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ABSTRACT: Loess is a main archive of Pleistocene landscapes and environments and therefore has an important
connection to the preservation and interpretation of Paleolithic sites. In Europe, anthropogenic sites have been found
in loess because of past local occupation. At one extreme, sites are well preserved with minimal disturbance often
accompanied by embedded proxies to estimate ecological parameters. On the other hand, loess deposits have
undergone post-depositional alterations such as weathering, pedogenesis or bioturbation due to changing
environmental conditions or other disturbances that obscure anthropogenic sites. We outline the current state of
research and connections between Paleolithic archeology and loess research while introducing a series of
subsequent regional case studies as part of a special issue. We also make recommendations for future work to
incorporate a wider variety of methods to create more robust inferences on hominin and environmental evolution
and their connections. © 2021 The Authors Journal of Quaternary Science Published by John Wiley & Sons Ltd
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Introduction

In recent decades, geoarcheology has been shifting from the
application of earth science techniques to the archeological
record, towards an increased integration of geoscientific
methods and concepts to interpret archeological contexts
(Pollard, 1999; Rapp and Hill, 2006, p. 22; Goldberg and
Macphail, 2009; Fouache, 2013; Canto, 2015; French, 2015;
Gilbert, 2016). Whereas sediments were formerly seen as static
site repositories, they are now regarded as remnants of past
dynamic landscapes and environmental evolution that are
intimately connected to their embedded cultural residues and
capable of contextualizing but also obscuring behavioral
interpretations. This framework has positioned geoarcheology
to uniquely inform aspects of prehistory and its connection to
the environment that are important for understanding cultural
evolutionary trajectories and elaborating the mechanisms that
underpin our past and present relationship to global evolution.

The aim of this special issue is to do precisely that through a
series of papers exploring the chronostratigraphy, environ-
mental and ecological background and site formation pro-
cesses of Paleolithic sites embedded in European loess. The
articles are organized roughly from north-western to south-
eastern Europe, starting with a detailed investigation of Middle
Pleistocene loess—paleosol deposits in northern France
(Antoine et al., 2021), followed by a study about the impact
of katabatic winds on the Neanderthal environment (Lefort
et al., 2021), and several studies concentrating on Upper
Paleolithic sites (Moine et al., 2021; Molnar et al., 2021;
Stimegi et al., 2021; Valde-Nowak and tanczont, 2021).
Finally, we present studies dealing with methodological
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investigations and paleoenvironmental focus in several
loess—paleosol sequences and one lacustrine record in central
and south-eastern Europe (Krauss et al., 2021; Ludwig
et al., 2021; Markovi¢ et al., 2021a; Zeeden et al., 2021).

Loess is a main sediment archive preserving European
Pleistocene artifacts and has therefore long played an
important role in Paleolithic archeology. The formal descrip-
tion of loess emerged coeval with the notion of Europe’s
Pleistocene antiquity and the study of both has evolved, often
in tandem, ever since (Markovi¢ et al., 2016; Ding et al., 2019).
While the recognition of the Paleolithic is commonly
attributed to early cave excavations and advances in fluvial
terrace stratigraphy (Pettitt and White, 2014; de la Torre, 2016;
Chauhan et al., 2017), Paleolithic artifacts were also recog-
nized early in Quaternary loess series in Northern France and
Belgium. Loess has therefore had an important historical role
in forming concepts and definitions of the Paleolithic
(Zeuner, 1956; Sommé and Tuffreau, 1978).

Early research on artifacts embedded in the lower eolian
sediments covering the Somme Middle Terrace at Saint-Acheul
gave rise to the eponymous Acheulean (Commont, 1916) and
the development of the loess cycle concept in which
alternating layers of loess and paleosols marked climate
deterioration and amelioration that were correlated to changes
in lithic artifacts over time (Bordes, 1954). Loess research
further contributed to the idea that Middle Paleolithic
hominins and their tool assemblages were influenced by
environmental conditions (Bordes, 1953). In France, for
instance, caves and rock shelters in the south and east were
thought to have been inhabited by semi-sedentary or sedentary
cave-dwellers who intensively retouched Mousterian tools to
conserve raw materials. On the north-western loess plateaux,
by contrast, mobile Levallois makers discarded unfinished
tools when moving on to their next site (Blundell, 2020). While
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such concepts are now regarded as overly simplified, this early
practice of linking sedimentary records to hominin ways of life
set the stage for Paleolithic research in Europe that continue to
be a focus of research today.

While France was a model for many subsequent studies on loess
in other loess-rich regions of Europe, Eastern European models of
loess were similarly influenced by the Central Asian record. There,
the term ‘Loessic Paleolithic’ has been used to describe Lower
Paleolithic sites where lithics are vertically dispersed (1-1.5m) in
pedogenically developed parts of thick loess—paleosol sequences
along river terraces (Ranov, 1989, 1995; Schifer et al, 1998;
Davis and Holliday, 2017). This terminology has also been
similarly used to describe sites found in the European loess belts of
Russia, Ukraine, Germany, Czechia and Poland (Valde-Nowak
and tanczont, 2021).

