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Summary III

SUMMARY

Introduction Modeling groundwater flow is important for many scientific and commercial ap-
plications related to the geosciences. Two such applications are the simulation of geothermal
systems where a combination of flow and heat is simulated, and monitoring contaminant trans-
port where a combination of flow and species transport is simulated. All such applications have
in common that uncertainty quantification is essential, in particular the correct modeling of
permeabilities of the porous medium through which the fluid, often water, flows. This thesis
presents a framework for applying the ensemble Kalman filter (EnKF) for permeability esti-
mation. The EnKF is a method for data assimilation and parameter estimation adapted to
large-scale, non-linear models. In the first part of the thesis, the focus is on the numerical code
SHEMAT-Suite.

SHEMAT-Suite is described, in particular the workflow for ensuring error-free and reproducible
implementation that was implemented during this thesis. This concerns two parts of the software:
the groundwater flow simulation and the EnKF update. A special focus is laid on the stochastic
mode of SHEMAT-Suite. During this thesis, the existing software that allowed the usage of a
potentially damped EnKF was completely refactored. This included among other tasks: a module
implementation of the methods, a remodeling of the input file of the stochastic mode to match
the main input file of the software, and, finally, including numerous error messages. Additionally,
the suite of EnKF methods that is used in the remainder of this thesis was implemented in the
same modular way. In the future, the modular implementation facilitates adding EnKF methods

and robustly comparing the existing EnKF methods.

In the remainder of this thesis, I use this framework for investigating possible inaccuracies related
to the EnKF and groundwater flow simulation. First, the influence of the sampling error stem-
ming from random seed initialization is analyzed in a comparison of EnKF variants. Secondly,
the pilot point EnKF is introduced. The pilot point EnKF is a novel EnKF method that is good
at suppressing unwanted spurious correlations that may occur when using EnKF methods for

parameter estimation.

SHEMAT-Suite In Chapter 3 of this thesis, attention is paid to the implementation of the scien-
tific software SHEMAT-Suite. SHEMAT-Suite is an open-source numerical code for simulating
flow, heat and mass transport in porous media. Additionally, SHEMAT-Suite can be used for
parameter estimation and data assimilation by stochastic approaches (Monte Carlo, ensemble
Kalman filter). The scientific impact of SHEMAT-Suite is illustrated and examples for using the
software are presented. The following two scientific software developments implemented during
the work on this thesis are presented: the modular implementation of a suite of EnKF methods,
and using the software git for refactoring SHEMAT-Suite into branches optimized for its diverse
functionalities. Afterwards, it is explained how the implementation of the EnKF methods and
the refactoring using git were motivated by the scientific principles (1) reproducibility, (2) falsi-

fiability, (3) communication of results, and (4) a sound foundation for future work. I conclude
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the chapter by proposing guidelines for scientific software development that were derived from
the development of SHEMAT-Suite.

Comparison of EnKF methods Chapter 4 of this thesis is dedicated to studying the influence
of random seed variations on permeability estimation using the EnKF. Principally, all ensemble-
based parameter estimation is influenced by the choice of random seed. Usually, the ensemble
size of the parameter estimation method can be chosen so large that the influence of the random
seed becomes negligible. However, for large-scale subsurface models, one is usually restricted to a
small ensemble size. In this case, sampling fluctuations often render the influence of the random
seed non-negligible. In Chapter 4, I argue that the knowledge of the random sampling error is
essential for comparing the performance of multiple EnKF variants. To support this argument,
the following large number of performance comparisons is carried out: for seven ensemble sizes
(50, 70, 100, 250, 500, 1000, 2000) and seven EnKF variants (damped, iterative, local, hybrid,
dual, normal score and classical EnKF), 1000 synthetic parameter estimation experiments are
computed for two setups: a 2-D tracer transport problem and a 2-D flow problem with one
injection well. Up to now, multiple synthetic experiments with varied random seed are seldom
shown in the literature, when the performance of EnKF methods is compared. By letting the
synthetic parameter estimations differ only in random seed, 1000 estimated permeability fields
are collected and compared to a synthetic true permeability field using the root-mean-square
error (RMSE). From comparing mean RMSEs for the seven EnKF methods and ensemble size
50, I conclude that a minimum of 10 synthetic experiments are needed to correctly distinguish
RMSE differences smaller than 10 % between EnKF variants. For detecting RMSE differences
smaller than 2 %, as many as 100 synthetic experiments are needed for the small, but commonly
used, ensemble sizes 50, 70, 100, and 250.

Pilot point ensemble Kalman filter In Chapter 5 of this thesis, the pilot point ensemble Kalman
filter (PP-EnKF) is presented, a variant of the ensemble Kalman filter that is tailored towards
suppressing spurious correlations. Spurious correlations may bias parameter estimation results of
EnKF methods when small ensemble sizes are used. Making use of the results from the first part
of the thesis, the PP-EnKF is compared to the seven other EnKF methods using the existing
comparison framework. For the 2-D tracer transport problem, the PP-EnKF ranks third out
of eight methods in an overall performance ranking. For the 2-D flow problem and ensemble
size 50, the PP-EnKF yields overall standard deviations that are closer to a reference than the
overall standard deviations of all other EnKF methods. Additionally, the locally distributed
correlations between observations and updated parameters are significantly closer to a reference
for the PP-EnKF than for the classical EnKF. This highlights the method’s capability for sup-
pressing spurious correlations in parameter estimation using small ensemble sizes. On the basis
of the results from this comparison, I promote the PP-EnKF for usage in permeability estimation

studies.
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Conclusion The results of this thesis provide insights for the robust and efficient usage of
growing computer resources for permeability estimation and groundwater flow estimation. In
the majority of scientific disciplines, quantifying uncertainties is of high importance and, due
to improving computer performance, uncertainty quantification becomes feasible for previously
too computationally intensive simulations. For permeability estimation and groundwater flow
simulation, quantifying uncertainty is particularly essential for a number of reasons. (1) There are
usually many uncertain influences in subsurface models used for groundwater flow, (2) subsurface
models are typically large-scale, and, (3) as a consequence, small ensemble sizes have to suffice
for ensemble-based uncertainty quantification methods. In this work, a framework for using
ensemble Kalman filters (EnKF) for parameter estimation is presented. In this framework, the
EnKF methods are implemented as part of the scientific software SHEMAT-Suite in such a way
that the implementation supports scientific principles, such as reproducibility and falsifiability.
By comparing performances of EnKF methods, it is shown that the random seed has a non-
negligible influence on these performance comparisons. Finally, the PP-EnKF is introduced, an
EnKF variant tailored towards suppressing spurious correlations that result from undersampling
in the EnKF.
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ZUSAMMENFASSUNG

Einleitung Die Modellierung von Grundwasserstréomung ist ein wichtiger Aspekt vieler Anwen-
dungsbereiche der Geowissenschaften. Ein Beispiel eines solchen Anwendungsbereichs ist die
Modellierung und numerische Simulation geothermischer Systeme. Bei einer numerischen Si-
mulation im geothermischen Anwendungsbereich werden Grundwasserstromung und Wéarmeaus-
breitung gekoppelt berechnet. Ein weiteres Anwendungsbeispiel ist die Uberwachung von Schad-
stofftransport in Grundwasserleitern. In diesem Fall werden Grundwasserstromung und Massen-
transport gekoppelt berechnet. Damit die Modellierung einer Grundwasserstromung moglichst
aussagekriftig ist, bedarf es der Unsicherheitsquantifizierung, insbesondere der Kenntnis der Per-
meabilitdten des porosen Mediums, durch welches die Fliissigkeit, in den meisten Fallen Wasser,
fliefst. In dieser Doktorarbeit wird ein Softwarepaket vorgestellt, welches die Anwendung des En-
semble Kalman Filters (EnKF) fiir die Permeabilitatsschitzung ermoglicht. Der EnKF ist eine
Methode zur Datenassimilierung und Parameterschétzung in rechenintensiven, nicht-linearen nu-

merischen Simulationen.

Am Anfang dieser Doktorarbeit liegt der Fokus auf der numerischen Software SHEMAT-Suite,
welche in Kapitel 3 beschrieben wird. In diesem Zusammenhang wird erldutert, durch welche
Mafsnahmen aus dieser Arbeit eine Fehlerreduktion bei der Softwareentwicklung und gleichzeitig
eine moglichst einfach nachvollziehbare Softwareentwicklung gewéhrleistet werden kann. Von
besonderer Wichtigkeit sind hierbei die folgenden zwei Bestandteile von SHEMAT-Suite: Die
Grundwasserstromungssimulation und die Korrekturgleichung des EnKF. Desweiteren wird der
Teil der Software SHEMAT-Suite besprochen, der stochastische Rechnungen ermdoglicht. Im
Rahmen dieser Arbeit ist die bestehende Software, die einen potentiell geddmpften EnKF bein-
haltete, komplett iiberarbeitet worden. Folgende Punkte gehoren zu dieser Uberarbeitung: die
Implementierung wurde modular gegliedert, die Eingabedatei wurde erweitert und in ihrer Form
der Haupteingabedatei angepasst, zahlreiche Fehlerausgaben wurden eingefiihrt. Schlieflich wur-
den die restlichen EnKF-Methoden, die in dieser Arbeit ein Rolle spielen, implementiert. Durch
die Modularitdt der Implementierung ist es in Zukunft moéglich sowohl mit geringem Aufwand
neue EnKF-Methoden zu SHEMAT-Suite hinzuzufiigen, als auch robuste Vergleiche zwischen

implementierten EnKF-Methoden durchzufiihren.

In der restlichen Arbeit nutze ich die vorgestellte Softwarestruktur zur Erforschung zweier Arten
von Unsicherheiten, die bei einer Anwendung des EnKF auf Grundwasserstromungsberechnungen
auftreten konnen. Zunéachst wird die Zufélligkeit von Permeabilitatsschitzungen untersucht, die
von der numerischen Zufallszahlenerzeugung herriihrt. Insbesondere wird untersucht, wie sich
diese Zufilligkeit auf Vergleiche von EnKF-Methoden und die Aussagekraft dieser Vergleiche
auswirkt. Schlieflich wird zur Unterdriickung unerwiinschter, falschlicherweise wéhrend einer
Parameterschétzung entstehender Korrelationen eine neue EnKF-Methode namens Pilotpunkt-
EnKF eingefiihrt.
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SHEMAT-Suite In Kapitel 3 dieser Doktorarbeit wird die wissenschaftliche Software SHEMAT-
Suite besprochen. SHEMAT-Suite ist ein offener Quellcode zur numerischen Simulation von
Grundwasserstromung, Warme- und Massentransport in porésen Medien. Dariiberhinaus kann
man SHEMAT-Suite zur Parameterschétzung und Datenassimilierung durch stochastische An-
siatze wie Monte Carlo Methoden und den Ensemble Kalman Filter nutzen. In Kapitel 3 wird die
wissenschaftliche Anwendung von SHEMAT-Suite anhand von Beispielen vorgestellt. Die folgen-
den Beispiele wissenschaftlicher Softwareentwicklung, die wéhrend der Arbeit an dieser Disser-
tation implementiert wurden, werden vorgestellt: die modulare Implementierung einer Suite von
EnKF-Methoden und die Verwendung der Software git fiir das Aufteilen von SHEMAT-Suite
in sogenannte Zweige, wobei jeder Zweig eine der Funktionalititen von SHEMAT-Suite ent-
hélt. Diese Implementierungen wurden nach den folgenden wissenschaftlichen Kriterien durchge-
fithrt: (1) Reproduzierbarkeit, (2) Falsifizierbarkeit, (3) Kommunikation der Ergebnisse und
(4) eine tragfahige Grundlage fiir die kiinftige Arbeit. Das Kapitel wird abgeschlossen, indem

Richtlinien fiir wissenschaftliche Softwareentwicklung vorgestellt werden.

Vergleich von EnKF-Methoden Kapitel 4 dieser Arbeit widmet sich der Untersuchung des Ein-
flusses von Zufallszahlen auf die Permeabilitdtsschitzung mit dem EnKF. Im Prinzip wird jede
ensemble-basierte Parameterschdtzung durch die Wahl von Zufallszahlen beeinflusst. Normaler-
weise kann die Ensemblegrofse fiir eine Parameterschitzmethode so groft gewéhlt werden, dass
der Einfluss der Zufallszahlen vernachlassigbar wird. Bei grofsskaligen Untergrundmodellen ist
man jedoch in der Regel auf eine kleine Ensemblegréfte beschriankt. In diesem Fall gewinnen
die Schwankungen der Ergebnisse, die durch verdnderte Zufallszahlen erklért werden kénnen, an
Einfluss. In Kapitel 4 argumentiere ich, dass die Kenntnis des Zufallszahlen-Fehlers wesentlich
fiir den Vergleich zwischen EnKF-Varianten ist. Um dies zu belegen, wird die folgende grofie Zahl
an Vergleichen durchgefiihrt: Fiir sieben Ensemblegrofen (50, 70, 100, 250, 500, 1000, 2000)
und sieben EnKF-Varianten (der geddmpfte, iterative, lokale, hybride, duale, Normal-Score und
der klassische EnKF), werden 1000 synthetische Parameterschitzungsexperimente fiir die fol-
genden zwei Anordnungen berechnet: ein 2-D Tracer-Transport und ein 2-D-Strémungsproblem
mit einer Injektionsbohrung. Bisher werden in der Literatur selten mehrere synthetische Pa-
rameterschatzungsexperimente mit unterschiedlichen Zufallszahlen durchgefiihrt, wenn die Leis-
tungsfahigkeit von EnKF-Methoden verglichen wird. Indem bei den synthetischen Parameter-
schatzungen nur die Zufallszahlen geédndert werden, werden 1000 geschétzte Permeabilitatsfelder
je Ensemblegrofte gesammelt. Diese geschitzten Permeabilitdtsfelder werden mit einem syn-
thetisch erzeugten wahren Permeabilitdtsfeld verglichen, indem der Root-Mean-Square-Fehler
berechnet wird (RMSE). Nach Vergleich der mittleren RMSEs fiir die sieben EnKF-Methoden
bei der Ensemblegrofe 50, komme ich zu dem Schluss, dass mindestens 10 synthetische Para-
meterschitzungsexperimente erforderlich sind, um RMSE-Differenzen zwischen EnKF-Varianten
von kleiner als 10 % korrekt zu unterscheiden. Zur Unterscheidung von RMSE-Differenzen, die
kleiner als 2 % sind, sind fiir die kleinen, aber iiblichen Ensemblegroften 50, 70, 100 und 250 bis

zu 100 synthetische Parameterschiatzungsexperimente erforderlich.
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Pilotpunkt-Ensemble-Kalman-Filter In Kapitel 5 dieser Doktorarbeit wird der Pilotpunkt-
Ensemble-Kalman-Filter (PP-EnKF) eingefithrt. Der PP-EnKF ist eine Variante des Ensemble-
Kalman-Filters, die ungewiinschte Korrelationen unterdriickt. Ungewiinschte oder félschlich ent-
standene (englisch: spurious) Korrelationen beeintriachtigen die Parameterschiatzung mit dem
EnKF, wenn kleine Ensemblegrofien benutzt werden. Unter Verwendung des Vergleichs aus dem
zweiten Teil der Arbeit, wird der PP-EnKF mit sieben anderen EnKF-Methoden verglichen.
Fiir das Tracer-Transport-Modell steht der PP-EnKF an dritter Stelle der acht Methoden in
einer gemittelten Gesamtwertung. Neben dem Vergleich der RMSEs, betrachte ich die Gesamt-
standardabweichung. Die Gesamtstandardabweichung ist ein Mafl dafiir, ob die Verteilung
der Permeabilitdten nach der Korrektur durch den EnKF breit genug bleibt. Fiir das 2-D-
Stromungsproblem und fiir eine Ensemblegrofe von 50 liefert der PP-EnKF die Gesamtstandard-
abweichung, die von allen EnKF-Methoden am néchsten an einer Referenz mit Ensemblegrofie
10000 liegt. Neben diesem Resultat liefert der PP-EnKF Korrelationsstrukturen, die deutlich
néher an einer Referenz liegen als die des klassischen EnKF'. Dies verdeutlicht die Fahigkeit des
PP-EnKF zur Unterdriickung unerwiinschter Korrelationen bei der Parameterschitzung unter
Verwendung kleiner Ensemblegrofsen. Aufgrund der guten Ergebnisse des PP-EnKF im Metho-
denvergleich schlage ich vor, den PP-EnKF kiinftig bei der Permeabilitdtsschétzung in Grund-

wasserstromungssimulationen zu verwenden.

Schluss Die Ergebnisse dieser Arbeit wollen Hinweise zur effizienten Nutzung wachsender
Computerressourcen auf dem Gebiet der Permeabilitétsabschidtzung und der Grundwasserfluss-
schitzung geben. In der Mehrzahl der wissenschaftlichen Disziplinen ist die Unsicherheitsquanti-
fizierung von grofser Bedeutung. Durch wachsende Computerleistung wird Unsicherheitsquanti-
fizierung auch bei bisher zu aufwindigen Berechnungen moglich. Aus einer Reihe von Griin-
den ist die Unsicherheitsquantifizierung besonders wichtig zur Permeabilitdtsabschéitzung und
bei Grundwasserstromungssimulationen: (1) Es gibt normalerweise viele ungenau bestimmte
Grofsen in Untergrundmodellen, die einen Einfluss auf die Bestimmung der Grundwasserstro-
mung ausiiben, (2) Untergrundmodelle sind typischerweise grofs und (3) folglich miissen kleine
Ensemblegrofsen fiir Sampling-Methoden zur Unsicherheitsquantifizierung ausreichen. In dieser
Arbeit, wird eine Software vorgestellt, mit der die Sampling-Methode Ensemble Kalman Filter
(EnKF) zur Parameterschiatzung verwendet werden kann. Aufserdem koénnen mit der Software
EnKF-Methoden verglichen werden. EnKF-Methoden werden im Rahmen der wissenschaftlichen
Software SHEMAT-Suite so implementiert, dass die Implementierung wissenschaftliche Prinzi-
pien erfiillen soll, z.B. Reproduzierbarkeit und Falsifizierbarkeit. Beim Vergleich von EnKF-
Verfahren wird gezeigt, dass Zufallszahlen einen nicht zu vernachlissigenden Einfluss auf derar-
tige Vergleiche haben. SchlieRlich wird der PP-EnKF eingefiihrt, eine EnKF-Variante zur Un-
terdriickung ungewiinschter Korrelationen, die durch kleine Ensemblegréfien bei der Benutzung
des EnKF entstehen.






If T have seen further it is by standing on the shoul-
ders of Giants. But I make no question but you have
divers very considerable experiments besides those you
have published, it’s very probable the same with some of

those in my late papers.

Letter to Robert Hooke, 1675
Isaac NEwWTON

Introduction

This introductory chapter provides background and literature on the simulation of groundwater
flow and solute transport focusing on permeability estimation. In particular, literature on the
ensemble Kalman filter (EnKF) and the software SHEMAT-Suite will be presented. For this
thesis, several EnKF methods have been implemented in SHEMAT-Suite and this stochastic
mode of SHEMAT-Suite is used for numerical simulation and data assimilation. A focus is laid
on literature describing comparisons of various EnKF methods and the influence of spurious cor-
relations on EnKF parameter estimation. In the second part of this chapter, the main objective
of the thesis - presenting a framework for modular implementation and robust comparison of en-
semble Kalman filters for parameter estimation in groundwater flow and transport - is presented
and divided into sub-objectives that correspond to the subsequent chapters. Finally, a detailed

outline of the thesis is given.

Contents

1.1 Background and literature . . . . . . . . ... ... ... .
1.2 Objectives and outline . . . . . . . . . . ... 6

1.1 Background and literature

The dynamics of groundwater flow is important for many subsurface applications. For slow, lam-
inar flow, Darcy’s law and principles of mass continuity can be combined for deriving the ground-
water flow equation and used for numerical modeling of groundwater flow (Bear, 1975, Marsily,
1986, Kinzelbach and Rausch, 1995). This thesis presents estimation techniques for the most im-
portant parameter of the groundwater flow equation: the permeability of the rock matrix. Before
focusing on permeability estimation, I will list important applications of the groundwater flow

equation. A classical application of the partial differential equation that describes groundwater
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flow is reservoir engineering for oil recovery (Dake, 1983). Another application is the monitoring
of aquifers, e.g. for water supply, groundwater remediation, or preventing contamination (Batu,
2010). The groundwater flow equation can be coupled with other partial differential equations,
for example the heat equation (Carslaw and Jaeger, 1959) and the species transport equation
(Zheng and Bennett, 2002, Clauser, 2003). These coupled partial differential equations can be
solved numerically. As a large and sustainable energy source, geothermics is a useful application
of the groundwater flow equation coupled with the heat equation. For economic as well as safety
reasons, modeling groundwater and heat transport is a key step towards putting a geothermal
system into operation (Clauser, 1997, Mottaghy and Dijkshoorn, 2012, Grant, 2013, Niederau
et al., 2017, Michalski and Klitzsch, 2018, Hruska et al., 2019, Deb et al., 2019). Equally, simu-
lating coupled groundwater flow and species transport is important for a number of applications,
including modeling groundwater pollution (Bear and Verruijt, 1987), interpreting tracer tests
(Vogt et al., 2012), modeling seawater intrusion in coastal aquifers (Thomas et al., 2019), and
storing nuclear waste (Bear et al., 1993). All these applications that combine groundwater flow
with other physical processes have in common that it is essential to be able to estimate the
permeabilities in the model domain. In this thesis, permeability estimation is carried out and
compared using numerical 2D simulations of groundwater flow, in some cases combined with

species transport modeling.

The inverse estimation of permeabilities received a lot of attention in the groundwater literature
of the last decades (e.g. Kitanidis and Vomvoris, 1983, Carrera and Neuman, 1986, RamaRao
et al., 1995, Gomez-Hernandez et al., 1997, Hendricks Franssen et al., 2003, Chen and Zhang,
2006, Kurtz et al., 2014). Since the 1980s, a strong focus has been laid on the use of stochas-
tic methods for solving inverse problems. Stochastic methods allow to quantify the uncertainty
associated with the inversely estimated parameters. Non-linear models of the subsurface with
many unknown parameters, as typical for groundwater simulations, pose challenges to stochastic
inverse modeling. Sequential methods like the ensemble Kalman filter (EnKF, Evensen, 2003)
were found to be relatively efficient for highly discretized models, still allowing for robust un-
certainty quantification in spite of many unknowns. For this reason, there is a growing number
of studies on the EnKF in groundwater hydrology (Chen and Zhang, 2006, Hendricks Franssen
and Kinzelbach, 2008, Nowak, 2009, Vogt et al., 2012). In this thesis, variants of the EnKF are

compared and a novel EnKF method is introduced.

Stochastic inversion methods are derived from probability theory. For instance, the usage of
the EnKF for parameter estimation can be interpreted as a simplified Bayesian inference (Chen,
2003, Evensen, 2009). The simplification of the EnKF update step consists in the assumption
of Gaussianity for the probability distributions that are part of the update step of the EnKF.
Before discussing applications of the EnKF for stochastic data assimilation and parameter es-
timation, it is important to quote some literature regarding the mathematical background of
the methods used in this thesis. For general probability theory, Loéve (1977) gives a rigorous
mathematical introduction, and Papoulis and Pillai (2002) give a modern overview of the basics.
The foundational work for probability theory in the Bayesian framework was published by Jaynes
(2003). A Bayesian view on data assimilation can be found in Sivia and Skilling (2006). Finally,
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the literature on inverse problems is of interest for the reader of this thesis. Aster et al. (2013)
give an introduction to general inverse problems. Tarantola (2005) uses Bayesian reasoning and
provides mathematical background. Finally, Kaipio and Somersalo (2006) define best practices

for computational inverse problems.

The EnKF, the stochastic method used in this thesis, is an ensemble-based version of Kalman
filtering. Kalman filtering was originally introduced in the 1960s as a computationally advanta-
geous state-space method for optimal estimation (Kalman, 1960, Jazwinski, 1970, Gelb, 1974).
For large-scale meteorological applications, the ensemble Kalman filter was developed in the mid-
90s (Evensen, 1994, Burgers et al., 1998). In the atmospheric sciences, the EnKF is mostly used
as a filter for updating the initial states of dynamic variables (Houtekamer and Mitchell, 1998,
Anderson, 2001, Hamill and Snyder, 2000, Kalnay, 2002). In the early 2000s, the EnKF was
introduced to land surface and subsurface applications, including land surface modeling (Reichle
et al., 2002, De Lannoy and Reichle, 2016), reservoir engineering (Lorentzen et al., 2003, Naevdal
et al., 2005, Aanonsen et al., 2009, Vogt et al., 2012), as well as surface and subsurface hydrol-
ogy (e.g. Vrugt et al., 2005, Chen and Zhang, 2006, Devegowda et al., 2010, Shi et al., 2014,
Baatz et al., 2017). For land surface and subsurface applications, model parameters are often
the main source of uncertainty. In such cases, it is useful to apply the EnKF as a mixture of
dynamic state optimization and parameter estimation (Naevdal et al., 2005, Hendricks Franssen
and Kinzelbach, 2008). In this thesis, the EnKF is used for subsurface permeability estimation.
In particular, I address possible obstacles when using the EnKF and I quantify the influence of

these obstacles for permeability estimation.

The first step for uncertainty quantification with the EnKF is its implementation and in partic-
ular its integration into numerical software. The groundwater flow, heat and solute transport
simulations of this thesis are computed using SHEMAT-Suite, a numerical software for simulat-
ing flow, heat and species transport in porous media. In Chapter 3, the software SHEMAT-Suite
is presented, alongside a description of the changes introduced to the software during the work on
this thesis and the concepts of scientific programming behind these changes. Other software pack-
ages can also handle tasks similar to SHEMAT-Suite. Some are available as purchasable research
code or as commercial packages, such as TOUGH (Finsterle et al., 2014), FEFLOW (Diersch,
2014) and STOMP (White et al., 2008), others are distributed as open-source initiatives, in-
cluding OpenGeoSys (Kolditz et al., 2012), DuMuX (Flemisch et al., 2011) and MODFLOW
(Hughes et al., 2017). SHEMAT-Suite complements available open-source packages by a pow-
erful toolkit of functionalities including: (a) multi-level OpenMP parallelization for simulations
of flow through porous media (Wolf et al., 2008, Biicker et al., 2009, Wolf, 2011); (b) a modular
user-framework for implementing subsurface parameter dependencies on pressure and tempera-
ture, and customized graphical output; (c) species transport including density-driven flow; (d)
uncertainty quantification, parameter estimation and data assimilation by stochastic approaches
(Monte Carlo, ensemble Kalman filter as shown in this thesis) and also by deterministic Bayesian
inversion based on Automatic Differentiation (AD) for calculating exact Jacobian matrices of the

forward model (Rath et al., 2006).

SHEMAT-Suite in its present form has evolved from SHEMAT (Simulator for HEat and MAss
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Transport, Clauser, 1988, 2003), a fully coupled flow and heat transport model that was developed
from the isothermal USGS 3-D groundwater model of Trescott and Larson (1976, 1977). Originat-
ing from the Fortran-77 code SHEMAT, SHEMAT-Suite has been rewritten in Fortran-95 (Rath
et al., 2006), refactored and enhanced subsequently with various additional capabilities within
numerous research and PhD projects. These capabilities include (1) a parallelization scheme
for SHEMAT-Suite (Wolf, 2011); (2) the solution of the systems of coupled partial differential
equations by implicit Picard iteration in a finite difference discretization (Lynch, 2005, Huyakorn,
2012); (3) a direct linear solver for small simulations, an implementation of the Bi-Conjugate Gra-
dients Stabilized (Bi-CGStab) method for large simulations (van der Vorst, 1992); (4) additional
solvers and preconditioners easy to integrate in SHEMAT-Suite owing to its modular structure
of the solver implementation; (5) linear algebra functions used from the libraries BLAS (Lawson
et al., 1979, Dongarra et al., 1988, 1990) and LAPACK (Anderson et al., 1999); (6) output of
variable and parameter fields possible in many formats, most notably VTK (Schroeder et al.,
2006) and HDF5! (The HDF Group, 1997-2022); (7) deterministic Bayesian inversion (Rath
et al., 2006); (8) automatic differentiation of the forward code by the software Tapenade (Has-
coét and Pascual, 2013) for computing the Jacobian in the deterministic inversion framework;
(9) sequential Gaussian simulation (SGSim?) from the geostatistical library GSLib (Deutsch and
Journel, 1995) for random field generation in the stochastic simulation mode within a Monte
Carlo framework; (10) Bayesian updates implemented as ensemble Kalman filter (EnKF?) anal-
ysis equations (Evensen, 2003). The current, open-source version of SHEMAT-Suite is restricted
to a single fluid phase in the porous medium. However, a multi-phase fluid version, which can,
e.g., simulate CO4, steam (Biising et al., 2014, Biising, 2020), and supercritical water (Biising

et al., 2016), is under development.

A versatile and openly available numerical simulation package such as SHEMAT-Suite is of sig-
nificance for fostering research in the field of geothermal energy. Especially in the context of
climate change, geothermal energy is becoming increasingly important as a renewable energy
source worldwide. Other important application areas of SHEMAT-Suite are groundwater man-
agement and contaminant transport simulations. These application areas of modeling ground-
water flow, heat and species transport are reflected by the scientific contributions of SHEMAT-
Suite so far, which can be divided into four categories: geothermics, paleoclimate, hydrogeology
and, additionally, inverse method development. Geothermics is the most important applica-
tion of SHEMAT-Suite and motivated the software development originally. The applications of
SHEMAT-Suite in geothermics range from large-scale geothermal simulations (Vogt et al., 2012,
Ebigbo et al., 2016) to small-scale borehole heat exchanger and temperature sensor simulations
(Michalski and Klitzsch, 2018). The second field of applications concerns paleoclimate related
studies, including an ice module used for simulating freezing and thawing processes in porous
media (e.g. Mottaghy and Rath, 2006). Additionally, SHEMAT-Suite has been used in studies of
broad geological interest, including a simulation of submarine groundwater discharge at the New

Jersey shelf, USA, since the last ice age (Thomas et al., 2019) and a simulation of convection

"https://www.hdfgroup.org/downloads/hdf5/ [Accessed 2020/02/19]
*http:/ /www.gslib.com/gslib_help/sgsim.html [Accessed 2020,/02/26]
3https://github.com/geirev/EnKF _analysis [Accessed 2020/02/19]
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cells in the Perth Basin, Australia (Niederau et al., 2017). General development of algorithms
has been carried out using SHEMAT-Suite. For example, SHEMAT-Suite uses different tech-
niques from high-performance computing (Rostami and Biicker, 2014, Rostami et al., 2014) and
is coupled to the optimal experimental design framework EFCOSS (Rasch and Biicker, 2010)
to enhance reservoir property estimation (Seidler et al., 2016). The work on this thesis began
with the software SHEMAT-Suite providing the possibility of data assimilation with the EnKF,
potentially a damped EnKF. Building on this code, the software was restructured in a modular
fashion and the suite of EnKF methods was implemented that constitutes the SHEMAT-Suite
Stochastic Mode and that is used in Chapter 4 and 5 of this thesis. In Chapter 3 of this thesis,
SHEMAT-Suite as a whole is presented, putting a strong focus on the Stochastic Mode and
trying to extract some general guidelines for scientific software development that can be derived

from the work on this thesis.

