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Abstract
The societal importance of geothermal energy is significantly increasing because of its low carbon-dioxide footprint. How-
ever, geothermal exploration is also subject to high risks. For a better assessment of these risks, extensive parameter studies 
are required that improve the understanding of the subsurface. This yields computationally demanding analyses. Often, this 
is compensated by constructing models with a small vertical extent. This paper demonstrates that this leads to entirely bound-
ary-dominated and hence uninformative models. It demonstrates the indispensable requirement to construct models with a 
large vertical extent to obtain informative models with respect to the model parameters. For this quantitative investigation, 
global sensitivity studies are essential since they also consider parameter correlations. To compensate for the computation-
ally demanding nature of the analyses, a physics-based machine learning approach is employed, namely the reduced basis 
method, instead of reducing the physical dimensionality of the model. The reduced basis method yields a significant cost 
reduction while preserving the physics and a high accuracy, thus providing a more efficient alternative to considering, for 
instance, a small vertical extent. The reduction of the mathematical instead of physical space leads to less restrictive models 
and, hence, maintains the model prediction capabilities. The combination of methods is used for a detailed investigation of 
the influence of model boundary settings in typical regional-scale geothermal simulations and highlights potential problems.
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Introduction

Geothermal energy is an important part of the future energy 
mix on the path to a more sustainable use of resources. Many 
aspects influence the potential use of a geothermal resource, 

with one prime parameter being the temperature in the sub-
surface. To determine expected temperatures on a regional 
scale, geothermal simulations are often performed (Gelet 
et al. 2012; Kohl et al. 1995; O’Sullivan et al. 2001; Taron 
et al. 2009; Watanabe et al. 2010). A common procedure 
is to start with a geological model, representing the main 
geological sequences, grouped by similar thermal proper-
ties, and to use this information for the parameterization of 
a geothermal simulation (Cacace et al. 2010; Mottaghy et al. 
2011; Sippel et al. 2015). However, the (effective) thermal 
parameters of subsurface geological units (e.g., thermal con-
ductivity, heat production rate) are generally uncertain and 
the material parameters are therefore often calibrated on the 
basis of temperature observations.

Extensive parameter studies or full uncertainty quanti-
fication studies are non-trivial since basin-scale models 
tend to be computationally demanding. To overcome this 
issue, a common approach is to generate models that have 
a large horizontal extension but a very small vertical extent 
(often only a few kilometers) that can be up to 40 times 
smaller than the horizontal extent (Freymark et al. 2019; 
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Kastner et al. 2015; Noack et al. 2013; Pribnow and Clauser 
2000; Pujol et al. 2015). The boundary conditions for these 
models are either based on best estimates or retrieved from 
larger models (Noack et al. 2013). This work investigates in 
detail how these typical approaches to treat boundary con-
ditions influence all subsequent analyses, leading partly to 
fully boundary-dominated models. In this paper, it is dem-
onstrated that they only have very limited capabilities for 
the analysis and understanding of the physical processes. 
During the model calibration, a compensation for possible 
boundary errors through an adjustment of the thermal prop-
erties is possible. Consequently, this has no direct impact on 
the temperature distribution but a significant impact on the 
physical plausibility of our model. Hence, for scenarios that 
lay outside of the calibrated regime, any prediction capa-
bilities are lost. This is a major restriction when consider-
ing the sparse nature of observations. The models with a 
small vertical extent are commonly used, although it is well 
known that diffusion problems are majorly impacted by the 
boundary conditions. Therefore, this paper illustrates the 
consequences of this model choice and demonstrates that 
crustal-scale models are crucial for basin-scale applications.

To investigate the influence of thermal boundaries, full 
global sensitivity analyses (SA) are employed for several 
case studies. These types of global SA approaches are usu-
ally not performed due to the high associated computational 
cost. To address these computational challenges, the full 
finite element solution of the forward solves is replaced with 
the reduced basis solution. This approach aims to reduce the 
complexity of the mathematical instead of physical space, 
yielding fast, accurate, and physics-preserving surrogate 
models. With these surrogate models, global sensitivity 
analyses are performed on several model realizations of a 
regional-scale geothermal basin model in northern Ger-
many (around Berlin and the state of Brandenburg) to dem-
onstrate the influence of the lower boundary condition on 
the simulation.

Additionally, an automated model calibration is executed 
to provide an objective and reproducible way to compensate 
for the errors of both the physical and geological model. Sen-
sitivity analyses for basin-scale models have been performed 
before in Noack et al. (2012) and also been combined with 
automated model calibrations (Wellmann and Reid 2014). 
Also, Fuchs and Balling (2016) consider model calibrations 
but in their case without sensitivity analyses. Furthermore, 
local sensitivity studies are presented in Ebigbo et al. (2016). 
However, none of these can address the computationally 
demanding nature of the problem. Therefore, they are limited 
in the number of parameters, sensitivity analyses, and model 
calibrations they can perform. Using a physics-based machine 
learning approach instead of the finite element method, the 
computation time of the forward solve is reduced by several 

orders of magnitude. It allows, in turn, to perform global sen-
sitivity analysis and full flexibility in the model calibration.

Global sensitivity analyses have been performed for hydro-
logical problems (Baroni and Tarantola 2014; Cloke et al. 
2008; Song et al. 2015; Tang et al. 2007; van Griensven et al. 
2006; Zhan et al. 2013), for volcanic source modeling (Can-
navó 2012), and for geothermal heat exchangers (Fernández 
et al. 2017). In Degen et al. (2021), the authors have investi-
gated the influence of both local and global sensitivity studies 
for the Upper Rhine Graben. In this paper, the combination of 
the global sensitivity study and model calibration, as presented 
in Degen et al. (2021), is used to investigate the influence of 
the placement of the boundaries on the model predictions.

The paper is structured as follows: The methodologies and 
the governing equations are presented in Sect. 2 and in Sect. 3, 
the problem of the lower boundary condition is conceptually 
introduced using a simple 1D model. Section  4 presents the 
impact of the lower boundary conditions, by focusing on a 
real-case basin-scale application. Therefore, the results of 
both global sensitivity analyses and model calibrations are 
presented and discussed.

