

BlackBox Toolkit: Intelligent Assistance to UI Design

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Vinoth Pandian Sermuga Pandian, M.Sc.

aus

Sivakasi, India

Berichter: Prof. Dr. Matthias Jarke

Prof. Dr. Ulrich J. Schröder

Tag der mündlichen Prüfung: 15.02.2022

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek verfügbar.

Vinoth Pandian Sermuga Pandian: BlackBox Toolkit: Intelligent Assistance to
UI Design,© April 28, 2022

Eidesstattliche Erklärung

I, Vinoth Pandian Sermuga Pandian

erklärt hiermit, dass diese Dissertation und die darin dargelegten Inhalte die eigenen
sind und selbstständig, als Ergebnis der eigenen originären Forschung, generiert
wurden.

Hiermit erkläre ich an Eides statt

1. Diese Arbeit wurde vollständig oder größtenteils in der Phase als Doktorand
dieser Fakultät und Universität angefertigt;

2. Sofern irgendein Bestandteil dieser Dissertation zuvor für einen akademischen
Abschluss oder eine andere Qualifikation an dieser oder einer anderen Institution
verwendet wurde, wurde dies klar angezeigt;

3. Wenn immer andere eigene- oder Veröffentlichungen Dritter herangezogen
wurden, wurden diese klar benannt;

4. Wenn aus anderen eigenen- oder Veröffentlichungen Dritter zitiert wurde, wurde stets
die Quelle hierfür angegeben. Diese Dissertation ist vollständig meine eigene Arbeit,
mit der Ausnahme solcher Zitate;

5. Alle wesentlichen Quellen von Unterstützung wurden benannt;

6. Wenn immer ein Teil dieser Dissertation auf der Zusammenarbeit mit anderen
basiert, wurde von mir klar gekennzeichnet, was von anderen und was von mir
selbst erarbeitet wurde;

7. Ein Teil oder Teile dieser Arbeit wurden zuvor veröffentlicht und zwar in:

Suleri, S., Pandian, V.P.S., Shishkovets, S., Jarke, M., 2019. Eve: A Sketch-based
Software Prototyping Workbench, in: Extended Abstracts of the 2019 CHI Conference on
Human Factors in Computing Systems, CHI EA ’19. ACM, New York, NY, USA, p.
Lbw1410:1-lbw1410:6. https://doi.org/10.1145/3290607.3312994

Pandian, V.P.S., Suleri, S., 2020. BlackBox toolkit: Intelligent assistance to UI design.
arXiv e-prints arXiv-2004.

Pandian, V.P.S., Suleri, S., Jarke, M., 2020. Syn: Synthetic Dataset for Training UI
Element Detector From Lo-Fi Sketches, in: Proceedings of the 25th International
Conference on Intelligent User Interfaces Companion, IUI ’20. Association for Computing
Machinery, Cagliari, Italy, pp. 79–80. https://doi.org/10.1145/3379336.3381498

Pandian, V.P.S., Suleri, S., Beecks, C., Jarke, M., 2020. MetaMorph: AI Assistance to
Transform Lo-Fi Sketches to Higher Fidelities, in: 32nd Australian Conference on
Human-Computer Interaction, OzCHI ’20. Association for Computing Machinery, New
York, NY, USA, pp. 403–412. https://doi.org/10.1145/3441000.3441030

Pandian, V.P.S., Suleri, S., Jarke, M., 2021. UISketch: A large-scale dataset of UI
element sketches, in: Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, CHI ’21. Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/3411764.3445784

Pandian, V.P.S., Suleri, S., Jarke, M., 2021. SynZ: Enhanced synthetic dataset for
training UI element detectors, in: Proceedings of the 26th International Conference on
Intelligent User Interfaces Companion, IUI ’21. Association for Computing Machinery,
New York, NY, USA. https://doi.org/10.1145/3397482.3450725

Rahman, S., Pandian, V.P.S., Jarke, M., 2021. RUITE: Refining UI layout aesthetics
using transformer encoder, in: Proceedings of the 26th International Conference on
Intelligent User Interfaces Companion, IUI ’21. Association for Computing Machinery,
New York, NY, USA. https://doi.org/10.1145/3397482.3450716

Gajjar, N., Pandian, V.P.S., Suleri, S., Jarke, M., 2021. Akin: Generating UI wireframes
from UI design patterns using deep learning, in: Proceedings of the 26th International
Conference on Intelligent User Interfaces Companion, IUI ’21. Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/3397482.3450727

Pandian, V.P.S., Shams, A., Suleri, S., Jarke, M., 2021. LoFi Sketch: A Large Scale
Dataset of Smartphone Low Fidelity Sketches, in: Extended Abstracts of the 2022 CHI
Conference on Human Factors in Computing Systems, CHI EA ’22. ACM, New York, NY,
USA. https://doi.org/10.1145/3491101.3519624

Datum: 15.02.2022

Vinoth Pandian Sermuga Pandian

DED ICAT ION

Tomy parentswho always believed I will be able to finish this work, and
to mywifewhomademe finish this work.

v

ABSTRACT

User Interface (UI) design is an iterative process where designers iterate over multiple prototyping fidelities to

finalise an aesthetic and usable interface. Prior research on adding Artificial Intelligence (AI) to the UI design

process focused on automating the process while sacrificing the autonomy of designers. In this dissertation, we

conduct systematic research using a human-centred approach to provide AI assistance to UI designers before,

during, and after the traditional LoFi prototyping process. As a result, this research aims to provide coherent AI

assistance throughout the repetitive and arduous LoFi prototyping task without sacrificing the autonomy of

UI designers. In doing so, we contribute the BlackBox Toolkit.�is toolkit assists designers by creating four

large-scale, diverse, open-access benchmark datasets and three AI tools that assist UI designers throughout the

LoFi prototyping process.

Blackbox toolkit contributes the following datasets: UISketch dataset, ~18k UI element sketches; Syn &

SynZ datasets, ~300k synthetic LoFi sketches; LoFi Sketch dataset, ~4.5k real-life LoFi sketches and Wired

dataset, ~2.7k semantically annotated UI screenshots. Each of these datasets targets one of the two types of LoFi

prototypes: LoFi sketches and LoFi wireframes.�e datasets ensure ample diversity of designers and developers

by data collection from a wide range of countries, input media, and prior experience.

Moving on to the AI tools, Akin is a UI wireframe generator that uses a modified conditional SAGANmodel

and assists UI designers before LoFi prototyping by generating multiple UI wireframes for a given UI design

pattern. Evaluation results show that the quality of Akin-generated UI wireframes was adequate. Further, the

user evaluation shows that UI/UX designers considered Akin-generated wireframes as good as designer-made

wireframes. Further, designers identified Akin-generated wireframes as designer-made 50% of the time.

RUITE is a UI wireframe refiner that uses a Transformer-Encodermodel and assists UI designers during LoFi

prototyping by aligning and grouping UI elements in a given UI wireframe. On almost all evaluation metrics, it

provides satisfactory results. �e qualitative feedback indicates that designers prefer UI wireframe refinement

using RUITE and expressed interest in using it.

MetaMorph is a UI element detector that uses the RetinaNet object detection model and assists UI designers

after LoFi prototypingbydetecting the constituentUI elements of LoFi sketches and their locationanddimension.

It enables the transformation of LoFi sketches to higher-fidelities. Upon evaluation with hand-drawn LoFi

sketches, MetaMorph provides 47.8%mAP. Further, the qualitative feedback shows that MetaMorph reduced

designers’ effort in transforming LoFi prototype to higher fidelities by providing themwith a head-start.

In summary, from our qualitative feedback, the UI designers perceive utilising AI for UI design as an exciting

and practical approach and expressed their eagerness to adopt such tools.Moreover, the user satisfaction studies

conducted using After Scenario Questionnaires show an above-average designer satisfaction level upon using

all three AI assistance tools.

�is research aims to understand the impact of AI tools in UI designer workflow and assess their satisfaction

upon using these AI tools. Further, it sets a baseline for future research on UI wireframe generation, refinement

and transformation.

vii

ZUSAMMENFASSUNG

Das Design von Benutzeroberflächen (UI) ist ein iterativer Prozess, bei dem die Designer mehrere Prototyping-

Fidelity durchlaufen, um eine ästhetische und benutzbare Oberfläche zu erstellen. Frühere Forschungen zur In-

tegration von Künstlicher Intelligenz (KI) in den UI-Designprozess konzentrierten sich auf die Automatisierung

des Prozesses, wobei die Autonomie der Designer auf der Strecke blieb. In dieser Dissertation führen wir eine

systematische Forschung durch, die einen menschenzentrierten Ansatz verwendet, um KI-Unterstützung

für UI-Designer vor, während und nach dem traditionellen LoFi-Prototyping-Prozess bereitzustellen. Diese

Forschung zielt darauf ab, kohärente KI-Unterstützung während der sich wiederholenden und mühsamen

LoFi-Prototyping-Aufgabe zu bieten, ohne die Autonomie der UI-Designer zu opfern. Zu diesem Zweck stellen

wir das Blackbox Toolkit zur Verfügung. Dieses Toolkit unterstützt Designer durch die Erstellung von vier

großen, vielfältigen, frei zugänglichen Benchmark-Datensätzen und drei KI-Tools, die UI-Designer während

des gesamten LoFi-Prototyping-Prozess unterstützen.

Das Blackbox-Toolkit steuert die folgenden Datensätze bei: UISketch-Datensatz, ~18K Skizzen von UI-

Elementen; Syn & SynZ-Datensätze, ~300K synthetische LoFi-Skizzen; LoFi Sketch Datensatz, ~4.5K reale

LoFi-Skizzen und Wired-Datensatz, ~2.7K semantisch annotiert UI-Screenshots. Jeder dieser Datensätze

zielt auf eine der beiden Arten von LoFi-Prototypen ab: LoFi-Skizzen und LoFi-Wireframes. Die Datensätze

gewährleisten eine große Vielfalt an Designern und Entwicklern durch die Datenerfassung aus einer Vielzahl

von Ländern, Eingabemedien und Vorerfahrungen.

Akin ist ein UI-Wireframe-Generator, der einmodifiziertes bedingtes SAGAN-Modell verwendet und UI-

Designer vor dem LoFi-Prototyping unterstützt, indem er mehrere UI-Wireframes für ein bestimmtes UI-

Designmuster erzeugt. Die Evaluierungsergebnisse zeigen, dass die Qualität der von Akin generierten UI-

Wireframes angemessen war. Außerdem zeigt die Nutzerbewertung, dass UI/UX-Designer die von Akin gener-

ierten Wireframes für genauso gut halten wie die von Designern erstellten Wireframes. Außerdem identi-

fizierten die Designer die von Akin generiertenWireframes in 50% der Fälle als vomDesigner erstellt.

RUITE ist ein UI-Wireframe-Refiner, der ein Transformer-Encoder-Modell verwendet und UI-Designer

beim LoFi-Prototyping unterstützt, indem er UI-Elemente in einem bestimmten UI-Wireframe ausrichtet

und gruppiert. Bei fast allen Bewertungsmetriken liefert es zufriedenstellende Ergebnisse. Das qualitative

Feedback deutet darauf hin, dass die Designer die Verfeinerung des UI-Wireframes mit RUITE bevorzugen und

ihr Interesse an dessen Einsatz bekundet haben.

MetaMorph ist ein UI-Element-Detektor, der das RetinaNet-Objektdetektion Modell verwendet und UI-

Designer nach demLoFi-Prototyping unterstützt, indem er die konstituierendenUI-Elemente von LoFi-Skizzen

sowie deren Position und Dimension erkennt. Es ermöglicht die Transformation von LoFi-Skizzen in eine

höhere Fidelity Prototypen. Bei der Evaluierungmit handgezeichneten LoFi-Skizzen erreicht MetaMorph 47,8%

mAP. Darüber hinaus zeigt das qualitative Feedback, dass MetaMorph den Aufwand der Designer bei der

Umwandlung von LoFi-Prototypen in höhere Fidelitäten reduziert, indem es ihnen einen Vorsprung verschafft.

Zusammenfassend lässt sich aus unserem qualitativen Feedback schließen, dass die Benutzeroberflächende-

signer den Einsatz von KI für das Benutzeroberflächendesign als einen spannenden und praktischen Ansatz

ansehen und sich sehr für den Einsatz solcher Tools interessieren. Darüber hinaus zeigen die Studien zur

Benutzerzufriedenheit, die mithilfe von After Scenario Fragebögen durchgeführt wurden, eine überdurch-

schnittlich hohe Zufriedenheit der Designer mit allen drei KI-Tools.

Ziel dieser Forschung ist es, die Auswirkungen von KI-Tools auf den Arbeitsablauf von UI-Designern zu

verstehen und ihre Zufriedenheit mit dem Einsatz dieser KI-Tools zu bewerten. Darüber hinaus wird eine

Grundlage für künftige Forschungen zur Erstellung, Verfeinerung und Transformation von UI-Wireframes

geschaffen.

ix

CONTENTS

1 introduction 1

1.1 Low Fidelity Prototyping 2

1.2 Automating UI prototyping 4

1.3 Human Centered AI 5

1.4 �esis Statement . 5

1.5 Scope . 5

1.6 Research Questions . 6

1.7 Research Design . 6

1.8 Research Contributions 8

1.9 Outline . 10

2 literature review 13

2.1 AI support in UI prototyping 13

2.2 UI Datasets . 17

2.3 Automated Transformation of Prototype Fidelity 19

2.4 UIWireframe Generation and Refinement 20

2.5 GUI similarity search 22

2.6 Identified Research Gaps 23

2.7 Summary . 23

3 blackbox toolkit 25

3.1 Goals . 25

3.2 Blackbox Toolkit . 26

3.3 Datasets . 26

3.4 AI tools . 27

i Datasets 31

4 uisketch dataset 33

4.1 Objective . 33

4.2 Taxonomy of UI element sketches 34

4.3 Data collection questionnaires 34

4.4 Pilot study & Design decisions 35

4.5 Participants . 36

4.6 Procedure . 37

4.7 Data processing . 38

4.8 Data verification . 39

xi

xii contents

4.9 Collected data . 40

4.10 Applications . 41

4.11 Summary . 41

5 lofi sketch dataset 43

5.1 Objective . 43

5.2 Design decisions . 44

5.3 Data collection questionnaires 44

5.4 Participants . 45

5.5 Procedure . 46

5.6 Data verification . 48

5.7 Data annotation . 49

5.8 Collected data . 49

5.9 Benefits & Applications 50

5.10 Summary . 51

6 syn & synz datasets 53

6.1 Objective . 53

6.2 Syn . 53

6.3 SynZ . 56

6.4 Comparison of Syn and SynZ datasets 59

6.5 Benefits & Applications 60

6.6 Summary . 61

7 wired dataset 63

7.1 Objective & Design Decisions 64

7.2 Data classification . 65

7.3 Data annotation . 67

7.4 Collected data . 68

7.5 Benefits & Applications 68

7.6 Summary . 69

ii Formative Analysis 71

8 human recognition study 73

8.1 Participants . 73

8.2 Measurements . 73

8.3 Apparatus . 74

8.4 Procedure . 74

8.5 Analysis . 75

8.6 Results & Discussion 75

8.7 Summary . 79

9 computer recognition study 81

contents xiii

9.1 DNNmodels . 81

9.2 Preprocessing . 82

9.3 Training . 82

9.4 Evaluation . 83

9.5 Results & Discussion 84

9.6 Human vs Computer recognition 87

9.7 Analysis of UI element sketches 88

9.8 Summary . 89

iii Akin 91

10 background & proposed solution 93

10.1 Background . 94

10.2 Identified Gaps . 94

10.3 Proposed Solution . 95

11 model architecture & data representations 97

11.1 Model Architectures 97

11.2 Data Representations 99

12 implementation 103

12.1 Implementation Approach 103

12.2 Datasets . 104

12.3 Implementation Details 104

12.4 Configuration & Training Process 107

12.5 Post processing steps 107

13 evaluation 109

13.1 Metrics . 109

13.2 Methodology . 110

14 user evaluation 113

14.1 User Evaluation of UI wireframes 113

14.2 Study Design &Measurements 114

14.3 User satisfaction study 120

14.4 Methodology . 121

15 summary & future work 127

iv RUITE 129

16 proposed solution 131

16.1 Background . 131

16.2 Identified Gaps . 132

16.3 Proposed Solution . 133

17 model architectures & data representations 135

xiv contents

17.1 Model architectures 135

17.2 Data Representations 137

17.3 Discrete Sequential Representation 139

18 implementation 143

18.1 Implementation Approach 143

18.2 Datasets . 143

18.3 Implementation Details 144

18.4 Configuration & Training Process 145

18.5 Post processing steps 145

19 evaluation 147

19.1 Dataset . 147

19.2 Metrics . 147

19.3 Methodology . 149

19.4 Results . 149

20 user evaluation 151

20.1 Web API & Adobe XD plugin 151

20.2 Methodology . 152

20.3 Participants . 152

21 summary & future work 157

v MetaMorph 159

22 background & proposed solution 161

22.1 Background . 161

22.2 Identified Gaps . 162

22.3 Proposed Solution . 162

23 model architectures & data representations 165

23.1 Model Architectures 165

23.2 Data Representations 166

24 implementation 169

24.1 Implementation Approach 169

24.2 Datasets . 169

24.3 Implementation Details 170

24.4 Configuration . 170

24.5 Training Process . 171

25 evaluation 175

25.1 Dataset . 175

25.2 Metrics . 175

25.3 Methodology . 176

25.4 Results . 177

contents xv

25.5 Discussion . 179

26 user evaluation 181

26.1 Web API . 181

26.2 Eve: PrototypingWorkbench 181

26.3 Methodology . 182

26.4 Results & Discussion 184

27 summary & future work 187

28 conclusion & future work 189

vi appendix 193

a comprehensive list of literature 195

b semantic annotations of ui screenshots 201

bibliography 205

publications 221

L I S T OF F IGURES

Figure 1.1 Sample LoFi prototypes of a UI screen 2

Figure 1.2 Overview of the datasets andAI tools in the Black-

Box toolkit . 7

Figure 3.1 Akin assists UI designers before they start proto-

typing by generating UI wireframes for the cho-

sen UI design pattern. It is trained and evaluated

with theWired dataset 27

Figure 3.2 RUITE assists UI designers during prototyping by

aligning and grouping the UI wireframe layout.

It is trained and evaluated with the SynZ dataset

annotations 28

Figure 3.3 MetaMorph assists UI designers after the LoFi

prototyping by detecting the constituent UI ele-

ments thereby enabling transformation to higher

fidelities.�is tool is pretrainedwith the synthetic

LoFi sketches from the Syn and SynZ datasets. It

is further fine-tuned and evaluated with the LoFi

Sketch dataset 29

Figure 4.1 Paper and digital questionnaire used for collect-

ing UISketch dataset. Both questionnaires have

an example of a UI element on the left and a rect-

angular area to sketch theUIelementon the right-

hand side. 36

Figure 4.2 Demographics of participants as percentage of

participants per country 37

Figure 4.3 Count of UI element sketches collected from dif-

ferent type of participants, split by the medium

that they used to sketch 38

Figure 4.4 Process of extracting the close-cropped UI ele-

ment sketches from the paper questionnaire . . 39

Figure 4.5 Examples of rejected sketches due to contamina-

tion, badly drawn or irrelevant content. 39

xvii

xviii list of figures

Figure 4.6 DistributionofdigitallydrawnUIelement sketches

using stylus vs. paper sketches drawn using pen

and pencil in UISketch dataset 40

Figure 5.1 Paper and digital questionnaire used for collect-

ing LoFi sketch dataset. Both questionnaires have

an example of a inspiration UI screenshot on the

left and a rectangular area to sketch the LoFi on

the right-hand side. 45

Figure 5.2 Count of participants (>= 5 people) per country

that contributed to LoFi sketch dataset 46

Figure 5.3 Samples of LoFi sketches rated in a scale of 1 to 5. 48

Figure 5.4 Sample LoFi Sketch with its annotations 49

Figure 5.5 Distribution of digitally drawn LoFi sketches us-

ing stylus, mouse, and touch vs. paper sketches

drawn using pen and pencil in LoFi sketch dataset 50

Figure 6.1 Sample generated synthetic LoFi sketches from

the Syn dataset 54

Figure 6.2 Flowchart visualizing different steps involved in

modifying RICO annotations to SynZ dataset . . 56

Figure 6.3 Sample generated synthetic LoFi sketches from

the SynZ dataset 58

Figure 6.4 Sample representative UI images from (a) Syn, (b)

SynZ, (c) RICO 59

Figure 6.5 Comparision of UI element distribution using in

Syn vs SynZ represented by a histogram plot . . 60

Figure 7.1 A sample image of each UI design pattern from

the dataset . 65

Figure 7.2 Sampleannotationswithmost commoncategories

of semantic UI elements 68

Figure 8.1 Screenshot of the web application to collect data

for human recognition. We show a random UI

element sketch from our UISketch dataset on the

left and a list of 21 UI element categories on the

right-hand side 74

Figure 8.2 Confusion matrix for UI element categories on

human recognized category vs the original category 77

Figure 8.3 Representative sketches from 21 UI element cate-

gorieswith highest (left) and lowest (right) human

recognition accuracy 77

list of figures xix

Figure 8.4 UI element categories confused byUI/UX design-

ers due to their semantic similarities 78

Figure 8.5 UI element categories confused byUI/UX design-

ers due to their structural similarities 78

Figure 9.1 Confusion matrix for UI element categories on

ResNet 152 predictions vs the ground truth . . . 85

Figure 9.2 UI element categories with structural similarities 87

Figure 9.3 t-SNE visualization of representative sketches of

21 categories of UI elements from the test dataset

of UISketch dataset. We have manually marked

13 clusters based on the proximity of these clusters. 88

Figure 9.4 Representative images showing theactivatedpixel

areas and the underlying structure of all UI ele-

ment categories. 89

Figure 10.1 Akin is UI wireframe generator that generates UI

wireframes for the chosen UI design pattern . . 93

Figure 11.1 Sample UI screenshot for each of the 5 UI design

pattern in theWired dataset along with their se-

mantic images 99

Figure 11.2 Samples of semantic UI wireframes generated by

trained SAGAN and PixelCNN++model for each

of the 5 UI design pattern 100

Figure 11.3 Sample layout vector representation of a login UI

design pattern 101

Figure 11.4 Samples of layout vectorUIwireframes generated

by trained Transformer-Encoder model for each

of the 5 UI design pattern 102

Figure 12.1 Architecture of Akin’s conditional SAGANmodel 105

Figure 12.2 Akin is a UI wireframe generator trained with the

semantic representations of UI images of 5 differ-

ent UI design patterns from the Wired dataset.

Akin’s trained generator model (in the pale red

box) generates different UI wireframes for a cho-

sen UI design pattern. 106

Figure 12.3 Conversion process of sample Akin generated se-

mantic images to UI wireframes 108

xx list of figures

Figure 14.1 Screenshots of the web application to conduct

rapid scene categorization and rating-preference

judgment studies before and after the participant

clicks "ShowWireframe for 500ms" button . . . 115

Figure 14.2 Confusion matrix for rapid scene categorization

study comparing participants’ accuracy of identi-

fying a given UI wireframe as Akin-generated or

designer-made 117

Figure 14.3 PercentageofAkin-generatedUIwireframes clas-

sified by the participants as designer-made for

the given UI wireframe presentation time intervals 118

Figure 14.4 Distributionofparticipants’ subject ratingofAkin-

generated and designer-made UI wireframes for

all UI design pattern types 119

Figure 14.5 Distributionofparticipantswhoconsideredwhether

Akin-generated UI wireframes of given UI design

pattern type contains all essential UI types . . . 120

Figure 14.6 Screenshot ofAkinpluginand thegeneratedwire-

frames in Adobe XD prototyping tool 121

Figure 14.7 Spearman rank correlation between UI element

detection precision and the three questions from

ASQ . 124

Figure 16.1 RUITE improves the UI layout alignment by op-

timizing the location and dimension of UI ele-

ments on a screen. It takes a list of UI elements

and their respective bounding boxes as input and

optimizes the layout to be aesthetically appealing

using a Transformer Encoder 131

Figure 17.1 Rule-base equations for converting different po-

sitions of UI elementsA and B from a UI wire-

frame to an adjacency matrix for UI wireframe

graph representation 138

Figure 17.2 SampleUIwireframeand its correspondinggraph

representation 139

Figure 17.3 Process of discretizing a UI element bounding

box by assigning it to grid and then converting it

to a sequence 139

Figure 17.4 Process of converting a UI wireframe to a sequence 140

Figure 18.1 ArchitectureofRUITE’sTransformer-Encodermodel 145

list of figures xxi

Figure 19.1 mAP score of RUITEmodel during evaluation for

different IoU thresholds ranging from 5% to 95% 150

Figure 20.1 Screenshot of RUITE plugin and the refinedwire-

frame in Adobe XD prototyping tool 151

Figure 20.2 Spearman rank correlation between UI element

detection precision and the three questions from

ASQ . 155

Figure 22.1 MetaMorph takes a LoFi sketch (left) as input and
detects UI elements (right) using DNNs. For each
detected UI element, it provides the object’s cat-

egory, prediction probability, and bounding box

details (x,y coordinatesof the top left corner,width,

and height). 161

Figure 23.1 LoFi sketches represented as labelled UI element

sketches for training the classification DNN . . . 167

Figure 23.2 LoFi sketches represented as an image and anno-

tation file with the list of constituent UI element

categories, their location and dimension 168

Figure 24.1 Architectureof theSSDResnet 50 (Retinanet)model

from theDetectron2 library as depicted byHonda

(2020) . 170

Figure 24.2 Training loss per steps of the RetinaNet model

during training with the LoFi sketches from the

Syn and SynZ training datasets 172

Figure 24.3 Training loss per steps of the RetinaNet model

during training with the 3,632 LoFi sketches from

the LoFi sketch training dataset 172

Figure 25.1 COCO detection metrics of MetaMorph UI ele-

ment detector measured with the hand-drawn

LoFi sketch evaluation dataset 177

Figure 25.2 Examples of UI element detection by MetaMorph

using hand-drawn LoFi sketches of the user pro-

file, images gallery, scale sheet, and settings screen. 178

Figure 25.3 UI element category wise average precision of

MetaMorph UI element detector 178

Figure 26.1 Eve: LoFi to MeFi transformation using UI ele-

mentdetectionprovidedbyMetaMorph (Pandian,

Suleri, Beecks, et al., 2020) 182

Figure 26.2 Spearman rank correlation between UI element

detection precision and the three questions from

ASQ . 185

L I S T OF TABLES

Table 2.1 Split of literature based on the prototype fidelity,

research focus and AI method applied 14

Table 2.2 Comprehensive list of research on AI support for

UI prototyping 15

Table 2.3 List of UI datasets and their attributes 17

Table 4.1 Overview of data collection and verification pro-

cess in terms of quantity of UI element sketches

collected and extracted 40

Table 4.2 Count of sketches collected for each UI element

category . 40

Table 5.1 Split ofparticipants andcountof collected sketches

based on data collection source 47

Table 5.2 Overview of sketches removed during LoFi sketch

data verification process 48

Table 6.1 Comparision of of Syn and SynZ datasets 60

Table 7.1 Count of UI screenshots per UI design pattern

and UI element annotations per UI screenshot in

the dataset . 66

Table 7.2 Mean, standard deviation andmode of the num-

ber of UI elements per UI screenshot in each UI

design pattern category 67

Table 8.1 Classification report of human detection accu-

racy, precision, recall, and F1-score 76

Table 8.2 Human detection accuracy for semantically simi-

lar UI elements 78

Table 8.3 Human detection accuracy for structurally simi-

lar UI elements 78

xxii

list of tables xxiii

Table 9.1 UISketch test dataset prediction accuracy and top

5 accuracy of each computational classification

models along with their published year and total

number of parameters 84

Table 9.2 Classification report of ResNet 152 model’s accu-

racy, precision, recall, and F1-score 86

Table 9.3 Computationaldetectionaccuracy for structurally

similar UI elements 87

Table 14.1 Results of rapid scene categorization study across

all five intervals 118

Table 14.2 Results of rating-preference judgement study for

all UI design pattern types 119

Table 14.3 Percentageofparticipantswhoconsideredwhether

Akin-generated UI wireframes of given UI design

pattern type contains all essential UI types . . . 120

Table 14.4 Results of the ASQ study with participant’s prior

experience in UI prototyping 123

Table 19.1 mAP scores of RUITE for different IoU threshold

values . 150

Table 20.1 Results of the ASQ study with participant’s prior

experience in UI prototyping 154

Table 25.1 Distribution of UI element category in the 895

LoFi sketches in the LoFi sketch evaluation dataset 176

Table 25.2 COCOdetectionmetrics ofMetaMorph object de-

tection model measured with the hand-drawn

LoFi sketch evaluation dataset 177

Table 25.3 COCOdetectionmetrics ofMetaMorph object de-

tection model measured with the hand-drawn

LoFi sketch evaluation dataset 179

Table 26.1 �enumberofUI elements theparticipants sketched,

the number of elements MetaMorph correctedly

identified, wrongly identified and the number of

unidentifiedUI elements during qualitative study

using Eve along with their ASQ results 184

Table a.1 List of literature that provide AI support in UI de-

sign by automating the prototype fidelity trans-

formation . 196

xxiv list of tables

Table a.2 List of literature that provide AI support in UI

design by generating and refining LoFi UI wire-

frames or MeFi prototypes 199

Table a.3 List of literature that provide AI support in UI de-

sign by searching similar UI screenshots of given

LoFi sketch or MeFi prototype 200

Table a.4 List of literature that provide AI support in UI

design by autocompleting MeFi prototype during

MeFi design process 200

Table b.1 Exhaustive list of semantic UI element categories

and its equivalent UISketch UI element category 201

1
INTRODUCT ION

User Interface (UI) is an essential component of a software application. It

acts as a bridge between two different realms: the creative and irrational

humans; and the unimaginative and logical world of machines. UI design-

ers act as the architect of this bridge by designing interfaces for humans

while fitting their designs into the confinements and restrictions placed by

machines’ limitations.However, in the end, aUI is created for the users, so

the core of UI design, as Dix (2004) describes, is to "put the user first, keep

the user in the center and remember the user at the end." However, de-

signing a UI appropriate for users while confining to machine limitations

is an arduous task.�erefore, the universally followed and recommended

approach inUI design is to create prototypes and iteratively improve them

by evaluating them with users to attain the best possible design within

the given time and budget limits (Dix, 2004; Shneiderman and Plaisant,

2004; Wilson et al., 1988). �ese prototypes serve as the foundation for

building the end product—usable software.

During the UI prototyping process, designers go throughmultiple fi-

delities of prototypes. Starting from low-fidelity (LoFi) freehand sketches

or wireframes to medium-fidelity (MeFi) digital images and finally to

high-fidelity (HiFi) interactive UI screens or code (Engelberg et al., 2002).

�e different prototyping fidelities have their respective strengths and

weaknesses.

ALoFiprototype is cheapandsupports ideatingdifferentdesignsquickly;

however, it does not faithfully depict the system’s final look-and-feel (Rudd

et al., 1996). Similarly,MeFi contains themost necessary information, such

as layouts and colours, and is relatively quick to create than HiFi; however,

it is expensive and time-consuming to create multiple design variations

compared to LoFi (Engelberg et al., 2002). HiFi resembles the final prod-

uct, but the workload of creating such a system is humongous, and it is

laborious to create multiple designs or modifications to the prototype

1

2 introduction

(Rudd et al., 1996). In addition to prototyping, UI designers also have to

evaluate the prototypes with users to understand whether their designs

are acceptable and usable (Dix, 2004). From the issues they uncover dur-

ing this evaluation, they reiterate andmodify their prototypes until they

create a user-friendly UI design.

�ese widely used UI prototyping practices heavily relies on designers

creatingmultipleUIdesigns for a software application.Dix (2004) explains

finding the best possible UI design for a given task as a hill-climbing

problemwhere the designers have to find the peak of a hill that represents

the best possible design solution for a given system. Even if designers

start at any point in terrain and iterate repeatedly, they might get stuck at

a hill’s local maxima instead of its global peak.�erefore, it is generally

recommended to diverge in the initial stages (like parachuting inmultiple

places on terrain) and then converge (while abandoning a few) to finally

reach the best possible design. �e most eligible candidate for such an

approach is LoFi prototyping, and therefore, as (Dix, 2004) asserts, it is

the initial, fundamental, and indispensable step in creating UI designs.

1.1 low fidelity prototyping

�e primary purpose of creating a LoFi prototype is to brainstorm, design,

create, test, and communicate user interfaces (Snyder, 2003). Hence, LoFi

prototypes are ideally created in the initial stages of UI prototyping to

ideate and communicate functionalities without consumingmuch time

or effort in development. Such LoFi prototypes can be a wireframe with

semantic information (Figure 1.1a) (Brown, 2011), a roughly drawn or a

refined sketch that shows visuals, including colors, icons, and controls

placement (Figure 1.1b) (Rudd et al., 1996).

(a)A sample LoFi UI wireframe prototype (b)A sample LoFi sketch prototype

Figure 1.1: Sample LoFi prototypes of a UI screen

1.1 low fidelity prototyping 3

Typically, UI designers use paper & pencil, tablet & stylus, andwhiteboard &
post-it for creating such LoFi prototypes (Snyder, 2003). Sketching in paper
and pencil is the most preferred LoFi prototyping technique by UI design-

ers (Suleri, Pandian, et al., 2019). Sketching interfaces plays a vital part

in ideation and reifying design ideas that Fallman (2003) proclaims that

sketching is the "archetypical activity of a designer." Moreover, Buxton

(2011) defines sketching as a tool of thought and a fundamental cogni-

tive process of designers that acts as a communication medium between

designers.

Another technique for creating LoFi prototypes is to create wireframes

using digital tools such asBalsamiq (2021),Moqups (2021),NinjaMock (2021),
etc.�ese wireframes layout the contents of UI design and their proper-

ties similar to sketches; however, they are more structured and refined

than sketches. A common characteristic of a wireframe is that they use

consistent design to denote a UI element, e. g. images are represented as

rectangleswith crosses (Brown, 2011). AlthoughUI designers generally use

wireframes for LoFi prototyping, Snyder (2003) argues whether they must

be included in LoFi prototypes and concludes that wireframes without

semantic content cannot be considered a LoFi prototype. He concludes

that without the semantic information and representing most of the con-

tent by rectangles, it is hard to infer whether the designer and the user

understand a wireframe similarly (Snyder, 2003).

�ere are several advantages to creating LoFi prototypes. As Snyder

(2003) remarks, it gives "Maximum Feedback for Minimum Effort." He

further declares that the LoFi prototype is the most effective means of

getting make-it-or-break-it information about the final UI design. Also,

among all the prototyping fidelities, designers find LoFi prototyping the

quickest and the most inexpensive way to portray a UI design and its

functionalities (Duyne et al., 2002). Notably, they play a crucial role in

gathering requirements and analyzing the product before development.

Despite these advantages, LoFi prototypes have a few significant dis-

advantages. By quickly sketching LoFi prototypes, we lose the ability to

evaluate the intricate details of a design with users (Rudd et al., 1996; Sny-

der, 2003; Walker et al., 2002). A study byWalker et al. (2002) shows that

users gave significantly more comments and pointed to different types of

usability issues when evaluating with higher fidelity prototypes than LoFi

prototypes.�erefore, to evaluate the interface with users, a deciding fac-

tor in UI design, higher fidelities perform better than the LoFi prototype

(Walker et al., 2002).

4 introduction

Nevertheless, higher fidelity prototypes (MeFi and HiFi) sacrifice pro-

totyping speed for an accurate depiction of the final UI design; they are

significantly harder to create, modify, and reiterate.�eir key advantage

over LoFi is that they closely resemble the final system and, therefore, are

more suitable than LoFi to evaluate the UI with users and get beneficial

feedback.

Consequently, UI designers follow the traditional prototyping processIn the traditional
prototyping process,
designers ideate with
LoFi prototypes, then
manually create and
reiterateMeFi and
HiFi prototypes to

evaluate their system.

of ideating with LoFi prototypes, thenmanually creating and reiterating

MeFi and HiFi prototypes to evaluate their system.�is process of provid-

ing realism is costly, so Dix (2004) argues that there must be support for

the designers to quickly and efficiently create a realistic prototype.�ere-

fore, many researchers attempt to automate the prototyping process or

allow designers to generate UI design layouts using machine intelligence.

1.2 automating ui prototyping

�e desire to automate the design process is not a novel notion. Nearly

four decades ago, Mostow (1985) proposed automating design using Arti-

ficial Intelligence (AI). He envisioned that we could decrease the cost and

improve the reliability of generatingmultiple designs while enhancing the

productivity of human designers using AI.�e earliest attempt to auto-

mate the prototyping process was by Landay (1996). Landay created SILK,

a prototyping tool, to transform a LoFi prototype sketch to code using

a pattern recognition algorithm (Landay, 1996). Following his footsteps,

many researchers attempted to automate this UI prototyping process us-

ing different pattern recognizers. Since the recent advancements in AI,

many research projects have further attempted to improve recognizing

LoFi prototypes using Deep Neural Networks (DNNs).

Similar to automating the design process, a few research attemptedCurrent research in
automating UI design

process focuses on
automation while
disregarding the
autonomy of UI

designers.

to generate UI designs without designers’ intervention by using DNNs.

Recent advancements in Deep Generative models (I. J. Goodfellow et al.,

2014) paved the way to further research in generating UI layouts and wire-

frames. Recently, LayoutGAN (J. Li et al., 2019) and LayoutTransformer

(Gupta et al., 2020) models showed that UI layouts could be learned and

replicated by these Deep Generative models.

However, these research projects focus on enhancing AI models to au-

tomate the UI design process while disregarding the much-needed auton-

omy of UI designers. Essentially they attempt to replace designers instead

of assisting them during the process.

1.3 human centered ai 5

1.3 human centered ai

Current research in applying AI in UI design disregards the importance of

UI designers. Shneiderman (2020b) argues that current AI research must

balance automation by appreciating the users’ desire to be in control of

the technologies. To exemplify his opinion, he proposed a framework for

Human-Centered AI (HCAI) to show that even a highly automated system

can allow its users to be in control (Shneiderman, 2020a). He concludes

that only such an approach would support users’ ability, increase their

self-efficacy, and enable creativity.�erefore, well-designed automation

preserves human control when appropriate while increasing performance

and creativity by using AI as assistance.

�is thesis explores a human-centred approach to provide AI assistance �is thesis explores
providing AI
assistance to UI
designers for LoFi
prototyping while
preserving their
autonomy.

during the UI design, particularly the LoFi prototyping process. We con-

sider the machine’s role in our proposed tools as no different from the

apprentices of renaissance art maestros. An apprentice’s task is to assist

the artist prepare materials and execute the less critical and quite tedious

decorative parts of frescoes or statues. Similarly, delegating the tedious

and repetitive rework to AI-powered tools while retaining the creative

UI design process would greatly benefit designers. It would lead us to a

future where AI and humans co-create creative solutions.

1.4 thesis statement

In this thesis, we explore the means of providing AI assistance to the UI

designers during the LoFi design process while allowing them to remain

in control of the process. Subsequently, we evaluate the AI tools for their

performance and designer satisfaction.

1.5 scope

As UI designs are made for various platforms, we have scoped this thesis Scope: LoFi
prototyping for
smartphone
applications

to support the smartphone UI designing process. Additionally, following

the footsteps of the prior research in automating UI prototyping and

capitalizing on the advantages of LoFi prototyping, we further scope this

research to assist designers using AI during the LoFi prototyping process

of smartphone UIs.

6 introduction

1.6 research questions

We formalize this thesis by asking the following four questions.

rq1 How well do the state-of-the-art deep learning models recognize
LoFi sketches?

rq2 How do we represent LoFi designs as features for training deep

learning models?

rq3 How can we provide AI assistance to the LoFi design process?

rq4 How does this AI assistance impact designer satisfaction during the

LoFi design process?

1.7 research design

In this thesis, we followed a pragmatic worldview and used the mixed-Research approach:
Pragmatic worldview
withmixed-methods

research design

methods research design (Creswell et al., 2019). According to this prag-

matic approach to research, we conducted quantitative and qualitative

methods to answer the research questions.

To address our research questions, we first explored the existing litera-

ture and datasets that enable AI assistance in UI design.�is literature

review identified that the only large-scale dataset available on the UI de-

sign domain is the RICO dataset, which contains 72k annotated smart-

phone UI screenshots. However, a significant limitation of this dataset

is that the annotations were generated using automated means; there-

fore, they are unreliable. If an AI model is trained or evaluated with this

dataset, these inaccuracies will propagate to the AI model, thus affecting

its quality. �erefore, we aim to collect large-scale datasets ensuring data

representation and diversity by collecting and refining them from various

sources and participants spread across different countries. To achieve

this goal, we accumulated, classified, and refined screenshots from the

RICO dataset and real-life smartphone applications. We also collected UI

sketches from participants from various countries with different proto-

typing experiences using paper and digital questionnaires asmedium and

pencil, pen and stylus as input devices. We, thus, ensure the quality and

generalizability of the AI model trained and evaluated with such datasets.

With these objectives, we produced four large-scale open-access datasets:

UISketch dataset, Syn & SynZ dataset, LoFi sketch dataset, andWired dataset.

1.7 research design 7

Figure 1.2:Overview of the datasets and AI tools in the BlackBox toolkit

Weused these datasets to train and evaluate our three AI tools that answer

the other research questions.

To address RQ1, we started our research by exploring how the existing

state-of-the-art AI models understand the LoFi sketches. We trained and

evaluated 26 image recognition DNNs with the 17,979 sketches from our

UISketch dataset. Further, to compare this AI recognition accuracy with

the UI designers, we performed a perceptual study with 76 UI designers

and asked them to categorize UI element sketches.�ese results show that

the state-of-the-art image recognition DNNs can recognize UI element

sketches (91% accuracy) comparably to UI designers (96% accuracy).

To address RQ2, RQ3, and RQ4, we explored three different aspects

to provide AI assistance to UI designers: before, during, and after LoFi

prototyping.By addressing these researchquestions,we created theBlack-
Box toolkit, which contains three AI tools: Akin, RUITE, andMetaMorph.
We describe these tools briefly in the next section. Figure 1.2 shows an

overview of the datasets and tools in this toolkit.

Specifically, to address RQ2,we investigated how to representUI design

as features for training and evaluating these three AI tools.�is investi-

gation concluded that for Akin, representing wireframes as semantically

coloured images produced satisfactory results. However, for RUITE and

MetaMorph, representing the semantic information of sketches as a ten-

sor of bounding boxes produced the best results.

8 introduction

To address RQ3, as mentioned above, we provided AI assistance before,

during, and after the LoFi design process by training three appropriate AI

tools.

Finally, to address RQ4, we conducted quantitative and qualitative stud-

ies to evaluate each tool individually and understand designer satisfaction

while using the AI tool. We applied all three tools individually in their

appropriate scenarios and utilized the standard After Scenario Question-

naire (ASQ) (Lewis, 1991a) to measure the designer satisfaction.

1.8 research contributions

�rough this research, we contribute four open-access datasets and three

open-source artefacts.

1.8.1 Datasets

We collected and refined four datasets to train the AI models in the Black-

Box toolkit. �ey are briefly introduced below.

UISketch dataset

UISketch dataset contains 17,979 hand-drawn sketches of 21 UI element

categories collected from 967 participants, including UI/UX designers,

front-end developers, HCI, and CS grad students, from 10 different coun-

tries.

LoFi sketch dataset

�is dataset contains 4,527 LoFi sketches of more than 100 UI screen-

shots representing more than ten UI design patterns. We collected these

sketches from 361 participants from 76 countries.

Syn & SynZ synthetic LoFi sketch datasets

Syn and SynZ datasets together contain 300,377 synthetic LoFi sketches

with their respective annotation file containing a list of constituent UI

elements and their locations in that sketch. We used 17,979 UI element

sketches from the UISketch dataset to generate these datasets. �e differ-

ence between Syn andSynZdatasets lies in the synthetic sketch generation

algorithm.While the 125,000 synthetic LoFi sketches in the Syn dataset

1.8 research contributions 9

are generated by randomly allocating the UI element sketches, the 175,377

synthetic LoFi sketches in the SynZ dataset were statistically generated

to resemble real-life UI screenshots. To generate SynZ, we analyzed, en-

hanced, and extracted annotations from the RICO dataset (Deka et al.,

2017).

Wired dataset

�is dataset contains 2,751 images android UI screenshots from the RICO

dataset (Deka et al., 2017) classified into 5 UI design patterns. Each UI

screenshot in this dataset is annotated into three UI layout layers with 100

different UI element categories and their respective bounding box.

1.8.2 Artifacts

In this thesis, we created three AI tools by exploring the AI assistance

before, during, and after UI prototyping. We name the collection of these

three tools the BlackBox toolkit.�ese AI tools are briefly described below.

Akin

Akin is a UI wireframe generator that allows designers to chose a UI de- Akin assists designers
before their LoFi
prototyping task by
generating wireframes
for a given UI design
pattern.

sign pattern and provides themwith multiple UI wireframes for a given

UI design pattern.We fine-tuned Self-Attention Generative Adversarial

Network (SAGAN) trained with 500 UI wireframes of 5 android UI design

patterns to create Akin. Upon evaluation, Akin’s generative model pro-

vides an Inception Score of 1.63 (SD=0.34) and Fréchet Inception Distance

of 297.19. We further conducted user studies with 15 UI/UX designers to

evaluate the quality of Akin-generated UI wireframes.�e results show

that UI designers considered wireframes generated by Akin as good as

those made by designers. Moreover, designers identified Akin-generated

wireframes as designer-made 50% of the time. Further, the ASQ results

indicate that designers experience an above-average satisfaction level

by using Akin to generate UI wireframes before their LoFi prototyping

process.

RUITE

RUITE is a UI layout refiner that optimizes UI wireframe layouts using a

Transformer Encoder model. We trained RUITE by adding noise to mis-

align 35,072 UI layouts as input and the original aligned layout annotation

10 introduction

as output. Upon evaluation with 500 real-life UI layouts, RUITE providesRUITE provides AI
assistance to UI

designers during LoFi
prototyping by

aligning and grouping
wireframes to UI

layouts.

an alignment score of 0.87, improvement margin of ~38%, grouping accu-

racy of 20%, andmean Average Precision of 58.53%. Our user evaluation

results indicate that both novice and experienced participants prefer re-

finement of UI wireframe using AI in a button-click. Further, the ASQ

results indicate that designers experience an above-average satisfaction

level for using AI assistance during their LoFi prototyping task.

MetaMorph

MetaMorph is a UI element detector that detects the constituent UI el-MetaMorph assists UI
designers after they

prototype LoFi
sketches by enabling
transformation to
higher fidelities.

ements of LoFi sketches, thereby enabling the transformation of LoFi

prototypes to higher fidelities. We used the Syn, SynZ, and LoFi sketch

datasets to train MetaMorph. MetaMorph provides 47.8%mAP for hand-

drawn LoFi sketches.�e ASQ results indicate that designers experience

an above-average satisfaction level by utilizing AI assistance to transform

LoFi sketches. Also, their qualitative feedback indicates that they perceive

utilizing AI as a novel and useful approach to transform LoFi sketches into

higher fidelities.

1.9 outline

�is thesis is organized into the following parts.

literature review: In this chapter, we review the existing literature

in two aspects. We first explore the existing UI screenshots and UI

sketch datasets.�en, we look at the existing research that applies

AI in the UI prototyping process.

blackbox toolkit: In this chapter, we explain the objective of this

thesis and outline the components in the BlackBox toolkit.

datasets: �is part contains four chapters. Each chapter describes the

data collection or generation, verification, and refinement proce-

dure of one of the four datasets from our research contribution.

formative analysis: In this part, we explain our formative study

in which wemeasured computational accuracy and human recog-

nition accuracy of UI element sketches. Further, we discuss and

compare the differences in how well humans can recognize UI ele-

ment sketches compared to machines’ performance.

1.9 outline 11

akin: �is part describes Akin, the UI wireframe generator, in six chap-

ters, explaining the related work, experiments, implementation

details, AI model evaluation, user evaluation, and discussion.

ruite: �is part describes the RUITE, the UI layout refiner. We explain

RUITE in six chapters, describing the background, experiments,

implementation details, AI model evaluation, user evaluation, and

summary.

metamorph: In this final part, we describe MetaMorph, a UI element

detector. We explain the prior research, experiments, implementa-

tion details, AI model evaluation, user studies, and a discussion of

MetaMorph in six chapters.

conclusion: In the final chapter of this thesis, we summarize the tools

in the BlackBox toolkit and discuss the exploration of assisting AI

tools in UI design.

2
L ITERATURE REV IEW

In this chapter, we explore various research that investigates AI support

in UI design. Firstly, we present a comprehensive list of researches in this

domain and their research focus. Here, we do not restrict ourselves to a

particular prototyping fidelity. Later, we narrow down this list and briefly

discuss the datasets and literature that applied AI to support the LoFi

prototyping process.

