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Kurzfassung
Der zunehmende Anteil erneuerbarer Energiequellen im Stromnetz führt zu Abregelungen,
die die volle Ausschöpfung des ökologischen und wirtschaftlichen Potenzials von erneuer-
barem Strom verhindern. Power-to-X -Prozesse können diesen Strom für die Herstellung
von Produkten nutzen, die sonst aus fossilen Quellen erzeugt würden. Für einen größtmög-
lichen Nutzen müssen diese Prozesse allerdings hinsichtlich maximaler Ressourceneffizienz
optimiert sein. Der alleinige Austausch von Rohstoffen ist in der Regel nicht zielführend.
Daher entwickeln wir zur Identifizierung und zum Design nachhaltiger Prozesskonzepte
optimierungsbasierte Methoden, die wir auf die Herstellung von Dimethoxymethan (DMM
oder OME1)—ein vielversprechender synthetischer Kraftstoff und Zwischenprodukt für die
Herstellung von längerkettigen Oxymethylenethern (OME3-5)—anwenden.
Um die etablierten Prozesskonzepte zur DMM- und OME3-5-Produktion analysieren zu

können, implementieren wir detaillierte Prozessmodelle. Mit diesen zeigen wir, dass selbst
unter Berücksichtigung einer maximal möglichen Wärmeintegration diese Prozesse deutlich
ineffizienter sind als die zur Produktion von anderen synthetischen Kraftstoffen. Für eine
effiziente Produktion von DMM müssen also grundlegend neue Prozesse entwickelt werden.
Power-to-X-Prozesse befinden sich in der Regel auf einem unterschiedlichen Entwick-

lungsstand. Um einen fairen Vergleich und optimales Prozessdesign zu ermöglichen, ent-
wickeln wir ein Framework, das optimierungsbasierte Methoden auf verschiedenen Hier-
archieebenen einbezieht. Das Framework ermöglicht eine systematische Prozessentwick-
lung und -bewertung hinsichtlich drei Indikatoren: Produktionskosten, Exergieeffizienz und
CO2-Fußabdruck. Bei dessen Anwendung auf fünf Reaktionswege für die DMM-Produktion
haben wir die direkte CO2-Reduktion als am nachhaltigsten identifizieren können.
Für eine erfolgreiche industrielle Umsetzung sind detaillierte Prozessmodelle erforderlich.

Da die hohe Komplexität solcher Modelle oft Schwierigkeiten für die deterministische Op-
timierung mit sich bringt, entwickeln wir für die reduktive DMM-Produktion ein hybrides
Prozessmodell bestehend aus Gaußschen Prozessen und künstlichen neuronalen Netzen.
Zur Lösung des nichtkonvexen Optimierungsproblems verwenden wir eine reduced-space-
Formulierung und ein Hybrid aus der McCormick- und der auxiliary variable-Methode, die
in unserem deterministischen globalen Solver MAiNGO implementiert sind.
Da die Entwicklung von Power-to-X-Prozessen oft diskrete Entscheidungen enthält, ana-

lysieren wir Problemformulierungen bzgl. ihrer Eignung für die globale Superstrukturop-
timierung und wenden die vielversprechendste auf die Optimierung der reduktiven DMM-
Produktion an. Für gemischt-ganzzahlige nichtlineare Probleme, die nichtkonvexe Funktio-
nen enthalten, konnten wir diejenigen Formulierungen als vielversprechend identifizieren,
die die Anzahl der Optimierungsvariablen reduzieren. Obwohl diese nichtkonvexe Terme
mit sich bringen, bleiben die Relaxierungen für unsere Beispiele vergleichsweise eng. Um
allgemeingültige Aussagen ableiten zu können, wäre allerdings deren Anwendung auf eine
große Bibliothek von Benchmark-Problemen unterschiedlicher Komplexität notwendig.
Die Anwendung von optimierungsbasierten Methoden auf die DMM-Produktion hat

großes Potenzial aufgezeigt. Es wurde aber auch Verbesserungspotenzial identifiziert—
sowohl bzgl. der Methoden als auch der Produktion von DMM als Power-to-X-Prozess.
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Summary
The increasing share of renewable energy sources in the electricity grid causes curtailments,
which prevent exploiting the full environmental and economic potential of renewable elec-
tricity. Power-to-X processes can utilize this electricity to produce certain products that
would have been otherwise produced from fossil-based sources. To benefit the most, these
Power-to-X processes need to be optimized for a maximum resource-efficiency. We demon-
strate that the sole replacement of raw materials for industrial process concepts is not ex-
pedient. We therefore develop optimization-based methods to identify sustainable process
concepts and support their optimal design. These methods are applied to the production of
dimethoxymethane (referred to as DMM or OME1)—a promising synthetic fuel candidate
and intermediate for the production of longer-chain oxymethylene ethers (OME3-5).
To analyze DMM and OME3-5 production using established process concepts, we imple-

ment process models with detailed thermodynamic models from the open literature. Even
by considering their maximum potential for heat integration, these process concepts have
been found to be much less efficient than those for the production of other synthetic fuel
candidates. Therefore, fundamentally new processes need to be designed.
Emerging Power-to-X processes are usually on a very different stage of development. To

enable a fair comparison and support process design, we develop a methodology that incor-
porates optimization-based methods on different hierarchy levels. The methodology allows
a systematic way to design and evaluate each candidate regarding three key performance
indicators: production costs, exergy efficiency, and global warming impact. Applied to five
reaction pathways for DMM production, we identified the direct reduction of CO2 to be
the most suitable one for sustainable DMM production at its current state.
For a successful implementation, detailed process models are necessary. As the com-

plicated form of such models often cause difficulties for deterministic optimization, we
develop a hybrid process model for reductive DMM production incorporating Gaussian
processes and artificial neural networks. For solving the resulting nonconvex program, we
use a reduced-space formulation and a hybrid between the McCormick and the auxiliary
variable method implemented in our deterministic global solver MAiNGO. Only with these
measures on both the modeling and algorithm level, convergence was possible.
As Power-to-X design problems often contain discrete decisions, we analyze different

problem formulations regarding their suitability for global superstructure optimization and
applied the most suitable one to the design problem for reductive DMM production. For
mixed-integer nonlinear programming problems containing nonconvex functions, we iden-
tified such formulations as particularly promising that reduce the number of optimization
variables. Although they introduce nonconvex terms, corresponding relaxations remain
comparably tight for our example problems. However, a large library with benchmark
problems of different complexity would be necessary to derive generally valid statements.
The application of optimization-based methods to DMM production has demonstrated

great potential. However, also limitations and further improvement potential was
identified—for both the methods and DMM production as a Power-to-X process.
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1. Introduction
On a global scale, the share of renewable energy sources (RES) in electricity production
is still small but is growing continuously. In order to prevent economic losses and idle
green resources caused by energy curtailments, corrective actions need to be taken. In this
regard, the concept of Power-to-X is considered promising to effectively utilize electricity
from RES with the goal of exploiting its environmental and economic potential. On the
one hand, this can be realized by flexibly adapting the operation of industrial processes to
the fluctuating electricity supply, also referred to as demand side management (DSM) [1].
On the other hand, Power-to-X processes can be designed to temporarily store renewable
electricity, e.g., as a chemical, when supply exceeds demand (e-Storage). Once the demand
exceeds supply, these processes release their stored low-carbon electricity again. Finally,
Power-to-X processes can be designed to replace fossil-based products with such that can
be produced from renewable electricity, also referred to as e-Production. e-Production can
be used to make RES accessible for sectors that heavily rely on fossil resources, i.e., chem-
ical industry, heating, and transportation [2]. This concept is called sector coupling and
explicitly promising for that part of the transportation sector that can not be electrified
directly (e.g., by battery electric vehicles (BEV)). For such applications, liquid fuels pro-
duced from biomass (biofuels) and/or renewable electricity (e-fuels) can be advantageous
due to their comparatively high energy density.
In this regard, oxymethylene ethers (OMEn, CH3O(CH2O)nCH3) of different chain

length n have received considerable attention as full substitutes [3–5] or blend compo-
nents [6–9] for diesel fuels. Currently, fossil diesel largely dominates fuel consumption in
long-distance and heavy-duty transportation and will maintain its crucial role in the next
decades, as highlighted by the International Energy Agency [10]. The addressable market
for OMEn as a fuel alternative is therefore enormous and ideally complements the one for
gasoline fuel alternatives such as ethanol from renewable resources [11]. OMEn can be pro-
duced from renewable syngas via biomass gasification [12–14], or from renewable hydrogen
(H2) and carbon dioxide (CO2) [15–19] potentially achieving carbon neutrality over their
entire life cycle. Their volumetric energy density (∼20 MJ L−1 [20]) is about 40 % lower
than that of diesel, but it is similar to that of other e-fuels [21] and about one order of
magnitude higher than that of Li-ion batteries for BEV [22]. This makes OMEn partic-
ularly suitable for long-distance and heavy-duty transportation. Both OME1 (methylal
or dimethoxymethane, hereinafter referred to as DMM) with only one formaldehyde (FA)
group incorporated and OME3-5 offer outstanding combustion characteristics (e.g., high
thermodynamic efficiency [6, 8, 9], low pollutant emissions [4, 6–9]) but differ in produc-
tion, infrastructure, and engine compatibility. Whereas OME3-5 has more diesel-like prop-
erties and can be combusted in conventional diesel engines, DMM needs to be either mixed
with additives to gain engine compatibility [6] or blended with diesel [7, 23]. However, en-
gine modifications seem to remain indispensable for both DMM and OME3-5 [3, 4, 24].
In addition to the potential direct application in internal combustion engines, DMM is a
key intermediate in OME3-5 production via paraformaldehyde [25], trioxane [26, 27], or in
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1. Introduction

novel routes via gaseous formaldehyde [28, 29].
Compared to other e-fuel candidates, e.g., hydrogen, methanol, dimethylether (DME),

both DMM and OME3-5 production requires a high amount of renewable electricity [30].
Corresponding reaction pathways are rather hydrogen-inefficient, as significant amounts
of water are formed as side products (e.g., within the production of the intermediate
FA [16]). To decrease the amount of water produced within their value chains and in turn
increase their resource efficiency, new catalysts have been developed both for DMM [31]
and OME3-5 [28, 29] synthesis. However, corresponding processes have not been developed
yet. This may have two reasons: First, the reaction pathways that have become feasible
with these new catalysts are at a very early stage of development and have therefore not
received much attention. As only little information about corresponding reaction mecha-
nisms and performance is available, process development and their fair comparison with
more established process alternatives is difficult. Second, some of these reaction path-
ways require rather harsh operating conditions. This makes the application of complicated
thermodynamic models inevitable and optimization-based process design challenging.
To approach these problems, several methods have been developed in the field of pro-

cess systems engineering. The probably most well-known method for early-stage process
development is the application of the Douglas hierarchy [32]. Whereas this hierarchical
decision procedure provides a systematic way of designing a process based on general input
information about the underlying design task, it does not explicitly differentiate between
the quality and different type of input data. Such a differentiation is however crucial for
the development and fair comparison of processes that are on a very different stage of de-
velopment. Moreover, since heuristic methods tend to miss promising process alternatives,
the use of optimization-based methods is desirable. Fortunately, the increasing interest in
Power-to-X technologies has spurned research in this field. Many methods, guidelines, and
frameworks for techno-economic analysis (TEA) [33], life cycle assessment (LCA) [34], and
combined TEA and LCA [35] dedicated to technologies with varying technology readiness
levels (TRL) have been published recently. However, none of them combines process eval-
uation based on TEA and LCA with optimization-based process design for technologies
with different TRL to explicitly provide feedback for further catalyst development. This
combined consideration is however key for the identification of promising reaction pathways
and in turn for the design of Power-to-X processes with a high resource efficiency.
Optimization-based methods are essential to maximize the efficiency of Power-to-X pro-

cesses. In this regard, deterministic optimization is a powerful tool to optimize a process
based on a certain objective (e.g., maximization of efficiency) and constraints (e.g., ful-
fillment of safety measures). As such processes exhibit complex chemical and physical
phenomena, among other things resulting from complicated thermodynamic models, cor-
responding optimization problems are usually nonconvex. Local optimization methods may
therefore lead to suboptimal solutions and miss the real potential of a process candidate. In
contrast, global optimization methods guarantee global optimality but are computationally
demanding. Especially for process models that require complicated thermodynamic mod-
els, like many Power-to-X processes do given their need for harsh operating conditions to
make CO2 reactive, the optimization problem easily becomes computationally intractable.
The presence of discrete decisions to also consider structural process alternatives (e.g., dif-
ferent distillation configurations) results in superstructure optimization problems, which
makes global process optimization even more challenging. To still solve these complicated
optimization problems, suitable problem formulations—potentially tailored to the applied
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global solution algorithm—need to be utilized.
This thesis has the goal to provide optimization-based methods for the development of

Power-to-X processes. To advance the production of a synthetic fuel that offers a high
compatibility with today’s infrastructure, we develop corresponding methods and apply
them to the production of DMM from renewable sources. In particular, we want to find
the reaction pathway that allows the most sustainable production of DMM, which in turn
could be used for more resource-efficient OME3-5 production compared to conventional
processes. To reach this goal, we develop a methodology that enables a fair comparison
between reaction pathways and processes that are on a very different stage of development.
To advance DMM production, we develop tailored process models for the most promising
reaction pathway, which enable deterministic process optimization while keeping model
accuracy high. As for optimal process design usually also discrete decisions need to be
taken (e.g., distillation column sequencing, integration into the entire value chain with dif-
ferent process options) we analyze several mixed-integer nonlinear programming (MINLP)
problem formulations to identify their characteristics and finally enable computationally ef-
ficient superstructure optimization for problems that contain nonconvex functions. Finally,
we estimate the potential of the new reaction pathways for DMM synthesis to increase the
efficiency of OME3-5 production.
The thesis is organized as follows: In Chapter 2, background information about the

available reaction pathways for DMM synthesis based on methanol are summarized. In
Chapter 3, we implement detailed process models to analyze DMM and OME3-5 production
incorporating established process concepts, which we use for the process comparison with
more advanced reaction pathways. In Chapter 4, we develop a hierarchical process devel-
opment and evaluation methodology that allows a systematic comparison of processes that
are on a different stage of development and apply it to DMM production. Based on this
comparison, we develop data-driven process models that provide a high accuracy and can
still be used for deterministic global optimization. As optimal design problems for Power-
to-X processes often require discrete decisions and are therefore difficult to solve globally,
we analyze conventional and rather unconventional MINLP formulations for nonconvex
problems in Chapter 5. Finally, Chapter 6 summarizes the key results of the dissertation
and proposes future research directions.
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2. Reaction Pathways for
Dimethoxymethane Synthesis

For an overview on available reaction pathways for DMM production as a potential Power-
to-X process, this chapter provides background information on available reaction pathways
for DMM synthesis from methanol, H2, and CO2. Commercial DMM production is based on
the established reaction pathway (Section 2.1), whereas the more direct pathways (Section
2.2-2.5) have been proposed just recently. Herein, we present their key ideas. For more
detailed information, we refer to the review article of Sun et al. [31].

2.1. Established Pathway
Currently, DMM is typically produced by the reaction of methanol with (typically aqueous)
FA:

2CH3OH + CH2O −−⇀↽−− DMM + H2O. (R1)

Thus, two intermediates are required: methanol and FA. Methanol can be produced di-
rectly from H2 and CO2 according to the reaction

3H2 + CO2 −−⇀↽−− CH3OH + H2O. (R2)

FA is typically available as aqueous solution. It is produced from methanol either via
partial oxidation or via combined partial oxidation and dehydrogenation [25]. Their overall
reaction is

CH3OH + 1
2O2 −−→ CH2O + H2O. (R3)

An alternative access to FA is via methanol dehydrogenation [36]. As the process concept
for the established pathway intends to represent the state-of-the-art benchmark process for
DMM production and methanol dehydrogenation is still at an early stage of development,
we do not consider this (potentially beneficial) access to FA for the process concept of the
established pathway. All in all, the overall reaction equation starting from H2 and CO2 is

9 H2 + 3 CO2 + 1
2 O2 −−⇀↽−− DMM + 5 H2O. (R4)

The process concept for the established reaction pathway is presented in Section 3.1.

2.2. Oxidative Pathway
The direct oxidation of methanol to DMM involves two sequential reactions occurring in
the same reactor: in-situ methanol oxidation to FA and subsequent FA acetalization with
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2. Reaction Pathways for Dimethoxymethane Synthesis

methanol to DMM. Both add up to the overall reaction equation

3CH3OH + 1
2O2 −−→ DMM + 2H2O, (R5)

which is identical to the overall reaction equation of the established pathway both starting
from methanol (Reaction (R1) + (R3)) and starting from H2 and CO2 (Reaction (R4)).
The generated FA from methanol oxidation is directly trapped by methanol to yield DMM,
thus avoiding the isolation and purification of FA. Within this reaction system, the pro-
duction of one molecule of DMM is accompanied by the formation of two molecules of
water (Reaction (R5)) [31].
In contrast to the established pathway, these water molecules are not bound to FA

(resulting in methylene glycols), such that the formed water can be more easily removed
from the reaction mixture and purged from the process.
For the experimental direct oxidation of methanol to DMM (Reaction (R5)), a gaseous

substrate mixture of methanol and an oxidant (typically air) is fed into a fixed-bed reactor.
The reactor is operated continuously under atmospheric pressure at temperatures between
120 °C and 240 °C and gas hourly space velocities (GHSV) between 10.000 mL h−1 g−1

cat
and 40.000 mL h−1 g−1

cat [31]. To ensure safe operation, the applied methanol concentration
should stay outside of the explosive range (7–36 % in air).
Extensive research on the direct oxidation of methanol toward DMM has resulted in a

large number of bifunctional catalysts comprising redox and acidic active sites. The bi-
functional nature of such catalysts plays a key role in directing the reaction network toward
the selective formation of DMM. An appropriate ratio between redox and acidic proper-
ties is crucial for high DMM selectivities (80–99 % [31]). Among the reported catalysts,
silicia-modified and TiO2-supported vanadium oxide (VTiSi) features a state-of-the-art
performance with an DMM selectivity of up to 99 % at a methanol conversion of 51 % and
a reaction temperature of 140 °C (Appendix Tab. B.1) [37].

2.3. Reductive Pathway
The direct reduction of CO2 to DMM incorporates CO2 and H2 into methanol following
the overall reaction equation

2CH3OH + CO2 + 2H2 −−⇀↽−− DMM + 2H2O. (R6)

First, methyl formate (MF) is formed by a coupled CO2 hydrogenation and esterification
with methanol. A further hydrogenation step of MF to methoxymethanol (MM) takes
place, before a transacetalization with an additional methanol molecule leads to DMM [38–
40].
In contrast to the aforementioned pathways, where FA is produced in a redox-inefficient

oxidation step either in a dedicated process step (cf. established pathway) or in-situ (cf.
oxidative pathway), FA formation is avoided in the reductive pathway. This results in
a lower overall H2 consumption—the main cost driver of e-fuels—following the overall
reaction equation starting from H2 and CO2

8 H2 + 3 CO2 −−⇀↽−− DMM + 4 H2O. (R7)
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2.4. Dehydrogenative Pathway

The experimental resource-efficient reduction of CO2 toward DMM (Reaction (R6)) is
enabled by a homogeneous ruthenium-based catalyst, which is dissolved together with a
co-catalyst into a liquid methanol solution. Under high pressure (80 bar) and high temper-
ature (80 °C), turnover numbers (the amount of substrate molecules converted into product
molecules per active catalyst site, TON) of up to 214 toward DMM could be achieved [38].
Schieweck and Klankermayer [39] later exchanged the ruthenium-based catalyst by an
earth abundant cobalt catalyst to perform the same reaction. A study by Siebert et al.
[40] revealed further potential of the ruthenium system: By using a Design of Experiments
approach, a TON of 786 for DMM could be achieved. Although TON and yield (product
of selectivity and conversion) correlate linearly for a fixed catalyst concentration, a high
TON does not necessarily mean a high yield. For low catalyst concentrations, product
yield can be low although the TON of the catalyst is high. For industrial implementation,
achieving a reasonable high DMM yield is key—preferably with only a small amount of
catalyst thus high TON. For the reduction of CO2 toward DMM, a maximum yield of
8.3 % (selectivity of 81.8 %, conversion of 10.8 %) has been achieved (Appendix Tab. B.1).

2.4. Dehydrogenative Pathway
A further non-oxidative pathway for DMM synthesis can be achieved by coupling the
dehydrogenation of methanol to FA with the acetalization of FA with methanol [41]:

3CH3OH −−⇀↽−− DMM + H2O + H2. (R8)

The prominent advantage of the dehydrogenative pathway is the replacement of the oxida-
tive formation of FA by methanol dehydrogenation leading to the co-formation of valuable
H2 and less water. The produced molecular H2 can be recycled to the methanol produc-
tion process leading to the same overall savings in H2 consumption as for the reductive
pathway (cf. Reaction (R7)). No complex catalyst recycling needs to be realized due to
the heterogeneous reaction system. In contrast to the oxidative pathway, the absence of
an oxidizing agent further improves operational safety as only gaseous methanol need to
be supplied.
The experimental dehydrogenation of methanol (Reaction (R8)) proceeds in a gas-phase

fixed-bed reactor in the presence of a tailored Cu/Hß bifunctional catalyst. A high SiO2-to-
Al2O3 ratio (836) of the zeolite Hß ensures a high selectivity toward DMM (up to 80.3 %)
at a conversion of 3.6 % [41]. This is possible even at mild reaction conditions due to
the coupling of methanol dehydrogenation and FA acetalization. Temperatures at around
200 °C, atmospheric pressure, and a GHSV of 14.549 mL h−1 g−1

cat are sufficient (Appendix
Tab. B.1).

2.5. Transfer-Hydrogenative Pathway
Similar to methanol dehydrogenation, methanol transfer-hydrogenation releases one mole
H2 per mole DMM produced following the overall reaction

3CH3OH + R −−⇀↽−− DMM + H2O + R . (R9)
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2. Reaction Pathways for Dimethoxymethane Synthesis

Starting with three equivalents of methanol, in a first step, the dehydrogenation of one
methanol molecule takes place. The (formally) liberated molecular hydrogen is converted
in-situ in the hydrogenation of a model liquid-organic hydrogen carrier substance (denoted
by R ). Thus, downstream purification of the off gas to access molecular hydrogen
is omitted. A subsequent reaction between the FA molecule produced from methanol
dehydrogenation and the second equivalent of methanol takes place to form MM. A third
equivalent of methanol can then undergo a condensation reaction with MM leading to the
desired product DMM [42].
Similar to the other non-oxidative pathways (reductive and dehydrogenative pathway),

the transfer-hydrogenation of methanol toward DMM benefits from the same savings in
overall H2 consumption (cf. Reaction (R7)). These savings are enabled by a beneficial H2
management via the regeneration of H2 from its carrier substance and its recycling.
The transfer-hydrogenation of methanol (Reaction (R9)) was published recently by Os-

terthun [42] and requires the presence of a homogeneous iridium catalyst and the presence
of a Lewis acid. TONs up to 204 for DMM could be achieved for a system at 100 °C and
20 bar. A selectivity as high as 98.2 % at a methanol conversion of 0.9 % could be achieved
so far (Appendix Tab. B.1).
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3. Benchmark Processes of
Oxymethylene Ether Production

To provide a benchmark for DMM and OME3-5 production, this chapter presents pro-
cess chains that contain only industrial process steps or state-of-the-art process steps from
literature. Section 3.1 introduces the process chain for DMM production as well as corre-
sponding models that have been developed to calculate its process efficiency. In Section
3.2, we develop process models required for estimating the process exergy efficiency of
OME3-5 production.

3.1. Dimethoxymethane Production
This section briefly presents the individual steps of the benchmark process chain for DMM
production (Section 3.1.1), corresponding process models (Section 3.1.2), and the key re-
sults on process exergy efficiency (Section 3.1.3). For more detailed information, we refer
to the original publication by Bongartz et al. [16].

3.1.1. Process Description
On the basis of Reaction (R1), the benchmark process chain for DMM production is
composed of three dedicated process steps: First, methanol is produced from renewable
H2 and CO2. Then, parts of the methanol is further converted to aqueous FA, which finally
reacts with the rest of the methanol to DMM.

Methanol Production

For methanol production, a process for CO2 hydrogenation is considered [43, 44]. Therein,
H2 and CO2 enter the process at ambient temperature and pressures of 30 bar and 1 bar,
respectively, before they react under high pressure (70 bar) to methanol. The heat released
by the exothermic reaction (R2) covers the entire heat demand for distillative methanol
purification and is further used for steam production.

Formaldehyde Production

For FA production, the BASF process is considered [25]. Therein, methanol is first evap-
orated before it undergoes a partial oxidation and dehydrogenation over a silver catalyst
in a fixed bed reactor. The gaseous FA is then separated from its by-products in an ab-
sorption column using water. The heat released by the exothermic reaction (R3) covers
the entire heat demand of the process and is further used, together with the heat from the
combustion of the side products, for steam production.
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3. Benchmark Processes of Oxymethylene Ether Production

DMM Production

For DMM production, a process concept based on the work of Weidert et al. [45] is used.
Therein, a fixed-bed reactor with an acidic ion exchange resin (Amberlyst 15) as catalyst is
used to enable the formation of DMM according Reaction (R1). A reaction temperature of
about 60 °C, a pressure just higher than ambient pressure to avoid substrate evaporation,
and methanol in excess enable almost perfect selectivity toward DMM at almost complete
FA conversion. Product separation is achieved by a pressure swing distillation to break
the azeotrope between methanol and DMM. The first distillation column additionally con-
tains a reactive section for converting leftover FA and a vapor side draw for removing
excess methanol. In contrast to the two upstream processes, a net heat demand for DMM
separation remains.

3.1.2. Model Description
Thermodynamic Model

The high reactivity of FA in aqueous and methanolic solution requires a thermodynamic
model that simultaneously considers phase equlibrium and oligomerisation reactions (R10)
- (R13) toward methylene glycols (MGn) and hemiformals (HFn) to accurately represent
the system’s behavior [46].

H2O + FA←−→ MG1 (R10)

MGn−1 + FA←−→ MGn n ≥ 2, (R11)

MeOH + FA←−→ HF1, (R12)

HFn−1 + FA←−→ HFn, n ≥ 2. (R13)

These reactions take place without the presence of the catalyst and therefore need to
be considered in each process unit within the model. A corresponding thermodynamic
model (based on the UNIFAC model [47]) has been developed and extended over the
last decades [27, 48–54], which we provide (together with the process models presented
hereafter) as Aspen Plus implementations on our homepage [55]. More details on the
model implementation and its validation are given in Bongartz et al. [16].

Process Model

All process steps presented in Section 3.1.1 are implemented in Aspen Plus to enable de-
tailed process analyses and finally estimate the exergy efficiency of the entire value chain
for DMM production from renewable H2 and CO2 via established process concepts. The
process model for methanol production contains a plug flow reactor model incorporating
kinetics from Van-Dal and Bouallou [43] to model methanol formation according to Reac-
tion (R2). The separation of methanol from water is modeled using a RadFrac model for
distillation with column specifications from Otto [56]. Formaldehyde formation is modeled
using the conversion reactor model RStoic with a methanol conversion of 98 % and a se-
lectivity of 90 % toward FA [25]. The partial oxidation and dehydrogenation of methanol
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3.2. OME3-5 Production

produces water and carbon monoxide (CO) as side products. The absorption column is
modeled using a RadFrac model with chemical reactions (R10) - (R13) implemented in
the Chemistry section of Aspen Plus. The process model for DMM production contains
a plug flow reactor model incorporating kinetics from Drunsel et al. [57] to model DMM
formation according to

MeOH + HF1 ←−→ DMM + H2O. (R14)

The distillation columns for DMM purification via pressure swing distillation are modeled
using RadFrac models, of which the first one contains a kinetically controlled reactive sec-
tion to reach full conversion of FA. Similarly to the absorption column in the FA process,
the oligomerisation reactions are considered in all relevant columns. All column specifi-
cations are taken from Drunsel et al. [57]. For heat integration, two different cases are
considered: 1) pinch-based heat integration within each individual process step and sub-
sequent steam export (base case), and 2) pinch-based heat integration within the entire
process chain.

3.1.3. Process Efficiency
To evaluate the process performance of the benchmark process chain for DMM production,
the exergy efficiency ηEx is calculated as

ηEx = ṅDMM êDMM

ṅH2
êH2

+ ṅCO2
êCO2

+ Pel + ĖQ
, (3.1)

where ṅi is the molar flow of component i, êi is the molar exergy of component i, Pel is the
electricity demand for pumping and compression, and ĖQ is the exergy flow of the net heat
demand of the process chain. An ambient temperature of 25 °C is assumed. For details
about the calculation of molar exergies, we refer to the original publication by Bongartz
et al. [16].
The resulting exergy efficiency for DMM production from renewable H2 and CO2 consid-

ering established process concepts is 73 % (Fig. 3.1) and in good agreement with literature
data [19]. However, it is 13-17 percentage points lower than that of alternative synthetic
fuels [21]. These losses are mainly attributed to the low exergy efficiency of the FA pro-
duction process, in which valuable H2 is converted to water. If heat integration within the
entire process chain is considered, the exergy efficiency can be increased by 1 percentage
point to 74 %. In terms of efficiency, this increase does not seem significant. In terms of
heat demand, however, this corresponds to a reduction of about 63 % yielding a net heat
demand of 1.46 MJ kg−1 produced DMM. Given the much lower exergy efficiency com-
pared to other synthetic fuel candidates, the sole replacement of raw materials is for DMM
production as a Power-to-X process with established process concepts not useful.

3.2. OME3-5 Production
Nowadays, OME3-5 is produced industrially in China at a scale of more than 240 000 ta−1

[58]. Since their production is based on coal and future mobility is supposed to be environ-
mentally friendly, novel production processes need to be based on a renewable feedstock.
Due to increasing interest in OMEn as a synthetic fuel, much effort is being spent on new
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Figure 3.1.: Exergy flow diagram of the value chain for DMM production from H2 and CO2
via established process concepts. A pinched-base heat integration within the individual process
steps and steam export is considered. An overall process exergy efficiency of 73 % is reached.

synthesis routes [59]. However, just very few publications analyze entire process chains for
the production of OME3-5. Recently, Schmitz et al. [60] investigated the economic potential
of a process chain for the production of OME3-5 from methanol. In order to include
methanol also as a renewable feedstock, they consider a methanol price ranging from 100
US$t−1 to 500 US$t−1, where the lower and upper limit reflect the price for methanol
produced from natural gas and biomass, respectively [60]. The economic assessment is
based on material balances assuming a yield of 100% for the trioxane, DMM, and OME3-5
plant and 88% for methanol towards FA. The energy demands for the isolated processes
are either extrapolated from literature or assumed to be equal to similar processes within
the chain. For the calculation of investment cost, a general costing model for refineries
is used. Considering these process assumptions along with a low methanol price and low
investment cost, OME3-5 production using their benchmark process chain is found to be
competitive with conventional diesel. Jacob and Maus [58] use the results to compare the
process developed by Schmitz et al. [60] with the coal-based production process in China,
a novel route by Schmitz et al. [61], a perspective route using DME and FA, as well as
with the production of DMM. The coal-based production process and the perspective route
was found to be cheaper by 16% and 45%, respectively. Also Ouda et al. [62] propose a
process chain starting from methanol only. There, formaldehyde is being produced in a
first reactor at high temperature by methanol dehydrogenation. This avoids the formation
of water, such that its subsequent step, i.e., OME3-5 synthesis, is based on a water-free feed.
However, in this step, water is produced as a byproduct and shifts reaction equilibrium
towards the educts. In a subsequent article, Ouda et. al [63] propose a detailed process
concept including separation via distillation and evaluate its economic potential and its
efficiency. However, process models used are rather simple and the proposed distillation
sequence differ from other publications (e.g., [61, 64]). The same reaction to form OME3-5
from methanol and formaldehyde is considered in a holistic evaluation of biomass-based
OME3-5 production by Zhang et al. [65, 66]. There, Aspen Plus® models for each process
step have been implemented, the most relevant process parameters identified, and their
influence on OME3-5 yield analyzed. Mahbub et al. [67] extend this analysis by a life-

12



3.2. OME3-5 Production

cycle assessment taking into account biomass production, biomass transportation, chemical
conversion, fuel mixing, fuel dispensing, and vehicle combustion. It is shown that the total
life-cycle green house gas emissions can be reduced by up to 86% compared to fossil diesel.
The process efficiency, the economic competitiveness, as well as the GWI reduction

potential for OME3-5 production via formaldehyde and methanol has been assessed greatly
in literature. In contrast to such an aqueous route, the hydrous one via trioxane and DMM
is beneficial in the following: It avoids water formation, saves energy and unit operations for
its removal, and shifts reaction equilibrium to OME3-5. However, trioxane is known to be
expensive to purchase and its conventional stand-alone production energy intensive [68, 69].
By considering a novel trioxane process and integrating it into the entire value chain, these
drawbacks do not necessarily hold anymore, as methanol and formaldehyde production is
accompanied by significant steam generation. [70] deals with corresponding analyses. Due
to the benefits and just little detailed information in literature about OME3-5 production
starting from H2 and CO2 via trioxane and DMM, we implement detailed models from
literature using Aspen Plus® and conduct process simulations and analyses. This reveals
the potential and limits of integrating trioxane production into the value chain, such that
improvements for future production concepts can be derived systematically. We explicitly
provide the implementations of process models in Aspen Plus® via our homepage[55],
which can be used as a basis for further OME analyses respecting some constraints and
limits given in Section 3.2.3.1. Such model implementations including highly complex
thermodynamics have not been published by anybody else before.
Section 3.2 is organized as follows: Section 3.2.1 introduces the variety of different syn-

thesis routes for OME3-5 production by distinguishing between the aqueous and anhydrous
ones. Corresponding benefits and challenges are discussed and the potential of the anhy-
drous route highlighted. Subsequently, in Section 3.2.2 both intermediate processes for the
chain growth of DMM, i.e., trioxane and OME3-5 production, are described. Section 3.2.3
introduces the thermodynamic model used in this study, as well as its coupled reaction
kinetics, and the unit operation models used in Aspen Plus®. The process results for the
entire process chain are presented in Section 3.2.4, before Section 3.3 concludes the key
findings for the benchmark process chain for OME3-5 production.