Materials and methods

In the following, the geothermal conduction problem used for 
the forward simulations of the temperature is briefly described. 
Furthermore, the concept of sensitivity analyses is introduced.

Physical model

For the simulation of the temperature field, a geothermal con-
duction problem with the radiogenic heat production S as the 
source term (Bayer et al. 1997) is considered:

where � is the thermal conductivity, and T the temperature. 
For efficiency reasons and to investigate the relative impor-
tance, the nondimensional form of Eq. 1 is considered. 
Therefore, the nondimensional properties T∗ =

T−Tref

Tref
 , 

�∗ =
�

�ref
 , S∗ = S

Sref
 , and ∇∗ =

∇

∇ref

 , where the asterisk denotes 
the nondimensional quantity, are required. Inserting them 
into Eq. 1, leads to Eq. 2:

Here, �ref is the reference thermal conductivity, Tref the refer-
ence temperature, Sref the reference radiogenic heat produc-
tion, and lref the reference length. Note that the equation 
operates on the nondimensional space. For the motivational 
study, the radiogenic heat production is neglected to focus 

(1)�∇2T + S = 0,

(2)
�

�ref Sref

∇2

l2
ref

(

T − Tref

Tref

)

+
S

Sref Tref �ref
= 0.
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the analysis on the heat diffusion and the boundary condi-
tion. Furthermore, for all models Dirichlet boundary condi-
tions are applied at the top and bottom of the model domain.

Sensitivity analysis

Sensitivity analyses aim to determine which model param-
eters influence the model response to what extent. So, these 
studies investigate, which thermal conductivities and radio-
genic heat productions have a significant impact on the 
temperature distribution. One distinguishes two types of 
sensitivity analyses: local and global ones. Local sensitiv-
ity analyses consider that all parameters are independent of 
each other. In contrast, global sensitivity studies investigate 
also the parameter correlations. A detailed comparison of 
both methods for hydro-geological problems is presented 
in Wainwright et al. (2014) and for basin-scale geothermal 
application in Degen et al. (2021).

For the sensitivity analysis (SA), a quantity of interest 
needs to be defined. Here, the L2-norm of the temperature 
misfit to the reference model is used as the quantity of inter-
est, for the motivational example. The quantity of interest for 
the real-case model is the L2-norm of the temperature misfit 
between the simulated and observed temperature values.

For the global sensitivity analysis, the Sobol method with 
the Saltelli sampler is used, this is a variance-based sensi-
tivity analysis operating in a probabilistic framework. From 
the variances, the sensitivity indices are derived as the ratio 
between the partial and total variance. In this work, the main 
interest is on the first- and total-order indices. The first-order 
index is the ratio between the variance of the parameter and 
the total variance and defines the impact of the parameter 
itself. In addition, the total-order index captures all param-
eter correlations. This includes second-order but also any 
higher-order terms. Second-order terms describe the cor-
relation between two parameters only, whereas higher-order 
terms define the correlation between multiple parameters. 
Further information regarding the Sobol method can be 
found in Sobol (2001), Saltelli (2002) and Saltelli et al. 
(2010). For the sensitivity analyses the python library SALib 
(Herman and Usher 2017) is used.

Model calibration

The main aim of this paper is to investigate the influence 
of the lower boundary condition on the physical interpreta-
tion through an evaluation of the temperature distribution. 
This is the reason why global sensitivity analyses are used. 
In practical applications, it is often desired to calibrate the 
model against existing temperature measurements to ensure 
the correctness of the model.

For this, model calibrations are required, which aim to 
compensate for existing model errors by an adjustment of 

the model parameters. For deep geothermal applications 
calibrations are challenging since one usually has only a 
few shallow data points (Degen et al. 2021). As the real-case 
study will show, it is possible to adjust a given model to the 
observed temperatures. However, larger model errors yield 
unphysical model parameters, imposing the danger of losing 
the predictability for observation points that have not been 
included in the calibration. This aspect will be discussed in 
detail later on.

In this work, a trust region reflective algorithm is 
employed as the calibration method, which is a suitable 
choice for constrained problems, meaning that the ther-
mal parameters have defined ranges (Branch et al. 1999). 
During the calibration, the L1 norm of the misfit between 
the simulated and observed temperature measurements is 
minimized. The L1 norm is considered to put less weight 
on outliers. The analysis is performed through the python 
library SciPy (Virtanen et al. 2020). For more details regard-
ing the method, refer to Branch et al. (1999) and more details 
regarding the application to basin-scale models refer to 
Degen et al. (2021).

Motivational example

This paper investigates the influence of the impact of the 
lower boundary condition on the temperature distribution. 
This is an issue concerning geological models in general. 
For this reason, the problem is first demonstrated using a 
highly simplified motivational model. The motivational 
study aims to illustrate the general problems and not to rep-
resent a realistic geothermal application. To demonstrate 
that the issue has a major impact on real-case geothermal 
applications, the investigation is extended to the real-case 
study of Berlin–Brandenburg (a sedimentary basin in north-
eastern Germany which is introduced in Sect. 4).

Forward model

First, the forward problem used for the motivational study is 
introduced, for which a simplified 1D model is considered.

The 3-layer model, schematically shown in Fig. 1, con-
sists of three layers, where the middle layer is thinner than 
both adjacent layers. A thermal conductivity of 1.0 is chosen 
for the top and bottom layer and a thermal conductivity of 
1.5 for the thin layer. To recall, throughout the entire section, 
the dimensionless formulation is used. Consequently, the 
thermal conductivity has no unit. At the top of the model, 
a Dirichlet boundary condition of zero is applied for the 
temperature, and at the bottom a Dirichlet boundary condi-
tion of one. The model is solved analytically. Note that the 
nondimensional form is considered to focus the analysis on 
the relative difference.
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In the following analyses, the influence of the thermal 
conductivity of the thin middle layer (Layer 2 in Fig. 1) 
with respect to its distance from the boundary conditions is 
analyzed. Therefore, the position of the thin layer changes. 
Three different positions of the thin layer are considered: 
(i) the thin layer adjacent to the base boundary condition 
(position P1 in Fig.  2), (ii) the thin layer in the center of the 
model (position P2 in Fig. 2), and (iii) the thin layer adjacent 
to the top boundary condition (position P3 in Fig.  2). For the 
sensitivity analysis, scenario P2 is defined as the reference 
model, where the thin layer is located around the center (see 
Fig. 1). Consequently, the reference model represents the 
case of the lowest possible boundary influence.