Performing meaningful comparisons of EnKF methods is one obstacle for uncertainty quantifi-
cation using the EnKF. As the number of EnKF methods is growing, performance comparisons
between these methods gain importance as well. In this thesis, I argue that many performance
comparisons are insignificant, meaning that the difference in statistical performance measures
like the root-mean-square error (RMSE) between tested methods is smaller than the uncertainty
of these performance measures. Performance comparisons of EnKF methods can be based on
so-called synthetic experiments. I define a single synthetic experiment as a comparison of a
number of data assimilation methods for a given groundwater flow problem and for a given set
of synthetically generated observations. Thus, a single synthetic experiment consists of multiple
data assimilation experiments, where the number of data assimilation experiments is equal to
the number of data assimilation methods that are compared. For such a synthetic experiment, it
is important that the complete set of inputs is identical for each data assimilation method. The
set of inputs includes the statistical random seeds that I focus on in this thesis. Random seeds
are used for sampling probability distributions during a synthetic experiment. Quantities with
sampled probability distributions in a synthetic experiment include initial random variables and
parameters, as well as observations. For large ensemble sizes, the influence of the random seed
vanishes. However, varying the random seeds may lead to significant variations of the outcome
of a synthetic experiment for the smaller ensemble sizes that are typical in groundwater flow
simulations. Another example for an input of a synthetic experiment is the ensemble of initial

permeability fields, in particular the size of the ensemble and the single realizations.

For a performance comparison of the data assimilation methods, it is beneficial to use multiple
synthetic experiments. From such a set of synthetic experiments, the uncertainty of statistical
performance measures can be derived, when only the statistical random seeds are varied across
synthetic experiments, while all other inputs remain constant. There are several examples of
EnKF comparison studies in the hydrologic sciences and they used varying numbers of synthetic
experiments. When performance measures such as the root-mean-square error (RMSE) or the
mean absolute error are considered, differences between methods often are smaller than 10 %.
For examples of performance comparisons between EnKF methods, for which at least a part

of the differences between performance measures are smaller than 10 %, see, e.g., Moradkhani
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et al. (2005), Camporese et al. (2009), Sun et al. (2009b), Hendricks Franssen and Kinzelbach
(2009), Zhou et al. (2011), El Gharamti and Hoteit (2014), El Gharamti et al. (2014, 2015),
Liu et al. (2016). The comparison of EnKF algorithms is often based on less than 10 synthetic
experiments. In this thesis, I will show that this is in general not enough. Moreover, when
employing the definition of a synthetic experiment given above, most studies are based on single
synthetic experiments. Some studies already evaluate a large number of synthetic experiments
for performance comparisons. Moradkhani et al. (2005) employed 500 synthetic experiments of
ensemble size 50, Sun et al. (2009a) used 16 synthetic experiments and Schoniger et al. (2012)
computed 200 test cases. In Chapter 4 of this thesis, two simple subsurface models are con-
sidered for systematically evaluating the number of synthetic experiments needed to distinguish

performances of EnKF variants.

A second obstacle for uncertainty quantification using the EnKF are so-called spurious correla-
tions. In the update step of the EnKF, correlations between all variables and parameters are
considered. The correlations that are used for the EnKF are ensemble-based, i.e. computed
from an ensemble of variables and parameters. Therefore, these correlations may suffer from
sampling error. Correlations that wrongly influence the EnKF update due to sampling errors
are called spurious. It was observed in several studies that small ensemble sizes lead to spu-
rious correlations among other problems. Spurious correlations can result in filter inbreeding
(Houtekamer and Zhang, 2016, Zovi et al., 2017) and ultimately filter divergence (Hamill et al.,
2001). Filter inbreeding occurs when the spread of the updated ensemble becomes so small that
it does not properly represent the error of the EnKF updates. Filter divergence means that
the updates of the ensemble center around a wrong parameter value, even though the spread
of the ensemble minimizes as if the filter would be approaching the correct parameter value.
Filter divergence can result from filter inbreeding. Many methods have been developed to tackle
spurious correlations. In Chapter 4 of this thesis, I compare the following methods: damped
EnKF (Hendricks Franssen and Kinzelbach, 2008), local EnKF (Hamill et al., 2001), hybrid
EnKF (Hamill and Snyder, 2000), dual EnKF (Moradkhani et al., 2005, El Gharamti et al.,
2013), iterative EnKF (Sakov et al., 2012) and normal score EnKF (Zhou et al., 2011, Schéniger
et al., 2012, Li et al., 2012). Two examples of modern localization approaches aimed at reducing
spurious correlations are presented by Chen and Oliver (2010) and Emerick and Reynolds (2011).
Methods using decompositions of probability distributions into sums of Gaussian distributions
have been introduced by Sun et al. (2009b) and Liu et al. (2016). The last two methods are not
evaluated in this thesis due to limited resources. In Chapter 5 of this thesis, I propose the pilot

point ensemble Kalman filter, a method tailored to reducing spurious correlations.

1.2 Objectives and outline

The overall objective of this thesis is presenting a framework for modular implementation and
robust comparison of ensemble Kalman filters for parameter estimation in groundwater flow and
species transport. Three objectives are derived from this overall objective, namely implementing

EnKF methods, comparing EnKF methods, and introducing a new EnKF method:
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e Objective 1 (Chapter 3): Implementing a suite of EnKF methods and integrating the suite
of methods into a numerical software for groundwater flow and species transport, thereby

proposing guidelines for scientific programming, such as reproducibility and falsifiability.

e Objective 2 (Chapter 4): Comparing performance of EnKF methods and demonstrating
the importance of considering the uncertainty of performance measures related to a limited

number of synthetic experiments.

e Objective 3 (Chapter 5): Introducing the pilot point ensemble Kalman filter as a fast
and robust EnKF method for parameter estimation. The pilot point ensemble Kalman
filter (PP-EnKF) reduces spurious correlations and partly prevents an underestimation of

posterior variances of parameters.

Chapter 2 contains the general theory that is a prerequisite for understanding the methods in the
subsequent chapters of this thesis. This general theory is divided into two parts. The first part of
the theory chapter presents the model equations of SHEMAT-Suite, the scientific software used
for the simulations presented in this thesis. Additionally, the discretization of the groundwater
flow equation is presented as it is implemented in SHEMAT-Suite. The second part of the theory
chapter introduces the Kalman filter and its efficient Monte Carlo variant, the ensemble Kalman
filter (EnKF).

Chapter 3 treats the implementation of EnKF methods in a refactored version of the scientific
software SHEMAT-Suite. SHEMAT-Suite is introduced as an open-source numerical code for
simulating flow, heat and species transport in porous media. After motivating the significance
of SHEMAT-Suite, the software is described in detail, equations and discretization are explained
and illustrative examples are given. Then, the focus is shifted to the implementation of the EnKF
methods in SHEMAT-Suite that has been carried out during the work on this thesis and that
are used in Chapters 4 and 5. Finally, some guidelines for using the version control software git
for software development are derived from the development of SHEMAT-Suite that was carried
out during this thesis. These guidelines promote scientific principles, including reproducibility
and falsifiability.

Chapter 4 treats the influence of the sampling error on permeability estimation in EnKF stud-
ies. An extensive performance comparison of EnKF methods is carried out. For seven ensemble
sizes (50, 70, 100, 250, 500, 1000, 2000) and seven EnKF variants (damped, iterative, local,
hybrid, dual, normal score, and classical EnKF), 1000 synthetic parameter estimation experi-
ments are computed for two setups: a 2-D tracer transport problem and a 2-D flow problem
with one injection well. Using this large number of synthetic experiments, I estimate how many
synthetic experiments are needed for a robust comparison of different EnKF variants. The main
performance measure that is evaluated is the root-mean-square error (RMSE). Results include
the mean values of the RMSE for the full number of synthetic experiments. The question of the
robustness of performance comparisons is subsequently tackled by examining smaller subsets of
synthetic experiments. Finally, I check certain influences on the performance comparisons, in-

cluding ensemble size, specific parameter settings in the EnKF methods, and observation noise.



8 1. Introduction

Chapter 5 treats spurious correlations, a sampling error known to influence EnKF parameter
estimation. In this chapter, the pilot point ensemble Kalman filter (PP-EnKF) is derived. The
PP-EnKF is a variant of the ensemble Kalman filter adapted to suppressing spurious correlations.
The PP-EnKF is compared to the hybrid EnKF and the local EnKF, two methods that were
introduced in the past for suppressing spurious correlations. For this comparison, the compar-
ison setup from Chapter 4 is reused. The PP-EnKF has two main inputs: the pilot point grid
and the prior correlation structure of the parameters. The pilot point grid specifies the subset
of parameters that are subject to the EnKF update before a kriging interpolation. The prior
parameter correlation structure is an input of the kriging interpolation. Due to the importance
of these inputs, the comparison of the PP-EnKF to other EnKF methods was extended to test
for the role of the prior estimate of the correlation length and the design of the pilot point grid.
Another objective is to check the ability of the PP-EnKF to prevent an underestimation of the
posterior variance. To this end, overall standard deviations of the updated permeability fields are
compared. Additionally, an analysis of the correlations between observations and permeabilities
throughout the model domain is presented. Comparing these correlations from synthetic exper-
iments with small ensemble sizes to reference correlations from a synthetic experiment using a
large ensemble size, I highlight the reduction of spurious correlations by the PP-EnKF compared
to the classical EnKF.

Chapter 6 presents general conclusions focusing on the main objectives of this thesis. This is
followed by more detailed conclusions relating to the sub-objectives of Chapters 3 to 5. The
thesis is concluded by giving an outlook on uncertainty quantification in subsurface modeling
and showing how the work presented in this thesis may support future developments in this
field.
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Theory and methods

In this chapter, mathematical background for the two main topics underlying the research of
this thesis is presented: simulation of flow, heat and tracer transport using SHEMAT-Suite and

parameter estimation using the ensemble Kalman filter (EnKF).

Contents
2.1 Flow, heat and tracer simulation using SHEMAT-Suite . . . . . . .. .. .. 9
2.1.1 Governing equations . . . . . . . .. ... 10
2.1.2  Discretization of the groundwater flow equation . . . . . . . ... .. 12
2.2 Kalman filtering . . . . . . . ... 16
2.2.1 Kalman filter . . . . . . ... oo 16
222 EnKF . .. 20

2.1 Flow, heat and tracer simulation using SHEMAT-Suite

In this section, the governing equations of SHEMAT-Suite are presented. For mathematical
background on partial differential equations, see Arnold (2004), Evans (2010), Courant and
Hilbert (1924), and in particular on a mathematical treatment of fluid flow equations see Christie
and Aris (1965) and Chorin and Marsden (1979). For groundwater flow and flow in porous
media see Bear (1975), Marsily (1986), and Kinzelbach and Rausch (1995). For information
on the implicit solution of the partial differential equations implemented in SHEMAT-Suite, see
Clauser (2003), Lynch (2005), Huyakorn (2012), and Rath et al. (2006).
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2.1.1 Governing equations

Simulation of laminar groundwater flow is based on Darcy’s law for the computation of the
specific discharge v [LT~!]:

v = —’ZfK : (ﬁh + pﬁz) . (2.1)

Here g [LT?] is the gravitational constant, ps [ML™3] denotes fluid density, us [ML™1T~1]
is the dynamic viscosity of the fluid, and K [L?] is the hydraulic permeability tensor. The
permeability K is a property of the porous medium. h [L] is the reference hydraulic head. p, [—]

is the relative fluid density variation with respect to a reference density po [M L3]:

_Pfr—po

- (2.2)

Pr
Finally, z [L] is the elevation above a reference datum. This reference datum may be chosen as
the sea level in groundwater models. For computational reasons, the reference datum can also be
chosen as the deepest depth of the model domain (Clauser, 2003, Bear, 1975). In Equation (2.1),

z is a function of the location in the model domain.

Given the reference fluid density pg, the reference hydraulic head h is computed using as follows:
P
h=z+—. (2.3)

Here, P [M L~'T~2] is the pressure at the same location, where the reference hydraulic head h
and the height z are evaluated. Conceptually, the reference hydraulic head describes the height
to which water in a hypothetical well rises due to the fluid pressure P given a constant reference
fluid density pg for the hypothetical well. This assumption simplifies the conversion between
reference hydraulic head and pressure. The observed hydraulic head can be computed from the
reference hydraulic head by considering the fluid density variations. For the sake of brevity,
the word reference will from now on be dropped and the reference hydraulic head will be called
hydraulic head unless it is important to stress that the hydraulic head is a reference hydraulic
head.

To summarize the various influences on the specific discharge v, permeability characterizes the
influence of the rock matrix on hydraulic conductivity, while fluid density p; and the fluid
dynamic viscosity py characterize the influence of the fluid. The hydraulic conductivity tensor

transforms the gradient of the hydraulic head and the buoyancy term into the specific discharge.

The partial differential equation that is at the center of this thesis is the transient groundwater
flow equation for laminar flow in a porous medium. The groundwater flow equation describes
the dynamics of the reference hydraulic head h under the influence of varying specific discharges
and sinks or sources:

oh

Ly , 2.4
S 5 V-v+W (2.4)
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Here, ¢ [T] denotes time, and Ss [L™!] is the specific storage, a function of the fluid density
pf [ML73] and of the porosity ¢ [—] of the rock matrix (see Clauser, 2003).

The dynamics of the hydraulic head are determined by the divergence of the specific discharge
v and the source term W [T~!]. The source term W is specified as an external volume flow
Wy [L3T~1] that is normalized by a control volume dV [L3]. In computations from this work,
the control volume is the size of the discretization cell that is subject to the external volume
flow. To obtain the source term W, the normalized volume flow is multiplied by a quotient of
the source fluid density p* [M L~3] and the reference density pg [M L™3]:

_Wvp

= 2.5
e (25)

where the density quotient ensures that the source term enters the groundwater flow equation in

terms of the reference hydraulic head (Clauser, 2003).

Now, some modeling choices concerning the groundwater flow equation valid throughout this
thesis are highlighted. The fluid will be water. The water density p;, the gravitational constant
g, and the dynamic viscosity of water p1y are assumed as constant throughout the dimensions
of an aquifer model. The hydraulic permeability tensor K is assumed to be isotropic. In the
isotropic case, a scalar permeability specifies the full tensor. In this thesis, the logarithmic form of
the scalar permeability Kj,s [—] is mostly used. The logarithmic scalar permeability is obtained
by first using the scalar value of K in the unit m? and then taking the logarithm of ten. For
scalar permeability, the direction of v is fully determined by the two gradients of Equation (2.1).
In the horizontal case, the direction of v corresponds to the direction of the steepest descent of
the hydraulic head field.

In absence of a source term, the equation for species transport is given by the advection-dispersion

equation:

dc _
Yor —

where ¢ [ML~3] is the concentration of a tracer. The time derivative of the concentration is

V(D -Ve¢)—V-(ev), (2.6)

determined by two terms, a dispersion-diffusion term and an advection term. The diffusion in
the concentration field itself is influenced by the hydrodynamic dispersion tensor D [L2T~1].
The advection is driven by the specific discharge v. The specific discharge v couples the species
transport equation to the groundwater flow equation. The porosity of the rock matrix ¢ [—] is
assumed as constant. In models from this work the water flow is so strong, that the hydrodynamic
dispersion tensor D has a smaller influence on concentration evolution than the specific discharge

from the Darcy equation.

For completeness, the heat transport equation is now shortly discussed, again without sources.
The heat transport equation is central to SHEMAT-Suite as a software applied for geothermal
energy exploration. In this thesis, the heat transport equation is not used for permeability
estimation. However, it should be noted that there are efforts in this respect by using temperature

measurements for estimating groundwater flow (Michalski and Klitzsch, 2018, Seidler et al., 2016).
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The heat transport equation is given by:

(9pses + (1= @)pmen) S0 =V (A-VT) = V- (pgefTv) (2.7)

Like the species transport equation, this is an advection diffusion equation. The dynamics of the
temperature 7' [O] are determined by the diffusion and the advection summands. Diffusion is
influenced by the tensor of thermal conductivities of the matrix-fluid mixture A\ [MLT~3071].
Advection is influenced by the fluid density ps and the fluid specific heat capacity cy [L2T—2071].
Finally, there are two rock properties in the equation, the matrix density p,, [M L] and the
matrix specific heat capacity c,, [L?*T~207!]. In this thesis, SHEMAT-Suite is used for sim-
ulating transient groundwater flow and species transport. The temperature is assumed to be

constant during these simulations and I do not consider heat sources or sinks.

2.1.2 Discretization of the groundwater flow equation

The software SHEMAT-Suite (Rath et al., 2006) uses the finite difference method for discretiza-
tion in order to solve the governing equations for groundwater flow, heat and species transport.
The discretization of SHEMAT-Suite that will be explained in some detail in this section, is
largely the same as for its predecessor SHEMAT (Clauser, 2003) and based for example on Zheng
and Bennett (2002). As in SHEMAT, the governing equations are discretized using the Crank-
Nicolson method (Crank and Nicolson, 1947). In the time domain, this means using backward
differences and thus the equations are solved implicitly. In the space domain, the discretization is
carried out according to a block-centered finite difference scheme. Time and space discretization
result in a system of linear equations that is solved numerically. Here, the fundamentals that
are presented in Lynch (2005) and Huyakorn (2012) are not recalled. Instead, I will focus on the
following: a thorough discussion of the discretization of the groundwater flow equation exactly
as it is implemented in the current version of SHEMAT-Suite. This discussion will be carried
out in the following steps. First, the groundwater flow equation is discretized. Secondly, all
parameters in the discretization are traced back to input parameters of SHEMAT-Suite. Finally,
the implementation of the discretization in SHEMAT-Suite is described.

The groundwater flow equation in the form that is discretized in SHEMAT-Suite is obtained
by inserting the specific discharge from Equation (2.1) in the groundwater flow equation (Equa-
tion (2.4)):

oh Pfyg = =
S5 =V (PR (Vh+p¥ W 2.8
- < . +pV2) )+ (2.8)
For simplicity, the groundwater flow equation is expressed in terms of the hydraulic conductivity
k [LT1):

Oh
ot

In the following, the discretization of the groundwater flow equation will be explained in two steps

S5 =V (k- (Vh+pV2) ) + W, (2.9)

(see Figure 2.1 for the relation of important discretized quantities to the grid). The following

paragraphs are an in-depth explanation and elaboration of the discretization of the groundwater
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Figure 2.1: Exemplary grid locations of local values for hydraulic head h and hydraulic conduc-
tivity k,. Additionally, the x-increments of the discretization of the groundwater
flow equation in SHEMAT-Suite are shown. The indices j and k of the y- and
z-direction have been dropped for simplicity.

flow equation that can be found in condensed form in Clauser (2003). There, one can also find
a lot of additional information on the numerical techniques of SHEMAT and SHEMAT-Suite.
All derivatives in the groundwater flow equation are discretized at a general cell with directional
indices 4, j, k. In the first step of the discretization, the time derivative and the outer spatial

derivative, i.e. the divergence, are discretized by introducing difference quotients.

hijk —hijre

Ss At

(+) -)
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Five things may be noted at this point. First, iAL”k denotes the known hydraulic head at cell
(i, j, k) at the simulation time of the previous time step, with a time difference of At [T] to
the current simulation time. Secondly, only the directional indices that change in a certain

direction are specified in the corresponding summand (i in x-direction, j in y-direction, k in z-
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direction). Thus, for example h; is equivalent to h; j i, and h;y1 is equivalent to ;1 j . Thirdly,
the quantities with a (+) are located on the boundary of a grid cell in positive x/y/z-direction,
while the quantities with a (—) are located on the boundary of a grid cell in negative x/y/z
direction (compare Figure 2.1). Fourth, as suggested by the (+)/(—)-notation, the endpoints of
the difference quotients for the divergence are chosen at the cell boundaries. Finally, I assume
that the hydraulic conductivity k is diagonal with diagonal elements k;, &y, k.. This assumption
is required by the open-source SHEMAT-Suite. However, relaxing the assumption of diagonal
permeability tensors is part of the closed-source research surrounding SHEMAT-Suite (Chen
et al., 2016).

In the second step, the inner partial derivatives, the gradients, are discretized. Contrary to
the difference quotient used for the outer partial derivative, the endpoints of the difference
quotient for the gradient are now located at the grid cell centers. This is in agreement with the

discretization of second partial derivatives as shown in Huyakorn (2012).
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(2.10)

The hydraulic conductivities kg(:/_; /_Z) are computed at the cell boundaries. Inputs for computing
the hydraulic conductivities are specified at the grid cell centers in SHEMAT-Suite. The hydraulic
conductivities at the grid cell boundaries are derived from the hydraulic conductivities at the

grid cell centers using the following harmonic averages:
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where the distances between neighboring grid cell centers given by

A = L (A + A Aal) = £ (Ari+ Ari 1)
1 _ 1

Ayl = 2 (Mg + Ayj) Ay~ = 2 (Ayj + Ayj)
1 — 1

Finally, the density averages p,(*/~) at z-boundaries of a grid cell are given by

o) = (Pr+1+ pri) /2 = po ) = (Pr + pri—1) /2 = po
T - T - .
Po PO

After this discretization, the solution of Equation (2.9) is reduced to the solution of a linear
function of the hydraulic heads h; j i, hi—1, hit1, hj—1, hjy1, hg—1 and hyy1. The coefficients of
this linear equation can be computed from inputs of the simulation. These inputs include the
cell sizes, the hydraulic conductivities at cell centers, the specific storage values at cell centers,
and the source term. I will now rearrange Equation (2.10) to obtain a concise formulation of
the linear equation that serves as a guideline for the implementation of the discretization in the

source code of SHEMAT-Suite:
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The capital letters denote the coefficients of the linear equation. With this notation the linear

equation can be summarized as follows:
~Rhijx— U~V +W) = Ahy_y + Bhj_y + Ch;_;

+|A+B+C+E+F+G-R|h (2.11)
D=
+ Ehjy1+ Fhjp1 + Ghi.

In SHEMAT-Suite, this linear equation is submitted to the linear solver.

To complete this section, a short discussion of the implementation of the finite difference dis-
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cretization in SHEMAT-Suite is given. Figure 2.2 gives an overview of this implementation.
The discretization is called from the time-stepping that implements the Picard iteration, and
after the discretization the linear solver is called. Four subroutines set the parameters of the
discretized linear equation. First, the coefficients A, B,C, D, E, F,G of the hydraulic heads in
the linear equation are set. Secondly, sources and sinks are set. Thirdly, the constants of the
linear equations are set. Finally, boundary conditions are imposed if cell ¢, j, k is a boundary
cell. In SHEMAT-Suite, the parameters are set in so-called property modules. Inside a property
module, a user can define a dependency of a parameter on dynamic variables, for example the
dependency of the fluid density on pressure and temperature. In Figure 2.2 a complete list of the

parameters set in the property module is given for each group of coefficients of Equation (2.11).

2.2 Kalman filtering

The ensemble Kalman filter (EnKF) is an ensemble-based data assimilation algorithm derived
from the classical Kalman filter. The Kalman filter sequentially updates a state vector and its
covariance matrix by optimally weighting model predictions and measurements. The Kalman

filter provides optimal solutions for linear systems and Gaussian statistics.

2.2.1 Kalman filter

Before the EnKF is presented later in this section, the equations of the Kalman filter are recalled
(Kalman, 1960, Kalman and Bucy, 1961). For the background on probability theory needed for
this section, see Papoulis and Pillai (2002), and Sivia and Skilling (2006) for a Bayesian view on
data assimilation. Background on filtering theory and early accounts of Kalman filtering can be

found in Jazwinski (1970) and Gelb (1974).

Both the EnKF and the classical Kalman filter are originally methods for data assimilation of a
dynamic state vector. The goal of these data assimilation methods is twofold: first, to compute
the time variation of the dynamic variables in the state vector, and secondly, to update the
dynamic variables according to measurement information. For filters, such as the EnKF or the
classical Kalman filter the state vector is updated multiple times during the forward computa-
tion, whenever new measurement information becomes available. General data assimilation is
computationally expensive and cannot be reduced to a simple set of equations. The value of the
Kalman filter is that it applies a Gaussian assumption to the state vector of dynamic variables,
as well as to the observations. In the classical Kalman filter, the forward equation is assumed to
be linear, while the EnKF is also robust for non-linear forward equations. With its assumptions,
the Kalman filter reduces the optimal data assimilation problem to a set of simple equations
for the forward computation and update equation. These equations will be presented in the

remainder of this section.

The classical Kalman filter is designed for data assimilation manipulating a multivariate Gaus-

sian random vector. The multivariate Gaussian random vector is fully determined by a mean
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state vector and a covariance matrix. After the initial definition of mean state vector and co-
variance matrix is given, the two statistical moments are manipulated by the filter. In a forward
computation, state vector and covariance matrix are propagated to the next observation time.
The forward computation is carried out according to the partial differential equations of the
dynamical system. Secondly, in an update equation, state vector and covariance matrix are
modified according to available observation information. In the following paragraphs, forward
and update equations of the Kalman filter are presented. The chapter is concluded by explaining

how the Kalman filter is used for parameter estimation.

Let ns € N be the size of the mean state vector x € R™s of the Kalman filter. Then, the Kalman

filter forward equation for the mean state vector is given by

x/ = Mx" e R™, (2.12)

0

where x? € R™ is the initial mean state vector. x? is one of the inputs of the Kalman filter. For

the classical Kalman filter, the state vector consists of mean values for dynamic random variables.
The linear forward computation of the state vector is represented by the matrix M € R™s*"s,
The result of the forward computation is x/ € R™, called the mean prediction vector. Next to
the forward equation for the mean state vector, the forward equation for the linear evolution of

the covariance matrix is given by
P = MP°MT ¢ R™*"s, (2.13)

where PO € R™*"s ig the initial covariance matrix. Here, the result is called P € R™*™s the
covariance matrix of the predicted state vector. Thus, the forward equations of the Kalman filter
are the general equations of linear transformation for a Gaussian mean vector and covariance

matrix. The predictions x/ and P serve as input to the update equation of the Kalman filter.

The Kalman filter update equation for the mean of the state vector is given by
x* =x/ + PH” (HPH” + R) ™' (d - fo> . (2.14)

On the left-hand side of this equation, x* € R"s is the state vector after the Kalman filter update.
On the right-hand side of the equation, the computation of the Kalman filter update is detailed.
The update equation is influenced by the statistical moments of the prediction computed by
the forward computation: x/ and P. The observation information that is processed by the
filter is specified through d € R™", the mean vector of observations, where n,, € N is the
number of observations, and R € R"™*"m ig the measurement error matrix. This means that
the observations, like the state vector, are modeled as multivariate Gaussian random variables.
Typically, the covariance matrix R can be specified as a diagonal matrix, if it can be assumed that
there is no correlation between pairs of observations. Finally, H € R™m*"s ig the measurement
operator. The measurement operator maps the state vector to the space of observations. For
this work, the linearity of H is ensured, because the state vector contains all observed variables

(e.g. Gelb, 1974).
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It is instructive to discuss a few limiting cases of the Kalman filter update. The first evident
case is d = Hx/, i.e. the means of the measurements d are equal to the means of the simulated
observations. In this case, the so-called innovation (d — Hx/ ) is zero, and, consequently, there
is no update. Now, two limiting cases for the covariance matrices will be discussed. First, let
P >> R. The greater sign for the matrices stands for the condition that the diagonal elements
of P are much larger than those of R. In this case, the innovation gets a lot of weight and
for the updated mean vector holds x® ~ d for all entries that correspond to the observations.
The other limiting case P << R results in a very small Kalman gain matrix multiplying the
innovation, and thus almost no update is applied. This is to be expected, since in this case the

measurements are very uncertain compared to the simulations.

The update equation for the covariance matrix P
P* =P - PH’ (HPH” + R) " HP (2.15)

completes the Kalman filter update. P% € R™*"s ig the updated covariance matrix. The matrix
K € R"*"m with
K = PH” (HPH” + R) (2.16)

is essential to both update equations and is called the Kalman gain matrix. The Kalman gain
matrix determines the strength of the Kalman update based on the covariance information of
the random vectors of the state and observation. After the update equation, the next forward

simulation is started and x® and P? take over the roles of x" and PC.

In this work, I use the Kalman filter for parameter estimation. The simplest way to do this is

by augmenting the state vector by the targeted parameters (Gelb, 1974) as follows:

f
X
Xfaugmented = ( ) . (217)

p

For the forward computation, the parameters are constant, and for the update equation, the
parameters are updated according to their covariances with state vector variables and observa-
tions. In the remainder of this thesis, EnKF state vectors are assumed to contain both dynamic
variables and parameters. For the Kalman filter, choosing correct initial covariance matrices is
especially challenging. The initially chosen covariances are very important since they determine
the update of the parameters entirely. Thus, choosing wrong covariances may render results
useless. For the ensemble Kalman filter (EnKF), the Monte Carlo version of the Kalman filter,
choosing these initial covariance matrices is still very important. However, the hard and decisive
step of choosing an initial covariance matrix is somewhat mitigated by the ensemble nature of
the EnKF. In the EnKF, the state variables are specified by an ensemble of values. Next to the
significant influence of the initial parameter values and their spread, the ensemble of parameters
develops correlations with dynamic variables during the forward computation according to the
sensitivity of the dynamic variables to the parameters. This way the update not only reflects
the input of the initial parameter ensemble that should still be carefully selected, but also the

influence of the forward computation. The EnKF was applied for permeability estimation us-
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ing augmented state vectors by Naevdal et al. (2005) and Hendricks Franssen and Kinzelbach
(2008).

2.2.2 EnKF

The EnKF is the Monte Carlo version of the Kalman filter (Evensen, 1994, Burgers et al., 1998).
While the Kalman filter can only be applied to linear dynamics, the EnKF also performs well for
non-linear dynamics. Instead of computing the full model covariance matrix as in the Kalman
filter, the covariance matrix is approximated from an ensemble of model simulations in the EnKF.
This way, the EnKF can be applied to larger systems with many unknowns. For the EnKF to give
meaningful results, the ensemble should capture the main uncertainty sources relevant for the
model prediction. For groundwater flow and species transport, the most important uncertainty
source is typically the rock permeability governing the hydraulic conductivity. In this thesis, the

EnKF is used for parameter estimation, by augmenting the state vector by rock permeability.

Like the Kalman filter, the EnKF consists of two main steps: The forward simulation (the result is
indicated by superscript f), and the update equation (result indicated by superscript a). During
forward simulation, each realization is simulated using the physical model M. Compared to the
Kalman filter, I formulate the forward equation in a more general form by explicitly including
the simulation time. For the forward simulation that computes the state vector at simulation

time ¢;41 from the state vector at simulation time ¢; , one can write
xI(tj1) = M (x8(t;))  ie{l,---,n.},je{l,---,n €N}. (2.18)

The vector x{ € R™ holds the ith realization of states and parameters at a given simulation
time. In Equation (2.18) this simulation time is ¢; after simulation. In the special case j = 1,
x¢(t1) holds the ith realization of the initial states and parameters. For the parameter estimation
case, ng is the sum of the number of states and the number of parameters, n, € N is the number
of ensemble members, and n; € N is the number of assimilation times. In this work, the model
M represents the forward solution of a subset of the following set of equations: the groundwater
flow equation for hydraulic head, the heat transport equation for temperature, or the species
transport equation for the concentration of a solute. The dynamic variables for the equations to

be solved are part of x}(t;). The parameters that are part of x¢ are left constant by M at all
f

simulation times. The vector x; € R™s holds the ith realization of states and parameters at a
given simulation time. In Equation (2.18) this simulation time is ¢j41 before assimilation. For

simplicity, the function arguments (simulation times) will usually be dropped.

