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The FFT-based method introduced by Moulinec and Suquet [9] serves as an alternative for the classical finite element based
simulation of periodic microstructures. This simulation approach makes use of fast Fourier transforms (FFT) as well as fixed-
point iterations to solve the microscopic boundary value problem which is captured by the Lippmann-Schwinger equation.
Kochmann et al. [5] introduced a model order reduction technique using a reduced set of frequencies to decrease the com-
putational effort of solving the Lippmann-Schwinger equation in Fourier space. This earlier proposed method is based on a
fixed sampling pattern, which determines the reduced set of frequencies. Instead of the fixed sampling pattern, we propose to
use a geometrically adapted choice of frequencies, which corresponds to the representation of phases within the considered
microstructure.

© 2021 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Reduced FFT-based microstructure simulation

The FE-FFT-based two-scale method may be used to capture the overall material behavior as well as microstructural material
changes [7, 10]. The method utilizes the finite element (FE) method to solve the macroscopic boundary value problem (BVP)
and the fast Fourier transform (FFT)-based method [9] to solve the microscopic BVP. Although the FFT-based method already
serves as an efficient alternative to the classical FEM in the context of periodic microstructures, the development of model
order reduction (MOR) techniques is advisable for the two-scale simulation of complex structures in reasonable computation
times. An efficient two-scale simulation approach is presented in [2, 5] based on a coarsely discretized microstructure. This
results in a required post-processing step to generate highly resolved microstructural results. Other, FFT-based MOR tech-
niques utilize canonical polyadic decomposition (CDP) [11] or proper orthogonal decomposition (POD) [1] to generate more
accurate results. The MOR technique, which is used in the present paper, is adapted to the spectral character of the FFT-based
simulation approach and uses a reduced set of frequencies to solve the Lippmann-Schinger equation [8] in Fourier space [6].

2 A geometrically adapted reduced set of frequencies

The accuracy of the MOR technique using a reduced set of frequencies depends on the number of considered frequencies,
but also on their choice. Since the choice of frequencies does not influence the efficiency of the method, we propose to
use a geometrically adapted sampling pattern [3] instead of the earlier introduced fixed sampling pattern [6]. Doing that, a
characteristic function is defined to be 1 within the inclusions and 0 within the matrix material to capture the microstructural

Fig. 1: Procedure for creating the geometrically adapted sampling pattern. Left: Microstructure in real space with coordinates x1 and x2,
center: Required frequencies ξ1 and ξ2 with associated amplitude A(ξ1, ξ2) for mapping the microstructure in Fourier space and right:
Resulting geometrically adapted sampling pattern.

phase distribution. This function is transferred into Fourier space and the reduced set of frequencies is defined to consist of
the frequencies with the highest amplitudes (see Fig. 1). The resulting reduced set of frequencies is subsequently used to
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decrease the computational effort of solving the Lippmann-Schwinger equation in Fourier space in terms of the basic fixed-
point scheme.

3 Numerical example

Fig. 2: Comparison of the computed stress in x-direction based on the geometrically
adapted and fixed sampling pattern. Top: Sampling patterns, center: Results from the
reduced simulation and reference solution (computed with the full frequency set) and
bottom: Errors in the reduced simulations.

In the linear elastic case, the resulting mi-
crostructural strain field is strongly related to
the present phase distribution. This results in
a very good performance of the geometrically
adapted sampling pattern [3].

Nevertheless, also for the non-linear case,
such an adapted sampling patter performs
much better than the fixed sampling pattern,
see Fig. 2. Here, the resulting microstructural
stress field in x-direction for the geometri-
cally adapted sampling pattern is compared
to the results of the fixed sampling pattern
and the reference solution (computed with the
full set of frequencies). In addition, the dif-
ference of the reduced simulations compared
to the reference solution is plotted in the bot-
tom row. It can be seen, that the geometri-
cally adapted sampling pattern leads to sig-
nificantly better results compared to the fixed
sampling pattern.

Independent of the definition of the re-
duced set of frequencies, the computational
time is reduced by about 80% using the pro-
posed MOR technique.

In order to further improve the accuracy
of the reduced simulation, the sampling pat-
tern may also be defined based on the current
strain field [4]. In that case, the sampling pat-
tern needs to be updated after each load step.
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[11] J. Vondřejc, D. Liu, M. Ladecký and H.G. Matthies, Comput. Methods in Appl. Mech. Eng. 364, 112890. (2020).

© 2021 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com


