Journal of Physics: Conference Series

PAPER « OPEN ACCESS You may also like

A tool for automated detection of hidden operation  Lidicd cimaion conscerng

abrupt change point detection

modes in bu||d|ng energy Systems Weizhen Zhang, Hui Shi, Jianchao Zeng

etal

- Detection and localization of change
points in temporal networks with the aid of
stochastic block models
Simon De Ridder, Benjamin
Vandermarliere and Jan Ryckebusch

To cite this article: Thomas Storek et al 2021 J. Phys.: Conf. Ser. 2042 012071

- Knowledge extraction from Copernicus
satellite data

C O Dumitru, G Schwarz and M Datcu

View the article online for updates and enhancements.

: :Thﬂq HONOLULU, HI #Ba=dcP. Joint Meeting of
PACIFIC RIM MEETING * W ¢
gasemeet  Oct 6-11, 2024 :

The Electrochemical Society

Abstract submission deadline: .| The Electrochemical Society of Japan
April 12,2024 .

Korea Electrochemical Society

Learn more and submit!

This content was downloaded from IP address 134.130.185.199 on 12/01/2024 at 13:31


https://doi.org/10.1088/1742-6596/2042/1/012071
https://iopscience.iop.org/article/10.1088/1361-6501/ab8fed
https://iopscience.iop.org/article/10.1088/1361-6501/ab8fed
https://iopscience.iop.org/article/10.1088/1361-6501/ab8fed
https://iopscience.iop.org/article/10.1088/1742-5468/2016/11/113302
https://iopscience.iop.org/article/10.1088/1742-5468/2016/11/113302
https://iopscience.iop.org/article/10.1088/1742-5468/2016/11/113302
https://iopscience.iop.org/article/10.1088/1755-1315/509/1/012014
https://iopscience.iop.org/article/10.1088/1755-1315/509/1/012014
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsunIQEho2NndzFIOtg0qLVhgsUxg_tTgLFj4nCJ6BM0i4uHrZidt1MFsnrHY8jGDnpcXkq7Hgm0YnRlUfxez9bKT1p7J5bnZZA2azn8oAabFiCGjnLgEaM-6R5myZR7fNhin7Yq2Ed-IJFWpoImSamUiO_SO1yktwu0XLF5X3fpAy98WXj_2G3Sm5kW7Wt1E_z4bVsaAXqwxzhtapFwYH4dx9_XiJDZ2w_ECoc-mQ-rf-OY0TiZ0lwCB7HngWDrLO5NXJrwKn6-LYwi712ah634mJhAeeWoc4ce5oHWYTMcdo5oDxKL3hpAf9eYrcfn&sai=AMfl-YTcQK0Xg3Sujhkm3nRQnwHtSVrf3HU4dqEGCZxIWzyWAhuCR497cuI_X5oPKtowSbQBiRz87RDE84z6Dh8&sig=Cg0ArKJSzFFh7nFAx2T7&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://ecs.confex.com/ecs/prime2024/cfp.cgi%3Futm_source%3DIOP%26utm_medium%3Dbanner%26utm_campaign%3Dprime_abstract_submission

CISBAT 2021 IOP Publishing
Journal of Physics: Conference Series 2042(2021) 012071  doi:10.1088/1742-6596/2042/1/012071

A tool for automated detection of hidden operation
modes in building energy systems

Thomas Storek, Jonathan Kriwet, Alexander Kiimpel, Dirk Miiller
RWTH Aachen University, E.ON Energy Research Center, Institute for Energy Efficient
Buildings and Indoor Climate, Mathieustrale 10, 52074 Aachen, Germany

E-mail: tstorek@eonerc.rwth-aachen.de

Abstract. The integration of renewable energy sources into building energy systems and the
progressive coupling between the thermal and electrical domains makes the analysis of these
systems increasingly complex. At the same time, however, more and more building monitoring
data is being collected. The manual evaluation of this data is time-consuming and requires
expert knowledge. Hence, there is a strong need for tools that enable the automatic knowledge
extraction from these huge data sets to support system integrators and favor the development
of smart energy services, e.g., predictive maintenance. One crucial step in knowledge extraction
is the detection of change points and hidden states in measurements. In this work, we present a
tool for automated detection of hidden operation modes based on multivariate time series data
deploying motif-aware state assignment (MASA). The tool is evaluated utilizing measurements
of a heat pump and compared to two baseline algorithms, namely k-Means and k-Medoids.
MASA performs particularly well on noisy data, where it shows only a small deviation in the
number of detected change points compared to the ground truth with up to 77 % accuracy.
Furthermore, it almost always outperforms the baseline algorithms, which in turn require
extensive preprocessing.

