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Abstract

The investigation of phase transformations is of great interest in various fields. For
diffusional transitions, accurate descriptions of the diffusion processes in the parent,
growing phases and at the interfaces are the prerequisite to predict the complex
growth patterns. In the last decades, the phase field method has emerged as a
powerful tool to investigate the moving interface problems. However, the elimination
of the artificial enhanced interface effects is a long-standing unsolved problem in the
phase field community. In the symmetric and the one-sided cases, the “thin-interface
limit” and the anti-trapping current are proposed by Karma to reproduce the free
boundary conditions. Only recently, the nondiagonal phase field model has been
developed according to Onsager’s relations in the two-sided case. In this work, we
present the capabilities of the nondiagonal phase field model and extend the binary
nondiagonal phase field model to complex alloys.

A four-fold surface energy anisotropy is incorporated in the binary nondiagonal
phase field model to investigate the two-dimensional free dendrite growth of pure
substances solidification. In the symmetric and the one-sided cases, the nondiagonal
phase field simulation results are benchmarked with Green’s function calculations.
In the general two-sided case, the capabilities of nondiagonal phase field model
are compared with the predictions of a generalized expression. Furthermore, the
necessity of the Onsager cross-coupling term is also evidenced.

Based on Onsager’s principles, the binary nondiagonal phase field model is ex-
tended to three-phase transformations by using the free energy functional. The
two-dimensional nondiagonal phase field simulations are carried out not only for
eutectic solidification in the one-sided case, but also for eutectoid transformation in
the two-sided case. One the one hand, the obtained simulation results during eu-
tectic solidification are benchmarked against boundary integral calculations in the
one-sided case. On the other hand, simulations performed in the two-sided case
during eutectoid transformations reveal that the dimensionless growth velocities of
the lamellae is proportional to the ratio of diffusion coefficients. Furthermore, in
both the one- and two-sided cases, the necessity of using the cross-coupling term in
the nondiagonal phase field model is verified by quantitative simulations.

Since the free energy based nondiagonal model is limited for simple symmetric
phase diagrams, we develop a grand potential based nondiagonal three-phase field
model for complex alloy transformations. The corresponding two-dimensional phase
field simulations are implemented to investigate the growth kinetics of the pearlite
transformation with respect to different diffusion paths. In the one-sided case, the
simulation results are compared with the Zener-Hillert model, while the simulation
results in the two-sided case are proportional to the diffusivity ratios, which agrees
well wit Ankit’s model. Additionally, we also point out that diffusion in cementite
has low influence on the growth kinetic of the pearlite transformation. When the
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surface diffusion is considered, in the one-sided case, the growth velocities of the
lamellae is proportional to the surface diffusion coefficient. Finally, we consider the
diffusion in austenite, cementite as well as the surface diffusion and reproduce the
pearlite growth for different undercoolings. The nondiagonal phase field simulation
results have a convincing agreement with the experimental observations without
adjustable parameters.



Kurzfassung

Die Untersuchung von Phasenumwandlungen ist auf verschiedenen Gebieten von
groffem Interesse. Fiir Diffusionsiibergénge sind genaue Beschreibungen der Dif-
fusionsprozesse in den Mutter-, Wachstumsphasen und an den Grenzflichen die
Voraussetzung, um die komplexen Wachstumsmuster vorhersagen zu konnen. In
den letzten Jahrzehnten hat sich die Phasenfeldmethode zu einem leistungsfahigen
Werkzeug zur Untersuchung von Problemen mit bewegten Grenzflachen entwick-
elt. Die Eliminierung der kiinstlich verstarkten Grenzflacheneffekte ist jedoch ein
seit langem ungelostes Problem in der Phasenfeld-Community. Im symmetrischen
und im einseitigen Fall werden “thin-interface limit” und Anti-Trapping-Current
von Karma vorgeschlagen, um die freien Randbedingungen zu reproduzieren Erst
kiirzlich wurde fiir den zweiseitigen Fall ein nichtdiagonales Phasenfeldmodell unter
Beachtung von Onsagersymmetrien entwickelt. In dieser Arbeit stellen wir die
Moglichkeiten des nichtdiagonalen Phasenfeldmodells vor und erweitern das binére
nichtdiagonale Phasenfeldmodell fiir komplexe Legierungen.

In die binére nichtdiagonale Phase wird eine vierfache Anisotropie der Oberflach-
enenergie eingebaut, um das zweidimensionale freie Dendritenwachstum der Erstar-
rung reiner Substanzen zu untersuchen. Im symmetrischen und einseitigen Fall
werden die Ergebnisse der nichtdiagonalen Phasenfeldsimulation mit Berechnungen
der Greenschen Funktion verglichen. Im allgemeinen zweiseitigen Fall werden die
Fahigkeiten des nichtdiagonalen Phasenfeldmodells mit den Vorhersagen einer Gen-
eralisierung verglichen. Dariiber hinaus wird auch die Notwendigkeit von Kreuzkop-
plungstermen nachgewiesen.

Basierend auf den Prinzipien von Onsager wird das binare nichtdiagonale Phasen-
feldmodell unter Verwendung des freien Energiefunktionals auf dreiphasige Transfor-
mationen erweitert. Die zweidimensionalen nichtdiagonalen Phasenfeldsimulationen
werden nicht nur fiir die eutektische Erstarrung im einseitigen Fall, sondern auch
fiir die eutektoide Umwandlung im zweiseitigen Fall durchgefiihrt. Einerseits wer-
den die erhaltenen Simulationsergebnisse wahrend der eutektischen Erstarrung mit
Randintegralrechnungen im einseitigen Fall verglichen. Andererseits zeigen Simula-
tionen im zweiseitigen Fall wiahrend eutektoider Transformationen, dass die dimen-
sionslosen Wachstumsgeschwindigkeiten von Lamellen proportional zum Verhaltnis
der Diffusionskoeffizienten sind. Dariiber hinaus wird sowohl im ein- als auch im
zweiseitigen Fall die Notwendigkeit der Verwendung des Kreuzkopplungsterms im
nichtdiagonalen Phasenfeldmodell fiir quantitative Simulationen verifiziert.

Da das auf freier Energie basierende Nichtdiagonalfeld fiir einfache symmetrische
Phasendiagramme begrenzt ist, entwickeln wir ein auf dem grosskanonischen Po-
tential basierendes nichtdiagonales Dreiphasenfeldmodell fiir komplexe Legierung-
sumwandlungen. Die entsprechenden zweidimensionalen Phasenfeldsimulationen
werden durchgefiihrt, um die Wachstumskinetik der Perlitumwandlung in Bezug auf
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verschiedene Diffusionspfade zu untersuchen. Im einseitigen Fall werden die Sim-
ulationsergebnisse mit dem Zener-Hillert-Modell verglichen, wahrend die Simula-
tionsergebnisse im zweiseitigen Fall einen linearen Zusammenhang zeigen. Dariiber
hinaus weisen wir auch darauf hin, dass die Diffusion in Zementit einen geringen
Einfluss auf die Wachstumskinetik der Perlitumwandlung hat. Bei Betrachtung
der Oberflachendiffusion sind im einseitigen Fall die Wachstumsgeschwindigkeiten
der Lamellen proportional zum Oberflachendiffusionskoeffizienten. Schliellich be-
trachten wir die Diffusion in Austenit, Zementit sowie die Oberflichendiffusion und
geben das Perlitwachstum flir verschiedene Unterkiihlungen wieder. Die Ergeb-
nisse der nichtdiagonalen Phasenfeldsimulation stimmen mit den experimentellen
Beobachtungen tiberzeugend iiberein.
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Chapter 1

Introduction

The investigation of phase transformations is of great interest in materials science,
chemistry and physics. Phase transformations are regarded as the physical pro-
cesses, which happen in different states of matter: solid, liquid and gas as well as
plasma in rare cases. They occur when the temperature, composition or structure
is changed. The phase transformations can be classified in several ways. In 1933,
Ehrenfest proposed a classification to distinguish the order of phase transforma-
tions by the lowest derivative with discontinuity at the transformation point. First
order of phase transformations are featured by discontinuous changes in entropy,
enthalpy and specific volume. Second order transitions are characterized by the
absence of a latent heat of transformation and a high specific heat at the transition
temperature. In 1951, Buerger introduced a classification according to the mecha-
nism, i.e., reconstructive (diffusional) and displacive transformations. In the former
transformations, the atom is transported from the parent to the product by diffu-
sional jumps. In contrast, the atom movements in the displacive transformation are
achieved by a homogeneous distortion, shuffling of lattice planes, static displace-
ment waves or a combination of these. For diffusional transformations, such as
solidification, accurate descriptions of the diffusion processes in the parent, growing
phases and at the interfaces are the prerequisite to understand the complex growth
patterns. Experiments are the most general method to observe the microstructure
of materials and establish the mechanisms, which is often time-consuming, expen-
sive and even poisonous. To overcome these disadvantages, the phase field method
emerged as a powerful simulation method to reproduce the microstructure evolution
during various materials preparation processes.

The phase-field method is established based on Ginzburg and Landau theory.
Compared with the conventional front tracking method, the advantage of the phase
field method is to avoid the explicit tracking of the phase boundaries. The charac-
teristic feature of the phase field method is the diffuse interface. The thickness of
the interface is usually chosen several orders of magnitude larger than the physical
interface width to save computational time. However, the artificial enlargement of
the interface thickness enhances the interface effects, which leads to non-quantitative
results. The pioneering work of the construction of a quantitative phase field model
was done by Karma and Rappel in the symmetric case by using a “thin-interface
limit”, where the diffusivity of the parent phase equals to the growing phase. Later,
the anti-trapping current was proposed and added into the phase field model in
the one-sided case, where the diffusivity of the growing phase is negligible. For the
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general situation, where a finite diffusion contrast exists between the parent and
growing phases, it has been a long-standing unsolved problem in the phase field
community.

Recently, this problem has been solved by Boussinot and Brener by introducing a
kinetic cross-coupling term between the nonconserved phase field and the conserved
diffusion field based on the Onsager’s relation, known as non-diagonal phase field
model. This new cross-coupling term provides an additional degree of freedom to
reproduce equilibrium boundary conditions for unequal diffusivities in the different
bulk phases. However, the nondiagonal phase field model is restricted to binary
phase transformations and the capabilities of the nondiagonal phase field for phase
transformation are still unknown.

It is the aim of this thesis to present the capabilities of the nondiagonal phase
field model and extend the nondiagonal phase field model for complex alloys. In
chapter 2, the basics of thermodynamic is introduced at the beginning, including
the equilibrium conditions, nonequilibrium thermodynamics (Onsager’s relations)
and the Gibbs-Thomson effect. Subsequently, the phase field concepts, thin-interface
limit, grand potential based phase field model as well as the nondiagonal phase
field model are presented. Then, some well-known phase transformations, such as
dendrite growth, eutectic/eutectic transformations and pearlite transformation are
explained. In the last section, the GPU acceleration technology utilized in this thesis
is described.

In chapter 3, the nondiagonal phase field model is developed for two dimen-
sional free dendrite growth of pure substances solidification. The dimensionless
growth velocities obtained from simulations are compared with the calculations of a
sharp interface method to present the capabilities of nondiagonal phase field model.
Furthermore, the phase field simulation are also carried out when the cross-coupling
term or the surface diffusion are turned off. We compare them with nondiagonal
phase field results to evidence the necessity of using the nondiagonal phase field
model.

According to Onsager’s principles, the nondiagonal phase field model is extended
to three phase transformations in chapter 4, such as eutectic solidification and eu-
tectoid transformations. In the one-sided case, we compare the nondiagonal phase
field results with boundary integral method calculations and the predictions of the
Jackson-Hunt theory during eutectic solidification. In the two-sided case, the ex-
tended Jackson-Hunt theory is used to benchmark the nondiagonal phase field results
during eutectoid and off-eutectoid transformations. The comparison results indicate
the capabilities of the nondiagonal three-phase field model and the importance of
the cross-coupling term.

The nondiagonal three-phase field model is derived based on a free energy func-
tional in chapter 4, which is limited for simple symmetric phase diagrams. There-
fore, in chapter 5, we develop a grand potential based nondiagonal three-phase
field model for complex alloy transformations. The corresponding two-dimensional
phase field simulations are implemented to investigate the growth kinetics of the
pearlite transformation with respect to different diffusion paths. When the surface
diffusion is eliminated, the simulation results are compared with the Zener-Hillert
model in the one-sided case and Ankit’s model in the two-sided case. Addition-
ally, the influence of diffusion in cementite is also investigated. When the surface
diffusion is considered, in the one-sided case, the growth velocities of the lamellae



is benchmarked with the predictions of Pandit’s model. Subsequently, we take the
diffusion in austenite and ferrite as well as the surface diffusion into account. The
reproduced kinetics of pearlite growth are compared with experimental observations
for different undercoolings.

In chapter 6, we summarize the results of this thesis.
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Chapter 2

Theoretical background

2.1 Thermodynamic basics

2.1.1 Phase equilibrium

A binary alloy, consisting of two phases, i.e., phase 1 and phase 2, and two elements,
i.e., A and B, is assumed at here. As shown in Fig. 2.1, the total number of atoms
is defined as N in the system. The total number of atoms of type A in phase 1 is
defined as N4, and the total number of A atoms in the system is defined as Ny.
Similarly, we define N9, Np; and Np. Therefore, the numbers of atoms N, N4
and Np are expressed as

N = N+ Ng, (2.1)
Ny=Nyg1+ Nao, (2.2)
Ng = Npi + Nga. (2.3)

Additionally, the total number of atoms in phase 7 is
Ni = NA,l + NB,l- (24)

Thus, the concentrations of A and B atoms in phase ¢ are defined as

Nag

ot ==, (2.5)
Np,i

o == (2.6)

The Gibbs energy per particle in phase i is denoted as g;(c!). For a constant
temperature, the total Gibbs energy in the system is

Here, we have two choices for the independent variables in the expression of total
Gibbs free energy. On the one hand, N; and Np; are chosen as the independent
variables, the expression of G can be written as

(2.8)

NBI NB_NBl
Ni. N =N d N - N e ——
G(N1,Np,a) 191 ( N, ) + ( 1)92 ( N_N, )

5
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Figure 2.1: Sketch of a two-phase situation, where the interface contour y(z) sepa-
rates the two phases.

Afterwards, the difference of chemical potential and grand potential between phase
1 and 2 are

oG , ,
= (e ) = el - ek, 29

aG / /
bw=(r) = auel) — Pa(el) — loald) — Feh(c)). (2.10)
ON1 ) N

On the other hand, Ny; and Np; are able to be the independent variables,
which yields the Gibbs free energy

N
G(Na1,Np1) =(Na1+ Npi1)g <$) +

Na1+ Np 2.11)
Np — Npa ’
N —Ny;—N ; ‘
( Al B.1)92 (N Ny — NB,I)
Then, variation with respect to N4 gives
(5—8G— B\ _ B /(.BY _ B\ B (B 919
MA_@NAl = gi(cy’) —crgi(er’) = [galey) — 5 galey)], (2.12)

which corresponds to the chemical potential difference between phase 1 and phase
2 for atom A. We should note that du, is equivalent to the grand potential differ-
ence dw in Eq. (2.10). In addition, another variation gives the chemical potential
difference between phase 1 and phase 2 for atom type B

= o = ) = (1= D)~ o) — (1= DB (213)

OpB
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Notably, dup = dp + dw. At equilibrium, we have
op = dw =0, (2.14)

opa = opp =0, (2.15)

which are equivalent and consistent.

2.1.2 Non-equilibrium thermodynamics

In 1931, Onsager proposed the reciprocal relations to describe the transport phe-
nomena in electrolytes [1, 2], which provide a new insight into the transport and rate
processes in the field of nonequilibrium thermodynamics. Non-equilibrium thermo-
dynamics establishes the phenomenological equations with the conjugated flows and
forces from the rate of entropy production or from the dissipation function. When
the phenomenological equations linearly relate the conjugated flows and forces, the
phenomenological coefficients obey the Onsager reciprocal relations. Therefore, the
cross-coupled phenomenological coefficients are identical and the unknown coeffi-
cients are reduced. In addition, the phenomenological coefficients are of great im-
portance in the definition of the coupled phenomena. For instance, the Soret effect
(the mass diffusion due to heat transfer) and the Dufour effect (heat transport due
to mass diffusion) can arise during the coupled processes of heat and mass transport.
Thus, for separate disciplines, the linear nonequilibrium thermodynamics provides
a unified approach to link different processes. For the discovery of reciprocal rela-
tions, Lars Onsager was awarded the Nobel Prize in Chemistry in 1968. Onsager’s
relations is also described as the “Fourth law of thermodynamics” [3].

Furthermore, the linear nonequilibrium thermodynamics is constructed based
on four assumptions [4]: (i) The system is in a weak out of equilibrium state,
where the gradients or the thermodynamic driving forces are not strong (quasi-
equilibrium state). (ii) All the driving forces are linearly related to the fluxes and
the proportionality constants are the phenomenological coefficients. (iii) The matrix
of phenomenological coefficients is symmetric provided that the conjugate flows and
forces are identified by the entropy production equation or the dissipation function.
(iv) The coupling is restricted by a general symmetry principle according to the
Curie-Prigogine principle. In the following, the Onsager linear relation is shortly
explained for the conjugated forces (6w, du ) and fluxes (Ny, Ng1).

On the one hand, for the first representation of G(Ny, Ng 1), the conjugate ther-
modynamic variable to Ny is 0G/0N; = dw. Similarly, the conjugate variable to
Npis 0G/ONp ;1 = 0p. Then, in the spirit of Onsager relations, we can write

ow = AlNl + BlNBJ, (2.16)

5,u - BlNl -+ C}NBJ. (217)

The dissipation can be expressed as

G /oG . oG .
G _ (09GN N
a <8N1)NBI 1+(8NB,1)N1 B.1

= 5CL)N1 + 5/,LNB71
= A1N12 + 261N1NB,1 + C}Né71.

(2.18)
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On the other hand, for the second representation of G(N41, Np1), we can write
5/LA = AzNA’l -+ B_QNBJ, (219)

5[13 = BQNAJ + C_QNBJ, (2.20)

with the dissipation

da oG - oG \
= N N
dt <8NA,1>NB’1 ALt (8NB1)NA,1 !

. . (2.21)
= (S,UANAJ + 5MBNB,1
- AQNi,l + 28—2NA,1NB,1 + C_gNéJ.
One can identify that
A2:A1;62=A1+31;C_2:Al+281 +C_1, (2.22)

which implies that both representations of total free energy consistently have sym-
metrical Onsager matrices.

2.1.3 Gibbs-Thomson effect

The Gibbs energy aforementioned is able to be extended by considering a continuum
description of interfacial energy between the two phases (see Fig. 2.1)

Gtot - G + Gs (223)

with

G, = / ydS =5 / V14 y/(x)2de, (2.24)

where y(x) is the two-dimensional interface contour between the phases. To be
explicit, we say that phase is located below this contour, y < y(x). Standard
variational calculus yields

ER d o0 y"
- N — /1 2 _
dy(x) Tz oy’ Ty

= - = VK, 2.25
sk (2.25)
where the curvature s is defined to be positive for a convex solid.

For an equilibrium situation, the Gibbs energy is minimized with consideration
of the interfacial energy. Here, it is important that the interface contour is related
to the number of atoms in the solid phase via the relation

Ny = l/y(gzi)dw, (2.26)

with v being the atomic volume. Therefore, we write the Gibbs energy as functional,
Giot = G(y, N7), and obtain for the functional variation

Gy 6G,  9G 6N,

- . 2.2
Sy oy T aN, oy (227)
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From the above expressions we therefore get the first equilibrium condition (gener-

alized grand potential balance)

5Gtot
oy

1
=vKk + —dw = 0, (2.28)
v

which is the Gibbs-Thomson effect. The other equilibrium condition remains the
same,

aCTYtot
GNBJ

For deviations from equilibrium situation, we can write again the linear Onsager
relations

= ou = 0. (2.29)

vvk + dw = A Ny + 31]\'7371, (2.30)
5,[1, = BlNl + CilNByl. (231)
From this, we get the dissipation

dG 0Giot . OGior
& N
dt / Sy VT N, B

1 .
= /(7/{ + ;&u)ydx +0uN1

(2.32)
) . 1 . .