At a minimum, the history of loess and Paleolithic archeology
illustrates that while the two have been inextricably linked, the
intimacy of these research strands remains disjointed as no clear
consensus has emerged to connect them. In many ways, the
absence of true synthetic research between loess research and
Paleolithic archeology speaks to the greater uncertainties of how
environmental, landscape and hominin evolution are associated.
While notable progress has been made, scholars are just
beginning to think of new ways of connecting these physical
remains of past human culture and environment.

Background: when the dust settles

Loess is an important terrestrial archive for European Paleolithic
archeology stretching back to as early as 2.5-1.8 Ma (Pastre
et al, 1996). These records are often (semi-)continuous and
encompass the same timeframe as current models of Pleistocene
hominin presence. However, loess is often a generic term for
sediments formed by multi-genetic processes described by a wide
range of unstandardized vocabulary (Sprafke and Obreht, 2016).
Unsurprisingly, the definition of loess and its formation processes
are still not settled (Smalley and Obreht, 2018).

Compared to other prime Pleistocene sedimentary records
such as karstic traps and fluvial terraces deposits (Table 1),
loess deposits are more locally widespread across Europe,
often with greater temporal depth and resolution (Haase
et al., 2007; Bertran et al., 2016; Lindner et al.,, 2017;
Lehmkuhl et al., 2021). Where chronological patterns are not
entirely clear, these can be potentially refined allowing for
broader, landscape-wide interpretations of the archeological
record (Zeeden et al., 2018). Indeed, the spatial extent of loess
and its effects on preserving human traces is a feature that has

been remarked upon previously. Increased sedimentation
amplifies opportunities for capture and preservation of
artifacts, and hence the greater chance for sites to enter the
Paleolithic record (Roebroeks and Speleers, 2002; Hijma
et al., 2012; Antoine et al., 2015).

Outside the mid-latitudes of Europe, loess accumulation is
often restricted to periglacial incised valleys, coastal capture
points or dolines (Fig. 1; Cremaschi et al, 2015; Scott
et al., 2019). However, in regions where loess-mantles are no
longer present, eolian sediments are also preserved in isolated
areas such as fissures or caves (Kovacs et al., 2020). These
features can often be important repositories of Paleolithic
artifacts (Peresani et al., 2008; Pope et al., 2013; Allsworth-
Jones et al., 2018a) and can assist in age and landscape
correlations when absolute dating is not feasible (Krajcarz
et al., 2016a; Allsworth-Jones et al., 2018b). Where caves and
rockshelters are abundant, they also inform interpretations of
how hominins modulated their responses to open-air sites
(Madeyska, 2002; Delpiano et al., 2019). Figure 1 demonstrates
the close spatial relationship of European loess deposits, karst
and Paleolithic sites.

Loess records are unique insofar as, like other widespread
terrestrial records, they can address broad-scale spatiotempor-
al changes (Ashton and Hosfield, 2010; Antoine et al., 2021),
but they can also provide windows into brief moments in time.
The fluvial record, which preserves many of the Paleolithic
artifacts recovered in Europe, is predominantly composed of
coarse-grained deposits that obscure the spatial arrangements
of sites. By contrast, the low-energy deposition of Late
Pleistocene loess-forming dust is known to finely preserve
archeological sites with minimal spatial redistribution that can
often be refitted to an impressive degree (Roebroeks
et al., 1997; Vallin et al., 2001) and are even occasionally
suitable for usewear and residue analyses (Sano, 2012; Pawlik
and Thissen, 2017; Wilczynski et al., 2020). Loess records are
also excellent repositories of faunal prey, fire features, pits,
habitation structures and early hominin burials that provide
singular insights into local hominin behavioral patterns
(lakovleva and Djindjian, 2005; Handel et al., 2009; Trinkaus
and Buzhilova, 2018; Fewlass et al., 2019). To contextualize
these sites and document broader ecological evolution,
researchers have developed a range of geochronological and
proxy analyses for loess.

Dating methods applied in loess sediments

An array of dating methods are used to determine the timing of
loess deposition and the direct ages of artifacts. The most

Table 1. A comparison of main Paleolithic archives in Europe
Loess Fluvial Karstic
Distribution Widespread across mid-latitudes with ~ Widespread, though earlier Widespread though largely

thicker deposits in the north-west,
eastern Central Europe and western
Russia (Bertran et al., 2016)

Fine, though often colluviated in areas
of rugged terrain, on steeper slopes
(Bertran et al., 2016)

Local preservation

Common absolute dating
techniques

Luminescence, electron spin
resonance, radiocarbon (Chu, 2018)

Frequently used
paleoenvironmental
proxies

Rock magnetism, geochemistry, color,
grain-size, charcoal, (micro)fauna
(Obreht et al., 2019)

Variable, though archeological finds

Luminescence, electron spin

Pollen, plant macrofossils, charcoal,

Pleistocene deposits often absent or
altered by the advance of ice sheets
in the north (Bridgland et al., 2015)

concentrated in uplands and
the west and south
(Goldscheider et al., 2020)

Fine, though variable according
to cave/rockshelter
morphology and hydrological
regimes

