flag the patient may have, i.e., we
set ε = 0.

4.7.9 PCP Strategies

PCP strategies determine physicians’ decision making through exchangeable submodels that
are defined as part of every scenario. For illustration, we describe the exemplary strategies
implemented and evaluated in our case study.
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Appointment scheduling strategy. Individual-block/ Fixed-interval (IBFI) evenly spaces
out appointments throughout each session; see Cayirli and Veral (2003) and Klassen and
Rohleder (1996). To that end, it divides the opening hours of each session in a 140 day rolling
horizon into slots of 15 minutes length. Each slot can accommodate one appointment and
slots are offered to patients on a first-come-first-served (FCFS) basis. Thus, no appointments
are withheld and every patient is offered the earliest feasible appointment at the time of
inquiry.

Treatment strategy. Priority first come, first served (PFCFS) is popularly used in studies of
health systems (Cayirli and Veral, 2003). In PFCFS, patients with appointment are prioritized
over walk-ins and within their respective groups, patients are served in order of their arrival,
i.e., FCFS; compare Rising et al. (1973) and Cox et al. (1985). Patients that arrive before the
beginning o(λ) ∈ T of session λ ∈ Λ have to wait and the physician does not start treatments
until the session has officially begun. The PCP’s standard consultation speed in PFCFS is
ζ = 1.0, which is adjusted to ζ = 0.8 whenever more than three patients await treatment;
compare Section 4.7.4.

Admission strategy. Priority threshold (PT) admits patients up to a certain utilization
threshold; compare Kim et al. (2015) and Qu et al. (2015). PT differentiates between
appointment, walk-in, and emergency patients. Emergency patients are always admitted, i.e.,
they have an infinite admission threshold. Patients with an appointment in session λ ∈ Λ
are admitted as long as their time of arrival tarr ∈ T is before the end of the session’s buffer,
i.e., tarr ≤ o(λ) + 1

24 . Appointment patients that arrive after the session’s anticipated buffer
are rejected. For the admittance of walk-ins, physicians predict their remaining workload
by multiplying an expected service time with the number of currently waiting patients and
upcoming scheduled appointments. If this estimated workload is lower than the remaining
duration of the current session including buffer, walk-ins are admitted, otherwise rejected.
The expected service time is initialized to 7 minutes and adjusted at the end of each session
as follows. On the one hand, the expected service time is increased by one minute if three or
more patients are awaiting treatment at the end of the anticipated buffer. On the other hand,
the expected service time is reduced by 20 seconds if the physician is idle at the end of the
buffer although walk-ins were previously rejected.

4.8 Structural Validation and Verification

In SiM-Care, validation and verification were carried out according to the best practices
documented in the literature (Kleijnen, 1995; Sargent, 2013). To ensure that our model
implementation is correct (verification), we followed established good programming prac-
tices. That is, we used object oriented programming to write modular code. SiM-Care
is implemented in Java using OpenJDK 11 (Oracle, 2018). All random distributions are
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implemented using the Apache Common Math library (Math Commons, 2016). Each module
is individually verified through unit testing. Assertions ensure that variables remain within
their specifications at runtime. As an additional mean to detect undesired model behavior,
SiM-Care can trace the entire simulation process. Traces are specialized logs that contain all
information about the model’s execution. In SiM-Care, traces are textual and comprehensible
to modelers. They enable the tracking of agents through the overall model and contain all
the information that would be required to animate the model. Analyzing traces and input
output relationships, we performed dynamic tests for multiple simulation scenarios of various
sizes with different system setups.

To ensure that our conceptional model serves as an adequate representation of real primary
care systems (validation), we took several measures. With regard to face validity, we presented
the conceptual model to physicians and decision makers from health insurers as well as public
authorities. Furthermore, SiM-Care builds on data from the literature as well as empirical
data collected on-site. Moreover, we visited a primary care practice and interviewed staff to
capture and understand the daily processes and routines of PCPs. For the specific scenarios
featured in the case study, we validated the simulation output with available empirical data.
Details on this historical validation can be found in the baseline analysis of the following case
study.
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Case Study: Effects of
Demographic Change

5

To demonstrate the potential of SiM-Care, we present a case study evaluating the effects of
changes in the population of a primary care system. Specifically, we create a baseline scenario
representing a real-world primary care system in the district of Aachen and investigate two
possible changes in the primary care system’s population from the status quo. On the one
hand, a decline in the number of PCPs as a result of a decreasing interest in opening a primary
care practice in rural areas; see Jacob et al. (2015). On the other hand, an aging of the
population causing a shift in the quality and intensity of illnesses and the resulting health
care requirements. By considering both of these changes individually and in combination, we
create three “what-if” scenarios that we compare to the baseline scenario.

Each scenario models a time period of one year preceded by warm-up period. As SiM-
Care relies on stochastic values, every simulation experiment includes 20 independent runs.
Section 5.1 details how the baseline scenario is derived from empirical data. Section 5.2
documents the analysis and validation of the baseline scenario. Sections 5.3, 5.4, and 5.5
describe how the considered changes in the three “what-if” scenarios are implemented in
SiM-Care and subsequently benchmark these against the baseline scenario. Finally, a partial
sensitivity analysis is provided in Section 5.6.

5.1 Baseline Scenario

The real-world primary care system that serves as the template for our study comprises
three predominantly rural municipalities (Roetgen, Simmerath, and Monschau) in Western
Germany with a total population of approximately 35,000 inhabitants and 20 PCPs. In order
to capture a real-world primary care system in the form of a simulation scenario, empirical
data is required. Most of this data is specific to a primary care system or its country of origin
such that data collection has to be carried out for each system individually. For the considered
primary care system, empirical data concerning the physicians’ distribution and opening hours
was provided by the responsible department of public health or obtained from the responsible
association of statutory health insurance physicians (Kassenärtzliche Vereinigung Nordrhein,
2019). The distribution of patients and their demographic composition is available from the
national census (Information und Technik Nordrhein-Westfalen, 2016) and official population
projections by the federal state (Information und Technik Nordrhein-Westfalen, 2019). The
distribution of illnesses and their characteristics can be estimated from publications of health
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Tab. 5.1.: Basis for the selection of input parameters.

Attribute Basis (Source)

PCPs

location empiric (department of public health)
opening hours empiric (Kassenärtzliche Vereinigung Nordrhein, 2019)
strategies literature (Cayirli and Veral, 2003; Klassen and Rohleder, 1996;

Kim et al., 2015)

Patients

location empiric (Information und Technik Nordrhein-Westfalen, 2016)
age class empiric (Information und Technik Nordrhein-Westfalen, 2016)
health condition inferred

Age classes

exp. annual acute illnesses inferred
dev. illness duration inferred
dev. willingness to wait inferred
availabilities inferred
appointment cancellation inferred
chronic patients empiric (Robert Koch-Institut, 2014)

Families of Illnesses

characteristics inferred
age class-illness distribution empiric (Grobe et al., 2011)

insurances and federal government agencies (Grobe et al., 2011; Robert Koch-Institut, 2014).
All unavailable data was either empirically collected in a primary care practice or, where this
was not possible, inferred. For the sake of clarity, we summarize our basis for the selection of
each input parameter in Table 5.1.

In the following, we discuss how the available empirical data translates into a simulation
scenario. To that end, we detail the input parameter choices, i.e., the modeled physicians,
patients, age classes, families of illnesses, and age class-illness distributions.

5.1.1 Primary Care Physicians

The population of physicians G in our baseline scenario aims to model the actual physicians
in the considered primary care system. According to data provided by the Aachen department
of public health in 2017, there are 20 PCPs with health insurance accreditation in the three
municipalities under consideration. The physicians’ exact locations are specified as part of the
provided dataset (cf. Figure 5.1) and the physicians opening hours were obtained from the
Association of Statutory Health Insurance Physicians Nordrhein (Kassenärtzliche Vereinigung
Nordrhein, 2019). Remark that according to these opening hours, all considered physicians
are closed on Saturdays and Sundays. Concerning the employed strategies, all physicians
φ ∈ G apply the IBFI appointment scheduling strategy, PFCFS treatment strategy, and PT
admission strategy; cf. Section 4.7.9.
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Fig. 5.1.: Locations of PCPs with health insurance accreditation and population cells reported by the
2011 census (Information und Technik Nordrhein-Westfalen, 2016).2

5.1.2 Patients

The population of patients P in the baseline scenario aims to reflect the actual population in
the considered primary care system. The latest publicly available high resolution population
data for the considered region is the German census conducted in 2011 (Information und
Technik Nordrhein-Westfalen, 2016). At a resolution of 2,754 population cells measuring one
hectare each, the 2011 census reports a total population of 35,542 for the three municipalities
Roetgen, Simmerath, and Monschau; compare Figure 5.1. This population includes children
under the age of 16 who are excluded from our considerations, as children mainly consult
pediatricians who are not modeled in this study. Census data does not state the exact number
of under 16-year-olds in each population cell. Instead, the census reports the total number of
under 16-year-olds on municipality level: Roetgen 1,390, Simmerath 2,383, and Monschau
1,794. To exclude children under the age of 16, we proceed as follows. First, we fix one adult
per population cell as we assume that children under the age of 16 do not live on their own.
Then, we sample the number of under 16-year-olds from the remaining population of each

2Map tiles by Humanitarian OSM Team under CC0. Data by OpenStreetMap, under ODbL.
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municipality according to a uniform distribution. Exemplifying this procedure for Roetgen,
the census reports a total population of 8,288 distributed over 534 population cells. We fix
one adult per population cell, and uniformly distribute the 1,390 under 16-year-olds among
the 7,754 remaining inhabitants. Performing this procedure for each municipality individually,
we obtain the final patient population P consisting of 29,975 patient agents distributed over
2,754 population cells.

The age-class independent attributes of each patient ρ ∈ P are determined as follows. The
location ` ∈ L for each patient is sampled from the associated population cell according
to a uniform distribution. Patients’ health conditions c ∈ [0, 1] are sampled from a beta
distribution with shape parameters p = q = 25 such that all patients have an expected health
condition of E(c) = 0.5.

5.1.3 Age classes

SiM-Care accounts for the age dependency of various patient characteristics through the
concept of age classes. The baseline scenario differentiates three patient age classes: young
(16-24), middle-aged (25-65), and elderly (>65). The characteristics of the modeled age
classes A are shown in Table 5.2. Young patients (16-24) are, on average, the healthiest
among all patients. Thus, they are expected to develop the fewest acute illnesses per year
from which they recover relatively quickly. Their expected willingness to wait is prolonged
and they are very unlikely to visit a PCP unless it is necessary. Middle-aged patients (25-65)
represent the working share of the population and we consider them to be our “nominal”
patients. They thus do not deviate from the expected illness duration and the expected
willingness to wait as specified by families of illnesses. On average, middle-aged patients
(25-65) develop more acute illnesses per year than young patients (16-24) while keeping
slightly more appointments after recovery. Elderly patients (>65) are expected to develop
the most annual acute illnesses and it takes them more time to recover from these. Their
expected willingness to wait is the lowest among all age classes and they are most likely to
visit a PCP after all symptoms have subsided.

Based on census data (Information und Technik Nordrhein-Westfalen, 2016), the age class
a ∈ A of each patient depends on the discrete probability distribution shown in Table 5.3. The
age-class dependent attributes of each patient ρ ∈ P are subsequently determined as follows.
Each patient’s session availabilities α are determined by performing a Bernoulli trial for every
session of the week [λ] ∈ Λ/∼ based on the age-class dependent success probabilities from
Table 5.3. To decide whether a patient is chronically ill, we perform a Bernoulli trial using the
age-class dependent success probabilities from Table 5.3 that were estimated based on Robert
Koch-Institut (2014).

58 Chapter 5 Case Study: Effects of Demographic Change



Tab. 5.2.: Characteristics of consid-
ered age classes a ∈ A.

16-24 25-65 >65

exp. illnesses Ia(c)=6c Ia(c)=7c+1 Ia(c)=9c+1
dev. duration ∆d

a=0.8 ∆d
a=1.0 ∆d

a=1.2
dev. willingness ∆ω

a=1.2 ∆ω
a=1.0 ∆ω

a=0.8
prob. appt. cxl. pa=0.95 pa=0.8 pa=0.7

Tab. 5.3.: Age specific parameters
for patient generation.

16-24 25-65 >65

age class distribution 0.1196 0.6318 0.2486
availability probability 0.85 0.55 0.95
chronic illness probability 0.12 0.33 0.52

5.1.4 Families of Illnesses

The most important classification system for illnesses world-wide is the International Statisti-
cal Classification of Diseases and Related Health Problems (ICD) maintained by the World
Health Organization. In its current revision, ICD-10 ( World Health Organization, 2004)
distinguishes more than 14,000 codes. For the purpose of SiM-Care, such a granular illness
distinction is generally not necessary. Thus, we can aggregate ICD-10 codes, e.g., using
the 22 chapters of ICD-10, or considering only a subset of all ICD-10 codes, e.g., the ones
most frequently reported. In the baseline scenario, we consider a subset of the 100 ICD-10
codes most frequently reported to the Association of Statutory Health Insurance Physicians
Nordrhein (Kassenärtzliche Vereinigung Nordrhein, 2018). The attributes of families of
illnesses can be estimated based on historical treatment data which is commonly available
to health insurers. Yet, such data is naturally protected by confidentiality and cannot be
published. Thus, we choose a less elaborate approach and only estimate all attributes which
yields the families of illnesses F listed in Table 5.4.

5.1.5 Age Class-Illness Distributions

Age class-illness distributions define the expected occurrence of acute families of illnesses
fi ∈ Fact per age class a ∈ A. For this distribution, the baseline scenario relies on the reported
incidence rates of 8.2 million customers of a large German health insurer published in Grobe
et al. (2011). We aggregate this data by gender and age to obtain the age class-illness
distribution πact : A × Fact → [0, 1] shown in Table 5.5. Analogously, we determine the
expected distribution of chronic families of illnesses F chro among the modeled age classes A
denoted by πchro : A×F chro → [0, 1] shown in Table 5.5.

The distribution πchro is not part of the baseline scenario itself. Instead, it is only required
to generate the unique chronic illness of chronically ill patients. In the baseline scenario,
we generate every chronic patient’s chronic illness ς ∈ I chro analogously to the process of
generating acute illnesses as described in Section 4.4. Given the patient’s age class a ∈ A, the
illness family fς ∈ F chro of ς depends on the discrete probability distribution f 7→ πchro(a, f)
for f ∈ F chro. The seriousness sς ∈ [0, 1] of ς is sampled from a triangular distribution using
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Tab. 5.4.: Characteristics of considered families of illnesses f ∈ F .

ICD Name Exp. willingness Exp. duration Treatment freq. chronic

I10 high blood pressure Wf (s) = −10s+20 not applicable Nf (s) = −20s+100 True
E11 diabetes Wf (s) = −4s+14 not applicable Nf (s) = −10s+90 True
I25 ischemic heart disease Wf (s) = −4s+10 not applicable Nf (s) = −30s+100 True
E78 high cholesterol level Wf (s) = −5s+8 Df (s) = 4s+8 Nf (s) = −2s+11 False
M54 back pain Wf (s) = −3s+4 Df (s) = 9s+5 Nf (s) = −4s+11 False
Z25 vaccination Wf (s) = 40 not applicable not applicable False
J06 cold Wf (s) = −2s+2 Df (s) = 5s+4 Nf (s) = −s+6 False

Tab. 5.5.: Age class-illness distributions πact for
acute illnesses and πchro for chronic
illnesses.

16-24 25-65 >65

high cholesterol level 0.02 0.24 0.36
back pain 0.32 0.38 0.28
vaccination 0.14 0.14 0.27
cold 0.52 0.24 0.09
high blood pressure 0.17 0.65 0.61
diabetes 0.33 0.16 0.2
ischemic heart disease 0.5 0.19 0.19

the patient’s health condition c ∈ [0, 1] as mode. In turn, the seriousness defines treatment
frequency of ς via νς = Nfς (sς) and willingness to wait as ως = Wfς (sς).

5.1.6 Duration of Warm-up

Every run of SiM-Care contains a warm-up period; compare Section 4.6. To determine an
appropriate length for the warm-up period, we simulate the baseline scenario for a time
period of 70 years and track all performance indicator for each year individually. Figure 5.2
shows the resulting evolution for the average access time of appointments, average daily
overtime of physicians, and average waiting time of walk-ins. As we can see, all performance
indicators are evolving in the first 30 to 50 years before they stabilize. Similar behaviors can
be observed for all other measured performance indicators. Emphasizing long-term stability,
we set the duration of the warm-up period in each scenario to 60 years and note that a
warm-up duration half as long seems also valid.

5.2 Baseline Analysis

Table 5.6 reports the resulting mean performance indicators as well as the associated exact
95 %-confidence intervals for each tracked performance indicator; compare Section 4.5. The
results show that in the status quo, each physician in our primary care system performs,
on average, 10,122.16 treatments per year. This amounts to an average number of 6.75
physician contacts per patient which is slightly above the 6.6 annual PCP contacts reported
back in 2006 (Aho, 2006). Roughly 47 % of patients visiting a physician in our baseline
scenario are walk-ins, which is consistent with the observed 48 % share of walk-ins in our
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Fig. 5.2.: Evolution of performance indi-
cators in the baseline scenario
for every year in a period of
70 years.
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Tab. 5.6.: Mean performance indicators and 95 %-confidence intervals obtained by repeating each
simulation experiment 20 times for the baseline scenario.

Baseline Scenario

Mean 95 %-CI

average number of treatments 10,122.16 [10,112.1, 10,132.22]
average number of walk-ins 4,731.53 [4,721.61, 4,741.46]
average number of acute appointments 3,215.59 [3,214.14, 3,217.05]
average number of regular appointments 2,175.03 [2,173.6, 2,176.47]
average utilization [%] 72.15 [72.08, 72.22]
average daily overtime [min] 0.8 [0.74, 0.86]
average number of rejected walk-ins 13.85 [13.16, 15.53]
average access time [d] 2.46 [2.45, 2.47]
average access time regular [d] 1.49 [1.48, 1.51]
average access distance [km] 4.95 [4.94, 4.96]
average waiting time appt. [min] 2.09 [2.08, 2.1]
average waiting time walk-in [min] 39.75 [39.64, 39.85]
on-time appointments [%] 61.13 [61.02, 61.24]
number of acute illnesses 136,454.2 [136,283.89, 136,624.52]
number of chronic patients 10,662 –
total PCP capacity [h] 32,617 –

collected empirical dataset of service times; compare Section 4.4. Concerning overtimes,
we were unable to obtain empirical data as most PCPs are self-employed and even the
definition of overtime is unclear. However, the estimated average daily overtime per physician
(according to our definition) seems to be too low at just 0.8 minutes per day. This can be
explained by the fact that we incorporate buffers at the end of each session and do not
include additional mandatory physician’s activities such as reporting and accounting into our
simulation model.

Patients in our baseline scenario are expected to travel almost 5 km to visit a physician
and have to wait an average number of 2.46 days for their appointments. With regard to
waiting times, we obtain an average expected waiting time of 2.09 minutes for patients with
appointment and 39.75 minutes for walk-ins. In comparison to the average waiting times
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Tab. 5.7.: Populations in each simula-
tion scenario variant.

Decl. PCPs Aging Patients Comb. Effects
Scen. 1 Scen. 2 Scen. 3

s m s m s m

patients P P Ps Pm Ps Pm

PCPs Gs Gm G G Gs Gm

s = short-term shift, m = medium-term shift

observed when recording our service time dataset (4 minutes with appointment, 15 as walk-
in), our simulated waiting times are strikingly unfavorable for walk-ins which suggests that
physicians avoid excessive waiting times of walk-ins through more sophisticated treatment
strategies, e.g., accumulating priority queues (Stanford et al., 2014).

5.3 Scenario 1: Decline in PCPs

Scenario 1 models a decline in the number of PCPs for a short- and a medium-term shift in
time. To that end, we exclude all physicians from our baseline PCP population G that reached
the statutory retirement age of 65 by this point. Specifically, we consider the year 2023 by
which 4 out of 20 PCPs will have reached the statutory retirement age as well as the year
2027 by which 7 out of 20 PCPs will have reached the statutory retirement age. Assuming
that none of the excluded physicians are replaced by a successor, we obtain our decimated
population of physicians Gs for the short-term and Gm for the medium-term shift. By replacing
the physician population G in our baseline scenario by Gs and Gm, respectively, we obtain two
scenario variants for Scenario 1. The patient and physician populations used in each scenario
variant are summarized in Table 5.7.

The simulation results for Scenario 1 in Table 5.8 show a severe deterioration of all patient
and physician performance indicators compared to the baseline scenario. The physicians’
expected workload measured through the average number of treatments increases by 23 %
for the short-term and 48 % for the medium-term shift. Due to the increased scarcity of
appointments, more and more patients are forced to visit physicians as walk-ins (56 % walk-in
treatments for short-term and 62 % for medium-term shift). The average daily overtime for
physicians (that neglects all the physicians’ administrative and organizational tasks) increases
by 2.09 minutes for the short-term and 9.23 minutes for the medium-term shift. On average,
patients wait 29 % longer for their appointments in the short-term and even 66 % longer in
the medium-term shift scenario variant. Similar increases can be observed for the patients’
average access distance, which increases by 35 % to 6.66 km for the short-term and by 51 % to
7.51 km for the medium-term shift. The average waiting time for patients with appointment
is almost unaffected by the decline in the number of physicians, which can be explained by
the strict prioritization in PFCFS. The average waiting time for walk-ins increases by 30 % for
the short-term and 65 % for the medium-term shift.
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Tab. 5.8.: Mean performance indicators and 95 %-confidence intervals obtained by repeating each
simulation experiment 20 times for both variants of Scenario 1.

Decline in PCPs Short-term Shift

Mean 95 %-CI

average number of treatments 12,412.3 [12,399.87, 12,424.73]
average number of walk-ins 6,935.42 [6,923.02, 6,947.81]
average number of acute appointments 2,766.77 [2,762.78, 2,770.77]
average number of regular appointments 2,710.11 [2,705.98, 2,714.25]
average utilization [%] 80.72 [80.65, 80.79]
average daily overtime [min] 2.89 [2.75, 3.02]
average number of rejected walk-ins 69.6 [67.21, 72.92]
average access time [d] 3.18 [3.16, 3.2]
average access time regular [d] 1.6 [1.56, 1.64]
average access distance [km] 6.66 [6.65, 6.66]
average waiting time appt. [min] 2.22 [2.2, 2.23]
average waiting time walk-in [min] 51.51 [51.36, 51.65]
on-time appointments [%] 58.94 [58.86, 59.03]
number of acute illnesses 136,517.25 [136,334.27, 136,700.23]
number of chronic patients 10,662 –
total PCP capacity [h] 26,455 –

Decline in PCPs Medium-term Shift

Mean 95 %-CI

average number of treatments 15,006.28 [14,992.61, 15,019.95]
average number of walk-ins 9,361.44 [9,347.77, 9,375.11]
average number of acute appointments 2,331.72 [2,325.66, 2,337.79]
average number of regular appointments 3,313.12 [3,306.98, 3,319.25]
average utilization [%] 88.51 [88.44, 88.59]
average daily overtime [min] 10.03 [9.79, 10.27]
average number of rejected walk-ins 357.1 [346.92, 368.03]
average access time [d] 4.09 [4.05, 4.12]
average access time regular [d] 1.84 [1.78, 1.89]
average access distance [km] 7.51 [7.5, 7.52]
average waiting time appt. [min] 2.18 [2.16, 2.2]
average waiting time walk-in [min] 65.76 [65.56, 65.96]
on-time appointments [%] 58.54 [58.42, 58.66]
number of acute illnesses 136,499.55 [136,348.12, 136,650.97]
number of chronic patients 10,662 –
total PCP capacity [h] 22,139 –
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Tab. 5.9.: Age class distributions for aged
patient population.

16-24 25-65 >65

short-term shift 0.1051 0.6283 0.2666
medium-term shift 0.1025 0.6033 0.2942

5.4 Scenario 2: Aging Patients

Scenario 2 models the ongoing aging of the patient population for a short- and medium-term
shift in time. For this purpose, we adjust the discrete probability distribution determining
the patients’ age classes to generate two new patient populations. More precisely, we use
current population projections (Information und Technik Nordrhein-Westfalen, 2019) for
the years 2025 and 2030 to obtain the two adjusted discrete probability distributions for the
patients’ age classes shown in Table 5.9. Using these distributions, we generate the aged
patient population Ps for the short-term and Pm for the medium-term shift. By replacing
the patient population P in our baseline scenario by Ps and Pm, respectively, we obtain two
scenario variants for Scenario 2; compare Table 5.7.

The simulation results for Scenario 2 (Table 5.10) paint a similar picture as in Scenario 1,
i.e., the majority of patient and physician indicators deteriorate, albeit far less severe. As a
result of the aging of the patient population, the average number of treatments per physician
increases by 1 % and 2 % for the short-term and medium-term shift, respectively. However, in
contrast to Scenario 1, additional treatments distribute more evenly between appointments
and walk-in visits and thus the expected ratio of walk-in treatments to all treatments remains
almost unchanged (47 % for short-term and 48 % for medium-term shift). Judging from
the almost unaffected average overtime, physicians manage to accommodate the additional
treatments mostly within their regular opening hours. As a result of the increased treatment
demand, patients wait on average 2 % longer for their appointments in the short-term and
5 % longer in the medium-term shift scenario variant. Moreover, they are willing to accept
1 % (2 %) longer average access distances in the short-term (medium-term) shift scenario
to receive more timely treatment or avoid longer waiting times. Patient waiting times with
appointment are unaffected by the increased patient demand. The average waiting times
of walk-ins in the short-term shift scenario variant remain almost unchanged, while they
increase by 1 % for the medium-term shift.

5.5 Scenario 3: Combined Effects

Scenario 3 models a combined decline in the number of PCPs and aging of the patient
population for a short- and medium-term shift in time. By replacing both, the patient and
the physician population in our baseline scenario with the adjusted patient and physician
populations from Scenarios 1 and 2, we obtain two scenario variants for Scenario 3; compare
Table 5.7.
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Tab. 5.10.: Mean performance indicators and 95 %-confidence intervals obtained by repeating each
simulation experiment 20 times for both variants of Scenario 2.

Aging Patients Short-term Shift

Mean 95 %-CI

average number of treatments 10,222.16 [10,211.54, 10,232.78]
average number of walk-ins 4,831.4 [4,820.79, 4,842.02]
average number of acute appointments 3,194 [3,192.42, 3,195.58]
average number of regular appointments 2,196.75 [2,195.35, 2,198.16]
average utilization [%] 72.6 [72.54, 72.65]
average daily overtime [min] 0.77 [0.73, 0.81]
average number of rejected walk-ins 14.5 [13.95, 16.18]
average access time [d] 2.52 [2.51, 2.53]
average access time regular [d] 1.51 [1.48, 1.53]
average access distance [km] 5 [5.0, 5.01]
average waiting time appt. [min] 2.11 [2.1, 2.12]
average waiting time walk-in [min] 39.9 [39.74, 40.05]
on-time appointments [%] 60.94 [60.86, 61.01]
number of acute illnesses 137,863.35 [137,692.8, 138,033.9]
number of chronic patients 10,776 –
total PCP capacity [h] 32,617 –

Aging Patients Medium-term Shift

Mean 95 %-CI

average number of treatments 10,300.37 [10,288.82, 10,311.91]
average number of walk-ins 4,909.14 [4,897.62, 4,920.66]
average number of acute appointments 3,162.45 [3,160.73, 3,164.17]
average number of regular appointments 2,228.78 [2,226.99, 2,230.56]
average utilization [%] 72.95 [72.88, 73.03]
average daily overtime [min] 0.8 [0.74, 0.86]
average number of rejected walk-ins 16.4 [15.89, 17.63]
average access time [d] 2.58 [2.57, 2.58]
average access time regular [d] 1.51 [1.49, 1.54]
average access distance [km] 5.04 [5.04, 5.05]
average waiting time appt. [min] 2.11 [2.1, 2.12]
average waiting time walk-in [min] 40.11 [39.97, 40.24]
on-time appointments [%] 60.85 [60.76, 60.93]
number of acute illnesses 138,698.8 [138,516.55, 138,881.06]
number of chronic patients 10,931 –
total PCP capacity [h] 32,617 –
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Tab. 5.11.: Mean performance indicators and 95 %-confidence intervals obtained by repeating each
simulation experiment 20 times for both variants of Scenario 3.

Combined Effects Short-term Shift

Mean 95 %-CI

average number of treatments 12,536.05 [12,522.14, 12,549.95]
average number of walk-ins 7,059.09 [7,045.14, 7,073.04]
average number of acute appointments 2,743.98 [2,739.24, 2,748.71]
average number of regular appointments 2,732.98 [2,728.25, 2,737.71]
average utilization [%] 81.11 [81.03, 81.2]
average daily overtime [min] 2.94 [2.81, 3.08]
average number of rejected walk-ins 75.15 [72.01, 79.12]
average access time [d] 3.3 [3.27, 3.32]
average access time regular [d] 1.68 [1.63, 1.73]
average access distance [km] 6.74 [6.73, 6.75]
average waiting time appt. [min] 2.21 [2.19, 2.22]
average waiting time walk-in [min] 52.07 [51.91, 52.23]
on-time appointments [%] 58.98 [58.89, 59.07]
number of acute illnesses 137,830.15 [137,657.8, 138,002.52]
number of chronic patients 10,776 –
total PCP capacity [h] 26,455 –

Combined Effects Medium-term Shift

Mean 95 %-CI

average number of treatments 15,269.52 [15,258.29, 15,280.75]
average number of walk-ins 9,624.34 [9,613.2, 9,635.49]
average number of acute appointments 2,257.32 [2,248.85, 2,265.78]
average number of regular appointments 3,387.86 [3,379.37, 3,396.35]
average utilization [%] 89.35 [89.27, 89.43]
average daily overtime [min] 11.32 [11.08, 11.57]
average number of rejected walk-ins 428.9 [421.41, 437.2]
average access time [d] 4.34 [4.3, 4.38]
average access time regular [d] 1.94 [1.88, 2.01]
average access distance [km] 7.54 [7.53, 7.54]
average waiting time appt. [min] 2.15 [2.14, 2.16]
average waiting time walk-in [min] 67.2 [67.01, 67.39]
on-time appointments [%] 58.68 [58.6, 58.77]
number of acute illnesses 138,667.85 [138,534.48, 138,801.22]
number of chronic patients 10,931 –
total PCP capacity [h] 22,139 –

66 Chapter 5 Case Study: Effects of Demographic Change



Analyzing our simulation results in Table 5.11 for Scenario 3, we can confirm that the
combined effects of a decline in the number of PCPs and an aging population lead to the
greatest deterioration of patient and physician indicators among all scenarios. However,
the effect of the combined changes compared to the combination of the individual effects
from Scenarios 1 and 2 varies between indicators. For the average number of treatments
and the ratio of walk-ins, the effects of the combined changes correspond to the sum of the
effects for the individual changes, e.g., a 24 % increase in the average number of treatments
in short-term shift variant of Scenario 3 versus a 23 % and 1 % increase in the respective
variants of Scenarios 1 and 2. Concerning the physicians’ average overtime, we can observe
that a combined consideration of both changes has an amplifying effect. For example, in the
medium-term shift variants of Scenarios 1 and 2 the average overtime increases by 9.23 and 0
minutes, respectively, while the combined changes in Scenario 3 lead to an increase of 10.52
minutes. Similar amplifying effects can be observed for the patients’ average access time and
walk-in waiting time. Considering the patients’ average access distance, the combination of
both changes leads to different effects in the two scenario variants. In the short-term shift
variant, the effect of the combined changes corresponds to the sum of the effects for the
individual changes. In the medium-term shift variant, we can observe a slight dampening
effect resulting from a combined consideration of both changes, i.e., while the individual
changes lead to a respective 52 % and 2 % increase of the expected average access distance,
the combined effects lead to an increase of 52 %.

5.6 Sensitivity Analysis

SiM-Care is a complex model that requires a large number of input parameters. While
this makes the model very versatile, it simultaneously poses the risk of instabilities and
high sensitivities towards small changes in the input values. To ensure that such undesired
behaviors do not invalidate the outputs of our simulation experiments, we present a sensitivity
analysis. This analysis intends to quantify the changes in the performance indicators resulting
from a perturbation of the input parameters.

For the sensitivity analysis of SiM-Care, we consider the baseline scenario in the setup of
the case study, i.e., 20 independent runs modeling one year preceded by a warm-up of 60
years. As part of this thesis, we refrain from performing a full sensitivity analysis on all input
parameters, but demonstrate the process for those input parameters from Table 5.1 that
are least strongly anchored in empirical data. Specifically, we study the model’s sensitivity
towards the patients’ health condition c ∈ [0, 1] and the age classes’ deviation from the illness
duration ∆d

a ≥ 0, deviation from the willingness to wait ∆ω
a ≥ 0, and probability to cancel an

appointment after recovery pa ∈ [0, 1].

We vary each input parameter relative to its original value in the baseline scenario between
±20 % in increments of 1 %. To quantify the model’s sensitivity, we analyze the resulting
impact on the PCPs’ average overtime, utilization, and number of rejected walk-ins as well
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Fig. 5.3.: Mean average utilization
and corresponding 95 % ex-
act confidence intervals for
varying input parameters.
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Fig. 5.4.: Mean average overtime and
corresponding 95 % exact
confidence intervals for
varying input parameters.
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as the patients’ average access time, access distance, and waiting time with and without an
appointment; compare Section 4.5. Figures 5.3–5.9 show the resulting mean values and
associated exact 95 % confidence intervals for all considered performance indicators.

These results do not indicate that the complexity of SiM-Care leads to instabilities. Instead,
all performance indicators behave as expected towards variations of the input parameters,
e.g., increasing the patients’ deviation from the willingness to wait ∆ω

a ≥ 0 causes patients to
wait longer for appointments, which in turn leads to fewer treatments and thus decreases the
PCPs’ average utilization and overtime.

In terms of the shape of the relationship between changes in input and output, we observe dif-
ferent phenomena. For the average utilization (Figure 5.3), average access time (Figure 5.6),
and average waiting time without appointment (Figure 5.9), the relationships is almost linear
with rather small confidence intervals. Moreover, the slopes within these relationships are
relatively flat, which opposes a high sensitivity towards small changes in the input values.

For the average overtime (Figure 5.4) and the average number of rejected walk-ins (Fig-
ure 5.5), the relationship is non-linear with large confidence intervals. The sensitivity and the
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Fig. 5.5.: Mean average number of re-
jected walk-ins and corre-
sponding 95 % exact confi-
dence intervals for varying
input parameters.
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Fig. 5.6.: Mean average access time
and corresponding 95 % ex-
act confidence intervals for
varying input parameters.
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Fig. 5.7.: Mean average access dis-
tance and corresponding
95 % exact confidence inter-
vals for varying input pa-
rameters.
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Fig. 5.8.: Mean average waiting time
with appointment and cor-
responding 95 % exact con-
fidence intervals for varying
input parameters.
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Fig. 5.9.: Mean average waiting time
as walk-in and correspond-
ing 95 % exact confidence in-
tervals for varying input pa-
rameters.
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variation in the number of rejected walk-ins furthermore increase with the system’s utilization,
which seems intuitive. Still, for small changes (±5 %) of the considered input values, the
sensitivities are not extreme given the width of the confidence intervals.

For the average access distance (Figure 5.7) and average waiting time with appointment
(Figure 5.8), we can observe a mix of linear and non-linear relationships. Notably, the average
waiting time with appointment appears to be very robust towards variations in the input data.
This can be explained by the PFCFS treatment strategy implemented by all physicians that
strictly prioritizes patients with appointment.

Summing up, there are no indications that SiM-Care suffers from instabilities. For small
changes in the input values, the resulting effects on the evaluated performance indicators seem
acceptable. However, the results also show that the model’s sensitivity depends on the varied
input parameter, the evaluated performance indicator, the implemented PCP strategies, and
the system’s state. Therefore, we recommend to conduct an individual thorough sensitivity
analysis for any implemented scenario, following the lines of this example.
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Discussion and Conclusion 6
The aim of SiM-Care is to provide decision makers with a tool to analyze and enhance primary
care systems. SiM-Care produces meaningful performance indicators that enable a far more
detailed assessment of primary care systems compared to the current approaches based on
patient-to-physician ratios. Next to a more accurate evaluation of the status quo, SiM-Care can
predict and quantify the influence of policy decisions and changes in the system’s population,
e.g., an aging of the population or a decline in the number of PCPs as illustrated in Chapter 5.
Thereby, the model can particularly take several system changes into account at the same time
which enables the analysis of combined effects. As all components of a simulation scenario
can be easily adjusted, this opens up a broad field of potential applications ranging from
physicians’ location planning to the evaluation of specific PCP strategies, e.g., in the field of
appointment scheduling. Finally, the modular design of SiM-Care perspectively allows for
easy model extensions, e.g., to incorporate prospective new supply concepts such as mobile
medical units or telemedicine.

The greatest entry requirement to using SiM-Care is the complex and time-consuming task of
generating and validating the input scenarios. As SiM-Care models each agent individually,
it requires detailed empirical data which has to be obtained from various parties or, even
worse, could be unavailable. Moreover, some model components such as the service time
distributions are tailored to the German system and thus might have to be adjusted when
using SiM-Care to analyze, e.g., a primary care system in the United States. Each of these
adjustments, potentially change the model’s behavior and thus require a new validation
process to ensure that insights derived from SiM-Care are viable for the studied primary care
system.

To help overcoming this entry requirement, we exemplified the scenario generation and
validation process for a real-world primary care system in Germany. Particularly, we detailed
the generation process of all simulation entities and provided available empirical data sources.
Although data availability may vary for other primary care systems, this may hint at where
the required empirical data can be obtained. We validated our simulation scenario by
comparing its output to available empirical data. To show internal validity, we performed 20
independent runs for each simulation experiment and captured the resulting model variability
through confidence intervals. However, we need to stress that additional validation should
be performed before actual policy decisions are derived from the presented case study. Such
validation measures should particularly include an extended sensitivity analysis as well as an
expert validation which were out of scope for the purpose of this thesis.
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In summary, SiM-Care can serve as a versatile decision support tool in primary care planning
when it is used with adequately validated simulation scenarios. The process of generating
and validating simulation scenarios is both challenging and time-consuming. However, once
this process is complete, SiM-Care enables a detailed analysis and evaluation of primary
care systems that is superior to basic ratio-based approaches. As a final motivation to use
SiM-Care, we present a potential real-world use-case from Germany. At the beginning
of 2019, the German Bundestag passed the law for faster appointments and better care
(TSVG) that increased the minimum weekly opening hours for physicians with statutory
health insurance accreditation from 20 to 25 hours (Bundestag, 2019, Art. 15). The law is
controversial, among other things, because there are doubts about the consequences of this
policy decision (Korzilius, 2019). Using SiM-Care, decision makers could have obtained
insights into the effects of increased minimum opening hours from both the patients’ and the
physicians’ perspective before its implementation.

Future work should include further efforts towards model validation and calibration as well
as the implementation of model extensions. Currently, illness distributions are considered
static by SiM-Care. By modeling dynamic illness distributions, we can make them dependent
on seasonality or the patients’ previous history of illnesses. In the current model, the duration
of an illness is independent of the actual treatment. Interestingly, the results are convincing
even without this causal link. In the future, we want to compare whether implementing
this link in the conceptual model significantly affects our findings. A similar comparison
shall investigate the influence of no-show patients, who introduce unexpected idle time into
the physicians’ schedules. The sole integration of patient non-attendance into SiM-Care is
straightforward, as it suffices to generate arrival events stochastically. The actual difficulty
lies in the need for empirical no-show probabilities as well as the necessity to decide how
no-show patients continue their course of treatment and how PCPs anticipate non-attendance
through more sophisticated strategies. Yet other possible model extensions include: illness
specific appointments such that not all acute illnesses are treated during every appointment,
intentional physicians’ breaks, implementation of additional patient attributes such as gender,
and mobile patient agents that move between different locations, e.g., their home and work.
Finally, we are currently preparing the open source release of our model implementation that
comes with a graphical user interface (Figure 6.1) such that SiM-Care can be easily accessed,
studied, and adapted to the individual requirements of all modelers.

Since its first publication, SiM-Care has already been extended and applied to evaluate the
use of information and communication technologies (ICT) in primary care (Büsing et al.,
2020b). To that end, the authors extended patient agents by an attribute that measures the
patient’s affinity towards ICT which was collected within the framework of a nationwide trend
study. Moreover, they developed two new appointment systems that support digital ICT. The
experiments conducted in SiM-Care revealed that senior citizens with their currently estimated
ICT usage behavior are likely to be placed at a disadvantage when digital appointment
scheduling systems are introduced.
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Fig. 6.1.: Graphical user
interface (GUI)
of SiM-Care.

As part of an ongoing work on optimized appointment systems, Büsing et al. (2020a) im-
plemented and evaluated so-called mask-based appointment systems in SiM-Care which
preallocate appointment slots to certain types of patient requests. Furthermore, the au-
thors integrated robust mask-based appointment systems into SiM-Care which can adapt to
fluctuations in patient demands by switching between preoptimized scheduling templates.

Last but not least, an extension of SiM-Care that can be used to evaluate the effects of mobile
medical units on primary care systems is introduced in the subsequent Part II of this thesis.
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Part II

Operational Planning for Mobile Medical Units
A Robust Three-Phased Optimization Approach





Introductory Remarks and
Contribution

7
„The fundamental problem of rural health is the

extremely low density of health professionals per unit
of surface area, resulting in large distances between
patient and services.

— Thomas S. Bodenheimer, 1969

7.1 Motivation and Research Question

The geographic-demographic truths of rural health have always manifested themselves in a
low density of health professionals and thus long access distances for patients (Bodenheimer,
1969). However, as the number of physicians continues to decline while the needs of the
aging populations increase, existing barriers to health services are at risk of multiplying
manifold (Mann et al., 2010; Alemayehu and Warner, 2004).

To counteract the growing distances between patients and services, the overcoming of access
barriers with the help of mobile medical units (MMUs) has been studied in many developed
and developing countries; compare Bodenheimer (1969), Thorsen and McGarvey (2018),
Khanna and Narula (2017), Hill et al. (2014), and Schwartze and Wolf (2017). MMUs
(also known as mobile health facilities or mobile clinics) are customized vehicles fitted with
medical equipment that are easy to relocate and that can provide most of the health services a
regular stationary practice could; see Figure 7.1. The flexibility of MMUs offers the possibility
of a local and demand-oriented provision of primary care in sparsely populated regions,
which are characteristic to rural settings (Hill et al., 2014).

Although MMUs have been reported to operate in various modes, we will focus exclusively on
a weekly recurring operation in clinical sessions as described in Schwartze and Wolf (2017),
Bodenheimer (1969), and Thorsen and McGarvey (2018). In this mode of operation, MMUs
are stationed in larger cities (which they do not serve) and set out each day to provide health
services at fixed sites in the surrounding rural communities. As common in primary care, we
thereby structure each day into a morning and an afternoon session (Klassen and Rohleder,
1996) and thus MMUs can service at most two sites per day. At the end of each day, MMUs
return to their home depot such that all personnel can return to their homes overnight. Next
to the benefit of increased staff satisfaction, this incidentally reduces the cost for nonexempt
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Fig. 7.1.: Mobile medical unit operated in rural
parts of India.3

staff (Thorsen and McGarvey, 2018). While there are different types of MMUs, e.g., for
off-road operations, we restrict our considerations to a fleet of identical vehicles.

The potentials of MMUs are demonstrated by the increasing number of applications in
practice. The US alone has an estimated 1,500 MMUs receiving 5 million visits each year (Hill
et al., 2014). Nevertheless, we must not forget that MMUs are still nascent to health care
delivery and that their operation is often associated with major challenges (Khanna and
Narula, 2017). For instance, Patro et al. (2008) report long patient waiting times as a result
of a high workload while other studies faced problems with small or decreasing number of
patient visits (Schwartze and Wolf, 2017; Geoffroy et al., 2014). There is thus a general
consensus, that better strategies for the prelaunch of an MMU service are required (Khanna
and Narula, 2017). In a logical consequence we formulate the following question:

How can the effectiveness and sustainability of an MMU service be improved by
optimized prelaunch strategies?

Developing prelaunch strategies for an MMU service is highly non-trivial, as the flexibility of
MMUs necessitates a complex planning problem: Operation sites for MMUs have to be set up
to provide essential external infrastructure such as waiting rooms; weekly recurring MMU
sessions must be scheduled to meet uncertain patient demands; and daily vehicle routes
covering these sessions must be planned. All these planning decisions are coupled and jointly
determine the operation costs which need to be minimized to ensure a sustainable service. In
the following, we present a prelaunch strategy for an MMU service that accounts for demand
uncertainties and consists of three sequential planning phases.