= (ANl + BNBJ) / ;yd.T + BlNl + ClNB,lNB,l

- AN% + 2BN1NB’1 + élNé,p

which has the identical formation as Eq. (2.21).

2.2 The phase field method

Nowadays, the phase field method has been rapidly evolved as a powerful tool to
simulate complex microstructure evolution, various growth patterns and other phe-
nomena during materials preparation processes in many fields of research. The
history of the phase field method can be traced to the model of van de Waals for a
liquid-gas system by using a continuous density function at the liquid-gas interface
more than a century ago [5] being reviewed in Refs. [6-11]. 50 years ago, Ginzburg
and Landau proposed an order parameter to model the surperconductivity [12]. Al-
most 40 years ago, Cahn and Hillert proposed the coupled diffuse interface between
two coexisting phases whose thickness depends on the temperature, and it turns out
that the interfacial energy is consistent with the experimental observations [13]. In
the review of Hohenberg and Halperin, model C is very similar to the current phase
field method [14]. About 20 years ago, the diffuse interface has been introduced
to the phase field method, which has become the characteristic feature. Moreover,
according to the application of phase field models, they can be classified into two
approaches in this community.

The first type of phase field model is developed by Chen [15] and Wang [16]
according to the microscopic theory of Khachaturyan [17, 18]. The phase field
variables present the local composition or long-range atomic order parameters, sym-
metry and orientation relations between coexisting phases. The application of this
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kind of phase field method focuses on diffusive transformations [19-36], displacive
transformations [37-51], coarsening mechanisms [52-62], deformation mechanisms
[63-68] as well as ferroelectric and magnetic domain evolution [69-78].

The second type of phase field model is applied for reproducing the microstruc-
ture evolution during solidification, such as the famous dendrite growth, eutectic so-
lidification and other commercial alloys solidification processes. Langer and Collins
[79, 80] introduced the phase field method to model the pattern selection during so-
lidification of a pure melt. Later, Kobayashi achieved the earliest application of the
phase field method to dendrite growth during solidification [81]. Karma and Rappel
proposed the thin interface limit to link the phase field model with free boundary
conditions for equal thermal diffusivity in the solid and liquid phase during solid-
ification (symmetric model) [82-84], namely quantitative phase field model. This
pioneering work made it possible to remove abnormal interface effects and achieve
local equilibrium boundary conditions by choosing the appropriate phase field ki-
netic parameters. Afterwards, the quantitative phase field model was extended to
binary alloys with negligible solid diffusivity during solidification (one-sided model)
[85]. A correction term called anti-trapping current that is proportional to the in-
terface velocity is introduced to remove the interface effects originating from the
discontinuity of the chemical potential in the interface. For eutectic solidification,
Folch and Plapp developed a quantitative PF model with anti-trapping current to
reproduce the free boundary conditions in the one-sided model [86]. The advantage
of this model is to ensure the disappearance of spurious third phases in the two-
phase interface by proposing a fifth order interpolation function and linking the PF
model to free boundary descriptions. For the two-sided case, Ohno and Matsuura
extended the anti-trapping current by using an additional prefactor during three
phase solidification [87-89]. To describe the complex microstructure evolution for
multi-phase and multi-component alloys, Steinbach developed the multi-phase field
model coupled with CALPHAD databases [7, 90-94]. Though assigning different
phase field order parameters, each phase/grain distinguishes from others by its ori-
entation or phase. Moreover, for the real physical systems, phase-field models for
solidification coupled to fluid flow are also developed and help us understand the
influence of flow on the microstructure evolution [95-98].

2.2.1 Phase field concepts

The phase field method consists of a pair of famous continuum equations, i.e., the
Allen-Cahn equation and the Cahn-Hilliard diffusion equation. Compared with the
sharp interface method, its characteristic feature is the diffuse interface. The most
attractive advantage of phase field approach is to avoid tracking the explicit inter-
face position by introducing a non-conserved phase field variable ¢, which exhibits
smooth spatial variations inside the diffuse interface on the scale of interface thick-
ness (W), as shown in Fig. 2.2. Generally, the phase field is constant in the bulk
phases, for instance, ¢, = 1 presents the o phase and ¢z = 1 presents the 3 phase.
0 < ¢ < 1 indicates the interface zone. The interface between two different bulk
phases is located at ¢ = 1/2. The interface thickness defined in the phase field
method has no physical meaning but is typically chosen orders of magnitude larger
than the atomistic scale to improve the computational efficient for large scale sim-
ulations.
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liquid(¢p = 0)

solid(¢p = 1)

interface(0 < ¢ < 1)

Figure 2.2: Demonstration of the phase field concepts.

The microstructure evolution of the parent phase to the growing phase is de-
scribed by a free energy functional which contains the free energy of the bulk phases
and the interfacial gradient energy. When the phase field order parameter is defined
as ¢, the free energy functional has the structure

F= /V ko(VO) + ful) + ful NV, (2.33)

where the first term in the functional is the interfacial gradient energy contribution.
kg is the gradient energy coefficient, which is associated to the interface thickness.
The second term is the well potential, while the last term indicates the chemical free
energy density of the bulk phases.

For variational phase field models, the evolutional equation for phase field model
is derivated from the free energy functional F. For the phase field parameter ¢,
according to the Allen-Cahn equation, we have

96 SF
i —M(éb)%,

with M (¢) being the interface kinetic parameter. For a conserved field, like the
concentration field, the overall amount of composition remains identical constant
during the solidification. According to the Cahn-Hilliard equation, the evolution of
concentration field is given by

(2.34)

oc OoF
A VA (5 VA vt 9.
*_v ( Cvéc), (2.35)

with M. being the atomic mobility parameter. M, and M, are determined based on
the thermodynamic and physical properties of different alloys.
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2.2.2 Thin interface limit

As mentioned in Section 2.2.1, the order parameters in the bulk phase are defined
as constants, for instance, ¢ = 0 indicates the liquid phase, while ¢ = 1 is the
solid phase. Two different bulk phases are smoothly separated by a diffuse interface
with certain thickness WW. To save simulation time and bridge the gap between the
thickness of physical interface and the scale of microstructure observed in the ex-
periments, the interface thickness (W) of diffuse interface is chosen several orders of
magnitude larger than the physical interface width. However, the artificial enlarge-
ment of the interface thickness brings abnormal interface effects and the equilibrium
boundary conditions violate. Therefore, all these anomalous interface effects have
to be controlled in order to guarantee the precise phase field simulations. The pi-
oneering work was done by Karma and Rappel in the symmetric model (identical
diffusivity in the liquid and solid phases) during pure substances solidification for free
dendrite growth, which is named “thin-interface limit”. The spirit of thin-interface
limit is that (i) the phase field and concentration field equations are expanded and
analysed under the assumption that the interface thickness is much smaller than the
diffusion length, (ii) the asymptotic procedure matches the solutions of inner and
outer interface regions, which yields the equilibrium boundary conditions for finite
interface thickness. The asymptotic procedure is shortly described in Appendix A.

Based on the developed thin-interface limit, Karma and Rappel carried out simu-
lations in 1D, 2D and 3D for dendrite growth [84]. The 1D and 2D simulation results
benchmarked with the predictions of the sharp interface theory. For small under-
coolings, the convergence of the growth velocity of the dendrite tip was achieved by
decreasing W/dy, and the relative error of the growth velocity and tip radii between
phase field simulations and solvability theory is smaller than 5%. Furthermore, in
3D simulations, the parameters of the phase field model was firstly calculated after
determining the grid-induced anisotropy. Without the effects of grid anisotropy, the
phase field simulations showed the error between simulations results and solvability
theory predictions to be less than 10%.

However, it is impossible to eliminate all the abnormal interface effects simply
by choosing the appropriate interpolation functions and parameters in the phase
field equations in the one-sided (the solid diffusivity is negligible) and the two-sided
(the solid diffusivity neither vanishes nor equals to liquid phase) cases [85, 99, 100].
Therefore, the anti-trapping current is proposed in Refs. [85, 100] in the one-sided
case (the solid diffusivity is negligible), which can be written as

jore = a(¢)Wen, (2.36)

where a(¢) is an interpolation function (for one-sided case, a(¢) = 1/(2v/2)), n =
—V¢/|V | is the normal vector to the interface. This term contains a current which
is proportional to the interface velocity to correct the flux in the interface region.
For the two-sided case, the anti-trapping current with an additional prefactor is
proposed in Ref. [87], which is given by

D, .

jiwe = q(1 — =2)W¢n. (2.37)

D,
Plapp pointed out the temperature jump can be eliminated by carrying out the
asymptotic analysis after modifying the anti-trapping current. However, it is not
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the only interface effect appearing in the two-sided case. The surface thermal resis-
tance, named Kapitza resistance, is another nature interface effect [101-103]. It is
proportional to the interface thickness and can not be fully eliminated by the ve-
locity determined anti-trapping current [104]. Thus, to eliminate all the abnormal
interface effects in the two-sided case, the thermodynamic fully consistent nondi-
agonal model is developed according to Onsager’s relations, which is explained in
Section 2.3.

2.2.3 Grand-potential based phase field model

The quantitative phase field models for the solidification of pure substances is
achieved with the development of the “thin interface limit” as is detailed in Sec-
tion 2.2.2. Through appropriately chosing the phase field parameters, the free
boundary conditions are reproduced. However, the chemical free energy function
in the free energy functional, such as Eq. (2.33), is unsuitable to reproduce all phase
diagrams of complex binary alloys. Thus, for complex binary alloy solidification, the
free-energy based phase field model is extended to the grand-potential based phase
field model [105]. In analogy to the free energy functional, the grand-potential
functional is

Qlp,pl = | w(o,Vo,n)
/V (2.38)

— [ wl6.96) + 9u(0) ) + 1~ 9.0 (1),
1%
where w,(p) is the grand potential density of the bulk phases, which is given by

wv(ﬂ) = f’u(c> - Hp, (239>

where f,(c) is the free energy density. p is the chemical potential, which is defined
as = V,0F/dc, with V,, being the atomic volume, p is the number density of the
solute atoms, which is given by

. 2.40
P=qn (2.40)

Then, for a given temperature, the variation of the grand potential density with
respect to ¢ and p are

(;_z = —oVo+ H g (9) + 9u(9)ws(p) = wi(u)], (2.41)
% = —p(o, 1)

= 9s(9)ps + [1 — gs(0)] p1-

Therefore, the grand-potential based phase field and chemical potential evolution
equations are

op

6 = —M% = My {oV?¢ — H f,,(¢) — g(d)[ws(p) — wi(p)]} (2.43)
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S
H @)

with x(¢, i) being the susceptibility, which is defined as

{VID@, X (0. 1)Vu] = g (8) I — p] B}, (244)

(o) = 2828 _ 8 o)

Ipi(p)
o ou '

o

(2.45)

For given temperature and equilibrium concentration, the simplest approximation
for free energy functions are parabolas, using the following formulation

£i(c) = %ev(c ey, (2.46)

where €, are constants to describe the curvatures of the parabolas. The chemical
potential in each phase is

_Ofy

= Vieo(c — ), (2.47)

The concentration ¢ can be written as a function of p,

7
Va€o

c= + &t (2.48)

Therefore, based on Eq. (2.39), the grand potential density is

Ly o,
_§V26 —chq. (249)

wv(:u) =

Inserting the grand-potential density in Eq. (2.45) yields the expression of ¥,

X6, ) = T 0s(6) + =1~ 04(0)]. (2.50)

%

a

Ve

In this thesis, a grand potential based phase field model is presented in a vari-
ational framework, in analogy to Ref. [105]. The principal difference between the
grand potential based and free energy based phase models is that the relation be-
tween the composition and chemical potential is nonlinear in the grand potential
based phase field model rather than linear in the free energy based phase field model.
Based on this advantage, the introduction of parameters €, in Eq. (2.46) provides
more degrees of freedom to define the curvature of parabolic free energy, and the
local equilibrium conditions (common tangent theory) can be satisfied in the phase
field simulations. To benchmark this model, Plapp performed two-dimensional den-
drite growth with different interface thickness for Ni-Cu alloy during solidification
[105]. The convergent growth velocities of the dendrite tip indicate that the model
can be applied to alloys with arbitary phase diagrams. Based on the advantages of
grand potential phase field model, it is used in Chapter 5 to reproduce the free en-
ergy of stoichiometric cementite and find local equilibrium between austenite, ferrite
and cementite phases during the pearlite transformation.



2.3. NON-DIAGONAL PHASE FIELD MODEL 15

2.3 Non-diagonal phase field model

The phase field model solves moving patterns with the use of phase field variables
¢ which are continuous across the interface. The interface width is usually chosen
significantly larger than the actual width of physical interface in order to save com-
putational time. However, this causes an artificial enhancement of the interfacial
kinetic effects, such as solute trapping, the interface stretching effect and surface
diffusion which alters the conservation laws at the interface [99]. To eliminate the
abnormal interface effects arised by the enlarged interface width W, a thin-interface
limit calculation is carried out in the symmetric case, while the anti-trapping current
is added into the conserved evolution equation in the one-sided case. For the general
case, when a finite diffusion contrast exists between the parent phase and growing
phase, the reproduction of the free boundary condition has been a long-standing
unsolved problem in the phase field community.

Recently, this problem has been solved by introducing a kinetic cross-coupling
term between the nonconserved phase field and the conserved diffusion field based
on the Onsager relation, known as non-diagonal phase field model [106, 107]. This
new cross-coupling term provides an additional degree of freedom to reproduce equi-
librium boundary conditions for unequal diffusivities in the different bulk phases.
Boussinot and Brener presented the non-diagonal phase field model with the kinetic
cross-coupling term for isothermal transformations in binary alloys and steps dy-
namics in molecular-beam-epitaxy [108]. Later, they achieved a realistic description
of interface kinetics with a diffusional contrast for pure substances during isother-
mal solidification [109], which is explained in Section 2.3.1. In addition, they also
pointed out this new term allows to obtain the desired interface kinetics [110]. In
this section, the nondiagonal phase field model for pure substances during isothermal
solidification is shortly explained. Since the two models are similar, the nondiagonal
phase field model for binary alloys during isothermal solidification is explicated in
Appendix B.

2.3.1 Nondiagonal phase field model for pure substances
during isothermal solidification

For crystallization of a solid from a pure melt, the local temperature is the driving

force for the phase transformation and one must determine temperature fields in both

solid and liquid phases subject to the free boundary conditions. In this section, the
non-diagonal phase field model for pure materials during solidification is introduced.

Evolution equations

The total entropy functional S of the system is

szlgv%@gﬁpﬂ—H(L1ﬂ2+mgw1}, (2.51)

where e is the dimensionless internal energy density, which depends on temperature
T and phase field ¢ and obeys the continuity equation

é=-V-J (2.52)
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with J being the flux of the dimensionless energy. The entropy production of the

system is
- [t - fov[aeit] em

The driving force conjugated to ¢ is 65/d¢, while the driving force conjugated
to J is V(65/de). Hence, the variational equations of nondiagonal phase field model
with nondiagonal term which obeys Onsager symmetry during pure substance so-
lidification are

cpT2 05 :

L = (0o MWV 2.51)
c,T% _ 08 . J

T Ve = M@OWVGo + 5, (2.55)

where ¢, is the specific heat at the melting temperature Ty,. L is the latent heat
of the transformation. 7(¢) and M(¢) are relaxation time and cross-coupling term,
respectively, which are considered as constants for two phase transformations. D(¢)
is the thermal diffusivity. The positive entropy production S > 0 demands

7(¢) > 0,D(¢) > 0,A =1 — [M(¢)WV|*D(¢)/7(¢) > 0. (2.56)
Then, the evolution equations of phase field and temperature are
Arg = H [¢p(1 — ¢*) + WV3p] — p/(;b)u + MW D(¢)V¢ - Vu, (2.57)

W=V {D(¢) (Vu -+ MW(ngb]} n p/(f) é, (2.58)

where p(¢) = 15(¢ — 2¢3/3 + ¢°/5) /8. w is the dimensionless temperature, which is
u = ¢,(T' —Tyr)/ L. The phase field at equilibrium is

deq) = — tanh <Wxﬂ) . (2.59)

The equilibrium dimensionless entropy is

os+or o —0g

Oeq(P) = 5 - 9 P(Peq)- (2.60)

Link between boundary conditions and phase field parameters

In the macroscopic description, the energy conservation equation at the interface
can be written as

DSVU|5'H+VUS=DLVU|L-D+VO'L, (2.61)

where Dg and Dy, are the thermal diffusivities in the solid and liquid phases. n is the
vector normal to the interface. Vu|gs and Vu|y, indicate the gradient of dimensionless
temperature on the solid and liquid side of the interface. V is the normal velocity
of interface motion and Jg denotes the normal flux of dimensionless energy through
the interface. The relation between driving forces and fluxes becomes

Cp TM
L

0f =osug —opur, = AV + BJE + dyk, (2.62)



2.3. NON-DIAGONAL PHASE FIELD MODEL 17

ou=u; —ug =BV +CJg. (2.63)

In analogy to Egs. (B.33) to (B.35), the Onsager kinetic parameters of pure materials
solidification are

A= / " de {760 @)} 2 / M ()W (6 () 0o ()]
s ) s feoqo , (2.64)
+/ dx Ueq('r) (US ) . (UL)

—00 D(¢eq) 2DS 2DL ’

8= [ ar{ueawisr - |Gt - 5 -5 |} ew
€= /_Z & {D@lzseq) B 21195 B 2119J | (266)

Determination of the non-diagonal phase field parameters in two-sided
cases

Equilibrium boundary conditions require the elimination of a temperature and en-
ergy jump, which leads to 0 f = f = du = 0. Then the Onsager kinetic parameters

become A = B = C = 0. Firstly, the diffusivity function D(¢) is chosen as

1 1 1 1 1
—— = — 4+ — — — — 2.
D(¢) (QDS 2DL> 2 <2Ds 2DL) ’ (2.67)
to ensure C = 0, with g(¢) being an odd function, which is defined as
9(¢) = ¢[1 + a(1l - ¢°)], (2.68)

where a is a tuning parameter to adjust the surface diffusion along the interface.
Generally, the surface diffusion along solid/liquid interface is neglected during a
solidification process, i.e. Dy = ffooo dz[D(¢) — 1/2Dg — 1/2Dy] = 0. Moreover,
with the choice of the diffusivity expression and an odd function g(¢), the Onsager
kinetic parameter C automatically vanishes. Then, B = 0 yields

yW 1 1
M= <2DS - 2DL> ’ (269)
where -
o= W/ dz[¢l,(z))* = 2v2/3, (2.70)
=[S0 plol@glon(o)]) 2.1)

It is noteworthy that « is different for different ¢.,(z) and ~ is dependent on the
parameter a in Eq. (2.68). Subsequently, with the choice of D(¢) and M, the
parameter 7 is

BW? [ 1 1
_ 9.72
"= \2ps; T2p, ) (2.72)
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where

5= /_: dwx{l — Pleg(w)]2} ~ 1.40748. (2.73)

Then, Inserting Egs. (2.69) and (2.72) to Eq. (2.56) with relation (W¢,)* = (1 —
2,)?/2 yields the stability constraint

2252(1 min 2T Mdszg(éf;eq)7
Y My s (1- eq)
where pi4ir; = (D, — Dg) /(D + Dg). We should note that the positive determinant
A > 0 sets an upper and lower bound for the diffusion ratio (1/17 < Dg/Dyp < 17).
If the diffusion contrast is out of this range, i.e., Ds/Dy < 1/17 or Dg/Dy > 17,
the one-sided model can be ultilized for the simulations. The nondiagonal phase-
field simulations were performed by Boussinot et. al to investigate the relaxation
of an interface with a periodic perturbation towards the equilibrium flat shape with
and without the influence of surface diffusion in two-dimension [110]. They pointed
out that not only the surface diffusion increases the dimensionless velocity but also
the temperature difference at the interface (¢ = 0) is significantly decreased by
introducing the cross-coupling term M, which indicates the equilibrium boundary
conditions are achieved in two-sided case.