Luminescence, electron spin
resonance, radiocarbon, U/Th

are primarily recovered from coarse-
grained gravel deposits (Chauhan
et al., 2017)

resonance, cosmogenic nuclides,

amino acid racemization

Pollen, plant macrofossils,
charcoal, phytoliths, (micro)
fauna (@aDNA), stable isotopes

phytoliths, (micro)fauna (Cordier
et al., 2015)
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Figure 1. Distribution of European loess, loess derivates, sandy loess (using Bertran et al., 2021; Lehmkuhl et al., 2021) and karstifiable bedrock
(from Chen et al., 2017). Reliably dated pre-Holocene sites are derived from Vermeersch (2020). [Color figure can be viewed at

wileyonlinelibrary.com].

common are luminescence dating, radiocarbon dating and
magnetic stratigraphy, though their use is dictated by the age
range under investigation and the availability of suitable
material for dating. Due to their eolian origin, loess deposits
are widely analyzed by luminescence dating, which deter-
mines the age of the accumulation of quartz and feldspar
minerals after a bleaching event, usually the last sunlight
exposure during eolian transport before deposition (e.g.
Bosken et al., 2017; Lomax et al., 2019; Stevens et al., 2020;
Stone and Fenn, 2020; D’Amico et al., 2021). Depending on
the available grain size, single grain or single aliquot
techniques are typically used. For very fine loess deposits that
do not contain enough coarse material, single aliquot methods
are exclusively applied where a layer of ~1 million grains
between 4 and 11 pm is deposited on a single aliquot to be
measured: this results in an average dose per aliquot. Coarser
grains (>63 pm) can additionally be measured by the single
grain technique, which determines a dose per grain for each of
the 100 holes in the aliquot disc. The dose distribution of these
data can be analyzed, such as for partial bleaching events (e.g.
Reimann et al, 2012). Additional to optically stimulated
luminescence (OSL) dating, heated artifacts can also be dated
by thermoluminescence methods, thereby providing a direct

© 2021 The Authors Journal of Quaternary Science Published by John Wiley & Sons Ltd

age of the heating event (Martini et al, 2001). Note that
this age does not reflect the age of sediment deposition
and in general post-depositional processes can affect the age
distribution. More recently, electron spin resonance (ESR)
dating has been applied to Chinese loess deposits (e.g. Richter
et al., 2020), which works similar to luminescence dating, but
measures the trapped electrons in certain paramagnetic
centers by ESR spectrometry (Griin and Stringer, 1991).
While luminescence dating can readily be applied to loess
deposits, age uncertainties are usually in the range of 5-10%
(16); this is less precise than radiocarbon dating, which is
frequently used for younger sediments <45 ka. This dating
method is ideally applied to organic remains, such as bones or
charcoal (e.g. Moine et al., 2021). CaCO; from mollusk shells
and earthworm calcite granules (ECGs) can also be suitable for
dating though the tendency of some species to burrow and
ingest old carbon may lead to erroneous results, underlining
the need for multi-material applications (Bosq et al., 2020).
However, organic remains are not always preserved because
of the high carbonate leaching potential in loess. When absent,
bulk sediment samples can also be radiocarbon dated though
often with less accuracy (e.g. Scheidt et al., 2021). While
luminescence dating determines the time since last sunlight or

J. Quaternary Sci., Vol. 36(8) 1279-1292 (2021)
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heat exposure, radiocarbon dating determines the time since
the demise of the organism whose organic carbon is dated. For
longer, particularly older sections, correlative dating via
magnetic stratigraphy is often applied (e.g. Zeeden et al., 2009;
Scheidt et al., 2021). Here, age control is given by ‘wiggle-
matching’ fluctuations in rock- and paleomagnetic parameters
to known master curves (Scheidt et al., 2021). These
parameters are often the magnetic susceptibility, which is
elevated in paleosols, or the direction or paleointensity of the
Earth’s magnetic field. While it can be widely applied, it is
difficult to accurately assess age uncertainty since it depends
on the quality of the master curve, the wiggle matching
method (e.g. Blaauw et al., 2018) and the fact that the
magnetic signal can be formed at a later time than loess
deposition as magnetic minerals form during pedogenesis (see
e.g. Maher, 1998; Ahmed and Maher, 2018). Additionally,
tephras (volcanic ashes) and heavy minerals can be used as
isochronous marker horizons to correlate non-adjacent pro-
files and deposits (Lowe, 2011; Davies et al., 2015; Pirson
et al., 2018).

Still, dating sediments, artifacts or biological remains is
seldom straightforward because discrepancies between var-
ious dating techniques often arise (Ujvari et al., 2014; Zeeden
et al.,, 2021). Comparisons between radiocarbon dating,
luminescence dating and magnetic stratigraphy at a Romanian
loess—paleosol sequence show that, at least at this site,
radiocarbon dating is only reliable for the last 27-25 ka
(Scheidt et al., 2021), potentially related to a low organic
carbon content and the probable admixture of younger organic
carbon into samples (cf. Song et al., 2015). Other studies
investigating the saturation behavior of the quartz lumines-
cence signal show that, at least for older samples, quartz is not
a reliable dosimeter (Timar-Gabor et al., 2012; Timar-Gabor
and Wintle, 2013; Constantin et al., 2014; Anechitei-Deacu
et al, 2018; Avram et al, 2020). A particularly difficult
example is presented by Groza et al. (2019) for the early
Gravettian Krems-Wachtberg site (Austria), where the quartz
extracts were heavily contaminated by other minerals, result-
ing in the rejection of half of the measured aliquots. Despite
these challenges, several promising studies using, for instance,
Bayesian modeling can help to overcome age inversions and
reduce uncertainties (e.g. Schmidt et al., 2021).