3.2.1. Synthesis Routes
As indicated in Figure 3.2, for the production of OMEn with different chain lengths two
main elements need to be provided: methoxy groups and formaldehyde molecules. The
former constitute the end groups of OMEn and may be taken from methanol, DMM, or
DME. The formaldehyde molecules for chain growth may be provided from aqueous or
methanolic FA, paraformaldehyde (PF), or solid trioxane (TRI). The process analyzed in
this work is solely based on H2 produced from renewable energy and CO2 from biomass,
flues gas, or directly captured from air. The provision of these raw materials are not
discussed on process level within this section. Instead, they are considered in a concluding
exergy efficiency analysis of the entire production process.
Figure 3.2 gives an overview of routes starting from the CO2 sources air, biomass, and

flue gas, as well as sources for H2, i.e., water via electrolysis and biomass via gasification.
A discussion of all these routes is out of the scope of this investigation. In order to provide
a basis of information about the process steps affecting OME3-5 directly, we focus on the
synthesis reactions from different methoxy and formaldehyde sources. In general, all routes
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3. Benchmark Processes of Oxymethylene Ether Production

Figure 3.2.: Flow diagram with possible synthesis routes for OME3-5 production from renew-
able H2 and green CO2. The dashed, bold path corresponds to the anhydrous process chain
considered in this section.

can be classified either as an anhydrous or aqueous synthesis route [71], i.e., distinguishing
whether water is formed in the OME3-5 formation reaction or not.
Within the majority of currently discussed synthesis routes, water is produced as a

byproduct, e.g., in the synthesis of OME3-5 from methanol and aqueous FA (formalin).
The synthesis of OME3-5 from methanol and aqueous FA has recently received a lot of
attention as only three process steps are involved: methanol, FA, and OME3-5 production
[60, 61, 71–76]. This is particularly promising in terms of capital costs and utility demand,
which make this process route highly attractive for industrial production. However, its
main shortcoming is the need for removing water, which is produced as a byproduct and
additionally introduced into the system by the aqueous FA feed. The presence of water
lowers the selectivity towards OME3-5, as methylene glycols are formed in a competing
reaction. Schmitz et al. recently published a process, where water is removed either by
adsorption [61] or via membranes [77]. The process concept has been proven feasible in
lab-scale and is continuously improved in academia and industry.
By using PF instead of formalin, no water is introduced into the OME3-5 synthesis.

However, water is still produced stoichiometrically depending on the chain length distri-
bution of PF [78]. Oestreich et al. [79] perform reaction equilibrium experiments using
PF and methanol, coming to the conclusion that this reaction’s obstacle is the formation
of a significant amount of byproducts. For an innovative OME3-5 production process they
propose an extractive separation of OME with hydrocarbons yielding a high extraction
selectivity. By exchanging methanol with DMM as the methoxy source, the reaction se-
lectivity towards OME3-5 increases significantly [78, 80–84]. However, the production of
PF from aqueous FA via vacuum distillation [85] requires several steps under various tem-
peratures and is thus rather complex. Additionally, under given conditions PF is in solid
state, which makes its handling challenging.
Utilizing trioxane as formaldehyde source the presence of water in OME3-5 synthesis,
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and hence its complex removal, is truly avoided. In this regard, the production of OME3-5
from DMM and trioxane is an intensively investigated process [86–90]. A corresponding
process can be composed of comparatively simple unit operations and is characterized by
its high selectivity towards OME3-5: Selectivities of up to 70% are reported as well as a high
stability of the catalyst’s activity[91–96]. In contrast, some publications mention the high
energy demand of the conventional trioxane production process and its high complexity
[69]. Therefore, trioxane is often considered as an unfavorable and expensive intermediate
in OME3-5 synthesis [68]. However, it remains unclear whether these drawbacks still hold
for a novel production process based on distillation [97, 98], which eventually benefits from
heat integration with the entire value chain. This question is the subject of the following
investigation.
The other synthesis routes indicated in Figure 3.2 (e.g., synthesis from DME [99–102])

are much less discussed in literature and, thus, no suitable data for detailed process analyses
is available.

3.2.2. Process Description
The objective in Section 3.2 is the evaluation of the anhydrous OME3-5 production route
starting from H2 and CO2. Special attention is given to the integrability of a promising
trioxane process into the entire process chain and whether this overcomes the shortcomings
of the conventional trioxane production. This analysis requires detailed process informa-
tion, e.g., heat flows and temperature levels of all heat sinks and sources, as we perform a
pinch-based heat integration. For formaldehyde containing processes it is essential to use
detailed models as its reactive behavior influences such process characteristics significantly.
Due to that, each of the process chain’s five intermediate steps are modeled. Part one of
our two-part article [16] introduces the processes for methanol, FA, and DMM production
and is not discussed in further detail here. The two subsequent steps, i.e., trioxane and
OME3-5 production, are described in the following.

3.2.2.1. Trioxane Production Process

Conventionally, trioxane is synthesized from aqueous FA in a highly energy intensive pro-
cess consisting of several intermediate steps including FA concentration, reaction, trioxane
extraction, separation, and purification [69]. At least five columns and one reactor is neces-
sary for these operations. The need for an entrainer adds a further variable to the process,
thus, making optimal process design as well as operation a challenging task. Apart from
the complex flowsheet design, the loss of FA is not negligible reaching a yield of about
88%. Furthermore, a steam demand of 14.5 kg kgTRI−1 [69] is economically and ecolog-
ically disadvantageous. Due to the high complexity, high steam demand and rather low
yield of the conventional trioxane production process, Grützner et al. [97] developed a
novel process, in which separation is based on distillation only. The distillation regions of
the ternary system FA, trioxane, and water are pressure dependent, which makes pressure
swing distillation (PSD) a possible technology for trioxane separation. Only three columns
at different pressure levels, one falling film evaporator for concentrating the aqueous FA
solution, and one reactor is necessary in order to produce trioxane with a negligible loss
of FA (Figure 3.3). Thus, it is less complex, no entrainer is necessary, and a yield of al-
most 100% can be reached. These advantageous process characteristics make the concept
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3. Benchmark Processes of Oxymethylene Ether Production

Figure 3.3.: Distillation-based trioxane production with three columns at different pressure
levels, one falling film evaporator, and one reactor at the conditions given by Grützner [98].

highly interesting to be considered in a heat integrated process chain. However, no detailed
information about its energy demand of the final process is reported in literature.
The process specifications (Table 3.1) used in this work are based on the process given

in Grützner et al. [97] and Grützner [98]. They are not optimized but chosen in such a way
that technical feasibility is ensured and product purity is met. The flowsheet structure has
been derived by an inf/inf-analysis [103]. Aqueous FA of approximately 50 wt.-% is fed into
a falling film evaporator, where the solution is concentrated to up to 70 wt.-% FA, limited
by precipitation. The concentrated solution is fed together with the bottom product of
the first column K11, mainly consisting of water and unreacted FA, into reactor R11, in
which the reaction to trioxane takes place using a sulfuric acid catalyst. The process model
proposed by Grützner et al. [97] assumes the catalyst to either stay in the reactor or to
be recycled with the bottom product of column K11. The reactor effluent, i.e., trioxane,
FA, and water, is fed into column K11 and its overhead product into the next stage of the
PSD sequence, i.e., column K12. Due to the pressure shift from 0.8 bar to 4 bar, technical
trioxane can be withdrawn as the bottom product with a purity of at least 99.9 wt.-%.
The overhead product is mixed with the aqueous FA solution from the overhead product
of the concentration unit, from which pure water is separated in the third stage of the
PSD, i.e., column K13, at 2.5 bar. The overhead product is finally recycled to the first
column K11. The process specifications are summarized in Table 3.1. Precipitation and
crystallization of trioxane is not an issue since the process temperatures are higher than
the melting point of trioxane, i.e., 62 ◦C, for all process streams. The good solubility of
trioxane in water [104] as well as in ethers [85] makes the solid appearance of trioxane at
ambient conditions not being obstructive for the process.

3.2.2.2. OME3-5 Production Process

For OME3-5 production from trioxane and DMM, the variety of process alternatives is
small. Most of current research dealing with this synthesis route is about optimizing the
catalytic reaction of trioxane and DMM to OME3-5 in order to increase selectivity and
conversion [91–94, 96, 105–107]. Process-related literature is only known for the heteroge-
neously acidic catalyzed synthesis and a subsequent separation via distillation considered
herein, as well as a homogeneously catalyzed synthesis. A series of patents, e.g., [105, 106]
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3.2. OME3-5 Production

Table 3.1.: Process specifications for the trioxane production process given by
Grützner. [98]
Variable Value

Overall feed R11 K11 K12 K13
Concentration 50 wt.-% FA N/A N/A N/A N/A
Pressure 1 bar 1 bar 0.8 bar 4 bar 2.5 bar
Temperature N/A 98 ◦C N/A N/A N/A

Top N/A N/A 85 ◦C 130 ◦C 115 ◦C
Bottom N/A N/A 93 ◦C 165 ◦C 127 ◦C

Stages N/A N/A 15 21 18
Feed stage N/A N/A 9 5 12
Mass reflux ratio N/A N/A 2.21 0.12 1.20
Mass distillate to feed ratio N/A N/A 0.045 0.905 0.900
Vapor fraction N/A 0 N/A N/A N/A

, investigates the homogeneously catalyzed production process consisting of three rectifi-
cation columns, one reaction unit, and an extraction column. The catalyst, i.e., an ionic
liquid, along with the extraction unit make this process more complex compared to the het-
erogeneously catalyzed one, which was developed by Burger [87] in an industrial-academic
cooperation [108] and is shown in Figure 3.4. In this process, a mixture of trioxane and
DMM is fed into reactor R21 together with a recycle stream coming from the bottom of
column K22 and K23. The reaction in R21 takes place under moderate conditions and the
reaction mixture consisting of unreacted trioxane, DMM, OMEn>1, and undesired byprod-
ucts is fed into a sequence of columns. First, in column K21 unreacted educts, OMEn=2,
and byproducts are separated from all OMEn with a chain length higher than two FA
groups. Byproducts are separated from unreacted educts and purged through the distil-
late of column K22, while the bottom product is recycled into reactor R21. In column K23
the desired product OME3-5 is isolated from OMEn with a chain length of higher than five
FA groups.
Burger et al. [90] derived the structure of the flowsheet using the inf/inf-method [103]

and optimized the unit specifications by a two-stage optimization procedure: First, the
continuous variables, i.e., overall feed concentration and reflux ratios, were fixed and the
discrete variables, i.e., number of stages and feed stage of each column, were varied in order
to minimize each reboilers energy duty. Subsequently, the discrete variables were fixed and
the continuous variables optimized w.r.t. minimal total reboiler duty using a gradient
based method. Both steps were performed iteratively until the optimal unit specifications
given in Table 3.2 were found. We increased the number of stages in all columns in order
to reach the reboiler duties given by Burger et al. [90].

3.2.3. Model Description
All process simulations performed in this section are built on thermodynamic and chemical
reaction models from literature, which are implemented in Aspen Plus®. The models of the
first three process steps, i.e., methanol, formaldehyde, and DMM production, are covered
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3. Benchmark Processes of Oxymethylene Ether Production

Figure 3.4.: Distillation-based OME3-5 production with three columns at different pressure
levels and one reactor at moderate conditions given by Burger et al. [90].

Table 3.2.: Process specifications for the OME3-5 production process given by Burger et al.
[90] The stage specifications have been adjusted in order to meet product specifications.
Variable Value

Overall feed R21 K21 K22 K23
Concentration 51.6 wt.-% Trioxane N/A N/A N/A N/A
Pressure 1 bar 1 bar 1 bar 2.63 bar 0.32 bar
Temperature N/A 70 ◦C N/A N/A N/A

Top N/A N/A 50 ◦C 18 ◦C 134 ◦C
Bottom N/A N/A 186 ◦C 83 ◦C 250 ◦C

Stages N/A N/A 30 30 15
Feed stage N/A N/A 3 31 4
Mass reflux ratio N/A N/A 0.048 9.700 0.215
Mass distillate to feed ratio N/A N/A 0.535 0.00066 0.683
Vapor fraction N/A 0 N/A N/A N/A
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in part one of our two-part article [16]. Overlapping models are not repeated hereinafter.
Instead, Section 3.2.3 complements part one of the two-part article by providing all ad-
ditional information about the thermodynamic and chemical reaction models relevant for
the trioxane and OME3-5 processes only. For modeling the trioxane process, the thermo-
dynamic system of a mixture containing water and FA coupled with its oligomerization
reactions to polyoxymethylene glycols (MG) are essential. In this regard, we extend the
model described in part one with parameters for trioxane and OMEn with a chain length
of up to 20 FA groups in order to account for all relevant phenomena happening within
trioxane and OME3-5 production. We collected these extensions from literature, combined
them with the model used in Bongartz et al. [16], and describe them in the following.

3.2.3.1. Chemical Reaction Model

The commonly assumed chain growth mechanism for OMEn synthesis is its reaction with
one FA molecule [109]:

OMEn−1 + FA H+
←−→ OMEn (n ≥ 2) · (R15)

This reaction only takes place under acidic conditions [75] and if monomeric FA is present.
In the considered process chain, FA is provided by trioxane, which decomposes over an
acidic catalyst to three FA molecules via the overall (not elementary) reaction

Trioxane H+
←−→ 3 FA · (R16)

It may also be possible that the cyclic structure of trioxane brakes only at one point, such
that a chain of three FA groups are incorporated directly in one OMEn molecule [86]:

OMEn−3 + Trioxane H+
←−→ OMEn (n > 3) · (R17)

However, experiments did not show any evidence for this mechanism [86], so that the
mechanism involving Reactions (R15) and (R16) is used in this work.

Trioxane itself is produced in a previous step, often described as the reverse of Reaction
(R16), where FA is present in an aqueous solution. The presence of water makes the
reaction system highly complex as FA and water instantaneously react to polyoxymethylene
glycols even without the presence of any catalyst [110]:

H2O + FA←−→ MG1 (R18)

MGn−1 + FA←−→ MGn (n > 1) · (R19)

Therefore, monomeric FA is present in the system only at very low concentration, but is
rather embedded and provided via MG. This makes trioxane formation according

MG3
H+
←−→ Trioxane + H2O (R20)

much more probable [111, 112]. The oligomerization reactions also play a governing role
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3. Benchmark Processes of Oxymethylene Ether Production

in the synthesis of FA within this process chain, which is discussed in further detail in
Bongartz et al. [16].
In addition to the desired Reactions (R15) and (R16) for OME3-5 production, some side

reactions may occur under specific conditions. FA can react to methyl formate (MF) via
the Tischenko reaction (R21) [113]. This reaction also takes place under acidic conditions
and favorably at temperatures above 90 ◦C when using Amberlyst 46 as a catalyst [88].
The same holds for the decomposition of DMM to DME and FA according to Reaction
(R22).

2 FA H+
−−→ MF (R21)

DMM H+
−−→ DME + FA (R22)

How these reactions were accounted for in the simulations and how they were implemented
in Aspen Plus® is described in Section 3.2.3.1 and 3.2.3.1 for the trioxane and OME3-5
production, respectively. The model implementations in Aspen Plus® are available via our
homepage [55].

Conversion-based Model for Trioxane Production

Whereas the oligomerization reactions of water and FA to MG are investigated extensively
in literature [114–118], comparably little information is available about the formation of
trioxane from aqueous FA. Grützner [98] performed several experiments in order to derive
temperature dependent correlations for the equilibrium and reaction rate constants of Re-
actions (R20) and (R21). However, corresponding parameter sets are not given. Therefore,
the simulation for the trioxane production process in this work is based on the reaction
mechanism according to Reaction (R20) with a once-through conversion of 5% trioxane,
which is a typical value for industrial trioxane production [97]. Side reactions are neglected
as the concentrations of relevant components are low [97].
In contrast to the desired formation of trioxane, which takes place only within the

catalytic region of the reactor, the oligomerization reactions of FA and water to MG take
place in all units. Therefore, the corresponding equilibrium model [115] is implemented in
each stage of the columns, all mixers and splitters, as well as in the reactor. The adaption
and implementation of this model in Aspen Plus® is described in Bongartz et al. [16].

Reaction Kinetic Model for OME3-5 Production

The OME3-5 production process is based on the model developed by Burger et al. [88]. All
parameters have been derived for the reaction system consisting of Reactions (R15) and
(R16), which are catalyzed heterogeneously by the catalyst Amberlyst 46. In contrast to
the oligomerization reactions (R18) and (R19), OMEn formation only takes place in the
presence of a catalyst. Therefore, these reactions are accounted for only in the reactor. As
the byproduct methyl formate is formed in small amounts in Reaction (R21) and influences
process design, an equation describing this reaction formally was added to the chemical
reaction model (cf., Burger et al. [90]). Burger et al. [88] suggest a reaction model using
a modified Langmuir-Hinshelwood-Hougen-Watson (LHHW) approach, as the sorption
processes were found to be rate limiting. However, the simulation software Aspen Plus®

does not allow the application of such a model, so that the pseudohomogeneous kinetic
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model discussed in Burger et al. [88] is used in a slightly modified way in this work. Burger
et al. [88] show that this model is not able to produce consistent results for a varying feed
composition. The adaption of the reaction rate parameters for Reaction (R16), however,
makes the model applicable for the optimal operating point found by Burger et al. [90]
only. The set of parameters for the mole fraction-based equilibrium constants used in
this work is given in Appendix Tab. A.1 and only applicable for this operating point using
Amberlyst 46 as the catalyst. Corresponding parameter sets for the rate constants are given
in Appendix Tab. A.2. Parameters for the formation of methyl formate are estimated in
order to reach a formation rate of 0.02 kg (h kgcat)−1 [90]. All constants for OMEn with
different chain lengths are assumed to be equal and for trioxane decomposition the kinetic
parameters were adjusted in order to fit the results given at the optimal operating point
stated in Burger et al. [90]. This adjustment is necessary as the pseudohomogeneous
kinetic model is not applicable for arbitrary feed compositions [88].

3.2.3.2. Thermodynamic Model

The thermodynamic model for OME3-5 production corresponds to the one given in the
work of Burger et al. [90] and is presented for pure and mixture properties hereinafter.
Property models for FA and trioxane containing aqueous solutions used herein are taken
from Albert [115] and Ott [119].

Pure Component Properties

Correlations for the pure component properties were implemented for MG and OMEn>1.
For the rest of the pure components, i.e., water, methanol, FA, trioxane, MF, and DMM,
correlations were used from the APV88 Pure32 Aspen database. They constitute liquid
molar density ρL,i, ideal heat capacity cigp , vapor pressure psi , and heat of vaporization ∆hv,i.

Mixture Properties

In order to account for nonideal interactions between all species, the UNIFAC group con-
tribution method [120] is used as the basis for estimating all activity coefficients. For the
trioxane production process, the UNIFAC approach is applied directly using corresponding
UNIFAC-groups defined by Albert et al. [114], whereas the OME3-5 production process
uses the NRTL [121] approach based on data produced by the UNIFAC method. Burger
et al. [90] fitted NRTL coefficients to the UNIFAC estimations for the binary systems
constituting FA, trioxane, DMM, OMEn>1, and MF. For the binary system OME2 and
trioxane, the activity coefficients were fitted to experimental data given by Burger et al.
[90] using the global parameter estimation tool BOARPET [122–124].

3.2.3.3. Process Models

In order to reach high accuracy, detailed unit operation models are used within the Aspen
Plus® model implementations. For the distillation columns, this is particularly important
as oligomerization reactions need to be taken into account explicitely. Therefore, both
process models, i.e., trioxane and OME3-5 production, constitute rigorous RadFrac models
for separation operations only. The Newton solution algorithm has shown best results in
terms of convergence and is used for all RadFrac models. As packing specifications, column
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3. Benchmark Processes of Oxymethylene Ether Production

dimensions, and pressure drop specifications are given for the distillation columns of the
OME3-5 production process in the work of Burger et al. [90], those have been considered
in this work as well. Due to limited information about the distillation columns in the
trioxane production process, they are modeled using an equilibrium calculation type. The
conversion-based reaction of aqueous FA to trioxane is modeled using a RStoic reactor.
Due to the given kinetics for the OME3-5 process, reactions take place in a RPlug reactor
with specifications given in the work of Burger et al. [90]. Compressors are isentropic
and all unit operations consider oligomerization reactions given in Equation (R18) and
(R19). Flowsheet tear streams are calculated using the Wegstein convergence method
with a default relative tolerance of 1×10-4.

3.2.4. Results and Discussion

Detailed mass balances for the trioxane and OME3-5 production process steps can be
found in the work of Grützner [98] and Burger et al. [90], respectively. We address
herein the overall material (Section 3.2.4.1) and utility demand (Section 3.2.4.2) of each
intermediate process step, as well as the entire production chain. Special attention is given
to the integrability of the distillation-based trioxane process, as its conventional stand-
alone production is known to be energy-intensive and expensive. This enables a holistic
and rational evaluation of the anhydrous OME3-5 production and provides a further basis
for fair process comparisons.

3.2.4.1. Material Demand for OME3-5 Production

Following the process chain for DMM production presented by Bongartz et al. [16], which
is part of the process chain in this section, H2 and CO2 is consumed solely by the methanol
production plant. For 1 kg OME3-5, 0.25 kg H2 and 1.83 kg CO2 is needed to produce 1.28
kg methanol as illustrated in Figure 3.5. In accordance with the simulations conducted
by Burger et al. [90], the composition of OME3-5 is assumed to be 43 wt.-% OME3, 34
wt.-% OME4, 22 wt.-% OME5, and 1 wt.-% OME6 in this study. As depicted in Figure
3.5, more than 50% of the consumed raw materials constitute air for the combustion in the
methanol and FA production processes. In the FA production process, this corresponds
to a high amount of inert gases and keeps its operation beyond explosive limits. Apart
from 2.14 kg air and 0.86 kg methanol about 0.40 kg water is fed into the FA process
in order to absorb the FA molecules from the gaseous reactor effluent. This way 1.45 kg
aqueous formaldehyde solution with 50 wt.-% FA is produced and 1.95 kg exhaust gas
released to the atmosphere. In the subsequent steps more than 73% of the FA solution
is used for trioxane production and the remaining 27% for DMM production. In both
processes, water needs to be separated from both products, which are present in about the
same quantity. In the last process the chain growth of DMM to OME3-5 takes place with
an overall carbon-based yield of almost 100%: 0.48 kg DMM reacts with 0.52 kg trioxane
to 1 kg OME3-5. Only 0.001 kg of an equimolar mixture containing FA and MF need to
be purged in order to prevent MF accumulation. However, as the corresponding material
stream is comparably small, it is neglected in the diagram in Figure 3.5.
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Figure 3.5.: Material flows within the reference process chain for the production of 1 kg
OME3-5.
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The chemical conversion efficiency (cf., e.g., König et al. [125])

ηCCE = ṁOME3−5 · LHVOME3−5

ṁH2
· LHVH2

, (3.2)

of this process chain is 63%, considering a lower heating value (LHV) of 121.84 MJ kgH2
−1

and 19.16 MJ kgOME3-5
−1 for H2 and OME3-5, respectively. Concerning the amount of CO2

required for producing 1 kg OME3-5, an overall carbon-based yield of 87% is reached.

3.2.4.2. Energy Demand for OME3-5 Production Considering Heat Integration

The main objective in this section is the evaluation of an entirely heat integrated process
chain for the anhydrous production of OME3-5 from H2 and CO2 utilizing a novel trioxane
process. In this regard, two different cases for heat integration are distinguished: In the
first case, heat integration is considered for each intermediate process separately from the
other processes and only remaining excess heat, i.e., steam that is commonly generated in
methanol and FA production, is assumed to be used in the other process steps. In the
second case, heat integration is conducted considering all heat sources and sinks within
the process chain simultaneously. In both cases a targeting approach using pinch analysis
is conducted. This way, an energetically best case process chain with respect to energy
integration is found, which, however, does not necessarily represent the economic optimum
as no rigorous heat exchanger network is developed. In order to estimate the influence of
the process performance of trioxane production on the overall one, a sensitivity analysis is
performed. Regarding this, FA conversion towards trioxane is varied and the heat demand
of the heat integrated process calculated. This reveals potential improvements of the
anhydrous OME3-5 production, if the catalytic trioxane reaction can be further optimized.

We assume that H2 is provided by a proton exchange membrane (PEM) electrolysis
operated at 30 bar. CO2 may be captured from biogas plants, from flue gas of power plants,
or directly from air and is fed into the methanol production plant at ambient conditions. As
for the direct conversion of methanol from H2 and CO2 an operating pressure of about 70
bar is necessary [126], the energy demand for the compression of both educts are considered.
For CO2, a four stage compression including intercooling is applied and for H2 only one
stage. This way a total electricity consumption of 1.33 MJ kgOME3-5

−1 for pumping and
compression need to be provided for the methanol plant (Figure 3.6). The heat demand
for heat exchanger and distillation columns is entirely covered by the heat of reaction and
combustion within the process itself. The same holds for the FA production process, so
that excess heat of 1.76 MJ kgOME3-5

−1 at about 220 ◦C and 5.01 MJ kgOME3-5
−1 at about

150 ◦C is available for subsequent processes. About 0.16 MJ kgOME3-5
−1 for compression is

necessary in the FA production process to maintain a steady flow of materials. For DMM
production, the energy demand for pumping and compression can be neglected as only
comparably low pressure levels are necessary and the streams are comparatively small and
liquid. Therefore, 4.25 MJ kgOME3-5

−1 heat needs to be provided for separating DMM from
methanol and water, that may be taken from either the excess heat of the FA process
entirely, or partly from the methanol and FA process. If the second option is chosen, the
remaining heat of the FA process may be used for trioxane production.
The trioxane production process consumes in total 22.5 MJ kgOME3-5

−1 considering

24



3.2. OME3-5 Production

1 , 0 4

0 , 0 0 1

0 , 1 6

1 , 3 3

1 , 3 4

2 2 , 5

4 , 2 5

- 5 , 0 1

- 1 , 7 6

O M E 3 - 5  P r o d .

T r i o x a n e  P r o d .

D M M  P r o d .

F A  P r o d .

M e O H  P r o d .

- 5 0 5 1 0 2 0 2 5
E n e r g y  d e m a n d  [ M J / k g O M E 3 - 5 ]

Pro
ce

sse
s [

-]
 H e a t
 P u m p i n g  a n d  c o m p r e s s i o n

Figure 3.6.: Energy demand for heating as well as pumping and compression of the processes
within the reference OME3-5 production chain. Heat integration is considered within each
individual process.

Figure 3.7.: Influence of the conversion of FA to trioxane on the energy demand of the
separately heat integrated trioxane production process, as well as on the overall energy demand
of the entire process chain. Additionally, the exergy efficiency of the overall process chain
starting from H2 and CO2 is shown.
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Figure 3.8.: Sankey diagram of exergy flows within the reference process chain for the produc-
tion of 1 kg OME3-5. The gray boxes denote the different process steps and the percentages
are the exergy efficiencies of these separate steps. The overall exergy efficiency from H2 to
OME3-5 is 55%.

internal heat integration, which is about 15 kg kgTRI−1 steam and in accordance with
the steam demand of the conventional trioxane production process given in the work of
Mahieux [69]. Grützner [98] reports a heat demand for the distillation-based trioxane
production process of about 65 MJ kgTRI−1, which is about 33.70 MJ kgOME3-5

−1. This
is considerably higher than found in this work as no heat integration is considered in his
work. The high demand of heat is mainly caused by a small conversion of 5% of FA to
trioxane in the reactor, which results in a high recycle stream leaving the bottom of column
K11 and, thus, in a high energy demand for its reboiler. As a conversion of 5% is only
a reference value for conventional industrial applications [97], its influence on the energy
demand of the separately heat integrated trioxane production process and on the process
chain’s one is illustrated in Figure 3.7. The diagram shows a strong relation between FA
conversion and the heat demand of the trioxane production process: Heat demand for
trioxane production halves by considering a FA conversion of 10% instead of 5%. The
energy demand of the overall process chain is smaller than that of the separately heat inte-
grated trioxane process, because excess steam from formaldehyde production is utilized.In
addition to heat, 1.04 MJ kgOME3-5

−1 electricity for compression need to be provided,
as the gaseous overhead product of column K11 need to be fed into the second column
K12 operated at 4 bar. However, this way heat for internal heat integration is produced.
As the energy demand for trioxane production exceeds the energy demand of the other
processes within the process chain by a large amount, the overall energy efficiency is highly
dependent on this process step. However, the process for trioxane production investigated
in this study was not optimized rigorously and, thus, still offers potential for improvements.

The energy demand for the heat integrated OME3-5 production process from trioxane
and DMM is rather low with 1.34 MJ kgOME3-5

−1 at 200 ◦C to 260 ◦C for separating
the product from OMEn<3, methyl formate, unreacted trioxane, and OMEn>5. Energy
for pumping and compression can be neglected, as it is much lower than the electricity
demand of the aforementioned processes. These results are in agreement with those from
Burger et al. [90].
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Given all material streams entering and leaving each process together with the pro-
cesses energy demand and temperature levels, all exergy fluxes within the process chain
for OME3-5 production were calculated (cf., part one of our two-part article [16]) and are
illustrated in the Sankey diagram in Figure 3.8. As CO2 is provided at 1 bar and its chem-
ical exergy is neglected, it does not bring any exergy into the system. Only a large exergy
stream associated with the stream of H2 at 30 bar and some electricity enter the process
as input streams of the methanol production plant. Its exergy efficiency is calculated to be
about 90%. If raw material compression is not considered as part of the methanol process,
for example in case H2 and CO2 are provided from high-pressure storage sites, its exergetic
efficiency increases to 91%. For the FA and DMM production plant, only electricity need
to be provided externally as excess heat is assumed to be exchanged between the processes
within the production chain. The exergy efficiency for these processes is 73% and 90%,
respectively. The low efficiency of the FA production process is caused by irreversibilities
during methanol combustion and the residual heat of exhaust gases (cf., Bongartz et al.
[16]). As already mentioned above, the trioxane production process consumes most of the
energy within the reference process chain, of which most is consumed in the reboiler of
column K11. This makes the exergy efficiency of this step drop to about 58%. Considering
the conversion of FA towards trioxane to be 10% instead of 5% its efficiency increases to
67% and the overall process chain efficiency to more than 58% (cf., Figure 3.7). The most
exergy efficient process for OME3-5 production is its last step, i.e., the chain growth of
DMM to OME3-5. As just little heat and electricity need to be provided to the process, its
exergy efficiency reaches almost 97%. All in all, considering a system boundary around the
entire reference process chain, the overall exergy efficiency for OME3-5 production from re-
newable H2 and green CO2 is 55%. Considering 10% FA conversion the efficiency increases
to 58%.
For the case where all process steps are at the same site, a more efficient combination

of heat streams is possible and the overall exergy efficiency increases to 57%. The overall
heat demand reduces by about 16% from 21.40 MJ kgOME3-5

−1 to 17.94 MJ kgOME3-5
−1.

Assuming 4.5 kWh (Nm)−3, i.e., 180 MJ kgH2
−1, for an alkaline electrolyzer with an HHV-

based efficiency of about 80% and a maximum operating pressure of 32 bar [127], 45
MJ kgOME3-5

−1 need to be provided only for hydrogen supply. The resulting overall exergy
efficiency including H2 supply via electrolysis is about 41%. Using PEM electrolyzers the
overall efficiency is comparable as their specific energy consumption is about the same [128].
Including also a thermal energy demand of 2.20 MJ kgOME3-5

−1 for carbon capture from flue
gas with a typical carbon dioxide mole fraction of 13% [129] reduces the overall efficiency to
38%. This efficiency is rather low compared to DMM production and other e-fuels. Even
the best possible heat integration of the trioxane process within the entire process chain
increases the total efficiency including electrolysis and carbon capture by only less than
1%. Finally, a potential optimization of the catalytic reaction of FA towards trioxane has
a significant effect on the overall process performance. However, such improvements are
also limited, e.g., doubling the FA conversion corresponds to an increase in overall process
efficiency of only 2% starting from electricity. Despite an effective heat integration of the
novel trioxane process in the entire process chain and a highly attractive final process
step (i.e., OME3-5 formation), from an energy point of view it is not expedient to further
improve the synthesis of OME3-5 via DMM and trioxane. Due to only small improvements
for the entire process chain, even for a significantly improved catalytic trioxane reaction,
the focus of future OME3-5 research should be placed to alternative trioxane production
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processes or routes avoiding trioxane production.

3.3. Conclusion
Key for a successful development of a resource efficient DMM and OME3-5 production
process is the identification of bottlenecks established process concepts suffer from. In
this section, such an analysis has been conducted for both the established pathway for
DMM production and the anhydrous synthesis pathway for OME3-5 production starting
from H2 and CO2. For all process steps, simulations in Aspen Plus® have been performed
using detailed process models with validated thermodynamic and chemical reaction models
embedded. They were analyzed with respect to their material and energy demand, and
ultimately evaluated using exergy efficiencies.
For DMM production, an exergy efficiency of 73 % was reported considering heat inte-

gration for each individual process step and subsequent steam export between processes. If
heat integration for the entire process chain is considered, an exergy efficiency of 74 % can
be reached. For the production of 1 kg OME3-5 with 43 wt.-% OME3, 34 wt.-% OME4, 22
wt.-% OME5, and 1 wt.-% OME6 0.25 kg H2 and 1.83 kg CO2 need to be provided. This
corresponds to an overall carbon-based yield of 87% and a chemical conversion efficiency of
63%. The exergy efficiency of a heat integrated process chain considering the exchange of
steam adds up to 55% starting from H2 and CO2. Including electricity and thermal energy
demand for electrolysis and carbon capture it drops to 38%. This efficiency is compara-
ble to that of Fischer-Tropsch diesel or methanol-to-gasoline concepts based on renewable
resources which have an overall efficiency of about 45% and 39% [130], respectively, (as-
suming 80% efficiency for electrolysis). Taking into account that the trioxane production
process is responsible for major exergy losses, the possibility for novel process concepts of
avoiding this energy intensive process step, e.g., by the direct conversion of methanol and
formaldehyde to OME3-5, points towards the important areas for process improvements for
OME3-5 production. This is the focus of current research, e.g., [61, 77], and need to be
investigated in further detail in order to expand our analyses to such process concepts.
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Dimethoxymethane Production

The sole replacement of raw materials is due to the high H2 demand not sufficient for
making DMM production suitable as a Power-to-X process (cf. Chapter 3), such that
fundamentally new processes need to be developed. As process candidates are on a very
different stage of development, we first develop a hierarchical process development and
evaluation methodology incorporating optimization-based methods in Section 4.1. Its ap-
plication to the reaction pathways introduced in Chapter 2 identifies the most suitable
one for sustainable DMM production. Based on these results, in Section 4.2, we develop
process models suitable for global deterministic optimization to optimize a corresponding
process. The globally optimal process is then used to evaluate its potential within the
entire process chain for both DMM and OME3-5 production from H2 and CO2 in Section
4.3.

4.1. Hierarchical Comparison of Reaction Pathways
Commercial DMM production takes place via the condensation reaction of methanol and
aqueous FA (cf. Chapter 2) [46]. The major drawback of the underlying reaction pathway
is the reaction of H2 to water during upstream FA production increasing H2 demand
considerably. Moreover, the more water is present in the system, the more undesired side
products are formed [131].
To overcome the limitations of commercial DMM production, promising process alterna-

tives have been proposed. A few authors suggest DMM purification via extractive [132, 133]
and pressure swing distillation [134] intending to increase energy efficiency. Other studies
propose reactive distillation to shift FA conversion towards DMM [135] and combine this
approach with pressure swing distillation [45]. This combined process concept has been
used to develop and analyze the entire process chain for DMM production from renew-
able H2 and CO2 (Section 3.1) [16]. In all of these processes, aqueous FA production still
represents a key process step. Although FA production is a highly established and simple
process step [25], its exergy efficiency is rather low (73 %) [16].
The inherent weaknesses of the reaction pathway containing FA production have spurned

research activity toward pathways avoiding FA production. Significant improvements in
catalyst performance have been achieved [31] and novel DMM synthesis pathways proposed
(cf. Chapter 2). However, no process concepts have been developed and analyzed so
far. Instead, the similar thermodynamic properties of the multi-component system within
a novel pathway (the direct reduction of CO2 [38]) to those within an established one
have been used to estimate the process performance and the impact on climate change of
DMM production avoiding FA formation. An increased exergy efficiency of 86 % for DMM
production from renewable H2 and CO2 and the possibility of significant cradle-to-grave
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CO2-equivalent emission reductions compared to fossil diesel was reported [19]. Given
the environmental benefits of DMM and the promising estimates on process performance,
the use of more detailed process models in a comparative process analysis alongside the
development of novel reaction pathways is essential for sustainable DMM production in
the short- to medium-term.
Section 4.1 has the major goal to evaluate all reaction pathways from methanol towards

DMM in order to provide feedback on the current and prospective process performance
for catalyst development. Given the different maturities of the reaction pathways, we
introduce a hierarchical process development and evaluation methodology to ensure a fair
comparison across these pathways. We perform TEA and LCA on each level to determine
the key performance indicators (KPIs) relevant for sustainable e-fuel production. As several
pathways are still at an early stage of development, we identify their bottlenecks and derive
performance goals that are necessary for process sustainability in the near future.
In Chapter 2, we summarized all reaction pathways and corresponding key characteristics

for DMM production from methanol. Section 4.1.1 provides the methodology for process
development and evaluation that enables a fair comparison of these pathways. On the
basis of the methodology, Section 4.1.2 presents the results of the comparison and discusses
perspective improvement potential. In Section 4.1.3, we conclude our findings.