In summary, the nondiagonal phase field model for pure substances solidification
developed in Ref. [109] is presented in this section. Comparing with quantitative
phase field model in Refs. [84, 85], a cross-coupling term between conserved and
nonconserved fields is introduced in nondiagonal phase field model according to On-
sager’s relation. Through linking nondiagonal phase field model with free boundary
conditions, the relaxation time (7) and cross-coupling coefficient (M) is determined
after eliminating the grand potential and diffusion potential jumps. In turn, one
also can obtain the desired 02 and du through tuning 7 and M. Furthermore, the
constraints mentioned in Ref. [99] is also fulfilled in the nondaigonal phase field
model. On the one hand, with the switching function p(¢), the interface stretch-
ing effect that indicates the interface adsorption and modifies the conservation law
is eliminated due to [*_ da[oe(x) — 0g/2 — 01/2] = 0. On the other hand, the
tangent surface diffusion along the interface is vanished to correct the conservation
law with the appropriate a in Eq. (2.68). Although the nondiagonal phase field is a
thermodynamic consistent model, in which an extra degree of freedom is provided
to reproduce the free boundary conditions case and the anti-trapping current term
also naturally appears in the two-sided case, the numerical benchmarks have not
been performed yet to demonstrate the capabilities of this model. Furthermore,
the aforementioned nondiagonal phase field model is only suitable for two phase
transformation and its application is constrained for pure substance and binary al-
loy solidifications. Therefore, in this thesis, the nondiagonal phase field model is
extended to the dendrite growth with the consideration of anisotropy in Chapter 3
and to three phase transformations in spirit of Onsager’s relations, such as eutectic
and eutectoid transformations in Chapters 4 and 5.

1<

(2.74)

2.4 Dendritic solidification

In metallurgy, a dendrite is the tree-like structure of crystals growing from an un-
dercooled melt phase. At the beginning, a spherical solid nucleus forms in the
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undercooled melt. Due to perturbations, the spherical shape becomes unstable,
and the preferred growth directions have a higher growth velocity according to the
anisotropic properties of the crystal, as shown in Fig. 2.3. Theoretical models of
dendrite growth are shortly explained in the following.

-~ T
#—e Haxhimali

u (100}

A (110)

@ Hyperbranched

Figure 2.3: Phase field results for equiaxed growth of Al-0.1 Zn alloy with different
anisotropic parameters when the dimensionless undercooling is 0.4. The picture is
taken from Ref. [111]

2.4.1 Mullins-Sekerka Stability

Starting from a protrusion, a flat interface can transform into various morphologies,
such as celluar, dendritic or fractal patterns. The stability of the initial planar inter-
face is governed by the concentration or temperature field ahead of the protrusion.
To analyze the stability transition from planar to cellular growth, Mullins and Sek-
erka have estabilished the theory [112]. With the consideration of the free boundary
conditions at the interface, the Mullins-Sekerka theory presents the expression of
the change of the protrusion’s amplitude for different perturbation wavelengths.

The Mullins-Sekerka theory assumes a flat solidification front with a small sinu-
soidal shaped perturbation growing into z-direction with the velocity v, as depicted
in Fig. 2.4. The wave number of the perturbation is defined as wjy;s and the corre-
sponding wavelength Aysg is 1/wyrg. Then, the perturbed interface position z can
be written as function of time ¢ and x-coordinate

z(z,t) = 6(t) sin(wprsx), (2.75)
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Figure 2.4: Illustration of the Mullins-Sekeraka instability.

where ¢ is the amplitude of the perturbation, which is the function of ¢. The spatial
concentration ¢(x, z) is

c(z,2) = co(w, 2) + 6, sin(wprsz)e "2, (2.76)

where ¢o(z, z) is the concentration of the flat front at steady state, d. is the ampli-
tude decaying in z-direction, k, is the decay rate. For perturbations with different
wavelengths, frequency and decay rate, the solidification front may either decay to
the planar growth pattern or amplify the perturbation. The rate of change of the
amplitude predicted by Mullins and Sekerka is given by

\ 2
o [k - —p} <— DG Dlwis vg<w>) | 2.77)
0 mcop mcop

where D; is the diffusivity of the liquid phase, I' is the Gibbs-Thomson coefficient,
G is the thermal gradients in the directional solidification, m is the liquidus slope,
p is the partition coefficient. The decay rate of the wave number k,, is

2
v (%
by = —— - 2 2
“ 2Dl+\/<2Dl) s (2.78)

and gw) is given by
2—2p
14 (Penss)® 1] 9y

gw) =1- (2.79)
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For isothermal solidification, i.e. G = 0, Eq. (2.77) becomes

g _ [k:w _ %ﬂ (_M + Ug((,u)) , (2.80)

mcop

4 is an important parameter to control the evolution of the perturbation and the
stability of the solidification front. The figure of § versus Ayg is plotted in Fig. 2.5.
In Fig. 2.5, on the one hand, for negative ) , the perturbation decays with time and
finally vanishes. On the other hand, for positive 5, the perturbation is amplified
and the flat solidification front is unstable. For § = 0, a critical wavelength \..; is
determined, which indicates the limit of stabilization.

5“

s

Figure 2.5: Illustration of change rate of the amplitude ) according to Mullins
and Sekeraka predictions. When Ay = A, the amplitude of the perturbation is
stable. When Ay;g < M., the perturbation is reduced to the flat interface. When
Ams > Aeri, the perturbation is amplified to form dendrites.

2.4.2 Dendrite growth in the symmetric model

In the symmetric case, where the liquid and solid phases have identical thermal
diffusivity, two analytical models were developed for small undercooling. The first
one is named BA-P model [113] based on the mathematical method developed by
Kruskal and Segur [114]. The second one is developed by Barbieri et al. [115],
who adopted Shraiman’s point [116] on the Saffman-Taylor problem to derive and
evaluate a solvability condition for the existence of steady-state dendrite growth
solution. These theories predict the degeneracy of the Ivantsov parabola in the
presence of a weakly anisotropic surface energy. Moreover, for finite Peclet number
p, Caroli et al. concluded that the selected velocity scales as p? for all undercooling
[117].

Assuming crystal growth from an undercooled melt, the temperature in the melt
T(z,y,t) is governed by the

T
%—t = DV?T, (2.81)

the boundary condition at the solidification front is

¢,D[nVT, — nVT,] = —Lu,, (2.82)
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where ¢, is the specific heat, D is the thermal diffusivity, L is the latent heat, v,
is the normal velocity, n is the normal vector of the interface. According to the
Gibbs-Thomson effect, the temperature along the growth front deviates from the
melting temperature due to the front curvature without considering kinetic effects,

T(@,y,t) = Ton + Tmz(9> (1), (2.83)

where T, is the melt temperature, () is the surface energy, which is dependent
on the angle between the normal vector and the y-axis, x is the curvature of the

solidification front,
~15
d*y(z) dy\?
= 1 ) 2.84
r(x,t) 15 + (dx> (2.84)

Therefore, Egs. (2.81) to (2.83) yield an integro-differential equation to depict the
solidification front in the symmetric model [118],

At doﬁxt / dT/ Ao, t — 7)
T o (2.85)

Xexp{—;[x—a:)Q—F[y( t) —y(a' 75—7')]}2}7

where p is the radius of parabola, which is the unit of all measured length. p = vp/2D
is the Peclet number, A = (T,,, — Tw,)/(L/c) is the dimensionless undercooling. At
zero surface energy, the steady-state solution of Eq. (2.85) is the Ivantsov parabola

1
y=t—5% (2.86)
and the relation between A and p is
A(p) = 2p'/? epr/ exp(—2?)dx. (2.87)
pl/2

For nonzero surface energy case, this solution is modified by a shape correction term
((z), and the modified steady state solution is [119]

ylx, t) =t — %m2 + (), (2.88)

where ((x) satisfies

" ' oz P [T, / L 2
AdO)of¢" UL+ (¢ = 7 =2 [ 4@ - gla) explzpla? ~ 22)
. {K()(pR) — Ki(pR) xQQ_Rx/Z ’
(2.89)
where

R=[(x — )+ (2 — 2/*)?/4]"/2. (2.90)
Ay(0) =1 —agcosd(0 —6,), (2.91)

with ag being the anisotropy parameters (ag < 1). o4 is a constant, which is given
by
d
oq=—2. (2.92)
pp
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2.4.3 Dendrite growth in the one-sided model

In the one-sided case, where the diffusivity in the solid phase is negligible compared
to that in the liquid phase, Saito et al. studied the two-dimensional dendrite growth
by using Green’s functions. It is found that anisotropy in the surface energy is
necessary for dendrite growth, and the selected velocity and tip radius is a function
of undercooling and anisotropy [120, 121]. The calculated dendrite shapes for various
anisotropic coefficient are presented in Fig. 2.6. Misbah predicted that the tip
velocity of the dendrite is twice larger than that in the symmetric model for small
and finite undercooling [122].

Firstly, we write down the equations of free boundary condition in one-sided case
[120]

ou(z, z,t) /0t = V*u + (v/D)0u/dz, (2.93)
us = A — do[1 + a,, cos(mb)]x, (2.94)
— DnVu, =~ vny,, (2.95)

where u(z,y,t) is the dimensionless diffusion field, A is the dimensionless under-
cooling, D is the thermal diffusivity, dy is the capillary length, a,, is the m-fold
anisotropic coefficient , and « is the curvature of the solidification front. Using the
Green’s function techniques, Caroli et al. [123] and Misbah [122] have presented the
integro-differential equation for one-sided model,

2 %y w)n(a) = = / i e-PC@ <)

p 2 T J o
< Kol + 57 [ o't | ol (2.96)
L (= a)e@) ; @) =L@ e 5)} « e PE@—C)
where
B =[(z—a) + (¢(z) — ¢(a)?, (2.97)
o is a dimensionless parameter, which is given by
d,
o= 2—;21;. (2.98)

2.4.4 Dendrite growth in the two-sided model

In the more general two-sided case, where u = Dgcg/Dpcy, is not equal to 1 nor
negligible, Barbieri and Langer derived two integro-differential equations from the
equilibrium boundary conditions for general values of p and p [124], named Barbieri-
Langer theory. With the limit p — 0, two integro-differential equations are combined
into a new form. However, the new integro-differential equation in the two-sided
model is more sophisticated to carry out than in the symmetric model. Only the
relation between the dimensionless velocity o*(u) with o*(p = 1) is

o' (p=1). (2.99)
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(a) ‘ (b)

Figure 2.6: Different dendrites grow from a flat interface at A = 0.5 and €4 = (a)
0.048, (b) 0.091, (c) 0.167. (adopted from Ref. [121])

2.4.5 Conclusions

In this section, we have described the Mullins-Sekeraka stability to explore the
evolution of a planar interface with small perturbation. The main conclusion of
the Mullins-Sekerka is that the positive change rate of pertubation amplitude, i.e.
6 > 0, amplifies the pertubation of the planar interface, which leads to the dendrite
formation, while the negative § weakens the the perturbation. The dendrite shapes
can be calculated by using sharp interface methods in symmetric and one-sided
cases, as described in Egs. (2.85) and (2.96). For given undercooling and anisotropy,
these integro-differential equations are implemented in Chapter 3 as Green’s function
calculations to predict the dendrite growth rates in symmetric and one-sided cases
and the nondiagoanl phase field results are benchmarked with these predecitions.
Furthermore, in the two-sided case, Barbieri-Langer theory gives an approximated
relation to predict the dimensionless growth veolcities, which is used to benchmark
the nondiagonal phase field simulation restuls in the two-sided case. We should note
that the predictions of Barbieri-Langer theory in one-sided case is twice larger than
that in the symmetric case, i.e., o*(u = 0) = 20*(u = 1), which agrees with the
conclusions of Misbah [122].

2.5 FEutectic solidification

Eutectic growth patterns during solidification have been widely investigated in ma-
terials processing for a long time. During eutectic solidification of a binary alloy, two
solid phases (« and /) cooperatively grow from the parent phase with a wide variety
of geometrical arrangements. In general, regular eutectic microstructures, such as
rod and lamellar structures, form for low entropy of fusion of o and 3 phase, while
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the irregular eutectic microstructures form for high entropy of fusion of S phase.
Regular and irregular eutectic microstructures are shown in Fig. 2.7.
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Figure 2.7: Demonstration of the regular and irregular eutectic microstructure for
different fraction fz and entropy of fusion ag of 5 phase. (adopted from Ref. [125])

2.5.1 Jackson-Hunt theory

An assumed eutectic phase diagram is presented in Fig. 2.8. For two solid phases
with isotropic and non-faceted solid-liquid interfaces, the free boundary problem
include: (1) the bulk diffusion in the liquid phase and the mass conservation at
solid-liquid interface (Stefan condition); (2) the local equilibrium at the interfaces
(Gibbs-Thomson equation); (3) mechanical balance at the triple-junction (Young’s
law). The pioneering theory was presented by Zener [126] and Brandt [127] to
predict lamellar growth. The predicted growth rate (v) at a specific undercooling
(AT) is dependent on the lamellar spacing (), more precisely, the product of growth
rate and the square of the lamellar spacing is constant, i.e. vA? = const. Based on
Zener’s work, Hillert took into account the surface energy and found a solution to the
diffusion equation by assuming the solidification front to be flat [128]. Analogously,
Jackson and Hunt solved the diffusion equation and for a given lamellar spacing,
the relation between growth rate and undercooling is [129]

AT L

) Vs VAT 2.1
where m, Q¥ and a® are
1 1 1
-4 2.101
m  mk * mg (2.101)
P(1 ZA
v = U A0 (2.102)

nD ’
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Mgy, mpg

L ak
a’ =2(1 +n) (a—“ + —5> : (2.103)

where mZ% and mé are the slopes of liquidus and solidus. P depends on the ratio of

lamellar spacings n = Ao /Ag, which is defined as P = > 07 (=)3 sin%%). AC
is the difference of concentrations between C, and Cj, i.e. AC = Cg—C,. D is the
diffusivity in the liquid phase. a% and a% are determined by interface energy and
contact angle, which read as a; = (Tp/La)ok sin 0% and aj = (Tp/Lg)ok sin 05, with
Ty being the eutectic temperature, L,/g), O(La/ﬁ) and 9(&/6) being the latent heat,
interface energy and contact angle of o or S phase, respectively. According to the
Jackson-Hunt theory, the undercooling of the solidification front exhibits a minimum
in directional solidification, whereas the growth velocity of the solidification front

has a maximum in isothermal solidification.
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Figure 2.8: Illustration of a symmetric eutectic phase diagram.

Moreover, a/liquid , 3/liquid and «/ 5 interfaces are connected by a point, which
is known as triple-junction. At local equilibrium, the balance of the interface energy
at the triple-junction obeys Young’s law, which reads

ok cos 0k = ol cos 7, (2.104)
of =sin Ot + o4 sin 6%, (2.105)

Therefore, the Jackson-Hunt theory expresses the relation between growth ve-
locity and undercooling during eutectic solidification. In spirit of the flat interface
assumption in the Jackson-Hunt theory, the nondiagonal three-phase field simulation
results are compared with the theoretical predictions during isothermal solidification
and directional solidification in Chapter 4.
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2.5.2 Phase-field simulations of eutectic solidification

In recent years, the phase field method has been widely used for investigating dif-
ferent eutectic growth patterns. For stable lamellar growth, Karma [130] presented
a phase field model to describe the lamellar growth during binary alloy solidifica-
tion. In the frame of the shape interface limit, the lamellar spacing needs to be
much larger than the interface width. The steady state of the lamellar structure
agrees well with the sharp interface calculations. Wheeler et. al. [131] proposed
two kinds of phase field models. The first model is constructed based on a regular
solution model with a chemical miscibility gap in absence of a solid-solid interface
energy. The second one is thermodynamically consistent by using two order param-
eters to represent the different phases. The sharp interface asymptotic analysis is
considered and the mechanical balance of the interface tensions is demonstrated.
Drolet et. al [132] developed a phase field model to recover the characteristic fea-
tures of the eutectic phase diagram and to reduce to the standard sharp interface
formulation of non-equilibrium growth during direction solidification and isothermal
solidification. Kim et al. [133] extended the interface field method and presented a
phase field model with anisotropy under the condition of equal chemical potential
difference. The phase field mobility and interface kinetices are derived based on
the thin interface analysis. In the simulation results of CBry — C5Clg organic alloy
solidification, different lamellar growth patterns are reproduced, which is in good
agreement with experimental observations. Apel et al. [134] performed 2D and 3D
simulations to study a binary eutectic microstructures during directional solidifica-
tion with an asymmetric phase diagram by ultilizing the multi-phase field model.
The 2D simulation results demonstrate the stability of lamellar growth depending
on the initialization of the nuclei, whereas the 3D simulations show the growth of
fibrous structures, which are usually observed in experiments. Nestler et al. [135]
developed a flexible phase field model and investigated competitive lamellar growth,
which is consistent with the predictions of the Jackson-Hunt theory. Folch and
Plapp [86] developed a quantitative phase field model with anti-trapping current in
terms of a smooth free energy functional to eliminate additional third phases at a
two phase interface. By applying the thin interface asymptotics, the free boundary
conditions are fully reproduced. The simulation results of stable lamellar growth
during directional solidification are consistent with the calculations of the boundary
integral method and the Jackson-Hunt theory.

Except stable eutectic growth, the unstable eutectic structures are also studied
by numerous investigations. Plapp and Karma [136] developed a phase field model of
a binary eutectic with a dilute ternary impurity and investigated the nonlinear evo-
lution of the interface of a eutectic colony, such as cell elimination and tip-splitting.
Parisi and Plapp [137] investigated the morphological stability of lamellar eutec-
tic growth by ultilizing a quantitative phase field model. The three dimensional
simulation results show a zigzag instability appearing as the first instability, which
is a transition from straight to chevron or wavy lamellar. Lahiri et al. [138] pre-
sented eutectic colonies with anisotropy as functions of pulling speed and imposed
temperature gradient. In 2D simulations, the lamellar growth becomes more stable
when the magnitude of anisotropy is increased, whereas, in 3D simulations, eutectic
spirals appear and become tilted according to the orientations of the equilibrium
interfaces. Hotzer et al. [139] produced helical eutectic spiral growth in 3D dur-
ing directional solidification of ternary eutectics, which consists two rods rotating
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around a second phase embedded in the matrix phase, and the non-equal interface
energies are able to enhance the spiral growth. Choudhury et al. [140] extended
the Jackson-Hunt theory to ternary eutectic alloys and derived the undercooling of
the solidification front as a function of velocity and spacing. Phase field simulations
demonstrate different instabilities for different lamellar spacings, which agree well
with the analytical calculations.

2.6 Mechanisms of the pearlite transformation

In carbon steels, pearlite grains primarily nuclear on austenite grain boundaries and
cooperatively grow into the parent austenite phase. During the transformation of
pearlite, carbon must be transported from the ferrite phase to the neighbouring
cemenite phase. In the literature, three possible diffusion paths for carbon trans-
portation are investigated to explain the transformation kinetics of pearlite. The
first diffusion path is the bulk diffusion, which is the diffusion in the austenite phase.
The second one is the interface diffusion, while the last one is the volume diffusion,
which indicates the diffusion in the ferritic phase.