Note the differences between Equation (2.18) for the EnKF and Equation (2.12) for the Kalman
filter. First, the forward equation for the EnKF is more general due to explicitly including
the simulation times. Secondly, there are n. equations for the EnKF, compared to the single
equation for the mean state vector for the Kalman filter. Thirdly, while the forward equation
for the Kalman filter is linear, for the EnKF, the realizations can undergo non-linear forward

evolution. Fourth, the n. realizations from the EnKF will be used to compute sample covariances,
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thus a covariance equation analogous to Equation (2.13) in the Kalman filter is not needed for the
EnKF. Finally, the distributed forward computation has advantages for parameter estimation
already mentioned at the end of the last section. The evolution of the dynamic variables in
the state vector will result in correlations with the parameters in the state vector according to
the sensitivity of the variables to the parameters. This way, in the EnKF, the choice of a prior
covariance matrix between dynamic variables and parameters is complemented by the correlations
that are implicit in the forward equation. These correlations that stem from sensitivities are an

important foundation of the permeability updates estimated in this thesis.

I now turn to the ensemble of observations given by
d; = Hx™ 4 ¢; ie{l, - ,ne}. (2.19)

The means of measured observations y = Hx™®*® € R™" are perturbed by Gaussian noise
€; € R™ with covariance matrix R € R"m>*"m
the correct uncertainties in the EnKF (Burgers et al., 1998). As for the Kalman filter, n,, € N

is the number of measurements at the time step under consideration. In the synthetic setups

. This perturbation is important for estimating

of this thesis the observations will be tracer concentrations or hydraulic heads from a reference
model. In general, measured values are connected to the states and parameters of the model
through the measurement operator H € R™m*"s_ In this thesis, the observations are part of the
state vector, making H a matrix consisting almost entirely of zeros, with the exception of n,,
ones on the diagonal. As result of the measurement equation, I obtain a vector of perturbed

measurements d; € R™ for each realization.

The following update equation is of central importance in the EnKF:
x?:xzf—FK(di—Hx{), ie {1, ne}. (2.20)

!

)

is updated according to the Kalman gain matrix K € R™s

For each realization, the prediction from the forward simulation x; is compared to the perturbed

f

X Tm
1 )

measurement vector d;. Then, x
which is given by
K =P .H” (HP.H” +R) . (2.21)

Here P, € R™*™s denotes the ensemble covariance matrix of states and parameters. As for
the Kalman filter, K favors updates if the ensemble covariances P, are large compared to the

measurement uncertainty R.

As for the forward equation, it is interesting to record the main differences between the EnKF
and the Kalman filter, this time for the update equation. Instead of one update equation for the
mean state vector and one update equation for the covariance matrix, in the EnKF, there are n,
update equations for the ensemble. The covariance matrices and, consequently, the Kalman gain
are computed from the ensemble. The introduction of the ensemble opens the method to non-
linear forward equations and much larger model sizes. However, it also introduces disadvantages.
First, the ensemble of realizations and the derived quantities may suffer from sampling error.

And, secondly, the assumption of Gaussianity that was explicit in the statistical moments of the
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Kalman filter is now only implicit for the EnKF through the optimality of the update equation.
On one hand, this is an advantage since the EnKF can be applied to complex problems without
further preparation. On the other hand, the conditions for the EnKF to have explanatory power
have to be checked, for example making sure that either the probability distributions are nearly
Gaussian or some extension of the method is used that may mitigate effects of non-Gaussian
probability distributions (e.g. Zhou et al., 2011).

Details on how the EnKF is implemented in this work can be found in Evensen (2003). In the
numerical software SHEMAT-Suite that is used in this thesis, the formulation of the EnKF from
Evensen (2003) is extended for joint state-parameter updating according to Hendricks Franssen
and Kinzelbach (2008). Building on this work, the EnKF and a number of methods derived from
the EnKF that are detailed in Chapter 4.2.1 are implemented in SHEMAT-Suite.
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Ensemble Kalman filtering in the numerical
software SHEMAT-Suite

In this chapter, the software SHEMAT-Suite will be presented, a numerical code for simulating
flow, heat and species transport in porous media. In particular, I will focus on the implementation
of EnKF methods of SHEMAT-Suite that is part of this thesis. The suite of EnKF methods that
are implemented in SHEMAT-Suite is introduced, followed by some guidelines for the scientific
software development of SHEMAT-Suite during this thesis. Additionally, an introduction will be
given to the motivation and significance of other parts of SHEMAT-Suite that existed prior to this
thesis and were extensively refactored during the work on this thesis. A description of SHEMAT-
Suite functionalities follows. The architecture that served as a guideline for the refactoring during
this thesis is presented. The Theis pumping model serves as an illustrative example for how to
use SHEMAT-Suite. Additionally, two simple inversion examples are described. After the impact
of SHEMAT-Suite on the geosciences is detailed, the chapter is concluded by a summary of the
guidelines for scientific software development that follow from the work on refactoring SHEMAT-
Suite during this thesis and an outlook on how these guidelines may help the future development
of SHEMAT-Suite and of other scientific software.

Contents
3.1 Introduction . . . . . . . . . . . ... 24
3.1.1 Motivation and significance of SHEMAT-Suite . . . . . . . ... ... 24
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and species transport in porous media, SoftwareX, 12, 100533 (2020).
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3.1 Introduction

3.1.1 Motivation and significance of SHEMAT-Suite

Numerical simulations of coupled subsurface fluid flow and heat transport problems are routinely
performed in a number of geoscientific fields, including geothermal energy, groundwater, nuclear
waste storage and CO, sequestration. Simulations are increasingly based on large and complex
geological models, requiring sophisticated and parallelized software packages, ideally with a his-
tory of extensive benchmarking and testing on real-life applications. SHEMAT-Suite is such
a software: a versatile, general-purpose open-source code for simulating flow, heat and species
transport in geological reservoirs. Conceptually, SHEMAT-Suite treats geological reservoirs as
porous media. The code solves transient or steady-state, forward and inverse coupled problems
in 1D, 2D, and 3D. It can handle a wide range of time scales and, thus, can address both tech-
nical and geological processes. SHEMAT-Suite can handle the non-linearities resulting from the
variation of rock and fluid properties with temperature, pressure and species concentration. In
addition, SHEMAT-Suite is capable of deterministic and stochastic inverse simulations and data
assimilation, which enable parameter estimation and uncertainty quantification. These are im-
portant features, since subsurface flow and transport modeling is subject to data scarcity and

large uncertainties of different sources.

For completeness, the main capabilities of the open-source SHEMAT-Suite are now shortly reiter-
ated, a complete list of capabilities of open-source and closed-source SHEMAT-Suite can be found
in the introduction. These functionalities of SHEMAT-Suite predate the work of this thesis, but
everything that has to do with forward modeling and data assimilation was thoroughly refactored
before publishing it as open-source code. As already seen in the introduction, the capabilities of
the open-source SHEMAT-Suite include (1) a parallelization scheme for SHEMAT-Suite (Wolf,
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2011); (2) the solution of the systems of coupled partial differential equations by implicit Pi-
card iteration in a finite difference discretization (Lynch, 2005, Huyakorn, 2012); (3) a direct
linear solver for small simulations, an implementation of the Bi-Conjugate Gradients Stabilized
(Bi-CGStab) method for large simulations (van der Vorst, 1992); (4) additional solvers and pre-
conditioners easy to integrate in SHEMAT-Suite owing to its modular structure of the solver
implementation; (5) linear algebra functions used from the libraries BLAS (Lawson et al., 1979,
Dongarra et al., 1988, 1990) and LAPACK (Anderson et al., 1999); (6) output of variable and pa-
rameter fields possible in many formats, most notably VTK (Schroeder et al., 2006) and HDF5!
(The HDF Group, 1997-2022); (7) deterministic Bayesian inversion (Rath et al., 2006); (8) auto-
matic differentiation of the forward code by the software Tapenade (Hascoét and Pascual, 2013)
for computing the Jacobian in the deterministic inversion framework; (9) sequential Gaussian si-
mulation (SGSim?) from the geostatistical library GSLib (Deutsch and Journel, 1995) for random
field generation in the stochastic simulation mode within a Monte Carlo framework; (10) Bayesian
updates implemented as ensemble Kalman filter (EnKF) analysis equations (Evensen, 2003). The
part of SHEMAT-Suite that contains the EnKF implementation is discussed in this chapter in

more detail.

The workflow of a typical application of SHEMAT-Suite proceeds in three steps: input, execution
and output. Typically, the input step is the most time-consuming since it includes specifying
the geometry of the model domain. The discretizations of time and space are specified in the
input file along with the initial and boundary conditions for the dynamic variables (pressure or
hydraulic reference head, temperature, dissolved species concentrations). Values of the required
physical properties (e.g. porosity, permeability, thermal conductivity) are assigned to specific
property units that represent model zones or rock-types with constant parameter values. Inverse
simulations and parameter estimation require additional input files for specifying prior param-
eter values and measured data. For the execution step, the user should check the computing
architecture in order to optimally use the parallelization of SHEMAT-Suite (Wolf, 2011). Finally,
the type of output that is specified in the input file may be further processed and visualized.
There are many output choices ranging from entire parameter fields at specified output times
and time series at specified locations to inversion output such as the overall standard deviation
of a parameter field. SHEMAT-Suite output files can be visualized and analyzed directly by

using software such as ParaView (Ahrens et al., 2005) or Tecplot?.

3.1.2 Suite of EnKF methods

The implementation of EnKF methods in SHEMAT-Suite was part of this thesis. The im-
plementation uses as the starting point the EnKF update code by Geir Evensen?. Around
this Fortran implementation of the EnKF update, a number of Fortran subroutines is imple-

mented in SHEMAT-Suite alongside an easily manipulable input file and various choices for

"https://www.hdfgroup.org/downloads/hdf5/ [Accessed 2020/02/19]
http://www.gslib.com/gslib_help/sgsim.html [Accessed 2020/02,26]
3https://www.tecplot.com/ [Accessed 2020/03/04]
“https://github.com/geirev/EnKF _analysis [Accessed 2020/02/19]
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output. The EnKF methods implemented in SHEMAT-Suite include damping of the EnKF
(Hendricks Franssen and Kinzelbach, 2008), the local EnKF (Hamill et al., 2001), the hybrid
EnKF (Hamill and Snyder, 2000), the dual EnKF (Moradkhani et al., 2005, El Gharamti et al.,
2013), the iterative EnKF (Sakov et al., 2012), the normal score EnKF (Zhou et al., 2011,
Schoniger et al., 2012, Li et al., 2012), and the pilot point ensemble Kalman filter from Chap-
ter 5. More details on these algorithms are given in Section 4.2.1. In this chapter, the structure
of the implementation of these methods will be discussed. The implementation of the EnKF
methods in SHEMAT-Suite follows two guidelines: first it should be relatively easy to add new
EnKF methods, second a robust comparison between EnKF methods should be possible. For
the robust comparison to be possible, two main measures are taken: as much of the source code
as possible is reused among the various EnKF methods and source code optimizations, such as
serial performance optimizations and parallel execution using OpenMP, make the large numbers

of simulations possible that are needed for method comparisons.

3.1.3 Scientific software workflow

Some guidelines that provided the background of the scientific software development of SHEMAT-
Suite during this thesis are now presented. Developing scientific software is different from de-
veloping commercial software in a number of respects, one being that the scientist is often the
user and the developer of the software simultaneously (Segal and Morris, 2008). From this it
follows that, in the beginning, the developer often does not know what the final software will
look like. For commercial software, the implemented functionality is usually well-known from the
beginning of the software development. Best practices for scientific software development should
honor these conditions. One possible conclusion is that scientific software should be built and
checked like a physical apparatus, for example a part of an experiment. This conclusion along-
side a full list of best practices for scientific software development can be found in Wilson et al.
(2014). In the geosciences, one main focus is often laid on the reusability of data, see for exam-
ple the report by Radosavljevic et al. (2019). Additionally, there are scientific software packages
that are developed and thereby following and setting best practices in the geosciences (Gerke
et al., 2018, Hwang et al., 2017). There are also such scientific software packages for groundwater
flow simulation. Examples are the alternatives to SHEMAT-Suite cited in the introduction, in

particular the open-source variants.

While many scientifically developed software projects exist, I claim that a number of interesting
and novel propositions can be deduced from the refactoring of SHEMAT-Suite. In particular,
SHEMAT-Suite is interesting by its multi-functionality, including the core functionality of for-
ward computation, but also stochastic inverse methods and deterministic Bayesian inversion
using automatic differentiation. Multi-functionality is typical for scientific software that is devel-
oped as part of a number of scientific projects. I address this multi-functionality by proposing a
specific workflow based on the version control software git. I employ git branches for managing

the different functionalities of the overall software. This is, to the knowledge of the author, a
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novel approach promoting git branches from the role of passive development helpers to an active

role as a tool for scientific software development.

Now, some scientific guiding principles will be stated and it will be detailed how they have guided
the software development of SHEMAT-Suite.

o falsifiability: There is an open-source suite of test models.
e reproducibility: Open-source availability of version-controlled source code.

e Communication of results: Documentation, both in the code (Doxygen®) and around

it (a Wiki including a tutorial for new users)

e Logically sound foundation for new developments: Software development guidelines

including git branches for functionalities and modular, easily adaptable source code.

The two basic principles falsifiability and reproducibility are met by ensuring that the source
code and a suite of test models is available open-source. Reproducibility is closely connected
to the last two principles: the communication and the foundation for new developments. By
communication, I mean that a complete scientific work should not only be available, but accessible
to fellow scientists. Therefore, the documentation of the code tries to address scientists, and the
goal is not to distinguish between scientists and software developers. Finally, the code is written
in a modular way. Like the git branches, this modular workflow supports the simultaneous
development of functionalities, while these developments are still taking place in a single source
code. In the subsequent part of this chapter, I will show how the presented principles are
implemented for SHEMAT-Suite.

3.2 Software description

There are three compilation modes for SHEMAT-Suite: a forward mode for pure forward com-
putation, an automatic differentiation mode (AD-mode) for deterministic inverse computation,
and a stochastic mode for geostatistical simulation, stochastic data assimilation and parameter
estimation. The forward mode has been refactored during this thesis and the stochastic mode
was completely rewritten adding the EnKF methods for this thesis. Additionally, the structure

of the code that is described in the following was imposed during this thesis.

Most of the user interaction with SHEMAT-Suite is restricted to the input file. For the forward
mode, only one main input file is needed. For the inverse modes, additional input needs to be
added in the main input file as well as in separate input files. Examples of SHEMAT-Suite input

files are presented in Section 3.3, extracts from the input files can be found in Appendix A.
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——— SHEMAT-Suite master-branches|———

master "
Forward computation upstream
/ Merge changes \
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\ Merge changes /
master-all d
Full functionality OIS
A\ J

Figure 3.1: The branches of SHEMAT-Suite and their dependencies in the git-repository.

3.2.1 Software functionalities

The source code of SHEMAT-Suite is organized in two levels, the branch level and the directory
level. On the branch level, the version control software git is used to divide the source code into
branches. As usual in software development, git branches are used to develop the software, in
particular the so-called 'master branch’. For SHEMAT-Suite, this concept is slightly extended
to four master branches (Figure 3.1). The four master branches are derived from the three core
functionalities of the software: (1) forward mode for the solution of flow, heat and dissolved
species transport, (2) AD-mode (ad) for Bayesian inversion employing a derivative-based opti-
mization scheme using tangent linear and adjoint codes generated via automatic differentiation
(AD) for calculating exact Jacobian matrices, and (3) stochastic mode (sm) for Monte Carlo
simulations, data assimilation and parameter estimation using the EnKF. The first of the four
branches, master, can be compiled only in forward mode and is optimized for pure forward com-
putations. The second branch, master-ad, can be compiled in forward mode and AD-mode. The
third branch, master-sm, can be compiled in forward mode and stochastic mode. The fourth
and final branch, master-all, can be compiled in all three modes. In general, a user can always
work with master-all. However, the smaller codes may operate at better performance for the

specific task, for example needing less memory or computation time.

Because of the special branch structure, it is important for SHEMAT-Suite developers to in-

troduce changes in the correct branch and, subsequently, merge these changes into downstream

http://doxygen.nl/ [Accessed 2020/05/11]
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branches. Changes affecting the forward computations, should be added to master, changes af-
fecting only the AD /inverse computations in master-ad, changes affecting only the Monte Carlo
framework and stochastic computations in master-sm. The branch master-all should in prin-
ciple only receive the changes to the other branches through merging. Rarely, specific changes

may be needed to render the changes introduced from the upstream branches compatible.

Open-source documentation is available alongside the source code of SHEMAT-Suite. In the
repository of SHEMAT-Suite, a Wiki® includes (1) general information about SHEMAT-Suite,
(2) a tutorial for first time users, and (3) instructions on the use of the three main functionalities,
forward computation, stochastic inversion, and deterministic inversion. For developers, a Doxy-
gen documentation can be generated from source code headers. Additionally, the open-source
git-repository SHEMAT-Suite_Models-open’ contains test models for the various functionalities
of SHEMAT-Suite and a Python script for testing simulation results against results of previ-
ous code versions. The README of SHEMAT-Suite_Models-open features an up-to-date list of
test models and, if available, their analytic benchmarks. Scripts for pre- and post-processing
are provided in the git-repository SHEMAT-Suite_Scripts-open®. For example, this repository
contains a Python script for converting ASCII input files into HDF5 files that can be read
by SHEMAT-Suite. Finally, the plan for SHEMAT-Suite is to gradually switch to continuous
integration methodologies of software development. This will simplify the code development

workflow, minimize the introduction of errors and thus assure the software quality.

3.2.2 Software architecture

This section explains the source code directories in the branches described in the previous section
(see Figure 3.2 for a sketch of the source code directories used for forward computations). The

master branch contains the following directories:

/forward/ contains most of the code for forward computation, including the handling of input
and output, the time discretization loop and the non-linear iteration loop. This code is paral-
lelized using the shared-memory parallel programming paradigm OpenMP aiming for multi-core

workstations.

/solve/ contains the solution of systems of linear equations. The separation from /forward/
ensures the easy implementation of additional solvers and preconditioners and is crucial for the

usage of an automatic differentiation software.

/props/ contains property modules defining the dynamic behavior and coupling of fluid and
rock properties. Property modules can be designed for using both constant, or pressure- and
temperature-dependent fluid and rock properties. Additionally, the influence of dissolved species
concentrations, typically salt concentration, on fluid properties such as density can be accounted

for. The modular structure allows for adding site- or application-specific property relationships.

Shttps://git.rwth-aachen.de/SHEMAT-Suite/SHEMAT-Suite-open /- /wikis/tutorial [Accessed 2020,/03,/04]
"https://git.rwth-aachen.de/ SHEMAT-Suite/ SHEMAT-Suite_ Models-open/ [Accessed 2020/03,16]
Shttps://git.rwth-aachen.de/SHEMAT-Suite/shemat-suite _scripts-open [Accessed 2020/03/17]
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/user/ contains files for user-defined input subroutines, output subroutines, a user-defined
Fortran-module, and a general user-defined subroutine called at the beginning of Picard iter-
ations. The complete set of these subroutines is called a user module of SHEMAT-Suite. User
modules provide an easy and flexible way for adding and adapting problem-specific function-
alities. The open-source SHEMAT-Suite provides an exemplary template user module in the
directory none. The directory none contains subroutine templates without functionality that

serve as a starting point for developing new user modules.

/hdf5/ contains interfaces with the HDF5 library for input and output.
/cmake/ contains compilation utilities using CMake tools”.

/doc/ contains input for generating the Doxygen documentation.

The branches master-sm and master-ad add the following directories.

/simul/ (sm) contains subroutines for geostatistical simulation, Monte Carlo computation and
EnKF updates.

/inverse/ (ad) contains the deterministic inversion code.

/mkAD/ (ad) contains scripts for generating AD-code.

3.2.3 Implementation of EnKF methods

The EnKF methods of SHEMAT-Suite are implemented in the directory /simul/ of the branch
master-sm. There are two core components of the implementation of EnKF methods: first the
code for the EnKF update!®, and secondly, the wrapper routine enkf_iter that calls Fortran
subroutines for all the major parts of the EnKF implementation. The file enkf_iter.f90 can
be found in the open-source SHEMAT-Suite!!. The implementation of the EnKF methods can
be best explained by analyzing the structure of enkf_iter. This will be done in two steps: first,
the general order of functions in the file, secondly, the locations of the manipulations for the
EnKF methods will be presented.

At the center of the wrapper routine enkf_iter, there is the main EnKF loop. I will first discuss
the steps of the code outside of the main EnKF loop. Before the loop is started, there are two
major steps in enkf_iter: first, there are the input routines, second there are the SGSim routines
(Deutsch and Journel, 1995). The input routines consist of a subroutine that searches the ASCII
input file of the EnKF for keywords and reads the input. Additionally, there is a subroutine
for checking the inputs. In particular, it is checked that numerical inputs are in physically and
logically allowed ranges. Finally, arrays that are specific to the EnKF are allocated according to
the input. Following the input routines, the sequential Gaussian simulation (SGSim) is carried

out, initializing parameter fields according to input files defined in the geostatistical library GSLib

“https://cmake.org/ [Accessed 2020/02,26]
Yhttps://github.com /geirev/EnKF _analysis [Accessed 2020/02/19]
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Figure 3.2: Diagram of the forward computation in SHEMAT-Suite highlighting the role of

various source code directories.
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(Deutsch and Journel, 1995). This also includes setting the random seeds for all the important
random number generations. The main EnKF loop that will be discussed in the next paragraph
follows. At the end of the EnKF loop, an updated parameter field has been generated. After
the main EnKF loop, there are two steps remaining: first, final output of the EnKF run can be
written. Next to the full variable and parameter fields, this includes derived output such as the
root-mean-square errors or overall standard deviations that are used in the work of the following
chapters of this thesis. At the end of enkf_iter, the option for so-called postcomputation
is available. This postcomputation consists of a pure forward computation using the updated

parameter fields.

The main part of enkf_iter, the EnKF loop, is now described in more detail. The loop iter-
ates over the number of parameter updates of the EnKF, i.e. the times at which observation
information is available. The principle of implementation of the EnKF is explained by outlining
the essential steps of a single iteration. First, the forward computation from the previous to the
current observation time is carried out by calling the subroutines in the general forward code of
SHEMAT-Suite. After this, the EnKF state vector is generated and filled with the forecasted
values. In each iteration, writing output files is possible. Output is written both, before the
EnKF update, and after the update. In between, the EnKF update is carried out by calling the
Fortran routines from Evensen (2003). A lot of the output written before and after update is
similar. This way, the updates of dynamic variable fields and parameter fields can be monitored

closely if needed.

It remains to describe, how the suite of EnKF methods is implemented. By implementing these
methods in a modular way, specific routines can be called for manipulating the state vector
or covariance matrices, while at the same time a large amount of the code is reused for all
methods. The EnKF methods can be grouped into three classes according to their specific
implementation: first, manipulation of the state vector at the beginning of a loop iteration,
secondly, manipulation of the EnKF update, and thirdly, manipulation of the state vector right
before and after the EnKF update. The methods of the first group are the iterative EnKF and
the dual EnKF. These two EnKF methods, as well as the others in this paragraph are explained
in more detail in Section 4.2.1. For the iterative EnKF, mainly the counting of iterations has to
be adapted, or restarted. For the dual EnKF, the counting is manipulated in order to double the
number of iterations. Additionally, the state vector is manipulated to contain only parameters
in the first iteration of a certain simulation time and only dynamic variables in the second
iteration of the same simulation time. The second group of EnKF methods includes the damped
EnKF, the local EnKF and the hybrid EnKF. These methods explicitly manipulate the EnKF
update step. The damped EnKF is just a simple manipulation of the update, where a damping
factor is multiplied to parameters of the EnKF update. In contrast, the local EnKF and the
hybrid EnKF include a non-trivial manipulation of the EnKF update, in particular including
manipulations of the covariance matrices in this update. Finally, the third and last group of
manipulations includes the normal score EnKF and the pilot point EnKF'. Here, the state vector
of the EnKF is manipulated right before and right after the update. For the normal score

EnKF, this manipulation consists of the normal score transform and its inverse. For the pilot
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point EnKF, the state vector is restricted to the pilot points before the EnKF update and an

interpolation to the full state vector is implemented after the update.

3.3 lllustrative examples

This section presents three simple example simulations for illustrating the SHEMAT-Suite’s
versatile simulation capabilities, corresponding to the three modes fw, ad, and sm. The examples
for the modes fw and ad mode (Sections 3.3.1 and 3.3.2) are meant to show the general usage of
SHEMAT-Suite and have, otherwise, no connection to the work in this thesis. The third example
(Section 3.3.3) on the other hand introduces the input file for the permeability estimation that
is used for comparing EnKF methods in the following chapters of this thesis. For additional
examples of scientific applications of SHEMAT-Suite, the interested reader is referred to the
literature cited in Sections 1.1 and 3.4 and in Table 3.2. The complete input files for the examples
in this section and for additional examples illustrating the various functionalities of SHEMAT-

Suite can be found in the test model repository SHEMAT-Suite_Models-open'?.

3.3.1 Forward computation

The Theis pumping model serves as illustration of SHEMAT-Suite, by comparing the analytical
solution of the Theis pumping well model (Theis, 1935) to the numerical solution computed in
SHEMAT-Suite. The Theis model is a solution of the flow equation, computing the transient
water table drawdown resulting from a pumping well in a horizontal, confined aquifer. I compare

the numerical solution by SHEMAT-Suite to the analytical solution

B Q ( r2S )
ArAzk \dAzkt)

h(r,t) = ho (3.1)

Here, h [m] denotes the water table including drawdown at distance from the well r [m] and time
t [s]. On the right-hand side of the equation, hy [m] denotes the constant water table without
the influence of the pumping well. @ [m®s~!] is the pumping rate of the well, k¥ [ms™!] is the
hydraulic conductivity of the fluid-matrix mixture, S [—] is the storage coefficient, and Az [m]
denotes the thickness of the aquifer. For this homogeneous aquifer, the specific storage coefficient

S from the groundwater flow equation is given by

S

SS:E.

(3.2)

The function w is called the well function, a table of function values can be found in Segol

(1994).

The SHEMAT-Suite Input File A.1 for the Theis problem can be found in Appendix A. The

general SHEMAT-Suite input file consists of a number of sections defining the subsurface model.

2https://git.rwth-aachen.de/SHEMAT-Suite/ SHEMAT-Suite_ Models-open/ [Accessed 2020/03,16]
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The first section provides general information about the run, for example a title and the spec-
ification of the property module, in this case const. This property modules defines constant
fluid parameters such as fluid density and viscosity as well as constant rock parameters such as
permeability throughout the simulation. The second section defines the grid starting with the
number of cells in x-y-z-direction and followed by the cell sizes. In this case, the grid is coarser
away from the well and finer in the center of the model near the pumping well. Under time
step control, a transient simulation is specified and some solver parameters influencing the time
stepping are set to their default values. More information on these special parameters can be
found in the SHEMAT-Suite documentation. The time unit is set to one day (86400s) and the
simulation runs for 3.5 days evenly split into 100 time steps. For larger simulations, SHEMAT-
Suite offers the possibility of dynamic time-stepping sensitive to the convergence speed. The
precision and maximum number of iterations are set for the linear solver method Bi-CGStab.
The lateral head Dirichlet boundary conditions are set to 20 m, and top and bottom of the model
are no flow boundaries. In the center of the model, the pumping well is represented by a sink at
cell (35, 35, 1). This sink is specified as a pumping rate of —0.001 m?s~! resulting in the water
table drawdown around this cell that can be compared to the analytical Theis formula. The ini-
tial hydraulic head is set to 20m for all 4761 grid cells. The properties of the fluid (water) and
the rock matrix are set. For water, these properties include density (1000kgm™3), compress-
ibility (5-10~®ms? kg™1), and viscosity (103 kgm~!s™!). For the rock matrix, the properties
include porosity (10 %), permeability (107'2m?), and compressibility (10~8ms?kg™1). Other
parameter inputs include thermal parameters and parameters for species transport. Since this
illustrative example is for groundwater flow only, these additional parameters do not influence
the simulation. In the SHEMAT-Suite documentation, users find a complete walk-through of a
number of example input files including this one for the Theis model. Finally, the output file
types are set to VI'K and HDF5.

The numerical results for the Theis model are shown in Figure 3.3. The hydraulic head field
visualizes the drawdown around the pumping well after 3.5 days. The HDF5 output of SHEMAT-
Suite is visualized using Python and matplotlib (Hunter, 2007). The comparison with the an-
alytical Theis solution reveals that the absolute error is smaller than 10 cm, even in the center
of the model, where the influence of the pumping well is greatest and in the order of meters.
Because of this, the relative errors in the center of the model are smallest and less than 1%.
Near the boundaries, the relative errors are in the order of 1% due to a negligible influence of
the pumping well. The Theis model and other test models for SHEMAT-Suite are published in
the SHEMAT-Suite_Models-open repository!?.

3.3.2 Inverse simulation

A simple two-dimensional model (a vertical cross-section of the subsurface) is used for illustrating
an inverse simulation for deterministic parameter estimation with SHEMAT-Suite. The model

domain is 150m deep and 300 m wide with an equidistant discretization of 2 m. The model

Bhttps://git.rwth-aachen.de/SHEMAT-Suite/ SHEMAT-Suite_ Models-open [Accessed 2020,/03/16]
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Figure 3.3: Results of the THEIS model. a) head distribution after 3.5 days, b) transect across

the pumping well, and ¢) difference between the numerically and analytically cal-

culated head along the transect.
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consists of nine homogeneous model units. The first unit (uindex 1) represents a dummy unit
for the air above the earth surface and units uindex 2 to 9 represent rock layers which differ in

porosity, permeability and thermal conductivity (Figure 3.4 a)).
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Figure 3.4: a) Cross-sectional model for illustrating an inverse simulation with SHEMAT-Suite.
The white layer (uindex 1) represents the air above the topographic surface. Col-
ored layers represent rock layers with different petrophysical properties specified
in the input file. The black contour lines denote the temperature profile of the
synthetic reference model. b) Observed temperature data (black circles), prior
(dashed-dotted black line) and posterior (solid black line) temperature logs in the

model center. The posterior model is the inversion result.

The inverse problem consists of determining the thermal conductivity of each of the six lower
rock layers (i.e., uindex 4 to uindex 9) using a temperature log available in the model center. In
this synthetic example, it is assumed that all other rock properties in each layer and all boundary
conditions are known without uncertainty. The prior model is specified in the input file similar
to the forward problem input described in Section 3.3.1. Dirichlet boundary conditions are used
for temperature and head along the topographic surface: the surface temperature is 11 °C and
hydraulic head follows the topography. Therefore, these boundary conditions are defined in cell-
by-cell mode in the input file (see bottom of Input File A.2 in Appendix A). A Neumann boundary
condition defines the specific basal heat flow at the bottom of the model domain. The constant
specific basal heat flow of 0.06 Wm~2 can be defined using a simplified input specification (see
Input File A.2 in the appendix, second to last keyword entry). This example simulation is a
coupled simulation of flow and heat transport where fluid and rock properties are pressure- and
temperature dependent. The parameter dependencies are contained in the property module bas
that is specified in the input file following the keyword PROPS. For compatibility, SHEMAT-Suite
has to be compiled using the compiler flag for the property module bas and using AD-mode for
enabling its inversion capability. This capability is a prerequisite for runmode 2 that is defined
in the Input File A.2. For the pure forward code from the branch master, the runmode would

have to be 0 or 1. The prior rock properties are specified for each model unit below the input file
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keyword units, analogous to a forward simulation. In this synthetic example, all rock properties
are the same as in the true reference model, except for thermal conductivity of units uindex 4

to uindex 9. There, thermal conductivity is assumed to be 2.0 Wm ™! K~! prior to inversion.