4.1.1. Process Design and Evaluation Accounting for TRL

The TRLs of the DMM reaction pathways differ significantly, and so does the data avail-
ability for process design and evaluation: Whereas the established pathway has been in-
vestigated extensively over the last three decades (cf. Section 2.1), the majority of direct
DMM pathways has been discovered during the last years (cf. Section 2.2-2.5). To still
ensure a fair comparison despite the different stages of development and to ultimately
lead the way towards sustainable DMM production, we introduce a hierarchical process
development and evaluation methodology (Fig. 4.1). Within this methodology, process
development (Section 4.1.1.1) and evaluation (Section 4.1.1.2) take place on up to three
hierarchy levels depending on the data availability for each considered pathway. On Level
1, only reaction equations are required for calculating the maximum pathway potential.
On Level 2, thermodynamic data and at least experimental data on reactions showing a
sufficiently high performance need to be available to develop first process concepts. On
Level 3, more detailed models are required for process optimization. On each level, three
KPIs are calculated: process efficiency, production cost, and impact on climate change. We
use these performance indicators to derive pathway-specific feedback for catalyst develop-
ment to effectively benefit from both process and catalyst development (Section 4.1.2.4).

By applying the methodology to each pathway, we attain two important achievements:
First, the pathways become comparable up to their highest common level despite their
discrepancies in maturity. A fair comparison is ensured by using the same boundary
conditions, model detail, and input data. Second, the gradual refinement of models and
input data throughout the levels reveals information about the most relevant parameters
and the gap between current and highest possible process performance. This information
is not only essential for process optimization but also for catalyst optimization.
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Figure 4.1.: Hierarchical process development and evaluation methodology.

4.1.1.1. Process Development

We develop the process for each pathway sequentially from Level 1, containing only the
most essential pathway characteristics, up to Level 3, containing enough information about
the process for process optimization using rigorous models. In this section, we explicitly
distinguish between levels, because the models and methods used for process development
differ significantly between levels. Each level addresses an individual question:

• Level 1: What is the maximum potential of the pathway?

• Level 2: Which performance can we expect from a corresponding process?

• Level 3: What is the actual performance of an optimized process?

Level 1: Pathway potential

On Level 1, we model the process as a black-box containing only the stoichiometric coeffi-
cients of the desired reaction, thus assuming perfect selectivity. To calculate the maximum
potential of the pathway, we further assume ideal separation and the recycling of unreacted
educts, valuable intermediates, and side products. The result and key input for pathway
evaluation on this level is the DMM-specific minimum raw material consumption.

Level 2: Process concept

On Level 2, we develop the separation system and the recycle structure with the reactor
as the central unit of the process, as it is typically proposed for process development [136].
To determine the distillation sequence, we follow a process synthesis framework for the
design of distillation processes from the literature [137]. Herein, we generate multiple vari-
ants which we then evaluate based on the Rectification Body Method (RBM) [138]. Heat
integration by a subsequent pinch-analysis of the entire process finally enables finding the
least energy-intensive process for each pathway. On this level, we consider experimental
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data on reaction performance (Appendix Tab. B.1) or, if already available, reaction ki-
netics, and nonideal thermodynamics for all pathways (Appendix Tab. B.2-B.4). We use
the process simulator Aspen Plus v11 to calculate mass balances and the energy demand
for feed compression, and the in-house tool EE-ToolBox [139] (incorporates the RBM) to
calculate the minimum energy demand (MED) of each distillation task.

Level 3: Optimized process

On Level 3, we extend the model of the process with the lowest MED from Level 2 with
additional compressors and pumps, and replace the RBM with detailed tray-to-tray distil-
lation models [140]. This does not only increase accuracy, but also enables a more detailed
process design and column sizing. We optimize the process in such a way that operational
expenditure (OPEX) and capital expenditure (CAPEX) are minimized simultaneously.
This results in a complex mixed-integer nonlinear programming (MINLP) problem. As
currently global solution seems intractable, we follow a successive initialization procedure,
reformulate the MINLP problem into a sequence of nonlinear programming (NLP) prob-
lems, and handle the flash calculations hidden from the numerical solver [140]. During
optimization, only the purity constraints of streams leaving the process are considered.
This prevents decisions on the sharpness of intermediate separation splits (particularly
relevant for azeotropic distillation) and thus preliminary heuristic decisions. We perform
the optimization with the algebraic modeling system GAMS using SNOPT as numerical
solver and external functions for thermodynamic calculations [137].

4.1.1.2. Pathway Evaluation

The results obtained on each level in process development (cf. Section 4.1.1.1) are inputs for
the pathway evaluation. In accordance with the levels considered for process development,
we evaluate each pathway up to their highest level always considering the three KPIs:
process efficiency, production cost, and impact on climate change. The analyses between
levels are dependent from one another only in such a way that the optimized process on
Level 3 results from the least energy-intensive process concept on Level 2. The evaluation
models and methods are the same for each level and differ only in their input data (cf.
Appendix Tab. B.5).

Efficiency model for DMM processes

Since renewable electricity dedicated to e-production (nonconventional production of com-
modities, fuels, or heat using processes that predominantly utilize renewable electric-
ity [141]) will remain limited in the short- to medium-term, process efficiency is one of
the KPIs for e-fuel production. In the present work, we consider exergy efficiency to re-
strict the energy output of the system to energy that is actually usable. Exergy efficiency
is the maximum amount of useful energy that leaves the process (through the product,
side products, and excess heat) relative to the amount of useful energy that enters the
process (through H2, CO2, heat demand, and electricity). Process exergy efficiency ηP,l is
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calculated by

ηP,l =
ĖDMM + Ėside + ĖQ̇out

ĖH2
+ ĖCO2

+ ĖQ̇in
+ Pfeed + Pmisc

l ∈ {L1,L2,L3}, (4.1)

where ĖDMM, Ėside, ĖH2
, and ĖCO2

is the DMM-specific thermomechanical and chemi-
cal (based on higher heating value (HHV)) exergy content of DMM, side products, H2,
and CO2, respectively; ĖQ̇out

and ĖQ̇in
is the DMM-specific exergy of excess heat and

heat demand of the process, respectively (Tambient = 298.15K); and Pfeed and Pmisc is the
DMM-specific electricity demand for feed compression and miscellaneous compression and
pumping within the entire process, respectively. We distinguish between two types of ex-
ergy efficiency: process exergy efficiency (cf. Eq. (4.1)) and system exergy efficiency (cf.
Appendix Eq. (B.2)). Process exergy efficiency refers only to the process for DMM pro-
duction from H2 and CO2, thus decoupling the provision of raw materials from the process.
In contrast, system exergy efficiency refers to the entire system including the provision of
raw materials. For the provision of raw materials, we consider a best and a worst case
scenario (Tab. 4.1). In the best case scenario, H2 is provided by a solid oxide electrolyzer
cell (SOEC) and CO2 is provided by a high purity (∼ 100 %) industrial point source. In the
worst case scenario, H2 is provided by a polymer electrolyte membrane (PEM) electrolysis
and CO2 is provided by direct air capture (DAC). The parameters for the best and worst
case scenario are summarized in ESI Tab. S8 of the original publication [142].

Economic evaluation method for DMM processes

For an economic evaluation, we consider both OPEX and CAPEX. OPEX constitutes
costs for raw materials (H2 and CO2), steam, coolants, and electricity. CAPEX consti-
tutes investment costs for distillation columns (shell, trays, condensers, reboilers), reactors,
pumps, and compressors. Costs for catalysts and heat exchangers are excluded as the cat-
alysts for the direct pathways are not commercially available yet and no heat exchanger
network is developed. On the most detailed level, we further calculate cost of manufac-
turing (COM) to get a clearer representation of a possible market price for DMM. The
type and amount of output data on each level define the costs to include in the economic
evaluation on each level (Appendix Tab. B.5). Production cost is measured in $ L−1

diesel-eq..
For the economic evaluation, we analyze the influence of the most relevant parameters by
a sensitivity analysis. All equations and parameters are summarized in Appendix Section
B.

LCA method for DMM processes

LCA is a standardized method (ISO 14040/14044 [143, 144]) for evaluating potential envi-
ronmental impacts of product systems. It considers the entire life cycle of a product system
from raw material extraction until waste disposal (‘cradle-to-grave’) [145]. All environmen-
tal impacts of the material and energy flows that are exchanged with the environment are
characterized in LCA.
The goal of this study is to compare DMM pathways from a climate point of view.

As DMM intends to substitute fossil fuels particularly in long-distance and heavy-duty
transportation, we also include fossil diesel to this comparison. Due to the different com-
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bustion characteristics of these two fuels, we consider their combustion at the end-of-life
to cover the cradle-to-grave perspective. The functional unit “the provision of 1 MJ of
enthalpy of combustion” for both DMM and fossil diesel enables a consistent comparison
between the investigated product systems. To ensure consistency also with the TEA, we
do not consider environmental credits (so-called avoided burdens, i.e., an environmental
credit to account for the avoided burden of the conventional production) for co-produced
side products (MF and dimethyl ether (DME)) and heat. The influence of these avoided
burdens on the climate impact of DMM is however investigated in ESI Section S6 of the
original publication [142]. We focus on the impact category climate change (heat radiation
absorption of the atmosphere caused by anthropogenic emissions, measured in kg of CO2-
equivalents [146]) as e-fuels mainly aim at reducing the climate impact of transportation.
For a holistic assessment of DMM, further impact categories are also important but beyond
the scope of this work. The same best and worst case scenarios as for the exergy efficiency
analyses are used and extended according to Tab. 4.1. All assumptions and datasets are
summarized in ESI Section S3.3 of the original publication [142].

Table 4.1.: Selected technologies for the best and worst case scenario for the evaluation of
DMM pathways. Parameters, references, and datasets are summarized in ESI Tab. S8-S10 of
the original publication [142].

Best case scenario Worst case scenario

H2 provision SOEC PEM electrolysis
CO2 provision Ideal point source DAC
Electricity Onshore wind park (Germany) Power grid mix today (Germany)
Heat (T<90 °C) Heat pump Steam
Heat (90 °C<T<250 °C) Electrode boiler Steam
Heat (T>250 °C) Electrode boiler Natural gas boiler
Cooling Vapor compression refrigeration system

4.1.2. Results on Key Performance Indicators for DMM Production
On the basis of the models and assumptions presented in Section 4.1.1, each pathway is
analyzed up to a certain level given their data availability. Thermodynamic data is available
for all considered pathways in open literature (cf. Section 4.1.1.1). In contrast, reaction
data differs significantly between pathways. For the established pathway, reaction kinetics
are available [43, 57] and enable the propagation of the pathway through all three levels. For
the oxidative pathway, a comprehensive experimental data base on reaction performance
has been accumulated [31], yet a kinetic model has not been derived. Notwithstanding,
the vast amount of data makes the propagation through all three levels possible. For the
reductive pathway, considerable achievements in catalyst optimization [38, 40] and the
successful application of an alternative catalytic system [39] make process development
and evaluation on Level 2 possible. For process optimization on Level 3, however, a more
extensive data base or (ideally) reaction kinetics are required. For the dehydrogenative
pathway, only little experimental data has been reported [41]. Nevertheless, the achieved
reaction performance is high enough to develop a first process concept on Level 2. For
the transfer-hydrogenative pathway, turnover numbers (TON) of the same magnitude as
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for the reductive pathway have been reported [42]. A low catalyst loading compared
to the reductive pathway however results in lower DMM single-pass yields with respect
to methanol. Thus, the evaluation of a process concept for the transfer-hydrogenative
pathway on Level 2 would systematically underestimate its performance.
On the basis of these classifications, we developed process concepts for the reductive and

dehydrogenative pathway (Fig. 4.2) following the procedure presented in Section 4.1.1.1.
For the established and oxidative pathway, we adapted processes from the literature [16,
147] and calculated corresponding mass and energy balances (Appendix Tab. B.8-B.10)
for the analyses on both Level 2 and 3.

a) Established b) Oxidative

c) Reductive c) Dehydrogenative

Figure 4.2.: Process concepts for all considered pathways on Level 2. All possible distillation
sequences have been screened and the least energy-intensive sequence has been chosen.

In the following, we present the results of the analyses structured by KPI to highlight
both how they differ between pathways and how they evolve through the levels for each
pathway.

4.1.2.1. Exergy Efficiency

On Level 1, we show that the benefit of the lower stoichiometric H2 consumption for
the reductive, dehydrogenative, and transfer-hydrogenative pathway corresponds to an
increase in process exergy efficiency of 11 % (Fig. 4.3). These non-oxidative pathways
consume 8 mol H2 per 1 mol DMM formed instead of 9 mol H2 (established and oxidative
pathway). The benefit of saving 1 mol H2 per 1 mol DMM produced enables a maximum
process exergy efficiency of almost 97 %. A comparison with the maximum process exergy
efficiency of other e-fuels (ethanol: 90 %; methanol: 95 %; methane: 83 %; DME: 97 %; all
based on HHV) and their higher stoichiometric H2 consumption relative to their heating
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values (Appendix Tab. B.11) demonstrate the great potential of the non-oxidative DMM
reaction pathways. Considering the experimental selectivities of the entire value chain
on Level 1 instead of perfect selectivity, the gap between experimental exergy efficiencies
and their theoretical limit become clear (Fig. 4.3). The negative effects caused by a low
reaction conversion, however, is captured only by Level 2 and 3 evaluations.

L 1  L 2  L 3 L 1  L 2  L 3 L 1  L 2  L 3 L 1  L 2  L 3 L 1  L 2  L 3
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Figure 4.3.: Exergy efficiencies for all evaluated levels and pathways. The bars correspond
to the process exergy efficiency (DMM production starting from H2 and CO2), whereas the
triangles correspond to the best (H) and worst (N) case scenario for the system exergy efficiency
(DMM production starting from electricity, water, and a CO2 source). The two scenarios
are specified in Table 4.1. The crosses correspond to Level 1 evaluations considering the
experimental selectivities of the entire value chain instead of perfect selectivity.

On Level 2, by considering the actual reaction performance from lab-scale experiments
or pilot plants (Appendix Tab. B.1) and process concepts (cf. Fig. 4.2), the exergy
efficiency decreases significantly for all pathways. One common reason for this decrease is
that up to 6 % of the exergy content of DMM is required for H2 and CO2 feed compression
to maximum operating pressures of 70–80 bar. Furthermore, main exergy losses in the
established pathway are due to methanol combustion in the FA process step [16] and a
comparably low overall carbon-based DMM yield (90 %). The overall carbon-based DMM
yield of the oxidative pathway (94 %) is considerably higher and only little external heating
is required (cf. Appendix Tab. B.10). Yet, exergy efficiency is only about the same as that
of the established pathway, because the product removal from a highly diluted gaseous
reactor effluent requires more than 5 % of the DMM exergy. The overall carbon-based
DMM yield of the reductive pathway (97 %) is even higher than that of the oxidative
pathway as the only reported side product is the intermediate MF and assumed to be
recycled back into the reactor. However, a relatively low methanol conversion of 10 %
results in high recycle streams and a high heat demand for separation (8 % of the DMM
exergy). This bottleneck—the most relevant one of the reductive pathway—has not been
captured by the process estimations in preceding studies, where process efficiency has
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been overestimated (86 %) [19]. The methanol conversion of the dehydrogenative pathway
is only 3.6 %, thus resulting in a six times higher methanol recycle stream compared to
the reductive pathway and in a heat demand for product separation of 16 % of the DMM
exergy. This increased heat demand reduces exergy efficiency considerably. Also the
overall carbon-based DMM yield of the associated process is significantly lower (77 %) as
MF and small amounts of DME are formed as side products. In contrast to the reductive
pathway, MF can not be converted further to DMM in the dehydrogenative pathway. As
MF and DME are valuable side products, the comparatively low DMM selectivity has only
negligible effect on exergy efficiency.
On Level 3, the exergy efficiency of both the established and oxidative pathway do

not differ significantly from those of Level 2. Performance gains due to optimization are
balanced by accounting for more detailed models (e.g., tray-to-tray distillation models) and
the power demand for additional process units (e.g., pumps and compressors for recycle
streams). However, we still benefit from the analyses on Level 3 in two ways: First, we
obtain information on equipment sizing, which enables costing. Second, we gain more
reliability on the results as more rigorous models are used. These two outcomes are highly
relevant for industrial implementation.

4.1.2.2. Production Cost

As is typical for e-fuels, the H2 price dominates DMM production cost for all pathways
and levels (Fig. 4.4).
On Level 1, the analyses reveal that the H2 savings of the non-oxidative pathways cor-

respond to cost reductions of 11 % of total raw material costs. As transportation is highly
price sensitive, these savings in H2 consumption are paramount for DMM production.
On Level 2, an imperfect selectivity toward DMM results in additional costs. These are

most pronounced for the dehydrogenative pathway due to the significant co-production of
MF and DME, for which we do not consider a monetary credit given the lack of reliable
data. For this pathway, also the costs for steam are the highest among the pathways due
to its low methanol conversion (cf. Appendix Tab. B.1) and thus high recycle streams.
Whereas conversion improvements by catalyst modifications (cf. Section 4.1.2.4) are lim-
ited by the chemical equilibrium of the dehydrogenative pathway, process modifications
have potential to elevate equilibrium conversion. For instance, membrane reactors with
molecular-sieves can be used for selective and in-situ H2 removal [154]. This might increase
methanol conversion and reduce DMM production cost significantly. With the currently
achievable reaction performance, however, the burdens of the dehydrogenative pathway
result in considerably higher DMM production cost compared to other e-fuels (methane,
methanol, and DME), which were evaluated on Level 2 using the same boundary condi-
tions and model depth [21]. In contrast, production cost via the reductive pathway are in
the same range as that of other e-fuels already with the current catalyst and can be further
reduced by an optimized reactor design and/or co-solvent facilitating the dissolution of H2
and CO2 into the reaction phase. For the oxidative pathway, the product removal from
the gaseous reactor effluent by a refrigeration machine causes the highest electricity costs
among the pathways and should be avoided in an industrial application. Therefore, the
application of a less energy-intensive unit operation for product removal (e.g., adsorption)
need to be investigated in future work to further reduce DMM production cost. Beyond
that, the product dilution in the reactor effluent can be reduced by using pure oxygen from
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Figure 4.4.: Production cost for each synthesis route for all evaluated levels. Perspective H2
and CO2 prices of 5 $ kg−1 [148] and 70 $ t−1 [149] are considered for PEM electrolysis and CO2
capture from post-combustion, respectively. A price of 7.78 $ GJ−1 for steam at 160 °C [150];
0.02 $ t−1 and 1.2 $ t−1 for cooling water at 25 °C and 5 °C, respectively [151]; and 2.40 $ t−1

for refrigeration at −35 °C [151] are considered. Investment cost and all miscellaneous costs
are calculated after Guthrie [152] and Turton et al. [153], respectively. Corresponding cost
parameters can be found in Appendix Section B. The production cost of other e-fuels refer to
methane, methanol, and DME and correspond to the assumptions and model detail on Level
2 [21]. The consumer prices of the conventional fossil fuels gasoline, diesel, LPG, and CNG
include all taxes.

the electrolyzer instead of air for the oxidation reaction. An increased product concentra-
tion in the reactor effluent would directly reduce energy demand for product purification.
On Level 3, the economic evaluation for the established and oxidative pathway shows

that investment cost for the DMM plant can be neglected (less than 1 %) considering a
plant life time of 10 years. It is important to note, however, that investment cost for the
electrolyzer are considered in the H2 price already. The consideration of miscellaneous
costs on Level 3 results in an increase of production cost of about 20 % compared to Level
2 for the established and oxidative pathway. As these costs mainly constitute general
manufacturing expenses (cf. Turton et al. [153]), a similar increase is expected for the
non-oxidative pathways.
The H2 price is the largest cost driver for DMM production having a major influence

on whether an e-fuel like DMM will become a relevant contributor in a future mobility
concept or not. Unfortunately, it is also one of the most uncertain ones, which makes an
analysis of its influence on DMM production cost indispensable.
Fig. 4.5 reveals clearly: Only at low H2 prices (below 3.7 $ kg−1), DMM has the chance

to become cost competitive with its main competitor fossil diesel. For the extensive ap-
plication of DMM in individual transportation, where fuel acceptance is driven by fuel
cost [155], a competitiveness with cheap fossil diesel and thus low H2 prices might be an
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Figure 4.5.: DMM production cost dependence on H2 price. The base case CO2 price is
70 $ t−1 [149].

essential precondition. The target consumer price of DMM should therefore lie within the
region of the consumer price of fossil diesel (1.4 $ L−1). Without the non-oxidative path-
ways, DMM production cost will hardly fall below this target price as H2 prices would
need to fall below 0.5 $ kg−1 for the established pathway.
In terms of CO2 supply, the technology for CO2 provision determines whether CO2

contributes significantly to DMM production cost or not. Considering industrial point
sources for CO2 provision (0–200 $ t−1 [149], Appendix Fig. B.1), the share of CO2 on
total DMM production cost is comparably low. Technologies with a higher cost for CO2
capture (e.g., 600 $ t−1 for DAC [156]) may however become a limiting factor for a successful
implementation of DMM in a future mobility concept.

4.1.2.3. Impact on Climate Change

The results of the LCA for the best case scenario show clearly: If renewable electricity
for DMM production is used exclusively (according to the power-to-X concept [141]), the
cradle-to-grave impact on climate change of DMM does not differ significantly between
pathways and levels (Fig. 4.6). Compared to that of fossil diesel (86 gCO2−eq. MJ−1), all
pathways for DMM production enable considerable CO2-eq. emission reductions.
For the worst case scenario, the impact on climate change of the different routes is in the

range of 350–550 gCO2−eq. MJ−1 and, by this, exceeds that of fossil diesel considerably. With
the current German electricity mix [157], it is therefore not climate friendly to produce
and use DMM as an alternative to fossil diesel. The different impacts on climate change
between the pathways and levels are caused by the same reasons as those for the differences
in exergy efficiencies (cf. Sec. 4.1.2.1). A detailed contribution analysis for both the best
and worst case scenario are presented in ESI Fig. S2 and S3 of the original publication [142],
respectively.
From the analyses of the worst and best case scenario regarding the impact on climate

change of DMM, we can draw two main conclusions: First, the carbon footprint of elec-
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Figure 4.6.: Ranges of cradle-to-grave impact on climate change of different DMM synthesis
routes. The routes are evaluated on different levels for both the best (N) and worst (H) case
scenario and are compared to fossil diesel. The functional unit is “the provision of 1 MJ of
enthalpy of combustion”. The combustion of the co-products MF and DME at their end-of-life
is included for the dehydrogenation and oxidative route on Level 2 and 3 to cover the cradle-
to-grave perspective. The two scenarios are specified in Table 4.1.

tricity supply needs to be low as cradle-to-grave CO2-eq. emissions of DMM exceed those
of fossil diesel considerably if the current German electricity mix is utilized. Second, the
higher the carbon footprint of the electricity mix is, the more important becomes the choice
for the pathway in order to yield a low impact on climate change of DMM.
Fig. 4.7 therefore shows the impact on climate change of DMM for the different path-

ways on Level 2 as a function of the impact on climate change of electricity supply. The
intersections of the graphs with the solid black line are the break-even points, where the
CO2-eq. emissions of DMM fall below those of fossil diesel. The impact on climate change
of the reductive DMM pathway depends the least on that of the electricity supply. Below
the break-even point of 190 gCO2−eq. kWh−1, DMM produced by the reductive pathway is
more favorable compared to fossil diesel. This break-even point has a rigorous bound at
about 225 gCO2−eq. kWh−1 (ESI Fig. S4 of the original publication [142]). At this bound,
only stoichiometric H2 and CO2 consumption is considered (Level 1) such that no process
can exceed this bound. The established and oxidative pathways have a break-even point
of 170 gCO2−eq. kWh−1 and are thus less favorable compared to the reductive pathway. For
these three pathways, the grid mixes of Norway, France, and in contrast to DMM/fossil
diesel blends with 35 vol% DMM [19], also of Switzerland and Finland, are sufficient for
producing and using neat DMM with less impact on climate change than fossil diesel al-
ready today. In this range, it does matter which pathway is used for DMM production
from a climate impact perspective. The carbon footprint of the dehydrogenative pathway
depends most strongly on the impact on climate change of electricity supply as the selec-
tivity towards DMM is the lowest. The co-production of MF and DME requires additional
electricity and the low methanol conversion results in a high heat demand for product sep-

40



4.1. Hierarchical Comparison of Reaction Pathways

aration (cf. Appendix Tab. B.8-B.10). The impacts on climate change evaluated on Level
1 and 3 are presented in ESI Fig. S4 and S5 of the original publication [142], respectively.
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Figure 4.7.: Sensitivity of the cradle-to-grave impact on climate change of DMM with respect
to the impact on climate change of electricity supply for different DMM synthesis pathways on
Level 2 and fossil diesel. The impact on climate change is calculated using the current catalyst
performance of each pathway. Avoided burdens for co-produced MF, DME, and excess heat are
not considered. Below 360 gCO2−eq. kWh−1, heat between 90–250 °C is provided by electrode
boilers instead of steam production (relevant only for the dehydrogenative pathway). H2 is
supplied by SOEC instead of conventional steam methane reforming below 260 gCO2−eq. kWh−1.
At lower carbon-intensities of electricity supply, both the electrode boilers and the SOEC allow
for lower climate change impacts compared to their conventional counterparts. The solid black
lines at the top of the graph represent the impact on climate change of country-specific grid
mixes and two forecasts for the global grid mix of 2030 and 2050 that are based on the “beyond
2 °C scenario” of the International Energy Agency [158].

4.1.2.4. Catalyst Improvement Potential

The non-oxidative pathways have been proposed just recently and may offer catalyst im-
provement potential that has not been captured with the analyses on Level 2 so far.
To consider this improvement potential, we analyze the theoretically achievable reaction
performance of the reductive, dehydrogenative, and transfer-hydrogenative pathway by
assuming restricted equilibrium conversion. Restricted equilibrium considers only the de-
sired reaction (perfect DMM selectivity) [159]. We calculate the equilibrium DMM yield
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using the stoichiometric chemical and phase equilibrium (REquil reactor model in Aspen
Plus v11) and evaluate the current gap to this performance. We then use these theoretical
reaction conditions to evaluate the maximum process efficiency, minimum production cost,
and minimum impact on climate change on Level 2 for all non-oxidative pathways.

Reductive pathway

Reaction equilibrium calculations show that DMM yield increases strongly with decreas-
ing temperature due to the exothermic nature of Reaction (R6) (Fig. 4.8a). Experimental
DMM yields confirm this trend in the temperature range of 80–120 °C, but they are well
below equilibrium yield due to catalyst deactivation during the course of reaction. In
the temperature range below 80 °C, experimentally observed DMM yields decrease signifi-
cantly since the used catalyst requires a certain activation energy to convert CO2 and H2.
To exploit the increased DMM equilibrium yield at temperatures below 80 °C, catalysts
requiring even lower temperatures and thus lower activation energies for CO2 activation
are necessary. In terms of reactor pressure, the DMM equilibrium yield increases linearly
with increasing pressure (Appendix Fig. B.2). Experiments do not confirm this linear
trend so far, which could be caused by limitations of the experimental set-up. Due to
the minimum temperature of 80 °C required for catalyst activity and the independence of
experimental DMM yield on pressure, we choose an optimal operating point of 80 °C and
80 bar for evaluating the maximum performance of the reductive pathway on Level 2. This
corresponds to an equilibrium yield of 15.7 % and an improvement of 7.4 percentage points
compared to the current state of the catalyst.
At equilibrium yield, the heat demand required for product separation is reduced by 81 %

compared to the current state of the catalyst (Appendix Tab. B.14 and Fig. B.3). As
the heat demand of the reductive pathway causes the main exergy losses, this reduction
is highly beneficial and increases exergy efficiency by 5 percentage points to an overall
process efficiency of 89 %. Production costs are reduced by only 0.1 $ L−1

diesel−eq. as fossil-
based heating is cheap compared to renewable H2. A major benefit in reducing fossil-
based heating rather lies in associated CO2-eq. emission reductions, which are about 10 %
(44 gCO2−eq. MJ−1) in the worst case scenario. The best case scenario utilizes almost CO2-
neutral heating sources, such that a reduced heat demand has only a negligible effect on
climate impact (ESI Fig. S10 of the original publication [142]).

Dehydrogenative pathway

The experimental data on the dehydrogenative pathway demonstrates that the maximum
experimentally achieved DMM yield (4.1 %) is 104 times higher than that if no side reac-
tions would be suppressed [41]. This corresponds to 48 % of the DMM equilibrium yield at
240 °C (Fig. 4.8b). At higher temperatures, equilibrium DMM yield increases, but DMM
selectivity decreases due to elevated FA and MF co-production [41]. However, co-produced
FA and unreacted methanol can be converted to DMM (cf. Sec. 3.1) in an additional reac-
tive distillation section [45], such that the overall DMM yield does not necessarily decrease
with increasing temperature. To still benefit from rather mild reaction conditions and
maintain high yields, we chose an equilibrium DMM yield at 300 °C (9.8 %) for analyzing
potential process improvements by further catalyst development. Reaction pressure does
not have a significant influence on DMM yield and is kept constant at 1 bar.
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Similar to the reductive pathway, heat demand decreases by about 80 % at equilib-
rium yield at 300 °C and exergy efficiency increases by 6 percentage points to an overall
process efficiency of 85 % (Appendix Tab. B.14 and Fig. B.4). The maximum cost re-
duction potential is 0.6 $ L−1

diesel−eq. or 22 % of the production costs considering the current
state of the catalyst. This reduction is enabled mainly by the assumed perfect selec-
tivity (0.3 $ L−1

diesel−eq.) and by the lower heat demand (0.2 $ L−1
diesel−eq.). As the absolute

reduction in heat demand is even higher than that of the reductive pathway, the associ-
ated reduction in CO2-eq. emissions in the worst case scenario is higher as well (26 % or
140 gCO2−eq. MJ−1). Although the best case scenario utilizes almost CO2-neutral heating
sources, significant CO2-eq. emission reductions can be achieved there as well due to the
higher selectivity (cf. ESI Fig. S10 of the original publication [142]).

Transfer-hydrogenative pathway

For the transfer-hydrogenative pathway, no process concept has been developed on Level
2, because reported DMM yields are still low (Appendix Tab. B.1 and Fig. 4.8c). The
low DMM yields are mainly caused by comparatively low catalyst concentrations used
in the experiments, which makes the direct comparison between the pathways difficult.
The maximum potential calculations can overcome these difficulties and allow also for
the transfer-hydrogenative pathway a fair comparison with its alternatives from a process
perspective.
The equilibrium reaction calculations reveal that experimentally achieved DMM yields

(up to 2.1 %) are well below restricted equilibrium conditions (92.1 %) at 100 °C as-
suming the concurrent transfer-hydrogenation reaction of styrene to ethylbenzene (EB)
(Fig. 4.8c). Whereas the experimentally achieved maximum selectivity is almost perfect
(98.2 %), methanol conversion is still low (0.9 %). Without the H2 removal by the transfer-
hydrogenative reaction (‘no trans.-hydr.’ in Fig. 4.8c), equilibrium yield would be limited
to only 0.3 %, which is about one third of the experimentally achieved yield. The strong
effect of in-situ H2 removal on DMM yield for the transfer-hydrogenative pathway indicates
similar benefits for the dehydrogenative pathway and should therefore be investigated in
future research. Irrespective of a concurrent transfer-hydrogenation reaction, if the cata-
lyst would not suppress MF and DME formation selectively, no DMM would be formed
but exclusively MF and DME with selectivities of 83.1 % and 16.9 %, respectively.
To evaluate the maximum potential of the transfer-hydrogenative pathway, we assume

equilibrium yield at 100 °C (92.1 %) and the concurrent transfer-hydrogenation of styrene
to EB. In contrast to the other non-oxidative pathways, the evaluated process concept for
the transfer-hydrogenative pathway contains the following additional steps: the transfer-
hydrogenation of styrene, the subsequent removal of its hydrogenated molecule EB, the
dehydrogenation back to styrene and H2, and the recycling of styrene into the reactor. The
resulting process concept and model assumptions are given in Appendix Fig. B.6.
If EB dehydrogenation and H2 recycling is considered at no cost (decoupling the path-

way evaluation from the choice of the model hydrogen carrier substance), a maximum
process exergy efficiency of 91 % can be achieved (Appendix Fig. B.5a). This is slightly
higher than that of the reductive pathway (89 %) and significantly higher than that of the
dehydrogenative pathway (85 %) due to a higher equilibrium conversion and, in turn, a
lower heat demand. Considering commercial EB dehydrogenation and H2 recycling, the
efficiency drops to 72 % due to its massive heat demand at high temperature (cf. Appendix
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Figure 4.8.: DMM yield dependence on reactor temperature for the reductive pathway (Fig.
4.8a), the dehydrogenative pathway (Fig. 4.8b), and the transfer-hydrogenative pathway (Fig.
4.8c). Restricted equilibrium conversion (considering perfect DMM selectivity) has been con-
sidered throughout the entire temperature range and was calculated with an REquil reactor
model in Aspen Plus v11.