2.1 ai support in ui prototyping

Weperformed a systematicmapping of the existing literature from the last

three decades on AI support in UI design. We conducted this literature

review in two stages: identifying all literature through keyword, refer-

ence and citation search; and filtering identified literature that fits the UI

design process. In the first stage, we searched the commonly published

digital databases and libraries such as ACM digital library
1
, IEEE Xplore

Digital library
2
, arXiv.org e-print archive

3
for journal articles, conference

papers, conference posters, work-in-progress papers, preprint articles,

and research articles relevant to the domain. Further, using the connected

papers website
4
, we identified a fewmore relevant research from the ref-

erences and citations of the identified articles. As the applications of AI in

UI design peaked in recent years, we did not exclude the literature based

on page length or the number of citations. In the second stage, we re-

viewed the literature title, abstract, introduction and conclusion for all the

identified articles. During this stage, we excluded research that primarily

focuses on graphic, magazine or print-media designs. Also, we excluded

research that does not apply AI solutions to impact the UI design process.

1 https://dl.acm.org/
2 https://ieeexplore.ieee.org/
3 https://arxiv.org/
4 https://www.connectedpapers.com/

13

https://dl.acm.org/
https://ieeexplore.ieee.org/
https://arxiv.org/
https://www.connectedpapers.com/

14 literature review

Table 2.1: Split of literature based on the prototype fidelity, research focus and AI
method applied

Prototype Fidelity Research focus AImethod No. of Percentage of

existing research existing research

LoFi - Sketch Automated transformation to Code Deep Neural Networks 9 23.68%

Hybrid 2 5.26%

Pattern Recognition 8 21.05%

GUI Similarity Search Deep Neural Networks 2 5.26%

LoFi -Wireframe Automated transformation to Code Hybrid 1 2.63%

UI Layout Refinement, UIWireframe Generation Deep Neural Networks 1 2.63%

UIWireframe Generation Deep Neural Networks 2 5.26%

MeFi Automated transformation to Code Deep Neural Networks 5 13.16%

Hybrid 2 5.26%

Pattern Recognition 2 5.26%

GUI Similarity Search Deep Neural Networks 1 2.63%

UI Design Auto Completion Deep Neural Networks 1 2.63%

UI Layout Refinement Algorithmic 1 2.63%

UIWireframe Generation Deep Neural Networks 1 2.63%

Grand Total 38 100.00%

�rough these steps,we identified38 researchprojects: 32peer-reviewed

academic research, one preprint, one commercial product, and four proof-

of-concept research projects. We categorized them into their targeted

platform, research focus, prototyping fidelity focus, and AI method.We

summarize them in Table 2.1, Table 2.2, and Appendix a.

Out of the 38 research projects, 29 projects concentrate on automating�ese research projects
focus on three major

research areas:
converting LoFi

prototypes to code,
generating UI

wireframes, and
searching for UI

screenshots similar to
the LoFi sketches.

the transformation of prototypes. Specifically, 19 of these 29 research stud-

ies concentrate on converting the LoFi prototype directly to code, and the

rest ten projects explore converting the MeFi prototype to code.�e sub-

sequent most popular research focus on this domain is on UI wireframe

generation conducted by four academic research projects. All four of these

research utilize DNNs to generate UI wireframes for the smartphone plat-

form. One of these four research projects attempts to refine a generated

UI layout by aligning and grouping them automatically. Another research

also attempts to refine web UI layouts based on user constraints using an

algorithmic approach as an alternative. Apart from these topics, three re-

search projects explore GUI similarity search, employing DNNs to search

for UIs similar to the user’s selection. One unique research attempts to

auto-complete UI wireframe while a designer designs a UI design.

2.1 ai support in ui prototyping 15

Ta
bl
e2
.2
:C
o
m
p
r
e
h
e
n
s
i
v
e
li
s
t
o
f
r
e
s
e
a
r
c
h
o
n
A
I
s
u
p
p
o
r
t
f
o
r
U
I
p
r
o
t
o
t
y
p
i
n
g

Re
se
ar
ch
W
or
k

Ty
pe

Pl
at
fo
rm

Re
se
ar
ch
fo
cu
s

Pr
ot
ot
yp
eF
id
el
ity
fo
cu
s

AI
m
et
ho
d

L
a
n
d
a
y
a
n
d
M
y
e
r
s
,
1
9
9
5

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

D
e
s
k
t
o
p

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

L
o
F
i
-
S
k
e
t
c
h

P
a
t
t
e
r
n
R
e
c
o
g
n
i
t
i
o
n

C
a
e
t
a
n
o
e
t
a
l.
,
2
0
0
2

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

D
e
s
k
t
o
p

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

L
o
F
i
-
S
k
e
t
c
h

P
a
t
t
e
r
n
R
e
c
o
g
n
i
t
i
o
n

P
li
m
m
e
r
e
t
a
l.
,
2
0
0
3

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

D
e
s
k
t
o
p

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

L
o
F
i
-
S
k
e
t
c
h

P
a
t
t
e
r
n
R
e
c
o
g
n
i
t
i
o
n

C
o
y
e
t
t
e
e
t
a
l.
,
2
0
0
4

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

D
e
s
k
t
o
p

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

L
o
F
i
-
S
k
e
t
c
h

P
a
t
t
e
r
n
R
e
c
o
g
n
i
t
i
o
n

S
e
g
u
r
a
e
t
a
l.
,
2
0
1
2

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

W
e
b

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

L
o
F
i
-
S
k
e
t
c
h

P
a
t
t
e
r
n
R
e
c
o
g
n
i
t
i
o
n

H
a
lb
e
e
t
a
l.
,
2
0
1
5

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

S
m
a
r
t
p
h
o
n
e

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

L
o
F
i
-
W
i
r
e
f
r
a
m
e

H
y
b
r
i
d

R
.
H
u
a
n
g
e
t
a
l.
,
2
0
1
6

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

W
e
b

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

M
e
F
i

P
a
t
t
e
r
n
R
e
c
o
g
n
i
t
i
o
n

B
e
n
ja
m
i
n
,
2
0
1
7

P
r
o
o
f
-
o
f
-
c
o
n
c
e
p
t
P
r
o
je
c
t

W
e
b

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

L
o
F
i
-
S
k
e
t
c
h

D
e
e
p
N
e
u
r
a
l
N
e
t
w
o
r
k
s

S
.
-
H
.
L
i
e
t
a
l.
,
2
0
1
7

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

S
m
a
r
t
p
h
o
n
e

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

L
o
F
i
-
S
k
e
t
c
h

P
a
t
t
e
r
n
R
e
c
o
g
n
i
t
i
o
n

B
e
lt
r
a
m
e
ll
i
,
2
0
1
7

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

S
m
a
r
t
p
h
o
n
e
,
W
e
b

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

M
e
F
i

D
e
e
p
N
e
u
r
a
l
N
e
t
w
o
r
k
s

H
a
n
e
t
a
l.
,
2
0
1
8

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

W
e
b

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

L
o
F
i
-
S
k
e
t
c
h

D
e
e
p
N
e
u
r
a
l
N
e
t
w
o
r
k
s

K
i
m
e
t
a
l.
,
2
0
1
8

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

W
e
b

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

L
o
F
i
-
S
k
e
t
c
h

D
e
e
p
N
e
u
r
a
l
N
e
t
w
o
r
k
s

M
i
c
r
o
s
o
f
t
A
I
L
a
b
s
,
2
0
1
8

P
r
o
o
f
-
o
f
-
c
o
n
c
e
p
t
P
r
o
je
c
t

W
e
b

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

L
o
F
i
-
S
k
e
t
c
h

D
e
e
p
N
e
u
r
a
l
N
e
t
w
o
r
k
s

P
a
r
k
e
t
a
l.
,
2
0
1
8

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

S
m
a
r
t
p
h
o
n
e

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

L
o
F
i
-
S
k
e
t
c
h

D
e
e
p
N
e
u
r
a
l
N
e
t
w
o
r
k
s

A
s
h
w
i
n
,
2
0
1
8

P
r
o
o
f
-
o
f
-
c
o
n
c
e
p
t
P
r
o
je
c
t

W
e
b

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

L
o
F
i
-
S
k
e
t
c
h

D
e
e
p
N
e
u
r
a
l
N
e
t
w
o
r
k
s

B
a
ja
m
m
a
l
e
t
a
l.
,
2
0
1
8

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

W
e
b

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

M
e
F
i

P
a
t
t
e
r
n
R
e
c
o
g
n
i
t
i
o
n

C
.
C
h
e
n
e
t
a
l.
,
2
0
1
8

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

S
m
a
r
t
p
h
o
n
e

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

M
e
F
i

D
e
e
p
N
e
u
r
a
l
N
e
t
w
o
r
k
s

Y
.
L
i
u
e
t
a
l.
,
2
0
1
8

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

S
m
a
r
t
p
h
o
n
e

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

M
e
F
i

D
e
e
p
N
e
u
r
a
l
N
e
t
w
o
r
k
s

M
o
r
a
n
e
t
a
l.
,
2
0
1
8

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

S
m
a
r
t
p
h
o
n
e

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

M
e
F
i

H
y
b
r
i
d

16 literature review

Ta
bl
e2
.2
co
nt
in
ue
df
ro
m
pr
ev
io
us
pa
ge

Re
se
ar
ch
W
or
k

Ty
pe

Pl
at
fo
rm

Re
se
ar
ch
fo
cu
s

Pr
ot
ot
yp
eF
id
el
ity
fo
cu
s

AI
m
et
ho
d

W
a
ll
n
e
r
,
2
0
1
8

P
r
o
o
f
-
o
f
-
c
o
n
c
e
p
t
P
r
o
je
c
t

S
m
a
r
t
p
h
o
n
e

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

M
e
F
i

D
e
e
p
N
e
u
r
a
l
N
e
t
w
o
r
k
s

A
ş
ı
r
o
ğ
lu
e
t
a
l.
,
2
0
1
9

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

W
e
b

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

L
o
F
i
-
S
k
e
t
c
h

H
y
b
r
i
d

J
a
i
n
e
t
a
l.
,
2
0
1
9

P
r
e
p
r
i
n
t

W
e
b

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

L
o
F
i
-
S
k
e
t
c
h

D
e
e
p
N
e
u
r
a
l
N
e
t
w
o
r
k
s

N
a
r
e
n
d
r
a
e
t
a
l.
,
2
0
1
9

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

W
e
b

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

L
o
F
i
-
S
k
e
t
c
h

P
a
t
t
e
r
n
R
e
c
o
g
n
i
t
i
o
n

Y
u
n
e
t
a
l.
,
2
0
1
9

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

W
e
b

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

L
o
F
i
-
S
k
e
t
c
h

D
e
e
p
N
e
u
r
a
l
N
e
t
w
o
r
k
s

U
i
z
a
r
d
,
2
0
1
9

C
o
m
m
e
r
c
i
a
l

S
m
a
r
t
p
h
o
n
e

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

L
o
F
i
-
S
k
e
t
c
h

D
e
e
p
N
e
u
r
a
l
N
e
t
w
o
r
k
s

S
.
C
h
e
n
e
t
a
l.
,
2
0
1
9

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

S
m
a
r
t
p
h
o
n
e

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

M
e
F
i

H
y
b
r
i
d

M
i
s
t
r
y
e
t
a
l.
,
2
0
2
0

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

W
e
b

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

L
o
F
i
-
S
k
e
t
c
h

H
y
b
r
i
d

W
i
m
m
e
r
e
t
a
l.
,
2
0
2
0

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

W
e
b

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

L
o
F
i
-
S
k
e
t
c
h

P
a
t
t
e
r
n
R
e
c
o
g
n
i
t
i
o
n

S
h
a
r
m
a
e
t
a
l.
,
2
0
2
0

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

W
e
b

A
u
t
o
m
a
t
e
d
t
r
a
n
s
f
o
r
m
a
t
i
o
n
t
o
C
o
d
e

M
e
F
i

D
e
e
p
N
e
u
r
a
l
N
e
t
w
o
r
k
s

G
e
,
2
0
1
9

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

S
m
a
r
t
p
h
o
n
e

G
U
I
S
i
m
i
la
r
i
t
y
S
e
a
r
c
h

L
o
F
i
-
S
k
e
t
c
h

D
e
e
p
N
e
u
r
a
l
N
e
t
w
o
r
k
s

F
.
H
u
a
n
g
e
t
a
l.
,
2
0
1
9

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

S
m
a
r
t
p
h
o
n
e

G
U
I
S
i
m
i
la
r
i
t
y
S
e
a
r
c
h

L
o
F
i
-
S
k
e
t
c
h

D
e
e
p
N
e
u
r
a
l
N
e
t
w
o
r
k
s

M
a
n
a
n
d
h
a
r
e
t
a
l.
,
2
0
2
0

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

S
m
a
r
t
p
h
o
n
e

G
U
I
S
i
m
i
la
r
i
t
y
S
e
a
r
c
h

M
e
F
i

D
e
e
p
N
e
u
r
a
l
N
e
t
w
o
r
k
s

Y
.
L
i
e
t
a
l.
,
2
0
2
0

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

S
m
a
r
t
p
h
o
n
e

U
I
D
e
s
i
g
n
A
u
t
o
C
o
m
p
le
t
i
o
n

M
e
F
i

D
e
e
p
N
e
u
r
a
l
N
e
t
w
o
r
k
s

D
a
y
a
m
a
e
t
a
l.
,
2
0
2
0

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

W
e
b

U
I
L
a
y
o
u
t
R
e
fi
n
e
m
e
n
t

M
e
F
i

A
lg
o
r
i
t
h
m
i
c

L
e
e
e
t
a
l.
,
2
0
2
0

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

S
m
a
r
t
p
h
o
n
e

U
I
W
i
r
e
f
r
a
m
e
G
e
n
e
r
a
t
i
o
n
a
n
d
R
e
fi
n
e
m
e
n
t

L
o
F
i
-
W
i
r
e
f
r
a
m
e

D
e
e
p
N
e
u
r
a
l
N
e
t
w
o
r
k
s

J
.
L
i
e
t
a
l.
,
2
0
1
9

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

S
m
a
r
t
p
h
o
n
e

U
I
W
i
r
e
f
r
a
m
e
G
e
n
e
r
a
t
i
o
n

L
o
F
i
-
W
i
r
e
f
r
a
m
e

D
e
e
p
N
e
u
r
a
l
N
e
t
w
o
r
k
s

G
u
p
t
a
e
t
a
l.
,
2
0
2
0

P
r
e
p
r
i
n
t

S
m
a
r
t
p
h
o
n
e

U
I
W
i
r
e
f
r
a
m
e
G
e
n
e
r
a
t
i
o
n

L
o
F
i
-
W
i
r
e
f
r
a
m
e

D
e
e
p
N
e
u
r
a
l
N
e
t
w
o
r
k
s

Z
h
a
o
e
t
a
l.
,
2
0
2
1

A
c
a
d
e
m
i
c
R
e
s
e
a
r
c
h

S
m
a
r
t
p
h
o
n
e

U
I
W
i
r
e
f
r
a
m
e
G
e
n
e
r
a
t
i
o
n

M
e
F
i

D
e
e
p
N
e
u
r
a
l
N
e
t
w
o
r
k
s

2.2 ui datasets 17

�e earliest research in providing AI support in UI design is by Landay Recent research
projects tend to use
DNNs or a hybrid of
DNNwith pattern
recognition
algorithms.

andMyers (1995).�ey attempted to convert LoFi sketch to code using a

pattern recognizer. Since then, tenmore projects have attempted to utilize

pattern recognition to provide AI support inUI design. Since 2015, there is

a trend in utilizing DNNs for AI support in UI design; 22 research projects

used only DNNs, and 5 used a hybrid of pattern recognition and DNNs for

research in this domain.

Most of these research projects concentrate on providing support for Most of the research
focuses on LoFi
prototypes of
smartphone or web
application

LoFi prototypes: 21 for LoFi sketches and 4 for LoFi UI wireframes.�e rest

of the research (14) provides support for MeFi prototypes. Most of these

research projects concentrate on either smartphone or web UI designs (17

research works each). Besides four research projects in the early 2000s,

no recent project concentrates on AI support of UI design in desktop

platforms.

�is thesis aims to provide AI support for LoFi prototyping; hence, in

the rest of this chapter, we discuss the literature that focused their re-

search on supporting LoFi sketches and wireframes. In the next section,

we briefly discuss the UI datasets that enabled these research works, and

we sectioned the subsequent sections based on the existing literature’s

research focus.

2.2 ui datasets

In this section, we discuss the widely used open-source datasets in the

literature discussed above.We list the datasets discussed in this section

and their attributes in table 2.3.

2.2.1 RICO dataset

�e largest repository of smartphone UI screenshots is the RICO dataset

collected by Deka et al. (2017) using crowd-sourcing platforms.�e RICO

dataset contains more than 72,000 Android smartphone screenshots and

Table 2.3: List of UI datasets and their attributes
Dataset Type Count Annotations

RICO dataset LoFi UI wireframes and UI screenshots 72,000 25 categories of UI elements

Microsoft AI lab dataset LoFi sketch ofWeb UI 149 8 categories of UI elements

SWIRE dataset LoFi sketch of Smartphone UI 3,802 None

18 literature review

their respective Android view hierarchies of 27 app categories. �e An-

droid view hierarchy of a UI screenshot specifies the location, category,

and layout of UI elements present in the corresponding UI screenshot.

�is annotation provides rich information of UI elements present in a UI

screenshot that enables the dataset to be used for both LoFi UI wireframes

andMeFi prototypes.

RICO dataset was further extended by T. F. Liu et al. (2018) by addingRICO is the largest
dataset in this domain,
with 72k annotated

smartphone UI
screenshots. A

significant limitation
of this dataset is that
the annotations were

generated using
automatedmeans;
therefore, they are

unreliable.

semantic annotations for the UI screenshots. In their research, T. F. Liu et

al. (2018) categorized the UI elements present in the RICO dataset into 25

categories. For this categorization, they used bothmanual and automated

methodologies.�ey further classified theseUI element categories into 197

text button concepts and 135 icon classes. One drawback of this dataset is

that as the UI elements were categorized and annotated using automated

means, the annotations are unreliable.�erefore, using this dataset for

training DNNs would cascade the inaccuracies to the trained DNNmodel.

However, this dataset is used in many existing works of literature after

few refinements.

Recently, Leiva et al. (2020) revised a subset of the RICO dataset to over-

come its shortcomings and provided a refined dataset, Enrico (shorthand

of Enhanced Rico).�is dataset is annotated with human supervision and

contains 1,460 UIs classified into 20 design topics. Enrico is annotated

into 25 categories of UI elements similar to RICO.

2.2.2 Microsoft AI lab dataset

�is LoFi sketch dataset was created byMicrosoft AI Labs (2018) to trainMicrosoft AI lab
dataset contains 149
web LoFi sketches

annotated with eight
categories of UI

elements.

their proof-of-concept project, Sketch2Code. �is dataset contains 149

sketches of web UIs annotated with ten categories of UI elements. Al-

though this dataset is used in 3 research projects, it is insufficient to train

a generalizable DNN model due to the small size. Also, the collection

method of this dataset is not specified to understand the characteristics

of this dataset.

2.2.3 SWIRE dataset

F. Huang et al. (2019) provided the SWIRE dataset containing 3,802 lo-fiSWIRE is an
unlabelled,

unannotated dataset
of 3,802 smartphone
lo-fi sketches drawn by
five UI/UX designers.

sketches based on 2,201 UI screenshots from the RICO dataset to train

their GUI similarity search DNN. SWIRE is an unlabelled, unannotated

dataset of smartphone lo-fi sketches.�ese sketches were collected from

2.3 automated transformation of prototype fidelity 19

four UI designers. Although this is the most extensive collection of the

LoFi sketch dataset in the existing literature, this is not yet used in any

other research other than GUI similarity search.

�e following section discusses the research works that used these

datasets to create AI support in UI design.

2.3 automated transformation of prototype fidelity

Since Landay andMyers (1995) proposed Sketching Interfaces Like Krazy

(SILK) tool in 1995, many research projects endeavoured to generate code

from LoFi sketches and wireframes.�is section describes these research

studies and the sketch recognition techniques used by them.We summa-

rize these research in table a.1 with the dataset used, model details, and

evaluation results.

2.3.1 Pattern Recognition

All the early research works conducted by Caetano et al. (2002), Coyette

et al. (2004), Landay (1996), and Plimmer et al. (2003) adapted classical

pattern recognition algorithms like Rubine recognizer by Rubine (1991) or Most of the earlier
pioneering works on
this domain used
pattern recognition to
convert LoFi sketches
to code.

CALI recognizer by Fonseca et al. (2002) to transform lo-fi sketches to Java,

Visual Basic, and UsiXML code. As an alternative approach, Bajammal

et al. (2018), R. Huang et al. (2016), S.-H. Li et al. (2017), Narendra et al.

(2019), Segura et al. (2012), andWimmer et al. (2020) created custom rec-

ognizer using convex hull detection, unsupervised clustering, retraining

DoodleClassifier to identify certain image features, analyze these features,

and detect the constituent elements.

2.3.2 DeepNeural Networks

Benjamin (2017) from the Airbnb design team attempted a different ap- Almost all the recent
research in this
domain use DNNs to
convert LoFi sketches
to code. However, all
the DNNswere
trained with
small-scale datasets,
thus affecting its
generalizability.

proach to solve this research problem by employing DNNs instead of

pattern-recognition algorithms to generate code from LoFi sketches. An-

other such attempt wasmade by the company Uizard (2019) to create their

eponymous commercial product. However, both these projects revealed

neither their architecture nor their evaluation results.

In the following year, few proof-of-concept projects such as Sketch-

code by Ashwin (2018) andMicrosoft AI Labs (2018) released open-source

20 literature review

projects to convert LoFi sketches to code. Ashwin used image caption-

ing DNN to generate HTML markup from LoFi sketches of web UI. He

used a synthetic dataset of 1,500 sketches, generated by manipulating

CSS code to resemble freehand sketches, to train their model. Microsoft

AI Labs used their custom vision service to identify the most common

HTML elements like button, textbox, and image. Besides, it can also de-

tect handwritten text and layout information usingMicrosoft computer

vision service. However, Microsoft’s system is trained with a tiny dataset

of 149 sketches and focuses only on the tenmost commonHTML elements.

Both these proof-of-concept projects provided their code and dataset as

open-source but did not provide a machine or human evaluation to judge

their system’s performance.

Besides these commercial and proof-of-concept research projects, few

academic projects, by Han et al. (2018), Kim et al. (2018), Park et al. (2018),

and Yun et al. (2019), created DNN based UI element detectors. However,

these projects were published as work-in-progress, and most of them

provided neither their ground-truth dataset nor their evaluation results.

Only Kim et al. (2018) claims that their model performs with 91% Precision

and 86% recall without any further information on the evaluation.

To conclude this section, the research projects discussed solely focus

on enhancing AI models to automate the UI design process while disre-

garding UI designers’ much-needed autonomy. All the projects directly

convert LoFi sketch to code and do not provide an intermediate step to

allow designers to customize the detected UI elements. Essentially they

attempt to replace designers instead of assisting them during the process.

Besides these 29 research works on converting LoFi sketches to code, a

fewexisting researchprojects attempt to generate and refineUIwireframe

layouts. We will discuss them briefly in the next section.

2.4 ui wireframe generation and refinement

Apart from automatic fidelity transformation, three research projects

attempt to generate UI wireframes. �ese projects expand on the prior

research in automatic generation of generating document or magazine

layouts such as design scape. All the research projects that generate and

refine UI wireframes use either DNNs or a hybrid of DNNs and classic

pattern recognition algorithms. Most of these projects use Generative Ad-

versarial Networks (GAN) for this task. GANs learn complex distributions

and use them to synthesize semantically meaningful results in multiple

2.4 ui wireframe generation and refinement 21

domains such as image, text, audio, or spatial. A growing body of research

on Image synthesis uses GANs, and a subset of it is applied in UI wire-

frame generation. In this section, we summarize these three research

projects. Also, we list these research in table a.2 with the dataset used,

model details, and evaluation results.

2.4.1 LayoutGAN

J. Li et al. (2019) introduced LayoutGAN that generates graphic, document LayoutGAN uses a
modified GANmodel
to generate UI
wireframes. However,
the authors do not
provide any
evaluation to measure
the quality of
generated wireframes.

and UI wireframe layouts by modelling geometric relations of different

types of 2D elements (such as UI elements) present in the content. �e

advantage of LayoutGAN is that it is not limited to any particular do-

main and can synthesize any set of 2D graphical elements in any given

design domain, provided the DNN is fine-tuned further. LayoutGAN is

constructed with the traditional GAN architecture. It contains a generator

that takes a set of randomly placed 2D graphic elements as input and

utilizes self-attention layers to refine their position to produce a realistic

layout.�ebest performingLayoutGANmodel uses awireframe rendering

discriminator, which renders the wireframes from input labels and class

probabilities to compare whether it is realistic or not.�e authors used

the RICO dataset with 5 UI elements to show the use-case of LayoutGAN.

However, they did not conduct any human or machine evaluation of the

generated UI wireframes.

2.4.2 LayoutTransformer

Gupta et al. (2020) proposed another architecture using an auto-regressive LayoutTransformer
uses Transformer
models to generate
document and UI
wireframes.�e
generated wireframes
were evaluated
quantitively but were
not evaluated with
designers.

self-attention network called LayoutTransformer to generate document

and UI wireframes. In contrast with LayoutGAN, this model can take

an empty or partial layout as input and generate realistic document or

UI wireframe layouts.�is ability is possible due to the way a wireframe

layout is represented by LayoutTransformer architecture—a combina-

tion of category, position and size in a discrete multinomial distribution.

�is novel representation of UI layout combined with the power of the

auto-regressive model allows the model to learn the complex relation-

ship between each element in the layout.�e LayoutTransformer model is

trained with a subset of the RICO dataset. It provides 33.6 Coverage 23.7

overlap in spatial distribution analysis. However, similar to LayoutGAN,

it is not evaluated with users.

22 literature review

2.4.3 Neural DesignNetwork

�e latest academic research onUIwireframe generation is the Neural De-

signNetwork by Lee et al. (2020). Unlike the other two researchmentioned

above, the authors also refine the generatedwireframes.�emost excitingNeural Design
Network generates UI
wireframes and refines
the alignment in the
generated wireframe.

Similar to other
projects, the generated
UI wireframes were
not evaluated by

designers.

approach taken by the authors is to represent UI layouts as graphs. Such a

layout graph is constructed by representingUI elements as nodes and their

relationship (location above, below) as edges.�e Neural Design Network

is constructed using a Graph Convolution Network (GCN) that generates

UI wireframes as layout graphs based on user constraints. However, as

such, generated layout graph can bemisaligned.�erefore, to improve the

generated layout’s alignment, the authors create another GCN to refine

these layouts.�is GCN is trained using a subset of the RICO dataset and

provides a Frèchet Inception Distance (FID) score of 143.51±22.36 upon

evaluation. Similar to both the research mentioned above, this system as

well is not evaluated with users.

In summary, the major shortcoming of all these research projects is

that they have not been evaluated by designers to uncover their needs

and desires. Also, these research projects do not consider that not all UI

wireframes fit any use case.�erefore the generated designs from such

DNNs will be generic and cannot be used for a specific scenario.

In the upcoming section, we look at few use cases that attempt to pro-

vide designers with a quick search for inspirational examples.

2.5 gui similarity search

�is section briefly discusses the two projects on sketch-based UI screen-

shot retrieval. We summarize these research in table a.3 with the dataset

used, model details, and evaluation results.

Ge (2019) and F. Huang et al. (2019) utilize DNNs to reduce a LoFi sketchTwo research projects
explored LoFi

sketch-based GUI
screenshots retrieval
and claimed that the

inspirational UI
screenshot search with
sketching to be helpful

to designers.

and compare it withUI screenshots to create a sketch basedGUI similarity

search engine. Ge (2019) declare they use the network created by S. Chen

et al. (2019) to do this task. However, they do not provide their model

evaluation or user evaluation to justify their model’s performance.

F. Huang et al. (2019) created a dataset of 3,802 images based on 2,201

UI screenshots from the RICO dataset to create SWIRE.�e authors use a

modified VGG-A network to create the SWIREmodel and use a triplet loss

function to train it.�is model provides 15.6% top-1 accuracy and 60.9%

top-10 accuracy in fetching similar GUIs.�e authors further conduct a

2.6 identified research gaps 23

qualitative study with five designers. From their feedback, the authors

claim that the designers were satisfied with SWIRE and found the inspi-

rational UI screenshot search with sketching helpful.

2.6 identified research gaps

From our literature review, we identified that the existing research on Most of the research
projects were not
evaluated by UI
designers. All of these
research projects focus
on enhancing
automation using AI
models while
disregarding the
autonomy of UI
designers.

AI support for UI design provides adequate evidence that current state-

of-the-art AI models can efficiently assist UI designers in their design

process, and AI support in UI design is beneficial for designers. However,

most of the research projects were not evaluated with UI designers to

understand their needs and desires. Besides, all of these research projects

focus on enhancing automation using AI models while disregarding the

autonomy of UI designers.

�e significant limitations in the current research are that the auto-

mated prototype fidelity transformation research does not provide an

intermediate step to allow designers to customize the detected UI ele-

ments, and the research on UI wireframe generation does not generate

wireframes based on designer specified use cases. �is thesis aims to

bridge this research gap by conducting a systematic analysis of AI support

in UI design.

2.7 summary

�is chapter summarized the existing research on AI support for LoFi pro-

totyping conducted in the past three decades by academic, commercial,

and proof-of-concept research projects.�ese research projects focus on

three major research areas: converting LoFi prototypes to code, generat-

ing UI wireframes, and searching for UI screenshots similar to the LoFi

sketches.�rough our literature review, we identified a need to move the

focus of this research domain fromAI-centric research to Human-Centric

AI investigations. In this thesis, we aim to bridge these research gaps by

conducting systematic research on the AI support of the LoFi prototyping

process. In the upcoming chapter, we explain our objectives and approach

towards this research.

3
BL ACKBOX TOOLK IT

�is chapter briefly explains the primary goal of creating the BlackBox

toolkit and the interplay of datasets and tools inside this toolkit.

3.1 goals

�e key objective of this thesis is to explore the means of providing AI

assistance to UI designers throughout the LoFi design process without

sacrificing their autonomy. Consequently, through this thesis, we aim to

create different datasets and AI tools to gain insight into the LoFi design

process in three stages: before, during, and after LoFi prototyping; thus,

fostering further research in this domain. In addition to the overarching

goal, we formulate further goals for each component type (dataset and AI

tool) in the BlackBox Toolkit.

�e primary goal of each dataset in the toolkit is to create a diverse

collection of data spanning participants from different countries, experi-

ence in prototyping, and input medium. Further, we aim to provide these

datasets as open access to further research without scoping or limiting

their applications. Similarly, for each AI tool, we primarily aim to create

them as pluggable, generalisable and retrainable systems. Also, we intend

to provide these AI tools as open-source applications that can be fine-

tuned and attached to any modular application. Moreover, by evaluating

these AI tools with UI designers, we aim to systematically analyse the

satisfaction and interest of novice and experienced users in using AI as

assistance during theUI design process.Webriefly introduce theBlackbox

toolkit in the next section.

25

26 blackbox toolkit

3.2 blackbox toolkit

Blackbox toolkit is a collection of four datasets and three AI tools created

to assist UI designers throughout the LoFi prototyping process, augment-

ing their workflow without sacrificing autonomy.We named this toolkit

"Blackbox" as a user of this toolkit should be able to use the tools in it

as any other design tool, such as a pencil or compass, without worrying

about neither the manufacturing process nor the inner workings of the

tool itself. We ourselves use numerous tools from simple door handles to

complex tools such as cars to achieve our goals, which exist as a "Blackbox"

in our daily lives.

�e datasets and AI tools in the Blackbox toolkit are readily available for

the consumption of UI designers.We have distributed the four datasets as

open-access datasets in Kaggle, a public data platform provided by Google.

�e AI tools are deployed as open-source and open-accessWeb APIs and

plugins for Adobe XD prototyping platform. In the upcoming sections,

we briefly explain the rationale for creating the different components in

the BlackBox Toolkit.

3.3 datasets

�is toolkit contains four datasets: UISketch dataset, ~18k UI element
sketches; Syn&SynZdatasets, ~300k synthetic LoFi sketches; LoFi sketch,
~4.5k real-life LoFi sketches andWired dataset, ~2.7k semantically anno-
tated UI screenshots. Unlike the AI tools, the datasets are not restricted

to the different stages of prototyping. Instead, each of these datasets

targets one of the two types of LoFi prototypes: LoFi sketches and LoFi

wireframes. UISketch, Syn datasets only concentrate on LoFi sketches.

Similarly, SynZ and LoFi datasets primarily concentrate on LoFi sketches,

but as they contain annotations in addition to sketches, they extend sup-

port to LoFiwireframes.Unlike others, theWired dataset annotations only

focus on LoFi wireframes. Nevertheless, beyond the scope of this thesis,

SynZ annotations andWired dataset can also be used in understanding

MeFi design and HiFi designs as they are accumulated from and contains

UI screenshots.

3.4 ai tools 27

3.4 ai tools

�eAI tools use a subset or a combination of the datasetsmentioned above

for training and evaluation. However, unlike the datasets, the AI tools are

conceived to target a specific stage of LoFi prototyping. Furthermore,

we use the user evaluation of these AI tools to foster discussion on the

satisfaction of designers in utilising AI assistance for LoFi prototyping. In

the upcoming subsections, we discuss each stage of LoFi prototyping and

the interplay of datasets and tools that target that stage.

3.4.1 Before LoFi prototyping

Before LoFi prototyping, designers look for inspirations or examples by

browsing UI design patterns and UI screenshot libraries and use them

as a base for prototyping their UI (Herring et al., 2009; Suleri, Pandian,

et al., 2019). �is thesis explores an alternative approach to designers

by proposing a UI wireframe generator that learns from the existing UI

design pattern screenshots and generates UI wireframes for a given UI

design pattern, thereby providing designers with a base wireframe before

starting LoFi prototyping. Also, we aim to create these generated wire-

frames to be editable so that the designers canmodify them and further

the LoFi wireframes for their use case. To achieve this, we used a subset

of theWired dataset, which contains semantically annotated UI screen-

shots, and created Akin, a UI wireframe generator. Figure 3.1 shows the

components of the BlackBox toolkit we used to understand this stage of

LoFI prototyping.

Figure 3.1: Akin assists UI designers before they start prototyping by generating
UI wireframes for the chosen UI design pattern. It is trained and evaluated with

theWired dataset

28 blackbox toolkit

Figure 3.2:RUITE assists UI designers during prototyping by aligning and group-
ing the UI wireframe layout. It is trained and evaluated with the SynZ dataset

annotations

3.4.2 During LoFi prototyping

During LoFi prototyping, designers concentrate on ideation and quickly

reifying their design concepts (Rudd et al., 1996). Also, they do not heed

the aesthetic beautification of the system during LoFi sketching or wire-

framing.�erefore, to aid designers during their prototyping process, we

propose to create an AI tool that quickly aligns and groups theUI elements

in aUIwireframe.�us automatically generating an aesthetically pleasing

UI wireframe and assisting UI designers during their prototyping pro-

cess. To develop this solution, we used the SynZ annotations from our

toolkit for training and evaluation and created RUITE, a UI wireframe

refiner. Figure 3.2 shows the components of the BlackBox toolkit we used

to investigate this stage of LoFi prototyping systematically.

3.4.3 After LoFi prototyping

During the LoFi prototyping phase, designers reiterate and reworkmul-

tiple LoFi prototypes to finalise a UI design.�en, they convert this LoFi

prototype to higher fidelities for evaluation and handover to development.

Despite widespread usage, this traditional prototyping process is tedious

and time-consuming (Suleri, Pandian, et al., 2019). It limits the number

of LoFi prototype ideas that propagate to higher fidelity. To tackle this

problem, we propose a UI element detector that can locate and classify UI

elements present in a LoFi sketch, thus enabling an automated transfor-

mation of LoFi sketches to higher fidelity. To achieve this, we trained an

3.4 ai tools 29

Figure 3.3:MetaMorph assists UI designers after the LoFi prototyping by de-
tecting the constituent UI elements thereby enabling transformation to higher

fidelities.�is tool is pretrained with the synthetic LoFi sketches from the Syn

and SynZ datasets. It is further fine-tuned and evaluated with the LoFi Sketch

dataset

object detection model and created MetaMorph, a UI element detector.

As an object detectionmodel is data-demanding, we require large-scale

datasets to train such a system.�erefore, we used Syn and SynZ datasets,

containing ~300k synthetic lofi sketches generated using the UI element

sketches in the UISketch dataset. For further training and evaluation, we

used the LoFi sketchdataset fromour toolkit. Figure 3.3 shows thedatasets

we used and the tools we created in the BlackBox Toolkit to systematically

analyse this stage of prototyping.

By collecting, refining, and creating these datasets and tools in the

BlackBox Toolkit, we study the impact of utilising AI assistance in the

UI design process. In the upcoming parts of the thesis, we explain each

component of the BlackBox Toolkit in detail.

4
U I SKETCH DATASET

In this chapter, we present UISketch dataset, the first large-scale dataset

of 17,979 hand-drawn sketches of 21 UI element categories collected from

967 participants, including UI/UX designers, front-end developers, HCI,

and CS grad students, from 10 different countries. To create this dataset,

we identified a list of UI element categories that needed to be included in

the dataset, then we created questionnaires and collected the respective

sketches from participants. We then extracted, processed, and validated

the collected sketches to create theUISketch dataset.�e followin sections

briefly explains the steps mentioned above.�is chapter was published

as a part of our research paper, “UISketch dataset” (Pandian, Suleri, and

Jarke, 2021b).

4.1 objective

Our literature review identified that several research projects attempt to

apply AI to improve the traditional LoFi prototyping process (Chapter 2).

However, these research projects, such as Microsoft AI Labs (2018), uti-

lize smaller datasets collected from few participants. Using such datasets

to train AI models affects their generalizability and overall quality. Also,

using such datasets for evaluation does not provide ecological validity to

the results. �erefore, the primary objective of collecting the UI sketch

dataset is to obtain a large-scale dataset of UI element sketches from a

diverse set of participants and different input mediums. �rough this

dataset, we aim to benchmark and contrast the human accuracy and cur-

rent state-of-the-art UI sketch classification accuracy in identifying UI

element sketches. Moreover, this dataset enables the creation of large-

scale synthetic LoFi sketches by stitching the UI element sketches. Also, it

can be used in Sketch-based UI element retrieval and automatic sketch

completion research.

33

34 uisketch dataset

4.2 taxonomy of ui element sketches

Before we began the data collection process, we aimed to identify themost

common UI elements used by designers during the UI design process. As

the design of UI elements differs for different platforms and operating sys-

tems (OS), we scoped this research for smartphones, specifically Android

OS. To identify commonly used UI elements on Android smartphones,

we first determined the widely used design languages for smartphone

applications, such as Material Design by Google, 2021, Fluent Design by

Microsoft, 2021, and other UI component libraries (Framework7, 2020;

GeekyAnts, 2020; React Native Elements, 2020; Shoutem, 2020). We also

extracted a list of the most commonly found UI elements from the RICO

dataset of Android UI screenshots identified by T. F. Liu et al., 2018.We

then excluded the duplicate entries as the nomenclature of similar UI ele-

ments differs across different design languages (e.g., dropdown vs select).

We further reviewed this UI elements list with five UI/UX designers and

altered the list based on their input. Finally, we arrived at a final list of 21

most commonly used UI elements.

We further divided this list into composite and standalone UI elements.We identified 21
categories of UI

elements commonly
used in smartphone

UI designs: 14
standalone and 7

composite UI elements.

Standalone UI elements are essential building blocks of UI, such as a text

field, button, or checkbox; whereas, composite UI elements consist of one

or more standalone UI elements such as a card, grid list, or alert. In total,

we chose the most commonly used 21 UI elements: 14 standalone and 7

composite (Table 4.2).

4.3 data collection questionnaires

As a next step, we reviewed the existing sketch datasets such as the TU

Berlin sketch dataset of everyday objects by Eitz et al. (2012), Sketchy

database of sketch-photo pairs by Sangkloy et al. (2016), and SWIRE

dataset by F. Huang et al. (2019) of hand-drawn lo-fi sketches to analyze

their data collection practices.

�ese prior data collection studies provided a sample image to the par-

ticipant corresponding to each object category. Following the data collec-

tion practices of F. Huang et al. (2019), we provided sample UI element

images and asked participants to sketch the given UI elements in their

own way. Additionally, we requested participants not to trace the sample

images. As a precaution, we also randomized the sample images (out of

2,400 different sample images of 21 categories of UI elements) provided to

4.4 pilot study & design decisions 35

participants to ensure generalized data collected even if they were tracing.

�erefore, for eachUI element category,we had around 110 sample images.

So during our data collection study, each sample image of a particular UI

element was repeated for at least 9 participants.

We aimed to collect a comprehensive dataset that includes UI elements We collected sketches
using both paper and
digital questionnaire
(for both desktop and
tablet) where
participants could
sketch UI elements
using pen, pencil, or
stylus.

sketches hand-drawn on paper and digitally drawn using a stylus.�ere-

fore, we collected UI element sketches using both paper
1
and digital

2

questionnaires.

We designed the paper questionnaire
1
such that each question has an

example of a UI element on the left and a rectangular area to sketch the UI

element on the right-hand side (Figure 4.1a). �ese example images were

randomly selected and intended to assist the participants with limited

awareness of UI elements.

With a design similar to the paper questionnaire, we developed a web

application
2
, which only allows stylus input to collect digital sketches of

UI elements (Figure 4.1b). �e web application starts by requesting partic-

ipants to provide informed consent. Once the participant agrees to the

consent form, the web application creates a secure key for authentication

and stores it in their browser’s internal database.�is step restricts the

participants from taking part in the study multiple times. It also helps in

restoring theweb application from the point they left off in case of internet

disconnection.

We also developed a cross-platform iOS and Android application using

react-native with similar features as our web application to collect UI

element sketches drawn only using a stylus on an iPad and Android tablet.

4.4 pilot study & design decisions

Before we started the mass collection of UI element sketches, we first Our pilot study
showed that collecting
text and image content
independently is
unnecessary and
redundant; instead,
they can be cropped
from other UI element
sketches to get
generalizable data.

started with a pilot study of 16 participants of each category: 4 UI/UX

designers, 4 front-end developers, 4 HCI grads, and 4 CS grad students.

Wepresented 8 participants (2 of each category)with paper questionnaires

and the remaining8participantswith thedigital questionnaires andasked

them to sketch all 21 categories of UI elements.

From this study, we understood that asking participants to sketch text

and image content independently is unnecessary and redundant—as these

UI elements are a part of other standalone UI elements, e.g., button, text

1 https://blackbox-toolkit.com/f/uisketch/paper_questionnaire.pdf
2 https://uisketch.web.app/

https://blackbox-toolkit.com/f/uisketch/paper_questionnaire.pdf
https://uisketch.web.app/

36 uisketch dataset

(a) Paper questionnaire (b)Digital questionnaire

Figure 4.1: Paper and digital questionnaire used for collecting UISketch dataset.
Both questionnaires have an example of aUI element on the left and a rectangular

area to sketch the UI element on the right-hand side.

field, text area, and composite UI elements, e.g., grid list, data table,

chip.�erefore, we removed text (label) and image UI elements from the

paper and digital questionnaires. We later cropped them from the other

standalone and composite UI element sketches to obtain generalizable

data.

4.5 participants

Over a span of 3 years, we collected UI element sketches from 967 par-We collected the UI
element sketches using

paper and digital
questionnaires from
967 participants,
including UI/UX

designers, front-end
developers, HCI, and

CS grad students,
from 10 different

countries.

ticipants: 151 UI/UX designers with 2-14 years (M=6.95, SD=3.5) of prior

prototyping experience, 136 front-end developers with 2-10 years (M=5.6,

SD=2.3) of former UI development experience, 288HCI graduate students

with up to one year of prototyping experience, and 392 Computer Sci-

ence graduate students who had attended the UI design and development

related courses. We did not restrict data collection based on the age or

gender of the participants. We collected data from participants belonging

to 10 countries: Germany, Russia, China, Albania, India, Pakistan, United

Kingdom, Canada, Iran and the U.S.A (Figure 4.2). We used purposive

and snowball sampling to recruit these participants. For gathering such

a massive amount of participants, we contacted several UI/UX profes-

sionals and developer through social media and online platforms.We also

reached out to relevant people through multiple universities, meetups,

and conferences.

4.6 procedure 37

Figure 4.2:Demographics of participants as percentage of participants per coun-
try

4.6 procedure

For the in-person data collection, we used the paper questionnaires and

requested 104participants touse apencil (~11%) and231participants (~24%)

touse apen to sketchUI elements. Similarly,we requested246participants

(~25%) to digitally draw UI element sketches using a stylus with our cross-

platform iOS and Android tablet application (Table 4.1).

To collect data from amassive amount of participants in-person, we Most of the data were
collected by in-person
data-collection
sessions in
universities, research
institutes, conferences,
andmeetups.�e rest
were collected remotely
by spreading digital
questionnaires.

conducted eight data collection sessions with more than 50 participants

in each session. We conducted these sessions in Germany, India, and

Pakistan. Attendees were compensated for their participation.�e study

took approximately 15 minutes. However, participants were allowed to

take more time, if need be.

For remote studies with 386 participants (~40%), we used our web ap-

plication, which allows only stylus input. To ensure a diverse dataset of

sketches within each UI element category, we restricted the number of

sketches a participant could draw to one per UI element category. We

collected data from participants belonging to Germany, Russia, China, Al-

bania, India, Pakistan, United Kingdom, Canada, Iran and the U.S.A.�e

duration and compensationwere the same as for in-person data collection

sessions.

In totality, we collected 18,373 sketches for 19 UI elements from 967 par-

ticipants. We used digital questionnaires for 632 participants and paper

questionnaires for 335 participants (Table 4.1, Figure 4.3).

At the end of the data collection process, we had two different types of

data: UI element sketches from the paper questionnaires and UI element

38 uisketch dataset

Figure 4.3:Count of UI element sketches collected from different type of partici-

pants, split by the medium that they used to sketch

sketches from the digital questionnaires.�e next step was to digitize the

UI element sketches collected using paper questionnaires to merge them

with sketches collected using digital questionnaires.

4.7 data processing

To digitize the sketches collected using paper questionnaires, we scanned

all the paper questionnaires with 600 DPI settings (4958x7008) and stored

each sheet as a JPEG image. Next, we utilized a rectangular contour de-

tection algorithm to extract the rectangular area containing UI element

sketches from the paper questionnaire scans and discard unessential

content (Figure 4.4). Afterwards, wemanually labelled these UI element

sketches and merged them with the unprocessed labelled sketches col-

lected using the digital questionnaires.

We further processed this entire collection of sketches to obtain close-�e data processing
from paper

questionnaires were
automated using a
pattern recognition

algorithm that detects
contours and crops

them.

cropped UI element sketches. For this, we created a python script that

takes the unprocessed labelled dataset as input and returns labelled close-

cropped UI element sketches (Figure 4.4). �is script applies Gaussian

filteringwith a large kernel (set to 10%of the image dimension) followed by

an OpenCV contour detection algorithm to obtain close-cropped sketches.

We later manually rechecked and cropped any sketches missed or incor-

rectly cropped by this algorithm. As a result, we obtained a processed

labelled dataset with 18,373 UI element sketches.

As per the lessons learned from thepilot study,we expanded this dataset

by adding sketches of images and labels. We obtained these sketches by

cropping sketches of images and labels from other standalone and com-

4.8 data verification 39

Figure 4.4: Process of extracting the close-cropped UI element sketches from the

paper questionnaire

positeUI element sketches, e.g., button, text field, text area, grid list, card,

and alert. By doing this step, we added 1,707 sketches of image and label

to the dataset (Table 4.1). As a result, we expanded our dataset to contain

sketches of all 21 UI elements.

4.8 data verification

As a next step, wemanually cross-checked and cleaned this dataset. We Wemanually cleaned
the dataset by
discarding
contaminated, poorly
drawn and irrelevant
sketches.

discarded sketches that contained profanity or unrelated content (Figure

4.5c). Additionally, we rejected other few sketches based on image clar-

ity and quality (Figure 4.5a,b). However, we did not remove UI element

sketches merely because they were traced or not neatly drawn. As a re-

sult of data verification, in total, 2,101 UI element sketches (11.43%) were

discarded.

(a)Contaminated sketches
with smudges and palm re-

jection failure

(b)Badly drawn sketches (c) Irrelevant sketches

Figure 4.5:Examples of rejected sketches due to contamination, badly drawn or
irrelevant content.

Wetruncatedourdataset to containanaverageof~856 sketches (SD=13.73,

Median=850) per category resulting in our final dataset of 17,979 UI ele-

ment sketches. We sized the UI element categories uniformly to simplify

40 uisketch dataset

the training and testing process by avoiding the need to correct for bias

towards the larger categories when training and validating a classifier.