Inorganic proxy methods in loess

Because of its eolian genesis, loess can be a reliable marker for
past atmospheric circulation to infer paleoclimate patterns using
sedimentological, biological, geophysical and geochemical
indicators (Rousseau and Hatté, 2021). Its potential for paleocli-
matic reconstruction coupled with its widespread nature in the
northern hemisphere is the main reason why loess deposits have
been intensively investigated. While loess deposits are generally
lower in resolution than layered or varved marine and limnic
sediments, they provide an opportunity to investigate paleocli-
matic and possible paleoanthropogenic archives in a wider
spatiotemporal context. Moreover, loess proxy data can be
correlated with better resolved records such as ice-cores,
facilitating links to Greenland interstadials and past European
soil development within loess sequences (Rousseau et al., 2017).
Finally, loess records are correlated across the entire Eurasian
content, showing remarkable similarities (Haesaerts and
Mestdagh, 2000; Bronger, 2003; Markovi¢ et al., 2015, 2018a;
Laag et al., 2021), although some caution the use of simple
correlations between records that might overlook notable
differences in some time intervals (Zeeden et al., 2020), or
disregard causality or different delay times between proxies
(Vandenberghe, 2012).

© 2021 The Authors Journal of Quaternary Science Published by John Wiley & Sons Ltd

Loess records often have abundant environmental proxies
embedded within them. When accompanying archeological
materials, these can deliver high-resolution, local, contermi-
nous paleoecological reconstructions that provide important
context to anthropogenic subsistence. When archeological
materials are not present however, they are often correlated
with other regional records that document landscape change
and occupation history over time (Romanis et al., 2021) and
space (Nerudova et al., 2021). At a larger scale still, loess
records have been used to inform diachronic changes in
paleodemography and typotechnological trends born out
primarily in the lithic record by providing an important record
of broad-scale regional and temporal environmental change
(Morgan et al., 2011; Schmidt and Zimmermann, 2019) even if
analytical units are still precarious (Reynolds, 2020).

Loess grain-sizes can provide information on paleoclimate
(Ujvari et al., 2016). Loess grain-sizes are usually homogenous
and well-sorted but distributions change during or after
depositional events such as erosion, transport and soil
formation. Variations in these distributions through time (i.e.
depth) can infer information about climatic and environmental
conditions. More recently, Schulte and Lehmkuhl (2018)
presented a method indicative of the degree of chemical
weathering in loess—paleosol sequences. However, grain-size
is not only analyzed in pure sediment research, but often
applied as a component of geoarcheological investigations
(e.g. Chu et al., 2018; Markovic¢ et al., 2021b; Malinsky-Buller
et al., 2021). For instance, the importance of an in-depth
understanding of the loess stratigraphy before any paleoenvir-
onmental proxy interpretation has been emphasized for the
Krems-Wachtberg site (Austria; Sprafke et al., 2020) where
grain-size analysis allowed a differentiation between eolian
sediments and those reworked by slope processes. The study
by Handel et al. (2021) further illustrates the synergies between
archeology, field observations and granulometry and how they
can refine site formation processes.

Inorganic geochemistry is applied to investigate the dust
provenance area and the degree of weathering and soil
formation. Although there are more suitable methods for
provenance studies, such as zircon chronology (e.g. Ujvari
et al., 2012; Ducea et al., 2018), bulk geochemical analysis
holds potential to distinguish different sediment sources and
transport pathways (Potter et al., 2021b). To determine the
degree of weathering, several indices are available that rely on
the concept of mineral alteration whereby the selective
removal of soluble and mobile elements is compared to a
relative enrichment of immobile and non-soluble elements
(Buggle et al., 2011; Obreht et al., 2019). This proxy method is
frequently used in geoarcheological studies, mainly to provide
the paleoenvironmental context of human occupation
(e.g. Degryse and Alexander Bentley, 2017; Bosken
et al.,, 2019, 2018; Chu et al., 2019).

Color measurements of loess or soil samples are also used to
estimate paleoenvironmental change. While pure loess sedi-
ments are typically light yellow, red and black hues are related
to pedological processes or humification (e.g. Sprafke
et al., 2020). Spectrophotometric measurements can be
performed on sediment samples in the laboratory (Eckmeier
et al., 2010; Gocke et al., 2014; Kraul’ et al., 2016) or digital
images can be analyzed to work non-destructively (Zeeden
et al., 2017). A further parameter used in loess research is the
redness index (Barron and Torrent, 1986). Krauss et al. (2021)
interpret the color together with further geochemical data as a
weathering proxy at the Attenfeld loess—paleosol sequence.
Color data can be also analyzed statistically, as, for example,
done at the Mala nad Hronom loess—paleosol sequence
(Slovak Republic). Here, a hierarchical cluster analysis was