Tab. B.14). It should be noted that the use of styrene as a hydrogen acceptor is not in-
dustrially viable, since styrene itself is produced industrially by EB dehydrogenation. The
hydrogen carrier couple styrene-EB was nevertheless selected for the experiments due to
its ease of hydrogenation and analytical simplifications in the experimental development
of a transition-metal catalyst that could catalyze the conversion of methanol to DMM.
For industrial applications, a hydrogen carrier couple allowing for a more energy efficient
H2 recycling has to be found, which is subject to ongoing research. Alternatively, the
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co-production of a high value hydrogenated by-product could be envisioned as well.
The minimum production cost for the transfer-hydrogenative pathway is identical to

that of the reductive pathway (2.0 $ L−1
diesel−eq.) (Appendix Fig. B.5b). The same amount

of H2 and CO2 is consumed as well as compressed to operating pressure. DMM production
cost by the dehydrogenative pathway is slightly more expensive (2.1 $ L−1

diesel−eq.) as a con-
siderable amount of external heat is required for product separation despite equilibrium
conversion.
In terms of impact on climate change, the transfer-hydrogenation pathway has the

lowest climate impact among the alternative pathways in the worst case scenario
(370 gCO2−eq. MJ−1) if EB dehydrogenation and H2 recycling at no cost is considered (ESI
Fig. S12c of the original publication [142]). In the other cases, the climate impact slightly
exceeds that of the dehydrogenative pathway. For the best case scenario, the impact on
climate change is below 10 gCO2−eq. MJ−1 and thus, similar to the alternative pathways,
well below that of fossil diesel (86 gCO2−eq. MJ−1) (cf. ESI Fig. S10 of the original publica-
tion [142]).
In total, methanol transfer-hydrogenation toward DMM can represent a promising path-

way alternative if two prerequisites can be satisfied: significant catalyst improvements al-
lowing a higher single-pass DMM yield and a more promising H2 carrier substance. Such
a substance can be more promising either in terms of a higher efficiency regarding H2
management, or in terms of value as a final by-product.
A summary of the existing bottlenecks connected to each reaction pathway is given

in Tab. 4.2. To support future research in DMM synthesis, we therein estimate the
significance of each bottleneck’s impact on KPIs and propose improvement measures cor-
respondingly.

4.1.3. Conclusion
Extensive effort in catalyst development for dimethoxymethane (DMM) production during
the last years have resulted in remarkably improved reaction performances and completely
new reaction pathways. Yet, the achievements in catalyst development have not been
assessed from a process perspective such that their actual performance and sustainability
for industrial applications still remain unknown. In this section, we demonstrate that
DMM produced via different reaction pathways offers considerable benefits compared to
fossil diesel if requirements on cost and carbon footprint of raw material provision are met.
However, for each individual pathway special aspects for their further development need
to be addressed if those requirements can not be fulfilled to an arbitrary large extent.
Our hierarchical process evaluation shows that comparable process efficiencies to other

e-fuels (e.g., dimethyl ether (DME)) can only be achieved if H2 consumption is low. The
non-oxidative pathways (reductive, dehydrogenative, and transfer-hydrogenative pathway)
have a maximum exergy efficiency of 97 % (Level 1), which is significantly higher than that
of the established and oxidative pathway and most other e-fuels. More detailed process
analyses (Level 2 and 3) of all pathways reveal that exergy losses mainly result from an
energy-intensive product separation and a low DMM single-pass yield of current catalysts.
Although these losses are more pronounced for the non-oxidative reaction pathways, their
exergy efficiency is higher than that of the established and oxidative one. Their comparably
low H2 consumption is key for efficient DMM production—especially in a world with limited
renewable electricity.
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Table 4.2.: Bottlenecks of each reaction pathway, their impact on key performance indicators,
and potential measures for improvements.
Reaction
Pathways

Bottlenecks Impact
on KPIs

Improvement measures

Established High H2 consumption due to
oxidative FA production

High FA prod. via methanol dehydro-
genation

Three process steps Low nonea

Oxidative High H2 consumption due to
oxidative in-situ FA formation

High nonea

High DMM dilution in reactor
effluent

Medium Pure oxygen as oxidant and
methanol excess

High cooling demand Medium Application of an alternative gas
separation

Reductive Gap to chemical equilibrium Medium Further catalyst optimization to
suppress catalyst deactivation

Dehydrogenative Low equilibrium conversion High In-situ H2 removal (e.g., by mem-
brane reactor)

Comparatively low DMM selec-
tivity

Medium Further catalyst optimization to
suppress side reactions

Gas separation for H2 recycling
necessary

Medium nonea

Transfer-
hydrogenative

Gap to chemical equilibrium High Further catalyst optimization to
suppress catalyst deactivation

Currently only model substrate
as hydrogen carrier

High Extending the reaction to use in-
dustrially viable hydrogen accep-
tors

a Intrinsically given by reaction pathway.

The production cost for DMM may fall below the price of fossil diesel only if H2 can
be produced for less than 4 $ kg−1 and if a low H2 consumption can be ensured. Cost
competitiveness with fossil diesel is most likely achievable for the reductive pathway already
for the current catalyst performance. It is also the only pathway that is currently cost-
competitive with the production of other e-fuels.
In terms of the impact on climate change of DMM, the pathways do not differ signifi-

cantly from one another if exclusively renewable electricity is utilized. In this case, DMM
has the potential to reduce its climate impact by up to 92 % compared to fossil diesel. In
contrast, if the impact on climate change of electricity supply increases to that of Fin-
land or Switzerland (up to 190 gCO2−eq. kWh−1), it does matter which pathway is used for
DMM production from a climate impact perspective. In this range, the currently high
heat demand and co-production of side products make the impact on climate change of
the dehydrogenative pathway being most dependent on the impact on climate change of
electricity supply. The climate impact of the reductive pathway is least dependent on the
electricity carbon-intensity and is lower than that of fossil diesel below 190 gCO2−eq. kWh−1.
For an even higher carbon-intensity of electricity supply, DMM should not be considered as

46



4.2. Optimal Process Design for Reductive DMM Production

an alternative fuel since its impacts on climate change would exceed those of fossil diesel.
In contrast to the established and oxidative pathway, the non-oxidative pathways have

been proposed just recently such that their catalyst performances are expected to still
improve significantly. For exploiting the full potential of these pathways and ultimately
deciding which one is suited most for sustainable DMM production, more research need
to be conducted. For the dehydrogenative pathway, future catalyst development need
to aim at suppressing side reactions even more effectively. Alternatively, a systematic
exploitation of the co-products in a multi-product plant for producing different e-fuels (e.g.,
DMM, DME, and methyl formate) should be evaluated. For the transfer-hydrogenative
pathway, future experimental studies should aim not exclusively at increasing turnover
numbers, but also increasing single-pass DMM yield. Together with the identification
of an industrially viable hydrogen carrier substance, comparable performance indicators
to those of the reductive pathway can be achieved. The reductive pathway is the most
developed one among the non-oxidative pathways. We have shown that already with a
catalyst at its current state, an efficient DMM production at competitive cost and low
climate impact is possible in some countries.

4.2. Optimal Process Design for Reductive DMM
Production

The existing publications on process development, including our own [142], rely on
intermediate-fidelity models incorporating activity coefficient thermodynamic models. Ac-
tivity coefficient models are however usually not accurate at high pressures [160] and for
systems containing significant amounts of quadrupolar components (e.g., CO2). For such
systems, to which the reductive synthesis of DMM belongs to, equations of state (EOS)
should be preferred. In this regard, the perturbed-chain polar statistical associating fluid
theory (PCP-SAFT) EOS [161, 162] has been successfully applied to various systems [163].
The necessity of a complicated thermodynamic model in combination with typically non-
linear process unit models for such chemical processes results in a nonconvex optimization
problem, which makes deterministic process optimization for the direct CO2 reduction
challenging. Especially deterministic global optimization, which is required to guarantee
optimal solutions for nonconvex problems, is often computationally not tractable.
In this section, we measure liquid equilibrium densities and use data from the open lit-

erature to fit missing binary parameters of the PCP-SAFT EOS for the underlying system
of components. We then use the PCP-SAFT EOS to develop data-driven models to make
global optimization for reductive DMM production tractable while keeping model accuracy
high. More specifically, we use a data-driven model for the reactor to predict the solubility
of H2 and CO2 in the liquid reaction mixture at high pressure and their conversion with
methanol to DMM. Additionally, a data-driven model is developed for the flash down-
stream the reactor unit that recycles unreacted gaseous components. To also account for
DMM purification and identify the least energy-intensive separation process, we consider
two alternative distillation column sequences formulated as a simple superstructure.
Section 4.2.1 introduces the process concept that is used for process optimization and

the underlying chemical reaction. In Section 4.2.2 and 4.2.3, we fit binary PCP-SAFT
parameters and develop data-driven models for the reactor and the flash unit, as well
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as the superstructure model for distillation column sequencing. On the basis of these
models, Section 4.2.4 describes how the optimization problem is solved using our open-
source deterministic global solver MAiNGO [164], before the results are discussed in Section
4.2.5. In Section 4.2.6, we conclude our findings.

4.2.1. Process Flowsheet for Reductive DMM Production

The production of DMM via the direct reduction of CO2 is based on the reaction

2CH3OH + CO2 + 2H2 −−⇀↽−− DMM + 2H2O, (R23)

which is catalyzed by a ruthenium-based catalyst [38, 40]. In this reaction, CO2 and H2
are dissolved under high pressure in methanol, where the formation of the intermediate
product methyl formate (MF) takes place, before it is finally converted to DMM.
In Section 4.1, we developed a hierarchical process development and comparison

methodology that we applied to several reaction pathways for DMM production. Us-
ing intermediate-fidelity models, the reaction pathway according to Reaction (R23) was
found to be the most suitable one for sustainable DMM production at its current state of
development. As the goal of this section is to refine the process and optimize its design
and operating conditions using a more accurate thermodynamic model, some process mod-
ifications are required (Fig. 4.9). First, the unreacted gases dissolved in the liquid reactor
effluent are separated by a flash and a low-temperature distillation column. Second, as the
amount of MF at reaction equilibrium is negligible (based on our own calculations con-
sidering the two-step reaction [38] with MF as an intermediate) and its recycling together
with H2 and CO2 is simple, we do not consider MF formation in this study. Third, we
do not consider a fixed distillation column sequence for the purification of DMM as it is
dependent on the upstream reaction performance. Instead, we use a superstructure model
to incorporate the choice for the optimal sequence into the optimization resulting in a
mixed-integer nonlinear program (MINLP). As the mixture contains an azeotrope between
methanol and DMM, a pressure swing distillation (column D1 and D2) is considered (Fig.
4.9). Finally, we only consider DMM synthesis from methanol, CO2, and H2. Thus, we do
not optimize the upstream process for methanol production via CO2 hydrogenation.
For the exothermic vapor-liquid reaction (R23), a temperature of 80 °C has been found

experimentally to be ideal for the ruthenium-based catalyst at its current state due to
its required minimum activation energy [38]. In contrast, the ideal reactor pressure still
remains unknown. Experiments have shown that a high pressure enhances the solubility
of gases into methanol and may increase conversion [38–40]. However, a high reactor pres-
sure results in high compression cost. The use of co-solvents with an enhanced solubility
for H2 and CO2 has high potential to counteract corresponding mass transfer limitations
within the reactor. However, these co-solvents also have an influence on the catalytic
reaction [165], which has not been investigated sufficiently so far. Therefore, we do not
consider the use of co-solvents within this section. The combination of a high pressure
and the presence of components with a quadrupole moment (CO2) that might influence
fluid properties significantly makes the consideration of an accurate thermodynamic model
inevitable.
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Figure 4.9.: Process flowsheet for the reductive production of DMM. The corresponding pro-
cess model includes a data-driven model for the reactor, where the vapor-liquid reaction (R23)
takes place at high pressure, and a data-driven model for a flash unit, where unreacted H2
and CO2 is separated and recycled. Downstream the distillation column D0, which separates
remaining CO2, a superstructure model for the purification of DMM using pressure swing distil-
lation (column D1 and D2) is used for column sequencing. The different line types correspond
to the different column configurations.

4.2.2. Thermodynamic Modeling

Since the reactor is the central unit of the process and has a significant influence on the
downstream process units, we place a firm focus on the accuracy of the reactor model.
As the reaction according to Equation (R23) requires high pressures (based on our own
experiments and those from literature [38–40], a reactor pressure of 50 bar is sufficient to
ensure a reasonable solubility of H2 and CO2 in the liquid), the reactor is modeled with
the PCP-SAFT EOS. As the subsequent flash unit recycles unreacted gaseous educts po-
tentially at high pressures (to avoid recycling of gaseous DMM), it has a direct influence
on the reaction and is therefore also modeled with the PCP-SAFT EOS. For the down-
stream process at moderate pressures, the system is approximated as an ideal system (with
the azeotrope between DMM and methanol being considered as a pseudo-component, cf.
Section 4.2.3) to maintain optimization tractability while still obtaining estimates on the
exergy demand for DMM purification. As the exergy demand for DMM purification makes
up only a smaller part of the total energy demand [142] (cf. Section 4.1), the resulting
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inaccuracies are expected to affect overall process performance only moderately.

4.2.2.1. PCP-Saft Equation of State

PCP-SAFT EOS is based on PC-SAFT EOS [166] with additional polar terms for dipole-
dipole [162] and quadrupole-quadrupole [161] interactions. For further information on the
used model, we refer to Aigner et al. [167].
Phase equilibrium calculations using only pure component parameters (Appendix

Tab. C.1) often deliver results with significant deviations to experimental data [160]. To
gain reliable phase equilibria for multicomponent systems, conventional combining rules
usually require the adjustment of interaction parameters to the binary subsystems. We
consider two cases: For non associating systems, the binary interaction parameter kij is
used for the correction of dispersive interactions [168]. In case of cross-associating systems,
polar interactions occur involving a molecule that is either a hydrogen bond acceptor or a
hydrogen bond donor. This effect is modeled by the binary association strenght εAiBj and
binary association volume κAiBj [167]. These corrections lead to a significant improvement
of phase equilibrium calculations.
In our case, the solubility of the gaseous educts H2 and CO2 is of utter importance

because of its significant influence on the chemical equilibrium and thus on the total process
performance. Therefore, binary parameters are used for all binary subsystems including
H2 or CO2. Parameters are either taken directly from literature or adjusted to vapor-
liquid equilibria from literature. Since there is no experimental VLE-data for H2 or CO2
with DMM available in the open literature, we measured liquid equilibrium densities (ESI
Section 2 of the original publication [169]), which we used to calculate the binary interaction
parameters kCO2,DMM and kH2,DMM (Tab. 4.3). For parameter fitting, the deviation between
the experimental results and those generated by the PCP-SAFT EOS are evaluated by the
weighted root-mean-square deviation RMSDw

RMSDw(ρ) =

√√√√ 1
N

N∑
n

(
ρcalc

eq,n − ρ
exp
eq,n

uc(ρ)i,n

)2

(4.2)

taking the uncertainties uc(ρ)i,n of the experimental liquid equilibrium densities ρexp
eq into

account. It is noticeable that all gas solubilities were significantly underestimated without
the use of binary parameters.

Table 4.3.: Binary parameters for the PCP-SAFT EOS.
Parameter source Component i Component j kij / − εAiBj / K κAiBj / − Data Ref.

Literature CO2 Water - 2882.3 5.72967× 10−4 Aigner et al. [167]

Regression

CO2 Methanol - 3127.43 6.06313× 10−4 Leu et al. [170]
H2 Water -0.4622 - - Gillespie and Wilson [171],

Kling and Maurer [172],
DeVaney et al. [173]

H2 Methanol -0.5132 - - Brunner et al. [174]

Experiments CO2 DMM -0.0875 - - this work
H2 DMM -0.127 - - this work
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4.2.2.2. Data-driven Thermodynamic Model

Given the complicated form of the PCP-SAFT EOS, it is not straightforward to consider
this thermodynamic model directly in deterministic global process optimization. It is
not available in most commercial process simulation tools and complicated to rigorously
implement in process models. The multitude of terms required to describe the complex
interactions between different types of molecules and phases introduces many variables
and makes the solution of the corresponding system of equations challenging. Only few
standalone model implementations are available in the open literature [175], which can
however not be integrated into commercial process simulation tools. To still benefit from
the high accuracy of the PCP-SAFT EOS for process optimization, we develop data-
driven models for the reactor and the flash unit for gas recycling, which can efficiently be
used for deterministic process optimization [176, 177]. The presence of both data-driven
and mechanistic models results in a hybrid process model. With this hybrid modeling
approach, we enable the integration of models that are too complicated for deterministic
global optimization while exploiting the large validity range of mechanistic models for the
remaining process units.

Flash Model

In accordance to the reported suitability of artificial neural networks [178] (ANNs) for
approximating phase equilibrium calculations for systems described by the PC-SAFT
EOS [179], we use an ANN to model the vapor-liquid equilibrium (VLE) within the flash
unit F1 considering the PCP-SAFT EOS. The input variables of this model are the oper-
ating conditions of the flash (TF1 and PF1) and the component mole fractions of the liquid
reactor effluent (xProd,i). The bounds for xProd,i correspond to the attainable region of
the reaction effluent and are summarized in Tab. 4.4. In order to yield a linear process
model for the flash unit and keep the output dimension as small as possible, the output
variables are chosen to be the split factors ξi of each component i. As the consideration
of 6 input variables requires a large set of samples, we generate 10,000 data points using a
mechanistic flash model implemented in Matlab incorporating the PCP-SAFT EOS.

Table 4.4.: Input variables and their bounds for the training of the ANN flash model.
Input variable Description Bounds
TF1 / °C Temperature of flash F1 [25;100]
PF1 / bar Pressure of flash F1 [4;40]
xProd,H2

/ - Liquid mole fraction of component H2 in reactor effluent [0.01;0.03]
xProd,CO2

/ - Liquid mole fraction of CO2 in reactor effluent [0.05;0.11]
xProd,DMM / - Liquid mole fraction of DMM in reactor effluent [0.01;0.08]
xProd,H2O / - Liquid mole fraction of water in reactor effluent [0.03;0.14]

For deterministic global process optimization, it is crucial to keep the problem size as
small as possible and relaxations as tight as possible in order to keep the optimization
tractable. At the same time, accuracy requirements need to be met. To find the optimal
trade-off between model accuracy and computational performance, sophisticated methods
exist (e.g., ALAMO - Automatic Learning of Algebraic MOdels [180]). Such methods
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use a library of terms with a simple functional form to iteratively build a process or unit
model until a desired accuracy is reached. The resulting models are tailored to fulfill the
desired trade-off as good as possible. In this study, we do not intend to find the sweet
spot of this trade-off, but rather show that deterministic global optimization for complex
processes is also possible with off-the-shelf surrogate models. In fact, in the reduced-space
problem formulation in MAiNGO (cf. Section 4.2.4), the optimization problem remains
the same irrespective of the size of the surrogate model, i.e., the ANN, but it only affects
the relaxation tightness and the model accuracy [176]. To ensure a reasonable accuracy,
we performed a sensitivity analysis regarding the number of hidden layers and neurons per
layer. The mean squared error (MSE) for all cases and all settings for the training of the
ANN model are summarized in Fig. 4.10. For an acceptable maximum MSE of 10−4, the
ANN must have at least 10 neurons in total. Numerical experiments have shown that the
ANN with 3 layers and 4 neurons for each layer results in a lower solution time than ANNs
with the same size but different amount of layers or those with an even smaller size. This
indicates that the number of layers has a significant influence on the relaxation tightness
(cf., Section 4.2.5). The prediction capabilities of the final ANN model are demonstrated
in Fig. 4.11a-4.11c exemplary for the split factors of H2, CO2, and DMM.
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Figure 4.10.: MSE averaged over all test set data points for ANNs with a different total number
of neurons and a different number of hidden layers. For training, the Levenberg Marquardt
training function, a hyperbolic tangent transfer function, a training ratio of 70 %, a validation
ratio of 15 %, and a test ratio of 15 % was used.

Reactor Model

For the reductive synthesis of DMM from methanol, H2 and CO2, there is no reaction
kinetic model available in the open literature. As we want to find the maximum expected
process performance, we consider reaction equilibrium throughout this study. Although
the catalytic reaction (R23) takes place only in the liquid phase, the VLE within the reactor
influences reaction equilibrium and vice versa. Therefore, the conversion of methanol is
dependent on the ratio of H2 to CO2 in the gaseous reactor feed, as well as on the ratio of
gas to liquid within the reactor. However, a corresponding sensitivity analysis (Appendix
Fig. C.1 and C.2) has shown that their influence on reactor performance is low. As mainly
the reactor performance determines how much gas need to be supplied back to the system,
the two ratios do not affect process design and exergy demand significantly. Therefore, a
fixed gas composition corresponding reaction stoichiometry and a molar ratio of 1:1 for the
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(a)

(b) (c)

Figure 4.11.: ANN prediction (surface) and PCP-SAFT training data (×) for the split factor
of H2 (Fig. 4.11a), CO2 (Fig. 4.11b), and DMM (Fig. 4.11c) within the flash unit F1 as
a function of temperature and pressure. An ANN with 3 layers and 4 neurons each with the
settings summarized in the description of Fig. 4.10 is used for optimization. The plotted split
factors are shown for the globally optimal molar reactor outlet composition (H2: 0.018, CO2:
0.091, DMM: 0.070, Methanol: 0.694, Water: 0.127).

amount of gas within the reactor is used for the optimization. For industrial application,
the catalyst is assumed to be immobilized and therefore not withdrawn with the liquid
reactor effluent containing only DMM, water, and unreacted methanol, H2, and CO2.
With these assumptions, only the reactor pressure needs to be considered as input variable
for the data-driven reactor model. The output variable has been chosen to be methanol
conversion at simultaneous phase and reaction equilibrium to yield linear equations for the
reactor process model. As unreacted H2 and CO2 remain in the liquid phase at reaction
equilibrium, also the K-values for these two components need to be considered as output
variables.
For data generation, we use the same in-house Java implementation of the PCP-SAFT

EOS as for the flash model. As it does not allow the simultaneous consideration of chemical
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reactions to this date and convergence is sensitive to initial values in the first place, an
iterative procedure for calculating the combined phase and chemical equilibrium is applied
in Matlab. First, the phase equilibrium via the PCP-SAFT EOS determines how much
gas dissolves in methanol. The resulting liquid phase composition x̃Prod,i (before reaction)
is then used to solve the definition of the equilibrium constant

K(T ) =
∏
i∈C

(
1

x̃Prod,i

f̃i
f 0
i

xProd,i

)νi

= exp
(
−∆G0

R
RT

)
(4.3)

for mole fractions xProd,i (after reaction). The fugacities f̃i of each component i can be taken
from the in-house Java implementation of the PCP-SAFT EOS, in which the standard state
fugacity f 0

i corresponds to standard pressure. Parameter νi is the stoichiometric coefficient
of component i according to Reaction (R23). The standard Gibbs energy is calculated by

∆G0
R =

∑
i∈C

νiµ
0
i =

∑
i∈C

νi

∫ T

T0
ciG

p,idT
′−T

∫ T

T0

ciG
p,i

T ′
dT ′+∆fH

iG
i (T 0)−T∆fS

iG
i (T 0, p0)

. (4.4)

The ideal gas heat capacities ciG
p,i, the standard enthalpies of formation ∆fH

iG
i and the

standard molar entropies ∆fS
iG
i are taken from the DIPPR 801 Database. The iterations

eventually terminate once a threshold for the reaction extent has been reached.
The iterative procedure makes the application of the mechanistic reactor model com-

putationally much more demanding compared to the mechanistic flash model resulting in
long computation times per data point. Therefore, data-driven modeling using ANNs is
not suitable because of the high number of required samples. Instead, given the small num-
ber of attainable samples, Gaussian processes [181] (GPs) represent a suitable alternative
modeling approach. As we consider only a single input for the reactor model and for each
of the three output variables its own GP, only a small set of samples is required to accu-
rately model the behavior within the reactor. Similarly to the data-driven flash model, we
performed a sensitivity analysis to determine the minimum complexity of the GP models
to improve optimization tractability. As the GP model complexity scales with the number
of data points, the most suitable trade-off between model accuracy and computational
performance could be achieved with 6 data points (cf. Section 4.2.5). The corresponding
MSEs are summarized in Tab. 4.5. The prediction capabilities of the final GP models are
demonstrated in Fig. 4.12a-4.12c for the equilibrium methanol conversion (CMeOH) and
the K-values of H2 and CO2. The large deviation between the simulation data calculated
with the PCP-SAFT and the PC-SAFT EOS for these variables (Fig. 4.12) highlights the
importance of the correct choice of the thermodynamic model for the reactor model.

4.2.3. Process Modeling

For the remaining process units, the consideration of a simpler thermodynamic model is
justified as either only moderate operating pressures are considered or H2 and CO2 have
already been separated. Furthermore, the remaining process units provide only approxi-
mate estimates for the exergy demand for compression and product purification, for which
simple models are sufficient as they are expected to make up only a smaller share of the
overall exergy demand [142].
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Table 4.5.: MSE for the GP models for CMeOH, KH2
, and

KCO2
for a different number of considered training data points

and the matern kernel with parameter 3/2 as the covariance
function. The MSE corresponds to the test set only. The base
case model is highlighted in gray.

GP data points
4 6 8 10 12

MSECMeOH / 10−10 140 6.5 1.1 0.5 0.6
MSEKH2

/ - 0.707 0.039 0.029 0.019 0.010
MSEKCO2

/ 10−4 50 2.95 1.89 1.13 0.62

Distillation Column Sequencing by Superstructure Optimization

As the optimal distillation column sequence is generally dependent on the upstream pro-
cess, a fixed sequence could lead to a suboptimal process design and operating conditions.
Therefore, we consider superstructure optimization, which calculates the optimal distilla-
tion column sequence based on the optimal operating conditions of the upstream process.
We consider only distillation columns D1-D3 for superstructure optimization as CO2 should
be separated first to minimize the need for low-temperature distillation (cf. Fig. 4.9). This
results in only two possible sequences, which we could have simply considered as two sep-
arate nonlinear programs (NLP). We nevertheless formulate the separation process as a
superstructure and demonstrate that solving the MINLP is cheaper than enumerating the
two options as NLPs.
In this study, we use the state-equipment network [182] (SEN) superstructure represen-

tation, in which we assign all separation tasks that have a cut between the same compo-
nents to the same distillation column (separation cut SEN) [183, 184]. In contrast to the
state-task network, this representation requires the smallest number of distillation column
models, while keeping model equations comparatively simple.
For the separation cut SEN, the connection between columns can be fully described by

two types of binary variables. Variable XF
d indicates whether column d is connected to

the global feed (i.e., the bottom product of column D0) to the superstructure. Variable
Xs
l,j indicates whether the output stream s (distillate or bottom) of column l is connected

to column j. In this work, the following equations are used to describe the connection
between the distillation columns:

XB
2,3 +XD

3,2 = 1 (4.5)

XF
3 = XD

3,2 (4.6)

XF
2 = XB

2,3. (4.7)

Note that the distillate stream of column 1 is always fed to column 2 and the distillate
stream from column 2 is always fed to column 1, regardless of the selected sequence (Fig.
4.9). To determine the feed flow rates to a column, all flow rates that can be fed to a
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(a)

(b) (c)

Figure 4.12.: GP prediction (black line) and PCP-SAFT training data (×) for the K-values
of H2 (Fig. 4.12a) and CO2 (Fig. 4.12b), and methanol equilibrium conversion CMeOH (Fig.
4.12c) for the reactor unit as a function of pressure. The red plus markers (+) represent the
PCP-SAFT test data used to calculate the MSE reported in Tab. 4.5 to demonstrate the
validity of the GP model between training samples. The orange diamonds (♦) correspond to
the PC-SAFT EOS and demonstrate the deviation between PC-SAFT and PCP-SAFT EOS for
the underlying system.

column are multiplied by the corresponding binary variable to ensure that only the flow
rates of the active connections are used (cf. Direct MINLP problem formulation in Burre
et al. [185], Section 5.2.5). For example, the feed of component i to column 2 is given by

F2,i = D1,i +XF
2 Fi +XD

3,2 D3,i , (4.8)

where Fi is the global feed of component i and Dd,i is the distillate flow rate of component
i in column d.
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For the distillation column models, the Underwood equations [186] are used. In order to
apply the Underwood method to the azeotropic mixture considered in this work, the coor-
dinate transformation presented by Liu et al. [187] is used. In their method, the azeotropic
system is divided into subsystems which behave approximately like a non-azeotropic mix-
ture. Within this transformation, the azeotropes are treated as pseudo-components. In
this work, the subsystems are modeled as ideal mixtures and the vapor pressures of the
pure components are determined using the extended Antoine equation. To determine the
vapor pressures of the azeotropic pseudo-components, the Antoine parameters are fitted
using data from flash calculations in Aspen Plus.

Miscellaneous Models

The remaining units are modeled using simple process models to get an estimate on exergy
demand while maintaining optimization tractability. For gas compression, we use a one-
stage compressor model to keep the amount of optimization variables small and consider an
isentropic and mechanical efficiency of 80 % and 90 %, respectively. This provides a rather
conservative estimate, as the model overestimates the actual exergy demand slightly. In
Section 4.2.5, we evaluate whether this simplification is reasonable. For the pumps, an
isentropic efficiency of 90 % is considered. For the heat exchanger, we use the logarithmic
mean temperature difference to approximate the thermodynamic mean temperature, which
we use to compute exergy demand and excess. Heat integration is only approximated in
the objective function by the simple summation of exergy demand and excess within the
entire system. All parameters for the pure component property models (extended Antoine
for vapor pressure, DIPPR-106 for heat of vaporization, DIPPR-107 for heat capacity) are
taken from the Aspen Plus DB-PURE37 data base and for the Henry’s constant correlation
for H2 and CO2 from the APV110 HENRY-AP and BINARY data bases.

4.2.4. Problem Formulation and Objective Function
Most process models introduced in Section 4.2.2 and 4.2.3 are nonlinear. In addition
to the nonconvex terms of the pure component property models, the hyperbolic tangent
activation function applied in the ANN model as well as the covariance function of the GP
model introduce nonconvexities into the process model. Also the Underwood equations
for modeling the distillation columns within the superstructure and the corresponding
discrete decisions therein are responsible for further nonconvex terms. Irrespective of
the considered process models, the structure of the process itself with its recycle streams
makes the resulting optimization problem nonconvex. To find the most promising process
structure and operating conditions for reductive DMM production despite its nonconvex
nature, global optimization is desirable.
The application of global optimization to large optimization problems is however chal-

lenging. Particularly, problems incorporating data-driven submodels usually exhibit a
large number of optimization variables, which often makes the optimization problem not
tractable for state-of-the-art deterministic global solvers. To still solve such problems to
global optimality, our open-source deterministic global solver MAiNGO [164] effectively
exploits the smaller problem size of the so-called reduced-space problem formulation [188],
in which the only optimization variables are the degrees of freedom and tear variables.
By additionally considering tailored relaxations for the nonconvex terms of the process
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model, processes incorporating hybrid models could already be solved efficiently to global
optimality [176, 177].
The overall process model is implemented in the programming language C++, in which

all intermediate process variables are calculated as functions of the degrees of freedom, tear
variables, and a few additional optimization variables (to avoid model equations yielding
weak relaxations[189]). The degrees of freedom for the DMM production process depicted
in Fig. 4.9 are the reactor pressure (PR1), the temperature (TF1) and pressure (PF1) of
the flash unit for gas recycling, the binary decision variable for the choice of the optimal
distillation sequence (XB

2,3), as well as the recoveries of the light and heavy key component
(γLK,d and γHK,d, respectively) of distillation columns D1 - D3 (Tab. 4.7). As column
D0 is not part of the superstructure and separates pure CO2 from the remaining liquid
mixture, γLK,0 and γHK,0 are fixed to 1 and 0, respectively. Tear variables are introduced
for each recycle stream and for process units that otherwise would need to be modeled
by implicit functions [188]. The elimination of optimization variables using the model
equality constraints (i.e., the reduced-space formulation in MAiNGO) results in a dramatic
reduction in problem size. The resulting process model contains only 41 optimization
variables, one of which is binary. It has 55 inequality and 31 equality constraints (Tab.
4.6). To facilitate the modeling procedure and benefit from tailored relaxations, we use
the model libraries implemented in MAiNGO (e.g., enthalpy of vaporization, ideal gas
enthalpy [190]) and MeLOn [176, 177]. The model library MeLOn provides several machine
learning models including ANNs and GPs, which are accessed by MAiNGO via a build-in
interface. Corresponding model parameters from the training in Matlab are provided by
an automatically generated csv- (ANN) or json-file (GP). Relaxations of all functions and
their subgradients are automatically obtained from the MC++ library [191].
The objective function of the optimization problem is the minimization of the net exergy

demand

Ėtotal = ṅH2
êH2

+ ṅMeOH êMeOH +
∑
c∈C

Wc +
∑
p∈P

Wp +
∑
h∈H

ĖQin,h +
∑
d∈D

ĖQreb,d

−
∑
h∈H

ĖQout,h −
∑
d∈D

ĖQcond,d − ĖQR1,out ,
(4.9)

where ṅH2
and ṅMeOH is the net consumption of raw materials H2 and methanol, respec-

tively, êH2
and êMeOH is their molar exergy, Wc is the power input of compressor c ∈ C, Wp

is the power input of pump p ∈ P , ĖQin,h and ĖQout,h is the exergy flow of the heat demand
and excess for heat exchanger h ∈ H and flash F1, ĖQreb,d and ĖQcond,d is the exergy flow
of reboiler and condenser duties of distillation column d ∈ D, and ĖQR1,out is the exergy
flow of excess heat from the reaction. The ambient temperature is assumed to be 25 °C to
calculate the exergy flows.

4.2.5. Results and Discussion
The deterministic global solver MAiNGO [164] v0.5.0.2 employs a spatial branch-and-
bound algorithm with several bound tightening techniques and uses the multivariate Mc-
Cormick method [192, 193] implemented in MC++ [191] to obtain relaxations. The opti-
mization is carried out with the parallel version of MAiNGO on an Intel Xeon Platinum
8160 processor using 40 cores. Both the relative and absolute optimality tolerance is set
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to 10−3. To improve convergence, we use the following non-default settings in MAiNGO:
First, we utilize a combination of an adaptation of the Kelley’s algorithm [194] and a
n-simplex algorithm to linearize relaxations instead of utilizing a midpoint linearization.
Second, we selectively consider auxiliary variables (AVs) for repeated nonlinear terms to
improve the tightness of the relaxations [189]. With this, the base case optimization prob-
lem considers Kelley’s and n-simplex relaxation linearization, 84 AVs, 6 GP data points,
and 3 layers and 4 neurons each layer. All characteristics of the optimization problem are
summarized in Tab. 4.6.
The consideration of a special linearization strategy for relaxations reduces the num-

ber of nodes required for convergence significantly but in turn increases solution time per
node. The consideration of AVs is key for convergence in the first place (Tab. 4.6 and Fig.
4.13). As MAiNGO treats the process model in the reduced-space as one function being
dependent only on the degrees of freedom, tear variables, and a few additional optimiza-
tion variables (cf. Section 4.2.4), the model relaxation is constructed from a sequence of
mathematical operations (cf. McCormick method [192]), which results from the procedu-
ral concatenation of explicit model equations implemented in the C++ code. Within this
sequence of mathematical operations some individual terms may appear repeatedly, which
could weaken model relaxations [193]. To prevent this and still yield tight relaxations
for the optimization in the reduced-space, we add certain selected AVs to benefit from
both the reduced problem size and potentially tight relaxations from the auxiliary variable
method [195, 196] (AVM) typically employed by most state-of-the-art deterministic global
solvers [197, 198].