4.9 collected data

Finally, by following these data processing and verification procedures,

we obtained the UISketch dataset. �is dataset contains 17,979 close-
cropped UI element sketches of 21 categories of UI elements (Table 4.2)
split into 69.38% of digital sketches and 30.62% paper sketches. Specific

to the medium of sketching, it has 22.33% of pen sketches, 8.29% of pencil

sketches and 69.38% of stylus sketches. Each UI element category contains

on average ~856 sketches (SD=13.73, Median=850).

Table 4.1:Overview of data collection and ver-
ification process in terms of quantity of UI

element sketches collected and extracted

Count Pen Pencil Stylus Total

Participants 231 104 632 967

Collected sketches (19UI el-

ements)

4,389 1,976 12,008 18,373

Images 194 72 581 847

Labels 193 79 588 860

Removed during verifica-

tion

761 637 703 2,101

Final dataset (21 UI ele-
ments)

4,015 1,490 12,474 17,979

Figure 4.6: Distribution of digitally drawn
UI element sketches using stylus vs. pa-

per sketches drawn using pen and pencil in

UISketch dataset

Table 4.2:Count of sketches col-
lected for each UI element cate-

gory

UI Element Category Count

S
t
a
n
d
a
lo
n
e
Button 881

Checkbox Checked 883

Checkbox Unchecked 872

DropdownMenu 848

Floating Action Button 877

Image 847

Label 860

Radio Button Unchecked 867

Radio Button Checked 862

Slider 863

Switch Enabled 862

Switch Disabled 847

Text Area 853

Text Field 841

C
o
m
p
o
s
i
t
e

Alert 850

Card 844

Chip 850

Data Table 836

Grid List 840

Menu 849

Tooltip 847

Total 17,979

4.10 applications 41

4.10 applications

�is dataset is an initial exploration of how UI/UX designers sketch and

recognize UI elements. Additionally, computational sketch recognition

enables this dataset to have several interesting applications.

sythetic dataset Recentlymany research projects have attempted

to convert lo-fi sketches to code by using Deep Neural Networks (DNNs)

(Section 2.3). Training such DNN models requires large scale datasets

with ground truth sketches and their respective annotations. However,

there is a lack of a large dataset to achieve good precision for this task.

Synthetic data is a possible alternative to real data used by machine learn-

ing practitioners in situations where collecting real data is challenging

either due to time, funds, or privacy limitations (Albuquerque et al., 2011).

�is dataset can be used to generate a large synthetic dataset to train such

object detection networks.

sketch-based image retrieval �is dataset can also be uti-

lized in sketch-based image retrieval (SBIR) similar to SWIRE dataset

by F. Huang et al. (2019). Current UI design libraries allow designers to

search through their extensive database with textual keywords. With an

SBIR system, the designers could query UI design screenshots in these

large databases by quickly sketching their desired UI element categories.

In addition to being an alternative to keyword-search, SBIR also allows

matching the UI element category’s style.�is dataset enables training

such systems by matching the UI element sketches with an appropriate

UI design.

sketch completion Another application of this dataset can be

sketch completion. In addition to the paper and digital sketches of UI

elements, this dataset contains stroke information of the digital UI ele-

ment sketches. AI trained with this dataset can assist in auto-completing

UI element sketches as the trained neural network can classify what the

designers are drawing while creating a stroke.

4.11 summary

In this chapter, we described the data processing and verification pro-

cedures we followed to obtain the UISketch dataset. �is dataset is the

42 uisketch dataset

first large-scale dataset of 17,979 hand-drawn sketches of 21 UI element

categories collected from 967 participants, including UI/UX designers,

front-end developers, HCI, and CS grad students, from 10 different coun-

tries. �is dataset aims to pave the way to further work on assisting UI

designers during the prototyping process by creating and training new

DNNmodels for sketch completion, sketch-based UI retrieval and con-

verting lo-fi sketches to code.

5
LOF I SKETCH DATASET

�is chapter introduces theLoFiSketchdataset, thefirst large-scaledataset

of 4,527 hand-drawn annotated LoFi sketches. �ese sketches were col-

lected from 361 participants, including UI/UX designers, front-end devel-

opers,HCI, andCSgrad students, from76 countries.�is dataset contains

LoFi sketches in both raster and vector format. In the following sections,

we briefly explain the design decisions wemade and the methodology we

followed to collect and process this dataset. Excerpts from this chapter

were published as our research paper, (Pandian, Shams, et al., 2022) and

as a thesis dissertation (Shams, 2021) created undermy supervision based

onmy research.

5.1 objective

In the previous chapter, we introduced the UISketch dataset, a large-scale

collection of UI element sketches. Unlike UI element sketches, a LoFi

sketch represents a complete UI screen depicted by designers during the

initial prototyping phase.�erefore, in addition to the UISketch dataset,

we aim to collect LoFi sketches to analyze how designers understand and

communicate UI design.�e primary objective of the LoFi sketch dataset

is to obtain a large dataset of real-life hand-drawnannotated LoFi sketches

fromdiverse participants using different inputmediums such as pen, pen-

cil, mouse, finger, and stylus. Also, we aim to obtain priors sketches made

by designers during their prototyping process.�us, these sketches reflect

the natural LoFi prototyping process and help to validate the ecological va-

lidity and benchmark AI models. Further, this dataset enables UI element

detection, UI sketch auto-completion and LoFi sketch-based screenshot

retrieval research.

43

44 lofi sketch dataset

5.2 design decisions

Similar to this thesis, we scoped this dataset for LoFi sketches of smart-

phone applications. Based on the lessons learned from our prior research

on collecting UI element sketches (Chapter 4) and by the data collection

practice used by F. Huang et al. (2019), we decided to provide a sampleIn addition to paper
and digital

questionnaires, we
also collected LoFi

sketches from
participants who

provided their prior
LoFi prototypes made
while creating their
application GUIs.

UI screenshot to the participants from the RICO dataset and ask them to

sketch it as a LoFi prototype.�erefore, we collected and annotated 100 UI

screenshots from theRICOdataset.However, we aimed to collect a diverse

dataset representing scenarios where LoFi sketches were made fromUI

design inspirations and real-life scenarios where LoFi sketches weremade.

�erefore, to obtain ecologically correct samples, we also collected LoFi

sketches of real LoFi prototypes that our participants made in addition to

the data collection.

Regarding themediumof sketching,wecollected thedigital LoFi sketchesWe allowed
participants to sketch

using pen, pencil,
stylus, mouse, and

touch.

and paper LoFi sketches. In digital sketches, we allowed participants to

sketch the prototype using either stylus, touch, or mouse as input, and in

paper-based sketches, we allowed participants to use pen and pencil.With

these design decision, we started the data collection by creating paper and

digital questionnaires.

5.3 data collection questionnaires

We repurposed the paper and digital questionnaire from the UI element

data collection (Section 4.3) to collect the LoFi sketch dataset.

We created the paper questionnaire
1
such that each question has an

example of a UI screenshot on the left and a rectangular area to sketch the

UI element on the right-hand side (Figure 5.1a). �ese example images

were randomly selected from the 100 UI screenshots we picked from the

RICO dataset and intended to assist the participants by providing a UI

design inspiration.

Wemodified the web application, earlier used to collect the UISketchSimilar to the
UISketch dataset, we
providedUI screenshot

samples and asked
participants to use

them as inspiration to
create LoFi sketches.

dataset, to create the LoFi sketch digital questionnaire
2
. Unlike its prede-

cessor, this questionnaire allows mouse, touch and stylus input to sketch

LoFi prototypes (Figure 5.1b).�eweb application starts by requesting par-

ticipants to provide informed consent and provides an informative video

to understand the purpose of this data collection. Once the participant

1 https://blackbox-toolkit.com/f/lofisketch/paper_questionnaire.pdf
2 https://uisketch-lofi.web.app

https://blackbox-toolkit.com/f/lofisketch/paper_questionnaire.pdf
https://uisketch-lofi.web.app

5.4 participants 45

(a) Paper questionnaire (b)Digital questionnaire

Figure 5.1:Paper and digital questionnaire used for collecting LoFi sketch dataset.
Both questionnaires have an example of a inspiration UI screenshot on the left

and a rectangular area to sketch the LoFi on the right-hand side.

agrees to the consent form, similar to the earlier versions, thisweb applica-

tion creates a secure key for authentication and stores it in their browser’s

internal database.�is step restricts the participants from taking part in

the study multiple times. It also helps restore the web application from

the point they left off in case of internet disconnection.

5.4 participants

With the paper and digital questionnaires, we collected LoFi sketches from We collected the LoFi
sketches using paper
and digital
questionnaires from
361 participants,
including UI/UX
designers, front-end
developers,
programmers, HCI,
and CS grad students,
from 76 different
countries.

361 participants: 30 UI/UX designers with 1-8 years (M=2.83, SD=1.54) of

prior prototyping experience, five front-end developers with 2-5 years

(M=2.8, SD=1.3) of prior UI development experience, 44 programmers

with 1-44 years (M=4.39, STD=6.70) of GUI and general programming ex-

perience, 251 HCI graduate students with up to one year of UI prototyping

experience, and 31 Computer Science graduate studentswho had attended

the UI design and development related courses. We did not restrict data

collection based on the age or gender of the participants.We collected data

from participants belonging to 76 countries: Pakistan, India, Indonesia,

Germany, Malaysia, Oman, Sweden, Singapore, Philippines, etc. (Figure

5.2). We used purposive and snowball sampling to recruit these partici-

pants. We contacted several UI/UX professionals and developer through

social media and online platforms such as Reddit, Facebook, LinkedIn,

and Twitter for gathering such a massive amount of participants. We also

reached out to several students by contacting Human-Computer Interac-

46 lofi sketch dataset

Figure 5.2:Count of participants (>= 5 people) per country that contributed to
LoFi sketch dataset

tion (HCI) andComputerScience (CS)Professors fromvariousuniversities.

Additionally, we approached companies and institutes working in theHCI

domain.

5.5 procedure

As we aimed to collect a diverse dataset representing design inspiration

based sketches and real-life LoFi sketches, we conducted the data collec-

tion procedure in two different ways: collection sketches through ques-

tionnaires, acquiring premade LoFi sketches from participants. Table 5.1

summarizes the count of LoFi sketches collected by various procedures.

In this section, we discuss both the procedures successively.

5.5.1 Questionnaire-based

�e nationwide lockdown in the years 2020 and 2021 due to COVID-19

limited our data collection process; therefore, we formulated our data

collection procedure accordingly. As in-person meetings are restricted,

we concentrated on collecting data through digital questionnaires.

�e initial steps data collection procedure for both paper and digitalWe collectedmost of
the data (86%) from
paper and digital
questionnaires.

questionnaires were similar. We explained to the participants about the

reason and benefits of the study and asked them to provide us with their

demographics (optional) and consent (mandatory) to participate in the

study. We then explained how the questionnaire and how to use it. We

requested the participants not to trace the UI screenshot example, instead

5.5 procedure 47

Table 5.1: Split of participants and count of collected sketches based on data
collection source

Participants Count of collected LoFi Sketches

Digital Questionnaire 343 8,860

Paper Questionnaire 18 214

Other sources - 1,201

Total 361 10,275

use it as an inspiration to model their LoFi sketch based on it. We did not

restrict the number of LoFi sketches the user could draw, and then we

terminated the study once the participant decides to stop the study.We

informed them that they could also resume the study at any later time.We

also provided the participants the flexibility to skip a UI design sample if

they were not comfortable with sketching it. Although this approach pro-

vided us with unequal distribution of LoFi sketches drawn by participants,

this allowed the participants from being overwhelmed by the task.

Using this procedure, we collected data from 18 participants (~5%) using

paper questionnaires and 343 participants (~95%) using digital question-

naires. In total, we collected 214 paper-based LoFi sketches and 8,860

digital LoFi sketches using the questionnaires.

5.5.2 Other sources

We contacted several universities, research institutes, and companies to

acquire LoFi sketches. As LoFi sketching is a conventional process followed

before building real-life GUI applications, we requested them to forward

LoFi sketches made by UI/UX designers or HCI grad students for their

previous projects. Due to the privacy policy, most companies and research

institutes refused to provide their LoFi sketches. Few companies and re-

search institutes provided the sketches but without the demographic de-

tails. We also acquired few LoFi sketches students drew for their course

capstone projects.

In total, we acquired 695 paper-based LoFi sketches by this process.

However, we could map this information neither to participants nor their

demographics.�erefore, this information is not well-represented in the

participant information.

48 lofi sketch dataset

Table 5.2: Overview of sketches removed during LoFi sketch data verification
process

Sketches Count of LoFi sketches

Collected 10,275

With little to no details 3,027

With rating < 5 2,721

LoFi sketch dataset 4,527

5.6 data verification

From our data collection process, we collected 10,275 LoFi sketches from

various sources. As a next step, we manually merged all the collected LoFi

sketches, reviewed, and cleaned them.

In digital questionnaires, many participants decided to skip sketching

a sample by leaving the sketching area empty or leaving the sketch unfin-

ished.�erefore, we started the data verification process by removing the

sketches with little to no detail. In this step, we identified and discarded

3,027 LoFi sketches (29.46%).

Also, as the details present in a LoFi sketch varies due to the inputWe discarded sketches
with little to no detail,
rated the LoFi sketches,

and chose only the
best-rated sketches.

medium (pen, pencil, mouse, touch, and stylus), we added rating to the

sketchesona scale of 1 to 5,withonebeing theworst andfivebeingbest.We

then discarded all the sketches with a rating less than 5. Figure 5.3 shows

a sample LoFi sketch with each rating in our scale. By this process, we

removed 2,721 LoFi sketches (26.48%). We performed this step to improve

the quality of the sketches in the final LoFi sketch dataset.

�rough the data verification steps described above, we removed 5,748

LoFi sketches (55.94%) from the 10,275 LoFi sketches collected from various

sources andfinally accepted 4,527 sketches in the LoFi sketchdataset. Table

(a)Rated as 1 (b)Rated as 2 (c)Rated as 3 (d)Rated as 4 (e)Rated as 5

Figure 5.3: Samples of LoFi sketches rated in a scale of 1 to 5.

5.7 data annotation 49

5.2 summarizes the count of LoFi sketches collected and removed by the

data verification process.

5.7 data annotation

Our goal for creating the LoFi sketch dataset is to provide a large-scale

annotated dataset for training DNN models. �erefore, after the data

verification process, we created annotations for each LoFi sketch in the

dataset.

A LoFi sketch is made of various UI elements present in different loca- �rough annotation,
we identified 41,560
constituent UI
elements in the 4,527
LoFi sketches.

tions and has different dimensions. �rough this dataset, we aimed to

capture the information of the constituent UI elements in a LoFi sketch

along with their location and dimension in that sketch. To annotate these

sketches, we used the Supervisely
3
platform. We loaded the 4,527 LoFi

sketches in Supervisely and annotated them into the 21 UI element cat-

egories specified in the UISketch dataset (Table 4.2). Figure 5.4 shows a

sample LoFi sketch with its annotations.

5.8 collected data

With the annotation files, we created the LoFi sketch dataset. �is dataset

contains 4,527 LoFi sketches annotated with 41,560 constituent UI ele-

ments classified into 21 categories. On average, each LoFi sketch contains

3 https://supervise.ly/

(a)A sample LoFi Sketch (b)Annotated LoFi Sketch

Figure 5.4: Sample LoFi Sketch with its annotations

https://supervise.ly/

50 lofi sketch dataset

9.18 UI elements (SD=5.72, Median=8). Most of the LoFi sketches were

collected from paper and digital questionnaires using pen, pencil, mouse,

touch, and stylus as the input medium. Figure 5.5 visualizes the distri-

bution of LoFi sketches collected using the questionnaires based on the

medium.

Figure 5.5:Distribution of digitally drawn LoFi sketches using stylus, mouse, and
touch vs. paper sketches drawn using pen and pencil in LoFi sketch dataset

5.9 benefits & applications

LoFi sketch is the first large-scale annotated LoFi sketches dataset.�is

dataset opens up several possible research areas.

ui element detection As seen in the literature review, many re-

searchprojects have attempted to convert LoFi sketches to codeusingDNN

models (Section 2.3). Although this dataset is not enough as stand-alone

to train such DNNmodels, it can be combined with synthetic datasets

(discussed in the previous chapter) to create generalizable UI element

detection networks.

sketch completion Y. Li et al. (2020) explored a novel research

area of auto-completing UI wireframes.�is dataset contains rich infor-

mation about UI element categories and their layout in a LoFi sketch;

therefore, it can be utilized for training auto-completion DNNs which

supports designers by autocompleting their strokes.

5.10 summary 51

5.10 summary

In this chapter, we introduced the LoFi sketch dataset, the first large-

scale dataset of annotated LoFi sketches.�is dataset contains 4,527 LoFi

sketches annotated with 41,560 constituent UI elements. We collected

these sketches from361participants from76 countries.�eseLoFi sketches

were collected from various sources and were sketched in various medi-

ums. Most of the LoFi sketches were collected from paper and digital

questionnaires using pen, pencil, mouse, touch, and stylus as the input

medium.�e rest of the LoFi sketches were collected from participants

who provided their prior LoFi sketches made while creating their GUIs.

�is dataset enables further research on supporting UI designers dur-

ing the prototyping process by creating and training DNN models for

converting lo-fi sketches to code and auto-completing LoFi sketches.

6
SYN & SYNZ DATASETS

�is chapter discusses two datasets, Syn
1
and SynZ

2
, which provide large

scale synthetic annotated LoFi sketch datasets for training DNNmodels.

�e excerpts from this chapter were published as a part of our research

papers “Syn” (Pandian, Suleri, and Jarke, 2020) and “SynZ Dataset” (Pan-

dian, Suleri, and Jarke, 2021a). We describe both Syn and SynZ succes-

sively in the upcoming sections, describing its synthetic data generation

methodology, advantages, and its statistical description.

6.1 objective

�e primary objective behind generating both Syn and SynZ datasets is

to provide a large-scale dataset for training data-demanding AI models.

In general, synthetic data is a possible alternative to real data used by

machine learning practitioners in situations where collecting real data is

challenging either due to time, funds, or privacy limitations (Albuquerque

et al., 2011). As obtaining LoFi sketches in the hundred-thousands is a

laborious and expensive task, the Syn and SynZ dataset provides a base

for training AI models which can be fine-tuned further by a relatively

smaller real-life LoFi dataset. �erefore, this dataset opens up various

avenues in pretraining AI models such as UI element detection and UI

layout refinement.

6.2 syn

Syn
1
is a synthetic LoFi sketch dataset containing 125,000 LoFi sketches.

�ese LoFi sketches were synthetically generated by randomly allocating

theUI element sketches from theUISketch dataset (Chapter 4)) with 17,979

1 https://www.kaggle.com/vinothpandian/syn-dataset
2 https://www.kaggle.com/vinothpandian/synz-dataset

53

https://www.kaggle.com/vinothpandian/syn-dataset
https://www.kaggle.com/vinothpandian/synz-dataset

54 syn & synz datasets

UI element sketches of 21 categories of UI elements collected from 967

participants. In the upcoming subsections, we describe the algorithmwe

used to generate Syn and the advantages of Syn.

6.2.1 Data generation process

To generate Syn, we created a script
3
that randomly samples 1 to 15 UI ele-

ment sketches from the UISketch dataset.�en, it calculates the total area

of these randomly sampled UI element sketches and scales it by a factor

ranging from 2 to 4. It then creates a blank image with this scaled area asSynwas generated by
random allocation of

position and
dimension of UI

element sketches in a
blank image.

image dimensions.�e script then attempts to assign a non-overlapping

position to each randomly sampled UI element sketch in this blank image

by back-propagation. Once it successfully identifies the location for each

UI element sketch, it stitches this UI element sketch in the blank image.

As a result, we get a synthetically generated LoFi sketch (Figure 6.1).

In addition to generating the synthetic images, this script also creates

the respective annotation files in two different formats: CSV and COCO

dataset format. �ese annotation files contain all the constituent UI el-

ements along with their respective location and dimension for a given

synthetic LoFi sketch. We provide the annotations in multiple formats

to enable this module to be coupled with any open-source object detec-

tion API. Using this procedure, we synthetically generated 125,000 LoFi
sketches along with their annotation files and provided it as an open-

source dataset, Syn.

3 https://blackbox-toolkit.com/f/uisketch/datagen.py

Figure 6.1: Sample generated synthetic LoFi sketches from the Syn dataset

https://blackbox-toolkit.com/f/uisketch/datagen.py

6.2 syn 55

6.2.2 Advantages

�ere are three major benefits of using this approach. �ey are listed

below.

• We can synthetically generate a large-scale training dataset contain-

ing more than 125,000 annotated LoFi sketches by permuting the

17,797 UI element sketches we collected via paper and digital ques-

tionnaires.�is technique reduces the time and effort in annotating

LoFi sketches.

• Randomly scaling UI elements before assigning them a position on

the blank image aligns with the data augmentation strategy used

in training object detection models for boosting the model perfor-

mance as described by W. Liu et al. (2016). �is strategy helps in

pre-training and later fine-tuning a model with a smaller real-life

LoFi sketch dataset.

• Similarly, randomly positioning UI elements in an annotated im-

age helps in fine-tuning multi-box detection methods to detect ob-

jects at any given location as proposed byW. Liu et al. (2016).�us

enabling the DNNmodel to learn the distribution of UI elements

without over-fitting.

6.2.3 Generated data in Syn

Syn is the first large-scale synthetic dataset of LoFi sketches containing Syn contains 125,000
LoFi sketches with 21
categories of UI
elements. However,
Syn does not
statistically
correspond to real-life
UI sketches drawn by
UI/UX designers.

125,000 LoFi sketches with 21 categories of UI elements. Even though the

random allocation of UI element sketches is advantageous in the initial

training of DNNmodels, one major shortcoming of Syn is that it random-

izes the size, location, and distribution of each UI element bounding box

in every generated UI sketch. �is randomization does not statistically

correspond to real-life UI sketches drawn by UI/UX designers.�is lead

to our need to generate SynZ, a large-scale dataset that is statistically

similar to real-life UI sketches. We discuss SynZ dataset generation and

its advantages in the next section.

56 syn & synz datasets

6.3 synz

�is section introduces the SynZ dataset
2
, which contains 175,377 synthet-SynZwas created to be

coupled with Syn and
overcome its
shortcomings.

ically generated UI sketches statistically similar to real-life UI screens. To

generate SynZ, we analyzed, enhanced, and extracted annotations from

the RICO dataset and used 17,979 hand-drawn UI element sketches from

the UISketch dataset.We explain this process in detail below and visualize

it in Figure 6.2

6.3.1 Enhancing RICO annotations

We started by analyzing the existing annotations from the RICO dataset.

Based on our analysis, we followed the steps discussed below to enhance

the RICO dataset annotations.

6.3.1.1 Removing Outliers

�ese annotations are extracted from the corresponding view hierarchies.

Consequently, the annotations had certain anomalies such as unusually

large (e.g., Switch on/off that fits the entire UI screen), small (area ap-

prox equal to zero), and erroneous (size less than zero) bounding boxes.

�erefore, we calculated each bounding box area and removed the outlier

annotations using the Inter-Quartile Range (IQR) method.

6.3.1.2 Mapping UI Element Categories

We observed that a few UI element categories specified in RICO annota-

tions are specific to front-end code and not relevant to UI sketches, such

as Map View, Pager Indicator, and Advertisement. Also, a few composite

UI components such as Toolbar and Button bar can be represented as a

collection of standalone UI elements such as Buttons and Images. More-

over, these UI element categories do not map to the UI element categories

from the UISketch dataset.�erefore, wemapped the annotations from

RICO to the UISketch dataset to obtain a unified collection of annotations

of 21 UI element categories.

Figure 6.2: Flowchart visualizing different steps involved in modifying RICO
annotations to SynZ dataset

6.3 synz 57

6.3.1.3 Adding UI Element States

�eRICO dataset annotations do not contain any information regarding

the state of UI elements, such as Checkbox checked/unchecked.�erefore,

we equally split the annotations of each stateful UI element category (e.g.,

Checkbox, Switch, Radio Button) as enabled or disabled.

6.3.1.4 AddingNewUI Elements

Also, RICO does not distinguish text field as dropdown, or text area, so

as text areas are by condition bigger than text fields, we considered all

text fields above 75 percentile area as text areas.�en we equally split the

remaining text field annotations into dropdowns and text fields. Similarly,

we split large labels (area greater than 75 percentiles) as chips.

We also observed that RICOdid not contain a fewUI element categories

such as FAB, Tooltip, Grid List, and Data Table present in the UISketch

dataset. Tooltips are generally placed above/below UI elements.�erefore

we identified all possible positions of a Tooltip algorithmically and added

the bounding boxes. �e Grid List and Data Table are full-width UI ele-

ments that occupy almost 90% of the UI screen.�erefore, we identified

all possible screens with the appropriate free area and allocated them as

Grid Lists and Data Tables.

With these steps, we created SynZ annotations by enhancing the RICO We extracted and
enhanced annotations
from the RICO dataset
to generate SynZ
annotations.

dataset annotations. �ese SynZ annotations contain 58,459 UI screen

annotations with 547,933 UI element bounding boxes for 21 UI element

categories. On average, each UI screen has 9.35 UI element bounding

boxes (SD=8.05).

6.3.2 Data generation process

To synthetically generate UI sketches for the SynZ dataset, we used the lat- SynZ dataset was
generated by
replicating the UI
element distribution
in the RICO dataset
annotations.

est UISketch dataset, which contains 17,979 sketches of 21 UI element cate-

gories drawn by 967 experienced designers, developers, and grad students.

For each UI sketch in Synz, we created a blank image with dimensions

1440x2560, similar to the standard size of UI screenshot from RICO. For

each UI element annotation present in this UI screenshot, we randomly

sampled a UI element sketch of the given UI element category (without

replacement) from theUISketch dataset.We then rescaled this UI element

sketch with the aspect ratio to fit within the corresponding bounding box

and stitched it in the blank image.�en we resized this image keeping the

58 syn & synz datasets

Figure 6.3: Sample generated synthetic LoFi sketches from the SynZ dataset

aspect ratio to 640x360. Figure 6.3 shows few samples of synthetic LoFi

sketches from the SynZ dataset.

With this process, we used the UISketch dataset to generate the SynZ

dataset of UI Sketches along with their annotations. We reused the same

UI screenshot annotations from the RICO dataset three times to generate

a substantial amount of UI sketches. As each iteration uses a different

random state, the samples returned are almost always different.

�is procedure enabled us to generate 175,377 UI sketches and their

annotations in COCO dataset format and CSV format. For transparency

and replicability of this research, we have open-sourced the codebase
4
.

6.3.3 Advantages

�ere are four major benefits of generating the SynZ dataset. �ey are

listed below.

• Similar to Syn, SynZ dataset generation allows us to generate more

than 175k synthetic LoFi sketches from the UISketch dataset.

• SynZ coupled with Syn provides a robust base for training DNN

models before fine-tuning with real-life LoFi sketch dataset.

• As the SynZ annotations are extracted by enhancing the RICO anno-

tations; they follow a similar UI elements distribution as the RICO

dataset.�erefore, the UI sketches synthetically generated by SynZ

are statistically similar to real-life UI screens collected in the RICO

dataset. �is dataset is in line with the two fundamental require-

ments of synthetic data prescribed by Patki et al. (2016): 1) it must

4 https://github.com/vinothpandian/synz

https://github.com/vinothpandian/synz

6.4 comparison of syn and synz datasets 59

(a) (b) (c)

Figure 6.4: Sample representative UI images from (a) Syn, (b) SynZ, (c) RICO

statistically approximate the real data, 2) must be structurally simi-

lar to the real data.

• �e enhanced RICO annotations obtained from the process of gen-

erating SynZ is not just limited to LoFi sketches.�erefore, the an-

notations can be used to understand the UI element distribution in

real-life smartphone UI design.

6.3.4 Generated data in SynZ

In this section, we described SynZ, a large-scale open-access dataset

of 175,377 UI sketches synthetically generated using 17,979 UI element

sketches from the UISketch dataset drawn by 967 participants. Initially,

we analyzed 72K UI screens from the RICO dataset and enhanced its an-

notations by removing outliers and adding new UI element categories

and states. Later, we utilized these enhanced annotations from the RICO

dataset to generate the SynZ dataset.�erefore, the UI sketches in SynZ

are statistically similar to the real-life UI screens.

6.4 comparison of syn and synz datasets

Although Syn and SynZ are both synthetically generated and serve the In contrast to Syn, the
SynZ dataset is
statistically similar to
the real-life UI screens.
However, they can be
coupled together to
train DNNs to utilize
their potential
advantages.

same purpose, the difference between them lies in their statistical similar-

ity to real-life LoFi sketches and the advantages they provide. Syn dataset

contains 125,000 synthetic LoFi sketches generated algorithmically by ran-

dom allocation of UI elements and their position. In contrast, the SynZ

dataset contains 175,000 synthetic LoFi sketches generated by statistical

60 syn & synz datasets

Table 6.1:Comparision of of Syn and SynZ datasets

Dataset UI sketches UI elements UI element Bounding box locations

in a UI sketch categories

Syn 125,000 1-22 21 Random allocation

SynZ 175,377 1-49 21 Similar to real-life UI screens from RICO

Figure 6.5:Comparision of UI element distribution using in Syn vs SynZ repre-
sented by a histogram plot

analysis of the RICO dataset’s UI screenshots. As the SynZ annotations

are extracted by enhancing the RICO annotations, they follow a similar UI

elements distribution as the RICO dataset (Table 6.1, Figure 6.5 and 6.4).

�erefore, the UI sketches synthetically generated by SynZ are statistically

similar to real-life UI screens collected in the RICO dataset.

6.5 benefits & applications

Synthetic data is a possible alternative to real data used by machine learn-

ing practitioners in situations where collecting real data is challenging

either due to time, funds, or privacy limitations (Albuquerque et al., 2011).

In total, both Syn and SynZ combined contain around 300,000 synthetic

LoFi sketches. In addition to the benefits listed in this chapter, this large-

scale dataset provides a base for training various DNNmodels. We have

listed a few applications below.

ui element detection Recent research projects, in the automatic

transformation of LoFi sketches to code, utilize DNN based object de-

tection models to achieve their goal. Object detection models require

6.6 summary 61

large-scale dataset to be trained effectively.�erefore, this dataset can be

used to pre-train such object detection networks before fine-tuning with

real-life LoFi sketches.

ui layout refinement As a byproduct of generating SynZ, we

refined the UI element annotations from the RICO dataset and created

58,459 annotated UI screenshots.�ese annotated UI screenshots contain

information about the position and dimension of 21 categories of UI ele-

ments.�is position and dimension data can be utilized for pre-training

UI layout refinement DNNs which can be further fine-tuned with real-life

UI wireframe semantic annotations.

6.6 summary

�is chapter described two large-scale synthetic LoFi sketch datasets that

we contribute to this thesis, Syn and SynZ. Both Syn and SynZ datasets

weregeneratedusing 17,979UIelement sketches fromtheUISketchdataset

described in the previous chapter. Syn dataset contains 125,000 synthetic

LoFi sketches generated by random allocation of UI elements in a LoFi

sketch. Whereas, SynZ dataset contains 175,377 synthetic LoFi sketches

generated by understanding theUI element distribution inUI screenshots

from the RICO dataset. In contrast to Syn, the SynZ dataset represents

the distribution of UI elements in a smartphone UI design better due to

the underlying data generation strategy. Despite the difference, both Syn

and SynZ datasets are vital for training a DNNmodel as they have their

advantages and disadvantages.

7
WIRED DATASET

�is chapter introduces the final dataset contribution of this thesis,Wired

dataset: a collectionof semantic annotationsofUI screenshots.�isdataset �eWired dataset
contains 2,751
semantically
annotated UI
screenshots
categorized into five
UI design patterns.

contains 2,751 UI screenshots from the RICO dataset, categorized into

5 UI design patterns, and annotated with 100 semantic categories of UI

elements. Unlike the previous three datasets, this dataset concerns with

semantic layout information used to generate UI wireframes instead of

LoFi sketches. Although LoFi sketches and UI wireframes layout the con-

tents of UI design and their properties similarly, UI wireframes are more

structured and refined than sketches. In contrast to LoFi sketches, wire-

frames use consistent design to denote a UI element, and their positions

are aligned to the grid (Brown, 2011).

Semantic annotation ofUI screenshots differs from the other bounding- Semantic annotations
is an extension of basic
UI annotations that
contains specific
information to
semantically
understand the
context and nature of
UI elements present in
a wireframe.

box annotations as it contains specific information to semantically un-

derstand the context and nature of UI elements present in a wireframe.

For example, a minimal template login screen contains a text field to get

a username and another text field for password and finally, a button to

submit the login information. An Android view hierarchy or basic anno-

tation of this login page would contain the two UI element category (two

text fields and one button), their location, and dimension. However, in

semantic annotation of the same UI screenshot will the three UI element

categories (a username field, a password field, and a login button), their

group id if they are grouped, their location, and dimension.�is detailed

semantic information allows us to capture the intricacies and provides an

excellent base for training powerful DNNmodels.

In the upcoming sections, we describe our rationale in scoping and

categorizing the UI screenshots followed by the methodology we followed

to create theWireddataset. Excerpts from this chapterwere published as a

thesis dissertation (Gajjar, 2020) and our research paper title “Akin” (Gajjar

et al., 2021) created under my supervision on the basis of my research.

63

64 wired dataset

7.1 objective & design decisions

RICO dataset collected by Deka et al. (2017) contains more than 72,000

Android smartphone screenshots and their respective Android view hier-

archies.�is dataset is categorized into 27 app categories. To understand

the semantic information in the UI screenshots in RICO, T. F. Liu et al.

(2018) and later Leiva et al. (2020) categorized the constituent UI elements

in RICO dataset into 25 categories.�emajor shortcoming of the RICO

dataset is that the annotations are automated, and therefore it contains

various inconsistencies. As a solution, Leiva et al. (2020) recently revised a

subset of UI screenshots from the RICO dataset, annotated these 1,460 UI

screenshots manually, and classified them into 20 design topics to create

the Enrico dataset.

�e primary goal of theWired dataset is to overcome these limitations

of the RICO dataset. �rough this dataset, we aim to provide manually

refined, verified, classified and annotated UI screenshots obtained from

the RICO dataset. Further, this dataset explores the context and nature of

constituent UI element categories present in a UI screenshot.�erefore,

this dataset can be reliably used for fine-tuning and benchmarking AI

models in different domains such as UI wireframe generation and UI

layout refinement.

In this thesis, we further this research domain by enhancing the an-�eWired dataset is
scoped and categorized

to contain UI
screenshots from

e-commerce
applications into five
commonUI design
patterns: Splash

Screen, Login, Account
Registration, Product
Catalog, and Product

Page.

notations into semantic annotations. Additionally, we categorize these

UI screenshots into UI design patterns and annotate them thoroughly

by identifying 100 different semantic UI element categories. As there are

more than 72k UI screenshots in RICO and 27 different app categories,

which could be categorized into innumerous UI design pattern categories,

we scoped this dataset into one app category, e-commerce applications.

We further scoped and categorized the UI screenshots from e-commerce

applications into five common UI design patterns: Splash Screen, Login,

Account Registration, Product Catalog, and Product Page.

Tidwell et al. (2020) defines a UI Design Pattern as an entity that de-

scribes a reoccurring problem in UIs and proposes a solution to that prob-

lem.�us Erickson (2000) claims that a UI design pattern acts as a com-UI design patterns are
used as lingua franca
to discuss UI design

concepts.

mon terminology (linuga franca) to refer to a specificUI design concept.�e

author further asserts that assigning UI design patterns as nomenclature

forUIdesigns enables interdisciplinary design teams to communicate con-

sistently and efficiently. Due to its benefits in communicating UI designs,

Borchers (2002) and Seffah (2003) consider UI design patterns helpful in

7.2 data classification 65

sharing and discussing UI design and HCI knowledge to students.�ere-

fore, categorizingUI screenshots intoUIdesignpatternswouldbenefit the

HCI community and enable DNNmodels to be trained using supervised

learning techniques.

In the next section, we discuss the strategy we used to select and cate-

gorize UI screenshots for theWired dataset.

7.2 data classification

As mentioned earlier, the RICO dataset contains over 72k UI screenshots;

therefore, manually categorizing the UI screenshots is a laborious task.

(a) Splash screen (b) Login (c)Account Registration

(d) Product Catalog (e) Product Page

Figure 7.1:A sample image of each UI design pattern from the dataset

66 wired dataset

Table 7.1:Count of UI screenshots per UI design pattern and UI element annota-
tions per UI screenshot in the dataset

UIDesign Pattern Category Count of UI Screenshots Count of UI element annotations

Splash screen 1,074 7,119

Login 798 9,359

Account Registration 498 6,226

Product Catalog 275 10,301

Product Page 106 2,178

Total 2,751 35,183

�erefore, we employed a semi-supervised DNNmodel to classify the UI

screenshots and thenmanually verified the classifications.

To train aDNNwith a semi-supervised learning technique,wemanuallyWe used the VGG-16
model trained using

semi-supervised
learning technique to

categorize UI
screenshots into UI
design patterns and

thenmanually refined
them.

labelled 10,000 UI screenshots of the RICO dataset into six categories:

Splash Screen, Login, Account Registration, Product Catalog, Product

Page, and Others.�is classification revealed that the entire RICO dataset

was highly skewed towards the others category, with over 80% of them in

that category. Splash screen and login screen categories had the second-

largest share, with each around 7% of the screenshots. To counteract this

class imbalance, we assigned a weight inversely proportional to its size in

the dataset for each category.�isweight is used as amultiplying factor for

updating the gradients while training the semi-supervised DNNmodel.

After fewempirical experimentswithdifferent classificationmodels,we

chose the VGG-16 model, introduced by Simonyan et al. (2015a), without

pretrained weights for classifying the UI screenshots into 6 UI design

patterns.�ismodel was trained using the Adam optimizer with an initial

learning rate of 1× 10−4
and reducing it on a plateau by a factor of 0.2 and

patience of 30 for 1000 epochs. Employing iterative label propagation and

manual correction, we fine-tuned this model to classify a UI screenshot

into the six chosen UI design pattern categories with an accuracy of 97%.

With this semi-supervised VGG-16 andmanual verification,we selected

and classified 2,751 UI screenshots into the five chosen UI design patterns.

Figure 7.1 shows a sample image for each category and Table 7.1 shows the

number of UI screenshots in each category. In the upcoming section, we

discuss the annotation process of this dataset with 100 categories of UI

elements.

7.3 data annotation 67

7.3 data annotation

After categorizing the UI screenshots into five UI design patterns, we We extracted
information from
RICO dataset
annotations and then
manually refined
them by adding
semantic information
to them.

annotated the dataset to obtain semantic information of UI elements in

each UI screenshot.

Asdiscussed in section 2.2.1, eachUI screenshot in theRICOdataset has

a corresponding Android view hierarchy file that contains the UI elements

in a hierarchy of UI element groups.�e root level of this tree-like Android

view hierarchy contains the Android-specific layout elements (such as

relative layout, linear layout), whereas the leaf nodes contain UI elements

(such asButton, Text field) visible on the screen.However, numerousRICO

view hierarchy annotations are incorrect or partially labelled.�erefore,

wemanually annotated and verified the UI elements in each of the 2,751

UI screenshots we selected from the previous section.We used Labelme,

an open-source tool, byWada (2016) for annotating the UI screenshots.

As a baseline, from each UI screenshot’s view hierarchy, we extracted

the leaf node UI elements and generated a LabelMe specific annotation

JSON file. We thenmanually refined the bounding box positions, dimen-

sions, groups and tagged the semantic UI element categories with this

annotation file as a baseline. In the end, we converted the annotations

from LabelMe JSON format to CSV and COCO JSON format for easy use

with any open-source DNNmodels.

With this annotation process, we identified 100 unique UI elements.

Figure 7.2 shows examples of some of themost commonUI elements from

theWired dataset.�e exhaustive list of all 100 categories of semantic UI

elements from theWired dataset is listed in table b.1.

Table 7.2:Mean, standard deviation andmode of the number of UI elements per
UI screenshot in each UI design pattern category

UIDesign Pattern Category Mean StandardDeviation Mode

Splash screen 6.23 2.52 5

Login 11.13 4.42 9

Account registration 11.79 4.35 10

Product catalog 35.07 12.95 31

Product page 17.54 6.36 17

68 wired dataset

Figure 7.2: Sample annotations with most common categories of semantic UI
elements

7.4 collected data

With the annotation files, we created theWired dataset.�is dataset con-

tains semantic annotations of 2,751 UI screenshots. �ese semantic an-

notations correspond to the UI wireframe layouts. To create this dataset,

we categorized UI screenshots from the RICO dataset into 5 UI design

patterns andmanually annotated themwith 100 semantic categories of

UI elements. On average, each UI screenshot contains 11.96 different cate-

gories of semantic UI elements. Table 7.2 shows exploratory data analysis

of number ofUI element labels perUI screenshot in eachUIdesignpattern

category.

7.5 benefits & applications

�is dataset explores the context and nature of constituent UI element

categories present in a UI screenshot. �is dataset provides a basis for

training various DNN networks in the following application domains.

ui wireframe generation Recently, few projects attempt to gen-

erate UI wireframes using DNNs. Most of these projects use Generative

7.6 summary 69

Adversarial Networks (GAN) for this task. However, these projects use UI

annotations without rich semantic information for training these models.

�eWired dataset would provide an excellent base for training such mod-

els as it contains detailed semantic information of five different UI design

patterns.

ui layout refinement UI layout refinement research attempts

to automatically align and group UI elements present in a UI wireframe.

As the Wired dataset contains grouping information in addition to the

semantic annotation of constituent UI elements in a UI screenshot, this

grouping information has the potential as ground truth for understanding

the UI layouts and training such UI layout refinement networks.

7.6 summary

�is chapter introduced theWired dataset, our final dataset contribution.

�is dataset contains semantic annotations of 2,751 UI screenshots. To

create this dataset, we selected UI screenshots from the RICO dataset,

categorized them into 5 UI design patterns, andmanually annotated them

with 100 semantic categories of UI elements. We scoped this dataset to

contain UI screenshots from e-commerce applications and categorized

them into five different UI design patterns: Splash Screen, Login, Account

Registration, Product Catalog, and Product Page.�is detailed semantic

information allows us to capture and understand the intricacies of UI

wireframe layouts and also provides an excellent base for trainingpowerful

DNNmodels to infer information from the UI wireframes.

8
HUMAN RECOGN IT ION STUDY

In this chapter, we discuss the first part of our two-part formative study.

From our literature review, we identified there had been no controlled

studies that compare differences in how much humans can recognize

UI element sketches in contrast with the performance of machines. To We conducted a
perceptual study to
measure the UI
element sketch
recognition accuracy
of UI/UX designers,
using the UISketch
dataset.

bridge this gap, we conducted a perceptual study to measure the UI ele-

ment sketch recognition accuracy of UI/UX designers, using the UISketch

dataset (Chapter 4). �is study aims to answer the following questions:

given a UI element sketch, what is the accuracy with which UI/UX design-

ers correctly recognize its category? Are there any UI element categories

that are easier or harder to determine for UI/UX designers?.�is study

provides us with an essential human baseline (specifically UI/UX design-

ers) thatwe later comparewith the computational recognition results.�is

chapter was published as a part of our research paper, “UISketch dataset”

(Pandian, Suleri, and Jarke, 2021b).

8.1 participants

Using purposive and snowball sampling, we recruited 76 UI/UX designers

for our study (M=35, F=41).�e participants were between 23 to 38 years 76 UI/UX designers
from 5 countries with 1
- 13 years of prior
prototyping
experience

of age (M=30.61, SD=4.5) and had 1 - 13 years (M=4.2, SD=3.1) of prior pro-

totyping experience. Wemade sure that these participants had not taken

part in the UISketch dataset data collection.�ese participants belonged

to five different countries: Germany, India, Pakistan, United Kingdom,

and the U.S.A. Participants were compensated for their participation.

8.2 measurements

During this study, we aimed to measure the accuracy of recognition of

UI/UX designer for any given UI element sketch.�e independent vari-

73

74 human recognition study

Figure 8.1: Screenshot of the web application to collect data for human recogni-
tion.We show a randomUI element sketch from our UISketch dataset on the left

and a list of 21 UI element categories on the right-hand side

ables are the different sketches provided to the participants for each UI

element category from the UISketch dataset, and the dependent variable

is the accuracy, precision, and recall of human recognition.

8.3 apparatus

Tomeasure the accuracy of recognition ofUI elements byUI/UXdesigners,Study was conducted
remotely using a web

application
we created a web application

1
similar to the data collection questionnaire

(Figure 8.1).�is web application shows a randomUI element sketch from

our UISketch dataset on the left and a list of 21 UI element categories

on the right-hand side. Participants could only choose one UI element

category per any given sketch.�e study took approximately 5 minutes.

However, participants were allowed to take more time, if need be.

We forwarded the link to this web application to the participants and

stored the results in our server. Participants filled out the questionnaire

using the web application on their preferred system.

8.4 procedure

�e web application starts by requesting participants to provide informedParticipants were
shown aUI element
sketch and asked to

choose the appropriate
UI element category

consent. Once the participant agrees to the consent form, the web applica-

tion creates a secure key for authentication and stores it in their browser’s

internal database.�is step restricts the participants from taking part in

1 https://uisketch-survey.web.app/

https://uisketch-survey.web.app/

8.5 analysis 75

the study multiple times. It also helps in restoring the web application

from the point they left off in case of internet disconnection.

Next, the participants are shown a randomly chosen UI element sketch

from the UISketch dataset displayed on the left side of the screen, and a

list of 21 UI element categories on the right side of the screen. Once the

participant selects a particular UI element category, he can move on to

the next question.�e order in which UI element sketches are displayed

is randomized. Each participant is provided with 21 UI element sketches

to recognize.

8.5 analysis

To analyze the results of this study, we created a confusionmatrix (a.k.a We analyzed the
results of this study
using accuracy,
precision, recall, and
F1 score. Also, we
visualized the results
using a confusion
matrix

contingency table) to present the prediction results of human recognition

in a clear and unambiguous manner. Here, by humans, we specifically

refer to UI/UX designers.

Additionally, based on the collected data, we calculated the accuracy

of human recognition. Accuracy represents the fraction of predictions

that humans recognized correctly. We also calculated the precision to

depict the exactness of human recognition. Precision represents the pro-

portion of positive identifications that were actually correct. In addition

to precision, we calculated the recall to depict the completeness of human

recognition. Recall represents the proportion of actual positives that were

identified correctly. Lastly, we calculated the F1 Score (a.k.a F Measure)

that represents the balance between the precision and the recall.

We additionally measured the Pearson correlation coefficient between

the accuracy of human recognition and the prior experience of our partic-

ipants.

8.6 results & discussion

UI/UX designers recognized on average, 96.49% of all UI element sketches UI/UX designers
recognized on average,
96.49% of all UI
element sketches
correctly.�eir
recognition errors are
usually caused due to
the confusion between
semantically similar
UI element categories.

correctly. We observed a minimal variance in human recognition accu-

racy over the 21 UI element categories. All the 76 participants correctly

identified all occurrences of "Image", "Radio button checked/unchecked",

"Checkbox checked" and "Slider". Whereas, the "Floating action button"

category was recognized with the least accuracy of 92% (Table 8.1, Figure

8.2). However, there is no evidence that there is correlation based on our

76 human recognition study

Table 8.1: Classification report of human detection accuracy, precision, recall,
and F1-score

UI element category Accuracy Precision Recall F1-Score

Alert 96.05% 96.05% 96.05% 96.05%

Button 94.74% 90.00% 94.74% 92.31%

Card 96.05% 94.81% 96.05% 95.42%

Checkbox - checked 100.00% 97.44% 100.00% 98.70%

Checkbox - unchecked 97.37% 100.00% 97.37% 98.67%

Chip 94.74% 98.63% 94.74% 96.64%

Data table 94.74% 96.00% 94.74% 95.36%

Dropdown 93.42% 92.21% 93.42% 92.81%

Floating action button 92.11% 95.89% 92.11% 93.96%

Grid list 94.74% 94.74% 94.74% 94.74%

Image 100.00% 100.00% 100.00% 100.00%

Label 98.68% 100.00% 98.68% 99.34%

Menu 93.42% 94.67% 93.42% 94.04%

Radio button - checked 100.00% 96.20% 100.00% 98.06%

Radio button - unchecked 100.00% 98.70% 100.00% 99.35%

Slider 100.00% 97.44% 100.00% 98.70%

Switch - disabled 94.74% 97.30% 94.74% 96.00%

Switch - enabled 96.05% 98.65% 96.05% 97.33%

Text area 97.37% 94.87% 97.37% 96.10%

Text field 96.05% 97.33% 96.05% 96.69%

Tooltip 96.05% 96.05% 96.05% 96.05%

experiments (ρ=0.0636) between the accuracy of human recognition and

the prior experience of our participants.