2.6.1 Bulk diffusion

The Zener-Hillert theory explains the growth kinetics of the pearlite transformation
under two assumptions [126, 141]. The first assumption is that the transportation
of carbon only occurs in the parent austenite phase. The second one is that the
interfaces of ferrite-austenite and cementite-austenite are flat. Therefore, for a given
undercooling, lamellar spacing, the growth velocity of pearlite growth can be written

as
2D, () — 2’ 1 Ao
v = faf’ye <097 — ch) X (X) (1 — T) s (2106)

where D, is the diffusivity of carbon in 7 phase. f® and f? represent the volume
fraction of ferrite and cementite phases. ¢J* and Y are the carbon concentrations
in the austenite phase in front of the ferrite and cementite phases. ¢ and ¢ rep-
resent the carbon concentration in austenite phase and in cementite at the eutectoid
transformation interface. )y indicates the lamellar spacing where all free energy is
consumed to create the interface, i.e. \g = 20V},/AG. Here, o, V,, and AG are the
interfacial energy, molar volume and change of total free energy, respectively. Ac-
cording to Eq. (2.106), the Zener-Hillert theory predicts that there is a manximum
growth velocity during the pearlite growth, which is given by

40V,

AG
Kirkaldy proposed a criterion based on the maximum rate of entropy production
[142], which reads

Mener — 9\ = (2.107)

60V,
AG
However, there is still a discrepancy between the Zener-Hillert theory predicted
kinetics of pearlite growth, defined as a bulk diffusion controlled mechanism, and
experimentally observed pearlite growth velocities. Although Kirkaldy [142] and Ri-
dley [143] re-evaluated the diffusivity of carbon in austenite and the discrepancy was

NKirkaldy — 33 = (2.108)
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reduced by a factor 2-3, still a large discrepancy exists, which indicates the volume
diffusion controlled mechanism are unable to fully explain the growth mechanism of
the pearlite transformation.

2.6.2 Interface diffusion

To decrease the large discrepancy between the predicted growth velocities by us-
ing the Zener-Hillert model with the experimental observations, many researchers
believe that alternate mechanisms exist to describe the carbon transfer during the
pearlite transformation. Thus, interface diffusion becomes the most promising ex-
planation, since the interfacial diffusivity is much larger than that in the bulk phase
during solid-solid transformations. Earliest approximation to predict the growth
velocity is by replacing the bulk diffusivity D, by interface diffusivity D, with a
ratio 0/, with 0 being the interface width [144], which reads

2Dy0 [ — )b 1 o
VR fafG/\ <09’7 — Ca’Y) X (X) (1 — T . (2109)

Sunquist assumed that the interface diffusion is the dominant diffusion path of
carbon transport and investigated the edgewise growth rate of pearlite with the
consideration of capillary effects and imperfect carbon segregation [145]. Shapiro
and Kirkaldy obtained an expression for the growth velocity of pearlite by assuming
the free energy versus composition curves to be represented by parabolic expressions,
which reads [142],

~0
_ 246D, X (1 - QJQQV) (2.110)

TN 05-a AF\

where 4 is the width of the boundary layer, X, XJ? and a are equilibrium compo-
sition variables, 0¥ is the /6 interface energy, AFy is the total free energy for the
pearlite transformation. Then, the critical lamellar spacing S, at which the growth
velocity vanishes is

2020V
AR,
Hillert pointed out the diffusion takes place through the cross section of the bound-
ary rather than the edge and added a factor 2 in front of the interface diffusion
contribution, which yields the expression of the growth velocity of pearlite [146]

_ 8KDy (1> — )’ 1 Ao
V= faf9)\ (cg’y — ca'7> X (X) (1 — T R (2112)

with K being the distribution coefficient for the alloy element between the boundary
material and the parent phases.

Pandit et al. presented a model by combining the fluxes through the austenite
phase and interface region [147], which leads to

(12D 1 - 1 Ao
V= < b\ + 2D7) faf9<007 — CQ’Y) X (X) (1 — T . (2113)

Since D, is well estabilished, the only unknown is the interface diffusivity in Eq. (2.113),
which is chosen as

Se =

(2.111)

1
Dy, = 8.51 x 107° exp (—%) m?s . (2.114)
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The activiation energy for the interface diffusion of carbon is less than that for bulk
diffusion in austenite but larger than that for volume diffusion in ferrite.

Yamannaka et al. investigated the influence of interface diffusion of carbon
on the growth kinetics during the pearlite transformation by using multi-phase-
field simulations [148]. In their simulations, the interface diffusivities is chosen k
(k=1,2,3,4) times larger than that of the v phase. The simulation results indicate
that the interface diffusion is able to significantly enhance the carbon diffusion from
ferrite to cementite.

Yan et al. considered the formation of ferrite-cementite interfaces, bulk diffusion,
interface diffusion and the solute drag effect and model the pearlite growth. This
model predicts the growth rate, lamellar spacing and the partitioning of elements
between ferrtie and cementite of pearlite [149].

2.6.3 Volume diffusion
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Figure 2.9: Demonstration of the multi-phase field simulation results during pearlite
growth, which is taken from Ref. [150]. (a) The comparison between the simulation
results and the Zener-Hillert predictions in one-sided case. (b) The comparison
between simulation results and experimental observations with the consideration of
diffusion in ferrite. (c-d) Morphology of pearlite at steady state, where (c) is the
phase field and (d) is the concentration field. The left figures of (c¢) and (d) consider
the diffusion in austenite and ferrite, while the right indicates the diffusion only
exists in austenite.
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Since the diffusivity ratio of D,/D., is larger than 100, the carbon diffusion in
the ferrite phase is not negligible. Nakajima et al. considered the carbon diffusion
in the austenite and ferrite phase and obtained the growth velocities at different
temperature by using the multi-phase-field method [150]. In their simulations, the
a/v and 0/~ interface mobilities are chosen much larger to reproduce the diffusion
controlled manner. Their simulation results not only indicated the growth velocities
of pearlite to be 4 times larger than the predictions of Zener-Hillert theory, but
also showed the thickening of cemenite behind the transformation front, as shown in
Fig. 2.9. Steinbach and Apel investigated the pearlite growth with the consideration
of combining the influence of transformation strains present due to the concentra-
tion gradients in austenite and the diffusion in ferrite by using the multi-phase-field
method [151]. According to their simulation results, the transformation strain re-
strains the cooperative growth mode of cementite and ferrite, which provokes the
salient growth of cementite needles ahead of the ferrite front. Ankit et al. extended
the Jackson-Hunt theory to eutectoid transformation by considering the diffusion in
the parent and growing phases and the expression reads [152]

v = pusg, (2.115)

with
p =1+ tapalle + topeno, (2.116)

where i, = Do/ D., and pug = Dg/D.,. 1, and ng are the equilibrium volume fractions
of phases o and @, respectively. t, and ty are constants depending on the ratio of the
liquidus slopes to the solidus slopes of o and ¢ phases. Phase field simulations were
performed to compare with the predictions of the extended Jackson-Hunt theory.
Moreover, the tapered cementite was also found in the simulation results.

In summary, we have introduced different diffusion paths to predict the kinetics
of pearlite growth, including bulk diffusion, interface diffusion and volume diffusion.
The pioneering work of bulk diffusion mechanism was the Zener-Hillert theory, how-
ever, whose predictions lead to a large discrepancy with the experimental observa-
tions. To narrow the difference, an interface diffusion mechanism is proposed since
the diffusivity along the interface is several orders of magnitude larger than that in
the austenite phase. Through evaluating the interface energy, interface diffusivity
and the interface width, the calculated growth velocities agree well with the experi-
mental results [147]. For phase field simulations, the bulk and volume diffusion are
considered as the dominant mechanisms while the interface diffusion was not quan-
titatively integrated in these investigations [148, 150-152]. Therefore, in Chapter 5,
we investigate the pearlite growth through considering the diffusion along the in-
terface by using the developed grand potential based nondiagonal phase field model
and compare with the corresponding analytic theories and the experimental results.

2.7 GPU programming

Nowadays, GPU (Graphics Processing Unit) programming is widely used to acceler-
ate video, digital image, audio signal processing, statistical physics, scientific com-
puting, medical imaging, neural networks, deep learning and intrusion detection.
The general purpose of computing on GPUs is trying to accelerate the computa-
tional efficiency through integrating the GPU and CPU together. The attractive
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advantages of GPUs are hiding latencies, maximising throughput, exploiting par-
allelism and saving energy. In addition, there are a few programming languages
and standards used to program GPUs, such as CUDA (Compute Unified Device
Architecture) and OpenCL (Open Computing Language).

CUDA was created by Nvidia in 2007 as parallel computing platform and ap-
plication programming interface model to provide access for users to the GPU’s
virtual instruction set and parallel computational elements, which is used for GPU
programming in this thesis. Compared with traditional GPGPUs (general-purpose
computation on GPUs), CUDA has following advantages [153-155]:

e Unified memory (in CUDA 6.0 or later) and unified virtual memory (in CUDA
4.0 or later).

e Shared memory—provides a faster area of shared memory for CUDA threads.
It can be used as a caching mechanism, and provides more bandwidth than
texture lookups.

e Scattered reads: code can be read from any address in memory.

e Improved performance on downloads and reads, which works well from the
GPU and to the GPU.

e Full support for integer and bitwise operations, including integer texture lookups.

2.7.1 GPU implementation

The presented phase field simulation results in this thesis have been accelerated by
GPUs. The GPU implementation is a flexible tool to solve the forward Euler-type
finite difference method and able to significantly accelerate the calculation for partial
differential equations with low costs even on a single GPU. Initially, the simulation
domain of dimensions nx xny xnz is divided into L x M x N three dimensional blocks
of equal size. Each block contains M X x MY x MZ = (nz/L) x (ny/M) x (nz/N)
threads, which is demonstrated in Fig. 2.10. By adjusting the best values of M X,
MY and MZ, the simulation runtime can be optimized. Moreover, during GPU
accelerated phase field simulations, the key point for improving the acceleration
performance is that the phase field and chemical potential field evolution codes
have to be incorporated entirely on the GPU to avoid unnecessary data transfer
between GPU and CPU. In addition, the entire integration step in time is split into
different kernels to ensure synchronisation of the parallel executions and to avoid
race conditions. For instance, the correct calculation sequence is to complete the
phase field evolution before updating the chemical potential evolution in a separate
kernels, and afterwards, the boundary conditions should be implemented in another
kernel.

2.7.2 Application of GPU acceleration in phase field simu-
lations
Due to the aforementioned advantages of GPU programming, phase field simulations

accelerated by GPUs are able to simulate real-time, quantitative and large scaled
three-dimensional microstructure evolution processes.
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Figure 2.10: Demonstration of blocks and threads. (a) The simulation domain
contains nz x ny x nz grids. (b) The simulation domain is subdivided into M x N x L
blocks. (c¢) Each block contains M X x MY x MZ threads. (This figure is taken
from Ref. [156].)

In 2011, Yamanaka et al. developed a GPU acceleration code and presented GPU
accelerated phase field simulations for dendrite growth during isothermal solidifica-
tion. The performance test demonstrated the feasibility of the GPU acceleration
method and the GPU calculations with shared memory reach 170 GFLOPS [156].
Aoki et al. developed multi-GPU codes for the dendritic solidification process, which
demonstrates that the multi-GPU computing has a large communication overhead
[157]. In 2012, Yamanaka et al. performed GPU accelerated multi-phase field simu-
lations to investigate the austenite to ferrite transformation in a steel and compared
the computing time between GPU and CPU. The comparison indicates the GPU
acceleration is able to speed up the computing time by 5 - 15 times [158]. In 2013,
Takaki et al. investigated dendrite growth patterns during directional solidification
by using GPU accelerated very-large-scale phase field simulations. It was found
that relatively larger amount of dendrites with unfavorable orientation can survive
unexpectedly [159]. In 2013, Schliiter et al. developed a GPU-accelerated finite
element implementation of a phase field model for dynamic brittle fracture [160]. In
2014, Takaki et al. investigated the competitive growth of dendrites with favorable
and unfavorable orientation during directional solidification by using multi-GPU ac-
celeration [161]. In 2015, Takaki et al. developed a GPU acceleration code for a
phase field lattice Boltzmann method by using a single NIVDIA Tesla K20X, which
is capable to carry out the simulations for dendritic growth with translation and
rotation [162]. Sakane et al. developed a multi-GPUs acceleration code for three-
dimensional phase field simulations during directional solidification with a moving
frame method. The simulation results demonstrated the competitive behavior dur-
ing the dendritic growth within a reasonable computational time [163]. Tourret
and Karma developed a multi-GPUs accelerated quantitative phase field model for
directional solidification. The computing time accelerated by multi-GPUs is about
150 times faster than the phase field calculation on a single core CPU [164]. Ro-
jas et al. presented GPU accelerated phase field simulations combined with lattice
Boltzmann methods to investigate the effects of melt convection and solid motion
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on dendrite growth [165]. Shibuta et al. revealed the evolution of the homoge-
neous nucleation behavior in an undercooled melt by using million-atom molecular
dynamics and subsequent dendrite growth in a large scale simulation domain with
dimensions of 3.072x3.072x3.072 mm? accelerated by 768 GPUs [166]. Up to now,
the parallel architecture of GPUs becomes a more and more straightforward, flexible
and efficient acceleration technology to speed up phase field simulations.



Chapter 3

Dendritic growth

The content of this chapter is published in Ref. [167].

The phase field (PF) method has emerged in the last thirty years as one of the
most powerful tool to tackle free boundary problems in various fields. While in free
boundary problems, different bulk domains where transport equations hold are sep-
arated by interfaces with boundary conditions, the PF models describe continuous
fields obeying the same evolution equations everywhere in space, with the spatial
variations of the so-called phase field (nothing but an order parameter) represent-
ing the interfaces. The latter thus possesses a certain width which is a numerical
parameter that has no physical meaning. In order to simulate extended systems,
the interface width needs to be chosen orders of magnitude larger than the physical
width of the interface (of the order of the atomic distance). Since, of course, the
fields dynamics are influenced by the interface width, special care thus has to be
taken in order for the PF model to reproduce a desired free boundary problem.

In Ref. [84], an asymptotic analysis linking the classical PF model (model C
in the Hohenberg-Halperin nomenclature [14]) and the free boundary problem was
introduced and named thin-interface limit. On the one hand, the thin-interface
analysis provides the influence of the parameters of the PF model on the conservation
equation at the moving interface (Stefan condition). On the other hand, it provides
the link with the kinetic coefficients describing the deviation from local equilibrium
at the interface. In particular, the thin-interface analysis allows one to choose the
PF model parameters so as to reproduce local equilibrium boundary conditions that
are relevant to usual solidification experiments as well as industrial processes such
as casting.

While designed for a transformation driven by heat diffusion in a pure material
with equal diffusivity in both phases (symmetric model), the thin-interface limit was
later on performed in the case of alloys with a vanishing diffusivity in the growing
solid phase (one-sided model) [85]. Equilibrium boundary conditions were then
shown to require the addition of a so-called anti-trapping current in the equation
for the alloy concentration. However, in the general case where the diffusivity of
the growing phase Dg neither equals the one of the disappearing phase Dy nor
vanishes, the thin-interface analysis of the classical PF model shows that equilibrium
boundary conditions may not be achieved without altering the thermodynamics of
the interface with some unphysical adsorption [99]. Only recently, this problem
has been solved by the introduction of the kinetic cross-coupling between the phase
field and the diffusion field [107, 109]. In the constitutive force-flux relations of

35
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the PF model, cross terms are then present, and are parametrized by the same
new parameter according to Onsager’s symmetry. This new parameter provides
the additional degree of freedom to achieve equilibrium boundary conditions at the
interface. We note that this cross terms have been shown to be also responsible
for the Ehrlich-Schwoebel effect in the non-diagonal PF model for molecular-beam-
epitaxy [108].

3.1 Non-diagonal phase field model

In this section, we present the nondiagonal phase field model with the consideration
of anisotropy for dendrite growth. In two dimensions, the normal direction n to the
interface is a function of the space coordinates x and y, and only one parameter de-
scribes the anisotropy of interface energy. In terms of the PF model, this anisotropy
enters the interface width through the partial derivatives of the phase field ¢(z,y)
[84]:

de  (0:0)* + (9,90)*
-3¢ |Vg[

W(n) = Wo(1 — 3¢) {1 +

e represents the strength of the four-fold anisotropy and W, indicates the average
value of the interface width.

Then, the nondiagonal phase field evolution equations in Ref. [109] is rewritten
as

Det(n)r(m)g = H{o(1 — 6%) + V - [W2(n) V]
8W(n)>

1o, (|v¢|2w<n>

9(0:9)
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—p/(;b)u + M(n)W(n)D(8)Vé - Vu (3.1)

and the second equation for the diffusion field u reads

/

uw=V"- {D(gb)[Vu + M(n)W(n)¢V¢]} + @Qﬁ. (3.2)
For a pure material, u = (T' — T)s)cp/ L measures the deviation of the temperature
T from the melting temperature T);, with c¢p and L being the specific heat and
latent heat, respectively. Similarly, for the solidification of a binary alloy at a given
temperature, u = (C'— C1)/(Cs — C1) measures the deviation of the concentration
C from the liquidus concentration Cp, with Cs being the solidus concentration.
On the right hand side of Eq. (3.1), the term parametrized by the dimensionless
parameter H comes from the ¢-dependence of the thermodynamics of the system.
The first term is inherited from the double well potential, with minima at ¢ = +1
and a maximum at ¢ = 0, while the second, third and fourth terms represent the
n-dependent penalization of ¢ variations. Here, in comparison to Refs. [109, 110],
the relaxation time 7, the cross-coupling parameter M and, as a consequence, the
determinant (that has to be positive) Det = 1 — (MW YV ¢$)?>D(¢)/7, have an explicit
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dependence on the orientation of the interface. This dependence is related to the
choice of interface conditions that we aim to reproduce with the PF model, whose
dynamics is highly influenced by W as mentioned in the introduction. Our model
is called non-diagonal owing to the existence of the terms parametrized by M. In
opposition, for a diagonal model, one has M = 0. These additional contributions
appear as a consequence of non-diagonal terms in the force-flux Onsager relations
describing the dynamics of the system. They yield a kinetic cross-coupling between
the non-conserved field ¢ and the conserved field u. The Onsager relations give
the proportionality between two fluxes (flux of heat and flux of matter across the
interface for the thermal model, diffusion flux and interface velocity for the alloy
model) and two driving forces (temperature gradient and jump of free energy at
the interface for the thermal model, gradient of diffusion chemical potential and
jump of grand potential for the alloy model) [108]. Only one of the two fluxes exists
in the bulk, but both exist at the interface, leading to a 2x2 matrix of interface
kinetic coefficients. As will be shown explicitly later, a finite value of M is necessary
to reproduce equilibrium conditions at the interface when the diffusion coefficients
are finite in both phases and different. One should note that, when the diffusion
flux vanishes in the bulk solid (one-sided case with Dg/D; = 0), the Onsager
symmetry may not be invoked because the two fluxes at the interface are not linearly
independent. This gives the possibility to introduce the term parametrized by M
only in Eq. (3.2), presented as an anti-trapping term by Karma [85].

At equilibrium (v = 0), the one-dimensional phase field profile reads ¢eq(z) =
—¢oq(—2) = tanh(z/v/2WW). In the following, we assign the equilibrium value ¢ = 1
to the growing phase (solid phase) and ¢ = —1 to the disappearing phase (liquid
phase). Within this frame the orientation dependent capillary length, reflecting
the orientation dependence of interface energy, is d(n) = aHW(n) where a =
W [ da[dl,(x)]? = 2v/2/3 is independent of n. For a pure material, the function
p(¢) interpolates between the values at the melting temperature of the solid and
liquid entropies [109]. For a binary alloy, p(¢) interpolates between the equilibrium
values of the concentration field [108]. We choose an odd function p(¢) = —p(—¢) =
15(¢ — 2¢°/3 + ¢°/5)/8 for which p(¢ = £1) = +1. The oddness of p(¢) ensures
the absence of undesired adsorption effects at the interface.

The diffusivity is phase-dependent (Dg in solid and Dy, in liquid) through its ¢-
dependence. It has been shown [109] that in order to reproduce equilibrium bound-
ary conditions at the interface, one may use a diffusivity that reads

55 (211)5 ¥ 2119L) +g(9) (ﬁ - ﬁ) (3.3)

where the odd function g(¢) = —g(—¢) also obeys g(+1) = £1. In addition, in
order not to alter the heat/mass conservation equation at the moving interface with
a surface diffusion flux, g(¢) should incorporate some contribution parametrized by a
coefficient a that depends on = Dg/Dy, and chosen such that [ da{D[¢e,()] —
Dg/2 — Dp/2} = 0 [99]. As in Ref. [110], we choose a function g of the form
g(¢) = ¢[1 + a(1 — ¢*)]. Then for each y, one should find the coefficient a* such
that the above-mentioned integral vanishes.