MMU Operational Planning in Three Phases

This thesis introduces the integrated solution framework P3MMU for the operational planning
of MMUs that decouples planning decisions into three sequential phases. The solution method
thereby trades-off potentially suboptimal operation cost in exchange for simpler subproblems
that can be solved by tailored algorithms to increase the framework’s overall computational

3Wikimedia Commons under CC0.
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Phase 1
Strategic planning

• set up MMU operation sites

• allocate weekly treatment capacities

Phase 2

Mon Tue · · ·

AM `1,`2 `3,`6 · · ·
PM `6 `2 · · ·

Tactical planning

• determine which sites are serviced in
which session of the week

Phase 3

`1

`2
`3

`4

`5

`6

d

Vehicle routing

• determine vehicle routes that minimize
the total route length

Fig. 7.2.: Phases in P3MMU for the operational planning of mobile medical units.4

performance. In the following, we introduce and describe each phase individually. A graphical
overview over the three sequential phases in P3MMU can be found in Figure 7.2.

Phase 1 considers the strategic problem of deciding where MMU operation sites should be
set up and how often these sites should be serviced in the course of a week. As potential MMU
operation sites are generally pre-allocated, e.g., by the serviced municipalities (Schwartze
and Wolf, 2017), the set up sites are chosen from a given set of candidates. The number of
sessions that can be operated per week at each site is limited and the allocation of treatment
capacities must consider the existing practices as well as the uncertain patient demands.

Phase 2 addresses the tactical problem of determining the serviced MMU operation sites for
each session of the week by partitioning the weekly MMU operations which are determined
in Phase 1. This partitioning must ensure an even distribution throughout the week such that
the number of required vehicles as well as the patients’ maximum daily access distances are
minimized which leads to a bottleneck optimization problem.

Phase 3 deals with the problem of determining the vehicle routes for each day of the week
that serve the partitioned MMU sessions as they were obtained from Phase 2. As previously
established, every MMU may operate at most two sessions per day (one in the morning and
one in the afternoon) and all routes must start and end in the same depot. The total length
of all routes must be minimized to reduce operation cost.

4Map tiles by Humanitarian OSM Team under CC0. Data by OpenStreetMap, under ODbL.
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Phases 1, 2, and 3 interconnect in P3MMU and are solved sequentially, i.e., Phase 1 provides
the input for Phase 2 which in turn provides the input for Phase 3. The following section
summarizes our contribution and outlines our solution approaches before we provide an
overview of the related literature.

7.2 Contribution

The main contribution of Part II of this thesis is the optimization framework P3MMU for
the operational planning of MMUs. The approach consists of three sequential phases that
interconnect and structure MMU operational planning into three subproblems. We provide
solution approaches for each of these three subproblems and evaluate P3MMU in a com-
putational study for a set of test instances based on a rural real-world primary care system
in Germany. The study of the three subproblems yields multiple subcontributions that we
summarize hereinafter.

In Phase 1, we investigate the strategic planning problem for MMUs (SMMU) – a capacitated
set covering problem that includes existing practices and two types of patient demands: i)
steerable demands representing patients who seek health services through a centralized
appointment system and can be steered to any treatment facility within a given consideration
set and ii) unsteerable demands representing walk-ins who always visit the closest available
treatment facility. We present a compact linear integer programming formulation for the
SMMU which we subsequently solve via Benders decomposition and constraint generation.
To account for uncertainties in both types of patient demands, we introduce exact constraint
generation algorithms to solve the robust counterpart of the Benders formulation for interval
and budgeted uncertainty sets. To the best of our knowledge, this is the first contribution
that studies the allocation of MMUs at a strategic level as a robust set covering problem.
The concept of modeling two different types of demands has not been considered so far and
represents a new extension to the field of location planning.

As part of Phase 2, we study a bottleneck location problem called the tactical partitioning
problem for MMUs (TPMMU) which is a partitioning variant of the k-center problem. Using a
reduction from the dominating set problem, we show that the TPMMU is NP-hard to approx-
imate within a constant approximation factor. Moreover, we show how an adaptation of this
reduction implies that the metric problem variant of the TPMMU is NP-hard to approximate
within a constant approximation factor 1 < α < 2. As a solution approach, we present a
compact mixed-integer linear programming formulation of the TPMMU. Alternatively, we
show how Phases 1 and 2 can be jointly solved by extending our solution approaches for
the SMMU to a session-specific problem variant to which we refer as the combined strategic
tactical planning problem for MMUs (STMMU).

Finally, we consider the vehicle routing problem for MMUs with a single depot (VRMMU) and
the vehicle routing problem for MMUs with multiple depots (mVRMMU) in Phase 3. In the
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single-depot setting, we reduce the VRMMU to a minimum weight perfect matching problem
in a bipartite gadget which can be solved in polynomial time. For the multi-depot setting,
we show that the mVRMMU is special case of the so-called budgeted colored bipartite perfect
matching problem (BCBPM) which we subsequently prove to be strongly NP-hard. To solve
the mVRMMU, we derive a compact binary linear programming formulation.

7.3 Related Work

To the best of our knowledge, one of the earliest works on the operational planning of MMUs
is due to Hodgson et al. (1998) who consider a location-routing problem for a single MMU,
i.e., the authors simultaneously determine the vehicle stops and the vehicle route. In a
feasible solution, a set of population centers must be within a prespecified distance of a
vehicle stop along the planned route and the objective is to minimize the total length of the
route. A binary programming formulation of the problem is presented and subsequently
solved exactly by a branch-and-cut procedure or heuristically using a generalized insertion
algorithm. In a follow-up article, Hachicha et al. (2000) extend this problem setting to
multiple vehicles and vehicle stops that must be serviced. All MMU routes must start and
end at a central depot and the number of stops per route as well as the total route length
is bounded to ensure a balanced workload between MMUs. Doerner et al. (2007) consider
the problem formulation in Hodgson et al. (1998) for multiple objective functions. That is,
they evaluate MMU routes with respect to three criteria: economic efficiency, average access
distance, and coverage. The corresponding Pareto fronts are approximated using ant colony
optimization and genetic algorithms. Moreover, the authors also consider multiple MMUs,
however only by dividing the population centers into multiple service areas which are then
each serviced by a separate vehicle. Ozbaygin et al. (2016) extend the coverage objective for
the one vehicle setting to partial coverage, i.e., only the population centers that are visited
by an MMU are completely covered while population centers in reach of an MMU stop are
only covered with a certain percentage. More recently, Yücel et al. (2018) further generalize
the idea of partial coverage to multiple vehicles and integrate their MIP formulation into a
data-driven optimization framework based on credit card transactional data.

The main difference between the previous articles and this thesis is the considered setting:
While the former focus on very extensive regions with bad road infrastructure and MMU
routes that can be multiple weeks long, we consider the problem on a much smaller scale
with MMU routes that service at most two stops per day and return to a depot each night.
As a result, the vehicle routing plays a far more important role in Hodgson et al. (1998),
Hachicha et al. (2000), Doerner et al. (2007), Ozbaygin et al. (2016), and Yücel et al. (2018)
and is therefore considered at the strategic level while the incorporation of demands and
allocation of treatment capacities are considered downstream once the MMU routes are
fixed. We, on the other hand, consider patient demands and the allocation of treatment
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capacities at the strategic level and shift the vehicle routing into Phase 3 which boils down to
a polynomial-time solvable matching problem in the single-depot setting.

A problem originating in humanitarian logistics that is quite related to the operational
planning of MMUs is studied by Tricoire et al. (2012). In this problem, the authors consider
the simultaneous setup of distribution centers and the routing of vehicles that restock these
with relief goods. Distribution centers have a certain capacity and their setup induces costs.
The demand for relief goods at the population centers is uncertain and targets the closest
distribution center. The objective is the minimization of the setup and routing costs while
the expected coverage of the demands is to be maximized. The problem is formulated as
a stochastic bi-objective combinatorial optimization problem and solved by combining a
scenario-based approach with an epsilon-constraint method. A deterministic single objective
variant of this problem that does not consider setup costs for distribution centers and allows
demands to be freely assigned among all operated distribution centers within a certain
covering distance is studied by Naji-Azimi et al. (2012). Instead of maximizing the coverage,
full-coverage is enforced while the total routing cost is minimized.

Comparing our problem setting to the problems in Tricoire et al. (2012) and Naji-Azimi
et al. (2012), we note that neither of the latter consider existing infrastructure and only
either unsteerable or steerable demands but not the combination of the two. Moreover, both
problems put a strong emphasis on the vehicle routing, which is less important in our setting
and thus considered in the last phase of P3MMU.

The SMMU studied in Phase 1 is a pure covering location problem, more specifically a
set covering problem. Set covering problems have been studied extensively in various
applications and comprehensive review articles on existing work in this field can for example
be found in Caprara et al. (2000), Farahani et al. (2012), Ahmadi-Javid et al. (2017), and
García and Marín (2015). In the following, we will focus our review on set covering problems
that incorporate uncertainties in a robust or probabilistic optimization framework.

Probably the most related set covering problem to the SMMU is the q-multiset multicover
problem studied by Krumke et al. (2019). The q-multiset multicover problem is the special
case of the decision version of the SMMU that does not consider existing facilities, setup
cost, and unsteerable demands. The authors study the problem’s complexity and investigate
the problem’s extension to uncertain demands that may vary within a given interval. Using
budgeted uncertainty sets, they devise a formulation of the robust counterpart which can be
solved by constraint generation. This thesis builds on the results in Krumke et al. (2019) and
generalizes them to the SMMU. Various other studies on robust set covering problems mostly
differ in terms of the applied robustness concept. Dhamdhere et al. (2005) introduce demand-
robust covering problems and provide approximation algorithms. Feige et al. (2007) consider
two-stage robust covering problems and devise approximation algorithms, whereas Gupta
et al. (2014) study approximation algorithms for the k-robust set covering problem. The
set covering problem with uncertain cost coefficients is considered by Pereira and Averbakh
(2013) and exact algorithms for computing min-max regret solutions are presented.
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Right-hand side uncertainties in set covering problems in the form of chance constraints, i.e.,
where demands only have to be covered with a certain probability, are considered under
the name probabilistic set covering problem. Beraldi and Ruszczyński (2002) study the
probabilistic set covering problem and devise exact methods by enumerating over the set of
p-efficient points. Later, Saxena et al. (2010) introduce the notion of p-inefficiency to devise
compact MIP formulations for the probabilistic set covering problem that can be strengthened
by separating so-called polarity cuts. Left-hand side uncertainties in set covering problems in
the form of chance constraints have been considered under the name uncertain set covering
problems. A polyhedral study of the uncertain set covering problems is performed by Fischetti
and Monaci (2012) who compare a compact versus a cutting plane model. More recently,
Lutter et al. (2017) introduce compact and non-compact robust formulations for the uncertain
set covering problem by combining concepts from robust and probabilistic optimization.

For more literature on set covering problems under uncertainty, we refer to the references
in Lutter et al. (2017). Preference orderings of clients that are similar to our concept of
unsteerable patient demands, have been studied for a deterministic facility location problem
known as the simple plant location problem in Hanjoul and Peeters (1987) or more recently
in Cánovas et al. (2007).

To the best of our knowledge, there are only two previous articles that consider the allocation
of MMUs as a set covering problem. Aguwa et al. (2018) focus on data analytics and reduce
the MMU allocation to the standard set covering problem. A more elaborate maximum
covering problem for the strategic planning of a single mobile dentistry clinic is considered
by Thorsen and McGarvey (2018) with the goal of improving accessibility while maintaining
financial sustainability. As both of these works consider purely deterministic settings, this
thesis represents the first contribution to the field that considers the strategic allocation of
MMUs as a robust set covering problem.

The TPMMU studied in Phase 2 is a bottleneck location problem that can be seen as a
partitioning variant of the (discrete) k-center problem. The k-center problem asks to locate k
facilities (or centers) that minimize the maximum distance to a set of demand sites and was
first introduced by Hakimi (1965). Hsu and Nemhauser (1979) showed that it is NP-hard to
approximate the metric k-center problem with a constant approximation factor 1 < α < 2.
This inapproximability result is tight, i.e., there exist various 2-approximation algorithms
for the metric k-center problem (Hochbaum and Shmoys, 1985; Mihelič and Robič, 2003).
Lim et al. (2005) study the k-center problem with minimum coverage in which centers are
required to service a minimum number of clients. As a counterpart, Khuller and Sussmann
(2000) study the capacitated k-center problem in which the number of clients that can be
served by each center is limited by an upper bound. Comprehensive reviews on the k-center
problem can be found for example in Tansel (2011) and Calik et al. (2015).

The fundamental difference between the k-center problem and the TPMMU can be summa-
rized as follows. In the former, we select a subset (of cardinality at most k) of the available
centers that minimizes the bottleneck and ignore all unselected centers. In the latter, we must
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partition all available centers into a predefined number of groups such that the maximum
bottleneck among all groups is minimal. To the best of our knowledge, such partitioning
variants of the k-center problem have not yet been considered in the literature.

The vehicle routing problems VRMMU and mVRMMU considered in Phase 3 are structurally
specialized matching problems. Related budgeted and colored matching problems are studied
in Part III of this thesis. Particularly the multi-budgeted matching problem (mBM) introduced
in Chapter 14 generalizes the BCBPM and the presented dynamic programs for the mBM can
therefore be used to solve the mVRMMU on special graph classes. For further related work,
we refer to the literature review of Part III in Chapter 13.

7.4 Outline and Use of Published Materials

Part II of this thesis is structured as follows. Chapter 8 considers Phase 1, i.e., the strategic
planning of MMUs with steerable and unsteerable patient demands. The tactical planning
phase that determines the operations in each session (Phase 2) is addressed in Chapter 9.
Chapter 10 considers the single- and multi-depot variant of the vehicle routing for MMUs
(Phase 3). To evaluate the P3MMU framework in its entirety and demonstrate how the
individual phases interconnect, we present a case study in Chapter 11. Finally, we summarize
and discuss the results of this part in Chapter 12 and provide directions for future research.

Chapter 8 and parts of Chapters 7, 9, 11, and 12 are based on the publication Büsing et al.
(2021) and are therefore joint work with my supervisor Christina Büsing and fellow Ph.D.
students Eva Schmidt and Manuel Streicher. Parts of Chapter 10 are based on the publication
Büsing and Comis (2018a) which is joint work with my supervisor Christina Büsing.
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Phase 1: Robust Strategic
Planning for MMUs

8
In this chapter, we consider strategic planning phase in the three-phased optimization
framework P3MMU. To that end, we study the combined location and capacity planning for
MMU services in form of a capacitated set covering problem called the strategic planning
problem for MMUs (SMMU). The SMMU addresses the problem of deciding where MMU
operation sites should be set up and how often these should be serviced in the course of
a week. As MMUs are intended as a complementary form of health provision that should
be integrated into the present primary care systems (Doerner et al., 2007), we include
existing practices with their treatment capacities into our model. In addition, we consider
two fundamentally different types of patient demands that are common in primary care
systems: i) patients who seek health services via a centralized appointment system and can
be steered towards any available treatment facility within the patients’ consideration sets and
ii) walk-ins who forgo the appointment system and always visit the treatment facility of their
choice – which we assume to be the closest to the patient. Given the nature of these patients,
we refer the former as the steerable patient demands while we call the latter the unsteerable
patient demands.

The main focus of this chapter is the extension of the SMMU to uncertain patient demands
which are intrinsic to the nature of health care needs (Fone et al., 2003). To that end, we
model both types of patient demands as random variables that we integrate into our models
in a robust optimization framework.

The remainder of this chapter is structured as follows. First, we formalize the SMMU in
Section 8.1 by providing an integer programming formulation which we solve via Benders
decomposition. Subsequently, we extend the problem to uncertainties in both, the steerable
and the unsteerable demands in Section 8.2.

8.1 Problem Classification and Formulation

The strategic planning problem for MMUs is a capacitated set covering problem that provides
the basis for an MMU service: given a set of potential MMU operation sites L, a set of existing
primary care practices P , and a set of aggregated patient demand origins V , decide how
many MMU sessions shall be operated at each site ` ∈ L in the course of a week in order to
meet all patient demands at minimum cost. Potential MMU operation sites ` ∈ L have to be
set up at cost c` ∈ N and allow for up to b` ∈ N operated sessions per week. Each operated
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MMU session yields a weekly treatment capacity b̂ ∈ N and induces the cost ĉ ∈ N. Thus, we
can define the following.

Definition 8.1. A strategic MMU operation plan is a function mS : L → N that respects the
session capacity at each site, i.e., mS

` ≤ b` for all ` ∈ L where we notate mS
` := mS(`). The

cost of a strategic MMU operation plan mS is defined by the costs of setting up sites and
operating sessions, i.e., c(mS) := ∑

`∈L:mS
`
>0 c` + ĉ mS

` .

Existing primary care practices p ∈ P have an individual weekly treatment capacity b̄p ∈ N.
Patient demand origins v ∈ V specify the weekly treatment demand of a particular region. To
prevent patients from having to travel excessive distances, a consideration set N(v) ⊆ L ∪ P
specifies for every demand origin v ∈ V the feasible treatment facilities. The weekly patient
demand at each demand origin v ∈ V consists of two types of demands: i) the steerable
demands dv ∈ N corresponding to patients who announce themselves through a centralized
appointment system and can be steered to any operating treatment facility in the consideration
set N(v) and ii) the unsteerable demands uv ∈ N corresponding to walk-ins that always visit
the nearest operating treatment facility kmin

v (mS) ∈ N(v) which depends on a given distance
measure dist : V × (L ∪ P ) → N and the strategic MMU operation plan mS. As part of our
model, the nearest operating treatment facility kmin

v (mS) is always be unique and we will see
later-on how this is ensure by the definition of an order on N(v).

In a feasible strategic MMU operation plan, all steerable patient demands have to be assigned
to a feasible treatment facility and every facility’s treatment capacity has to be respected. To
formalize these requirements, we first define an assignment of the steerable patient demands
to the treatment facilities.

Definition 8.2. An assignment of the steerable patient demands is a set of functions {fv}v∈V
with fv : N(v) → N that distribute all steerable patient demands within their respective
consideration set, i.e.,

∑
k∈N(v) fv(k) = dv for all v ∈ V .

Next, we define feasible strategic MMU operation plans. To ease notation, we denote all
patient demand origins that can target a treatment facility k ∈ L ∪ P by N(k) := {v ∈ V :
k ∈ N(v)}.

Definition 8.3. A strategic MMU operation plan mS is feasible if there exists an assignment of
the steerable patient demands {fv}v∈V that respects the treatment capacity at each treatment
facility k ∈ L ∪ P ; that is

∑
v∈V :kmin

v (mS)=k
uv +

∑
v∈N(k)

fv(k) ≤
b̄k if k ∈ P,
b̂mS

k if k ∈ L.

Using the notion of a feasible MMU operation plan, we can finally provide a formal definition
for the SMMU.
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Fig. 8.1.: Domain of the SMMU.5
MMU sites L

Practices P

Demand origins V

Definition 8.4 (SMMU). Let the potential MMU operation sites ` ∈ L with setup costs c` ∈ N
and weekly session capacities b` ∈ N be given. Moreover, let p ∈ P be the existing practices
with weekly treatment capacities b̄p ∈ N, and v ∈ V be the patient demand origins with
consideration sets N(v) ⊆ L ∪ P and weekly steerable and unsteerable demands dv, uv ∈ N.
Then, the strategic planning problem for MMUs (SMMU) asks for a feasible strategic MMU
operation plan of minimum cost, where every operated MMU session induces the cost ĉ ∈ N
and yields a weekly treatment capacity b̂ ∈ N.

The domain of the SMMU is illustrated in Figure 8.1. We begin the classification of the
SMMU, by showing that the problem is strongly NP-hard.

Theorem 8.5. The SMMU is strongly NP-hard.

Proof. By setting b̂ = 3, P = ∅, ĉ = 1, uv = 0 for all v ∈ V , c` = 0 for all ` ∈ L and choosing
b` large enough, e.g., b` = ∑

v∈V dv, it becomes evident that 3-multiset multicover is a special
case of the decision version of the SMMU. Thus, the strong NP-hardness result for the
SMMU follows directly from the corresponding result for 3-multiset multicover in Krumke
et al. (2019).

To solve the SMMU, we present an integer linear programming formulation that we subse-
quently solve by a Benders decomposition approach. Let variables y` ∈ {0, 1} indicate whether
site ` ∈ L is set up, let variables x` ∈ N denote the number of weekly operated MMU sessions
at site ` ∈ L, and let variables zvk ∈ N determine the weekly steerable demand originating in
demand origin v ∈ V that is assigned to the treatment facility k ∈ N(v). Moreover, let vari-
ables wvk ∈ {0, 1} indicate the closest operating treatment facility k ∈ N(v) that is targeted
by all unsteerable demands originating in v ∈ V . To that end, let πv : {1, . . . , |N(v)|} → N(v)
define an order on the consideration set N(v) that is non-decreasing with respect to the
treatment facility’s distance dist : V × (L ∪ P ) → N to demand origin v ∈ V . As a result,
πv(1) ∈ N(v) denotes the closest treatment facility to demand origin v ∈ V and πv guarantees
the uniqueness of kmin

v (mS) ∈ N(v). To ease notation, we denote all potential MMU operation
sites and practices within the consideration set of demand origin v ∈ V by NL(v) := N(v)∩L
and NP (v) := N(v) ∩ P , respectively. We can now formulate the SMMU as follows:

5Map tiles by Humanitarian OSM Team under CC0. Data by OpenStreetMap, under ODbL.
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(Det) min
y, x, z, w

∑
`∈L

c` y` +
∑
`∈L

ĉ x` (8.1a)

s.t. x` ≤ b` y` ∀` ∈ L (8.1b)∑
k∈N(v)

zvk ≥ dv ∀v ∈ V (8.1c)

∑
v∈N(`)

zv` +
∑

v∈N(`)
uv wv` ≤ b̂ x` ∀` ∈ L (8.1d)

∑
v∈N(p)

zvp +
∑

v∈N(p)
uv wvp ≤ b̄p ∀p ∈ P (8.1e)

∑
k∈N(v)

wvk ≥ 1 ∀v ∈ V (8.1f)

wv` ≤ y` ∀v ∈ V, ∀` ∈ NL(v) (8.1g)

wv` ≥ y` −
π−1
v (`)−1∑
i=1

wv,πv(i) ∀v ∈ V, ∀` ∈ NL(v) (8.1h)

wvp ≥ 1−
π−1
v (p)−1∑
i=1

wv,πv(i) ∀v ∈ V, ∀p ∈ NP (v) (8.1i)

x` ∈ N, y` ∈ {0, 1} ∀` ∈ L (8.1j)

wvk ∈ {0, 1}, zvk ∈ N ∀v ∈ V, ∀k ∈ N(v). (8.1k)

In this formulation, constraints (8.1b) enforce the session capacity at each set up site,
inequalities (8.1c) model the assignment of the steerable patient demands, and constraints
(8.1d)–(8.1e) guarantee that the treatment capacities at each treatment facility are adhered
to. Moreover, inequalities (8.1f)–(8.1i) ensure that unsteerable patient demands target their
closest considered operating treatment facility.

We show that the presented integer linear program (Det) is indeed a formulation for the
SMMU. To that end, we prove that there always exists an optimal solution (y, x, z, w) to (Det)
in which all unsteerable demands originating in v ∈ V target the closest operated treatment
facility kmin

v (y) := arg mink∈N(v):k∈P∨(k∈L∧yk=1) dist(v, k) in the consideration set.

Lemma 8.6. Given a feasible solution (y, x, z, w) to (Det), we can compute a feasible solution
(y, x, z, w′) to (Det) with the same objective value such that for every demand origin v ∈ V there
is at most one treatment facility k ∈ N(v) with w′vk = 1, i.e.,

∑
k∈N(v)w

′
vk ≤ 1, in linear time.

Proof. Given a feasible solution (y, x, z, w) to (Det), we set

w′vk =

0 if ∃k′ ∈ N(v) : π−1
v (k′) < π−1

v (k) ∧ wvk′ = 1,

wvk else.
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Clearly, w′ satisfies
∑
k∈N(v)w

′
vk ≤ 1 and can be computed in linear time. It holds that

w′ ≤ w and thus (y, x, z, w′) satisfies inequalities (8.1d) and (8.1e). Moreover, the solution
(y, x, z, w′) obviously satisfies constraints (8.1f) and (8.1g). Concerning constraints (8.1h),
assume there exist v ∈ V and k ∈ NL(v) such that

w′vk < yk −
π−1
v (k)−1∑
i=1

w′v,πv(i) (8.2)

⇔ yk = 1 ∧
π−1
v (k)∑
i=1

w′v,πv(i) = 0. (8.3)

We can conclude from yk = 1 and the feasibility of (y, x, z, w) that
∑π−1

v (k)
i=1 wv,πv(i) > 0, which

necessitates that
∑π−1

v (k)
i=1 w′v,πv(i) > 0. But this is a contradiction to assumption (8.3) and

completes the proof that (y, x, z, w′) satisfies constraints (8.1h). The validity of inequalities
(8.1i) can be shown analogously. Hence, (y, x, z, w′) is a feasible solution with the same
objective value as (y, x, z, w).

Based on this insight, we can now show that if (Det) is feasible, there always exists an optimal
solution in which all unsteerable patient demands target their closest operated treatment
facility.

Lemma 8.7. Let (y, x, z, w) be a feasible solution to (Det) with
∑
k∈N(v)wvk ≤ 1 for every

demand origin v ∈ V . Then for all v ∈ V and k ∈ N(v), wvk = 1 if and only if k is v’s closest
operating treatment facility, i.e., k = kmin

v (y).

Proof. Let v ∈ V be a demand origin with closest operating treatment facility kmin
v (y) =

πv(i) ∈ N(v), i ∈ {1, . . . , |N(v)|}. As all facilities πv(j) for j < i are unoperated MMU sites
by the definition of i, i.e., πv(j) ∈ NL(v) with yπv(j) = 0, we get that wvπv(j) = 0 for all j < i

by (8.1g). The feasibility of (y, x, z, w) now yields

wv,kmin
v (y) ≥ 1−

i−1∑
j=1

wv,πv(j) = 1.

Conversely, let wvk = 1 for some v ∈ V and some k ∈ N(v). Assume k is not the closest
operating treatment facility to v, i.e., for the closest operated treatment facility kmin

v (y) =
πv(i) ∈ N(v) holds i < π−1

v (k). As we have
∑N(v)
j=1 wv,πv(j) ≤ 1, it directly follows that

wvπv(j) = 0 for all j 6= π−1
v (k). However, this implies that

wv,kmin
v (y) = 0 < 1 = 1−

i−1∑
j=1

wv,πv(j),

which yields a violation of (8.1h) or (8.1i) for v and kmin
v (y), which in turn is a contradiction

to the feasibility of (y, x, z, w).
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Concerning the steerable patient demand, we have to show that if (Det) is feasible, there
always exists an optimal solution in which no more than the steerable patient demand dv ∈ N
originates in each demand origin v ∈ V .

Lemma 8.8. Given a feasible solution (y, x, z, w) to (Det), we can compute a feasible solution
(y, x, z′, w) to (Det) with the same objective value and

∑
k∈N(v) z

′
vk = dv for all v ∈ V in linear

time.

Proof. If for some v ∈ V it holds that d+
v := ∑

k∈N(v) zvk − dv > 0, we can arbitrarily reduce
the assigned steerable patient demands by d+

v without violating constraints (8.1d) or (8.1e),
e.g., by setting

z′vk := zvk −min

zvk, max

0, d+
v −

π−1
v (k)−1∑
i=1

zvπv(i)


 .

The correctness of (Det) for the SMMU is now immediate.

Theorem 8.9. (Det) is an integer linear formulation for the SMMU.

Proof. Given an optimal solution (y, x, z, w) to (Det), a strategic MMU operation plan mS

of minimum cost can be defined via mS
` := x` for all ` ∈ L. By Lemma 8.8, we can assume

w.l.o.g. that
∑
k∈N(v) zvk = dv and thus {fv}v∈V defined via fv(k) := zvk for all k ∈ N(v)

induces an assignment of the steerable patient demands. The feasibility of mS now follows
directly from Lemmata 8.6 and 8.7 for the assignment {fv}v∈V .

The SMMU determines the set up MMU operation sites, the number of weekly sessions
operated per site, as well as the assignment of the steerable patient demands to the treatment
facilities. In the subsequent section, we assume that the actual patient demands are uncertain
and reveal themselves only after we have fixed our decisions regarding the set up sites and
operated MMU sessions. Within this setting, it is no longer expedient to determine one fixed
assignment of the steerable patient demands that is feasible for all demand realizations.
Instead, we model a flexible assignment of the steerable demands that can be adjusted once
the actual demands are known.

Adding assignment variables for every potential demand realization to (Det) leads to a huge
model extension that is likely to be computationally intractable. We therefore propose an
alternative formulation for the deterministic SMMU that considers the steerable patient
demands in a subproblem and is thus much better suited to uncertain patient demands. To
that end, we extend the results in Krumke et al. (2019) and employ a Benders decomposition
approach to (Det) that decides and fixes the strategic MMU operation plan in the master
problem and only checks the plan’s feasibility in the subproblem. More precisely, we choose
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our first stage variables to be y, x, and w and our second stage variables to be z. The resulting
equivalent reformulation of (Det) then reads

(MP) min
y, x, w

∑
`∈L

c` y` +
∑
`∈L

ĉ x` (8.4a)

s.t. (SP)(y, x, w) is feasible (8.4b)

x` ≤ b` y` ∀` ∈ L (8.4c)∑
k∈N(v)

wvk ≥ 1 ∀v ∈ V (8.4d)

wv` ≤ y` ∀v ∈ V, ∀` ∈ NL(v) (8.4e)

wv` ≥ y` −
π−1
v (`)−1∑
i=1

wv,πv(i) ∀v ∈ V, ∀` ∈ NL(v) (8.4f)

wvp ≥ 1−
π−1
v (p)−1∑
i=1

wv,πv(i) ∀v ∈ V, ∀p ∈ NP (v) (8.4g)

x` ∈ N, y` ∈ {0, 1} ∀` ∈ L (8.4h)

wvk ∈ {0, 1} ∀v ∈ V, ∀k ∈ N(v), (8.4i)

where (SP)(ŷ, x̂, ŵ) denotes the Benders subproblem for fixed first-stage decisions ŷ, x̂, and
ŵ, which is defined as

(SP)(ŷ, x̂, ŵ) min
z

0 (8.5a)

s.t.
∑

k∈N(v)
zvk ≥ dv ∀v ∈ V (8.5b)

∑
v∈N(`)

zv` ≤ b̂ x̂` −
∑

v∈N(`)
uv ŵv` ∀` ∈ L (8.5c)

∑
v∈N(p)

zvp ≤ b̄p −
∑

v∈N(p)
uv ŵvp ∀p ∈ P (8.5d)

zvk ∈ N ∀v ∈ V, ∀k ∈ N(v). (8.5e)

Next, we investigate the feasibility of the Benders subproblem (SP)(ŷ, x̂, ŵ) to derive Benders
feasibility cuts which enforce constraint (8.4b). Let us first note, that the constraint matrix of
(SP)(ŷ, x̂, ŵ) is totally unimodular.

Lemma 8.10. The constraint matrix of (SP)(ŷ, x̂, ŵ) is totally unimodular.

Proof. All entries in the constraint matrix of (SP)(ŷ, x̂, ŵ) are in {0, 1,−1}. Moreover, in every
column of the constraint matrix at most one entry in the rows corresponding to constraints
(8.5b) takes the value 1 and at most one entry in the rows corresponding to constraints (8.5c)
and (8.5d) takes the value −1. Thus, by adding all rows of the constraint matrix into the
same partitioning set, the total unimodularity of the constraint matrix of (SP)(ŷ, x̂, ŵ) follows
directly from the theorem of Hoffman and Gale (Heller and Tompkins, 1956).
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As the right hand sides of the constraints in (SP)(ŷ, x̂, ŵ) are integral for all integer feasible
first-stage decisions ŷ, x̂, and ŵ, Lemma 8.10 and Cramer’s rule yield that the LP-relaxation
of (SP)(ŷ, x̂, ŵ) has an integer solution whenever it is feasible. Thus, we can relax constraints
(8.5e) and get the following result.

Corollary 8.11. The Benders subproblem (SP)(ŷ, x̂, ŵ) is feasible if and only if its LP-relaxation
(SPLP)(ŷ, x̂, ŵ) is feasible.

In order to obtain our Benders feasibility cuts, we exploit the fact that (SPLP)(ŷ, x̂, ŵ) is
the decision version of a maximum flow problem. To ease notation, we define the residual
treatment capacity of a treatment facility in the Benders subproblem as the treatment capacity
that remains after the assignment of the unsteerable patient demands is fixed, i.e.,

γ` := b̂ x̂` −
∑

v∈N(`)
uv ŵv` ∀` ∈ L,

γp := b̄p −
∑

v∈N(p)
uv ŵvp ∀p ∈ P.

Throughout this thesis, we will always assume that the residual treatment capacities are
non-negative.

Assumption 1. For all feasible solutions (ŷ, x̂, ŵ) to the master problem (MP) without
constraint (8.4b), it holds that the residual capacities γk ≥ 0 for all k ∈ L ∪ P .

Obviously, Assumption 1 does not hold in general. However, we can easily enforce Assump-
tion 1 by adding additional constraints to (MP). As this does not offer new insights but
only complicates our formulation, we cover the explicit enforcement of Assumption 1 in
Appendix A.1.

The flow network corresponding to (SPLP)(ŷ, x̂, ŵ) is now constructed as follows. LetG be the
directed graph with vertex set V (G) = {s}∪V ∪(L ∪ P )∪{t} and arc set E(G) = E1∪E2∪E3,
where

E1 := {(s, v) : v ∈ V },
E2 := {(k, t) : k ∈ L ∪ P},
E3 := {(v, k) : v ∈ V, k ∈ N(v)}.

We set the capacities of arcs e1 = (s, v) ∈ E1 to µ(e1) := dv and the capacities of arcs
e2 = (k, t) ∈ E2 to µ(e2) := γk. The capacities of all arcs e3 ∈ E3 are set to µ(e3) :=∞. Note,
that this choice of arc capacities requires Assumption 1 to hold as we might otherwise end up
with negative arc capacities. An example of the constructed network (G,µ, s, t) can be found
in Figure 8.2. The following now holds true.
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Fig. 8.2.: Example for the network (G,µ, s, t) constructed for Lemma 8.12.

Lemma 8.12. The Benders subproblem (SP)(ŷ, x̂, ŵ) is feasible if and only if the maximum
s-t-flow in the network (G,µ, s, t) has a flow value of at least D := ∑

v∈V dv.

Proof. Let f : E(G) → R+ be an s-t flow in (G,µ, s, t) of value value(f) ≥ D. We define
a solution for (SPLP)(ŷ, x̂, ŵ) by setting zvk := f((v, k)) for all v ∈ V , k ∈ N(v) and show
that z is feasible. As the s-t cut induced by S := {s} has capacity µ(δ+(S)) = D, it follows
that value(f) = D. It must thus hold for all arcs (s, v) ∈ E1 that f((s, v)) = dv and by
flow-conservation we get that for all v ∈ V

∑
k∈N(v)

zvk =
∑

k∈N(v)
f((v, k)) =

∑
e∈δ+(v)

f(e) =
∑

e∈δ−(v)
f(e) = f((s, v)) = dv.

Moreover, for k ∈ L ∪ P we have that

∑
v∈N(k)

zvk =
∑

v∈N(k)
f((v, k)) =

∑
e∈δ−(k)

f(e) =
∑

e∈δ+(k)
f(e) = f((k, t)) ≤ µ((k, t)) = γk.

As a result, z defines a feasible solution for (SPLP)(ŷ, x̂, ŵ) which implies the feasibility of
(SP)(ŷ, x̂, ŵ) by Corollary 8.11. The converse direction can be shown analogously.

We can now combine our intermediate results to derive Benders feasibility cuts by the
application of the max-flow min-cut theorem (Ahuja et al., 1993).

Theorem 8.13. The Benders subproblem (SP)(ŷ, x̂, ŵ) is feasible if and only if

∑
v∈U

dv +
∑

k∈N(U)

∑
v∈N(k)

uv ŵvk ≤
∑

`∈NL(U)
b̂ x̂` +

∑
p∈NP (U)

b̄p ∀U ⊆ V, (8.6)

where N(U) := ⋃
v∈U N(v), NL(U) := N(U) ∩ L, and NP (U) := N(U) ∩ P for U ⊆ V .
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Proof. First, let us note that (8.6) can be equivalently reformulated as

∑
v∈U

dv +
∑

k∈N(U)

∑
v∈N(k)

uv ŵvk ≤
∑

`∈NL(U)
b̂ x̂` +

∑
p∈NP (U)

b̄p ∀U ⊆ V

⇔
∑
v∈U

dv ≤
∑

`∈NL(U)

(
b̂ x̂`−

∑
v∈N(`)

uv ŵv`

)
+

∑
p∈NP (U)

(
b̄p−

∑
v∈N(p)

uv ŵvp

)
∀U ⊆ V

⇔
∑
v∈U

dv ≤
∑

k∈N(U)
γk ∀U ⊆ V. (8.7)

Moreover, by Lemma 8.12 and the max-flow-min-cut theorem, (SP)(ŷ, x̂, ŵ) is feasible if and
only if every s-t cut in the network (G,µ, s, t) induced by S ( V (G) with s ∈ S, t /∈ S has
capacity µ(δ+(S)) ≥ D. Hence, it suffices to show that inequalities (8.7) hold if and only if
every s-t cut induced by S ( V (G) has capacity µ(δ+(S)) ≥ D.

Assume that the inequalities (8.7) hold. All s-t cuts δ+(S) ⊆ E(G) containing arcs from E3

have infinite capacity and obviously satisfy µ(δ+(S)) ≥ D. Hence, let δ+(S) with s ∈ S, t /∈ S
be an s-t cut in G of finite capacity and define U := S ∩ V . Then N(U) ⊆ S as otherwise
δ+(S) ∩ E3 6= ∅. Consequently we have that

µ(δ+(S)) ≥
∑

k∈N(U)
γk +

∑
v∈V \U

dv ≥
∑
v∈U

dv +
∑

v∈V \U
dv = D.

Conversely, assume that µ(δ+(S)) ≥ D for all S ( V (G) with s ∈ S, t /∈ S. Let U ⊆ V and
define S := {s} ∪ U ∪N(U). Then obviously s ∈ S and t /∈ S and we get by our assumption
that

µ(δ+(S)) =
∑

k∈N(U)
γk +

∑
v∈V \U

dv ≥
∑
v∈V

dv

⇔
∑

k∈N(U)
γk ≥

∑
v∈U

dv.

As a result of Theorem 8.13, we can obtain a linear formulation of our Benders master
problem (MP) by substituting constraint (8.4b) with the Benders feasibility cuts (8.6). We
refer to the resulting formulation of the SMMU as (Det-B).

Corollary 8.14. (Det-B) is an integer linear formulation for the SMMU.

For all integer first-stage solutions, the Benders feasibility cuts (8.6) can be separated in
polynomial time by computing a minimum s-t cut in the network (G,µ, s, t) as described
above. Alternatively, one can separate the cuts by solving the dual of the Benders subproblem
(SPLP)(ŷ, x̂, ŵ) that we describe in Appendix A.2. Appendix A.2 furthermore shows that the
separation problem for (Det-B) is trivial if we only consider unsteerable patient demands
due to Assumption 1.
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The next section considers the SMMU with uncertain patient demands. As our main interest
lies on the setup of operation sites and operation of MMU sessions, it suffices to guarantee
the existence of a feasible assignment of the steerable patient demands. Thus, we restrict
ourselves to the Benders formulation (Det-B) of the SMMU in the following and note that
such an assignment can be determined by a single maximum flow computation as a result of
Lemma 8.12.

8.2 Integration of Demand Uncertainties

Up to this point, we considered the SMMU in a deterministic setting. That is we assume that
all input data is precisely known, in particular, we assume that the weekly steerable and
unsteerable patient demand at each demand origin v ∈ V can be described by deterministic
nominal values dv ∈ N and uv ∈ N, respectively. Clearly, this assumption does not hold in
reality as a patient’s need to see a primary care physician is subject to fluctuation. As a result,
strategic MMU operation plans that are feasible with respect to the nominal patient demands
may be infeasible in real-life operation (Ben-Tal and Nemirovski, 2000). To address this issue,
we model the weekly patient demands at each demand origin as random variables. Specifically,
we assume that the steerable patient demand at each demand origin v ∈ V can be described by
an independent random variable ξv that takes values in {αv, αv+1, . . . , βv}, where αv, βv ∈ N
with αv ≤ βv are the respective steerable lower and upper bounds. Analogously, we assume
that the unsteerable patient demand at each demand origin v ∈ V can be described by an
independent random variable ηv that takes values in {σv, σv + 1, . . . , τv}, where σv, τv ∈ N
with σv ≤ τv are the respective unsteerable lower and upper bounds.

To extend the SMMU to uncertain patient demands, we employ the concept of robust opti-
mization (Ben-Tal et al., 2009; Gabrel et al., 2014). The core principle of robust optimization
is to strive for solutions that are, to some extent, immune to variations in the input data. This
is achieved by hedging solutions against a subset of all possible realizations of the uncertain
parameters which are represented by so-called uncertainty sets.

Under our model of data uncertainty, the set of all possible realizations of the steerable
and unsteerable patient demands are given by Ξ := {ξ ∈ NV : αv ≤ ξv ≤ βv ∀v ∈ V } and
H := {η ∈ NV : σv ≤ ηv ≤ τv ∀v ∈ V }, respectively. The robust strategic planning problem
for MMUs then asks for a strategic MMU operation plan of minimum cost that is feasible for
every pair of patient demand realizations (ξ, η) ∈ U1×U2, where U1 ⊆ Ξ is an uncertainty set
of the steerable patient demands and U2 ⊆ H is an uncertainty set of the unsteerable patient
demands. To formalize this, we extend the notion of a feasible strategic MMU operation plan
to the robust setting with uncertain patient demands.

Definition 8.15. A strategic MMU operation plan mS is robust feasible if mS is feasible for
the deterministic SMMU with nominal patient demands d = ξ and u = η for every pair of
patient demand realizations (ξ, η) ∈ U1 × U2.
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Note, that the number of sessions operated at each site is fixed in a robust feasible MMU
operation plan which induces a fixed assignment of the unsteerable demands that is indepen-
dent of the realization η ∈ U2. However, the assignment of the steerable patient demands
is variable and can be adapted for any realization ξ ∈ U1. We can now use the notion of a
robust feasible strategic MMU operation plan to provide a formal definition of the robust
strategic planning problem for MMUs.

Definition 8.16 (rSMMU). Let the potential MMU operation sites ` ∈ L with setup costs
c` ∈ N and weekly session capacities b` ∈ N be given. Moreover, let p ∈ P be the existing
practices with weekly treatment capacities b̄p ∈ N and v ∈ V be the patient demand origins
with consideration sets N(v) ⊆ L ∪ P . The uncertain weekly steerable and unsteerable
demands are described by the uncertainty sets U1 ⊆ Ξ and U2 ⊆ H, respectively. Then, the
robust strategic planning problem for MMUs (rSMMU) asks for a robust feasible strategic MMU
operation plan of minimum cost, where every operated MMU session induces the cost ĉ ∈ N
and yields a weekly treatment capacity b̂ ∈ N.

Obviously, the rSMMU is a generalization of the SMMU and thus the problem’s strong NP-
hardness follows immediately from Theorem 8.5.

Corollary 8.17. The rSMMU is strongly NP-hard.

To obtain a formulation for the rSMMU, we consider the robust counterpart of the formulation
(Det-B) for the deterministic SMMU defined as

(Rob-B) min
y, x, w

∑
`∈L

c` y` +
∑
`∈L

ĉ x` (8.8a)

s.t. max
ξ∈U1

∑
v∈U

ξv+ max
η∈U2

∑
k∈N(U)

∑
v∈N(k)

ηv wvk

≤
∑

`∈NL(U)
b̂ x` +

∑
p∈NP (U)

b̄p ∀U ⊆ V (8.8b)

x` ≤ b` y` ∀` ∈ L (8.8c)∑
k∈N(v)

wvk ≥ 1 ∀v ∈ V (8.8d)

wv` ≤ y` ∀v ∈ V, ∀` ∈ NL(v) (8.8e)

wv` ≥ y` −
π−1
v (`)−1∑
i=1

wv,πv(i) ∀v ∈ V, ∀` ∈ NL(v) (8.8f)

wvp ≥ 1−
π−1
v (p)−1∑
i=1

wv,πv(i) ∀v ∈ V, ∀p ∈ NP (v) (8.8g)

x` ∈ N, y` ∈ {0, 1} ∀` ∈ L (8.8h)

wvk ∈ {0, 1} ∀v ∈ V, ∀k ∈ N(v). (8.8i)
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In this formulation, inequalities (8.8b) correspond to the robust Benders feasibility cuts,
constraints (8.8c) enforce the session capacity at each setup site, and inequalities (8.8d)–
(8.8g) ensure that unsteerable patient demands target their closest considered operating
treatment facility. We show that (Rob-B) is a formulation for the rSMMU.