For the inverse mode, SHEMAT-Suite needs additional specifications. These additional keywords
can be included in the main SHEMAT-Suite input file, or a second input file can be generated.
Here, the additional keywords for the inverse simulation are included in the main input file.
The part of the SHEMAT-Suite input file that is specific for inverse simulation is shown in
Input File A.3 in the appendix. The keyword inverse is followed by some specifications for the
inverse solver. The entries below the keywords enable unit, enable property, and optimize
property define the model units and parameters that are enabled for inversion. Here, thermal
conductivity is enabled for inversion in units 4 to 9. The entries below the keyword errors
give the prior variances of the parameters to be estimated for each model unit. I assume a
prior variance of 2.0 Wm ™! K! for each unit that is enabled for the inversion. Finally, I need to
specify the observation data used for inversion. Temperature data are listed below the keyword
data. The measurement error (0.1 K) and the grid indices of each data point are specified here

as well.

The inverse simulation results in deterministic predictions of the thermal conductivity in units
uindex 4 to uindex 9 and of the respective posterior model states (i.e., head and temperature).
For this synthetic model, for which the true reference solution is known, the inversion result
can be evaluated by comparing the true and posterior model directly. Table 3.1 lists the true
reference and the posterior thermal conductivity for units 4 to 9 respectively. Figure 3.4 b)
shows the temperature log in the model center for the prior model (forward run of the example
model), the temperature data used, and the posterior temperature log after inversion. The prior
model is not able to capture the observed temperature gradient, which is caused by advective
and conductive heat transport. Inversion of the temperature data results in a good estimation of
the thermal conductivity in units 4 to 9. Maximum posterior deviation from temperature data
is below the measurement error and the maximum posterior deviation of the estimated thermal
conductivity is 0.42 Wm~t K! (or 16.8 %) in unit 9. Unit 9 is the only unit with a relative error
of more than 10%. This may be attributed to boundary effects at the lower boundary of the
model. All in all, the inversion leads to a more realistic simulation of the observed temperature

gradient.

Table 3.1: True reference thermal conductivity Ase compared to posterior thermal conduc-
tivity Aposterior resulting from the inverse simulation for model units 4-9 (uindex).

The assumed prior thermal conductivity is 2.0 Wm ™' K~! for each model unit.

uindex | Atrue ('Wmf1 Kﬁl) Aposterior (VVrIf1 Kfl) Error (%)
4 3.5 3.30 5.7
5 3.00 3.12 4.0
6 1.50 1.50 0.0
7 1.00 0.95 5.0
8 2.00 2.04 2.0
9 2.5 2.92 16.8
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3.3.3 Stochastic simulation

For stochastic simulation using SHEMAT-Suite, in particular for data assimilation and param-
eter estimation using the ensemble Kalman filter (EnKF, Evensen, 2003), additional input is
required compared to a forward computation. In this paragraph, the general input for a stochas-
tic parameter estimation is discussed. Here, I discuss a synthetic parameter estimation of the
type analyzed in the other chapters of this thesis. In such a synthetic stochastic parameter
estimation, one forward simulation using a so-called synthetic true parameter field is computed
and synthetic observations are recorded from this forward simulation. As a substitute for real
observations, these synthetic observations are then used as input for a subsequent parameter
estimation simulation, in which an ensemble of prior parameter realizations is subject to a given
number of EnKF updates. The EnKF assimilation update the prior parameter realizations based
on the differences between the synthetic observations and an ensemble of simulated observations.
The simulated observations are calculated from forward simulations that in turn rely on the prior

parameter realizations.

Here, an example of a synthetic stochastic parameter estimation called TRACER will be discussed.
In this parameter estimation example, the EnKF will be used for estimating two-dimensional
permeability fields from tracer concentration observations. Uniform salt concentrations at the
south of the model start spreading to the north and are recorded at two observation locations in
a forward computation using the synthetic true permeability field shown in Figure 3.5 a). The
mean of the logarithms of the synthetic true permeabilities (in [m?]) is —12.0. The ensemble of

prior permeability fields will be generated using a different mean permeability of —12.5.
A number of input files are needed for the EnKF run:

e Forward mode input and additional stochastic mode input in the general SHEMAT-Suite
input file TRACER.

e EnKF input in the SHEMAT-Suite EnKF input file TRACER. enkf

e Input for the sequential Gaussian simulation (SGSim) of an ensemble of prior permeability

realizations (Deutsch and Journel, 1995)
e Values of the true permeability field for comparison with the estimated parameter values.
e Salt concentration data in a formatted observation file.

Please find more information in the Wiki of SHEMAT-Suite!* on (1) the specialized input of
the sequential Gaussian simulation, (2) the true permeability values which are stored as Tecplot
files'® and (3) the observation file. In this section, the SHEMAT-Suite input in TRACER and
TRACER. enkf will be presented in more detail.

First, the additional input in the general SHEMAT-Suite input file compared to the forward
mode is discussed. Input File A.4 in Appendix A shows the most important part of the input

Y“https://git.rwth-aachen.de/SHEMAT-Suite/ SHEMAT-Suite-open /- /wikis /tutorial [Accessed 2020,03/04]
Yhttps: //www.tecplot.com/ [Accessed 2020,03/04]
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Figure 3.5: a) Synthetic true, horizontal permeability field (2-D model) with two observations
for tracer concentrations (black dots). The same synthetic true permeability field
is used for the synthetic parameter estimation TRACER from Chapter 4. b) Perme-
ability distribution before and after the ten updates during the synthetic stochastic
parameter estimation TRACER.
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file for an EnKF simulation. Next to the title and the information output switches, the runmode
has to be set to 3 for the stochastic mode using EnKF instead of 0 for the forward mode.
Property module and user directory are set as in forward mode. The first input that is specific
to the stochastic mode is # simulate. Here, the number of prior permeability field realizations
is set to 1000. Only one EnKF simulation is wanted in this parameter estimation. In special
cases, one might want to restart the EnKF with the already updated parameter values. No
postcomputation (forward computation using the updated permeabilities) is wanted, since I just
want to analyze the updated permeability values. This is specified under # enkf postcompute
none. Next to these general stochastic mode inputs, some important inputs for the Sequential
Gaussian simulation have to be specified in the general SHEMAT-Suite input file TRACER. Under
# parameter group, the SGSim input file is named, the permeability is chosen as the parameter
to be simulated (it is the fourth parameter) and log means that the decimal logarithm of the
permeability is used. This transformation is needed to comply better with Gaussian assumptions
inherent to the EnKF. The input # standard deviation is a dummy input. The numbers
are used internally for converting logarithmic permeabilities from the decimal logarithm to the
natural logarithm. The rock parameters given under # units are all used as in forward mode,
except for the permeability value. The permeability value is replaced by the simulated fields from
the sequential Gaussian simulation. Finally, # split units ensures that each cell of a certain
parameter unit becomes a unit in itself, i.e. each cell gets its own permeability value. This is a

prerequisite for the sequential Gaussian simulation.

Now, the inputs in the SHEMAT-Suite EnKF input file are discussed as shown in Input File
A.5 in Appendix A. The number of observation intervals, i.e. the number of EnKF updates is
specified under # nrobs_int. Here, the input specifies 10 updates, so I run one EnKF simu-
lation consisting of ten update times. Then, state vector contents are specified, choosing from
the dynamic variables hydraulic head, temperature, species concentration, and from the param-
eters permeability, thermal conductivity and porosity. In this example, hydraulic head, tracer
concentration and permeability are part of the state vector. The observation variances specify
the measurement error, in this example for concentration observations: 50 - 107 mol 17!, The
comparison with the true permeability field is wanted (# checktrue). Finally, the input file

names for the truth and the observations are specified.

Several outputs are written by the EnKF run. Here, two outputs are discussed: permeability
distributions at specific locations in the model domain and overall RMSE between the updated
permeability fields and the synthetic true permeability field. Prior and updated permeability
distributions at a location close to the eastern observation location are shown in Figure 3.5 b).
Permeabilities are updated towards larger values, i.e. a more permeable subsurface. From the
overall RMSE output, one can observe that the residual is reduced from 0.623002 to 0.440239.
The residual values are differences of permeability exponents. The remaining difference between
the true permeability field and the synthetic true permeability field can be explained by four
reasons: (1) a smoothing of the permeability realizations in the updated mean permeability field,
(2) the measurement uncertainty, (3) the sampling uncertainty from the ensemble size, and (4)

the limited number of observations.
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I use two aspects for describing the impact of SHEMAT-Suite: geosciences and computational

geosciences. Under geosciences, the scientific progress achieved by studies using SHEMAT-Suite

is discussed; under computational geosciences, the impact of SHEMAT-Suite on testing and

developing new algorithms. A summary of important code developments that have not been
part of this thesis of SHEMAT-Suite can be found in Table 3.2.

Table 3.2: Important code developments of SHEMAT-Suite outside the work on this thesis. (¥)
Functionalities not available in the open-source package. (*) Simplified functionality

available in the open-source package. (**) SHEMAT-Suite functionality available

open-source, additional software required.

Functionality

Implementation by

Inverse parameter estimation based on automatic differ-
entiation

Rath et al. (2006)

Latent heat effects due to freezing and melting

Mottaghy and Rath (2006)

Monte Carlo techniques for uncertainty quantification
and reduction

Vogt et al. (2010)

Borehole heat exchanger module(*)

Mottaghy and Dijkshoorn (2012)

Shared-memory parallelization

Wolf (2011)

Data assimilation based on the ensemble Kalman Filter

Vogt et al. (2012)

Multi-phase flow module using automatic differentia-
tion(*)

Biising et al. (2014)

Distributed-memory parallelization(*)

Rostami and Biicker (2014)

Heat transfer model for plane thermo-active geotechnical
systems(¥)

Kiirten et al. (2014, 2015)

Anisotropic flow module using the full permeability ten-
sor(¥)

Chen et al. (2016)

Supercritical water/steam module using automatic dif-
ferentiation(*)

Biising et al. (2016)

Optimal borehole positioning with respect to reservoir
characterization via optimal experimental design(**)

Seidler et al. (2016)

Halite precipitation model in porous sedimentary rock ad-
jacent to salt diapirs(*)

Li et al. (2017)

Efficient two-phase flow in heterogeneous porous media
using exact Jacobians(¥)

Biising (2020)

SHEMAT-Suite has contributed to multiple geoscientific areas, the most significant contribution
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being in the field of geothermal energy that served as original motivation for the development
of the software. To name a few recent examples, temperature sensors installed at borehole heat
exchangers have been used to estimate groundwater velocities using SHEMAT-Suite (Michalski
and Klitzsch, 2018, 2019). In models of the vadose zone, the heat output of high-voltage electric
cables was modeled with SHEMAT-Suite (Hruska et al., 2018, 2019). For deep geothermal
reservoirs, the influence of prominent seismic reflectors on the temperature distribution and the
formation of convection cells were studied using the code (Ebigbo et al., 2016, Niederau et al.,
2017). Additionally, a current research project uses SHEMAT-Suite for predicting the geothermal
potential of a caldera system in Mexico (Deb et al., 2019).

Besides geothermics, simulations using SHEMAT-Suite contributed to other geoscientific fields.
A property module for ice was developed (Mottaghy and Rath, 2006) and is used currently
for ice-sheet modeling. The simulations aim at investigating and understanding the process of
subglacial channel formation, which is not only of geological interest but also relevant in con-
text of long-term safety evaluations for nuclear waste deposition. In a current research project,
SHEMAT-Suite is used for simulating the submarine groundwater discharge on the New Jersey
continental shelf since the last ice age (Thomas et al., 2019). This study relies on the code’s
ability to simulate density-driven flow and salt transport and contributes to the understanding
of freshwater-saltwater interactions in coastal aquifers. The modern aquifer flow simulations
of SHEMAT-Suite are often ensemble-based and rely on high-performance computing (Bruck-
mann and Clauser, 2020). Next to classical geosciences, SHEMAT-Suite has had an impact on
computational geoscience as well, mostly by applying and testing algorithms for large-scale sim-
ulations. Three-dimensional inverse parameter estimation was performed with SHEMAT-Suite
based on automatic differentiation (Rath et al., 2006). Monte Carlo techniques were applied for
uncertainty quantification of expected geothermal energy usage in a geothermal reservoir at The
Hague, Netherlands (Vogt et al., 2010). A parallelization scheme that was specifically developed
for this purpose was implemented in SHEMAT-Suite (Wolf et al., 2008, Biicker et al., 2009,
Wolf, 2011, Rostami and Biicker, 2014, Rostami et al., 2014). Due to the heterogeneous nature
of the subsurface which is usually sparsely sampled by direct or indirect measurements, inverse
and stochastic approaches are becoming increasingly important in the fields of hydrogeology and
geothermal reservoir modeling. The ensemble Kalman filter has been implemented and exten-
sively tested for stochastic permeability estimation (Vogt et al., 2010). Optimal experimental
design has been used to find the best position of new boreholes in a geothermal reservoir (Seidler
et al., 2016). The open-source availability of the code will facilitate the broader usage of these

methods in the geosciences.

Now follows a list of some important developments that are currently not part of the open-
source version of SHEMAT-Suite presented here, but that are planned to be merged with the
open-source publication in the future. A module for multi-phase flow has been developed us-
ing SHEMAT-Suite as starting point (Biising, 2020). Moreover, an equivalent fracture model
approach was implemented, which represents fracture permeability by upscaling based on the
mimetic finite difference method (Chen et al., 2016, 2018). Since SHEMAT-Suite is a porous

medium model with a continuum model approach, it cannot simulate discrete fracture models
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and thus flow or transport through fractures explicitly. However, flow through fractured rocks
can be approximated under certain conditions by modeling anisotropic permeability or by ap-
plying a stochastic-continuum concept (Bruckmann and Clauser, 2020). A basic approach for
simulating unconfined aquifers has been implemented. A module for electrokinetic potential
simulations was included, which can be used for studies of self potential originating from fluid
flow in porous media (Vogt et al., 2014, Biising et al., 2017). Another module was implemented
in SHEMAT-Suite for chemical fluid-rock interaction (Li et al., 2017). In the current research
project "Energy oriented Centre of Excellence" (EoCoE!®, Biising, 2020), the focus shifts to
implementing interfaces of SHEMAT-Suite to modern high-performance software, such as the
portable data interface (PDI'") for data handling, PETSc (Balay et al., 1997) for parallel solver
methods and the parallel data assimilation framework (PDAF, Nerger and Hiller, 2013) for a
parallel implementation of the ensemble Kalman filter. Finally, the multi-phase flow implemen-
tation uses the software PETSc for becoming MPI-parallel and suitable for distributed-memory
CPU clusters.

3.5 Guidelines for scientific workflow

To finish this chapter, a summary is given of the following proposed guidelines for developing

scientific software that have been derived from developing SHEMAT-Suite:

e git functionality branches ranging from branches of core functionality (SHEMAT-Suite:
master) to merged branches of combined functionality (SHEMAT-Suite: master-all),

e Intensive testing of the core branch and regularly merging up-to-date core functionality

into the functionality branches,
e Modular code architecture for multiple simultaneous developments,

e Documentation tailored to scientists, focusing on underlying equations and scientific ap-

plications, complementing the classical software documentation,
e Test models repository accessible to all users.

For the future development of SHEMAT-Suite, these guidelines will have multiple effects. First,
new users should be attracted to SHEMAT-Suite by the availability and documentation. Sec-
ondly, the scientific developers of SHEMAT-Suite receive a stable, but flexible framework for
conducting their research. And thirdly, the existing research using SHEMAT-Suite becomes
easier to be reproduced. Finally, the software as a whole should grow in functionality, such as
multi-phase flow, and in stability by comparing and benchmarking against analytic results and

other software.

The recent open-source publication of the SHEMAT-Suite source code has a number of advan-

tages similar to the advantages of the guidelines: (1) it makes SHEMAT-Suite available to a larger

Yhttps://www.eocoe.eu/ [Accessed 2020/02/19)
"https://pdi.julien-bigot.fr/0.6.0/ [Accessed: 2020/03/17]


https://www.eocoe.eu/
https://pdi.julien-bigot.fr/0.6.0/

44 3. Integrating EnKF in SHEMAT-Suite

community of code users and developers, (2) it makes the existing research using SHEMAT-Suite
reproducible, (3) it sparks new interesting developments and additions to the code, and (4) it

initiates the formation of a SHEMAT-Suite user community.
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Performance comparison of EnKF variants

Performance comparisons of different variants of the ensemble Kalman filter (EnKF) in the
literature, in particular applied to permeability estimation, are oftentimes not significant. This is
due to the uncertainty of permeability estimation arising from the random seed choice, especially

when small ensembles are used.

In this chapter, the influence of the random seed choice on performance comparisons is analyzed.
As a result, thresholds are derived for the necessary number of performance comparisons. The
chapter is organized as follows. First, in Section 4.1, an introduction to performance comparisons
using the EnKF is given. In Section 4.2.1, the EnKF methods that are compared in this chapter
are introduced. Section 4.2.2 presents the simulation setups. Subsequently, the tools for com-
parison of EnKF methods are explained. The results of the various sets of synthetic experiments

for the simulation setups, EnKF variants, and ensemble sizes are presented in Section 4.3.
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4.1 Introduction

In this chapter, a large performance comparison of seven EnKF methods is evaluated. Since
the EnKF is an ensemble-based method, the ensemble size is an important input of the filter.
I recall typical ensemble sizes used in the EnKF literature. Early applications of the EnKF in
the atmospheric sciences (Houtekamer and Mitchell, 1998, Hamill and Snyder, 2000, Anderson,
2001, Kalnay, 2002) use fairly large ensemble sizes of up to 500. However, it is typical for large
models of the atmospheric or of the geosciences that model complexity restricts ensemble sizes
to less than 100. In the field of land surface modeling, where the EnKF is mostly used for
state vector estimation, ensemble sizes smaller than 100 are common (e.g. Reichle et al., 2002,
De Lannoy and Reichle, 2016). If one considers parameter estimation studies in surface and
subsurface hydrology, in many cases ensemble sizes smaller than 250 are used (e.g. Lorentzen
et al., 2003, Naevdal et al., 2005, Vrugt et al., 2005, Chen and Zhang, 2006, Shi et al., 2014,
Baatz et al., 2017). More uncommon are ensemble sizes larger than 500 (e.g. Devegowda et al.,
2010, Vogt et al., 2012).

When small ensemble sizes are used, the EnKF exhibits large fluctuations in the sampled model
covariances. These fluctuations might result in filter inbreeding and filter divergence. Filter
inbreeding occurs when the spread of the updated ensemble becomes so small that it does not
properly represent the error of the EnKF updates. Filter divergence means that the updates of
the ensemble center around a wrong parameter value, even though the spread of the ensemble
minimizes as if the filter would be approaching the correct parameter value. Different variants
of the EnKF have been proposed to reduce problems linked to small ensemble sizes. In this
chapter, I compare the following methods: damping of the EnKF (Hendricks Franssen and
Kinzelbach, 2008), the local EnKF (Hamill et al., 2001), the hybrid EnKF (Hamill and Snyder,
2000), the dual EnKF (Moradkhani et al., 2005, El Gharamti et al., 2013), the iterative EnKF
(Sakov et al., 2012) and the normal score EnKF (Zhou et al., 2011, Schoniger et al., 2012,
Li et al., 2012). Implementation details of these algorithms are given in Section 4.2.1. Of
course, many methods exist that are not compared in this study. Two examples are modern

localization approaches (Chen and Oliver, 2010, Emerick and Reynolds, 2011) and methods
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using decompositions of probability distributions into sums of Gaussian distributions (Sun et al.,

2009b, Liu et al., 2016).

In order to assess the benefits of new EnKF variants or to compare known variants applied to
different geoscience models, it is important to have meaningful comparison methods. Ideally,
I would like to compare the inverse solution with the exact, correct inverse solution according
to Bayes theorem. However, an analytical solution is not possible for realistic problems and a
numerical solution by Markov Chain Monte Carlo methods is extremely expensive. Therefore,
for large inverse problems the correct inverse solution will be unknown. Three typical remedies,
which can be found in the literature, include comparing estimation results with a synthetic refer-
ence, comparing results of a target variable with measurements (e.g., oil production in reservoir
engineering), or comparing small-ensemble runs with runs using a larger ensemble. In all cases,
EnKF variants are usually compared by evaluating a small number of synthetic experiments. A
synthetic experiment is defined here as the comparison of multiple data assimilation methods by
applying them to the same parameter estimation problem with fixed synthetic reference field,

fixed synthetic observations and fixed ensemble size.

The central motivation of this comparison study is to characterize the random component in-
herent in the comparison of the performance of different EnKF variants. Such comparisons are
often based on small- or medium-sized ensembles and one or a few synthetic experiments. The
random component results from the limited ensemble of initial parameter fields, as well as from
measurement errors and the associated sampling fluctuations. Applying the EnKF variants to
large models, one is computationally restricted to small ensemble sizes and few synthetic experi-
ments, which is why often final results are still subject to considerable uncertainty and a function
of specific filter settings. For small models, such as the ones presented in this chapter, it may
be possible to suppress the most notorious problems of undersampling by sufficiently enlarging
the ensemble size. Nevertheless, knowing how EnKF methods perform on small models with
small ensemble sizes might help in deciding which EnKF method to apply to a large model with
similar features. However, it cannot be guaranteed that the same EnKF methods that work well

on small models would also work well on larger models.

Increasing computer power provides the opportunity to compute many synthetic experiments.
In this study, I monitor EnKF performance by running large numbers of synthetic experiments
for small and medium ensemble sizes. I hypothesize that randomness is non-negligible in the
evaluation of a small number of synthetic experiments. The influence of the random component
is characterized by calculating RMSEs between estimated permeability fields and the synthetic
true field for each synthetic experiment. For 1, 10 and 100 synthetic experiments, it is evaluated
how strongly means of these smaller numbers of RMSEs deviate from the mean RMSE over
all 1000 synthetic experiments. Finally, I determine the performance difference between EnKF
variants (in terms of RMSE), which can be detected with a given number of synthetic experiments
(1, 10, or 100).
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4.2 Methods

4.2.1 EnKF variants

The following subsections contain introductions to the variants of the EnKF algorithm compared

in this case study. For a general introduction to the EnKF, see Section 2.2.

Damping

A damping factor 0 < a < 1 can be included in the EnKF to counteract filter divergence
(Hendricks Franssen and Kinzelbach, 2008). The damped assimilation step is given by

x; = Xzf + oK (d,- - Hx{) . (4.1)

In this study, a € (0,1] only dampens the parameter updates - the state updates are kept
undamped. For groundwater flow simulation, damping of the parameter update reduces the
impact of ensemble-based linearization between the hydraulic head and hydraulic conductivity.
The ensemble covariance matrix necessarily treats any relation between two states or a state and a
parameter as linear, but for flow in heterogeneous media this relation is non-linear. Updating the
parameters by smaller steps, more slowly approximating the posterior values is therefore expected
to be more stable. In synthetic experiments it is commonly found that this also reduces filter
inbreeding and filter divergence (Hendricks Franssen and Kinzelbach, 2008, Wu and Margulis,
2011).

Localization

For small ensemble sizes, undersampling can lead to large fluctuations of ensemble covariances.
Even for locations that are far apart in space, nonzero covariances may appear, but such covari-
ances, or correlations, are most likely spurious (Houtekamer and Mitchell, 1998). Localization
methods reduce the effect of these spurious long-range correlations on the filter update. To this
end, a correlation matrix p € R"*"m (Gaspari and Cohn, 1999) is multiplied elementwise with
the first part of the Kalman gain (Hamill et al., 2001):

Ko = [po (P.HT)] (HP.H” + R) . (4.2)

Typically, a characteristic length scale A € RT [L] is associated with the correlation matrix. For
this study, both p and its length scale are chosen as in Gaspari and Cohn (1999). An entry of

the correlation matrix p is a function of the distance d € Rt [L] between two locations and the
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correlation length scale A. The formula for an entry of p is given by

)° ayt 50d)3 )2
_(a4) _|_ (aQ) _|_ (g) + 5(;) _|_ 1’ 0 é g < 1
10 - d 5 d 4 d 3 d 2
P(d,a_ 3)\) = (TQ) + (a2) + 5(§) + 5(;’) _5% 44— 3%’ 1< g <92 (43)
d
0, 2< 4,

The parameter a is a multiple of A adapted to the functional form of p. The objective of p is to

approximate a two-dimensional Gaussian bell curve:

d?
G(d,\) = -—— . 4.4
@0 =ew (-5 (1.4
Contrary to the approximated Gaussian correlations, all values of p are zero for distances greater
than 2a.

Hybrid EnKF

For the hybrid EnKF (Hamill and Snyder, 2000), the covariance matrix is chosen as a sum of

the usual ensemble covariance matrix and a static background covariance matrix:

Phybrid = BPe + (1 - B)Pstatic- (45)

The factor 0 < 8 < 1 determines the weight assigned to the ensemble covariance matrix. The
static background covariance matrix represents prior knowledge about the geology and physics
of the model.

Dual EnKF

Another method entering the comparison is the dual EnKF by Moradkhani et al. (2005) and
f

S,

Wan and Nelson (2001). The state vector x{ € R"s is split into two parts: x;, € R"* contains
the state variables, and xgﬂ- € R™s» contains the parameters. Here, n,, € N is the number of
dynamic variables in the state vector, n,, € N is the number of parameters in the state vector,
and ngs + ngp = ns. When the filter reaches a measurement time, only the parameters are
updated according to

xg’i XZ’Z» = XIJ;i +K, (di - prgi) . (4.6)

K, € R"»*"n and H, € R™*"s» are the parts of the Kalman gain and measurement matrix
projected onto the parameter space. After the parameter update, the previous forward simulation

is rerun using the same dynamic states, but the updated parameters. In the second and final

2‘12 are updated according to

updating step, only the states x

xt; =x7 + K, (d - Hx[7) a (4.7)

S0 Xp,i'
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The matrices K € R™ss*"m and H, € R"*"s:s are projected onto the space of state variables.
Note that the same measurement values are used for both the parameter and the state variable

update. The whole procedure is repeated for each assimilation time.

Normal score EnKF

The normal score EnKF (NS-EnKF, Zhou et al., 2011) was developed to handle non-Gaussian
probability distributions inside an EnKF framework. The method inherits its name from the
normal score transform (Journel and Huijbregts, 1978, Goovaerts, 1997, Deutsch and Journel,
1995). The ensemble of states, parameters, and measurement values are transformed before as-
similation starts. The transform uses the cumulative distribution functions to turn the ensemble

into one of a normalized Gaussian pdf.

NS(z!) .= G Y (F(a])). (4.8)

f

Here, a:f € R is a single component of the ith realization of the state and parameter vector x; .
F' is the empirical cumulative distribution function of ac{ , and G is the cumulative distribution
function of the Gaussian pdf with zero mean and unit standard deviation. The normal score
transform largely preserves the correlation structure of the variables by keeping intact the relative
order of the ensemble members. The EnKF update is carried out in terms of the transformed

values. After the update, states and parameters are back-transformed:
NS (z®) .= F71(G(x9)). (4.9)

While the back-transform is similar to the transform, a complication arises, since F' is only an
ensemble approximation (step-function) of a cumulative distribution function. If G(z¢) falls into
the range of the ensemble, F~! is interpolated between the values of the two closest ensemble
members. When updated ensemble members are located outside the range of the ensemble, an

extrapolation method is needed for performing the back-transform. To illustrate the extrapo-
f

lation method, I suppose without loss of generality that I start with a sorted the ensemble x;

according to the index i. Then, the empirical cumulative distribution F' can be written as
 — 0.5
F(zl) =" (4.10)

Te

and I can see that updated values x{ fall outside the interpolation range if either

G(z}) < 05 _ F(:cg) = mlnF(xf) or G(zf) >

(3 (3
Te

ne—0.5

- F(zl ) =max F(z]). (4.11)
e 1

In these cases, the following extrapolation method is used to calculate F'~! for outliers. Two
artificial support points z§ € R and z§ € R are selected and define artificial boundary values of
the cumulative function F":

F(z3) =0 F(z3) = 1. (4.12)
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The distance between an artificial support point and the neighboring mlf is set to three times
the spread of the original support points of the range of F~!, i.e. the J;f . In this way, a cut-off
applies and the back-transform of the = can never have a value outside of the interval between
the artificial support points:

NS~ Yz%) e (x5, 23] - (4.13)

2

By choosing the support points as far apart as explained above, this does not overly restrict the
updates. Once the distributions are properly back-transformed, the computation of the forward

model continues.

Iterative EnKF

The iterative version of the EnKF (IEnKF) is inspired by the exposition in Sakov et al. (2012).
Iteration is introduced to the EnKF to mitigate problems related to the non-linearity of model
equations. In the version from this work, after an update of parameters by the EnKF, the
simulation restarts from the beginning using the newly updated parameters as input (in contrast,
the dual EnKF always restarts from the previous update). One drawback of this method is its
computational demand. Let T'€ R™ [T] be the computing time of a normal EnKF run. Then, I
can derive estimates for the computing times of the dual and the iterative EnKF. For the dual
EnKF, every update and forward computation is carried out twice. Thus, I expect a computing
time of Tpua = 27. Assuming equidistant assimilation times for iterative EnKF, the computing
time depends on the number of assimilation times n¢: Titerative = 1 - (n% + n% +---+1)=T- ”tT‘H

For the synthetic study in this chapter (n; = 100), the ratio between computation times amounts

Tlterative — N+l ~
to Tbual - 4 25

4.2.2 Design of the synthetic experiments

This section deals with the two setups for synthetic experiments computed in this study, a
forward model combining groundwater flow and solute transport and a groundwater flow model

with an injection well.

Tracer model

The 2-D subsurface model for groundwater flow and solute transport is based on a grid consisting
of 31 x 31 cells of size 2m x 2m. These 961 cells define a square simulation domain of size
62m x 62m. The governing equations are solved for a simulation time of 1200 days divided into

200 equal intervals.

Boundary and initial conditions include a prescribed hydraulic head of 11 m at the southern
boundary and 10 m at the northern boundary, creating a flow from south to north. The two
remaining boundaries are impermeable. A tracer concentration of 80 x 1072 mol/L is prescribed

on the southern boundary; at the northern boundary I set the concentration to 60 x 1073 mol /L.
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The last value also serves as initial concentration throughout the model domain leading to solute

transport from south to north.

The tracer is subjected to slow diffusion with a diffusion coefficient of 1.5 x 1072 m?/s. The
small diffusion coefficient is the reason that the temporal evolution of the tracer concentration
is almost completely determined by advection. The fluid is water with the standard properties
set in SHEMAT-Suite. The porosity of the rock is 10%. At two locations with coordinates
(19m,31m) and (43m,31m), the tracer concentration is recorded every 12 days, summing up

to 100 measurement times in total.

Well model

The 2-D groundwater flow well model is based on a grid consisting of 31 x 31 cells of size
20m x 20m resulting in a model domain of 620m x 620 m. The governing equations are solved
for a simulation time of 18 days divided into 1 200 equal intervals. Boundary and initial conditions
include a prescribed hydraulic head of 11 m at a central well at coordinates (310m, 310m). All
remaining boundary conditions and initial conditions are set to a hydraulic head of 10 m. Again,
the fluid is water with its standard properties and the porosity of the rock is 10 %. In this model,
there are 48 measurement locations located along a regular 7 x 7 grid excluding the central well

position. Hydraulic heads are recorded at 60 measurement times every 7 hours and 12 minutes.

The numerical settings for the solution of the linear system of equations are identical for both
the groundwater flow and species transport equation in the two cases. In the Picard iteration, I
demand a relative tolerance of 1 x 107!°. The linear solution method Bi-CGStab is called with

0714

two termination criteria: An accepted relative error of 1 x 1 and a maximum number of 500

iterations.