Impact of the boundary condition

To determine the influence of the lower boundary condi-
tion, a global sensitivity analysis with 100 equally spaced 
temperature measurements in depth ranging from zero to 
one is performed. Equally spaced measurements are chosen 
to avoid any bias induced by the spatial distribution of the 
measurements in the sensitivity analysis. Furthermore, the 
thermal conductivities of all three layers have an allowed 
variation range of ± 50 %.

The results of the global SA are shown in Fig.  2. Before 
discussing the results for this SA, the terminology needs to 
be specified. From Fig.  2 first- and total-order terms are 
obtained. The first-order terms describe the influence from 
the parameter itself, whereas the total-order term describes 
the influence from the parameter plus any parameter cor-
relations. Consequently, the correlation is defined as the 
difference between the total- and first-order contributions. 
This motivational study investigates the influence of both 
boundary conditions on the model. Therefore, it needs to 
take the scenario, where the thin layer is in the center of 

the model (P2) as the reference case. This means that high 
influences of the parameters correspond to a high bound-
ary dominance.

For the simple model, all thermal conductivities are 
dominated by total-order contributions for all three sce-
narios (P1–P3). This means that the parameters have high 
correlations. The high correlations are induced by the set-
up of the model, where the temperature distribution is only 
determined by the two Dirichlet boundary conditions and by 
the ratio of the thermal conductivities between adjacent lay-
ers. Furthermore, the influence of �2 is at all three positions 
the lowest, which is an effect of the lower thickness of this 
layer. Also note that for �2 , nearly no first-order influences 
are observed.

Focusing on scenario P1, the highest boundary domi-
nance is achieved for �1 , because its corresponding layer is 
situated at the upper boundary condition. The lowest influ-
ence is obtained for �2 , although the layer is at the lower base 
condition. The reason for the lower influence is the smaller 
thickness of the layer. Note that the influence of �2 is much 
higher in P1 than in P2. �3 has a significantly lower influence 
of the boundary than �1 , which is logical since its associ-
ated layer is further away from the boundary. Interesting 
is that the decrease in the first-order contributions is more 
pronounced than the decrease in the total-order contribu-
tions. This shows that the remaining boundary influences 
are mainly arising from parameter correlations. By having 
a detailed look at the SA, one observes that the main cor-
relations are arising from the correlation between �1 and �3 . 
For scenario P3, the same behavior with reversed roles for 
�1 and �3 is observed. In contrast for scenario P2, a boundary 
dominance of �1 and �3 , which are both associated to layers 
adjacent to the boundaries, is obtained. The layer with the 
thermal property �2 is situated in the center of the model, 
resulting in negligible contributions.

Fig. 1   Schematic representation of the 3-layer 1D model used for the 
motivational study of the boundary condition problem. Shown are the 
three different positions of the thin layer (P1–P3) for which the sen-
sitivity analysis (Fig. 2) is conducted. Additionally, the interfaces of 

the thin layer are indicated with I1 and I2.The depth is denoted with 
z, the temperature with T, and the thermal conductivity with � . Please 
note that a 1D model is considered, the 2D model representation of 
this figure was only chosen for an improved visibility
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The results for all three scenarios are following the expec-
tations since the smallest boundary influences are observed 
if the layers are further away from the boundaries.

Note that these results can only be returned by a global 
SA. A local SA would assume that the influence is coming 
from the parameter itself. As an example, in P1 this would 
lead to a significant overestimation of the influence of �3 . In 
the worst case, this yields the misleading conclusion that �3 
is still greatly influenced by the boundary.

To conclude, for the motivational example the infor-
mation about the thin layer is lost when it approaches the 
boundary condition. Or, as an alternative viewpoint, these 
two examples highlight the strong influence of boundary 
conditions on the simulation results. In a typical geother-
mal simulation setting, the position of the top boundary 

condition is usually defined as the land surface and cannot be 
changed. Its impact and possible ways to solve the issue have 
been discussed in Degen et al. (2020a). In contrast, the posi-
tion of the lower boundary condition is usually adjustable.

Case study Berlin–Brandenburg

After the demonstration of the general problem of the 
placement of the boundary for geological models, the con-
sequences for real-case studies are illustrated. Therefore, 
the simplified 1D example is exchanged with various repre-
sentations of the Berlin–Brandenburg model, which cover 
a sedimentary basin in north-eastern Germany (see Fig. 3).

Fig. 2   Black Box: Global sensitivity analysis to determine the impact 
of the boundary condition. Shown are the first- and total-order Sobol 
sensitivity indices of the thermal conductivities for the 3-layer model 
with respect to the distance from the boundaries. Blue Box: Scenarios 
P1, where the thin layer is adjacent to the bottom model boundary. 

Orange Box: Scenarios P2, where the thin layer is in the middle of 
the model boundary. Green Box: Scenarios P3, where the thin layer 
is adjacent to the top model boundary. Note that the interfaces of the 
thin layer are denoted with I. For a further illustration of the positions 
of the layers for P1 to P3, refer to Fig. 1
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Berlin–Brandenburg models

This paper uses three different versions of the Ber-
lin–Brandenburg (BB) model. The model is located in the 
southeastern part of the Northeast German Basin, which 
is part of the Central European Basin System. The forma-
tion of the basin started in the Late Carboniferous / Early 
Permian with a period of extensive volcanism (Benek et al. 
1996; Noack et al. 2012). Permian and Cenozoic sediments 
are deposited above the volcanic rocks (Noack et al. 2012). 
The model is mainly characterized by mobilized Upper Per-
mian Zechstein salt, which forms salt pillows and diapirs 
due to halokinetic movements (Noack et al. 2012; Scheck 
et al. 2003). Also, the deeper crustal domains of the model 
are further differentiated to account for the different con-
solidation ages (Noack et al. 2012). For further information 
regarding the geological background, refer to Noack et al. 
(2012, 2013). The area is of interest for geothermal studies 
due to a temperature anomaly consisting of high heat flow 
values. This anomaly stretches from Poland to the river Elbe 
(Noack et al. 2012).