We have visualized the UI element categories with the highest human

recognition in Fig. 8.3a, and the ones with the lowest human recognition

in Fig. 8.3b.

We observed that human recognition errors are usually caused due to

the confusion between semantically similar UI element categories. Here,

semantic similarity refers to the likeness of the essence and purpose of

the UI elements. Table 8.2 and Figure 8.4 show the UI element categories

that are most often confused due to their semantic similarities.

However, structural similarity also accounts for somemisrecognition

occurrences. Here, structural similarity refers to the likeness of the shape

and anatomy of the UI elements. Table 8.3 and Figure 8.5 show the UI

element categories that are most often confused due to their structural

similarities.

8.6 results & discussion 77

Figure 8.2:Confusion matrix for UI element categories on human recognized
category vs the original category

(a)Above 95%

(b)Below 95%

Figure 8.3:Representative sketches from 21 UI element categories with highest

(left) and lowest (right) human recognition accuracy

78 human recognition study

Table 8.2:Human detection accuracy for semantically similar UI elements

Displayed UI element category Chosen UI element category Percentage

Menu Dropdownmenu 6.58%

Dropdownmenu Menu 3.95%

Button Floating action button 2.63%

Switch - enabled Switch - disabled 2.63%

Text field Text area 2.63%

Figure 8.4: UI element categories confused by UI/UX designers due to their
semantic similarities

Table 8.3:Human detection accuracy for structurally similar UI elements

Displayed UI element category Chosen UI element category Percentage

Data table Grid list 3.95%

Floating action button Tooltip 3.95%

Grid list Data table 3.95%

Alert Card 2.63%

Card Alert 2.63%

Chip Button 2.63%

Tooltip Button 2.63%

Figure 8.5: UI element categories confused by UI/UX designers due to their
structural similarities

8.7 summary 79

8.7 summary

�is chapter discussed the first part of our formative study. In this percep-

tual study,we used theUI element sketches from theUISketch dataset and

measured the accuracy with which UI/UX designers can recognize the UI

element sketches. We conducted this study with 76 UI/UX designers and
found out that designers recognize UI element sketches with ~96% accu-
racy. Further, we observed that human recognition errors are commonly
caused due to the confusion between semantically similar UI element

categories. We want to establish a baseline human through this formative

study and, in the next chapter, compare it with the computer recognition

accuracy of UI element sketches.

9
COMPUTER RECOGN IT ION STUDY

�is chapter summarizes the experiment and results of the second part

of our two-part formative study. In this experiment, to contrast with

the human recognition performance, we measured the accuracy of UI

element recognition of the current state-of-the-artDNNs. In the following

sections, we discuss the the DNN training pipeline, and its results.�is

chapter was published as a part of our research paper, “UISketch dataset”

(Pandian, Suleri, and Jarke, 2021b).

9.1 dnn models

In this study, wemeasured the UI element recognition accuracy of DNN We trained 26
classification neural
networks, including
image classification
neural networks and
sketch classification
neural network to
measure the
computational
recognition accuracy
of UI element sketches

models. To measure this, we trained 26 classification neural networks,

including image classification neural networks and sketch classification

neural network that perform the classification tasks with high accuracy

(Table 9.1).We chose only one sketch classification neural network, created

by Seddati et al. (2015), because the other state-of-the-art sketch classifi-

cation neural networks require temporal stroke information for training

their models. However, this information cannot be collected in case of

paper sketches, which is a preferred medium of UI sketching of a number

of UI/UX designers.�erefore, we chose a model that can extract features

from bitmap images.

To train and evaluate these 26 image and sketch classification neural

networks, we used the PyTorch library created by Paszke et al. (2019) and

fastai library created by Howard et al. (2020b). We then created a pipeline

to preprocess the UI element sketches and split them for training (80%),

validation (10%) and testing (10%). We used the training and validation

datasets to train the classification models with suitable hyperparame-

ters and finally evaluated the models with the test dataset.�e following

sections explain this process in detail.

81

82 computer recognition study

9.2 preprocessing

�e UISketch dataset contains sketches from paper and digital question-

naires.�e UI element sketches from this dataset are bitmap images withWe preprocessed the
UI element sketches by

applying binary
thresholding using

OTSU, resizing them
to a tensor of

3x224x224, and
adding data

augumentations for
training the DNNs

three channels (RGB) but with varying width and height. After several

empirical experiments, we adapted the preprocessing technique recom-

mended by Seddati et al. (2015) to acquire better training results.

To preprocess each image containing a UI element sketch, we resized

it to 180x180 dimensions while preserving the aspect ratio to prevent

the UI element sketch from getting distorted. �en we applied binary

thresholding with automatic detection of thresholding value using OTSU

thresholding method introduced by Otsu (1979). �is step converts any

value below the OTSU threshold value to 0 and above to 1 for each channel.

�enwe padded the image to resize it to 224x224 dimensions and inverted

them. We represented these images in PyTorch as a tensor with shape

as 3x224x224 dimensions. We then resized these tensors to suitable di-

mensions and normalized them based on the input requirements of each

neural network.�is preprocessing allows the sketches to be augmented

within the frame for training while preserving all the essential features.

During the training epochs, we applied certain image transformations

for augmenting the data. Data augmentation allows machines to learn

better by allowing us to transform the images by scaling, shifting and

rotating them.We applied the following data augmentations:

• Rotation: Random between -10 to 10 degrees

• Scaling: Random between 90% to 110%

• Perspective warping: Random between 0 to 0.2

• Normalization with imagenet stats

9.3 training

For training the neural networks, we split the dataset into training (80%),Wemodified the
hyperparameters for

eachmodel and
fine-tuned them to
obtain an optimum

classification accuracy

validation (10%) and testing (10%). We loaded the training and validation

data to the GPU and applied the preprocessing and data augmentation

strategies discussed in the previous section.

For each model in the list of 26 image and sketch classification models,

we loaded the model with pretrained weights, training and validation

data. Eachmodel has a body (backbone or feature extractor) and a head

9.4 evaluation 83

(classifier). To find the optimum learning rate, we followed the strategies

advised by Howard et al. (2020a) and I. Goodfellow et al. (2016). We used

the learning rate finder to obtain a suitable learning rate. Learning rate

finder, proposed by Smith (2017), provides a methodology for estimating

the appropriate learning rate for training neural networks without per-

forming numerous experiments. Using this estimated learning rate curve

provided by the learning rate finder, we chose the optimum learning rate

where the loss curve is on a downward slope and approaches theminimum

loss. We used this learning rate and trained each model with their feature

extractor layers frozen for few epochs with the learning rate. �is step

allows the classification head of the model to be trained before we train

the feature extractor.

Once the aforementioned preliminary training step of the neural net-

workwas completed, we unfroze themodel tomake all the layers trainable.

�en we again ran the learning rate finder to find the optimum learning

rate. Nevertheless, we also performed several empirical experiments on

eachmodel to find their appropriate learning rate and other hyperparame-

ters, instead ofmerely relying on the learning rate finder.We trained each

model until the training and validation loss values plateaued to prevent

overfitting.

After training eachmodel, we stored the trainedmodel along with its

weights as a PyTorch binary file.�ese trainedmodels with weights can be

loaded and reused for UI element sketch classification. We are also open-

sourcing the trained models along with the scripts for reproducibility and

replicability of this research and for further research applications.

9.4 evaluation

We evaluated each trained classificationmodel using the test dataset.�is We evaluation each
model with 10% of the
UISketch dataset

test dataset contains 10% of the UISketch dataset and does not contain

any images from the training or validation datasets. We applied the pre-

processing steps to the test dataset without data augmentation.

We used eachmodel one by one to predict the UI element category of

each image in the test dataset. Similar to the human recognition study, we

then compared the predictionsmade by eachmodel with the ground truth

labels of test dataset using confusionmatrix (Figure 9.1) and classification

report (Table 9.2). As a result, we calculated the accuracy, precision, recall,

and F1-Score, which we report in the next section.

84 computer recognition study

Table 9.1:UISketch test dataset prediction accuracy and top 5 accuracy of each
computational classification models along with their published year and total

number of parameters

Model name Year Parameters Accuracy Top 5 accuracy

ResNet 152 (He et al., 2015) 2015 60,261,461 91.77% 99.50%

ResNet 101 (He et al., 2015) 2015 44,617,813 90.60% 99.67%

DenseNet 201 (G. Huang et al., 2018) 2018 20,078,997 90.49% 99.39%

VGG 19 (Simonyan et al., 2015b) 2015 20,574,037 90.38% 99.50%

DenseNet 169 (G. Huang et al., 2018) 2018 14,207,381 89.93% 99.44%

Wide ResNet (Zagoruyko et al., 2017) 2017 68,951,893 89.93% 99.56%

GoogLeNet (Szegedy, W. Liu, et al., 2014) 2014 6,664,885 89.38% 99.33%

SqueezeNet v1 (Iandola et al., 2016) 2016 1,274,069 89.15% 99.22%

VGG 11 (Simonyan et al., 2015b) 2015 9,764,629 89.10% 99.28%

SqueezeNet v1.1 (Iandola et al., 2016) 2016 1,261,141 88.93% 98.94%

DenseNet 121 (G. Huang et al., 2018) 2018 8,018,837 88.93% 99.33%

ResNet 50 (He et al., 2015) 2015 25,625,685 88.88% 99.50%

EfficientNet-B2 (Tan et al., 2020) 2020 9,160,727 88.77% 99.22%

VGG 13 (Simonyan et al., 2015b) 2015 9,949,525 88.71% 99.33%

VGG 16 (Simonyan et al., 2015b) 2015 15,261,781 88.71% 99.28%

EfficientNet-ES (Tan et al., 2020) 2020 5,485,541 88.32% 99.39%

EfficientNet-B1 (Tan et al., 2020) 2020 7,841,333 88.10% 99.39%

ResNeXt (Xie et al., 2017) 2017 25,097,557 88.04% 99.39%

ResNet 34 (He et al., 2015) 2015 21,823,317 87.93% 98.94%

EfficientNet-B0 (Tan et al., 2020) 2020 5,335,697 87.93% 99.28%

EfficientNet-B3 (Tan et al., 2020) 2020 12,287,549 87.43% 99.11%

MixNet-L (Tan et al., 2019) 2019 7,383,569 87.32% 99.22%

ResNet 18 (He et al., 2015) 2015 11,715,157 87.04% 98.72%

AlexNet (Krizhevsky, 2014) 2014 2,745,173 86.26% 99.00%

Inception v3 (Szegedy, Vanhoucke, et al., 2015) 2015 5,335,697 85.71% 98.89%

DeepSketch (Seddati et al., 2015) 2015 16,912,917 81.87% 97.16%

9.5 results & discussion

Table 9.1 shows the accuracy and top 5 accuracy
1
of 26 image and sketchResNet 152model

achieves the highest
accuracy of 91.77%.
We observed that
computational

recognition errors are
caused due to the

structural similarity
between UI element

categories.

classification neural networks. Among these 26models,ResNet 152model
achieves the highest accuracy of 91.77%. Whereas, DeepSketch model
recognized UI element sketches with the least accuracy (81.87%).

As mentioned earlier, the ResNet 152 model recognized, on average,

91.77% of all UI element sketches correctly. We observed that the model

1 Top 5 accuracy is a measure to depict how often the predicted UI element category falls in

the top 5 values predicted by the model

9.5 results & discussion 85

prediction shows 7.47 standard deviation in recognition accuracy over the

21 UI element categories.�is model correctly identified all occurrences

of "Floating action button". Whereas, the "Card" category was recognized

with the least accuracy of 76.19%.

Tounderstand the impact of recognition accuracy of deep learningmod-

els for sketches created by experiencedprofessionals vs. other participants,

we split our evaluation dataset further into sketches drawn by experienced

professionals and others. As we mentioned in the paper (section 6), we

used 10% of the collected sketches (1,798 sketches) as a test dataset for eval-

uation.We further split this test dataset into 788 sketches made by UI/UX

designers&developers and 1,010 sketchesdrawnbyotherparticipants.We

evaluated each of these datasets separately with the best-trainedmodel,

Resnet 152. From this experiment, we identified that Resnet 152, which

gave 91.7% accuracy on the entire evaluation dataset, provides 92.76% ac-

curacy for sketches drawn byUI/UXdesigners and developers. In contrast,

it provides 90.99% accuracy for sketches drawn by other participants.

We further manually analyzed the sketches of both user groups. Based

on this analysis, we speculate that the model provides better accuracy for

Figure 9.1:Confusionmatrix for UI element categories on ResNet 152 predictions
vs the ground truth

86 computer recognition study

Table 9.2:Classification report of ResNet 152 model’s accuracy, precision, recall,
and F1-score

UI element category Accuracy Precision Recall F1-Score

Alert 85.88% 77.66% 85.88% 81.56%

Button 79.55% 80.46% 79.55% 80.00%

Card 76.19% 86.49% 76.19% 81.01%

Checkbox - checked 98.86% 93.55% 98.86% 96.13%

Checkbox - unchecked 94.25% 93.18% 94.25% 93.71%

Chip 76.47% 83.33% 76.47% 79.75%

Data table 92.86% 91.76% 92.86% 92.31%

Dropdownmenu 90.59% 97.47% 90.59% 93.90%

Floating action button 100.00% 95.65% 100.00% 97.78%

Grid list 98.81% 97.65% 98.81% 98.22%

Image 96.47% 96.47% 96.47% 96.47%

Label 94.19% 93.10% 94.19% 93.64%

Menu 90.59% 87.50% 90.59% 89.02%

Radio button - checked 98.84% 95.51% 98.84% 97.14%

Radio button - unchecked 95.40% 96.51% 95.40% 95.95%

Slider 96.51% 96.51% 96.51% 96.51%

Switch - disabled 96.47% 95.35% 96.47% 95.91%

Switch - enabled 96.51% 96.51% 96.51% 96.51%

Text area 89.41% 90.48% 89.41% 89.94%

Text field 82.14% 84.15% 82.14% 83.13%

Tooltip 96.47% 97.62% 96.47% 97.04%

sketches drawn by experienced professionals as they follow some draw-

ing conventions for sketching UI elements, as mentioned in section 4.1.

In contrast, the other participants tend to replicate in detail the sample

images provided during the data collection study.�erefore, the model

finds it challenging to recognize UI element sketches with more informa-

tion such as entirely written text and replicated images drawn by other

participants instead of squiggly lines and rectangles with crosses drawn

by experienced professionals.

We observed that computational recognition errors are solely caused

due to the confusion between the structural similarity betweenUI element

categories. Here, structural similarity refers to the likeness of the shape

and anatomy of the UI elements. Table 9.3 and Figure 9.2 show the UI

element categories that are most often confused due to their structural

similarities.

9.6 human vs computer recognition 87

Figure 9.2:UI element categories with structural similarities

Table 9.3:Computational detection accuracy for structurally similar UI elements

Ground truth Predicted by ResNet152 Percentage

Card Alert 16.67%

Chip Button 12.94%

Button Chip 9.09%

Alert Card 5.88%

Data table Menu 4.76%

Text field Button 4.76%

Dropdownmenu Menu 4.71%

Button Text field 4.55%

Text field Text area 3.57%

Text field Alert 3.57%

Menu Card 3.53%

9.6 human vs computer recognition

Based on the results of the recognition, we identified that the humans and Both humans and
computers have a
similar pattern of
confusing UI elements
with structural
similarities. However,
humansmostly
confuse recognizingUI
elements due to their
semantic similarity

computer have a similar pattern of confusing UI elements with structural

similarities, e.g., "Card" with "Alert" and "Chip" with "Button".

However, there are a few UI elements that are confused by computa-

tional recognition due to their structural similarities, but humans confuse

them due to their semantic similarities, e.g., "Dropdown menu" with

"Menu", and a "Text field" with "Text Area".

Since computational recognition is solely based on structural similar-

ities, there are a few UI elements that are confused by the recognition

model but are not confused by humans, e.g., a "Text field" with "Button",

"Text Field" with "Alert", and "Menu" with "Card". On the contrary, humans

confuse these above-mentioned UI elements with different UI elements

88 computer recognition study

Figure 9.3: t-SNE visualization of representative sketches of 21 categories of UI
elements from the test dataset of UISketch dataset. We have manually marked 13

clusters based on the proximity of these clusters.

based on their semantic similarities, e.g., a "Text field" with "Text Area" in-

stead of "Button" or "Alert", "Button" with "Floating Action Button" instead

of "Text field", and "Menu" with "DropdownMenu" instead of "Card". We

speculate that humans could identify specific UI elements better based

on their context or given text content.

9.7 analysis of ui element sketches

To further analyze the reasoning behind why the ResNet 152 model con-

fuses few UI element categories, we used its trained feature extractor

(backbone) and reduced the dimensionality of the test dataset images

from 3x224x224 to 1x1024px.�enwe used the t-SNE algorithm, proposed

by van der Maaten et al. (2008), to reduce the features further and plotted

them as a 2D graph (Figure 9.3). From this t-SNE plot, we can observe

9.8 summary 89

Figure 9.4: Representative images showing the activated pixel areas and the
underlying structure of all UI element categories.

that the computational classification model clusters the images based

on their structural similarities. As expected, there is no confusion based

on semantic similarities between UI elements; floating action button is

farther away from the button.

To understand the structural information and pixel density of each

UI element category, we visualized the sketches from each category of

the UISketch dataset as a representative image. To generate these repre-

sentative images, we preprocessed the UI element sketches as previously

described in the preprocessing section. For each UI element category, we

then normalized all the sketches and calculated the average value at each

pixel. Next, we scaled the averaged sketches back to an RGB image with

pixel values between 0 to 255 to obtain the representative image for each

UI element category. Figure 9.4 shows the activated pixel areas and the

underlying structure of each UI element category.

9.8 summary

In this chapter, we described our training procedure and the results of our

study on computer recognition of UI element sketches. In this study, we

trained and evaluated 26 classification DNNmodels and understood that

computational recognition errors are commonly caused due to the con-

fusion between the structural similarity between UI element categories.

�is study further revealed that ResNet 152 model identifies UI element

sketches from the test dataset with 91.77% accuracy and has not reached

human-level performance yet.�is formative study investigated the dif-

90 computer recognition study

ference between human and computer recognition of UI element sketches.

From this study, we conclude that although DNNmodels can recognise

UI sketches, it still has not reached the high accuracy of UI/UX designers.

�erefore, instead of replacing UI/UX designers, it is beneficial to auto-

mate the LoFi prototyping task to efficiently assist UI designers in their

design process while maintaining the autonomy of UI designers. In the

next part of this thesis, we discuss the first AI tool in the Blackbox Toolkit:

Akin, a UI wireframe generator.�is tool assists the UI designers before

they start their LoFi prototyping process.

10
BACKGROUND & PROPOSED SOLUT ION

Akin is a UI wireframe generator that assists UI designers before the LoFi Akin assists designers
before their LoFi
prototyping task by
generating wireframes
for a given UI design
pattern.

prototyping by allowing them to chose a UI design pattern and providing

them with multiple UI wireframes for a chosen UI design pattern (Fig-

ure 10.1). �is research aligns with the current UI design practice where,

as (Herring et al., 2009; Suleri, Kipi, et al., 2019) claims, the UI designers

search for possible design alternatives while creating a UI design, and

through Akin as AI assistant, we provide these possible UI design alterna-

tives to designers.�is part of the dissertation was published at IUI 2021

(Gajjar et al., 2021) created under my supervision based onmy research.

�is chapter briefly recaps the existing literature on UI layout generation,

emphasises the research gap in them and presents our proposed solution.

Figure 10.1: Akin is UI wireframe generator that generates UI wireframes for the
chosen UI design pattern

93

94 background & proposed solution

10.1 background

A considerable amount of literature has been published on generating

and optimising document layouts; however, only three research projects

focus on UI design and attempt to generate UI wireframes (Section 2.4).

All the research projects that generate and refine UI wireframes use either

just DNNs or a hybrid of DNNs along with classic pattern recognition

algorithms.�e initial proposal on this research domain was by Nguyen etOnly three recent
research projects focus

on UI design and
attempt to generate UI

wireframes using
DNNs.

al.. In their work-in-progress paper, Nguyen et al. proposed their vision
of generating UI layouts using Generative Adversarial Network (GAN);

however, they did not publish subsequently about their UI layout gener-

ator architecture or results. Later in 2019, J. Li et al. (2019) introduced

LayoutGAN that generates graphic, document and UI wireframe layouts

by modelling geometric relations of different types of 2D elements (such

as UI elements) present in the content.�e authors used the RICO dataset

with 5 UI elements to show the use-case of LayoutGAN in generating UI

wireframes. In the next year, Gupta et al. (2020) proposed LayoutTrans-

former, a auto-regressive self-attention network, to generate document

and UI wireframes. In contrast with LayoutGAN, this model can take an

empty or partial layout as input and generate realistic document or UI

wireframe layouts. Recent research onUIwireframegeneration is theNeu-

ral Design Network by Lee et al. (2020).�e authors constructed Neural

DesignNetwork using aGraphConvolutionNetwork (GCN) that generates

UI wireframes as layout graphs based on user constraints.

10.2 identified gaps

�e notable research gap in all three aforementioned research is that these

research projects did not evaluate the quality of the generated UI wire-

frames by user studies. . Without such user evaluation with experts (hereAll of these research
projects were not
evaluated by UI

designers.

UI/UX designers), neither the efficacy nor the utility of the UI wireframe

generation can be categorically proven. Another common research gap

between all three research is that these research train their UI wireframe

generator considering all UI designs are equal. However, UI wireframes

can be further categorised into UI design patterns, and the layout differs

vastly between two UI design patterns. UI design patterns describe a re-

occurring problem in UIs and propose a solution to that problem.�ey

are used as lingua franca to discuss UI design concepts; a given UI design
can be categorised into a UI design pattern. Without such distinction,

10.3 proposed solution 95

any generated UI wireframe cannot be applied to a problem that the UI

designer is currently solving.�erefore the generated designs fromDNNs

will be generic and cannot be used for a specific scenario.

10.3 proposed solution

To overcome these research gaps, we propose Akin, a UI wireframe gen-

erator that generates multiple UI wireframes dynamically for a given UI

design pattern. Akin assists designers before they start the UI design pro-

cess by providing themwith quick alternate designs for a given UI design

pattern. �e design flow by adding Akin is similar to the traditional UI

design process where UI designers look for existing UI design examples

for inspiration and reconstruct them as purported by (Herring et al., 2009;

Suleri, Kipi, et al., 2019).

To create Akin, we experimented with several data representation of

UI wireframe layouts and DNNmodels.�rough these empirical exper- Model: conditional
Self-Attention
Generative
Adversarial Networks

iments, we chose the SAGAN model by Zhang et al. (2019) for creating

Akin. Wemodified the SAGANmodel into a conditional SAGANwith em-

beddings and trained it to generate Android UI wireframes of a chosen

UI design pattern. Akin’s SAGANmodel is trained using a subset of the Dataset: Subset of the
Wired dataset
containing 500UI
screenshots of 5 design
patterns

Wired dataset (Chapter 7) with 500 UI screenshots of 5 design patterns:

Splash Screen, Login, Account Registration, Product Catalog, and Prod-

uct Page. To quantify the performance of Akin, To evaluate the SAGAN

model, we used the Inception Score (IS) by Salimans et al. (2016) to mea-

sure the quality of machine-generated wireframes and Fréchet Inception

Distance (FID) by Heusel et al. (2018) to measure the similarity between

machine-generated and designer-made wireframes.

Further, to fix the research gapmentioned in the previous section, we Evaluation: Two AI
metrics, three
quantitative and one
qualitative user
evaluation with
UI/UX designers

evaluated the quality of Akin-generated wireframes with 15 UI/UX design-

ers by conducting three quantitative and qualitative user evaluations. We

evaluated themodel with commonly used quantitative user evaluations to

assess image generation models: rating-preference judgment and rapid

scene categorisation. To answer RQ4, we conducted another quantitative

study with 10 UI/UX designers using the After Scenario Questionnaire, a

standard questionnaire to measure user satisfaction, along with qualita-

tive semi-structured user interviews.

In the upcoming chapter, we discuss the experiments we conducted

to finalise the final data representation of UI wireframe layouts and the

model architecture of Akin.

11
MODEL ARCH ITECTURE & DATA REPRESENTAT IONS

Recent advancements in Deep Generative models paved the way for data

generation and syntheses in various domains such as text, image, audio,

and spatial domains.Weutilized these recent advancements inAI research

to create Akin, a UI layout generator. �is chapter describes the experi-

ments we conducted with different data representations of UI wireframe

layouts and the different generative model architectures to create Akin.

Detailed information of these experiments and results are published at

Gajjar (2020) created under my supervision based onmy research.

11.1 model architectures

Generative models are a subcategory of unsupervised learning models.

Foster (2019) defines that a generative model describes, in probabilistic

terms, how a given training dataset is generated. After training such a We experimented with
four model
architectures to create
Akin

generative model, we can extract samples from it to generate new data

similar to the trainingdata.�erefore, these generativemodels, in essence,

learns andmodels a probability distribution. Deep generative models are

DNNs that are modelled for generative tasks. For creating Akin, from

our literature review on UI layout generation Section 2.4, we identified

Generative Adversarial Networks (GANs) and autoregressive models for

generating UI layouts.

11.1.1 Generative Adversarial Networks

GANs are one of the popular deep generative models proposed by I. J.

Goodfellow et al. (2014). It is made of two DNNs that are trained simulta-

neously: a generative model (G) and a discriminative model (D). During

training, (G) is pitted against the (D) where G learns to generates fake

data that is a sample of the training data distribution and D learns to

97

98 model architecture & data representations

determine whether the generated sample is from the model distribution

or the data distribution. �is adversarial training process correspondsCurrently, GANs are
one of the most
popular deep

generative models.
�ey are trained using
an adversarial process
that corresponds to a
minimax two-player
game and improves
both the models until
the generated fake

data is analogous to
the training data.

to a minimax two-player game and improves both the models until the

generated fake data is analogous to the training data.�ese GANs can be

made conditional by adding condition (C) as an input alongwith the noise

vector for both G andD.

Since its inception in 2014, researchers have created several variations

of GANs, such asDeepConvolutional GANbyRadford et al. (2016),Wasser-

stein GAN by Arjovsky et al. (2017), and Self-attention GAN (SAGAN) by

Zhang et al. (2019), for different domains and use cases.

Unlike other variations, Self-attention GAN (SAGAN) combines the

Self-Attention mechanism proposed by Vaswani et al. (2017) with DCGAN

to capture long-range dependencies in training data.�e authors claim

that, by using self-attention, the discriminator can enforce geometric

constraints globally; thus, it performs better for generating images with

geometric patterns.

11.1.2 AutoregressiveModels

Another approach in deep generative models is autoregressive DNNs. In

general, an autoregressive statistical model predicts future values based

on the given past values. Similarly, autoregressive DNN architectures use

neural network architectures in autoregression task.

Oord et al. (2016) proposed PixelCNN that uses such autoregressiveAutoregresive models
such as PixelCNN
uses convolutional
layers to predict the
next pixel given a
current context of

neighbouring pixels

connections tomodel images pixel by pixel. By this procedure, the authors

decompose a given training data into a product of conditionals. PixelCNN

uses Convolution Neural Networks (CNN) and specializes in image gen-

eration task. Salimans et al. (2016) simplified PixelCNN, improved it’s

performance and proposed PixelCNN++. Unlike PixelCNN, their model

uses a discretized logistic mixture likelihood on the pixels, among other

modifications, to generate better quality images.

Similarly, Gupta et al. (2020) proposed another architecture using an

auto-regressive self-attention network called LayoutTransformer to gen-

erate document and UI wireframes.�is model uses Transfomer-Encoder

architecture to generate layouts.�e novelty in this approach is that, once

trained, this model can take an empty or partial layout as input and gener-

ate document or UI wireframe layouts.

�e goal of Akin is to generate multiple UI wireframes for a given UI

design pattern.�erefore, the generative models we create must be con-

11.2 data representations 99

ditional so that they canmodel a UI layout similar to the given UI design

pattern.�erefore, we modified any chosen architecture into conditional

generative models.�e upcoming section describes the experiments we

conducted for creatingAkinwith amodified conditional versionofSAGAN,

PixelCNN++, and transformer-encoder model architectures using two

different data representations.

11.2 data representations

Apart from the differences in architectures in deep generative models,

the data representation they use to train or evaluate also differs within We experimented with
two data
representation of UI
wireframe layouts to
train and evaluate
Akin

them; thus, these models enable us to use them in different domains

such as spatial, audio, and image. To address RQ2, we experimented by

representing UI wireframe layout in spatial and image domain to train

GANs, PixelCNN++, and transformer-encoder models.

11.2.1 Image Domain: Semantic Images

We extended the initial idea by T. F. Liu et al. (2018) on representing layout

as semantic images. In their research, they created semantic images with

two colours to represent textual and non-textual elements.�ey used this

Figure 11.1: Sample UI screenshot for each of the 5 UI design pattern in theWired
dataset along with their semantic images

100 model architecture & data representations

data to successfully train a variational auto-encoder model to reduce the

dimensions of a given UI screenshot.

Following their footsteps, we represent a UI wireframe layout as a se-We transform aUI
wireframe annotation
to a semantic image by

selecting a unique
colour to represent
each UI element

bounding box in the
given wireframe

mantic image with a unique colour representing each UI element bound-

ing box.We used theWired dataset of UI wireframe layouts Chapter 7 to

train Akin.�is dataset contains 2,751 UI wireframes annotated with 100

different semantic UI element categories. We chose 500 UI wireframes of

5 UI design patterns with 28 commonly occurring semantic UI element

categories in a UI wireframe layout from this dataset for training and eval-

uation.�erefore, to create a semantic image of these 500 UI wireframes,

we sampled 28 unique colours as 3D vectors in an RGB colour space with

near maximum possible L2 distance. In addition, wemapped the pair of

colours with the largest L2 distance to UI elements that are commonly

occurring near each other. Using this UI element - colour mapping, we

converted the UI wireframe annotations to semantic images. Figure 11.1

shows sample semantic images for different UI design patterns.

We used these semantic images of UI wireframes for training different

model architectures such as SAGAN and PixelCNN++.Wemodified both

these models into a conditional model, where generator (G) takes two in-

puts: category of UI design pattern and a noise vector, and discriminator

(D) takes two inputs: category of UI design pattern and semantic image

with 128x128 dimensions. From these training experiments, we identified

that the SAGAN model performed better than the PixelCNN++ model,

Figure 11.2: Samples of semantic UI wireframes generated by trained SAGAN
and PixelCNN++model for each of the 5 UI design pattern

11.2 data representations 101

where the latter did not generate anymeaningful semantic images. In con-

trast, the SAGANmodel generated semantic image for a given UI design

pattern with adequate quality. Figure 11.2 shows a samples of generated

semantic UI wireframes by trained SAGAN and PixelCNN++models. �e

issue with this approach is that the generated semantic images had colour

leaking andmerging between two spatially close UI elements.�erefore,

we added an algorithmic post-processing step to identify the UI elements

from the semantic images.

11.2.2 Spatial Domain: Layout Vectors

J. Li et al. (2019) proposed another approach of representing a UI wire-

frame layout as a vector list of constituent UI element categories and their

corresponding location and dimension. �erefore, if a deep generative

model learns this information and generates a similar representation, it

can be easily converted back into a UI wireframe. However, one issue with We represent UI
wireframe layout as a
series of vectors, each
containing
information of
constituent UI element
categories and their
corresponding location
and dimension

this approach is that each UI wireframe can contain a different number of

constituent UI elements.�erefore, to make the size of the input vector

uniform,we have fixed amaximumnumber of UI elements per screen (N)

and fill the rest with empty vectors. As per our exploratory data analysis

of theWired dataset, we setN as 45, the maximum possible UI elements

present in a screen in the dataset.

Similar to the previous data representation approach, we chose the

same 500 images with 28 categories of UI elements. Using a script, we

converted all the UI wireframe annotations to the layout vector represen-

tation. We padded the UI wireframes that contain a count of constituent

UI elements less thanNwith an empty UI element category "Other", rep-

resented as 0.

Figure 11.3: Sample layout vector representation of a login UI design pattern

102 model architecture & data representations

�is layout vector contains all the constituent UI elements in sequence

from top-left to bottom-right. Each constituent UI element and their

bounding box is represented asV as described in Equation 11.1.�us, a UI

wireframe is represented as [V0,V1, · · · ,VN] as show in Figure 11.3.

Vi = [ci, xi, yi, wi, hi] (11.1)

where:

V = representation of a constituent UI element in a UI wireframe

c = one-hot vector of the category of UI element (0-28)

x = left-most position of the bounding box

y = top-most position of the bounding box

w = width of the bounding box

h = height of the bounding box

We used this layout vector representation of the UI wireframes to train

a modified conditional transformer-encoder model. However, unlike gen-

erator models in GANs, which takes a noise vector, a class label as input,

this model also requires the number of UI elements to generate in the

UI wireframe as input. Moreover, this model did not generate meaning-

ful layouts. �us, the only advantage of this model over others is that it

generates the UI wireframe in the spatial domain and therefore does not

require any post-processing.

Figure 11.4: Samples of layout vector UI wireframes generated by trained
Transformer-Encoder model for each of the 5 UI design pattern

Based on these empirical trials, we chose Self-Attention GAN (SAGAN)

architecture for UI wireframe generation, which generatedmeaningful

layouts. In the upcoming chapter, we describe the implementation details,

configuration, and training process of the Akin: UI wireframe generator.

12
IMPLEMENTAT ION

As discussed in the previous chapter, after several experimentswithmodel

architectures and data representations, we chose the Self-Attention Gen-

erative Adversarial Network (SAGAN) for creating Akin. Additionally, we

modified the SAGANmodel architecture andmade it conditional using

an embedding layer.�is trained model generates a UI wireframe for a

given UI design pattern.�is chapter briefly explains the implementation

steps in creating Akin.

12.1 implementation approach

Akin is a UI wireframe generator that aims to assist designers before From empirical
experiments, we chose
the Self-Attention
Generative
Adversarial Network
(SAGAN) for creating
Akin

they start their design process by generating multiple UI wireframes for

a chosen UI design pattern. �erefore, we modified the SAGAN model

architecture to accept an additional input (C) representing one of the five

chosen UI design patterns: Splash Screen, Login, Account Registration,

Product Catalog, and Product Page.

Upon literature review,we identified twopossible alternatives of adding

generation conditions to a GAN architecture: adding condition as addi-

tional dimension as proposed byMirza et al. (2014), or adding an embed-

ding layer of the condition then concatenating with input as proposed by

Denton et al. (2015). After few empirical experiments, we chose to add

an embedding layer to both generator (G) and discriminator (D) of the

SAGANmodel architecture to make it conditional.

We followed the traditional GANmodel training pipeline outlined by

I. Goodfellow et al. (2016) by training generator and discriminator in al-

ternate steps then updating their respective gradients. For training the

discriminator to classify real and fake semantic UI wireframe images, we

used theWired dataset (Chapter 7).

103

104 implementation

12.2 datasets

�eWired dataset contains 2,751 UI wireframes annotated with 100 differ-

ent semanticUI element categories and classified into five commonly used

UI design patterns in an e-commerce application: Splash Screen, Login,

Account Registration, Product Catalog, and Product Page. To reduce class

imbalance, we sampled 500 UI wireframes of 5 UI design patterns (100

for each UI design pattern) from the Wired dataset with 28 commonly

occurring semantic UI element categories for training and evaluation.

We chose to train Akin’s SAGAN model in the image domain usingWe trained Akin using
500 semantic images
of 5 commonly used UI
design patterns in an

e-commerce
application

semantic UI wireframe images from our prior experiments. We followed

the steps outlined in the previous chapter (Section 11.2.1) to convert the

500 chosen UI wireframes from theWired dataset into semantic images.

Further, we resized these semantic images to 128x128x3 dimensions to

train the discriminator model to distinguish real and fake semantic UI

wireframe images (Figure 12.2, A).

12.3 implementation details

To create Akin, we implemented a conditional SAGANmodel using Ten-

sorflow 2.0 library created by Abadi et al. (2015). �is model contains two

neural networks: generator (G) and discriminator (D). Figure 12.1 shows

the Akin’smodel architecture of generator (Figure 12.1a) and discriminator

(Figure 12.1b).

�egenerator (G) takes a randomnoise (size = 128) and an embedding

of UI design pattern category (size = 10) as input (Figure 12.2, B).�ese

inputs are then concatenated as passed to the hidden layers of the DNN.

�e hidden layers consist of 5 blocks, each containing three layers: a Spec-

tral 2D transpose convolutional layer followed by a Batch Normalization

layer and a Rectified Linear Unit (ReLU) activation layer. After the third

and the fifth block, we add a Self-Attention layer. �e final output layer

is a Spectral 2D transpose convolutional layer which outputs a generated

semantic image of UI wireframe (Figure 12.2, C).

�e discriminator (D) takes an embedding of UI design pattern cat-

egory (size = 50) and either a semantic image of UI wireframe from

the training dataset (128x128x3) or a machine-generated image from the

generator (128x128x3) as input. Similar to G, these inputs are then con-

catenated and passed to the hidden layer inD.�ese hidden layers consist

of 5 blocks, each containing two layers: a Spectral 2D convolution layer

12.3 implementation details 105

(a)Architecture of Akin’s Generator model

(b)Architecture of Akin’s Discriminator model

Figure 12.1:Architecture of Akin’s conditional SAGANmodel

followed by a Leaky ReLU activation layer. Similar to G, after the third and

fifth block, we add a Self-Attention layer and finally a Spectral 2D con-

volutional output layer.�e output layer is flattened to obtain a boolean

discriminator output, predicting whether the input semantic image is

machine-generated or designer-made.

106 implementation

Figure 12.2:Akin is a UI wireframe generator trained with the semantic repre-
sentations of UI images of 5 different UI design patterns from theWired dataset.

Akin’s trained generator model (in the pale red box) generates different UI wire-

frames for a chosen UI design pattern.

12.4 configuration & training process 107

12.4 configuration & training process

With further empirical experiments, we finalized the hyperparameters

for training Akin’s SAGANmodel as described below.

• Image rescaling: Rescaled to a square with 128 pixels on each side

• Optimizer: Adam optimizer with β1 = 0.0 and β2 = 0.9

• Generator Learning rate: 1e−3

• Discriminator Learning rate: 4e−3

• Gradient Penalty (λ) : 10.0

For training the conditional SAGANmodel, we set the training batch

size to 16 to fit the available GPU memory. We neither preprocess nor

augment the semantic images for training.We set up the training for 48

hours and stopped training at 7,000 epochs when the generated semantic

images stabilized. For transparency and replicability of this research, we

have open-sourced the codebase
1
.

12.5 post processing steps

As our SAGAN model’s output is a semantic image (Figure 12.2, C), we

post-process it to convert it to a UI wireframe (Figure 12.2, D). To achieve

this, we created a script using OpenCV library created by Bradski (2000)

in Python.

As afirst step, this script upsamples the generated semantic image from To convert the
generated semantic
image to UI
wireframe, we created
a post-processing
script

128x128x3 to 640x360x3.�en, using OpenCV algorithms, this script sep-

arates the generated semantic image into individual colour channels, ap-

plies an unsharp mask by subtracting the image with a Gaussian blur,

thresholds the image using zeros, and finally merges all the channels into

a single grayscale image. Further, the script runs OpenCV’s contour detec-

tion algorithm on the obtained grayscale image to detect and extract all

possible bounding boxes. By computing the mode of colour within these

bounding boxes, the script also identifies the category of UI element.�us,

the script converts a generated semantic image to a list of UI element cat-

egories with their corresponding bounding box location and dimension.

Finally, we use the semantic image annotation from the previous step by

1 https://github.com/vinothpandian/akin-generator

https://github.com/vinothpandian/akin-generator

108 implementation

Figure 12.3:Conversion process of sample Akin generated semantic images to UI
wireframes

stitching the appropriate UI element at their bounding boxes to generate

a UI wireframe as shown in Figure 12.3.

With this training process, we obtained the trained generator model

(G) that can be given a noise vector of size 128 with a UI design pattern

category to obtain multiple UI wireframes.�is model (G) is our UI wire-

frame generator: Akin. Further to evaluate Akin’s generative model, we

used the Inception Score (IS) proposed by Salimans et al. (2016) to mea-

sure the quality of machine-generated wireframes and Fréchet Inception

Distance (FID) proposed by Heusel et al. (2018) to measure the similarity

betweenmachine-generated and designer-made wireframes. We discuss

the evaluation process in the next chapter.

13
EVALUAT ION

Tomeasure the quality of UI wireframes generated by Akin, we first evalu-

ated it using quantitative metrics commonly used in GAN research.�is

chapter introduces the evaluation metrics we used, describes the evalua-

tion methodology we followed, and the discusses evaluation results of the

Akin: UI wireframe generator.

13.1 metrics

Since the advancements in deep generative models, researchers have pro-

posed several ways to measure the quality of the generated data appro-

priate for different domains. As Akin operates on the image domain by

generated UI wireframes, we chose Inception Score (IS) and Fréchet In-

ceptionDistance (FID) to evaluate Akin’s generatormodel after a literature

review. In this section, we introduce both these metrics.

13.1.1 Inception Score

Inception Score (IS) proposed by Salimans et al. (2016) is one of the most

widely usedmetrics for evaluating the GANmodels. It measures the di- Inception Score
measures the quality
of machine-generated
wireframes. A higher
score is preferred

versity and quality of the generated samples. To measure IS, we require a

pre-trained classification neural network, such as the Inception network

proposed by Szegedy,W. Liu, et al. (2014), which acts as a feature extractor.

�is feature extractormust be trained to classify the images in the dataset,

here UI wireframes fromWired dataset, to capture the distinct features

of different classes and predict the probability of a given sample belong-

ing to a particular class. Using this feature extractor, we can calculate

the inception score by measuring the mean KL divergence between the

conditional label distribution p(y|x) and the marginal distribution p(y)

obtained from the dataset used to train the feature extractor. Salimans

109

110 evaluation

et al. (2016) claims that IS shows a reasonable correlation with the quality

and diversity of generated images. However, one major limitation of IS is

that it fails to detect whether a model is agnostic to mode collapse, where

the model can generate only one image per class.

13.1.2 Fréchet Inception Distance

Fréchet Inception Distance (FID), introduced byHeusel et al. (2018), quan-

tifies the quality of generated samples by comparing it with the real data.Fréchet Inception
Distance (FID) to

measure the similarity
between

machine-generated
and designer-made
wireframes. A lower
score is preferred

Similar to IS, FID uses a pre-trained classification neural network to mea-

sure the quality of generated samples. It uses the output of the penulti-

mate layer in the Inception model to summarise the given data (either

real or fake) into a continuous multivariate Gaussian.�e FID score is the

Wasserstein-2 distance—the difference between the real and fake Gaus-

sians. Heusel et al. (2018) asserts that FID is more robust than IS and also

consistent with human judgements. Another advantage of FID over IS

is that FID can detect mode collapse; therefore, a model that generates

only a single image for a given class could have a high IS score, but FID

captures this failure, and its score worsens for less diverse generators.

13.2 methodology

Both the evaluationmetrics mentioned above requires a trained classifica-

tion DNN for evaluating Akin’s generator model. �erefore, we trained an

Inception v3model to classify the UI wireframes into 5 UI design patterns:

Splash Screen, Login, Account Registration, Product Catalog, and Product

Page.

Wemodified the Inceptionmodel from Tensorflow 2.0 library for the

classifier. As the existing model from the Tensorflow model zoo is pre-Wefine-tuned the
InceptionModel with
UI wireframes from
theWired dataset for
evaluating Akin’s IS

and FID

trainedwith the ImageNetdataset,we reinitialised theweights and trained

the classifier from scratch only with UI wireframes.�e output of our UI

generator is a UI wireframe after applying the post-processing steps. To

make the classifier effective on these UI wireframes, we applied the same

post-processing steps by taking UI layout annotations from the Wired

dataset and converting them to UI wireframes similar to generated UI

wireframes. With this step, we obtained a dataset of 2,751 UI wireframes

of 5 UI design patterns. Further, we split this dataset into 90% for training

and 10% for evaluation.

13.2 methodology 111

We removed the existing model head from the Inception model and

added a softmax layer with five outputs to enable the model to classify

UI wireframes into 5 UI design patterns. We used an RMSprop optimiser

with an initial learning rate of 1e−3
, staircase exponential learning rate

decay, and gradient clip of 2.0. To measure the training loss, we used a

sparse categorical loss function. Finally, we trained thismodel with 90% of

the 2,751 UI wireframes for 200 epochs. As the UI wireframes of 5 classes

were not distributed equally, we also added class weights to tackle this

class imbalance.�is Inception model provides an accuracy of 97% on the

10% UI wireframes evaluation dataset, which was not used during the

training. We used this Inception model to measure the IS and FID scores.

13.2.1 Results & Discussion

Using Akin’s generator, we generated a batch of 100 UI wireframes with

20 UI wireframe for each UI design pattern.�en, we used the trained In-

ceptionmodel to classify these generated images into 5 UI design patterns

and obtained the prediction probability from this model. Finally, using

this information from the Inception model, we applied the respective

formulae to obtain IS and FID scores.

Akin’s generative model provides

• Inception Score: 1.63 (SD=0.34)

• Fréchet InceptionDistance: 297.19

In general, a higher IS score is preferred, whereas a lower FID is pre-

ferred. However, as the existing research on UI layout generation does

not provide a baselinemetric, we could not compare the IS and FID scores

with other UI layout generation models. Hence, to further analyse the

quality of UI wireframes generated by Akin and understand the designer’s

satisfaction while using Akin, we conducted three quantitative user evalu-

ations and a qualitative semi-structured interview; these are described in

the next chapter.

14
USER EVALUAT ION

In the previous chapter, we evaluated Akin’s generator model with com-

monlyusedGANquantitativemetrics. Further,we conducted threequanti-

tative and qualitative studies to understand Akin generated UI wireframe

quality and designer satisfaction in using Akin before starting their LoFi

design process.�is chapter explains these studies successively.

14.1 user evaluation of ui wireframes

To understand the quality of the wireframe from a designer’s perspective,

we aimed to evaluate Akin generated UI wireframes with UI/UX design- We conducted two
standard quantitative
studies to measure the
quality of generated
UI wireframes

ers.Upon reviewing the literature review, we identified two appropriate

standard quantitative studies tomeasure the quality of generated UI wire-

frames: rating-preference judgment and rapid scene categorization.�is

section discusses these studies briefly.

14.1.1 Participants

We used purposive and snowball sampling to recruit 15 participants for

these studies: 7 UI/UX designers and 8 HCI grad students (9 male and 6

female). �ese participants were between 23 to 35 years of age and had 1 -

5 years of prior prototyping experience (Mean = 1.2, SD = 1.27).

14.1.2 Study Design Decisions

Prior research by Tractinsky et al. (2006) and Tuch et al. (2012) shows

that humans can report characteristics of a design at a short glance in

the range of 50 milliseconds (ms) to 500ms. Tuch et al. (2012) noted that

even at a short glance of 17 ms, users could make snap judgements of the

design. Further, Tractinsky et al. (2006) noted that the users rating were

113

114 user evaluation

correlated for 50ms and 500ms.�erefore, we chose a rapid scene catego-

rization study. Further,we aimed tomeasure the quality of Akin generated

UI wireframes and compare them with designer-made UI wireframes;

hence, we also decided to conduct a rating-preference judgement study.

We combined these investigations into two phases of a user study.

14.2 study design & measurements

In the first phase of the study, we started with rapid scene categorization.In rapid scene
categorization, we
aim to understand

whether designers, in
a snap judgement,
perceive a given UI

wireframe was
Akin-generated or
Designer-made

In this study, we flashed Akin-generated and designer-made wireframes

in a random order to the participants for 500 ms, 1,500 ms, 2,750 ms,

4,000ms, and 5,000ms intervals.�e independent variables in this study

are the UI wireframe image and the number of milliseconds the UI wire-

frame image is shown to the participant. �e dependent variable is the

designer’s choice of whether the shown UI wireframe is designer-made

or Akin generated.

�e second phase of the study uses the same UI wireframe but shown

indefinitely to conduct a rating-preference judgment study. In this study,In rating-preference
judgment study, we
aim to understand

designer’s subjective
rating of

Akin-generated
wireframes and

whether it contains all
necessary UI elements

we asked the participants to provide their subjective rating regarding the

quality of the wireframe using a Likert scale of 1-5 and whether they think

the wireframe contains all essential UI wireframes for the given UI design

pattern. �e independent variables in this study are the UI wireframe

image and its UI design pattern type. �e dependent variables are the

subjective rating of the given UI wireframe and their opinion of whether

the UI wireframe contains all essential UI elements.

Each participantwas shown 50UIwireframes: 25 designer-made and 25

Akin-generated. For each UI wireframe, we asked the following questions.

1. In your opinion, was this wireframe created by a human or a ma-

chine?