Theorem 8.18. (Rob-B) is an integer formulation for the rSMMU.

Proof. Given an optimal solution (y, x, w) to (Rob-B), a strategic MMU operation plan mS

of minimum cost can be defined via mS
` := x` for all ` ∈ L. As (y, x, w) satisfies constraints

(8.8b), it follows that for every pair of patient demand realizations (ξ̂, η̂) ∈ U1 ×U2 and every
U ⊆ V we have that

∑
v∈U

ξ̂v +
∑

k∈N(U)

∑
v∈N(k)

η̂v wvk ≤ max
ξ∈U1

∑
v∈U

ξv + max
η∈U2

∑
k∈N(U)

∑
v∈N(k)

ηv wvk

≤
∑

`∈NL(U)
b̂ x` +

∑
p∈NP (U)

b̄p.

Thus, the robust feasibility of mS follows directly from Theorem 8.13.

Formulation (Rob-B) is in general non-linear due to constraints (8.8b). However, for certain
choices of the uncertainty sets U1 ⊆ Ξ and U2 ⊆ H we can show that (8.8b) can be
reformulated in a linear way. There are various concepts of defining uncertainty sets; see,
e.g., Bertsimas and Sim (2003), Bertsimas and Sim (2004), Kouvelis and Yu (1996), Kasperski
(2008), and Kasperski and Zieliński (2016). The first of these setting we consider, is the
complete protection against uncertainties in the patient demands, i.e., the rSMMU with
uncertainty sets U1 = Ξ and U2 = H. This setting is known as interval uncertainty (Ben-Tal
et al., 2009; Soyster, 1973) and allows us to reformulate (8.8b) as

∑
v∈U

βv +
∑

k∈N(U)

∑
v∈N(k)

τv wvk ≤
∑

`∈NL(U)
b̂ x` +

∑
p∈NP (U)

b̄p ∀U ⊆ V. (8.8b′)

That is, we can reduce the rSMMU for this particular choice of uncertainty sets to the
deterministic SMMU with worst-case nominal patient demands dv = βv and uv = τv for all
v ∈ V . We refer to the resulting formulation of the rSMMU with interval uncertainty sets as
(RobI-B). This approach is known as the method of Soyster (Soyster, 1973) and generally
entails prohibitive operation cost as a result of the method’s conservatism.

To alleviate this drawback, Bertsimas and Sim (2004) introduced budgeted uncertainty sets
that restrict the deviations in the uncertain input data through a budget parameter. The
choice of this budget parameter allows for a trade-off between robustness and operation
cost of the obtained solutions. In the following, we consider an adaptation of budgeted
uncertainty sets that contains all patient demand realizations in which the total (un-)steerable
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patient demand is bounded by the parameter Γ1 ∈ N (Γ2 ∈ N). For the steerable patient
demands, these realizations can be represented by the uncertainty set

UΓ
1 :=

{
ξ ∈ NV : αv ≤ ξv ≤ βv ∀v ∈ V,

∑
v∈V

ξv ≤ Γ1

}
.

For the unsteerable patient demands, we analogously obtain the uncertainty set

UΓ
2 :=

{
η ∈ NV : σv ≤ ηv ≤ τv ∀v ∈ V,

∑
v∈V

ηv ≤ Γ2

}
.

To ensure that the uncertainty sets UΓ
1 and UΓ

2 are non-empty, we require that
∑
v∈V αv ≤ Γ1

and
∑
v∈V σv ≤ Γ2. Moreover, we can assume w.l.o.g. that Γ1 ≤

∑
v∈V βv and Γ2 ≤

∑
v∈V τv

as we otherwise always have UΓ
1 = Ξ and UΓ

2 = H.

For the remainder of this section, we consider the rSMMU with the budgeted uncertainty
sets UΓ

1 and UΓ
2 and devise an integer linear formulation, which is subsequently solved by

constraint generation. To that end, we show that (8.8b) can be linearized for this particular
choice of uncertainty sets.

Considering the non-linear part in (8.8b) corresponding to the steerable patient demands,
the linear reformulation is straightforward as

max
ξ∈UΓ

1

∑
v∈U

ξv = min

∑
v∈U

βv, Γ1 −
∑

v∈V \U
αv

 (8.9)

which is simply a constant for fixed U ⊆ V .

For the non-linear part in (8.8b) corresponding to the unsteerable patient demands, we can
obtain a linear reformulation through LP duality. By the definition of UΓ

2 , we can formulate
the inner maximization problem

max
η∈UΓ

2

∑
k∈N(U)

∑
v∈N(k)

ηv ŵvk

for fixed U ⊆ V and fixed assignment of the unsteerable demands ŵvk ∈ {0, 1} for all v ∈ V
and k ∈ N(v) via the following integer linear program:

(PU )(ŵ) max
η

∑
k∈N(U)

∑
v∈N(k)

ηv ŵvk (8.10a)

s.t. ηv ≤ τv ∀v ∈ V (8.10b)

− ηv ≤ −σv ∀v ∈ V (8.10c)∑
v∈V

ηv ≤ Γ2 (8.10d)

ηv ∈ N ∀v ∈ V. (8.10e)
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The problem (PU )(ŵ) is feasible and bounded as we assumed Γ2 ≥
∑
v∈V σv. Moreover, we

can show that the constraint matrix of (PU )(ŵ) is totally unimodular.

Lemma 8.19. The constraint matrix of (PU )(ŵ) is totally unimodular.

Proof. The unit rows of the constraint matrix corresponding to constraints (8.10b) and (8.10c)
are irrelevant to the total unimodularity and do not have to be considered (Nemhauser and
Wolsey, 2014a). Thus, we end up with a vector of ones corresponding to constraint (8.10d)
which is obviously totally unimodular as each square submatrix has determinant one.

By our choice of parameters, the right hand sides of the constraints in (PU )(ŵ) are integral.
Thus, the polyhedron of the LP-relaxation (PULP)(ŵ) is integral and we can relax the integrality
constraint (8.10e) as the optimal solution values of (PULP)(ŵ) and (PU )(ŵ) coincide. The
dual problem of (PULP)(ŵ) is given by

(DU
LP)(ŵ) min

ε, κ, ρ

∑
v∈V

(τvεv − σvκv) + Γ2ρ

s.t. εv − κv + ρ ≥
∑

k∈N(U)∩N(v)
ŵvk ∀v ∈ V

εv, κv, ρ ≥ 0 ∀v ∈ V.

Strong duality states that the optimal solution values of (PULP)(ŵ) and (DU
LP)(ŵ) coincide.

Hence, every feasible solution of (DU
LP)(ŵ) yields an upper bound on the optimal solution

value of (PU )(ŵ). Combined with the observations in Bertsimas and Sim (2004), we can
now reformulate (8.8b) for the budgeted uncertainty sets UΓ

1 and UΓ
2 via the following set of

constraints:

min

∑
v∈U

βv, Γ1 −
∑

v∈V \U
αv

+
∑
v∈V

(
τvε

U
v − σvκUv

)
+ Γ2ρ

U

≤
∑

`∈NL(U)
b̂x` +

∑
p∈NP (U)

b̄p ∀U ⊆ V (8.11)

εUv − κUv + ρU ≥
∑

k∈N(U)∩N(v)
wvk ∀v ∈ V, ∀U ⊆ V (8.12)

εUv , κ
U
v , ρ

U ≥ 0 ∀v ∈ V, ∀U ⊆ V. (8.13)

We refer to the resulting formulation of the rSMMU with budgeted uncertainty sets as
(RobΓ-B). Formulation (RobΓ-B) is an integer linear program with an exponential number
of constraints. To solve it, we apply constraint generation, i.e., we consider (RobΓ-B) with
a subset of the constraints of type (8.11)–(8.13). In particular, we decide on some U ⊆ 2V
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and consider the constraints of type (8.11)–(8.13) only for the subsets of patient demand
origins U ∈ U . This yields a relaxation of (RobΓ-B) called the restricted master problem.

Once an optimal solution (ŷ, x̂, ŵ, ε̂, κ̂, ρ̂) to the restricted master problem induced by U is
known, we need to decide whether (ŷ, x̂, ŵ, ε̂, κ̂, ρ̂) is feasible for the original formulation
(RobΓ-B). To that end, we examine whether there exists a subset U ⊆ V for which the
system (8.11)–(8.13) is infeasible. This problem is known as the separation problem and can
be formalized as follows: Is there a subset U ⊆ V such that the system

min

∑
v∈U

βv, Γ1 −
∑

v∈V \U
αv

+
∑
v∈V

(
τvε

U
v − σvκUv

)
+ Γ2ρ

U

≤
∑

`∈NL(U)
b̂x̂` +

∑
p∈NP (U)

b̄p

εUv − κUv + ρU ≥
∑

k∈N(U)∩N(v)
ŵvk ∀v ∈ V

εUv , κ
U
v , ρ

U ≥ 0 ∀v ∈ V

has no solution (εU , κU , ρU ), i.e., is infeasible?

By duality and Farkas’ lemma (Nemhauser and Wolsey, 2014b), we can equivalently refor-
mulate the separation problem in terms of the original constraints (8.8b): Is there a subset
U ⊆ V such that

max
ξ∈UΓ

1

∑
v∈U

ξv + max
η∈UΓ

2

∑
k∈N(U)

∑
v∈N(k)

ηv ŵvk >
∑

`∈NL(U)
b̂ x̂` +

∑
p∈NP (U)

b̄p ? (8.14)

In the following, we simplify formulation (8.14) of the separation problem even further.
To that end, let us recall that for fixed set U ⊆ V we have concluded in (8.9) that for the
steerable patient demands holds

max
ξ∈UΓ

1

∑
v∈U

ξv = min

∑
v∈U

βv, Γ1 −
∑

v∈V \U
αv

 . (8.9)

Moreover, as the assignment of the unsteerable demands in the separation problem is fixed,
we can obtain an analogous result for the unsteerable patient demands. To that end, let
kmin
v (ŵ) ∈ N(v) denote the unique treatment facility that is targeted by all unsteerable

patient demand originating in v ∈ V , i.e., ŵvk = 1 if and only if k = kmin
v (ŵ). Moreover, let
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P

n+1

n+2
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U

n−1
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...

N(U)

2n−1

2n

2n+1

β1 = 2a1

β2 = 2a2

βn−1 = 2an−1

βn = 2an

Γ1 = 2B

b̄n+1 = a1

b̄n+2 = a2

b̄2n−1 = an−1

b̄2n = an

b̄2n+1 = B − 1

Fig. 8.3.: Constructed separation instance I ′ for given subset sum instance I = (A,B) where consid-
eration sets are encoded by edges in the bipartite graph.

V U (ŵ) :=
{
v ∈ V : kmin

v (ŵ) ∈ N(U)
}

denote all demand origins whose unsteerable patient
demands target a treatment facility in N(U) ⊆ L ∪ P . Now we get the following:

max
η∈UΓ

2

∑
k∈N(U)

∑
v∈N(k)

ηv ŵvk = max
η∈UΓ

2

∑
v∈V U (ŵ)

ηv

= min

 ∑
v∈V U (ŵ)

τv, Γ2 −
∑

v∈V \V U (ŵ)
σv

 .
(8.15)

Substituting (8.9) and (8.15) into (8.14), we obtain the following reformulation of the
separation problem: Is there a subset U ⊆ V such that

min

∑
v∈U

βv, Γ1 −
∑

v∈V \U
αv

+ min

 ∑
v∈V U (ŵ)

τv, Γ2 −
∑

v∈V \V U (ŵ)
σv


>

∑
`∈NL(U)

b̂ x̂` +
∑

p∈NP (U)
b̄p ?

(8.14’)

We show, that deciding the separation problem is NP-complete by a reduction from subset
sum inspired by the one in Krumke et al. (2019).

Theorem 8.20. The separation problem for (RobΓ-B) is NP-complete.

Proof. To show the NP-completeness of the separation problem, we perform a reduction
from the subset sum problem which is known to be NP-complete (Garey and Johnson, 1979).
Let us recall the subset sum problem: Given a finite set A = {a1, . . . , an} ⊆ N and an integer
B ∈ N, the subset sum problem asks whether there exists a subset A′ ⊆ A with

∑
a∈A′ a = B.
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Given an instance I = (A,B) of the subset sum problem, we construct an instance I ′ of
the separation problem for (RobΓ-B) as follows: Let V = {1, . . . , n}, L = ∅, and P =
{n + 1, . . . , 2n, 2n + 1}. We set αv = σv = τv = 0 for all v ∈ V , that is we do not consider
unsteerable patient demands. Moreover, we set βv = 2av for all v ∈ V . Concerning the
practices’ treatment capacities, we set b̄p = ap−n for all p ∈ P \ {2n+ 1} and b̄2n+1 = B − 1.
The consideration sets are defined as N(v) = {v + n, 2n + 1} for all v ∈ V and we choose
Γ1 = 2B. The construction of I ′ is visualized in Figure 8.3.

For our choice of parameters, the separation problem for (RobΓ-B) reduces to: Is there a
subset U ⊆ V such that min {∑v∈U βv, Γ1} >

∑
p∈N(U) b̄p?

We show that the constructed instance I ′ of the separation problem is a Yes-instance if and
only if the subset sum instance I is a Yes-instance.

First, assume that I is a Yes-instance and let A′ ⊆ A with
∑
a∈A′ a = B. Then for U = {v ∈

V : av ∈ A′} it holds that

min
{∑
v∈U

βv, Γ1

}
= min

∑
a∈A′

2a, 2B

 = 2B > 2B − 1 =
∑
a∈A′

a+B − 1 =
∑

p∈N(U)
b̄p

which shows that I ′ is a Yes-instance.

Conversely, assume that I ′ a Yes-instance and let U ⊆ V be a subset of demand origins
with min {∑v∈U βv, Γ1} >

∑
p∈N(U) b̄p. We show that A′ = {av ∈ A : v ∈ U} satisfies∑

a∈A′ a = B. To that end, we begin by showing that

∑
v∈U

βv ≤ Γ1 ⇔
∑
a∈A′

2a ≤ 2B ⇔
∑
a∈A′

a ≤ B. (8.16)

Assume the contrary, i.e., that
∑
a∈A′ a > B. Then by our choice of U , we have that

min
{∑
v∈U

βv, Γ1

}
= Γ1 >

∑
p∈N(U)

b̄p ⇔ 2B >
∑
a∈A′

a+B − 1⇔
∑
a∈A′

a ≤ B

which is a contradiction and thus proves (8.16). By our choice of U , we moreover get

min
{∑
v∈U

βv, Γ1

}
=
∑
a∈A′

2a >
∑

p∈N(U)
b̄p ⇔

∑
a∈A′

2a >
∑
a∈A′

a+B − 1

⇔
∑
a∈A′

a ≥ B (8.17)

Combining (8.16) and (8.17), it follows that
∑
a∈A′ a = B and thus I is a Yes-instance.

Finally, we remark that the separation problem for (RobΓ-B) is contained in NP as we can
compute all terms in (8.14’) for given U ⊆ V in polynomial time.
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Just as in the deterministic setting, the separation problem for (RobΓ-B) is trivial if we only
consider unsteerable demands due to Assumption 1.

To decide the separation problem, we propose an integer linear program based on formulation
(8.14’). This formulation requires variables to encode our choice of U ⊆ V as well as the
derived sets N(U) ⊆ L ∪ P and V U (ŵ) ⊆ V . Therefore, we introduce variables ov ∈ {0, 1}
that take the value one if demand origin v ∈ V is in the set U and zero otherwise. Variables
nk ∈ {0, 1} take the value one if treatment facility k ∈ L ∪ P is in the consideration set N(U)
and zero otherwise. Finally, we introduce variables rv ∈ {0, 1} that take the value one if
v ∈ V U (ŵ) and zero otherwise. To linearize the inner minimization problems in (8.14’), we
furthermore introduce continuous variables d1 ≥ 0 and d2 ≥ 0 which attain the value of the
respective worst case patient demand for the chosen subset U ⊆ V in an optimal solution.
We can now formulate the separation problem as follows:

(Sep) max
d1, d2, o, n, r

d1 + d2 −
∑
`∈L

b̂x̂`n` −
∑
p∈P

b̄pnp (8.18a)

s.t. nk ≥ ov ∀v ∈ V, k ∈ N(v) (8.18b)

rv ≤
∑

v′∈N(kmin
v (ŵ))

ov′ ∀v ∈ V (8.18c)

d1 ≤
∑
v∈V

βvov (8.18d)

d1 ≤ Γ1 −
∑
v∈V

αv(1− ov) (8.18e)

d2 ≤
∑
v∈V

τvrv (8.18f)

d2 ≤ Γ2 −
∑
v∈V

σv(1− rv) (8.18g)

ov, rv ∈ {0, 1} ∀v ∈ V (8.18h)

nk ∈ {0, 1} ∀k ∈ L ∪ P (8.18i)

d1, d2 ≥ 0. (8.18j)

Thereby, inequalities (8.18b) enforce that nk for k ∈ L∪P encode the consideration set N(U)
and constraints (8.18c) ensure that rv for v ∈ V encode V U (ŵ). The remaining inequalities
(8.18d)–(8.18g) model the reformulated inner minimization problems for the steerable and
unsteerable patient demands derived in (8.9) and (8.15), respectively.

Given an optimal solution (d̂1, d̂2, ô, n̂, r̂) to (Sep), we can decide the separation problem as
follows. If the solution value of (d̂1, d̂2, ô, n̂, r̂) is non-positive, it follows that the optimal
solution (ŷ, x̂, ŵ, ε̂, κ̂, ρ̂) to the restricted master problem is also an optimal solution to
(RobΓ-B). Otherwise, we get the violating subset Û := {v ∈ V : ôv = 1} which is added to U

and we iterate by resolving the restricted master problem.
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Phase 2: Tactical Planning for
MMUs

9
The previous chapter considered the strategic planning for MMUs in a session-aggregated
form which yields a strategic MMU operation plan mS : L→ N that determines which MMU
operation sites are set up and how often these are serviced in the course of one week.
Strategic MMU operation plans are not intended for a direct real-world implementation, as
they do not contain information regarding what sites are serviced in which sessions of the
week. We address this missing link in Phase 2 of P3MMU at the tactical level. To plan the
MMU operations in each session of the week, we require some additional formalisms. Let Λ
denote the sessions of the week which generally comprise a morning and an afternoon session
for every working day of the week, i.e., Λ = {MONAM, . . . ,SATPM}. Moreover, we consider
the session-expanded potential MMU operation sites L := L× Λ where each expanded site
` = (`, λ) ∈ L can be serviced at most once per week. Consequently, we do not allow for
parallel MMU operations although we will see later-on that all our results generalize to
parallel operations. Finally, we consider the session-expanded practices P := P × Λ. Using
this notation, we can now formally define a tactical MMU operation plan. Recall, that setting
up site ` ∈ L induces cost c` ∈ N while each operated MMU session costs ĉ ∈ N.

Definition 9.1. A tactical MMU operation plan is a function mT : L → {0, 1}. The cost of a
tactical MMU operation plan mT is defined by the costs of setting up sites and operating MMU
sessions, i.e., we have c(mT) := ∑

`∈L:∃λ∈Λ:mT
(`,λ)>0 c` +∑

`∈L ĉ m
T
` .

Tactical MMU operation plans define for each session of the week which MMU sites are
serviced and thus available to patients. An illustration of a tactical MMU operation plan as it
could be used to inform patients can be found in Table 9.1.

We call the serviced sites in session λ ∈ Λ for a given tactical MMU operation plan mT the
session service which we denote by Lλ(mT) := {` ∈ L : mT

(`,λ) = 1}. As the tactical MMU
operation plan to which a session service corresponds is usually clear from context, we
abbreviation the session service by Lλ ⊆ L. The ordered multiset of all session services
{Lλ}λ∈Λ uniquely defines the tactical MMU operation plan mT and we therefore associate
the two with each other to ease notation.

By defining session services, tactical MMU operation plans implicitly determine the minimum
number of MMUs ν(mT) ∈ N required to operate mT, i.e., ν(mT) = maxλ∈Λ |Lλ|. For example,
the tactical MMU operation plan in Table 9.1 would require at least two vehicles (ν(mT) = 2)
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Tab. 9.1.: Illustration of a tactical MMU operation plan.

Mon Tue Wed Thu Fri Sat

AM PM AM PM AM PM AM PM AM PM AM PM

`1: train station 3 3 3
`2: town hall 3 3 3
`3: market square 3 3
`4: bakery 3 3 3
`5: community center 3 3 3

to be operated. MMUs are naturally expensive and the number of required vehicles should
therefore be considered during tactical MMU operation planning.

In this chapter, we consider two approaches to compute tactical MMU operation plans. The
first approach (Section 9.1) builds on the strategic MMU operation plans derived in Phase 1 by
partitioning them into tactical MMU operation plans such that each session service provides
a similar coverage while minimizing the number of required MMUs. The second approach
(Section 9.2) extends the results from Chapter 8 to allow for a combined consideration of
Phases 1 and 2 and thus directly yields a tactical MMU operation plan. While this combination
of Phases 1 and 2 offers a higher optimization potential, it requires more empirical data
which is why we consider both presented approaches as feasible alternatives.

9.1 Partitions of Strategic MMU Operation Plans

In this section, we consider the tactical MMU operation planning based on a strategic MMU
operation plan. To that end, let a strategic MMU operation plan mS : L→ N be given. Recall,
that the patient demand origins v ∈ V used in Phase 1 are aggregated and specify steerable
and unsteerable patient demands at a weekly basis. As a result, they provide no information
regarding the patient demand in a particular session of the week. Assuming that patient
demands are evenly distributed among all sessions, we aim at a tactical MMU operation
plan such that the session services minimize the patients’ access distances to their closest
treatment facility on each session of the week. To obtain such a tactical MMU operation plan,
we partition the given strategic MMU operation plan mS.

Definition 9.2. A tactical MMU operation plan mT : L → {0, 1} is called a partition of the
strategic MMU operation plan mS : L→ N if and only if mS

` = ∑
λ∈Λm

T
(`,λ) for all ` ∈ L. By

definition, all partitions mT of mS have cost c(mT) = c(mS). We call a partition mT of mS

minimal, if it requires a minimum number of MMUs for its operation, i.e., ν(mT) ≤ ν(mT) for
all partitions mT of mS.

We assume in the following that mS
` ≤ |Λ| for all ` ∈ L as we forbid parallel MMU operations

and want to ensure the existence of a partition. Moreover, as each MMU can service at
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most |Λ| session per week, each minimal partition mT of mS requires exactly ν(mT) =
d∑`∈Lm

S
`/|Λ|e =: ν(mS) MMUs by evenly distributing services among vehicles.

Next to the MMU operations, the access distances of the patient demand origins in each
session depend on the availability of the regular practices P . To that end, let o : P → {0, 1}
indicate the practices’ opening hours as only the practices in Pλ(o) := {p ∈ P : o(p, λ) = 1}
are available in session λ ∈ Λ. Analogous to session services, we abbreviate the available
practices in session λ ∈ Λ by Pλ to ease notation. We can now define the covering radius of a
session service Lλ ⊆ L as r(Lλ) := maxv∈V mink∈Lλ∪Pλ dist(v, k). As a result, the covering
radius measures the maximum access distance of the demand origins in session λ ∈ Λ
if session service Lλ is operated. Analogously, we define the covering radius of a tactical
MMU operation plan mT as the maximum covering radius among all its session services,
i.e., r(mT) := maxλ∈Λ r(Lλ). We can now formalize the tactical partitioning problem for
MMUs.

Definition 9.3. (TPMMU) Let mS : L→ N be a strategic MMU operation plan, Λ the sessions
of the week, V the patient demand origins, and P the practices with opening hours o : P×Λ→
{0, 1}. Then the tactical partitioning problem for MMUs (TPMMU) asks for a minimal partition
mT of mS with minimum covering radius.

The TPMMU is a partitioning variant of the k-center problem and we investigate its complexity
before considering solution approaches. To that end, we begin by introducing a variant of the
dominating set problem which asks for a dominating set containing half of a graph’s nodes.

Definition 9.4. Let G = (V (G), E(G)) be a graph with an even number of nodes, i.e.,
V (G) = {w1, . . . , wn} where n mod 2 = 0. Then the 1

2 -dominating set problem asks whether
there exits D ⊆ V (G) with |D| = n

2 such that for all wi ∈ V (G) \D there exists wj ∈ D with
{wi, wj} ∈ E(G).

We show that this specialization of the dominating set problem is strongly NP-complete.

Theorem 9.5. The 1
2 -dominating set problem is strongly NP-complete.

Proof. We prove the strong NP-completeness of the 1
2 -dominating set problem by a re-

duction from the (general) dominating set problem which is known to be strongly NP-
complete (Garey and Johnson, 1979). Recall that in the dominating set problem, we are given
a graph G = (V (G), E(G)) with node set V (G) = {w1, . . . , wn} and an integer k ≤ n and
have to decide whether there exists D ⊆ V (G) with |D| = k such that for all wi ∈ V (G) \D
there exists wj ∈ D with {wi, wj} ∈ E(G).

Given an instance I = (G, k) of the dominating set problem with V (G) = {w1, . . . , wn}, we
construct an instance I ′ = (G′) of the 1

2 -dominating set problem with V (G′) = {w′1, . . . , w′n′}
as follows. If k = n

2 , I is an instance of the 1
2 -dominating set problem and the reduction
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I : w1

w2

w3

w4

I ′ : v1

v2

v3

v4

`1

`2

`3

`4

p

Fig. 9.1.: Constructed TPMMU instance I ′ for given 1
2 -dominating set instance I = (G). Edges in

I ′ indicate distances of length 0. Dominating set D = {w2, w4} corresponds to minimal
partition mT with session service Lλ1 = {`2, `4} and covering radius r(mT) = r(Lλ1) = 0.

is trivial. Otherwise, we add singletons or a star to G to adjust the ratio between n and k.
Specifically, if k < n

2 , we choose G′ = G ∪ H where H consists of n − 2k singletons, i.e.,
V (H) = {v1, . . . , vn−2k} and E(H) = ∅. By construction, n′ = 2n−2k which is by assumption
positive and even. If k > n

2 , we choose G′ = G∪H where H is a star with 2(k+ 1)−n nodes,
i.e., V (H) = {v1} ∪ {v2, . . . , v2(k+1)−n} and E(H) = {{v1, vi} : 2 ≤ i ≤ 2(k + 1)− n}. Again,
we have by construction that n′ = 2(k + 1) which is positive and even.

We show that I is a Yes-instance if and only if I ′ is a Yes-instance. Assume that I is a
Yes-instance and let D ⊆ V (G) be a dominating set in G of cardinality |D| = k. To show that
there exists a dominating set D′ ⊆ V (G′) in G′ with |D′| = n′

2 , we distinguish cases. If k < n
2 ,

we add the singletons in H to the dominating set, i.e., we choose D′ = D ∪ V (H). Then
obviously D′ is a dominating set in G′ with cardinality |D′| = |D|+ n− 2k = n− k = n′

2 . If
k > n

2 , we add the center of the star H to the dominating set, i.e., we set D′ = D ∪ {v1}. By
construction, D′ is a dominating set in G′ with cardinality |D′| = |D|+ 1 = k + 1 = n′

2 . The
converse direction can be shown analogously.

Last but not least, we note that the 1
2 -dominating set problem is a special case of the

dominating set problem and therefore obviously in NP.

We can now show that the TPMMU with just two sessions per week is NP-hard.

Theorem 9.6. The TPMMU with two sessions per week, i.e., |Λ| = 2, is strongly NP-hard.

Proof. We show the strongNP-hardness of the TPMMU by a reduction from the 1
2 -dominating

set problem. Given an instance I = (G) of the 1
2 -dominating set problem with V (G) =

{w1, . . . , wn}, we construct an instance I ′ of the TPMMU as follows. We choose the patient
demand origins V = {v1, . . . , vn} that represents the nodes of G and the MMU operation sites
L = {`1, . . . , `n} which are going to encode the dominating set. Furthermore let Λ = {λ1, λ2},
mS
` = 1 for all ` ∈ L, and P = {p} with o(p, λ1) = 0 and o(p, λ2) = 1. Finally, we define the

distances between all vi ∈ V and `j ∈ L as

dist(vi, `j) =

0 if i = j ∨ {wi, wj} ∈ E(G)

1 else
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and set dist(vi, p) = 0 for all vi ∈ V . By construction, every minimal partition mT of mS

requires exactly ν(mS) = d|L|/2e = n
2 MMUs and for both sessions λ ∈ Λ it must hold that

|Lλ| = n
2 . Moreover, note that for every partition mT of mS we have that r(Lλ2) = 0 due to

the open practice p ∈ P which implies that r(mT) = r(Lλ1). The construction of I ′ for an
exemplary 1

2 -dominating set instance is illustrated in Figure 9.1.

We show that I is a Yes-instance if and only if I ′ has a minimal partition mT with covering
radius r(mT) = r(Lλ1) = 0. Assume I is a Yes-instance and let D ⊆ V (G) be a dominating
set of size |D| = n

2 . Then, for the minimal partition mT of mS with Lλ1 = {`i ∈ L : wi ∈ D}
and Lλ2 = L \ Lλ1 we have that r(mT) = r(Lλ1) = 0 as D is a dominating set. The converse
direction can be shown analogously.

The 1
2 -dominating set problem can be naturally extended to general k ∈ N \ {0}, i.e., the

1
k -dominating set problem on G that asks for a dominating set D ⊆ V (G) of cardinality
|D| = |V (G)|

k . Generalizing the reduction from Theorem 9.5, it follows that for all k ≥ 2 the
1
k -dominating set problem is strongly NP-complete. Thus, the construction in the reduction
above yields the following.

Corollary 9.7. For each k ∈ N with k ≥ 2, the TPMMU with |Λ| = k is strongly NP-hard.

Moreover, due to our choice of distances in the previous reduction, any α-approximation
algorithm for the TPMMU could decide the 1

k -dominating set problem in polynomial time
which yields the following inapproximability result.

Corollary 9.8. For each k ∈ N with k ≥ 2, it is NP-hard to approximate the TPMMU with
|Λ| = k within a constant approximation factor α > 1.

The distances in the proof of Theorem 9.6 do not satisfy the triangle inequality. As a result,
both Corollaries 9.7 and 9.8 do not hold for the metric TPMMU in which the triangle inequality
must hold. By adjusting the distance function, we can show that also the metric TPMMU is
NP-hard and obtain a slightly weaker inapproximability result.

Theorem 9.9. For each k ∈ N with k ≥ 2, the metric TPMMU with |Λ| = k is stronglyNP-hard.

Proof. To show the strong NP-hardness of the metric TPMMU, we use the reduction from
the proof of Theorem 9.6 and adjust the distances between the demand origins vi ∈ V and
operation sites `j ∈ L to

dist(vi, `j) =

1 if i = j ∨ {wi, wj} ∈ E(G)

2 else

and set dist(vi, p) = 1 for all vi ∈ V . The adjusted distances obviously satisfy the triangle
inequality. Moreover, analogous to Theorem 9.6, it holds that a 1

2 -dominating set instance
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I is a Yes-instace if and only if the corresponding metric TPMMU instance I ′ with adjusted
distances has a minimal partition mT with covering radius r(mT) = 1. Last but not least, we
note that this construction generalizes to the 1

k -dominating set problem for k ≥ 2.

With the adjusted distances in the proof of Theorem 9.9, the covering radius of a minimal
partition is either one or two. As a result, any α-approximation algorithm for the metric
TPMMU with α < 2 could decide the 1

k -dominating set problem in polynomial time.

Corollary 9.10. For each k ∈ N with k ≥ 2, it is NP-hard to approximate the metric TPMMU
with |Λ| = k within a constant approximation factor 1 < α < 2.

Hence, while we have shown that there can be no α-approximation algorithm with con-
stant approximation factor for the general TPMMU (unless P = NP), there can be a
2-approximation algorithm for the TPMMU if the distances satisfy the triangle inequality.

Having established that solving the TPMMU is non-trivial if a week has at least two sessions,
we devise an exact solution approach based on a compact integer linear program. To that end,
let variables x` ∈ {0, 1} for ` = (`, λ) ∈ L denote whether site ` ∈ L is serviced in session
λ ∈ Λ. To model the access distances of the patient demand origins, let variables zvk ∈ {0, 1}
for v ∈ V and k = (k, λ) ∈ L ∪ P denote whether k ∈ L ∪ P is the closest treatment facility
to v ∈ V in session λ ∈ Λ. Finally, we require an auxiliary variable Ω ≥ 0 to linearize the
outer maximization in the computation of the covering radius. We can now formulate the
TPMMU as follows:

(TP) min
x, z,Ω

Ω (9.1a)

s.t. Ω ≥ dist(v, k) zvk ∀v ∈ V, ∀k = (k, λ) ∈ L ∪ P (9.1b)∑
k∈L∪Pλ

zv(k,λ) ≥ 1 ∀v ∈ V, ∀λ ∈ Λ (9.1c)

zv` ≤ x` ∀v ∈ V, ∀` ∈ L (9.1d)∑
λ∈Λ

x(`,λ) = mS
` ∀` ∈ L (9.1e)

∑
`∈L

x(`,λ) ≤ ν(mS) ∀λ ∈ Λ (9.1f)

x` ∈ {0, 1} ∀` ∈ L (9.1g)

zvk ∈ {0, 1} ∀v ∈ V, ∀k ∈ L ∪ P . (9.1h)

In this formulation, inequalities (9.1b) ensure that the covering radius is correctly modeled,
inequalities (9.1c) and (9.1d) model the assignment of the demand origins to their closest
treatment facility in each session, and constraints (9.1e) and (9.1f) require the tactical MMU
operation plan encoded by x to be a minimal partition of mS. Formulation (TP) is a compact
integer linear formulation for the TPMMU. Given an optimal solution (x, z,Ω) to (TP), an
optimal solution to the TPMMU is given by the minimal partition mT

` = x` for all ` ∈ L.
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Remark, that our definition of the covering radius can be dominated by sessions in which
many primary care physicians are closed. An example for such a setting can be observed in the
computational study in Chapter 11, as most practices in Germany are closed on Wednesday
afternoons. In such cases, we want to put weight on each session’s covering radius by
considering the sum of the covering radii, i.e., r(mT) := ∑

λ∈Λ r(Lλ). Formulation (TP) can
be easily adopted to this alternative objective function and we note, that the (metric) TPMMU
minimizing the sum of the covering radii remains strongly NP-hard.

In the following section, we consider the combined strategic and tactical planning for
MMUs. While a combined consideration of Phases 1 and 2 can lead to better solutions, it
comes with the downside of requiring more empirical data and being computationally more
challenging.

9.2 Combined Strategic and Tactical Planning for MMUs

Chapter 8 considered the (robust) strategic planning problem for MMUs in a session-
aggregated form. That is, we modeled the patient demands at each demand origin through a
single aggregated value and decided on the total weekly number of MMU sessions at each
MMU operation site. Such an aggregation has several shortcomings, as it artificially smoothes
out patient demands and entails the previously discussed post-processing step to partition
strategic MMU operation plans into tactical MMU operation plans.

To overcome these drawbacks, we can disaggregate the strategic planning problem for MMUs
by considering session-specific demands, treatment capacities, and MMU operations. Thereby,
steerable patient demands are allowed to be assigned between sessions to balance out each
session’s workload. The combined strategic tactical planning problem for MMUs (STMMU)
then asks for a tactical MMU operation plan mT : L→ {0, 1} that satisfies all patient demands
at minimum cost.

We formalize this problem by considering the session-specific treatment capacity b̄p ∈ N
for every session-expanded practice p ∈ P . To model session-specific patient demands,
we consider the session-expanded demand origins V := V × Λ with a steerable patient
demand dv ∈ N and an unsteerable patient demand uv ∈ N for each v ∈ V . While
unsteerable patient demands immediately visit the closest considered operating treatment
facility, steerable patient demands can be shifted between sessions. Thus, we model two
independent consideration sets for each v = (v, λ) ∈ V : a consideration set Nd(v) ⊆ L ∪ P
for the steerable patient demands, and a consideration set Nu(v) ⊆ (L ∪ P )× {λ} for the
unsteerable patient demands. As a result, we have to extend the definition of an assignment
of the steerable patient demands (Definition 8.2).
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Definition 9.11. A session-specific assignment of the steerable patient demands is a set of
functions {fv}v∈V with fv : Nd(v)→ N that distribute all steerable patient demands within
their respective session-expanded consideration set, i.e.,

∑
k∈Nd(v) fv(k) = dv for all v ∈ V .

Next, we define feasible tactical MMU operation plans. To ease notation, let Nd(k) :=
{v ∈ V : k ∈Nd(v)} (Nu(k) := {v ∈ V : k ∈Nu(v)}) denote all session-expanded patient
demand origins whose (un-)steerable patient demands can target the treatment facility
k ∈ L ∪ P . Moreover, let kmin

v (mT) ∈ Nu(v) denote the closest considered operating
treatment facility which is targeted by all unsteerable patient demands originating in v ∈ V
for given tactical MMU operation plan mT.

Definition 9.12. A tactical MMU operation plan mT is feasible if there exists a session-specific
assignment of the steerable patient demands {fv}v∈V that respects the session-specific
treatment capacity at each treatment facility k ∈ L ∪ P , that is

∑
v∈V :kmin

v (mT)=k
uv +

∑
v∈Nd(k)

fv(k) ≤
b̄k if k ∈ P ,
b̂mT

k if k ∈ L.

Finally, we can employ the notion of a feasible tactical MMU operation plan to formalize the
definition of the combined strategic tactical planning problem for MMUs.

Definition 9.13 (STMMU). Let Λ denote the sessions of the week and let ` ∈ L be the
potential MMU operation sites with setup costs c` ∈ N. Moreover, let p ∈ P be the existing
practices with treatment capacities b̄(p,λ) ∈ N in session λ ∈ Λ. In every session λ ∈ Λ, each
patient demand origin v ∈ V has steerable and unsteerable demands d(v,λ), u(v,λ) ∈ N that
can be serviced within the consideration sets Nd ((v, λ)) ⊆ (L ∪ P ) × Λ and Nu ((v, λ)) ⊆
(L ∪ P )× {λ}, respectively. Then, the combined strategic tactical planning problem for MMUs
(STMMU) asks for a feasible tactical MMU operation plan of minimum cost, where every
operated MMU session induces the cost ĉ ∈ N and yields a treatment capacity b̂ ∈ N.

As the STMMU only allows for a single MMU operation at every site ` ∈ L, the STMMU
does not generalize the SMMU and thus the problem’s strong NP-hardness does not follow
from Theorem 8.5. However, the reduction referenced in the proof of Theorem 8.5 is still
applicable for the STMMU, as all subsets in this reduction are chosen at most once.

Corollary 9.14. The STMMU is strongly NP-hard.

Comparing the STMMU to the SMMU, we can observe that both problems are closely related.
In the following, we devise an integer linear programming formulation for the STMMU
which is nearly identical to formulation (Det) from Section 8.1 and emphasizes the problems’
common structure. Let variables y` ∈ {0, 1} indicate whether site ` ∈ L is set up, let variables
x` ∈ {0, 1} decide whether site ` ∈ L is serviced by an MMU, and let variables zvk ∈ N
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determine the steerable demand originating in v ∈ V that is assigned to treatment facility
k ∈ Nd(v). Moreover, let variables wvk ∈ {0, 1} indicate the closest operating treatment
facility k ∈Nu(v) that is targeted by all unsteerable demands originating in v ∈ V . To that
end, let πv : {1, . . . , |Nu(v)|} →Nu(v) define an order on the consideration set Nu(v) that
is non-decreasing with respect to the treatment facility’s distance dist : V × (L ∪ P )→ N to
demand origin v ∈ V . As in Section 8.1, we denote all MMU operation sites and practices
within the consideration set of unsteerable demands at v ∈ V by Nu

L(v) := Nu(v) ∩L and
Nu
P (v) := Nu(v) ∩ P , respectively. We can now formulate the STMMU as follows:

(λDet) min
y, x, z, w

∑
`∈L

c` y` +
∑
`∈L

ĉ x` (9.2a)

s.t. x` ≤ y` ∀` = (`, λ) ∈ L (9.2b)∑
k∈Nd(v)

zvk ≥ dv ∀v ∈ V (9.2c)

∑
v∈Nd(`)

zv` +
∑

v∈Nu(`)
uv wv` ≤ b̂ x` ∀` ∈ L (9.2d)

∑
v∈Nd(p)

zvp +
∑

v∈Nu(p)
uv wvp ≤ b̄p ∀p ∈ P (9.2e)

∑
k∈Nu(v)

wvk ≥ 1 ∀v ∈ V (9.2f)

wv` ≤ x` ∀v ∈ V , ∀` ∈Nu
L(v) (9.2g)

wv` ≥ x` −
π−1
v (`)−1∑
i=1

wv,πv(i) ∀v ∈ V , ∀` ∈Nu
L(v) (9.2h)

wvp ≥ 1−
π−1
v (p)−1∑
i=1

wv,πv(i) ∀v ∈ V , ∀p ∈Nu
P (v) (9.2i)

x` ∈ {0, 1}, y` ∈ {0, 1} ∀` = (`, λ) ∈ L (9.2j)

wvk ∈ {0, 1} ∀v ∈ V , ∀k ∈Nu(v) (9.2k)

zvk ∈ N ∀v ∈ V , ∀k ∈Nd(v). (9.2l)

Putting formulations (Det) and (λDet) side-by-side, we can confirm that the disaggreation of
sessions leads to a structurally identical problem. Consequently, all results from Section 8.1
can be directly transferred to STMMU. In particular, we can analogously show the correctness
of the formulation (λDet).

Theorem 9.15. (λDet) is an integer linear formulation for the STMMU.

Moreover, we can apply the Benders decomposition approach from Section 8.1 to (λDet) to
obtain the following analogous result.
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Theorem 9.16. Constraints (9.2c)–(9.2e), (9.2l) in (λDet) can be equivalently substituted by

∑
v∈U

dv +
∑

k∈Nd(U)

∑
v∈Nu(k)

uv wvk ≤
∑

`∈Nd
L(U)

b̂ x` +
∑

p∈Nd
P (U)

b̄p ∀U ⊆ V , (9.3)

where Nd(U) := ⋃
v∈U N

d(v), Nd
L(U) := Nd(U) ∩ L, and Nd

P (U) := Nd(U) ∩ P for
U ⊆ V .

The resulting Benders reformulation of (λDet) will be denoted by (λDet-B). Obviously, we
can also transfer all results from Section 8.2 to the STMMU to obtain a constraint generation
procedure for the robust combined strategic tactical planning problem for MMUs with interval
and budgeted uncertainty sets.

The integration of the required number of MMUs into the STMMU is straightforward. How-
ever, instead of fixing the number of vehicles beforehand as it was done in the TPMMU, we
assume a fixed cost c̄ ∈ N per MMU and add the resulting cost term c̄ · ν(mT) to the total cost
of the tactical MMU operation plan mT. We can implement this extension in formulations
(λDet) and (λDet-B) by adding a non-negative variable ν ≥ 0 which models the number of
MMUs required to operate the tactical MMU operation plan encoded by x via the constraints

ν ≥
∑
`∈L

x(`,λ) ∀λ ∈ Λ. (9.4)

The use of MMUs can then be penalized by adding the additional cost term c̄ · ν to the
objective (9.2a).

Concluding this chapter, recall that we did allow for at most one MMU operation at each
session-expanded location ` ∈ L in all our approaches. This restriction can be dropped,
as all result of this chapter generalize to parallel MMU operations. However, this requires
additional constraints that complicate our models while providing minimal gain since parallel
MMU operations rarely occur in the considered low density population setting. Even worse,
in the TPMMU we can observe that parallel MMU operations provide no value at all as they
do not affect the covering radius. We will therefore not elaborate on this model extension in
this thesis.
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Phase 3: Vehicle Routing for
MMUs

10
Phase 3 in P3MMU considers the vehicle routing for a given tactical MMU operation plan
mT : L→ {0, 1} as it results from the tactical planning phase that we studied in the previous
chapter. Recall, that we consider the mode of operation in which MMUs are stationed at a
fixed home depot to which they return at the end of each day. Consequently, every vehicle’s
daily route is uniquely defined by the MMU operation sites that are serviced in the morning
and afternoon session. Moreover, if the assignment of vehicles to depots is given (which
is particularly the case in the one depot setting), the routing problems for each day of the
week become independent as all vehicles return to their assigned depot at the end of each
day. Hence, we can decompose the vehicle routing problem for the entire week into several
daily vehicle routing problems that we investigate in the following. We thereby differentiate
whether there is only a single or several depots.