In order to achieve equilibrium boundary conditions, the relaxation time and the
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cross-coupling coefficient read

iy = S (s ), (3.4
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where 8 = [ (da/W){1 — p*[eq(2)]} ~ 1.40748 and x = [~ (dz/W){1 —
Pl@eq(7)]g[deq(z)] }. Here, we note the necessity of introducing a non-diagonal model
in order to simulate Dg # Dy with Dg and Dy, being finite, while a diagonal model
with M = 0 is sufficient when Dg = Dy. Since g(¢) varies with pu through the
variation of a*, the value of x also depends on p. In Fig. 3.1, we present a* and x
in the range of p that the present model allows to investigate. Indeed, due to the
condition of positiveness of the determinant Det, we have an upper bound for the
absolute value of M, that in turns sets lower bound to the ratio yu (here close to
0.06) for which we are able to achieve equilibrium boundary condition and elimina-
tion of surface diffusion [109, 110]. It is also important to notice that a* and y obey

a*(p) = a*(1/p) and x () = x(1/p).
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Figure 3.1:  Selected value a* of the parameter a in the function g(¢) such that
surface diffusion is eliminated, and corresponding value of .

As mentioned in the introduction, we are also interested in the one-sided case
where 4 = 0. Then, one has to use another definition of the diffusivity than Eq.
(3.3). Instead, we write

D(¢) = Dos(¢) = Dr(1 = ¢)/2. (3.6)

In Ref. [108], the equilibrium boundary conditions have been reproduced when
(please pay attention to the fact that in Ref. [108], a double well potential is used



3.2. BOUNDARY INTEGRAL EQUATIONS 39

to yield equilibrium values for the phase field ¢ = 1 and ¢ = 0)

M) = Myulm) = 51 .1)
) = o) = 2, (39

where ¢ = [7 (dz/W){1 + deg(2) — 2D[Peg()]}/[1 — deq(2)] = 2.12132 and A =
2 [7 (dz/W){1 — p*[deg(2)]}/[1 — Peg(z)] ~ 3.42778. Here, we note that surface
diffusion is suppressed with the choice in Eq. (3.6) since [ da{Dos[¢eq(x)] —
Dy/2} =0.

3.2 Boundary integral equations

As mentioned in the introduction, we also have performed boundary integral calcu-
lations for benchmarking. The boundary integral technique consists of writing an
integro-differential equation for the steady state of interface shape yiy(z). While for
an arbitrary shape of the interface, the diffusion field is obtained through an integral
over the interface of a kernel involving the Green’s function of the diffusion equation,
the solution y;(x) is determined by imposing the value w;, of the diffusion field u
at the interface, here with the Gibbs-Thomson local equilibrium condition,

Uing = A — do(1 — 15€ cos 40) k. (3.9)

A represents the value of the dimensionless diffusion field at infinity ahead of the
growing dendrite, dy represents the average value of the capillary length (related to
the parameters of the phase field model through dy = a HW,), € is the anisotropy
parameter in Eq. (3.1), and x = —y!, /(1 + 3/%)%/? is the curvature of the interface.
Here, the factor 15 comes from the definition of the interface stiffness for a cubic
crystal [119] where 6 is the angle between the normal to the interface and the
direction along which the growth is favored, i.e. the direction of minimum stiffness.

The detailed boundary integral methods can be referred to [121, 168] and ref-
erences therein for additional information. We mention that, apart from the shape
of the interface, the steady-state velocity V' is found, using the Ivantsov relation
A = /7P exp(P)erfcy/P where P = pV/(2Dy) with p being the radius of the
Ivantsov parabola [169]. The boundary integral technique has, up to now, only been
used for the symmetric model (1 = 1) and for the one-sided model (= 0). This is
probably due to the fact that for other values of 1, the number of unknowns that have
to be found is doubled. Indeed, in addition to the shape of the interface, the normal
gradient of the diffusion field at the interface should be also found self-consistently.
However, the boundary integral equation was analyzed by Barbieri and Langer in
Ref. [124], and it was shown that, in the limit of small anisotropy (in addition to
being in the limit of small driving force A as usual in theoretical descriptions of
weakly out-of-equilibrium dendritic growth), i.e. when the correcting term to the
capillary length parametrized by 15¢ in Eq. (3.9) is small, the steady-state velocity
depends on g in the following way:

Vip=1) 1+np
Vi 2

(3.10)
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Figure 3.2: Demonstration of the simulation domain with the size L, x L, used for
dendrite growth. 1/4 dendrite is simulated to save the computational time in the
simulation domain.

3.3 Results and discussion

In this section, we present our results for an anisotropy strength ¢ = 0.04. We
benchmarked our non-diagonal PF model with Green’s function (GF) calculations
within the symmetric and one-sided models, for different values of the driving force
A. The non-diagonal PF and chemical potential evolution equations presented in
Eq. (3.1) and (3.2) were iteratively solved in a two-dimensional simulation domain
with a uniform grid spacing Ax = Ay = 0.4W, by using an explicit finite-difference
method. The sizes of the simulation domain were set to L, x L, = 768 Az x 768 Ay
to 2048Ax x 2048Ay, as shown in Fig. 3.2. To save simulation time, only 1/4
dendrite was predefined at the left corner of the simulation domain with the far-field
boundary condition u — A, and also a moving-frame method and GPU acceleration
were employed in the present work. Furthermore, we note that for the symmetric
model where Dg/Dy = 1, the diffusivity is a constant, the cross-coupling parameter
M vanishes and the classical PF model is recovered. For the one-sided case where
Dg/Dy, = 0, the diffusivity is given by Eq. (3.6), and the phase field parameters are
given by Egs. (3.8) and (3.7).

In Table 3.1, we gather our PF and GF results. We see that the PF model repro-
duces the GF results within 5% error, which is quite satisfactory, and no particular
trend arises concerning the dependence of the error on A. On the other hand, we
may state that the deviation shows a tendency to be larger for y = 0 than for u = 1.

In the case € = 0.04, the correction to the capillary length in Eq. (3.9) is not
much smaller than unity, and we see that the relation between the steady-state
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Table 3.1: Dimensionless steady-state velocity from the phase fields simulations
(Vpr) and from the Green’s function calculations (Vgr). Here € = 0.04.

A 1 V‘;)FLdO V%FLdO Error(%)
0.65 1 0.0393 0.0399 1.5
' 0 0.0573 0.0543 2.5
0.60 1 0.0238 0.0237 0.4
' 0.0360 0.0344 4.7
0.55 1 0.0141 0.0139 1.4
’ 0 0.0219 0.0212 3.3
0.50 1 0.00817  0.00800 2.1
’ 0 0.0132 0.0126 4.8
0.45 1 0.00457  0.00443 3.2
' 0 0.00744  0.00722 3.0

velocities for p = 0 and pu = 1 does not follow Eq. (3.10). In Fig. 3.3, we present

= @ 2 (3.11)
Vi) 1+ p
as a function of p for our phase field simulations (crosses), and for the analytical
theory in Ref. [124] (horizontal black dashed line). The interface width for the phase
field simulations is chosen such that the velocity has converged with respect to the
increasing ratio do/Wp, and the latter ranges from dy/W, = 0.139 for the smallest
velocities to dy/Wy = 0.554 for the largest ones.

We see that, although our phase field simulations get closer to the analytical
theory when A decreases, a large deviation remains, illustrating the breakdown of
the assumptions made in Ref. [124]. Let us note that a relatively good agreement was
found with the analytical theory for € = 0.02 and A = 0.55 in Ref. [87]. However,
the phase field model developed in this work, that was designed to account for
diffusion in the growing phase, imposes an unjustified linear relationship between
the fluxes at the interface and the interface velocity in addition to the conservation
equation, and this model is therefore not consistent on the thermodynamic level.

Beyond reporting our phase field results for the pu-dependence of the dendrite
tip steady-state velocity, we propose now a generalization of the relation (3.10).
This generalization aims at expressing the p-dependence of velocity for strengths
of anisotropy for which the correction to the capillary length due to anisotropy in
Eq. (3.9) is not small compared to unity, i.e. when 15¢ ~ 1. In view of the linear
dependence of the ratio V(u = 1)/V(p) in Eq. (3.10), we write:

vy _ve {1 _ M} . (3.12)

V(w) — V(0) V(0)

This expression depends, apart from g, on the ratio V' (1)/V(0). This ratio, that
equals 1/2 when Eq. (3.10) is recovered at small enough ¢, is estimated for e = 0.04
using the velocities Vor(p = 1) and Vgr(p = 0) obtained with the Green’s function
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Figure 3.3: Crosses: rescaled ratio of velocities Q2 (see Eq. (3.11) for definition)
obtained from PF simulations as a function of u, for different values of A; dashed
colored lines: representation of Eq. (3.12) based on GF results for p = 0 and p = 1;
black horizontal dashed line: Barbieri-Langer theory [124], i.e. Eq. (3.10).

calculations for the symmetric and the one-sided model reported in Table 3.1. In
Fig. 3.3, Eq. (3.12) is then represented by the dashed colored lines, with each
color corresponding to a different value of A. We clearly see that our phase field
calculations converge to Eq. (3.12) when A decreases.

For A = 0.45, the deviation between the PF results and Eq. (3.12) does not
exceed 2%. When one additionally looks at the details of the curve in the neighbor-
hood of = 0 (in the inset), we observe that our PF results for A > 0.45 exhibit an
unexpected behavior. For p = 0.1 and 0.2, our PF results lie above Eq. (3.12), but
they lie below for = 0. We suspect that the form of the diffusivity function in Eq.
(3.3), that involves the parameter a chosen such that surface diffusion is eliminated
(let us note that other strategies have been used for such a purpose [170]), plays a
role. Indeed, this function is non-monotonous and the magnitude of its variations,
that are restricted to region of width W, increases when the deviation of p from
unity increases. In comparison, for p = 0, the diffusivity in Eq. (3.6) provides the
elimination of surface diffusion while being monotonous. Anyway, the PF results
for the smallest value of A suggest that this unexpected behavior disappears when
A is small enough.

The quality and robustness of the PF results presented above are supported by
two other sets of simulations. For that, we have investigated the behavior of the
PF model in the range 0 < p < 1 when: 1) the kinetic cross-coupling is turned
off, i.e. when M = 0; 2) the procedure to eliminate surface diffusion is turned off,
i.e. when a = 0. We present in Fig. 3.4 the results for A = 0.55 and A = 0.45,
together with the corresponding results already shown in Fig. 3.3. Let us note that
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the reference velocity V(u = 1) is the same for case 1 (M = 0) and for case 2 (a = 0)
because the diffusivity is a constant, i.e. 1/(2Dg) —1/(2D) = 0 in Egs. (3.3) and
(3.5). In both cases, we see that the results deviate from the PF results presented
in Fig. 3.3. This deviation systematically increases when the deviation of p from
unity increases and when A increases. For example, for A = 0.45, 4 = 0.2, this
deviation approaches 20% when M = 0 and is larger than 10% when a = 0. These
results therefore emphasize the necessity of using the non-diagonal PF model with
elimination of surface diffusion. The usage of a non-diagonal Onsager matrix of
forces-fluxes relations to eliminate of surface diffusion is, here, necessary in order to
achieve a quantitative agreement with the GF calculations in which surface diffusion
is not included. In general however, surface diffusion, in the sense of a tangential
flux driven by variations of chemical potentials along the interface and leading to a
normal motion of the latter (see Ref. [110] for more details), is allowed and takes
place. Nevertheless, in the limit of small undercooling where the interface radius of
curvature is large compared to the capillary length, the effect of surface diffusion
is expected to be weak owing to the high order of the spatial derivatives that are
involved in its description. The elimination of surface diffusion in the phase field
model, through the choice of a vanishing surface diffusion coefficient, is thus mainly
designed so as to suppress effects that are enhanced due to the diffuseness of the
interface.

- — A =0.55
1.6+ — A = 0.45

O M=0
- V a=20

1.4+

1.2+7~-% 7>

10+——————— (¥ ftma.g
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Figure 3.4: Comparison between the non-diagonal PF results presented in Fig. 3.3
(crosses) and PF simulations with: 1) squares: M = 0; 2) triangles: a = 0. We
evidence here the importance of the kinetic cross-coupling and the elimination of
surface diffusion.

We have also analyzed the dendrite tip region for A = 0.45,¢ = 0.04. In Fig.
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Figure 3.5: (a) Comparison of the steady-state dendritic shapes obtained from
PF simulations and the GF results for A = 0.45 and € = 0.04 in symmetric and
one-sided cases. (b) Interface position in the dendrite tip (x = 0) region scaled by
the Ivantsov radius p for different values of y and at A = 0.45 and € = 0.04. The
tip radius is weakly depending on p when expressed in units of p.

3.5ba, we present the steady-state dendritic shape obtained from PF simulations and
from GF calculations for the symmetric and the one-sided cases. As expected from
the small deviations reported in Table 1, the dendrite shapes calculated by PF
simulations in symmetric and one-sided cases agree perfectly with GF results. In
Fig. 3.5b, we present the dendritic shape close to the tip together with the Ivantsov
parabola, for the simulation data presented in Fig. 3.3. For each pu, we rescale the
dendrite shape by p, the radius of the Ivantsov parabola. The latter is obtained by
plugging the growth velocity V' obtained from simulation into the inverse Ivantsov
relation giving P = pV/(2Dy) as a function of A. When we focus on a small region
at a distance of approximately 1.5p behind the tip, we see that the scatter of the
position of the interface is rather small compared to the distance to the Ivantsov
parabola. In comparison, in a simulation with e = 0.01, the position of the interface
is much closer to the Ivantsov parabola, which is in line with the classical dendritic
theory for which the tip converges to the Ivantsov parabola when the anisotropy
of interface energy decreases. We may thus conclude from our study that the tip
radius depends only weakly on g when expressed in units of p.

Let us finally give a short remark on the case of large deviations from equilibrium.
The one-sided phase field model was recently investigated in the perspective of fast
solidification [171], for which the boundary conditions for the chemical potentials
jumps across the interface deviate from linear kinetics. Such an investigation would
be valuable for the present model with diffusion in both phases. However, one
should have in mind that our problem here is more complex that in the one-sided
case. Indeed, in the latter, the absence of diffusion flux in the growing solid phase
provides a constraint that is not present here (see the introduction in Ref. [109] for
a more detailed discussion).
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3.4 Summary

In this chapter, we have studied the capabilities of the non-diagonal phase field
model for the simulation of two-dimensional dendritic growth in the case where
the diffusivity in the growing phase Dg neither vanishes nor equals the one of the
disappearing phase Dj. While we have benchmarked our PF results with Green’s
function calculations (sharp-interface model) for 4 = Dg/D; = 0 and p = 1, our
calculations for other values of u show significant deviations from the theory by
Barbieri and Langer [124], in accordance with the expected breakdown of their
assumptions for the strength of interface energy anisotropy that we have used in our
simulations. In view of our results we then propose a generalization of the prediction.
We also have shown that an agreement between the PF model and GF method
requires the kinetic cross-coupling and the elimination of surface diffusion. Our work
opens up the way for quantitative phase field simulations of phase transformations
where diffusion in the growing phases plays an important role in the pattern and
velocity selections.

Especially, assuming Dg # 0 and Dg # D is adapted to the solidification
and melting in pure materials, but also in interstitial alloys. The most obvious
illustration for the latter case is given by the dendritic solidification of the d-ferrite
in steels (see for example the recent reference [172]), for which the diffusion coefficient
of interstitial carbon is comparable to the diffusion coefficient of carbon in the liquid
phase. At lower temperature, the diffusion of carbon in the J-ferrite drives the
peritectic transformation, for which the austenite grows at the expense of the 04-
ferrite. For such a transformation, a phase field model with a finite contrast of
diffusion coefficient such as the one studied in this article should be used. More
generally, at temperatures well below the melting temperature, alloys usually present
regions in their phase diagram where several solid phases coexist, and solid-state
transformations such as eutectoid ones involve diffusion in all phases. In particular,
it was shown that diffusion in the growing phases may have a significant influence
on the eutectoid transformation velocity in the case where all diffusion coefficients
are equal [152]. Our model thus provides the possibility to study such dependence
in general cases with generically different non-vanishing diffusion coefficients.
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Chapter 4

Eutectic and Eutectoid
transformations

The content of this chapter is published in Ref. [173].

The main purpose of this chapter is to extend the non-diagonal PF model to
eutectic/eutectoid transformations in binary A-B alloys when the diffusivities in the
growing phases are neither equal to the one in the mother phase nor negligible, to
benchmark the quantitative capabilities of the extended non-diagonal PF model,
and to better understand the role and effect of diffusion in the growing phases.
Therefore, we first introduce the formulation of a non-diagonal three phase field
model. Subsequently, we present the elimination of the abnormal effects at the a/7,
B/~ and «/( interfaces and the link to equilibrium boundary conditions. Following
this, non-diagonal PF simulations are performed in the one-sided case to compare
with boundary integral method calculations and Jackson-Hunt theory for a model
alloy that is directionally solidified. Additionally, in the two-sided case, isothermal
transformations at eutectoid and off-eutectoid composition are carried out and the
growth velocities at steady state are compared to the extended Jackson-Hunt the-
ory by Ankit et al. [152]. PF simulations without cross-coupling terms are also
performed in order to evidence the necessity of using a non-diagonal PF model.

4.1 Phase-field model

In this section, we present the non-diagonal three phase field model by defining
three scalar phase-field order parameters ¢; (i = «, 3,7), to distinguish the different
phases a,  and 7, obeying the constraint

}Z ¢ =1. (4.1)

In the following we use the vector notation qg = (Pu, g, $). Generally, the phase-
field parameter ¢; represents the volume fraction of phase ¢ and is allowed to vary
from 0 to 1, such that ¢, = 1, ¢g = ¢, = 0 indicates the a phase. Additionally, an
a/ B interface is characterized by a spatial profile of phase fields in which ¢, and ¢4
smoothly vary from 0 to 1 across the diffusional interface.
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4.1.1 Free energy functional

We start with the Ginzburg-Landau type free energy functional:

F:/VdV H{WTQZ (Vo) + > (1 }+Xfc<¢cT>

i=a,B,y i=a,B,y
which consists of three parts. The first one represents the gradient energy term, in
which W is the interface width. The second part is a triple well potential, which
is constructed as the sum of double-well potential for all phase fields. The free
energy density H determines the height of the potential. The last term, formed as a
function of phase fields 5, solute concentration ¢ and temperature 7', describes the
free energy of the different bulk phases,

ACYEE [ > AT el

i=a, B,y

., (4.2)

+ Y B (4.3)

i=a,B,y

where A;(T) and B;(T') are functions of temperature T, to construct the desirable
phase diagram, and g; is an interpolating function, which is written as

-,

s =S {15 (1= 0) [1+ 6~ (- o)) + s 06 =)}, (49

where i, j, k are pairwise distinct (i.e. are all different). For binary interfaces, for
example for an o/ interface with ¢ = (¢, 1—¢, 0), the function ga(¢) reduces to the
polynomial p(¢) = ¢*(10—15¢+6¢?). The last term in Section 4.1.1 is parametrized
by another free energy density X that sets the relation between the capillary length
and the interface width 1 through the ratio H/X.

The chemical potential can be written as

u= afﬂ: > AT (4.5)

i=a,B,y

Specifically, the advantage of the fifth order interpolation function employed in the
chemical free energy function is avoiding the appearance of spurious third phase
contributions in a two phase interface [86].