4.2.3 Simulation of permeability fields

The heterogeneous synthetic reference permeability fields, displayed in Figure 4.1, are generated
by sequential multi-Gaussian simulation using the software SGSIM (Deutsch and Journel, 1995).

The following spherical correlation function is used:

_(dy .3 _ 1. (d)\? d
@ -39 o<t i
0, 1< 4

Here d € R' denotes the Euclidean distance between two grid cells and a € RT is the corre-
lation length of the permeability field. No nugget effect is considered for the generation of the
permeability field. Both permeability fields are generated using a mean of —12.0 = log;y(K/m?)
(without unit) and standard deviation 0.5. Here and in the following, a logarithmic permeability
without unit like —12.0 = log;(K/m?) corresponds to the actual permeability 1072 m2. Cor-

relation lengths of a = 50m for the tracer model and a = 60m for the well model are used.
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The correlation length of the tracer model was chosen such that relatively large areas of distinct
permeability would be generated. Theses areas either block the tracer or constitute flow paths.
Note that, relative to the full grid size, the correlation length of the well model is smaller by 1
order of magnitude. This was chosen for showing how the EnKF methods would react to a more

heterogeneous permeability field relative to the full model size.

The ensembles of initial permeability fields for the 1000 synthetic experiments (for each physical
problem setup, each ensemble size, and each EnKF variant), which I use to compare perfor-
mance, are generated by SGSim using one set of input parameters but varying random seeds. A
mean logarithmic permeability of —12.5 = log;(K/m?) (compared to the reference fields with
—12.0 = logy((K/m?)) and a standard deviation of 0.5 (identical to the reference fields) are used.
Consequently, the EnKF algorithms have to adjust the overall mean of the permeability fields as
well as the differences that would have been present even for equal mean values due to spatial

variability.

EnKF setup

The EnKF state vector includes permeability, hydraulic head, and, for the tracer model, con-
centration. Permeability is the target parameter of the estimation. Concentration or hydraulic
head values serve as the observations that drive the estimation. Measurement noises are assumed
constant: o, = 7.1 x 10"mol/L for concentration and o, = 5 x 1072 m for hydraulic head. These

noises resemble the uncertainty of typical measurement devices.

Most EnKF methods require the specification of additional parameters. The damping factor of
the damped EnKF is set to aw = 0.1 (cf. Hendricks Franssen and Kinzelbach, 2008). In the local
EnKF, the length scale X is set to 150 m for the well model and the tracer model. For the hybrid
EnKF, a constant diagonal background covariance matrix is used. The value of 8 used in this
study is 0.5. Results of synthetic experiments, for which A and 8 are varied, can be found in
Section 4.3.5.

In this study a series of EnKF data assimilation experiments, called synthetic experiments, is
performed. For each of the methods presented in Section 4.2.1, seven ensemble sizes (50, 70,
100, 250, 500, 1000 and 2000 realizations) are tested. For the four smaller ensemble sizes,
1000 synthetic experiments are carried out. For the larger ensemble sizes, due to computational

limitations, only 100 synthetic experiments are computed.

4.2.4 Performance evaluation

In a single synthetic experiment called j with given ensemble size, the RMSE for one of the

EnKF methods in the synthetic experiment is given by

g

RMSE; = igz (75 - Yig)Q. (4.15)
=1
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Figure 4.1: The logarithmic reference permeability fields for the tracer model and the well
model with groundwater flow vectors. Measurement locations are depicted as black
circles.
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Here ngy € N is the number of grid cells, ?j € R™ is the vector containing the estimated mean
logarithmic permeabilities across the model domain and Y;- € R™ is the vector containing the

corresponding synthetic reference logarithmic permeabilities.

For a given ensemble size, a large number of synthetic experiments is computed. These synthetic
experiments differ solely in the perturbation of initial fields and measurements. A single syn-
thetic experiment j provides a sample-RMSE for each EnKF method, calculated according to
Equation (4.15) and called r}z’ne € R*. Taken together, the ngy, = 1000 synthetic experiments
(or in the case of large ensembles ny, = 100 synthetic experiments) for a given ensemble size n.
provide an approximate probability density function of the RMSE for each method a. I calculate
RMSE means according to

Nsyn

—a, Ne 1 a, Ne
posne — pone (4.16)

n
syn 2y

These RMSE means are used to compare EnKF methods.

The question arises, whether a small number of synthetic experiments ng,, would suffice to
evaluate the performance of the EnKF methods. I compare RMSE means of two EnKF methods
on the basis of ngy, = 1, 10, or 100 synthetic experiments. Ten thousand subsets X of ngyy,
synthetic experiments are randomly sampled from the 1000 synthetic experiments. I calculate
and compare the corresponding means 7y "¢ € RT. The fraction, for which one EnKF method a
yields a smaller RMSE than another EnKF method b

#X | " <™

a<b,n
e _ 7 417
P 10000 (4.17)

is recorded (the sum pa<bine 4 pb<a.me ig by definition equal to 1.0). In doing so, I estimate
the probability that one method outperforms another method on the basis of ng,, synthetic

experiments.

Quotients of the RMSE means (based on all 1000 synthetic experiments) for all combinations of

EnKF variants are calculated:
FCL,?’LE

fb, Ne

a<bne _

q (4.18)

In this formula I choose EnKF method a to have the smaller RMSE mean, so that ¢*<t" < 1.

From the quotients, I calculate relative differences:

fb,nE — FO,Me

a<b,me __ _ 1 _ ,a<bne
d = =1-4 . (4.19)

For example, it could be that EnKF variant a gives on average (calculated over 1000 synthetic
experiments) a RMSE that is d®<bne = 10 % smaller than another EnKF variant b. In that case,
the quotient would be ¢*<b" = 0.9. I analyze which relative differences across pairs of EnKF
methods a and b are with at least 95% probability statistically significant for nsy, synthetic

experiments and which are not.

Die _ {da<b7 Ne ’pa<b7 e 0.95}7 (4.20)
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Dne — {da<b,ne |pa<b,ne < 0‘95}‘ (4.21)

Finally, I compare the smallest significant relative difference

d"" = min D'} (4.22)
to the largest insignificant relative difference

d™** = max D"°. (4.23)

In general, one would expect d’fi” to be larger than d”%*. In this case, I choose the threshold
for significant relative differences between the two values. However, due to the specific shape of
the RMSE distributions (especially related to their spread), it may occur that d7" < dme. If
this happens, I evaluate the comparisons on the basis of their specific distributions and choose

the threshold manually.

4.3 Results and discussion

4.3.1 Tracer model
Comparison of EnKF variants in terms of mean RMSE

Figure 4.2 shows the mean RMSEs for all methods and ensemble sizes 50, 70, 100 and 250. The
RMSE values 7™ range from 0.3 to 0.4. For ensemble size 50, the hybrid EnKF yields the
smallest mean RMSE (0.328) followed by the iterative EnKF, the damped EnKF and the normal
score EnKF (0.351, 0.351) and 0.356). Then, the local EnKF (0.363) is followed by the classical
EnKF (0.366). The dual EnKF yields the largest RMSE: 0.388.

When the ensemble size is increased from 50 to 250, all methods produce ensemble mean per-
meability fields closer to the reference. The RMSE for the damped EnKF is by #Pamped;50 _
FPamped, 250 — () 016 smaller for an ensemble size of 250 than for an ensemble size of 50. This
RMSE reduction is the smallest of all EnKF methods and the hybrid EnKF shows the next

pHyb—EnKF,50 _ zHyb—EnKF,250 — () 029 smaller for ensemble size 250 than

smallest reduction (
for ensemble size 50). As a result, the damped EnKF has the second largest RMSE among all
EnKF methods for ensemble size 250. The ranking of the remaining methods is identical for all

four ensemble sizes.

a<b, 50 a<b,250 (

The second part of Figure 4.2 contains tables of quotients ¢ as defined in
Equation (4.18)) for all pairs of EnKF methods. The largest relative difference in the tables
is 16 % (hybrid EnKF versus dual EnKF) for both ensemble sizes 50 and 250. Three relative

differences are as small as 1% (iterative EnKF versus damped EnKF and local EnKF versus

and q

classical EnKF for ensemble size 50, local EnKF versus classical EnKF for ensemble size 250).
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Mean root-mean-square errors (RMSEs) for seven ensemble Kalman filter (EnKF)
methods derived from 1000 synthetic experiments for the tracer model - ensemble
sizes: ne = 50, 70, 100, and 250 (a). For ensemble sizes n, = 50 (b) and 250 (c), the
graph shows the RMSE mean for a method on the horizontal axis divided by the

RMSE mean for a method on the vertical axis.
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In the following, I examine which relative differences can be considered significant as function of

the number of synthetic experiments.

It is worth mentioning that the mean RMSE difference between initial permeability fields and the
synthetic truth (0.62) is significantly reduced in all synthetic experiments. Finally, I note that
the large RMSEs of the local EnKF, the classical EnKF, and the dual EnKF can be attributed
at least partially to a non-negligible number of synthetic experiments where the methods yield
very large RMSEs. The full RMSE distributions are shown in Figure 4.7.

Thresholds on significant RMSE differences

It is evaluated whether significant differences in performance between EnKF variants can be
demonstrated for 1, 10, or 100 synthetic experiments. Figure 4.3 shows probabilities to find a
smaller RMSE mean for a given EnKF variant compared to another EnKF variant based on ngyy,
synthetic experiments. This output has to be understood in the sense of Equation (4.17). The
upper triangle in one of the squares contains the fraction of comparisons for which the EnKF
method on the left of the row of the square yielded the smaller mean RMSE, while the lower
triangle contains the fraction for which the EnKF method on the bottom of the column of the

square yielded the smaller mean RMSE.

a<b, 50 a<b, 50

The probabilities p and p®<? 250 from Figure 4.3 are cross-checked with the quotients ¢

@<b,;250 ip Figure 4.2 to determine thresholds for significant relative RMSE differences.

and ¢
Significant relative differences are defined as the relative differences, for which at least 95%
of the comparisons in the squares of Figure 4.3 favor one of the two EnKF methods. Based
on a single synthetic experiment, and for ensemble size 50, all relative RMSE differences are
insignificant. Consequently, RMSE differences between two EnKF methods smaller than 16 %
cannot be detected on the basis of a single synthetic experiment and ensemble size 50. The 16 %
are a restatement of the smallest quotient in 0.86 in Figure 4.2. For ensemble size 250, the RMSE
difference of 11 % for the comparison pair hybrid EnKF versus damped EnKF (compare quotient
of 0.89 in Figure 4.2) is significant. The significance is derived from the corresponding square
in Figure 4.3 for n. = 250 and ng,, = 1 that says that 95.5% of comparisons yield a smaller
RMSE for hybrid EnKF. Significance is derived the same way for all statements that follow. On
the other hand, there are three insignificant comparisons with larger relative differences (hybrid
EnKF versus dual EnKF, iterative EnKF versus dual EnKF and normal score EnKF versus dual
EnKF). The anomaly that three insignificant relative differences are larger than a significant
relative difference is due to the narrow RMSE distribution of the damped EnKF (Figure 4.7 shows
that there are fewer RMSEs below 0.3 for the damped EnKF than for any other method). Taking
this into account, I set the threshold for which significant RMSE differences can be detected to
15 %. For 10 synthetic experiments and ensemble size 50, there are RMSE differences of 7% and
9% that are significant (hybrid EnKF versus damped EnKF, hybrid EnKF versus normal score
EnKF) and differences of 9% and 10% that are not (normal score EnKF versus dual EnKF,
iterative EnKF versus dual EnKF). Taking into account the narrow RMSE distribution of the
damped EnKF, the threshold is set to 9 %. For ensemble size 250, and 10 synthetic experiments,
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there is a RMSE difference of 5% that is significant (hybrid EnKF versus normal score EnKF)
and there are two of 6 % that are not (hybrid EnKF versus normal score EnKF, damped EnKF
versus dual EnKF). The threshold is set to 6 %. For 100 synthetic experiments and ensemble size
50, there is a difference of 3% that is significant (normal score EnKF versus classical EnKF')
and there are three differences of 2% that are not (iterative EnKF versus normal score EnKF,
damped EnKF versus normal score EnKF, normal score EnKF versus local EnKF). The threshold
is set to 2 %. For ensemble size 250, there is a difference of 2 % that is significant (iterative EnKF
versus normal score EnKF) and there are two differences of 2 % that are not (normal score EnKF
versus local EnKF, normal score EnKF versus classical EnKF'). The threshold is set to 2 %. All
thresholds are provided in Table 4.1.

4.3.2 Well model
Comparison of EnKF variants in terms of mean RMSE

For the well model, EnKF variants (and ensemble sizes) are compared on the basis of the calcu-
lated RMSE means in the same way as for the tracer model. Results for ensemble sizes 50, 70,
100, and 250 are discussed here. Results for ensemble sizes 500, 1000, and 2000 are discussed
later in Section 4.3.3.

Figure 4.4 shows the mean RMSEs for all methods and ensemble sizes. The values range from
0.55 to 0.95. For the smallest ensemble size of 50, observed mean RMSEs show the largest spread.
The local EnKF yields the smallest mean RMSE (0.63 followed by the hybrid EnKF, the normal
score EnKF and the damped EnKF (0.69, 0.70, and 0.75). The iterative EnKF, the classical
EnKF, and the dual EnKF (0.81, 0.84, and 0.92) yield mean RMSEs that are larger than those
for the initial permeability fields suggesting divergence of the algorithm for a significant fraction

of the synthetic experiments.

When the ensemble size is increased from 50 to 250, all methods get closer to the reference. For
the local EnKF, the hybrid EnKF, the normal score EnKF and the damped EnKF the RMSE
reduces by up to 0.1, when the ensemble size is increased from 50 to 250. For the iterative EnKF,
the classical EnKF and the dual EnKF this reduction is around 0.2. As a result, the iterative
EnKF ends up with the third smallest RMSE for ensemble size 250, the classical EnKF performs
better than the damped EnKF and the dual EnKF still has the largest RMSE, but much closer
to the other methods.

a<b, 50 a<b, 250 (

The second part of Figure 4.4 contains tables of quotients ¢ and ¢ as defined in
Equation (4.18)) for all pairs of EnKF methods. For the well model, the relative differences are
much larger than for the tracer model. The largest relative differences in the tables are 32 %
for ensemble size 50 and 19 % for ensemble size 250 (both local EnKF versus dual EnKF). For
ensemble size 50, the smallest relative difference is 3% for the comparison pair hybrid EnKF

versus normal score EnKF. For ensemble size 250, two relative differences are at 2% (hybrid
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EnKF versus iterative EnKF, normal score EnKF versus classical EnKF). In general, relative

differences are smaller for the larger ensemble size.

The much lower RMSE for ensemble size 250 (compared to ensemble size 50) is most probably
related to the overall worse performance of the data assimilation experiments for the well model
compared to the tracer model. The worse performance is related to the much smaller correlation
length, in combination with the high variance of the permeability field, for this setup. The benefit
of estimating noisy model covariances with a larger ensemble seems therefore to be higher than

for the tracer model.

Thresholds on significant RMSE differences

Also for the well model, it is evaluated whether significant differences in performance between

EnKF variants can be demonstrated with 1, 10 or 100 synthetic experiments.

a<b, 50 a<b, 50

The probabilities p and p®<¥ 250 from Figure 4.5 are cross-checked with the quotients ¢

@<b,250 i Figure 4.4 to determine thresholds for significant relative RMSE differences. For a

and ¢
single synthetic experiment and ensemble size 50, there are significant RMSE differences of 25 %
and 23 % (local EnKF versus classical EnKF, local EnKF versus iterative EnKF) and insignificant
RMSE differences of 24% and 25% (normal score EnKF versus dual EnKF, hybrid EnKF versus
dual EnKF). The threshold is set to 25%. For ensemble size 250, there is the significant case
local EnKF versus damped EnKF for 15% difference in mean RMSE, but there are also three
comparisons with differences 16 %, 17 % and 19 % that are not significant (iterative EnKF versus
dual EnKF, hybrid EnKF versus dual EnKF, and local EnKF versus dual EnKF). As for the tracer
setup, the smallest significant RMSE difference is explained by the relatively narrow distribution
of RMSEs for the damped EnKF (cf. Figure 4.7). The threshold is set to 18 %. For 10 synthetic
experiments and ensemble size 50, there are two differences of 9 %, one is significant (local EnKF
versus hybrid EnKF) and one is not (classical EnKF versus dual EnKF). Thus, the threshold
is set to 9%. For ensemble size 250, there is a difference of 5% that is significant (local EnKF
versus iterative EnKF) and there is one of 6 % that is not (damped EnKF versus dual EnKF). The
threshold is set to 5 %. For 100 synthetic experiments and ensemble size 50, there is a difference
of 4% that is significant (iterative EnKF versus classical EnKF') and there is one of 3% that is
not (hybrid EnKF versus normal score EnKF). The threshold is set to 3%. For ensemble size
250, there is a difference of 2 % that is significant (hybrid EnKF versus iterative EnKF) and there
is another one of 2% that is not (normal score EnKF versus classical EnKF'). The threshold is
set to 2%. All thresholds are provided in Table 4.1.

4.3.3 Large ensembles

Results from synthetic experiments for ensemble sizes 500, 1000 and 2000 are shown in Fig-
ure 4.6. RMSE means are computed from 100 synthetic experiments instead of the 1000 syn-

thetic experiments that were calculated for the smaller ensemble sizes. This leads to a larger
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Table 4.1: RMSE differences in % which are considered to be significant for the two simulation
set-ups as a function of the number of synthetic experiments ns,, and the number

of ensemble members n,.

Nsyn Ne =50 NMe=70 ne=100 ne =250 ne=>500 ne=1000 ne = 2000
Tracer 1 > 16 > 16 > 16 15 13 15 14

10 9 9 8 6 6 ) 4

100 2 3 3 2 - - -
Well 1 25 20 23 18 17 16 15

10 9 9 8 5 5 ) 5

100 3 <3 2 2 - - -

uncertainty in the mean calculation. Additionally, for ensemble sizes 500, 1 000 and 2 000, RMSE
means are very similar. RMSE means are even not always smaller for a larger ensemble size (e.g.,
example for Dual EnKF and the tracer model, the RMSE mean for ensemble size 500 is smaller
than the RMSE mean for ensemble size 1000). The ranking of the performance of the different
EnKF variants for the large ensemble sizes is similar to the method ranking for ensemble size
250. In addition, for larger ensemble sizes the number of synthetic experiments that is needed
to show significant difference in performance of EnKF methods is only marginally smaller than
for ensemble size 250 (see Table 4.1).

4.3.4 RMSE distributions

The mean RMSE distributions calculated for the two model setups, 14y, = 1,10, or 100 and
ensemble sizes 50 and 250 are displayed in Figure 4.7. For ngy, = 10 or 100, the mean RMSE
distributions are close to Gaussian, but for ng,, = 1 the spread is larger with more outliers. The
narrow distributions calculated on the basis of 100 synthetic experiments, for the different EnKF
methods, show little overlap. Comparing RMSE distributions for ensemble sizes 50 and 250, it
can be seen that there are less outliers for the larger ensemble size. If I compare the RMSE
distributions for the tracer and well model, it is clear that especially the damped EnKF has a
different distribution from the rest. Whereas it has the narrowest distributions for the tracer

setup, it has one of the widest distributions for the well setup.

The width of the RMSE distributions illustrates the variability of the estimation results related
to the random seed variation. The large overlap of RMSE distributions for the different EnKF
variants suggests that the estimation result is more dependent on the random seed than on
the choice of EnKF method. If I base the analysis on 10 or 100 synthetic experiments, the
distributions get narrower allowing to detect significant differences in performance of different
EnKF methods.
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4.3.5 Variation of EnKF method parameters

For the local EnKF and the hybrid EnKF, the correlation length A and mixing parameter g
were varied, respectively. The resulting mean RMSEs are displayed in Figure 4.8. For the tracer
setup and ensemble size 50, the local EnKF with the smallest correlation length of 25 m yields the
smallest mean RMSE. On the contrary, for larger ensemble sizes the smallest correlation length
yields the largest mean RMSE and a correlation length of 150 m results in the smallest mean
RMSE. For the well model, the correlation length of 150 m yields the smallest mean RMSEs for
all ensemble sizes. Although the results are affected by the parameter values, the performance
of the local EnKF is not so strongly influenced by the choice of the correlation length in these
cases, except for ensemble size 250, for which a small correlation length results in a large RMSE
affecting the ranking of the EnKF methods.
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Figure 4.8: Variation of mean root-mean-square error (RMSE) for the local EnKF and the
hybrid EnKF, as a function of values for the parameters A and 8 and ensemble size.
Results are shown for both the tracer model and the well model.

For the hybrid EnKF, the parameter 5 also has a certain impact on the performance, which is
larger for small ensemble sizes. This influences the ranking of the methods, but to a limited
extent. Even though the influences of specific parameter settings in these computations are
limited, these examples do show the general importance of parameter settings which add an

additional uncertainty component to model comparisons.
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Figure 4.9: Variation of mean root-mean-square error (RMSE) for different observation noises
in classical ensemble Kalman filter (EnKF), as function of ensemble size. Results
are shown for both the tracer model and the well model.

4.3.6 Varying the observation noise

To illustrate the effect of observation noises, the tracer and well setups were computed for
classical EnKF and observation noises larger and smaller than the noise level chosen for the
default synthetic experiment. In a data assimilation using field observations, the observation
noise would be defined by the type of measurement. However, in synthetic experiments from
this work the observation noise is set somewhat arbitrarily. Thus, in this synthetic setting it
makes sense to check the influence of varying this synthetic observation noise. In Figure 4.9, the
resulting RMSE means are shown for ensemble sizes 50, 70, 100, 250 and 2 000. For ensemble size
50, in both setups, smaller observation noise leads to larger RMSE means, whereas the larger
observation noise leads to smaller RMSE means. This trend changes, when the ensemble size
is larger. For ensemble size 2000, in both setups, the smallest observation noise results in the
smallest RMSE mean.

Results for different observation noises can be understood taking into account two different
impacts of observation noise on the simulation results. First, smaller observation noise results in
a higher weight for observations, that is, a stronger correcting influence of the observations. It
should result on average in smaller RMSEs as long as its influence is correctly weighted in the
filter and it is therefore important that model covariances are correct, which is approximately
the case if the ensemble size is large. For small ensemble sizes, model covariances differ more
strongly from the true values resulting in (1) an incorrect weighting and (2) the risk that updates

go in the wrong direction resulting in larger RMSEs.

The default values for the observation noise were originally chosen because they represent the
behavior of typical measurement devices. According to these results, they also seem to constitute
a sensible trade-off between filter divergence due to unjustifiably small observation noise and

information loss due to unjustifiably large observation noise.
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4.3.7 Discussion and Conclusion

The tracer model and the well model differ in a number of properties, including boundary con-
ditions, correlation lengths of the reference permeability fields, measurement types, and the
number of measurements that are assimilated. The data assimilation experiments for each of
these two model setups result in different RMSE values. Nevertheless, for the two model setups
similar conclusions are reached in terms of the number of synthetic experiments which is needed
to show that one EnKF variant outperforms another one. Given these results, I recommend
that for comparisons of EnKF variants 10 or more synthetic experiments are needed. A number
of 10 synthetic experiments is needed to show that one EnKF variant significantly outperforms
another EnKF variant if the two methods show a difference in RMSE of at least 10%. It can
be argued that a RMSE difference of 10 % is important enough to be detected. For really small
RMSE differences of 2% around 100 synthetic experiments are needed.

The study in this chapter only considers variations in the initial ensemble of rock permeabilities.
However, in reality one faces other sources of uncertainty like additional uncertain parameters,
model forcings, and boundary conditions, which affect the study outcome. Therefore, I feel that
the main conclusion of this chapter, the need for 10 or more synthetic experiments to compare
different EnKF variants, is not overly pessimistic, taking into account that several other factors

also determine the relative performance of methods.

If I focus on the ranking of the EnKF methods, I find that the physical model setup and mea-
surement type have a strong influence on the ranking of the EnKF methods. The synthetic
experiments featuring two tracer measurements lead to permeability fields that were closer to
the corresponding synthetic true than the synthetic experiments featuring 48 head measure-
ments. The magnitude of the observation noise, which should, in principle, be determined by the
measurements, was also observed to influence filter performance. The degree of heterogeneity of
the permeability field might also influence the relative performance of a given EnKF variant. For
example, the iterative EnKF might perform relatively better (compared to other EnKF variants)
for strongly heterogeneous permeability fields as non-linearity is more prominent for those fields.
On the other hand, for strongly non-Gaussian permeability fields it is expected that the normal
score EnKF will improve its relative performance compared to other methods. For the local
EnKF and the hybrid EnKF, an influence of the parameter choice on the filter performance was

observed.

The ranking of the methods differed between the two physical model setups, emphasizing even
more that the comparison of EnKF variants is not straightforward and not only affected by
random fluctuations related to the synthetic case but also by other factors. It needs to be
stressed that therefore no attempt is made to rank the EnKF variants, but to show the impact

of random factors and also the physical model setup on the comparison of EnKF variants.
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Pilot point ensemble Kalman filter

Spurious correlations are the main unwanted uncertainties in permeability estimation using the
ensemble Kalman filter (EnKF). The pilot point ensemble Kalman filter (PP-EnKF) can remedy

spurious correlations.

This chapter is organized as follows. After a small introduction, the Kalman filter and EnKF
are introduced in a slightly different form compared to the introduction of this thesis, thereby
preparing the subsequent introduction of the PP-EnKF. Then, the PP-EnKF is compared to
the hybrid EnKF and the local EnKF, two methods manipulating the covariance matrix in
the EnKF update in order to reduce spurious correlations. The comparison setup is explained,
focusing on the differences that arise compared to Chapter 4 by introducing the PP-EnKF into
the method comparison. The results of the performance comparison are presented, including
three performance tests specifically designed for the PP-EnKF: (1) performance comparison for
varied prior correlation length, (2) performance comparison for pilot point grid variation, and (3),
most importantly, a comparison of spurious correlation reduction for the PP-EnKF compared to

the EnKF'. Finally, the conclusions of this chapter are presented.

Contents
5.1 Introduction . . . . . . . . . . . .. 72
5.2 Pilot point ensemble Kalman filter . . . . . . . .. ... ... ... ..... 74
5.2.1 Ensemble Kalman filter . . . . . . . . ... . ... ... ....... 74
5.2.2 Pilot point EnKF . . . . .. ... ... 75
adapted from Keller, J., Hendricks Franssen, H., Nowak, W., Investigating the Pilot Point Ensemble

Kalman Filter for geostatistical inversion and data assimilation, Advances in Water Re-
sources, 155, 104010 (2021).

71



72 5. Pilot point ensemble Kalman filter

5.2.3 Covariance matrix of the simulated observations and interpolation

operator . . . . . ... 78

5.2.4 Comparison to the classical EnKF and other EnKF methods . ... 79

5.3 Design of the synthetic experiments . . . . . . . . . . ... ... ... .... 80
5.3.1 Subsurface models . . . . . ... ... ... 80
5.3.2 Parameter settings for the PP-EnKF and other EnKF variants . . . 81
5.3.3 Performance comparison setup . . . . . . . ... .. ... ..., 82
5.3.4 Performance comparison measures . . . . . . . . . . ... ... ... 82

5.4 Results. . . . . . . e 83
5.4.1 Comparison of the PP-EnKF to other EnKF methods . . . . .. .. 83
5.4.2 Ensemble variance of conditional realizations . . .. ... ... ... 85
5.4.3 Variation of prior correlation lengths . . . . . . ... ... ... ... 89
5.4.4 Average rankings of the PP-EnKF . . . . ... . ... ... ... .. 93
5.4.5 Variation of pilot point grids . . . . . ... ... ..., 94
5.4.6 Spurious correlation reduction . . . . . .. ... ... L. 94

5.5 Conclusion . . . . . . . . . e 97

5.1 Introduction

For many EnKF methods, sampling errors of the cross-covariances between dynamic variables
and parameters are responsible for filter divergence. A number of EnKF methods have been
proposed and applied to tackle such shortcomings of the EnKF related to small ensemble sizes.
Two examples are the local EnKF (Hamill et al., 2001) and the hybrid EnKF (Hamill and Snyder,
2000). In the local EnKF (also called covariance localization), covariances are restricted to the
vicinity of observations. In the hybrid EnKF, the full covariance matrix is a weighted sum of the
ensemble covariance matrix, which is the covariance of the classical Kalman filter update, and
a fixed covariance matrix, which is defined before the assimilation. Additional EnKF methods
include the damped EnKF (Hendricks Franssen and Kinzelbach, 2008), and the iterative EnKF
(Sakov et al., 2012). In the damped EnKF, the proposed EnKF update is multiplied by a
damping factor to reduce the update of the parameters. This approach reduces problems with

filter inbreeding. The iterative EnKF restarts the whole assimilation after every EnKF update.

Further developments of methods related to the EnKF include the application of an ensemble
smoother (Evensen and van Leeuwen, 2000, Chen and Oliver, 2011, Cosme et al., 2012, Emer-
ick and Reynolds, 2013), and in particular an iterative version of this smoother (Bocquet and
Sakov, 2013). Additionally, the iterative EnKF has been tested for additive model error (Sakov
et al., 2018). A disadvantage of iterative approaches and smoothers is the strong increase in
needed compute time. Also, adaptive covariance inflation of the EnKF has been extensively
tested recently (Raanes et al., 2019). Another line of research focuses on the model equations

and reducing computational effort by combining EnKF variants with methods such as principal
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component analysis and reduced basis (Kang et al., 2017, Pagani et al., 2017, Xiao et al., 2018).
However, these methods do not tend to reduce problems with spurious correlations and filter

inbreeding.

In this chapter, I mathematically derive and extensively test the pilot point ensemble Kalman
filter (PP-EnKF) as an alternative approach for parameter estimation. An EnKF method using
pilot points that may be similar to the PP-EnKF is sketched and tested in a small suite of four
tests by Heidari et al. (2013), using a 50 member ensemble in a petroleum reservoir model. The
result was that this method yielded larger RMSEs than the classical EnKF, getting better as
the number of pilot points approached the full set of parameters. On the other hand, spatial
variability was found to be better preserved by the new method compared to the classical EnKF.
In a second performance comparison, Tavakoli et al. (2013) tested the method from Heidari
et al. (2013), called EnKF-PP by Tavakoli et al. (2013) and possibly quite similar to the method
presented in this chapter, against the EnKF, ensemble smoothers and null-space Monte Carlo
methods using a 200 member ensemble in a multi-phase model. In this comparison, the EnKF-
PP performed well, yielding the smallest RMSE for the estimated logarithmic permeability field.
In Tavakoli et al. (2013), the spread of the estimated EnKF-PP field was actually smaller than
for the other ensemble methods, a result that is contradictory to the findings of Heidari et al.
(2013). This makes it interesting to give a mathematically rigorous derivation and investigation
of the performance of the PP-EnKF from this work. Interesting applications of pilot points in
inverse modeling beyond two-point statistics can be found in Li et al. (2013) and Cao et al.
(2018). In these works, pilot points are used with a pattern-based inverse method making the

method faster and additionally improving the parameter estimation.