In the following, the numerical discretizations of the Ber-
lin–Brandenburg models are presented.

The first version of Berlin–Brandenburg, from now on 
denoted as the Berlin–Brandenburg LAB model (BB-LAB), 
has already been presented in Noack et al. (2012) and can be 

seen in Fig. 3a. It has an extension of 250 km in the x- and 
of 210 km in the y-direction and extends down to the litho-
sphere–asthenosphere boundary (LAB). The model consists 
of 15 lithological units and the mesh consists of deformed 
eight-noded prisms. The grid resolution is one km in the 
horizontal directions, whereas the vertical length of the lay-
ers corresponds to the vertical element length, resulting in a 
mesh with 840,000 degrees of freedom.

The second model, in the following, referred to as the 
Berlin–Brandenburg 6 km model, or BB-6 km (Fig. 3b), has 
the same horizontal extent but extends to a depth of 6 km 
instead of down to the LAB. It is presented in Noack et al. 
(2013) and consists of 12 lithological units. The model is 
discretized into a tetrahedral mesh. In comparison to the 
Brandenburg LAB model, it is refined in both geological 
and grid resolution terms. The horizontal element resolu-
tion is 0.22 km2 and vertical resolution is interpolated from 
the z-evaluations of the geological layers with a minimum 
thickness of 0.1 m, resulting in a mesh of 1,546,675 degrees 
of freedom.

Combining the Berlin–Brandenburg 6 km model, the Ber-
lin–Brandenburg LAB model, and removing the minimal 
vertical thickness of 0.1 m results in the third version of 
the Brandenburg model, denoted as the Berlin–Brandenburg 
combined model, or BB-combined (Fig.  3c). Consequently, 
this model consists of 17 geological layers, where the upper 

Fig. 3   Geology of the a Berlin–Brandenburg LAB model, b Berlin–Brandenburg 6 km model, and the c Berlin–Brandenburg combined model. 
Please refer to Tablre 1, for the acronyms of the geological layers
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11 layers have the same resolution as in the BB-6km model. 
The lower six layers have the same vertical resolution as the 
BB-LAB model and the same horizontal resolution as the 
Berlin–Brandenburg 6 km model. As the Berlin–Branden-
burg LAB model this model extends to the LAB (the LAB 
depth varies between about 100–140 km). This results in a 
tetrahedral mesh with 2,141,550 degrees of freedom.

For both the BB-LAB and BB-combined model, a Dir-
ichlet boundary condition of 8 ◦ C, corresponding to the 
average annual temperature, is applied at the top of the 
model. Moreover, the Dirichlet boundary condition at the 
base of the LAB is set to 1300 ◦ C corresponding to the melt-
ing temperature of the mantle rocks (Turcotte and Schubert 
2002). Additionally, a variation of the temperature at this 
boundary condition of ± 10 % is allowed to account for 
errors in the geometrical description of the LAB. The Ber-
lin–Brandenburg 6 km model has the same upper boundary 
condition, but at the base, various Dirichlet boundary con-
ditions directly taken from the Berlin–Brandenburg LAB 
model are considered. Furthermore, a lower boundary con-
ditions derived by Kriging is taken into account. For this 
interpolation, 900 equally spaced temperature observation 
from the BB-LAB model in a depth of 6 km are considered 
and the interpolated boundary is derived with a spherical 
variogram. All thermal properties are summarized in Table 3 
in the Supplementary Material. The forward simulations are 
performed using the DwarfElephant package (Degen et al. 
2020b) with a linear and nonlinear solver tolerance of 10−10 . 
Due to the nondimensional nature of the problem, no pre-
conditioners are needed for the finite element evaluations.

The reference thermal conductivity �ref is equal to the 
maximum thermal conductivity of the BB-LAB model of 
3.95 W m−1K

−1 . For the BB-LAB and the BB-combined 
model, the maximum temperature of 1300 ◦ C is the ref-
erence temperature Tref , whereas for the BB-6 km model 
a reference temperature of 8 ◦ C is chosen. Homogeneous 
Dirichlet boundary conditions are used to achieve a bet-
ter performance of the numerical methods (Degen et al. 
2020b). The Berlin–Brandenburg 6 km model has a con-
stant Dirichlet boundary condition at the top. At the base, 
the model has a Dirichlet boundary condition with a differ-
ent temperature value for each element. The top boundary 
condition is normalized to zero by using the value of the top 
boundary as the reference parameter. The bottom bound-
ary condition is set to zero via a lifting function. In case 
of the Berlin–Brandenburg LAB and combined model, the 
models have constant Dirichlet boundary condition values 
for both upper and lower boundary, and hence one can use 
both of them as the reference parameter. The value of the 
lower boundary condition was chosen to better reduce the 
magnitude of the temperatures, which yields a better per-
formance. The maximum radiogenic heat production of the 
BB-LAB model of 2.5 � W m3 is the reference radiogenic 

heat production Sref . The reference length lref corresponds to 
the maximum x-extent of all models (250,000 m).

For the validation of the models the temperature meas-
urements presented in Noack et al. (2012, 2013) and based 
on Förster (2001) were used. The observations consist of 
81 temperature measurements from 44 wells in the area of 
Brandenburg. It has been measured at various depth and 
stratigraphic levels.