2. Howwould you rate the quality of this wireframe on a scale of 1-5?

3. Do you think the login wireframe contains?

• no essential UI elements

• some essential UI elements

• all the essential UI elements

• all the essential UI elements and some extra

14.2 study design & measurements 115

(a)Before the participant clicks "ShowWireframe for 500ms" but-
ton, only a UI wireframe placeholder is shown

(b)After the participant clicks "ShowWireframe for 500ms" button,
the UI wireframe is flashed for 500milliseconds and after partic-

ipant answers question 1, they can again click "ShowWireframe"

button to show the wireframe indefinitely

Figure 14.1: Screenshots of the web application to conduct rapid scene catego-
rization and rating-preference judgment studies before and after the participant

clicks "ShowWireframe for 500ms" button

14.2.1 Apparatus

To conduct these studies, we uniformly sampled 25 designer-made images We created a web
application
questionnaire to
conduct the study
remotely

used in the training dataset of the Inceptionmodel, and 25 Akin generated

UIwireframes from the evaluation study described in the previous chapter.

EachUI design patternwas represented in these 50 UIwireframes equally:

5 designer-made UI wireframes and 5 Akin generated UI wireframes for

each UI design pattern.

To conduct the studies described in the previous subsection, we created

a web application
1
. Each screen in the web application is divided into

two sides. �e left side of the web application contains a UI wireframe

placeholderwith a button that will show aUIwireframe for thementioned

1 https://uisketch-survey.web.app/

https://uisketch-survey.web.app/

116 user evaluation

milliseconds on the placeholder when clicked. On the right side of the

web application, we display the UI wireframe type and a formwith three

questions described in the previous subsection.

Figure 14.1 shows the questionnaire before and after the "ShowWire-

frame from 500ms" button is clicked. Only a UI wireframe placeholder is

shown before the participant clicks the "ShowWireframe for 500 ms" but-

ton. After the participant clicks the "ShowWireframe for 500ms" button,

the UI wireframe is flashed for 500ms, and after the participant answers

the first question, they can again click the "ShowWireframe" button to

show the wireframe indefinitely.

14.2.2 Procedure

Due to the ongoing corona crisis, this study was conducted remotely via

video conferencing. Before the study, we explained the purpose of the

study and requested the participants to provide informed consent. Once

the participant agreed, we provided themwith the web application link

and asked them to share their screen during the course of the study.

Before the study started, we showed them a sample screen to get com-

fortable with the study setup of clicking on "Showwireframe for givenms"

and then "Showwireframe" to show it indefinitely. Once the participant

agreed to proceed further with the study, the web application created

a secure key for authentication and stored it in their browser’s internal

database.�is step helps restore the web application from the point the

participant left off in case of internet disconnection.

During the study, the participants were shown all 50 UI wireframes in

random order. For each UI wireframe, the participant was shown a screen

with only the UI wireframe placeholder and a button that allowed them

to show the wireframe for one of 500ms, 1,500ms, 2,750ms, 4,000ms,

and 5,000ms intervals. Once the participants clicked this button, the UI

wireframe is flashed for the specifiedmilliseconds.�en the participant

was asked to answerwhether theflashedUIwireframewasdesigner-made

or Akin generated. Once the participant answered this question, we asked

them to click on the "Show wireframe" button to display it indefinitely.

Here, the participant was allowed to examine the UI wireframe for an

indefinite time and asked to rate the quality of the showUIwireframe and

their opinion on whether it contains all essential UI elements. During this

phase, we did not allow the participant to modify their answer to the first

question. Likewise, we asked the participants to proceed with all 50 UI

14.2 study design & measurements 117

wireframes. On average, participants took around 1 hour to complete the

study.

14.2.3 Results & Discussion

We analyzed the results of both rapid scene categorization and rating-

preference judgment studies to understand the quality of Akin generated

wireframes and compare themwith designer made UI wireframes. In the

upcoming sections, we report the results of each study and discuss our

inference from the results.

14.2.3.1 Rapid scene categorization

From the study results, we observe that for intervals less than 2,750ms, Rapid scene
categorization result
shows that the
designers could not
distinguish
Akin-generated
wireframes from
designer-made
wireframes on a quick
look

the participants identified Akin-generated wireframes as designer-made

~50% of the time, similar to a fair coin toss probability.�is result shows

that the designers could not distinguish Akin-generated wireframes from

designer-made wireframes on a quick look. Figure 14.2 (a, b, c) visualizes

this result using a confusionmatrix.

For 4,000 ms and 5,000 ms intervals (Figure 14.2 d, e), we observe

that the participants could distinguish Akin-generated UI wireframes

from designer-made wireframes to a certain extent. Figure 14.3 further

establishes this result that, on snap-judgement, participants classify Akin-

generated UI wireframes as designer-made but given time, they could

distinguish them.

Figure 14.2:Confusionmatrix for rapid scene categorization study comparing
participants’ accuracy of identifying a given UI wireframe as Akin-generated or

designer-made

118 user evaluation

Table 14.1:Results of rapid scene categorization study across all five intervals

Created by Identifed as Time Interval (ms)

500 1,500 2,750 4,000 5,000

Designer Designer 0.50 0.51 0.51 0.43 0.40

Akin 0.50 0.49 0.49 0.57 0.60

Akin Designer 0.56 0.49 0.49 0.49 0.38

Akin 0.43 0.51 0.51 0.51 0.62

Figure 14.3: Percentage of Akin-generated UI wireframes classified by the partic-
ipants as designer-made for the given UI wireframe presentation time intervals

Surprisingly, we can also notice that, when given 5,000 ms, the par-

ticipants also identify designer-made UI wireframes as Akin-generated

wireframes. To understand this further, we discussed the results with

participants later. From this discussion, we understood that participants

identified Akin-generated wireframes only when their alignment was

slightly inexact than designer-made wireframes. When given more time,

the participants could not make a confident decision, and therefore some

assumed designer-made wireframes as Akin-generated.

Overall, this study shows that the participants could not confidently

distinguish Akin-generated wireframes from designer-made wireframes.

Table 14.1 summarizes the results of this study across all time intervals.

14.2.3.2 Rating-preference judgement

From the results of this study, summarized in Table 14.2, we conclude that

the ratingofAkin-generatedwireframes (Mean = 2.98, SD = 0.08) is ap-

proximately equal to thedesigner-madewireframes (Mean = 2.90, SD =

0.11) for all UI design patterns.

14.2 study design & measurements 119

Table 14.2:Results of rating-preference judgement study for all UI design pattern
types

UI design pattern Akin-generated Designer-made

Splash screen 2.95 2.82

Login 3.01 2.95

Account Registration 3.06 2.75

Product Catalog 3.02 2.97

Product Page 2.86 3.00

Mean 2.98 2.90

SD 0.08 0.11

In general, for Splash, Login, and Account creation screens, the par-

ticipants prefer Akin-generated UI wireframes over designer-made wire- Rating preference
judgment results show
that users rate the
Akin-generated UI
wireframes as good as
designer-made
wireframes

frames. However, for the Product Catalog and Product Page, the partici-

pants’ preference was much closer.

From Figure 14.4, we can see that the distribution of the subjective

participant rating for different UI design patterns of designer-made UI

wireframes is similar to the distribution of ratings of Akin-generated UI

wireframes.

Figure 14.4:Distribution of participants’ subject rating of Akin-generated and
designer-made UI wireframes for all UI design pattern types

In addition to the subjective rating, we also asked the participants to

express their opinion on whether the UI wireframe shown contain all es-

sential UI elements. FromTable 14.3 Approximately 76%of the participants

consider that Akin-generated UI wireframes contain some to all necessary

UI elements. Only ~16% of the participants believe that the Akin-generated

UI wireframes contain no essential UI elements. Table 14.5 visualizes the

distribution of participants and their choices during this study for each

UI design pattern type.

�ese two studies confirm that the quality of UI wireframes generated

by Akin is adequate for usage in the further prototyping process. In ad-

120 user evaluation

UI Design Pattern Type % of Participants

None Some All Extra

Splash screen 8.00 44.00 34.67 13.33

Login 8.00 40.00 33.33 18.67

Account Registration 5.33 37.33 34.67 22.67

Product Catalog 9.09 38.96 32.47 19.48

Product Page 6.58 51.32 32.89 9.21

Total 7.94 42.33 33.60 16.14

Table 14.3: Percentage of partici-
pants who considered whether Akin-

generatedUIwireframes of givenUI

design pattern type contains all es-

sential UI types

Figure 14.5: Distribution of par-

ticipants who considered whether

Akin-generated UI wireframes of given

UI design pattern type contains all

essential UI types

dition to this study, we aim to measure user satisfaction using Akin to

generate UI wireframes before a designer starts their LoFi prototyping

process. �erefore, we conducted a user satisfaction study using the After

Scenario Questionnaire (ASQ). We discuss this study and its results in the

upcoming section.

14.3 user satisfaction study

From the rapid scene categorization and rating-preference study, we un-

derstood that Akin generates UI wireframes with acceptable quality. To

further understand designer satisfaction while using Akin, we conducted

a quantitative and qualitative study. To conduct this study, we deployed

the Akin UI wireframe generator as a web API and created an Adobe XD

plugin to display the generated UI wireframes.�is section explains the

study setup, participants, methodology, and result.

14.3.1 Web API & Adobe XD plugin

A key focus of Akin is to provide a modular and reusable interface to gen-We created a web API
for Akin to create a

modular and reusable
interface

erate UI wireframes and support designers before the LoFi prototyping

process. To achieve this, we created aWeb API to providing a user-friendly

abstraction and access to Akin’s generator model. We wrote this API in

Python using PyTorch and FastAPI frameworks.

�isWeb API
2
accepts a UI Design pattern type in the HTTP request.

�ispattern type canbeoneof the followingfivevalues: login,account_creation,
product_listing, product_description, and splash. �e API triggers Akin’s gen-

2 https://akin.blackbox-toolkit.com/

https://akin.blackbox-toolkit.com/

14.4 methodology 121

erator model, generates six UI wireframes and responds with a list of UI

element categories and their location, dimension in JSON format. We

have limited to six UI wireframe generation due to the server capacity.

We utilized this Web API and implemented a plugin for Adobe XD
3
.

Adobe XD is one of the popular free-to-use UI prototyping tools. We cre-

ated this plugin using Typescript. �is plugin accepts a UI design pattern

as input and calls theWeb API to generate UI wireframes for the given UI

design pattern input.�en, it renders the wireframes on the prototyping

tool, which can further be edited and reused in Adobe XD by the UI de-

signer. Figure 14.6 shows a screenshot of the Akin plugin and its results in

the Adobe XD prototyping tool.

14.4 methodology

To assess the designers’ satisfaction in utilizing AI before their traditional

prototyping process by generating UI wireframes, we conducted a quanti- We used the standard
After-Scenario
Questionnaire (ASQ)
for measuring user
satisfaction in using
Akin

tative study using After-Scenario Questionnaire (ASQ), created by Lewis

(1991b), followed by semi-structured interviews (15 min) to obtain qualita-

tive feedback.�e ASQmeasures user satisfaction on the following three

scales.

q1 Ease of completing the tasks

q2 �e amount of time it took to complete the tasks

3 https://www.adobe.com/products/xd.html

Figure 14.6: Screenshot of Akin plugin and the generated wireframes in Adobe
XD prototyping tool

https://www.adobe.com/products/xd.html

122 user evaluation

q3 �e supporting information provided while completing the tasks

14.4.1 Participants

We used purposive and snowball sampling to recruit 10 UI/UX designers

(5 male and 5 female). �e participants were between 24 to 32 years of

age and had 1 - 6 years (Mean = 2.2, SD = 1.86) of prior prototyping

experience.

14.4.2 Scenario & tasks

�e participants were given a scenario to interact with the Akin plugin

implemented in Adobe XD to generate LoFi prototypes and then use them

to create three screens of an e-commerce application.�eywere instructed

to complete the following three tasks.

1. Use Akin plugin to generate 3 UI screens (e.g. Login, Product Page,

and Product Description).

2. Choose preferred UI screens and correct them if necessary

3. Connect the chosen screens into a UI prototype

We asked participants to generate as many UI wireframes as preferred

until they are satisfied during this study. Task 1 was randomized with a

different set of screens for different participants. Also, keeping the flow of

prototyping fidelity transformation in mind, we did not limit designers

adding or removing UI elements to the generated screens.

14.4.3 Material & Apparatus

Participants performed the aforementioned tasks remotely.We connected

the participants via video conferencing and provided them access to our

computer, which already contains Adobe XDwith Akin plugin installed.

14.4.4 Procedure

Due to the ongoing COVID-19 pandemic, we conducted this study re-Study was conducted
remotely with screen

sharing
motely via video conferencing. Once the participant agreed to participate

in the study, we acquired their informed consent and then invited them to

14.4 methodology 123

a virtual meeting. Before the study, we briefed the participants about the

study’s purpose and the assigned task.�en, participants were given time

to explore various features of the Akin plugin and Adobe XD features to

familiarize themselves with the environment and test the remote control

setup.

After this brief exploration period, participants performed the assigned

tasks and provided feedback using a think-aloud protocol. Once the par-

ticipant completed the tasks, they were asked to fill the ASQ. On average,

participants took around 15 minutes to complete the tasks and fill the

questionnaire. After the study, we conducted semi-structured interviews

(~15mins) to understand the participant’s view on the AI assistance before

LoFi prototyping approach and better understand and interpret the ASQ

results.

14.4.5 Results & Discussion

Akin received an above-average satisfaction level for all three questions in

the ASQ: ease of completing the tasks (4.6), the amount of time it took to

complete the tasks (5.7), and the supporting information provided when

Table 14.4: Results of the ASQ study with participant’s prior experience in UI
prototyping

ID Prototyping experience Q1 Q2 Q3

(in years)

P1 4 5 7 5

P2 2 3 6 4

P3 1 5 6 6

P4 2 5 5 4

P5 1 4 7 5

P6 1 5 5 6

P7 4 4 5 4

P8 1 4 6 5

P9 6 5 4 4

P10 1 6 6 7

Mean 4.6 5.7 5.0

SD 0.84 0.95 1.05

124 user evaluation

completing the tasks (5.0). Table 14.4 summarizes the ASQ score from

each participant along with their UI prototyping experience.Akin received an
above-average

satisfaction level for
all three questions in

the ASQ

We further analyzed the correlation between the experience of the UI

designer and their ASQ satisfaction score. Unlike the ordinal values of the

7-point Likert scale in ASQ, the prototyping experience of a UI designer

is on the ratio scale. �erefore, we converted the experience to an ordi-

nal scale using average ranking and used rank correlation coefficient by

Spearman (1904) to measure the correlation between them.

Overall, these results show a negative correlation between the years ofNovice users were
more satisfied using

Akin than experienced
users

experience and their satisfaction in using Akin as a prototyping assistant.

Specifically, there is a low-negative correlation between the experience of

the UI designer and their satisfaction in ease of performing the scenario

(rexperience × Q1=-0.241) and a medium-negative correlation between

experience and the designers’ satisfaction in the time taken to complete

tasks in the scenario (rexperience × Q2=0.405). Notably, a high-negative

correlation was found (rexperience × Q3=0.107) between experience and

the designers’ satisfaction with the supporting information provided. Fig-

ure 14.7 visualizes the correlation trend between precision and the three

questions from ASQ. To understand this trend, we further analyzed our

semi-structured interview results.

From the qualitative feedback provided by our participants, both noviceBoth novice and
experienced UI

designers found AI
assistance before LoFi

prototyping to be
exciting and useful

and experiencedUI designers found this approach of adding AI assistance

in generating multiple wireframes of UI design patterns to be helpful

during their traditional UI design process. Furthermore, novice designers

were excited to use such an approach for all possible use cases, whereas

(a) Low-Negative corre-
lation trend between ex-

perience and the design-

ers’ satisfaction in ease of

performing the scenario

(r=-0.241)

(b) Medium-Negative

correlation trend be-

tween experience and

designers’ satisfaction

in the time taken to

complete tasks (r=-0.377)

(c)High-Negative corre-
lation trend between ex-

perience and the design-

ers’ satisfaction in the

supporting information

provided (r=-0.818)

Figure 14.7: Spearman rank correlation between UI element detection precision
and the three questions from ASQ

14.4 methodology 125

experience designers mentioned that they would use it when they were in

a hurry to provide quick results.

Experienced designers found the system to be slower (Figure 14.7b)

than they expected as it currently generates only 6 UI wireframes at one

button click. However, this is a limit imposed due to system limitations

during testing; generally, Akin can generate any given number of UI wire-

frames.We expect to investigate whether removing this limit improves

their satisfaction in our future work.

Also, the experienced designers found the supporting information pro-

vided could be improved (Figure 14.7c, c) by allowing designers to add

constraints and partial UI wireframe generation.

“
Iwoulddefinitelyuse it because itwould reduce the cost of development
and increase the speed.

-P4

“
Wireframes are neat and consistent in design, but they are not aligned
properly.�at adds some extra effort

-P7

“
Wireframes are good for simpler patterns but not for product catalog.
It would be nice if I can ask it (Akin) to generate only the part below
App bar

-P10

Using AI as an assistant before LoFi prototyping using Akin was gen-

erally regarded as an exciting and practical approach based on this qual-

itative feedback. All participants were interested in adopting such an

approach provided the UI wireframes were aligned during generation.

In the upcoming chapter, we summarize our findings while creating and

evaluating Akin, describe the identified limitations and future work.

15
SUMMARY & FUTURE WORK

In this part of the thesis, we introduced Akin, a UI wireframe generator.

Akin assists UI designers before the LoFi prototyping process by allow-

ing them to choose a UI design pattern and provides themwith multiple

UI wireframes for the chosen UI design pattern. It uses a fine-tuned

Self-Attention Generative Adversarial Network (SAGAN) trained with 500

UI wireframes of 5 android UI design patterns. Upon evaluation, Akin’s

generative model provides an Inception Score of 1.63 (SD = 0.34) and

Fréchet Inception Distance of 297.19. We further conducted user stud-

ies with 15 UI/UX designers to evaluate the quality of Akin-generated UI

wireframes.�e results show the participants consider Akin-generated

UI wireframes (Mean = 2.98, SD = 0.08) as good as designer-made

wireframes (Mean = 2.90, SD = 0.11). Also, the UI designers could

not distinguish Akin-generated UI wireframes from designer-made wire-

frames (50% accuracy).

Additionally, we conducted a quantitative study using After-Scenario

Questionnaire (ASQ) followed by semi-structured interviews to under-

stand the designer satisfaction using Akin. �e results indicated that

designers experience an above-average satisfaction level towards ease of

task completion (4.6), time taken (5.7), and supporting information (5.0)

upon utilizing AI assistance for generating multiple UI wireframes before

they start their prototyping process.�eir qualitative feedback indicated

that both novice designers and experience designers found AI assistance

helpful in addition to the traditional UI prototyping process.

�is research addresses a part of RQ 2, 3 and 4 of this thesis. Also, it

fulfils the two significant research gaps we identified. Unlike the prior

research, we distinguish UI wireframes into different UI design patterns

and trained a conditional GAN to learn the underlying representative UI

layouts of a given UI design pattern. Moreover, we evaluated Akin using

standard quantitative machine evaluation and with users to understand

127

128 summary & future work

the quality of generated wireframes and the satisfaction of designers in

using AI assistance before the LoFi prototyping process.

Further, through the qualitative study, we identified a few limitations

in Akin, which we list below.We aim to improve Akin by addressing these

limitations in our future work.

Onenotable issue thatmanydesignersmentionedduring the user study

is that Akin generated UI layouts are not aligned pixel-perfect. As a solu-

tion, we plan to couple Akin with an alignment engine, such as RUITE,

which is explained in the upcoming part, to improve the alignment quality

of the generated UI wireframes. Another feature we would like to add is

to specify user constraints and generate a partial UI layout.

In the future, we plan to add a frontend to Akin, which allows the de-

signer to enter styling information such as colour palette, typography,

and a UI design pattern to generate customized UI screens. Also, as the

current system only detects five UI design patterns, we would like to add

more UI design pattern categories, increase the dataset size, and retrain

Akin.

16
PROPOSED SOLUT ION

RUITE is a UI layout refiner that optimises UI wireframe layouts using RUITE assists
designers during their
LoFi prototyping task
by aligning and
grouping UI
wireframe.

a Transformer Encoder model, thereby assisting UI designers during

the LoFi prototyping process by aligning and grouping UI wireframes.

�is research expands from the prior research in automatic generation

and refinement of document or magazine layouts and introduces a novel

Transformer-Encoder DNN for UI layout refinement. �is part of the

dissertation is published at IUI 2021 (Rahman et al., 2021) created under

my supervision based onmy research.

16.1 background

Prior research in the automatic creation of document ormagazine layouts

explored assisting designers during their design process by providing

themwith layout suggestions.�ese research projects mostly use classic

Figure 16.1:RUITE improves the UI layout alignment by optimizing the location
and dimension of UI elements on a screen. It takes a list of UI elements and their

respective bounding boxes as input and optimizes the layout to be aesthetically

appealing using a Transformer Encoder

131

132 proposed solution

pattern recognition algorithms for inferring and suggesting alternate

layouts for documents or magazines.

Similarly to refiningUI layouts, in the last decade, few research projectsMost of the prior
research on UI layout

refinement was
conducted with
classical pattern
recognition or

algorithmic models.

attempted toapply classical pattern recognition.Fewsuch researchprojects

by ODonovan et al. (2014) endeavoured to measure layout aesthetics and

refine them by computing and minimising energy functions. In their

first publication, ODonovan et al. (2014) considered features of graphical

layouts, such as white space, symmetry, and alignment, and devised an

energy function of these features.�en, by minimising this energy func-

tion using simulated annealing, they create a refined layout. However,

according to the authors, this approach is not scalable and takes up to

40 minutes to generate an optimised layout. In their follow-up publica-

tion, O’Donovan et al. (2015) expanded their energy function model by

considering additional aesthetic features and provided alternate design

suggestions. Further, they allowed users to add a constraint to the energy

function, thus customising layouts’ refinement. Another recent research,

GRIDS by Dayama et al. (2020) uses Mixed Integer Linear Programming

for refining MeFi GUI layouts. �is system operates on a mathematical

optimisation of general grid layout principles.

Recently, Lee et al. (2020) created Neural Design Network to generateOnly one recent
research applied
DNNs for UI

wireframe refinement.

and refine UI wireframes. In this research, the authors focus on UI wire-

frame generation; as a side-effect to generate an aligned UI wireframe,

they also exploredUI layout refinement.�emost exciting approach taken

by the authors is to represent UI layouts as graphs. Such a layout graph is

constructed by representing UI elements as nodes and their relationship

(locationabove, below) as edges.�eNeuralDesignNetwork is constructed

using a Graph Convolution Network (GCN) that generates or refines UI

wireframes as layout graphs. �is GCN is trained using a subset of the

RICO dataset and provides a Frèchet Inception Distance (FID) score of

143.51±22.36 upon evaluation. However, the authors did not evaluate the

UI refinement standalone, and also, they did not assess the quality of the

refined UI wireframes with designers.

16.2 identified gaps

In summary, most of the prior research in this domain, such as GRIDS byPrior research were
either deterministic,
slow or have not been
evaluated by designers
to uncover their needs

and desires

Dayama et al. (2020), utilises classical algorithmic techniques for optimis-

ing UI layouts: assuming a grid-based layout and applying a deterministic

2d grid packing algorithm. Recent research on this domain, such as the

16.3 proposed solution 133

Neural Design Network by Lee et al. (2020), concentrates on UI layout

generation and, as a byproduct, refines the generatedUI layout.�emajor

shortcoming of the researches mentioned above is that they are either

deterministic, slow or have not been evaluated by designers to uncover

their needs and desires.

16.3 proposed solution

Asa solution to the identified researchgaps,weproposeRUITE, aUI layout

refiner.�e goal of RUITE is to assist designers during LoFi prototyping

by refining and grouping UI wireframes. Also, we aim to create a model

that learns layout styles from real-world UI and use it to refine any given

UI wireframe.

RUITE uses a Transformer Encoder model to align a misaligned UI Model: Transformer
Encoder

layout.We define a UI layout of a UI screen as a list of UI elements present

in that screen and their respective location and dimensions (bounding-

box). To train and validate RUITE, we used 39,456 UI layouts annotations Dataset: 39,456 UI
layout annotations
from the SynZ dataset

from the SynZ dataset (Section 6.3.1). We added random noise to a subset

of these UI layouts to simulate misaligned UI layout and provided this

as training data.�emodel learns to align this misaligned layout to the

ground-truth aligned layout. We then evaluated this trained model us-

ing the mean average precision (mAP) of coco detection metrics by T. Y.

Lin et al. (2014) using different Intersection over Union (IoU) thresholds,

Alignment Score proposed by Koch et al. (2016), grouping accuracy, and

alignment improvement score.

Further, to quantitatively measure the user satisfaction of designers Evaluation: Four AI
metrics, one
quantitative and
qualitative user
evaluation with
UI/UX designers

upon using RUITE during LoFi prototyping, we used the standard After

ScenarioQuestionnairewith 10 participants: 5 UI/UXdesigners and 5HCI

grad students. Finally, to further understand the designer satisfaction

results, we followed the user satisfaction study by conducting a qualitative

semi-structured interview.

In the upcoming chapter, we discuss the experiments we conducted to

determine the data representation of UI wireframe layouts and the model

architecture of RUITE.

17
MODEL ARCH ITECTURES & DATA REPRESENTAT IONS

Prior research projects on magazine and document layout refinement

used traditional pattern recognition and algorithmic models. However,

to create such models, we have to carefully select and understand the

features of a layout. As an alternative approach, recent advancements

in DNNs enables us to utilise supervised learning techniques and learn

from existing features of a UI wireframe layout. We utilised these recent

advancements to create RUITE: UI layout refiner.�is chapter describes

the experiments we conducted with different data representations of UI

layouts and different model architectures to create RUITE. Detailed infor-

mation of these experiments and results are published at Rahman et al.

(2021) created under my supervision based onmy research.

17.1 model architectures

As recent research in applied AI in UI design did not emphasise UI lay-

out alignment models, we took inspiration from the generative model

research and applied them for UI layout refinement. We identified two We experimented with
twomodel
architectures to create
RUITE

promising DNN architecture for building a UI layout refiner through lit-

erature review: Graph Convolution Networks (GCNs) and Transformers.

We describe them briefly in the upcoming sections.

17.1.1 Graph Convolution Network

Graphs are an abstract yet effective way of representing real-world data

and their relationship with each other. A graph consists of a set of nodes

(data) and a set of edges between them (relationships).�ey are commonly

used to represent a network of roads on a map, the relationship between

people in a social network, or links between computers on the internet.

135

136 model architectures & data representations

Once a real-world scenario is modelled as a graph, it can be effectively

used to infer various statistical information about it.

Kipf et al. (2017) developed the Graph Convolution Networks (GCN), aGraph Convolutional
Networks can operate
directly on graph data

structures

DNN for semi-supervised learning on graph-structured data which can

directly operate on graphs. GCN approximates a function of features on

a graph G = (V,E) by taking two inputs: features of nodes as a matrixX

with dimensionsN×D (N: number of nodes,D: number of input features).

Using non-linear neural network layers, it learns the features from the

inputs and produces the output as a matrix Z with dimensions N × F

where F is the number of output features per node.

Building on this research, many research projects, as listed by Zhou

et al. (2020), have explored employing GCNs in various domains such

as text, image, and structural domains. Related to UI design, Lee et al.

(2020) utilised GCNs to create Neural Design Network for generating and

refining UI layouts.

17.1.2 Transformers

Sequence-to-Sequence (Seq2Seq) networks are a subclass of DNNs that

are trained to convert sequences fromone domain (e.g. English sentences)

to sequences in another domain (translated to german sentences). Several

Seq2Seq networks, such as Recurrent Neural Networks (RNNs), Long-

short-term memory (LSTMs) and Gated Recurrent Units (GRU), were

proposed for accomplishing these sequence conversion scenarios. As a

variant, Vaswani et al. (2017) introduced the Transformer architecture

with Self-Attention to improve the Seq2Seq tasks.

A Transformer architecture consists of an encoder and a decoder whereTransformers are
sequence-to-sequence

models that are
currently popular in
Natural Language
Processing tasks

the encoder encodes the input sequence to an intermediate hidden state,

and the decoder then decodes it into the target sequence. Transformer

architectures have been popularly used in chatbots, text summary and

machine translation tasks. Recently, Gupta et al. (2020) demonstrated

using the Transformer architecture to generate UI layouts.

We utilised GCN and Transformer models for creating RUITE, a UI

layout refiner. As discussed in this section, the input domain of GCN and

Transformer was different.�erefore, we represented UI wireframes as

graphs and as a sequence to experiment with these models. We describe

them further in the following section.

17.2 data representations 137

17.2 data representations

RUITE aims to refine the alignment and grouping of a given UI wireframe

layout.�erefore, to address RQ2 and train the DNNs described above, we We experimented with
two data
representation of UI
wireframe layouts to
train and evaluate
RUITE

experimented with two different data representation of a UI wireframe

layout: graphs and sequence. To train such DNNs, we require large-scale

annotated UI layout information; hence, we chose to use annotation files

from the SynZdataset (Section 6.3.1) to trainRUITE.�is sectiondescribes

the two different data representations of these annotation files.

17.2.1 Graph

A UI wireframe annotation is represented as a list of constituent UI ele-

ments and their corresponding location and dimensions within the UI

wireframe. �ese UI elements are aligned and grouped with respect to

each other to provide an aesthetic and friendly interface.�is alignment

and grouping can be considered a relationship between the UI elements

present in the UI wireframe. Lee et al. (2020) used this notion to repre-

sent UI wireframes as graphs. Following their solution, we converted the

annotation files from our SynZ dataset into graphs.

As we described in Equation 11.1, each UI wireframe can be represented

as a list of constituent UI elements represented as a list of vector V. �is

UI wireframe can be represented as a graph (G)where each V is modelled

as a node, and its relationship, such as position, are represented as edges.

�erefore to convert a UI wireframe to a G, we define a rule-base that We transformUI
wireframe layout to a
graph bymodelling UI
element category as
node and their relative
position calculate by a
rule-base as edges

defines the relationship between a UI element in the UI wireframe with

every other element in that UI wireframe. �is rule-base considers the

position of each UI element with respect to others in four aspects: TLBR

(Top-left-bottom-right), TRBL (Top-right-bottom-left), TB (Top-bottom),

and LR (Left-Right). Figure 17.1 describes the rule-base equations with

sample images. We apply this rule-base for all the UI elements in a UI

wireframe to create and fill an adjacency matrix for a given UI wireframe.

However, this adjacencymatrix captures someunwanted features between

UI elements, such as a relationship between two UI elements that are very

far apart from each other.�erefore, to improve the features representing

the relationship between UI elements in a UI wireframe, we retained

only the shortest edges and removed the rest from the adjacency matrix.

�is final adjacency matrix represents the UI wireframe as the graph G.

Figure 17.2 shows a sample UI wireframe represented as graph G. �is

138 model architectures & data representations

(xA + widthA

2
< xB)∧ (yA + heightA

2
> yB)

(a) TLBR (Top-Left-Bottom-Right)

(xA+widthA

2
> xB+wB)∧(yA+ heightA

2
< yB)

(b) TRBL (Top-Right-Bottom-Left)

yA + heightA
2

< yB

(c) TB (Top-Bottom)

xA + widthA

2
< xB

(d) LR (Left-Right)

Figure 17.1:Rule-base equations for converting different positions of UI elements
A and B from a UI wireframe to an adjacency matrix for UI wireframe graph

representation

approach allowed us to capture the UI elements and their relationship in a

given UI wireframe layout as a graph representation. We used this graph

representation of UI wireframes to train a GCNmodel.

We loaded the dataset and added a Gaussian noise function to create

the misaligned UI layouts as training data. With this training data as

input and the aligned UI layout as ground-truth, we created a GCNmodel

using the PyTorch Geometric library developed by Fey et al. (2019). We

experimentedwith two different GCN: three hidden layers with 500 nodes

in each layer and ten hidden layers with 50 nodes in each layer. From these

experiments, we identified that GCNmodels did not perform well on the

17.3 discrete sequential representation 139

Figure 17.2: Sample UI wireframe and its corresponding graph representation

UI layout refinement task. �e refined layouts did not correspond well

with the ground truth.

17.3 discrete sequential representation

Recent research by Gupta et al. (2020) introducedUI layout representation

as a sequence of vocabulary to train Transformer architecture. A sequence

is defined as an ordered collection of an abstract item. For example, if we

consider a paragraph of text in English, we can describe it as a sequence of

sentences that can be further split into words. Natural Language Process-

ing DNN tasks like neural machine translation can be achieved by feeding

this sequence of English words to a DNN model and training them to

output another sequence in the target language like German. Gupta et al.

(2020) employed this concept in UI wireframes by considering the con-

stituent UI elements in a given UI wireframe as a sequence of text and

used it to train their DNNmodel to generate and autocomplete UI wire-

frames.We adopted their approach on representing UI wireframes as a

discrete sequence of words to train UI layout refinement models.

Figure 17.3: Process of discretizing a UI element bounding box by assigning it to
grid and then converting it to a sequence

140 model architectures & data representations

Figure 17.4: Process of converting a UI wireframe to a sequence

As described earlier in Equation 11.1, each UI element can be repre-

sented as a vectorVwhichdescribes the category, position, anddimensionWe transform aUI
wireframe layout to a
sequence by parsing
the UI elements from

top-bottom in
left-to-right order and
concatenating them as

sentences.

of the UI element. If we parse the UI elements present in a UI wireframe

from top to bottom in left-right order, then we can consider this ordered

list as a sequence representing a UI wireframe.�is UI element sequence

can be further split into sentences that describe each UI element with six

words where each word, in order, represents a UI element’s category, x, y,

height, width, and group ID.�erefore, we can successfully convert a UI

wireframe annotation to a sequence without any loss of data.

However, we encountered a significant constraint in using such an ap-

proachas the values of x, y,width, andheight are in the continuous interval

within the range of the UI wireframe dimensions. If the sequence gen-

erated using continuous intervals, then the list of all possible sequences

becomes infinite. As a solution to this issue, we discretised the UI element

position and dimension using a grid, thus reducing the possible outcomes

into a finite number.

To discretise the position and dimension of UI elements in a UI wire-

frame, we split the UI wireframe into a 10× 15 grid.�en, for a given UI

element, we fit its bounding box within this grid: the position is assigned

to the top-left corner of the grid in which it overlaps, and the dimension

is assigned as all the grids the bounding box overlaps. Figure 17.3 visu-

alises the process of discretising a UI element bounding box values.�ese

discrete values can be used to generate a finite vocabulary of UI element

positions and dimensions.

With the discretized UI wireframe annotations, we further convert

them to a sequence representation by appending the UI elements present

17.3 discrete sequential representation 141

in a UI wireframe from top to bottom in left-right order into a sequence.

Each UI element in this sequence is described as Equation 17.1.

ci xi yi hi wi (17.1)

where for a given UI element i:

c = category of the UI element as string (21)

x = left-most position of the UI element in grid (0-10)

y = top-most position of the UI element in grid (0-15)

w = width of the UI element in grid (0-10)

h = height of the UI element in grid (0-15)

With this process, we can convert a given UI element bounding box into

a sequence as shown in Figure 17.3. By applying the discretisation and

sequencing process for all constituent UI elements in a UI wireframe and

concatenating them, we convert a UI wireframe annotation to a sequence

representation.We visualise this process in Figure 17.4

As the count of UI elements varies per UI wireframe, the sequence

length also varies for different UI wireframe. Tomake this uniform, we

limited the maximum number of UI elements per layout to 50; we chose

this number based on our exploratory analysis of the SynZ dataset. We

padded the shorter sequenceswithdummywords tomakeallUIwireframe

sequences to a uniform length of 50.

By following these steps, we generate a discrete sequential represen-

tation of UI wireframes. Similar to the graph representation, we added

Gaussian noise to the UI elements on each UI wireframe to generate the

training data.�en, we used the sequence with noise as input and trained

a Transformer-Encodermodel to output aligned and refinedUIwireframe

sequences. When fed a UI wireframe sequence, this trained Transformer-

Encoder model outputs an aligned and grouped sequence of the given UI

wireframe. Unlike GCN, this model providedmeaningful alignment and

grouping of UI elements in a given UI wireframe.

From the experiments withmodel architecture and data representation

described above, we chose the Transformer-Encoder architecture with

discrete sequential data representation for creating RUITE, a UI layout

refiner. In the upcoming chapter, we describe the implementation details,

configuration, and training process of the RUITE.

18
IMPLEMENTAT ION

In the previous chapter, we described the several experiments that led

to the choosing Transformer architecture and discrete sequential repre-

sentation of UI wireframe for creating RUITE, a UI layout refiner. In this

chapter, we briefly explain the implementation details of RUITE.

18.1 implementation approach

RUITE aims to align and group UI elements from a UI wireframe, thus From empirical
experiments, we chose
the
Transformer-Encoder
architecture for
creating RUITE

assisting the designer during their prototyping process by creating an

aesthetically refined UI wireframe layout.

We applied the traditional supervised deep learning model pipeline

outlined by I. Goodfellow et al. (2016) for training RUITE. In the upcoming

sections, we explain the steps in the pipeline in detail.

18.2 datasets

We used the annotations files from the SynZ dataset for training and val-

idating RUITE. SynZ dataset annotations were extracted and enhanced

from the RICO UI screenshots (Section 6.3.1). It contains 58,459 UI anno- We trained and
validated RUITE
using 39,456 UI
wireframe
annotations from the
SynZ dataset

tations with 547,933 UI element bounding boxes for 21 UI element cate-

gories.For training and validating RUITE, we chose a subset of UI wire-

frames (39,456) from this dataset that does not contain UI elements that

collapse to null during discretisation to a grid.We split this dataset into

~90% for training (35,072) and ~10% for validation (4,384).

�egoal of RUITE is to refine amisaligned layout.�erefore, to simulate

human error during LoFi prototyping and create misaligned layouts, we

added noise to the training and validation datasets using three Gaussian,

triangular, and uniform distributions.We chose the gaussian distribution

noise function with the rationale that UI designers seldommake large er-

143

144 implementation

rors during drag-and-drop prototyping; therefore, tomodel it, we selectedWemodelled the
misaligned layouts

using noise functions
sampled from three

distributions.

µ = 0 and somemargin of error modelled with σ. Further, to cover other

odd scenarios, we used triangular and uniform distributions to generate

noise vectors.�e three noise function distributions are described with

their parameters below.

• Normal distribution: µ = 0, σ = 1.25± 0.75

• Triangular distribution: c = 0, a = b = 1.25± 0.75with a < b

• Uniformdistribution: [−x, x]where x = 1.25± 0.75

We applied these noise functions to the position and dimension of

the UI elements and created the input data.We assigned the data with-

out noise function as the ground-truth predictions. After these steps to

create input and ground-truth data, we converted both the training and

evaluation dataset into sequence representation as described in the pre-

vious section. Further, we removed the sixth word of each UI element

sequence to represent grouping information from input sequences with

noise; however, the ground-truth sequence contain the expected group-

ing information. With this approach, we enable the model to learn the

grouping alongwith the alignment ofUIwireframe layouts.Weused these

sequences for training and validating the model

18.3 implementation details

We used the PyTorch library by Paszke et al. (2019) to create the RUITE’s

DNNmodel.�ismodel only contains the Encoder architecture of a Trans-

formermodel,which is thenattached toa classificationhead forpredicting

the alignment and grouping of the given UI wireframe sequence.�us, we

denote thismodel further in this dissertation as the Transformer-Encoder

model. Figure 18.1 visualizes the architecture of RUITE’s Transformer-

Encoder model.

RUITE’s Transformer-Encoder model contains an embedding layer to

convert the sequence to a vector representation. It is passed on to a posi-

tional encoding layer to store the position of UI element occurrence and

ensure the order of UI elements in the sequence.�is positional encoded

value is further passed through two encoders. Each encoder has a sim-

ilar architecture with a multi-headed attention model (two heads) and

a feedforward networkmodel with 64 dimensions. Finally, the encoded

output from the encoders is fed to a classification headwith a single linear

18.4 configuration & training process 145

layer. A UI wireframe sequence passed through the Transformer-Encoder

model as input is processed and returned by the classification head as a

sequence of aligned and grouped UI elements.

18.4 configuration & training process

After several iterations of empirical experiments, we finalised the hyper-

parameters of RUITE’s Transformer-Encoder model as below.

• Optimizer: Adam optimizer with β1 = 0.9 and β2 = 0.999

• Learning rate: 1e−2

• Positional-Encoder dropout : 0.1

We set the training batch size to 32 to fit the available GPUmemory for

training the model. We used the cross-entropy loss function to calculate

the gradient for backpropagation during training. After every 50 training

steps, we calculated the metrics using the validation dataset to monitor

the training process. We trained the model for 2,192 steps (2 epochs) and

stopped it when the validation loss gradually decreased and plateaued.

For transparencyandreplicability of this research,wehaveopen-sourced

the codebase
1
along with the configuration files.

18.5 post processing steps

As the Transformer model operates in the sequence domain, the refined

UI wireframe output is returned by the model as a sequence. We convert

this sequence back toUIwireframe by using the following post-processing

steps.

1 https://github.com/vinothpandian/RUITE

Figure 18.1:Architecture of RUITE’s Transformer-Encoder model

https://github.com/vinothpandian/RUITE

146 implementation

First, we parse the sequence and split it after every six words (category,

left-most position, top-most position, height, width, and group). FromTo convert the
generated UI layout

sequence to UI
wireframe, we created

a post-processing
script

this sequence, we transform it back to the 10× 15 discrete grid represen-
tation by obtaining the last digits on every word in the sequence. Finally,

multiplying the grid representation with its respective grid dimension,

we can obtain the post-processed UI wireframe annotation.

With this training and post-processing steps, we obtained the trained

model of RUITE that can align andgroup constituentUI elements from the

given UI wireframe. To understand the quality of UI wireframes refined

by RUITE, we evaluate its Transformer Encoder model. We discuss the

evaluation process in the next chapter.

19
EVALUAT ION

�is chapter summarises the evaluation results of the RUITE UI layout re-

finer. In the upcoming sections, we briefly describe the evaluation dataset,

introduce the metrics used to evaluate RUITE and report the evaluation

results.

19.1 dataset

For evaluating RUITE, we aimed to use real-life UI layout information.

�erefore, we created a script that extracts UI layout annotation from

Android smartphone applications
1
. With this script, we captured 500 UI We captured 500UI

screenshots from an
Android smartphone
along with their
respective layout
annotation for
evaluating RUITE

screenshots from an Android smartphone along with their respective lay-

out annotation. Each UI layout annotation contains the alignment and

grouping information of all the constituentUI elements in the correspond-

ingUI screenshot. However, as RUITE is trainedwith a dataset containing

21 UI element categories, we manually verified the annotations, removed

the additional annotations other than the 21 UI elements. Further, for

processingwith PyTorch, we parsed the annotations CSV format.We used

these 500 real-life UI layout annotations as the evaluation dataset.

19.2 metrics

With this evaluation dataset, we aimed tomeasure the quality of UI layout

refinement achieved by RUITE. In this section, we introduce the four

evaluation metrics we used to measure this information.

alignment score Gestalt laws are commonly taught and routinely Alignment score
quantitatively
measures Gestalt law
of alignment

used by designers to create aesthetically pleasing designs. Palmer (1999)

describes these laws as a reasonably accurate estimate of how humans

1 https://github.com/vinothpandian/capture-android-layout

147

https://github.com/vinothpandian/capture-android-layout

148 evaluation

perceive structures in a scene or layout. By utilising the gestalt laws, Koch

et al. (2016) proposedmetrics to compute human perception of interactive

layouts quantitatively. As RUITE aims to align UI wireframe layouts aes-

thetically, we used the pairwise alignment score metric proposed by Koch

et al. (2016) to evaluate the layout quality of RUITE refined UI wireframes.

�is score ranges between 0 to 1, and higher scores are considered better.

improvement margin �e Transformer-Encoder was trained withImprovementMargin
measures the margin
of improvement in

aligning UI
wireframes achieved

by RUITE

a synthetically generated noisy input sequence.�erefore, to measure the

margin of improvement we attain by aligning this input layout to a refined

layout, we introduce the improvement marginmetric.
To measure the improvement margin, we first calculate the accuracy of

themisaligned input sequence with respect to the ground-truth sequence.

Similarly, we measure the accuracy of the RUITE refined layout sequence

with the ground truth sequence. By calculating the difference between

them (Equation 19.1), we can measure the margin of improvement in

aligning UI wireframes achieved by RUITE.

improvement_margin = accuracymodel_output−accuracynoisy_input

(19.1)

grouping accuracy Asdiscussed in theprevious section, the inputGrouping accuracy
measures the RUITE’s
accuracy in grouping
UI elements in a given

UI wireframe

sequence to train the RUITEmodel does not contain the sixth word in the

UI element sequence representing the grouping information.We removed

this information to facilitate themodel to learn to groupUI elements based

on just the UI element category, position and dimensions. In contrast, we

keep the grouping information in the ground-truth sequence to compare

with the RUITE’s grouping predictions. With this process, we measure

the grouping accuracy of RUITE.

mean average precision COCO detectionmetrics, proposed byMean Average
Precision (mAP)

measures the precision
with which RUITE

aligns UI elements in
a given UI wireframe

T.Y. Lin et al. (2014), is a commonlyusedmetric to evaluate object detection

models. It reportsmeanAveragePrecision (mAP) and average recall (AR) of

different Intersection over Union (IoU) and area thresholds. IoUmeasures

the overlap between the ground-truth bounding box and DNN model

predicted bounding box; it is commonly measured for 50% threshold and

in strict mode at 75% threshold. �e primary mAP metric is calculated

as an average of IoU thresholds ranging from 5% to 95%. Our research

concentrates on the alignment and grouping of UI element bounding

19.3 methodology 149

boxes; hence, we use the mAP metric over different IoU to evaluate the

quality of RUITE refined UI wireframes. We aim to create the refined UI

wireframes to be as close as the ground-truth wireframes; hence, we set

the IoU thresholds from 50% to 100% (perfect) overlap.

19.3 methodology

Similar to the training and evaluation dataset, we transformed the evalu-

ation dataset into a sequence using the same vocabulary as the training

and evaluation dataset. �ese sequences act as the ground truth for evalu-

ating RUITE.�en, we added random noise to these sequences, similar to

the training dataset, to create the evaluation input to RUITE. Finally, we

loaded the final trained Transformer-Encoder model, sent the evaluation

input data, and gathered the output sequence for calculating the evalu-

ation metrics. We used Python scripts to measure the alignment score,

improvement margin, grouping accuracy andmAP of RUITE.We report

the results and discuss them in the upcoming section.

19.4 results

RUITE provided satisfactory results on almost all evaluationmetrics. In

this section, we discuss the results of all the metrics successively.

alignment score On the gestalt law based alignment score metric

proposed by Koch et al. (2016), RUITE provided a score of 0.87. �is result

shows that RUITE performs adequately in aligning the misaligned UI

wireframes.

improvement margin Further, to understand the improvement in

alignment accuracy, we calculated the improvement margin metric. From

this analysis, we found that the accuracy of misaligned inputs compared

to ground-truth was 0.37 and the accuracy of RUITE refined layouts with

ground-truth was 0.75. By applying the formula, wemeasure the improve-

ment margin score as 0.38. �is score shows that RUITE improves the

visual alignment of a UI wireframe from amisaligned layout by ~38%.

grouping accuracy In addition to alignment, RUITE also per-

forms the grouping of UI elements. To measure the grouping quality, we

calculated the grouping accuracy. Here RUITE provides a grouping accu-

150 evaluation

racy of 0.2. From this result, we understand that the RUITEmodel does

not adequately group UI elements as anticipated.We aim to investigate

further and improve this feature of RUITE in our future work.

mean average precision Lastly, RUITE provides 58.53%mAP for

refining misaligned UI wireframes. In strict mode, 75% IoU threshold

as per COCO detectionmetrics by T. Y. Lin et al. (2014), RUITE provides

33.99%mAP. Further, Table 19.1 andFigure 19.1 shows that themAPmetrics

are adequate for IoU thresholds 35% to 65%.

Surprisingly, for higher thresholds, RUITE only provides ~20% mAP.

�is low accuracy for higher thresholds shows that the model does not

overfit the data and instead learns to align through the training process.

IoU threshold mAP

5% 90.96

15% 90.13

25% 84.99

35% 66.11

45% 64.94

55% 58.67

65% 50.20

75% 33.99

85% 27.99

95% 17.31

Mean 58.53

Table 19.1:mAPscores of
RUITE for different IoU

threshold values

Figure 19.1:mAP score of RUITEmodel during eval-
uation for different IoU thresholds ranging from 5%

to 95%

Overall, RUITE provides satisfactory results for almost all metrics ex-

cept for grouping.�ese results show that RUITE refines misaligned UI

wireframes with moderate quality. To further understand the designer

satisfaction in using the AI assistance provided by RUITE during LoFi

prototyping, we conducted a quantitative user evaluation along with a

qualitative semi-structured interview.We discuss these user evaluations

in the upcoming chapter.