4.1.2 Time evolution equations

We define our a scaled concentration field as

Cc-C
c=—r (4.6)
Cs — Cq
where C'is the local alloy concentration, Cg, C,, Cp are the equilibrium concentra-
tions at the eutectic/eutectoid temperature T of the parent phase v and growing
phases a and 3 respectively. The concentration c is a conserved quantity that obeys

the continuity equation
¢c=-V_.J, (4.7)

where J is the diffusion flux.
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Our goal is to write down a non-diagonal PF model in the spirit of Ref. [107]
that formally maintains the symmetry between the different phase fields. In order
to fulfill the condition (4.1), one may introduce a Lagrange multiplier in the free
energy functional and its elimination yields the following definitions:

G| _20F 16 1P s
0ilsg,=1 300 309 3¢y '
2 1 1
Voilsy-1 = §V¢z - qubj - §V¢k (4.9)

Again, (7,7, k) is a permutation of («, 3,7). The terms on the left side of these
equations are operators explicitly informing that the constraint in Eq. (4.1) is
fulfilled, while on the right side, the operators are calculated as if ¢,, ¢z and ¢,
were independent. In particular, we have

> or =0, (4.10)
) 5¢z Z¢n:1

> Véily g1 =0. (4.11)

The Onsager linear relations between the driving forces and the fluxes that define
the kinetics within the PF model are then

oF )
v Zd)n:l
5F oy
_V% = —Vu= Z,:%’y {MW V¢z‘|2¢n:1 }¢z + B, (4,13)

associated with the continuity equation (4.7) providing @ through Eq. (4.5). We see
that, due to Egs. (4.10) and (4.11),

> 6i=0 (4.14)

i=a,B,y

is locally satisfied at any time in accordance with the constraint in Eq. (4.1).

On the one hand, for each driving force in Eq. (4.12), we have a coupling to
the conjugate flux (bl via the phase field dependent time scale 7 = T((E), and a cross
coupling to the diffusion flux J via the phase field dependent inverse velocity scale
M=M (gg) The structure of the cross coupling term, and especially the reason for
introducing the gradient of the phase field, is described in detail in [107, 109]. On
the other hand, for the diffusion driving force, we have a coupling to the conjugate
diffusion flux J via the phase field dependent diffusion coefficient D = D(gg), and
to the three fluxes ¢; via three cross coupling terms obeying Onsager symmetry, i.c.
parametrized by the same coefficient as in the second term on the right-hand-side of
Eq. (4.12). Let us note that when one omits the cross coupling term in Eq. (4.12)
as in [86], the model corresponds to the PF model with the so-called anti-trapping
current. This model is suited to a one-sided situation for eutectic growth, that does
not require Onsager symmetry to be obeyed, as will be seen later. The Onsager

relations given above may be represented using a 4x4 (symmetric) matrix, whose
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determinant should be positive for a positive energy dissipation in the simulated
system. Let us note that, while we have defined some phase field dependence of
7,M and D, we do not assume any for W, that is strictly a constant, yielding
isotropic interface energies.

An explicit form of the evolution equations provided by Egs. (4.12) and (4.13)
can be obtained from a matrix inversion,

Q:ﬁa Paa Paﬁ Pom/ Qoz
$s | = | Foa Bos Doy Qs (4.15)
Oy Pya Py Py Qy
where, for ¢ #£ j,
Pi=7-D[MWVéls4,]", (4.16)
Pyj = —DM*W*V |5 g,=1 - V&jl5 =1, (4.17)
Qi = OF + DMWYV ¢yls g1 - Vi, (4.18)
00115 g1
with
§F 2H
— HW?*V2p; — = [2¢;(1 — ¢;)(1 — 2
o 6 — == 2641 — 6)(1 — 26)
—65(1 = 6,)(1 = 26;) — 6x(1 = 6x)(1 — 26|
9g9; = 10gj =
- 3 4= EGEE G
and
o B e -6p+ 0000, - ). (020
Ogi _ 99 _ 15 500 v o
9o, ~ ooy 2 ¢; (1 — ¢i) (D — ;) (4.21)

for a permutation (i, j, k) of («, 53,7).
For the chemical potential, we have

u:V-{D

Again, if one sets M = 0, the evolution equations presented in [86] are recovered.
At equilibrium between two phases, for example between phase ¢ and phase j,
the one-dimensional (x is the spatial variable) phase field profiles reads

Vu+ Y MW Véils g1

i=a,B,y

41 Y 6 %’_(&)} .

Jj=a,Byy

- >

i=a,B,y

(4.22)

¢! (x) =1 — ¢S (x) = ¢eq() = % {1 — tanh (ﬁ)} , (4.23)

with ¢;(x — —o0) = 1 and ¢{?(x — o00) = 0. The constant chemical potential
equals
eq __ Bj B Bz

ult = , (4.24)
7T A — A
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and the concentration profile reads

R e T
LS S gt - 1, (425)
0

where ¢;; (resp. c?i) is the concentration in phase i (resp. phase j) when in equilib-
rium with phase j (resp. phase 7).

It is important to generically map (not only for equilibrium) our three-phase
field model to the problem of a two-phase system for which a single phase field ¢
is used. The fact that the variations of two phase fields are involved for a binary
interface in our three-phase model brings additional contributions. In particular,
the free energy of an interface between phase ¢« and phase j reads now

045 = QWWH, (426)

¢y () =

with the factor 2 coming from the fact that two phase fields are exhibiting hyperbolic
tangent variations, and with the usual integral w = W [ _[0,¢{%(z)]*dz = v/2/6.
We note here that in our fully symmetric model all interface energies are isotropic
and equal, i.e. 0;; = 0j; = 0. As for the classical eutectic growth, our results are
expected to be qualitatively unchanged when, while remaining atomically rough,
the interfaces present an anisotropic free energy. They are even expected to be
quantitatively unchanged in the limit of small anisotropy. Concerning the dynamics,
the three-phase field model for a two-phase system reduces to Onsager relations given
by

_(;_Z — 21+ QMWV§) - I, (4.27)
oF . d
~V = 2MWV)) + . (4.28)

These are, up to the factors 2 arising from the double contributions of the phase
fields, the same Onsager relations presented in Ref. [107] where the kinetic cross
coupling parametrized by M is introduced.

Before presenting the thin-interface results that link the parameters of the PF
model with sharp interface conditions at the interfaces, let us define the dissipation
function. It corresponds to the positive form built out of the products of the driving
forces and their respective conjugate flux:

bi-voL. J)

. 5F
g = /V av (—FQZM o 5
—/dV Y (05-)2+2MW AL g+ Z (4.29)
. i ) i S i1 D (" .

i=a,B,y i=a,B,y
For a binary interface, for example j/k for which ¢; = 0,¢;, = ¢,¢r = 1 — ¢, the
dissipation reads

S = /VdV {27’ (95)2 FAMW V- T + Jg} , (4.30)

and we recover the dissipation function for a PF model with a single phase field ¢,
ie. S= [, dV[(=0F/d¢)¢p+ (—VIF/éc) - J], with Onsager relations given by Eqgs.

(4.27) and (4.28). The condition of positiveness of the dissipation S;/; then reads
2r/D — AM2W2¢2 > 0.
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4.1.3 Link with the free boundary description: thin-interface
limit

In this section, we present the relation between the parameters that enter the PF
model and the parameters that enter the sharp interface boundary conditions. This
is called the thin-interface limit of the PF model and allows to set the PF parameters
such that, even with varying interface width W, the desired boundary conditions
are achieved in the equivalent sharp interface model. In particular, at low enough
interface velocities, equilibrium boundary conditions may be assumed. We restrict
ourselves to the binary interfaces, whereas an analysis of the triple junction is beyond
the scope of this work.

The conservation of atoms A and B at a moving interface between phase ¢ and
J implies the relation

D;iVe|;-n+Vd); = D;Ve|; - n+ V), = Jp. (4.31)

V and Jp are the total normal flux of all atoms through the interface (i.e. the
normal velocity) and the normal flux of atoms B through the interface, respectively.
If Ja is the normal flux of atoms A, then V' = J4 + Jp (we neglect any volume
density differences between the phases). The concentration gradient Ve|; (Ve|;) is
evaluated at the interface on the side of phase ¢ (phase j) and n is the local unit
vector normal to the interface V' and Jp are then the scalar products of the actual
fluxes and n. D; (D,) is the bulk diffusion coefficient in phase i (phase j). Here
we have assumed weak out-of-equilibrium conditions such that the concentration
in phase ¢ (phase j) that enters the mass conservation equations is the equilibrium
concentration ¢; (c%;).

Together with mass conservation, kinetic boundary conditions are defined. They
relate linearly the jumps {2 and du across the interface of the grand potential
and the chemical potential (rigorously the diffusion potential), respectively, to the
two fluxes V and Jg. These boundary conditions involve the bulk free energies
fi(c) and f;(c) of the two phases and especially their second derivatives at i/j
equilibrium [which is equal to 1 for the parabolic free energies in Eq. (4.3)]. They
prescribe the interface concentrations ¢;; and c¢j; when the sharp interface problem
is solved, according to 6Q = f7(c);)chi(c;i — ;) — f(c) el (ci; — ;) and du =
F () ey — ) = fi(chi)(cji — ;). Consequently, the kinetic boundary conditions
are written as

60 = AV + BJg + dok, (4.32)
Su = BV +CJg, (4.33)

where A, B, C are the components of the 2 x 2 Onsager matrix of kinetic coefficients,
do is the capillary length (as mentioned in Section 4.1.1, the relation between the
capillary length and the interface width in the present PF model is given by do/W =
2wH/X) and k the curvature of the interface. In the following we present the
strategy to achieve equilibrium boundary conditions, i.e. 62 = 0 and du = 0,
even when V and Jp do not vanish. In this case one recovers the Gibbs-Thomson
relation:

Cij — C?j = (cji — C?z)f]///flﬁ = —CZ’% (4.34)
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where
do

(ng - C(]]'i)fi”‘

and c?i are temperature dependent through A;

d= (4.35)

0

The equilibrium concentrations c;;

and B;.

In [108], the general expressions for the kinetic coefficients A, B and C in terms of
the PF model equilibrium properties were derived. For our equilibrium i/j interface
centered at z = 0, we have ¢;(x) = ¢q(z) given by Eq. (4.23), ¢j(x) = 1 — ¢q(2),
and ¢i(z) = 0. Furthermore, we have c(z) = cq(x) = (¢f; + ¢§;)/2 + {(c; —
%)/ 2H{2pl¢eq(x)] — 1} given by Eq. (4.25). Here we note that, since p(¢) = ¢*(10 —
15¢+6¢?), 2p—1 is an odd function of z. Taking into account the double contribution
of the phase fields at binary interfaces, the kinetic coefficients read

A=2 / " 6l (o) — 4 /_ T MW, (@) Pew ()} do

o 5 (4.36)
+/ ng(x) B (C?j)Q _ (C(;i)z da
N )) 2D;  2D; ’
B=2 / T MW ()2 de — / T G Gy, (4.37)
—00 “ -0 ‘D 2D'L 2D.] ’ .
. (1 1 1

— — -

We recall at this point that in these expressions 7 = 7(¢), M = M (¢) and D = D(¢),
which we have not specified yet.

For a two-phase PF model with a single phase field ¢, it was shown that con-
stant 7 and M are sufficient to achieve the desired boundary conditions, both for a
one-sided [108] and a two-sided model [109]. Here, for the three-phase model, the
necessity for the constraint in Eq. (4.1) to be fulfilled imposes that T(q;) and M ((5),
as single quantities, contain enough information for the properties of the three kind
of interfaces to be ascribed independently. We have chosen the following forms with

six parameters:

-

7(¢) = Tap(L + Padp) + 75, (1 + d505) + Ta(l + d400), (4.39)
M(¢) = Moppadp + MB’Y¢5¢’Y + Mva¢'y¢a- (4-40)

-,

The diffusion coefficient D(¢) should be able to reproduce the three different bulk
diffusion coefficients but also to allow for a tuning of the effective surface diffusion
coefficient that arises due to the finiteness of the interface width W [110]. As shown
in [109], the phase field dependent diffusion coefficient appears as harmonic mean
in order for C to vanish. Here, we define

P I

where

]

hi(¢) = (20 — 1)(1 + 4as;:0; + 4auwdidr), (4.42)



o4 CHAPTER 4. EUTECTIC AND EUTECTOID TRANSFORMATIONS

for a permutation (4, j, k) of (a, 5,7). We have here three additional parameters a;;.
We will see in the following how the assumptions of equilibrium boundary conditions
and vanishing surface diffusion allow to determine the nine parameters 7;;, M;;, a;;.

For a binary i/j interface, D;/;(¢) = D(¢; = ¢, ¢; = 1 — ¢, ¢, = 0) is such that

1 1 1

11
Dyy@) ~2p; T ap, T ) (2Di - 2_Dj) ’ (4.43)

where

hisj(¢) = (20 — 1)[1 + 4ai;¢(1 — ¢)]. (4.44)

This is precisely the phase field dependent diffusion coefficient that was used in the
two-phase model presented in Ref. [110]. Let us however note that in Ref. [110] ¢
varies from -1 to 1, while here it is in the range 0 to 1. The factor 4 in h;/;(¢) then
allows a;; to be identified with a in Ref. [110].

Returning to our calculation of the kinetic coefficients given in Eqs. (4.36)
to (4.38), we find for the i/j interface:

- W(Tag + Toy + Tya) + XTij Cleg; =) (W W
A = 2 W 1 535 + 2D, ) (4.45)
5 Qij(cgi - ng) ( w W )
B = 2xM,;, — - : (4.46)
) I 2 2D; 2D;
C = 0, (4.47)
where
x = W / Deqll — deq] [,) da & 0.04714, (4.48)
1 [ ,
¢ = & (1 — {2plpe,] — 1} >dx ~ 1.40748, (4.49)
1 (o]
o5 = g | (1= (pl6u) = Dhio)do (4.50)

As mentioned above, C vanishes, and this is due to the oddness of h; /i(Peq), 1.€. the
oddness of 2¢., — 1. In order to achieve equilibrium boundary conditions at the i/j
interface, i.e. having 02 = 0 and du = 0 in Eqgs. (4.32) and (4.33), we need also
A =0 and B = 0. Moreover, we want to achieve equilibrium conditions also at the
j/k and the k /i interfaces. The condition A = 0 at each interface yields 3 equations
for the 3 parameters 7,3, 75y, Tya:

ey =) (w? w2
XTij + W (Tay + Tas + Tgy) = =2 35, " 2D, ) = Ay, (4.51)
where 1, j, k are pairwise different, and the solution for 7;; reads
L4y = = (A + Aoy + As) (4.52)
Tij = — |Aij — 5 (Aa a . .
J Y I 3w+ Y Y B By

On the other hand, B = 0 at the three interfaces yields three more equations,

0ij( =) (W W
M;; = — ) 4.53
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We note here that no cross coupling is necessary, i.e. M;; = 0, when D; = D;. In the
general case, M;; does not vanish and depends on p;;, that remains to be determined.
This is achieved by the assumption of vanishing surface diffusion coefficient, through
the determination of a;;. This corresponds to the condition

/_OO do (Di/j(abeq) - % - %) -7 .

oo

This gives three additional equations in order to be able to fully determine the nine
aforementioned parameters. The coefficient a;; that satisfies Eq. (4.54) is a function
of the ratio D;/D;, and it has the property: a;;(D;/D;) = a;;(D;/D;) [99]. Hence,
we have also 9;;(D;/D;) = 0;j(D;/D;). In Fig. 3.1, we present the values of a;; and
0i; as a function of D;/D; > 0.06.

Let us give a brief comment before presenting the one-sided model. We have seen
that the condition of positiveness of the dissipation corresponds to the inequality
27/D — AMPW?@¢?2 > 0, and thus the magnitude of M may not be too large. When
considering equilibrium boundary conditions, this inequality sets an upper bound for
the contrast D;/D; beyond which M is too large. According to our definition of 7(9),
7;; 18 a function of all three diffusion coefficients (see Eq. (4.52)) and the maximum
contrast D;/D; depends on the other contrasts D;/Dy, and D;/Dy. In this respect,

—,

more suitable definitions of 7(¢) may be used. In Fig. 3.1, (D;/D;)min = 0.06
corresponds roughly to the maximum contrast that is used in the simulations in the
following section, i.e. (D;/D;)maz = 15.

One-sided model. Here, we present simulations for a negligible diffusion coef-
ficient in the growing phases a and 8 (D,, Dg < D). In the PF model, we then
use

Tag = 0, (4.55)
M,; = 0, (4.56)
D(¢) = Diu¢) = Dy(1 = o — p). (4.57)

In the mass conservation equation (4.31) for an interface between the mother phase
v and one of the growing phases j (j = «, ), the diffusion flux in the growing phase
vanishes, yielding

Vel = Jg. (4.58)

v T

The kinetic boundary conditions (4.32), (4.33) become

00 = (A+ B)V +dok, (4.59)
ou = (B+d),C)V. (4.60)

The two fluxes V and Jg are no more linearly independent, and Onsager symmetry
becomes irrelevant since for example two driving forces are expressed in terms of a
single flux. As mentioned earlier, this allows to use the PF model with the so-called
anti-trapping current.
In view of Eqs. (4.59) and (4.60), the assumption of equilibrium boundary
"B =0

conditions thus demands A + ¢ and B+ c?wé = 0. According to Eqs. (4.36),
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(4.37), and (4.38), we have

(W + X)Tjy + Wiy _ (ng - C?W)wa

A+ B=2 7 . (4.61)
B+&.C=2yM;, — w (4.62)
v
where
/ beq + 1= 2p|0eq) dr ~ 2.12132, (4.63)
1— ¢eq
== / - 21p _¢Zeq D® 4 ~ 342778, (4.64)

The assumption of equilibrium boundary conditions at interfaces o/~ and /v pro-
vides four equations for 7o, 78y, Moy, Mg, (j = o, B, k # j):

(), =))Wk

My = no, (4.65)
and
(W+ X)Tjy + WTgy = (ng _8%1(37)2[/‘/25 Ajl-s, (4.66)
yielding
L1 s 1s
= A - 2w+ (Al 4+ A . (4.67)

Here, for an interface j/v for which ¢;(x) = ¢¢,(z), we have D = 1 — ¢, and surface
diffusion is automatically eliminated, i.e. [~ (D — D,/2)dz = (D,/2) [~ (1 —
2¢¢q)dx = 0.

4.2 Simulation details

To investigate the capabilities of the non-diagonal three PF model during eutec-
tic/eutectoid transformations, we perform two-dimensional simulations of lamellar
steady-state growth with different diffusivities in the growing phases, and different
global compositions C'y, i.e. different compositions in the mother phase far ahead of
the growth front. In dimensionless units we thus define co, = (Coo — Cg)/(Cs—C,).
In a first step we perform simulations corresponding to eutectic directional solidifica-
tion (with one-sided diffusion). The scaled undercooling at the steady-state growth
front is extracted from simulations and benchmarked against the boundary inte-
gral calculations reported in Ref. [86]. In a second step we perform simulations of
isothermal transformations in the two-sided case. The non-diagonal PF simulation
results are analyzed in the frame of the extended Jackson-Hunt theory by Ankit
et al. [152] for various lamellar spacings A at the eutectoid and one off-eutectoid
compositions.
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Figure 4.1: (a) and (b) show the setup of the simulations during directional solid-
ification and during isothermal transformations, respectively. (c¢) Symmetric phase

diagram for eutectic/eutectoid transformations.

The 2D simulation boxes of total size n, x n, with the grid spacing Az =
Ay = 04W are illustrated in Figs. 4.1a and b, where n, and n, are the length
of simulation boxes in the direction parallel and perpendicular to the solidification
front. We require A < 0.1n, to ensure that the simulation domain is large enough in
order to describe the diffusion field in the parent phase. For the purpose of obtaining
steady state periodic lamellar arrays, periodic boundary conditions are prescribed at
the boundaries parallel to the growth direction, while no-flux boundary conditions
are used at the boundaries perpendicular to the growth direction (see Fig. 4.1).
Also, a moving-frame method and GPU acceleration are applied in the simulations
to reduce the computational effort.

Following Ref. [86], we assume for the symmetric phase diagram that A, = B, =
0, that the A;’s are independent of the temperature 7', i.e.