J. Quaternary Sci., Vol. 36(8) 1279-1292 (2021)
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applied to characterize the entire reflectance spectrum and to
classify various sediment groups (Szeberényi et al., 2020).
The presented methods work usually best when applied in a
multi-proxy approach. There are numerous examples in loess
and geoarcheological studies. For instance, at the Bihzdar
site (Czech Republic) geochemical approaches [total organic
carbon, X-ray fluorescence (XRF) elemental analyses, X-ray
diffraction (XRD) mineralogy, '*C and '®0 stable isotopes] are
combined with grain-size distributions and OSL dating to assess
the climatic conditions at the time of formation of the
strata (Flasarova et al., 2020). At the Upper Paleolithic site of
Temeresti (Romania), post-depositional site formation processes
were investigated by a multi-proxy approach using geographic
information system (GIS), grain-size and geochemical analyses
and geochronological methods (Chu et al., 2019). Further early
illustrative examples of multi-proxy analysis with geoarcheolo-
gical context were undertaken at Maastricht-Belvedere (Van
Kolfschoten and Roebroeks, 1985; Vandenberghe et al., 1993).

Organic proxy methods in loess

Although organic carbon contents are usually low in pure loess
deposits, both macro- and micro-vertebrate skeletal remains can
be impressively well preserved in loess, such as mollusk shells
(Bosken et al., 2018; Moine et al., 2021) or faunal bones that are
used to understand the paleoenvironment and behavioral
practices (Einwogerer et al., 2006; Montalvo et al., 2008;
Markovi¢ et al., 2014; Wilczynski et al., 2015). The underlying
mechanisms of loess formation or loessification, sometimes
regarded a pedogenetic or diagenetic process, is still incomple-
tely understood, though it is suggested to involve trapping of
eolian dust or silt, carbonate cementation and further secondary
loessification processes such as pedogenesis, re-deposition or
compaction (Sprafke and Obreht, 2016). These can rapidly
affect bone diagenesis and, in some cases, erase mammalian
skeletal remains completely (Machova et al., 2020).

While other Quaternary paleoecological microfossils such
as foraminifera, ostracods, radiolaria, diatoms and pollen are
often not preserved in loess (Muhs, 2013), there are exceptions
in reworked loess sediments in lacustrine and alluvial settings
such as anomalous subaqueous loess facies (Kulesza
et al., 2020). The high carbonate content of loess deposits,
however, is ideal for the preservation of terrestrial mollusks.
Mollusks are sensitive to environmental changes and since
modern analog assemblages are widely available, they
represent a detailed paleoenvironmental proxy (e.g. Rousseau
et al., 2018; Sumegi et al., 2021). These proxy data inform
about summer temperatures and moisture conditions (e.g.
using the malaco-thermometer method of Stmegi, 1989;
Stimegi and Krolopp, 2002) and provide information about
habitats, landscape types (dense or open) and vegetation types
(boreal/deciduous forest, grassland, tundra, etc). Many studies
deal with the paleoenvironmental reconstruction based on
these land snails in loess (e.g. Rousseau, 2001; Stmegi and
Krolopp, 2002; Markovi¢ et al., 2007; Gerasimenko and
Rousseau, 2008; Moine, 2008; Stimegi et al., 2011; Zong
et al., 2020) by combining them with sedimentological,
magnetic and geochronological data (see Markovié¢
et al., 2021a). However, there has been discussion about its
interpretation in the Carpathian Basin since some mollusk-
based temperature reconstructions do not agree with stable
carbon isotope-based ones (Obreht et al., 2019, 2021; Stimegi
etal., 2021). Nevertheless, Ludwig et al. (2021) compared Last
Glacial Maximum (LGM) temperature reconstructions based
on the malacothermometer method with a high-resolution
regional climate simulation and found close agreement for the
Serbian Vojvodina region. Additionally, they showed different
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aridity gradients in the region in comparison to current climate
conditions. Finally, some mollusk shells are well suited for
radiocarbon dating (Ujvéri et al., 2017, 2014; Molnar
et al., 2021). However, it is crucial to identify those taxa that
do not (or only in low amounts) incorporate old carbonates
(i.e. dead carbon), which are abundantly available in loess
deposits (Ujvari et al., 2014).

Another biological proxy investigated in loess—paleosol
sequences are ECGs that are common in western and central
Europe, but rarer in the arid environments of Asia (Fenn and
Prud’homme, 2020). ECGs are composed of rhombohedra
calcite crystals produced by a biomineralization processes
(Canti, 1998; Gago-Duport et al., 2008; Fenn and Prud’-
homme, 2020). ECGs are linked to soil temperature and
humidity and because they are produced mainly during the
spring and autumn, they can be related to paleotemperature
(Prud’homme et al., 2016), paleoprecipitation (Prud’homme
et al., 2018) and seasonal climate fluctuations (Satchell, 1967;
Fenn and Prud’homme, 2020) by their carbon and oxygen
isotopic composition. They purportedly reflect conditions in
the topsoil (Canti and Piearce, 2003) with limited mixing
between different units, making ECGs a powerful paleoproxy
that can also be radiocarbon dated (Moine et al., 2017). A
detailed and insightful example is given by Moine et al. (2021),
which presents a first study combining high-resolution
malacological data with radiocarbon-dated ECGs at the Upper
Paleolithic site of Amiens-Renancourt 1 (Somme, France).