Table 4.6.: Problem size and numerical results for different objective functions, solver
settings, and model detail. For all considered cases, the global optimal solution was found
in the root node.
Objective function min Ėtotal max ηEx

Solver settings / model detail Base
case

Midpoint
linearization

No AVs GP w 8
data points

ANN w
5 neurons

Base
case

Number of
Continuous variables 40 40 40 40 40 40
Discrete variables 1 1 1 1 1 1
Equality constraints 31 31 31 31 31 31
Inequality constraints 55 55 55 55 55 55
B&B nodes 2715 225887 456000a 45000a 37200a 38500a

Optimal objective value / MJ kg−1 27.4 27.4 27.4a 27.4a 27.5a 91.9 %a

Lower bound of root node / MJ kg−1 -16 -2.2 ×109 -3.5 ×1011 -16 -61.3 -4.1 ×108

CPU time per B&B node / s 7.7 0.4 0.6 6.4 7.7 7.5
Total CPU time / h 5.8 27.6 80a 80a 80a 80a

Rel. optimality gap / % 0 0 9.0 ×107 0.8 0.5 1.6
a Optimization has reached the CPU limit of 80 CPUh.

The base case optimization problem is solved to global optimality in 5.8 CPUh or 2715
nodes (Tab. 4.6 and Fig. 4.13). The global solution is 2.08 MJ mol−1 or 27.4 MJ kg−1

net exergy demand per produced DMM, which corresponds to an exergy efficiency of
91.9 %. At the optimal operating conditions, a maximum reactor pressure of 120 bar is
applied (Tab. 4.7) resulting in an equilibrium methanol conversion of 15.4 %. As the
pressure variable is at its upper bound, an even higher pressure could result in an even
better performance but also requires a more complex reactor design. With the one-stage
compressor model, compression accounts for only 4 % of the total exergy demand, which
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would decrease even further if a multi-stage compressor model would be considered. As the
optimal operating pressure is already at its upper bound, a multi-stage compressor model
would not influence the optimal operating conditions. For a detailed process design at a
later stage of development, however, a multi-stage compressor model should be considered.
On the modeling level, the choice of the objective function also has a significant influence

on the optimization. Instead of minimizing net exergy demand (cf. Equation (4.9)),
maximizing exergy efficiency

ηEx =
ṅDMM êDMM +∑

h∈H ĖQout,h +∑
d∈D ĖQcond,d + ĖQR1,out

ṅH2 êH2 + ṅMeOH êMeOH +∑
c∈CWc +∑

p∈P Wp +∑
h∈H ĖQin,h +∑

d∈D ĖQreb,d

, (4.10)

the optimization does not converge within 80 CPUh (optimality gap of 1.6 %, Tab. 4.6).
Also the complexity of each process model must be kept moderate to yield tight relaxations.
Considering 8 instead of 6 data points for the Gaussian process reactor model, an optimality
gap of 0.8 % remains. Considering 5 instead of 4 neurons for each of the 3 layers for the
flash model, an optimality gap of 0.5 % remains (Tab. 4.6). If the two individual NLPs are
solved, the total solution time (30.1 CPUh) exceeds that of the base case MINLP problem
incorporating the superstructure model for distillation column sequencing significantly.
This shows that a superstructure representation (SEN, cf. Section 4.2.3) together with a
problem formulation (Direct MINLP [185] in a reduced-space, Section 5.2.5) that both do
not introduce many additional variables (here, only the binary variable XB

2,3) are promising
for deterministic global optimization.
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Figure 4.13.: Convergence indicated by the ratio of the lower bound to the upper bound during
the course of optimization for all considered cases. As the lower bound for the case without
the consideration of AVs is low and does not increase within the course of optimization, it is
not displayed in this diagram.

The flash unit operates at 4 bar and 42.0 °C to recycle 99.6 % H2 and 77.6 % CO2. The
rest of the CO2 is separated by the low-temperature distillation column D0, before DMM
can be purified in the subsequent distillation column sequence. The optimal sequence is

60



4.2. Optimal Process Design for Reductive DMM Production

Table 4.7.: Degrees of freedom for the reductive DMM production process (Fig. 4.9), their
interval bounds and optimal values.
Degree of freedom Description Bounds Optimal value

PR1 / bar Pressure of reactor R1 [50, 120] 120
TF1 / °C Temperature of flash F1 [25, 90] 42.0
PF1 / bar Pressure of flash F1 [4, 10] 4
XB

2,3 / - Decision variable for connecting column D2
with D3 via the bottom product

{0, 1} 1

γLK,1 / - Recovery of the LK component of column D1 [0, 1] 1
γHK,1 / - Recovery of the HK component of column D1 [0, 1] 0
γLK,2 / - Recovery of the LK component of column D2 [0, 1] 1
γHK,2 / - Recovery of the HK component of column D2 [0, 1] 0
γLK,3 / - Recovery of the LK component of column D3 [0, 1] 1
γHK,3 / - Recovery of the HK component of column D3 [0, 1] 0.05

obtained forXB
2,3 = 1, where column D2 first separates the azeotrope between methanol and

DMM from the bottom product of column D0. Then, DMM is separated from methanol
in the pressure swing distillation comprising column D2 and D3 leading to a total share
of exergy demand for separation of about 9.6 % of that for the entire process. This is in
good agreement with values from literature (7 % [19] and 8 % [142], both decoupled from
the upstream methanol process). However, the exergy demand for separation reported by
Burre et al. [142] (cf. Section 4.1) corresponds to a reactor pressure of 80 bar, for which a
methanol conversion of 15.7 % was estimated using the NRTL thermodynamic model—the
most suitable one to this date. Our calculations with the more accurate PCP-SAFT EOS
show that this conversion can only be reached at even higher pressures.
The results show that the correct choice of the thermodynamic model for the reactor is

crucial for process design and evaluation. To evaluate the accuracy of the simple Under-
wood model for distillation, we compare corresponding results with those obtained from a
tray-to-tray model and the NRTL thermodynamic model (accurate for moderate pressures)
in Aspen Plus. The results show that the total exergy demand is overestimated by the
Underwood model only slightly by about 10 % (Tab. 4.8). The estimates for the individual
distillation columns are, however, partly inaccurate for the Underwood model for this non-
ideal system. Although these inaccuracies do not have a significant influence on the overall
performance of the process, it certainly has for a more detailed process design at a later
stage of development. Therefore, more research should be dedicated to the development
of more accurate distillation models suitable for global flowsheet optimization.

4.2.6. Conclusion
The direct reduction of CO2 belongs to the most hydrogen-efficient pathways for
dimethoxymethane (DMM) production given its favorable reaction stoichiometry. Its need
for a high reactor pressure makes the application of thermodynamic models available in the
open literature however inaccurate, which has limited process design to the development
of simple process models so far.
To enable reliable process design and ultimately advance efficient DMM production,
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Table 4.8.: Comparison of the exergy demand for distillation column D0-D3
calculated with the Underwood model and the tray-to-tray model using the NRTL
thermodynamic model in Aspen Plus (RadFrac).
Distillation column Exergy demand / MJ kg−1

Underwood (this study) Tray-to-tray (Aspen Plus)
D0 0.23 0.24
D1 0.65 0.11
D2 0.23 0.25
D3 1.14 1.41

Total 2.25 2.01

we measured liquid equilibrium densities and fitted binary parameters for the PCP-SAFT
equation of state (EOS) for the components involved in the reaction. Whereas this thermo-
dynamic model was found to predict the vapor-liquid equilibrium of the system properly,
it constitutes a major challenge for deterministic global optimization for process design.
To benefit from both the high accuracy of the thermodynamic model and the potential
of deterministic optimization, we developed data-driven thermodynamic models for pro-
cess units that potentially operate at high pressures and contain significant amounts of
H2 and CO2. The equilibrium-based reactor model is therefore approximated by Gaussian
processes, while the flash unit for gas recycling is approximated by an artificial neural
network. In combination with a superstructure model for distillation column sequencing
and several recycling streams within the process, the resulting mathematical program is
nonconvex. To still find the most favorable process design and operating conditions, we
used our open-source deterministic global solver MAiNGO for optimization.
The capability of MAiNGO to exploit the small problem size of the so-called reduced-

space problem formulation makes the optimization converge to the global optimum in
5.8 CPUh. To achieve this performance, several measures had to be taken: On the algo-
rithm level, a combination of Kelley’s and a n-simplex algorithm for linearize relaxations,
as well as a hybrid of the McCormick and the auxiliary variable method had to be used.
On the modeling level, a suitable trade-off between model complexity (regarding the data-
driven models) and computational performance for global optimization had to be found.
The resulting process performance for reductive DMM production from methanol, H2, and
CO2 was found to be 91.9 % at an optimal reactor pressure of 120 bar. As only simple
Underwood models were used for the distillation columns within the superstructure, which
have been found to succumb significant inaccuracies for the underlying system, future
work should focus on the development of distillation models that are suitable for global
optimization. To increase methanol conversion and decrease the exergy demand for sep-
aration, co-solvents could be considered to either enhance gas solubility or enable in-situ
extraction of DMM from the reaction phase. In this regard, data on the phase equilib-
rium of reaction mixtures including different co-solvents and on their suitability for the
ruthenium-catalyzed reaction would be beneficial. This data could be used to fit PCP-
SAFT EOS parameters for a variety of multi-phase systems. Such parameters would then
enable an optimization-based screening of co-solvents, which potentially increase reaction
equilibrium and decrease energy demand for DMM purification.
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4.3. Process Chains via Reductive DMM Production
As heat integration is key for Power-to-X processes, we can not simply multiply efficiencies
to obtain the overall efficiency for DMM and OME3-5 production from H2 and CO2. Ad-
ditionally, OME3-5 production via reductive DMM synthesis has high potential to benefit
even further from more resource-efficient pathways than the established ones (cf. Section
3.2). However, corresponding process concepts have not been developed so far. For a
conclusive evaluation of the reductive reaction pathway for DMM production, we therefore
develop simple process concepts for the OME3-5 process chain and analyze the performance
of the heat-integrated process chain for both DMM (Section 4.3.1) and OME3-5 production
(Section 4.3.2) starting from renewable H2 and CO2.

4.3.1. DMM Production from Renewable H2 and CO2

For the process chain for reductive DMM production from H2 and CO2, the same methanol
process as in the process chain for established DMM production (cf. Section 3.1) is consid-
ered. Assuming a pinch-based heat integration between the two process steps, an overall
process exergy efficiency of 82 % is achieved (Fig. 4.14) following Equation (3.1).
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Figure 4.14.: Exergy flow diagram of the value chain for DMM production from H2 and CO2
via the reductive reaction pathway. For clarity, only the most relevant heat streams resulting
from heat integration between process steps are displayed. An overall process exergy efficiency
of 82 % is reached. Corresponding material and energy balances are summarized in Appendix
Tab. D.1.

Given the small deviation between the total exergy demand for DMM purification derived
by simple Underwood equations and tray-to-tray models (Section 4.2.5, Tab. 4.8), the
process evaluation in this section corresponds to Level 3 considerations according to the
hierarchical process development and evaluation methodology presented in Section 4.1.1.
Thus, the process efficiency can be directly compared with the one of the established process
chain reported in Section 3.1.3 (74 %) and is 8 percentage points higher. This increase in
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process exergy efficiency can be mainly attributed to the lower molar H2 consumption
for the reductive reaction pathway (cf. Section 4.1.2.1). Compared to the Level 2 process
efficiency of the same reaction pathway at equilibrium conditions (89 %, cf. Section 4.1.2.4),
the Level 3 evaluation within this section results in a significantly lower efficiency. This
has mainly two reasons: First, as reported in Section 4.2.5, the conversion of methanol
at equilibrium conditions was significantly overestimated by the NRTL thermodynamic
model used in the approximate process calculations of Section 4.1 (15.7 % at 80 bar with
NRTL vs. 15.4 % at 120 bar with PCP-SAFT EOS). This leads to an underestimation of
the electricity demand required for the compression of the gaseous reactants to achieve a
comparable methanol conversion. Second, the process design on Level 2 does not consider
the exergy demand for the low-temperature distillation of CO2 from the reactor effluent,
which is about 0.55 MJ kg−1 of produced DMM. Moreover, the exergy efficiency of the
individual DMM process step within the process chain demonstrated in Fig. 4.14 is only
89.6 % and thus about 2 percentage points lower compared to that resulting from the
global optimization in Section 4.2 (91.9 %). This decrease is caused by the more realistic
but still optimistic heat integration by pinch analysis compared to the simple summation
of exergy flows used for global optimization. All in all, the direct reduction of CO2 yields
significant improvements for DMM production from renewable H2 and CO2 compared
to the established process concept. For further improvements, a more advanced reactor
concept (e.g., by in-situ product extraction) as well as an alternative to the low-temperature
CO2 separation are required.

4.3.2. OME3-5 Production from Renewable H2 and CO2

The main weakness of the process chain for OME3-5 production from H2 and CO2 using
established process concepts is the energy-intensive trioxane production process step and
should be avoided for future industrial OME3-5 production (cf. Section 3.2). In this regard,
the currently much discussed direct synthesis of OME3-5 from aqueous FA and methanol is a
promising process alternative circumventing both DMM and trioxane production [18, 199].
However, the presence of water inhibits OME3-5 formation and complicates product purifi-
cation [200]. A reaction pathway that avoids both trioxane production and the presence
of water in the OME3-5 formation step is its synthesis from DMM and gaseous FA [28, 29].
Considering reductive DMM production and FA production by methanol dehydrogenation,
a corresponding process chain would further benefit from two highly resource-efficient in-
termediate reaction pathways if H2 recycling is considered. Therefore, we have developed
a process concept that exploits these advantages. As both the methanol dehydrogenation
to FA and the OME3-5 formation from DMM and gaseous FA are still on a very early stage
of development, the resulting estimate for process efficiency can not be compared directly
with that of the established process concept reported in Section 3.2.4.2, which models are
more detailed.
Similarly to the process chain for reductive DMM production, the same methanol pro-

duction process as in Section 3.2.4.2 is considered. For FA production via methanol dehy-
drogenation, we have screened several experimental results from the open literature and
found the reaction catalyzed by a Cu-Zn-Se catalyst at a temperature of 650 °C to be
promising [36]. Therein, a FA yield of 62.1 % for an equimolar methanol-H2 atmosphere
was reached. Small amounts of carbon monoxide and methane were found as side products.
Using these data, we have developed a simple process concept incorporating a reactor as
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well as separators with sharp split specifications (approximating membranes potentially
promising for H2 and FA purification [201, 202]) to obtain material balances and an esti-
mate for the heat demand required for methanol dehydrogenation. For the OME3-5 process
step, we assume the same heat demand as for OME3-5 production from DMM and triox-
ane, as a comparable reactor effluent with a similar product distribution according to the
Schulz-Flory distribution [96] can be expected.
With this process concept and underlying assumptions, we calculated an estimate for the

overall process efficiency of 77 % for OME3-5 production from H2 and CO2 via reductive
DMM production. This corresponds to an improvement of 20 percentage points compared
to the process chain via trioxane production. This improvement is mainly caused by two
aspects: First, the circumvention of the trioxane process reduces net heat demand in
terms of exergy by 44 %. Second, net H2 consumption—being responsible for the main
energy demand of Power-to-X processes—is reduced by 26 % (cf. Appendix Tab. D.2).
This reduction is realized by the more resource-efficient production of DMM via the direct
reduction of CO2 as well as the recycling of H2 released during methanol dehydrogenation.
Although the comparison between the two process chains must be seen with caution due
to the simplified consideration of the FA and the OME3-5 process step, it demonstrates the
great potential of the more resource-efficient intermediate process steps for DMM and FA
production and should be therefore refined in future studies to yield sustainable OME3-5
production.

M
eO

H
P
ro
d
. F
A

P
ro
d
.

D
M
M

P
ro
d
.

O
M
E
3
-5

P
ro
d
.

H2

Electricity Loss

MeOH
FA

Loss

Heat

Electricity

Electricity Electricity

Heat

Loss

Coolant

Heat

H2

Loss

DMM OME3-5

77%

Figure 4.15.: Exergy flow diagram of the value chain for OME3-5 production from H2 and CO2
via the reductive reaction pathway for the DMM production process step. For clarity, only the
most relevant heat streams resulting from heat integration between process steps are displayed.
An overall process exergy efficiency of 77 % is reached. Corresponding material and energy
balances are summarized in Appendix Tab. D.2.
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5. MINLP Problem Formulations for
Global Superstructure Optimization

Discrete decisions in design problems are not limited to the selection of column config-
urations (cf. Section 4.2) but can be caused by any structural alternative within the
process. Even such decisions that are not caused by the selection of process units but
by their operation (such as mode-switching) can be discrete. Superstructure optimization
represents a suitable but computationally demanding approach to solve such problems.
Typical formulations include discrete variables. However, in some cases the formulations
are purely continuous (e.g., blending problem for fuels [203], process water networks [204]).
Superstructures can be represented in several ways resulting in different problem formu-
lations for which different solution algorithms exist [184, 205]. A common and intuitive
modeling approach is their formulation as generalized disjunctive programming (GDP)
problems consisting of algebraic constraints, disjunctions, Boolean variables, and logic
propositions [206]. These GDP problems can be solved directly with dedicated solution
algorithms (e.g., logic-based Outer Approximation [207] or GDP branch and bound [208])
that aim to exploit the disjunctions effectively (e.g., by directly branching on them or
reducing the problem size by considering only the active disjuncts). Alternatively, they
can be reformulated to mixed-integer nonlinear programming (MINLP) problems [209], in
which integer variables replace Boolean variables and algebraic equations model the logic
propositions.
Conventional reformulation approaches are the Big-M [210] and Convex Hull [207]

method. The reformulation of GDP to MINLP problems enables the use of powerful
commercial MINLP solvers and thus the possibility to solve GDP problems containing
nonconvex functions [211, 212]. In contrast, existing solvers dedicated to GDP problems
are restricted to GDP problems containing only convex functions. It is also possible to
avoid introducing Boolean or binary variables for modeling the disjunctions by using com-
plementarity constraints resulting in mathematical programs with equilibrium constraints
(MPEC) [213]. This results in a special type of nonlinear programming (NLP) problem
with only a few optimization variables. The NLP problem can be either solved directly or
again reformulated (e.g., by using the Plus Function [214]), which often involves smoothing
techniques. In summary, a number of modeling approaches and solution algorithms has
been developed over the past decades. Their comparison has mainly been limited to the
conventional approaches and problems with only linear or convex constraints representing
the process models. For problems containing nonconvex functions, which require global
optimization techniques, a comparative assessment of all approaches mentioned above is
missing so far.
For global optimization, several techniques for improving computational tractability have

been proposed. As superstructure optimization problems often have many variables and
constraints, factorable reduced-space (RS) formulations can be beneficial (for an overview
of these formulations, see Bongartz [215], Chapter 3). In such RS formulations, equality
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constraints are used to eliminate optimization variables from the problem, while ensuring
that the optimization problem remains factorable, i.e., all functions can still be expressed
as compositions of simple so-called intrinsic functions (i.e., functions for which convex and
concave relaxations are known). Compared to the more conventional (equation-oriented)
full-space (FS) formulations of the problem, the RS formulations have fewer optimiza-
tion variables and constraints. In the branch-and-bound (BaB) algorithms that are used
for global optimization of nonconvex problems, RS formulations reduce the dimensional-
ity of the space that needs to be partitioned via branching, and they reduce the size of
the subproblems for computing lower and upper bounds on the optimal objective value.
Depending on the method used for constructing relaxations, they may however result in
weaker relaxations (see Bongartz [215], p. 64). Factorable RS formulations have been used
successfully for flowsheet optimization problems [188, 216, 217], parameter estimation prob-
lems involving ordinary differential equations [218], and problems with machine learning
models embedded [176, 177]. Its application to superstructure optimization problems has
not been investigated yet. Even more variables and constraints can be eliminated from the
problem by dropping the requirement that the functions remain factorable, and instead
allowing the use of implicit functions defined by the constraints. Barton and co-workers
have presented methods for handling such implicit functions in BaB algorithms [219–221].
However, these are beyond the scope of this work as corresponding implementations are
not readily available yet.
In this chapter, we compare different problem formulations for superstructure optimiza-

tion problems comprising nonconvex functions. Within this comparison, we investigate
whether the optimization can benefit from a RS formulation. In this regard, we intro-
duce a simple and a more complex illustrative example problem in Section 5.1. For the
simple example problem, the conventional and unconventional problem formulations are
developed in Section 5.2. The comparison of all problem formulations for the two example
problems are presented in Section 5.3. In Section 5.4, the key results are confirmed by
an optimization problem with a different structure (i.e., piecewise-defined cost function
instead of unit selection), which can be modeled using the same reformulation approaches.
Section 5.5 concludes our findings.

5.1. Problem Definition
To introduce the different problem formulations in Section 5.2, we use a simple illustrative
example problem (Section 5.1.1). This example problem and a more complex one with
multiple disjunctions (Section 5.1.2) are then used to analyze each problem formulation in
greater detail in Section 5.3.

5.1.1. Simple Illustrative Example Problem
In this simple example problem, we consider only two mutually exclusive options (either
Unit P or Unit S) to produce a desired amount of a product, ṅout = 1 (considered as
a parameter). This illustrative example problem is motivated by our work on power-to-
X [141, 142, 222], in which decisions need to be taken on how to provide raw materials (e.g.,
hydrogen and carbon dioxide) and process them toward the final product (e.g., electricity-
based fuels).
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Figure 5.1.: Schematic of the simple example problem with the choice of producing a desired
amount of a product, ṅout = 1, either via Unit P (YP = True, YS = False) or Unit S (YP = False,
YS = True).

Each option comes with operating and investment costs, both of which are dependent
on molar flow rates and unit-specific cost parameters (Tab. 5.1). Operating costs Cop are
quadratically dependent on the molar flow rate passing through the chosen unit (Cj

op =
(ṅjin)2ej). Investment costs Cinv are dependent on the maximal rating given as the global
feed flow rate into the superstructure, ṅin, and a constant cost parameter (Cj

inv = Cj+ṅ0.6
in ).

The dependency on ṅin (in addition to ṅjin for operating costs) puts more emphasis on the
nonconvexity regarding multiple variables in typical process synthesis problems. This
concave term can also be moved out of the disjunction directly into the objective function.
Our simple numerical experimentation showed that this does not have any effect on the
optimization. Also the consideration of a constant conversion parameter for each process
unit does not have an influence on the overall results. To keep the illustrative example
problem simple, we do not consider such a parameter.

Table 5.1.: Cost parameters for the simple (GDP1)
and the multiple-disjunction (GDP2) example prob-
lem. Cj are fixed investment costs and ej are specific
operating costs.
Parameter Unit P Unit S Unit F1 Unit F2

ej 7 3 0.1 0.3
Cj 4 7 0.5 0.4

The objective is to find the process with the lowest total cost C by solving the following
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optimization problem formulated as a GDP problem:

min C = Cop + Cinv

s.t. ṅin = ṅPin + ṅSin

ṅout = ṅPout + ṅSout
YP

ṅSin = ṅSout = 0
ṅPout = ṅPin

Cop = (ṅPin)2eP
Cinv = CP + ṅ0.6

in

 ∨


YS
ṅPin = ṅPout = 0
ṅSout = ṅSin

Cop = (ṅSin)2eS
Cinv = CS + ṅ0.6

in

 (GDP1)

YP∨YS
Cop, Cinv, ṅin, ṅ

P
in, ṅ

S
in, ṅ

P
out, ṅ

S
out ≥ 0

Cop, Cinv, ṅin, ṅ
P
in, ṅ

S
in, ṅ

P
out, ṅ

S
out ∈ R

YP, YS ∈ {True,False}

There are alternative ways for modeling the system, e.g., by eliminating the global
(i.e., independent from disjunctions) equality constraints and modifying the disjunctive
constraints correspondingly. As Problem (GDP1) is the most direct representation of
the superstructure shown in Fig. 5.1, the use of these global constraints is considered
throughout this work. Additionally, we explicitly restrict all illustrative example problems
to the exclusive choice between units (denoted by the logic exclusive “or"-operator ∨) to
keep it as simple as possible.

5.1.2. Multiple-Disjunction Example Problem
As the flowsheet structure of Problem (GDP1) is minimalist, we analyze a more complex
example problem with two disjunctions taken from [209], where the outlet of Unit S needs
to be further processed by either Unit F1 or F2 (Fig.5.2). To make the choice for one of
these units economically viable and the case study interesting, we introduce a cost factor
of 0.1 for Unit F1 and F2.
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Figure 5.2.: Schematic of the flowsheet structure with two disjunctions and the choice of
producing a desired amount of a product, ṅout = 1, either via Unit P (YP = 1, YS = 0) or Unit
S (YP = 0, YS = 1). If Unit S is chosen, the product needs to be further processed by either
Unit F1 (YF1 = 1, YF2 = 0) or F2 (YF1 = 0, YF2 = 1).
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5.2. Problem Formulations

The more complex flowsheet structure results in Problem (P2) (Appendix Section E),
which is further reformulated to Problem (GDP2) to remove the nested structure within
the disjunction and derive corresponding problem formulations as described in Section 5.2.
These are summarized in Appendix Section E.

min C = Cop + Cinv

s.t. ṅin = ṅPin + ṅSin

ṅSout = ṅF1in + ṅF2in

ṅFout = ṅF1out + ṅF2out

ṅout = ṅPout + ṅFout
YP

ṅSin = ṅSout = 0
ṅPout = ṅPin

Cop = (ṅPin)2eP
Cinv = CP + ṅ0.6

in

 ∨


YS
ṅPin = ṅPout = 0
ṅSout = ṅSin

Cop = (ṅSin)2eS + CF
op

Cinv = CS + ṅ0.6
in + CF

inv

 (GDP2)


YF1

ṅF2in = ṅF2out = 0
ṅF1out = ṅF1in

CF
op = (ṅF1in )2eF1

CF
inv = CF1 + 0.1ṅ0.6

in

 ∨


YF2
ṅF1in = ṅF1out = 0
ṅF2out = ṅF2in

CF
op = (ṅF2in )2eF2

CF
inv = CF2 + 0.1ṅ0.6

in

 ∨


YnotF
ṅF1in = ṅF2in = ṅF1out = ṅF2out = 0

CF
op = 0

CF
inv = 0


YP∨YS
YF1∨YF2∨YnotF
YS ⇔ YF1∨YF2
Cop, Cinv, C

F
op, C

F
inv, ṅin, ṅ

P
in, ṅ

S
in, ṅ

F1
in , ṅ

F2
in , ṅ

P
out, ṅ

S
out, ṅ

F1
out, ṅ

F2
out, ṅ

F
out ≥ 0

Cop, Cinv, C
F
op, C

F
inv, ṅin, ṅ

P
in, ṅ

S
in, ṅ

F1
in , ṅ

F2
in , ṅ

P
out, ṅ

S
out, ṅ

F1
out, ṅ

F2
out, ṅ

F
out ∈ R

YP, YS, YF1, YF2, YnotF ∈ {True, False}

5.2. Problem Formulations
In this section, the most common problem formulations for superstructure optimization
and less common ones are presented and applied to the simple illustrative example problem
(GDP1). One of the most conventional methods to reformulate GDP into MINLP problems
are the Big-M (Section 5.2.1, [210]) and the Convex Hull method (Section 5.2.2, [207]).
Big-M and Convex Hull transform Boolean variables Yj into binary variables yj to express
the relationship between and within disjunctions. In contrast, a nonsmooth reformulation
approach can be used to prevent the use of any additional variables completely by intro-
ducing complementarity constraints. The resulting MPEC s can be either solved directly
(Section 5.2.3, [223]) or again reformulated using the Plus Function (Section 5.2.4, [214]).
Another alternative problem formulation, hereafter called Direct MINLP, utilizes binary
variables directly within the equality constraints of the process model to capture the ex-
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istence or nonexistence of a unit or process stream within a disjunction (Section 5.2.5).
As we also consider RS formulations for all reformulation approaches, Section 5.2.6 illus-
trates such a RS formulation exemplarily for the Direct MINLP reformulation approach.
In addition to the aforementioned reformulation approaches, superstructures representing
problems with piecewise-defined functions can also be handled by using step functions (cf.
Section 5.4, [224]).

5.2.1. Big-M
The Big-M method introduces the parameter M (a big number potentially individual for
each constraint of disjunct j), which is used to make the constraints of unchosen choices
(yj = 0) redundant. Several methods exist in literature that determine the optimal value
for M and thus tighten relaxations (e.g., [225]). To maintain a manageable complexity,
we do not consider such improved Big-M methods. Instead, we choose M to be equal to
the global upper bound of the variable that is bounded by the corresponding constraint.
Besides binary variables for each disjunct (the transformed Boolean variables), no addi-
tional variables need to be introduced. However, a poor choice for M can result in weak
relaxations. Applied to Problem (GDP1), the Big-M method results in Problem (BM1):

min C = Cop + Cinv

s.t. ṅin = ṅPin + ṅSin (BM1)
ṅout = ṅPout + ṅSout

0−M(1− yP) ≤ ṅSk ≤ 0 +M(1− yP) k ∈ {in, out}
0−M(1− yS) ≤ ṅPk ≤ 0 +M(1− yS) k ∈ {in, out}
ṅjin −M(1− yj) ≤ ṅjout ≤ ṅjin +M(1− yj) j ∈ {P, S}
(ṅjin)2ej −M(1− yj) ≤ Cop ≤ (ṅjin)2ej +M(1− yj) j ∈ {P, S}
Cj + ṅ0.6

in −M(1− yj) ≤ Cinv ≤ Cj + ṅ0.6
in +M(1− yj) j ∈ {P, S}

yP + yS = 1
Cop, Cinv, ṅin, ṅ

P
in, ṅ

S
in, ṅ

P
out, ṅ

S
out ≥ 0

Cop, Cinv, ṅin, ṅ
P
in, ṅ

S
in, ṅ

P
out, ṅ

S
out ∈ R

yP, yS ∈ {0, 1}

5.2.2. Convex Hull
For the Convex Hull method, a new (disaggregated) variable, νj, needs to be introduced
for each variable that is affected by a disjunction and for each choice within the respective
disjunction. The bounds on these disaggregated variables can be either chosen to be the
global variable bounds or tightened based on the disjunct. In our illustrative example
problems, we use global variable bounds (i.e., 0 ≤ ṅ ≤ 1, 0 ≤ C ≤ 20). Each constraint
rj(νj) ≤ 0 of disjunct j is expressed by the closure of the perspective function [226]:

yjrj

(
νj
yj

)
≤ 0 (5.1)
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To avoid singularities for yj = 0, Lee and Grossmann [207] proposed a modification of
the original perspective function, which was again modified by Sawaya [227] to improve
numerical performance and accuracy:

((1− ε)yj + ε)rj
(

νj
(1− ε)yj + ε

)
≤ 0 (5.2)

For the illustrative example problems, parameter ε only needs to be nonzero as the disag-
gregated variables of unchosen units (νj = 0) make Constraint (5.2) being fulfilled indepen-
dently from the value of ε. In general, ε needs to be chosen sufficiently small to maintain
a high accuracy. As Constraints (5.2) represents the commonly used type of perspective
function for global optimization, we use it for all Convex Hull formulations within this
study where necessary. Other modifications exist and are summarized in Furman et al.
[228]. In this study, they are not considered.

The introduction of disaggregated variables increases problem size but generally yields
tighter relaxations compared to the Big-M formulation, even if the most suitable Big-M
parameter is utilized [229]. The conversion of Problem (GDP1) with the Convex Hull
method results in Problem (CH1):
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min C = Cop + Cinv

s.t. ṅin = ṅPin + ṅSin

ṅout = ṅPout + ṅSout

ṅjin = ṅjin,P + ṅjin,S j ∈ {P, S}
ṅjout = ṅjout,P + ṅjout,S j ∈ {P, S}
Cop = CP

op + CS
op

Cinv = CP
inv + CS

inv

ṅSk,P, ṅ
P
k,S ≤ 0 k ∈ {in, out}

Cj
op ≥

 ṅjin,j
(1− ε)yj + ε

2

ej((1− ε)yj + ε) j ∈ {P, S}

Cj
inv ≥ (Cj + ṅ0.6

in )yj j ∈ {P, S}
yP + yS = 1 (CH1)
0 ≤ ṅSk,P ≤ 1yP k ∈ {in, out}
0 ≤ ṅPk,S ≤ 1yS k ∈ {in, out}
0 ≤ ṅjk,j ≤ 1yj k ∈ {in, out} j ∈ {P, S}
0 ≤ Cj

m ≤ 20yj m ∈ {op, inv} j ∈ {P, S}
Cop, Cinv, ṅin, ṅ

P
in, ṅ

S
in, ṅ

P
out, ṅ

S
out ≥ 0

Cop, Cinv, C
P
op, C

S
op, C

P
inv, C

S
inv ∈ R

ṅin, ṅ
P
in, ṅ

S
in, ṅ

P
in,P, ṅ

S
in,P, ṅ

P
in,S, ṅ

S
in,S ∈ R

ṅPout,P, ṅ
S
out,P, ṅ

P
out,S, ṅ

S
out,S, ṅ

P
out, ṅ

S
out ∈ R

yP, yS ∈ {0, 1}

5.2.3. MPEC
In order to prevent the use of discrete variables and thus prevent solving a MINLP problem,
superstructure optimization problems can be formulated as MPECs. This type of problem
formulation introduces complementarity constraints to model the discrete choices in a
process superstructure.
The MPEC problem formulation can be derived from Problem (GDP1) by considering all

global constraints (to represent the part of the flowsheet that is not affected by disjunctions)
and a subset of disjunctive constraints (to represent the part of the flowsheet that is affected
by disjunctions). The subset of disjunctive constraints is chosen in such a way that (a)
only those model equations of a disjunction are considered that correspond to the part
of the flowsheet where Yj = True (ṅPout = ṅPin, CP

op = (ṅPin)2eP, and CP
inv = CP + ṅ0.6

in for
the choice YP = True; ṅSout = ṅSin, CS

op = (ṅSin)2eS, and CS
inv = CS + ṅ0.6

in for the choice
YS = True) and (b) zero values can be realized if the choice j within the disjunction
is not active. However, this is not given for all types of disjunctive problems: In the
simple illustrative example problem (GDP1), Cj

inv contains constant investment costs Cj
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for unit j and therefore need to be modified by a step function that is dependent on the
material stream ṅjin passing through unit j. Such a step function introduces nonconvexities
additionally to those that are inherently part of the modeled system into the problem. If
tailored relaxations are implemented for such a step function [224], the optimization may
however not be necessarily affected negatively. For all problem formulations in this work,
the tanh-function is used as a smoothed step function resulting in an error below the
feasibility tolerance. By adding up the cost terms Cj

op and Cj
inv for each unit j, operating

costs Cop and investment costs Cinv are then retrieved, respectively. The relationship
between disjunctions and choices within each disjunction is represented by complementarity
constraints instead of binary variables. For Problem (MPEC1), the molar flows passing
each unit are multiplied by each other and set to zero. Therefore, either ṅPin or ṅSin need to
become zero if the other one is nonzero. Due to the absence of any discrete variables, global
NLP solvers can be used to find the global optimum. This can however be challenging.
Although a considerably smaller problem size can be achieved in comparison to the other
approaches, the introduced complementarity constraints can result in the problem violating
constraint qualifications and hence cause problems for the local solvers used for upper
bounding. Often, a regularization parameter (a small number µ) need to be added to
make the constraint qualifications hold again. The solution of the original problem is then
obtained by sequentially reducing µ to zero [230]. Such a regularization is however not
required for the problems analyzed in this work, as the global solvers used herein do in
practice not depend heavily on the performance of the NLP solver for upper bounding, for
which the constraint qualifications need to hold. To improve performance, BARON detects
complementary constraints automatically and treats them accordingly. In MAiNGO, there
is no special algorithm to detect and treat complementarity constraints implemented yet.