Ay, =—Ag=—-0.5, (4.68)

and that
B, = A A = Bg = —AgA. (4.69)
0 —

In this way, the concentration of phase i in equilibrium with phase j reads ¢;; =
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A; + (B; — B;)/(A; — A;). Explicitly, this gives

p = —Cha = Aa, (4.70)
A1) = A (T) = Aq = —=5(T) = Ag — ¢, (T) = A, (4.71)
where A = % with m > 0 being the liquidus slope. Thus A is the dimension-

less undercooling. The corresponding phase diagram is schematically presented in
Fig. 4.1c. In a positive thermal gradient in the z-direction, we have A = (zp —2) /I
where zp is the position of the eutectic/eutectoid temperature and I7 > 0 denotes
the corresponding thermal length.

In the first step corresponding to eutectic directional solidification, we choose
three different values for A./W, i.e. A\./W = 64,96,128, where A, is the Jackson-
Hunt spacing (corresponding to the minimum undercooling) given in Eq. (2.17)
in Ref. [86] (recall that here sinf, = sinfs = 1/2), i.e. A\ = \/Ipd/P(n) where
Ip = D./V and the polynomial P(n) = Y2 sin*(mnn)/(7n)? depends on the phase
fraction 7 = (¢}, — Coo)/ (B, — o) of phase a (which is 1/2 at eutectic composition).
For each of these values, we then choose d and Ip such that [p/d = 51200. The
thermal gradient is chosen such that Ir/lp = 4.

In the second step corresponding to isothermal eutectoid transformations, we
prescribe d/W = 0.5 and an undercooling A = 0.03125 [see Eq. (4.71)]. This gives
Ae such that, according to \e = d/[(1 —n)A], A\e/W = 64 for coo = 0 (i.e. n=0.5),
and A\, = 66.6667 for co, = 0.1 (i.e. n = 0.4).

4.3 Results and discussions

4.3.1 Verification of the non-diagonal PF model in the one-
sided case

In the present section, we perform non-diagonal PF (NPF, i.e. with cross-coupling
term M (¢)) and classical PF (CPF, M(¢) = 0) simulations in the one-sided case
for different lamellar spacings, A = A\, = 64W,96W and 128W, during directional
solidification. . is related to the spacing with the minimum interface undercool-
ing for directional solidification and to the maximum growth velocity for isothermal
solidification. We extract the scaled interface shapes in steady state from the PF
simulations and benchmark them with boundary integral (BI) calculations, as pre-
sented in Fig. 4.2a. The position z is the distance to the eutectic temperature, that
lies ahead at higher temperature, and is normalized by the thermal length l7. As can
be seen, when the abnormal interface effects are eliminated in the NPF simulations,
the quantitative agreement with the BI calculation is significantly improved com-
pared to the CPF simulations. We quantify this improvement in Fig. 4.2b where
we give the deviation of the lamella’s tip position in the PF simulations from the
one obtained in the BI calculation. Let us note also that, as the inset in Fig. 4.2a
and the dependence on W/, in Fig. 4.2b show, we obtain a better agreement with
the BI method when a better separation of length scale is achieved, i.e. when A\./W
increases.

Next, using the parameters as aforementioned, a series of NPF simulations is
performed at A = A, for various A\, during directional solidification. The dependence
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Figure 4.2: (a) Comparison between NPF (solid lines) and CPF (dashed lines)
simulation results with the boundary integral method (BIM, squares) taken from
Ref. [86] for \./W = 64, 96 and 128. Inset: enlargement of the dashed rectangle.
(b) Deviation of the lamella’s tip position (/A = 0.25) between NPF and CPF
simulation results and BI calculations.

on the lamellar spacing of the extracted average interface undercooling in the steady
state regime can then be compared with the Jackson-Hunt theory and is exhibited
in Fig. 4.3. As can be seen from the comparison, there exists a 5%-7% discrepancy
with the JH theory, due to the assumption of a flat solidification front in the latter
theory. In addition, we also show the results from Ref. [86] in Fig. 4.3. We see
a slight discrepancy with our NPF results, certainly due to the fact that we use a
symmetric matrix in the force-flux Onsager relations, while only the anti-trapping
current is present in the model used in Ref. [86] (see the brief discussion immediately
after Eq. (4.60)). Overall, the capabilities of the NPF model for eutectics, i.e. when
diffusion in the growing phases is inhibited, are demonstrated in a convincing way.

4.3.2 Comparison of the non-diagonal PF model with the
extended JH theory in the two-sided case

In this section, we investigate the case where diffusion is also present in the growing
phases, i.e. where p, = D,/D. and pg = Dg/D.,, are finite. As mentioned in the
introduction, an extension of the JH theory was developed [152] in order to take
into account these additional ingredients in the dynamics of the system. Within
this theory, diffusion fluxes in the growing phases are simply added to the flux in
the mother phase, and in isothermal conditions, the velocity

is multiplied by the factor p given in Eq. (B.53). For our symmetric phase diagram,
we have

p=1+ Alpan+ ps(l —n)], (4.73)

where A is described as a factor related to the difference in solidus and liquidus
slopes. First we perform simulations for p, = pg. The cross coupling parameter
M, thus vanishes and surface diffusion is automatically suppressed at the a/f in-
terface (no need to adjust the coefficient p,5 - see discussion following Eq. (4.53)).
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Figure 4.3: Comparison between the PF simulation results and Jackson-Hunt theory
during directional solidification for different A\./W. The solid line is the Jackson-
Hunt theory. The blue points present the NPF results. The red points indicate the
results taken from Ref. [86].

Moreover, we use ¢,, = 0 (n = 0.5), yielding a fully symmetric pattern. We inves-
tigate the dependence of the growth velocity on A (we recall that A\./WW = 64 and
d/W =0.5).

Since the extension of the JH theory in Ref. [152] is only approximate, at least
because it neglects some curvature effects just as Jackson and Hunt do, we have
decided to determine A by choosing the value for which Eq. (4.72) best fits our
simulations results for p, = pg = 1. We found A = 0.8924.

In order to investigate the relevance of the scaling proposed by Eq. (4.72), we
plot in Fig. 4.4 the rescaled dimensionless velocity

VaAe 1

V=
D, p

(4.74)

as a function of X for 0 < p < 15 where p = p, = pg. Here we thus have
p =1+ 0.8924pu. The solid line corresponds to the reference case, i.e. = 1, that
provides through the fit the quantity p (through A) by which we divide the velocity.
We clearly observe a scattering of the simulations results around the solid line,
showing that V is not independent of . However, the relatively small amplitude
of this scattering demonstrates that Eq. (4.72) provides a very good prediction of
the velocity. Indeed, in view of the fact that u spans a huge range within which
the velocity is multiplied by a factor close to 15, a discrepancy of at most 30%
for V between the cases 4 = 0 and g = 15 corresponds to a rather convincing
data collapse. If the arguments developed in Ref. [152] were inappropriate and for
example diffusion would not take place in the growing phases even if their diffusion
coefficient is large, the velocity would not change much when this diffusion coefficient
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Figure 4.4: Rescaled dimensionless growth velocities obtained from NPF simulations
for different lamellar spacing with a varying diffusion coefficient being equal in the
growing phases, i.e. 0 < u < 15 (4 = po = pg). The solid lines corresponds to
i =1 (see text). The relatively small amplitude of the scattering of the results for
a given A validates the relevance of Eq. (4.72) to predict the velocity as a function
of p.

increases, and V would end up close to 0.01 at A/\. = 1. The situation here is very
different.

When we look, for a given A, at the dependence of V on 1, our simulations suggest
that it converges when p becomes large. When p > 1, i.e. when the diffusion
coefficient in the growing phases o and  is much larger than the one in the mother
phase v, the main diffusion path is within the growing phases and the diffusion
fluxes in the mother phase become negligible. Then, p ~ pu, and the steady-state
velocity becomes proportional to D, = Dg according to V/D, ~ p ~ Dyg)/D,.
Thus, V' exhibits a linear variation with u (i.e. V becomes independent of () when
1> 1, and the shape of the interfaces becomes self-similar. This is what we see
in Figure 4.5, where we plot the shape of the a/v and (/v interfaces (we recall
that due to symmetry the /3 interface is straight behind the triple junction) for
A/Ae = 1 and A\/A\, = 2, and for p = 0,5,10 and 15. We also plot the shape that is
obtained for the case where p is formally infinite, i.e. when D, is strictly vanishing
(we then use the one-sided model). This situation is at odd to the usual assumption
for eutectic growth, and we are not aware of any description of such a steady-state
in the literature. Let us note that we have checked that this scenario exists also
for off-eutectoid concentration, showing that the existence of the steady-state is not
restricted to high symmetry conditions.

On the other hand, since p = 1+ Ap, V — Vg varies linearly with g when p < 1.
We exhibit these two linear regimes in Fig. 4.6 where we plot our simulations results
(squares) for VA./D., as a function of p for A/A\. = 1 and 2. We see that close to
the origin we may approximate our results by the straight solid lines, and, that this



62 CHAPTER 4. EUTECTIC AND EUTECTOID TRANSFORMATIONS

| — Ma= =0 - Ho=Mg=5  — Ho=Hp=10 Mo= Mp= 15 Mo= Hg=2 |
MAg=1
0.06
0.04
0.02
§ 0 T T T T
0 0.2 0.4 0.6 0.8 1.0
MAg=2
0.03+ FESTRIIIEREER SETTRLEERERERG
’ /’.{" ".'\"s-\ x""/ﬂ ."\.m
0.02- /f\—/\\ 5 \
0.01-
iy “& /' \
0 T T 3 T T ’
0 0.2 0.4 0.6 0.8 1.0
X/\

Figure 4.5: The scaled shapes of the growth fronts extracted from the NPF simula-
tion results for u, = pg = 0,5,10, 15,00 and A/A. = 1, 2.

linear regime actually extends to values of u of order unity. As mentioned before, the
diffusivity ratio g may not be too small due to the stability constraints. Moreover,
small p simulations show minor inaccuracies owing to the sharp variations across
the interface of the function that allows for elimination of surface diffusion h;. Note
that a tensorial diffusivity [174] has been proposed as an alternative to h; in Ref.
[175], and according to the authors no constraint on the diffusivity ratio then exists.

Complementary, when p is large enough, our results are well approximated by
the dashed straight lines. In the same plot in Fig. 4.6, we also display the results
(crosses) that one obtains for the classical PF model (CPF). We see that the larger
i the larger the discrepancy between the NPF and CPF models, indicating the
importance of the cross coupling terms parametrized by M ((E)

4.3.3 Influence of the different diffusivity ratios of growing
phases on the lamellar growth patterns at eutectoid
and off-eutectoid composition

Let us now investigate the situation where the three diffusion coefficients are dif-
ferent, i.e. po # pp (here all cross coupling terms M;; are thus non-vanishing and
surface diffusion should be eliminated at each interface, i.e. all values p;; should be
adjusted).

We first perform simulations at ¢, = 0 and A/, = 1. In Fig. 4.7, we present
V for ps < o (owing to the choice ¢, = 0, the velocity is invariant under an
exchange of p, and pg). The coefficient A in the expression for p is the same as in
the previous study, i.e. p =1+ 0.8924(u, + pp)/2. The dashed line represents the
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Figure 4.6: Dimensionless velocity obtained with the non-diagonal PF model (NPF,
squares) and the classical PF model (CPF, crosses) as a function of the diffusion
coeflicient in the growing phases p1, = pg for two different lamellar spacings A\/A. =1
and 2. The solid lines illustrate the small x4 linear regime for which the steady-state
velocity is proportional to the diffusion coefficient in the mother phase v and the
dashed lines illustrate the large u linear regime for which the velocity scales as the
diffusion coefficient in the growing phases.

results corresponding to p, = pg. Again, we observe some scattering of the results
showing that V is not strictly independent of p. However, the amplitude of this
scattering, that reaches at most around 30% for ug = 1, is still much smaller than
the variation of p, demonstrating that Eq. (4.72) is able to predict quite faithfully
the steady-state velocity as a function of j, and pgs.

Even though c,, = 0, the pattern is non-symmetric due to the choice p, # pg.
In particular, as can be seen in Fig. 4.7b — e, where we present the interfaces shapes
for different ratios pg/pe and p, = 10, the o/ interface forms a finite angle with
the vertical direction, and we denote it as 6 at the triple junction. In Fig. 4.7f, we
plot 6 (in degrees) as a function of ug (1 < ug < 10) for u, = 10. It decreases when
i1g increases and vanishes at pg = j1, as expected for a fully symmetric pattern.

Let us now investigate a case where the composition is off-eutectoid, i.e. ¢y =
0.1. Thenn = 0.4 and p = 1+ A(0.44, +0.615). Here, the best fit to our simulation
results for p, = pg = 1 gives A = 0.8989. We use this value to calculate the
rescaled dimensionless velocity V, and we plot the latter in Fig. 4.8 for different Lo
and pg. While the dashed line corresponds to the fit providing A, we see again a
scattering of the simulations results, with a small enough amplitude that validates
the scaling V' ~ p. In opposition to the case ¢, = 0, i.e. n = 0.5, the o/ interface
is vertical only when p, = pg = 0. This is indeed the usual assumption when one
studies eutectic growth within the one-sided model at arbitrary global composition
[176]. However, as soon as the diffusion coefficient in the growing phases is finite,
the a/f interface becomes curved. Noticeably, when p, = pg, the width of the
lamella with the larger (smaller) phase fraction, here g («), is larger (smaller) at
the triple junction than at equilibrium, i.e. far behind the triple junction. This
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Figure 4.7: (a) Rescaled dimensionless growth velocities obtained from NPF simu-
lations during isothermal transformation at eutectoid composition and A = A, with
unequal j, and pg (the dashed line corresponds to p, = pg). (b)-(j) shows the
alteration of the lamellar shapes extracted from NPF results for p, = 10, g = 1 to
9, respectively. (k) the rotation angle () of the triple junction in (b)-(j).

yields a rotation of the triple junction. This rotation is further accentuated when
[s > [Lo, and in opposition, when pg < p,, the sign of the rotation angle is opposite.

Until now it was proposed that the scatter observed for V in our results, i.e.
in Figs. 4.4, 4.7, and 4.8, is due to the inaccuracy of the theory developed in
Ref. [152]. However, it should be verified that this scatter is not instead related
to interfacial effects, that are eliminated with different choices of parameters when
tto and pp change. Therefore, here, we finally perform a convergence study with
respect to (j/ W. For a sake of generality, we choose the asymmetric situation where
Coo = 0, pta = 10 and pg = 3. This corresponds to a result presented in Fig. 4.7,
more precisely the third blue diamond when starting from the left. In Fig. 4.9, we
present the convergence of V when d /W increases, i.e. when the interface width W
decreases. At the interface width used in Fig. 4.7 (and also in Figs. 4.4 and 4.8),
i.e. for the encircled data point at d/W = 0.5, a 2% error on V is found (compared
to the converged value), which is quite satisfactory. This supports that the scatter
observed in our results is indeed due to the, small but still existing, inaccuracy of
the theory developed in Ref. [152].

4.4 Summary

In this chapter, we have developed a quantitative non-diagonal phase field model for
three-phase transformations, such as eutectic and eutectoid. In the latter case, the
diffusion coefficient in the growing phases D, and Dy are of the same order as the
diffusion coefficient in the mother phase D., and a kinetic cross coupling between
the diffusion field and the phase fields is thus required. Special attention is paid
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Figure 4.8: (a) Rescaled dimensionless growth velocities obtained from NPF sim-
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Figure 4.9: Convergence study with the interface width W for a situation corre-
sponding to Fig. 4.7, i.e. coo = 0,0 = 10,45 = 3. The encircled data point for
d/W = 0.5, that corresponds to the interface width used in Fig. 4.7 (and also in

Figs. 4.4 and 4.8), shows a 2% error compared to the converged value of V, which
is quite satisfactory.
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to the elimination of all abnormal interface effects that arise when analyzing the
thin-interface limit of the model.

First, we have benchmarked our model against phase field and boundary integral
results from Ref. [86] in the one-sided case (when D, = Dg = 0). Second, we have
performed simulations in the two-sided case where D, and Djs are non-negligible.
We evidence the relevance of the scaling law suggested in Ref. [152] for the steady-
state velocity as a function of the ratio of diffusion coefficients. We observe the
two limiting cases, i.e. the classical one for which diffusion is mainly present in
the mother phase due to D,, Dg < D., and the one for which diffusion is mainly
present in the growing phases due to D,, Dg > D.,. In both the one- and two-sided
cases we verify the necessity of using a non-diagonal phase field model, i.e. having
a kinetic cross coupling, for quantitative simulations.

In the present work, the influence of the bulk diffusion in the growing phase has
been investigated. During eutectoid transformations such as the pearlite transfor-
mation, not only bulk diffusion in the growing ferrite but also surface diffusion are
believed to play a crucial role. The non-diagonal phase field model provides the
possibility to tune the surface diffusion coefficient, while eliminating other kinetic
effects such as solute trapping. Thus, it may be a potential tool for a future study
of the pearlite transformation at steady-state and the divorced pearlite microstruc-
ture [177, 178] with the consideration of all possible diffusion paths. In this regard,
the complex thermodynamics of pearlite may necessitate the usage of a phase field
model based on a grand-potential formulation [105], which is pursued in the following
chapter.



Chapter 5

Pearlite transformation

The pearlitic microstructure in steels, typically consisting of alternating lamellae
of ferrite () and cementite (0) formed through the eutectoid reaction from the
austenite (7), is of considerable importance and technological interest due to its
high strength and good ductility. During the pearlite transformation, the cooper-
ative growth velocity of ferrite and cementite is controlled by carbon diffusion and
the possible diffusion pathways are volume diffusion (diffusion in 7 phase), bulk
diffusion (diffusion in « phase) and interface diffusion (diffusion along v/« and ~/6
interfaces). The Zener-Hillert theory firstly predicted the stable growth velocity
of pearlite during isothermal transformation for a given undercooling and lamellar
spacing. However, the predictions showed a large discrepancy to the experimental
observations, as aforementioned in Section 2.6.1. For accurate predictions of the
kinetics during the pearlite transformation, interface diffusion and bulk diffusion
mechanisms are also proposed as possible dominant diffusion paths to narrow the
gap between theoretical predictions and experimental results.

The aim of the chapter is to study the influence of different diffusion paths on
the pearlite transformation in a quantitative way. In this chapter, the derivation
of the grand potential based nondiagonal three-phase field model is presented in
Section 5.1.1. Then, the procedure of linking the phase field parameters with free
boundary conditions is depicted in section 5.1.2. Since the surface diffusion plays
a crucial role during pearlite growth, the method to tune the surface diffusion in
the simulations is described in section 5.1.3. Subsequently, the simulations are per-
formed for five different cases by using the grand potential based nondiagonal phase
field model. The corresponding simulation parameters and results are elucidated in
section 5.2 and section 5.3, respectively. Finally, the conclusion of this chapter is
presented in section 5.4.

5.1 Grand potential based nondiagonal phase field
model

The free energy based nondiagonal three-phase field model presented in chapter 4
is restricted to simple symmetric phase diagrams. For example, the concentration
difference in the parent phase is reproduced well, whereas it can not be tuned flexibly
in the growing phases. In this section, to reproduce the complex thermodynamics
of phase transformations, such as pearlite transformation, a new nondiagonal three-

67



68 CHAPTER 5. PEARLITE TRANSFORMATION

phase field model is derived based on a grand potential formulation in analogy to
Ref. [105].