Most biological proxies present in loess—paleosol sequences
are composed of calcite or aragonite and therefore can be used
to analyze carbon and oxygen isotope compositions. 8'°C and
5'%0 values of carbonate proxies can be indicators of
vegetation type, precipitation and temperature (Fenn and
Prud’homme, 2020). 3'°C is a useful proxy for inferring past
photosynthetic pathways (C3 vs. C4 plants) and the degree of
physiological water stress (Rousseau et al, 2018; Obreht
et al., 2019). It can further be used for paleoprecipitation
reconstruction (Hatté et al.,, 2001; Hatté and Guiot, 2005;
Kohn, 2010). The 3'80 values of inorganic calcite are
influenced by the temperature during formation and the
oxygen isotopic composition of water (Fenn and Prud’-
homme, 2020). In loess, oxygen isotopes are mainly measured
on snails or secondary carbonates. 8'80 values of soil
carbonates are generally driven by temperature, while 8'3C
values are used to reconstruct the vegetation and environment
during the Quaternary. However, temperature and precipita-
tion can be difficult to quantify and disentangle. A new method
holds potential by using clumped isotopes applied to terrestrial
carbonates providing soil and air temperature estimates for the
summer season (Ujvari et al., 2019). 3'°N is another stable
isotope investigated in loess and is applied to soil biogeo-
chemical cycles. Therefore, it has the potential to provide
information on the relationship between precipitation and
temperature, but more importantly about the openness or
closedness of the N-cycle in the ecosystem (Obreht et al. 2019).
While stable organic carbon and nitrogen isotopes can be used
to interpret past vegetation patterns and ecosystem qualities, a
careful pretreatment (decalcification method) is important to
avoid misinterpretation of the data (Potter et al., 2021a).

Further micro-organic residues that are investigated in
loess—paleosol sequences are n-alkanes and fossil glycerol
dialkyl glycerol tetraethers (GDGTs). n-Alkanes are plant leaf
wax biomarkers used for the reconstruction of the vegetation
history as their signature differs in function based on the
different vegetation types. GDGTs are membrane lipids
produced by archaea and soil bacteria that can adjust their
membrane permeability and fluidity to changing environmen-
tal conditions (e.g. pH and temperature), by changing their
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Figure 2. Photo of the Late Pleistocene loess exposure of Vlasca in the
Lower Danube Basin (Photo by Stephan Potter, 2018).

molecular composition (Obreht et al., 2019). Based on modern
data, n-alkanes nC27 and nC29 dominate in tree and shrub
vegetation, whereas n-alkanes nC31 and nC33 were identified
to predominate herbs and grasses (Zech et al., 2011a,b;
Schifer et al., 2016; Fenn and Prud’homme, 2020). After a
regional calibration, this proxy is used to reconstruct past
vegetation cover (e.g. relative proportion of grasses vs. trees;
Bush and Mclnerney, 2013). However, post-sedimentary
overprinting of organic matter in n-alkanes is possible in
loess—paleosol sequences and needs to be accounted for
(Gocke et al., 2011; Zech et al., 2011b; Fenn and
Prud’homme, 2020). GDGTs can be used as a proxy for
continental air temperatures and soil pH (Weijers et al., 2007).
The ubiquitous occurrence of GDGTs in soils offers the
potential to independently reconstruct continental paleotem-
perature from terrestrial deposits (Jia et al., 2013). However,
the use in loess—paleosol sequences is cautioned by Zech et al.
(2012) who found major disagreements with the available
stratigraphic, pedological and geochemical data of three
sequences. A new procedure for simultaneous extraction of
n-alkanes and alkenones from GDGTs has been proposed by
Auderset et al. (2020).

Gathering dust: new directions for
Quaternary loess and the Paleolithic

Loess is a prime Pleistocene repository of Paleolithic artifacts
that is intimately connected to past European sites and
landscapes (see example of loess—paleosol sequence in Fig. 2).
Widely distributed, loess has the potential to finely preserve
Paleolithic sites, fauna and features in a variety of Pleistocene
settings that can often be dated using an assortment of absolute
and relative dating techniques. Advances in sedimentology
and geochemistry have additionally improved the capacity to
identify local and broad-scale spatiotemporal changes to the
paleoenvironment that can contextualize how we interpret the
archeological record and inform interpretations of how
hominins adapted to and shaped these environments (Badino
et al., 2020).

Still, current approaches are challenging as loess records are
often discontinuous, lack high-resolution absolute chronology
and are too generalized to meaningfully apply to the
archeological record. Continued work is needed to establish
direct links between paleoenvironments, site occupations
and their contents, particularly where site features are not
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preserved. Loess formation processes and pedogenesis are still
incompletely understood, complicating our understanding of
their association with embedded cultural remains. The uneven
spatiotemporal distribution of loess and embedded Paleolithic
sites across Europe combined with the resolution of current
dating techniques still limits our ability to make meaningful
inferences of human behavior across Europe sometimes even
at the broadest of scales (i.e. Marine Isotope Stages).