Reduced models

The reduced basis (RB) method is a model order reduction 
technique that aims to significantly reduce the dimension-
ality of problems resulting from a discretization (e.g., via 
finite elements) of parameterized partial differential equa-
tions (PDE). The method is decomposed into an offline 
and online stage, where the offline stage, being a one time 
cost, constructs a reduced basis, and therefore comprises all 
expensive pre-computations.

The online stage uses this reduced basis to allow very 
fast forward evaluations, typically in the range of a few mil-
liseconds (Degen et al. 2020b). In contrast to other surrogate 
models, the RB method has the advantage that the phys-
ics is preserved. Other surrogate model techniques build 
their models upon observations (Miao et al. 2019), without 
explicitly considering the PDE. The RB method maintains 
the input–output relationship, meaning that the structure 
of the original finite element problem (and consequently 
the PDE) is preserved (Hesthaven et al. 2016). Hence, the 
method allows an extraction of the entire state vector (e.g. 
the temperatures at every node of the model). Furthermore, 
for geothermal conduction problems, it provides an error 
bound, enabling an objective evaluation of the approxi-
mation quality. For further information regarding the RB 
method, refer to Hesthaven et al. (2016); Prud’homme et al. 
(2002); Veroy et al. (2003) and for further information in the 
context of geosciences refer to Degen et al. (2020b).

For using the RB method, the geothermal problem is 
decomposed into a parameter-dependent and -independ-
ent part. In the following, the affine decompositions of the 
integral formulation of the PDE for the various scenarios 
of the Brandenburg model are defined. Note that this paper 
uses the operator representation. Therefore, it presents the 
bilinear form instead of the stiffness matrix, and the linear 
form instead of the load vector.

For all Berlin–Brandenburg models, the bilinear form a 
has the following decomposition:

(3)

a(w, v;�) = −

n
∑

q=0

�q ∫Ω

∇w ∇v dΩ, ∀v,w ∈ X, ∀� ∈ D,
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where w ∈ X is the trial function, v ∈ X the test function, 
“q” denotes the index of the training parameter (for more 
information see Tab. 3 in the Supplementary Material), X the 
function space ( H1

0
(Ω) ⊂ X ⊂ H1(Ω) ), Ω the spatial domain 

in ℝ3 , � ∈ D the parameter, and D the parameter domain 
in ℝn . The number of thermal conductivities in the train-
ing sample is denoted with n. Consequently, n is equal to 
thirteen, nine, and fourteen for the BB-LAB, BB-6 km, and 
BB-combined model, respectively.

For all Berlin–Brandenburg models, except the BB-6 km 
model with a lower boundary condition derived via Kriging, 
the linear form f is decomposed in the following way:

Here, Γ is the boundary in ℝ3 , s the scaling parameter for the 
lower boundary condition, g(x, y, z) the lifting function, Ttop 
the temperature at the top of the model, h(x, y, z) the location 
in the model, zbottom(x, y) the depth of the bottom surface, 
and d(x, y) the distance between the bottom and top surface.

For the BB-6 km with a Kriging lower boundary condi-
tion, the linear form slightly changes to the following:

Here, g1 , g2 , and g3 are again the lifting functions, with s1 
being the nugget, s2 the partial sill, s3 the scaling parameter 
for the mean temperature, and a the range.

Parameterization and set‑up of the sensitivity analysis

The sensitivity analyses are performed with 13 (BB-LAB 
model—Fig.  3a), 11 (BB-6 km model—Fig. 3b), 14 param-
eters (BB-combined model—Fig. 3c) and with 10,000 real-
izations for each parameter to reduce the statistical error. 
Note that for the Berlin–Brandenburg 6 km model exempla-
rily the results using the Kriging lower boundary condition 
are shown. The results of the sensitivity analyses using the 
other boundary conditions are analog to the one shown in 
this manuscript. In this paper, only the thermal conductivi-
ties are varied and the radiogenic heat productions are kept 
constant, to reduce the number of parameters within the 

(4)
f (v;�, s) = −

n
∑

q=0

�q s∫Γ

∇v g(x, y, z) dΓ + s∫Γ

∇v S dΓ, ∀v ∈ X, ∀� ∈ D,

with g(x, y, z) = Ttop
h(x, y, z) − zbottom(x, y)

d(x, y)
.

(5)

f (v;�, s) = −

8
∑

q=0

3
∑

i=0

�q si ∫Γ

∇v gi(x, y, z) dΓ + s2 ∫Γ

∇v S dΓ, ∀v ∈ X, ∀� ∈ D,

with g1(x, y, z) = g3(x, y, z) = 1 −
h(x, y, z) − zbottom(x, y)

d(x, y)
,

g2(x, y, z) =

(

3 d(x, y)

2a
−

1

2

(

d(x, y)

a

)3
)

(

1 −
h(x, y, z) − zbottom(x, y)

d(x, y)

)

.

reduction and all further analyses. The radiogenic heat pro-
ductions are fixed and not the thermal conductivities because 
their influence on the overall temperature distribution is 
smaller. In Table 1, a list of all rock properties is provided. 
A variation of ± 50 % from the initial thermal conductivi-
ties is allowed for all thermal conducitivities. Also, for the 
nugget and the partial sill, a variation of ± 50 % is enabled. 
For the scaling parameter of the lower boundary of both 
the Berlin–Brandenburg LAB model and Berlin–Branden-
burg combined model a variation ± 10 % and for the scaling 
parameter of the mean temperature at the lower boundary 
condition of the BB-6km model ± 20 % is used, to account 

for the uncertainties related to those boundary conditions.

Results

As for the conceptual study, this work demonstrates the 
influence of the lower boundary condition. Therefore, first 
the results from the sensitivity analysis and then the results 

from the model calibration are presented.

Sensitivity analysis

Before presenting the results of the sensitivity analyses, 
note that all analyses were performed with the aim to inves-
tigate the influence of the lower boundary condition. The 
paper does not aim to characterize the influences of every 
single thermal parameter in the model. Nevertheless, some 
geological impacts can be derived and are presented in the 
following.