The specific contribution of the work in this chapter is twofold. First, the explicit mathemati-
cal derivation of the PP-EnKF, and secondly, an extensive testing of the PP-EnKF in a large
comparison. The original publication (Heidari et al., 2013) contains no mathematical derivation,
while the derivation in this work starts at the classical Kalman filter, shows the differences of the
classical Kalman filter and a pilot point Kalman filter and, finally, translates the derivation to
the corresponding ensemble methods obtaining the full PP-EnKF filter equations and their ideal
(linearized) estimation variance. This derivation provides a rigorous mathematical and statistical
foundation to the method, and provides insights on its behavior in various situations. Regarding
the testing, the performance tests in this thesis of the PP-EnKF are based on a much larger
test set compared to earlier tests in Heidari et al. (2013) and Tavakoli et al. (2013). Statistically
independent repetition of performance tests includes RMSEs and overall standard deviations
from 1000 synthetic experiments and, additionally, the comparison of full correlation fields from
10 synthetic experiments. The latter comparison is used to assess the ability of the PP-EnKF

to suppress spurious correlations.

In this study, the ensemble equations of the PP-EnKF are introduced by first defining the simpler
equations of the pilot point Kalman filter (PP-KF). The PP-KF is obtained by splitting the state
vector of the Kalman filter into dynamic variables, pilot point parameters and non-pilot point
parameters. The Kalman update is applied to dynamic variables and pilot point parameters.

The remaining parameter values are updated by a kriging interpolation of the update. In the
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next step, the ensemble versions of the equations are formulated, resulting in the PP-EnKF. I
show how the update of the PP-EnKF, which is a mixture of an update and an interpolation
of this update, differs from the update in the classical EnKF. Additionally, I compare the PP-
EnKF to the local EnKF and the hybrid EnKF to show that, while aiming at the same goal of

suppressing spurious correlations, the PP-EnKF provides a useful alternative.

The performance of the PP-EnKF is evaluated by comparing it to seven other EnKF methods
(damped, iterative, local, hybrid, dual (Moradkhani et al., 2005), normal score (NS-EnKF, Jour-
nel and Huijbregts, 1978, Goovaerts, 1997, Zhou et al., 2011, Schoniger et al., 2012, Li et al.,
2012) and the classical EnKF). The comparison procedure is adopted from Chapter 4. The per-
formance evaluations are carried out for two parameter estimation setups: a 2D tracer transport
problem and a 2D flow problem with one injection well. The estimated parameter field in these
setups is a permeability field. In each setup, 1000 synthetic experiments are computed for the
PP-EnKF and for the seven other EnKF methods, and each one for ensemble sizes of 50, 70,
100, and 250. In each synthetic experiment, I assess both the updated parameter fields and their
ensemble variance. The ensemble variance is compared to a reference EnKF estimation with
a large ensemble size of 10000. Next to the RMSE comparison, there is a comparison of the
correlation fields driving the Kalman update using 10 synthetic experiments for ensemble size 50.
The correlation output of these synthetic experiments is compared to the correlation field of the
reference EnKF with ensemble size 10000 by computing the RMSE difference of the correlation
fields. Additionally, the impact of the correlation length of the prior permeability fields is in-
vestigated. The correlation length is important in the PP-EnKF, because it not only affects the
prior permeability field but also the kriging interpolation. Finally, to check the influence of the
pilot point grid on the performance of the PP-EnKF, different grid configurations are tested.

5.2 Pilot point ensemble Kalman filter

Before the PP-EnKF is presented, I quickly recall the equations for the ensemble Kalman filter
(Kalman, 1960, Evensen, 1994), because the PP-EnKF differs from the EnKF only in the update
equation. A full account of the EnKF can be found in Evensen (2003).

5.2.1 Ensemble Kalman filter

For the equations of the classical Kalman filter, please consult Section 2.2.1. In particular, the
following four equations will be reformulated in the next section: (1) The forward equations of
the Kalman filter, Equation (2.12) for the state vector x/ and Equation (2.13) for the covariance
matrix P; and (2) the update equations of the Kalman filter, Equation (2.14) for the state vector

x® and Equation (2.15) for the covariance matrix P?.

I now turn to the EnKF. The n, forward equations of the EnKF are given by

xI =M )), ie{l,--,n.}, (5.1)
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where n. is the size of the ensemble of state vector realizations. The state vector realizations
f

x? € R" make up the initial state vector ensemble. The state vector realizations x; make up the
predicted state vector ensemble. The forward operator M can be non-linear, such as a numerical

solution of the groundwater flow equation. All covariance matrices in the EnKF are computed
f

from the ensemble of state vector realizations. The predictions x; serve as input to the update

equation of the EnKF.

The EnKF update equation (2.20) is given by
xi—x/ =P.H" (HPH" +R) ' (d; - Hx/), ie{l-,n}. (5.2)

This equation is very similar to the Kalman filter update of the mean state vector in Equa-

tion (2.14), with two important differences. First, Equation (5.2) is computed n, times for the
f

realizations x; and x§ of the state vector, and realizations d; of the measurements. Secondly,
the covariance matrix P, is estimated from the ensemble of state vector realizations. Therefore,

an analogue of update equation (2.15) for the covariance matrix is not needed for the EnKF.

In this chapter, all Kalman update equations are written in terms of the difference between an
estimated quantity and the same quantity computed from the forward simulation. When the
Kalman filter update or the EnKF update is mentioned, this refers to either this difference or the
formula for its computation. Expressing the update equation in this form is convenient for the
introduction of the pilot point EnKF (PP-EnKF). In the PP-EnKF, the updates on the left-hand
sides of Equations (2.14), (2.15), and (5.2) are the input of a kriging interpolation (Deutsch and
Journel, 1995).

5.2.2 Pilot point EnKF

Retracing the update equations in the last section, I will now introduce the update equations
of the pilot point Kalman filter (PP-KF) and, subsequently, the update equations of the pilot
point ensemble Kalman filter (PP-EnKF). Here, the explicit set of equations of the PP-EnKF is

rigorously derived and thoroughly discussed.

The main idea of the PP-EnKF is to update in a first step only parameters at a fixed subset
of locations, called pilot points (RamaRao et al., 1995, Gomez-Hernandez et al., 1997). The
positions of the pilot points are defined before the PP-EnKF starts. In the rest of the model
domain apart from the pilot points, parameter values are initialized by random geostatistical
simulation and are then subject to an interpolated update. The interpolation of the update
is generated by ordinary kriging of the pilot point updates and added to the geostatistically
simulated fields. I use ordinary kriging, since I do not assume a background trend as in universal
kriging, or a correlation with other variables as in cokriging. The update of a certain parameter
is defined as the difference between the parameter value after the EnKF update step and before
the EnKF update step. While the updates apart from pilot points are interpolations of the
perturbations calculated at the pilot points, the full parameter fields retain their initial spatial

variability.
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In general, two covariance structures are important for the algorithm of the PP-EnKF. First,
there is the covariance structure used by the kriging interpolation. This covariance structure
is defined a priori and is reused for the interpolation at each update step. Secondly, there
is the covariance structure used for initial geostatistical simulation. In the PP-EnKF, both
covariance structures are equal and defined according to prior knowledge. Overall, the partially
fixed covariance structures should enable the PP-EnKF to suppress spurious correlations, while
still providing ensemble-based updates that potentially affect the whole model domain. I argue
that these features make the PP-EnKF a useful alternative to existing EnKF methods such as
the hybrid EnKF and the local EnKF.

To define the update of the PP-KF, the state vector and its covariance matrix are split into three

parts, the pilot point parameters, the non-pilot point parameters, and the dynamic variables:

X;; Py Ppr Ppa
x'=[xl|eR™ P=|P, P, P,|cRw". (5.3)
x) Py Pag Pag

Here, X]J;c € R" contains parameter values at pilot point positions, and n, € N is the number

of pilot point parameters. Xff € R™ denotes the parameters at non-pilot point locations, where
n, € N is the number of non-pilot point parameters. Finally, X£ € R™ contains the ng € N
dynamic variables. The sum ng = ny,+n, +ng is the total number of entries in the state vector.
The covariance matrix P,, € R"*"» contains the covariances between all pairs of parameters
at pilot points. P, € R™*"™ and P,, € R" ™" contain covariances between parameters at
pilot points and parameters at non-pilot points. P,. € R™*"™ contains covariances between
pairs of parameters at non-pilot points. Py, € R"*" and P,y € R"*"¢ contain covariances
between dynamic variables and parameters at pilot points. Pg. € R"*" and P,y € R"r*"d
contain covariances between dynamic variables and parameters at non-pilot points. Finally,

P4 € R™*"d contains covariances between pairs of dynamic variables.

The update of the PP-KF consists of two steps: updating the restricted state vector and then
interpolating the update. First, the pilot point update equations are discussed. The form of the
mean vector update equation is identical to Equation (2.14) of the Kalman filter, restricted to

dynamic variables and pilot-point parameters:

a f PP f
) (PP = (D M) H Py R (a-H(H) ) (5.4)
x4 X Piy Puad Xd

Definitions and explanations for the PP-KF versions of the covariance matrix among simulated
measurements P, € R™*"" and the measurement operator H & R™m*(ptna) can be found
in Section 5.2.3.

The PP-KF update of the covariance matrix has the same form as Equation (2.15), but again is
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restricted to dynamic variables and parameters at pilot points:

Pe a P, P P, P _ P, P
zp Zd _ P pd | _ pp pd a7’ (Pyppy +R) g pp pd . (5.5)
Po, Paa Py Paa Py Paa Py Paa

x, € R™ and Py, € R™ ™ are the updates of mean vector and covariance matrix of the
parameters at pilot point locations, x§ € R™ and P§,; € R"¢*" are the corresponding quantities
for the dynamic variables. Pg, € R™@*" and Pl € R"™*" contain updated covariances between

pilot-point parameters and dynamic variables.

Now I discuss the second step, i.e., the transfer of the update to non-pilot point parameters by
kriging interpolation. Through the kriging interpolation, the updates from Equations (5.4) and
(5.5) are used to compute updates for means and covariances of parameters at non-pilot points:

x4 x1,
() ()] o
d d

x¢ —x/ = )

The interpolation operator P, is defined as

1 0
By = PO (Py,)~" 0] € Rrxmotna) (5.7)
0 1

Here, ng € R™*"p ig g fixed covariance matrix between pilot point parameters and non-pilot
point parameters. This matrix is specified in advance. A suitable choice for ng are prior
covariances equal to the covariances used in the generation of the prior permeability fields as

these covariances reflect the prior knowledge. The interpolation equation for the covariance

ng P;d . Py P
ng P, Py Puyg

A closer discussion of the interpolation operator P, can be found in Section 5.2.3.

matrix is

P'-P =P, (P)T . (5.8)

The equations for the PP-EnKF are very similar to Equations (5.3), (5.4), and (5.6) for the mean

update of the PP-KF. The state vector is split for every realization in the ensemble:

f
Xpji

x| €R™,  ie{l, n} . (5.9)
f

Xd,i

sk\
I

Then, the update of the state vector is calculated for each realization of pilot point parameters

and dynamic variables:

a ! P P !
Xz,z _ X]]oc,z —_ pp,€e pd,e HT (Pyppy,e + R)—l d’L - H XI}J , = {1’ e ,ne} .
Xd,i X, Pipe Page Xdi

(5.10)
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Finally, the interpolation is applied to each realization:

o 3
x¢—x] =P [ [Tr) (T2 ) ), ie{tne) (5.11)
Xdi X

There are two main differences between the updates of the PP-EnKF and the PP-KF. First,
the update of the PP-EnKF consists of n. equations, one for each realization of the ensemble.
Secondly, all covariance matrices except ng are calculated from the ensemble of state vector
realizations. When moving from the PP-KF to the PP-EnKF, initialization of the permeability

field is randomized. Opposed to this randomization, the variability outside the pilot points,

0
rp’

In the next section, important matrices of the PP-KF and the PP-EnKF algorithms are explained

represented by the fixed matrix P;. . is chosen once and then fixed throughout the computation.

in more detail.

5.2.3 Covariance matrix of the simulated observations and interpolation operator

The matrix P,,,, used in the update equations (5.4) and (5.5) of the PP-KF is an approximation
of the covariance matrix of simulated measurement variables P,, € R""*"" appearing in the
Kalman update (Equation (2.14)):

P,, = HPH' (5.12)

P,y should approximate P, by taking into account only the dynamic variables and the pilot
point parameters. The straightforward approximation with this property is obtained by removing
the covariances that contain information from the non-pilot point locations, i.e. Py, Py, Py,

Py, and P,4, from P before applying H.

Ppp 0 Ppg
Puy=H| 0 0 0 |H (5.13)
Pdp 0 Pdd

Note that Py,,, = Py, if H is a linear operator depending only on pilot point parameters
and dynamic variables. A simple example of such a measurement operator H arises when all
measurement variables are either dynamic variables or parameters at pilot points. For the PP-
EnKF, the above remains true, with the amendment that the covariance matrices Pyppy e, Pyy.e,

Pype, Ppae, Pape, and Pgq . are calculated from an ensemble of realizations.

Now the interpolation operator P, is discussed. The operator P, defines the kriging interpolation,
the second part of the update of both the PP-KF and the PP-EnKF. It determines the updates
of non-pilot point parameters based on the updates of pilot point parameters. The definition of
P, was given in Equation (5.7), and it makes use of two covariance matrices, P, and P,Qp. The
covariance matrix of the pilot point parameters Py, is obtained from the forward simulation.
Thus, the knowledge of P, originates from a mixture of the initially set prior covariance matrix
and of the filter equations that were applied before the current update. In contrast, the covariance

between the non-pilot point parameters and the pilot point parameters P,Qp is fixed throughout
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the computation. The superscript zero emphasizes two characteristic features of ng, first, ng
is fixed and, secondly, its elements may be prior covariances. Fixing ng is an integral part of the
PP-EnKF, because this fixed covariance is one of the two reasons why I expect the PP-EnKF to
suppress spurious correlations between pilot point parameters and non-pilot point parameters,

the other reason being the reduction of the number of parameters in the Kalman update.

5.2.4 Comparison to the classical EnKF and other EnKF methods

I compare the update equations (5.10) and (5.11) of the PP-EnKF to the update equation (5.2) of
the classical EnKF. If the measurement operator H operates on parameters at non-pilot points,
this particular measurement information will be lost through the approximation in the PP-EnKF
update, as shown in Section 5.2.3. This is a hypothetical case, because one can always locate pilot
points at measurement locations. If the measurement operator H operates only on parameters
at pilot points and dynamic variables, the main difference between the update equations is the
kriging interpolation of the PP-EnKF. P, in the update equation (Equation (5.2)) of the EnKF

can be partitioned the same way as in Equation (5.3):

Pppe Ppre Ppae
P.= [P,c Pue Prg.| € R™¥™. (5.14)
Pdp,e Pdr,e Pdd,e

The middle column of this matrix does not influence the update equation, if the aforementioned
restrictions on H hold. In the PP-EnKF, P, is approximated by

1 0 Poe Poje
Pppe Ppde - Pppe Ppde o ! -
By = ng(Ppp,e) Lo = P?p P?p(Ppp,E) Ideve
Pdp,e Pdd,e
Pdp,e Pdd,e
(5.15)
It is of interest to compare the two columns of matrix (5.15) to the first and last column of
P.. Differences between the two matrices appear in the second row. The left columns of these
matrices determine the update coming from measurements of parameters at pilot points. The
updates of the EnKF and the PP-EnKF would be equal if the fixed covariance matrix ng would
be equal to the ensemble covariance P, . from the EnKF. Of course, the matrices will never be
exactly equal due to sampling fluctuations. One of the positive effects of ng is that it does not

suffer from spurious correlations.

The right column of matrix (5.15) determines the update coming from measurements of dynamic
variables. Values at non-pilot points are updated according to ng(Ppp,e)_Ide,e instead of Pp.q .
There is no direct covariance matrix between non-pilot points and dynamic variables in the PP-
EnKF. Instead, the update is correlated with the pilot points and then interpolated according

to ng. Again, the main enhancement is the reduction of spurious correlations.

I now compare the update equations of the PP-EnKF to the update equations of two popular
EnKF methods, the local EnKF and the hybrid EnKF. Similarly to the local EnKF and the
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hybrid EnKF, the PP-EnKF uses a partially fixed covariance structure in order to suppress
spurious correlations. In the local EnKF, updates are calculated directly for all parameters, but
correlations between parameters (or correlations between dynamic variables and parameters)
are set to zero if their distance to measurement locations exceeds a certain threshold. Like the
local EnKF, the PP-EnKF aims to suppress spurious correlations. To achieve this, only the
correlations between measurement variables and pilot points are calculated from the ensemble.
I argue that the PP-EnKF could be preferred to the local EnKF in cases, when distant locations
are significantly correlated. Correlations between these locations would be suppressed by the
local EnKF, while the PP-EnKF includes them through correlations between distant pilot point

locations.

In the hybrid EnKF, a mixture of covariance matrices is used in the update step, partially fixed
and partially calculated from the ensemble. While this can yield good results, I argue that the
PP-EnKF is an appealing alternative, because it interferes less with the statistics of the update
step. The update step of the PP-EnKF is restricted to pilot point parameters and dynamic
variables, but for these two sets of state vector variables the update is calculated exclusively
from the ensemble-based correlations that are derived from the ensemble of forward model runs.
The rest of the parameters is then updated by kriging of the updates at the pilot points, using

the pre-defined fixed covariance matrix.

Implementing the PP-EnKF is relatively straightforward. In contrast to the hybrid or the local
EnKF, there is no need to change the covariance matrix of the classical EnKF update equation.
All changes of the PP-EnKF (compared to the classical EnKF) can be implemented by pre-
processing (restricting the state vector to dynamic variables and parameters at pilot points)
and post-processing (calculating the interpolated parameter values at non-pilot points). Thus, a

modular implementation around an existing EnKF implementation is possible.

5.3 Design of the synthetic experiments

5.3.1 Subsurface models

The performance comparison of the PP-EnKF with other EnKF variants in this study is carried
out for two transient subsurface model setups, first, a 2D solute transport model (tracer model),
and, secondly, a 2D groundwater flow problem around an injection well (well model). The grids
of both models consist of 31 x 31 = 961 identical squared cells. The size of the model domain for
the tracer model is 62 m x 62 m; the size of the model domain for the well model is 620 m x 620 m.
The simulation period is 1200 days for the tracer model and 18 days for the well model. For
both models, the simulation period is divided into 1200 time steps. All forward simulations are
computed with the numerical software SHEMAT-Suite (Rath et al., 2006, Clauser, 2003).

In the tracer model, a constant head difference of 11m — 10m = 1m is implemented between
the southern boundary and the northern boundary, accompanied by a constant concentration
difference of 80 x 1073 mol /L—60x 1073 mol /L = 20x 10~3 mol/L. The remaining two boundaries
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are impermeable. The initial conditions are a head of 10 m and a concentration of 60x 10~3 mol /L
throughout the model domain for the tracer model. In the well model, a head difference of 1 m
is implemented between a central injection well location at coordinates (310m, 310 m) and the
four boundaries. Initial head is chosen as 10 m throughout the model domain for the well model.
For both setups, standard properties of water as implemented by SHEMAT-Suite are used and
the porosity of the background matrix is 10 %. The tracer is subjected to advective transport

only.

Measurement locations vary between the two setups. The tracer model includes two measurement
locations at coordinates (19m,31m) and (43m,31m). At these locations, tracer concentration
and hydraulic head measurements are available at 100 evenly distributed times throughout the
simulation period. The well model includes 49 measurement locations on a 7 x 7 grid throughout
the model domain. At these locations, hydraulic head measurements are available at 60 evenly

distributed times throughout the simulation period.

The synthetic reference permeability distributions for the two subsurface model setups are dis-
played in Figure 4.1 from the previous chapter, where the synthetic reference permeability dis-
tributions are introduced. The permeability fields are generated by sequential multi-Gaussian
simulation (SGSIM, Deutsch and Journel, 1995). The same holds for the ensemble of prior
permeability field realizations that is used to initialize the EnKF. A permeability mean of
—12.0 = log;((K/m?) is used for the synthetic reference and a mean of —12.5 = log,(K/m?) is
used for the prior permeability distributions. In both cases, the standard deviation is 0.5. The
isotropic correlation length of the permeability fields is 50 m for the tracer model and 60 m for

the well model.

5.3.2 Parameter settings for the PP-EnKF and other EnKF variants

Measurement noises are equal for all EnKF methods including the PP-EnKF. Measurement noises
for the concentration measurements of the tracer model are set to 0. = 7.1x 10~3mol/L and mea-
surement noises for the hydraulic head measurements of both setups are set to oy, = 5x 1072 m.
EnKF methods which require parameter settings include the damped EnKF, where the damping
constant is set to 0.1 (Hendricks Franssen and Kinzelbach, 2008). In the local EnKF, the length
scale (which is half the cutoff radius) is set to 150 m, which is larger than the correlation lengths.
In the hybrid EnKF, the mixing constant is set to 0.5 and a diagonal background covariance ma-
trix is specified. The damping factor of the damped EnKF and the parameter choices of the
local EnKF and the hybrid EnKF were shown to yield the smallest root-mean-square errors in
most synthetic experiments of the two setups of the previous performance comparison presented
in Chapter 4.

The PP-EnKF needs as inputs the locations for the pilot points, and a covariance matrix for the
kriging interpolation. I use 51 pilot points including all cell indices of the measurement locations
of both setups (tracer model and well model). Thus, the pilot points lie on a 7 x 7 grid for

both model setups with two additional pilot points in the center of the model corresponding to
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the measurement locations of the tracer model. A regular grid of pilot points is documented
to be beneficial (Capilla et al., 1997). The interpolation covariance ng is chosen identical to
the prior covariance. This is implemented by computing the covariances in P,Qp from 10000
permeability fields, which are generated by SGSim with the same correlation length, mean and

standard deviation as the prior permeability fields.

5.3.3 Performance comparison setup

In Chapter 4, seven EnKF variants have been compared (damped, iterative, local, hybrid, dual,
normal score and classical). Now, I compare the PP-EnKF to these same seven methods by
computing synthetic experiments for the two physical model setups introduced in the previous
sections (compare Section 5.4.1). Additionally, correlation lengths of the initial permeability
fields of both setups are varied to half and twice the correlation length of the synthetic truth
(Section 5.4.3). This is done, because the correlation length plays a very prominent role in
the PP-EnKF, more prominent than in the other EnKF methods, since it enters in the PP-
EnKF not only as correlation length of the prior permeability field, but also as correlation
length of the kriging interpolation. Thus, it is especially important to see how the PP-EnKF
performs compared to other models, when it is subject to misspecified correlation lengths. One
important degree of freedom in the PP-EnKF is the choice of the grid of pilot points. Thus, I
compare the results of different sensible grid choices for the two model setups (Section 5.4.5).
Next to the performance of the mean update, I am interested in the spatial variability of the
permeability ensemble update by the PP-EnKF'. This will help assess the ability of the PP-EnKF
to suppress spurious correlations. To judge spatial variability, I compare the overall standard
deviation of the ensembles of the updates of the various EnKF methods from all 1000 synthetic
experiments. Additionally, the full correlation fields of the EnKF and the PP-EnKF from 10

synthetic experiments are compared to a reference correlation field.

5.3.4 Performance comparison measures

Multiple synthetic experiments are needed to compare EnKF methods (see Chapter 4). Here
I use root-mean-square errors (RMSEs) from 1000 synthetic experiments to compare the PP-
EnKF to the other seven EnKF methods. For each of the EnKF methods in the synthetic
experiment j, the RMSE is computed as in Equation (4.15). Such a single RMSE is computed
from the squared differences of estimated mean logarithmic permeabilities Yj € R™ and the

synthetic reference Y; € R"s across the n, grid cells.

The RMSE measures the distance between the average over the estimated permeability field
realizations and the synthetic true permeability field. Additionally, the overall standard deviation
among realizations is introduced as a measure for the uncertainty of the estimated permeability

field realizations. It is called STD in the remainder of this text. This overall standard deviation
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for an EnKF method in a single synthetic experiment j is calculated as the square root of the

mean over the domain of the pixel-wise ensemble variances, as follows

je{1,---,1000} . (5.16)

where ng is the number of grid cells. The sample variances in Equation (5.16) are calculated as

follows

1 _
o5 = > (Veig = Vi) (5.17)

where n. is the number of realizations in the ensemble, )7,~j is the mean logarithmic permeability
for synthetic experiment j and grid cell ¢, and Y} ; ; is the permeability of realization k calculated

at grid cell ¢ in synthetic experiment j.

Besides the overall performance assessment combining results of the RMSE and STD, a smaller
test with 10 synthetic experiments is carried out for checking the correlations between observed
variables and the full parameter field. This input/output-intensive synthetic experiment is exe-
cuted for the PP-EnKF and the classical EnKF. A reference data assimilation is computed using
the EnKF with an ensemble size of 10000. Subsequently, 10 synthetic experiments were com-
puted for EnKF and PP-EnKF using ensemble size 50. For the tracer model, the correlations

are of the form
COV(Cob37 Klog)

O¢c * Ok

p(cobsaKlog) = (5.18)

where the covariance Cov and the standard deviations o. and ok are estimated from the ensemble,
cobs |IN/L?3] denotes the concentration at one of the two observation locations, and Kiog [—]
denotes the logarithmic permeability at a given location in the field. For the well model, the

correlations are of the form

COV(hobsa Klog)

p(h’ObS) Klog) = ——

(5.19)

where the difference to the tracer case is that heps [L] denotes the head observed at one of
the 49 measurement locations. By varying Kj,s across the model domain, I obtain the field
of correlations for each observation location in a synthetic experiment. The RMSEs between
these correlation fields and the reference correlation field is used to judge the amount of spurious

correlation in the synthetic experiments introduced by the small ensemble size.

5.4 Results

5.4.1 Comparison of the PP-EnKF to other EnKF methods

First, results for the tracer model setup are shown. In Figure 5.1 (top), the mean RMSEs from
1000 synthetic experiments are shown for the eight EnKF methods. The tracer model is known
to yield a small range of RMSEs across the tested EnKF methods (see Chapter 4). Among the
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eight tested EnKF methods, the PP-EnKF ranks among the four methods with the smallest
RMSE:s for all tested ensemble sizes. For ensemble size 50 and 250, the PP-EnKF has the fourth
smallest RMSE. For ensemble sizes 70 and 100, it yields the third smallest RMSE.
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Figure 5.1: Comparison of the root-mean-square errors (RMSEs) of the pilot point EnKF and
other EnKF methods in the tracer model (top) and well model (bottom).

A direct comparison to the classical EnKF is interesting for two reasons. First, the PP-EnKF is
directly derived from the classical EnKF. Secondly, earlier publications include conflicting results
regarding this comparison. In the synthetic experiments performed with the tracer model, the
PP-EnKF performs significantly better than the classical EnKF for ensemble sizes 50 70, and
100, and slightly better for ensemble size 250.

Figure 5.1 (bottom) shows the RMSE means from the corresponding 1 000 synthetic experiments
for the well model. Compared to the tracer model, the well model yields larger RMSE differences
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between the tested methods. The PP-EnKF yields slightly worse than average RMSEs for the
well model. For ensemble size 50 and 70, the PP-EnKF has the fifth smallest RMSE. For ensemble
sizes 100, and 250, it scores the sixth smallest RMSE. Compared to the classical EnKF, the PP-
EnKF performs better for ensemble sizes 50, 70, slightly better for ensemble size 100, and worse

for ensemble size 250.

Summing up the results for the two physical model setups, the PP-EnKF yields good RMSE
results for the tracer model and medium RMSE results for the well model. It should be noted
that these setups were taken from the previous study in Chapter 4, and that a very robust testing
was done using 1000 synthetic studies. Nevertheless, the ranking of the EnKF variants differed
considerably between the two model setups. It is therefore very well possible that, for other
model setups, the PP-EnKF could outperform all other EnKF variants for small ensemble sizes.
Results from both physical model setups suggest that, for small ensemble sizes, the PP-EnKF is
a clear improvement to the classical EnKF as desired by design. This is in slight contradiction
to results from Heidari et al. (2013), where the PP-EnKF yields larger RMSEs than the classical
EnKF for a synthetic experiment with ensemble size 50. Our results for ensemble size 250, for
which both methods yield similar results, are in agreement with similar results from Tavakoli

et al. (2013).

Furthermore, the RMSEs suggest that the PP-EnKF provides a trade-off between damping and
the classical EnKF. For ensemble size 50, the PP-EnKF has similar or larger RMSE than the
damped EnKF, but smaller RMSE than the classical EnKF. Moving to larger ensemble sizes, the
reduction of RMSE by the PP-EnKF is much larger than the reduction of RMSE by the damped
EnKF. A possible explanation for this effect is that the interpolated updates of the PP-EnKF
reduce spurious correlations and thereby reduce the number of divergent synthetic experiments
for small ensemble sizes. For larger ensemble sizes, the relatively large reductions of the RMSEs
of the PP-EnKF suggest that the interpolated updates of the PP-EnKF can incorporate more
information than the damped updates of the damped EnKF.

The full RMSE distributions give a more in-depth picture of the performance of the EnKF
methods. They are provided in Figures 5.2 and 5.3. The distributions illustrate how the RMSE
means in the previous section were obtained. For the well model, one can see that the PP-EnKF
yields a somewhat wider RMSE distribution than other methods.

5.4.2 Ensemble variance of conditional realizations

Now, I test and compare the uncertainty characterization of conditional realizations obtained
from the PP-EnKF by looking at the overall ensemble standard deviations. The equations for the
overall standard deviations were introduced in Section 5.3.4. I compare the mean overall standard
deviations calculated over 1000 synthetic experiments for each EnKF method. Additionally,
a benchmark STD is derived from 100 synthetic experiments using the classical EnKF with
ensemble size 10 000.
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tracer model from Figure 5.1.
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The results for the tracer model are shown in the top half of Figure 5.4. All EnKF methods
yield standard deviations that are reasonably close to the standard deviation of the benchmark
run. Still, most methods underestimate the ensemble spread; exceptions are the damped EnKF
and the dual EnKF. Comparing the differences to the 10000 ensemble run, the pilot point EnKF
ranks fourth for ensemble size 50, third for ensemble sizes 70 and 100, and second for ensemble
size 250. Thus, the pilot point EnKF is in the top half of the methods, not only for RMSE

comparison, but also concerning the standard deviation.

For the well model, the mean overall standard deviations are shown in the bottom half of Fig-
ure 5.4. Compared to the tracer model, there is a larger tendency of most methods to underes-
timate ensemble spread compared to the 10000 ensemble run. Additionally, one can see a clear
difference between the EnKF methods that contain a form of damping and the ones that do not
(including the iterative, the classical and the dual EnKF). The pilot point EnKF yields a large
ensemble spread, especially for ensemble size 50, where it yields the best STD of all methods.
For ensemble size 70, the pilot point EnKF still ranks first, for ensemble size 100 it ranks sec-
ond and for ensemble size 250 it ranks third. Thus, while the pilot point EnKF only obtained
medium results in RMSE comparison compared to other EnKF methods, it always ranks in
the top three methods concerning uncertainty characterization, ranking first for the important

smallest ensemble sizes.

In conclusion, the uncertainty characterization of the pilot point EnKF is generally good com-
pared to other EnKF methods. This is one of the main features of the method, and this ben-
efit again comes by design. In the update step, the faulty reduction of ensemble variance is
constrained by two effects. First, by reducing the number of parameters to the number of pa-
rameters at pilot points, issues of rank deficiency and inbreeding are reduced, and secondly, by
interpolating the update, large parts of the prior variability remain intact. These results agree
with results from Heidari et al. (2013), where a large spatial variability in PP-EnKF updates is
diagnosed. While Tavakoli et al. (2013) also diagnose heterogeneities in the PP-EnKF results,
the small ensemble spread in their PP-EnKF results is contradictory to the findings from this
work. This might be due to the specific subsurface model in Tavakoli et al. (2013), where only

a small fraction of the model parameters was updated.

5.4.3 Variation of prior correlation lengths

In this section, results for faulty correlation lengths are discussed: the prior correlation lengths are
varied to half or twice the correlation length of the synthetic truth. These results are especially
important for judging the performance of the PP-EnKF, since it is influenced by the correlation

length through both the prior realizations and the kriging interpolation.