1. Introduction

Building energy systems (BES) hold great potential for reducing the primary energy demand
and COq emissions. Therefore, they are in the focus of energy policies in many countries [I].
Besides retrofitting, the efficient system operation is a key to leverage this potential. In fact,
about 40 to 70 % of today’s BESs operate inefficiently [2, B]. Additionally, the integration of
renewable energy sources and the coupling between the electrical and the thermal energy systems
significantly increases the system complexity of BES. Hence, there is a strong need for methods
to better understand this augmented complexity while making the commissioning procedure and
management more efficient and reliable. As many modern non-residential buildings are already
equipped with sophisticated building automation and monitoring systems (BAS) the availability
of collected operation data increases significantly [4]. However, BAS are often implemented under
high cost and time pressure and with missing naming standards, leading to errors and thus
incoherent data sets, which inhibits potential for energy savings [5]. Therefore, the generation
of valuable interpretable knowledge about the operational behavior of BES from this data is a
challenging task. This motivates the application of machine learning for an automated computer-
aided evaluation of monitoring data [6].
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In the literature, authors broach the issue of structuring data sets by applying machine-
learning algorithms to achieve automated classification and the assignment of data points to
the corresponding physical data sources [6]. Furthermore, they try to automatically recognize
the physical interaction between sensors and actuators in order to create a causal network of
functional relationships for further analysis of the monitored data sources. The results of this
research are already promising and may come close to its limits in the near future only lacking
the ability for generalization. Nevertheless, the availability of structured data sets enables
the application of further data-driven methods for the optimization of BES operation, such
as data-driven model predictive control [7, 8] or fault detection [9]. However, although these
methods show great potential and favor the mentioned applications, the energetic interpretation
of building monitoring data sets still requires considerable expert knowledge of the BES
and its individual subsystems in order to derive meaningful measures to improve the system
performance. Therefore, we present a tool that enables the detection of meaningful patterns
and state changes in multivariate time series data such as building monitoring data in order to
support building operators to better understand behavior of individual subsystems.

2. Related Work

Identification of distinctive patterns and detection of change points (CP) in multivariate time
series data has become a common task in signal processing for the identification and analysis of
complex systems whose underlying states change [10HI2]. Although most research is currently
being conducted in the medical and financial fields, the topic is gaining attention for engineering
applications, e.g., predictive maintenance. Truong et al. [I0] give a comprehensive review of
existing methods for offline CP detection, whereas offline CP detection is often referred to as
event or anomaly detection. The methods presented typically focus on detecting specific points in
time that indicate a change in system behavior, but do not classify the resulting time segments.
Nevertheless, this is a crucial step in order to uncover hidden patterns in big data sets and
thus support better interpretability. Here, classical distance-based clustering methods such as
k-Means or k-Medoids are commonly used in the studies and, therefore, provide a benchmark
for the evaluation process [13]. This means that CP detection and clustering are two sequential
steps without interaction, whereas Hallac et al. [I1] present the Toeplitz Inverse Covariance-
Based Clustering (TICC) of multivariate time series. This method performs the segmentation
and clustering simultaneously. Each cluster is defined by a correlation network that describes the
interdependencies between observations over a short temporal window. Based on the network
structure the clusters are calculated, which makes TICC more suitable for multivariate time
series analysis. Also for applications in process engineering TICC returns better results as more
traditional CP detection methods as demonstrated by Kapp et al. [14]. Based on TICC, Jain
et al. [I2] present the motif-aware state assignment (MASA) which extends TICC and makes it
more robust when noise is present. Therefore, it seems particularly suitable for use in engineering
applications.