20
USER EVALUAT ION

�eevaluationmetricsdescribed in theprevious chapter shows thatRUITE

refinesUI elements in a givenUIwireframewith adequate results. Further,

to understand the designer satisfaction in using AI assistance fromRUITE

during LoFi prototyping, we conducted a quantitative and qualitative

study. We describe these study setup, methodology and results in this

chapter.

20.1 web api & adobe xd plugin

Similar to other tools in the BlackBox toolkit, using RUITE, we intend to We created a web API
for RUITE to create a
modular and reusable
interface

provide amodular and reusable interface for refining UI wireframes by

creating aWeb API. We developed this API in Python using PyTorch and

FastAPI
1
frameworks.

1 https://fastapi.tiangolo.com/

Figure 20.1: Screenshot of RUITE plugin and the refined wireframe in Adobe XD
prototyping tool

151

https://fastapi.tiangolo.com/

152 user evaluation

�is Web API
2
accepts a UI wireframe layout annotation as JSON in

the HTTP request, refines the layout using RUITE and responds with the

refined UI wireframe layout annotation in JSON format.

To use this Web API, we developed a plugin for Adobe XD
3
prototyping

tool.�is plugin enables users to access RUITE directly from the Adobe

XD prototyping application.�erefore, a designer can drag-and-drop to

create UI wireframes in Adobe XD and to align the wireframe by calling

RUITE directly from the plugin menu. Figure 20.1 shows a screenshot of

the RUITE plugin in Adobe XD. We used this setup for conducting our

user study.

20.2 methodology

To assess the designers’ satisfaction in utilizing AI during their traditionalWe used the standard
After-Scenario

Questionnaire (ASQ)
for measuring user
satisfaction in using

RUITE

prototyping process by refining UI wireframes while prototyping, we

conducted a quantitative study using After-Scenario Questionnaire (ASQ),

created by Lewis (1991b), followed by semi-structured interviews (15 min)

to obtain qualitative feedback.�e ASQmeasures user satisfaction on the

following three scales.

q1 Ease of completing the tasks

q2 �e amount of time it took to complete the tasks

q3 �e supporting information provided while completing the tasks

20.3 participants

We used purposive and snowball sampling to recruit 10 participants: 5

UI/UX designers and 5 HCI grad students (8 male and 2 female). �e par-

ticipants were between 24 to 32 years of age and had 1 - 3 years (Mean =

1.6, SD = 0.84) of prior prototyping experience.

20.3.1 Scenario & tasks

�e participants were given a scenario to interact with the RUITE using

the Adobe XD plugin to refine LoFi prototypes.�ey were instructed to

complete the following three tasks.

2 https://ruite.blackbox-toolkit.com/
3 https://www.adobe.com/products/xd.html

https://ruite.blackbox-toolkit.com/
https://www.adobe.com/products/xd.html

20.3 participants 153

1. Create a LoFi prototype by drag-and-dropping UI wireframe ele-

ments from AdobeXD components

2. Instead of aligning manually, use the RUITE plugin to align the

wireframes

3. Connect the wireframes into a UI prototype

We asked participants to create and refinemultiple UI wireframes as

preferred until they are satisfied during this study. Task 1 was randomized

with a different set of screens for different participants.

20.3.2 Material & Apparatus

Participants performed the aforementioned tasks remotely.We connected

the participants via video conferencing and provided them access to our

computer, which already contains Adobe XDwith RUITE plugin installed.

20.3.3 Procedure

Due to the ongoing COVID-19 pandemic, we conducted this study re- Study was conducted
remotely with screen
sharing

motely via video conferencing. Once the participant agreed to participate

in the study, we acquired their informed consent and then invited them

to a virtual meeting. Before the study, we briefed the participants about

the study’s purpose and the assigned task.�en, participants were given

time to explore the RUITE plugin and Adobe XD features to familiarize

themselves with the environment and test the remote control setup.

After this brief exploration period, participants performed the assigned

tasks and provided feedback using a think-aloud protocol. Once the par-

ticipant completed the tasks, they were asked to fill the ASQ. On average,

participants took around 15 minutes to complete the tasks and fill the

questionnaire. After the study, we conducted semi-structured interviews

(~15mins) to understand the participant’s view on the AI assistance during

the LoFi prototyping approach and better understand and interpret the

ASQ results.

20.3.4 Results & Discussion

RUITE received an above-average satisfaction level for all three questions

in the ASQ: ease of completing the tasks (5.3), the amount of time it took to

154 user evaluation

Table 20.1: Results of the ASQ study with participant’s prior experience in UI
prototyping

ID Prototyping experience Q1 Q2 Q3

(in years)

P1 3 6 7 6

P2 2 6 6 7

P3 3 5 7 7

P4 2 6 7 6

P5 1 4 6 6

P6 1 3 7 6

P7 1 5 7 5

P8 1 6 6 6

P9 1 7 7 7

P10 1 5 6 6

Mean 5.3 6.6 6.2

SD 1.16 0.52 0.63

complete the tasks (6.6), and the supporting information provided when

completing the tasks (6.2). Table 20.1 summarizes the ASQ score from

each participant along with their UI prototyping experience.

We further analyzed the correlation between the experience of the par-RUITE received an
above-average

satisfaction level for
all three questions in

the ASQ

ticipant and their ASQ satisfaction score. Unlike the ordinal values of the

7-point Likert scale in ASQ, the prototyping experience of a UI designer

is on the ratio scale. �erefore, we converted the experience to an ordi-

nal scale using average ranking and used rank correlation coefficient by

Spearman (1904) to measure the correlation between them.

Surprisingly, we found a low positive correlation for all three ASQ ques-We found the user
satisfaction of both

novices and
experienced designers
are roughly similar
while using RUITE

tion score and years of experience: rexperience × Q1 = −0.273,

rexperience × Q2 = 0.323, and rexperience × Q3 = 0.394. �is result

shows that the experience of participants does not significantly impact

their satisfaction in using AI assistance during LoFi prototyping. Fig-

ure 20.2 visualizes the correlation trend between precision and the three

questions from ASQ. To understand this trend, we further analyzed our

semi-structured interview results.Both novice and
experienced

participants preferred
refinement of UI

wireframe using AI in
a button-click.

�e qualitative feedback showed that both novice and experienced par-

ticipants preferred refinement of UI wireframe using AI in a button-click.

Further, the participants found the high automation without compromis-

ing their autonomy to be helpful. �ey preferred to keep grid lines for

20.3 participants 155

(a) Low-Positive correla-
tion trend between ex-

perience and the design-

ers’ satisfaction in ease of

performing the scenario

(r=-0.273)

(b) Low-Positive correla-
tion trend between ex-

perience and designers’

satisfaction in the time

taken to complete tasks

(r=-0.323)

(c) Low-Positive correla-
tion trend between expe-

rience and the designers’

satisfaction in the sup-

porting information pro-

vided (r=-0.394)

Figure 20.2: Spearman rank correlation between UI element detection precision
and the three questions from ASQ

manual alignment and sporadically using one-click UI refinement using

RUITE.

“
I would definitely prefer this technique if the system somehow knows
exactlywhat Iwant to dowith the layout. If the systemworks perfectly,
I would use it everyday for prototyping.

-P1

“
�e system should take some input constraints from the user. I would
prefer a hybrid of both user constrained and automated alignment.

-P6

“
Having an extra button wouldn’t complicate myworkflow.Whether
I use it or not should be my choice, depending on what layout I create.

-P9

Overall, all participants generally perceived using AI as an assistant dur-

ing LoFi prototyping as a helpful approach that simplifies the traditional

prototyping process. From the qualitative feedback, we understand that

most participants were willing to incorporate RUITE in their workflow

and suggested few exciting features for improving RUITE.�e upcoming

chapter summarises our findings while creating and evaluating RUITE

and describes the identified limitations and future work.

21
SUMMARY & FUTURE WORK

�is part of the thesis introduced RUITE, a UI wireframe refiner. RUITE

assists UI designers during the LoFi prototyping process by aligning and

grouping the UI wireframe using a Transformer-Encoder model. We

trained this model with 35,072 UI annotations from the SynZ dataset.

Upon evaluation with 500 real-life UI layouts, RUITE’s model provides

adequate results with almost all metrics: alignment score (0.87), improve-

ment margin (~38%), grouping accuracy (20%), and mean Average Pre-

cision (58.53%). Further, we conducted a quantitative study using After-

Scenario Questionnaire (ASQ) followed by semi-structured interviews to

understand the designer satisfaction using RUITE.�e results indicated

that designers experience an above-average satisfaction level towards ease

of task completion (5.3), time taken (6.6), and supporting information (6.2)

upon utilising AI assistance during LoFi prototyping to align and group

the UI elements in their UI wireframe.�e qualitative feedback indicated

that both novice and experienced participants preferred refinement of UI

wireframe using AI in a button-click.

RUITE tool addresses a part of RQ 2, 3 and 4 of this thesis. In addition,

through RUITE, we endeavoured to fulfil the identified research gaps.

Moving from the prior research on deterministic models, we utilised the

self-attention mechanism of Transformer-Encoder architecture to refine

a given UI layout. Further, we evaluated our system with quantitative and

qualitative studies to uncover the satisfaction of designers in using AI as

assistance during the LoFi prototyping process.

However, by analysing the feedback we received during user evaluation,

we identified the following limitations with our current system, which we

would improve in our future work.

From the qualitative feedback with users, we understood the need for

further fine-grained alignment and grouping control during UI prototyp-

ing. We plan to facilitate users to specify constraints on UI elements that

157

158 summary & future work

RUITE can alter. We would also like to enable RUITE to understand the

context of text within the UI elements for alignment and grouping.

A significant limitation of our current implementation is that RUITE

does not group UI elements with adequate accuracy (~20%). We would

like to improve this metric by experimenting with alternative DNN archi-

tectures and retraining RUITE with a larger dataset.

22
BACKGROUND & PROPOSED SOLUT ION

MetaMorph is a UI element detector that detects the constituent UI ele- MetaMorph assists
designers after their
LoFi prototyping task
by enabling them to
transform LoFi
prototypes to higher
fidelities.

ments of LoFi sketches, thereby supporting designers at the end of the

LoFi design process by enabling them to transform LoFi prototypes to

higher fidelities.�is part of the dissertation was published at CHI 2019

(Suleri, Pandian, et al., 2019), OzCHI 2020 (Pandian, Suleri, Beecks, et al.,

2020) and IUI 2021 (Pandian, Suleri, and Jarke, 2021a).�is chapter briefly

summarises the existing literature in automating LoFi transformation,

reemphasises the research gaps in the existing literature, and introduces

our proposed solution to tackle this problem.

Figure 22.1:MetaMorph takes a LoFi sketch (left) as input and detects UI ele-
ments (right) using DNNs. For each detected UI element, it provides the object’s
category, prediction probability, and bounding box details (x,y coordinates of the

top left corner, width, and height).

22.1 background

MetaMorph assists UI designers at the end of the UI design process by au-

tomating the prototyping fidelity transformation. As discussed earlier, UI

designers follow the traditional prototyping process of ideating with LoFi

prototypes, manually creating and reiteratingMeFi and HiFi prototypes

161

162 background & proposed solution

to evaluate their system. To improve this process and support designers

to quickly and efficiently create realistic higher fidelity prototypes, many

researchers attempt to automate the prototyping process using machine

intelligence.

To briefly summarize the related work from our literature review (Sec-Most of the prior
research on

automating LoFi
transformation was

conducted with
classical pattern

recognition, and recent
research explored

object detection DNN
models.

tion 2.3), most of the early works in automating LoFi transformation to

higher fidelities, conducted by Coyette et al. (2004), Landay (1996), Perez

et al. (2016), and Plimmer et al. (2003), use classical pattern-recognition

algorithms to transform LoFi sketches to code.�ese solutions are engi-

neered to classify a limited number of UI elements. As LeCun et al. (2015)

explains, adapting such pattern-recognition algorithms is demanding

as there is no general method for extracting a good set of features for a

specific problem.�erefore, recent proof-of-concept projects, created by

Ashwin (2018), Benjamin (2017), Microsoft AI Labs (2018), and Tony (2017),

use DNNs to tackle similar object detection tasks.

22.2 identified gaps

However, these solutions, either pattern recognition based or deep learn-

ing based, only concentrate on converting LoFi sketches to code; theyPrior research and
projects do not

measure the impact
nor the utility of
utilising AI to
automate the

transformation of LoFi
to higher fidelities

explore neither the impact nor the utility of utilising AI to automate the

transformation of LoFi to higher fidelities through systematic research.

�ey also do not provide a generalizable UI element detector as they use

either machine-generated sketches (Ashwin, 2018) or a tiny dataset for

training (149 sketches) (Microsoft AI Labs, 2018).�erefore, there is a clear

need for systematic research on utilising AI assistance to transform LoFi

to higher fidelities and understanding designers’ satisfaction upon using

AI assistance during the UI prototyping process.

22.3 proposed solution

�is part of the dissertation aims to bridge the identified research gap

by conducting systematic research to understand the designers’ need for

automatic prototyping fidelity transformation.We designedMetaMorph

following the principles of a traditional deep learning pipeline.We started

the development process by collecting and refining datasets (Chapter 4),

then using it to train and evaluate a Deep Neural Network (DNN). Finally,

We conducted user satisfaction study and semi-structured interviews

with UI/UX designers to understand their satisfaction level using such

22.3 proposed solution 163

a tool. Further, wemade the systemmodular and pluggable with any fu-

ture research project or product, thus allowing designers to take complete

control of the transformation process of the LoFi prototype; thereby, en-

abling UI designer to convert LoFi to either MeFi or HiFi based on their

preference.

Before implementing MetaMorph, we experimented with various data

representation and DNNmodel architectures. Recent advancements in

object detection provided us with varied alternatives and approaches in

creating aUI elementdetector. ALoFi sketch canbe representedas a sketch Model: SSDResnet50
(RetinaNet)

and an annotation file with a list of constituent UI elements in that sketch

along with their location and dimension in that image or as a list of UI

element sketch images. As there is no prior study that experimented with Datasets: Syn, SynZ
and LoFi sketch

the different alternatives of data representation andmodel architectures,

we conducted empirical experiments by training different object detection

model architectures with varied hyperparameters and loss functions. We Evaluation: Two AI
metrics, a quantitative
and a qualitative user
evaluation with
UI/UX designers

utilised UISketch, Syn, and SynZ datasets (Chapter 4, Chapter 6) to train

theMetaMorphUIelementdetector and theLoFi sketchdataset to evaluate

the UI element detection model.

In the upcoming chapter, we discuss the data representation andmodel

architecture experiments in brief to justify the final model architecture of

MetaMorph.

23
MODEL ARCH ITECTURES & DATA REPRESENTAT IONS

Szegedy, Toshev, et al. (2013) defines object detection as locating and classify-
ing an object from a variable set of objects. It involves two different tasks:

localization—determining the location and dimension (bounding-box) of
the object; and classification—classifying the object into one of many dif-
ferent predefined categories. Recent advancements in object detection

provide us with varied alternatives and approaches in creating a UI ele-

ment detection model. �e goal of MetaMorph, our UI element detection

model, is to identify the UI element category and its corresponding loca-

tion and dimension.We conducted several experiments with various data

representations that fit various DNNmodel architectures before finaliz-

ingMetaMorph.�is chapter briefly discusses the experiments and the

design rationale in the model architecture and parameter choices in the

MetaMorphmodel.

23.1 model architectures

From literature review, we identified two leading architectures for objec- We experimented with
four model
architectures to create
MetaMorph

tion detection: Region-Proposal Networks (RPN) and Single-Shot Detec-

tion (SSD) networks (J. Huang et al., 2016).

23.1.1 Region Proposal

�eRPNarchitecture consists of either apattern-recognizer region-proposal Region Proposal
architecture contains
twomodels: a region
proposal algorithm or
DNN and a
classification DNN

algorithm coupled with a classification DNN or an RPN DNN and clas-

sification DNN in sequence.�e pattern recognizer region-proposal al-

gorithm or RPN DNN is solely used to detect Regions of Interest (RoI)

from a given image.�ese proposed RoIs are then passed to the second

classification DNN, which categorizes the object into a set of predefined

object categories; thus, identifying the location, dimension, and category

165

166 model architectures & data representations

of all the objects in a given image.�e state-of-the-art DNNs with RPN

architecture are RCNN by R. Girshick et al. (2014), Fast RCNN by R. B. Gir-

shick (2015) and Faster RCNN by Ren et al. (2015). RCNN and Fast RCNN

uses the selective search pattern recognition algorithm by Uijlings et al.

(2013) for RoI proposal, whereas Faster RCNN uses an RPNDNN for RoI

proposal and classification.

23.1.2 Single-Shot Detection

�e Single-Shot Detection (SSD) architecture consists of a single DNNSingle-Shot Detection
models contain only
one DNN, which is
end-to-end trainable
for object detection

model trained end-to-end to locate and categorize objects in an image.

�is model is trained to split the image into RoIs and classify the objects

from the RoI in a single training epoch.�e state-of-the-artmodels which

use this approach are YOLO by Redmon et al. (2016) and SSD byW. Liu

et al. (2016).

�e survey by J.Huang et al. (2016) on object detectionmodels compared

the speedandaccuracyofboth these architectures.�is comparisonclaims

that FasterRCNN, anRPNarchitecture, provides better accuracy thanSSD

architecture; while, SSD provides faster prediction results than others.

Apart from these overarching differences in model architectures, the

object detectionmodels also differ on the neural network layers and the

layer block architectures such as Fully Convolution Network (FCN), U-Net,

and Feature Pyramid Networks (FPN). Also, the backbone classification

networks might change in the RPNs. �e most popular backbones are

ResNet, MobileNet and Inception ResNet. Similarly, as an improvement

in SSDmodels T.-Y. Lin et al. (2017) proposed RetinaNet using a new loss

function, focal loss. T.-Y. Lin et al. (2017) claims that RetinaNet provides

better accuracy than other models while providing quicker results.

23.2 data representations

Apart from the differences inmodel architectures, the data representationWe experimented with
two data

representation of LoFi
sketches to train and
evaluateMetaMorph

also differs for different model architectures. For the earlier RPNmodels,

with pattern recognizer based region proposal algorithms, the backbone

classifier can be trained with individual UI element sketch representation

such as the UISketch dataset and coupled with an external RoI proposal

system.

In contrast, in the recent RPN and SSD architectures, a LoFi sketch

can be represented as an image and its respective annotation file. �is

23.2 data representations 167

annotation file contains the list of UI element categories present in the

LoFi sketch and their bounding box position in the 2D axis (x and y) and

dimension (width and height).

To answer RQ2, using these ideas, we represented LoFi sketches in two

different ways to train different model architectures before finalizing an

apt representation and architecture for creating MetaMorph.We discuss

these representations in the upcoming subsections.

23.2.1 Labelled UI element sketches

To train the pattern recognizer based region proposal architecturemodels, We represent a LoFi
sketch as a collection of
labelled UI element
sketches for training
an algorithmic region
proposal model with a
UI element classifier
DNN.

werepresentLoFi sketchdataas a collectionof labelledUIelement sketches

from the UISketch dataset.�ese UI element sketches were used to train

a DNNmodel using the supervised learning technique.We then use this

trained DNNmodel as a backbone classifier and couple it with a region

proposal algorithm to create a UI element detection model. We reused

the ResNet-152 model that performs best in machine recognition study

(Chapter 9) as the backbone classifier. For region proposal, we used the

selective search algorithm proposed by Uijlings et al. (2013) in fast mode

for region proposal. Similar to R. Girshick et al. (2014), we limited the

region proposals to 2000 regions per LoFi sketch. Using this architecture

and data representation, we trained both RCNN and Fast RCNNmodels.

From our experiments, we observed that these models performed poorly

in the UI element detection task. Although the classifier performs with

91.7% accuracy, the region proposal algorithm using a selective search

Figure23.1:LoFi sketches represented as labelledUI element sketches for training
the classification DNN

168 model architectures & data representations

algorithm did not adequately identify the possible regions. Hence, the

overall detection was inadequate for the UI element detection task.

23.2.2 LoFi sketch with annotations

Widely used datasets such as Pascal VOC by T. Y. Lin et al. (2014) andWe represent LoFi
sketches as a LoFi

sketch image with its
corresponding
annotation file

COCO dataset by Everingham et al. (2010) for object detection represents

an image as a series of objects and their annotations as bounding boxes.

Similarly, we represent LoFi sketches as a LoFi sketch image with its cor-

responding annotation file.�is annotation file, either in CSV or JSON

format, contains a list of UI element categories present in this image,

along with its location and dimension.

Figure 23.2: LoFi sketches represented as an image and annotation file with the
list of constituent UI element categories, their location and dimension

To generate such a dataset of LoFi sketches with annotation files, we

generated synthetic datasets, Syn and SynZ, using the UISketch dataset

(Chapter 6). Using these datasets, we trained Faster R-CNN Resnet by

Ren et al. (2015), SSDMobileNet by W. Liu et al., 2016, and SSD Resnet

(RetinaNet) by T.-Y. Lin et al. (2017) detection models with various hy-

perparameters. We observed that these models performed better in UI

element detection than the region proposal algorithm and classifier mod-

els; however, training the systemwas slower due to highmemory andGPU

consumption.

Based on these empirical trials, we chose SSD Resnet 50 (RetinaNet)

architecture for UI element detection. RetinaNet is an improvement on

single-shot detection models using a new loss function, focal loss. It pro-

vides better accuracy than other models while providing quicker results.

In the upcoming chapter, we describe the implementation details, con-

figuration, and training process of the MetaMorph UI element detector.

24
IMPLEMENTAT ION

As discussed in the previous chapter, after several experimentswithmodel

architectures and data representations, we used SSD Resnet (RetinaNet)

for training the MetaMorph UI element detector. In this chapter, we dis-

cuss the training datasets, configuration, and training process.

24.1 implementation approach

�e goal of MetaMorph is to assist in the transformation of lo-fi to higher From empirical
experiments, we chose
the SSDResnet
(RetinaNet) model for
creatingMetaMorph

fidelities by providing an initial step.MetaMorph is an object detector fine-

tuned to locate and classify UI elements from lo-fi sketches. It performs

two functions: localization and classification. As Szegedy, Toshev, et al.

(2013) describes, Localization is identifying the object’s location in an image.
It returns bounding box details (x,y coordinates of the top left corner,

width, and height) of an object’s position in the image. Classification is
identifying the object’s category from a set of predefined categories.

To create MetaMorph, we followed the supervised deep learning model

pipeline outlined by I. Goodfellow et al. (2016). As a supervised deep learn-

ingmodel learns to recognize and classify based on the underlying ground

truthdata,weusedour synthetically generated LoFi datasets Syn andSynZ

for pretraining the UI element detection model. We further fine-tuned

the pretrained model with real-life LoFi sketches from our LoFi sketch

dataset to create MetaMorph.

24.2 datasets

Asdiscussed inChapter 6,we synthetically generated300,377LoFi sketches We trained
MetaMorph using
LoFi sketches from
Syn, SynZ, and LoFi
sketch dataset

and their annotation files (combined both Syn and SynZ datasets) to train

the object detection model of our UI element detector. In addition, we

collected 4,527 hand-drawnLoFi sketches (LoFi Sketchdataset) for training

169

170 implementation

and evaluating the UI element detector.We used all three datasets to train

MetaMorph and 20%of the LoFi sketch dataset to evaluate the final trained

model.

24.3 implementation details

We implementedMetaMorph in the python programming language using

PyTorch package by Paszke et al. (2019) and Detectron2 library byWu et al.

(2019). We reconfigured the Retinanet model from the Detectron2 library

and used it for creating the UI element detector. Figure 24.1 created by

Honda (2020) shows the detailed architecture of RetinaNet model from

the Detectron2 library. After pretraining, we used the LoFi sketch dataset

to fine-tune further and create the MetaMorph.

Figure 24.1: Architecture of the SSD Resnet 50 (Retinanet) model from the Detec-

tron2 library as depicted by Honda (2020)

24.4 configuration

�e Retinanet model fromDetectron2 library was pre-trained with COCO

dataset collected by T. Y. Lin et al. (2014). �erefore, we loaded the pre-

trainedmodel checkpoints andfine-tuned the object detectionmodelwith

the Syn and SynZ datasets to detect UI element sketches.

We set the training batch size to 64 to fit the available GPU memory.

We removed all the preprocessing steps provided by the model, as the

images in the synthetic dataset were preprocessed and augmented during

24.5 training process 171

generation.We assigned the number of categories as 21, which denotes

the number of UI element categories in our dataset.

We determined the following hyperparameters aftermultiple iterations

of empirical experiments on the training data for training the RetinaNet

object detection model:

• Feature extractor: Resnet model with 50 layers

• Image rescaling: Rescaled to a square with 640 pixels on each side

• Optimizer:StochasticGradientDescent optimizerwith cosine learn-
ing rate decay

• Learning rate: Starts at 0.0399 and decays with cosine learning rate
decay strategy

• Anchor boxes aspect ratios: 0.5, 1, 2

• Anchor box sizes: 32, 64, 128, 256, and 512 (interpolated with 0.25
and 0.5 anchor box sizes)

For transparency and replicability of this research, we have provided

the codebase along with the configuration file
1
.

24.5 training process

We trained the Retinanet model in two steps: pre-train the model with

Syn and SynZ datasets, then fine-tune with the LoFi sketch dataset. We

followed this approach as the synthetic dataset approximates the real

LoFi sketches but does not accurately depict the real-life hand-drawn LoFi

sketches. �erefore, pretraining with the synthetic dataset and further

fine-tuning with the real-life dataset provides the most stable results.

We set up the training pipeline for the pretraining task with the Syn

and SynZ datasets and created a GPU cluster batch job to train the object

detectionmodel. We used two NVIDIA Tesla P100 16GB GPUs for training

thesemodels.We trained themodel for 25,679 steps (~6 epochs).We stored

the model checkpoint after every 1,000 steps and restored training if the

model fails due to GPU cluster timeout. Figure 24.2 shows the bounding

box regressor loss, classifier loss and total loss values of the Reitinanet

model during trainingwith Syn and SynZ dataset.�e intermediate peaks

are the steps where we resumed training after GPU cluster timeout failure.

1 https://github.com/vinothpandian/SynZ

https://github.com/vinothpandian/SynZ

172 implementation

Figure 24.2: Training loss per steps of the RetinaNet model during training with
the LoFi sketches from the Syn and SynZ training datasets

As visualized in Figure 24.2, the general trend of the training loss of the

RetinaNet model is in a downward curve and reaches a point of stability.

We loaded the pre-trained weights obtained after training themodel

with the Syn andSynZdatasets for furtherfine-tuningwith the LoFi sketch

dataset. We then continued training for 5,279 steps (~46 epochs) until the

loss curve plateaued. Figure 24.3 shows all the loss values of the final fine-

tuning of theRetinanetmodel during trainingwith the LoFi sketchdataset.

Similar to the trend of training loss with the Syn and SynZ dataset, the

Figure 24.3 shows training loss decreases in a downward curve towards a

plateau of stability.

Figure 24.3: Training loss per steps of the RetinaNet model during training with
the 3,632 LoFi sketches from the LoFi sketch training dataset

24.5 training process 173

With this trainingprocess,we obtained the trainedweights of theUI ele-

ment detectionmodel:MetaMorph.Using the 20%of real-life hand-drawn

LoFi sketch evaluation dataset that we set aside, we further evaluated the

MetaMorph UI element detection model to measure its precision and

recall. We discuss the evaluation of our UI element detector in the next

chapter.

25
EVALUAT ION

In this chapter, we discuss the evaluation results of the MetaMorph UI

element detector. In the upcoming sections, we describe the evaluation

dataset and introduce the evaluationmetric used tomeasure the precision

and recall of MetaMorph and briefly discuss the evaluation results.

25.1 dataset

To evaluate the ecological validity of MetaMorph’s object detection model, We evaluated
MetaMorph with 895
real-life hand-drawn
LoFi sketches from the
LoFi sketch dataset

we aimed to evaluate it with hand-drawn lo-fi sketches. We evaluated the

MetaMorph UI element detection model with 895 real-life hand-drawn

LoFi sketches (20%) from the LoFi sketch dataset. �ese sketches were

collected fromUI/UX designers, front-end developers, HCI and CS grad

students; thus, they are representative of LoFi sketches encountered in

the real world. Table 25.1 shows the distribution of UI element categories

in the evaluation dataset.

25.2 metrics

We used this evaluation dataset to measure the average precision and Mean Average
Precision (mAP)
measures how
accurateMetaMorph
detects UI elements in
a LoFi sketch

recall of the trained UI element detection model. According to the survey

of Padilla et al. (2021), the measures in COCO detection metrics proposed

by T. Y. Lin et al. (2014) is one of the commonly used evaluation measures

for object detection models.�erefore, we used COCO detection metrics

to calculate the evaluation results.

�e central quantitative measures used in COCO detection metrics are Average Recall (AR)
measures how good
MetaMorph is in
finding all the correct
UI elements.

the Mean Average Precision (mAP) and Average Recall (AR). �ese metrics

are then further separated into different Intersection over Unions (IoUs)

and the bounding box area. �e IoU measures the amount of overlap

175

176 evaluation

Table 25.1:Distribution of UI element category in the 895 LoFi sketches in the
LoFi sketch evaluation dataset

Category UI element category Count

C
o
m
p
o
s
i
t
e

Card 551

Alert 57

Menu 48

Chip 19

Grid list 12

Data table 3

Tooltip 1

S
t
a
n
d
a
lo
n
e

Label 3280

Image 2457

Button 809

Text field 430

Checkbox checked 103

Switch enabled 100

Floating action button 97

Checkbox unchecked 50

Switch disabled 48

Text area 14

Radio button unchecked 10

Dropdownmenu 6

Slider 3

Radio button checked 2

between the ground truth bounding box and the predicted bounding box.

Overall, the COCO detection metrics reports 12 values.

25.3 methodology

We preprocessed the 895 LoFi sketches from the evaluation dataset using

the OTSU thresholding and binary colour inversion similar to the training

data to evaluateMetaMorph.We then loaded the final trainedmodel from

the previous chapter andpredicted the category andbounding boxes of the

preprocessed LoFi sketches.Weused the Python implementation of COCO

detectionmetrics to calculate the finalmetrics with the ground-truth LoFi

sketch annotations and predicted bounding boxes.

25.4 results 177

25.4 results

MetaMorph provides 47.8%mean Average Precision(mAP) and 36.6% Av- MetaMorph provides
adequate object
detection for medium
and large objects;
however, it performs
poorly for small-sized
UI element sketches

erage Recall (AR) on this LoFi sketch evaluation dataset. �e mAP for

0.5 IoU is the highest with 72.6%.�emodel provides near average mAP

for medium sized (48.2%) and large (41.5%) UI element sketches. Similar

to mAP the model provides adequate AR for medium (57.3%) and large

(54.8%) UI element sketches. However, MetaMorph performs poorly for

small sized UI element sketches (12.8%mAP and 19.4% AR). Table 25.2 and

Figure 25.1 shows the COCO detection metrics of the MetaMorph.

Table 25.2:COCO detection metrics of MetaMorph object detection model mea-
sured with the hand-drawn LoFi sketch evaluation dataset

COCODetectionMetrics Evaluation Result

mAP 47.8

mAP@.50 IOU 72.6

mAP@.75 IOU 50.2

mAP (small) 12.8

mAP (medium) 48.2

mAP (large) 41.5

AR@1 36.6

AR@10 59.8

AR@100 60.1

AR@100 (small) 19.4

AR@100 (medium) 57.3

AR@100 (large) 54.8

Figure 25.1:COCO detection metrics of MetaMorph UI element detector mea-
sured with the hand-drawn LoFi sketch evaluation dataset

178 evaluation

(a) Images gallery screen: All UI elements
(images and buttons) are detected cor-

rectly.

(b) User profile screen: Only one UI el-
ement (text field for city) is falsely de-

tected as text area.

(c) Scale sheet screen: 2 UI elements (la-
bel and slider) are undetected, 1 slider is

wrongly detected.

(d)Settings screen:Out of 17UI elements,
8 labels and 5 radiobuttonuncheckedare

not detected.

Figure 25.2:Examples of UI element detection byMetaMorph using hand-drawn
LoFi sketches of the user profile, images gallery, scale sheet, and settings screen.

Figure25.3:UIelement categorywise averageprecisionofMetaMorphUIelement
detector

25.5 discussion 179

Table 25.3:COCO detection metrics of MetaMorph object detection model mea-
sured with the hand-drawn LoFi sketch evaluation dataset

Category UI element category Average Precision

C
o
m
p
o
s
i
t
e

Tooltip 90.00

Card 67.17

Chip 59.74

Grid list 43.17

Menu 42.32

Alert 34.38

Data table 0.67

S
t
a
n
d
a
lo
n
e

Radio button checked 95.05

Dropdownmenu 77.78

Radio button unchecked 55.63

Floating action button 53.93

Button 52.92

Image 49.76

Text field 48.67

Switch enabled 46.64

Switch disabled 43.00

Checkbox checked 40.74

Label 35.05

Slider 33.37

Checkbox unchecked 29.18

Text area 5.12

Upon analyzing the average precision of the MetaMorphmodel on UI MetaMorph detects
tooltip and radio
button checked with
the highest precision
but performs very
poorly in detecting text
area and data table

element category wise, we identified that the model identifies tooltip

(90%) and radio button checked (95.05%) with the highest mAP. It identi-

fies Dropdownmenu (77.78%), Card (67.17%), Chip (59.74%), radio button

unchecked (55.63%), floating action button (53.93%) and button (52.92%)

with above-average mAP. �e model performs very poorly for the Text

area (5.12%) and Data table (0.67%). Table 25.3 and Figure 25.3 shows UI

element category wise average precision of MetaMorphmodel evaluation.

25.5 discussion

From the evaluation results, we understood that the MetaMorph UI ele-

ment detector performs adequately for UI element detection with near-

average mAP (47.8%). It generalizes detection for various UI element cate-

gories. However, it performs poorly for the Text area and Data table UI

180 evaluation

elements. A key observation from the evaluation results is that as the

distribution of UI element categories differs (Table 25.1) in real-life LoFiAs the distribution of
UI element categories
differs in real-life LoFi
sketches, we observe
thatMetaMorph
provides adequate
detection for the

commonly occurring
UI element categories

sketches, we observe that MetaMorph provides adequate detection for

the commonly occurring UI element categories such as Label (35.05%),

Image (49.76%), Button (52.92%), Card (67.17%), and Text field (48.67%). On

the other hand, for rare UI element sketches such as Data table (0.67%),

MetaMorph provides unsatisfactory results.

To further understand the user satisfaction by usingMetaMorph, we

conducted a user evaluation study by creatingMetaMorph as aWeb API

and coupling it with Eve, a prototyping workbench created by Suleri, Pan-

dian, et al. (2019). We discuss the user evaluation and its results in the

next chapter.

26
USER EVALUAT ION

From the evaluationmetrics, we understood thatMetaMorph provides ad-

equate precision and recall for detecting UI elements from LoFi sketches

from the model evaluation. To further evaluate MetaMorph and under-

stand user satisfaction, we conducted a quantitative and qualitative study.

�is chapter explains these study setup, participants, methodology, and

result.

26.1 web api

A key focus ofMetaMorph is to provide amodular and reusable interface to We created a web API
forMetaMorph to
create amodular and
reusable interface

convert LoFi sketches to higher fidelities. To attain this, we created aWeb

API to providing a user-friendly abstraction and access to the MetaMorph

UI element detector. We wrote this API in Python using PyTorch and

FastAPI
1
frameworks.

�isWeb API
2
accepts two parameters in the HTTP request: the LoFi

sketch as an image and the minimum detection threshold value (decimal

between 0 to 1). �e API calls the MetaMorphmodel and obtains the pre-

dicted constituent UI element categories and bounding boxes. Using the

prediction result, the API respondswith a list of UI element categories and

their location, dimension, and the prediction certainty in JSON format.

26.2 eve: prototyping workbench

We used Eve: a prototyping workbench created by Suleri, Pandian, et al. We coupled
MetaMorph with Eve,
a prototyping
workbench for
conducting user
evaluation

(2019) to convert LoFi sketches to higher fidelities by coupling it withMeta-

Morph. Eve provides users with a canvas to sketch their UI designs as

a LoFi prototype.�is LoFi prototype is then passed to MetaMorphWe-

1 https://fastapi.tiangolo.com/
2 https://api.metamorph.designwitheve.com/

181

https://fastapi.tiangolo.com/
https://api.metamorph.designwitheve.com/

182 user evaluation

Figure26.1:Eve: LoFi toMeFi transformationusingUIelementdetectionprovided
by MetaMorph (Pandian, Suleri, Beecks, et al., 2020)

bAPI, which then detects the sketched UI elements. Once the UI elements

are detected, Eve then generates the respective UI elements as a MeFi

prototype.

26.3 methodology

To assess the designers’ satisfaction in utilizing AI to transform LoFi toWe used the standard
After-Scenario

Questionnaire (ASQ)
for measuring user
satisfaction in using

MetaMorph

higher fidelities, we conducted a quantitative study using After-Scenario

Questionnaire (ASQ), createdbyLewis (1991b), followedby semi-structured

interviews (15 min) to obtain qualitative feedback.�e ASQmeasures user

satisfaction on the following three scales ease of completing the tasks

(Q1) the amount of time it took to complete the tasks (Q2) the supporting

information provided while completing the tasks (Q3).

26.3.1 Participants

We used purposive and snowball sampling to recruit 10 UX designers (4

male and 6 female). �e participants were between 23 to 35 years of age

and had 2 - 8 years of prior prototyping experience.

26.3.2 Scenario & Tasks

�e participants were given a scenario to interact with Eve to create a LoFi

prototype and transform it into a MeFi prototype utilizing UI element

26.3 methodology 183

detection provided byMetaMorph.�ey were instructed to complete the

following five tasks.

1. Create a LoFi prototype by sketching 2 to 3 screens, e.g., login screen,

user registration screen.

2. Use Eve to generate MeFi from the LoFi sketches

3. Identify correctly and wrongly identified UI elements

4. Correct the category of wrongly identified UI elements

5. Identify an undetected UI element

We also chose simple screens, such as a login screenwith 3-5 UI element

categories, andmore complex screens, such as a user registration screen

with around 5-10UI element categories, to evaluate theMetaMorphmodel

with different complexities. Also, keeping the flow of prototyping fidelity

transformation inmind,wealways kept thefirst two tasks at the beginning

of the study.�e order of the remaining tasks was randomized.

26.3.3 Material & Apparatus

Participants performed the aforementioned tasks in a lab setup.We pro-

vided each participant with a Microsoft Surface Studio and a stylus for

sketching the LoFi prototypes.

26.3.4 Procedure

Participants were invited to the lab and briefed about the study’s purpose Study was conducted
in lab setting

and the assigned task. Participants were given time to explore various

features of Eve andMetaMorph. After this brief exploration period, par-

ticipants performed the assigned tasks and provided feedback using a

think-aloud protocol. Once the participant completed the tasks, they were

asked to fill the ASQ. On average, participants took around 25 minutes

to complete the tasks and fill the questionnaire. After the study, we con-

ducted semi-structured interviews (approx. 15 mins) to understand the

participant’s view on the AI-assisted prototyping approach and better

understand and interpret the ASQ results.

184 user evaluation

Table 26.1:�e number of UI elements the participants sketched, the number of

elements MetaMorph correctedly identified, wrongly identified and the number

of unidentified UI elements during qualitative study using Eve along with their

ASQ results

UI Element Detection ASQ

ID No. of Count of Correct Undetected Wrong Precision Recall Q1 Q2 Q3

Screens UI Elements

P1 2 21 17 3 5 0.77 0.85 5 6 5

P2 2 19 11 3 6 0.65 0.79 3 5 4

P3 3 20 14 2 4 0.78 0.88 5 4 5

P4 2 29 18 5 10 0.64 0.78 5 4 4

P5 3 32 27 3 6 0.82 0.90 6 7 5

P6 2 15 8 2 7 0.53 0.80 5 5 6

P7 3 26 18 3 8 0.69 0.86 6 5 4

P8 2 15 9 5 3 0.75 0.64 4 6 6

P9 3 21 15 2 7 0.68 0.88 5 6 7

P10 2 12 9 2 3 0.75 0.82 5 5 7

Mean 0.71 0.82 4.9 5.3 5.3

26.4 results & discussion

MetaMorph received an above-average satisfaction level for all three ques-MetaMorph received
an above-average

satisfaction level for
all three questions in

the ASQ

tions in the ASQ: ease of completing the tasks (4.9), the amount of time it

took to complete the tasks (5.3), and the supporting information provided

when completing the tasks (5.3).

During this quantitative study, we also recorded the number of ele-

ments the participants sketched per screen, the number of UI elements

MetaMorph correctly identified, wrongly identified, and the number of

UI elements that remained undetected. As per the data collected during

this study, MetaMorph provides 71%mAP and 82% AR (Table 26.1).

We further analyzed the correlationbetween theprecisionofUI elementWe found that the user
satisfaction of

participants were
positively correlated
with the precision of
MetaMorph’s UI
element detection.

detection and designers’ satisfaction. Unlike the ordinal values of the 7-

point Likert scale in ASQ, the UI element detection precision is on an

interval scale. �erefore, we converted the precision to an ordinal scale

using average ranking and used rank correlation coefficient by Spearman

(1904) to measure the correlation between them.

From this analysis, we discovered that there is a low-positive correla-

tion between the precision of the UI element detector and the designers’

satisfaction in ease of performing the scenario (rprecision × Q1=0.326).

�ere is a medium-positive correlation between precision and the de-

signers’ satisfaction in the time taken to complete tasks in the scenario

26.4 results & discussion 185

(rprecision × Q2=0.405). However, only a weak-positive correlation was

found (rprecision × Q3=0.107) between precision and the designers’ satis-

faction with the supporting information provided. Figure 26.2 visualizes

the correlation trend between precision and the three questions fromASQ.

(a) Low-Positive correla-
tion trend between pre-

cision and the design-

ers’ satisfaction in ease of

performing the scenario

(r=0.326)

(b)Medium-Positive cor-
relation trend between

precision and designers’

satisfaction in the time

taken to complete tasks

(r=0.405)

(c)Weak-Positive correla-
tion trend between pre-

cision and the designers’

satisfaction in the sup-

porting information pro-

vided (r=0.107)

Figure 26.2: Spearman rank correlation between UI element detection precision
and the three questions from ASQ

Based on the qualitative feedback provided by our participants, we

understood that when the AI detects the UI elements precisely, it reduces

their effort by providing themwith a starting point. As a result, there is

an increase in the ease of performing the scenario in relatively less time.

“
�is system is simple and easy to use.�is is less time consuming than
what I usually do.

-P1

“
�eresult is almost accurate, nowall I have to do is to remove the other
stuff that I didn’t want. I like that fact I don’t have to adjust the size of
the items (UI elements). But it would be ideal if the labels were also
detected.

-P2

“
It (AI assistance) made it way quicker, and I had to do way less. So I
could actually spendmore time on polishing the design.

-P5

Based on the qualitative feedback, utilizing AI as an assistant at the

end of LoFi prototyping was perceived as a novel and useful approach to

186 user evaluation

transforming LoFi sketches to higher fidelities. Participants expressed a

willingness to use such an approach. Since MetaMorph only detects UI

elements, it was suggested that in addition to detecting UI elements, text

detection would add to the usefulness of the system.We aim to include

this suggestion as part of our future work; we summarize MetaMorph,

describe the limitations we identified and future work we plan in the next

chapter.

27
SUMMARY & FUTURE WORK

In this part of our thesis, we systematically researched utilising AI to assist

at the end of the LoFi prototyping process by enabling the transforma-

tion of LoFi sketches to higher fidelities. To provide this assistance, we

introducedMetaMorph, a DNN based UI element detector. To train Meta-

Morph, we used 300,377 synthetic LoFi sketches from the Syn and SynZ

dataset and further fine-tuned it with 3,527 hand-drawn LoFi sketches

from the LoFi sketch dataset. MetaMorph can detect 21 categories of UI

elements from a given LoFi sketch. Upon evaluation with 895 real-life LoFi

sketches, MetaMorph provides 47.8%mAP.

Further, to assess the designers’ satisfaction in utilising AI at the end of

the LoFi prototypingprocess to transformLoFi sketches tohigherfidelities,

we conducted a quantitative study using After-Scenario Questionnaire

(ASQ) followed by semi-structured interviews to gather qualitative feed-

back.�e results indicated that designers experience an above-average

satisfaction level towards ease of task completion (4.9), time taken (5.3),

and supporting information (5.3) upon utilising AI assistance for trans-

forming LoFi sketches to higher fidelities. �eir qualitative feedback indi-

cated that they perceive utilising AI as a novel and useful approach during

UI prototyping.

MetaMorph addresses the final part of RQ 2, 3, and 4 of this thesis. By

creating and evaluatingMetaMorph, this research is the first attempt to

systematically research AI to transformLoFi sketches into higher fidelities.

�rough this research, we address the identified research gaps by training

a reusable and generalisable AI model. We also measure the designer

satisfaction in utilising AI assistance after LoFi prototyping to convert

them to higher fidelities.

However, from the feedback of our user evaluation, we identified the

following limitations with our current system, which we would like to fix

in our future work.

187

188 summary & future work

From the qualitative feedback of the user evaluation, few participants

requested to detect the text in the LoFi sketches.We further plan to couple

MetaMorph with hand-writing recognition DNNs to add this feature to

our system.

Overall, MetaMorph detects UI element sketches from a given LoFi

sketch with adequate precision (47.8%). However, it performs poorly for

small UI elements ((12.8%mAP). We would like to investigate the reason

further and improve its detection precision for small-sized UI elements.

Also, MetaMorph performs poorly for few UI element categories such as

Data table, Text area, and Checkbox unchecked. A potential reason could

be the class imbalance between UI element categories in the LoFi sketch

dataset. We would like to improve this in the next version.

As object detection research is continually developing, we would also

like to experiment, improve, and update the underlying DNN for UI ele-

ment detection in MetaMorph.

28
CONCLUS ION & FUTURE WORK

BlackBox toolkit results from our systematic research on providing AI

assistance to UI designers before, during, and after the traditional LoFi

prototyping process.�is dissertation contributed four large-scale open-

access datasets: UISketch, Syn & SynZ, LoFi Sketch andWired datasets.

�ese datasets were collected and refined from a diverse collection of data

spanning participants fromdifferent countries, experience in prototyping,

and input medium. Beyond the scope of this thesis, these datasets are

readily available for training and evaluating various AI tools targetting

LoFi, MeFi and HiFi prototypes. Further, through their diverse nature,

they ensure the quality and generalizability of the AI models trained and

evaluatedwith such datasets. Additionally, this research contributed three

open-source tools: Akin, RUITE, andMetaMorph.

Akin is a UI wireframe generator that assists UI designers before LoFi
prototypingbygeneratingmultipleUIwireframes for agivenUIdesignpat-
tern; thus, enabling designers to conceptualise UI designs quickly. It used

a modified conditional SAGAN for wireframe generation and provided

an Inception Score of 1.63 (SD=0.34) and a Fréchet Inception Distance

of 297.19. Our user evaluation revealed that UI/UX designers considered

wireframes generated by Akin to be as good as wireframes made by de-

signers. Moreover, designers identified Akin-generated wireframes as

designer-made 50% of the time.

RUITE is a UI wireframe refiner that assists UI designers during LoFi
prototyping by aligning and grouping UI elements in a given UI wireframe.
RUITE used a Transformer-Encoder model and provided satisfactory re-

sults on almost all evaluation metrics: alignment score (0.87), improve-

ment margin (~38%), grouping accuracy (20%), and mAP (58.53%). �e

qualitative feedback indicated that both novice and experienced partici-

pants preferred refinement of UI wireframe using AI in a button-click.

189

190 conclusion & future work

MetaMorph is a UI element detector that assists UI designers after
LoFi prototyping by detecting the constituent UI elements of LoFi sketches
and their location and dimension; thus, enabling the transformation of

LoFi sketches to higher-fidelities. MetaMorph uses the RetinaNet object

detectionmodel and provides 47.8%mAP for hand-drawn LoFi sketches.

�e qualitative feedback showed that MetaMorph reduced their effort

in transforming prototype fidelities and providing themwith a starting

point.

Overall, the UI designers perceived utilising AI for UI design as a novel

and helpful approach and expressed their willingness to adopt it. �eir

ASQ results showed an above-average satisfaction level upon using all

three AI assistance tools.

We can understand the impact of using the Blackbox toolkit by looking

into how it assists in automating a fewmanual practices of LoFi prototyp-

ing. UI designers typically start their prototyping process by searching for

inspirational UI designs then sketching or recreating them in a prototyp-

ing tool.�ey thenmodify the LoFi prototypes to fit their use case while

either disregarding the aesthetics in LoFi sketches or carefully aligning the

LoFi wireframes in the prototyping tool. However, UI designers who use

the Blackbox toolkit for prototyping can utilise Akin to generate various

editable LoFi wireframes for their particular use case before starting the

prototyping process. While they edit the LoFi wireframe to fit their needs,

they can utilise RUITE to align the UI wireframes with a click of a button.