The MPEC formulation of Problem (GDP1) using complementarity constraints results
in Problem (MPEC1), in which parameter P (a big number) is used to approximate the
step function more accurately.

min C = Cop + Cinv

s.t. ṅin = ṅPin + ṅSin

ṅjout = ṅjin j ∈ {P, S}
ṅout = ṅPout + ṅSout

Cop =
∑
j∈J

(ṅjin)2ej (MPEC1)

Cinv =
∑
j∈J

[
tanh(Pṅjin)(Cj + ṅ0.6

in )
]

0 = ṅPinṅ
S
in

Cop, Cinv, ṅin, ṅ
P
in, ṅ

S
in, ṅ

P
out, ṅ

S
out ≥ 0

Cop, Cinv, ṅin, ṅ
P
in, ṅ

S
in, ṅ

P
out, ṅ

S
out ∈ R
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5.2.4. Plus Function
An alternative representation of the complementarity constraint (0 = ṅPinṅ

S
in) in Problem

(MPEC1) can be achieved by using the Plus Function [214]:

0 = ṅPin −max(0, ṅPin − ṅSin). (5.3)

This function is commonly used for modeling the nonsmooth behavior of flash units for
vapor-liquid(-liquid) equilibrium calculations with vanishing phases [231, 232], for which
it has shown a promising computational performance. We refer to the resulting problem
formulation as Problem (PLUS1) (Appendix Section E).

5.2.5. Direct MINLP
A problem formulation for superstructure optimization that is only barely used is the
direct multiplication of binary variables with the continuous variables being present in
the disjunctions. Similarly to the aforementioned problem formulations, it can be derived
from GDP problem (GDP1). Boolean variables Yj of the GDP problem transform to binary
variables yj and are (in contrast to the Big-M and Convex Hull method) multiplied with
the continuous model variables (ṅjin = yjṅin and Cinv = ∑

j∈J yj(Cj + ṅ0.6
in )) to represent the

existence or nonexistence of option j within the process flowsheet. Instead of introducing
additional inequality constraints modeling the disjunctions, the Direct MINLP formulation
incorporates the disjunctions directly into the algebraic equality constraints of the model.
Doing this, potential redundant global constraints may need to be disregarded (ṅin =
ṅPin + ṅSin) and the variables in the objective function for each choice in the disjunction
added up (Cop = ∑

j∈J(ṅjin)2ej and Cinv = ∑
j∈J yj(Cj + ṅ0.6

in )). The model formulation
results in:

min C = Cop + Cinv

s.t. Cop =
∑
j∈J

(ṅjin)2ej

Cinv =
∑
j∈J

yj(Cj + ṅ0.6
in )

ṅjin = yjṅin j ∈ {P, S} (MINLP1)
ṅjout = ṅjin j ∈ {P, S}
ṅout = ṅPout + ṅSout
yP + yS = 1
Cop, Cinv, ṅin, ṅ

P
in, ṅ

S
in, ṅ

P
out, ṅ

S
out ≥ 0

Cop, Cinv, ṅin, ṅ
P
in, ṅ

S
in, ṅ

P
out, ṅ

S
out ∈ R

yj ∈ {0, 1} j ∈ {P, S}

In contrast to the conventional problem formulations, the Direct MINLP formulation
introduces nonlinearities by the multiplication of the binary variables yj with expressions
of the continuous variable ṅin as part of the algebraic equality constraints in the model.
If the remaining model is linear or convex, the reformulation using the Big-M (cf. Section
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5.2.1) or Convex Hull (cf. Section 5.2.2) method results in a mixed-integer linear pro-
gramming (MILP) or convex MINLP problem, respectively, which can be efficiently solved
with general-purpose solvers. Thus, for MILP and convex MINLP problems, the conven-
tional reformulation approaches are typically superior to alternative approaches. If the
remaining model is nonconvex anyway, e.g., in more detailed process engineering, where
nonconvexities are usually inherently part of the (mechanistic) process model, it is not
clear whether it is beneficial to reformulate it with the conventional approaches, as it does
not result in a MILP or convex MINLP problem [233]. Keeping bilinear terms according
to the Direct MINLP formulation can result in smaller subproblems, which can be directly
given to MINLP solvers.
From a modeling perspective, we may also view Problem (MINLP1) instead of Problem

(GDP1) as a starting formulation, which may again be reformulated using the Big-M
or Convex Hull approach. This results in slightly larger problems compared to Problem
(BM1) and (CH1) and was therefore found to be less computationally efficient than the
direct reformulation of Problem (GDP1).

5.2.6. Reduced-Space Formulation
The problem formulations stated in the preceding sections are given in their conventional
FS formulation. As we also consider RS formulations (i.e., eliminating optimization vari-
ables and constraints), we exemplarily introduce the RS formulation of Problem (MINLP1)
in such a way that variables y that depend on other model variables x are written as fac-
torable functions ỹ(x). By doing so, the objective function becomes an explicit function
of the degrees of freedom x only. This can be done for all problem formulations. The RS
formulation for Problem (MINLP1) is

min
yP,ṅin

C̃(yP, ṅin)

s.t. ṅout − ˙̃nPout(yP, ṅin)− ˙̃nSout(yP, ṅin) = 0,
ṅin ≥ 0 (MINLP1 RS)
ṅin ∈ R
yP ∈ {0, 1},

which has only two variables (yP, ṅin) and contains the following functions:

C̃(yP, ṅin) := C̃op(yP, ṅin) + C̃inv(yP, ṅin)
C̃op(yP, ṅin) := ( ˙̃nPin(yP, ṅin))2 · eP + ( ˙̃nSin(yP, ṅin))2 · eS
C̃inv(yP, ṅin) := yP · (CP + ṅ0.6

in ) + ỹS(yP) · (CS + ṅ0.6
in )

˙̃nPin(yP, ṅin) := yP · ṅin
˙̃nSin(yP, ṅin) := ỹS(yP) · ṅin
ỹS(yP) := 1− yP
˙̃nPout(yP, ṅin) := ˙̃nPin(yP, ṅin)
˙̃nSout(yP, ṅin) := ˙̃nSin(yP, ṅin).
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Such a RS formulation with intermediate variables computed as a function of other
variables can easily be implemented in procedural modeling environments, e.g., via the
C++ or Python APIs of MAiNGO, which then uses the MC++ library [191] to obtain
relaxations of these functions. The elimination of variables in such procedural modeling
environments corresponds to the construction of a sequence of mathematical operations,
for which a relaxation and their subgradients are constructed. This procedure can be
considered as propagating the relaxations through the algorithm [218].

5.3. Results for the Example Problems
As we focus on superstructure optimization problems containing nonconvex functions, we
do not consider dedicated solvers for GDP problems but rather reformulate the optimiza-
tion problem either into a MINLP or a (nonsmooth) NLP problem (cf. Section 5.2). The
resulting nonconvex optimization problems generally exhibit multiple suboptimal minima,
such that a global solver needs to be used. We use our open-source deterministic global
solver MAiNGO v0.5.0.2 [164], which employs a standard BaB algorithm with several
bound tightening techniques and the multivariate McCormick method [192, 193] imple-
mented in MC++ [191] to obtain relaxations. For a comparison with state-of-the-art
deterministic global solvers, we perform each optimization also with the commercial solver
BARON v19.3.24 [234] in the modeling system GAMS 27.0.0 using the automated gener-
ation of GAMS files by MAiNGO. In contrast to MAiNGO, BARON uses the auxiliary
variable method (AVM) [195, 196], which replaces each nonlinear term by an auxiliary
variable (AV) and a constraint. For such constraints, known relaxations are constructed.
This method is also used by other state-of-the-art deterministic global solvers such as
ANTIGONE [197] and SCIP [198], the analysis of which is however beyond the scope of
this work. All calculations are conducted on an Intel® Core™i3-6100 CPU with 3.7 GHz
running Windows 10 and no other applications. For both global solvers, default settings
are selected. The optimality and feasibility tolerance is 10−3 and 10−6, respectively. Each
optimization has been performed 100 times to reduce the variations in solution time for
small problems caused by system background processes. For all problems, the arithmetic
mean solution time is reported in this study.

5.3.1. Simple Illustrative Example Problem
For the simple illustrative example problem (GDP1), the problem size and numerical results
of each problem formulation are summarized in Tab. 5.2. FS formulations treat all model
variables as optimization variables, whereas RS formulations use model equality constraints
to eliminate as many optimization variables as possible. One of the remaining equality
constraints in the RS formulations makes sure that the sum of streams ṅPout and ṅSout (i.e.,
the exiting stream ṅout) equals 1. The second remaining equality constraint in Problem
(MPEC1) and (PLUS1) is the complementarity constraint modeling the logic proposition
of Problem (GDP1). As the complementarity equality constraint does not eliminate a
degree of freedom, the problem still has one degree of freedom despite having the same
number of variables and equality constraints. The remaining inequality constraints in
the RS formulations for Problem (BM1) and (CH1) result from the remaining disjunctive
optimization variables. In the FS formulation, the Convex Hull formulation leads to much
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larger problems than its alternatives, whereas in the RS formulation, the corresponding
problem is the same size as that resulting from the Big-M formulation. The unconventional
reformulation approaches however still lead to smaller problem sizes, which gets more
pronounced for more complex problems (cf. Section 5.3.2 and 5.4).
In overall, the RS formulations in MAiNGO yield significantly lower overall solution

times than corresponding FS formulations and are the lowest for the unconventional refor-
mulation approaches. The higher number of BaB nodes and the lower lower bound (LB)
in the root node for Problem (BM1) compared to those of Problem (MPEC1), (PLUS1),
and (MINLP1) in the FS formulation indicate weaker relaxations despite the additional
nonconvexities introduced by the unconventional approaches. For Problem (CH1), the
optimization in FS suffers from the high number of optimization variables (21, cf. Tab.
5.2). The RS formulation accelerates the optimization by about one third of the solution
time in the FS formulation (0.20 s vs. 0.28 s) given its smaller problem size. Compared to
the alternative problem formulations, the optimization still takes longer.
The solution time for Problem (MPEC1) in FS is similar to that of Problem (MINLP1)

in FS. In RS, solution time reductions are again possible despite weaker relaxations. The
same findings also apply to Problem (MINLP1). The Plus Function formulation of the
complementarity constraints in Problem (PLUS1) seems to reduce computational effort
even further.

Table 5.2.: Problem size and numerical results for the problem formulations of Problem
(GDP1) presented in Section 5.2. The optimization has been executed 100 times, of which
the arithmetic mean value is shown. The optimal value is 11.

Big-M
(BM1)

Convex Hull
(CH1)

MPEC
(MPEC1)

Plus Function
(PLUS1)

Direct MINLP
(MINLP1)

FS RS FS RS FS RS FS RS FS RS

Number of
Continuous variables 7 2 19 2 7 2 7 2 7 1
Discrete variables 2 1 2 1 0 0 0 0 2 1
Equality constraints 3 1 9 1 7 2 7 2 8 1
Inequality constraints 20 4 34 4 0 0 0 0 0 0
BaB nodes 3 3 3 3 1 5 1 5 1 3
Lower bound of root node 0 5.75 5 4.5 11 2.12 11 2.12 11 8.5

CPU time per BaB node / s 0.058 0.053 0.094 0.068 0.094 0.005 0.04 0.005 0.097 0.022
Solution time / s 0.174 0.16 0.282 0.204 0.094 0.027 0.04 0.026 0.097 0.066

Compared to the commercial global solver BARON, optimization with MAiNGO for the
unconventional problem formulations (MPEC1) and (MINLP1) is comparably fast for the
FS formulations and even faster for the RS formulations, whereas BARON can handle
the conventional problem formulations (BM1) and (CH1) better (especially for the FS
formulations). This tendency was expected, as MAiNGO explicitly exploits the benefits of
a smaller problem size in the lower bounding problem by using McCormick relaxations [193]
opposed to the AVM used in BARON.
If linear instead of the nonlinear cost functions are considered, the Big-M and Convex

Hull method results in MILP problems (cf. Problem (BM1lin) and (CH1lin), respectively,
Appendix Section E), which can be solved using CPLEX for both the FS and RS formula-
tion. In contrast, the alternative reformulation approaches (yielding Problem (MPEC1lin),
(PLUS1lin), and (MINLP1lin), Appendix Section E) still result in MINLP problems with
nonconvex functions, which need to be solved using a global solver. However, the overall
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Figure 5.3.: Solution time for Problem (GDP1) using the problem formulations presented
in Section 5.2. As BARON can not handle max -functions, there are no results for the Plus
Function formulation. The error bars represent the standard deviation from the arithmetic mean
value of the solution time from 100 optimization runs using MAiNGO.

results for these three problems considering linear cost functions (cf. Appendix Tab. E.1
and Appendix Fig. E.1) do not differ from those with nonconvex cost functions. This
indicates that the nonconvexity of model equations seem to have only minor influence on
the optimization of this simple illustrative example problem.

5.3.2. Multiple-Disjunction Example Problem
Tab. 5.3 summarizes the problem size and numerical results of each problem formulation
for Problem (GDP2) (each problem formulation is given in Appendix Section E). The newly
introduced inequality constraint in the RS formulation of Problem (MINLP2) makes sure
that the binary variable yF2 can not become negative. Beyond the equality constraint
for the leaving stream ṅout, Problem (BM2) and (CH2) require an additional equality
constraint for the RS formulation to ensure that exactly one choice is being made for the
second disjunction (choice for either F1, F2, or none). Problem (MINLP2) does not need a
binary for this third choice (neither F1 nor F2) as the algebraic equations for representing
the disjunctions differ from those that result directly from reformulating Problem (GDP2)
using the Big-M and Convex Hull approach (cf. Appendix Problem (BM2) and (CH2)). As
a result, no additional equality constraint is required. Similarly to the simple illustrative
example problem (cf. Section 5.3.1), the RS formulations of Problem (MPEC2), (PLUS2),
and (MINLP2) lead to the smallest problems.
As for the simple illustrative example problem (cf. Section 5.3.1), the RS formulations

in MAiNGO always yield lower overall solution times than corresponding FS formulations.
However, the differences between the conventional and unconventional reformulation ap-
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proaches are for the RS formulations not as pronounced as in the previous example prob-
lem. In contrast, they are still well-marked for the FS formulations. In the FS formulation,
Problem (MPEC2) and (PLUS2) perform similarly due to their same size and similar re-
laxation tightness (cf. Tab. 5.3). Despite Problem (MINLP2) having four additional
binary variables, its solution time is similar to that of the aforementioned problem formu-
lations. Problem (BM2) and (MINLP2) benefit from a significantly smaller problem size
compared to Problem (CH2), such that their time consumed per BaB node is also signif-
icantly smaller. The complementarity-constrainted problems (MPEC2) and (PLUS2) do
not exploit their small problem size so effectively. The prominent advantage of the Convex
Hull method—achieving tight relaxations—does not seem to be significant here: The relax-
ations of the complementarity-constrained problem formulations (MPEC2) and (PLUS2)
in FS seem to be even tighter (higher LB in root node) and the optimization requires fewer
BaB nodes than Problem (CH2) (cf. Tab. 5.3). For Problem (BM2), MAiNGO seems to
have considerable problems in the FS formulation. The solution time exceeds 30 minutes,
which is most likely caused by the simplistic handling of integer variables in MAiNGO.
There are no sophisticated heuristics for generating integer-feasible points implemented
yet, which can result in poor performance. In RS formulations, this becomes less likely
because of the much lower number of possible branches. However, relaxations generally
tend to become weaker in the RS formulation, which is confirmed by the lower LB in the
root node for RS compared to the FS formulations. The effect of the reduction in prob-
lem size on overall solution time is however bigger than that of the relaxation tightness,
which is impressively demonstrated for Problem (CH2). All in all, the much simpler and
potentially more intuitive problem formulations (MPEC2), (PLUS2), and (MINLP2) seem
to benefit from their comparably small problem sizes both in the FS and RS formulation
while maintaining comparatively tight relaxations. They always yield solution times as
low as or lower than that of the more complex formulations (BM2) and (CH2).
The comparison of the results obtained by MAiNGO with those obtained by BARON

confirms the findings from the simple illustrative example problem (cf. Section 5.3.1),
yet to a smaller extent: BARON performs better than MAiNGO for FS formulations with
only few nonconvex terms (Problem (BM2) and (CH2)), whereas it performs slightly worse
for problems in the RS formulation with a higher number of nonconvex terms (Problem
(MPEC2) and (MINLP2)).

Table 5.3.: Problem size and numerical results for the problem formulations of Problem (GDP2)
presented in Section 5.2. The optimization has been executed 100 times, of which the arithmetic
mean value is shown The optimal value is 11.7.

Big-M
(BM2)

Convex Hull
(CH2)

MPEC
(MPEC2)

Plus Function
(PLUS2)

Direct MINLP
(MINLP2)

FS RS FS RS FS RS FS RS FS RS

Number of
Continuous variables 14 3 44 3 12 3 12 3 12 1
Discrete variables 5 2 5 2 0 0 0 0 4 2
Equality constraints 8 2 20 2 11 2 11 2 14 1
Inequality constraints 54 12 86 29 0 0 0 0 0 1
BaB nodes 706,798 13 3 7 1 25 1 7 7 7
Lower bound of root node 0 5.8 11.36 5.75 11.7 1.52 11.7 1.52 6.19 3.65

CPU time per BaB node / s 0.003 0.009 0.238 0.017 0.195 0.003 0.135 0.009 0.035 0.012
Solution time / s 2,193 0.112 0.714 0.119 0.195 0.079 0.135 0.064 0.248 0.087
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Figure 5.4.: Solution time for Problem (GDP2) using the problem formulations presented
in Section 5.2. As BARON can not handle max -functions, there are no results for the Plus
Function formulation. The error bars represent the standard deviation from the arithmetic mean
value of the solution time from 100 optimization runs using MAiNGO.

5.3.3. Selective Branching for FS Formulations
As an alternative to reducing the problem size on the modeling level, the problem size
can also be reduced on the algorithm level in the means of selective branching [235–237].
The crucial difference between operating in a reduced space on the modeling level (RS
formulation in MAiNGO) and on the algorithm level (selective branching) is that selective
branching only reduces the dimensionality of the space that needs to be partitioned via
branching, whereas the RS formulation in MAiNGO additionally reduces the dimension
of subproblems to be solved in both the lower and upper bounding problem. In selective
branching, the same (significant) reductions in the number of BaB nodes required to solve
the optimization problem and the overall solution time have been reported [235]. This does
however apply only to problems with a specific structure and if constraint propagation is
used to remain a high convergence order [238].
Irrespective of the approach for reformulating the GDP, the RS formulation in MAiNGO

always results in lower solution times than the corresponding FS formulation for both
the simple and more complex flowsheet structure (Fig. 5.3 and 5.4, respectively). In
contrast, the LB in the root node is always lower and the number of BaB nodes required
for global optimality is always larger for the RS formulation than for the FS formulation
or they are equal, which indicates weaker relaxations for the RS formulations caused by
the propagation of relaxations through the algorithm.
For comparison and to isolate the effect of a smaller problem size from that of the

branching behavior, we perform selective branching on the RS optimization variables in
the FS formulations. This selective branching should result in similar BaB trees between
the FS and RS formulations in terms of selection of branching variables and points, while it
still exploits the potentially tighter relaxations of the FS formulations. This investigation
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Table 5.4.: Problem size and numerical results for the FS formulation of Problem
(GDP2) if selective branching is applied. The optimization has been executed 100
times, of which the arithmetic mean value is shown. The optimal value is 11.7. For the
FS formulation of Problem (BM2), the maximum solution time of 86,400 s has been
reached.

Big-M
(BM2)

Convex Hull
(CH2)

MPEC
(MPEC2)

Plus Function
(PLUS2)

Direct MINLP
(MINLP2)

Number of
Continuous variables 14 44 12 12 12
Discrete variables 5 5 0 0 4
Equality constraints 8 20 11 11 14
Inequality constraints 54 86 0 0 0
BaB nodes 8,138,810 3 1 1 5
Lower bound of root node 0 11.36 11.7 11.7 6.19

CPU time per BaB node / s 0.011 0.241 0.197 0.136 0.048
Solution time / s 86,400 0.723 0.197 0.136 0.24

is performed for the more complex flowsheet structure (Problem (GDP2)) as the differences
in solution times for the FS and RS formulations are most pronounced for this problem
and their branching variables differ from each other.
Except for Problem (BM2), which seems to have an anomaly in the FS formulation,

the results in Tab. 5.4 and Fig. 5.5 show that the solution time remains about the same
if selective branching is applied to the FS formulations. This shows that the reduction
in solution time is exclusively due to the smaller size of the subproblems. For Problem
(MINLP2), the selective branching results in a lower number of BaB nodes compared to
its FS formulation without selective branching. This has however only a negligible effect
on the overall solution time compared to the solution times for RS formulations as the
time consumed per BaB node for the RS formulation is considerably smaller. Selective
branching in BARON via the specification of branching priorities has also only negligible
influence on the solution time and the number of BaB nodes.

5.4. Application to Problems with Piecewise-Defined
Functions

A commonly used case study for testing problem formulations with piecewise-defined func-
tions is the solution of a heat exchanger network design problem, which can be formulated
as a superstructure optimization problem. This is a special case of superstructure op-
timization problems as the alternative units can be described as one single unit with a
piecewise-defined function, in this case, of the heat exchanger area Ai. Thus, the disjuncts
do not represent different units but rather different regions within the piecewise-defined
cost function of each unit (heat exchanger). The case study is taken from Türkay and
Grossmann [239] and is depicted in Fig. 5.6 with parameters given in Tab. 5.5. The
corresponding formulation of Problem (HEXGDP) can be found in Appendix Section E.
For the RS formulations, model equations had to be rearranged (e.g., for the elimination

of T1, by a partial fraction decomposition) in order to tighten relaxations and prevent sin-
gularities. Since in this example the alternative units can also be described as a single unit
containing a piecewise-defined (potentially discontinuous) function, we introduce a new
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5. MINLP Problem Formulations for Global Superstructure Optimization

Figure 5.5.: Solution time for the FS formulation of Problem (GDP2) if selective branching
is applied compared to both the FS formulation without selective branching and the RS formu-
lation. As BARON can not handle max -functions, there are no results for the Plus Function
formulation. The error bars represent the standard deviation from the arithmetic mean value
of the solution time from 100 optimization runs using MAiNGO.
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Figure 5.6.: Heat exchanger network based on the work of Türkay and Grossmann [239] with
the choice between three different sizes for each heat exchanger 1-3.

problem formulation (Problem (HEXStepF), Appendix Section E), hereafter called Step
Formulation. This formulation involves step functions, for which McCormick relaxations
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Table 5.5.: Parameters for the heat exchanger network design problem taken
from Türkay and Grossmann [239].

Stream FCPi / kW K−1 T in / K T out / K C / $ kW−1yr−1

H 10.0 500 340 N/A
C 7.5 350 560 N/A
cw N/A 300 320 20
s N/A 600 600 80

Heat exchanger Overall heat transfer / kW m−2K−1

1 1.5
2 0.5
3 1

Heat exchanger Area / m2 Costs / $yr−1

1,2, and 3 0 < A ≤ 10 2750A0.6 + 3000
10 ≤ A ≤ 25 1500A0.6 + 15000
25 ≤ A ≤ 50 600A0.6 + 46500

can be constructed [224]. The piecewise-defined function

φ(x) =

φ1(x) if x ≤ x1

φ2(x) otherwise
(5.4)

is reformulated as follows:

φ(x) = π(x− x1)φ2(x) + [1− π(x− x1)]φ1(x), (5.5)

where

π(x) =

0 if x ≤ 0
1 otherwise.

(5.6)

The problem size and numerical results for each problem formulation (see Appendix
Section E for each formulation) are summarized in Tab. 5.6. For both global solvers,
default settings are used.
The key findings from the previous case studies are confirmed by this discontinuous

optimization problem. The RS formulations always result in shorter overall optimiza-
tion times mainly resulting from the reduced problem size. The negative effect of the
elimination of optimization variables on the tightness of the root node relaxation is partic-
ularly pronounced for this case study. However, for Problem (HEXBM), (HEXCH), and
(HEXMINLP), this has only a minor negative influence on the number of BaB nodes re-
quired. For the other problems, the number of BaB nodes does even decrease much likely
due to a more directed branching. Despite the lowest LB in the root node of Problem
(HEXMINLP), it requires the fewest BaB nodes and thus outperforms the Big-M and
Convex Hull formulation for the RS formulation in this case study.
Reformulation approaches avoiding the introduction of binary variables and thus leading

to NLP problems (Problem (HEXMPEC), (HEXPLUSF), and (HEXStepF)) do not benefit
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Table 5.6.: Problem size and numerical results for Problem (HEXGDP) with problems formulations
presented in Section 5.2 and the Step Formulation. The optimization has been executed 100 times, of
which the arithmetic mean value is shown. The optimal value is 114,385. No results are given for the
RS (AVM/McCormick hybrid) Step Formulation, as it does not contain repeated nonlinear terms that
could be replaced by AVs.

Big-M
(HEXBM)

Convex Hull
(HEXCH)

MPEC
(HEXMPEC)

FS RS RS
(hybrid)

FS RS RS
(hybrid)

FS RS RS
(hybrid)

Number of
Continuous variables 14 9 9 50 9 9 14 9 9
Discrete variables 9 6 6 9 6 6 0 0 0
Equality constraints 7 2 2 19 2 2 10 5 5
Inequality constraints 72 58 58 72 25 25 0 0 0
BaB nodes 47 138 32,000,000 63 87 47 5,728 593 111
Lower bound of root node 500 −221,505 −120,625 15,952 −230,505 −130,549 19,534 −230,505 −230,505

CPU time per BaB node / s 0.02 0.007 0.003 0.024 0.006 0.012 0.002 0.001 0.001
Solution time / s 0.958 0.931 86,400 1.513 0.535 0.48 8.896 0.643 0.156

Plus Function
(HEXPLUSF)

Direct MINLP
(HEXMINLP)

Step Formulation
(HEXStepF)

FS RS RS
(hybrid)

FS RS RS
(hybrid)

FS RS

Number of
Continuous variables 14 9 9 14 9 9 8 3
Discrete variables 0 0 0 9 6 6 0 0
Equality constraints 10 5 5 10 2 2 7 2
Inequality constraints 0 0 0 0 3 3 0 0
BaB nodes 1,838 1,721 271 19 61 27 11,774 187
Lower bound of root node 19,534 −230,505 −230,505 2,388 −300,115 −83,131 1,404 −189,277

CPU time per BaB node / s 0.002 0.001 0.002 0.12 0.006 0.011 0.001 0.001
Solution time / s 3.51 2.024 0.55 2.281 0.35 0.287 14.643 0.224

in the FS formulation from their smaller problem size. Their subproblems are solved
quickly, but a high number of BaB nodes is required despite yielding the tightest relaxations
in the root node among all formulations. Moving to RS formulations reduces solution time
considerably as significantly fewer BaB nodes are required. Since relaxations can never be
tighter in RS than corresponding FS formulations, the reduced number of BaB nodes can
mainly be attributed to a more directed branching. The combination of a more directed
branching with a small problem size resulting from RS formulations for the reformulation
approaches introducing additional nonconvexities yield the lowest computational effort.
Also the overall trend, BARON performing better than MAiNGO for the conventional
reformulations approaches and MAiNGO generally performing better than BARON for the
unconventional approaches in the RS formulations (except for the MINLP formulation), is
confirmed by this heat exchanger network design problem.
We have demonstrated that RS formulations have the big advantage of a smaller problem

size and a more directed branching, while they suffer from weaker relaxations than FS
formulations. To combine the advantage of a small problem size from the RS formulations
with the relaxation tightness of the FS formulations, we can selectively consider AVs for
repeated nonlinear terms, thus achieving a hybrid [189] between McCormick relaxations
and the AVM. Such a hybrid can be easily considered by MAiNGO using its automated
identification and replacement of repeated nonlinear terms with AVs. In general, it is
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Figure 5.7.: Solution time for Problem (HEXGDP) using the problem formulations presented
in Section 5.2 and the Step Formulation. As BARON can not handle max -functions, there
are no results for the Plus Function formulation. The solution times of the optimization with
BARON and the MPEC and Step Formulation exceed the maximum solution time of 86400
s. No results are given for the RS (AVM/McCormick hybrid) Step Formulation, as it does not
contain repeated nonlinear terms that could be replaced by AVs. The error bars represent the
standard deviation from the arithmetic mean value of the solution time from 100 optimization
runs using MAiNGO.
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much more likely for RS than FS formulations to contain these repeated nonlinear terms
(see Bongartz [215], p.64ff.). In fact, for the heat exchanger network design problem, only
the RS formulations contain repeated nonlinear terms. As illustrated in Tab. 5.6 and
Fig. 5.7, the selected addition of AVs is beneficial especially for the complementarity-
constrained problems (HEXMPEC) and (HEXPLUSF) despite an unchanged LB in the
root node. However, the number of BaB nodes reduces considerably while the CPU time
per BaB node remains about the same. In contrast, for the other problem formulations
(except Problem (HEXBM)) the subproblems seem to become more difficult to solve, such
that the benefit of the tighter relaxations resulting from adding selected AVs is almost
outweighed. Problem (HEXStepF) does not exhibit repeated nonlinear terms in both the
FS and RS formulations. The analysis shows: The consideration of selected AVs within
the RS formulations has the potential to improve computational effort even further.

5.5. Conclusion
Superstructure optimization problems for process synthesis often contain nonconvex func-
tions resulting in nonconvex MINLP problems, for which global solvers need to be used.
Although the same problem formulations as those developed for superstructure optimiza-
tion problems with only convex functions can be used, it remains unclear whether these are
always the most computationally efficient ones for problems with nonconvex functions. In
particular, for problems with only convex functions, preference is usually given to formula-
tions such as Big-M or Convex Hull that avoid introducing nonconvexities, thus resulting
in a convex MINLP or even MILP. We conjectured that for problems that contain noncon-
vex functions anyway, alternative formulations that do introduce additional nonconvexities
but may result in smaller problems or allow tighter relaxations could be promising.
Our analysis shows that for problems containing nonconvex functions anyway, these

additional nonconvexities do not necessarily have a considerable negative influence on the
optimization. The resulting relaxations often seem to remain comparably tight despite
these additional nonconvexities and the corresponding problem formulations contain fewer
variables than the conventional formulations. Accordingly, the alternative formulations
result in similar or even lower computational time than the conventional ones for most
considered examples. As an additional approach to reduce problem size, we exploited
reduced-space (RS) formulations, where we eliminate as many optimization variables as
possible using the model equations. Despite weaker relaxations, the smaller problem size of
RS formulations is beneficial for all problem formulations for the considered case studies.
The comparison of the results obtained with our open-source solver MAiNGO with

those obtained with the state-of-the-art commercial solver BARON shows that neither the
auxiliary variable method (AVM) employed in BARON, nor the propagation of McCormick
relaxations employed in MAiNGO suffers significantly from the additional nonconvex terms
resulting from the unconventional problem reformulation approaches. Yet, the reduction
of the problem size in the RS formulations can be exploited more effectively by MAiNGO,
resulting in the lowest overall solution times observed for the illustrative example problems.
For the conventional reformulation approaches, BARON generally outperforms MAiNGO.
We have extended the comparison of model formulations by also considering a problem

with piecewise-defined functions instead of unit selections, which can be formulated as a
superstructure optimization problem. For this problem, the RS formulation for all refor-

88



5.5. Conclusion

mulation approaches was again computationally more efficient than the FS formulation. A
formulation that directly treated the discontinuous function with the help of step functions
was particularly advantageous.
In summary, the unconventional reformulation approaches, which introduce nonconvex

terms, are promising for nonconvex superstructure optimization problems, especially when
combined with RS formulations. Bearing in mind that modeling using these approaches
is rather intuitive and the resulting models simple, they represent an interesting alterna-
tive to established approaches such as the Big-M and Convex Hull method. To further
validate this claim, a benchmark library with more complex superstructure optimization
problems is required for such comparative analyses in future studies. In this work, only
a few simple flowsheet optimization problems have been considered, as each problem for-
mulation needed to be implemented manually for all reformulation approaches and for
both the FS and RS formulation individually. To overcome the considerable manual effort
and benefit from a flexible application of different reformulation approaches given specific
problem characteristics, the automated generation of problem formulations (in the vein of,
e.g., the open-source Python package for component-oriented modeling and optimization
for nonlinear design and operation of integrated energy systems COMANDO [240], the
Pyomo.GDP package [241] that allows automated reformulation and solution of GDPs, or
the Pyosyn framework [242] for superstructure modeling) based on a GDP problem would
be beneficial.
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6. Conclusion and Outlook
The urgent need to introduce renewable energy sources into all sectors requires processes
that efficiently convert renewable electricity into liquid energy carriers. In this thesis,
optimization-based methods were proposed that enable the systematic identification and
design of these Power-to-X processes with the goal of maximizing their resource-efficiency.
To demonstrate the capabilities of these methods, they were applied to the production
of dimethoxymethane (DMM)—a promising synthetic fuel candidate and intermediate for
oxymethylene ether (OME3-5) production.
Power-to-X processes are processes that either need to be operated flexibly (demand side

management), need to temporarily store renewable electricity in a flexible but efficient way
(e-storage), or need to be able to utilize raw materials that fundamentally differ from fossil-
based ones to produce certain products (e-production). For e-production, we have shown
that the sole replacement of fossil-based raw materials with those from renewable sources
is not useful. Although many industrial processes are optimized to a high degree regarding
energy efficiency (in terms of utility demand), they often rely on reactions that do not
enable a resource-efficient conversion of their raw materials.
Established process concepts for both DMM and OME3-5 production are rather resource-

inefficient. The replacement of fossil-based methanol with such produced from renewable
sources requires great amounts of hydrogen (H2), which is produced from renewable elec-
tricity following the Power-to-X concept. Our analysis with detailed process models showed
that major exergy losses are caused by the unfavorable reaction pathway for FA produc-
tion. The underlying partial oxidation of methanol converts valuable H2 to water, which
increases net H2 demand for DMM production. Also the established pathway for DMM
production itself causes unavoidable exergy losses due to significant amounts of water pro-
duced as a by-product. As these two processes constitute intermediate process steps for
OME3-5 production using established process concepts, the same significant exergy losses
are present therein. Even more significant are exergy losses caused by the enormous heat
demand for trioxane purification, which can not be reduced significantly by a more effi-
cient heat integration. These inherent process inefficiencies make both DMM and OME3-5
production by simply replacing fossil-based raw materials with renewable ones not being
suitable for Power-to-X processes. Therefore, fundamentally new processes based on more
resource-efficient reaction pathways need to be developed. As corresponding pathways
from the open literature are on a very different stage of development and therefore difficult
to compare in a fair way, we developed a hierarchical process development and evalua-
tion methodology. The integration of optimization-based methods geared to the level of
detail of the hierarchy levels enables a systematic design of process candidates. In this
regard, five different reaction pathways for DMM production were considered, of which
three were found to be potentially more resource-efficient than the established pathway.
Intermediate-fidelity models and rigorous process models were used for optimization-based
process design to obtain a more realistic estimate for their performance. Process evalua-
tion on each level regarding production costs, exergy efficiency, and global warming impact
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identified the direct reduction of carbon dioxide (CO2) to be most suitable for sustainable
DMM production at its current state.
For a more reliable process design—which constitutes a fundamental part in the de-

velopment and successful implementation of Power-to-X processes—more detailed process
models need to be developed. In case of DMM production via the reductive pathway, the
reactor model needed to be refined as the thermodynamic model (NRTL) used for preced-
ing analyses allows only approximate calculations. The high reactor pressure required for
a sufficient solubility of H2 and CO2 in methanol and their complex molecular interactions
make the application of the perturbed-chain polar statistical associating fluid theory equa-
tion of state (PCP-SAFT EOS) indispensable. As a corresponding process model contains
nonconvex functions—as most models for Power-to-X processes do—deterministic global
optimization is required to find the most promising process design. However, complicated
thermodynamic models often make optimization computationally intractable and so does
the PCP-SAFT EOS for the reductive DMM production process. To still benefit from both
the high accuracy of the model and the great potential of optimization-based methods,
we developed a hybrid process model. Gaussian processes and artificial neural networks
sufficiently approximate such mechanistic process models that are otherwise too compli-
cated for deterministic global optimization. As these data-driven models introduce many
additional optimization variables, optimization with state-of-the-art deterministic global
solvers is challenging—and often not possible in the first place. The reduced-space problem
formulation of our open-source deterministic global solver MAiNGO reduces the size of the
optimization problem significantly. In combination with a hybrid of the McCormick and
the auxiliary variable method, global process optimization for reductive DMM production
eventually converged to its global optimum.
As process synthesis problems often contain discrete decisions, such as the choice of the

least energy-intensive distillation column sequence in reductive DMM production, mixed-
integer nonlinear programming (MINLP) problem formulations suitable for global opti-
mization are required. Whereas the Big-M and the Convex Hull method are the most
powerful ones for mixed-integer linear programming (MILP) problems and MINLP prob-
lems containing only convex functions, they are not necessarily the most powerful op-
tions for those MINLP problems that contain nonconvex functions. In this regard, we
have shown for a few simple example problems that problem formulations with a small
number of optimization variables can be computational more efficient than conventional
approaches. Although these unconventional approaches introduce nonconvex terms addi-
tionally to those that are inherently part of the process model (e.g., by the multiplication of
binary and continuous variables, complementarity constraints, step functions), relaxations
remain comparably tight. Although their combination with the reduced-space formulation
in MAiNGO weaken relaxations significantly, solution time was most often smaller due to
their much smaller problem size. The potential of these unconventional problem formu-
lations were confirmed by the process optimization for reductive DMM production. The
multiplication of binary with continuous variables to enable the choice between two distil-
lation configurations was found to be computationally less demanding than the solution of
the two separate nonlinear programming (NLP) problems.
The integration of the globally optimal process for reductive DMM production in its

entire process chain from renewable H2 and CO2 has demonstrated its potential as a
Power-to-X process to increase resource-efficiency significantly. Especially for OME3-5
production, improvements of up to 20 percentage points can be expected. However, before
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these advanced process concepts can be considered for large-scale DMM and OME3-5
production, further actions need to be taken.