Nevertheless, current scholarship is increasingly demon-
strating that detailed, multidisciplinary approaches can reveal
regional and local shifts in hominin landscape use that provide
new opportunities to understanding past adaptations to
environmental change. Part of advancing the future of
Paleolithic research in European loess therefore involves
advancing the way we apply current geoarcheological
methods and identifying ways in which new and existing
methods can contribute to our understanding of past hominin
behavior and link them to Paleolithic environments and
landscapes. Archeological sites are unique datasets and often
require tailored analyses to decode their post-depositional
processes and significance.

Geospatial inventorization

An important part of continued Paleolithic research in loess
involves identifying suitable loess areas at a variety of scales.
Advances in digital geoarcheology that take advantage of air-
and satellite-based remote sensing (Siart et al., 2018), soil
mapping (Bertran et al, 2021) and GlS-based predictive
modeling are such approaches (Blundell, 2020) that may
contribute to our understanding of marginal zones of loess
distribution which have hitherto received archeological little
attention. In areas where loess mantles are thin, advances in
shallow ground-based remote sensing techniques such as
geomagnetics and ground-penetrating radar are uniquely
positioned to identify new sites and map local Pleistocene
landscapes (Urban et al., 2019; Barbieri et al., 2021). Such
methods are seldom employed in European Pleistocene
archeology, but the properties of loess make such thin
exposures ideal for identifying distributions of past hearths,
pits, stone and bone arrangements indicative of other site
‘furniture’. These have the potential to help map diachronic
landscape use and provide invaluable new examples of
Pleistocene megasites and habitation structures to examine
perceptions of space and place (lakovleva et al., 2012; Maher
and Conkey, 2019; Pryor et al., 2020).

Similarly, further field investigations at the European loess
distribution periphery may yield deeper Pleistocene deposits
that have otherwise been overlooked and might meaningfully
contribute to interpretations of hominin demographics
throughout the Paleolithic. Dolines, fissures, greda and other
open-air sedimentary traps can provide important information
from upland areas that have otherwise been eroded (Scott
et al, 2019). Even if such investigations lead to meagre
archeological results, they can still provide important com-
parative paleoenvironmental proxies and can meaningfully
contribute to a more wholistic understanding of past hominin
landscape use (Fitzsimmons et al., 2020). Here, understanding
regional loess formation mechanisms is key (Assadi-
Langroudi, 2019). By understanding the processes by which
loess, particularly at the margins, is preserved, we can begin to
decode the geomorphological processes underlying archeolo-
gical site preservation and recovery and begin to decode how
these influence interpretations of artifact distribution patterns
and inferences on human habitat predilection; these aspects
are already known to be biased (Blundell, 2016; Pope
et al., 2016).
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Reconstructing environmental processes by artifact
condition and loess properties

As the most enduring part of the Paleolithic record, lithics
embedded within loess profiles additionally have the potential
to inform the loess interpretations and provide crosschecks
against paleoenvironmental reconstructions. This should not
be extended to using lithic types as chronological tie-points for
loess sequences, which can lead to circular argumentation
(Egberts et al., 2020). Rather, by regarding the embedded
lithics as artificially inserted clasts within the sedimentological
sequence, the suite of lithic taphonomic analyses that have
been developed can be employed. Here, refits remain an
important part of assessing lithic assemblage integrity in loess
that can equally inform interpretations of sedimentary mixing
(Villa, 1983; Van Kolfschoten and Roebroeks, 1985). Where
available, sedimentary structures, artifact fabrics and size
distributions are a principal method to understand the
spatial distribution of artifact assemblages that can be used
to identify subtle changes to site integrity (Lenoble et al., 2008;
McPherron, 2018; Handel et al.,, 2021). How and when
artifacts characteristically imbricate within eolian sediments
because of post-depositional changes remains an area for
future research (Borrazzo, 2016).

Artifact surface conditions can also contribute to under-
standing the post-depositional movement of lithic assemblages
and help inform interpretations of pedogenesis and loess
diagenesis (Vallin et al., 2001). Various geochemical weathering
patterns (e.g. patinas) commonly found on flaked stone artifacts
may eventually inform their syn- and post-depositional contexts
and help to disentangle palimpsests in instances where loess
deposition has been thin, deflated or disturbed (Glauberman
and Thorson, 2012; Glauberman, 2016). At a microscopic
scale, understanding lithic surface polishes may provide ways of
deciphering initial modes and direction of loess deposition at
discard and the intensity and variety of subaerial exposure to
freeze-thaw cycles (Burroni et al, 2002; Chu et al., 2015;
Bertran et al., 2017; Michel et al., 2019). Such studies might be
best combined with the increasing archeometric improvements
in tracewear and residue analysis to not only better understand
the various stigmata that lithic assemblages in loess character-
istically exhibit, but also how these may affect our interpreta-
tions of experimentally derived examples of lithic usewear and
surficial chemical analysis (Kozowyk et al., 2020; Marreiros
et al., 2020).