Further, they can also upload their LoFi sketches to Adobe XD prototyping

platform and convert their sketches to LoFi wireframes or MeFi using the

MetaMorph plugin instead of manually recreating their LoFi sketch to a

higher fidelity prototype.

�is thesis acts as a base for further research in adding AI assistance

in UI prototyping. It introduces the approach to provide AI assistance

to UI designers during the LoFi design process without sacrificing their

autonomy.Webelieve this approachwould greatly benefit designerswhere

AI and humans co-create creative solutions. Besides, by the quantitative

and qualitative user evaluation, this thesis provided a baseline metric on

the performance of AI tools and their satisfaction upon using them before,

during, and after LoFi prototyping. Moreover, these open-access datasets

and open-source AI tools contributed through this thesis are not limited

to the scope of the thesis and can be used in further UI design research in

various applications due to their modular nature.

conclusion & future work 191

Despite these benefits, through the user evaluation, we identified sev-

eral aspects inwhich the datasets andAI tools in theBlackBox toolkit could

be improved. In general, the research on AI systems is improving tremen-

dously as updatedDNNarchitecture andparameter tuningmethodologies

are published every year.�erefore, the performance of the AI tools can be

further fine-tuned or replaced bymodifying the underlying DNN archi-

tecture of each AI tool. Moreover, the trends and aesthetics in UI design

change drastically; therefore, there is a need to update the UI screens and

UI components in the datasets and retrain the AI models in the future.

From a broader perspective, this thesis can further be expanded for

various platforms such as desktop and web applications as it is currently

scoped for smartphone applications. Also, as the datasets are not limited

to the scope of this thesis, they open upmany avenues of creating various

AI tools supporting UI designers such as LoFi wireframe autocompletion,

LoFi sketch-based UI screenshot retrieval, automated analysis of accessi-

bility issues in UI screens, and adaptive UI by contextual auto-generation

of UI screens.

Part VI

A PPEND IX

a
COMPREHENS IVE L I S T OF L ITERATURE

�is appendix chapter lists a comprehensive list of research and com-

mercial projects that provide AI support to the UI design process with

different research focuses. For each research project, we list the proto-

typing fidelity, dataset, andmodel it uses along with its model and user

evaluation results.

195

196 comprehensive list of literature

Ta
bl
ea
.1:
L
i
s
t
o
f
li
t
e
r
a
t
u
r
e
t
h
a
t
p
r
o
v
i
d
e
A
I
s
u
p
p
o
r
t
i
n
U
I
d
e
s
i
g
n
b
y
a
u
t
o
m
a
t
i
n
g
t
h
e
p
r
o
t
o
t
y
p
e
fi
d
e
li
t
y
t
r
a
n
s
f
o
r
m
a
t
i
o
n

Re
se
ar
ch
W
or
k

Pr
ot
ot
yp
e

D
at
as
et

M
od
el
/A
lg
or
ith
m

M
od
el
Ev
al
ua
tio
n

U
se
rE
va
lu
at
io
n

L
a
n
d
a
y
,
1
9
9
6

L
o
F
i
-
S
k
e
t
c
h
o
f
D
e
s
k
t
o
p
a
p
p
s

N
o
t
a
p
p
li
c
a
b
le

R
u
b
i
n
e
r
e
c
o
g
n
i
z
e
r

-
-

C
a
e
t
a
n
o
e
t
a
l.
,
2
0
0
2

L
o
F
i
-
S
k
e
t
c
h
o
f
D
e
s
k
t
o
p
a
p
p
s

N
o
t
a
p
p
li
c
a
b
le

V
i
s
u
a
l
g
r
a
m
m
a
r
u
s
i
n
g
C
A
L
I
r
e
c
o
g
n
i
z
e
r

-
W
i
t
h
6
p
a
r
t
i
c
i
p
a
n
t
s
.
N
o
n
-
s
t
a
n
d
a
r
d
q
u
e
s
-

t
i
o
n
n
a
i
r
e
.
U
s
e
r
s
c
o
n
s
i
d
e
r
e
d
S
k
e
t
c
h
I
t
a
s
e
a
s
y

t
o
u
s
e
a
n
d
t
o
le
a
r
n

P
li
m
m
e
r
e
t
a
l.
,
2
0
0
3

L
o
F
i
-
S
k
e
t
c
h
o
f
D
e
s
k
t
o
p
a
p
p
s

N
o
t
a
p
p
li
c
a
b
le

R
u
b
i
n
e
r
e
c
o
g
n
i
z
e
r

-
W
i
t
h
1
6
s
t
u
d
e
n
t
s
.
N
o
n
-
s
t
a
n
d
a
r
d
q
u
e
s
t
i
o
n
-

n
a
i
r
e
.
I
t
i
n
c
r
e
a
s
e
d
s
t
u
d
e
n
t
m
o
t
i
v
a
t
i
o
n
o
n

c
o
d
i
n
g
t
a
s
k
s
s
i
g
n
i
fi
c
a
n
t
ly

C
o
y
e
t
t
e
e
t
a
l.
,
2
0
0
4

L
o
F
i
-
S
k
e
t
c
h
o
f
D
e
s
k
t
o
p
a
p
p
s

N
o
t
a
p
p
li
c
a
b
le

C
A
L
I
r
e
c
o
g
n
i
z
e
r

-
-

S
e
g
u
r
a
e
t
a
l.
,
2
0
1
2

L
o
F
i
-
S
k
e
t
c
h
o
f
W
e
b
a
p
p
s

N
o
t
a
p
p
li
c
a
b
le

B
a
s
e
d
o
n
L
e
v
e
n
s
h
t
e
i
n
d
i
s
t
a
n
c
e
,
D
o
u
g
la
s
-

P
e
u
c
k
e
r
a
lg
o
r
i
t
h
m
s

-
1
2
p
a
r
t
i
c
i
p
a
n
t
s
.
N
o
n
-
s
t
a
n
d
a
r
d
q
u
e
s
t
i
o
n
-

n
a
i
r
e
.
P
a
r
t
i
c
i
p
a
n
t
s
h
a
d
a
n
o
v
e
r
a
ll
p
o
s
i
t
i
v
e

o
p
i
n
i
o
n
a
b
o
u
t
U
I
S
K
E
I
a
n
d
i
t
s
s
u
p
p
o
r
t
o
n

p
r
o
t
o
t
y
p
i
n
g

H
a
lb
e
e
t
a
l.
,
2
0
1
5

L
o
F
i
-
W
i
r
e
f
r
a
m
e
o
f
S
m
a
r
t
p
h
o
n
e
a
p
p
s

N
o
t
s
p
e
c
i
fi
e
d

L
e
a
r
n
i
n
g
V
e
c
t
o
r
Q
u
a
n
t
i
z
a
t
i
o
n
N
e
u
r
a
l
N
e
t
-

w
o
r
k

7
0
%
a
c
c
u
r
a
c
y
w
i
t
h
3
0
s
k
e
t
c
h
e
s

-

R
.
H
u
a
n
g
e
t
a
l.
,
2
0
1
6

M
e
F
i
o
f
W
e
b
a
p
p
s

-
L
i
n
e
D
e
t
e
c
t
i
o
n
h
e
u
r
i
s
t
i
c
s
a
n
d
R
a
n
d
o
m
F
o
r
-

e
s
t

W
i
t
h
3
0
G
U
I
s
c
r
e
e
n
s
h
o
t
s
.
0
.
7
8
2
P
r
e
c
i
s
i
o
n
,

0
.
7
8
2
r
e
c
a
ll
,
0
.
7
7
5
F
1
s
c
o
r
e
a
n
d
0
.
8
4
4
a
c
c
u
-

r
a
c
y

-

B
e
n
ja
m
i
n
,
2
0
1
7

L
o
F
i
-
S
k
e
t
c
h
o
f
W
e
b
a
p
p
s

-
-

-
-

B
e
lt
r
a
m
e
ll
i
,
2
0
1
7

M
e
F
i
o
f
S
m
a
r
t
p
h
o
n
e
,
W
e
b
a
p
p
s

5
2
5
0
s
y
n
t
h
e
t
i
c
U
I
s
c
r
e
e
n
s
h
o
t
s

C
N
N
w
i
t
h
L
S
T
M
(
f
o
r
c
o
d
e
g
e
n
e
r
a
t
i
o
n
)

7
7
%
a
c
c
u
r
a
c
y

-

S
.
-
H
.
L
i
e
t
a
l.
,
2
0
1
7

L
o
F
i
-
S
k
e
t
c
h
o
f
S
m
a
r
t
p
h
o
n
e
a
p
p
s

N
o
t
a
p
p
li
c
a
b
le

S
y
m
b
o
l
r
e
c
o
g
n
i
t
i
o
n
.
U
n
s
p
e
c
i
fi
e
d
a
lg
o
r
i
t
h
m

-
U
n
s
p
e
c
i
fi
e
d
p
a
r
t
i
c
i
p
a
n
t
s
.
I
n
f
o
r
m
a
l
i
n
t
e
r
-

v
i
e
w
.
D
e
s
i
g
n
e
r
s
f
e
lt
t
h
a
t
c
r
e
a
t
i
n
g
U
I
c
o
m
-

p
o
n
e
n
t
s
b
y
s
k
e
t
c
h
i
n
g
a
li
n
e
o
r
r
e
c
t
a
n
g
le
i
s

r
a
p
i
d
a
n
d
i
n
t
u
i
t
i
v
e

Ta
bl
ei
sc
on
tin
ue
di
n
ne
xt
pa
ge
...

comprehensive list of literature 197

Ta
bl
ea
.1
co
nt
in
ue
d
fr
om

pr
ev
io
us
pa
ge

Re
se
ar
ch
W
or
k

Pr
ot
ot
yp
e

D
at
as
et

M
od
el
/A
lg
or
ith
m

M
od
el
Ev
al
ua
tio
n

U
se
rE
va
lu
at
io
n

H
a
n
e
t
a
l.
,
2
0
1
8

L
o
F
i
-
S
k
e
t
c
h
o
f
W
e
b
a
p
p
s

1
5
0
0
s
y
n
t
h
e
t
i
c
U
I
s
k
e
t
c
h
e
s

C
N
N
,
B
i
-
L
S
T
M
(
f
o
r
c
o
d
e
g
e
n
e
r
a
t
i
o
n
)
a
n
d

S
e
lf
A
t
t
e
n
t
i
o
n
la
y
e
r
s

6
7
.
9
%
B
L
E
U
s
c
o
r
e

-

K
i
m
e
t
a
l.
,
2
0
1
8

L
o
F
i
-
S
k
e
t
c
h
o
f
W
e
b
a
p
p
s

-
F
a
s
t
e
r
R
-
C
N
N

9
1
%
P
r
e
c
i
s
i
o
n
a
n
d
8
6
%
r
e
c
a
ll

-

M
i
c
r
o
s
o
f
t
A
I
L
a
b
s
,
2
0
1
8

L
o
F
i
-
S
k
e
t
c
h
o
f
W
e
b
a
p
p
s

1
4
9
U
I
s
k
e
t
c
h
e
s
,
8
c
a
t
e
g
o
r
i
e
s
o
f
U
I
e
le
m
e
n
t
s

M
i
c
r
o
s
o
f
t
C
u
s
t
o
m
V
i
s
i
o
n
A
P
I

-
-

P
a
r
k
e
t
a
l.
,
2
0
1
8

L
o
F
i
-
S
k
e
t
c
h
o
f
S
m
a
r
t
p
h
o
n
e
a
p
p
s

-
Y
O
L
O
f
o
r
d
e
t
e
c
t
i
n
g
o
b
je
c
t
m
a
r
k
e
r
s

-
-

A
s
h
w
i
n
,
2
0
1
8

L
o
F
i
-
S
k
e
t
c
h
o
f
W
e
b
a
p
p
s

1
7
5
0
w
e
b
s
i
t
e
s
c
r
e
e
n
s
h
o
t
s

V
G
G
1
6
w
i
t
h
G
R
U
(
f
o
r
c
o
d
e
g
e
n
e
r
a
t
i
o
n
)

7
6
%
B
L
E
U
s
c
o
r
e

C
.
C
h
e
n
e
t
a
l.
,
2
0
1
8

M
e
F
i
o
f
S
m
a
r
t
p
h
o
n
e
a
p
p
s

1
8
5
2
7
7
U
I
s
c
r
e
e
n
s
h
o
t
s
w
i
t
h
2
9
1
c
a
t
e
g
o
r
i
e
s
o
f

U
I
e
le
m
e
n
t
s

C
N
N
w
i
t
h
R
N
N
e
n
c
o
d
e
r
-
d
e
c
o
d
e
r

6
0
.
2
8
%
a
c
c
u
r
a
c
y
a
n
d
7
9
.
0
9
B
L
E
U
s
c
o
r
e

W
i
t
h
8
r
e
s
e
a
r
c
h
e
r
s
.
N
o
n
-
s
t
a
n
d
a
r
d
q
u
e
s
t
i
o
n
-

n
a
i
r
e
.
F
o
u
n
d
t
h
a
t
e
x
p
e
r
i
m
e
n
t
g
r
o
u
p
i
m
p
le
-

m
e
n
t
s
t
h
e
s
k
e
le
t
o
n
G
U
I
s
f
a
s
t
e
r
t
h
a
n
t
h
e
c
o
n
-

t
r
o
l
g
r
o
u
p
.

Y
.
L
i
u
e
t
a
l.
,
2
0
1
8

M
e
F
i
o
f
S
m
a
r
t
p
h
o
n
e
a
p
p
s

5
2
5
0
U
I
s
c
r
e
e
n
s
h
o
t
s

C
N
N
w
i
t
h
B
i
L
S
T
M
(
f
o
r
c
o
d
e
g
e
n
e
r
a
t
i
o
n
)

A
c
c
u
r
a
c
y
fl
u
c
t
u
a
t
i
n
g
b
e
t
w
e
e
n
7
4
%
a
n
d
8
0
%

-

W
a
ll
n
e
r
,
2
0
1
8

M
e
F
i
o
f
S
m
a
r
t
p
h
o
n
e
a
p
p
s

1
5
0
0
s
y
n
t
h
e
t
i
c
U
I
s
c
r
e
e
n
s
h
o
t
s

C
N
N
w
i
t
h
L
S
T
M
(
f
o
r
c
o
d
e
g
e
n
e
r
a
t
i
o
n
)

9
7
%
B
L
E
U
s
c
o
r
e
.

-

M
o
r
a
n
e
t
a
l.
,
2
0
1
8

M
e
F
i
o
f
S
m
a
r
t
p
h
o
n
e
a
p
p
s

1
4
,
3
8
2
U
I
s
c
r
e
e
n
s
h
o
t
s
w
i
t
h
3
4
c
a
t
e
g
o
r
i
e
s
o
f

U
I
e
le
m
e
n
t
s

C
a
n
n
y
e
d
g
e
d
e
t
e
c
t
i
o
n
a
n
d
C
N
N
b
a
s
e
d
c
la
s
-

s
i
fi
e
r

W
i
t
h
2
4
,
3
8
2
G
U
I
i
m
a
g
e
s
.
9
1
.
1
%
P
r
e
c
i
s
i
o
n

W
i
t
h
3
U
I
d
e
s
i
g
n
e
r
s
.

B
a
ja
m
m
a
l
e
t
a
l.
,
2
0
1
8

M
e
F
i
o
f
W
e
b
a
p
p
s

-
u
n
s
u
p
e
r
v
i
s
e
d

v
i
s
u
a
l
m
a
t
c
h
i
n
g

u
s
i
n
g

v
a
r
i
a
b
le
-
d
e
n
s
i
t
y
c
lu
s
t
e
r
i
n
g

-
5
d
e
v
e
lo
p
e
r
s
.
:
C
o
m
p
a
r
i
s
o
n
o
f
a
u
t
o
m
a
t
i
c
a
ll
y

i
d
e
n
t
i
fi
e
d

c
o
m
p
o
n
e
n
t
s

t
o

m
a
n
u
a
ll
y
-

i
d
e
n
t
i
fi
e
d
o
n
e
s
b
y
d
e
v
e
lo
p
e
r
s
.
S
y
s
t
e
m

a
c
h
i
e
v
e
s
a
n
a
v
e
r
a
g
e
o
f
9
4
%
p
r
e
c
i
s
i
o
n
a
n
d

7
5
%
r
e
c
a
ll
i
n
t
e
r
m
s
o
f
a
g
r
e
e
m
e
n
t
w
i
t
h
t
h
e

d
e
v
e
lo
p
e
r
s
’
a
s
s
e
s
s
m
e
n
t
.

J
a
i
n
e
t
a
l.
,
2
0
1
9

L
o
F
i
-
S
k
e
t
c
h
o
f
W
e
b
a
p
p
s

1
5
0
U
I
s
k
e
t
c
h
e
s
w
i
t
h
1
0
c
a
t
e
g
o
r
i
e
s
o
f
U
I
e
le
-

m
e
n
t
s

S
S
D
R
e
t
i
n
a
N
e
t

-
-

Ta
bl
ei
sc
on
tin
ue
di
n
ne
xt
pa
ge
...

198 comprehensive list of literature

Ta
bl
ea
.1
co
nt
in
ue
d
fr
om

pr
ev
io
us
pa
ge

Re
se
ar
ch
W
or
k

Pr
ot
ot
yp
e

D
at
as
et

M
od
el
/A
lg
or
ith
m

M
od
el
Ev
al
ua
tio
n

U
se
rE
va
lu
at
io
n

Y
u
n
e
t
a
l.
,
2
0
1
9

L
o
F
i
-
S
k
e
t
c
h
o
f
W
e
b
a
p
p
s

5
0
U
I
s
k
e
t
c
h
e
s

Y
O
L
O

-
-

U
i
z
a
r
d
,
2
0
1
9

L
o
F
i
-
S
k
e
t
c
h
o
f
S
m
a
r
t
p
h
o
n
e
a
p
p
s

N
o
t
s
p
e
c
i
fi
e
d

N
o
t
s
p
e
c
i
fi
e
d

N
o
t
s
p
e
c
i
fi
e
d

N
o
t
s
p
e
c
i
fi
e
d

A
ş
ı
r
o
ğ
lu
e
t
a
l.
,
2
0
1
9

L
o
F
i
-
S
k
e
t
c
h
o
f
W
e
b
a
p
p
s

M
i
c
r
o
s
o
f
t
A
I
la
b
d
a
t
a
s
e
t
+
e
x
t
r
a
(
1
8
6
U
I

s
k
e
t
c
h
e
s
,
4
c
a
t
e
g
o
r
i
e
s
o
f
U
I
e
le
m
e
n
t
s
)

C
o
n
t
o
u
r
d
e
t
e
c
t
i
o
n
w
i
t
h
C
N
N
a
n
d
B
i
L
S
T
M

f
o
r
o
b
je
c
t
c
la
s
s
i
fi
c
a
t
i
o
n

7
3
%
v
a
li
d
a
t
i
o
n
a
c
c
u
r
a
c
y

-

S
.
C
h
e
n
e
t
a
l.
,
2
0
1
9

M
e
F
i
o
f
S
m
a
r
t
p
h
o
n
e
a
p
p
s

1
8
4
2
5
8
0
U
I
s
c
r
e
e
n
s
h
o
t
s

C
a
n
n
y
e
d
g
e
d
e
t
e
c
t
i
o
n
a
n
d
C
N
N
b
a
s
e
d
c
la
s
-

s
i
fi
e
r

8
5
%
a
c
c
u
r
a
c
y
i
n
c
la
s
s
i
fi
c
a
t
i
o
n

-

N
a
r
e
n
d
r
a
e
t
a
l.
,
2
0
1
9

L
o
F
i
-
S
k
e
t
c
h
o
f
W
e
b
a
p
p
s

N
o
t
a
p
p
li
c
a
b
le

C
o
n
v
e
x
H
u
ll
d
e
t
e
c
t
i
o
n
a
lg
o
r
i
t
h
m

W
i
t
h
2
0
s
k
e
t
c
h
e
s
.
1
0
0
%
a
c
c
u
r
a
c
y
f
o
r
5
U
I

e
le
m
e
n
t
s
a
n
d
a
b
o
v
e
8
5
%
a
c
c
u
r
a
c
y
f
o
r
o
t
h
e
r

3
U
I
e
le
m
e
n
t
s

-

S
h
a
r
m
a
e
t
a
l.
,
2
0
2
0

M
e
F
i
o
f
W
e
b
a
p
p
s

1
5
0
0
w
e
b
s
c
r
e
e
n
s
h
o
t
s

C
N
N
w
i
t
h
L
S
T
M
(
f
o
r
c
o
d
e
g
e
n
e
r
a
t
i
o
n
)

W
i
t
h
2
5
0
i
m
a
g
e
s
.
9
2
%
B
L
E
U
s
c
o
r
e

-

M
i
s
t
r
y
e
t
a
l.
,
2
0
2
0

L
o
F
i
-
S
k
e
t
c
h
o
f
W
e
b
a
p
p
s

-
C
o
n
t
o
u
r
d
e
t
e
c
t
i
o
n
w
i
t
h
C
N
N
f
o
r
o
b
je
c
t
c
la
s
-

s
i
fi
c
a
t
i
o
n

-
-

W
i
m
m
e
r
e
t
a
l.
,
2
0
2
0

L
o
F
i
-
S
k
e
t
c
h
o
f
W
e
b
a
p
p
s

N
o
t
a
p
p
li
c
a
b
le

D
o
o
d
le
C
la
s
s
i
f
e
r

-
W
i
t
h
6
p
a
r
t
i
c
i
p
a
n
t
s
.
N
o
n
-
s
t
a
n
d
a
r
d
q
u
e
s
-

t
i
o
n
n
a
i
r
e
.
P
a
r
t
i
c
i
p
a
n
t
s
w
e
r
e
la
r
g
e
ly
a
b
le
t
o

s
o
lv
e
t
h
e
g
i
v
e
n
t
a
s
k
s
a
n
d
w
e
r
e
s
a
t
i
s
fi
e
d
w
i
t
h

t
h
e
r
e
s
u
lt
s

comprehensive list of literature 199

Ta
bl
ea
.2
:L
i
s
t
o
f
li
t
e
r
a
t
u
r
e
t
h
a
t
p
r
o
v
i
d
e
A
I
s
u
p
p
o
r
t
i
n
U
I
d
e
s
i
g
n
b
y
g
e
n
e
r
a
t
i
n
g
a
n
d
r
e
fi
n
i
n
g
L
o
F
i
U
I
w
i
r
e
f
r
a
m
e
s
o
r
M
e
F
i
p
r
o
t
o
t
y
p
e
s

Re
se
ar
ch
W
or
k

Pr
ot
ot
yp
e

D
at
as
et

M
od
el
/A
lg
or
ith
m

M
od
el
Ev
al
ua
tio
n

U
se
rE
va
lu
at
io
n

(
D
a
y
a
m
a
e
t
a
l.
,
2
0
2
0
)

M
e
F
i
o
f
W
e
b
a
p
p
s

-
M
i
x
e
d
I
n
t
e
g
e
r
L
i
n
e
a
r
P
r
o
g
r
a
m
m
i
n
g

-
W
i
t
h
1
6
d
e
s
i
g
n
e
r
s
.
7
1
.
7
9
i
n
S
y
s
t
e
m
U
s
a
b
i
li
t
y

S
c
a
le
q
u
e
s
t
i
o
n
n
a
i
r
e
a
n
d
5
3
.
0
4
i
n
C
r
e
a
t
i
v
i
t
y

S
u
p
p
o
r
t
I
n
d
e
x
q
u
e
s
t
i
o
n
n
a
i
r
e

(
L
e
e
e
t
a
l.
,
2
0
2
0
)

L
o
F
i
-
W
i
r
e
f
r
a
m
e
o
f
S
m
a
r
t
p
h
o
n
e
a
p
p
s

R
I
C
O
d
a
t
a
s
e
t
(
2
1
0
0
0
U
I
s
c
r
e
e
n
s
h
o
t
s
w
i
t
h
1
3

c
a
t
e
g
o
r
i
e
s
o
f
U
I
e
le
m
e
n
t
s
)

N
e
u
r
a
l
D
e
s
i
g
n
N
e
t
w
o
r
k
w
h
i
c
h
u
s
e
s
a
G
r
a
p
h

N
e
u
r
a
l
N
e
t
w
o
r
k
a
n
d
a
c
o
n
d
i
t
i
o
n
a
l
V
a
r
i
a
-

t
i
o
n
a
l
A
u
t
o
-
E
n
c
o
d
e
r
(
V
A
E
)

F
I
D
1
4
3
.
5
1
±
2
2
.
3
6

-

(
J
.
L
i
e
t
a
l.
,
2
0
1
9
)

L
o
F
i
-
W
i
r
e
f
r
a
m
e
o
f
S
m
a
r
t
p
h
o
n
e
a
p
p
s

R
I
C
O
d
a
t
a
s
e
t
(
D
a
t
a
s
e
t
d
e
t
a
i
ls
n
o
t
s
p
e
c
i
fi
e
d
)

M
o
d
i
fi
e
d
G
A
N
w
i
t
h
w
i
r
e
f
r
a
m
e
r
e
n
d
e
r
i
n
g

d
i
s
c
r
i
m
i
n
a
t
o
r

-
-

(
G
u
p
t
a
e
t
a
l.
,
2
0
2
0
)

L
o
F
i
-
W
i
r
e
f
r
a
m
e
o
f
S
m
a
r
t
p
h
o
n
e
a
p
p
s

R
I
C
O
d
a
t
a
s
e
t
(
6
2
9
5
1
U
I
s
c
r
e
e
n
s
h
o
t
s
w
i
t
h
2
5

c
a
t
e
g
o
r
i
e
s
o
f
U
I
e
le
m
e
n
t
s
)

T
r
a
n
s
f
o
r
m
e
r
s

S
p
a
t
i
a
l
d
i
s
t
r
i
b
u
t
i
o
n
a
n
a
ly
s
i
s
w
i
t
h
3
3
.
6
c
o
v
e
r
-

a
g
e
a
n
d
2
3
.
7
o
v
e
r
la
p

-

(
Z
h
a
o
e
t
a
l.
,
2
0
2
1
)

M
e
F
i
o
f
S
m
a
r
t
p
h
o
n
e
a
p
p
s

R
I
C
O
d
a
t
a
s
e
t
(
1
2
6
8
8
U
I
s
c
r
e
e
n
s
h
o
t
s
w
i
t
h
2
5

c
a
t
e
g
o
r
i
e
s
o
f
U
I
e
le
m
e
n
t
s
)

M
o
d
i
fi
e
d
S
e
q
G
A
N

A
v
e
r
a
g
e
0
.
0
7
5
F
I
D
a
n
d
0
.
8
6
9
1
-
N
N
A

5
g
r
a
d
s
t
u
d
e
n
t
s
w
i
t
h
n
o
n
-
s
t
a
n
d
a
r
d
q
u
e
s
t
i
o
n
-

n
a
i
r
e

200 comprehensive list of literature

Ta
bl
ea
.3
:L
i
s
t
o
f
li
t
e
r
a
t
u
r
e
t
h
a
t
p
r
o
v
i
d
e
A
I
s
u
p
p
o
r
t
i
n
U
I
d
e
s
i
g
n
b
y
s
e
a
r
c
h
i
n
g
s
i
m
i
la
r
U
I
s
c
r
e
e
n
s
h
o
t
s
o
f
g
i
v
e
n
L
o
F
i
s
k
e
t
c
h
o
r
M
e
F
i
p
r
o
t
o
t
y
p
e

Re
se
ar
ch
W
or
k

Pr
ot
ot
yp
e

D
at
as
et

M
od
el
/A
lg
or
ith
m

M
od
el
Ev
al
ua
tio
n

U
se
rE
va
lu
at
io
n

G
e
,
2
0
1
9

L
o
F
i
-
S
k
e
t
c
h
o
f
S
m
a
r
t
p
h
o
n
e
a
p
p
s

R
I
C
O
d
a
t
a
s
e
t
(
7
2
0
0
0
U
I
s
c
r
e
e
n
s
h
o
t
s
w
i
t
h
7

c
a
t
e
g
o
r
i
e
s
o
f
U
I
e
le
m
e
n
t
s
)

S
i
m
i
la
r
t
o
c
h
e
n
U
I
D
e
s
i
g
n
I
m
a
g
e
2
0
1
8

N
o
t
s
p
e
c
i
fi
e
d

-

F
.
H
u
a
n
g
e
t
a
l.
,
2
0
1
9

L
o
F
i
-
S
k
e
t
c
h
o
f
S
m
a
r
t
p
h
o
n
e
a
p
p
s

3
8
0
2
s
k
e
t
c
h
e
s

M
o
d
i
fi
e
d
V
G
G
-
A
n
e
t
w
o
r
k

1
5
.
9
%
a
c
c
u
r
a
c
y

W
i
t
h
5
d
e
s
i
g
n
e
r
s
.
Q
u
a
li
t
a
t
i
v
e
f
e
e
d
b
a
c
k
.
D
e
-

s
i
g
n
e
r
s
w
e
r
e
s
a
t
i
s
fi
e
d
a
n
d
f
o
u
n
d
t
h
e
m
e
t
h
o
d

u
s
e
f
u
l.

M
a
n
a
n
d
h
a
r
e
t
a
l.
,
2
0
2
0

M
e
F
i
o
f
S
m
a
r
t
p
h
o
n
e
a
p
p
s

R
I
C
O
d
a
t
a
s
e
t
(
6
6
0
0
0
U
I
s
c
r
e
e
n
s
h
o
t
s
w
i
t
h

2
5
c
a
t
e
g
o
r
i
e
s
o
f
U
I
e
le
m
e
n
t
s
)
a
n
d
G
o
o
g
le
U
I

d
a
t
a
s
e
t
(
1
8
5
0
0
U
I
s
c
r
e
e
n
s
h
o
t
s
w
i
t
h
2
5
c
a
t
e
-

g
o
r
i
e
s
o
f
U
I
e
le
m
e
n
t
s
)

H
y
b
r
i
d
E
n
c
o
d
e
r
-
D
e
c
o
d
e
r
b
a
c
k
b
o
n
e
c
o
m
p
r
i
s
-

i
n
g
a
G
r
a
p
h
C
o
n
v
o
lu
t
i
o
n
a
l
N
e
t
w
o
r
k
(
G
C
N
)

a
n
d
C
o
n
v
o
lu
t
i
o
n
a
l
D
e
c
o
d
e
r
(
C
N
N
)
.

6
1
.
7
%
M
e
a
n
I
n
t
e
r
s
e
c
t
i
o
n
o
v
e
r
U
n
i
o
n
,
7
0
.
1
%

M
e
a
n
P
i
x
e
l
A
c
c
u
r
a
c
y

-

Ta
bl
ea
.4
:L
i
s
t
o
f
li
t
e
r
a
t
u
r
e
t
h
a
t
p
r
o
v
i
d
e
A
I
s
u
p
p
o
r
t
i
n
U
I
d
e
s
i
g
n
b
y
a
u
t
o
c
o
m
p
le
t
i
n
g
M
e
F
i
p
r
o
t
o
t
y
p
e
d
u
r
i
n
g
M
e
F
i
d
e
s
i
g
n
p
r
o
c
e
s
s

Re
se
ar
ch
W
or
k

Pr
ot
ot
yp
e

D
at
as
et

M
od
el
/A
lg
or
ith
m

M
od
el
Ev
al
ua
tio
n

U
se
rE
va
lu
at
io
n

Y
.
L
i
e
t
a
l.
,
2
0
2
0

M
e
F
i
o
f
S
m
a
r
t
p
h
o
n
e
a
p
p
s

R
I
C
O
d
a
t
a
s
e
t
(
5
5
0
0
0
U
I
s
c
r
e
e
n
s
h
o
t
s
w
i
t
h
2
5
c
a
t
-

e
g
o
r
i
e
s
o
f
U
I
e
le
m
e
n
t
s
)

T
r
a
n
s
f
o
r
m
e
r
-
B
a
s
e
d
T
r
e
e
D
e
c
o
d
e
r
s

F
1
s
c
o
r
e
1
5
.
2
3
%
f
o
r
r
e
t
r
i
e
v
i
n
g
p
a
r
e
n
t
-
c
h
i
ld
p
a
i
r
s
,

n
e
x
t
i
t
e
m
a
c
c
u
r
a
c
y
1
8
.
4
%
,
a
n
d
E
d
i
t
d
i
s
t
a
n
c
e
s

7
1
.
2
6

-

b
SEMANT IC ANNOTAT IONS OF U I SCREENSHOTS

Table b.1:Exhaustive list of semantic UI element categories and its equivalent
UISketch UI element category

Semantic UI Element Category UISketch UI Element Category

About Button

Ad -

Address Text Field

Age Text Field

Age Picker Dropdown

Amazon Button Button

Available -

Bottom Bar Bottom Bar

Box Outline -

Button Button

Buy Button

Captcha -

Card Card

Card Partial -

Cart Add Button

Cart Icon Button Button

Check Box Checkbox

City Text Field

Color Picker -

Continue Button

Country Text Field

Date Picker Text Field

Discount Label

Drop Down List Dropdown

Edit Text Text Field

Email Text Field

Email Button Button

Fb Button Button

Table is continued in next page...

201

202 semantic annotations of ui screenshots

Table b.1 continued fromprevious page

Semantic UI element category UISketch UI element category

Filter Button Button

Forgot Password Label

Gender Drop Down Dropdown

Gender Picker Dropdown

Google Button Button

Heart Icon Button Image

Icon Button Button

Id Text Field

Image Button Button

Image View Image

Instagram Button Button

Last Name Text Field

Linkedin Button

Location Text Field

Log In Button

Map -

Menu Dashs Button

Menu Dots Button

Menu Dots Dashs Button

Message Icon Button

Name Text Field

Navigation Bar Bottom Bar

Navigation Dots -

Next Button

Number Text Field

Password Text Field

Phone Button Button

Phone Number Text Field

Pin Text Field

Price Label

Price String Label

Promo Code Text Field

Quantity Counter Dropdown

Radio Button Radio Button

Rate It Image

Rating Bar Rating

Search Bar Search Bar

Search Button Button

Security Answer -

Security Question -

Select Button Dropdown

Table is continued in next page...

semantic annotations of ui screenshots 203

Table b.1 continued fromprevious page

Semantic UI element category UISketch UI element category

Separator Line -

Separator Line Vertical -

Settings Icon Button

Share Button Button

Sign Up Button

Size Picker Dropdown

Sm Button Button

Snapchat Button Button

Sort Button

Sort Button Button

Sort Selector -

Star Icon Button Button

Tab Bar Tab Bar

Tab Bar Button Button

Text Button Forgot Password Label

Text Button Forgot Username Label

Text Button Log In Label

Text Button Privacy Terms Label

Text Button Sign Up Label

Text Button Button

Text View Label

Time Text Field

Toggle Switch

Top Bar Top Bar

Twitter Button Button

Username Text Field

Whatsapp Button Button

Windows Button Button

Wish List Button

Yahoo Button Button

Zip Code Text Field

B IB L IOGRAPHY

Abadi, Martín et al. (2015). “TensorFlow: Large-Scale Machine Learning

on Heterogeneous Systems.” In: http://tensorflow.org/.

Albuquerque, Georgia, �omas Löwe, and Marcus Magnor (Dec. 2011).

“Synthetic Generation of High-Dimensional Datasets.” In: IEEE transac-
tions on visualization and computer graphics 17, pp. 2317–24. doi: 10.1109/
tvcg.2011.237.

Arjovsky,Martin, SoumithChintala, and LéonBottou (Dec. 2017). “Wasser-

stein GAN.” In: arXiv:1701.07875 [cs, stat]. http://arxiv.org/abs/1701.
07875. arXiv: 1701.07875 [cs, stat].

Ashwin, Kumar (2018). Sketch-Code. GitHub. url: https://github.com/
ashnkumar/sketch-code.

Aşıroğlu, Batuhan, Büşta RümeysaMete, Eyyüp Yıldız, Yağız Nalçakan,

Alper Sezen, Mustafa Dağtekin, and Tolga Ensari (Apr. 2019). “Auto-

matic HTML Code Generation fromMock-Up Images UsingMachine

Learning Techniques.” In: 2019 ScientificMeeting on Electrical-Electronics
Biomedical Engineering and Computer Science (EBBT), pp. 1–4. doi: 10.
1109/EBBT.2019.8741736.

Bajammal,Mohammad,DavoodMazinanian, and AliMesbah (Sept. 2018).

“Generating Reusable Web Components from Mockups.” In: Proceed-
ings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. ASE 2018. New York, NY, USA: Association for Comput-
ing Machinery, pp. 601–611. isbn: 978-1-4503-5937-5. doi: 10.1145/

3238147.3238194.

Balsamiq (Feb. 2, 2021). Balsamiq. url: https://balsamiq.com/ (visited
on 02/02/2021).

Beltramelli, Tony (Sept. 2017). “Pix2code: Generating Code from a Graph-

ical User Interface Screenshot.” In: arXiv:1705.07962 [cs]. arXiv: 1705.
07962 [cs].

Benjamin, Wilkins (2017). Sketching Interfaces - Generating Code from Low
FidelityWireframes. Airbnb Design.

Borchers, Jan (2002). “Teaching HCI Design Patterns: Experience from

Two University Courses.” In: Patterns in Practice: AWorkshop for UI Design-
ers (at CHI 2002 International Conference on Human Factors of Computing
Systems).

205

http://tensorflow.org/
https://doi.org/10.1109/tvcg.2011.237
https://doi.org/10.1109/tvcg.2011.237
http://arxiv.org/abs/1701.07875
http://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1701.07875
https://github.com/ashnkumar/sketch-code
https://github.com/ashnkumar/sketch-code
https://doi.org/10.1109/EBBT.2019.8741736
https://doi.org/10.1109/EBBT.2019.8741736
https://doi.org/10.1145/3238147.3238194
https://doi.org/10.1145/3238147.3238194
https://balsamiq.com/
https://arxiv.org/abs/1705.07962
https://arxiv.org/abs/1705.07962

206 bibliography

Bradski, G. (2000). “�e OpenCV Library.” In:Dr. Dobb’s Journal of Software
Tools.

Brown, Daniel M. (2011). Communicating Design: DevelopingWeb Site Docu-
mentation for Design and Planning. en. 2nd ed. Berkeley, CA: New Riders.
isbn: 978-0-321-71246-2.

Buxton, Bill (2011). Sketching User Experiences: Getting the Design Right and
the Right Design. eng. Nachdr. Amsterdam: Morgan Kaufmann. isbn:
978-0-12-374037-3.

Caetano,Anabela,NeriGoulart,Manuel Fonseca, and JoaquimJorge (2002).

“JavaSketchIt: Issues in Sketching the Look of User Interfaces.” In: AAAI
SpringSymposiumonSketchUnderstanding. AAAIPress,MenloPark, pp. 9–
14.

Chen, Chunyang, Ting Su, GuozhuMeng, Zhenchang Xing, and Yang Liu

(May 2018). “From UI Design Image to GUI Skeleton: A Neural Machine

Translator to Bootstrap Mobile GUI Implementation.” In: Proceedings of
the 40th International Conference on Software Engineering. ICSE ’18. Gothen-
burg, Sweden:Association forComputingMachinery, pp. 665–676. isbn:

978-1-4503-5638-1. doi: 10.1145/3180155.3180240.

Chen, Sen, Lingling Fan, Ting Su, Lei Ma, Yang Liu, and Lihua Xu (Feb.

2019). “Automated Cross-Platform GUI Code Generation for Mobile

Apps.” In: 2019 IEEE 1st InternationalWorkshop on Artificial Intelligence for
Mobile (AI4Mobile), pp. 13–16. doi: 10.1109/AI4Mobile.2019.8672718.

Coyette, Adrien, StéphaneFaulkner,ManuelKolp,Quentin Limbourg, and

Jean Vanderdonckt (2004). “SketchiXML: Towards aMulti-Agent Design

Tool for Sketching User Interfaces Based on USIXML.” In: Proceedings of
the 3rdAnnualConference onTaskModels andDiagrams. TAMODIA ’04. New
York, NY, USA: ACM, pp. 75–82. isbn: 1-59593-000-0. doi: 10.1145/

1045446.1045461.

Creswell, JohnW and J. David Creswell (2019). Research Design: Qualitative,
Quantitative, andMixedMethods Approaches.

Dayama,NirajRamesh,KashyapTodi, TaruSaarelainen, andAnttiOulasvirta

(Apr. 2020). “GRIDS: Interactive Layout Design with Integer Program-

ming.” In: Proceedings of the 2020 CHI Conference onHuman Factors in Com-
puting Systems. CHI ’20. New York, NY, USA: Association for Computing
Machinery, pp. 1–13. isbn: 978-1-4503-6708-0. doi: 10.1145/3313831.

3376553.

Deka, Biplab, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel

Afergan, Yang Li, Jeffrey Nichols, and Ranjitha Kumar (Oct. 2017). “Rico:

AMobile App Dataset for Building Data-Driven Design Applications.”

https://doi.org/10.1145/3180155.3180240
https://doi.org/10.1109/AI4Mobile.2019.8672718
https://doi.org/10.1145/1045446.1045461
https://doi.org/10.1145/1045446.1045461
https://doi.org/10.1145/3313831.3376553
https://doi.org/10.1145/3313831.3376553

bibliography 207

In: Proceedings of the 30th Annual ACMSymposium onUser Interface Software
and Technology. UIST ’17. New York, NY, USA: Association for Comput-
ing Machinery, pp. 845–854. isbn: 978-1-4503-4981-9. doi: 10.1145/

3126594.3126651.

Denton, Emily, Soumith Chintala, Arthur Szlam, and Rob Fergus (June

2015). “Deep Generative ImageModels Using a Laplacian Pyramid of

Adversarial Networks.” In: arXiv:1506.05751 [cs]. http://arxiv.org/
abs/1506.05751. arXiv: 1506.05751 [cs].

Dix, Alan, ed. (2004). Human-Computer Interaction. en. 3rd ed. Harlow,
England ; New York: Pearson/Prentice-Hall. isbn: 978-0-13-046109-4.

Duyne,DouglasK.Van, JamesLanday, and Jason I.Hong (2002).�eDesign
of Sites: Patterns, Principles, and Processes for Crafting a Customer-Centered
WebExperience. Boston,MA, USA: Addison-Wesley Longman Publishing
Co., Inc. isbn: 0-201-72149-X.

Eitz, Mathias, James Hays, andMarc Alexa (July 2012). “How DoHumans

Sketch Objects?” In: ACMTransactions on Graphics 31.4, 44:1–44:10. issn:
0730-0301. doi: 10.1145/2185520.2185540.

Engelberg, Daniel and Ahmed Seffah (2002). “A Framework for RapidMid-

Fidelity Prototyping ofWeb Sites.” en. In:Usability: Gaining aCompetitive
Edge. Ed. by Judy Hammond, Tom Gross, and Janet Wesson. IFIP —

�e International Federation for Information Processing. Boston, MA:

Springer US, pp. 203–215. isbn: 978-0-387-35610-5. doi: 10.1007/978-

0-387-35610-5_14.

Erickson,�omas (Aug. 2000). “Lingua Francas for Design: Sacred Places
and Pattern Languages.” In: Proceedings of the 3rd Conference on Designing
Interactive Systems: Processes, Practices, Methods, and Techniques. DIS ’00.
NewYork,NY,USA: Association for ComputingMachinery, pp. 357–368.

isbn: 978-1-58113-219-9. doi: 10.1145/347642.347794.

Everingham,Mark, Luc Gool, Christopher K.Williams, JohnWinn, and

Andrew Zisserman (June 2010). “�e Pascal Visual Object Classes (VOC)

Challenge.” In: International Journal of Computer Vision 88.2. https://
doi.org/10.1007/s11263-009-0275-4, pp. 303–338. issn: 0920-5691.

doi: 10.1007/s11263-009-0275-4.

Fallman, Daniel (Apr. 5, 2003). “Design-Oriented Human-Computer In-

teraction.” In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. CHI ’03. Ft. Lauderdale, Florida, USA: Association
for ComputingMachinery, pp. 225–232. isbn: 978-1-58113-630-2. doi:

10.1145/642611.642652. url: https://doi.org/10.1145/642611.

642652 (visited on 04/16/2020).

https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/3126594.3126651
http://arxiv.org/abs/1506.05751
http://arxiv.org/abs/1506.05751
https://arxiv.org/abs/1506.05751
https://doi.org/10.1145/2185520.2185540
https://doi.org/10.1007/978-0-387-35610-5_14
https://doi.org/10.1007/978-0-387-35610-5_14
https://doi.org/10.1145/347642.347794
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1145/642611.642652
https://doi.org/10.1145/642611.642652
https://doi.org/10.1145/642611.642652

208 bibliography

Fey,Matthias and JanEric Lenssen (Apr. 2019). “Fast GraphRepresentation

Learning with PyTorch Geometric.” In: arXiv:1903.02428 [cs, stat]. http:
//arxiv.org/abs/1903.02428. arXiv: 1903.02428 [cs, stat].

Fonseca, Manuel J, César Pimentel, and Joaquim A Jorge (2002). “CALI:

An Online Scribble Recognizer for Calligraphic Interfaces.” In.

Foster, David (2019). Generative Deep Learning: Teaching Machines to Paint,
Write, Compose, and Play. O’Reilly Media.

Framework7 (2020).Framework7. Framework7.url:https://framework7.
io/ (visited on 09/11/2020).

Gajjar, Nishit (Dec. 2020). “UI Generation Using Deep Learning fromUI

Design Patterns.” en. MSc.�esis. Aachen, Germany: RWTH Aachen

University.

Gajjar,Nishit,VinothPandianSermugaPandian,SarahSuleri, andMatthias

Jarke (Mar. 2021). “Akin: Generating UI Wireframes from UI Design

Patterns Using Deep Learning.” In: Proceedings of the 26th International
Conference on Intelligent User Interfaces Companion. IUI ’21. New York, NY,
USA: Association for Computing Machinery. doi: 10.1145/3397482.

3450727.

Ge,Xiaofei (May2019). “AndroidGUISearchUsingHand-DrawnSketches.”

In: 2019 IEEE/ACM 41st International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), pp. 141–143. doi: 10.1109/
ICSE-Companion.2019.00060.

GeekyAnts (Sept. 11, 2020).NativeBase. GeekyAnts. url: https://github.
com/GeekyAnts/NativeBase (visited on 09/11/2020).

Girshick,Ross, JeffDonahue,TrevorDarrell, and JitendraMalik (Oct. 2014).

“Rich Feature Hierarchies for Accurate Object Detection and Semantic

Segmentation.” In: arXiv:1311.2524 [cs]. http://arxiv.org/abs/1311.
2524. arXiv: 1311.2524 [cs].

Girshick, Ross B. (2015). “Fast R-CNN.” In: CoRR abs/1504.08083. arXiv:
1504.08083. url: http://arxiv.org/abs/1504.08083.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016).Deep Learning.
MIT Press.

Goodfellow, Ian J., Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David

Warde-Farley, SherjilOzair,AaronCourville, andYoshuaBengio (June 10,

2014). Generative Adversarial Networks. arXiv: 1406.2661 [cs, stat].

url: http://arxiv.org/abs/1406.2661 (visited on 01/02/2021).

Google (2021).Material Design. Material Design. url: https://material.
io/.

http://arxiv.org/abs/1903.02428
http://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1903.02428
https://framework7.io/
https://framework7.io/
https://doi.org/10.1145/3397482.3450727
https://doi.org/10.1145/3397482.3450727
https://doi.org/10.1109/ICSE-Companion.2019.00060
https://doi.org/10.1109/ICSE-Companion.2019.00060
https://github.com/GeekyAnts/NativeBase
https://github.com/GeekyAnts/NativeBase
http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1311.2524
https://arxiv.org/abs/1311.2524
https://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1406.2661
https://material.io/
https://material.io/

bibliography 209

Gupta, Kamal, Alessandro Achille, Justin Lazarow, Larry Davis, Vijay Ma-

hadevan, and Abhinav Shrivastava (June 25, 2020). Layout Generation
and Completion with Self-Attention. arXiv: 2006.14615 [cs]. url: http:
//arxiv.org/abs/2006.14615 (visited on 11/12/2020).

Halbe, Aparna and Abhijit R. Joshi (2015). “A Novel Approach to HTML

Page Creation Using Neural Network.” en. In: Procedia Computer Science
45, pp. 197–204. issn: 18770509. doi: 10.1016/j.procs.2015.03.122.

Han, Yi, Jun He, and Qiwen Dong (Oct. 2018). “CSSSketch2Code: An Au-

tomatic Method to Generate Web Pages with CSS Style.” In: Proceed-
ings of the 2nd International Conference on Advances in Artificial Intelligence.
ICAAI 2018. New York, NY, USA: Association for ComputingMachinery,

pp. 29–35. isbn: 978-1-4503-6583-3. doi: 10.1145/3292448.3292455.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (Dec. 10, 2015).