10.1 MMU Routing with a Single Depot

In this section, we investigate the vehicle routing problem for MMUs with a single depot
(VRMMU). To that end, let d denote the single depot at which all MMUs are stationed
and let (LAM, LPM) with LAM ⊆ L, LPM ⊆ L be a pair of MMU operation sites which
need to be serviced in the respective morning and afternoon session of the same day. We
assume throughout this chapter that w.l.o.g. |LAM| ≥ |LPM| to avoid the distinction of several
analogous cases. As we consider only a single depot, every pair (`1, `2) ∈ LAM × LPM

uniquely defines the vehicle route d → `1 → `2 → d of length c(`1, `2) := dist(d, `1) +
dist(`1, `2) + dist(`2, d). To indicate that a vehicle route services only one operation site, we
introduce the empty site ∅, i.e., the pair (`, ∅) with ` ∈ LAM encodes the route d→ `→ d of
length c(`, ∅) := dist(d, `) + dist(`, d). All vehicle routes can thus be represented by the set
R := {(`1, `2) : `1 ∈ LAM ∪ {∅}, `2 ∈ LPM ∪ {∅}}. To service the operation sites (LAM, LPM) in
the morning and afternoon session of the same day, we require a set of |LAM| vehicle routes
that exhibit the following properties.

Definition 10.1. Let the pair of MMU operation sites (LAM, LPM) with LAM ⊆ L, LPM ⊆ L

be given. We call a set of vehicle routes R ⊆ R with |R| = |LAM| a route partition if and
only if for all ` ∈ LAM it holds that |{(`, `2) ∈ R}| = 1 and for all ` ∈ LPM it holds that
|{(`1, `) ∈ R}| = 1. The cost of a route partition is defined by the length of its routes, i.e.,
c(R) = ∑

(`1,`2)∈R c(`1, `2).
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LAM = {`1, `3}, LPM = {`2}
(a)
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R = {(`1, `2), (`3, ∅)}, c(R) = 5

(b)

Fig. 10.1.: Example of a route partition: (a) VRMMU instance, (b) route partition.

Route partitions ensure that all sites ` ∈ LAM are serviced by exactly one vehicle route in the
morning and all sites ` ∈ LPM are services by exactly one vehicle route in the afternoon. An
illustration of a route partition can be found in Figure 10.1. By definition, route partitions
R ⊆ R cannot contain routes of the form (∅, `2) ∈ R that do not serve a site in the morning
session as otherwise |R| > |LAM|. Instead, each route partition must consist of |LPM| routes
that service the morning and the afternoon session sites and |LAM| − |LPM| routes that service
only the morning session. We can now formally define the vehicle routing problem for MMUs
with a single depot.

Definition 10.2 (VRMMU). Given a pair of MMU operation sites (LAM, LPM) with LAM ⊆ L
and LPM ⊆ L, a vehicle depot d, and distances dist : L ∪ {d} × L ∪ {d} → N between them,
the vehicle routing problem for MMUs with a single depot (VRMMU) asks for a route partition
of minimum cost.

To solve the VRMMU, we reduce the problem to a weighted matching problem in a complete
bipartite graph Ḡ = (VA ∪ VB, E) that we construct as follows. The graph Ḡ has nodes VA :=
{a` : ` ∈ LAM} and VB = V 1

B∪V 2
B where V 1

B := {b` : ` ∈ LPM} and V 2
B := {∅1, . . . , ∅|LAM|−|LPM|}.

The nodes in V 2
B serve as auxiliary nodes that are needed to encode the |LAM| − |LPM| vehicle

routes in each route partition that service only the morning session. The set of edges is given
by E = VA×VB, i.e., Ḡ is complete bipartite. Each edge in E corresponds to a unique vehicle
route which determines the weight of that edge. Specifically, we set w({a`1 , b`2}) = c(`1, `2)
and w({a`1 , ∅i}) = c(`1, ∅) for all a`1 ∈ VA, b`2 ∈ V 1

B, and ∅i ∈ V 2
B. An example for the

construction of the graph Ḡ can be found in Figure 10.2. By definition, |VA| = |VB| = |LAM|
and thus Ḡ always contains a perfect matching of size |LAM|. We can now show the following.

Lemma 10.3. Every perfect matching M ⊆ E in the graph Ḡ = (VA ∪ VB, E) corresponds to a
route partition R ⊆ R with c(R) = w(M) and vice versa.

Proof. Let M ⊆ E be a perfect matching in the graph Ḡ = (VA ∪ VB, E). We construct a
route partition R = R1 ∪ R2 with R1 := {(`1, ∅) ∈ R : {a`1 , ∅i} ∈ M} and R2 := {(`1, `2) ∈
R : {a`1 , b`2} ∈M}. As M is a perfect matching in Ḡ, it holds that |R| = |M | = |VA| = |LAM|.
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Ḡ = (VA ∪ VB , E)

(b)

Fig. 10.2.: Exemplary construction of Ḡ: (a) VRMMU instance where unspecified distances corre-
spond to the length of a shortest path, (b) corresponding graph Ḡ.

a`1 b`2

a`3 ∅1

3

2

4

2

M = {{a`1 , b`2}, {a`3 , ∅1}}, w(M) = 5

(a)

`1

`2

`3d

R = {(`1, `2), (`3, ∅)}, c(R) = 5

(b)

Fig. 10.3.: Correspondence between matching and route partition for VRMMU instance in Figure 10.2:
(a) Perfect bipartite matching in Ḡ, (b) corresponding route partition of identical cost.

Moreover, for each ` ∈ LAM we have that |{(`, `2) ∈ R}| = |δM (a`)| = 1. Analogously, it holds
that |{(`1, `) ∈ R}| = |δM (b`)| = 1 for all ` ∈ LPM. As a result, R is indeed a route partition
with cost

c(R) = c(R1) + c(R2)
=

∑
(`1,∅)∈R1

c(`1, ∅) +
∑

(`1,`2)∈R2

c(`1, `2)

=
∑

{a`1 ,∅i}∈M
w({a`1 , ∅i}) +

∑
{a`1 ,b`2}∈M

w({a`1 , b`2})

= w(M).

The converse direction can be shown analogously.

The correspondence between perfect matchings in the graph Ḡ and route partitions is
illustrated in Figure 10.3. Lemma 10.3 implies that the VRMMU can be solved by computing
a minimum weight perfect matching in Ḡ. As a result, Algorithm 4 solves the VRMMU and
we get the following result.

Theorem 10.4. The VRMMU can be solved in O(|L|3) time.
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Algorithm 4: The VRMMU

Input: Operation sites LAM ⊆ L, LPM ⊆ L, vehicle depot d, and distances
dist : L ∪ {d} × L ∪ {d} → N

Output: Route partition R ⊆ R of minimal cost

1 construct Ḡ = (VA ∪ VB, E) with VA := {a` : ` ∈ LAM}, VB = V 1
B ∪ V 2

B where
V 1
B := {b` : ` ∈ LPM} and V 2

B := {∅1, . . . , ∅|LAM|−|LPM|}, and E = VA × VB
2 set w({a`1 , b`2}) = c(`1, `2) and w({a`1 , ∅i}) = c(`1, ∅) for all a`1 ∈ VA, b`2 ∈ V 1

B, and
∅i ∈ V 2

B

3 compute a minimum weight perfect matching M ⊆ E in Ḡ
4 set R = {(`1, ∅) ∈ R : {a`1 , ∅i} ∈M} ∪ {(`1, `2) ∈ R : {a`1 , b`2} ∈M}
5 return R

Proof. The correctness of Algorithm 4 follows directly from Lemma 10.3. Concerning the
running time of Algorithm 4, we can construct the graph Ḡ in O(|L|2) time. Furthermore, we
can compute a minimum weight perfect matching in Ḡ using the Hungarian method (Kuhn,
1955) which runs in O((|VA|+ |VB|)3) = O(|L|3) time.

As a result of Theorem 10.4, we can solve the VRMMU in polynomial time. Moreover, as we
are free to use any algorithm for the computation of a minimum weight perfect matching in
Ḡ, the results by Schwartz et al. (2005) yield faster randomized algorithms for the VRMMU.
To conclude this section, we make an observation for the VRMMU with metric distances that
can be used the reduce the size of problem instances.

Lemma 10.5. Given a VRMMU instance defined by the MMU operation sites (LAM, LPM) with
LAM, LPM ⊆ L, depot d, and metric distances dist : L ∪ {d} × L ∪ {d} → N, there always exists
an optimal route partition R ⊆ R with (`, `) ∈ R for all ` ∈ LAM ∩ LPM.

Proof. To prove the lemma’s statement, let us assume the contrary, i.e., that there does not
exist an optimal route partition R ⊆ R with (`, `) ∈ R for all ` ∈ LAM ∩ LPM. Let R∗ ⊆ R be
an optimal route partition that contains a maximum number of routes of the form (`, `) ∈ R
for ` ∈ LAM ∩ LPM. By assumption, there exists ¯̀∈ LAM ∩ LPM such that (¯̀, ¯̀) /∈ R∗. Thus, by
the definition of a route partition, there must exist routes (`1, ¯̀) ∈ R∗ and (¯̀, `2) ∈ R∗ that
cover the morning and afternoon operations at ¯̀. It can now be shown that a reassignment
of these routes as shown in Figure 10.4 does not increase the cost of R∗, as

c(`1, ¯̀) + c(¯̀, `2) = dist(d, `1) + dist(`1, ¯̀) + dist(¯̀, d) + dist(d, ¯̀) + dist(¯̀, `2) + dist(`2, d)
= dist(d, ¯̀) + dist(¯̀, d) + dist(d, `1) + dist(`1, ¯̀) + dist(¯̀, `2) + dist(`2, d)
≥ dist(d, ¯̀) + dist(¯̀, d) + dist(d, `1) + dist(`1, `2) + dist(`2, d)
= dist(d, ¯̀) + dist(¯̀, ¯̀) + dist(¯̀, d) + dist(d, `1) + dist(`1, `2) + dist(`2, d)
= c(¯̀, ¯̀) + c(`1, `2).
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Fig. 10.4.: Reassignment of vehicle routes to maximize the number of routes that service the same
site in the morning and afternoon session.

Therefore, we have that R̄ = (R∗ \ {(`1, ¯̀), (¯̀, `2)}) ∪ {(¯̀, ¯̀), (`1, `2)} is a route partition with
c(R̄) ≤ c(R∗). Thus, R̄ must be an optimal route partition with |{` ∈ L : (`, `) ∈ R̄}| > |{` ∈
L : (`, `) ∈ R∗}| which yields a contradiction and completes our proof.

Applying Lemma 10.5, we can reduce the VRMMU with metric distances on sites (LAM, LPM)
to the VRMMU with sites (LAM \ LPM, LPM \ LAM). If the distances are not metric or if we
restrict the set of routes we may choose from, Lemma 10.5 does not hold in general.

In the next section, we extend the previous problem definition to multiple depots.

10.2 MMU Routing with Multiple Depots

In this section, we consider the vehicle routing problem for MMUs with multiple depots
(mVRMMU) as an extension of the VRMMU which was limited to a single depot. Thus, let
the set D denote the depots where the number of available MMUs at each depot d ∈ D

is given by νd ∈ N. Further, let (LAM, LPM) with LAM ⊆ L, LPM ⊆ L be a pair of MMU
operation sites which need to be serviced in the respective morning and afternoon session
of the same day. Recall, that we assume w.l.o.g. that |LAM| ≥ |LPM|. Moreover, we require
that

∑
d∈D νd ≥ |LAM| to ensure the problem’s feasibility. In contrast to Section 10.1, pairs of

operation sites no longer uniquely define vehicle routes in the multi-depot setting. Instead,
as we require vehicles to return to their starting depot at the end of each day, every tuple
(`1, `2, d) ∈ LAM × LPM ×D uniquely defines the vehicle route d → `1 → `2 → d of length
c(`1, `2, d) := dist(d, `1) + dist(`1, `2) + dist(`2, d). Analogously to Section 10.1, we introduce
the empty site ∅ to represent routes that service only the morning session, i.e., the tuple
(`, ∅, d) with ` ∈ LAM and d ∈ D encodes the route d → ` → d of length c(`, ∅, d) :=
dist(d, `) + dist(`, d). We can now represent all vehicle routes by the set R := {(`1, `2, d) :
`1 ∈ LAM ∪ {∅}, `2 ∈ LPM ∪ {∅}, d ∈ D}. As a result, we need to adapt the definition of a
route partition for multiple depots.

Definition 10.6. Let the pair of MMU operation sites (LAM, LPM) with LAM ⊆ L, LPM ⊆ L

be given. We call a set of the vehicle routes R ⊆ R with |R| = |LAM| a route partition if
and only if for all ` ∈ LAM it holds that |{(`, `2, d) ∈ R}| = 1, for all ` ∈ LPM it holds that
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Fig. 10.5.: Example of a route partition: (a) mVRMMU instance, (b) route partition.

|{(`1, `, d) ∈ R}| = 1, and for all d ∈ D it holds that |{(`1, `2, d) ∈ R}| ≤ νd. The cost of a
route partition is defined by the length of its routes, i.e., c(R) = ∑

(`1,`2,d)∈R c(`1, `2, d).

An example of a route partition for multiple depots can be found in Figure 10.5. As in the one
depot setting, each route partition must consist of |LPM| routes that service the morning and
the afternoon session sites and |LAM| − |LPM| routes that service only the morning session.
We can now formally define the vehicle routing problem for MMUs with multiple depots.

Definition 10.7 (mVRMMU). Given a pair of MMU operation sites (LAM, LPM) with LAM ⊆
L and LPM ⊆ L, vehicle depots d ∈ D with νd ∈ N available vehicles, and distances
dist : L ∪D × L ∪D → N between them, the vehicle routing problem for MMUs with multiple
depots (mVRMMU) asks for a route partition of minimum cost.

Similar to the previous section, we can reduce the mVRMMU to a weighted matching problem
in a complete bipartite multi-graph. However, as the number of vehicles per depot is limited,
we get additional budget constraints that limit the number of edges in a matching that
correspond to the same depot. Specifically, we construct a bipartite graph Ḡ = (VA ∪ VB, E)
with nodes VA := {a` : ` ∈ LAM} and VB = V 1

B ∪ V 2
B where V 1

B := {b` : ` ∈ LPM} and
V 2
B := {∅1, . . . , ∅|LAM|−|LPM|}. The set of edges is given by E = ⋃

d∈D Ed, where Ed = VA × VB
models the set of routes starting and ending in depot d ∈ D. As such, Ḡ is a multi-graph
that contains each edge from the one depot setting |D| times. Note, that the partition of E
can be interpreted as an edge coloring with |D| colors that assigns each edge e ∈ Ed the
color d ∈ D. For each {a`1 , b`2} ∈ Ed, we choose the edge weight w({a`1 , b`2}) = c(`1, `2, d)
and set w({a`1 , ∅i}) = c(`1, ∅, d) for {a`1 , ∅i} ∈ Ed. An illustration for the construction of
the multi-graph Ḡ visualizing the edge partitioning as an edge coloring can be found in
Figure 10.6. We can now show the following correspondence.

Lemma 10.8. Every perfect matching M ⊆ E in the multi-graph Ḡ = (VA ∪ VB, E) with
E = ⋃

d∈D Ed that satisfies |M ∩Ed| ≤ νd for all d ∈ D corresponds to a route partition R ⊆ R
with c(R) = w(M) and vice versa.
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Fig. 10.6.: Exemplary construction of Ḡ: (a) mVRMMU instance where unspecified distances corre-
spond to the length of a shortest path, (b) corresponding multi-graph Ḡ.
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Fig. 10.7.: Matchings and route partitions for mVRMMU instance in Figure 10.6 : (a) Perfect bipartite
matching in Ḡ, (b) corresponding route partition of identical cost.

Proof. Let M ⊆ E be a perfect matching in Ḡ = (VA ∪ VB, E) with E = ⋃
d∈D Ed that

satisfies |M ∩ Ed| ≤ νd for all d ∈ D. We construct a route partition R = R1 ∪ R2 with
R1 := {(`1, ∅, d) ∈ R : {a`1 , ∅i} ∈M ∩ Ed} and R2 := {(`1, `2, d) ∈ R : {a`1 , b`2} ∈M ∩ Ed}.
As M is a perfect matching in G, it follows that |R| = |M | = |LAM|. For each site ` ∈ LAM,
it holds that |{(`, `2, d) ∈ R}| = |δM (a`)| = 1. Moreover, we have that |{(`1, `, d) ∈ R}| =
|δM (b`)| = 1 for all ` ∈ LPM. For all depots d ∈ D we furthermore have by assumption that
|{(`1, `2, d) ∈ R}| = |M ∩ Ed| ≤ νd which proves that R is a route partition. Concerning the
cost of R, we have

c(R) =
∑
d∈D

∑
(`1,`2,d)∈R

c(`1, `2, d)

=
∑
d∈D

∑
e∈M∩Ed

w(e) = w(M).

The converse direction can be shown analogously.

An example illustrating how a perfect matching in Ḡ corresponds to a route partition can be
found in Figure 10.7. As the size of Ḡ is polynomially bounded in the encoding length of an
mVRMMU instance, Lemma 10.8 allows us to reduce the mVRMMU to a budgeted perfect
matching problem in a bipartite edge colored multi-graph that we define as follows.
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Definition 10.9. (BCBPM). Let G = (VA∪VB, E) be a bipartite multi-graph with |VA| = |VB|
and edge coloring E = E1 ∪ · · · ∪ Ek. Moreover, let w : E → N be an edge weight function,
and Bi ∈ N be the budget per color class Ei for i ∈ {1, . . . , k}. The budgeted colored bipartite
perfect matching problem (BCBPM) asks for a perfect matching M ⊆ E of minimum weight
w(M) = ∑

e∈M w(e) such that the number of edges in each color class does not exceed the
given budget, i.e., |Ei ∩M | ≤ Bi for all i ∈ {1, . . . , k}.

The BCBPM generalizes the mVRMMU to general bipartite multi-graphs and independent
edge weights as the edge weights in the mVRMMU are linked through the common trips
from and to the depots. We show that the BCBPM is strongly NP-hard via a reduction from
(3,B2)-SAT that is inspired by Darmann et al. (2011).

Theorem 10.10. The decision version of the BCBPM on planar graphs with uniform edge
weights and budgets is strongly NP-complete.

Proof. First, let us recall that (3,B2)-SAT is the strongly NP-complete symmetric special-
ization of the 3-SAT problem in which every clause consists of exactly 3 literals and every
literal occurs exactly twice (Berman et al., 2003). This means that every variable occurs
exactly four times – twice as positive and twice as negative literal. Let I be a (3,B2)-SAT
instance with variables X = {x1, . . . , xn} and clauses C = {C1, . . . , Cm}. We construct an
instance I ′ of the BCBPM as follows. The graph G is composed of n 4-cycles ei1e

i
2e
i
3e
i
4; one

for every variable xi ∈ X. Every perfect matching in G must contain either Ti = {ei1, ei3} or
Fi = {ei2, ei4} for every variable xi ∈ X and we associate Ti with setting xi = True and Fi with
setting xi = False; see Figure 10.8(a). We use unit edge weights and construct a partition
of E using one color class Ej per clause Cj ∈ C. For every variable xi ∈ X, let Cī1 , Cī2 be
the clauses containing literal x̄i and Ci1 , Ci2 be the clauses containing literal xi. We color
the edges ei1, e

i
3 ∈ Ti in the colors ī1 and ī2, respectively. This way, choosing Ti (which

corresponds to setting xi = True) counts towards the budget of every clause containing the
literal x̄i. Analogously, we color the edges ei2, e

i
4 ∈ Fi in the colors i1 and i2, respectively. By

construction, the number of edges |M ∩ Ej | indicates the number of unsatisfied literals in
clause Cj for all j ∈ {1, . . . ,m} and we thus set the budget Bj = 2 for all j ∈ {1, . . . ,m}. To
clarify the construction of G, we refer to the example in Figure 10.8(b). We show that I is a
Yes-instance if and only if I ′ has a perfect matching of weight 2n.

Let I be a Yes-instance and x∗ a satisfying truth assignment. We construct a perfect matching
M∗ with weight w(M∗) = 2n as follows: For every i ∈ {1, . . . , n} pick Ti if x∗i = True and
Fi otherwise. Obviously, the resulting matching M∗ is perfect and has weight 2n. Hence, it
remains to show that the m budget constraints are satisfied. Assume the contrary, i.e., there
exists a clause Cj ∈ C such that |Ej ∩M∗| = 3. But this would imply that x∗ did not satisfy
clause Cj which yields a contradiction. The other direction can be shown analogously.

As we can check the weight and feasibility of a given budgeted colored perfect matching in
O(|E|) time, the decision version of the BCBPM is obviously in NP and the problem’s strong
NP-completeness follows.
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Fig. 10.8.: (a) Encoding of variables as 4-cycles, and (b) example of the construction of G for the
reduction in Theorem 10.10.

The graph constructed in reduction above is not a complete bipartite multi-graph and
therefore implicitly imposes restrictions on the set of routes we may choose from. Hence, we
only get the following result.

Corollary 10.11. The mVRMMU restricted to a subset of routes R′ ⊆ R is strongly NP-hard,
even if the number of MMUs per depot is uniform and the distances are metric.

We can extend the construction in reduction for Theorem 10.10 to a complete bipartite
multi-graph by adding all missing edges and setting their weights to 2 such that they cannot
be in a perfect matching of weight 2n. Unfortunately, this results in a structure of the edge
weighs that cannot be achieved in the mVRMMU as we can infer from the following example.
Consider the two-colored 4-cycle in Figure 10.9(a). To extend this 4-cycle to a complete
bipartite multi-graph, we have to duplicate each edge as shown in Figure 10.9(b) (additional
edges are dashed). The additional (dashed) edges must have a weight greater than the weight
of the original edges to ensure that they cannot be chosen. In particular, each additional
(dashed) edge must have a higher weight than their parallel counterpart. Keeping in mind
that the edge weights must be defined as the route lengths in an mVRMMU instance of the
form shown in Figure 10.9(c), we get the following requirements:

dist(d2, `1) + dist(`2, d2) < dist(d1, `1) + dist(`2, d1) (10.1)

dist(d1, `1) + dist(`4, d1) < dist(d2, `1) + dist(`4, d2) (10.2)

dist(d2, `3) + dist(`4, d2) < dist(d1, `3) + dist(`4, d1) (10.3)

dist(d1, `3) + dist(`2, d1) < dist(d2, `3) + dist(`2, d2). (10.4)

Adding all inequalities (10.1) – (10.4) yields a contraction, showing that the reduction from
Theorem 10.10 does not extend the general mVRMMU. As a result, we do not obtain an
NP-hardness result for the general mVRMMU. Still, if we allow the distances between sites
to depend on the depot a vehicle left from, we get the following.
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Fig. 10.9.: (a) Example of 4-cycle used in the proof of Theorem 10.10. (b) Completion of 4-cycle by
adding missing edges. (c) Corresponding mVRMMU instance with two depots.

Corollary 10.12. The mVRMMU with depot-dependent distances dist : L∪D×L∪D×D → N
is strongly NP-hard, even if the number of MMUs per depot is uniform.

We study a generalization of the BCBPM in Part III of this thesis and show that there
are pseudo-polynomial dynamic programs for certain special cases. Whether or not the
mVRMMU is NP-hard remains open. To solve the mVRMMU, we resort to a straightforward
mathematical programming formulation. Specifically, let xr ∈ {0, 1} for r ∈ R be a binary
variable indicating whether route r is part of the route partition R ⊆ R. Then we can
formulate the mVRMMU as follows

(mVR) min
x

∑
r∈R

c(r)xr (10.5a)

s.t.
∑
r∈R

xr = |LAM| (10.5b)

∑
(`,`2,d)∈R

xr = 1 ∀` ∈ LAM (10.5c)

∑
(`1,`,d)∈R

xr = 1 ∀` ∈ LPM (10.5d)

∑
(`1,`2,d)∈R

xr ≤ νd ∀d ∈ D (10.5e)

xr ∈ {0, 1} ∀r ∈ R. (10.5f)

In formulation (mVR), constraints (10.5b) – (10.5e) ensure that the selected set of vehicle
routes R = {r ∈ R : xr = 1} is indeed a route partition while the objective (10.5a) clearly
minimizes the cost c(R).

In the subsequent chapter, we evaluate the P3MMU in a case study. To generate the required
input data, we use the agent-based simulation model SiM-Care from Part I.
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Case Study: Optimized
Operation of MMUs

11

In this case study, we showcase the applicability of our three-phased optimization approach
P3MMU for the rural primary care system in the northern Eifel region of Germany that we
previously modeled in SiM-Care; compare Chapter 5. To that end, Section 11.1 elaborates on
the design of our set of test instances. Subsequently, we compute strategic MMU operation
plans by solving the SMMU as well as the rSMMU in Section 11.2. In Section 11.3, we
partition the obtained strategic MMU operation plans into tactical MMU operation plans
by solving the TPMMU. To obtain the actual vehicle routes, we solve the VRMMU for the
computed tactical MMU operation plans and a single depot in Section 11.4. Finally, we
illustrate how the agent-based simulation tool SiM-Care from Part I can be used to evaluate
optimized MMU operation plans in Section 11.5.

11.1 Test Instances

The primary care system that provides the template for our test instances comprises three
predominantly rural municipalities in Western Germany. In the following, we successively
consider the modeling of the practices P , potential MMU operation sites L, depot d, and
patient demand origins V .

11.1.1 Practices

According to data provided by the local department of public health for the year 2017, there
are 20 primary care physicians with health insurance accreditation in the considered primary
care system. All physicians in the system operate in clinical sessions according to a weekly re-
curring schedule. The official consultation hours of each clinical session are publicly available
from the Association of Statutory Health Insurance Physicians Nordrhein (Kassenärtzliche
Vereinigung Nordrhein, 2019). In addition to the official consultation hours, we assume
that the first hour after the end of each clinical session serves as a buffer during which
physicians no longer accept new patients, but continue treating existing ones. To estimate
each physician’s weekly treatment capacity, we divide the total weekly consultation time
(including buffers) by the average primary care physician’s consultation time of 7.6 min as
reported for Germany in Irving et al. (2017). After aggregating physicians that work in joint
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Practices

MMU sites

Depot

Population cells

Fig. 11.1.: Locations of the practices, potential MMU locations, depot, and non-aggregated population
cells clustered according to consideration sets for ∆ = 6 km.6

practices and ceiling the derived treatment capacities, this yields our set of |P | = 16 practices
with treatment capacities b̄p ∈ [206, 602] for all p ∈ P ; see Figure 11.1.

11.1.2 MMU Operation Sites

Concerning the potential MMU operation sites L, we evenly distribute |L| = 28 sites among
the agglomerations of the considered municipalities; compare Figure 11.1. Under the
assumption that MMUs operate Monday to Friday in a morning and afternoon session, we
set b` = 10 for all sites ` ∈ L. The duration of an MMU session is assumed to be 2.5 h which
is slightly below the average session duration (without buffers) of 3.36 h observed for the
physicians in the considered primary care system. Just as for practices, we do anticipate a
buffer of one hour after each MMU sessions. By dividing the duration of an MMU session
(including buffer) by the average German primary care physician’s consultation time of

6Map tiles by Humanitarian OSM Team under CC0. Data by OpenStreetMap, under ODbL.
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7.6 min (Irving et al., 2017), we end up with a treatment capacity of b̂ = 28 per operated
MMU session. With regard to the operation cost of MMUs, we assume that all sites are equally
expensive to set up and that opening a new site is twice as undesirable as operating a weekly
MMU session. Thus, we choose the setup cost c` = 2 for all sites ` ∈ L and set the cost per
operated MMU session to ĉ = 1.

11.1.3 Depot

With regard to the stationing of the MMUs, we assume that all vehicles start and end their
routes in the region’s only hospital; compare Figure 11.1.

11.1.4 Patient Demand Origins

To model the patient demand origins V , we rely on the population data determined by
the latest German census conducted in 2011 (Information und Technik Nordrhein-Westfalen,
2016). The census reports a total population of 35,542 for the considered primary care system,
specified at a resolution of 2,754 population cells measuring one hectare each. To determine
the consideration set of each population cell, we construct a street graph for the considered
region based on map data from OpenStreetMap (OpenStreetMap contributors, 2019) using
OSMnx (Boeing, 2017). The centers of the population cells and the treatment facilities are
mapped to their respective closest node in the street network (as the crow flies), and we
compute the driving distances between all population cells and treatment facilities along the
street network. The consideration set of each population cell is then defined as all treatment
facilities that can be reached within a maximum driving distance ∆ ∈ N in kilometers.
Thereby, we order consideration sets according to the distance between a treatment facility
and the center of the population cell. As a last step, we aggregate all population cells with
identical (including order) consideration sets to obtain the set of demand origins V . We note,
that this aggregation and thus also the resulting set of patient demand origins V depends on
the choice of the parameter ∆ ∈ N. The non-aggregated population cells clustered according
to their consideration sets for ∆ = 6 km are exemplary shown in Figure 11.1.

Next, we consider the steerable and unsteerable patient demands at each demand origin. As
empirical data concerning the primary care demand at each demand origin is unavailable,
we have to rely on simulation to obtain rough estimates. Specifically, we use the baseline
scenario of the considered primary care system in the hybrid agent-based simulation tool
SiM-Care from Part I that we introduced in Section 5.1 to obtain the number of primary
care visits qiv ∈ N per demand origin v ∈ V for every week i ∈ {1, . . . 52} in a one year time
horizon. Unsteerable patient demands, as considered here, are not representable in SiM-Care
and we therefore assume that a fixed percentage ω ∈ [0, 1] of the simulated primary care
visits can be attributed to unsteerable patient demands.
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In the deterministic setting of the SMMU, we then choose the patient demands at each
demand origin v ∈ V proportionately to the rounded average simulated demand q̄v :=
round

(
1
52
∑52
i=1 q

i
v

)
where round : R → Z denotes the rounding function round(x) := bx +

0.5c. Specifically, we set

uv = round(ω q̄v) and dv = q̄v − uv.

In the uncertain setting of the rSMMU, we choose the lower and upper bounds for the patient
demands at each demand origin proportionately to the minimum and maximum simulated
demands. Formally, this translates into setting

σv = round
(
ω min

1≤i≤52
{qiv}

)
and αv = min

1≤i≤52
{qiv} − σv

for the lower bound of the unsteerable and steerable demands σv and αv at v ∈ V , and

τv = round
(
ω max

1≤i≤52
{qiv}

)
and βv = max

1≤i≤52
{qiv} − τv

for the respective upper bounds τv and βv at v ∈ V .

The budget parameters for the budgeted uncertainty sets are determined by the maximum
simulated total demand among all weeks, i.e., we choose

Γ2 = round
(
ω max

1≤i≤52

∑
v∈V

qiv

)
and Γ1 =

(
max

1≤i≤52

∑
v∈V

qiv

)
− Γ2.

For our test instances, we consider the patient demand origins obtained by choosing a
maximum driving distance ∆ ∈ {6, 7, . . . , 11} and by varying the share of the unsteerable
patient demands ω ∈ {0.2, 0.25, . . . , 0.45}. Table 11.1 summarizes the characteristics of the
resulting 36 test instances. We remark, that the total average demand

∑
v∈V dv+uv as well as

the total worst case demand
∑
v∈V βv+τv in each instance depends on the choice of ∆ ∈ N

as a result of the aggregation of population cells. For our set of test instances, the total
average demand is relatively robust towards changes in ∆, while the total worst case demand
increases with ∆ due to the resulting larger number of demand origins |V |.

11.2 Study Phase 1

The computational study of Phase 1 focuses on the SMMU as well as the rSMMU with
budgeted and interval uncertainty sets introduced in Sections 8.1 and 8.2, respectively.
Based on the previously introduced set of realistic test instances, we compare the cost and
quality of the strategic MMU operation plans resulting from the three different approaches
and investigate the so-called price of robustness. To that end, we first describe the study
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Tab. 11.1.: Test instances with their characteristics.

Instance ∆ ω |V | |L| |P | ∑
d+u

∑
β+τ Γ1 Γ2

1 6 0.2 417 28 16 3,888 6,400 3,233 808
2 6 0.25 417 28 16 3,888 6,400 3,031 1,010
3 6 0.3 417 28 16 3,888 6,400 2,829 1,212
4 6 0.35 417 28 16 3,888 6,400 2,627 1,414
5 6 0.4 417 28 16 3,888 6,400 2,425 1,616
6 6 0.45 417 28 16 3,888 6,400 2,223 1,818
7 7 0.2 462 28 16 3,886 6,517 3,233 808
8 7 0.25 462 28 16 3,886 6,517 3,031 1,010
9 7 0.3 462 28 16 3,886 6,517 2,829 1,212
10 7 0.35 462 28 16 3,886 6,517 2,627 1,414
11 7 0.4 462 28 16 3,886 6,517 2,425 1,616
12 7 0.45 462 28 16 3,886 6,517 2,223 1,818
13 8 0.2 506 28 16 3,885 6,668 3,233 808
14 8 0.25 506 28 16 3,885 6,668 3,031 1,010
15 8 0.3 506 28 16 3,885 6,668 2,829 1,212
16 8 0.35 506 28 16 3,885 6,668 2,627 1,414
17 8 0.4 506 28 16 3,885 6,668 2,425 1,616
18 8 0.45 506 28 16 3,885 6,668 2,223 1,818
19 9 0.2 546 28 16 3,888 6,829 3,233 808
20 9 0.25 546 28 16 3,888 6,829 3,031 1,010
21 9 0.3 546 28 16 3,888 6,829 2,829 1,212
22 9 0.35 546 28 16 3,888 6,829 2,627 1,414
23 9 0.4 546 28 16 3,888 6,829 2,425 1,616
24 9 0.45 546 28 16 3,888 6,829 2,223 1,818
25 10 0.2 576 28 16 3,887 6,938 3,233 808
26 10 0.25 576 28 16 3,887 6,938 3,031 1,010
27 10 0.3 576 28 16 3,887 6,938 2,829 1,212
28 10 0.35 576 28 16 3,887 6,938 2,627 1,414
29 10 0.4 576 28 16 3,887 6,938 2,425 1,616
30 10 0.45 576 28 16 3,887 6,938 2,223 1,818
31 11 0.2 583 28 16 3,889 6,960 3,233 808
32 11 0.25 583 28 16 3,889 6,960 3,031 1,010
33 11 0.3 583 28 16 3,889 6,960 2,829 1,212
34 11 0.35 583 28 16 3,889 6,960 2,627 1,414
35 11 0.4 583 28 16 3,889 6,960 2,425 1,616
36 11 0.45 583 28 16 3,889 6,960 2,223 1,818

design in Section 11.2.1 before the actual computational results of the study are presented in
Section 11.2.2.

11.2.1 Implementation and Computational Setup

In our computational study, we implemented all mathematical programs in Java using
OpenJDK 11 (Oracle, 2018) and the CPLEX 12.8 Java API (IBM, 2018). The CPLEX optimizer
is restricted to one thread and all other CPLEX parameters are left at their default settings.
Instances of the SMMU are solved using formulation (Det-B) and instances of the rSMMU
with interval uncertainty sets are solved using formulation (RobI-B). To solve instances of
the rSMMU with budgeted uncertainty sets, we use formulation (RobΓ-B). The separation

11.2 Study Phase 1 129



0.2 0.3 0.4

0

50

100

ω

O
bj

ec
ti

ve

∆ = 6

0.2 0.3 0.4

0

50

100

ω

O
bj

ec
ti

ve

∆ = 8

0.2 0.3 0.4

0

50

100

ω

O
bj

ec
ti

ve

∆ = 10

Det-B RobΓ-B RobI-B

Fig. 11.2.: Objective function values for fixed ∆ ∈ {6, 8, 10} and varying ω ∈ {0.2, . . . , 0.45}.

problems in (Det-B) and (RobI-B) are solved using the LP-formulation from Appendix A.2,
and we integrate the separation procedure directly into the branch-and-bound scheme using
lazy constraint callbacks. The separation problem in (RobΓ-B) is solved using formulation
(Sep) and we call the separation procedure only after the restricted master problem is solved
to optimality. Note, that the separation for (RobΓ-B) cannot be integrated into the branch-
and-bound scheme as lazy constraint callbacks do not allow for the introduction of new
variables. As we cannot ensure that Assumption 1 holds for our test instances, we apply the
explicit enforcement from Appendix A.1. All computational experiments were performed
on a cluster of machines running Ubuntu 18.04 with an Intel(R) Core(TM) i9-9900 CPU @
3.10 GHz and 32 GB DDR4-Non-ECC main memory. We restrict each individual job to one
physical core and 3.5 GB main memory. All instances were solved to optimality (CPLEX
default MIP gap tolerance 10−4) and all running times are reported in CPU seconds.

11.2.2 Computational Results

The optimal objective values and CPU times of (Det-B), (RobΓ-B), and (RobI-B) for the
36 test instances are summarized in Table 11.2. In the following, we discuss these results
with a focus on the impact of the percentage of unsteerable patient demands ω ∈ [0, 1] and
the patients’ maximum driving distance ∆ ∈ N. Furthermore, we investigate the price of
robustness – a term introduced by Bertsimas and Sim (2004) that describes the additional
cost of a robust solution compared to a non-robust solution that has to be payed for the
protection against data uncertainties. To that end, we compare the objective values of the
robust solutions for (RobΓ-B) and (RobI-B) to the objective values of the nominal solutions
for (Det-B).

Examining the impact of the percentage of unsteerable patient demands, we visualize the
objective function values of (Det-B), (RobΓ-B), and (RobI-B) for exemplary fixed ∆ ∈ N and
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Tab. 11.2.: Computational results for Phase 1.

Instance Objective CPU [s]

# ∆ ω Det-B RobΓ-B RobI-B Det-B RobΓ-B RobI-B
1 6 0.2 31 46 64 6 32 5
2 6 0.25 31 48 64 8 44 3
3 6 0.3 32 50 64 7 45 5
4 6 0.35 34 53 64 5 96 5
5 6 0.4 35 55 64 3 139 8
6 6 0.45 36 67 70 5 93 12
7 7 0.2 25 32 68 10 26 3
8 7 0.25 26 37 68 6 38 5
9 7 0.3 27 39 68 5 26 6
10 7 0.35 29 43 68 7 26 7
11 7 0.4 30 48 68 5 57 3
12 7 0.45 31 52 68 3 18 4
13 8 0.2 17 26 75 8 73 12
14 8 0.25 17 30 75 6 42 4
15 8 0.3 20 36 75 9 51 9
16 8 0.35 20 40 75 9 41 7
17 8 0.4 21 45 75 7 44 34
18 8 0.45 22 54 75 4 19 6
19 9 0.2 9 13 81 2 18 1,678
20 9 0.25 10 15 81 4 16 683
21 9 0.3 11 21 81 5 29 1,936
22 9 0.35 11 27 81 4 30 1,847
23 9 0.4 12 32 81 3 49 1,069
24 9 0.45 13 47 81 4 29 24
25 10 0.2 3 4 87 4 14 4
26 10 0.25 3 11 87 2 10 6,944
27 10 0.3 3 12 87 4 10 5,993
28 10 0.35 4 15 87 2 8 8,577
29 10 0.4 4 32 87 2 16 1,126
30 10 0.45 11 41 87 4 10 191
31 11 0.2 0 0 88 2 8 10,026
32 11 0.25 0 7 88 2 9 4
33 11 0.3 0 8 88 2 12 12,815
34 11 0.35 0 15 88 2 20 12,925
35 11 0.4 0 32 88 2 12 4,968
36 11 0.45 7 41 88 4 13 1,403

varying ω ∈ [0, 1] in Figure 11.2. From the way we modeled the unsteerable patient demands,
it is our expectation that a higher percentage of unsteerable patient demands leads to a
higher objective value as a result of the associated loss of control over the patient demands.
Looking at Figure 11.2, we can confirm this expectation regardless of the fixed maximum
driving distance ∆ ∈ N and the considered setting. However, we can observe large differences
in the degree of this effect. In the robust setting with interval uncertainty sets (RobI-B),
the objective values are mostly unaffected by the choice of ω. This can be attributed to the
conservatism of this approach, which leads to an overloading of the existing primary care
system where the sheer level of demand seems to dominate the cost of the MMU operation
plan. In the deterministic setting (Det-B), the influence of the percentage of the unsteerable
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Fig. 11.3.: Objective function values for fixed ω ∈ {0.2, 0.3, 0.4} and varying ∆ ∈ {6, . . . , 11}.

patient demands is more pronounced, yet still relatively weak. One explanation for this
behavior is that the local level of unsteerable patient demands in this setting remains at a
degree which can be mostly compensated by an appropriate reassignment of the steerable
patient demands. The greatest impact of the percentage of unsteerable patient demands
ω ∈ [0, 1] on the cost of the MMU operation plan can be observed in the robust setting with
budgeted uncertainty sets for (RobΓ-B). This showcases, that the budgeted uncertainty sets
succeed at limiting the total patient demand as opposed to interval uncertainty sets, while still
accounting for local worst-cases as opposed to the deterministic setting. Concerning the price
of robustness, we can confirm that the budgeted uncertainty sets manage to substantially
lower the price of robustness compared to the interval uncertainty sets. Furthermore, we
can observe that the price of robustness is lowest for small ω ∈ [0, 1] and increases with the
percentage of the unsteerable patient demands. The entire set of figures for this evaluation
can be found in Appendix A.3.

To analyze the impact of the patients’ maximum driving distance, we visualize the objective
function values of (Det-B), (RobΓ-B), and (RobI-B) for exemplary fixed ω ∈ [0, 1] and
varying ∆ ∈ N in Figure 11.3. Intuitively, one would assume that a higher patients’ maximum
driving distance leads to a lower objective function value as a result of larger consideration
sets which yield more flexibility in the assignment of steerable patient demands. However,
looking at Figure 11.3 this assumption can only be verified for (Det-B) and (RobΓ-B). For the
choice of interval uncertainty sets in (RobI-B), we can actually observe the opposite behavior.
Although this might seem counterintuitive at first glance, we can explain this behavior by
the aggregation of the population cells during the instance generation process as described
in Section 11.1: An increase in ∆ leads to more diverse consideration sets which, in turn,
result in a higher number of demand origins |V | as well as a higher total worst case patient
demand

∑
v∈V βv+τv; compare Table 11.1. Paired with the previous observation that the

objective value of (RobI-B) seems to be dominated by this worst case demand, an increase in
the objective value is actually to be expected. In (RobΓ-B), we limit the total demand in the
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Fig. 11.4.: Empirical distribution function of the minimum total number of violations for 520 realiza-
tions and parameter choices (∆, ω) ∈ {(8, 0.35), (6, 0.35), (6, 0.45)}.

system through the use of budgeted uncertainty sets and thus can observe that the cost of
MMU operation plans are decreasing in the patients’ maximum driving distance. The extent
of the savings associated with an increase in ∆, decreases as we increase the percentage of
the unsteerable patient demands ω for both (Det-B) and (RobΓ-B). This makes perfect sense
as an increase in ω necessarily results in a smaller percentage of steerable patient demands
for which we can actually profit from the enlarged consideration sets. Concerning the price of
robustness, also this collation of our results validates that the use of budgeted uncertainty sets
reduces the price of robustness compared to the use of interval uncertainty sets. Moreover,
the difference in the optimal solution values between (RobΓ-B) and (RobI-B) increases
with the patients’ maximum driving distance ∆ ∈ N, which is partly due to the undesired
increase in the total worst case demand resulting from the aggregation of population cells
during instance generation. The entire set of figures for this evaluation can be found in
Appendix A.3.

To justify why the price of robustness should be paid, we analyze the quality of the computed
MMU operation plans. For this purpose, we reuse the SiM-Care model of the considered
primary care system which we referred to in Section 11.1 to generate another set of patient
demands for every week in a 10 year time horizon. Thereby, we do not aggregate the
population cells specified by the German census such that we end up with 520 weekly
demands for each of the 2,754 cells. To determine the unsteerable patient demands for each
realization, we flip a biased coin where we set the success probability to the percentage of
unsteerable patient demands ω ∈ [0, 1]. We analyze for each MMU operation plan and each
realization the minimum total number of violations of the treatment capacities. To clarify
this metric, consider the following example: If 220 patients are assigned to a practice p ∈ P
with weekly treatment capacity b̄p = 200, this yields 20 violations.