For the evaluation of the OME3-5 process chain incorporating reductive DMM produc-
tion, both the intermediate process step for gaseous FA production and the final process
step for OME3-5 production from gaseous FA and DMM are on a very early stage of devel-
opment, for which only simplified process models have been developed in this work. The
improvement potential of 20 percentage points for OME3-5 production need to be there-
fore seen with caution as the models used for evaluating the process chain incorporating
established process concepts only are more detailed. For FA production via methanol de-
hydrogenation, a special focus should be placed on incorporating the effects of catalyst
deactivation into the respective process model as this was found to be a fundamental issue
in lab-scale experiments. Also the gas separation for FA purification and H2 recycling—the
key advantage of this process concept—need to be considered in further detail. Regarding
the process step for OME3-5 production from gaseous FA and DMM, a special focus should
be placed on the reactor model as a liquid-liquid-phase reaction system was used for cor-
responding experiments [29]. However, the separation of the two phases was reported to
be simple without a significant solubility between phases. In contrast, the process model
developed in this work for reductive DMM production for a system with an immobilized
catalyst is detailed enough to predict process performance rather accurately. The calcu-
lated reaction equilibrium is in good agreement with experimental results from the open
literature, even if only for a homogeneously catalyzed system. The ruthenium-based cat-
alyst has not been immobilized so far, which should be investigated in future work. A
major weakness of the reductive pathway for DMM production is the rather low equilib-
rium conversion at high pressures resulting in a comparably high energy demand for DMM
purification. To shift equilibrium to the products’ side, a multi-phase reaction system for
in-situ product removal from the reaction phase as well as for an increased solubility of
the gaseous educts is being investigated in ongoing research.
In addition to further improvement potential on the application side, some further im-

provements on the methods side were identified. To obtain an even more holistic com-
parison of different process candidates, additional evaluation metrics such as operational
safety and environmental aspects other than carbon footprint can be incorporated into the
hierarchical process development and evaluation methodology. This may be realized by
embedding further optimization-based methods into the methodolody. However, compu-
tational tractibility must be ensured. To obtain computational tractability for the deter-
ministic global optimization of the overall process for reductive DMM production, simple
Underwood equations had to be used to estimate the minimum energy demand of distil-
lation columns. Although the final total exergy demand does not differ much from that
derived from detailed tray-to-tray models, the heat demand of some individual columns
differs significantly. For nonideal systems, a more accurate distillation model suitable
for deterministic global optimization is therefore desirable. In this regard, pinch-based
methods offer an attractive trade-off between accuracy, general validity, and computa-
tional effort [243]. However, their implicit character potentially incorporating complicated
algorithms (e.g., homotopy continuation approach [244]) make their application for deter-
ministic optimization challenging. A related weakness identified by the global optimization
of the DMM production process was the approximate consideration of heat integration by
a simple summation of the processes’ exergy flows. As shown by the subsequent pinch-
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based heat integration (representing an optimistic estimate for heat integration) within
the entire process for DMM production from H2 and CO2, a simple summation of exergy
flows can lead to an overestimated potential for heat integration. Instead, an integrated
pinch-analysis or a simple matching of heat streams respecting a predefined minimum tem-
perature difference should be considered. The latter could be realized by superstructure
optimization using the MINLP problem formulations identified as suitable for global su-
perstructure optimization in this work. Although the high computational performance of
those MINLP problem formulations that reduce the number of optimization variables but
introduce nonconvex terms could be confirmed by three example problems, a generally
valid conclusion can not be drawn from this study. For a more conclusive statement, the
different MINLP problem formulations should be tested on a large set of benchmark prob-
lems with different complexity. For this, an automated generation of the different problem
formulations would be necessary. An even more fundamental question that has not been
answered so far is for which cases it is worth to consider superstructure optimization over
simple enumeration in the first place. This question might be relatively simple to answer
for MILP problems that are so large that they rely on the fathoming of branching trees.
For large MINLP problems incorporating nonconvex functions, the answer to this question
is not obvious as the deterministic global optimization of their separate NLPs is already
challenging. However, if the process model and the solution algorithm are geared to each
other, the MINLP program can be computationally less demanding than the separate
NLPs, as demonstrated by the global process optimization for reductive DMM production
in this work. For deriving generally valid statements, each superstructure problem formu-
lation need to be analyzed in even greater detail, or they need to be applied to a larger set
of benchmark problems—ideally both.
If these open questions, both on the application as well as on the methods side, can be

addressed adequately, highly resource-efficient Power-to-X processes can be designed and
in turn more energy from renewable sources can be made accessible for sectors that can
not be electrified directly.
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Appendix A.

Reaction Kinetic Parameters for
OME3-5 Formation
For the simulations of the OME3-5 process step, the pseudohomogeneous model developed
by Burger et al. [88] is used. Corresponding parameters for the temperature dependent
bulk equilibrium constants are given in Table A.1 and rate constants are given in Table
A.2. The latter have been adjusted in such a way that they meet the unit requirements of
Aspen Plus® using a catalyst capacity for Amberlyst46 of 0.43 mol H+/kgcat given by Rohm
and Haas Company [245]. Additionally, a kinetic factor of 1366 is added to the reaction
rate of Reaction (R2) in order to fit the model to the optimal operating point found by
Burger et al. [90]. The original parameters derived for the pseudohomogeneous model
are only valid for the operating point of the experiment, but not applicable to arbitrary
feed compositions (cf., Burger et al. [88]). The Aspen Plus® models are available via our
homepage[55].

Table A.1.: Mole fraction-based parameters for the equilibrium constant ln(K j) = aj + bj/T
of the reaction system of OMEn production after Burger et al. [88]

Reaction j aj [-] bj [K]
(R15) 0.3221 1292
(R16) -1.7759 -2986

Table A.2.: Mole fraction-based parameters for the forward reaction rate constant
ln(k f

j/(kmol/kgcats)) = af
j + bf

j/T of the reaction system of OMEn production based on the
work of Burger et al. [88]

Reaction j afj [-] bfj [K]
(R15) 10.6683 0
(R16) -9.0417 -1871.1
(R21) 7.5 -4916
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Figure A.1.: VLE of a system containing trioxane and OME2 at 88.92 kPa using NRTL
parameters bij = −154.08, bji = 332.95, and aij = aji = 0.3. Experimental data were taken
from the work of Burger et al. [90]
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Appendix B. DMM Pathway Comparison

Thermodynamic Model Parameters
Pure component property data is taken from the Aspen Plus v11 databank APV110
PURE37. Parameters for the UNIFAC model for the established pathway are taken from
Fredenslund et al. [47], Maurer [48], Hasse et al. [49], Hahnenstein et al. [50], Albert et al.
[51, 52, 246], and Kuhnert et al. [131]. Parameters for the NRTL model for the direct
pathways are given in Appendix Tab. B.2-B.4.

Table B.2.: NRTL parameter aij (Aspen Plus notation) for nonideal interactions within the
multi-component system of the direct pathways. The remaining interactions are assumed
to be ideal.

Component j
Component i Water DMM MeOH MF DME CO2

Water N/A 0a 2.7322a −91.5425d 0.825228b 10.064e
DMM 0a N/A 0a −0.359076d 0c 0
MeOH −0.693a 0a N/A 0a 8.0627b 0
MF −86.3908d 0.224382d 0a N/A 0.224382g 0
DME 0.96683b 0c −15.0667b −0.359076g N/A 0.394439f
CO2 10.064e 0 0 0 −0.44005f N/A

a From AspenPlus APV110 VLE-IG databank.
b From Dirk-Faitakis et al. [247].
c From Breitkreuz et al. [248].
d From Deutz et al. [19].
e From AspenPlus APV110 ENRTL-RK databank.
f From NISTV84 NIST-HOC databank.
g In accordance to the assumptions in Breitkreuz et al. [248].
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Table B.3.: NRTL parameter bij (Aspen Plus notation) for nonideal interactions within the
multi-component system of the direct pathways. The remaining interactions are assumed to
be ideal.

Component j
Component i Water DMM MeOH MF DME CO2

Water N/A 618.9311a −617.2687a 13650d 65.5774b −3268.135e
DMM 491.2114a N/A 175.4218a 100d 0c 0
MeOH 172.9871a 303.1328a N/A 199.0137a −1659.63b 0
MF 15500d 0d 217.046a N/A 0g 0
DME −39.5507b 0c 3836.09b 100g N/A 0f
CO2 −3268.135e 0 0 0 0f N/A

a From AspenPlus APV110 VLE-IG databank.
b From Dirk-Faitakis et al. [247].
c From Breitkreuz et al. [248].
d From Deutz et al. [19].
e From AspenPlus APV110 ENRTL-RK databank.
f From NISTV84 NIST-HOC databank.
g In accordance to the assumptions in Breitkreuz et al. [248].

Table B.4.: NRTL parameter cij (Aspen Plus notation) for nonideal inter-
actions within the multi-component system of the direct pathways. The re-
maining interactions are assumed to be ideal.

Component j
Component i Water DMM MeOH MF DME CO2

Water N/A 0.3a 0.3a 0.383d −0.77735b 0.2e
DMM 0.3a N/A 0.3a 0.3d 0c 0
MeOH 0.3a 0.3a N/A 0.3a −0.12748b 0
MF 0.383d 0.3d 0.3a N/A 0.3g 0
DME −0.77735b 0c −0.12748b 0.3g N/A 0.5f
CO2 0.2e 0 0 0 0.5f N/A

a From AspenPlus APV110 VLE-IG databank.
b From Dirk-Faitakis et al. [247].
c From Breitkreuz et al. [248].
d Additionally, fH2O,MF = 0.1613 and fMF,H2O = 0.1219 need to be pro-
vided. From Deutz et al. [19].

e From AspenPlus APV110 ENRTL-RK databank.
f From NISTV84 NIST-HOC databank.
g In accordance to the assumptions in Breitkreuz et al. [248].
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Appendix B. DMM Pathway Comparison

Model Equations and Assumptions for Pathway Evaluation
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Ė

H
2
,Ė
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The DMM-specific minimum raw material consumption mL1,i on Level 1 is calculated
according to Appendix Equation (B.1):

mL1,i = |νi|
νDMM

Mi

MDMM
i ∈ {H2,CO2}, (B.1)

with the stoichiometric coefficients of the overall reaction equation towards DMM, νi and
νDMM, and the molar mass of component i and DMM, Mi and MDMM , respectively.

100



Exergy Efficiency
System exergy efficiency ηS,l is calculated by

ηS,l =
ĖDMM + Ėside + ĖQ̇out

ml,H2
BH2

+ml,CO2
BCO2

+ ĖQ̇in
+ Pfeed + Pmisc

l ∈ {L1,L2,L3}, (B.2)

where ĖDMM and Ėside is the DMM-specific thermomechanical and chemical (based on
higher heating value) exergy content of DMM and side products , respectively; ĖQ̇out

and
ĖQ̇in

is the DMM-specific exergy of excess heat and heat demand of the process, respec-
tively (Tambient = 298.15K); BH2

and BCO2
is the H2- and CO2-specific exergy demand for

producing H2 and capturing CO2, respectively; Pfeed and Pmisc is the DMM-specific elec-
tricity demand for feed compression and miscellaneous compression and pumping within
the entire process, respectively.

Sizing and Costing
The column diameter Dcol is determined by the molar vapor flow V̇ such that tray flooding
is prevented in the highest loaded column section. The column diameter Dcol is calculated
according to Appendix Equation (B.3):

Dcol =

√√√√√ 1
Fv(1− φ)

4
π

V̇

ncol

√√√√RTtopM̄

100p , (B.3)

with F-factor Fv, relative free area on a tray φ, number of parallel columns ncol, ideal
gas constant R, column top temperature Ttop, molar mass of the gaseous mixture M̄ , and
column pressure p. The values for Fv and φ are given in Appendix Tab. B.6.
The column height Hcol is determined by the number of trays Ncol found by deterministic

optimization (simultaneous minimization of OPEX and CAPEX) according to Kossack
et al. [140] and Kraemer et al. [137]. The column height Hcol is calculated according to
Appendix Equation (B.4):

Hcol = NcolHtray + ∆H, (B.4)

with tray spacing Htray and extra space ∆H for the top and bottom of the column. The
values for Htray and ∆H are given in Appendix Tab. B.6.
The size of reboiler/condenser heat exchange area AR/C is calculated according to Ap-

pendix Equation (B.5):

AR/C = Q̇R/C

kR/CTlog
, (B.5)

with heat demand Q̇R/C of the reboiler or condenser of the column, heat exchange coefficient
kR/C, and logarithmic mean temperature difference Tlog. The values for kR/C are given in
Appendix Tab. B.6.
The reactor length Lreac and the diameter Dreac are determined by the volume flow V̇reac

through a cylindrical reactor with volume Vreac and residence time τreac. The Volume Vreac
is calculated through the first equality in Appendix Equation (B.6) and the reactor length
Lreac and the diameter Dreac through the second equality in Appendix Equation (B.6) and
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Appendix B. DMM Pathway Comparison

Appendix Equation (B.7):

Vreac = V̇reacτreac
ε

= π

4D
2
reacLreac (B.6)

Lreac

Dreac
= 4, (B.7)

with bed voidage ε given in Appendix Tab. B.6.
Investment costs for compressors and pumps are directly determined by their shaft

power. [152]

Table B.6.: Parameters for column and reactor sizing.
Parameter Unit Value Reference
Fv kg0.5 m−0.5 s−1 1.4 Peters and Timmerhaus [249]
φ − 0.15 Peters and Timmerhaus [249]
Htray m 0.5 Peters and Timmerhaus [249]
∆H m 4 Peters and Timmerhaus [249]
ε − 0.5
kR kW K−1 m−2 0.568 Luyben [150]
kC kW K−1 m−2 0.852 Luyben [150]

The costing of distillation columns, reactors, compressors, and pumps was performed
according to the models provided by Guthrie [152]. All column, tray, and heat exchanger
cost parameters are taken from the original model. A M&S Index value of 1473.3 (2010)
is used. Economic parameters for CAPEX calculations are given in Appendix Tab. B.7.
Cost of Manufacturing (COM) is calculated according to the procedure given in Turton

et al. [153] and can be estimated with Appendix Equation (B.8) [153]:

COM = 0.280FCI + 2.73COL + 1.23(CUT + CWT + CRM), (B.8)

with fixed capital investment FCI, cost of operating labor COL, cost of utilities CUT, cost
of waste treatment CWT, and cost of raw materials CRM. Appendix Equation (B.8) is a
summation of several cost positions with individual cost parameters listed in Turton et al.
[153].

Table B.7.: Economic parameters for CAPEX cal-
culations.
Parameter Unit Value
Plant capacity (w.r.t. DMM) t a−1 200000
Interest rate % 6
Plant life time a 10
Operating hours hr a−1 8000
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Mass and Energy Balances

Table B.8.: DMM-specific material input for each pathway and level.
Pathway Mass [kg kg-1]

H2 CO2

L1 L2 L3 L1 L2 L3
Established 0.238 0.264 0.265 1.735 1.923 1.925
Oxidative 0.238 0.253 0.254 1.735 1.840 1.851
Reductive 0.212 0.219 1.735 1.791
Dehydrogenative 0.212 0.258 1.735 2.251
Transfer-hydrogenative 0.212 1.735
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Appendix B. DMM Pathway Comparison

Table
B
.9.:D
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Table B.10.: DMM-specific energy streams for each pathway and level. Negative values
denote outgoing energy streams. Heat integration was performed via pinch analysis.
Pathway Energy [MJ kg-1]

Heat Electricity

L1 L2 L3 L1 L2 L3

Established 0.000 2.101 (90 °C) 1.465 (80 °C) 0.000 1.148 1.421
Oxidative 0.000 1.545 (58 °C)

−0.351 (−25 °C)
−0.161 (1 000 °C)
−0.206 (−20 °C) 0.000 2.422 2.640

Reductive 0.000 10.949 (86 °C)
1.111 (64 °C) 0.000 1.079

Dehydrogenative 0.000 23.590 (100 °C) 0.000 1.739
Transfer-hydrogenative 0.000 0.000

Table B.11.: Stoichiometric H2 consumption for the synthesis of various e-fuels from H2
and CO2 relative to their heating values (both LHV and HHV). For DMM synthesis, the non-
oxidative pathways are considered. The specific LHV and HHV of fossil diesel is 42.6 MJ kg−1

and 45.6 MJ kg−1, respectively.
Unit DMM Ethanol Methanol DME Methane

Molar H2 consumption [mol mol−1] 8 6 3 6 4
Molar mass [g mol−1] 76.1 46.1 32.0 46.1 16.0
Specific LHV [MJ kg−1] 23.3 26.7 19.9 28.9 50
Specific HHV [MJ kg−1] 25.7 29.7 23.0 31.7 55.5
Molar LHV [MJ mol−1] 1.77 1.23 0.64 1.33 0.80
Molar HHV [MJ mol−1] 1.96 1.37 0.74 1.46 0.89
H2 consumption/LHV [mol MJ−1] 4.5 4.9 4.7 4.5 5.0
H2 consumption/HHV [mol MJ−1] 4.1 4.4 4.1 4.1 4.5
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Appendix B. DMM Pathway Comparison

Production Cost
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Figure B.1.: DMM production cost dependence on CO2 price. The base case H2 price is
5 $ kg−1. [148]
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Appendix B. DMM Pathway Comparison

Table B.13.: Cost of Manufacturing (COM) for the established and oxidative pathway on
Level 3.
Category Cost [M$ a-1]

Established pathway Oxidative pathway
Direct Manufacturing Costs (DMC) 333.19 322.08

Raw materials (CRM) 291.09 278.18
Waste treatment (CWT) 0 0
Utilities (CUT) 22.98 29.14
Operating labor (COL) 1.60 0.78
Direct supervisory and clerical labor 0.29 0.14
Maintenance and repairs 4.09 1.80
Operating supplies 0.61 0.27
Laboratory charges 0.24 0.17
Patents and royalities 12.29 11.66

Fixed Manufacturing Costs (FMC) 15.04 6.68
Depreciation 9.26 4.08
Local taxes and insurances 2.18 0.96
Plant overhead costs 3.59 1.63

General Manufacturing Costs (GM) 66.46 62.57
Administration costs 0.90 0.41
Distribution and selling costs 45.07 42.74
Research and development 20.49 19.43

Total costs 414.69 391.33
Total costs in

[
$ L−1

diesel-eq.

]
3.19 3.02
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Pathway Potential at Equilibrium Conditions
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Figure B.2.: DMM yield dependence on reactor pressure for the reductive pathway (cf. Reac-
tion (R6)). Restricted equilibrium conversion (considering perfect DMM selectivity) has been
considered throughout the entire pressure range. Equilibrium conversion was calculated with
an REquil reactor model in Aspen Plus v11. For the ’No selective suppression of side reactions’
case additional DME and carbon monoxide (CO) formation was considered.

Table B.14.: DMM-specific material and energy balances for each pathway at equilibrium
conversion and perfect selectivity on Level 2. Negative values denote outgoing energy streams.
Heat integration was performed via pinch analysis.
Pathway Mass [kg kg-1] Energy [MJ kg-1]

Input Output

H2 CO2 MF DME CO2 H2O Heat Electricity

Reductive 0.218 1.780 0.000 0.000 0.039 0.953 1.491 (100 °C)
0.802 (58 °C) 1.072

Dehydrogenative 0.223 1.819 0.001 0.000 0.057 0.968 5.823 (100 °C) 1.327
Transfer-hydrogenative
without H2 recycling 0.248 1.804 0.000 0.000 0.056 0.945 −1.256 (230 °C) 1.076

Transfer-hydrogenative
with H2 recycling 0.221 1.804 0.000 0.000 0.056 0.945 0.476 (78 °C)

9.764 (630 °C) 1.268

Transfer-hydrogenative
with H2 recycling
at no cost

0.221 1.804 0.000 0.000 0.056 0.945 −1.256 (230 °C) 1.268
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Appendix B. DMM Pathway Comparison

Potential Pathway Improvements
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Figure B.3.: Potential improvements of the reductive pathway if restricted equilibrium
methanol conversion (15.7 %) instead of experimental conversion (10.1 %) and perfect DMM
selectivity instead of experimental selectivity (81.8 %) at a reaction temperature of 80 °C is
assumed. The results on impact on climate change are given for the worst case scenario.
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Figure B.4.: Potential improvements of the dehydrogenative pathway if restricted equilibrium
methanol conversion (9.8 %) at 300 °C instead of the experimental conversion (3.6 %) at 200 °C
and perfect DMM selectivity instead of experimental selectivity (80.3 %) is assumed. The results
on impact on climate change are given for the worst case scenario.
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Maximum Potential of Non-oxidative Pathways
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(a) Exergy efficiency of
the DMM synthesis
routes from H2 and CO2
(bars) and for the entire
system for the worst (N)
and best (H) case
scenario. The dashed
lines correspond to the
established and
oxidative pathway
evaluated on Level 2
considering actual
reaction performance.

   R e d .  D e h y d .  T r a n s .0

1

2

3

4

DM
M 

pro
du

cti
on 

cos
t /

 $ 
L-1 die

sel
-eq

.  E l e c t r i c i t y
 C o o l i n g  w a t e r
 S t e a m
 C O 2
 H 2

E s t a b l .
O x i .                   

(b) Cost of DMM
production. The dashed
lines correspond to the
established and
oxidative pathway
evaluated on Level 2
considering actual
reaction performance.
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(c) Impact of DMM on
climate change for the
worst (H) and best (N)
case scenario. The dashed
lines correspond to the
worst case scenario for the
established and oxidative
pathway evaluated on
Level 2 considering actual
reaction performance.

Figure B.5.: Exergy efficiency (Appendix Fig. B.5a), production cost (Appendix Fig. B.5b),
and impact on climate change (Appendix Fig. B.5c) for DMM production via the reductive,
dehydrogenative, and transfer-hydrogenative synthesis route considering perfect selectivity and
equilibrium conversion evaluated on Level 2. For the transfer-hydrogenation, EB dehydrogena-
tion at no cost has been considered.
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Appendix B. DMM Pathway Comparison

Process Flowsheets

H2

CO2

H2O

MF

DMM

H2O

Methanol

Methanol

Styrene

Ethylbenzene

Styrene

H2

Figure B.6.: Process concept for the transfer-hydrogenative pathway on Level 2. All possible
distillation sequences have been screened and the least energy-intensive sequence has been
chosen. Styrene is added to the reactor in such a way that it is completely converted to EB
and simultaneously consumes co-produced H2 completely. Modeling detail is identical to that
of the alternative non-oxidative pathways with the process step for EB dehydrogenation as an
exception. Ethylbenzene dehydrogenation is modeled as a black box with process parameters
at equilibrium conditions from the literature [250].
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Appendix C.

PCP-SAFT EOS Parameters and
Sensitivity Analysis

Pure Component Parameters

Table C.1.: Pure component parameters for the PCP-SAFT EOS.
CO2 H2 Methanol DMM Water

ε/k / K 163.33 19.2775 161.9 231.26 366.51
σ / Å 3.1869 2.986 2.456 3.3631 3.0007
m / − 1.5131 1 3.4447 2.9218 1.0656
µ / D 0 0 1.6906 1.74 0
Q / DÅ 4.4 0 0 0 0
εAiBi/k / K - - 1684.5 - 2500.7
κAiBi / − - - 0.18195 - 0.034868
Number of H2 bond ac-
ceptors

2 0 1 0 1

Number of H2 bond
donors

0 0 1 0 1

Reference Gross
[161]

Ghosh
et al. [251]

Kozłowska
et al. [252]

Pokorný
et al. [253]

Gross and
Sadowski
[254]

Sensitivity Analysis
In order to keep the optimization tractable, the molar gas-to-liquid ratio in the reactor and
the ratio of H2 to CO2 in the gaseous reactor feed are kept constant. As demonstrated in
Fig. C.1 and C.2, the two variables have only a minor impact on the reactor performance
compared to the reactor pressure.

113



Appendix C. PCP-SAFT EOS Parameters and Sensitivity Analysis

Figure C.1.: Methanol conversion in dependence on the molar gas-to-liquid ratio in the reactor.

Figure C.2.: Methanol conversion in dependence on the molar ratio of H2 to CO2 in the
gaseous reactor feed.
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Appendix D.

Material Balances and Energy Demand
of Process Chains via Reductive DMM
Production

DMM Production from H2 and CO2

Table D.1.: DMM-specific material and energy balances for each process step within the
process chain for DMM production from H2 and CO2. Negative values denote outgoing
streams. Heat integration was performed via pinch analysis. Only net heat demand is
considered here.
Process step Mass [kg kg-1] Energy [MJ kg-1]

H2 CO2 MeOH H2O DMM Heat Coolant Electricity

Methanol production 0.166 1.209 −0.850 −0.483 0 0 0 0.836
DMM production 0.054 0.800 0.850 −0.450 −1 0.189 (136 °C)

5.305 (84 °C)
1.034 (80 °C)

0.993 (−81 °C) 1.108
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Appendix D. Material Balances and Energy Demand of Process Chains via Reductive
DMM Production

OME3-5 Production from H2 and CO2
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Appendix E.

MINLP Problem Formulations for
Superstructure Optimization

Illustrative Example Problem with Linear Cost Functions

GDP

min C = Cop + Cinv

s.t. ṅin = ṅPin + ṅSin

ṅout = ṅPout + ṅSout
YP

ṅSin = ṅSout = 0
ṅPout = ṅPin
Cop = ṅPineP
Cinv = CP

 ∨


YS
ṅPin = ṅPout = 0
ṅSout = ṅSin
Cop = ṅSineS
Cinv = CS

 (GDP1lin)

YP∨YS
Cop, Cinv, ṅin, ṅ

P
in, ṅ

S
in, ṅ

P
out, ṅ

S
out ≥ 0

Cop, Cinv, ṅin, ṅ
P
in, ṅ

S
in, ṅ

P
out, ṅ

S
out ∈ R

YP, YS ∈ {True, False}
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Appendix E. MINLP Problem Formulations for Superstructure Optimization

BigM

min C = Cop + Cinv

s.t. ṅin = ṅPin + ṅSin

ṅout = ṅPout + ṅSout

0−MP(1− yP) ≤ ṅSin ≤ 0 +MP(1− yP)
0−MP(1− yP) ≤ ṅSout ≤ 0 +MP(1− yP)
ṅPin −MP(1− yP) ≤ ṅPout ≤ ṅPin +MP(1− yP)
ṅPineP −MP(1− yP) ≤ Cop ≤ ṅPineP +MP(1− yP)
CP −MP(1− yP) ≤ Cinv ≤ CP +MP(1− yP)
0−MS(1− yS) ≤ ṅPin ≤ 0 +MS(1− yS) (BM1lin)
0−MS(1− yS) ≤ ṅPout ≤ 0 +MS(1− yS)
ṅSin −MS(1− yS) ≤ ṅSout ≤ ṅSin +MS(1− yS)
ṅSineS −MS(1− yS) ≤ Cop ≤ ṅSineS +MS(1− yS)
CS −MS(1− yS) ≤ Cinv ≤ CS +MS(1− yS)
yP + yS = 1
Cop, Cinv, ṅin, ṅ

P
in, ṅ

S
in, ṅ

P
out, ṅ

S
out ≥ 0

Cop, Cinv, ṅin, ṅ
P
in, ṅ

S
in, ṅ

P
out, ṅ

S
out ∈ R

yP, yS ∈ {0, 1}
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Convex Hull

min C = Cop + Cinv

s.t. ṅin = ṅPin + ṅSin

ṅout = ṅPout + ṅSout

ṅjin = ṅjin,P + ṅjin,S j ∈ {P, S}
ṅjout = ṅjout,P + ṅjout,S j ∈ {P, S}
Cop = CP

op + CS
op

Cinv = CP
inv + CS

inv

ṅSin,P ≤ 0
ṅSout,P ≤ 0
ṅPout,P ≤ ṅPin,P

CP
op ≥ ṅPin,PeP

CP
inv ≥ CPyP

ṅPin,S ≤ 0
ṅPout,S ≤ 0
ṅSout,S ≤ ṅSin,S

CS
op ≥ ṅSin,SeS

CS
inv ≥ CSyS

yP + yS = 1 (CH1lin)
0 ≤ ṅPin,P ≤ 1yP
0 ≤ ṅSin,P ≤ 1yP
0 ≤ ṅPout,P ≤ 1yP
0 ≤ ṅSout,P ≤ 1yP
0 ≤ CP

op ≤ 20yP
0 ≤ CP

inv ≤ 20yP
0 ≤ ṅPin,S ≤ 1yS
0 ≤ ṅSin,S ≤ 1yS
0 ≤ ṅPout,S ≤ 1yS
0 ≤ ṅSout,S ≤ 1yS
0 ≤ CS

op ≤ 20yS
0 ≤ CS

inv ≤ 20yS
Cop, Cinv, ṅin, ṅ

P
in, ṅ

S
in, ṅ

P
out, ṅ

S
out ≥ 0

Cop, Cinv, C
P
op, C

S
op, C

P
inv, C

S
inv, ṅin, ṅ

P
in, ṅ

S
in, ṅ

P
in,P, ṅ

S
in,P, ṅ

P
in,S, ṅ

S
in,S ∈ R

ṅPout,P, ṅ
S
out,P, ṅ

P
out,S, ṅ

S
out,S, ṅ

P
out, ṅ

S
out ∈ R

yP, yS ∈ {0, 1}
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Appendix E. MINLP Problem Formulations for Superstructure Optimization

MPEC

min C = Cop + Cinv

s.t. ṅin = ṅPin + ṅSin

ṅjout = ṅjin j ∈ {P, S}
ṅout = ṅPout + ṅSout

Cop =
∑
j

ṅjinej (MPEC1lin)

Cinv =
∑
j

tanh(Pṅjin)Cj

0 = ṅPinṅ
S
in

Cop, Cinv, ṅin, ṅ
P
in, ṅ

S
in, ṅ

P
out, ṅ

S
out ≥ 0

Cop, Cinv, ṅin, ṅ
P
in, ṅ

S
in, ṅ

P
out, ṅ

S
out ∈ R

Plus Function

min C = Cop + Cinv

s.t. ṅin = ṅPin + ṅSin

ṅjout = ṅjin j ∈ {P, S}
ṅout = ṅPout + ṅSout

Cop =
∑
j

ṅjinej (PLUS1lin)

Cinv =
∑
j

tanh(Pṅjin)Cj

0 = ṅPin −max(0, ṅPin − ṅSin)
Cop, Cinv, ṅin, ṅ

P
in, ṅ

S
in, ṅ

P
out, ṅ

S
out ≥ 0

Cop, Cinv, ṅin, ṅ
P
in, ṅ

S
in, ṅ

P
out, ṅ

S
out ∈ R
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Direct MINLP

min C = Cop + Cinv

s.t. Cop =
∑
j

ṅjinej

Cinv =
∑
j

yjCj

ṅjin = yjṅin j ∈ {P, S} (MINLP1lin)
ṅjout = ṅjin j ∈ {P, S}
ṅout = ṅPout + ṅSout
yP + yS = 1
Cop, Cinv, ṅin, ṅ

P
in, ṅ

S
in, ṅ

P
out, ṅ

S
out ≥ 0

Cop, Cinv, ṅin, ṅ
P
in, ṅ

S
in, ṅ

P
out, ṅ

S
out ∈ R

yj ∈ {0, 1} j ∈ {P, S}

Results

The optimal objective value is 10 (Cop = 3, Cinv = 7). In this case, Unit S is chosen.
The numerical results for each problem formulation are summarized in Tab. E.1. Only
for Problem (MINLP1lin), (PLUS1lin), and (MPEC1lin), nonlinear terms are present such
that the global solver needs to be called. In these cases, the optimization for the RS
formulations benefits from the reduced problem size, which is reflected by the decreased
solution time. The consumed time per iteration is reduced and only a moderate increase in
number of iterations (Problem (MPEC1lin) and (PLUS1lin)) observed. The reformulation
with the Big-M and Convex Hull approaches yield MILP problems (Problems (BM1lin)
and (CH1lin)), which can be solved with CPLEX immediately.

Table E.1.: Numerical results for the problem formulations of Problem (GDP1lin) presented
in Section 5.2 for linear cost functions. The optimization has been executed 100 times, of
which the arithmetic mean value is shown. For Problem (BM1lin) and (CH1lin), no BaB
iterations are required as only CPLEX is called.