3. Methodology

In this work, we present a tool for automated detection of hidden operation modes based on
multivariate time series data. gives an overview of the implemented tool chain starting
from raw building monitoring data. When working with measurements, usually data cleaning
and preprocessing is required. In the field of machine learning this usually comprises resampling,
denoising and outlier removing, scaling and normalization and ”Not a Number dealing” of
measurements [4, [I4]. Since CP detection strongly depends on discrete changes in data this
becomes a challenging step. On the one hand, noise and outliers should be removed, on the
other hand, meaningful peaks, which can indicate, e.g. hysteresis control, must be preserved.
We accomplish this step by combining a multi step wavelet denoising with a low pass filter
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Figure 1: Workflow of the implemented tool chain for change point detection and pattern
discovery in multivariate time series data

with high cut off frequency. Afterwards, we manually add features to the data set such as first
and second derivative. In the long term, toolboxes such as TSFEL [15] or TSFRESH [16] may
support the automatic extraction of additional meaningful features from time series. However,
most of these auto generated features project the entire time series onto a single value. This
is very useful when the length of each segment or window is known a priori and the individual
segments have the same length, e.g. when clustering daily data in order to find representative
days in a year. However, when detecting CPs, the selected segment length can be critical
to accuracy because a CP can only be predicted between two windows unless a rolling window
method is deployed. Therefore, we only consider continuously computed features. Subsequently,
based on extracted features and their correlation we cluster the data set along the time axis
resulting in a segmentation. Here each segment corresponds to a previously visible or hidden
operation mode of the system.

Since the number of hidden states is unknown a priori, the procedure is repeated while the
number of clusters k is increased successively. Furthermore, we vary the clustering method and
the corresponding hyper parameters. The methods include k-Means, k-Medoids and MASA.
The individual results are evaluated semi-automatically using a selection of well-known key
performance indicators (KPI) for evaluating the segmentation process. The Annotation Error
is the difference between the number of CPs, K*, in a set of true CPs, T* = {t], ..., t}.. }, and
the number of CPs, K, in a set of predicted CPs, 7 = {t1,..., fK} [10]. Here ¢} denotes the time
of a true CP and f; denotes the time of a predicted CP, respectively. Hausdorff quantifies the
robustness of the process describing the greatest temporal distance between a true CP and the
closest predicted ones [I0]. However, in order to use the Annotation Error and Hausdorff in
combination with other KPIs, we scale them between 0 and 1 according to lequations (1)|to |(4)
where 6% is the maximum distance between two neighbored CPs in 7*. Finally, for both KPIs,

max
a value of 1 indicates the highest and a value of 0 the lowest score.

|K7K* : * ‘ 2% *
. — > K —
Scaled Annotation Error (K*,K) = 1 o K2 |K-K (1)
0, otherwise
Hausdorff = max{r;lez;z(t%if}l* it —t*], nax It]gr_l it —t*[} (2)
Oax = max{t; , —t; Vie {1, ., K" —1}} (3)
R 1— H(Jzu*sclorﬁ7 if 5* > Hausd
Scaled Hausdorff (T*,T) = Onax " Omax - ausdorff (4)
0, otherwise
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Furthermore, we quantify the accuracy by the F1-Score (F; cp), which ranges as well between
0 (total disagreement) and 1 (total agreement) between the ground truth 7* and the prediction

T [10]. Ficp also allows for a user-defined error margin in order to adjust its tolerance. For
further details on the KPIs we refer to the literature [10] [14].

4. Application to building monitoring data
In order to evaluate the proposed tool chain and its potential for future application in building
energy systems, we apply it to time series data gained from an hardware-in-the-loop (HiL)
experiment of a real air-to-water heat pump (HP). The HP is part of a hybrid energy system,
which also includes a heat storage and a condensing boiler. The data set X,,w records about
20h of data in 5s samples, which in the field of building monitoring corresponds to a relatively
high sample rate. It comprises measurements of the temperature at the inlet 7}, raw and outlet
Tout,raw 0f the HP, as well as of the ambient air temperature Tymp raw. Furthermore, it contains
information about the electrical compressor power P ,aw and the volume flow Vraw of the
hydraulic connection to the other subsystems. For more details on the data set we refer to
Storek et al. [I7]. We neither have additional information about the operation states nor any
other control signals. However, all of the presented KPIs require a previous knowledge of the
true segmentation and its related CPs. Therefore, we manually label the CPs in our data set
based on expert knowledge. First, we label CPs based on Tyt raw to obtain 7711‘0ut, relying on
abrupt changes in the signal, which is comparable with peak finding. Second, we use P raw
to create T*el, whereas also CPs are labeled that indicate smaller jumps. Since Py ray contains
significant noise the CPs cannot be clearly determined and may contain uncertainty. To account
for this uncertainty in the labels and possible delays in the measurements, the time tolerance
for the Fy cp is set to 30s. This means that CPs predicted 30s before and after a true CP will
still be evaluated as correctly detected.