Figure 11.4 shows the minimum total number of violations obtained by (Det-B), (RobΓ-B),
and (RobI-B) for each of the 520 realizations and exemplary parameter choices. The first
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Fig. 11.5.: Empirical distribution function of the minimum total number of violations for 520 realiza-
tions with 5 infectious outbreaks and (∆, ω) ∈ {(8, 0.35), (6, 0.35), (6, 0.45)}.

thing we want to emphasize, is that the solutions obtained using the robust models (RobΓ-B)
and (RobI-B) are actually feasible for all 520 realizations as there are no violations. This
feasibility of the robust solutions is not unique to the depicted parameter choices, but actually
holds for all robust solutions we computed. Considering the MMU operation plans obtained
using (Det-B) and deterministic average demands, we can observe violations for quite a
few realizations. The number and extent of these violations depends on the percentage of
unsteerable patient demands ω ∈ [0, 1] and the patients’ maximum driving distance ∆ ∈ N.
Specifically, the quality of the deterministic solutions deteriorates as we decrease ∆ and
increase ω which seems reasonable as these are exactly the settings for which we observed the
highest price of robustness. Nevertheless, we must note that the highest number of violations
observed over all parameter settings and realizations is 45. Setting 45 violations in relation to
the total mean demand of roughly 3,900, only 1 % of the demands cannot be accounted for
by the deterministic solutions. The entire set of figures for this evaluation can be found in
Appendix A.4.

Although each violation can potentially lead to an avoidable emergency room visit, this is
an admittedly good performance of the deterministic solutions. A possible reason for this
is the fact that SiM-Care does not feature an infectious model; compare Part I. Thus, the
generated realizations do not show the local surges in demand resulting from the outbreak of
an infectious disease. To include these local demand spikes into our evaluation, we mimic
infectious outbreaks in a very simplistic manner: We select successively at random 5 of
the 2,754 population cells as outbreak centers and double the demands of each population
cell within a 1 km radius of the outbreak center (as the crow flies). Figure 11.5 shows the
minimum total number of violations obtained by (Det-B), (RobΓ-B), and (RobI-B) for each
of the 520 realizations under the presence of infections outbreaks and exemplary parameter
choices. Looking at the results, we can observe that the local surges in demand lead to more
violations in all solutions. Evidently, the deterministic solutions perform worst, while the two
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robust approaches produce solutions of comparable quality. The entire set of figures for this
evaluation can be found in Appendix A.5.

While running times are clearly not a focus of this study, we note that all instances of (Det-B)
were solved within 10 CPU seconds which is sufficiently quick for a planning problem at a
strategic level and leaves room to consider even larger primary care systems. The instances
of (RobΓ-B), which are probably the most interesting ones from an application point of
view, are noticeably more challenging than the instances of (Det-B). However, even the
hardest instance solved within 139 CPU seconds which is more than reasonable for this
kind of strategic application. Formulation (RobI-B) is undoubtedly the most challenging
among all considered formulations. Especially for higher values of ∆ ∈ N, CPLEX struggles
to close the MIP gap which results in a tailing-off phenomenon and running times of up to
12,925 CPU seconds. Although this is considerably longer than the running times of the other
formulations, even running times of this magnitude can still be deemed acceptable for a
strategic planning problem. Moreover, we note that the running times for the rSMMU with
interval uncertainty sets and high values of ∆ ∈ N can be substantially improved by using a
variation of formulation (Det) instead of (RobI-B) that we decided to omit as we consider
this setting for reference rather than as a serious alternative for real-world application.

11.3 Study Phase 2

The computational study of Phase 2 investigates the solvability of the TPMMU for the strategic
MMU operation plans computed in the previous section. Section 11.3.1 describes the design
of this study and provides details on our implementation. The computational results are
presented in Section 11.3.2.

11.3.1 Implementation and Computational Setup

We implemented all mathematical programs in Java using OpenJDK 11 (Oracle, 2018) and
the CPLEX 12.8 Java API (IBM, 2018). The CPLEX optimizer is restricted to one thread and
all other CPLEX parameters are left at their default settings. All Instances of the TPMMU are
solved using the compact formulation (TP). As all practices in the considered primary care
system are closed on Wednesday afternoons, we minimize the sum of the covering radii as
suggested in Section 9.1. For each instance, we consider the set of the 2,754 unaggregated
population cells and compute distances as the crow flies. All computational experiments were
performed on a cluster of machines running Ubuntu 18.04 with an Intel(R) Core(TM) i9-9900
CPU @ 3.10 GHz and 32 GB DDR4-Non-ECC main memory. We restrict each individual job to
one physical core and 3.5 GB main memory. All instances were solved to optimality (CPLEX
default MIP gap tolerance 10−4) and all running times are reported in CPU seconds.
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Tab. 11.3.: Computational results for Phase 2.

Inst. Det-B RobΓ-B RobI-B
# |LmS | |mS| Obj. CPU |LmS | |mS| Obj. CPU |LmS | |mS| Obj. CPU

1 6 19 66.24 122 6 34 62.02 496 6 52 49.99 2
2 6 19 66.24 121 7 34 60.40 348 6 52 49.63 1
3 6 20 66.04 131 6 38 62.54 297 6 52 51.18 1
4 6 22 64.35 139 7 39 59.27 1,236 6 52 52.53 1
5 6 23 64.15 175 7 41 55.93 13 6 52 52.73 1
6 6 24 64.31 435 9 49 55.95 770 9 52 51.33 222
7 5 15 66.32 34 5 22 69.47 38 6 56 50.56 1
8 5 16 66.24 70 5 27 63.77 82 6 56 54.17 1
9 5 17 66.04 37 5 29 64.05 98 6 56 53.15 1
10 5 19 65.84 77 5 33 60.75 89 6 56 51.56 2
11 5 20 70.29 103 6 36 59.54 119 6 56 49.03 1
12 5 21 64.26 132 6 40 61.78 27 6 56 50.86 2
13 4 9 79.02 13 4 18 70.46 11 7 60 62.10 2
14 4 9 76.12 13 4 22 64.85 3 7 61 62.36 2
15 4 12 71.58 13 5 26 64.86 3 7 61 62.10 1
16 4 12 71.58 15 5 30 64.63 64 7 61 63.03 1
17 4 13 71.38 14 5 35 61.03 14 7 61 62.10 3
18 4 14 71.38 14 6 42 64.64 5 7 61 63.60 2
19 2 5 80.58 1 2 9 79.82 1 7 67 71.23 1
20 2 6 80.22 1 2 11 77.41 3 7 67 64.89 2
21 2 7 80.02 1 3 15 71.74 55 7 67 65.97 2
22 2 7 80.02 1 4 19 68.15 21 7 67 64.52 1
23 2 8 79.82 1 4 24 66.03 26 7 67 64.89 1
24 2 9 79.82 1 5 37 65.59 17 7 67 63.47 2
25 1 1 86.54 0 1 2 82.56 0 8 71 64.89 1
26 1 1 86.54 0 2 7 78.92 5 8 71 63.60 2
27 1 1 86.54 0 2 8 78.72 4 8 71 64.11 2
28 1 2 82.56 1 2 11 77.41 1 8 71 65.09 2
29 1 2 82.56 1 4 24 66.88 3 8 71 63.43 2
30 2 7 78.92 2 5 31 64.64 14 8 71 65.22 2
31 0 0 − − 0 0 − − 8 72 65.89 1
32 0 0 − − 1 5 82.01 1 8 72 63.60 2
33 0 0 − − 1 6 81.81 1 8 72 66.29 1
34 0 0 − − 2 11 77.41 1 8 72 66.36 1
35 0 0 − − 4 24 65.11 13 8 72 59.08 1
36 1 5 82.01 0 5 31 65.35 11 8 72 65.20 2

11.3.2 Computational Results

The optimal objective values and CPU times of (TP) for the 108 strategic MMU operation
plans based on the 36 test instances are summarized in Table 11.3. Each row corresponds to
the three strategic MMU operation plans that were obtained for the same test instance using
formulations (Det-B), (RobΓ-B), and (RobI-B). For each strategic MMU operation plan mS,
we specify the number of set up operation sites |LmS | where LmS := {` ∈ L : mS

` > 0} as well
as the total number of scheduled sessions |mS| := ∑

`∈Lm
S
` . Note, that some strategic MMU

operation plans from Phase 1 do not schedule any MMU sessions. For these plans, there is no
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Phase 2 to be solved which we indicate by not providing an objective function value and CPU
time in Table 11.3.

Comparing the objective function values for the 108 strategic MMU operation plans, we can
observe that overall a higher number of set up sites and MMU sessions tends to lead to
smaller covering radii which seems reasonable. However there are some exceptions from this
relationship which does not come as a surprise, since the covering radius is not explicitly
considered in optimization models from Phase 1. To overcome this drawback, we formalized
the combined strategic and tactical planning problem for MMUs in Section 9.2 which is
however not considered in this study.

Concerning running times, we notice that the strategic operations plans obtained by (RobΓ-B)
seem to be more difficult to partition than the ones obtained through formulations (Det-B)
and (RobI-B). Nevertheless, all instances of the TPMMU were solved within 1,236 CPU
seconds which we deem acceptable for a planning problem at the tactical level.

11.4 Study Phase 3

To investigate Phase 3 within P3MMU, we compute minimum cost route partitions for the
tactical MMU operations plans that were obtained from Phase 2. We detail our study design
and implementation specifics in Section 11.4.1 before we present the computational results
in Section 11.4.2.

11.4.1 Implementation and Computational Setup

For this study, we implemented all mathematical programs in Java using OpenJDK 11 (Oracle,
2018) and the CPLEX 12.8 Java API (IBM, 2018). The CPLEX optimizer is restricted to one
thread and all other CPLEX parameters are left at their default settings. The VRMMU for each
day in every tactical MMU operation plan are solved sequentially using Algorithm 4. The
lengths of the vehicle routes are computed as the crow flies and we use a linear programming
formulation to solve the minimum weight perfect matching problem in the constructed graphs.
All computational experiments were performed on a cluster of machines running Ubuntu
18.04 with an Intel(R) Core(TM) i9-9900 CPU @ 3.10 GHz and 32 GB DDR4-Non-ECC main
memory. We restrict each individual job to one physical core and 3.5 GB main memory. All
instances were solved to optimality (CPLEX default MIP gap tolerance 10−4) and all running
times are reported in CPU seconds.
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Tab. 11.4.: Computational results for Phase 3.

Inst. Det-B RobΓ-B RobI-B
# ν(mT) |mT| Obj. CPU ν(mT) |mT| Obj. CPU ν(mT) |mT| Obj. CPU

1 2 19 188.37 0 4 34 310.36 0 6 52 401.07 0
2 2 19 188.37 0 4 34 315.20 0 6 52 399.50 0
3 2 20 183.43 0 4 38 314.50 0 6 52 379.79 0
4 3 22 191.72 0 4 39 355.16 0 6 52 392.30 0
5 3 23 218.62 0 5 41 356.09 0 6 52 390.02 0
6 3 24 225.77 0 5 49 405.60 0 6 52 379.59 0
7 2 15 154.13 0 3 22 162.41 0 6 56 391.77 0
8 2 16 166.62 0 3 27 221.69 0 6 56 367.40 0
9 2 17 182.46 0 3 29 232.97 0 6 56 367.18 0
10 2 19 169.69 0 4 33 265.81 0 6 56 381.12 0
11 2 20 179.39 0 4 36 302.32 0 6 56 396.55 0
12 3 21 187.16 0 4 40 326.12 0 6 56 392.43 0
13 1 9 73.00 0 2 18 126.94 0 6 60 318.70 0
14 1 9 60.56 0 3 22 146.06 0 7 61 431.74 0
15 2 12 97.76 0 3 26 181.28 0 7 61 346.78 0
16 2 12 90.08 0 3 30 242.68 0 7 61 333.65 0
17 2 13 98.30 0 4 35 232.81 0 7 61 377.57 0
18 2 14 102.86 0 5 42 265.43 0 7 61 358.55 0
19 1 5 30.66 0 1 9 42.05 0 7 67 343.60 0
20 1 6 42.05 0 2 11 66.66 0 7 67 363.79 0
21 1 7 42.05 0 2 15 95.02 0 7 67 337.02 0
22 1 7 42.05 0 2 19 153.32 0 7 67 404.03 0
23 1 8 42.05 0 3 24 166.04 0 7 67 380.01 0
24 1 9 42.05 0 4 37 244.71 0 7 67 326.20 0
25 1 1 12.51 0 1 2 25.01 0 8 71 423.03 0
26 1 1 12.51 0 1 7 47.81 0 8 71 405.21 0
27 1 1 12.51 0 1 8 47.81 0 8 71 393.37 0
28 1 2 25.01 0 2 11 66.66 0 8 71 479.16 0
29 1 2 25.01 0 3 24 160.49 0 8 71 415.65 0
30 1 7 47.81 0 4 31 204.47 0 8 71 462.46 0
31 0 0 − − 0 0 − − 8 72 384.77 0
32 0 0 − − 1 5 22.80 0 8 72 404.79 0
33 0 0 − − 1 6 30.40 0 8 72 379.49 0
34 0 0 − − 2 11 66.66 0 8 72 459.94 0
35 0 0 − − 3 24 201.80 0 8 72 534.91 0
36 1 5 22.80 0 4 31 218.44 0 8 72 456.97 0

11.4.2 Computational Results

Table 11.4 shows the total cost of the route partitions for the entire week and total CPU
times of Algorithm 4 for each of the 108 tactical MMU operation plans based on the 36
test instances. Each row corresponds to the three tactical MMU operation plans that are
again based on the three strategic MMU operation plans for the same test instance using
formulations (Det-B), (RobΓ-B), and (RobI-B). For each tactical MMU operation plan mT,
we specify the number of required MMUs ν(mT) ∈ N as well as the total number of scheduled
sessions |mT| := ∑

`∈Lm
T
` per week. Note, that some tactical MMU operation plans from
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Phase 2 do not schedule any MMU sessions which is indicated by not providing an objective
function value and CPU time in Table 11.4.

Analyzing the objective values for the 108 tactical MMU operation plans, we can confirm
that a higher number of scheduled sessions tends to lead to longer vehicle routes which is to
be expected. However, just as in the previous section, there are some exceptions from this
relationship which is not surprising as the vehicle routing is not considered in Phase 2. To ease
the understanding of a solution to Phase 3, we illustrate the resulting vehicle routes for the
tactical MMU operation plan for Instance 14 with budgeted uncertainty sets in Figure 11.6.

With regard to running times, we observe that we were able to solve all instances of the
VRMMU in less than one CPU second which is consistent with fact that the VRMMU is
polynomial-time solvable. Recall, that we were not able to deduce a polynomial-time
algorithm for the vehicle routing problem with multiple depots. Instead, we presented
the integer programming formulation (mVR) which is potentially more computationally
challenging to solve in practice. This is however not investigated in the scope of this study.

11.5 Evaluation using SiM-Care

As a final mean of evaluation, we illustrate how MMU operations obtained through P3MMU
can be fed into the hybrid agent-based simulation tool SiM-Care that we introduced in
Part I. For this purpose, we consider the robust MMU operations for Instance 14 with
budgeted uncertainty sets depicted in Figure 11.6. To integrate MMUs into SiM-Care, our
implementation of Algorithm 4 generates a set of MMU agents that represents the serviced
MMU operation sites. For each operated morning and afternoon session, we define the
opening hours of a site to be from 8:30 a.m. to 11:00 a.m. and 1:30 p.m. to 4:00 p.m.,
respectively. The resulting 4 MMU agents for Instance 14 are then added to the baseline
scenario of the considered primary care system that provided the patient demands for this
case study; compare Section 11.1. We refer to the resulting scenario as the baseline scenario
with MMUs and note that this scenario has 24 primary care physicians – 20 regular physicians
(working in the 16 aggregated practices) and 4 MMU sites.

For the evaluation of the baseline scenario with MMUs, we choose the default setup as
described in Chapter 5, i.e., 20 independent runs modeling one year preceded by a warm-up
of 60 years. Table 11.5 reports the resulting mean performance indicators as well as the
associated exact 95 %-confidence intervals for each performance indicator tracked by SiM-
Care; compare Section 4.5. Comparing these values to the ones from the baseline scenario
without MMUs shown in Table 5.6, we can quantify the impact of the MMU operations
in terms of the performance indicators. In particular, we can observe that the additional
treatment capacities introduced by the operation of MMUs improve almost all patient and
physician indicators. The physicians’ expected workload measured through the average
number of treatments decreases by 16 %. Due to the increased availability of appointments,
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Fig. 11.6.: Route partitions for tactical MMU operation plan based on Instance 14 with budgeted
uncertainty sets: (a) Monday, (b) Tuesday, (c) Wednesday, (d) Thursday, and (e) Friday.7
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Tab. 11.5.: Mean performance indicators and 95 %-confidence intervals obtained by repeating each
simulation experiment 20 times for the baseline scenario with MMUs.

Baseline Scenario with MMUs

Mean 95 %-CI

average number of treatments 8,551.38 [8,544.06, 8,558.7]
average number of walk-ins 3,538.53 [3,531.26, 3,545.8]
average number of acute appointments 3,204.03 [3,203.36, 3,204.71]
average number of regular appointments 1,808.81 [1,807.77, 1,809.85]
average utilization [%] 67.46 [67.38, 67.53]
average daily overtime [min] 0.3 [0.27, 0.33]
average number of rejected walk-ins 3.42 [3.12, 3.72]
average access time [d] 2.2 [2.19, 2.2]
average access time regular [d] 1.59 [1.57, 1.61]
average access distance [km] 4.51 [4.5, 4.51]
average waiting time appt. [min] 1.97 [1.95, 1.98]
average waiting time walk-in [min] 34.49 [34.38, 34.6]
on-time appointments [%] 62.79 [62.7, 62.88]
number of acute illnesses 136,363.2 [136,205.55, 136,520.86]
number of chronic patients 10,662 –
total PCP capacity [h] 36,621 –

the average number of patients forced to visit physicians as walk-ins decreases by 25 %. The
average daily overtime for physicians (that neglects all the physicians’ administrative and
organizational tasks) decreases by half a minute. On average, the patients’ waiting time for an
appointment decreases by 11 %, however, the access time for regular appointments actually
increases by almost 7 %. This increase can be explained by the fact that chronic patients who
choose an MMU site as their family physician (compare Section 4.2.6) necessarily have to
wait longer for their regular appointments as three out of the four MMU sites are only serviced
in four sessions of the week. To prevent this behavior, one could adapt the integration of
MMUs into SiM-Care such that MMU sites cannot become family physicians. The patients’
average access distance decreases by 9 % to 4.5 km which confirms that MMUs can help to
overcome access barriers. Finally, the average waiting time for patients with appointment
decreases by 6 % while the average waiting time for walk-ins decreases by 13 %.

7Map tiles by Humanitarian OSM Team under CC0. Data by OpenStreetMap, under ODbL.
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Discussion and Conclusion 12
The aim of P3MMU is to provide an optimization framework for the operational planning of
MMUs. We thereby consider a weekly recurring mode of operation with two clinical sessions
per day in which MMUs return to their home depot each night. This setting is very rarely
considered in the literature and most existing contributions focus on extensive regions in
which vehicles return to their depot only once or twice a month.

In Phase 1, we studied the strategic planning problem for MMUs as a capacitated set covering
problem. As a new modeling concept, we considered existing infrastructure in the form
of practices and both steerable and unsteerable patient demands. While steerable patient
demands can be assigned to any acceptable treatment facility, unsteerable demands will
always visit the closest available treatment facility. The interplay of the two types of demands
brings a new aspect to location planning that has, to the best of our knowledge, not yet been
considered in the literature. We formulated the problem as a compact integer linear program
and showed how this formulation can be solved by Benders decomposition and constraint
generation. Recognizing the importance of uncertainties in health care planning, we extended
the problem to uncertain patient demands. Using methods from robust optimization, we
devised exact solution methods based on constraint generation for interval and budgeted
uncertainty sets.

In Phase 2, we focused on the tactical partitioning problem for MMUs as a partitioning variant
of the k-center problem. We presented strong inapproximability results for the problem with
both metric and general distance functions before a mathematical programming formulation
was introduced. As Phase 1 considers patient demands and treatment capacities in a session-
aggregated form that artificially smooths both out over the week, we subsequently introduced
a session-specific combined strategic tactical planning problem for MMUs and showed that
all our previous results from Phase 1 transfer to it.

In Phase 3, we investigated the vehicle routing problem for MMUs as a special case of the
weighted matching problem. In particular, we proved that the problem for a single depot
can be reduced to a minimum weight perfect matching problem in a bipartite graph. In the
multi-depot setting, we proved that the problem is a special case of the BCBPM which we
subsequently showed to be NP-hard.

Our computational study showed that P3MMU enables the computation of optimized MMU
operation plans for real-world sized instances in an acceptable time frame. The cost of the
MMU operation and thus the cost of the provision of primary care significantly depends on
three factors: the percentage of unsteerable patient demands, the modeled consideration
sets, and the handling of data uncertainties. Thus, a key finding of this thesis is the insight
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that these three factors can have a major impact on the resulting MMU operation plans
and should thus be taken into account for strategic MMU operation planning. From our
computational experiments, we infer that (RobΓ-B) may be the most suitable formulation for
this purpose. The formulation (RobΓ-B) allows for the consideration of demand uncertainties
while limiting the conservatism of solutions through the use of budgeted uncertainty sets.
In addition, it is possible to trade off operational cost against robustness towards demand
uncertainties by adjusting the budget parameters Γ1 and Γ2.

While this represents a major step forward for MMU operation planning, we must not overlook
the limitations of our models and computational study that stem from our assumptions and
open up directions for further research. Concerning the limitations of our computational
study, let us first note that the assessment of a physician’s treatment capacity is a very delicate
and personal matter that is beyond our field of expertise. So while our estimates may not
be completely unrealistic, we do not make any claims of correctness and would definitely
recommend surveying each physician individually. Similar limitations apply to the patient
demand origins and corresponding patient demands, where the lack of empirical data forced
us to use the simulation model SiM-Care from Part I which can provide rough estimates at
best. Moreover, we have seen that the aggregation of patients to demand origins is highly
non-trivial and may result in undesired behaviors such as an increase in the total worst-
case patient demand. Also note, that our computational experiments neither included the
combined strategic tactical planning problem for MMUs nor the vehicle routing with multiple
depots. A further more extensive study should therefore investigate whether the respective
solution approaches presented in this thesis are computationally tractable for real-world sized
instances and determine whether the combined consideration of Phases 1 and 2 improves the
solution quality.

With regard to model limitations, we want to note that our assumption that each demand
origin’s unsteerable demands target the same treatment facility is quite strict and definitely
not true in reality. To overcome this limitation, future work should investigate whether
this assumption can be weakened, e.g., by assuming that the unsteerable patient demands
target the three closest facilities in some fixed ratio. Furthermore, we assume that the
patient demands at the demand origins are independent which is questionable in practice.
While it could be difficult to remove this assumption entirely from our models, one step
into this direction could start by considering steerable and unsteerable patient demands as
being dependent. In line with this goal, we could model one joint uncertainty set for the
steerable and unsteerable patient demands instead of two separate ones to incorporate their
dependencies into our models.

A conceptional weakness of our approach is clearly the loss of optimization potential that
results from the separate consideration of the three planning phases. While we presented
methods that allow for a combined consideration of the strategic and tactical planning phases,
it would be interesting to investigate if one could also include the actual routing of the
vehicles into these solution approaches. To that end, one could start by investigating the
joint consideration of the tactical planning phase and the vehicle routing as the former has a
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high impact on the latter. One way to achieve such an integration could start from a Benders
decomposition approach that determines the actual vehicle routes within the subproblem.

Future work on the metric tactical partitioning problem for MMUs (TPMMU) should investi-
gate the existence of a 2-approximation algorithm. Should such a 2-approximation exist, this
would imply that our inapproximability result is tight. To come-up with a 2-approximation,
one could try to transfer the existing 2-approximation algorithm for the metric k-center
problem to the TPMMU. Furthermore, there are various heuristics for the k-center problem,
e.g., Mihelič and Robič (2005), which can be potentially adapted to the TPMMU to speed up
the solution process of Phase 2 for challenging instances.

Concerning the vehicle routing for MMUs studied in Phase 3, the biggest open challenge is
to decide whether the general mVRMMU is NP-hard. The reduction for the BCBPM that
we used to prove the strong NP-hardness of several special cases of the mVRMMU could
be shown to be unrepresentable for the general mVRMMU. Thus, efforts at proving the
problem’s NP-hardness have to be based on a different construction. Working towards a
polynomial-time algorithm, it might be a good starting point to investigate the polyhedron
of the problem formulation (mVR). Alternatively, one could try to adapt algorithms for the
minimum cost (multi-commodity) flow problem.

Summing up Part II of this thesis, we are confident that our models produce MMU operation
plans that can serve as a sound basis for an actual real-world implementation. That being
said, we strongly recommend an expert validation of all plans prior to their implementation
due to the discussed limitations. This validation process can be aided by the use of the
simulation model SiM-Care as illustrated in our case study.
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Introductory Remarks and
Contribution

13
„Over the past 50 years, many variations on the classic

assignment problem have been proposed, a fact that
becomes immediately obvious if the key words
“assignment problem” are entered into the search
engine for the research database ABI/INFORM.

— David W. Pentico, 2007

13.1 Motivation and Research Question

Assignment problems are among the most famous combinatorial optimization problems. In
its most basic form, the assignment problem consists of a set of agents A, a set of jobs B, and
a set of agent-job pairs E ⊆ A×B that define which agent can perform which job (Schrijver,
2003); compare Figure 13.1. The objective is to find a one-to-one assignment of jobs to
agents. Graph-theoretically the assignment problem corresponds to the maximum (weighted)
matching problem in a bipartite graph which is known to be polynomial-time solvable by the
Hungarian method (Kuhn, 1955). However, for many applications this original version of
the assignment problem fails to capture all relevant requirements. Therefore, various more
complex variations of the assignment problem are studied, e.g., the (capacitated) b-matching
problem (Schrijver, 2003), the restricted matching problem (Tanimoto et al., 1978), or the
stable matching problem (Gale and Shapley, 1962).

Agents A

Jobs B

Fig. 13.1.: Example of the assignment problem for the matching of physicians to tasks.8

8Icon designs by macrovector / Freepik under Freepik terms of use.
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In this thesis, we investigate two such variations which arose within our research scope. The
first is the multi-budgeted matching problem (mBM) which is motivated by the vehicle routing
of mobile medical units (MMUs) with multiple depots that we studied in the previous part
of this thesis. The second variation is called the minimum color-degree perfect b-matching
problem (Col-BM) which addresses the assignment of staff to MMU sessions.

While the motivation to consider the mBM and the Col-BM stems from the problems’ respec-
tive applications in the provision of primary care, we will in the following study both of them
from their theoretical side and pose the following question:

What is each matching problem’s complexity and how can we solve it (efficiently) on
restricted graph classes?

Before we start answering this question, we introduce both matching problems in more
detail and stress their application in the context of this thesis. Then, we summarize our
contributions and provide an overview of the related work.

Multi-Budgeted Matchings

The mBM is a budgeted version of the weighted matching problem with k independent edge
cost functions. For every cost function, a respective budget limits the total cost of edges we
may choose. The objective is to determine a matching of maximum weight such that the
cost with respect to each cost function does not exceed the corresponding budget. The mBM
generalizes the budgeted colored perfect matching problem (BCBPM) that we encountered in
Part II of this thesis to general graphs and multiple cost functions; compare Definition 10.9.
Structural results for the mBM can thus be useful to solve the vehicle routing problem for
MMUs with multiple depots; see Theorem 10.8. As part of this thesis, we strengthen the
strong NP-hardness result for the BCBPM from Theorem 10.10 for the mBM. Moreover, we
study the mBM on restricted graph classes and apply dynamic programming techniques to
derive new pseudo-polynomial algorithms.

Minimum Color-Degree Perfect b -Matchings

The Col-BM is an extension of the perfect b-matching problem to edge-colored graphs. The
objective of the Col-BM is to minimize the maximum number of differently colored edges
in a perfect b-matching that are incident to the same node. Given that there are multiple
types of MMUs which differ in their internal setup and equipment, the Col-BM can be used to
model the staff assignment for MMUs. By representing the vehicle type of each session by the
color of edges and matching physicians to MMU sessions, solving the Col-BM corresponds to
minimizing the number of different environments physicians have to work in which ultimately
improves their efficiency. In this thesis, we show that the Col-BM is strongly NP-hard and
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provide an inapproximability result. Then, we derive polynomial-time algorithms for the
Col-BM with a fixed number of colors on various graph classes.

13.2 Contribution

The main contributions of Part III of this thesis can be grouped into those concerning the
mBM and those addressing the Col-BM. We summarize them in the following.

We show the strong NP-hardness of the mBM on paths with uniform edge weights and
budgets by a reduction from 3-SAT. On the algorithmic side, we propose a pseudo-polynomial
dynamic program for the mBM with a fixed number of budget constraints on series-parallel
graphs which can be extended to trees using a simple graph transformation. Realizing that
both these graph classes have a bounded treewidth in common, we come up with a dynamic
program based on tree decompositions that solves the mBM with a fixed number of budget
constraints on graphs with bounded treewidth in pseudo-polynomial time.

For the Col-BM, we show that the problem is strongly NP-hard on two-colored bipartite
graphs by a reduction from (3,B2)-SAT and conclude that there exists no α-approximation
algorithm for 1 < α < 2 unless P = NP. Algorithmically, we identify a class of two-
colored complete bipartite graphs on which we can solve the Col-BM in polynomial time.
Furthermore, we use dynamic programming to devise polynomial-time algorithms solving
the Col-BM with a fixed number of colors on series-parallel graphs and simple graphs with
bounded treewidth.

With these contributions, we extend existing studies of budgeted matching problems and
matching problems on edge-colored graphs that we discuss in the following.

13.3 Related Work

Budgeted versions of the weighted matching problem have been previously studied. Berger
et al. (2011) consider the budgeted matching problem with a single budget constraint (BM)
which is the specialization of the mBM with k = 1. A straightforward reduction from the
knapsack problem shows the NP-hardness of the BM. The authors introduce a polynomial-
time approximation scheme (PTAS) for the BM and show that for polynomial weights and
costs, the BM is reducible to the exact perfect matching problem. As a direct consequence of
this relationship, the results of Camerini et al. (1992) and Barahona and Pulleyblank (1987)
imply a Monte-Carlo pseudo-polynomial algorithm for the BM on general graphs as well as a
deterministic pseudo-polynomial algorithm for the BM on planar graphs, respectively.

Previous work on the multi-budgeted matching problem focused primarily on approximation
schemes. The first pure approximation scheme is due to Grandoni and Zenklusen (2010).
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The authors present a PTAS for 2-budgeted matching, which Chekuri et al. (2011) later
generalized to obtain a PTAS for the mBM with a fixed number of budget constraints.

Most edge-colored matching problems impose restrictions that depend on the edge coloring
in order to reduce the space of feasible solutions. One of the first problems of this kind
is the rainbow or multiple-choice matching problem (Garey and Johnson, 1979): Given
an edge-colored graph, find a maximum matching such that all edges have distinct colors.
The rainbow matching problem is known to be NP-complete on bipartite graphs (Rusu,
2008), and Le and Pfender (2014) more recently proved that it is even APX -complete on
paths. Another problem of this kind is the blue-red matching problem (BRM): Given a blue-
red-colored graph and w ∈ N, find a maximum matching which consists of at most w blue
and at most w red edges. Nomikos et al. (2007) devise an RNC2 as well as an asymptotic
3
4 -approximation algorithm for the BRM. The exact complexity of the BRM is still open.

One of the earliest weighted matching problems considered on edge-colored graphs is the
bounded color matching problem (BCM): Given an edge-colored graph with edge weights,
find a maximum weighted matching such that the number of edges in each color satisfies
a color-specific upper bound. As a generalization of the rainbow matching problem, all
complexity results of the former directly translate to the BCM. A straightforward greedy
strategy leads to a 1

3 -approximation algorithm for the BCM (Mastrolilli and Stamoulis, 2014).
Moreover, several bi-criteria approximation algorithms for the BCM that are allowed to slightly
violate the color constraints are due to Mastrolilli and Stamoulis (2012) and Mastrolilli and
Stamoulis (2014). Recently, an extension of the BCM that additionally incorporates edge
costs was studied under the name budgeted colored matching problem by Büsing and
Comis (2018a). All these variations of the BCM are special cases of the mBM in which cost
functions are no longer independent, but edges incur (unit-)costs only towards exactly one
cost function.

The concept of incorporating an edge-coloring into the objective function of a matching
problem is, to our knowledge, relatively new and only few problems of this type have been
studied so far. One such problem that is closely related to the Col-BM is the labeled maximum
matching problem (LMM): Given an edge-colored graph, the LMM asks for a maximum
matching that uses the minimum number of different colors. Monnot (2005) showed that
the LMM is APX -complete on bipartite complete graphs and 2-approximable on 2-regular
bipartite graphs. Subsequently, Carrabs et al. (2009) presented alternative mathematical
formulations and an exact branch-and-bound scheme for the LMM. Another family of related
problems are so-called reload cost problems. In reload cost problems, edge colors symbolize
different types of transport and costs arise for every change of color at a node. The task
is to find a specific subgraph for which the weighted sum of all color changes is minimal.
Examples of considered sought-after subgraphs are, e.g., spanning trees (Wirth and Steffan,
2001), paths between two vertices (Gourvès et al., 2009), and tours (Amaldi et al., 2011).
For a detailed review of these kinds of problems we refer to Baste et al. (2019).
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A weighted b-matching problem with an objective function incorporating the edge coloring
is the diverse weighted b-matching problem (D-WBM). The D-WBM can be considered as
the counterpart of the Col-BM: Given a weighted edge-colored bipartite graph, the D-WBM
asks for a b-matching satisfying upper and lower vertex degree bounds such that the weights
of edges incident to the same node are evenly distributed among all colors. In Ahmed et al.
(2017), this diversification is ensured by minimizing a quadratic function that penalizes
unbalanced weight-color distributions rather than adopting a max-min approach analogous
to our min-max approach. The authors also claim D-WBM to be NP-hard, however the key
result in their argumentation could not be located in the provided reference.

For a more extensive review on general matching theory we refer to Mastrolilli and Stamoulis
(2014) and Pentico (2007).

13.4 Outline and Use of Published Materials

Part III of this thesis is structured as follows. Chapter 14 studies the complexity of the mBM
as well as the problem’s pseudo-polynomial solvability on various graph classes. Chapter 15
considers the Col-BM and shows its strong NP-hardness before polynomial algorithms on
restricted graph classes are derived. Finally, we conclude in Chapter 16 by summarizing our
findings and providing directions for future work.

Chapter 14 and parts of Chapters 13 and 16 are based on the publication Büsing and Comis
(2018b) and are therefore joint work with my supervisor Christina Büsing. Chapter 15 and
parts of Chapters 13 and 16 are based on the publication Anapolska et al. (2021) as well as
the preceding conference paper Anapolska et al. (2018) and are therefore joint work with my
supervisor Christina Büsing and colleagues Mariia Anapolska and Tabea Krabs.
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Multi-Budgeted Matching
Problems

14

In this chapter, we study the multi-budgeted matching problem – a weighted matching
problem with k ∈ N independent edge cost functions. For every cost function, a respective
budget limits the total cost of edges we may choose. The objective is to determine a matching
of maximum weight such that the cost with respect to each cost function does not exceed the
corresponding budget. More formally, this can be restated as follows.

Definition 14.1 (mBM). Let G = (V,E) be a graph and w : E → N an edge weight function.
Moreover, let ci : E → N for i ∈ {1, . . . , k} be a set of cost functions and B1, . . . , Bk ∈ N the
corresponding budgets. The multi-budgeted matching problem (mBM) asks for a matching
M ⊆ E of maximum weight w(M) = ∑

e∈M w(e) such that none of the cost functions exceeds
its budget, i.e.,

∑
e∈M ci(e) ≤ Bi for all i ∈ {1, . . . , k}.

The mBM is a generalization of the budgeted colored bipartite perfect matching problem
(BCBPM) that we introduced in Part II of this thesis to model the vehicle routing problem for
MMUs with multiple depots; compare Definition 10.9.

Lemma 14.2. The mBM generalizes the BCBPM.

Proof. Let I be an instance of the BCBPM defined by a bipartite graph G = (VA ∪ VB, E)
with |VA| = |VB|, edge coloring E = E1 ∪ · · · ∪ Ek, edge weight function w : E → N, and
budgets Bi ∈ N per color class Ei for i ∈ {1, . . . , k}. We construct an instance I ′ of the
mBM on the given graph G = (VA ∪ VB, E). We set the edge costs to c′i(e) = |{e} ∩ Ei|
for all e ∈ E and all i ∈ {1, . . . , k}. We choose the budgets B′i = Bi for i ∈ {1, . . . , k} and
set w′(e) = 2 |VA| w̄ − w(e) for all e ∈ E with w̄ := max{1,maxe∈E w(e)}. We show that
M ⊆ E is a budgeted colored perfect matching in I with weight w(M) if and only if M is a
multi-budgeted matching in I ′ with weight w′(M) = 2|VA|2 w̄ − w(M).

Let M ⊆ E be a budgeted colored perfect matching in I of weight w(M). By construction,
M is feasible for I ′ as

∑
e∈M c′i(e) = |M ∩Ei| ≤ Bi = B′i for all i ∈ {1, . . . , k} and has weight

w′(M) =
∑
e∈M

w′(e) =
∑
e∈M

2 |VA| w̄ − w(e) = 2 |VA|2 w̄ − w(M).
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Conversely, let M ⊆ E be a multi-budgeted matching in I ′ of weight w′(M) = 2 |VA|2 w̄ −
w(M). By construction, M satisfies the budget constraints in I and it thus suffices to show
that M is perfect. Assume the contrary, i.e., |M | < |VA|. Then we have that

w′(M) ≤ (|VA| − 1) (2 |VA| w̄) = (2 |VA|2 − 2 |VA|) w̄ < (2 |VA|2 − |VA|) w̄
= 2 |VA|2 w̄ − |VA| w̄ ≤ 2 |VA|2w̄ − w(M) = w′(M)

which is a contradiction. Consequently M is a perfect matching in G and feasible for I.

We structure the remainder of this chapter as follows. In Section 14.1, we prove the strong
NP-hardness of the mBM on paths. Section 14.2 presents a dynamic program for the mBM
with a fixed number of budget constraints on series-parallel graphs and Section 14.3 outlines
how this algorithms can be extended to trees via a graph transformation. Finally, Section 14.4
investigates the pseudo-polynomial solvability of the mBM with a fixed number of budget
constraints on graphs with bounded treewidth.

14.1 Complexity

Since the mBM generalizes the BCBPM, its strong NP-hardness on bipartite graphs with
uniform edge weights and budgets follows immediately from the corresponding strong NP-
hardness result of the latter in Theorem 10.10. We strengthen this result by showing that
even on paths with uniform edge weights and budgets the mBM is strongly NP-hard. To that
end, we reduce 3-SAT to the mBM using a similar construction.

Theorem 14.3. The decision version of the mBM is strongly NP-complete, even for paths, and
uniform edge weights and budgets.

Proof. Let I be a 3-SAT instance with n variables X = {x1, . . . , xn} and m clauses C =
{C1, . . . , Cm}. Every clause Cj ∈ C has the form Cj = (yj1 ∨ yj2 ∨ yj3) with yjk ∈ L

for k ∈ {1, 2, 3} and L being the set of literals L = X ∪ {x̄ : x ∈ X}. We construct an
instance I ′ of the mBM as follows. The graph G = (V,E) is composed of a path of length
2 consisting of the edges tifi for every variable xi ∈ X. Hence, every maximum matching
in G must contain either ti or fi for every variable xi ∈ X and we associate ti with the
assignment xi = True and fi with setting xi = False; see Figure 14.1(a). We choose unit
edge weights and one cost function per clause. For each clause Cj ∈ C and variable xi ∈ X,
we set cj(ti) = |{yjk : yjk = x̄i}| and cj(fi) = |{yjk : yjk = xi}|. Concerning the available
budgets, we set Bj = 2 for all j ∈ {1, . . . ,m}. By construction, the cost of a matching
with respect to cost function cj indicates the number of unsatisfied literals in clause Cj for
all j ∈ {1, . . . ,m}. To clarify the previously described construction, it is visualized for an
exemplary 3-SAT instance in Figure 14.1(b). We show that I is a Yes-instance if and only if
I ′ has a multi-budgeted matching M of weight w(M) = n.
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xi

ti ↔ xi = True
fi ↔ xi = False

ti fi

(a)

x1

t1 f1

x2

t2 f2

x3

t3 f3

C1 = (x1 ∨ x1 ∨ x̄3)
C2 = (x̄1 ∨ x̄1 ∨ x̄3)

C3 = (x2 ∨ x2 ∨ x3)
C4 = (x̄2 ∨ x̄2 ∨ x3)

c1 c2 c3 c4

t1 0 2 0 0
f1 2 0 0 0
t2 0 0 0 2
f2 0 0 2 0
t3 1 1 0 0
f3 0 0 1 1

(b)

Fig. 14.1.: (a) Encoding of variables via 2-paths. (b) Visualization of construction via example.

Let I be a Yes-instance and x∗ a satisfying truth assignment. We construct a matching
M∗ ⊆ E with weight w(M∗) = n as follows: For every i ∈ {1, . . . , n}, we pick the edge
ti ∈ E if x∗i = True and fi ∈ E otherwise. The resulting matching M∗ has obviously weight
w(M∗) = |M∗| = n and it hence remains to show that the m budget constraints are satisfied.
Assume the contrary, i.e., that there exists a clause Cj ∈ C such that

∑
e∈M∗ cj(e) = 3. But

this implies that x∗ did not satisfy clause Cj which yields a contradiction. The other direction
can be shown analogously.

As the decision version of the mBM is obviously in NP as we can check the weight and
feasibility of a given matching in O(k · |E|) time, the problem’s strong NP-completeness
follows. We further remark that the collection of 2-paths in our construction can be joined
to a single path by edges that induce cost 3 for each budget constraint which ensures their
absence in any feasible multi-budgeted matching.

As soon as we fix the number of budget constraints, such a strong NP-hardness result is
not known. Instead, the mBM with a fixed number of budget constraints is only known to
be weakly NP-hard; see Grandoni et al. (2014). Hence while there cannot exist a pseudo-
polynomial algorithm for the mBM on paths with uniform edge weights and budgets unless
P = NP, there may be pseudo-polynomial algorithms for the mBM with a fixed number
of budget constraints. In the following we derive such pseudo-polynomial algorithms for
series-parallel graphs, trees, and graphs with bounded treewidth.

14.2 Series-parallel Graphs

We propose a pseudo-polynomial algorithm for the multi-budgeted matching problem with a
fixed number of budget constraints on series-parallel graphs and start with a formal definition
of series-parallel graphs following the one in Kikuno et al. (1983).

Definition 14.4. A two-terminal graph with distinguished vertices σ and τ called source and
sink, respectively, is called series-parallel (SP-graph) if it can be constructed as follows.

1) An edge {σ, τ } is series-parallel.
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P

(b)

Fig. 14.2.: (a) Parallel and series composition. (b) Example of an SP-tree.

2) A graph constructed by a finite number of the following operations is series-parallel.

i) Combine two SP-graphs G1, G2 with sources σ1, σ2 and sinks τ1, τ2 by identifying
τ1 with σ2, called series composition of G1 and G2.

ii) Combine two SP-graphs G1, G2 with sources σ1, σ2 and sinks τ1, τ2 by identifying
σ1 with σ2 and τ1 with τ2, called parallel composition of G1 and G2.

The series and parallel composition are illustrated in Figure 14.2(a). We note that series-
parallel graphs may have parallel edges by definition and are generally multi-graphs with
designated source and sink vertices. A useful property of SP-graphs is that they can be
represented in form of a rooted binary decomposition tree called an SP-tree. Given any
series-parallel graph G, we can construct an SP-tree T = T (G) that represents the order of
series and parallel compositions composing G in polynomial time; see Valdes et al. (1982).
The decomposition tree T has three kinds of nodes: S-nodes, P-nodes, and L-nodes. The leaves
of T are L-nodes and correspond to the edges of G. The S- and P -nodes are the inner nodes
of T and correspond to the subgraph of G obtained by a series- or, respectively, parallel
composition of the graphs associated with their two child nodes. We note that the children of
S-nodes are ordered because the series composition is not commutative. By construction, the
root r of T is associated with the entire graph G. An example of an SP-tree indicating the
subgraphs corresponding to the nodes of T is shown in Figure 14.2(b).