First, I discuss the tracer model with correlation length 25m. This correlation length is half
the correlation length of the synthetic truth. Figure 5.5 (top) shows the average RMSE values
comparing to the results in Section 5.4.1. For ensemble size 50, all EnKF methods yield larger

RMSEs than for the standard case. For ensemble size 250, all methods except the classical
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EnKF and the dual EnKF yield larger RMSEs than for the standard case. A specific look at
the PP-EnKF shows that, for ensemble size 50, it ranks third among the EnKF methods. For
ensemble sizes 70 and 100, it ranks secondly, and for ensemble size 250, third. Relative to the
other EnKF methods, these results are a slight improvement for the PP-EnKF compared to the
case of the correct correlation length. This means that the PP-EnKF seems to be robust against

a too small specification of correlation length for this test case.

Now I discuss the results for the tracer model and a too long correlation length of 100 m as
shown in Figure 5.5 (bottom). For all ensemble sizes, all methods except the damped EnKF
yield smaller RMSEs than for the correct correlation length (50m). The damped EnKF yields
slightly larger RMSEs for ensemble sizes 100 and 250 than for the standard case. Regarding the
PP-EnKF, it ranks third among all methods for ensemble sizes 50, 70 and 100. For ensemble size
250, it ranks fourth among all methods. Thus, the ranking of the PP-EnKF among the different

methods is comparable to the corresponding results for the correct correlation length.

For a discussion of these results, recall how a faulty correlation length may affect the performance
of EnKF methods. The correlation length primarily affects the prior permeability fields. This
should generally be a disadvantage for the update, thus leading to larger RMSEs. An additional
effect of the correlation length is its direct influence on the EnKF update. The correlations
that drive the update are either more restricted to the vicinity of the measurement locations,
for the case of a small correlation length, or they are spread out more widely for the case of
the large correlation length. The RMSE results for the small correlation length suggest that the
restriction of the EnKF update is particularly obstructive for the tracer model, possibly because
there are only two measurement locations in this setup. Thus, for a small number of measurement
locations, an underestimation of the correlation length may significantly inhibit EnKF updates.
On the other hand, the smaller RMSEs for correlation length 100 m are surprising. This result
suggests that the effect of the larger update radius is stronger than the effect of the wrong
prior correlation length in the tracer setup. Good results for too large correlation lengths have
been documented in the literature, for example by Chaudhuri et al. (2018). This effect may
vanish for more complicated synthetic reference fields, especially, when they exhibit small-scale

heterogeneities.

Turning to the well model, the PP-EnKF for correlation length 30 m is tested. Figure 5.6 (top)
shows RMSEs calculated over 1000 synthetic experiments. Again, for all ensemble sizes, all
EnKF methods yield slightly larger RMSEs than for the case of the correct correlation length
(60m). The PP-EnKF ranks fifth among the EnKF methods for ensemble sizes 50 and 70. For
ensemble size 70 it ranks sixth and for ensemble size 250 seventh. This almost reproduces the

results for the correct correlation length, only for ensemble size 250 the rank is slightly worse.

I now look at results for the well model and correlation length 120m in Figure 5.6 (bottom).
Here, for all ensemble sizes, all EnKF methods yield slightly smaller RMSEs than for the standard
case. Regarding the PP-EnKF, it ranks sixth for ensemble sizes 50, 70 and 250, and it ranks
seventh for ensemble size 100. Thus, again the ranking of the PP-EnKF among the methods is

slightly worse than for the correct correlation length.
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Figure 5.6: Comparison of the pilot point EnKF with other EnKF variants for the well model
and correlation lengths 30m (top) and 120 m (bottom).
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In summary, the PP-EnKF is not affected more by a misspecification of the correlation length
than other EnKF variants for both model setups, even though the correlation length has a more

pronounced role in the PP-EnKF than in other variants.

5.4.4 Average rankings of the PP-EnKF

In the last sections, various types of synthetic experiments were used to compare the performance
of the PP-EnKF to other EnKF methods. This included synthetic experiments with the correct
and erroneous prior correlation lengths, and repetitions for ensemble sizes of 50, 70, 100 and 250.
In Table 5.1, the average RMSE rankings are displayed that are calculated from the twelve single
RMSE rankings (four ensemble sizes for each of three correlation lengths). For the tracer setup,
the PP-EnKF has the third best average ranking. Thus, for the tracer setup, the PP-EnKF
has very good average results outperformed only by the hybrid EnKF and the iterative EnKF.
For this setup, the performance of the PP-EnKF justifies its usage over the majority of other
EnKF methods. For the well setup, the PP-EnKF only has the sixth best average ranking. For
this setup, the average RMSE does not justify using the PP-EnKF compared to existing EnKF

variants.

Table 5.1: Average RMSE rankings of the eight EnKF methods for tracer and well setups. The
average ranking is the mean of the twelve rankings from the RMSE comparisons of

all tested prior correlation lengths.

RMSE Tracer Well

EnKF 6.1667 6.3333
Damped 5.9167 4.9167
NS-EnKF 3.9167 3.3333
DualEnKF 8.0 8.0
Hyb-EnKF 1.0 1.9167
LEnKF 5.4167 1.0833
IEnKF 2.3333 4.5833
PP-EnKF 3.25 5.833

Table 5.2: Average STD rankings of the eight EnKF methods for the tracer and well setups. The

average ranking is the mean of the four rankings from the overall STD comparison.

STD Tracer Well
EnKF 4.75 8.0
Damped 2.25 2.0
NS-EnKF 7.75 2.5
DualEnKF 6.0 6.0
Hyb-EnKF 1.5 5.0
LEnKF 4.25 3.5
IEnKF 6.5 7.0
PP-EnKF 3.0 2.0

The reproduction of the correct ensemble variance is another key performance measure for com-

paring the EnKF methods. Therefore, overall STD results for the four ensemble sizes 50, 70,
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100, 250 were ranked and subsequently averaged, and results are summarized in Table 5.2. The
PP-EnKF performs well among the eight tested methods. For the tracer setup, the PP-EnKF
ranks third out of eight methods. In particular, the PP-EnKF ranks significantly better than the
iterative EnKF that ranked better for average RMSE. Thus, taking into account both, average
RMSE and average STD, the PP-EnKF is outperformed only by the hybrid EnKF. For the well
setup, the PP-EnKF ranks first together with the damped EnKF. For the well setup and for

small ensemble sizes, the PP-EnKF ranks uniquely first.

5.4.5 Variation of pilot point grids

One important degree of freedom added by the PP-EnKF is the choice of the pilot points. In

this section, RMSEs for different pilot point grids are compared in the tracer and well model.

For the tracer model, the compared grids are regular square grids with different numbers of pilot
points. All grids also include the two measurement locations of the tracer model. The results
in Figure 5.7 (top) show small changes of the RMSE for different grids, all changes are smaller
than 0.01.

For the well model, the compared grids are extensions of the standard grid, since the standard
grid is made up of all measurement locations and, by the definition of the PP-EnKF, I want
to keep the measurement locations as pilot points in all grids. The first extension is adding
pilot points on the diagonal between the original pilot points. The second extension is another
regular grid with twice the number of pilot points in each column and row. Again, the results in
Figure 5.7 (bottom) exhibit small changes of the RMSE, only the doubled grid yields significantly
smaller RMSE than the standard method.

The results of the grid variation have two implications. First, the differences between the grids
are not very large, thus at least in the two setups treated here, the PP-EnKF shows a certain
robustness against different choices of regular grids in the investigated range. Secondly, the
results do also indicate that a smart choice of grid might make a bigger difference in other
setups. While the grid with the smallest number of pilot points yields the smallest RMSEs for
the relatively homogeneous synthetic true permeability field of the tracer model, the grid with the
largest number of pilot points yields the smallest RMSEs for the more heterogeneous well model.
This suggests a model-specific number of pilot points required to sufficiently approximate the
real cross-correlation functions. As a general rule, I refer to the recommendations for pilot point
spacing in the literature (Capilla et al., 1997) that suggest about three pilot points per range
as a robust choice. The range from Capilla et al. (1997) would correspond to two correlation

lengths in this study, a distance at which parameters are barely correlated.

5.4.6 Spurious correlation reduction

Now the ability of the PP-EnKF to reduce spurious correlations is tested by checking the cor-

relations between observed variables and updated permeabilities in the tracer and well setup
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after assimilation. As a benchmark, I use a reference synthetic experiment with the EnKF and
10000 ensemble members. Figure 5.8 shows the reference correlation fields for the tracer and well
setup after the EnKF updates. For the tracer setup, both observation locations are shown. The
concentrations at the observation location in the highly permeable region (compare the synthetic
true permeability fields from Figure 4.1) yields comparably small correlations. The observation
location in the low-permeable region yields large positive correlations with the low-permeability
region south of the observation location. Turning to the well setup, two representative head
observation locations are displayed. One can observe a general trend, small positive correlation
in the direction of the injection well in the center of the model and large negative correlation in
the direction of the model boundaries. Note that the correlation structure in the well setup is
finer and more pronounced than in the tracer setup. This is related partly to the characteristics

of the permeability fields.
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Figure 5.8: Reference correlations between an observed variable at a chosen observation location
and the permeability throughout the model domain. For the tracer setup (top), the
two observation locations for concentration are plotted in black, for the well setup
(bottom) the two (out of 49) observation points for head are plotted in white.

Now I compare correlation fields from 10 synthetic experiments (for the PP-EnKF and the clas-
sical EnKF using ensemble size 50) to the correlation fields of the reference. Table 5.3 shows the
RMSE values for each synthetic experiment. For the tracer setup in five synthetic experiments,
PP-EnKF is closer to the reference than for EnKF, and for five synthetic experiments the oppo-
site holds. The mean RMSEs for the PP-EnKF and the EnKF for the ten synthetic experiments
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Table 5.3: Root-mean-square errors of correlation fields (compared to reference correlation
fields).

RMSEs Mean

Tracer (EnKF) 0.133 0.167 0.215 0.139 0.154 0.161
0.163 0.266 0.106 0.125 0.141

Tracer (PP-EnKF)  0.142 0.169 0.213 0.128 0.155 0.162
0.161 0.260 0.113 0.137 0.137

Well (EnKF) 0.180 0.159 0.168 0.172 0.178 0.173
0.173 0.171 0.190 0.162 0.173

Well (PP-EnKF) 0.152 0.153 0.145 0.149 0.158 0.149
0.142  0.149 0.147 0.145 0.147

are very close. For the well setup, PP-EnKF has smaller RMSE values than the EnKF for all
ten synthetic cases, with on average a smaller RMSE of 13.9 %.

The results from this section support results from the overall standard deviation STD from
Figure 5.4. For the tracer setup, the similar results from this section correspond to relatively
similar overall STDs of the EnKF and the PP-EnKF in Figure 5.4. For the well setup, the PP-
EnKF resulted in a larger STD compared to the EnKF. In this section, I additionally find a better
characterization of the spatial correlation structure by the PP-EnKF, compared to the EnKF.
Thus, the larger overall uncertainty shown by the STD does not stem from additional noise, it is
rather the result of a correlation structure closer to a large-ensemble run. To summarize results
for the synthetic experiments for ensemble size 50, the PP-EnKF has both a better uncertainty
characterization and a better RMSE than the EnKF. This illustrates the significant advantages
of the PP-EnKF compared to the EnKF.

5.5 Conclusion

The ensemble Kalman filter is a powerful tool for parameter estimation used in the geosciences.
This work introduces the PP-EnKF designed to reduce spurious covariances for small ensemble
sizes. The parameter field that is estimated is split up into pilot points and non-pilot points.
The EnKF update is restricted to parameters at pilot point locations and to dynamic variables.
After the update, a kriging interpolation of the update is applied to update parameter values
at non-pilot point positions. The initially seeded spatial variability in between the pilot points
remains untouched. The implementation of the PP-EnKF is relatively straightforward, since
the definition of the state vector and the kriging interpolation can be implemented as pre- and
post-processing steps around the implementation of the classical EnKF update. The stabilizing
effect of the PP-EnKF can be compared with the hybrid EnKF and the local EnKF. I claim
that the main theoretical advantage of the PP-EnKF compared to these methods is that its
update at pilot points is computed from the unmodified ensemble covariance matrix. In the
local EnKF and the hybrid EnKF, the covariance matrix is explicitly modified. The PP-EnKF

introduces two additional input parameters compared to other EnKF methods, the locations of
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the pilot points, and the covariance matrix of the kriging interpolation. It is suggested to choose
pilot points on a regular subgrid of the model domain. Additionally, all measurement locations
should be included as pilot point locations. In general, one could vary the density of pilot point
locations according to given prior information. In regions, where large updates are expected,
the number of pilot points can be increased. The kriging covariance matrix of the PP-EnKF is
defined according to the prior variogram model, which is also used as input to generate random
fields for all EnKF methods.

The PP-EnKF compares well to other EnKF methods for two physical model setups, a solute
transport model and a model around an injection well. This is concluded from an extensive com-
parison of RMSEs between parameter estimation results from 1 000 synthetic experiments and a
synthetic true parameter field. Even for synthetic experiments with erroneous prior correlation
lengths (half and twice the correct correlation length), the performance of the PP-EnKF remains
similar to the case with the correct prior correlation length. This is important, as the prior
correlation length plays a special role in the PP-EnKF method. In the average RMSE ranking,
the PP-EnKF is third best for the tracer and sixth best for the well setup. Compared to the
EnKF, the PP-EnKF is performing significantly better in both setups.

The PP-EnKF ranks particularly well against the other EnKF methods regarding the preserva-
tion of the spatial variability throughout the estimation. Especially, for ensembles sizes of 50
and 70 and for the well model, the PP-EnKF yields the ensemble variance that compares best
to a test run with the EnKF and a very large ensemble size of 10000. In an average overall
STD ranking, the PP-EnKF ranks third best for the tracer setup and best in the well setup.
Additionally, distributed correlation fields of the PP-EnKF and the classical EnKF were com-
pared. For the well setup, the correlations of the PP-EnKF are significantly closer to a reference
field than the correlations of the classical EnKF. For the tracer setup, the correlations of the
PP-EnKF and the classical EnKF are equally close to the reference. Reproducing the posterior
variance is an important feature of an EnKF method, since many EnKF methods suffer from an
underestimation of the posterior variance that may lead to wrong interpretation of results or in
the worst case to filter divergence. The PP-EnKF not only ranks particularly well against the
other EnKF methods regarding the reproduction of the posterior variance. For a small ensemble,
it also reproduces spatially distributed correlation fields better than the classical EnKF. This
suggests that the PP-EnKF is able to preserve better than the EnKF not only the variance
in the permeability field, but also the correlations of the permeability field with the dynamic

variables.

From the aforementioned discussions I conclude that the PP-EnKF outperforms clearly the
standard EnKF, and outperforms most EnKF variants for the reproduction of the ensemble
spread. It is therefore a very interesting EnKF variant, with the need for further research to
investigate issues like the optimal placing of pilot points and other applications like the estimation

of soil hydraulic parameters.
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Conclusion

The overall objective of this thesis is to present a framework for implementing and robustly
comparing ensemble Kalman filter (EnKF) methods. These EnKF methods are applied for
parameter estimation in groundwater flow and transport problems. The numerical software
SHEMAT-Suite is presented, in particular the stochastic mode of SHEMAT-Suite that contains
the implementation of the EnKF methods from this thesis. Then, a number of EnKF methods is
robustly compared and a new EnKF method, the pilot point ensemble Kalman filter (PP-EnKF),

is introduced. The following three main conclusions can be drawn from this thesis:

e Conclusion 1: The implementation of the suite of EnKF methods in the numerical soft-
ware package SHEMAT-Suite lead to the formulation of the following three guidelines for
scientific programming: (1) open-source code, (2) modularity, (3) a distributed workflow
using git branches.

e Conclusion 2: When EnKF methods are used for estimating parameters with small en-
semble sizes, the uncertainty coming from the choice of the random seed is non-negligible.
Consequently, multiple (at least 10) parameter estimation experiments are needed for as-
sessing the relative performance of these EnKF methods.

e Conclusion 3: The PP-EnKF is an EnKF method useful for parameter estimation. The PP-
EnKF reduces two problems associated with parameter estimation using EnKF methods:

spurious correlations and an underestimation of posterior variances.

In the following, I present these conclusions in more detail alongside possible future perspec-

tives.

Chapter 3 I give an introduction to the software SHEMAT-Suite, a parallelized open-source
code for simulating flow, heat and mass transport in porous media. A suite of EnKF methods
was implemented in the so-called stochastic mode of SHEMAT-Suite. Three topics from this im-

plementation are now highlighted: (1) open-source software, (2) modular implementation, and
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(3) a workflow using the version control software git. First, open-source software is important for
the scientific process, especially concerning reproducibility and the ability to check results. For
SHEMAT-Suite, the workflow for software development is divided between open-source published
versions and internal code development. On the one hand, the major versions of SHEMAT-Suite
are published under the MIT license. On the other hand, small-step scientific software devel-
opment is carried out at research institutes as closed-source. The second topic, modularity,
is another important guideline for the software development of SHEMAT-Suite. Modularity is
applied for various parts of SHEMAT-Suite. For example, the source code of the non-linear
iteration of the time-stepping is separated from the implementation of the linear solver. This
facilitates the implementation of alternative linear solver software. Another example of mod-
ularity in SHEMAT-Suite are the property modules that define the functional relationships of
subsurface parameters. These property modules are a crucial user-interface for setting subsur-
face parameters, for example based on laboratory experiments. Therefore, the property modules
are separated from the rest of the code in order to facilitate user interaction. Concerning the
stochastic mode of SHEMAT-Suite, the implementation of EnKF methods is separated from
the EnKF update whenever this is possible. This facilitates the implementation of new EnKF
methods, as well as the comparison of existing EnKF methods, because the EnKF methods use
as much common computation steps as possible. Finally, the parameter estimation and inversion
capabilities of SHEMAT-Suite are separated from the pure forward computation. This way, a
fast and simple forward code is maintained, at the same time implementing the more sophis-
ticated inversion techniques. Separating the parameter estimation and inversion capabilities of
SHEMAT-Suite from the pure forward computation is connected to the third topic: a workflow
for using the version control software git for developing SHEMAT-Suite. In SHEMAT-Suite, git
branches are used most prominently for developing the three main source code versions, called
modes: (1) forward mode, (2) stochastic mode, and (3) AD-mode for inversion using automatic
differentiation. Additionally, git branches are used for implementing performance enhancements
such as parallelization and automatic differentiation. These performance enhancements require
additional source code and employing git branches It is possible to keep the core part of the
source code simple, while still using the advantages of the performance enhancements in the
specialized branches. Finally, git branches are used in their classical usage for implementing
additional functionalities of SHEMAT-Suite.

Outlook: A number of developments can be implemented in SHEMAT-Suite building on the
work presented in this thesis. Regarding further software development, the testing of SHEMAT-
Suite could be enhanced in one of the three following ways. First, the existing suite of test models
for output comparison should be continually extended, and more realistic test simulations could
be introduced to enhance the testing. Additionally, the testing of SHEMAT-Suite could be
automated and more closely linked to the software development of SHEMAT-Suite by following
a continuous integration workflow. Another step for enhancing the testing of SHEMAT-Suite
would be implementing unit tests for specific parts of the software, such as the linear solvers
or the EnKF update equation. Aside from the testing, it is planned to use the modularity of
SHEMAT-Suite for linking SHEMAT-Suite to other available software, for example for including

advanced input and output handling, or parallelized data assimilation algorithms. Moreover, the
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modular software development makes additional performance studies possible. For example, one
can compare the pure forward computations of SHEMAT-Suite to another computation using the
parallelized code version or the code with automatic differentiation. Finally, the git workflow that
was applied to SHEMAT-Suite is easily generalized. For avoiding trade-offs between readable
and fast source code, I propose adopting this workflow in other scientific software development

projects.

Chapter 4 From the performance comparison of EnKF methods in Chapter 4 it can be con-
cluded that multiple parameter estimation experiments are needed for assessing the performance
of EnKF methods. I compare EnKF methods on the basis of a comparison between the root
mean square error (RMSE) for the updated parameter field and a synthetic true parameter field.
In particular, the differences between these RMSE scores for different EnKF methods are com-
pared. The question of the significance of these relative RMSE differences arises. To clarify this,
I derive thresholds on relative RMSE differences that can be significantly detected using 1, 10,
or 100 synthetic parameter estimation experiments. Single synthetic experiments are generally
not enough to show a significant difference in performance of EnKF variants, even when these
EnKF variants result in RMSE differences of 15 %. In this study, even 10 synthetic experiments
were not enough to show that relative RMSE differences between EnKF variants smaller than
10% are significant. On the other hand, in this work and for two different groundwater flow
model setups, 100 synthetic experiments allow to show that RMSE differences between EnKF
variants larger than 2% are significant. As in addition other sources of uncertainty play a role
in real-world studies and could be considered as well in comparison studies, I conclude that at

least 10 synthetic experiments are needed to rigorously compare two EnKF variants.

Outlook: On the basis of these results, I propose carrying out a larger number of and more
profound EnKF method comparisons. In particular, the results of the study from Chapter 4
could be extended by including additional methods in the comparison, for example including
combinations of methods. Recently introduced candidates for additional method comparisons
include forward model simplification methods, such as principal component analysis and reduced
basis methods, or ensemble smoother methods, like the iterative ensemble smoother. If the
computational resources exist, the comparison should be extended to more and larger simulations,
for example using three-dimensional simulations. In general, finding performance advantages of
EnKF methods that are specific to certain types of simulations would be interesting. For example,
the relative performance of an EnKF method could be linked to the relative heterogeneity of
a parameter field. Another possible extension of the testing framework would be explicitly
including the runtime of the methods. In the comparison in this thesis, I wanted to compare the
performance independently of the runtime, but a more sophisticated performance measure could
be developed that measures both, the update performance and the runtime. While a minimum
number of necessary synthetic experiments was found in this thesis, a more in-depth analysis
of the number of synthetic experiments needed for certain comparisons could be carried out.
Finally, applying the robust comparison from this work to more realistic simulations and to data

assimilation experiments using real observations can yield interesting insights in the performance
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of EnKF methods.

Chapter 5 I introduce the PP-EnKF. The PP-EnKF is compared to other EnKF methods in
two groundwater model flow setups: a tracer setup computing groundwater flow and solute
transport, and a well setup computing groundwater flow around a central injection well. In the
average RMSE ranking, the PP-EnKF is third best for the tracer setup and sixth best for the well
setup. Compared to the EnKF, the PP-EnKF is performing significantly better in both setups.
For the tracer setup the PP-EnKF is even better than most other enhanced EnKF methods.
Additionally, I show that the PP-EnKF is stable with respect to the choice of prior correlation
length and the choice of different pilot point grids. The preservation of the spatial variability
throughout the estimation is a particular strength of the PP-EnKF. Especially, for comparably
small ensemble sizes of 50 and 70 and for the well model, the PP-EnKF yields the ensemble
variance that compares best to the reference ensemble variance (computed with a very large
ensemble) out of all EnKF methods. In order to verify that the PP-EnKF indeed suppressed
spurious correlations, distributed correlation fields computed by the PP-EnKF and the classical
EnKF were compared. For the well setup, the correlations of the PP-EnKF were significantly
closer to the reference than the correlations of the classical EnKF. All in all, the performance
of the PP-EnKF makes it an attractive alternative to existing EnKF methods, especially for

large-scale applications using a small ensemble size.

Outlook: The PP-EnKF can be further tested and applied to more complicated parameter esti-
mation experiments. Regarding testing, it would be beneficial to further test the performance of
the filter for various, possibly heterogeneous, pilot point grid configurations. Another interesting
research direction could be optimizing the pilot point locations using optimal experimental de-
sign strategies. Regarding possible applications for the PP-EnKF, I propose three-dimensional
and real-world simulations. On the basis of the results from this work, I predict that the PP-
EnKF will be computationally beneficial in large-scale simulations. In particular, the PP-EnKF
is expected to be fast, when the parameter estimation is applied to a limited portion of a large
model. Often groundwater hydrological models or geothermal reservoir engineering models meet
this condition, as large subsurface models are computed, while information is only available at a
limited number of locations, for example around wells or boreholes. According to the distribu-
tion of information, the pilot point grid can be adjusted to the locations that are known to yield

additional information. This makes the PP-EnKF well adapted for such simulations.

Overall conclusions Two general conclusions are now listed that the author draws from the
work on this thesis: (1) for scientific software development, (2) for EnKF method development,
in particular in groundwater flow estimation. Regarding scientific software, this work supports
the conclusions that are most probably already drawn from many other works: Modularity
is very important in order to maintain clarity of the code. This is especially important for
parameter estimation software, where scientific codes of different disciplines are merged. In
the authors view, more time and funding should be invested into refactoring existing scientific

software for making it easily accessible. Concretely, this refactoring could include two points:
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First, modern scientific software, including for example the usage of version control, should
be turned into its own documentation. Secondly, scientific software should contain citations
and method explanations comparable to the ones found in scientific publications. Regarding
EnKF development, the main conclusion from this work, as stated before, is that comparison
of methods should be enhanced. In general, the work on this thesis would have benefited from
a set of existing benchmark permeability estimations. Such benchmarks are the only way to
ensure true reproducibility and also comparability between several studies. Thus, a suite of
benchmarks should be initiated. In the field of parameter estimation, growing computational
resources will lead to the possibility of using more refined estimation methods, for example
moving from Kalman filtering to particle filtering. However, in the author’s view there will
always be the need for efficient methods like the EnKF', since the physical simulation models will

keep growing alongside the computational resources as well.

Outlook: The future of numerical and inverse groundwater flow modeling will most certainly
be shaped by the growth of computational power. On the basis of the method comparisons of
this thesis, I propose that part of this growing computational power should be used for robust
performance comparisons, for example by carrying out multiple synthetic experiments in these
performance comparisons. Secondly, I propose the PP-EnKF as an efficient method for parameter
estimation in large-scale groundwater flow models that reduces spurious correlations. Finally, a
third proposition following from this work concerns scientific software development. For scientific
software development, I propose the usage of the flexible git branches workflow that has been
applied to SHEMAT-Suite in this thesis. This workflow can help to develop scientific software

that is stable, and at the same time fast, easily manipulable, and readable.
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SHEMAT-Suite input files

In this appendix, the input files for SHEMAT-Suite referred to in the main text are collected.

Forward mode

Input File A.1: Input file of the THEIS model.

# title
theis

# linfo
3 23

runmode

active head
PROPS = const
USER = none

H H H O H N

# grid

69 69 1

# delx

3%x160.0d0 1%80.0d0 1%40.0d0 3%20.0d0 3%*10.0d0
5%x5.0d0 5*2.0d0 11%1.0d0 2%*1.0d0 1.0d0 2%*1.0d0
11%1.0d0 5%2.0d0 5%5.0d0 3%10.0d0 3%20.0dO
1%40.0d0 1%80.0d0 3%*160.0d0

# dely

3*x160.0d0 1%80.0d0 1%40.0d0 3*20.0d0 3*10.0d0
5%5.0d0 5%2.0d0 11%1.0d0 2*1.0d0 1.0d0 2%1.0dO
11%1.0d0 5%2.0d0 5*5.0d0 3*10.0d0 3%*20.0dO0
1%40.0d0 1%80.0d0 3%x160.0dO

# delz

20.4d0

# timestep control

1

1.0 1.0 1.0 0.0

# tunit

86400

# time periods, records=1
0.0 3.5 100 1lin

# nlsolve

50 0

# lsolvef (linear solver control)
1.4d-10 64 500
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# nliterf (nonlinear iteration control)
1.0d-10 1.0dO

# head bcn, records=1, direction=0
35 356 1 -0.00140 O

# head bcd, simple=right, value=init
# head bcd, simple=back, value=init
# head init

4761%20.0d0

# temp init

4761%20.0d0

# fluid props

1000.0d0 5.0D-8 4218.0d0 0.65d0 1.0D-3 0.02d0

# units

0.1d0 1.4d0 1.d0 1d-12 1.d-8 1.d0 1.d0 3.35d0 0.0d-06
2300000.d0 1040 0.d0 0.dO

# uindex
4761%1

# file output: vtk hdf

Inverse mode

Input File A.2: First part of the input file for the inverse simulation showing specifications for
the flow and heat transport model. runmode 2 defines the inverse simulation.
Under # unit, the line breaks are only for visualization, in the SHEMAT-Suite
input file, one should enter one line per unit. The (...) at the end indicates

that the input file is cut for better visualization.

# title
demo_inversion
linfo
111

runmode

#
1
#
2
# USER=none

# PROPS=bas

# active temp head
# grid

150 1 75

# delx

150%2

# dely

1%2

# delz

75%2

# file output vtk hdfb

# borehole logs, records=3
50 1 L1

75 1 L2

100 1 L3
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# nlsolve
100 O

lsolvef (linear solver control)

.d-8 64 300

nliterf (nonlinear iteration control)
.0d-6 1.

[l T -

lsolvet (linear solver control)

.d-6 64 300

nlitert (nonlinear iteration control)
.0d-4 1.

[l I -

# units
0.1e-9 1.4d0 1.d0 1.00e-20 1.e-10 1.4d0

1.d0 2.00 0.0e-06

2300000. 10d0 0.d0 0.d0 2.0 1.0d6 0.05 0.2

0.20 1.d0 1.d0 1.00e-16 1.e-10 1.d0 1.

2300000. 10d0 0.d0 0.d0 2.0 1.0d6 0.05

0.20 1.d0 1.d0 1.00e-16 1.e-10 1.4d0 1.

2300000. 10d0 0.d0 0.d0 2.0 1.0d6 0.05

0.20 1.d0 1.d0 1.00e-16 1.e-10 1.d0 1.

2300000. 10d0 0.d0 0.d0 2.0 1.0d6 0.05

0.25 1.d4d0 1.d0 1.00e-14 1.e-10 1.d0 1.

2300000. 10d0 0.d0 0.d0 2.0 1.0d6 0.05

0.33 1.d0 1.d0 1.00e-16 1.e-10 1.40 1.

2300000. 10d0 0.d0 0.d0 2.0 1.0d6 0.05

0.20 1.d0 1.d0 1.00e-16 1.e-10 1.d0 1.

2300000. 10d0 0.d0 0.d0 2.0 1.0d6 0.05

0.10 1.d4d0 1.d0 1.00e-18 1.e-10 1.d0 1.

2300000. 10d0 0.d0 0.d0 2.0 1.0d6 0.05

0.10 1.d40 1.d0 1.00e-18 1.e-10 1.d0 1.

2300000. 10d0 0.d0 0.d0 2.0 1.0d6 0.05

# uindex
895%9 5%8 125%x9 25x8 105*%9 45%x8 86*9 64%*8
27%9 123%*8 T7*9 741%8 2x7 130%8 20%7 111%8

76%7 55x8 95%7 37*8 97+7 16%*6 18*8 98%7 34*6 97*7 b53*6 T79*7 71%6

do0 2.50 0.0e-06
0.2
do 2.00 0.0e-06
0.2
do0 2.00 0.0e-06
0.2
d0 2.00 0.0e-06
0.2
do 2.00 0.0e-06
0.2
do0 2.00 0.0e-06
0.2
do0 2.00 0.0e-06
0.2
do 2.00 0.0e-06
0.2

66*x9 84%8 46*9 104x*8
39%7 93%8 b7*7 74x%8

60*7 90%6 42*7 108*6 23%7 127*6 5x7 2236*6 9*4 116*6 34*x4 90%*6
60%4 65%6 85x4 40%6 110%4 15x6 727x4 8%5 122%4 28x5 103%4 47x*5

84x4 66%5 64%4 86x5 45%4 105%5 25%4 125x5 722x3 28%1 115%3 35%1
95%3 b55*x1 92x2 58%1 89*2 61*x1 82x2 68*1 68%2 82x1 63%2 87*1 58x%2

92x1 52%2 98%1 33%x2 117*1 22*2 128%1

# temp init
11250%11.0
# head init
11250%150.0

# temp bcn, simple=base
150%0.06
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# temp bcd, records=150, error=ignore
1 1 75 11 0

2 1 75 11 0

3 1 75 11 0

4 1 75 11 0

5 1 75 11 0

6 1 75 11 0

7 1 75 11 0

C...)