Regarding the sensitivities, the Berlin–Brandenburg LAB 
(Fig.  4a) is mostly influenced by the Lower Cretaceous/
Jurassic/Buntsandstein layer. The first-order sensitivity index 
is dominant over the higher-order indices. Furthermore, the 
model is sensitive to the Quaternary/Tertiary layer and the 
Lithospheric Mantle. For the Quaternary/Tertiary layer, one 
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again has predominantly first-order influences, whereas the 
Lithospheric Mantle mostly impacts through higher-order 
contributions. Less pronounced is the influence from the 
Zechstein layer. The observed influence has similar first- 
and higher-order contributions. This is counter-intuitive 
since one would expect a high influence of the Zechstein 
layer due to its high thermal conductivity and highly vari-
able thickness resulting in significant property contrast. To 
explain this discrepancy, a closer look at the set-up of the 
sensitivity analysis is required. In the analysis, layers with 
equal thermal conductivities were combined. Therefore, the 

thermal conductivities of the Lower Cretaceous, Jurassic, 
and Buntsandstein layer are combined. Consequently, the 
high influence of this layer is originating from this high com-
bined sediment thickness. Keep in mind that the aim of this 
analysis is to determine the influence of the boundary condi-
tion. For determining which individual thermal conductivity 
has the highest influence a separate analysis is required. The 
remaining thermal conductivities have minor influences and 
are, therefore, disregarded in further analyses.

The Berlin–Brandenburg 6 km model is only influenced 
by the Basement layer and by the variability of the lower 

Fig. 4   Global Sensitivity 
analysis for a the Berlin–
Brandenburg LAB, b Berlin–
Brandenburg 6 km model, and c 
Berlin–Brandenburg combined 
model. Shown are the first- 
(blue) and total-order contribu-
tions (orange). The black line 
denotes the threshold value � 
for the truncation. Please refer 
to Table  1, for the acronyms of 
the thermal conductivities.
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boundary condition (Fig.  4b). The influence of the scal-
ing parameter of the mean temperature is significantly 
higher than the one from the Basement layer. Higher-
order contributions dominate both parameters. Note that 
the Basement layer has nearly no first-order contributions, 
whereas the scaling parameter has non-dominant first-order 
contributions.

For the Berlin–Brandenburg combined model (Fig. 4c), 
one observes a similar pattern. The highest influences, domi-
nated by first-order contributions, are arising from the Lower 
Cretaceous/Jurassic/Buntsandstein layer. The influence of 
both the Lithospheric Mantle and the scaling parameter of 
the lower boundary condition increased, but higher-order 
contributions still dominate both parameters. The Tertiary-
pre-Rupelian-clay/Upper Cretaceous, and the Zechstein 
layers are also influencing on the model and comparable 
first- and higher-order contributions to each other.

Model calibration—temperature distribution

The results from the global sensitivity analysis are taken 
as an input for the following model calibration. There-
fore, only the influencing model parameters are consid-
ered as shown in Fig.   4. Hence, four model parameters 
for the Berlin–Brandenburg LAB, two parameters for the 
Berlin–Brandenburg 6   km, and five parameters for the 

Berlin–Brandenburg combined model have to be taken into 
account for the model calibration. The remaining parameters 
are kept constant within the calibration since the sensitivity 
analysis identified them as having no impact on the tempera-
ture response. Model calibration is necessary to account for 
model errors of the Berlin–Brandenburg model.

The calibration of the Berlin–Brandenburg 6 km model is 
challenging because of the lower boundary condition. The 
conventional way to define this boundary condition is to 
extract it from the calibrated BB-LAB model and apply it to 
the BB-6km model, although it is generally not clear that the 
calibration for the larger model is also valid for the shallower 
model. To evaluate the influence of different calibration 
results, the model calibration for the shallow model using 
the boundary condition from two uncalibrated Brandenburg 
LAB model versions and various hierarchical model calibra-
tions are compared. For the hierarchical models, either the 
boundary condition from the calibrated BC or a boundary 
condition obtained via Kriging as the lower boundary condi-
tion are chosen.

Therefore, Fig. 5 compares the model calibrations using 
various lower boundary conditions of the Berlin–Branden-
burg 6 km model. At the top panel, it shows the difference at 
the observation points. The differences between the various 
methods are comparably small, which is not surprising since 
the calibration aims to minimize the difference between the 
simulated and observed temperatures at these locations. 
However, if one looks at the three points (P1–P3, positions 
shown in Fig.  5), one observes differences between the vari-
ous calibrations that can exceed 50 ◦ C. This means that for 
temperature prediction for points included inside the calibra-
tion data set good fits are obtained (regardless of the chosen 
boundary conditions). This changes once the points outside 
the calibration data set (P1–P3) are considered, here sig-
nificant differences for the different boundary conditions are 
obtained. This is of great importance for geoscientific appli-
cations since many studies face the problem of data sparsity. 
The model has many regions, where no data is available. 
Still, these regions might be of major importance. Conse-
quently, it is desired to obtain models that are physically 
plausible to maintain the predictability of the models. To 
conclude, one can fit every model to a given temperature 
data set, with the consequences that the thermal conduc-
tivities get partly unphysical. This is less important if the 
target area coincides with a high data density. However, this 
is often not the case. Therefore, the need to ensure that the 
generality of the model is preserved remains.  

Figure 6 compares the temperature distributions for the 
interval of the uppermost 6 kilometers of all three versions 
of the Berlin–Brandenburg model. For the BB-6km model, 
exemplarily the hierarchical model calibration is shown. 
The differences for all three points (P1–P3) are comparable 
among the models. Note that the possible variation range of 

Table 1   Initial thermal properties Noack et al. (2012, 2013) of all lay-
ers for and after the automated model calibration

The radiogenic heat production is denoted with S, and the initial ther-
mal conductivity with �

init
.