Let us now consider the mBM on an SP-graph G = (V,E). We propose a pseudo-polynomial
algorithm using dynamic programming on a binary decomposition tree T of G. For a tree
node t ∈ V (T ), let Gt denote the subgraph of G with source σt and sink τ t corresponding to
t. The dynamic program relies on a set of labels

Lt := {(α, β, b) ∈ {0, 1} × {0, 1} × Nk : bi ≤ Bi ∀i ∈ {1, . . . , k}}
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defined for every tree node t ∈ V (T ). The parameters α, β ∈ {0, 1} determine whether the
source and sink of Gt are matched or unmatched. The vector b ∈ Nk with bi ∈ {0, . . . , Bi} for
i ∈ {1, . . . , k} specifies the available budget with respect to cost function ci.

For a node t ∈ V (T ) and label x = (α, β, b) ∈ Lt, we call a subset of edges M ⊆ E(Gt)
a (t, x)-restricted matching if |δM (σt)| = α, |δM (τ t)| = β , |δM (v)| ≤ 1 for all v ∈ V , and∑
e∈M ci(e) ≤ bi for all i ∈ {1, . . . , k}. Naturally, this leads to the (t, x)-restricted multi-

budgeted matching problem defined as

max
M⊆E(Gt)

{w(M) : M is (t, x)-restricted matching in Gt} .

For a node t ∈ V (T ) and a label x ∈ Lt, we call the optimal solution value to the (t, x)-
restricted mBM the weight wt(x) of x at t.

We compute the weight of labels based on their children’s labels in a bottom-up procedure.
If t ∈ V (T ) is an L-node, the corresponding graph Gt consists of a single edge e ∈ E. In
case the label x = (α, β, b) ∈ Lt allows matching both endpoints of e, i.e., α = β = 1 and
provides enough budget to pick e, clearly M = {e} is an optimal (t, x)-restricted matching in
Gt with weight w(M) = w(e). In all other cases we may not choose e and consequently the
optimal obtainable weight is either 0 or −∞ for all infeasible labels. In other words, we can
determine the weight of the label x ∈ Lt at t as

wt(α, β, b) =


w(e) if α = β = 1, bi ≥ ci(e) ∀ i ∈ {1, . . . , k}
−∞ if α = β = 1, ∃ j ∈ {1, . . . , k} : bj < cj(e) or if α 6= β

0 else

. (14.1)

If t ∈ V (T ) corresponds to the series composition of its two child nodes ` ∈ V (T ) and
u ∈ V (T ), every matching M t ⊆ E(Gt) in Gt can be decomposed into a matching M ` :=
M t ∩ E(G`) in G` and a matching Mu := M t ∩ E(Gu) in Gu. We can consequently compute
the weight of a label x = (α, β, b) ∈ Lt at t from the weights of labels at ` and u. Combining
labels, we have to make sure that the source σ` of G` and sink τu of Gu are matched as
required by the parameters α and β . Moreover, since we contract the sink τ ` of G` with the
source σu of Gu we must ensure that the contracted vertex is not matched twice. The budgets
bi for i ∈ {1, . . . , k} must be optimally split between G` and Gu. Formally, this leads to

wt(α, β, b) = max
β`+αu≤1, 0≤b′≤b

{w`(α, β`, b′) + wu(αu, β, b− b′)}. (14.2)

Let us now consider t ∈ V (T ) being the parallel composition of ` ∈ V (T ) and u ∈ V (T ). As
for the series composition, we can compute the weight of a label x = (α, β, b) ∈ Lt from the
weights of labels belonging to ` and u. Since we contract both the sources and the sinks of G`
and Gu, we must ensure that neither the contracted source σt = σ` = σu, nor the contracted
sink τ t = τ ` = τu is matched twice. Additionally, the contracted source and sink must be
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matched as required by the parameters α and β . The budgets bi for i ∈ {1, . . . , k} must be
optimally split between G` and Gu. Formally, this implies

wt(α, β, b) = max
α`+αu=α, β`+βu=β,

0≤b′≤b

{w`(α`, β`, b′) + wu(αu, βu, b− b′)}.
(14.3)

The weight of an optimal multi-budgeted matching in G can now be computed by considering
the labels belonging to the root r of T and budgets b = B.

Lemma 14.5. Let M∗ ⊆ E denote an optimal multi-budgeted matching in G. Then it holds that

w(M∗) = max {wr(α, β,B) : α, β ∈ {0, 1}} .

Proof. We remind ourselves that by definition Gr = G. Therefore, the mBM on G is a
relaxation of the (r, x)-restricted mBM for each label x = (α, β,B) ∈ Lr and thus

w(M∗) ≥ max {wr(α, β,B) : α, β ∈ {0, 1}} .

For the converse direction, let us define α∗ := |δM∗(σr)| and β∗ := |δM∗(τ r)|. It is obvious
that with these choices M∗ is (r, (α∗, β∗, B))-restricted and it follows that

max {wr(α, β,B) : α, β ∈ {0, 1}} ≥ wr(α∗, β∗, B) ≥ w(M∗).

We provide a pseudo-code of our dynamic program in Algorithm 5. An optimal multi-budgeted
matching M∗ ⊆ E in G can be found by backtracking the chosen maxima in the steps of the
dynamic program. The theorem below follows.

Theorem 14.6. The mBM on SP-graphs parameterized by the number of budget constraints k
can be solved in O(|E| ·∏k

i=1B
2
i ) time.

Proof. The correctness of Algorithm 5 directly follows from Lemma 14.5 and the correctness
of the label initialization in (14.1) and label updates in (14.2) and (14.3). Analyzing the
algorithm’s running time, we need to compute the weight of O(|E| ·∏k

i=1Bi) labels as every
SP-tree T of G = (V,E) has exactly |V (T )| = 2 |E| − 1 nodes and we have to compute the
weight of 4∏k

i=1(Bi + 1) labels for each of them.

It remains to bound the complexity of computing the weight of labels. If t ∈ V (T ) is a leaf,
computing label weights is clearly in O(1) for fixed k. If t ∈ V (T ) corresponds to a series
composition, we need to compute the maximum of 3∏k

i=1(bi + 1) sums which can be done in
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Algorithm 5: The mBM on SP-graphs
Input: SP-graph G = (V,E), weights w : E → N, costs ci : E → N for i ∈ {1, . . . k},

budgets B ∈ Nk
Output: Weight of an optimal multi-budgeted matching in G

1 compute a binary decomposition tree T of G with root r
2 let t1, . . . , tn be an order on V (T ) of non-decreasing height h(t) defined as the

number of edges on the longest downward path from t to a leaf of T
3 for j = 1, . . . , n do
4 for (α, β, b) ∈ Ltj do
5 if tj is a leaf in T corresponding to edge e ∈ E then
6

wtj (α, β, b) =


w(e) if α = β = 1, bi ≥ ci(e) ∀ i ∈ {1, . . . , k}
−∞ if α = β = 1, ∃ j ∈ {1, . . . , k} : bj < cj(e) or if α 6= β

0 else7

8 else if tj corresponds to the series composition of `, u ∈ V (T ) then
9

wtj (α, β, b) = max
β`+αu≤1, 0≤b′≤b

{w`(α, β`, b′) + wu(αu, β, b− b′)}

10 else if vj corresponds to the parallel composition of `, u ∈ V (T ) then
11

wtj (α, β, b) = max
α`+αu=α, β`+βu=β,

0≤b′≤b

{w`(α`, β`, b′) + wu(αu, βu, b− b′)}

12 return max {wr(α, β,B) : α, β ∈ {0, 1}}

O(∏k
i=1Bi) time for fixed k. Analogously, the same bound holds for parallel compositions.

Overall, the weight of labels can thus be computed in O(∏k
i=1Bi) time.

Combining the bounds on the considered labels and cost of computing their weights, we
obtain a total running time in O(|E| ·∏k

i=1B
2
i ). To complete our proof, we remark that Valdes

et al. (1982) showed that an SP-tree T of G can be computed in O(|E|) time.

As a consequence, Algorithm 5 solves the mBM on series-parallel graphs in pseudo-polynomial
time for a fixed number of budget constraints. If we additionally parameterize the mBM by
the maximum budget B̄ := max1≤i≤k Bi we get the following.

Corollary 14.7. The mBM on SP-graphs parametrized by the number of budget constraints k
and maximum budget B̄ is fixed-parameter tractable (FPT ).

14.3 Trees

The second class of graphs for which we present a pseudo-polynomial algorithm for the
mBM are trees. Trees are in general not series-parallel as the claw graph K1,3 illustrates. We
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Fig. 14.3.: Construction of series-parallel graph GT for tree T .

show how trees can be extended to series-parallel graphs by introducing a new node and
connecting it to all leaves of the tree.

Definition 14.8. Let T = (V (T ), E(T )) be a tree. We define GT as the graph obtained by
introducing a new node y to V (T ), i.e., V (GT ) = V (T ) ∪ {y} and connecting y to all leaves
L ⊆ V (T ) of T , i.e., E(GT ) = E(T ) ∪ {{v, y} : v ∈ L}.

The construction of GT as described in Definition 14.8 is visualized in Figure 14.3. We show
that for every tree T the graph GT is series-parallel.

Lemma 14.9. Let T be a tree. Then GT is series-parallel.

Proof (constructive). Let r ∈ V (T ) be an arbitrary node in T . Associate a series-parallel graph
Gv = {σv, τv} to every leaf v ∈ L of T . Let Pv denote the unique path from v ∈ V (T ) to
r in T . We define the depth of v ∈ V (T ) as d(v) := |Pv| and denote the successor of v on
Pv by s(v). Consider the nodes v ∈ V (T ) in order of non-increasing depth d(v): Append an
edge {σ, τ } to Gv through a series composition and associate the resulting SP-graph with the
successor s(v) of v. Whenever multiple graphs are associated with the same node, join them
via a parallel composition. For the graph Gr associated with r follows Gr = GT .

Using Lemma 14.9, we can now reduce the mBM on trees to the mBM on SP-graphs.

Theorem 14.10. The mBM on trees parameterized by the number of budget constraints k can
be solved in O(|V (T )| ·∏k

i=1B
2
i ) time.

Proof. Instead of devising new label updating steps exploiting the special structure of trees,
we apply the graph transformation from Definition 14.8. Given an mBM instance I with
tree T , budgets B ∈ Nk, costs ci : E(T ) → N for i ∈ {1, . . . , k}, and weights w : E(T ) → N,
we construct an mBM instance I ′ on GT with budgets B′ ∈ Nk, costs c′i : E(GT ) → N for
i ∈ {1, . . . , k}, and weights w′ : E(GT ) → N as follows. For all edges e ∈ E(T ), we set the
weight w′(e) = w(e) and cost c′i(e) = ci(e) for i ∈ {1, . . . , k}. For all edges e ∈ E(GT ) \E(T ),
we set the weight w′(e) = 0 and cost c′i(e) = B̄ + 1 for i ∈ {1, . . . , k} to ensure their absence
in any feasible matching. For B′ = B, every feasible multi-budgeted matching M in I is also
a feasible multi-budgeted matching in I ′ of identical cost and vice versa.
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By Lemma 14.9, GT is series-parallel. The constructed mBM instance I ′ can therefore be
solved in O(|E(GT )| · ∏k

i=1B
2
i ) time by Theorem 14.6. As |E(GT )| ≤ |E(T )| + |V (T )| ≤

2 |V (T )| and the construction of I ′ can be done in O(|V (T )|) time the result follows.

We note that such a transformation is in general not applicable for other budgeted problems,
e.g., the budgeted minimum cost flow problem (Büsing et al., 2016).

14.4 Graphs with Bounded Treewidth

This section considers the mBM on graphs of bounded treewidth – a class of graphs that
particularly includes SP-graphs and trees. Graphs of bounded treewidth can be decomposed
via decomposition trees which enable efficient algorithms for various generally NP-hard
problems. To name a few, vertex cover, dominating set, independent set, and Hamiltonian
circuit have been shown to be polynomial-time solvable on graphs of bounded treewidth; see
Bodlaender (1988). To introduce the concept of treewidth, we start with a formal definition
of tree decompositions followed by a definition of the treewidth of a graph according to
Robertson and Seymour (1986).

Definition 14.11. For a graphG = (V,E), a pair (T,X ) consisting of a tree T =
(
V (T ), E(T )

)
and a collection of vertex subsets (called bags) X = {Xt ⊆ V : t ∈ V (T )} associated to the
nodes of T , is called a tree decomposition of G if it satisfies the following properties:

1) Every vertex of G is contained in at least one bag, i.e.,
⋃
t∈V (T )Xt = V .

2) For each edge {v, w} ∈ E there exists a node t ∈ V (T ) such that v, w ∈ Xt.

3) For all nodes t, `, u ∈ V (T ) such that ` lies on the unique path between t and u in T , it
holds that Xt ∩Xu ⊆ X`.

The width of a tree decomposition of the graph G is defined as the cardinality of its largest
bag minus one, i.e., tw(G, (T,X )) := maxt∈V (T ) |Xt| − 1. The treewidth of a graph G is
then defined as the smallest width among all tree decompositions of G, i.e., tw(G) :=
min{tw(G, (T,X )) : (T,X ) is a tree decomposition of G}.

Bodlaender (1996) showed that for any given graph G with bounded treewidth, a tree
decomposition attaining this width can be constructed in linear time. A special kind of tree
decomposition that is regularly used for describing dynamic programs in order to improve
their readability are so-called nice tree decompositions (Kloks, 1994; Bodlaender and Koster,
2008).

Definition 14.12. A tree decomposition (T,X ) of a graph G = (V,E) is called nice if T is a
rooted tree and all nodes t ∈ V (T ) can be categorized into four groups:
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Fig. 14.4.: (a) Graph G with tw(G) = 2. (b) Nice tree decomposition (T,X ) of G.

1) Leaves t ∈ V (T ) have no child nodes and their bag contains exactly one vertex v ∈ V ,
i.e., Xt = {v}.

2) Introduce nodes t ∈ V (T ) have exactly one child node ` ∈ V (T ) such that X` ( Xt and
Xt \X` = {w} for some w ∈ V .

3) Forget nodes t ∈ V (T ) have exactly one child node ` ∈ V (T ) such that Xt ( X` and
X` \Xt = {w} for some w ∈ V .

4) Join nodes t ∈ V (T ) have exactly two child nodes `, u ∈ V (T ) such that Xt = X` = Xu.

Any tree decomposition can be transformed into a nice tree decomposition of the same width
and O(|V |) bags in linear time (Kloks, 1994). An example of a graph with bounded treewidth
and corresponding nice tree decomposition is depicted in Figure 14.4. We will in the following
assume w.l.o.g. that the bag associated with the root r of a nice tree decomposition (T,X )
contains only a single node, i.e., |Xr| = 1. If this is not the case, we simply add a sequence of
|Xr| − 1 forget nodes to r and redefine the root of the resulting tree as the last of them.

Let us now consider the mBM on graphs with bounded treewidth. We present a dynamic
program for the mBM that recursively updates labels defined on the nodes of a nice tree
decomposition. Let G = (V,E) be a graph with bounded treewidth tw(G) < W and (T,X ) a
corresponding nice tree decomposition such that |Xt| ≤W for all Xt ∈ X . We denote the set
of edges of G induced by Xt by E[Xt] and define Gt to be the subgraph of G induced by the
vertices in the bags of the subtree of T rooted in t ∈ V (T ). Thus, from Property 1) of tree
decompositions Gr = G directly follows for the root r of T .

We associate a set of labels of the form

Lt = {(m, o, b) ∈ {0, 1}E[Xt] × {0, 1}Xt × Nk : bi ≤ Bi ∀i ∈ {1, . . . , k}}

with all nodes t ∈ V (T ). The binary valued mapping m : E[Xt]→ {0, 1} indicates whether
the edges in E[Xt] are in the matching or not. The binary valued mapping o : Xt → {0, 1}
indicates whether the vertices in Xt are reserved to be matched to previously forgotten
vertices in V (Gt) \ Xt or not. Consequently, all vertices v ∈ Xt with ov = 1 must not be
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matched by edges in E[Xt] while vertices with ov = 0 must not be matched by edges in
E(Gt) \ E[Xt]. Finally, the vector b ∈ Nk with bi ∈ {0, . . . , Bi} for i ∈ {1, . . . , k} specifies the
available budget per cost function reserved for matching edges in E(Gt) \ E[Xt].

We define the weight wt(x) of label x = (m, o, b) ∈ Lt as the maximum weight of a multi-
budgeted matching M ⊆ E(Gt) in Gt with the additional constraints implied x. That is,
for every i ∈ {1, . . . , k} the available budget for edges in E(Gt) \E[Xt] with respect to cost
function ci is bi. An edge e ∈ E[Xt] is part of M if and only if me = 1 and all vertices v ∈ Xt

with ov = 1 may solely be matched by edges in E(Gt) \E[Xt] while vertices with ov = 0 may
only be matched by edges in E[Xt]. We call this problem the (t, x)-restricted multi-budgeted
matching problem and denote it by rmBM(t, x). Hence, the weight wt(x) of label x ∈ Lt at
t ∈ V (T ) is the optimal solution value to the rmBM(t, x) which we formally define as

max
M⊆E(Gt)

w(M) (14.4a)

s.t.
∑
e∈M

ci(e) ≤ Bi ∀i ∈ {1, . . . , k} (14.4b)

∑
e∈M\E[Xt]

ci(e) ≤ bi ∀i ∈ {1, . . . , k} (14.4c)

|e ∩M | = me ∀e ∈ E[Xt] (14.4d)

|δM (v) ∩ E[Xt]| ≤ 1− ov ∀v ∈ Xt (14.4e)

|δM (v) \ E[Xt]| ≤ ov ∀v ∈ Xt (14.4f)

|δM (v)| ≤ 1 ∀v ∈ V (Gt). (14.4g)

Let xt = (mt, ot, bt) ∈ Lt be a label corresponding to t ∈ V (T ). At the beginning of every label
update, we check labels for their validity, i.e., whether rmBM(t, xt) is feasible. That is, the
vertices v ∈ Xt must not be matched more than once and the cost of the fixed edges within
E[Xt] plus the reserved budget bt must not exceed the total available budget B. Formally this
translates as, if there exists v ∈ Xt such that otv +∑

e∈δGt (v)∩E[Xt]m
t
e ≥ 2 or j ∈ {1, . . . , k}

such that btj + ∑
e∈E[Xt] cj(e)mt

e > Bj , the label is invalid and wt(mt, ot, bt) = −∞. All
remaining labels are called valid and we update their weight based on their children’s labels
in a bottom-up procedure. Before discussing the label updating procedures for the inner
nodes of T , we consider the initialization of label weights for the leaves of T .

If t ∈ V (T ) is a leaf, |Xt| = 1 and Gt consists of an isolated vertex v ∈ V such that E(Gt) = ∅.
Consequently, mt : E[Xt]→ {0, 1} has an empty domain and we initialize the weight of labels
for leaves as follows.

Lemma 14.13. If t ∈ V (T ) is a leaf of T and xt ∈ Lt we have

wt(xt) = 0.
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Fig. 14.5.: (a) Visualization of Gt for t ∈ V (T ) being an introduce node with child node ` ∈ V (T ).
(b) Visualization of Gt for t ∈ V (T ) being a join node with child nodes `, u ∈ V (T ).

Proof. The graph Gt consists of an isolated vertex and has no edges. Thus, the only feasible
and therefore optimal multi-budgeted matching for the rmBM(t, xt) is the empty matching
M = ∅ of weight w(M) = 0.

If t ∈ V (T ) is an introduce node, we compute the weight of xt ∈ Lt from the previously
considered labels of t’s child node. Let ` ∈ V (T ) be the only child of t and u ∈ V the vertex
introduced by t, hence {u} = Xt \X`. Furthermore, let U ⊆ E be the set of edges introduced
by t, i.e., U := E[Xt] \ E[X`]. For a visualization of this setting we refer to Figure 14.5(a).

Lemma 14.14. Let t ∈ V (T ) be an introduce node with unique child node ` ∈ V (T ). Given a
valid label xt = (mt, ot, bt) ∈ Lt, we define the label x` = (m`, o`, b`) ∈ L` via m`

e = mt
e for all

e ∈ E[X`], o`v = otv for all v ∈ X`, and b`i = bti for all i ∈ {1, . . . , k}. Then we can determine
the weight of xt at t as

wt(mt, ot, bt) = w`(m`, o`, b`) +
∑
e∈U

w(e)mt
e.

Proof. We show that every feasible matching to the rmBM(t, xt) can be restricted to a feasible
matching to the rmBM(`, x`). Let M t ⊆ E(Gt) be an optimal solution to the rmBM(t, xt), i.e.,
wt(xt) = w(M t). We define the matching M ` := M t \ U and show that M ` is feasible for the
rmBM(`, x`), i.e., we show M ` satisfies (14.4b)–(14.4g). For i ∈ {1, . . . , k}

∑
e∈M`

ci(e) ≤
∑
e∈Mt

ci(e) ≤ Bi and
∑

e∈M`\E[X`]
ci(e) =

∑
e∈Mt\E[Xt]

ci(e) ≤ bti = b`i
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and hence (14.4b) and (14.4c) are satisfied. For e ∈ E[X`], (14.4d) is satisfied as

|e ∩M `| = |e ∩M t| = mt
e = m`

e.

Concerning (14.4e) and (14.4f), for v ∈ X` we have that

|δM`(v) ∩ E[X`]| ≤ |δMt(v) ∩ E[Xt]| ≤ 1− otv = 1− o`v

and

|δM`(v) \ E[X`]| = |δMt(v) \ E[Xt]| ≤ otv = o`v.

Finally, as every subset of a matching is a matching, (14.4g) hold which concludes our proof
that M ` is feasible for the rmBM(`, x`) . Hence, we have

w`(x`) ≥ w(M `) = w(M t)−
∑
e∈U

w(e)mt
e = wt(xt)−

∑
e∈U

w(e)mt
e

⇔ wt(xt) ≤ w`(x`) +
∑
e∈U

w(e)mt
e.

Conversely, let M ` be an optimal solution to the rmBM(`, x`). We define a matching M t :=
M ` ∪ {e ∈ U : mt

e = 1} and show that M t is feasible for the rmBM(t, xt). For i ∈ {1, . . . , k}
inequalities (14.4b) and (14.4c) hold as

∑
e∈Mt\E[Xt]

ci(e) =
∑

e∈M`\E[X`]
ci(e) ≤ b`i = bti

which, in combination with the validity of xt, directly implies that

∑
e∈Mt

ci(e) =
∑

e∈Mt∩E[Xt]
ci(e) +

∑
e∈Mt\E[Xt]

ci(e) ≤
∑

e∈E[Xt]
ci(e)mt

e + bti ≤ Bi.

By construction, M t ∩ E[Xt] = {e ∈ E[Xt] : mt
e = 1} and consequently equations (14.4d)

hold. As xt is valid, (14.4g) hold and we can show that (14.4e) holds for v ∈ Xt as

|δMt(v) ∩ E[Xt]| =
∑

e∈δGt (v)∩E[Xt]
mt
e ≤ 1− otv.

Concerning (14.4f) we have to distinguish cases. For the introduced vertex u ∈ Xt inequality
(14.4f) is trivially satisfied, as |δGt(u) \ E[Xt]| = 0. For the remaining vertices v ∈ X`

|δMt(v) \ E[Xt]| = |δM`(v) \ E[X`]| ≤ o`v = otv.
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As a result, M t is feasible for the rmBM(t, xt) and it follows that

wt(xt) ≥ w(M t) = w(M `) +
∑
e∈U

w(e)mt
e

= w`(x`) +
∑
e∈U

w(e)mt
e

which completes our proof.

Next, let t ∈ V (T ) be a forget node. We consider the only child ` ∈ V (T ) of t and let u ∈ X`

be the vertex t forgets, i.e., {u} = X` \ Xt. Moreover, we set U ⊆ E to be the edges that
were in the bag of ` and have been forgotten by t, i.e., U := E[X`] \E[Xt]. Thus Gt = G` but
decisions for edges e ∈ U are no longer fixed by labels.

Lemma 14.15. Let t ∈ V (T ) be a forget node with unique child node ` ∈ V (T ) and forgotten
vertex {u} = X` \ Xt. Given a valid label xt = (mt, ot, bt) ∈ Lt, we define a set of labels
L`(xt) ⊆ L` at ` as

L`(xt) :=
{

(m`, o`, b`) ∈ L` : m`
e = mt

e ∀e ∈ E[Xt],

o`v = otv −m`
{v,u} ∀v ∈ Xt,

b`i = bti −
∑
e∈U

ci(e) m`
e ∀i ∈ {1, . . . , k}

}

where we define m`
{v,u} := 0 for all {v, u} /∈ E to ease notation. Then we can compute the weight

of the label xt at t as

wt(xt) = max
x`∈L`(xt)

w`(x`).

Proof. We show that every feasible matching for the rmBM(t, xt) is also feasible for the
rmBM(`, x`) for some label x` ∈ L`(xt). Let M t ⊆ E(Gt) be an optimal solution to the
rmBM(t, xt). We construct a label y` = (m`, o`, b`) ∈ L` by setting

m`
e =

m
t
e for e ∈ E[Xt]

|e ∩M t| for e ∈ U

o`v =

o
t
v −m`

{v,u} for v ∈ Xt

1− |δMt(v) ∩ E[X`]| for v = u

b`i = bti −
∑
e∈U

ci(e)m`
e.
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Obviously, y` ∈ L`(xt) and we show that M t is feasible for the rmBM(`, y`). Inequalities
(14.4b) and (14.4g) are satisfied as M t is feasible for the rmBM(t, xt). Concerning constraints
(14.4c), for all i ∈ {1, . . . , k} it holds that

∑
e∈Mt\E[X`]

ci(e) =
∑

e∈Mt\E[Xt]
ci(e)−

∑
e∈U

ci(e) m`
e

≤ bti −
∑
e∈U

ci(e) m`
e = b`i .

By definition, |e ∩M t| = m`
e for e ∈ U . For e ∈ E[X`] \ U

|e ∩M t| = mt
e = m`

e

and (14.4d) is satisfied. Concerning the forgotten vertex u ∈ X`, |δMt(u) ∩ E[X`]| = 1− o`u
holds by definition. For the remaining vertices v ∈ X` \ {u} (14.4e) is also satisfied as

|δMt(v) ∩ E[X`]| = |δMt(v) ∩ E[Xt]|+m`
{v,u} ≤ 1− otv +m`

{v,u} = 1− o`v.

To show (14.4f) we distinguish cases. For all vertices v ∈ X` \ {u} we have

|δMt(v) \ E[X`]| = |δMt(v) \ E[Xt]| −m`
{v,u} ≤ otv −m`

{v,u} = o`v

whereas for node u ∈ X` we can make use of the definition of o`u to show

1 ≥ |δMt(u)| = |δMt(u) \ E[X`]|+ |δMt(u) ∩ E[X`]|
⇔ 1− |δMt(u) ∩ E[X`]| ≥ |δMt(u) \ E[X`]|
⇔ o`u ≥ |δMt(u) \ E[X`]|.

Consequently, M t is a feasible matching for the rmBM(`, y`) which implies

w`(y`) ≥ w(M t) = wt(xt)

and as y` ∈ L`(xt) it directly follows that

wt(xt) ≤ w`(y`) ≤ max
x`∈L`(xt)

w`(x`).

For the converse direction, it suffices to realize that for every label x` ∈ L`(xt), the rmBM(t, xt)
is a relaxation of the rmBM(`, x`) and therefore

wt(xt) ≥ max
x`∈L`(xt)

w`(x`).
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Finally, let t ∈ V (T ) be a join node with children `, u ∈ V (T ) and recall that Xt = X` = Xu

but generally Gt 6= G` 6= Gu. Instead, the graphs G` and Gu are subgraphs of Gt with
Gt = G` ∪ Gu such that V (G`) ∩ V (Gu) = Xt and E(G`) ∩ E(Gu) = E[Xt]; refer to
Figure 14.5(b). We determine the weight of labels xt ∈ Lt by combining suitable labels
x` ∈ L` and xu ∈ Lu. To that end, we define the set L`,u(xt) of label pairs (x`, xu) ∈ L` × Lu
as

L`,u(xt) :=
{(

(m`,o`,b`),(mu,ou,bu)
) ∈ L`×Lu : m`

e = mu
e = mt

e ∀e ∈ E[Xt], (14.5)

o`v + ouv = otv ∀v ∈ Xt, (14.6)

b`i + bui = bti ∀i ∈ {1, . . . , k}
}
. (14.7)

Based on this set of labels, we can compute the weight of labels for join nodes.

Lemma 14.16. Let t ∈ V (T ) be a join node and xt ∈ Lt a valid label at t. Then for each
(x`, xu) ∈ L`,u(xt) holds

wt(xt) ≥ w`(x`) + wu(xu)−
∑

e∈E[Xt]
w(e)mt

e.

Proof. Let (x`, xu) ∈ L`,u(xt), M ` ⊆ E(G`) be an optimal solution to the rmBM(`, x`), and
Mu ⊆ E(Gu) be an optimal solution to the rmBM(u, xu). We set M t := M ` ∪Mu and show
that M t is a feasible matching for the rmBM(t, xt). For i ∈ {1, . . . , k}, we use the validity of
xt to show (14.4b), as

∑
e∈Mt

ci(e) =
∑

e∈M`\E[X`]
ci(e) +

∑
e∈Mu\E[Xu]

ci(e) +
∑

e∈Mt∩E[Xt]
ci(e)

≤ b`i + bui +
∑

e∈E[Xt]
ci(e) mt

e = bti +
∑

e∈E[Xt]
ci(e) mt

e ≤ Bi.

Additionally, inequalities (14.4c) are satisfied as we have

∑
e∈Mt\E[Xt]

ci(e) =
∑

e∈M`\E[X`]
ci(e) +

∑
e∈Mu\E[Xu]

ci(e) ≤ b`i + bui = bti.

For all e ∈ E[Xt] equation (14.4d) holds, since

|e ∩M t| = |e ∩M `| = m`
e = mt

e.

To show (14.4e) and (14.4f), let v ∈ Xt. As o`v, o
u
v , and otv are binary, equation (14.6) implies

that either o`v = otv or ouv = otv. Let us assume w.l.o.g. that o`v = otv, then we have

|δMt(v) ∩ E[Xt]| = |δM`(v) ∩ E[X`]| ≤ 1− o`v = 1− otv
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and

|δMt(v)\E[Xt]| = |δM`(v)\E[X`]|+ |δMu(v)\E[Xu]| ≤ o`v + ouv = otv.

As a result, M t is feasible for the rmBM(t, xt,) and it follows that

wt(xt) ≥ w(M t) = w(M `) + w(Mu)−
∑

e∈E[Xt]∩Mt

w(e)

= w`(x`) + wu(xu)−
∑

e∈E[Xt]
w(e)mt

e.

Note, that we subtract
∑
e∈E[Xt]w(e)mt

e in the equation above as we would otherwise count
the weight of edges in the intersection M ` ∩Mu = M t ∩ E[Xt] twice, once in M ` and once
in Mu.

To complete the computation of label costs for join nodes, it remains to show the following.

Lemma 14.17. Let t ∈ V (T ) be a join node and xt ∈ Lt a valid label at t. Then there always
exists a pair of labels (x`, xu) ∈ L`,u(xt) such that

wt(xt) ≤ w`(x`) + wu(xu)−
∑

e∈E[Xt]
w(e) mt

e.

Proof. We show that every feasible matching to the rmBM(t, xt) can be restricted to a feasible
matching of the rmBM(`, x`) and the rmBM(u, xu) for some (x`, xu) ∈ L`,u(xt). Let M t ⊆
E(Gt) be an optimal solution to the rmBM(t, xt). We define the label x` = (m`, o`, b`) ∈ L` as

m`
e := mt

e ∀e ∈ E[X`] (14.8)

o`v := |(δG`(v) \ E[X`]) ∩M t| ∀v ∈ X` (14.9)

b`i :=
∑

e∈Mt∩E(G`)\E[X`]
ci(e) ∀i ∈ {1, . . . , k} (14.10)

and the label xu = (mu, ou, bu) ∈ Lu as

mu
e := mt

e ∀e ∈ E[Xu] (14.11)

ouv := otv − o`v ∀v ∈ Xu (14.12)

bui := bti − b`i ∀i ∈ {1, . . . , k}. (14.13)

By definition, it holds that (x`, xu) ∈ L`,u(xt). We define the two matchingsM ` := M t∩E(G`)
and Mu := M t ∩ E(Gu) and show that M ` and Mu are feasible for the rmBM(`, x`) and
the rmBM(u, xu), respectively. Let us start by considering M `. Since M ` ⊆M t, inequalities
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(14.4b) and (14.4g) are clearly satisfied. Moreover, by (14.10) and the definition of M ` we
have that

∑
e∈M`\E[X`]

ci(e) = b`i

for all i ∈ {1, . . . , k} which proves (14.4c). Equations (14.4d) hold as for all e ∈ E[X`]

|e ∩M `| = |e ∩M t| = mt
e = m`

e.

For all vertices v ∈ X`, we can conclude from (14.6) that otv ≥ o`v. Therefore,

|δM`(v) ∩ E[X`]| = |δMt(v) ∩ E[Xt]| ≤ 1− otv ≤ 1− o`v

which shows (14.4e). Furthermore, we can use (14.9) to show that (14.4f) hold, since

|δM`(v) \ E[X`]| = |(δG`(v) \ E[X`]) ∩M t| = o`v.

Hence, we can conclude that M ` is feasible for the rmBM(`, x`). It remains to show that Mu

is feasible for the rmBM(u, xu). Again, inequalities (14.4b) and (14.4g) hold as Mu ⊆ M t.
We can use (14.10) to show that for i ∈ {1, . . . , k} inequality (14.4c) holds, as

∑
e∈Mu\E[Xu]

ci(e) =
∑

e∈Mt\E[Xt]
ci(e)−

∑
e∈M`\E[X`]

ci(e) ≤ bti − b`i = bui .

For edges e ∈ E[Xu] equation (14.4d) holds, since

|e ∩Mu| = |e ∩M t| = mt
e = mu

e .

For vertices v ∈ Xu, we note that (14.6) also implies that otv ≥ ouv . Therefore,

|δMu(v) ∩ E[Xu]| = |δMt(v) ∩ E[Xt]| ≤ 1− otv ≤ 1− ouv

and in combination with (14.9) it follows that

|δMu(v)\E[Xu]| = |δMt(v)\E[Xt]| − |δM`(v)\E[X`]| ≤ otv − o`v = ouv

which shows (14.4e) and (14.4f). Thus, Mu is feasible for the rmBM(u, xu) and the lemma’s
statement follows from the definitions of M ` and Mu, i.e.,

wt(xt) = w(M t) = w(M `) + w(Mu)−
∑

e∈E[Xt]∩Mt

w(e)

≤ w`(x`) + wu(xu)−
∑

e∈E[Xt]
w(e)mt

e.
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We can now combine the statements of Lemmas 14.16 and 14.17 into the following corollary
describing the label updating procedure for join nodes.

Corollary 14.18. Let t ∈ V (T ) be a join node and xt ∈ Lt a valid label at t. The weight of xt

at t can be computes as

wt(xt) = max
(x`,xu)∈L`,u(xt)

w`(x`) + wu(xu)−
∑

e∈E[Xt]
w(e)mt

e.

This concludes our description of the label updating procedures. It remains to clarify how a
solution to the mBM on G can be retrieved from the computed label weights.

Lemma 14.19. Let r be T ’s root with Xr = {z} and M∗ ⊆ E an optimal multi-budgeted
matching in G. We define the set L∗ = {(m, o,B) ∈ Lr : oz = 1} of labels at r. Then

w(M∗) = max
x∈L∗

wr
(
x
)
.

Proof. We recall that Gr = G and E[Xr] = ∅ which implies that actually |L∗| = 1. For the
rmBM(r, x) with x ∈ L∗, inequalities (14.4c) are redundant to (14.4b), while equations
(14.4d) are not present. Moreover, inequalities (14.4e), (14.4f), and (14.4g) are redundant
as they are trivially satisfied by every matching. Thus, the rmBM(r, x) is equivalent to the
mBM on G and it holds that wr(x) = w(M∗) for x ∈ L∗.

A pseudo-code for our dynamic program is provided in Algorithm 6. An optimal multi-
budgeted matching M∗ ⊆ E can be found by backtracking the chosen maxima in the steps of
the dynamic program. We show that Algorithm 6 solves the mBM with a fixed number of
budgets constraints on graphs with bounded treewidth in pseudo-polynomial time.

Theorem 14.20. Let G = (V,E) be a simple graph with bounded treewidth tw(G) < W . Then
the mBM with fixed k on G can be solved in O(W 2 2W 2+W |V | ∏k

i=1B
2
i ) time.

Proof. The correctness of Algorithm 6 directly follows from Lemma 14.19 and the correctness
of the label updates in Lemmas 14.13, 14.14, 14.15, and Corollary 14.18. We analyze the
algorithm’s running time in two steps. First, we bound the number of label weights we need
to compute and then we bound the complexity of computing the weight of labels.

Recall that a nice tree decomposition (T,X ) of G has O(|V |) nodes. For each node t ∈ V (T ),
we have to consider all labels (mt, ot, bt) ∈ Lt. As G is simple, |E[Xt]| ≤ |Xt| (|Xt| − 1) ≤
W 2 − W which results in O(2W 2−W ) possible combinations for mt. For the domain of
the binary valued function ot holds that |Xt| ≤ W and hence there are at most O(2W )
combinations. The vector bt ∈ Nk with bti ∈ {0, . . . , Bi} for all i ∈ {1, . . . , k} determines
the reserved budget per cost function. Consequently, we have to consider

∏k
i=1(Bi + 1)
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Algorithm 6: The mBM on graphs with bounded treewidth
Input: Graph G = (V,E) with bounded treewidth tw(G) < W , weights w : E → N,

cost functions ci : E → N for i ∈ {1, . . . , k}, budgets B1, . . . , Bk ∈ N
Output: Weight of an optimal multi-budgeted matching in G

1 compute a nice tree decomposition (T,X ) of G
2 let t1, . . . , tn be an order on V (T ) of non-decreasing height h(t) defined as the

number of edges on the longest downward path from t to a leaf
3 for j = 1, . . . , n do
4 for xtj = (mtj , otj , btj )∈Ltj do
5 if tj is leaf in T then
6

wtj (mtj , otj , btj ) = 0

7 else if there exists v ∈ Xtj with otjv +∑
e∈δG(v)∩E[Xtj ]m

tj
e ≥ 2 or

i ∈ {1, . . . , k} such that btji +∑
e∈E[Xtj ] ci(e)m

tj
e > Bi then

8
wtj (mtj , otj , btj ) = −∞ //label is invalid

9 else if tj is an introduce node in T with introduced edges U = E[Xt] \ E[`] and
` the unique child of tj in T then

10
wtj (mtj , otj , btj ) = w`(m`, o`, btj ) +

∑
e∈U

w(e)mtj
e

where m`
e = m

tj
e for all e ∈ E[X`] and o`v = o

tj
v for all v ∈ X`

11 else if tj is a forget node in T with forgotten vertex {u} = X` \Xt, forgotten
edges U = E[X`] \ E[Xt], and ` the only child of tj in T then

12
wtj (mtj , otj , btj ) = max

x`∈L`(xtj )
w`(x`)

where L`(xtj ) =
{
x` ∈ L` : m`

e = m
tj
e ∀e ∈ E[Xtj ],

o`v = o
tj
v −m`

{v,u} ∀v ∈ Xtj ,

b`i = b
tj
i −

∑
e∈U

ci(e) m`
e ∀i ∈ {1, . . . , k}

}

13 else if tj is a join node in T and `, u the children of tj in T then
14

wtj (mtj , otj , btj ) = max
{x`,xu}∈L`,u(xtj )

w`(x`) + wu(xu)−
∑

e∈E[Xtj ]
w(e)mtj

e .

where L`,u(xtj ) =
{

(x`, xu) ∈ L` × Lu : m`
e = mu

e = m
tj
e ∀e ∈ E[Xtj ],

o`v + ouv = o
tj
v ∀v ∈ Xtj ,

b`i + bui = b
tj
i ∀i ∈ {1, . . . , k}

}
15

16 return maxx∈Lr wr(x)
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different values for bt. Putting everything together, we have to compute the weight for
O(|V | 2W 2 ∏k

i=1Bi) labels.

The initial validity check of labels can be performed in O(kW 2) time. Computing the weight
of labels for leaves can clearly be done in constant time. For introduce nodes, we can compute
the weight of labels in O(W ) time. Regarding the weight of labels corresponding to forget
nodes with forgotten vertex u ∈ X`, we maximize over all feasible choices for o`u and m`

e

with e ∈ U and consequently |L`(xt)| ≤ 2 W . Hence by enumerating over all possibilities, we
can compute the weight of xt in O(W ) time. Considering join nodes, we bound the number
of elements in L`,u(xt). The choices for m` and mu are fixed by mt. Splitting budgets, for
every i ∈ {1, . . . , k} we have bti + 1 ways to integrally split bti between b`i and bui . Thus, in
total there are O(∏k

i=1Bi) ways to split the budget between ` and u. Concerning the possible
choices of o` and ou, we have maximum freedom for otv = 1, i.e., either o`v or ouv takes value 1.
Hence, the number of feasible combinations of o` and ou is O(2W ). Consequently, |L`,u(xt)|
is in O(2W ∏k

i=1Bi). Evaluating elements in L`,u(xt) can be done in O(W 2) time and we can
thus compute the weight of xt in O(W 2 2W ∏k

i=1Bi) time.

Combining all cases, we can compute the weight of labels in O(W 2 2W ∏k
i=1Bi) time. The

resulting total running time of our algorithm is therefore in O(W 2 2W 2+W |V | ∏k
i=1B

2
i ). Last

but not least, we recall that a nice tree decomposition of G can be computed in linear
time (Bodlaender, 1996; Kloks, 1994).

We have just proven that Algorithm 6 solves the mBM on graphs with bounded treewidth
in pseudo-polynomial time for a fixed number of budget constraints. If we additionally
parameterize the mBM by the maximum budget B̄ := max1≤i≤k Bi, we get the following.

Corollary 14.21. The mBM on graphs with bounded treewidth tw(G) < W parametrized
by the number of budget constraints k, the width bound W , and the maximum budget B̄ is
fixed-parameter tractable (FPT ).

For multi-graphs, the running time analysis of Theorem 14.20 does not hold as we lose
our bound |E[Xt]| ≤ W 2 −W on the number of edges induced by a bag Xt ∈ X . Still,
Algorithm 6 is out-of-the-box applicable to multi-graphs of bounded treewidth and as we are
solely interested in the valid labels, we can strengthen the bound on the number of label we
need to consider. For every matching M ⊆ E(Gt), we have that |M ∩E[Xt]| ≤ bW2 c and thus
are at most (

|E|
bW2 c

)
≤ |E|

bW2 c

bW2 c!
≤ |E|bW2 c.

possible valid choices for mt. As a result, we can bound the number of valid labels for each
tree node t ∈ V (T ) by O(|V | |E|bW2 c 2W ∏k

i=1Bi) labels. An analogous argumentation as
in Theorem 14.20 paired with this tighter bound on the number of valid labels yields the
following corollary.
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Corollary 14.22. Let G = (V,E) be a multi-graph of bounded treewidth tw(G) < W . Then the
mBM with fixed k on G can be solved in O(22W |V | |E|bW+2

2 c ∏k
i=1B

2
i ) time.

We remark that trees are simple and have treewidth one. Therefore, Theorem 14.20 translates
to Theorem 14.10 on trees. Series-parallel graphs are generally multi-graphs and have a
treewidth of at most two. Unfortunately, Corollary 14.22 does not directly translate to
Theorem 14.6 on SP-graphs as it yields a worse running time. However, for simple SP-graphs
Korenblit and Levit (2011) have shown that |E(G)| ≤ 2|V (G)| − 3 and thus Theorem 14.20
translates to Theorem 14.6 on simple SP-graphs.
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Minimum Color-Degree Perfect
b-Matching Problems

15

This chapter studies the minimum color-degree perfect b-matching problem (Col-BM) which
is motivated by the staff assignment for MMUs. However, to stress that there are alternative
non-bipartite application of the Col-BM, we discuss an additional use case that is illustrated
in Figure 15.1. Assume that an airline aims to establish new flight connections using different
types of aircraft. The appropriate type of aircraft is given for every connection of interest and
the number of operable connections at each airport is dictated by the takeoff and landing
slots owned by the airline. As unused slots have to be returned permanently by policy so that
they can be reassigned to other airlines (International Air Transport Association, 2019), all
available slots at all airports have to be utilized. Operating different types of aircraft at the
same airport decreases flexibility in crew scheduling while it increases the cost for the storage
of spare-part. Therefore, the maximum number of different types of aircraft operated at any
airport should be minimized.