Input File A.3: Continuation of the input file for the inverse simulation showing specifications
for the inverse model. The (...) at the end indicates that the file is cut for
better visualization. Here, more observation data records have been removed.

# inverse
1
5 0.0001 1.0
00
1
# errors
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
enable unit
00111111
# enable property
000O0O0OOOOO0OO0OO0OOOOOOO
000O0OO0OOOOOOOOOOOODO
0O00O0OOOOOOOOOOOODO
000O0O0OO0OO0O10O0OO0OO0OO0OO0OO0OO0ODO0
000O0OO0OO0OO0O10O0O0OO0OO0OO0OO0OO0ODO0
000O0O0OO0OO0O10O0OO0OO0OO0OO0OO0OO0ODO0
000O0O0OO0OO0O10O0OO0OO0OO0OO0OO0OO0ODO0
000O0OO0OO0OO0O10O0OO0OO0OO0OO0OO0OO0ODO0
0O000O0O0OO0OO0O10O0O0OO0OO0OO0OO0OO0ODO0
# optimize property, records=6
4 1 1z
5 1 1z
6 1 1z
71 1z
8 1 1z
9 1 1z
# data, records=60
16.02 0.1 75 1 6 2 1
16.06 0.1 75 1 7 2 1
16.04 0.1 75 1 8 2 1
16 0.1 75 1 9 2 1
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Stochastic mode

#

Input File A.4: Genera
TRACER.

Title

TRACER

#

linfo

4%0

#

3
#
#

#

runmode

PROPS=const
USER=none

simulate

1000

#
1
#

O # O O #* » ~» H#

enkf iteration

enkf postcompute none

parameter group, records=1
parfile=sgsim_k_wavereal.par
4 log

standard deviation

.0d0 0.0d0 0.0d0 2.302585093d+000 0.0d0 0.0d0 0.0d0 0.0d0 0.0d0
.0d0 0.0d0 0.0d0 0.0d0 0.0d0 0.0d0 0.0dO 0.0d0

units

.1d0 1.d0 1.d0 3.1632d-10 1.d-9 1.d0 1.d0 3.35d0 0.0d-06

2300000.d0 5.0d0 0.d40 0.d0 0.0d0 0.0d0 0.0d0 0.0dO

#
1
#

split units, records=1

uindex

961*1

Input File A.5: SHEMAT-Suite EnKF input file for the synthetic parameter estimation

#
10

TRACER.

nrobs_int

| SHEMAT-Suite input file for the synthetic parameter estimation

125



126 A. SHEMAT-Suite input files

# state vector activity
01100

# observation variances
0.04+0 0.04+0 50.0d4-6 0.04+0 0.0d0 0.04d0

# checktrue

# true file names
TrueTRACER.plt
TrueTRACER_chem.plt

# ex_unit

0

# observation file names
observations_TRACER.dat



List of symbols

a
EnKF method in a synthetic experiment used for a method comparison 55
a€R"
input parameter of the correlation function p in the local EnKF 49
a€R"T
correlation length used for the simulation of permeability fields 52, 53
b
EnKF method in a synthetic experiments used for a method comparison 55
c[ML™3
tracer concentration in the species transport equation 11
cf [LPT2071
fluid specific heat capacity in the heat transport equation 11, 12
cm [L2T72071
matrix specific heat capacity in the heat transport equation 11, 12
Cobs [N /L?]
random variable for an observed tracer concentration 84
Cov
sample covariance function 84
D [L2T7]
hydrodynamic dispersion tensor in the species transport equation 11
deRT[L]
distance between two locations in the computation of the correlation matrix p of the local
EnKF 48, 49
de Rt

Euclidean distance between two grid cells used for permeability estimation 52
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d e R™™
mean vector of observations in the Kalman filter 18, 75, 77
da<b, Ne ¢ [0’ 1]

relative difference of RMSE means 7% " for EnKF method @ and 7" for EnKF method b,
where 7% "e < 7bne 55 56

d; e R

member of the ensemble of observations in the EnKF 21, 48-50, 75, 78
amar

largest insignificant relative difference d®<? " of RMSE means of a method comparison 56
dmin

smallest significant relative difference d*<®"e of RMSE means of a method comparison 56

D
set of insignificant relative differences d®<% ™ of RMSE means of a method comparison 56
D't
set of significant relative differences d*<? ™ of RMSE means of a method comparison 56
dV [L?]
control volume in the definition of the source term W of the groundwater flow equation 11
F
cumulative distribution function of a predicted state vector element in the normal score
EnKF 50, 51
G
cumulative distribution function of the Gaussian pdf with zero mean and unit standard
deviation used in the normal score EnKF 50
G
Gaussian bell curve in the local EnKF 49
g9 [LT?]

gravitational constant in the groundwater flow equation 10, 11, 13
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H c R7m X (np+na)
measurement operator of the pilot point Kalman filter and the PP-EnKF 77-80
H € R"mx"s

measurement operator of the Kalman filter and the EnKF 18, 19, 21, 48, 75

water table drawdown in the Theis model 33

reference hydraulic head in the groundwater flow equation 10, 12-15
ho [m]
unperturbed water table in the Theis model 33
hobs [L]
random variable for an observed hydraulic head 84
H, € R"mX"s»p
measurement operator projected onto the parameter space in the dual EnKF 49
H, € R"mXMs.s

measurement operator projected onto the space of dynamic variables in the dual EnKF 50

K € Rsxmm

Kalman gain matrix, computed from (1) covariance matrices in the Kalman filter and (2)

sample covariance matrices in the EnKF 19, 21, 48
K [L?]
hydraulic permeability tensor in the groundwater flow equation 10, 11, 13
k [ms™!]
hydraulic conductivity of the Theis problem 33
k [LT™!]
hydraulic conductivity tensor in the groundwater flow equation 13
Kioe € R""m

Kalman gain after elementwise multiplication with correlation matrix in the local EnKF
48
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Kiog [—]
random variable for an isotropic logarithmic hydraulic permeability value 11, 84
K, € R"s»Xnm
Kalman gain matrix projected onto the parameter space in the dual EnKF 49
K, € R"s.s%nm
Kalman gain matrix projected onto the space of dynamic variables in the dual EnKF 50
ko [LT)
hydraulic conductivity in x-direction in the groundwater flow equation 12-14
kS LY

hydraulic conductivity in x-direction at cell boundary in negative x-direction in the dis-

cretization of the groundwater flow equation 13-15
k§3+) [LT—I]

hydraulic conductivity in x-direction at cell boundary in positive x-direction in the dis-

cretization of the groundwater flow equation 13-15
ky [LT71

hydraulic conductivity in y-direction in the groundwater flow equation 13, 14
Ry [LT]

hydraulic conductivity in y-direction at cell boundary in negative y-direction in the dis-

cretization of the groundwater flow equation 13-15
k" [LT]

hydraulic conductivity in y-direction at cell boundary in positive y-direction in the dis-

cretization of the groundwater flow equation 13-15
k. [LT]

hydraulic conductivity in z-direction in the groundwater flow equation 13, 14
B (LY

hydraulic conductivity in z-direction at cell boundary in negative z-direction in the dis-

cretization of the groundwater flow equation 13-15
kg"r) [LTfl]

hydraulic conductivity in z-direction at cell boundary in positive z-direction in the dis-

cretization of the groundwater flow equation 13-15
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L

dimension symbol for length 10-13, 48, 84
M

forward solution of the ensemble Kalman filter 20, 75
M

dimension symbol for mass 10-12
M € R"s*"s

matrix for linear forward computation of the Kalman filter 18, 74, 75
N

set of natural numbers 17, 18, 20, 21, 49, 55, 75, 77
N

dimension symbol for amount of substance 84
ng €N

number of dynamic variables in the pilot point Kalman filter 77
ne € N

ensemble size of the ensemble Kalman filter 20, 21, 50, 55, 62, 75, 78, 83
ng € N

number of grid cells of a model domain 53, 55, 83
nm €N

number of observations in the Kalman filter or EnKF 18, 21, 75
ny, € N

number of pilot point parameters in the pilot point Kalman filter 77
n, € N

number of non-pilot point parameters in the pilot point Kalman filter 77
NS

normal score transform used in the normal score EnKF 50, 51
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ng € N

size of the state vector of the Kalman filter or EnKF 17, 20, 49, 74, 77
negp €N

number of parameters in the state vector in the dual EnKF 49
ngs € N

number of state variables in the state vector in the dual EnKF 49
Ngyn € N

number of synthetic experiments in a method comparison 55, 58, 62, 64
n; € N

number of assimilation times of the Kalman filter or ensemble Kalman filter 20, 51

P E R'I‘LS XNg

covariance matrix of the predicted state vector of the Kalman filter, result of the forward
computation 18, 19, 75, 77-79

P[ML'T~?
fluid pressure in the definition of the reference hydraulic head h 10
PO € RMsXns
initial covariance matrix of the Kalman filter 18, 19, 75
Pa 6 Rns XMNg
covariance matrix of the updated state vector of the Kalman filter 19, 75, 78

]?Cl,<b7 Ne

fraction of synthetic experiments, for which one EnKF method a yields a smaller RMSE
than another EnKF method b 55, 56

PY, € R"x"a

updated covariances between pairs of dynamic variables in the pilot point Kalman filter

77,78
P, € RMxT

updated covariances between dynamic variables and parameters at pilot points in the pilot
point Kalman filter 77, 78
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X
PY, € R

updated covariances between parameters at pilot points and dynamic variables in the pilot
point Kalman filter 77, 78

P2 € R™X"

updated covariances between all pairs of parameters at pilot points in the pilot point
Kalman filter 77, 78

pb<a7 Ne

fraction of synthetic experiments, for which one EnKF method b yields a smaller RMSE
than another EnKF method a 55

Pyq € R"axnd

covariances between pairs of dynamic variables in the pilot point Kalman filter 77-79
Pyq. € RMXnd

sample covariances between pairs of dynamic variables in the pilot point EnKF 78-80
Py, € RMaxm»

covariances between dynamic variables and parameters at pilot points in the pilot point

Kalman filter 77-79
Pdp,e c R™axnp

sample covariances between dynamic variables and parameters at pilot points in the pilot
point EnKF 78-80

P, € R XNy

covariances between dynamic variables and parameters at non-pilot points in the pilot point

Kalman filter 77, 79
Pdr,e € Rnaxnr

sample covariances between dynamic variables and parameters at non-pilot points in the
pilot point EnKF 80

P, € R™*m

ensemble covariance matrix of states and parameters of the ensemble Kalman filter 21, 48,

49, 75, 80
Piybria € R %

covariance matrix of the hybrid EnKF 49
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P, € R (mptna)
interpolation operator in the pilot point Kalman filter and the PP-EnKF 78-80
P, € R"»x"d

covariances between parameters at pilot points and dynamic variables in the pilot point
Kalman filter 77-79

Pq. € RX7d

sample covariances between parameters at pilot points and dynamic variables in the pilot
point EnKF 78-80

X
P, € Rmwxm

covariances between all pairs of parameters at pilot points in the pilot point Kalman filter
7779

Ppp,e c RTLPXTLP

sample covariances between all pairs of parameters at pilot points in the pilot point EnKF
78-80

Ppr c R xnr

covariances between parameters at pilot points and parameters at non-pilot points in the
pilot point Kalman filter 77, 79

Ppr,e c R xnr

sample covariances between parameters at pilot points and parameters at non-pilot points
in the pilot point EnKF 80

P, € R

covariances between parameters at non-pilot points and dynamic variables in the pilot point
Kalman filter 77, 79

Prd,e € Rnrxnd

sample covariances between parameters at non-pilot points and dynamic variables in the
pilot point EnKF 80

Prp € R Xnp

covariances between parameters at non-pilot points and parameters at pilot points in the
pilot point Kalman filter 77, 79

P) € R

fixed covariance matrix between pilot point parameters and non-pilot point parameters in
the pilot point Kalman filter and the PP-EnKF 78-80, 82
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P,y € R

sample covariances between parameters at non-pilot points and parameters at pilot points
in the pilot point EnKF 80

P, € R™xm

covariances between pairs of parameters at non-pilot points in the pilot point Kalman filter
77,79

Prr,e € Rnrxmr

sample covariances between pairs of parameters at non-pilot points in the pilot point EnKF
80

Pstatic € R™>"
static component of the covariance matrix of the hybrid EnKF 49
Pyppy € Rm70m
covariance matrix among simulated measurements in the pilot point Kalman filter 77, 79

P

yppy,e € RIImXMm

sample covariance matrix among simulated measurements in the pilot point EnKF 78, 79
P,, € Rmxnm

covariance matrix among simulated measurements in the Kalman filter 79
Py . € RMmxnm

sample covariance matrix among simulated measurements in the EnKF 79

Q [m®s™]
pumping rate of the well in the Theis model 33
qa<b,ne c [07 1]

quotients of RMSE means 7% ™ from synthetic experiments with ensemble size n. for EnKF
methods a and b 55

set of real numbers 50, 51
R € RmXnm

measurement error matrix of the Kalman filter and the EnKF 18, 19, 21, 48, 75, 77, 78
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7 [m]

distance from the well in the Theis model 33
o e ¢ RT

RMSE mean for given EnKF method a and ensemble size n. 55, 56
FLte € RY

RMSE mean for given set of synthetic experiments X, EnKF method a and ensemble size
Ne DD

e € RT

RMSE mean for given EnKF method b and ensemble size n. 55
—b,ne +
Ty “€R

RMSE mean for given set of synthetic experiments X, EnKF method b and ensemble size
Ne DD

rone e Rt

single RMSE for given synthetic experiment j, EnKF method a and ensemble size n., same
as RMSE;, but inputs made explicit 55

RMSE; € R+

root-mean-square error of a single synthetic experiment j with given EnKF method and

ensemble size 53, 83

Rt
set of positive real numbers 48, 51, 52, 55
S [
storage coefficient of the Theis problem 33
Ss (L]
specific storage coefficient in the groundwater flow equation 10, 13-15, 33
STD, € R
overall standard deviation of a single synthetic experiment j with given ensemble size for
one of the EnKF methods in the synthetic experiment 83
T e R [T]

computing time of a given EnKF run 51
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dimension symbol for time 10-13, 51

temperature in the heat transport equation 11

the time variable in the Theis problem 33

the time variable in the groundwater flow equation or other transient simulations 10, 11,
13, 20

TDual c Rt [T]
computing time of a given run of the dual EnKF 51
TIterative € R+ [T]

computing time of a given run of the iterative EnKF 51

v [LT71]

Darcy specific discharge in the groundwater flow equation 10, 11

W [T~

sources and sinks term of the groundwater flow equation 10, 11, 13

w
well function used in the Theis model 33

Wy [L3T7]
external volume flow in the definition of the sources and sinks term W in the groundwater
flow equation 11

X
subset of synthetic experiments of a method comparison 55

x € R™s
State vector of the Kalman filter 17

x? € R"

initial mean state vector of the Kalman filter 18, 19, 74



138 List of symbols

X? € R"s
member of the ensemble of initial states of the EnKF 75
x% ¢ R"s

updated state vector of the Kalman filter, result of the analysis/update equation 18, 19,
75, 78

x§ € R

dynamic variables in the updated state vector of the pilot point Kalman filter 77, 78
xg; € R™

dynamic states part of the state vector after the state update in the pilot point EnKF 78
z¢ € R

single component of a member of the ensemble of updated states of the EnKF, result of

the analysis/update equation 50, 51
x¢ € R

member of the ensemble of updated states of the EnKF, result of the analysis/update
equation 20, 21, 48, 75, 78

x, € R"™

pilot point parameters in the updated state vector of the pilot point Kalman filter 77, 78
xp, € R"™

pilot point parameter part of the updated state vector in the pilot point EnKF 78
Xy, € R'=r

parameter part of the state vector after the parameter update in the dual EnKF 49, 50
X3 € R

state variable part of the state vector after the state update in the dual EnKF 50

x/ € R"s

predicted state vector of the Kalman filter, result of the forward computation 18, 19, 74,
75, 77, 78

xf; € R™
dynamic variables in the predicted state vector of the pilot point Kalman filter 77, 78
X£ ; € R

dynamic states part of the state vector in the pilot point EnKF 78
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x{ eR
single component of a member of the ensemble of predicted states of the EnKF 50, 51
xlf € R

member of the ensemble of predicted states of the EnKF, result of the forward computation
20, 21, 48-50, 75, 78

xg € R"™
pilot point parameters in the predicted state vector of the pilot point Kalman filter 77, 78
f
X, € R"»
pilot point parameter part of the state vector in the pilot point EnKF 78
f s
X, € R™sp
parameter part of the state vector in the dual EnKF 49
xff e R"
non-pilot point parameters in the predicted state vector of the pilot point Kalman filter 77
xfii e R™
non-pilot point parameter part of the state vector in the pilot point EnKF 78
xf;i € R

state variable part of the state vector after the first forward computation in the dual EnKF

49
xi,cf € RMs:s

state variable part of the state vector after the second forward computation in the dual

EnKF 50
xmeas < [R7s

hypothetical true state vector that would lead to measurement observations after applying

the measurement operator H in the EnKF 21
z5 €R

left artificial support point for the inverse normal score transform in the normal score EnKF

51
zfeR

right artificial support point for the inverse normal score transform in the normal score

EnKF 51
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y € R"
means of measurement observations before perturbation in the EnKF 21

Y; € R

vector containing the estimated mean logarithmic permeabilities across a model domain

for synthetic experiment j 55, 83
Vij eR

estimated mean logarithmic permeability at grid cell ¢ for synthetic experiment j 53, 83
Yii; €R

logarithmic permeability of realization k at grid cell ¢ for synthetic experiment j 83

Y€ RY

vector containing the synthetic reference logarithmic permeabilities across a model domain

for synthetic experiment j 55, 83
vieR

synthetic reference logarithmic permeability at grid cell ¢ for synthetic experiment j 53, 83

z [L]

height above a reference height in the groundwater flow equation 10, 13

At [T]

discretization time interval 13-15
Az [L]

discretization interval in x-direction 13-15
Axi) (L]

distance between the centers of neighboring grid cells of cell ¢ in negative x-direction 14,
15

Ax (L]
distance between the centers of neighboring grid cells of cell ¢ in positive x-direction 14, 15
Ay [L]

discretization interval in y-direction 13-15
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ij(_) (L]

distance between the centers of neighboring grid cells of cell j in negative y-direction 14,
15

Ay§~+) (L]
distance between the centers of neighboring grid cells of cell j in positive y-direction 14, 15
Az [m]
thickness of the aquifer in the Theis model 33
Az [L]
discretization interval in z-direction 13-15
A7) L)

distance between the centers of neighboring grid cells of cell k£ in negative z-direction 14,
15

Az (1)

distance between the centers of neighboring grid cells of cell k in positive z-direction 14, 15

dimension symbol for thermodynamic temperature 11, 12
a € (0,1]

damping factor of the damped EnKF 48, 53
pe0,1]

covariance weight of the hybrid EnKF 49, 53, 64, 67
€; € R™m

perturbation ensemble for observations generated from Gaussian noise 21
A eRT [L]

characteristic length scale of the correlation matrix in the local EnKF 48, 49, 53, 64, 67
A [MLT—3071]

thermal conductivity tensor of a matrix-fluid mixture in the heat transport equation 11
pp [MLIT]

fluid dynamic viscosity in the groundwater flow equation 10, 11, 13
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p
spherical correlation function used for the simulation of permeability fields 52
pE R7s Xnm
correlation matrix in the local EnKF 48, 49
po [ML™]
reference fluid density of the reference hydraulic head from the groundwater flow equation
10, 11, 14
p* [ML™]

source fluid density in the definition of the source term W 11

p(cob57 Klog)

correlation function between tracer concentration at an observation location and the loga-

rithmic permeability at a grid location 84
pr ML~
fluid density in the groundwater flow equation 10-13

P(hob& Klog)

correlation function between hydraulic head at an observation location and the logarithmic

permeability at a grid location 84
pm [ML™?]

matrix density in the heat transport equation 11, 12

pr -]

relative fluid density variation with respect to a reference density pg 10, 13, 14
o -]

relative fluid density variation at cell boundary in negative z-direction 14, 15
) -]

relative fluid density variation at cell boundary in positive z-direction 14, 15
o. € RT [N/L3)

Noise of concentration measurements 53, 82, 84
on € RY [L]

Noise of hydraulic head measurements 53, 82, 84
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sample variance of the logarithmic permeability at grid cell 7 of synthetic experiment j 83
ox € RT [log(1/L?)]

sample standard deviation of logarithmic permeability values of a single isotropic perme-
ability 84

¢ [-]

porosity in the groundwater flow equation 10, 11






List of acronyms and definitions

AD
Automatic Differentiation (AD) is a technique to evaluate the derivatives of a function
defined by a computer program! 3, 27

ASCII
The American Standard Code for Information Interchange (ASCII) is a character encoding
standard for electronic communication? 29, 31

Bi-CGStab
The Bi-Conjugate Gradients Stabilized (Bi-CGStab) method is a fast and smoothly con-
verging iterative variant of the Bi-Conjugate Gradients (Bi-CG) method for the numerical
solution of nonsymmetric linear systems (van der Vorst, 1992) 4, 24, 33, 52

BLAS
The Basic Linear Algebra Subprograms (BLAS) are Fortran-callable routines that provide
standard building blocks for performing basic vector and matrix operations (Lawson et al.,
1979, Dongarra et al., 1988, 1990) 4, 25

CMake
CMake is an open-source, cross-platform family of tools designed to build, test and package
software? 29

CPU

The central processing unit (CPU) is the electronic circuitry within a computer that exe-

cutes instructions that make up a computer program? 42

damped EnKF

The damped EnKF is an EnKF method that reduces the filter inbreeding problem with
the help of a damping parameter (Hendricks Franssen and Kinzelbach, 2008) 6, 32, 53, 56,
58, 60, 62, 64, 69, 72, 82, 86, 90, 92, 95

"https://www-sop.inria.fr/tropics/ad/whatisad.html [Accessed 2020/04,26]
https://en.wikipedia.org/wiki/ASCII [Accessed 2020/05/11]
3https://cmake.org/ [Accessed 2020/05/11]
“https://en.wikipedia.org/wiki/Central processing unit [Accessed 2020/05/11]
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Doxygen

Doxygen is the de facto standard tool for generating documentation from annotated C++

sources, but it also supports other popular programming languages® 27, 28, 30
dual EnKF

The dual EnKF is an EnKF method for sequential estimation of both parameters and state
variables of a hydrologic model by separating the update equation for parameters and state
variables 6, 25, 32, 46, 49, 51, 56, 58, 60, 62, 69, 90, 92

DuMuX

DUNE for multi-{phase, component, scale, physics,. ..} (DuMuX) is a free and open-source
simulator for flow and transport processes in porous media, based on the Distributed and
Unified Numerics Environment (DUNE) (Flemisch et al., 2011) 3

EFCOSS

The Environment for Combining Optimization and Simulation Software (EFCOSS) is an
interactive software environment that combines numerical simulation codes with optimiza-

tion software packages in an automated and modular way (Rasch and Biicker, 2010) 5
EnKF

The ensemble Kalman filter (EnKF) is a sequential Monte Carlo method that provides an
alternative to the traditional Kalman filter to better handle large state spaces and nonlinear
error evolution (see Evensen, 2009) I1I-V, VII-IX, 1-7, 9, 17, 19-21, 23, 25, 27, 30-32, 37,
39, 40, 4548, 50, 51, 53, 55, 56, 58-62, 64, 66-76, 79-84, 86, 90-94, 97-99, 101, 103

EoCoE

The Energy oriented Centre of Excellence (EoCoE) is part of the Horizon 2020 European

funding for Research & Innovation® 42

FEFLOW

The finite element subsurface FLOW simulation system (FEFLOW) solves the flow, mass,
and heat transport equations in porous and fractured media by a multidimensional finite

element method for complex geometric and parametric situations (Diersch, 2014) 3
Fortran

Fortran is a general-purpose, compiled imperative programming language that is especially

suited to numeric computation and scientific computing” 4, 25, 31

Shttp://doxygen.nl/ [Accessed 2020/05/11]
Shttps://www.eocoe.eu,/ [Accessed 2020/05/11]
"https://en.wikipedia.org/wiki/Fortran [Accessed 2020/04,/26]
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GSLib

The Geostatistical Software Library (GSLib) was originally used for a collection of geo-
statistical programs developed at Stanford University (Deutsch and Journel, 1995) 4, 25,
31

HDF5

The Hierarchical Data Format (HDF5) is a data model, library, and file format for storing
and managing data® 4, 25, 29, 33, 35

hybrid EnKF

The hybrid EnKF is an EnKF method that operates by perturbed observations that are
generated by adding random noise consistent with observation error statistics to the control
set of observations (Hamill and Snyder, 2000) 6, 25, 32, 46, 49, 53, 56, 58, 60, 62, 64, 67,
69, 71, 72, 74, 76, 80, 82, 94, 95, 98

iterative EnKF

The iterative EnKF is an iterative formulation of the EnKF for strongly nonlinear systems
in the perfect-model framework (Sakov et al., 2012) 6, 25, 32, 46, 51, 56, 58, 60, 62, 69, 72,
94, 95

kriging

Kriging is a method of interpolation for which the interpolated values are modeled by a

Gaussian process governed by prior covariances® 7, 90

LAPACK

The Linear Algebra PACKage (LAPACK) is a library of Fortran 77 subroutines for solving
the most commonly occurring problems in numerical linear algebra (Anderson et al., 1999)
4, 25

local EnKF

The local EnKF is an EnKF method that reduces noisiness by employing a distance-
dependent reduction of background error covariances estimates (Hamill et al., 2001) 6, 25,

32, 46, 53, 56, 58, 60, 62, 64, 67, 69, 71, 72, 74, 76, 80-82, 98

master

Git-branch of SHEMAT-Suite optimized for pure forward computation 28, 29, 43

Shttps://portal.hdfgroup.org/display /HDF5/HDF5 [Accessed 2020,/04/26]
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master-ad

Git-branch of SHEMAT-Suite for AD-mode, deterministic inversion 28, 30
master-all

Git-branch of SHEMAT-Suite containing the full functionality of the software 28, 43
master-sm

Git-branch of SHEMAT-Suite for stochastic mode, deterministic inversion 28, 30, 31
MIT license

The MIT License is a permissive free software license originating at the Massachusetts
Institute of Technology (MIT) in the late 1980s'® 102

MODFLOW

The USGS Modular Three-Dimensional Finite-Difference Ground-Water Flow Model, or
MODFLOW, is a popular open-source groundwater flow model distributed by the U.S.
Geological Survey (Hughes et al., 2017) 3

Monte Carlo

Monte Carlo (MC) is a broad class of computational algorithms that rely on repeated
random sampling to obtain numerical results'' 111, VII, 3, 4, 7, 19, 25, 27, 28, 42, 47, 73

MPI

The Message Passing Interface (MPI) is a standardized and portable message-passing stan-
dard designed by a group of researchers from academia and industry to function on a wide

variety of parallel computing architectures'? 42

normal score EnKF

The normal score EnKF is an EnKF method that ensures that the joint state vector of the
EnKF follows marginal Gaussian distributions at all locations and all times by applying a
normal-score transform (Zhou et al., 2011) 6, 25, 32, 46, 56, 58, 60, 62, 69

OpenGeoSys

OpenGeoSys is a scientific open-source initiative for numerical simulation of thermo-hydro-

mechanical-chemical processes in porous media (Kolditz et al., 2012) 3

Yhttps://en.wikipedia.org/wiki/MIT _License [Accessed 2020/05,/11]
"https://en.wikipedia.org/wiki/Monte Carlo_method [Accessed 2020,04/26]
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OpenMP

OpenMP is a specification for a set of compiler directives, library routines, and environ-
ment variables that can be used to specify high-level parallelism in Fortran and C/C++
programs'3 3, 26, 29

PDAF

The Parallel Data Assimilation Framework (PDAF) is a software environment for ensemble

data assimilation'? 42

pdf
probability density function 50, 70

PDI
The portable data interface (PDI) offers to exchange data between the application code
and various external data handlers, such as for example the file-system for I/O or another
code for code-coupling®® 42

PETSc
The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data
structures and routines for the scalable (parallel) solution of scientific applications modeled
by partial differential equations!'® 42

PP-EnKF
The pilot point ensemble Kalman filter (PP-EnKF) is an EnKF method tailored towards
reducing spurious correlations in parameter estimation by updating in a first step only
parameters at a fixed subset of locations, called pilot points (Chapter 5) IV, V, VIII, IX,
7,8, 71,73, 74, 76, 78-84, 86, 90, 92, 94, 95, 97-99, 101, 103, 104

RMSE
Root-Mean-Square Error 1V, VIII, 5, 7, 40, 47, 53, 55-58, 60-62, 64, 65, 67-70, 73, 74,
83-86, 90, 92, 94, 95, 97-99, 103, 104

SGSim

Sequential Gaussian Simulation (SGSim) is part of the GSLIB 4, 25, 31, 39, 53, 82

Y3https: //www.openmp.org/about /openmp-faq/#Whatls [Accessed 2020/04,26]
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SHEMAT-Suite

The Simulator for HEat and MAss Transport suite (SHEMAT-Suite) is a numerical software
for simulating flow, heat and species transport enhanced with various capabilities for inverse
problems and data assimilation III, V, VII-IX, 1, 3-5, 7, 9, 11-16, 21-29, 31-33, 35-37,
39, 40, 42, 43, 81, 101-104

spurious correlations

Correlation bias in EnKF methods caused by small ensemble sizes I11I-V, 1, 6, 7, 71, 73,
74, 76, 79, 80, 83, 86, 95, 101, 104

STOMP

Subsurface Transport Over Multiple Phases (STOMP) is a scalable implementation of a
multifluid subsurface flow and transport simulator with capabilities for volatile organic
compounds (White et al., 2008) 3

synthetic experiment

A comparison of a number of data assimilation methods for a given groundwater flow
problem and for a given set of synthetically generated observations IV, 5-8, 45, 47, 48, 51,
53, 55, 58, 62, 64, 65, 67, 69, 70, 73, 74, 82-84, 86, 89, 92, 94, 96-99, 103, 104

Tapenade

Tapenade is an Automatic Differentiation (AD) tool which, given a Fortran or C code that
computes a function, creates a new code that computes its tangent or adjoint derivatives
(Hascoét and Pascual, 2013) 4, 25

TOUGH

The Transport Of Unsaturated Groundwater and Heat suite (TOUGH) are multi-dimen-
sional numerical models for simulating the coupled transport of water, vapor, non-conden-
sible gas, and heat in porous and fractured media (Finsterle et al., 2014) 3

uindex
Unit index of SHEMAT-Suite. One unit corresponds to a set of input parameters 35-37

USGS

United States Geological Survey 4

VTK

The Visualization Toolkit (VTK) is an open-source, freely available software system for 3D
computer graphics, modeling, image processing, volume rendering, scientific visualization,
and 2D plotting (Schroeder et al., 2006) 4, 25, 33
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