ID Layer S ( �Wm
−3) �init ( Wm

−1
K

−1)

Q Quaternary 0.7 1.50
T Tertiary 0.7 1.50
TPR Tertiary-post-Rupelian clay 0.7 1.50
TRC​ Tertiary Rupelian-clay 0.45 1.00
TPRC Tertiary-pre-Rupelian-clay 0.3 1.90
UC Upper Cretaceous 0.3 1.90
LC Lower Cretaceous 1.4 2.00
J Jurassic 1.4 2.00
K Keuper 1.4 2.30
M Muschelkalk 0.3 1.85
BS Buntsandstein 1.0 2.0
Z Zechstein 0.09 3.5
B Basement 1.5 2.50
SR Sedimentary Rotliegend 1.0 2.16
PCV Permo-Carboniferous Volcan-

ics
2.0 2.50

PP Pre-permian 1.5 2.65
UCR​ Upper crust 2.5 3.10
LCR Lower crust 0.8 2.70
LM Lithospheric Mantle 0.03 3.95
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the BB-6km is much larger since the determination of the 
lower boundary condition is uncertain (see Fig.  5). The BB-
LAB and BB-combined model already show the maximum 
possible variation, whereas the BB-6km model shows only 
the maximum variation range of the good-fit model.

Lastly, Fig. 7 shows the differences in the temperature 
distributions at the three points (P1–P3) for the entire depth 
of the BB-LAB and BB-combined models. The major dif-
ference between both models is induced by the different 
treatments of the boundary condition. During the sensitivity 
analysis of the BB-LAB model, the scaling parameter of the 
lower boundary condition did not significantly influence the 
model response, contrary to the analysis of the BB-combined 
model. Therefore, in the latter model the scaling parameter 
in the calibration is considered, wheres the value is kept 
constant for the former model. Although, with a maximum 
temperature increase of 10 % a great amount of variation is 
allowed, the possible variations at a depth of 6 km are com-
parable to those of the Brandenburg 6 km model.

Discussion

In the following, the dangers of constructing models with 
a small vertical depth are demonstrated. To further illus-
trate the importance of the placement of the lower boundary 

condition, first its impact is demonstrated by using the results 
of the global sensitivity study. Afterwards, the consequences 
for inverse processes are emphasized, using a deterministic 
model calibration. Both analyses are presented for the case 
study of the Berlin–Brandenburg model.

Sensitivity analysis

The impact of the lower boundary condition is apparent by 
focusing on the difference between the BB-6 km, and the 
BB-LAB and combined models. For the Berlin–Branden-
burg 6 km model, the boundary condition is fixed at 6 km 
depth, resulting in an entirely boundary dominated model. 
This is observable due to the enormous sensitivity of the 
model to the:

–	 Basement layer,
–	 scaling parameter of the respective boundary condition, 

and
–	 correlation between both parameters.

Consequently, all information that is obtained from the 
Brandenburg 6 km model is coming from the boundary 
condition. Hence, the model is uninformative concerning 
the upper layers. However, these are the layers that are 

Fig. 5   Comparison of the different calibration versions of the Ber-
lin–Brandenburg-6  km model for the observed temperatures at all 
temperature measurements within the model (top panel) and at three 
points in the model (bottom panels) The position of the three points 

P1–P3 are shown in Fig. 6. They where chosen to cover the low tem-
perature, the high temperature, and the by salt structures influenced 
temperature regions.



	 Environmental Earth Sciences           (2022) 81:88 

1 3

   88   Page 12 of 16

of interest since the target region is within these layers. 
Loosing the information about the thermal conductivities 
means that only the boundary is determining the solution. 
Hence, any errors of the boundary conditions have a pos-
sible huge impact on the temperature distribution at the 
target depth. This demonstrates that generating diffusive 

models with an extremely small vertical to horizontal 
length ratio is to be avoided at any cost.

The results of the global sensitivity analysis of the BB-
LAB and combined model are matching the expectations. 
A high sensitivity is observed for the upper layers, which 
is caused by the shallow measurements (500 m to 6820 m). 

Fig. 6   Comparison of the temperature distribution over an interval of 
6  km depth for all three versions of the Berlin–Brandenburg model 
at three different points in the models. The top left panels show the 
initial and calibrated temperature values or BB-LAB model and the 

stratigraphic columns for the points P1–P3. The top right panels show 
the same for the BB-6km model and the bottom panels for the BB-
combined model. The bottom right panel shows the spatial position of 
the three points P1–P3.

Fig. 7   The left panel shows the calibrated and initial temperature 
distributions at the points P1–P3 for the BB-LAB model over the 
entire model depth. The right panel displays the initial and calibrated 

temperature distributions at the points P1–P3 for the BB-combined 
model over the entire model depth. For the positions of P1–P3, refer 
to Fig. 6.
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First-order contributions of the Lower Cretaceous/Jurassic/
Buntsandstein layers mostly impact the model. That means 
that the thermal conductivities of these layers are influenc-
ing the model themselves and not through a correlation with 
other layers. For the BB-LAB model, the thermal conductiv-
ity of the Quaternary and the Tertiary layer were combined 
into one training parameter. For the Brandenburg combined 
model, the thermal conductivities of the Quaternary and 
Tertiary-post-Rupelian, and the Tertiary-pre-Rupelian-clay 
and Upper Cretaceous were combined. Comparing the sen-
sitivity analysis of both the BB-LAB model and combined 
model, one can conclude that the Tertiary-pre-Rupelian-
clay is the layer that the model is sensitive to. The Qua-
ternary, and the Tertiary-post-Rupelian layer can be ruled 
out because the Berlin–Brandenburg combined model is 
insensitive to it. Furthermore, also the Upper Cretaceous 
can be eliminated because the Berlin–Brandenburg LAB 
model is insensitive to it. Also, the influence of the thermal 
conductivity of the Tertiary-pre-Rupelian-clay is mainly 
originating from the parameter itself and not from interac-
tions between various parameters. Again, the influence of 
the Tertiary-post-Rupelian-clay seems counter-intuitive due 
to its low thickness. This influence is a combination of the 
shallow measurements, which lead to higher influences for 
the upper layers and the Dirichlet boundary condition at the 
top. This boundary conditions fixes the temperature for each 
evaluation to the same value, yielding a reduced influence of 
the Quaternary and, therefore, a relatively higher influence 
of the Tertiary layers.