In the setting above, the selection of appropriate flight connections corresponds to a perfect
b-matching problem, which consists in finding an edge subset of a graph such that the vertices
in the resulting subgraph have certain prespecified degrees. However, a classical b-matching
neglects the diversity induced by the different types of aircraft. We can model the different
types of aircraft by adding colors to the edges of the underlying graph. This leads to the
Col-BM, a b-matching extension on an edge-colored graph with the objective of minimizing
the maximum number of differently colored edges incident to the same node.

3

2

2

1

2

1

1

Fig. 15.1.: Exemplary Col-BM instance for the establishment of flight connections.
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Before we provide a formal definition of the Col-BM, let us introduce some notation that
will be used throughout this chapter. Let G = (V,E) be an undirected graph with an edge
coloring E1∪̇ . . . ∪̇Eq = E and c̄ : E → {1, . . . , q} be the corresponding color function with
c̄(e) = j if and only if e ∈ Ej . Further, let colM (v) for v ∈ V and M ⊆ E denote the set of
colors in δM (v), i.e.,

colM (v) := c̄(δM (v)) = {j ∈ {1, . . . , q} : δM (v) ∩ Ej 6= ∅}.

We call the number of different colors of edges in M ⊆ E that are incident to v ∈ V , i.e.,
|colM (v)|, the (M -)color degree of v; similar to Fujita and Magnant (2011). For an edge subset
M ⊆ E, the color degree of M , fmax

G (M), is defined as the maximum M -color degree of nodes
in G, i.e., fmax

G (M) := maxv∈V |colM (v)|. We can now formalize the Col-BM as follows.

Definition 15.1 (Col-BM). Given an undirected graph G = (V,E) with an edge coloring
E1∪̇ . . . ∪̇Eq = E, and a mapping b : V → N, the minimum color-degree perfect b-matching
problem (Col-BM) asks for a perfect b-matching M ⊆ E of minimum color degree fmax

G (M).

This chapter is organized as follows. In Section 15.1, we prove that the Col-BM is NP-hard
in general. However, in Section 15.2, we identify a class of two-colored complete bipartite
graphs for which the Col-BM is solvable in polynomial time. Furthermore, we provide
dynamic programs for the Col-BM on series-parallel graphs (Section 15.3) and on simple
graphs with bounded treewidth (Section 15.4) that run in polynomial time if the number of
colors is fixed.

15.1 Complexity

Concerning the complexity of the Col-BM, we remark that if b(v) = 1 for all v ∈ V , the
Col-BM reduces to a polynomial-time solvable perfect matching problem. In the following,
we show that in general the decision version of the Col-BM is strongly NP-complete, even
when restricted to b(v) ∈ {1, 2} for all v ∈ V and q = 2 colors.

Theorem 15.2. The decision version of the Col-BM on two-colored bipartite graphs G =
(VA ∪ VB, E) with b(v) = 1 for all v ∈ VA and b(v) = 2 for all v ∈ VB is strongly NP-complete.

Proof. We reduce (3,B2)-SAT to the decision version of the Col-BM. The problem (3,B2)-SAT
is a strongly NP-complete special case of 3-SAT where every literal occurs exactly twice in
the formula (Berman et al., 2003). Let I be a (3,B2)-SAT instance with variables x1, . . . , xn

and clauses C1, . . . , Cm. We construct a corresponding Col-BM instance

Ĩ :=
(
G = ((U ∪W ) ∪ (V ∪R), E = E1 ∪ E2), b

)
,
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C1 = x1 ∨ x2 ∨ x3 C2 = x1 ∨ x2 ∨ x3 C3 = x1 ∨ x1 ∨ x3 C4 = x2 ∨ x2 ∨ x3

Layer 2

Layer 1

E1, E2

Fig. 15.2.: Construction of a perfect b-matching in the Col-BM instance Ĩ.

where G is composed of two layers; see Figure 15.2. Layer 1 models the correspondence
between a perfect b-matching with color degree one and a satisfying truth assignment for
an instance of (3,B2)-SAT. Layer 2 is an auxiliary, complete bipartite graph ensuring the
existence of a perfect b-matching. In the following, we refer to edges in E1 as blue edges and
to edges in E2 as yellow edges.

Layer 1 contains two sets of nodes V := {v1, . . . , vn} and U := {u1, . . . , um}, representing the
variables and clauses of I, respectively. We connect V and U via the following edges: blue
edges {vi, uj} for all positive literals xi ∈ Cj and yellow edges {vi, uj} for all negative literals
xi ∈ Cj . Finally, we set b(v) = 2 for all v ∈ V and b(u) = 1 for all u ∈ U . As a result, Layer 1
is bipartite by construction and

∑
v∈V b(v) >∑u∈U b(u) as for I holds 3m = 4n.

Layer 2 contains two sets of nodes W := {wi,k : i ∈ {1, . . . , n}, k ∈ {1, 2, 3}} ∪W ′ and
R := {ri : i ∈ {1, . . . , d7

6ne}} that ensure the existence of a perfect b-matching in G. Note
that 7

3n is integer as 3 divides n. If 7
3n is even, we define W ′ := ∅ and otherwise W ′ := {w0}.

We connect W with V and R via the following edges: a yellow-colored edge {vi, wi,3} and
blue-colored edges {vi, wi,1}, {vi, wi,2} for each i ∈ {1, . . . , n}, as well as blue-colored edges
{r, w} for all r ∈ R and w ∈ W . Finally, we set b(w) = 1 for all w ∈ W and b(r) = 2 for all
r ∈ R. As a result, G is bipartite by construction with node partitions V ∪ R and U ∪W ,
b-values b(x) = 2 for x ∈ V ∪R and b(y) = 1 for y ∈ U ∪W , and

∑
v∈V

b(v) +
∑
r∈R

b(r) =
∑
u∈U

b(u) +
∑
w∈W

b(w).

The Col-BM instance Ĩ can be constructed in polynomial time. Hence, it remains to be
shown that I is a Yes-instance if and only if Ĩ has a perfect b-matching M with color degree
fmax
G (M) = 1.

Let M ⊆ E be a perfect b-matching in G with fmax
G (M) = 1. Then |colM (vi)| = 1 for

all i ∈ {1, . . . , n} and we set xi = True if both edges in δM (vi) are blue and xi = False
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if both edges are yellow. It remains to be shown that x is a satisfying assignment for I.
By construction, for all j ∈ {1, . . . ,m} there exists exactly one i ∈ {1, . . . , n} such that
δM (uj) = {{vi, uj}}. If {vi, uj} is blue, then xi ∈ Cj by construction. Hence, our choice xi =
True verifies clause Cj . Analogously, if {vi, uj} is yellow, then xi ∈ Cj . Hence, our choice
xi = False verifies clause Cj . Consequently, x is a satisfying assignment for I.

Conversely, let x be a satisfying truth assignment for I. We construct a perfect b-matching
M ⊆ E as follows. We choose a verifying literal xi (xi) for each clause Cj and add the
corresponding blue (yellow) edge {vi, uj} to M . Thus, we select m edges in Layer 1 and
|δM (u)| = b(u) = 1 holds for all u ∈ U . As xi and xi cannot simultaneously be satisfied by x,
δM (v) contains only edges of the same color for all v ∈ V. Hence, up to this point it holds
that fmax

G (M) = 1.

To conclude our reduction, it suffices to extend M to Layer 2 without increasing fmax
G (M).

Therefore, we proceed for every vi ∈ V with |δM (vi)| < b(vi) as follows: if δM (vi) ∩ E1 6= ∅,
add {vi, wi,1} to M ; if δM (vi)∩E2 6= ∅, add {vi, wi,3} to M ; if δM (vi) = ∅, add both {vi, wi,1}
and {vi, wi,2} to M . Thus, |δM (v)| = 2 and |colM (v)| = 1 for all v ∈ V . Finally, let M ′ be a
perfect b-matching in G′ := G[R ∪ {w ∈W : δM (w) = ∅}], which exists as G′ is a complete
bipartite graph and, by construction,

∑
r∈R

b(r) =
∑

w∈W : δM (w)=∅
b(w).

Consequently, M∗ := M ∪M ′ is a perfect b-matching in G with fmax
G (M∗) = 1.

As the decision version of the Col-BM is obviously in NP, as we can check the feasibility
and color-degree of a given b-matching in O(|V (G)| · |E|) time, the problem’s strong NP-
completeness follows.

Theorem 15.2 states that we can solve the strongly NP-complete (3,B2)-SAT problem by
deciding whether an optimal perfect b-matching in G has color degree one or two. This
directly implies the inapproximability of the Col-BM.

Corollary 15.3. There exists no α-approximation algorithm for the Col-BM with 1 < α < 2
unless P = NP.

Note that any b-matching in a two-colored graph has color degree at most two. Hence, every
algorithm that produces a perfect b-matching is a 2-approximation algorithm for the Col-BM
on two-colored graphs. Further remark that the Col-BM on a two-colored bipartite graph
G = (VA ∪ VB, E) with b(v) = 1 for all v ∈ VA and b(v) = 2 for all v ∈ VB corresponds to the
task of partitioning G into monocromatic paths of length 3 whose end-nodes are exclusively
in VA (spanning P3-partition). It is known that partitioning an uncolored graph into paths of
length 3 (P3-partition) is NP-complete on bipartite graphs of maximum degree 3 (Monnot
and Toulouse, 2007). However, to the best of our knowledge, no work has been published on
monochromatic P3-partition problems in edge-colored graphs nor on spanning P3-partition
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problems in uncolored graphs. In the case that b(v) = r, r ∈ N, for all v ∈ V , the Col-BM
is closely related to the partitioning of graphs into monochromatic r-factors. A survey on
partitioning problems of edge-colored graphs into monochromatic subgraphs can be found
in Kano and Li (2008).

15.2 Complete Bipartite Graphs

In the previous section, we showed that the Col-BM is NP-hard on two-colored bipartite
graphs G = (VA ∪ VB, E = E1 ∪ E2) with b(v) = 1 for all v ∈ VA and b(v) = 2 for all v ∈ VB.
In this section, we additionally assume G to be complete and prove that in this case the
Col-BM is solvable in polynomial time by providing a constructive algorithm. For better
lucidity we abbreviate the edge notation {v, w} as vw throughout this section.

Let G = (VA∪VB, E = E1∪E2) be a two-colored complete bipartite graph with color function
c̄ and b(v) = 1 for all v ∈ VA and b(v) = 2 for all v ∈ VB. We assume |VA| = 2 |VB| to ensure
that G contains a perfect b-matching. As a result, the Col-BM reduces to the question whether
G contains a perfect b-matching M ⊆ E with fmax

G (M) = 1.

We utilize two characteristics of such graphs to classify those for which a perfect b-matching
M ⊆ E with fmax

G (M) = 1 exists. We begin by identifying a subgraph which is sufficient for
the existence of a perfect b-matching M ⊆ E with fmax

G (M) = 1.

Lemma 15.4. Let G = (VA ∪ VB, E) be a two-colored complete bipartite graph with b(v) = 1
for all v ∈ VA, b(v) = 2 for all v ∈ VB. If G contains the gadget

G′ := ({b, c, d} ∪ {r, s}, {br} ∪ {bs, cr, cs, ds}) ,

illustrated in Figure 15.3(a) as a subgraph, then there exists a perfect b-matching M ⊆ E in G
with color degree fmax

G (M) = 1.

Proof. Let G = (VA ∪ VB, E) be a graph that contains the subgraph G′. We present an
algorithm to construct a perfect b-matching M ⊆ E in G with fmax

G (M) = 1. To that end, let
G′ be the subgraph defined above and initialize M = ∅. For a given edge subset M ⊆ E, we
call a node v ∈ V (G) (M)-unsatisfied if |δM (v)| < b(v).

bG′: c d

r s
b = 1
b = 2

(a)

b c da

r s
b = 1
b = 2

(b)

Fig. 15.3.: (a) Sufficient subgraph G′. (b) Case distinction for edge ar ∈ E.
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Repeat the following two steps until all w ∈ VB \ V (G′) are satisfied. First, choose an
unsatisfied node w ∈ VB \ V (G′) and three distinct, unsatisfied nodes v1, v2, v3 ∈ VA \ V (G′).
Second, add two arbitrary edges e, f ∈ {v1w, v2w, v3w} of identical color to M , which exist
as G is two-colored.

By construction fmax
G (M) = 1, exactly one node a ∈ VA \ V (G′) remains unsatisfied, and

M is a perfect b-matching in G [V (G) \ ({a} ∪ V (G′))]. Hence, it suffices to prove that there
always exists a perfect b-matching M ′ in the induced subgraph G′′ := G[{a} ∪ V (G′)] with
fmax
G′′ (M ′) = 1, as then M∗ := M ∪M ′ is a perfect b-matching in G with fmax

G (M∗) = 1. We
distinguish two cases based on the color of the edge ar; see Figure 15.3(b):

1) If the color c̄(ar) = c̄(br), then M ′ = {ar, br, cs, ds} is a perfect b-matching in G′′ with
fmax
G′′ (M ′) = 1.

2) If the color c̄(ar) 6= c̄(br), then c̄(ar) = c̄(cr) and M ′ = {ar, cr, bs, ds} is a perfect
b-matching in G′′ with fmax

G′′ (M ′) = 1.

In either case, M∗ := M ∪M ′ is a perfect b-matching in G with fmax
G (M∗) = 1.

As not all Col-BM instances contain the gadget G′, we continue by exploiting the fact that in
every perfect b-matching M in a q-colored complete bipartite graph G = (VA ∪ VB, E) with
fmax
G (M) = 1, the incident edges δM (v) of every node v ∈ VB are necessarily of the same

color. We still assume b(v) = 1 for all v ∈ VA and b(v) = 2 for all v ∈ VB. As a result, for
every node v ∈ VB only node pairs that are connected to v by edges of the same color are
potential matching partners.

Definition 15.5. Let G be a q-colored graph. For v ∈ V (G) and a color i ∈ {1, . . . , q}, we
define the i-colored neighborhood of v as

N i(v) := {w ∈ V (G) : c̄(vw) = i}.

Remark that in a complete bipartite graph G = (VA ∪ VB, E), every node v ∈ VB induces
a partition {N1(v), . . . , N q(v)} of VA. If this partition of VA is identical for all v ∈ VB,
i.e., {N1(r), . . . , N q(r)} = {N1(s), . . . , N q(s)} for all r, s ∈ VB, we call G stable (color)
partitioned; see Figure 15.4. We use the notion of a stable partitioning to determine whether
a perfect b-Matching M in G with color degree fmax

G (M) = 1 exists.

Fig. 15.4.: Stable-partitioned graph
with partitions of VA in-
duced by the i-colored
neighborhoods of nodes
r, s, t ∈ VB .

r s t

N i(r)

N i(s)

N i(t)
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Lemma 15.6. Let G = (VA ∪VB, E) be a q-colored, stable-partitioned, complete bipartite graph
with b(v) = 1 for all v ∈ VA and b(v) = 2 for all v ∈ VB. Then there exists a perfect b-matching
M ⊆ E in G with fmax

G (M) = 1 if and only if
∣∣N i(w)

∣∣ is even for all colors i ∈ {1, . . . , q} and
all nodes w ∈ VB.

Proof. Let {P1, . . . , Pq} denote the unique partition of VA induced by the set of i-colored
neighborhoods of r ∈ VB. If |Pi| is even for all i ∈ {1, . . . , q}, we can construct a perfect b-
matching M ⊆ E with fmax

G (M) = 1 by iteratively matching two unsatisfied nodes belonging
to the same class Pi to an unsatisfied node of VB.

Conversely, if M ⊆ E is a perfect b-Matching in G with fmax
G (M) = 1, then every Pi is

canonically partitioned by M into disjoint node pairs. Thus, |Pi| has to be even for all
i ∈ {1, . . . , q}.

We can now show that every two-colored complete bipartite graph G = (V,E) with |V | > 6
either fulfills the conditions of Lemma 15.4 or the conditions of Lemma 15.6. This leads to a
complete characterization of two-colored complete bipartite graphs with more than six nodes
and will be used to derive an algorithm for the Col-BM on this graph class.

Lemma 15.7. Let G = (VA ∪ VB, E) be a two-colored complete bipartite graph with |VA| =
2 |VB| and |V (G)| > 6. Then exactly one of the following is true.

1) G contains the gadget G′ defined in Lemma 15.4.

2) G is stable partitioned.

Proof. Assume 1) holds. Then 2) is violated as r and s induce different partitions of {b, c, d}.

Conversely, assume 2) is violated. Therefore, there exist r, s ∈ VB such that {N1(r), N2(r)} 6=
{N1(s), N2(s)}. Hence, at least one of the following holds

i) N1(s) intersects both N1(r) and N2(r), i.e., N1(r) ∩N1(s) 6= ∅ ∧ N2(r) ∩N1(s) 6= ∅,

ii) N2(s) intersects both N1(r) and N2(r), i.e., N1(r) ∩N2(s) 6= ∅ ∧ N2(r) ∩N2(s) 6= ∅.

Remark that as |V (G)| > 6 and |VA| = 2 |VB|, it directly follows that |VA| ≥ 6 and |VB| ≥ 3.

Without loss of generality, assume that i) holds as the argumentation is analogous in the
case that ii) holds. The validity of i) directly implies

∣∣N1(s)
∣∣ ≥ 2. If

∣∣N1(s)
∣∣ ≥ 3, then

we choose b ∈ N2(r) ∩N1(s), c ∈ N1(r) ∩ N1(s) and d ∈ N1(s) \ {b, c}. Therefore, bs, cr,
cs and ds are of color one whereas br is of color two; see Figure 15.5. Consequently,

Fig. 15.5.: Setting if i) holds and
∣∣N1(s)

∣∣ ≥ 3.

N2(r) N1(r)

b c d

r s
b = 1
b = 2
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N1(r)N2(r)

bcd

r s
b = 1
b = 2

(a)

N2(r) N1(r)

c d b

r s
b = 1
b = 2

(b)

Fig. 15.6.: Setting if
∣∣N1(s)

∣∣ = 2 and ii) is violated and (a) |N1(r)| = 1; (b)
∣∣N2(r)

∣∣ = 1.

({b, c, d, r, s}, {br, bs, cr, cs, ds}) represents a gadget as defined in Lemma 15.4. If
∣∣N1(s)

∣∣ = 2
and ii) holds, then

∣∣N2(s)
∣∣ ≥ 3 and the statement follows by symmetry.

Therefore, assume that
∣∣N1(s)

∣∣ = 2 and ii) is violated. Then either
∣∣N1(r)

∣∣ = 1 or
∣∣N2(r)

∣∣ = 1;
see Figure 15.6. If

∣∣N1(r)
∣∣ = 1, then

∣∣N2(r)
∣∣ ≥ 5 and

∣∣N2(r) ∩N2(s)
∣∣ ≥ 4. We choose

b ∈ N2(r) ∩N1(s), c ∈ N2(r) ∩N2(s), and d ∈ N2(r) \ {b, c}. Therefore, br, cr, cs and dr

are of color two whereas bs is of color one. Consequently, ({b, c, d, r, s}, {br, bs, cr, cs, dr})
represents a gadget as defined in Lemma 15.4; see Figure 15.6(a). If

∣∣N2(r)
∣∣ = 1, then∣∣N1(r)

∣∣ ≥ 5 and
∣∣N1(r) ∩N2(s)

∣∣ ≥ 4, and we choose b ∈ N1(r) ∩N2(s), c ∈ N1(r) ∩N1(s)
and d ∈ N1(r) \ {b, c}. Therefore br, cr, cs, and dr are of color one whereas bs is of color two.
Consequently, ({b, c, d, r, s}, {br, bs, cr, cs, dr}) represents a gadget as defined in Lemma 15.4;
see Figure 15.6(b).

We conclude, if 2) is violated, then 1) holds which completes our proof.

Remark that the condition imposed on the size of the graph G in Lemma 15.7 is tight.

Proposition 15.8. There exists a graph G with |V (G)| = 6 that is neither stable partitioned
nor does it contain the gadget G′.

Proof. The graph

({a, b, c, d} ∪ {r, s}, {ar, as, br, ds} ∪ {bs, cr, cs, dr})

is neither stable partitioned nor contains the gadget G′; see Figure 15.7.

Lemma 15.7 implies that, on a two-colored complete bipartite graph G = (VA ∪ VB, E)
with |V (G)| > 6, the Col-BM can be reduced to identifying the gadget G′ as a subgraph, or
determining that none exists; see Algorithm 7. We first check whether G is stable partitioned.
If this is the case, G does not contain the gadget G′ and we can determine the minimum

Fig. 15.7.: Graph G with |V (G)| = 6 that nei-
ther is stable partitioned nor con-
tains the gadget G′.

ba c d

r s
b = 1
b = 2
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Algorithm 7: The Col-BM on complete two-colored bipartite graphs
Input: Two-colored complete bipartite graph G = (VA ∪ VB, E = E1 ∪ E2) with

b(v) = 1 for all v ∈ VA and b(v) = 2 for all v ∈ VB
Output: Minimum color degree of a perfect b-matching in G

1 choose r ∈ VB
2 P := {N1(r), N2(r)}
3 for s ∈ VB \ {r} do // check if G is stable partitioned
4 S := {N1(s), N2(s)}
5 if P 6= S then // gadget G′ exists
6 return fmax := 1

7 for p ∈ P do // check if all |p| are even
8 if |p| is odd then
9 return fmax := 2

10 return fmax := 1

color degree of a perfect b-matching in G by checking the cardinalities of the elements of the
unique partition of VA: if all cardinalities are even, the minimum color degree of a perfect
b-matching in G is one otherwise it is two. In the other case, G contains the gadget G′ and
hence the minimum color degree of a perfect b-matching in G is one.

Theorem 15.9. The Col-BM on two-colored complete bipartite graphs G = (VA ∪ VB, E) with
b(v) = 1 for all v ∈ VA and b(v) = 2 for all v ∈ VB can be solved in O(|V |2) time using
Algorithm 7.

Proof. The correctness of Algorithm 7 follows from Lemmas 15.4, 15.6, and 15.7. Analyzing
the algorithm’s running time: The partitions P and S can be computed in O (|VA|) = O (|V |)
time. The comparison of S and P can be performed in O (|VA|) time if they are represented
using characteristic vectors. Thus, Algorithm 7 checks if every w ∈ VB induces the same
partition of VA in O (|VA|+ |VB| |VA|) time. The cardinalities of the two color classes and
their parity can be checked in O (|VA|) time. Hence, Algorithm 7 solves the Col-BM in O(|V |2)
time.

Remark that if Algorithm 7 terminates in line 6 (line 10), an optimal perfect b-Matching can
be determined using the construction from the proof of Lemma 15.4 (Lemma 15.6).

15.3 Series-parallel Graphs

In this section, we consider the Col-BM on series-parallel graphs. We show that, in case
of a fixed number of colors, the Col-BM can be solved in polynomial time on SP-graphs by
dynamic programming. Subsequently, we extend this dynamic program to solve the Col-BM
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on trees. Series-parallel graphs and their decomposition trees were formally introduced in
Definition 14.4.

LetG = (V,E) be an SP-graph with edge coloring E1∪̇ . . . ∪̇Eq = E, and b : V → N a mapping.
It is known that a decomposition tree of an SP-graph can be computed in linear time (Valdes
et al., 1982). Thus, let T be a decomposition tree for G. For t ∈ V (T ), let Gt denote the
subgraph of G with source σt and sink τ t corresponding to t. We propose a dynamic program
to solve the Col-BM on SP-graphs using the corresponding decomposition trees. First, we
introduce a set of labels

Lt :=
{

(α, Fσ , β, Fτ ) : 0 ≤ α ≤ b(σt), 0 ≤ β ≤ b(τ t), Fσ , Fτ ⊆ {1, . . . , q}
}

for every tree node t ∈ V (T ). The parameters α and β define new, smaller b-values for σt and
τ t, whereas the color-subsets Fσ , Fτ define the prespecified set of colors for edges incident to
σt and τ t, respectively.

Before we specify the dynamic program, we introduce some additional notation. For any
node t ∈ V (T ) and a label x = (α, Fσ , β, Fτ ) ∈ Lt, we call an edge subset M ⊆ E(Gt) a
(t, x)-restricted matching if

∣∣δM (σt)
∣∣ = α,

∣∣δM (τ t)
∣∣ = β , colM (σt) = Fσ , colM (τ t) = Fτ and

|δM (v)| = b(v) for all v ∈ V (Gt) \ {σt, τ t}. Consequently, we define the (t, x)-restricted
Col-BM as

min
M⊆E(Gt)

{
fmax
Gt (M) : M is (t, x)-restricted matching in Gt

}
.

For a node t ∈ V (T ) and a label x ∈ Lt, we call the optimal solution value of the (t, x)-
restricted Col-BM the cost ct(x) of x at t. Thus, for all perfect b-matchings M∗ in G with
minimum color degree it holds that

fmax
G (M∗) = min

Fσ ,Fτ⊆{1,...,q}
cr ((b(σr), Fσ , b(τ r), Fτ )) ,

for the root r ∈ V (T ) of the decomposition tree.

Our dynamic program solving the Col-BM on SP-graphs exploits the structure of decomposi-
tion trees and recursively computes label costs bottom-up. To that end, we consider the three
types of nodes in the decomposition tree T of G starting with the initialization in leaves.

Lemma 15.10. Let t ∈ V (T ) be a leaf in T , and let e ∈ E denote the single edge in the
corresponding graph Gt. Then ct((0, ∅, 0, ∅)) = 0, ct((1, {c̄(e)}, 1, {c̄(e)})) = 1, and ct(x) =∞
for all other labels x ∈ Lt.

Proof. If t ∈ V (T ) is a leaf in T , the corresponding graph Gt consists of exactly one edge by
the definition of decomposition trees, i.e., E(Gt) = {e}. Therefore, there exists exactly one
(t, (0, ∅, 0, ∅))-restricted matching: M0 = ∅. Hence, ct((0, ∅, 0, ∅)) = fmax

Gt
(M0) = 0. Moreover,

there also exists exactly one (t, (1, {c̄(e)}, 1, {c̄(e)}))-restricted matching: M1 = {e}. Hence,
ct((1, {c̄(e)}, 1, {c̄(e)})) = fmax

Gt
(M1) = 1. For all other labels x ∈ Lt, the (t, x)-restricted

Col-BM is infeasible and ct(x) =∞.
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For the two remaining types of tree nodes, we can derive the cost of labels recursively from
the label costs of their child nodes. We begin by considering S-nodes, which correspond
to the series composition of the graphs associated with its child nodes. As a result of this
interrelation, every restricted matching at an S-nodes can be decomposed into two restricted
matchings at its child nodes. By minimizing over all feasible combinations of restricted
matchings at the child nodes, we get the following result.

Lemma 15.11. Let t ∈ V (T ) be an S-node in T with child nodes ` and u. Then the cost of
xt =

(
αt, F tσ , β

t, F tτ
) ∈ Lt at t can be computed as

ct
(
xt
)

= min
0≤k≤b(τ`),

F `τ ,F
u
σ⊆{1,...,q}

max
{
c`
((
αt, F tσ , k, F

`
τ

))
, cu

((
b(τ `)− k, F uσ , βt, F tτ

))
,
∣∣∣F `τ ∪ F uσ ∣∣∣} .

Proof. If t ∈ V (T ) is an S-node with child nodes ` and u, by definition σt = σ`, τ t = τu,
and τ ` = σu =: y. Let xt =

(
αt, F tσ , β

t, F tτ
) ∈ Lt and M t ⊆ E(Gt) be an optimal solution

to the (t, xt)-restricted Col-BM, i.e., ct(xt) = fmax
Gt

(M t). By defining M ` := M t ∩ E(G`) and
Mu := M t ∩ E(Gu), it follows that

fmax
Gt (M t) = max

{
fmax
G`

(M `), fmax
Gu (Mu), |colM`(y) ∪ colMu(y)| }. (15.1)

Furthermore, for k̄ := |δM`(y)|, F̄ `τ := colM`(y), and F̄ uσ := colMu(y) it holds that M ` is
an
(
`,
(
αt, F tσ , k̄, F̄

`
τ

))
-restricted matching in G` while Mu is a

(
u,
(
b(y)− k̄, F̄ uσ , βt, F tτ

))
-

restricted matching in Gu. Thus by definition, we have that fmax
G`

(M `) ≥ c`
((
αt, F tσ , k̄, F̄

`
τ

))
and fmax

Gu
(Mu) ≥ cu

((
b(y)− k̄, F̄ uσ , βt, F tτ

))
which yields in combination with (15.1) that

ct(xt) = fmax
Gt (M t) = max

{
fmax
G`

(M `), fmax
Gu (Mu), |colM`(y) ∪ colMu(y)|

}
≥ max

{
c`
((
αt, F tσ , k̄, F̄

`
τ

))
, cu

((
b(y)− k̄, F̄ uσ , βt, F tτ

))
,
∣∣∣F̄ `τ ∪ F̄ uσ ∣∣∣}

≥ min
0≤k≤b(y),

F `τ ,F
u
σ⊆{1,...,q}

max
{
c`
((
αt, F tσ , k, F

`
τ

))
, cu

((
b(y)− k, F uσ , βt, F tτ

))
,
∣∣∣F `τ ∪ F uσ ∣∣∣} .

Conversely, let

k∗, F `∗τ , F
u∗
σ = arg min

0≤k≤b(y),
F `τ ,F

u
σ⊆{1,...,q}

max
{
c`
((
αt, F tσ , k, F

`
τ

))
, cu

((
b(y)− k, F uσ , βt, F tτ

))
,
∣∣∣F `τ ∪ F uσ ∣∣∣} .

Moreover, let M ` ⊆ E(G`) be an optimal solution to the
(
`,
(
αt, F tσ , k

∗, F `∗τ
))

-restricted

Col-BM on G` and Mu ⊆ E(Gu) be an optimal solution to the
(
u,
(
b(y)− k∗, F u∗σ , βt, F tτ

))
-
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restricted Col-BM on Gu. We define the matching M t := M ` ∪Mu in Gt. By construction,
M t is (t, xt)-restricted, colM`(τ) = F `∗τ , and colMu(σ) = F u∗σ . Thus,

ct(xt) ≤ fmax
Gt (M t) = max

{
fmax
G`

(M `), fmax
Gu (Mu), |colM`(τ) ∪ colMu(σ)|

}
= max

{
c`
((
αt, F tσ , k

∗, F `∗τ
))
, cu

((
b(y)− k∗, F u∗σ , βt, F tτ

))
,
∣∣∣F `∗τ ∪ F u∗σ ∣∣∣}

= min
0≤k≤b(y),

F `τ ,F
u
σ⊆{1,...,q}

max
{
c`
((
αt, F tσ , k, F

`
τ

))
, cu

((
b(y)− k, F uσ , βt, F tτ

))
,
∣∣∣F `τ ∪ F uσ ∣∣∣} .

To conclude the computation of label costs, we consider P -nodes. Recall, that P -nodes
correspond to the parallel composition of the graphs associated with its child nodes. Thus,
we can similarly compute the cost of labels by minimizing over all feasible combinations of
restricted matchings at the child nodes.

Lemma 15.12. Let t ∈ V (T ) be a P -node in T with child nodes ` and u. Then the cost of
xt =

(
αt, F tσ , β

t, F tτ
) ∈ Lt at t can be computed as

ct(xt) = min
0≤k≤αt, F `σ∪Fuσ=F tσ
0≤m≤βt, F `τ∪Fuτ =F tτ

max
{
c`
((
k, F `σ ,m, F

`
τ

))
, cu

((
αt−k, F uσ , βt−m,F uτ

))
,
∣∣∣F tσ ∣∣∣ , ∣∣∣F tτ ∣∣∣} .

Proof. If t ∈ V (T ) is a P -node with child nodes ` and u, by definition σ` = σu = σt and
τ ` = τu = τ t. Let xt =

(
αt, F tσ , β

t, F tτ
) ∈ Lt and M t ⊆ E(Gt) be an optimal solution to

the (t, xt)-restricted Col-BM, i.e., ct(xt) = fmax
Gt

(M t). By defining M ` := M t ∩ E(G`) and
Mu := M t ∩ E(Gu), it follows that

fmax
Gt (M t) = max

{
fmax
G`

(M `), fmax
Gu (Mu), |colM`(σ) ∪ colMu(σ)| , |colM`(τ) ∪ colMu(τ)|

}
= max

{
fmax
G`

(M `), fmax
Gu (Mu),

∣∣∣F tσ ∣∣∣ , ∣∣∣F tτ ∣∣∣} .
(15.2)

For the choice of k̄ := |δM`(σ)|, m̄ := |δM`(τ)| , F̄ `σ := colM`(σ), and F̄ `τ := colM`(τ), the
matching M ` is

(
`,
(
k̄, F̄ `σ, m̄, F̄

`
τ

))
-restricted by construction. Moreover, for F̄ uσ := colMu(σ)

and F̄ uτ := colMu(τ) the matching Mu is
(
u,
(
αt−k̄, F̄ uσ , βt−m̄, F̄ uτ

))
-restricted. Thus by

definition, fmax
G`

(M `) ≥ c`
((
k̄, F̄ `σ, m̄, F̄

`
τ

))
and fmax

Gu
(Mu) ≥ cu

((
αt−k̄, F̄ uσ , βt−m̄, F̄ uτ

))
which yields in combination with (15.2) that

ct(xt) = fmax
Gt (M t) = max

{
fmax
G`

(M `), fmax
Gu (Mu),

∣∣∣F tσ ∣∣∣ , ∣∣∣F tτ ∣∣∣}
≥ max

{
c`
((
k̄, F̄ `σ, m̄, F̄

`
τ

))
, cu

((
αt − k̄, F̄ uσ , βt − m̄, F̄ uτ

))
,
∣∣∣F tσ ∣∣∣ , ∣∣∣F tτ ∣∣∣}

≥ min
0≤k≤αt, F `σ∪Fuσ=F tσ
0≤m≤βt, F `τ∪Fuτ =F tτ

max
{
c`
((
k, F `σ ,m, F

`
τ

))
, cu

((
αt−k, F uσ , βt−m,F uτ

))
,
∣∣∣F tσ ∣∣∣ , ∣∣∣F tτ ∣∣∣} .
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Conversely, let k∗, F `∗σ , F
u∗
σ ,m∗, F `∗τ , F

u∗
τ be an optimal solution to

arg min
0≤k≤αt, F `σ∪Fuσ=F tσ
0≤m≤βt, F `τ∪Fuτ =F tτ

max
{
c`
((
k, F `σ ,m, F

`
τ

))
, cu

((
αt − k, F uσ , βt −m,F uτ

))
,
∣∣∣F tσ ∣∣∣ , ∣∣∣F tτ ∣∣∣} .

Moreover, let M ` ⊆ E(G`) be an optimal solution to the
(
`,
(
k∗, F `∗σ ,m

∗, F `∗τ
))

-restricted

Col-BM onG` andMu ⊆ E(Gu) be an optimal solution to the
(
u,
(
αt − k∗, F u∗σ , βt −m∗, F u∗τ

))
-

restricted Col-BM on Gu. We define the matching M t := M ` ∪Mu in Gt. By construction,
M t is (t, xt)-restricted, F `∗σ ∪ F u∗σ = F tσ , and F `∗τ ∪ F u∗τ = F tτ . Thus,

ct(xt) ≤ fmax
Gt (M t)

= max
{
fmax
G`

(M `), fmax
Gu (Mu), |colM`(σ) ∪ colMu(σ)| , |colM`(τ) ∪ colMu(τ)|

}
= max

{
fmax
G`

(M `), fmax
Gu (Mu),

∣∣∣F `∗σ ∪ F u∗σ ∣∣∣ , ∣∣∣F `∗τ ∪ F u∗τ ∣∣∣}
= max

{
fmax
G`

(M `), fmax
Gu (Mu),

∣∣∣F tσ ∣∣∣ , ∣∣∣F tτ ∣∣∣}
= max

{
c`
((
k∗, F `∗σ ,m

∗, F `∗τ
))
, cu

((
αt − k∗, F u∗σ , βt −m∗, F u∗τ

))
,
∣∣∣F tσ ∣∣∣ , ∣∣∣F tτ ∣∣∣}

= min
0≤k≤αt, F `σ∪Fuσ=F tσ
0≤m≤βt, F `τ∪Fuτ =F tτ

max
{
c`
((
k, F `σ ,m, F

`
τ

))
, cu

((
αt−k, F uσ , βt−m,F uτ

))
,
∣∣∣F tσ ∣∣∣ , ∣∣∣F tτ ∣∣∣} .

A perfect b-matching M∗ ⊆ E in G of minimum color degree can be obtained by backtracking
the chosen minima in the steps of the dynamic program.

Next, we consider the running time of our dynamic program. For better lucidity, let B :=
maxv∈V b(v) denote the maximum b-value.

Theorem 15.13. The Col-BM parameterized by the number of colors q on SP-graphs is FPT
and can be solved in O(|E| · 36q ·B4) time.

Proof. The correctness of the dynamic program follows from Lemmas 15.10, 15.11, and
15.12. Regarding its running time, observe that the costs of O (B2 · 4q) labels need to be
computed for each node t ∈ V (T ). The computational complexity of computing the costs of
labels is dominated by the computation of label costs for P -nodes. For P -nodes, we have
to minimize over O(B) choices for k and m, respectively. For each color in F tσ , that color
can be either in F `σ , in F uσ , or in both which yields O(3q) possibilities. The same estimation
holds for F tτ and thus we compute the minimum of at most O (9q ·B2) maxima and every
maximum can be calculated in O(1) time. As |V (T )| = 2 |E| − 1 and a decomposition tree
can be computed in linear time (Valdes et al., 1982), the total running time of the algorithm
is in O (|E| · 36q ·B4).
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We note that in all Col-BM instances, B ≤ |E| and therefore our algorithm has polynomial
running time if q is constant.

Moreover, we can extend our algorithm to solve the Col-BM on trees using the graph trans-
formation from Chapter 14: given a Col-BM instance I on a tree T = (V,E), we construct
an auxiliary graph GT by adding a new vertex y, connecting it to all leaves of T and set-
ting b(y) = 0. By construction, GT is series-parallel (Lemma 14.9) and contains at most
2(|V | − 1) edges. Furthermore, every perfect b-matching in GT contains no edges from
δGT (y) = E(GT ) \E and is therefore a perfect b-matching in T . The edges in δGT (y) can be
colored arbitrarily.

Corollary 15.14. The Col-BM parameterized by the number of colors q on trees is FPT and
can be solved in O(|V | · 36q ·B4) time.

15.4 Graphs with Bounded Treewidth

We proceed by considering the Col-BM on graphs with bounded treewidth, which is a more
general graph class that includes SP-graphs and trees. Using dynamic programming, we show
that the Col-BM on graphs with bounded treewidth is polynomial-time solvable for a fixed
number of colors. To that end we make use of the concept of tree decompositions and the set
of nice tree decompositions that we previously formalized in Definitions 14.11 and 14.12.

Our dynamic program for solving the Col-BM on graphs with bounded treewidth exploits
the structure of nice tree decompositions and recursively computes label costs bottom-up.
Let G = (V,E) be a graph with bounded treewidth tw(G) < W ∈ N, E1 ∪̇ . . . ∪̇ Eq = E

be an edge coloring of G, and c̄ : E → {1, . . . , q} the corresponding color function. Further,
let (T,X ) be a nice tree decomposition of G such that tw(G, (T,X )) < W . Without loss of
generality, we assume that the bag Xr, corresponding to the root r of T , contains exactly one
vertex. Should (T,X ) violate this assumption, we simply add a sequence of forget nodes to r
and redefine T ’s root.

For a tree node t ∈ V (T ) we denote the set of edges of G induced by its bag Xt with E[Xt]
and the subgraph of G induced by the vertices in the bags of the subtree of T rooted in t with
Gt. As before, for a vertex v ∈ V and a subset of edges M ⊆ E, we denote the set of colors in
δM (v) by colM (v). Finally, for all mappings f : A → B, we abbreviate fa := f(a) for a ∈ A
for ease of notation.

We introduce labels of the form

x = (m,F, β) ∈ Lt := {0, 1}E[Xt] × P({1, . . . , q})Xt × NXt

at the tree nodes t ∈ V (T ) to define an auxiliary variant of Col-BM on the subgraph Gt to
which we refer as the xCol-BM(t,x). To that end, the binary-valued mapping m : E[Xt] →
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{0, 1} prespecifies whether an edge e ∈ E[Xt] is part of the b-matching in Gt or not. The
mapping F : Xt → P({1, . . . , q}) indicates for each vertex v ∈ Xt the set of unlocked edge
colors Fv ⊆ {1, . . . , q}. Only edges from δGt(v) with unlocked colors may be chosen as part
of a b-matching and all unlocked colors count towards the color degree of a vertex – even if
they are unused. This gives rise to the definition of the x-(M-)color degree of v ∈ V (Gt):

|colM (x, v)| =
|Fv| if v ∈ Xt,

|colM (v)| else.

Finally, the mapping β : Xt → N defines the required degree of each vertex v ∈ Xt with
respect to matching edges in E(Gt)\E[Xt]. We formalize the auxiliary problem xCol-BM(t,x)
as follows:

min
M⊆E(Gt)

max
v∈V (Gt)

|colM (x, v)| (15.3a)

s.t. |e ∩M | = me ∀e ∈ E[Xt] (15.3b)

|δM (v)| = b(v) ∀v ∈ V (Gt) \Xt (15.3c)

|δM (v)| ≤ b(v) ∀v ∈ Xt (15.3d)

|δM (v) \ E[Xt]| = βv ∀v ∈ Xt (15.3e)

colM (v) ⊆ Fv ∀v ∈ Xt. (15.3f)

Every b-matching in Gt satisfying the constraints (15.3b) – (15.3f) is called (t, x)-feasible.
We define the cost ct(x) of label x ∈ Lt at tree node t as the optimal solution value to
the xCol-BM(t,x). If the xCol-BM(t,x) is infeasible, we call the label x invalid and we set
ct(x) =∞. All remaining labels are called valid and we calculate their cost recursively. To
that end, we consider the four types of nodes in the nice tree decomposition (T,X ) of G
starting with the initialization in leaves.

Lemma 15.15. Let t ∈ V (T ) be a leaf with Xt = {v} for some v ∈ V . Then the cost of a valid
label x = (m,F , β) ∈ Lt at t can be computed as

ct(x) = |Fv| .

Proof. As t is a leaf, E[Xt] = ∅ and Gt consists of the isolated vertex v ∈ Xt. All valid labels
x ∈ Lt have the form x = (m,F , β) with Fv ⊆ {1, . . . , q}, and βv = 0. The only (t, x)-feasible
b-matching in Gt is M := ∅ and thus, ct(x) = |colM (x, v)| = |Fv|.

For the three remaining types of tree nodes, label costs can be derived recursively from the
label costs of child nodes. We begin by considering introduce nodes.
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Fig. 15.8.: (a) Visualization of Gt for t ∈ V (T ) being an introduce node with child node ` ∈ V (T ).
(b) Visualization of Gt for t ∈ V (T ) being a join node with child nodes `, u ∈ V (T ).

Lemma 15.16. Let t ∈ V (T ) be an introduce node with unique child node ` ∈ V (T ), and
let w ∈ V be the introduced vertex, i.e., Xt \ X` = {w}; see Figure 15.8(a). Given a valid
label xt = (mt, F t, βt) ∈ Lt, we define the label x` = (m`, F `, β`) ∈ L` via m`

e := mt
e for all

e ∈ E[X`], F `v := F tv for all v ∈ X`, and β`v := βtv for all v ∈ X`. Then the cost of xt at t can be
computed as

ct(xt) = max
{
c`(x`),

∣∣∣F tw∣∣∣ }.

Proof. We begin by showing that ct(xt) ≥ max{c`(x`),
∣∣F tw∣∣}. Let M t ⊆ E(Gt) be an optimal

solution to the xCol-BM(t, xt). For the vertex w ∈ V introduced by node t ∈ V (T ), it holds
that

∣∣colMt(xt, w)
∣∣ =

∣∣F tw∣∣ as w ∈ Xt. Hence,

ct(xt) = max
v∈V (Gt)

∣∣∣colMt(xt, v)
∣∣∣ ≥ ∣∣∣colMt(xt, w)

∣∣∣ =
∣∣∣F tw∣∣∣ . (15.4)

Next, let U := δGt(w) ⊆ E[Xt] be the set of edges introduced by t ∈ V (T ) andM ` := M t\{U}.
We show that M ` is an (`, x`)-feasible b-matching in order to bound c`(x`) from above.