The preprocessed data set Xproc is added to X,y as additional features. Furthermore, we
add the temporal derivatives Xraw and Xproc to the feature set. This finally leads to the feature

set shown in where Z; describes the samples of all features at time ¢ € {1, ..., tena }-

. . T - - -
[Xrawa Xraw, XprOCa Xproc] = [1'1 e Ty e $tend:| (5)
—— cluster0 —— cluster 2 x e,
—— cluster 0 cluster 1 X T cluster 1 —— cluster 3
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Figure 2: Best solution found for the segmentation of Tout raw compared to 7p (a) and for

Pej raw compared to Tp (b). The changes between the clusters indicate ’f’TOm,raw and Tp
respectively.

el,raw ?
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Table 1: Calculated KPIs for the two best solution using 7
respectively

and 7g  as ground truth,

ut,raw

* * * %

ground truth

Tout,raw Tout,raw Pel,raw Pel,raw
ranking 15t ond 1t 2"
Annotation Score 1.0 0.967 0.917 1.0
Hausdorff Score 0.991 0.994 0.934 0.876
F cp-Score 0.767 0.721 0.580 0.542
Average Score 0.919 0.894 0.810 0.806
number of states 2 4 4 3
clustering method k-Means MASA MASA MASA

selected features Tout,prom Pel,proc Tout7raW7 Pel,raw Tout,raW7 Pel,raw Tout,raW7 Pel,raw

illustrates the results for the best solutions obtained for ’7712"mmaw and 7p by using

a naive brute force approach for feature and method selection as well as the hypei“ parameter
tuning. Furthermore, [table 1| contains the calculated KPIs of the best and the second best
solution, where the solutions are selected by means of the highest average score of all KPIs. For
Touiray Clustering with k-Means obtains the best average score using the preprocessed data
Pel,p;oc, and the derivative of Toyt proc as features. It detects two clusters which aligns with the
expected number of clusters. shows that the segmentation matches 7 = very well.
The second best solution obtained using MASA holds similar results although four clusters are
detected. However, in this study we do not evaluate the segment allocation. More importantly
it selects features directly derived from raw data, which indicates that MASA is more robust to
noise in the signals. This assumption is also confirmed by the results of the experiments based
on ’7}*61 .- Here, MASA even detects complex patterns and the corresponding CPs. Overall
MASA seems to be superior to the k-Means and k-Medoids for real world applications with
noisy data sets. Considering that the selection of the best solution strongly depends on Fi cp,
this also results in a dependence on the selected tolerance threshold. Hence, this parameter
needs to be chosen very carefully depending on the expected concurrency of measurements in
the analysed system. In fact, raising the tolerance to e.g. 60s raises the F cp significantly for
all solutions. However, the best found solutions in this scenario are all obtained by clustering
with MASA based on the raw data. This not only indicates that MASA generally shows better
performance but also that the results do not depend on the extensive preprocessing of the
features. Nevertheless, the simple analytic feature engineering steps conducted in this work
already lead to satisfying results and give valuable insides to the inner system control strategy.

5. Conclusion

In this work we present a tool chain for unsupervised detecting of change points in building
monitoring data. Initially, the chain comprises the typical process steps of a machine learning
pipeline. In order to evaluate the overall process, we conduct a case study based on measurements
of a air-to-water heat pump, where we neither have knowledge about the true change points
nor the internal control signals. Therefore, the data is labeled based on expert knowledge in
order to calculate meaningful KPIs. Executing the pipeline using naive brute-force, varying
the provided features, the detection algorithm and the corresponding hyper parameters, we find
that the motif-aware state assignment (MASA) algorithm shows the overall best performance.
Furthermore, we observe that the best solutions are not only found by MASA, but also that the
selected features are based on the noisy raw data. This indicated that MASA is well suited for
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real world applications and that complex preprocessing is not always mandatory. Nevertheless,
future work will introduce primary component analysis (PCA) to investigate whether it favors
the results. In addition, a comparison with supervised methods, e.g., Long Short Term Memory
(LSTM) networks, is desirable. Finally, we draw the conclusion to provide a valuable tool chain
for change point detection that will support the understanding of building energy systems and
favor the development of smart energy services.
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