Additionally, for both models a significant influence of 
the Lithospheric Mantle is retrieved. Higher-order contribu-
tions dominate this parameter, and the second-order sensitiv-
ity indices show the parameter is correlated to the scaling 
parameter of the lower boundary condition. The Zechstein 
layer has similar influences in both model versions and is 
less significant in comparison to the overall influences.

To conclude, the only meaningful way to construct the 
model is by inserting the refined model into the original 
Berlin–Brandenburg LAB model. This results in the BB-
combined model, which again shows the expected sensitivity 
distribution. One needs to keep in mind that this means an 
increase in degrees of freedom from 1,546,675 to 2,141,550. 
Nonetheless, both the finite element and the online execution 
time for both models are comparable since the complexity in 
these two models remains similar. This demonstrates that a 
reduction in the mathematical and not in the physical space 
is advantageous since it is much less restrictive.

Model calibration

At first hierarchical model calibrations seem to be a way 
to transfer the knowledge from large-scale coarse mod-
els to smaller-scale fine discretized models. However, the 

sensitivities clearly show that the smaller model becomes 
uninformative towards the upper layers. That is especially 
dangerous because it is not noticeable looking at the temper-
ature distributions at the observation points only. Hence, at a 
first glance, one would get to the conclusion that cutting-of 
the model at 6 km is a valid approach. However, this would 
only be possible if our sole interests are the temperatures at 
the measurement points used within the calibration. Natu-
rally, a calibration will match the simulation to the observed 
temperatures. However, that comes at a cost. For the vari-
ous model calibrations of the BB-6 km model one obtain 
thermal conductivities ranging between 1.49 W m−1 K−1 
and 2.83 W m−1 K−1 for the Basement layer. Meaning that 
no longer physical thermal conductivities but effective ones 
are retrieved. These effective thermal conductivities are tai-
lored to our measurements. However, if a different location 
(e.g. new drill-hole location) is of interest, one can no longer 
derive reliable temperatures since the model calibration is 
not valid for this point and the model lost the information 
about the physical system.

This reveals the next important point. The above-
described procedure is valid in a limited application field. 
However, one should be aware that the model is no longer 
representative of the physical processes. In contrast, both the 
BB-LAB and combined model have significant influences 
from various thermal conductivities. The lower boundary 
condition is further away from the target area, reducing pos-
sible effects from this condition.

In general, one wants to improve through global SA the 
understanding of the physical model. In this specific case 
study, a way to determine the most influencing parameters 
allowing a back correlation to the geoscientific context was 
demonstrated. Note that both the SA and the calibration 
focus on the observation locations. Hence, higher influences 
of shallower layers are observed. A study focusing solely on 
the temperatures at certain locations is applicable for some 
geophysical studies but if the interest goes beyond fitting the 
temperatures it is not advisable to use models that are cut-off 
at a shallow depth.

Note that the changes for the thermal conductivities were 
not discussed in detail here. The reason is that the discussion 
of this paper focuses on the influence of the boundary condi-
tion. For further information about the thermal conductivi-
ties, refer to the Supplementary Material.

Outlook

Through this study, the path to subsequent tasks is opened. 
It would be interesting to further investigate the lower 
boundary condition. For some of the calibrations, very high 
thermal conductivities of the Lithospheric Mantle were 
obtained, which might be caused by the geometrical inac-
curacies of the LAB. These inaccuracies would impact the 
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lower boundary condition and the calibration would try to 
compensate for this by adjusting the thermal conductivity 
of the Lithospheric Mantle. A scaling factor to the tempera-
ture value of this boundary to account for these inaccuracies 
was applied, which slightly improved the results. However, a 
single parameter is not enough to compensate for the model 
errors. Therefore, it would be interesting to replace the scal-
ing factor by a function, which could be, for instance, deter-
mined through data assimilation. For this reason, a promis-
ing next step to take would be to investigate if 3D-Var data 
assimilation yields improved results. In contrast to classical 
sequential data assimilation techniques, such as the Ensem-
ble Kalman Filter (Burgers et al. 1998; Evensen 1994), vari-
ational data assimilation is a continuous approach, where the 
entire time frame is considered. Variational data assimila-
tion methods minimize a cost function to obtain an esti-
mate of the state variable. Three dimensional variational 
data assimilation has been studied intensively in numerical 
weather forecast by, for instance, Barker et al. (2004) and 
Lorenc et al. (2000) but is fairly unknown for geothermal 
simulations. It has been studied in combination with the RB 
method already by Aretz-Nellesen et al. (2019). However, so 
far, the study is using benchmark problems only. Therefore, 
it would be interesting to investigate the performance of the 
method for complex geophysical problems.

Conclusion

Throughout the entire paper, the high impact of the lower 
boundary conditions for conductive crustal-scale appli-
cations was demonstrated. Using a novel combination of 
reduced-order modeling techniques and global sensitivity 
analysis, the paper illustrated that cutting-of models at a 
shallow depth has severe consequences. For these mod-
els, the information content of the geological structures is 
entirely lost. This is of utmost importance if one aims to 
derive physical knowledge from the model and or want to 
perform predictions with the given model. These findings 
should be well known, still, it is a common procedure to 
construct models with a small vertical extent. Therefore, 
this work aims to explicitly show the consequences of this 
approach. The clear visualization of the boundary problem 
becomes only apparent through the utilization of a global 
sensitivity analysis since this method allows also the inves-
tigation of parameter correlations. Note that the value of a 
“too” small vertical extent differs for each model since it 
is dependent on various factors such as the type of bound-
ary condition, the geological structure, and the governing 
physical principles. This further highlights the importance 
of sensitivity analyses to reliably determine whether a model 
is boundary-dominated. To construct informative models 
with a smaller vertical extent one could use, for instance, the 

Moho as the base boundary condition and apply a Neumann 
boundary condition, which is less restrictive than a Dirichlet 
boundary condition. Another possibility is to use optimal 
experimental design techniques to determine a feasible depth 
of the model.
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