By construction of M `, e∩M ` = e∩M t = mt
e = m`

e holds for all e ∈ E[X`] and thus equalities
(15.3b) are satisfied. Concerning equalities (15.3c), it holds that |δM`(v)| = |δMt(v)| = b(v)
for v ∈ V (G`) \X`. Finally, as M ` ⊆M t and M t is (t, xt)-feasible, it follows that

|δM`(v)| ≤ |δMt(v)| ≤ b(v) ∀v ∈ X`,

|δM`(v) \ E[X`]| = |δMt(v) \ E[Xt]| = βtv = β`v ∀v ∈ X`,

colM`(v) ⊆ colMt(v) ⊆ F tv = F `v ∀v ∈ X`,

and hence conditions (15.3d) – (15.3f) are satisfied. Therefore, M ` is (`, x`)-feasible.
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Additionally,
∣∣∣colM`(x`, v)

∣∣∣ =
∣∣colMt(xt, v)

∣∣ for all v ∈ V (G`) as M t \E[Xt] = M ` \E[X`] and
F tv = F `v for all v ∈ X`. As a result,

c`(x`) ≤ max
v∈V (G`)

∣∣∣colM`(x`, v)
∣∣∣ = max

v∈V (G`)

∣∣∣colMt(xt, v)
∣∣∣

≤ max
v∈V (Gt)

∣∣∣colMt(xt, v)
∣∣∣ = ct(xt).

(15.5)

By combining inequalities (15.4) and (15.5), we obtain ct(xt) ≥ max{c`(x`),
∣∣F tw∣∣}.

Conversely, we show that ct(xt) ≤ max{c`(x`),
∣∣F tw∣∣}. Let M ` ⊆ E(G`) be an optimal solution

to the xCol-BM(`, x`). We define the b-matching M t := M `∪ {e ∈ U : mt
e = 1} and show

that M t is (t, xt)-feasible in order to bound ct(xt) from above. For e ∈ U , equation (15.3b)
holds by definition. For e ∈ E[Xt] \ U = E[X`], equation (15.3b) is satisfied as e ∩M t =
e ∩M ` = m`

e = mt
e holds. Concerning equations (15.3c), |δMt(v)| = |δM`(v)| = b(v) holds

for all v ∈ V (Gt) \ Xt. For the introduced vertex w ∈ Xt, constraints (15.3e) and (15.3f)
hold by the validity of xt. For v ∈ Xt \ {w} = X`, equation (15.3e) holds as

|δMt(v) \ E[Xt]| = |δM`(v) \ E[X`]| = β`v = βtv.

By the validity of xt, condition (15.3f) holds for v ∈ Xt \ {w} as

colMt(v) = colM`(v) ∪ colMt\M`(v) ⊆ F `v ∪ F tv = F tv .

Finally, equations (15.3b) and (15.3e) in combination with the validity of xt imply that
inequalities (15.3d) hold for all v ∈ V (Gt). Therefore, M t is (t, xt)-feasible.

The construction of M t implies that
∣∣colMt(xt, v)

∣∣ =
∣∣∣colM`(x`, v)

∣∣∣ for all v ∈ V (G`). Thus,

ct(xt) ≤ max
v∈V (Gt)

∣∣∣colMt(xt, v)
∣∣∣ = max

{
max

v∈V (G`)

∣∣∣colMt(xt, v)
∣∣∣ , ∣∣∣colMt(xt, w)

∣∣∣ }
= max

{
max

v∈V (G`)

∣∣∣colM`(x`, v)
∣∣∣ , ∣∣∣F tw∣∣∣ } = max

{
c`(x`),

∣∣∣F tw∣∣∣ }.
We conclude ct(xt) = max{c`(x`),

∣∣F tw∣∣} which completes our proof.

Next, we consider the computation of label costs for forget nodes.

Lemma 15.17. Let t ∈ V (T ) be a forget node with unique child node ` ∈ V (T ). Let w ∈ V be
the forgotten vertex, i.e., {w} = X` \Xt, and denote its incident edges with respect to G[X`] by
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U := E[X`] \E[Xt] = δG`(w)∩E[X`]. Given a valid label xt = (mt, F t, βt) ∈ Lt, we define the
set L`(xt) ( L` of labels at ` via

L`(xt) :=
{

(m`, F `, β`) ∈ L` :m`
e = mt

e ∀e ∈ E[Xt],

F `v = F tv ∀v ∈ Xt,

β`v = βtv −
∑
e∈δU (v)m

`
e ∀v ∈ Xt,

β`w = b(w)−∑e∈Um
`
e

}
.

Then the cost of xt at t can be computed as

ct(xt) = min
x`∈L`(xt)

c`(x`).

Proof. We begin by showing that ct(xt) ≥ minx`∈L`(xt) c`(x`). To that end, note that Gt = G`

and let M t ⊆ E(Gt) be an optimal solution to the xCol-BM(t,xt). We define a label x` =
(m`, F `, β`) ∈ L` as follows:

m`
e :=

m
t
e for e ∈ E[Xt],∣∣e ∩M t

∣∣ for e ∈ U,

F `v :=

F
t
v for v ∈ Xt,

colMt(v) for v = w,

β`v :=

β
t
v −

∑
e∈δU (v)m

`
e for v ∈ Xt,

b(v)−∑e∈U m
`
e for v = w.

By construction, x` ∈ L`(xt). We show that M t is (`, x`)-feasible in order to bound c`(x`)
from above. By the definition of x`, equations (15.3b) are satisfied for all e ∈ U , whereas∣∣e ∩M t

∣∣ = mt
e = m`

e for e ∈ E[Xt] since M t is (t, xt)-feasible. As V (G`) \X` ⊆ V (Gt) \Xt,
constraints (15.3c) and (15.3d) hold by the xt-feasibility of M t. Concerning equalities
(15.3e), for any vertex v ∈ Xt

∣∣δMt(v) \ E[X`]
∣∣ =

∣∣δMt(v) \ E[Xt]
∣∣− ∣∣δMt(v) ∩ U

∣∣ = βtv −
∑

e∈δU (v)
m`
e = β`v,

whereas for the forgotten vertex w it holds that

∣∣δMt(w) \ E[X`]
∣∣ =

∣∣δMt(w) \ (M t ∩ U)
∣∣ = b(w)−

∑
e∈U

m`
e = β`w.

Finally, as M t is (t, xt)-feasible, constraints (15.3f) are satisfied by our definition of x` and
thus M t is (`, x`)-feasible.
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For the forgotten vertex w ∈ X`, F `w = colMt(w) by our definition of x`. Thus, we conclude
that

∣∣colMt(xt, v)
∣∣ =

∣∣∣colMt(x`, v)
∣∣∣ for all v ∈ V (Gt) and it follows that

ct(xt) = max
v∈V (Gt)

∣∣∣colMt(xt, v)
∣∣∣ = max

v∈V (G`)

∣∣∣colMt(x`, v)
∣∣∣

≥ c`(x`) ≥ min
x̃`∈L`(xt)

c`(x̃`).

Conversely, for all labels x` ∈ L`(xt), the xCol-BM(t,xt) is a relaxation of the xCol-BM(`,x`)
and therefore ct(xt) ≤ minx`∈L`(xt) c`(x`).

We conclude ct(xt) = minx`∈L`(xt) c`(x`) which completes our proof.

To conclude the computation of label costs, we consider join nodes.

Lemma 15.18. Let t ∈ V (T ) be a join node with child nodes ` and u. Given a valid label
xt = (mt, F t, βt) ∈ Lt , we define the set L`,u(xt) ( L` × Lu of pairs of labels at ` and u via

L`,u(xt) :=
{(

(m`,F `,β`),(mu,F u,βu)
) ∈ L`×Lu : m`

e=mu
e=mt

e ∀e ∈ E[Xt],

F `v=F uv =F tv ∀v ∈ Xt,

β`v + βuv=βtv ∀v ∈ Xt

}
.

Then the cost of xt at t can be computed as

ct(xt) = min
(x`,xu)∈L`,u(xt)

max
{
c`(x`), cu(xu)

}
.

Proof. Recall that for join nodes Xt = X` = Xu and (V (G`) \ X`) ∩ (V (Gu) \ Xu) = ∅;
see Figure 15.8(b).

We begin by showing that ct(xt) ≥ min(x`,xu)∈L`,u(xt) max{c`(x`), cu(xu)}. Let M t ⊆ E(Gt)
be an optimal solution to the xCol-BM(t,xt). We define the restrictions of M t to the subgraphs
G` and Gu as M ` := M t ∩ E(G`) and Mu := M t ∩ E(Gu), respectively. Moreover, we define
labels x` := (mt, F t, β`) ∈ L` and xu := (mt, F t, βu) ∈ Lu such that β`v =

∣∣δM`(v) \ E[Xt]
∣∣

and βuv =
∣∣δMu(v) \ E[Xt]

∣∣ for all v ∈ Xt. The xt-feasibility of M t implies for all vertices
v ∈ Xt that

β`v + βuv =
∣∣δM`(v) \ E[Xt]

∣∣+ ∣∣δMu(v) \ E[Xt]
∣∣ =

∣∣δMt(v) \ E[Xt]
∣∣ = βtv,

and consequently it follows that (x`, xu) ∈ L`,u(xt).

By construction, the b-matchings M ` and Mu are feasible for the xCol-BM(`,x`) and the
xCol-BM(u,xu), respectively. Moreover, as F `v = F uv = F tv for all v ∈ Xt, it follows that
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∣∣colMt(xt, v)
∣∣ =

∣∣∣colM`(x`, v)
∣∣∣ for all v ∈ V (G`) and

∣∣colMt(xt, v)
∣∣ = |colMu(xu, v)| for all

v ∈ V (Gu). Hence, we have that

ct(xt) = max
v∈V (Gt)

∣∣∣colMt(xt, v)
∣∣∣

= max
{

max
v∈V (G`)

∣∣∣colMt(xt, v)
∣∣∣ , max
v∈V (Gu)

∣∣∣colMt(xt, v)
∣∣∣ }

= max
{

max
v∈V (G`)

∣∣∣colM`(x`, v)
∣∣∣ , max
v∈V (Gu)

|colMu(xu, v)|
}

≥ max
{
c`(x`), cu(xu)

}
≥ min

(x̃`,x̃u)∈L`,u(xt)
max

{
c`(x̃`), cu(x̃u)

}
.

Conversely, we show that ct(xt) ≤ min(x`,xu)∈L`,u(xt) max{c`(x`), cu(xu)}. To that end, con-
sider a pair of labels (x`, xu) ∈ L`,u(xt), and let M ` ∈ E(G`) and Mu ∈ E(Gu) be op-
timal solutions to the xCol-BM(`,x`) and the xCol-BM(u,xu), respectively. We define the
b-matching M t := M ` ∪Mu in Gt and show that M t is (t, xt)-feasible. Equations (15.3b)
hold, as

∣∣e ∩M t
∣∣ =

∣∣∣e ∩M `
∣∣∣ = m`

e = mt
e for all e ∈ E[Xt]. For all v ∈ V (G`)\Xt it holds that

|δMt(v)| = |δM`(v)| = b(v) and analogously |δMt(v)| = |δMu(v)| = b(v) for all v ∈ V (Gu)\Xt,
proving that equations (15.3c) hold. Concerning constraints (15.3e), for every v ∈ Xt

∣∣δMt(v) \ E[Xt]
∣∣ =

∣∣δM`(v) \ E[Xt]
∣∣+ ∣∣δMu(v) \ E[Xt]

∣∣ = β`v + βuv = βtv

which, in combination with the validity of xt, directly implies that inequalities (15.3d) are
satisfied. Finally, for all v ∈ Xt it holds that colMt(v) = colM`(v) ∪ colMu(v) ⊆ F `v ∪ F uv = F tv
proving the validity of constraints (15.3f). Therefore, M t is (t, xt)-feasible.

Additionally, we have
∣∣colMt(xt, v)

∣∣ =
∣∣∣colM`(x`, v)

∣∣∣ for all v ∈ V (G`) and
∣∣colMt(xt, v)

∣∣ =
|colMu(xu, v)| for all v ∈ V (Gu) as F `v = F uv = F tv for all v ∈ Xt. We thus conclude that for
all (x`, xu) ∈ L`,u(xt)

ct(xt) ≤ max
v∈V (Gt)

∣∣∣colMt(xt, v)
∣∣∣

= max
{

max
v∈V (G`)

∣∣∣colMt(xt, v)
∣∣∣ , max
v∈V (Gu)

∣∣∣colMt(xt, v)
∣∣∣ }

= max
{

max
v∈V (G`)

∣∣∣colM`(x`, v)
∣∣∣ , max
v∈V (Gu)

|colMu(xu, v)|
}

= max
{
c`(x`), cu(xu)

}
and therefore, it holds in particular that

ct(xt) ≤ min
(x`,xu)∈L`,u(xt)

max
{
c`(x`), cu(xu)

}
.

We conclude ct(xt) = min(x`,xu)∈L`,u(xt) max{c`(x`), cu(xu)} which was to be shown.
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Finally, we show how the optimal solution value to the Col-BM on G is obtained from the
computed label costs.

Lemma 15.19. Let r be T ’s root with Xr = {z}, and M∗ a perfect b-matching in G of minimum
color degree. We define the set L∗ = {(m,F , β) ∈ Lr : βz = b(z)} ( Lr of valid labels at r.
Then

fmax
G (M∗) = min

x∈L∗
cr
(
x
)
.

Proof. First, we show that fmax
G (M∗) ≥ minx∈L∗ cr

(
x
)
. To that end, consider the label

xr = (mr, F r, βr) ∈ L∗ with F rz := colM∗(z). Then M∗ is by construction (r, xr)-feasible and
thus

min
x∈L∗

cr
(
x
) ≤ cr(xr) ≤ max

v∈V (Gt)
|colM∗(xr, v)| = max

v∈V
|colM∗(v)| = fmax

G (M∗).

Conversely, we show that fmax
G (M∗) ≤ minx∈L∗ cr

(
x
)
. Let xr ∈ L∗ and M r ⊆ E(Gr) = E

be an optimal solution to the xCol-BM(r, xr). We note that equations (15.3c) and (15.3e)
ensure that M r is a perfect b-matching in G. Therefore it holds that

cr(xr) = max
v∈V (Gt)

|colMr(xr, v)| ≥ max
v∈V (Gt)

|colMr(v)| = fmax
G (M r) ≥ fmax

G (M∗).

As xr was chosen arbitrarily from L∗, in particular we have that

min
x∈L∗

cr
(
x
) ≥ fmax

G (M∗).

We conclude fmax
G (M∗) = minx∈L∗ cr

(
x
)

which completes our proof.

A perfect b-matching M∗ in G of minimum color degree can be obtained by backtracking the
chosen minima in the steps of the dynamic program. We can now formulate the main result
of this section. For better lucidity, let B := maxv∈V b(v).

Theorem 15.20. The Col-BM on simple graphsG = (V,E) with bounded treewidth tw(G) < W

is XP with respect to the number of colors q and the width bound W , and can be solved in
O(|V | · 2W 2+W (q−1) ·BW ·max{2W+q, BW }) time.

Proof. The correctness of the dynamic program follows from Lemma 15.19 and the label cost
computations in Lemmas 15.15, 15.16, 15.17, and 15.18.

Concerning the algorithm’s running time, recall that a nice tree decomposition (T,X ) of G
with O(|V |) nodes can be computed in linear time. For each t ∈ V (T ), the number of labels∣∣Lt∣∣ we have to consider at t is in

O
(
2|E[Xt]| · 2q|Xt| ·B|Xt|

)
⊆ O

(
2W 2−W · 2qW ·BW

)
.
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The computation of label costs for leaves and introduce nodes can be done in O(1) time.

For labels x ∈ Lt at forget node t ∈ V (T ) with child node ` ∈ V (T ), we have to compare the
label costs of

∣∣∣L`(x)
∣∣∣ = 2|U |2q labels. For simple graphs, |U | ≤W and thus, the computation

of label costs for forget nodes is in O(2W 2q) time.

For labels x = (m,F , β) ∈ Lt at a join node t ∈ V (T ) with child nodes `, u ∈ V (T ),∣∣∣L`,u(x)
∣∣∣ = Πv∈Xt(βv + 1) ≤ (B + 1)|Xt|. Consequently, the computation of label costs for

join nodes is in O(BW ) time.

In conclusion, the computation of label costs can be performed in O(max{2W+q, BW }) time.
This results in a total running time in

O(|V | · 2W 2+W (q−1) ·BW ·max{2W+q, BW }).

Corollary 15.21. The Col-BM on simple graphs G = (V,E) with treewidth tw(G) < W is
FPT with respect to the number of colors q, the width bound W , and the maximum b-value B.

We note that for all Col-BM instances B ≤ |E| and thus, for fixed q and W , our dynamic
program runs in O(|V | ·B2W ) time, i.e., is polynomial. For trees, which are simple graphs
with treewidth 1, the running time obtained from Theorem 15.20 coincides with the one
from Corollary 15.14.

As soon as we drop the width bound W , we obtain the Col-BM on general graphs with a
fixed number of colors which is strongly-NP hard by Theorem 15.2, even for B = 2. The
complexity of the Col-BM on simple graphs G = (V,E) with bounded treewidth tw(G) < W

and an arbitrary number of colors q remains open.

198 Chapter 15 Minimum Color-Degree Perfect b -Matching Problems



Discussion and Conclusion 16
We studied the multi budgeted matching problem and the minimum color-degree perfect
b-matching problem – two specialized matching problems that originated in applications for
the vehicle routing and staff assignment for MMUs. Using a reduction from 3-SAT, we showed
the strong NP-hardness of the mBM on paths and investigated the pseudo-polynomial
solvability of the problem on special graph classes, namely series-parallel graphs, trees, and
graphs of bounded treewidth. Regarding series-parallel graphs, we presented a dynamic
program exploiting their representability in the form of decomposition trees. For trees, we
used a simple graph transformation to reduce the problem to the former class of series-parallel
graphs. Finally, for graphs of bounded treewidth, we suggested a dynamic program on nice
tree decompositions that updates labels in a bottom-up fashion. All dynamic programs have
pseudo-polynomial running time for a fixed number of budget constraints.

From an application-oriented point of view, the dynamic program for the mBM on graphs of
bounded treewidth can be used to solve the vehicle routing problem for MMUs with multiple
depots. However, as the graphs that derive from this application are mostly complete bipartite
graphs G = (VA ∪ VB, E) which have treewidth tw(G) = min{|VA|, |VB|}, the dynamic
program is unlikely to outperform the binary programming formulation. Therefore, future
work should focus on the mBM restricted to instances as they derive from the aforementioned
MMU routing application. Moreover, it should be studied whether the multi-budgeted
matching problem with fixed k on general graphs is strongly NP-hard, or whether we can
obtain a pseudo-polynomial algorithm. Even for the budgeted matching problem with a single
budget constraint (BM) this question is still open. In 2011, Berger et al. (2011) conjectured
that the BM is not strongly NP-hard, i.e., that there exists a pseudo-polynomial algorithm
for the BM. Until now, this conjecture could be neither proved nor disproved. The reduction
presented in this thesis relies on a variant of the 3-SAT problem and requires one budget
constraint per clause. However, for a fixed number of clauses 3-SAT is polynomial-time
solvable by simple enumeration and thus every attempt at proving strong NP-hardness has
to be based on a new construction.

Considering the Col-BM, we proved the problem’s strong NP-hardness as well as its inap-
proximability for all constant approximation factors 1 < α < 2 on bipartite graphs with two
colors. Subsequently, we identified a class of two-colored complete bipartite graphs on which
we can solve the Col-BM in quadratic time and proposed polynomial-time dynamic programs
solving the Col-BM with a fixed number of colors on series-parallel graphs and simple graphs
with bounded treewidth.
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Recalling our original application of the Col-BM for the staff assignment of MMUs, all our
dynamic programs are likely to perform well as the number of different types of vehicles
which corresponds to the number of colors in the edge coloring is likely to be relatively small.
However, we must note that the computational performance also depends on the structure
of the input graph which represents the possible assignments between physicians and MMU
sessions. Future work on the Col-BM should include the generalization of the results for
complete bipartite graphs to more colors as well as to more general b-values. Moreover, it
would be interesting to investigate the complexity of the Col-BM on series-parallel graphs
and graphs of bounded treewidth when the number of colors is not fixed. It could be further
examined, how special structures in the edge coloring can be exploited. Finally, it might be
possible to devise general exact algorithms and heuristics for the Col-BM by exploiting the
structures of the underlying polytope.

As an outlook on how our results can be further applied in practice, we would like to point
out that there is an ongoing research project that investigates the Col-BM for the patient-to-
room assignment in hospitals. Presuming that patients of two genders have to be assigned to
identical double rooms such that rooms are not gender-mixed, the patient-to-room assignment
can be solved in polynomial time using the complete characterization from Section 15.2.
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Mihelič, J. and B. Robič (2005). “Solving the k-center Problem Efficiently with a Dominating Set
Algorithm”. In: Journal of Computing and Information Technology 13.3, pp. 225–234. DOI: 10.2498/
cit.2005.03.05 (cit. on p. 145).

Monnot, J. (2005). “The labeled perfect matching in bipartite graphs”. In: Information Processing
Letters 96.3, pp. 81–88. DOI: 10.1016/j.ipl.2005.06.009 (cit. on p. 152).

Monnot, J. and S. Toulouse (2007). “The path partition problem and related problems in bipartite
graphs”. In: Operations Research Letters 35.5, pp. 677–684. DOI: 10.1016/j.orl.2006.12.004
(cit. on p. 180).

Murray, A. T., R. Davis, R. J. Stimson, and L. Ferreira (1998). “Public Transportation Access”. In:
Transportation Research Part D: Transport and Environment 3.5, pp. 319–328. DOI: 10.1016/S1361-
9209(98)00010-8 (cit. on p. 2).

Naji-Azimi, Z., J. Renaud, A. Ruiz, and M. Salari (2012). “A covering tour approach to the location
of satellite distribution centers to supply humanitarian aid”. In: European Journal of Operational
Research 222.3, pp. 596–605. DOI: 10.1016/j.ejor.2012.05.001 (cit. on p. 82).

Nemhauser, G. and L. Wolsey (2014a). “Integral Polyhedra”. In: Integer and Combinatorial Optimization.
John Wiley & Sons, Ltd. Chap. III.1, pp. 533–607. DOI: 10.1002/9781118627372.ch14 (cit. on
p. 99).

Nemhauser, G. and L. Wolsey (2014b). “Linear Programming”. In: Integer and Combinatorial Opti-
mization. John Wiley & Sons, Ltd. Chap. I.2, pp. 27–49. DOI: 10.1002/9781118627372.ch2 (cit. on
p. 100).

Nomikos, C., A. Pagourtzis, and S. Zachos (2007). “Randomized and Approximation Algorithms for
Blue-Red Matching”. In: Mathematical Foundations of Computer Science 2007. Ed. by L. Kučera and
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Appendices for Part II A

A.1 Enforcement of Assumption 1

In Part II of this thesis, we have exclusively worked under Assumption 1, i.e., that the residual
treatment capacities γk for k ∈ L∪P are non-negative. However, as pointed out in Section 8.1,
this does not hold in general which would invalidate our results. Therefore, we have to
explicitly enforce Assumption 1 in the master problem (MP) and thus also in the Benders
formulation (Det-B) through the following set of constraints:

∑
v∈N(`)

uv wv` ≤ b̂ x` ∀` ∈ L (A.1)

∑
v∈N(p)

uv wvp ≤ b̄p ∀p ∈ P. (A.2)

As we start to model patient demands as random variables and consider robust formulations
of the SMMU, the definition of the residual treatment capacities for fixed first-stage decisions
ŵ and x̂ has to be adjusted. That is, we define

γ` := b̂ x̂` −max
η∈U2

∑
v∈N(`)

ηv ŵv` ∀` ∈ L,

γp := b̄p −max
η∈U2

∑
v∈N(p)

ηv ŵvp ∀p ∈ P.

To enforce Assumption 1 in (Rob-B), we thus have to consider the robust counterparts of
inequalities (A.1) and (A.2) given by

max
η∈U2

∑
v∈N(`)

ηv wv` ≤ b̂ x` ∀` ∈ L (A.3)

max
η∈U2

∑
v∈N(p)

ηv wvp ≤ b̄p ∀p ∈ P. (A.4)

Inequalities (A.3) and (A.4) are non-linear in general, and have to be reformulated in a linear
way for each specific choice of the consideration set U2.
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For interval scenarios, i.e., U2 = H, this is relatively straightforward as the unsteerable patient
demands at each demand origin assume their upper bound which yields

∑
v∈N(`)

τv wv` ≤ b̂ x` ∀` ∈ L (A.5)

∑
v∈N(p)

τv wvp ≤ b̄p ∀p ∈ P. (A.6)

For budgeted uncertainty sets, i.e., U2 = UΓ
2 , things get slightly more complicated although

we can essentially mimic our approach from Section 8.2. That is, we formulate

max
η∈UΓ

2

∑
v∈N(k)

ηv ŵv`

for fixed k ∈ L ∪ P and fixed ŵvk ∈ {0, 1} for all v ∈ V and k ∈ N(v) via the following linear
program:

(PkLP)(ŵ) max
η

∑
v∈N(k)

ηv ŵvk

s.t. ηv ≤ τv ∀v ∈ V
− ηv ≤ −σv ∀v ∈ V∑
v∈V

ηv ≤ Γ2

ηv ≥ 0 ∀v ∈ V.

The dual problem of (PkLP)(ŵ) with identical optimal solution value is then given by

(Dk
LP)(ŵ) min

ε, κ, ρ

∑
v∈V

(τvεv − σvκv) + Γ2ρ

s.t. εv − κv + ρ ≥ ŵvk ∀v ∈ V
εv, κv, ρ ≥ 0 ∀v ∈ V.

Substituting the dual problem back into (A.3) and (A.4), we get the following linear set of
constraints which enforce Assumption 1 for (RobΓ-B):

∑
v∈V

(
τvε

`
v − σvκ`v

)
+ Γ2ρ

` ≤ b̂ x` ∀` ∈ L (A.7)

∑
v∈V

(τvεpv − σvκpv) + Γ2ρ
p ≤ b̄p ∀p ∈ P (A.8)

εkv − κkv + ρk ≥ ŵvk ∀v ∈ V, ∀k ∈ L ∪ P (A.9)

εkv , κ
k
v , ρ

k ≥ 0 ∀v ∈ V, ∀k ∈ L ∪ P. (A.10)

Last but not least, it remains to consider the enforcement of Assumption 1 as we disaggregate
sessions; see Section 9.2. For the session-specific strategic planning problem, the residual
treatment capacities for fixed first-stage decisions ŵ and x̂ are given by
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γ` := b̂ x̂` −
∑

v∈Nu(`)
uv ŵv` ∀` ∈ L,

γp := b̄p −
∑

v∈Nu(p)
uv ŵvp ∀p ∈ P .

As a result, we can enforce Assumption 1 in (λDet-B) using the constraints

∑
v∈Nu(`)

uv wv` ≤ b̂ x` ∀` ∈ L

∑
v∈Nu(p)

uv wvp ≤ b̄p ∀p ∈ P .

A.2 Separation LP for (Det-B)

The separation problem for (Det-B) can be formulated as an LP based on the observations
made in the proof of Theorem 8.13. That is, we need to decide whether for fixed first-stage
decisions x̂ and ŵ there exists U ⊆ V such that

∑
v∈U dv >

∑
k∈N(U) γk. By encoding the

choice of U ⊆ V through the variables ov ∈ [0, 1] for all v ∈ V and the corresponding
consideration set N(U) through the variables nk ∈ [0, 1] for all k ∈ L ∪ P , we obtain the
following formulation of the separation problem:

(Sep’) max
o, n

∑
v∈V

dv ov −
∑

k∈L∪P
γk nk

s.t. nk ≥ ov ∀v ∈ V, ∀k ∈ N(v)
ov ∈ [0, 1] ∀v ∈ V
nk ∈ [0, 1] ∀k ∈ L ∪ P.

Formulation (Sep’) solves the dual problem to the LP-relation of the Benders subproblem
(SPLP)(ŷ, x̂, ŵ). If the optimal solution value to (Sep’) is strictly positive, this yields a violated
subset Û ⊆ V and we must resolve the restricted master problem.

Taking a closer look at formulation (Sep’), it becomes evident that the separation problem for
(Det-B) is trivial if we only consider unsteerable demands: When dv = 0 for all v ∈ V and
γk ≥ 0 for all k ∈ L∪P due to Assumption 1, the objective of (Sep’) is obviously non-positive.
Thus, the optimal solution value to (Sep’) must be non-positive and there cannot exist a
violated subset.

Note, that formulation (Sep’) can be used to solve the separation problem for (RobI-B) by
simply substituting the deterministic steerable demands dv ∈ N by the worst case uncertain
steerable demands βv ∈ N for all v ∈ V .
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A.3 Evaluation of Operation Cost
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Fig. A.1.: Objectives for fixed ∆ ∈ {6, . . . , 11} and varying ω ∈ {0.2, . . . , 0.45}.
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Fig. A.2.: Objectives for fixed ω ∈ {0.2, . . . , 0.45} and varying ∆ ∈ {6, . . . , 11}.
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A.4 Evaluation of Solution Quality Based on SiM-Care
Scenarios
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Fig. A.3.: Empirical distribution function of the minimum total number of violations for 520 realiza-
tions and parameter choices ∆ = 6 and ω ∈ {0.2, . . . , 0.45}.
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Fig. A.4.: Empirical distribution function of the minimum total number of violations for 520 realiza-
tions and parameter choices ∆ = 7 and ω ∈ {0.2, . . . , 0.45}.
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Fig. A.5.: Empirical distribution function of the minimum total number of violations for 520 realiza-
tions and parameter choices ∆ = 8 and ω ∈ {0.2, . . . , 0.45}.
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Fig. A.6.: Empirical distribution function of the minimum total number of violations for 520 realiza-
tions and parameter choices ∆ = 9 and ω ∈ {0.2, . . . , 0.45}.
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Fig. A.7.: Empirical distribution function of the minimum total number of violations for 520 realiza-
tions and parameter choices ∆ = 10 and ω ∈ {0.2, . . . , 0.45}.
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Fig. A.8.: Empirical distribution function of the minimum total number of violations for 520 realiza-
tions and parameter choices ∆ = 11 and ω ∈ {0.2, . . . , 0.45}.
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A.5 Evaluation of Solution Quality Based on SiM-Care
Scenarios with Local Surges in Demand
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Fig. A.9.: Empirical distribution function of the minimum total number of violations for 520 realiza-
tions with 5 infectious outbreaks, ∆ = 6, and ω ∈ {0.2, . . . , 0.45}.
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Fig. A.10.: Empirical distribution function of the minimum total number of violations for 520 realiza-
tions with 5 infectious outbreaks, ∆ = 7, and ω ∈ {0.2, . . . , 0.45}.
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Fig. A.11.: Empirical distribution function of the minimum total number of violations for 520 realiza-
tions with 5 infectious outbreaks, ∆ = 8, and ω ∈ {0.2, . . . , 0.45}.
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Fig. A.12.: Empirical distribution function of the minimum total number of violations for 520 realiza-
tions with 5 infectious outbreaks, ∆ = 9, and ω ∈ {0.2, . . . , 0.45}.
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Fig. A.13.: Empirical distribution function of the minimum total number of violations for 520 realiza-
tions with 5 infectious outbreaks, ∆ = 10, and ω ∈ {0.2, . . . , 0.45}.
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Fig. A.14.: Empirical distribution function of the minimum total number of violations for 520 realiza-
tions with 5 infectious outbreaks, ∆ = 11, and ω ∈ {0.2, . . . , 0.45}.
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15.3 (a) Sufficient subgraph G′. (b) Case distinction for edge ar ∈ E. . . . . . . . . . 181

15.4 Stable-partitioned graph with partitions of VA induced by the i-colored neigh-
borhoods of nodes r, s, t ∈ VB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

15.5 Setting if i) holds and
∣∣N1(s)

∣∣ ≥ 3. . . . . . . . . . . . . . . . . . . . . . . . . . 183

15.6 Setting if
∣∣N1(s)

∣∣ = 2 and ii) is violated and (a) |N1(r)| = 1; (b)
∣∣N2(r)

∣∣ = 1. . . 184

15.7 Graph G with |V (G)| = 6 that neither is stable partitioned nor contains the
gadget G′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

15.8 (a) Visualization of Gt for t ∈ V (T ) being an introduce node with child node
` ∈ V (T ). (b) Visualization of Gt for t ∈ V (T ) being a join node with child
nodes `, u ∈ V (T ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

A.1 Objectives for fixed ∆ ∈ {6, . . . , 11} and varying ω ∈ {0.2, . . . , 0.45}. . . . . . . . 220

A.2 Objectives for fixed ω ∈ {0.2, . . . , 0.45} and varying ∆ ∈ {6, . . . , 11}. . . . . . . . 220

A.3 Empirical distribution function of the minimum total number of violations for
520 realizations and parameter choices ∆ = 6 and ω ∈ {0.2, . . . , 0.45}. . . . . . 221

A.4 Empirical distribution function of the minimum total number of violations for
520 realizations and parameter choices ∆ = 7 and ω ∈ {0.2, . . . , 0.45}. . . . . . 221

A.5 Empirical distribution function of the minimum total number of violations for
520 realizations and parameter choices ∆ = 8 and ω ∈ {0.2, . . . , 0.45}. . . . . . 222

List of Figures 229



A.6 Empirical distribution function of the minimum total number of violations for
520 realizations and parameter choices ∆ = 9 and ω ∈ {0.2, . . . , 0.45}. . . . . . 222

A.7 Empirical distribution function of the minimum total number of violations for
520 realizations and parameter choices ∆ = 10 and ω ∈ {0.2, . . . , 0.45}. . . . . . 223

A.8 Empirical distribution function of the minimum total number of violations for
520 realizations and parameter choices ∆ = 11 and ω ∈ {0.2, . . . , 0.45}. . . . . . 223

A.9 Empirical distribution function of the minimum total number of violations for
520 realizations with 5 infectious outbreaks, ∆ = 6, and ω ∈ {0.2, . . . , 0.45}. . . 224

A.10 Empirical distribution function of the minimum total number of violations for
520 realizations with 5 infectious outbreaks, ∆ = 7, and ω ∈ {0.2, . . . , 0.45}. . . 224

A.11 Empirical distribution function of the minimum total number of violations for
520 realizations with 5 infectious outbreaks, ∆ = 8, and ω ∈ {0.2, . . . , 0.45}. . . 225

A.12 Empirical distribution function of the minimum total number of violations for
520 realizations with 5 infectious outbreaks, ∆ = 9, and ω ∈ {0.2, . . . , 0.45}. . . 225

A.13 Empirical distribution function of the minimum total number of violations for
520 realizations with 5 infectious outbreaks, ∆ = 10, and ω ∈ {0.2, . . . , 0.45}. . . 226

A.14 Empirical distribution function of the minimum total number of violations for
520 realizations with 5 infectious outbreaks, ∆ = 11, and ω ∈ {0.2, . . . , 0.45}. . . 226

230 List of Figures



List of Tables

3.1 Classification of related simulation models in primary care. . . . . . . . . . . . . 22

4.1 Summary of attributes and their units for illnesses i ∈ I . . . . . . . . . . . . . . 29
4.2 Summary of attributes of families of illnesses f ∈ F . . . . . . . . . . . . . . . . 30
4.3 Summary of attributes of age classes a ∈ A. . . . . . . . . . . . . . . . . . . . . 31
4.4 Summary of attributes of (chronic) patients ρ ∈ P. . . . . . . . . . . . . . . . . 33
4.5 Summary of attributes of PCPs φ ∈ G. . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6 Probabilistic model aspects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.7 Adaptation of patient ratings rapp and rwalk, where ω ∈ T describes patient’s

willingness to wait and ζ ∈ [0, 1] the physician’s consultation speed. . . . . . . . 50

5.1 Basis for the selection of input parameters. . . . . . . . . . . . . . . . . . . . . . 56
5.2 Characteristics of considered age classes a ∈ A. . . . . . . . . . . . . . . . . . . 59
5.3 Age specific parameters for patient generation. . . . . . . . . . . . . . . . . . . 59
5.4 Characteristics of considered families of illnesses f ∈ F . . . . . . . . . . . . . . 60
5.5 Age class-illness distributions πact for acute illnesses and πchro for chronic illnesses. 60
5.6 Mean performance indicators and 95 %-confidence intervals obtained by repeat-

ing each simulation experiment 20 times for the baseline scenario. . . . . . . . . 61
5.7 Populations in each simulation scenario variant. . . . . . . . . . . . . . . . . . . 62
5.8 Mean performance indicators and 95 %-confidence intervals obtained by repeat-

ing each simulation experiment 20 times for both variants of Scenario 1. . . . . 63
5.9 Age class distributions for aged patient population. . . . . . . . . . . . . . . . . 64
5.10 Mean performance indicators and 95 %-confidence intervals obtained by repeat-

ing each simulation experiment 20 times for both variants of Scenario 2. . . . . 65
5.11 Mean performance indicators and 95 %-confidence intervals obtained by repeat-

ing each simulation experiment 20 times for both variants of Scenario 3. . . . . 66

9.1 Illustration of a tactical MMU operation plan. . . . . . . . . . . . . . . . . . . . 106

11.1 Test instances with their characteristics. . . . . . . . . . . . . . . . . . . . . . . 129
11.2 Computational results for Phase 1. . . . . . . . . . . . . . . . . . . . . . . . . . 131
11.3 Computational results for Phase 2. . . . . . . . . . . . . . . . . . . . . . . . . . 136
11.4 Computational results for Phase 3. . . . . . . . . . . . . . . . . . . . . . . . . . 138
11.5 Mean performance indicators and 95 %-confidence intervals obtained by re-

peating each simulation experiment 20 times for the baseline scenario with
MMUs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

231





Eidesstattliche Erklärung

Ich, Martin Comis,

erkläre hiermit, dass diese Dissertation und die darin dargelegten Inhalte die eigenen sind
und selbstständig, als Ergebnis der eigenen originären Forschung, generiert wurden.

Hiermit erkläre ich an Eides statt

1. Diese Arbeit wurde vollständig oder größtenteils in der Phase als Doktorand dieser
Fakultät und Universität angefertigt;

2. Sofern irgendein Bestandteil dieser Dissertation zuvor für einen akademischen Abschluss
oder eine andere Qualifikation an dieser oder einer anderen Institution verwendet
wurde, wurde dies klar angezeigt;

3. Wenn immer andere eigene- oder Veröffentlichungen Dritter herangezogen wurden,
wurden diese klar benannt;

4. Wenn aus anderen eigenen- oder Veröffentlichungen Dritter zitiert wurde, wurde stets
die Quelle hierfür angegeben. Diese Dissertation ist vollständig meine eigene Arbeit,
mit der Ausnahme solcher Zitate;

5. Alle wesentlichen Quellen von Unterstützung wurden benannt;

6. Wenn immer ein Teil dieser Dissertation auf der Zusammenarbeit mit anderen basiert,
wurde von mir klar gekennzeichnet, was von anderen und was von mir selbst erarbeitet
wurde;

7. Teile dieser Arbeit wurden zuvor veröffentlicht und zwar in:

• M. Comis, C. Cleophas, and C. Büsing (2021). “Patients, primary care, and policy:
Agent-based simulation modeling for health care decision support”. In: Health
Care Management Science. DOI: 10.1007/s10729-021-09556-2

• C. Büsing, M. Comis, E. Schmidt, and M. Streicher (2021). “Robust strategic
planning for mobile medical units with steerable and unsteerable demands”. In:
European Journal of Operational Research 295.1, pp. 34–50. DOI: 10.1016/j.ejor.
2021.02.037

• C. Büsing and M. Comis (2018a). “Budgeted Colored Matching Problems”. In: Elec-
tronic Notes in Discrete Mathematics 64. 8th International Network Optimization
Conference - INOC 2017, pp. 245–254. DOI: 10.1016/j.endm.2018.01.026

https://doi.org/10.1007/s10729-021-09556-2
https://doi.org/10.1016/j.ejor.2021.02.037
https://doi.org/10.1016/j.ejor.2021.02.037
https://doi.org/10.1016/j.endm.2018.01.026


• C. Büsing and M. Comis (2018b). “Multi-budgeted matching problems”. In:
Networks 72.1, pp. 25–41. DOI: 10.1002/net.21802

• M. Anapolska, C. Büsing, and M. Comis (2018). “Minimum color-degree perfect
b-matchings”. In: 16th Cologne-Twente Workshop on Graphs and Combinatorial
Optimization, pp. 13–16. eprint: http://ctw18.lipn.univ-paris13.fr/CTW18_
Proceedings.pdf

• M. Anapolska, C. Büsing, M. Comis, and T. Krabs (2021). “Minimum color-degree
perfect b-matchings”. In: Networks 77.4, pp. 477–494. DOI: 10.1002/net.21974

Martin Comis
Aachen, September 20, 2021

https://doi.org/10.1002/net.21802
http://ctw18.lipn.univ-paris13.fr/CTW18_Proceedings.pdf
http://ctw18.lipn.univ-paris13.fr/CTW18_Proceedings.pdf
https://doi.org/10.1002/net.21974


235


	Titlepage
	Abstract
	Acknowledgement
	Contents
	1 Introduction
	1.1 Motivation and Research Question
	1.2 Contribution of Thesis
	1.3 Outline of Thesis
	1.4 Acknowledgment of Funding

	2 Preliminaries
	2.1 General Notation
	2.2 Graphs and their Properties
	2.3 Matchings
	2.4 Complexity Theory
	2.5 Parameterized Complexity Theory
	2.6 NP-hardness
	2.7 Approximation Algorithms

	I Agent-based Modeling for Primary Care
	3 Introductory Remarks and Contribution
	3.1 Motivation and Research Question
	3.2 Contribution
	3.3 Related Work
	3.4 Outline and Use of Published Materials

	4 A Simulation Model for Primary Care
	4.1 Simulation Environment
	4.2 Entities and State Variables
	4.3 Process Overview and Scheduling
	4.4 Modeling Variability
	4.5 Emergence and Observation
	4.6 Input, Initialization, and Warm-Up
	4.7 Submodels
	4.8 Structural Validation and Verification

	5 Case Study: Effects of Demographic Change
	5.1 Baseline Scenario
	5.2 Baseline Analysis
	5.3 Scenario 1: Decline in PCPs
	5.4 Scenario 2: Aging Patients
	5.5 Scenario 3: Combined Effects
	5.6 Sensitivity Analysis

	6 Discussion and Conclusion

	II Operational Planning for Mobile Medical Units
	7 Introductory Remarks and Contribution
	7.1 Motivation and Research Question
	7.2 Contribution
	7.3 Related Work
	7.4 Outline and Use of Published Materials

	8 Phase 1: Robust Strategic Planning for MMUs
	8.1 Problem Classification and Formulation
	8.2 Integration of Demand Uncertainties

	9 Phase 2: Tactical Planning for MMUs
	9.1 Partitions of Strategic MMU Operation Plans
	9.2 Combined Strategic and Tactical Planning for MMUs

	10 Phase 3: Vehicle Routing for MMUs
	10.1 MMU Routing with a Single Depot
	10.2 MMU Routing with Multiple Depots

	11 Case Study: Optimized Operation of MMUs
	11.1 Test Instances
	11.2 Study Phase 1
	11.3 Study Phase 2
	11.4 Study Phase 3
	11.5 Evaluation using SiM-Care

	12 Discussion and Conclusion

	III Variations of Matching Problems
	13 Introductory Remarks and Contribution
	13.1 Motivation and Research Question
	13.2 Contribution
	13.3 Related Work
	13.4 Outline and Use of Published Materials

	14 Multi-Budgeted Matching Problems
	14.1 Complexity
	14.2 Series-parallel Graphs
	14.3 Trees
	14.4 Graphs with Bounded Treewidth

	15 Minimum Color-Degree Perfect b -Matching Problems
	15.1 Complexity
	15.2 Complete Bipartite Graphs
	15.3 Series-parallel Graphs
	15.4 Graphs with Bounded Treewidth

	16 Discussion and Conclusion
	Bibliography
	Appendices
	A Appendices for Part II
	A.1 Enforcement of Assumption 1
	A.2 Separation LP for (Det-B)
	A.3 Evaluation of Operation Cost
	A.4 Evaluation of Solution Quality Based on SiM-Care Scenarios
	A.5 Evaluation of Solution Quality with Local Surges in Demand

	Eidesstattliche Erklärung
	Eidesstattliche Erklärung