BigM
(BM1lin)

Convex Hull
(CH1lin)

MPEC
(MPEC1lin)

Plus Function
(PLUS1lin)

Direct MINLP
(MINLP1lin)

FS RS FS RS FS RS FS RS FS RS

Number of
Continuous variables 7 2 19 2 7 2 7 2 7 1
Discrete variables 2 1 2 1 0 0 0 0 2 1
Equality constraints 3 1 9 1 7 2 7 2 8 1
Inequality constraints 20 4 34 4 0 0 0 0 0 0
BaB nodes 0 0 0 0 1 3 1 3 1 1

CPU time per BaB node / s NaN NaN NaN NaN 0.108 0.007 0.035 0.008 0.103 0.045
Solution time / s 0 0 0 0 0.108 0.022 0.035 0.023 0.103 0.045
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Appendix E. MINLP Problem Formulations for Superstructure Optimization

Figure E.1.: Solution time for Problem (GDP1lin) using the problem formulations presented
in Section 5.2 for linear cost functions. As BARON can not handle max -functions, there are no
results for the Plus Function formulation. The error bars represent the standard deviation from
the arithmetic mean value of the solution time from 100 optimization runs using MAiNGO.
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Plus Function Problem Formulation for the Simple
Example Problem

min C = Cop + Cinv

s.t. ṅin = ṅPin + ṅSin

ṅjout = ṅjin j ∈ {P, S}
ṅout = ṅPout + ṅSout

Cop =
∑
j∈J

(ṅjin)2ej (PLUS1)

Cinv =
∑
j∈J

[
tanh(Pṅjin)(Cj + ṅ0.6

in )
]

0 = ṅPin −max(0, ṅPin − ṅSin)
Cop, Cinv, ṅin, ṅ

P
in, ṅ

S
in, ṅ

P
out, ṅ

S
out ≥ 0

Cop, Cinv, ṅin, ṅ
P
in, ṅ

S
in, ṅ

P
out, ṅ

S
out ∈ R
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Appendix E. MINLP Problem Formulations for Superstructure Optimization

Problem Formulations for the Multiple-Disjunction
Example Problem

Nested GDP problem

min C = Cop + Cinv

s.t. ṅin = ṅPin + ṅSin

ṅSout = ṅF1in + ṅF2in (P2)
ṅFout = ṅF1out + ṅF2out

ṅout = ṅPout + ṅFout



YP
ṅSin = ṅSout = 0
ṅPout = ṅPin

Cop = (ṅPin)2eP
Cinv = CP + ṅ0.6

in
ṅF1,F2in,out = 0
CF
op = 0

CF
inv = 0


∨



YS
ṅPin = ṅPout = 0
ṅSout = ṅSin

Cop = (ṅSin)2eS + CF
op

Cinv = CS + ṅ0.6
in + CF

inv
YF1

ṅF2in = ṅF2out = 0
ṅF1out = ṅF1in

CF
op = (ṅF1in )2eF1

CF
inv = CF1 + 0.1ṅ0.6

in

 ∨


YF2
ṅF1in = ṅF1out = 0
ṅF2out = ṅF2in

CF
op = (ṅF2in )2eF2

CF
inv = CF2 + 0.1ṅ0.6

in




YP∨YS
YS ⇔ YF1∨YF2
Cop, Cinv, C

F
op, C

F
inv, ṅin, ṅ

P
in, ṅ

S
in, ṅ

F1
in , ṅ

F2
in , ṅ

P
out, ṅ

S
out, ṅ

F1
out, ṅ

F2
out, ṅ

F
out ≥ 0

Cop, Cinv, C
F
op, C

F
inv, ṅin, ṅ

P
in, ṅ

S
in, ṅ

F1
in , ṅ

F2
in , ṅ

P
out, ṅ

S
out, ṅ

F1
out, ṅ

F2
out, ṅ

F
out ∈ R

YP, YS, YF1, YF2 ∈ {True,False}
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BigM

min C = Cop + Cinv

s.t. ṅin = ṅPin + ṅSin

ṅSout = ṅF1in + ṅF2in

ṅFout = ṅF1out + ṅF2out

ṅout = ṅPout + ṅFout

0−MP(1− yP) ≤ ṅSin ≤ 0 +MP(1− yP)
0−MP(1− yP) ≤ ṅSout ≤ 0 +MP(1− yP)
ṅPin −MP(1− yP) ≤ ṅPout ≤ ṅPin +MP(1− yP)
(ṅPin)2eP −MP(1− yP) ≤ Cop ≤ (ṅPin)2eP +MP(1− yP)
CP + ṅ0.6

in −MP(1− yP) ≤ Cinv ≤ CP + ṅ0.6
in +MP(1− yP) (BM2)

0−MS(1− yS) ≤ ṅPin ≤ 0 +MS(1− yS)
0−MS(1− yS) ≤ ṅPout ≤ 0 +MS(1− yS)
ṅSin −MS(1− yS) ≤ ṅSout ≤ ṅSin +MS(1− yS)
(ṅSin)2eS + CF

op −MS(1− yS) ≤ Cop ≤ (ṅSin)2eS + CF
op +MS(1− yS)

CS + ṅ0.6
in + CF

inv −MS(1− yS) ≤ Cinv ≤ CS + ṅ0.6
in + CF

inv +MS(1− yS)
0−MF1(1− yF1) ≤ ṅF2in ≤ 0 +MF1(1− yF1)
0−MF1(1− yF1) ≤ ṅF2out ≤ 0 +MF1(1− yF1)
ṅF1in −MF1(1− yF1) ≤ ṅF1out ≤ ṅF1in +MF1(1− yF1)
(ṅF1in )2eF1 −MF1(1− yF1) ≤ CF

op ≤ (ṅF1in )2eF1 +MF1(1− yF1)
CF1 + 0.1ṅ0.6

in −MF1(1− yF1) ≤ CF
inv ≤ CF1 + 0.1ṅ0.6

in +MF1(1− yF1)
0−MF2(1− yF2) ≤ ṅF1in ≤ 0 +MF2(1− yF2)
0−MF2(1− yF2) ≤ ṅF1out ≤ 0 +MF2(1− yF2)
ṅF2in −MF2(1− yF2) ≤ ṅF2out ≤ ṅF2in +MF2(1− yF2)
(ṅF2in )2eF2 −MF2(1− yF2) ≤ CF

op ≤ (ṅF2in )2eF2 +MF2(1− yF2)
CF2 + 0.1ṅ0.6

in −MF2(1− yF2) ≤ CF
inv ≤ CF2 + 0.1ṅ0.6

in +MF2(1− yF2)
ṅjin ≤ 0 +MnotF(1− ynotF) j ∈ {F1,F2}
ṅjout ≤ 0 +MnotF(1− ynotF) j ∈ {F,F1,F2}
CF
m ≤ 0 +MnotF(1− ynotF) m ∈ {op,inv}

yP + yS = 1
yF1 + yF2 + ynotF = 1
yP = ynotF

yS = yF1 + yF2
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Cop, Cinv, C
F
op, C

F
inv, ṅin, ṅ

P
in, ṅ

S
in, ṅ

F1
in , ṅ

F2
in , ṅ

P
out, ṅ

S
out, ṅ

F1
out, ṅ

F2
out, ṅ

F
out ≥ 0

Cop, Cinv, C
F
op, C

F
inv, ṅin, ṅ

P
in, ṅ

S
in, ṅ

F1
in , ṅ

F2
in , ṅ

P
out, ṅ

S
out, ṅ

F1
out, ṅ

F2
out, ṅ

F
out ∈ R

yP, yS, yF1, yF2, ynotF ∈ {0, 1}
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Convex Hull

min C = Cop + Cinv

s.t. ṅin = ṅPin + ṅSin

ṅSout = ṅF1in + ṅF2in

ṅFout = ṅF1out + ṅF2out

ṅout = ṅPout + ṅFout

ṅjin = ṅjin,P + ṅjin,S j ∈ {P, S}
ṅjout = ṅjout,P + ṅjout,S j ∈ {P, S}
ṅjin = ṅjin,F1 + ṅjin,F2 + ṅjin,notF j ∈ {F1,F2}
ṅjout = ṅjout,F1 + ṅjout,F2 + ṅjout,notF j ∈ {F1,F2}
Cop = CP

op + CS
op

Cinv = CP
inv + CS

inv

CF
op = CF

op,F1 + CF
op,F2 + CF

op,notF

CF
inv = CF

inv,F1 + CF
inv,F2 + CF

inv,notF (CH2)
ṅSin,P ≤ 0
ṅSout,P ≤ 0
ṅPout,P ≤ ṅPin,P

CP
op ≥

(
ṅPin,P

)2 1
(1− ε)yP + ε

eP

CP
inv ≥ (CP + ṅ0.6

in )yP
ṅPin,S ≤ 0
ṅPout,S ≤ 0
ṅSout,S ≤ ṅSin,S

CS
op ≥

(
ṅSin,S

)2 1
((1− ε)yS + ε)eS + CF

op((1− ε)yS + ε)

CS
inv ≥

(
CS + ṅ0.6

in + CF
inv

)
yS

ṅF2in,F1 ≤ 0
ṅF2out,F1 ≤ 0
ṅF1out,F1 ≤ ṅF1in,F1

CF1
op ≥

(
ṅF1in,F1

)2 1
(1− ε)yF1 + ε

eF1

CF
inv,F1 ≥ (CF1 + 0.1ṅ0.6

in )yF1
ṅF1in,F2 ≤ 0
ṅF1out,F2 ≤ 0
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ṅF2out,F2 ≤ ṅF2in,F2

CF2
op ≥

(
ṅF2in,F2

)2 1
(1− ε)yF2 + ε

eF2

CF
inv,F2 ≥ (CF2 + 0.1ṅ0.6

in )yF2
ṅjin,notF ≤ 0 j ∈ {F1,F2}
ṅjout,notF ≤ 0 j ∈ {F,F1,F2}
CF
op,notF ≤ 0

CF
inv,notF ≤ 0

yP + yS = 1
yF1 + yF2 + ynotF = 1
yP = ynotF

yS = yF1 + yF2

0 ≤ ṅPin,P ≤ 1yP
0 ≤ ṅSin,P ≤ 1yP
0 ≤ ṅPout,P ≤ 1yP
0 ≤ ṅSout,P ≤ 1yP
0 ≤ CP

op ≤ 20yP
0 ≤ CP

inv ≤ 20yP
0 ≤ ṅPin,S ≤ 1yS
0 ≤ ṅSin,S ≤ 1yS
0 ≤ ṅPout,S ≤ 1yS
0 ≤ ṅSout,S ≤ 1yS
0 ≤ CS

op ≤ 20yS
0 ≤ CS

inv ≤ 20yS
0 ≤ ṅF1in,F1 ≤ 1yF1
0 ≤ ṅF2in,F1 ≤ 1yF1
0 ≤ ṅF1out,F1 ≤ 1yF1
0 ≤ ṅF2out,F1 ≤ 1yF1
0 ≤ CF

op,F1 ≤ 20yF1
0 ≤ CF

inv,F1 ≤ 20yF1
0 ≤ ṅF1in,F2 ≤ 1yF2
0 ≤ ṅF2in,F2 ≤ 1yF2
0 ≤ ṅF1out,F2 ≤ 1yF2
0 ≤ ṅF2out,F2 ≤ 1yF2
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0 ≤ CF
op,F2 ≤ 20yF2

0 ≤ CF
inv,F2 ≤ 20yF2

0 ≤ ṅF1in,notF ≤ 1ynotF
0 ≤ ṅF2in,notF ≤ 1ynotF
0 ≤ ṅF1out,notF ≤ 1ynotF
0 ≤ ṅF2out,notF ≤ 1ynotF
0 ≤ CF

op,notF ≤ 20ynotF
0 ≤ CF

inv,notF ≤ 20ynotF
Cop, Cinv, C

F
op, C

F
inv, ṅin, ṅ

P
in, ṅ

S
in, ṅ

F1
in , ṅ

F2
in , ṅ

P
out, ṅ

S
out, ṅ

F
out, ṅ

F1
out, ṅ

F2
out ≥ 0

Cop, Cinv, C
F
op, C

F
inv, C

P
op, C

S
op, C

P
inv, C

S
inv, C

F
op,F1, C

F
inv,F1, C

F
op,F2, C

F
inv,F2 ∈ R

CF
op,notF, C

F
inv,notF, ṅin, ṅ

P
in, ṅ

S
in, ṅ

P
in,P, ṅ

S
in,P, ṅ

P
in,S, ṅ

S
in,S, ṅ

P
out,P, ṅ

S
out,P, ṅ

P
out,S, ṅ

S
out,S, ṅ

P
out, ṅ

S
out ∈ R

ṅF1in , ṅ
F2
in , ṅ

F1
in,F1, ṅ

F2
in,F1, ṅ

F1
in,F2, ṅ

F2
in,F2, ṅ

F1
in,notF, ṅ

F2
in,notF, ṅ

F
out, ṅ

F1
out, ṅ

F2
out, ṅ

F1
out,F1, ṅ

F2
out,F1 ∈ R

ṅF1out,F2, ṅ
F2
out,F2, ṅ

F1
out,notF, ṅ

F2
out,notF ∈ R

yP, yS, yF1, yF2, ynotF ∈ {0, 1}

MPEC

min C = Cop + Cinv

s.t. ṅin = ṅPin + ṅSin

ṅjout = ṅjin j ∈ {P, S,F1,F2}
ṅSout = ṅF1in + ṅF2in

ṅFout = ṅF1out + ṅF2out

ṅout = ṅPout + ṅFout (MPEC2)
Cop =

∑
j

(ṅjin)2ej

Cinv =
∑

j∈{P,S}

[
tanh(Pṅjin)(Cj + ṅ0.6

in )
]

+
∑

j∈{F1,F2}

[
tanh(Pṅjin)(Cj + 0.1ṅ0.6

in )
]

0 = ṅPinṅ
S
in + ṅF1in ṅ

F2
in

Cop, Cinv, ṅin, ṅ
P
in, ṅ

S
in, ṅ

F1
in , ṅ

F2
in , ṅ

P
out, ṅ

S
out, ṅ

F1
out, ṅ

F2
out, ṅ

F
out ≥ 0

Cop, Cinv, ṅin, ṅ
P
in, ṅ

S
in, ṅ

F1
in , ṅ

F2
in , ṅ

P
out, ṅ

S
out, ṅ

F1
out, ṅ

F2
out, ṅ

F
out ∈ R
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Plus Function

min C = Cop + Cinv

s.t. ṅin = ṅPin + ṅSin

ṅjout = ṅjin j ∈ {P, S,F1,F2}
ṅSout = ṅF1in + ṅF2in

ṅFout = ṅF1out + ṅF2out

ṅout = ṅPout + ṅFout (PLUS2)
Cop =

∑
j

(ṅjin)2ej

Cinv =
∑

j∈{P,S}

[
tanh(Pṅjin)(Cj + ṅ0.6

in )
]

+
∑

j∈{F1,F2}

[
tanh(Pṅjin)(Cj + 0.1ṅ0.6

in )
]

0 = ṅPin −max(0, ṅPin − ṅSin) + ṅF1in −max(0, ṅF1in − ṅF2in )
Cop, Cinv, ṅin, ṅ

P
in, ṅ

S
in, ṅ

F1
in , ṅ

F2
in , ṅ

P
out, ṅ

S
out, ṅ

F1
out, ṅ

F2
out, ṅ

F
out ≥ 0

Cop, Cinv, ṅin, ṅ
P
in, ṅ

S
in, ṅ

F1
in , ṅ

F2
in , ṅ

P
out, ṅ

S
out, ṅ

F1
out, ṅ

F2
out, ṅ

F
out ∈ R

Direct MINLP

min C = Cop + Cinv

s.t. Cop =
∑
j

(ṅjin)2ej

Cinv =
∑
j

yj(Cj + ṅ0.6
in )

ṅjin = yjṅin j ∈ {P, S} (MINLP2)
ṅjin = yjṅ

S
out j ∈ {F1,F2}

ṅjout = ṅjin j ∈ {P, S,F1,F2}
ṅFout = ṅF1out + ṅF2out

ṅout = ṅPout + ṅFout
yP + yS = 1
yF1 + yF2 − yS = 0
Cop, Cinv, ṅin, ṅ

P
in, ṅ

S
in, ṅ

F1
in , ṅ

F2
in , ṅ

P
out, ṅ

S
out, ṅ

F1
out, ṅ

F2
out, ṅ

F
out ≥ 0

Cop, Cinv, ṅin, ṅ
P
in, ṅ

S
in, ṅ

F1
in , ṅ

F2
in , ṅ

P
out, ṅ

S
out, ṅ

F1
out, ṅ

F2
out, ṅ

F
out ∈ R

yj ∈ {0, 1} j ∈ {P, S,F1,F2}
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Heat Exchanger Network Design Problem

GDP

min C =
∑
i

CPi + FCPH(T1 − T out
H )Ccw + FCPC(T out

C − T2)Cs

s.t. FCPH(T in
H − T1) = A1U1

(T in
H − T2) + (T1 − T in

C )
2

FCPH(T1 − T out
H ) = A2U2

(−T in
cw + T out

H ) + (T1 − T out
cw )

2 (HEXGDP)

FCPC(T out
C − T2) = A3U3

(Ts − T2) + (Ts − T out
C )

2
FCPH(T in

H − T1) = FCPC(T2 − T in
C ) Yi,1

CPi = 2750A0.6
i + 3000

0 ≤ Ai ≤ 10

 ∨
 Yi,2
CPi = 1500A0.6

i + 15000
10 ≤ Ai ≤ 25



∨

 Yi,3
CPi = 600A0.6

i + 46500
25 ≤ Ai ≤ 50

 i = 1, 2, 3

T lo1 ≤ T1 ≤ T up1

T lo2 ≤ T2 ≤ T up2

Tl ∈ R l = 1, 2
Yi,1∨Yi,2∨Yi,3 i = 1, 2, 3
Yi,j ∈ {True,False} i = 1, 2, 3 j = 1, 2, 3
Ai ∈ R i = 1, 2, 3
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BigM

min C =
∑
i

CPi + FCPH(T1 − T out
H )Ccw + FCPC(T out

C − T2)Cs

s.t. FCPH(T in
H − T1) = (A1,1 + A1,2 + A1,3)U1

(T in
H − T2) + (T1 − T in

C )
2

FCPH(T1 − T out
H ) = (A2,1 + A2,2 + A2,3)U2

(−T in
cw + T out

H ) + (T1 − T out
cw )

2

FCPC(T out
C − T2) = (A3,1 + A3,2 + A3,3)U3

(Ts − T2) + (Ts − T out
C )

2
FCPH(T in

H − T1) = FCPC(T2 − T in
C )

0−M1,1(1− y1,1) ≤ A1,1 ≤ 10 +M1,1(1− y1,1) (HEXBM)
0−M1,1(1− y1,1) ≤ A1,2 ≤ 0 +M1,1(1− y1,1)
0−M1,1(1− y1,1) ≤ A1,3 ≤ 0 +M1,1(1− y1,1)
(2750A0.6

1,1 + 3000)−M1,1(1− y1,1) ≤ CP1 ≤ (2750A0.6
1,1 + 3000) +M1,1(1− y1,1)

0−M1,2(1− y1,2) ≤ A1,1 ≤ 0 +M1,2(1− y1,2)
10−M1,2(1− y1,2) ≤ A1,2 ≤ 25 +M1,2(1− y1,2)
0−M1,2(1− y1,2) ≤ A1,3 ≤ 0 +M1,2(1− y1,2)
(1500A0.6

1,2 + 15000)−M1,2(1− y1,2) ≤ CP1 ≤ (1500A0.6
1,2 + 15000) +M1,2(1− y1,2)

0−M1,3(1− y1,3) ≤ A1,1 ≤ 0 +M1,3(1− y1,3)
0−M1,3(1− y1,3) ≤ A1,2 ≤ 0 +M1,3(1− y1,3)
25−M1,3(1− y1,3) ≤ A1,3 ≤ 50 +M1,3(1− y1,3)
(600A0.6

1,3 + 46500)−M1,3(1− y1,3) ≤ CP1 ≤ (600A0.6
1,3 + 46500) +M1,3(1− y1,3)

0−M2,1(1− y2,1) ≤ A2,1 ≤ 10 +M2,1(1− y2,1)
0−M2,1(1− y2,1) ≤ A2,2 ≤ 0 +M2,1(1− y2,1)
0−M2,1(1− y2,1) ≤ A2,3 ≤ 0 +M2,1(1− y2,1)
(2750A0.6

2,1 + 3000)−M2,1(1− y2,1) ≤ CP2 ≤ (2750A0.6
2,1 + 3000) +M2,1(1− y2,1)

0−M2,2(1− y2,2) ≤ A2,1 ≤ 0 +M2,2(1− y2,2)
10−M2,2(1− y2,2) ≤ A2,2 ≤ 25 +M2,2(1− y2,2)
0−M2,2(1− y2,2) ≤ A2,3 ≤ 0 +M2,2(1− y2,2)
(1500A0.6

2,2 + 15000)−M2,2(1− y2,2) ≤ CP2 ≤ (1500A0.6
2,2 + 15000) +M2,2(1− y2,2)

0−M2,3(1− y2,3) ≤ A2,1 ≤ 0 +M2,3(1− y2,3)
0−M2,3(1− y2,3) ≤ A2,2 ≤ 0 +M2,3(1− y2,3)
25−M2,3(1− y2,3) ≤ A2,3 ≤ 50 +M2,3(1− y2,3)
(600A0.6

2,3 + 46500)−M2,3(1− y2,3) ≤ CP2 ≤ (600A0.6
2,3 + 46500) +M2,3(1− y2,3)

0−M3,1(1− y3,1) ≤ A3,1 ≤ 10 +M3,1(1− y3,1)
0−M3,1(1− y3,1) ≤ A3,2 ≤ 0 +M3,1(1− y3,1)
0−M3,1(1− y3,1) ≤ A3,3 ≤ 0 +M3,1(1− y3,1)
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(2750A0.6
3,1 + 3000)−M3,1(1− y3,1) ≤ CP3 ≤ (2750A0.6

3,1 + 3000) +M3,1(1− y3,1)
0−M3,2(1− y3,2) ≤ A3,1 ≤ 0 +M3,2(1− y3,2)
10−M3,2(1− y3,2) ≤ A3,2 ≤ 25 +M3,2(1− y3,2)
0−M3,2(1− y3,2) ≤ A3,3 ≤ 0 +M3,2(1− y3,2)
(1500A0.6

3,2 + 15000)−M3,2(1− y3,2) ≤ CP3 ≤ (1500A0.6
3,2 + 15000) +M3,2(1− y3,2)

0−M3,3(1− y3,3) ≤ A3,1 ≤ 0 +M3,3(1− y3,3)
0−M3,3(1− y3,3) ≤ A3,2 ≤ 0 +M3,3(1− y3,3)
25−M3,3(1− y3,3) ≤ A3,3 ≤ 50 +M3,3(1− y3,3)
(600A0.6

3,3 + 46500)−M3,3(1− y3,3) ≤ CP3 ≤ (600A0.6
3,3 + 46500) +M3,3(1− y3,3)

y1,1 + y1,2 + y1,3 = 1
y2,1 + y2,2 + y2,3 = 1
y3,1 + y3,2 + y3,3 = 1
T lo1 ≤ T1 ≤ T up1

T lo2 ≤ T2 ≤ T up2

Tl ∈ R l = 1, 2
CPi ∈ R i = 1, 2, 3
Ai,j ∈ R i = 1, 2, 3 j = 1, 2, 3
yi,j ∈ {0, 1} i = 1, 2, 3 j = 1, 2, 3
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Convex Hull

min C =
∑
i

CPi + FCPH(T1 − T out
H )Ccw + FCPC(T out

C − T2)Cs

s.t. FCPH(T in
H − T1) = (A1,1 + A1,2 + A1,3)U1

(T in
H − T2) + (T1 − T in

C )
2

FCPH(T1 − T out
H ) = (A2,1 + A2,2 + A2,3)U2

(−T in
cw + T out

H ) + (T1 − T out
cw )

2

FCPC(T out
C − T2) = (A3,1 + A3,2 + A3,3)U3

(Ts − T2) + (Ts − T out
C )

2
FCPH(T in

H − T1) = FCPC(T2 − T in
C )

CP1 = CP1,1 + CP1,2 + CP1,3

CP2 = CP2,1 + CP2,2 + CP2,3

CP3 = CP3,1 + CP3,2 + CP3,3

A1,1 = A1,11 + A1,12 + A1,13 (HEXCH)
A1,2 = A1,21 + A1,22 + A1,23

A1,3 = A1,31 + A1,32 + A1,33

A2,1 = A2,11 + A2,12 + A2,13

A2,2 = A2,21 + A2,22 + A2,23

A2,3 = A2,31 + A2,32 + A2,33

A3,1 = A3,11 + A3,12 + A3,13

A3,2 = A3,21 + A3,22 + A3,23

A3,3 = A3,31 + A3,32 + A3,33

Ai,12, Ai,13 ≤ 0 i = 1, 2, 3
Ai,21, Ai,23 ≤ 0 i = 1, 2, 3
Ai,31, Ai,32 ≤ 0 i = 1, 2, 3

CPi,1 ≥

2750
(

Ai,11

(1− ε)yi,1 + ε

)0.6

+ 3000
 ((1− ε)yi,1 + ε) i = 1, 2, 3

CPi,2 ≥

1500
(

Ai,22

(1− ε)yi,2 + ε

)0.6

+ 15000
 ((1− ε)yi,2 + ε) i = 1, 2, 3

CPi,3 ≥

600
(

Ai,33

(1− ε)yi,3 + ε

)0.6

+ 46500
 ((1− ε)yi,3 + ε) i = 1, 2, 3

1 = y1,1 + y1,2 + y1,3

1 = y2,1 + y2,2 + y2,3

1 = y3,1 + y3,2 + y3,3
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0 ≤ Ai,1 ≤ 10yi,1 i = 1, 2, 3
0 ≤ Ai,11 ≤ 10yi,1 i = 1, 2, 3
0 ≤ Ai,12 ≤ 10yi,1 i = 1, 2, 3
0 ≤ Ai,13 ≤ 10yi,1 i = 1, 2, 3
0 ≤ Ai,2 ≤ 25yi,2 i = 1, 2, 3
0 ≤ Ai,21 ≤ 25yi,2 i = 1, 2, 3
0 ≤ Ai,22 ≤ 25yi,2 i = 1, 2, 3
0 ≤ Ai,23 ≤ 25yi,2 i = 1, 2, 3
0 ≤ Ai,3 ≤ 50yi,3 i = 1, 2, 3
0 ≤ Ai,31 ≤ 50yi,3 i = 1, 2, 3
0 ≤ Ai,32 ≤ 50yi,3 i = 1, 2, 3
0 ≤ Ai,33 ≤ 50yi,3 i = 1, 2, 3
0 ≤ CPi,1 ≤ 53000yi,1 i = 1, 2, 3
0 ≤ CPi,2 ≤ 53000yi,2 i = 1, 2, 3
0 ≤ CPi,3 ≤ 53000yi,3 i = 1, 2, 3
T lo1 ≤ T1 ≤ T up1

T lo2 ≤ T2 ≤ T up2

Tl ∈ R l = 1, 2
CPi,j ∈ R i = 1, 2, 3 j = 1, 2, 3
Ai,j ∈ R i = 1, 2, 3 j = 1, 2, 3
Ai,jk ∈ R i = 1, 2, 3 j = 1, 2, 3 k = 1, 2, 3
yi,j ∈ {0, 1} i = 1, 2, 3 j = 1, 2, 3

135



Appendix E. MINLP Problem Formulations for Superstructure Optimization

MPEC

min C =
∑
i

CPi + FCPH(T1 − T out
H )Ccw + FCPC(T out

C − T2)Cs

s.t. FCPH(T in
H − T1) = (A1,1 + A1,2 + A1,3)U1

(T in
H − T2) + (T1 − T in

C )
2

FCPH(T1 − T out
H ) = (A2,1 + A2,2 + A2,3)U2

(−T in
cw + T out

H ) + (T1 − T out
cw )

2

FCPC(T out
C − T2) = (A3,1 + A3,2 + A3,3)U3

(Ts − T2) + (Ts − T out
C )

2
FCPH(T in

H − T1) = FCPC(T2 − T in
C )

CP1 = (2750A0.6
1,1 + tanh(PA1,1)3000) + (1500A0.6

1,2 + tanh(PA1,2)15000)
+ (600A0.6

1,3 + tanh(PA1,3)46500)
CP2 = (2750A0.6

2,1 + tanh(PA2,1)3000) + (1500A0.6
2,2 + tanh(PA2,2)15000)

+ (600A0.6
2,3 + tanh(PA2,3)46500)

CP3 = (2750A0.6
3,1 + tanh(PA3,1)3000) + (1500A0.6

3,2 + tanh(PA3,2)15000)
+ (600A0.6

3,3 + tanh(PA3,3)46500)
0 = A1,1A1,2 + A1,1A1,3 + A1,2A1,3

0 = A2,1A2,2 + A2,1A1,3 + A2,2A2,3

0 = A3,1A3,2 + A3,1A1,3 + A3,2A3,3

T lo1 ≤ T1 ≤ T up1 (HEXMPEC)
T lo2 ≤ T2 ≤ T up2

Tl ∈ R l = 1, 2
CP lo

i ≤ CPi ≤ CP up
i i = 1, 2, 3

CPi ∈ R i = 1, 2, 3
Ai,j ∈ R i = 1, 2, 3 j = 1, 2, 3
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Plus Function

min C =
∑
i

CPi + FCPH(T1 − T out
H )Ccw + FCPC(T out

C − T2)Cs

s.t. FCPH(T in
H − T1) = (A1,1 + A1,2 + A1,3)U1

(T in
H − T2) + (T1 − T in

C )
2

FCPH(T1 − T out
H ) = (A2,1 + A2,2 + A2,3)U2

(−T in
cw + T out

H ) + (T1 − T out
cw )

2

FCPC(T out
C − T2) = (A3,1 + A3,2 + A3,3)U3

(Ts − T2) + (Ts − T out
C )

2
FCPH(T in

H − T1) = FCPC(T2 − T in
C )

CP1 = (2750A0.6
1,1 + tanh(PA1,1)3000) + (1500A0.6

1,2 + tanh(PA1,2)15000)
+ (600A0.6

1,3 + tanh(PA1,3)46500)
CP2 = (2750A0.6

2,1 + tanh(PA2,1)3000) + (1500A0.6
2,2 + tanh(PA2,2)15000)

+ (600A0.6
2,3 + tanh(PA2,3)46500)

CP3 = (2750A0.6
3,1 + tanh(PA3,1)3000) + (1500A0.6

3,2 + tanh(PA3,2)15000)
+ (600A0.6

3,3 + tanh(PA3,3)46500)
0 = A1,1 −max(0, A1,1 − A1,2) + A1,1 −max(0, A1,1 − A1,3) + A1,2

−max(0, A1,2 − A1,3)
0 = A2,1 −max(0, A2,1 − A2,2) + A2,1 −max(0, A2,1 − A2,3) + A2,2

−max(0, A2,2 − A2,3)
0 = A3,1 −max(0, A3,1 − A3,2) + A3,1 −max(0, A3,1 − A3,3) + A3,2

−max(0, A3,2 − A3,3)
T lo1 ≤ T1 ≤ T up1

T lo2 ≤ T2 ≤ T up2 (HEXPLUSF)
Tl ∈ R l = 1, 2
CP lo

i ≤ CPi ≤ CP up
i i = 1, 2, 3

CPi ∈ R i = 1, 2, 3
Ai,j ∈ R i = 1, 2, 3 j = 1, 2, 3
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Appendix E. MINLP Problem Formulations for Superstructure Optimization

Direct MINLP

min C =
∑
i

CPi + FCPH(T1 − T out
H )Ccw + FCPC(T out

C − T2)Cs

s.t. FCPH(T in
H − T1) = (y1,1A1,1 + y1,2A1,2 + y1,3A1,3)U1

(T in
H − T2) + (T1 − T in

C )
2

FCPH(T1 − T out
H ) = (y2,1A2,1 + y2,2A2,2 + y2,3A2,3)U2

(−T in
cw + T out

H ) + (T1 − T out
cw )

2

FCPC(T out
C − T2) = (y3,1A3,1 + y3,2A3,2 + y3,3A3,3)U3

(Ts − T2) + (Ts − T out
C )

2
FCPH(T in

H − T1) = FCPC(T2 − T in
C )

CP1 = y1,1(2750A0.6
1,1 + 3000) + y1,2(1500A0.6

1,2 + 15000) + y1,3(600A0.6
1,3 + 46500)

CP2 = y2,1(2750A0.6
2,1 + 3000) + y2,2(1500A0.6

2,2 + 15000) + y2,3(600A0.6
2,3 + 46500)

CP3 = y3,1(2750A0.6
3,1 + 3000) + y3,2(1500A0.6

3,2 + 15000) + y3,3(600A0.6
3,3 + 46500)

1 = y1,1 + y1,2 + y1,3

1 = y2,1 + y2,2 + y2,3

1 = y3,1 + y3,2 + y3,3 (HEXMINLP)
T lo1 ≤ T1 ≤ T up1

T lo2 ≤ T2 ≤ T up2

Tl ∈ R l = 1, 2
CP lo

i ≤ CPi ≤ CP up
i i = 1, 2, 3

CPi ∈ R i = 1, 2, 3
Ai,j ∈ R i = 1, 2, 3 j = 1, 2, 3
yi,j ∈ {0, 1} i = 1, 2, 3 j = 1, 2, 3
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Step Function

min C =
∑
i

CPi + FCPH(T1 − T out
H )Ccw + FCPC(T out

C − T2)Cs

s.t. FCPH(T in
H − T1) = A1U1

(T in
H − T2) + (T1 − T in

C )
2

FCPH(T1 − T out
H ) = A2U2

(−T in
cw + T out

H ) + (T1 − T out
cw )

2 (HEXStepF)

FCPC(T out
C − T2) = A3U3

(Ts − T2) + (Ts − T out
C )

2
FCPH(T in

H − T1) = FCPC(T2 − T in
C )

CP1 = (0.5 tanh(P (25− A1)) + 0.5)((0.5 tanh(P (A1 − 10)) + 0.5)
(1500A0.6

1 + 15000) + (0.5 tanh(P (10− A1)) + 0.5)(2750A0.6
1 + 3000)

− (600A0.6
1 + 46500)) + (600A0.6

1 + 46500)
CP2 = (0.5 tanh(P (25− A2)) + 0.5)((0.5 tanh(P (A2 − 10)) + 0.5)

(1500A0.6
2 + 15000) + (0.5 tanh(P (10− A2)) + 0.5)(2750A0.6

2 + 3000)
− (600A0.6

2 + 46500)) + (600A0.6
2 + 46500)

CP3 = (0.5 tanh(P (25− A3)) + 0.5)((0.5 tanh(P (A3 − 10)) + 0.5)
(1500A0.6

3 + 15000) + (0.5 tanh(P (10− A3)) + 0.5)(2750A0.6
3 + 3000)

− (600A0.6
3 + 46500)) + (600A0.6

3 + 46500)
T lo1 ≤ T1 ≤ T up1

T lo2 ≤ T2 ≤ T up2

Tl ∈ R l = 1, 2
CP lo

i ≤ CPi ≤ CP up
i i = 1, 2, 3

CPi ∈ R i = 1, 2, 3
Ai ∈ R i = 1, 2, 3
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