Deep Residual Learning for Image Recognition. arXiv: 1512.03385 [cs].

url: http://arxiv.org/abs/1512.03385 (visited on 09/15/2020).

Herring, ScarlettR.,Chia-ChenChang, JesseKrantzler, andBrianP.Bailey

(Apr. 2009). “Getting Inspired! Understanding How and Why Exam-

ples Are Used in Creative Design Practice.” In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’09. New York,
NY, USA: Association for Computing Machinery, pp. 87–96. isbn: 978-

1-60558-246-7. doi: 10.1145/1518701.1518717.

Heusel,Martin,HubertRamsauer,�omasUnterthiner,BernhardNessler,

and Sepp Hochreiter (Jan. 2018). “GANs Trained by a Two Time-Scale

UpdateRuleConverge to a LocalNashEquilibrium.” In: arXiv:1706.08500
[cs, stat]. arXiv: 1706.08500 [cs, stat].

Honda, Hiroto (July 2020).Digging into Detectron 2. en. https://medium.
com/@hirotoschwert/digging-into-detectron-2-47b2e794fabd.

Howard, Jeremy and Sylvain Gugger (July 2020a).Deep Learning for Coders
withFastaiandPyTorch.Vol. 1. 1 vols.O’ReillyMedia, Inc. 624pp. isbn: 978-
1-4920-4552-6. url: https://www.oreilly.com/library/view/deep-

learning-for/9781492045519/ (visited on 09/11/2020).

Howard, Jeremy and Sylvain Gugger (2020b). “Fastai: A Layered API for

Deep Learning.” In: Inf. 11.2, p. 108. doi: 10.3390/info11020108. url:
https://doi.org/10.3390/info11020108.

Huang, Forrest, John F. Canny, and Jeffrey Nichols (May 2019). “Swire:

Sketch-Based User Interface Retrieval.” In: Proceedings of the 2019 CHI
Conference onHuman Factors in Computing Systems. CHI ’19. Glasgow, Scot-
land Uk: Association for ComputingMachinery, pp. 1–10. isbn: 978-1-

4503-5970-2. doi: 10.1145/3290605.3300334.

https://arxiv.org/abs/2006.14615
http://arxiv.org/abs/2006.14615
http://arxiv.org/abs/2006.14615
https://doi.org/10.1016/j.procs.2015.03.122
https://doi.org/10.1145/3292448.3292455
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.1145/1518701.1518717
https://arxiv.org/abs/1706.08500
https://medium.com/@hirotoschwert/digging-into-detectron-2-47b2e794fabd
https://medium.com/@hirotoschwert/digging-into-detectron-2-47b2e794fabd
https://www.oreilly.com/library/view/deep-learning-for/9781492045519/
https://www.oreilly.com/library/view/deep-learning-for/9781492045519/
https://doi.org/10.3390/info11020108
https://doi.org/10.3390/info11020108
https://doi.org/10.1145/3290605.3300334

210 bibliography

Huang, Gao, Zhuang Liu, Laurens van der Maaten, and Kilian Q.Wein-

berger (Jan. 28, 2018).Densely Connected Convolutional Networks. arXiv:
1608.06993 [cs]. url: http://arxiv.org/abs/1608.06993 (visited

on 09/15/2020).

Huang, Jonathan et al. (2016). “Speed/Accuracy Trade-Offs for Modern

Convolutional Object Detectors.” In: CoRR abs/1611.10012. arXiv: 1611.
10012. url: http://arxiv.org/abs/1611.10012.

Huang, Ruozi, Yonghao Long, and Xiangping Chen (2016). Automaticaly
GeneratingWeb Page From AMockup. en.

Iandola, Forrest N., Song Han, MatthewW.Moskewicz, Khalid Ashraf,

William J. Dally, and Kurt Keutzer (Nov. 4, 2016). SqueezeNet: AlexNet-
Level Accuracy with 50x Fewer Parameters and<0.5MBModel Size. arXiv:
1602.07360 [cs]. url: http://arxiv.org/abs/1602.07360 (visited

on 09/15/2020).

Jain, Vanita, Piyush Agrawal, SubhamBanga, Rishabh Kapoor, and Shash-

wat Gulyani (Oct. 2019). “Sketch2Code: Transformation of Sketches to

UI in Real-Time Using Deep Neural Network.” In: arXiv:1910.08930 [cs,
eess]. arXiv: 1910.08930 [cs, eess].

Kim, Bada, SangminPark, TaeyeonWon, JunyoungHeo, andBongjaeKim

(Oct. 2018). “Deep-Learning BasedWeb UI Automatic Programming.”

In: Proceedings of the 2018 Conference on Research in Adaptive and Convergent
Systems. RACS ’18. New York, NY, USA: Association for Computing Ma-
chinery, pp. 64–65. isbn: 978-1-4503-5885-9. doi: 10.1145/3264746.

3264807.

Kipf,�omas N. andMaxWelling (Feb. 2017). “Semi-Supervised Classi-

fication with Graph Convolutional Networks.” In: arXiv:1609.02907 [cs,
stat]. http://arxiv.org/abs/1609.02907. arXiv: 1609.02907 [cs,
stat].

Koch, Janin and Antti Oulasvirta (May 2016). “Computational Layout Per-

ception Using Gestalt Laws.” In: Proceedings of the 2016 CHI Conference
Extended Abstracts onHuman Factors in Computing Systems. New York, NY,
USA: Association for ComputingMachinery, pp. 1423–1429. isbn: 978-1-

4503-4082-3.

Krizhevsky, Alex (Apr. 26, 2014). OneWeird Trick for Parallelizing Convolu-
tionalNeuralNetworks. arXiv: 1404.5997 [cs]. url: http://arxiv.org/
abs/1404.5997 (visited on 09/15/2020).

Landay, James A. (1996). “SILK: Sketching Interfaces Like Krazy.” In: Con-
ference Companion onHuman Factors in Computing Systems. CHI ’96. New

https://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1611.10012
https://arxiv.org/abs/1611.10012
http://arxiv.org/abs/1611.10012
https://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1910.08930
https://doi.org/10.1145/3264746.3264807
https://doi.org/10.1145/3264746.3264807
http://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1404.5997

bibliography 211

York, NY, USA: ACM, pp. 398–399. isbn: 0-89791-832-0. doi: 10.1145/

257089.257396.

Landay, James A. and Brad A. Myers (1995). “Interactive Sketching for

the Early Stages of User Interface Design.” In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’95. New York,
NY, USA: ACM Press/Addison-Wesley Publishing Co., pp. 43–50. isbn:

0-201-84705-1. doi: 10.1145/223904.223910.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (May 27, 2015). “Deep

Learning.” In: Nature 521, p. 436. url: https://doi.org/10.1038/
nature14539.

Lee, Hsin-Ying, Lu Jiang, Irfan Essa, Phuong B. Le, Haifeng Gong, Ming-

Hsuan Yang, andWeilong Yang (July 2020). “Neural Design Network:

Graphic Layout Generation with Constraints.” In: arXiv:1912.09421 [cs].
arXiv: 1912.09421 [cs].

Leiva, Luis A., Asutosh Hota, and Antti Oulasvirta (Oct. 2020). “Enrico: A

Dataset for Topic Modeling of Mobile UI Designs.” In: 22nd International
Conference onHuman-Computer Interaction withMobile Devices and Services.
MobileHCI ’20.NewYork,NY,USA: Association for ComputingMachin-

ery, pp. 1–4. isbn: 978-1-4503-8052-2. doi: 10.1145/3406324.3410710.

Lewis, JamesR. (Jan. 1991a). “PsychometricEvaluationof anAfter-Scenario

Questionnaire forComputerUsabilityStudies:�eASQ.” In:ACMSIGCHI
Bulletin 23.1, pp. 78–81. issn: 0736-6906. doi: 10.1145/122672.122692.

Lewis, James R. (Jan. 1, 1991b). “Psychometric Evaluation of an After-

Scenario Questionnaire for Computer Usability Studies:�e ASQ.” In:

ACMSIGCHI Bulletin 23.1, pp. 78–81. issn: 0736-6906. doi: 10.1145/
122672.122692. url: https://doi.org/10.1145/122672.122692

(visited on 08/13/2020).

Li, Jianan, Jimei Yang, Aaron Hertzmann, Jianming Zhang, and Tingfa

Xu (Jan. 20, 2019). LayoutGAN: Generating Graphic Layouts withWireframe
Discriminators. arXiv: 1901.06767 [cs]. url: http://arxiv.org/abs/
1901.06767 (visited on 04/30/2020).

Li, Shu-Hui, Jia-Jyun Hsu, Chih-Ya Chang, Pin-Hsuan Chen, and Neng-

HaoYu (June 2017). “Xketch: A Sketch-Based Prototyping Tool to Acceler-

ateMobile AppDesign Process.” In: Proceedings of the 2017 ACMConference
CompanionPublicationonDesigningInteractiveSystems.DIS ’17Companion.
NewYork,NY,USA: Association for ComputingMachinery, pp. 301–304.

isbn: 978-1-4503-4991-8. doi: 10.1145/3064857.3079179.

https://doi.org/10.1145/257089.257396
https://doi.org/10.1145/257089.257396
https://doi.org/10.1145/223904.223910
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://arxiv.org/abs/1912.09421
https://doi.org/10.1145/3406324.3410710
https://doi.org/10.1145/122672.122692
https://doi.org/10.1145/122672.122692
https://doi.org/10.1145/122672.122692
https://doi.org/10.1145/122672.122692
https://arxiv.org/abs/1901.06767
http://arxiv.org/abs/1901.06767
http://arxiv.org/abs/1901.06767
https://doi.org/10.1145/3064857.3079179

212 bibliography

Li, Yang, Julien Amelot, Xin Zhou, Samy Bengio, and Si Si (Jan. 2020).

“Auto Completion of User Interface Layout Design Using Transformer-

Based TreeDecoders.” In: arXiv:2001.05308 [cs]. arXiv: 2001.05308 [cs].
Lin, Tsung Yi, Michael Maire, Serge Belongie, James Hays, Pietro Perona,

Deva Ramanan, Piotr Dollár, andC. Lawrence Zitnick (2014). “Microsoft

COCO: CommonObjects in Context.” In: LectureNotes inComputer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). Vol. 8693 Lncs. Part 5, pp. 740–755. doi: 10.1007/978-
3-319-10602-1_48. url: http://cocodataset.org/#home.

Lin, Tsung-Yi, Priya Goyal, Ross B. Girshick, KaimingHe, and Piotr Dollár

(2017). “Focal Loss forDenseObjectDetection.” In:CoRR abs/1708.02002.
arXiv: 1708.02002. url: http://arxiv.org/abs/1708.02002.

Liu,�omas F., Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech, and

Ranjitha Kumar (Oct. 2018). “Learning Design Semantics for Mobile

Apps.” In: Proceedings of the 31st Annual ACMSymposium onUser Interface
Software and Technology. UIST ’18. Berlin, Germany: Association for Com-
putingMachinery, pp. 569–579. isbn: 978-1-4503-5948-1. doi: 10.1145/

3242587.3242650.

Liu, Wei, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott

Reed, Cheng-Yang Fu, and Alexander C. Berg (2016). “SSD: Single Shot

MultiBox Detector.” In: Computer Vision – ECCV 2016. Ed. by Bastian
Leibe, Jiri Matas, Nicu Sebe, andMaxWelling. Cham: Springer Inter-

national Publishing, pp. 21–37. isbn: 978-3-319-46448-0.

Liu, Yanbin, Qidi Hu, and Kunxian Shu (Nov. 2018). “Improving Pix2code

Based Bi-Directional LSTM.” In: 2018 IEEE International Conference on
Automation, Electronics and Electrical Engineering (AUTEEE), pp. 220–223.
doi: 10.1109/AUTEEE.2018.8720784.

Manandhar, Dipu, Dan Ruta, and John Collomosse (2020). “Learning

Structural Similarity of User Interface Layouts Using Graph Networks.”

en. In:ComputerVision–ECCV2020. Ed.byAndreaVedaldi,HorstBischof,
�omas Brox, and Jan-Michael Frahm. Lecture Notes in Computer Sci-

ence. Cham: Springer International Publishing, pp. 730–746. isbn: 978-

3-030-58542-6. doi: 10.1007/978-3-030-58542-6_44.

Microsoft (2021).Microsoft Design. Fluent Design System. url: https://
www.microsoft.com/design/fluent/ (visited on 09/11/2020).

Microsoft AI Labs (2018). Sketch2Code -Microsoft/Ailab. GitHub. url: https:
//github.com/Microsoft/ailab/tree/master/Sketch2Code.

https://arxiv.org/abs/2001.05308
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
http://cocodataset.org/#home
https://arxiv.org/abs/1708.02002
http://arxiv.org/abs/1708.02002
https://doi.org/10.1145/3242587.3242650
https://doi.org/10.1145/3242587.3242650
https://doi.org/10.1109/AUTEEE.2018.8720784
https://doi.org/10.1007/978-3-030-58542-6_44
https://www.microsoft.com/design/fluent/
https://www.microsoft.com/design/fluent/
https://github.com/Microsoft/ailab/tree/master/Sketch2Code
https://github.com/Microsoft/ailab/tree/master/Sketch2Code

bibliography 213

Mirza, Mehdi and Simon Osindero (Nov. 2014). “Conditional Generative

Adversarial Nets.” In: arXiv:1411.1784 [cs, stat]. http://arxiv.org/abs/
1411.1784. arXiv: 1411.1784 [cs, stat].

Mistry, Mihir, Ameya Apte, Varad Ghodake, and S. B. Mane (2020). “Ma-

chine Learning Based User Interface Generation.” en. In: Intelligent
Computing, Information andControl Systems. Ed. by A. Pasumpon Pandian,
Klimis Ntalianis, and Ram Palanisamy. Advances in Intelligent Systems

andComputing. Cham: Springer International Publishing, pp. 453–460.

isbn: 978-3-030-30465-2. doi: 10.1007/978-3-030-30465-2_50.

Moqups (Feb. 2, 2021). Moqups. url: https://moqups.com (visited on
02/02/2021).

Moran, Kevin, Carlos Bernal-Cárdenas, Michael Curcio, Richard Bonett,

and Denys Poshyvanyk (June 2018). “Machine Learning-Based Prototyp-

ing of Graphical User Interfaces for Mobile Apps.” In: arXiv:1802.02312
[cs]. arXiv: 1802.02312 [cs].

Mostow, Jack (1985). “Toward Better Models of the Design Process.” In: AI
Mag. 6.1, pp. 44–57.

Narendra, Savinay, SheelabhadraDey, JosiahCoad, Seth Polsley, andTracy

Hammond (2019). “FreeStyle: A Sketch-BasedWireframing Tool.” en.

In: Inspiring Students with Digital Ink: Impact of Pen and Touch on Educa-
tion. Ed. by Tracy Hammond, Manoj Prasad, and Anna Stepanova. Hu-
man–Computer Interaction Series. Cham: Springer International Pub-

lishing, pp. 105–117. isbn: 978-3-030-17398-2. doi: 10.1007/978-3-

030-17398-2_7.

NinjaMock (Feb. 2, 2021). NinjaMock. url: https://ninjamock.com (vis-
ited on 02/02/2021).

O’Donovan, Peter, Aseem Agarwala, and Aaron Hertzmann (Apr. 2015).

“DesignScape: Design with Interactive Layout Suggestions.” In: Pro-
ceedings of the 33rd Annual ACMConference onHuman Factors in Computing
Systems. CHI ’15. New York, NY, USA: Association for ComputingMa-
chinery, pp. 1221–1224. isbn: 978-1-4503-3145-6. doi: 10.1145/2702123.

2702149.

ODonovan, Peter, Aseem Agarwala, and Aaron Hertzmann (Aug. 2014).

“Learning Layouts for Single-PageGraphic Designs.” In: IEEE Transac-
tions on Visualization and Computer Graphics 20.8, pp. 1200–1213. issn:
1077-2626. doi: 10.1109/TVCG.2014.48.

Oord, Aaron van den, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt,

Alex Graves, and Koray Kavukcuoglu (June 2016). “Conditional Image

http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1411.1784
https://doi.org/10.1007/978-3-030-30465-2_50
https://moqups.com
https://arxiv.org/abs/1802.02312
https://doi.org/10.1007/978-3-030-17398-2_7
https://doi.org/10.1007/978-3-030-17398-2_7
https://ninjamock.com
https://doi.org/10.1145/2702123.2702149
https://doi.org/10.1145/2702123.2702149
https://doi.org/10.1109/TVCG.2014.48

214 bibliography

Generation with PixelCNNDecoders.” In: arXiv:1606.05328 [cs]. http:
//arxiv.org/abs/1606.05328. arXiv: 1606.05328 [cs].

Otsu, Nobuyuki (1979). “A�reshold SelectionMethod from Gray-Level

Histograms.” In: IEEE Transactions on Systems,Man, and Cybernetics 9.1,
pp. 62–66. doi: 10.1109/TSMC.1979.4310076.

Padilla, Rafael, Wesley L. Passos,�adeu L. B. Dias, Sergio L. Netto, and

Eduardo A. B. da Silva (Jan. 2021). “A Comparative Analysis of Object

DetectionMetrics with a Companion Open-Source Toolkit.” en. In: Elec-
tronics 10.3. https://www.mdpi.com/2079-9292/10/3/279, p. 279.
issn: 2079-9292. doi: 10.3390/electronics10030279.

Palmer, Stephen E (1999). Vision Science: Photons to Phenomenology. MIT
press.

Pandian, Vinoth Pandian Sermuga, Abdullah Shams, Sarah Suleri, and

Matthias Jarke (2022). “LoFi Sketch: A Large Scale Dataset of Smart-

phone Low Fidelity Sketches.” In: Extended Abstracts of the 2022 CHI Con-
ference onHuman Factors in Computing Systems. CHI EA ’22. http://doi.
acm.org/10.1145/3491101.3519624. New York, NY, USA: ACM. isbn:

978-1-4503-9156-6/22/04. doi: 10.1145/3491101.3519624.

Pandian, Vinoth Pandian Sermuga, Sarah Suleri, Christian Beecks, and

Matthias Jarke (2020). “MetaMorph: AI Assistance to Transform Lo-Fi

Sketches to Higher Fidelities.” In: 32nd Australian Conference onHuman-
Computer Interaction. OzCHI ’20. https://doi.org/10.1145/3441000.
3441030. New York, NY, USA: Association for ComputingMachinery,

pp. 403–412. isbn: 978-1-4503-8975-4. doi: 10.1145/3441000.3441030.

Pandian, Vinoth Pandian Sermuga, Sarah Suleri, andMatthias Jarke (Mar.

2020). “Syn: Synthetic Dataset for Training UI Element Detector From

Lo-Fi Sketches.” In: Proceedings of the 25th International Conference on In-
telligent User Interfaces Companion. IUI ’20. https : / / doi . org / 10 .
1145/3379336.3381498. Cagliari, Italy: Association for Computing

Machinery, pp. 79–80. isbn: 978-1-4503-7513-9. doi: 10.1145/3379336.

3381498.

Pandian, Vinoth Pandian Sermuga, Sarah Suleri, andMatthias Jarke (Mar.

2021a). “SynZ: Enhanced Synthetic Dataset for Training UI Element

Detectors.” In: Proceedings of the 26th International Conference on Intelligent
User Interfaces Companion. IUI ’21. New York, NY, USA: Association for
ComputingMachinery. doi: 10.1145/3397482.3450725.

Pandian,VinothPandianSermuga,SarahSuleri, andMatthias Jarke (2021b).

“UISketch: A Large-Scale Dataset of UI Element Sketches.” In: Proceed-
ings of the 2021CHIConference onHumanFactors inComputing Systems. CHI

http://arxiv.org/abs/1606.05328
http://arxiv.org/abs/1606.05328
https://arxiv.org/abs/1606.05328
https://doi.org/10.1109/TSMC.1979.4310076
https://www.mdpi.com/2079-9292/10/3/279
https://doi.org/10.3390/electronics10030279
http://doi.acm.org/10.1145/3491101.3519624
http://doi.acm.org/10.1145/3491101.3519624
https://doi.org/10.1145/3491101.3519624
https://doi.org/10.1145/3441000.3441030
https://doi.org/10.1145/3441000.3441030
https://doi.org/10.1145/3441000.3441030
https://doi.org/10.1145/3379336.3381498
https://doi.org/10.1145/3379336.3381498
https://doi.org/10.1145/3379336.3381498
https://doi.org/10.1145/3379336.3381498
https://doi.org/10.1145/3397482.3450725

bibliography 215

’21. New York, NY, USA: Association for Computing Machinery. doi:

10.1145/3411764.3445784.

Park, Jisu, Young-Sun Yun, Seongbae Eun, Sin Cha, Sun-Sup So, and

Jinman Jung (Oct. 2018). “Deep Neural Networks Based User Interface

Detection forMobile ApplicationsUsing SymbolMarker.” In: Proceedings
of the 2018 Conference on Research in Adaptive and Convergent Systems. RACS
’18.Honolulu,Hawaii: Association for ComputingMachinery, pp. 66–67.

isbn: 978-1-4503-5885-9. doi: 10.1145/3264746.3264808.

Paszke,Adametal. (2019). “PyTorch:An ImperativeStyle,High-Performance

Deep Learning Library.” In: Advances in Neural Information Processing Sys-
tems 32. Ed. byH.Wallach,H. Larochelle, A. Beygelzimer, F. dAlché-Buc,
E. Fox, and R. Garnett. Curran Associates, Inc., pp. 8024–8035. url:

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-

style-high-performance-deep-learning-library.pdf.

Patki, Neha, RoyWedge, and Kalyan Veeramachaneni (Oct. 2016). “�e

Synthetic Data Vault.” en. In: 2016 IEEE International Conference on Data
Science and Advanced Analytics (DSAA). Montreal, QC, Canada: IEEE,
pp. 399–410. isbn: 978-1-5090-5206-6. doi: 10.1109/DSAA.2016.49.

Perez, Medina and Luis Jorge (2016). “�e UsiSketch Software Architec-

ture.” In: Romanian Journal of Human-Computer Interaction 9.4, pp. 305–
333. url: https://dial.uclouvain.be/pr/boreal/object/boreal:

187342.

Plimmer, Beryl andMark D. Apperley (2003). “Software for Students to

Sketch Interface Designs.” In:Human-Computer Interaction INTERACT
’03: IFIP TC13 International Conference onHuman-Computer Interaction, 1st-
5th September 2003, Zurich, Switzerland. IOS Press.

Radford, Alec, Luke Metz, and Soumith Chintala (Jan. 2016). “Unsuper-

vised Representation Learning with Deep Convolutional Generative

Adversarial Networks.” In: arXiv:1511.06434 [cs]. http://arxiv.org/
abs/1511.06434. arXiv: 1511.06434 [cs].

Rahman, Soliha, Vinoth Pandian Sermuga Pandian, andMatthias Jarke

(Mar. 2021). “RUITE: Refining UI Layout Aesthetics Using Transformer

Encoder.” In: Proceedings of the 26th International Conference on Intelligent
User Interfaces Companion. IUI ’21. New York, NY, USA: Association for
ComputingMachinery. doi: 10.1145/3397482.3450716.

React Native Elements (Sept. 11, 2020). React Native Elements. React Native
Elements. url: https://github.com/react- native- elements/

react-native-elements (visited on 09/11/2020).

https://doi.org/10.1145/3411764.3445784
https://doi.org/10.1145/3264746.3264808
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/DSAA.2016.49
https://dial.uclouvain.be/pr/boreal/object/boreal:187342
https://dial.uclouvain.be/pr/boreal/object/boreal:187342
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434
https://doi.org/10.1145/3397482.3450716
https://github.com/react-native-elements/react-native-elements
https://github.com/react-native-elements/react-native-elements

216 bibliography

Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi (May

2016). “You Only Look Once: Unified, Real-Time Object Detection.” In:

arXiv:1506.02640 [cs]. http://arxiv.org/abs/1506.02640. arXiv:
1506.02640 [cs].

Ren, Shaoqing, Kaiming He, Ross B. Girshick, and Jian Sun (2015). “Faster

R-CNN: Towards Real-Time Object Detection with Region Proposal

Networks.” In: CoRR abs/1506.01497. arXiv: 1506.01497. url: http:
//arxiv.org/abs/1506.01497.

Rubine, Dean (July 1991). “Specifying Gestures by Example.” In: SIGGRAPH
Comput. Graph. 25.4, pp. 329–337. issn: 0097-8930. doi: 10 . 1145 /
127719.122753.

Rudd, Jim, Ken Stern, and Scott Isensee (Jan. 1996). “Low vs. High-Fidelity

PrototypingDebate.” In: Interactions 3.1, pp. 76–85. issn: 1072-5520. doi:
10.1145/223500.223514.

Salimans, Tim, Ian Goodfellow,Wojciech Zaremba, Vicki Cheung, Alec

Radford, and Xi Chen (June 2016). “Improved Techniques for Training

GANs.” In: arXiv:1606.03498 [cs]. arXiv: 1606.03498 [cs].
Sangkloy, Patsorn, Nathan Burnell, Cusuh Ham, and James Hays (July

2016). “�e Sketchy Database: Learning to Retrieve Badly Drawn Bun-

nies.” In: ACMTransactions onGraphics 35.4, 119:1–119:12. issn: 0730-0301.
doi: 10.1145/2897824.2925954.

Seddati,Omar,StéphaneDupont, andSaïdMahmoudi (June2015). “DeepS-

ketch: Deep Convolutional Neural Networks for Sketch Recognition

and Similarity Search.” In: 2015 13th InternationalWorkshop on Content-
BasedMultimedia Indexing (CBMI). 2015 13th International Workshop on
Content-BasedMultimedia Indexing (CBMI), pp. 1–6. doi: 10.1109/

CBMI.2015.7153606.

Seffah, Ahmed (Sept. 2003). “Learning the Ropes: Human-Centered De-

sign Skills and Patterns for Software Engineers’ Education.” In: Interac-
tions 10.5, pp. 36–45. issn: 1072-5520. doi: 10.1145/889692.889693.

Segura, Vinícius C. V. B., Simone D. J. Barbosa, and Fabiana Pedreira

Simões (May 2012). “UISKEI: A Sketch-BasedPrototypingTool forDefin-

ing and Evaluating User Interface Behavior.” In: Proceedings of the Inter-
national Working Conference on Advanced Visual Interfaces. AVI ’12. New
York, NY, USA: Association for Computing Machinery, pp. 18–25. isbn:

978-1-4503-1287-5. doi: 10.1145/2254556.2254564.

Shams, Abdullah (Apr. 6, 2021). “UISketch: A Dataset Of Hand-Drawn Lo-

Fi Sketches.” MSc.�esis. Aachen, Germany: RWTH Aachen University.

83 pp.

http://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
https://doi.org/10.1145/127719.122753
https://doi.org/10.1145/127719.122753
https://doi.org/10.1145/223500.223514
https://arxiv.org/abs/1606.03498
https://doi.org/10.1145/2897824.2925954
https://doi.org/10.1109/CBMI.2015.7153606
https://doi.org/10.1109/CBMI.2015.7153606
https://doi.org/10.1145/889692.889693
https://doi.org/10.1145/2254556.2254564

bibliography 217

Sharma, Prerna, VikasChaudhary,NakulMalhotra,NikitaGupta, andMo-

hitMittal (2020). “DynamicWebwithAutomaticCodeGenerationUsing

Deep Learning.” en. In: International Conference on Innovative Computing
and Communications. Ed. by Ashish Khanna, Deepak Gupta, Siddhartha
Bhattacharyya, Vaclav Snasel, Jan Platos, and Aboul Ella Hassanien.

Advances in Intelligent Systems and Computing. Singapore: Springer,

pp. 687–697. isbn: 9789811512865. doi: 10.1007/978-981-15-1286-

5_61.

Shneiderman, Ben (Feb. 2020a). “Human-Centered Artificial Intelligence:

Reliable, Safe & Trustworthy.” In: arXiv:2002.04087 [cs]. arXiv: 2002.
04087 [cs].

Shneiderman,Ben (2020b). “Human-CenteredArtificial Intelligence:�ree

Fresh Ideas.” en. In: AIS Transactions on Human-Computer Interaction,
pp. 109–124. issn: 19443900. doi: 10.17705/1thci.00131.

Shneiderman, Ben and Catherine Plaisant (2004). Designing the User In-
terface: Strategies for Effective Human-Computer Interaction. 4th ed. Boston:
Pearson/AddisonWesley. 652 pp. isbn: 978-0-321-19786-3.

Shoutem (Sept. 10, 2020). ShoutemUI. Shoutem. url: https://github.
com/shoutem/ui (visited on 09/11/2020).

Simonyan,KarenandAndrewZisserman (Apr. 2015a). “VeryDeepConvolu-

tional Networks for Large-Scale Image Recognition.” In: arXiv:1409.1556
[cs]. arXiv: 1409.1556 [cs].

Simonyan, Karen and Andrew Zisserman (Apr. 10, 2015b). Very Deep Convo-
lutionalNetworks for Large-Scale Image Recognition. arXiv: 1409.1556 [cs].
url: http://arxiv.org/abs/1409.1556 (visited on 09/15/2020).

Smith, Leslie N. (Apr. 4, 2017). Cyclical Learning Rates for Training Neural
Networks. arXiv: 1506.01186 [cs]. url: http://arxiv.org/abs/1506.
01186 (visited on 09/11/2020).

Snyder, Carolyn (2003). Paper Prototyping:�e Fast and EasyWay to Design
and Refine User Interfaces. en.�eMorgan Kaufmann Series in Interac-

tive Technologies. San Diego, CA: Morgan Kaufmann Pub. isbn: 978-1-

55860-870-2.

Spearman, C. (1904). “�e Proof andMeasurement of Association between

Two�ings.” In:�eAmerican Journal of Psychology 15.1, pp. 72–101. issn:
00029556. JSTOR: 1412159.

Suleri, Sarah, Nilda Kipi, Linh Chi Tran, andMatthias Jarke (Oct. 2019).

“UI Design Pattern-Driven Rapid Prototyping for Agile Development of

Mobile Applications.” In: Proceedings of the 21st International Conference on
Human-Computer Interaction withMobile Devices and Services. MobileHCI

https://doi.org/10.1007/978-981-15-1286-5_61
https://doi.org/10.1007/978-981-15-1286-5_61
https://arxiv.org/abs/2002.04087
https://arxiv.org/abs/2002.04087
https://doi.org/10.17705/1thci.00131
https://github.com/shoutem/ui
https://github.com/shoutem/ui
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1506.01186
http://arxiv.org/abs/1506.01186
http://arxiv.org/abs/1506.01186
http://www.jstor.org/stable/1412159

218 bibliography

’19. https://doi.org/10.1145/3338286.3344399. New York, NY,

USA: Association for Computing Machinery, pp. 1–6. isbn: 978-1-4503-

6825-4. doi: 10.1145/3338286.3344399.

Suleri, Sarah, Vinoth Pandian Sermuga Pandian, Svetlana Shishkovets,

andMatthias Jarke (2019). “Eve: A Sketch-Based Software Prototyping

Workbench.” In: Extended Abstracts of the 2019 CHI Conference onHuman
Factors in Computing Systems (Glasgow, Scotland UK). CHI EA ’19. New
York, NY, USA: ACM, Lbw1410:1–lbw1410:6. isbn: 978-1-4503-5971-9.

doi: 10.1145/3290607.3312994. url: http://doi.acm.org/10.

1145/3290607.3312994.

Szegedy, Christian,Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew

Rabinovich (Sept. 16, 2014). Going Deeper with Convolutions. arXiv: 1409.
4842 [cs]. url: http : / / arxiv . org / abs / 1409 . 4842 (visited on

09/15/2020).

Szegedy, Christian, Alexander Toshev, and Dumitru Erhan (Dec. 2013).

“Deep Neural Networks for Object Detection.” In: Proceedings of the 26th
International Conference on Neural Information Processing Systems - Volume 2.
NIPS’13. Red Hook, NY, USA: Curran Associates Inc., pp. 2553–2561.

Szegedy, Christian, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens,

and ZbigniewWojna (Dec. 11, 2015). Rethinking the Inception Architecture
for Computer Vision. arXiv: 1512.00567 [cs]. url: http://arxiv.org/
abs/1512.00567 (visited on 09/15/2020).

Tan, Mingxing and Quoc V. Le (Dec. 1, 2019).MixConv: Mixed Depthwise
ConvolutionalKernels. arXiv: 1907.09595[cs]. url: http://arxiv.org/
abs/1907.09595 (visited on 09/15/2020).

Tan,Mingxing andQuocV. Le (Sept. 11, 2020).EfficientNet:RethinkingModel
Scaling for Convolutional Neural Networks. Version 5. arXiv: 1905.11946
[cs, stat]. url: http://arxiv.org/abs/1905.11946 (visited on

09/15/2020).

Tidwell, Jenifer, Charles Brewer, Aynne Valencia, and an O’Reilly Media

Company Safari (2020).Designing Interfaces, 3rd Edition. English.
Tony, Beltramelli (2017). “TeachingMachines to Understand User Inter-

faces.” In.

Tractinsky, Noam, Avivit Cokhavi, Moti Kirschenbaum, and Tal Sharfi

(Nov. 2006). “Evaluating theConsistency of Immediate Aesthetic Percep-

tions ofWeb Pages.” en. In: International Journal ofHuman-Computer Stud-
ies 64.11. http://www.sciencedirect.com/science/article/pii/

https://doi.org/10.1145/3338286.3344399
https://doi.org/10.1145/3338286.3344399
https://doi.org/10.1145/3290607.3312994
http://doi.acm.org/10.1145/3290607.3312994
http://doi.acm.org/10.1145/3290607.3312994
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1907.09595
http://arxiv.org/abs/1907.09595
http://arxiv.org/abs/1907.09595
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946
http://www.sciencedirect.com/science/article/pii/S1071581906000863
http://www.sciencedirect.com/science/article/pii/S1071581906000863
http://www.sciencedirect.com/science/article/pii/S1071581906000863

bibliography 219

S1071581906000863, pp. 1071–1083. issn: 1071-5819. doi: 10.1016/j.

ijhcs.2006.06.009.

Tuch, Alexandre N., Eva Presslaber, Markus Stoecklin, Klaus Opwis, and

Javier Bargas-Avila (2012). “�e Role of Visual Complexity and Proto-

typicality Regarding First Impression of Websites: Working towards

Understanding Aesthetic Judgments.” In: International Journal of Human-
Computer Studies 70(11). http://dx.doi.org/10.1016/j.ijhcs.2012.
06.003, pp. 794–811.

Uijlings, J. R. R., K. E. A. van de Sande, T. Gevers, and A.W.M. Smeulders

(2013). “Selective Search for Object Recognition.” In: International Journal
of Computer Vision 104.2, pp. 154–171. url: https://ivi.fnwi.uva.nl/
isis/publications/2013/UijlingsIJCV2013.

Uizard (2019). Uizard for Design. en. https://uizard.io/product. Commer-
cial.

Van der Maaten, Laurens and Geoffrey Hinton (2008). “Visualizing Data

Using T-SNE.” In: Journal of Machine Learning Research 9, pp. 2579–2605.
url: http://www.jmlr.org/papers/v9/vandermaaten08a.html.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin (Dec. 2017).

“Attention Is All You Need.” In: arXiv:1706.03762 [cs]. http://arxiv.
org/abs/1706.03762. arXiv: 1706.03762 [cs].

Wada, Kentaro (2016). Labelme: Image Polygonal Annotation with Python.
Walker, Miriam, Leila Takayama, and James A. Landay (2002). “High-

Fidelity or Low-Fidelity, Paper orComputer? ChoosingAttributesWhen

Testing Web Prototypes.” In: Proceedings of the Human Factors and Er-
gonomics Society Annual Meeting 46.5, pp. 661–665. url: https://doi.
org/10.1177/154193120204600513.

Wallner, Emil (Jan. 2018). TurningDesignMockups Into CodeWithDeep Learn-
ing. en.https://blog.floydhub.com/turning-design-mockups-into-code-
with-deep-learning/. Blog.

Wilson, James and Daniel Rosenberg (1988). “Rapid Prototyping for User

Interface Design.” en. In: Elsevier. isbn: 978-0-444-70536-5. doi: 10.

1016/B978-0-444-70536-5.50044-0.

Wimmer, Christoph, Alex Untertrifaller, and �omas Grechenig (Dec.

2020). “SketchingInterfaces: A Tool for Automatically Generating High-

Fidelity User Interface Mockups fromHand-Drawn Sketches.” In: 32nd
Australian Conference on Human-Computer Interaction. OzCHI ’20. New
York, NY, USA: Association for Computing Machinery, pp. 538–545.

isbn: 978-1-4503-8975-4. doi: 10.1145/3441000.3441015.

http://www.sciencedirect.com/science/article/pii/S1071581906000863
http://www.sciencedirect.com/science/article/pii/S1071581906000863
http://www.sciencedirect.com/science/article/pii/S1071581906000863
http://www.sciencedirect.com/science/article/pii/S1071581906000863
https://doi.org/10.1016/j.ijhcs.2006.06.009
https://doi.org/10.1016/j.ijhcs.2006.06.009
http://dx.doi.org/10.1016/j.ijhcs.2012.06.003
http://dx.doi.org/10.1016/j.ijhcs.2012.06.003
https://ivi.fnwi.uva.nl/isis/publications/2013/UijlingsIJCV2013
https://ivi.fnwi.uva.nl/isis/publications/2013/UijlingsIJCV2013
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.1177/154193120204600513
https://doi.org/10.1177/154193120204600513
https://doi.org/10.1016/B978-0-444-70536-5.50044-0
https://doi.org/10.1016/B978-0-444-70536-5.50044-0
https://doi.org/10.1145/3441000.3441015

220 bibliography

Wu, Yuxin, Alexander Kirillov, FranciscoMassa,Wan-Yen Lo, and Ross

Girshick (2019). “Detectron2.” In: https://github.com/facebookres

earch/detectron2.

Xie, Saining, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He

(Apr. 10, 2017). Aggregated Residual Transformations for Deep Neural Net-
works. arXiv: 1611.05431 [cs]. url: http://arxiv.org/abs/1611.
05431 (visited on 09/15/2020).

Yun, Young-Sun, Jinman Jung, Seongbae Eun, Sun-Sup So, and Junyoung

Heo (2019). “Detection of GUI Elements on Sketch Images Using Object

Detector Based on Deep Neural Networks.” en. In: Proceedings of the
Sixth International Conference on Green andHuman Information Technology.
Ed. by Seong Oun Hwang, Syh Yuan Tan, and Franklin Bien. Lecture

Notes in Electrical Engineering. Singapore: Springer, pp. 86–90. isbn:

9789811303111. doi: 10.1007/978-981-13-0311-1_16.

Zagoruyko, Sergey and Nikos Komodakis (June 14, 2017).Wide Residual
Networks. arXiv: 1605.07146 [cs]. url: http://arxiv.org/abs/1605.
07146 (visited on 09/15/2020).

Zhang,Han, IanGoodfellow,DimitrisMetaxas, andAugustusOdena (June

2019). “Self-AttentionGenerativeAdversarialNetworks.” In:arXiv:1805.08318
[cs, stat]. arXiv: 1805.08318 [cs, stat].

Zhao, Tianming, Chunyang Chen, Yuanning Liu, and Xiaodong Zhu (Jan.

2021). “GUIGAN: Learning to Generate GUI Designs Using Genera-

tive Adversarial Networks.” In: arXiv:2101.09978 [cs]. arXiv: 2101.09978
[cs].

Zhou, Jie, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang,

Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun (Jan.

2020). “Graph Neural Networks: A Review of Methods and Applica-

tions.” en. In: AIOpen 1. https://www.sciencedirect.com/science/
article/pii/S2666651021000012, pp. 57–81. issn: 2666-6510. doi:

10.1016/j.aiopen.2021.01.001.

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://arxiv.org/abs/1611.05431
http://arxiv.org/abs/1611.05431
http://arxiv.org/abs/1611.05431
https://doi.org/10.1007/978-981-13-0311-1_16
https://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1605.07146
https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/2101.09978
https://arxiv.org/abs/2101.09978
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://www.sciencedirect.com/science/article/pii/S2666651021000012
https://doi.org/10.1016/j.aiopen.2021.01.001

PUBL ICAT IONS

Aragón, Gustavo, ErdemGümrükcü, Vinoth Pandian Sermuga Pandian,

and Otilia Werner-Kytölä (2019). “Cooperative Control of Charging Sta-

tions for anEVParkwithStochasticDynamicProgramming.” In: IECON
2019-45th Annual Conference of the IEEE Industrial Electronics Society. Vol. 1.
IEEE, pp. 6649–6654.

Pandian, Vinoth Pandian Sermuga and Sarah Suleri (2020a). “BlackBox

Toolkit: Intelligent Assistance to UI Design.” In: arXiv e-prints, arXiv–
2004.

Pandian, Vinoth Pandian Sermuga, Sarah Suleri, Christian Beecks, and

Matthias Jarke (2020). “MetaMorph: AI Assistance to Transform Lo-Fi

Sketches to Higher Fidelities.” In: 32nd Australian Conference onHuman-
Computer Interaction. OzCHI ’20. https://doi.org/10.1145/3441000.
3441030. New York, NY, USA: Association for ComputingMachinery,

pp. 403–412. isbn: 978-1-4503-8975-4. doi: 10.1145/3441000.3441030.

Pandian, Vinoth Pandian Sermuga, Sarah Suleri, andMatthias Jarke (Mar.

2020a). “Blu: What GUIs Are Made Of.” In: Proceedings of the 25th Interna-
tional Conference on Intelligent User Interfaces Companion. IUI ’20. https:
//doi.org/10.1145/3379336.3381497. New York, NY, USA: Associa-

tion for ComputingMachinery, pp. 81–82. isbn: 978-1-4503-7513-9. doi:

10.1145/3379336.3381497.

Pandian, Vinoth Pandian Sermuga, Sarah Suleri, andMatthias Jarke (Mar.

2020b). “Syn: Synthetic Dataset for Training UI Element Detector From

Lo-Fi Sketches.” In: Proceedings of the 25th International Conference on In-
telligent User Interfaces Companion. IUI ’20. https : / / doi . org / 10 .
1145/3379336.3381498. Cagliari, Italy: Association for Computing

Machinery, pp. 79–80. isbn: 978-1-4503-7513-9. doi: 10.1145/3379336.

3381498.

Pandian, Vinoth Pandian Sermuga, Sarah Suleri, andMatthias Jarke (Mar.

2021). “SynZ: Enhanced Synthetic Dataset for Training UI Element De-

tectors.” In: Proceedings of the 26th International Conference on Intelligent
User Interfaces Companion. IUI ’21. New York, NY, USA: Association for
ComputingMachinery. doi: 10.1145/3397482.3450725.

Pandian, Vinoth Pandian Sermuga and Sarah. Suleri (2020b). “NASA-TLX

Web App: An Online Tool to Analyse Subjective Workload.” In: arXiv
preprint arXiv:2001.09963. arXiv: 2001.09963.

221

https://doi.org/10.1145/3441000.3441030
https://doi.org/10.1145/3441000.3441030
https://doi.org/10.1145/3441000.3441030
https://doi.org/10.1145/3379336.3381497
https://doi.org/10.1145/3379336.3381497
https://doi.org/10.1145/3379336.3381497
https://doi.org/10.1145/3379336.3381498
https://doi.org/10.1145/3379336.3381498
https://doi.org/10.1145/3379336.3381498
https://doi.org/10.1145/3379336.3381498
https://doi.org/10.1145/3397482.3450725
https://arxiv.org/abs/2001.09963

222 publications

Pillai, Ajit G, Naseem Ahmadpour, Soojeong Yoo, A Baki Kocaballi, Sonja

Pedell, Vinoth Pandian Sermuga Pandian, and Sarah Suleri (2020).

“Communicate, Critique and Co-Create (CCC) Future Technologies

through Design Fictions in VR Environment.” In: Companion Publication
of the 2020 ACMDesigning Interactive Systems Conference, pp. 413–416.

Rahman, Soliha, Vinoth Pandian Sermuga Pandian, andMatthias Jarke

(Mar. 2021). “RUITE: Refining UI Layout Aesthetics Using Transformer

Encoder.” In: Proceedings of the 26th International Conference on Intelligent
User Interfaces Companion. IUI ’21. New York, NY, USA: Association for
ComputingMachinery. doi: 10.1145/3397482.3450716.

https://doi.org/10.1145/3397482.3450716

Version: 1.0 as of April 28, 2022

For updates, see https://vinoth.info/phd

https://vinoth.info/phd

	Dedication
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Low Fidelity Prototyping
	1.2 Automating UI prototyping
	1.3 Human Centered AI
	1.4 Thesis Statement
	1.5 Scope
	1.6 Research Questions
	1.7 Research Design
	1.8 Research Contributions
	1.9 Outline

	2 Literature Review
	2.1 AI support in UI prototyping
	2.2 UI Datasets
	2.3 Automated Transformation of Prototype Fidelity
	2.4 UI Wireframe Generation and Refinement
	2.5 GUI similarity search
	2.6 Identified Research Gaps
	2.7 Summary

	3 BlackBox Toolkit
	3.1 Goals
	3.2 Blackbox Toolkit
	3.3 Datasets
	3.4 AI tools

	 Datasets
	4 UISketch Dataset
	4.1 Objective
	4.2 Taxonomy of UI element sketches
	4.3 Data collection questionnaires
	4.4 Pilot study & Design decisions
	4.5 Participants
	4.6 Procedure
	4.7 Data processing
	4.8 Data verification
	4.9 Collected data
	4.10 Applications
	4.11 Summary

	5 LoFi Sketch Dataset
	5.1 Objective
	5.2 Design decisions
	5.3 Data collection questionnaires
	5.4 Participants
	5.5 Procedure
	5.6 Data verification
	5.7 Data annotation
	5.8 Collected data
	5.9 Benefits & Applications
	5.10 Summary

	6 Syn & SynZ Datasets
	6.1 Objective
	6.2 Syn
	6.3 SynZ
	6.4 Comparison of Syn and SynZ datasets
	6.5 Benefits & Applications
	6.6 Summary

	7 Wired dataset
	7.1 Objective & Design Decisions
	7.2 Data classification
	7.3 Data annotation
	7.4 Collected data
	7.5 Benefits & Applications
	7.6 Summary

	 Formative Analysis
	8 Human recognition study
	8.1 Participants
	8.2 Measurements
	8.3 Apparatus
	8.4 Procedure
	8.5 Analysis
	8.6 Results & Discussion
	8.7 Summary

	9 Computer recognition study
	9.1 DNN models
	9.2 Preprocessing
	9.3 Training
	9.4 Evaluation
	9.5 Results & Discussion
	9.6 Human vs Computer recognition
	9.7 Analysis of UI element sketches
	9.8 Summary

	 Akin
	10 Background & Proposed Solution
	10.1 Background
	10.2 Identified Gaps
	10.3 Proposed Solution

	11 Model Architecture & Data Representations
	11.1 Model Architectures
	11.2 Data Representations

	12 Implementation
	12.1 Implementation Approach
	12.2 Datasets
	12.3 Implementation Details
	12.4 Configuration & Training Process
	12.5 Post processing steps

	13 Evaluation
	13.1 Metrics
	13.2 Methodology

	14 User Evaluation
	14.1 User Evaluation of UI wireframes
	14.2 Study Design & Measurements
	14.3 User satisfaction study
	14.4 Methodology

	15 Summary & Future Work

	 RUITE
	16 Proposed Solution
	16.1 Background
	16.2 Identified Gaps
	16.3 Proposed Solution

	17 Model Architectures & Data Representations
	17.1 Model architectures
	17.2 Data Representations
	17.3 Discrete Sequential Representation

	18 Implementation
	18.1 Implementation Approach
	18.2 Datasets
	18.3 Implementation Details
	18.4 Configuration & Training Process
	18.5 Post processing steps

	19 Evaluation
	19.1 Dataset
	19.2 Metrics
	19.3 Methodology
	19.4 Results

	20 User evaluation
	20.1 Web API & Adobe XD plugin
	20.2 Methodology
	20.3 Participants

	21 Summary & Future Work

	 MetaMorph
	22 Background & Proposed Solution
	22.1 Background
	22.2 Identified Gaps
	22.3 Proposed Solution

	23 Model Architectures & Data Representations
	23.1 Model Architectures
	23.2 Data Representations

	24 Implementation
	24.1 Implementation Approach
	24.2 Datasets
	24.3 Implementation Details
	24.4 Configuration
	24.5 Training Process

	25 Evaluation
	25.1 Dataset
	25.2 Metrics
	25.3 Methodology
	25.4 Results
	25.5 Discussion

	26 User Evaluation
	26.1 Web API
	26.2 Eve: Prototyping Workbench
	26.3 Methodology
	26.4 Results & Discussion

	27 Summary & Future Work

	28 Conclusion & Future Work
	 Appendix
	a Comprehensive list of literature
	b Semantic Annotations of UI screenshots

	 Bibliography
	 Publications