Linking loess to hominin social and cultural
conditions

Beyond examining how loess studies and Paleolithic arche-
ology can better inform the preservation and context of
hominin sites, a main goal of future research is to incorporate
wider advances from ecology and paleoanthropology to
ascertain deeper questions into hominin evolution. In other
words, how is loess connected to other aspects of hominin
prehistory in more profound ways beyond its preservation
qualities?

One way is through loess’s connection to past evolving
ecosystems. Throughout the Pleistocene, European loess has
constituted a homogeneous, (semi-)contiguous mantle across
the landmass characterized by high porosity and cation
exchange capacity, leading to fertile, well-drained soils (e.g.
Schaetzl and Thompson, 2015). At times, even when
continent-wide environmental conditions were suboptimal,
these fertile sediments sustained a relatively specific, highly
productive steppic flora, establishing distinct biogeographic
regions with ample megafauna to support substantial predator
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communities including early hominins (Blinnikov et al., 2011;
Fitzsimmons et al., 2012; Guthrie, 2013, 1982). Particularly in
south-eastern Europe, where climate was reliably milder, loess
may have played a role in establishing biodiversity preserva-
tion zones, hominin refugia and coalescent communities that
may have promoted hominin geneflow and been a catalyst for
technological innovation (Markovi¢ et al., 2018b, 2021a).
Here, the high degree of hominin hybridization and diversity
of lithic technocomplexes during the Late Pleistocene may be
a partial result (Svensson et al., 2021).

Loess may have impacted technosocial innovation in other
ways as well. From at least the Upper Paleolithic, loess has
also been used to make ceramic sculptures and may have
facilitated increased forms and innovations in artistic expres-
sion among early hominins (Farbstein and Davies, 2017).
Likewise, research at the Upper Paleolithic site of Sungir
(Russia) has suggested that early hominin burials there reflect
diverse social behaviors and that loess may have also played a
role in the modes of mortuary practices (Trinkaus and
Buzhilova, 2018). Further research in these areas may begin
to show the complex and intertwined relationships that loess
and past human behavior have in more direct ways.

In Eastern Europe, where loess is more ubiquitous and
extensive, Paleolithic sites may also show how hominin
biological and cultural adaptations are linked to loess land-
scapes. Internal nasal morphology of early Homo sapiens at
Sungir and Mlade¢ (Czechia) demonstrate rapid physiological
adaptations to the cold and dry climates indicative of the local
loess environments (Stansfield et al, 2021). Similarly, the
continuous tradition of Upper Paleolithic mammoth mega-
structures recovered within the Eastern European loess belt
may uniquely illustrate how hominins adapted to loess steppes
in the relative absence of caves and rockshelters (Demay
et al., 2012; Marquer et al.,, 2012; Shipman, 2015). One
avenue of ascertaining this connection may be in assessing the
orientation of Paleolithic sites relative to wind direction (Lefort
et al., 2019; Lefort et al., 2021).

Regardless of the direct connection of loess to human
evolution and its overlap with other autocorrelated features of
climate and landscape, loess and archeology are still commonly
studied through a dichotomy of ‘meaningful’ culture and
unmeaning nature (Lyons, 2019). We are just beginning to
understand the extent to which lithic assemblages and loess
connected beyond just their preservation material. Here a
reassessment of loess and archeology’s mutual goals is
necessary with the aim to look beyond the descriptive analysis
and correlation of sedimentary and archeological packages. In
this regard, loess is uniquely suited to address larger-scale
anthropological issues because of its ubiquity across the
European landscape and its preservation of Paleolithic artifacts
and features throughout the Pleistocene.

Cooperation and preservation

To date, transcontinental approaches to loess geoarcheology
remain largely isolated, at least from a European perspective.
While Europe has tended to dominate loess Paleolithic research,
increasing scholarship from Asia is rapidly developing new
methods and techniques of analysis to meet the challenges of
exceptionally long sequences (Krajcarz et al., 2016b; Nian
et al., 2016; Zhang et al., 2017; Zhu et al., 2018; Zhao
et al., 2021). Likewise, in the Americas, Late Quaternary sites
show complex responses of humans and fauna to paleoenvir-
onmental change that can provide important cross-checks to
human-environmental interactions derived in Europe (Graf and
Goebel, 2017; Powers et al., 2017; Lanoé et al., 2020).
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Finally, an area of intersecting interest between geosciences
and the Paleolithic archeology must surely be the management
and protection of finite loess archives (Vasiljevi¢ et al., 2011;
Vujici¢ et al., 2018). Anthropogenic impact, including mining,
agriculture and development, increasingly encroach on
Europe’s loess deposits and key Paleolithic loess sequences
have already been erased, making the protection of their
landscapes and archeological sites all the more urgent
(Nykamp et al., 2017; Antoine, 2019; Bogucki et al., 2020).
Geoconservationalists, archeologists and earth scientists alike
have largely advocated for the establishment of protected areas
in the forms of geoparks fueled by the active promotion of
sustainable geotourism (Vasiljevi¢ et al., 2014; Jary et al., 2018).
However, national structures vary across European borders
and are commonly split between cultural heritage and
environmental protection organizations, leading to disparate
methods of identification, classification and preservation
regimes. A main goal for geoheritage conservation of loess
landscapes is therefore the stronger implementation of inter-
national initiatives and policies (Gordon, 2018).
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