5.1.1 Time evolution equations

Firstly, three phase field order parameters are defined as ¢; (i = «, 3,7) to distin-
guish the different bulk phases «, f and . Then, a binary alloy is a mixture of two
pure substances A and B. B is considered as the solvent. The number density of A
atoms related to the local concentration of A atoms, C, is defined as

_ a 5.1
P=5 (5.1)

where V, is the atomic volume and we assume that A atoms occupy the same atomic
volume as the B atoms. The number density is a conserved field, which obeys

p=-V-1, (5.2)

with J being the mass flux. In anology to free energy functional, the grand potential
functional is [105]

Q= / (wgrad + Wiy + wchem) dVv
1%

- 2 (5.3)
:/V{ 5 STV +H Y Gl-¢)+ D> gi(¢)wi(u>},

i=a,B,y i=a,B,y i=a,B,y

which consists of three parts. The first part indicates the gradient energy term, in
which W is the interface thickness. The second part is the triple well potential, which
is constructed as the sum of double-well potential of all phase fields. The parameter
H determines the height of the triple well potential. The last term presents the
grand potential density of different bulk phases, in which ¢;(¢) is the interpolation
function and w;(p) is

wi(p) = fi — pp, (5.4)

where f; is the Helmholtz free energy of phase i, and p is the chemical potential
of B atom. At here, a parabolic free energy function is used for f;, ie., f; =
1/2¢i(c — (1) + f2, where f? is the minimum value of the parabolic free energy
function, which is dependent on temperature. Then, the chemical potential is p =
dfi/0p = Vaei(c — i), the concentration has the formulation ¢ = p/(V,e;) + ¢
and w; (i) can be expressed as w;(u) = —1/2u2/(V2€;) — p/Vaco?. Besides, gi(¢) is a
fifth order interpolation function as defined in Ref. [86] to avoid the appearance of
spurious third phase contributions in a two phase interface. It can be written as

2
9i (¢) = % {15(1 = ¢3) [1+ ¢ — (¢ — 6,)°] + i (967 —5) }, (5.5)
for a two phase interface, such as an i/j interface, g;(¢) reduces to p(¢)

p(¢) = ¢°(10 — 15¢ + 66°). (5.6)

According to the Onsager relations and the free energy based nondiagonal three-
phase field model presented in Ref. [173], we write down the formulation of the
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grand potential based nondiagonal phase field equations in the following variational
form:

Y
0;

=7(9) i+ M (9) WV il5y -, (5.7)
2 ¢j=1

002 . J
V=) MWV bilgy bt 5 (5.8)

(¢)’

where 7(¢) is the relaxation time, M (¢) is the cross-coupling term that can be tuned
to present the free boundary conditions, D(¢) is the diffusion coefficient. To fulfill
the constraint ) |, ¢; = 1, a Lagrange multiplier is introduced in the grand potential
functional, which yields

| 20 100 100 o)
6(25@ Zd’n:l N 35¢z 3(5¢] 3(5(]5]{’ )
2 1 1
Vdilsg,=1 = gv@' - §V¢j - §V¢k- (5.10)

We should note here that each driving force of the phase fields in Eq. (5.7) is coupled
to the conjugate flux gbz through the relaxation time 7(¢) and cross-coupled to the
diffusion flux J through the cross coupling term M (¢). As mentioned in Refs. [108,
109], the cross-coupling term only exist in the interface region as it is defined as
the gradient of the phase fields. Similarly, the diffusion driving force is coupled
to the conjugate diffusion flux J through the diffusivity D(¢) and coupled to the
fluxes da, (bg and év- Moreover, after omitting the cross-coupling term in Eq. (5.7),
the phase field model does not obey Onsager’s relations and becomes identical to
the quantitative phase field model in Ref. [85] with anti-trapping current. To be
consistent with the nonequilibrium thermodynamics, we can write down the explicit
form of Egs. (5.7) and (5.8) by using a matrix inversion

1

q:ba Paa Paﬁ Pa7 - Qa
¢ | = | Psa Psg Psy Qs (5.11)
¢7 Py Py Py QW
where, for 7 # j,
Pi=7—D[MWVlyg.-]°, (5.12)
Pyj = —DM*W?V |5 g,=1 - V&jl5 =1, (5.13)
0
Qi = —5 4 + DMWXV¢¢|Z¢71:1 . Vu, (514)
(bl Zd’n:l

where x is the susceptibility, which is defined as [105]

o
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Furthermore,
08 2H
e 0 — = [20:(1 - 9)(1 - 20))
651 = 6;)(1 = 26;) = 6x(1 = 6x)(1 — 26|
20g; 10g; 10y
390, 300, 300,
4 (28% _ lag] _ 189J)
530, " 300, 300
209 10gx 10gx
+Wk(§a¢i _50_@_5%) (5.16)
and
i 15¢;
o B (e D0+ B0 -0, — ], (D
(992'__391'_92 s s
5o = o= 5ol 0 (51
For the chemical potential, we have
1 Ip
= <4VI[D v Jo] — ;i 7, 5.19
i x{ [D(O)XV i1+ Ja] i:%;ﬂ%cb} (5.19)
where
Ja= Y, D@OM@OWV ils-y _; (5.20)
i=a,B,y
and 59 ) 9 9
N S A it .

The interface dissipation of the grand potential based nondiagonal phase field model

can be expressed as
. 00 . 02 . -0 -
S:/dV - qua——‘ — Oy +V—-J
14 00a |5 g1 005 |52 p=1 0Py |5 g1 op

= [avlr@[(8)"+ (5)+ (8)] + 20w (Fa|,

NP
5ot %) D) } |

At equilibrium between two phases, such as an i/j interface, the one-dimensional
phase field profile reads

(eg() = % [1 — tanh (ﬁ)} , (5.23)

and the equilibrium number density file reads

6 .
b5 —

ba (5.22)

=

+ 6@3‘2(#:1 éﬁ + §¢7

0 0 0 0
Pij + Py Pij — Pji
) = P25 P00 ol ()]~ 1), (524
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5.1.2 Link with free-boundary description

In this section, we present how to reproduce the desired boundary conditions through
appropriately choosing the parameters of the grand potential based nondiagonal
phase field model with or without surface diffusion for different interface thickness.
Firstly, the mass conservation equation of atoms A and B at a liquid/solid interface
between phase ¢ and j reads

DiVpl;-n+Vp), =D;Vpl; - n+Vp), = Jy, (5.25)

with V' being the total normal flux of all atoms through the interface and J4 be-
ing the normal flux of atoms A through the interface. The detailed explanation of
Eq. (5.25) can be found in Section 4.1.3. We should note that the surface diffusion is
neglected in Eq. (5.25), since it is negligible at a liquid/solid interface. However, at
a solid/solid interface, surface diffusion plays more crucial role than bulk diffusion
or volume diffusion due to the interface defects. Therefore, with the consideration of
surface diffusion, the tangential surface diffusion takes part in the solute transporta-
tion along the interface, the corresponding mass conservation equation is modified

to
DZVP|Z -n+ V,O?] + WDsurfvépinter = Dij’j N+ Vp?z: (526)

where Dy, s is the surface diffusion coefficient and will be elaborated in Section 5.1.3.

Together with the mass conservation law, the aforementioned fluxes V' and Ju
linearly relate to the grand potential jump 62 and chemical potential jump du (dif-
fusion potential) by using an Onsager matrix. When surface diffusion is negligible,
the kinetic boundary conditions are identical to Eqgs. (4.32) and (4.33). Although
the mass conservation law is modified while considering the surface diffusion, it does
not change the kinetic boundary conditions based on Onsager relations, since the
normal fluxes V and J4 are perpendicular to the tangential surface diffusion. Thus,
for the two different cases, the kinetic boundary conditions are

0 = AV + BJs + dok, (5.27)
Su =BV +CJy, (5.28)

where A, B, C are the kinetic coefficients of the 2 x 2 Onsager matrix, dy is the
capillary length, x is the curature of the interface. At weak out-of-equilibrium
boundary conditions, we can write down the formation of 6Q2 and du [108, 173]

00 = f}'(C(;i)P?i(pﬁ - P(J]'z‘)/va2 - fi”(cgj)p?j (pij — ng)/vf’ (5.29)
op = 7 () (pji = P5:) Ve — 17 () (pig = p5)/ Vs (5.30)

where f;(c) and f;(c) are the free energy functions of i and j phases, respectively.

cgj and c?i are the equilibrium concentrations in phase ¢ and j, while ¢;; and cj;
are the interface concentrations. To achieve equilibrium boundary conditions, the
grand potential and diffusion potential jumps are eliminated, i.e. 62 = ou = 0.

Thus, Eq. (5.29) is rewritted as
8 = f(2) (pji — P2 (0% — p3) /ViE = F(S) (i — p3) (0% — p3) [V, (5.31)
and the Gibbs-Thomson relation is

(pji — P?z)f;/(cgz)/fz”@?z) = (pij — P?j) = —J;@, (5.32)
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where

I\
(ng - P?i)f{/(c%).
According to the derivation in Refs. [108], the expression of A, B and C with respect
to equilibrium phase field properties are

A = 2/_00 T[¢;q(a:)]2dx—4/_oo { MW, (2)]*peq(x) } da

o0

* /_Z {pigx) - %%f - (5%12 } dz, (5.34)

B — 2/0@ (WS, ()} do — /: {peqlg” _ 2’%@_ _ Q%j}dx, (5.35)

—00

_ (1 1 1

e}

(5.33)

To determine the kinetic coefficients of the Onsager matrix, the expressions for
7(¢), M(¢) and D(¢) need to be specified. Here, we have chosen the following forms

TijPiQj + Tik @ik + Tjp@; Ok

)= Gi; + Gidr + didr (5.37)
Mg + Mipgidn, + Mo
M(9) = Gi0j + Oi0k + PP ‘ (5.38)

We should note that 7(¢) and M (¢) are only meaningful in the interface region.
For example, at a binary i/j interface, 7(¢) and M(¢) are constants, i.e., 7;;, M,;,
while in a triple junction, 7(¢) and M (¢) are dependent on the phase field order
parameters. However, these expressions are not suitable for bulk phases due to
Gip; + Gidr + ¢ = 0. Thus, the average values (7;; + 7, +751) /3 and (M;; + M, +
M;yi,)/3 are defined as the relaxation time and cross-coupling coefficient in the bulk
phases. It is noted at here that this approximation has only a slight influence on
the phase field simulation results.

Furthermore, for the diffusion function D(¢), not only the diffusion coefficients
of the different bulk phases but also the surface diffusion should be reproduced. As
shown in Ref. [173] the diffusion function can be defined as

ST () e

i=a,B,y

where
hz(ﬁg) = (2¢; — 1)(1 + 4a;j0;0; + 4aipdidr). (5.40)

We define three additional parameters a;; to tune the desired surface diffusion. The
procedure to determine phase field paramters 7;;, M;; and a,; have been described
in Ref. [173]. For a binary ¢/j interface, the kinetic coefficients are

T 207, C(ng - P?i)z W W
A= o 4 2D, 2D, (5:41)
> Qij(P?i - P?j) W W

= 20M,;; — — 42
B i 2 2D; 2D, )’ (5:42)

C = 0, (5.43)
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where
d=WwW /_ [¢1,]*dx ~ 0.23570, (5.44)
1 oo
= /Oo (1 — {2p[eq) — 1}2)dx ~ 1.40748, (5.45)
1 o
0ij = W/ (1 — (2p[¢eq) — 1)hi/j(¢eq))dx- (5.46)

As mentioned in Section 4.1.3, C automatically vanishes due to the oddness of
hi/i(@eq). To achieve equilibrium boundary conditions, i.e., 62 = du =0, A=B=0
is also required. Thus, we can obtain the expressions of 7;; and M;;

C(P?j - P?i)2W2 1 1
o , 547
T 8D 2D, " 2D, (5.47)
oy —py) (W W
M;; = — ) 5.48
J 13 oD, 2D, (5.48)

When the diffusion coefficients in the growing o and 3 phases are negligible, i.e.
D,,Dg < D, we have

Tap = Mop =0, (5.49)
D(¢) = Dy(1 = ¢a — ¢3)- (5.50)
Consequently, the kinetic boundary conditions become [108, 173]
= (A+ p), B)V + dor, (5.51)
o= (B+p),C)V. (5.52)

Then, the equilibrium boundary conditions require A + p?vlg =0and B+ p?v(f =0,
which yields
0 0 \2171/2
(i — )W

Ty = SoD. : (5.53)
(P = L)Wk
My = =~ [ (5.54)
where -

/ 2 + 2p|0ed) dr ~ 2.12132, (5.55)

¢eq

1 — (2p[6e

/ p e =1 1~ 349778, (5.56)

W — g

As mentioned above, we consider the diffusion in all three phases (two-sided
case), diffusion in the parent phase only (one-sided case) The corresponding phase
field parameters are determined to reproduce the equilibrium boundary conditions.
However, there is another case during the three phase transformation when the
diffusion of only one of the growing phases is negligible (Ds < D.,, D,,). The corre-
sponding kinetic boundary conditions for a;/ interface are described in Eqs. (5.27)
and (5.28). Similarly, the corresponding kinetic boundary conditions for §/+ and
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a/f interfaces are described in Egs. (5.51) and (5.52). To reproduce the equilib-
rium boundary conditions in the third case, we propose a new diffusion coefficient
expression

2D, Do (1 — 65)(1 + agy050+) (1 + dapdads)

D(¢) = D’y + D, + <¢’Y — (ba)(l + 4aay¢a¢w)<Da - D'Y) ‘

(5.57)

In analogy to the two-sided case, three parameters aq, ag, and a,s are chosen to
tune the surface diffusion at «/7, /v and «/f interfaces. For an «/~ interface,
where ¢, =1 — ¢, and ¢z = 0, the diffusion expression Eq. (5.57) becomes

1 1 1

1 1
Da/y(ﬁb) = 2D, + 5D, + ha/7(¢) (ﬁ — 2Da) . (5.58)

In order to reproduce equilibrium boundary conditions at an «/ interface, we obtain
the expression for 7,,, and M,/, according to Eqgs. (5.47) and (5.48),

C(Pg - pO a)2W2 1 1
Ta/’y — /v v/ + , (559)
8D 2D, ' 2D,

Moy =

0
QO&/’Y(pfy/a pa/’y) ( W W ) ' (560)

4P 2D, 2D,

For a binary i/f interface (i = a,7), where ¢, = 1 — ¢ and Dg < D;, the
diffusion coefficient in Eq. (5.57) becomes

Di[l 4 aigi(1 — )]

W+ od—p) 00

Dis(¢i) =

with ¢ = D,/D,. In analogy to Egs. (5.53) and (5.54), we can write down the
expressions for 7;3 and Mg to eliminate the grand potential and diffusion potential
jump in Egs. (5.51) and (5.52)

(P05 — P%:)°W?E
8D, ’

(5.62)

Tw =

(P95 — ph) W ks
16D,

Mz = (5.63)

where

fr = / { oo Zp %] l}dx, (5.64)

] — (2p[heg] — 1)
& = W/ Do)/, dz. (5.65)

Different from Eqs. (5.55) and (5.56), we should note that x; and &; are dependent
on 4t = D, /D, instead of being constants.
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5.1.3 Surface diffusion

In the previous section, we have presented the procedure of determination of parame-
ters in 7(¢), M(¢) and D(¢) to eliminate the grand potential and diffusion potential
jumps and reproduce equilibrium boundary conditions. In chapter 4, the parameters
a;; were chosen to vanish surface diffusion. However, in solid-solid transformations,
the surface diffusion is typically not negligible. As mentioned above, the tangential
surface diffusion is perpendicular to the normal flux V' and Jy, which modifies the
mass conservation law rather than kinetic bounary conditions. In the following, we
explain how to tune the surface diffusion in our model.

For a binary i/j interface, D; and D; are the diffusivities of i and j grains or
phases. The interface between ¢ and j is an area with a defined width 9, in which
the diffusivity usually has a constant value D, and significantly differs from D;
and D;. Hence, a diffusivity jump appears at the sharp interface area. In contrast,
a diffuse interface is used in the phase field method and the diffusivity curve varies
smoothly between two bulk phases. To relate the two situations, the surface diffusion
is defined as the total excess diffusivity with regard to the bulk values and calculated
by the integral

o0

1 1
Dsurf - -l)i’mfer(S = / [D<¢) - §DZ - §D]]dl‘ (566)

When D; < D; in the one-sided case, Dg,, s is

Daurs = Dingor = / T ID() - %Di]d:c. (5.67)

—00

To incorporate the surface diffusion into the diffusion expression D(¢), on the
one hand, an additional term is introduced in D(¢) in the one-sided case to enhance
the diffusivity at interface region. Thus, D(¢) is defined as

D(¢) = Diy; + 4D, b (5.68)

The corresponding surface diffusion becomes

Dows = [~ (4Dl 606,)d = 2300, V. (5.69
On the other hand, when D(¢) is chosen as Eqs. (5.39) and (5.57), one method to
obtain the desired surface diffusion is tuning the parameter a;;. An increase of a;;
leads to larger surface diffusion. However, a;; has a upper limit which depends on
the diffusion ratios of ¢ and j phases since the positiveness of the dissipation should
be obeyed.

Subsequently, the grand potential and diffusion potential difference have to be
eliminated to reproduce the equilibrium boundary conditions when the surface dif-
fusion exists. For instance, the desired surface diffusion coefficient at a binary i/j
interface is obtained by using a new a;; in the two-sided case. Since the parameters
®, ¢ and 7;; in Eqgs. (5.44), (5.45) and (5.47) are independent of a;;, they do not
need to be recalculated. However, g;; is a function of a;;. A new p;; is calculated
by integrating Eq. (5.46). The corresponding cross-coupling term M;; is obtained
by using Eq. (5.48). In the one-sided case, an expression for the diffusion coefficient
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functions is given by Eq. (5.68). The integrals of x and £ in Egs. (5.55) and (5.56)

become . - 2~ 9phud]
Rsurf = W /Oo ¢Z + 4D§1j¢ter/Di¢i(1 - ¢2)d$7 (570)
L[ 1= (2p[peg] — 1)?
P — \’ dz. 5.71
St = g /oo b+ 4D, [ D1 — 1) o7

When the surface diffusion is considered the in one-sided case, the parameters x and
¢ have new expressions. After integrating Eqgs. (5.70) and (5.71), the corresponding
values, 7;; and M;;, can be obtained by using Egs. (5.53) and (5.54). Furthermore, to
maintain the stability of nondiagonal phase field, the constraint D;,../D; < 0.875
needs to be satisfied.

5.2 Simulation parameters

To investigate the growth kinetics of the pearlite transformation, the alloy Fe-
3.44%atC is chosen and simulated by the presented grand-potential based non-
diagonal phase field model. At this composition, the pearlite directly forms from
the austenite phase. The linearized phase diagram of Fe-C for the simulations is
illustrated in Fig. 5.1. The chosen thermodynamic and kinetic parameters and the
simulations parameters are listed in Table 5.1 and Table 5.2, respectively. The free
energy densities of 7, a and 6 phases are plotted in Fig. 5.2. As shown in Fig. 5.2,
the curvature of the cementite free energy parabola is much larger than for austenite
and ferrite, the produced concentration gradient in cementite is closed to 0. In two-
dimensional simulations, a pair of lamellae is computed in a rectangular simulation
box of total size n, x n, with the grid spacing Az = Ay = 0.4W as illustrated
in Fig. 5.3, where W is the interface width and equals to unity. For the present
simulations, we consider o,, = 09y = 049. In order to obtain steady state periodic
lamellar arrays, periodic boundary conditions are used perpendicular to the growth
front, while no-flux boundary conditions are used at the top and bottom sides of the
simulation box. The length of n, is large enough to ensure that the diffusion in the
y-direction is not hampered. During the simulations, different diffusion paths are
activated in five cases to study the influence of bulk, volume and surface diffusion on
the growth kinetics of pearlite transformation. In the cases 1 to 4, we prescribe the
capillary length d/W = 0.21696, 0.65088, 1.0848 to obtain the same lamellar spacing
at the extreme condition, i.e., \./W = 96 and \,,/W = 48, under the different un-
dercooling 10K, 30K and 50K. In case 5, the capillary length E/W = 1.0848 is used
for all the undercoolings 20K, 30K, 40K, 50K and 60K. Also, a moving-frame method
and GPU acceleration are applied in the simulations to increase the computational
efficiency.

5.3 Results and discussions

Before presenting the simulations of pearlite growth, we make a number of simpli-
fying assumptions:

e We assume that there is no grain boundary segregation (no solute drag effect).
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Figure 5.1: Linearized Fe-C eutectoid phase diagram.
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Figure 5.2: Demonstration of parabolic free energy densities of the «, § and ~ phases.
Dashed lines depict the common tangent constructions.
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Figure 5.3: Demonstration of the simulation scenarios. In cases 1 to 3, the surface
diffusion is eliminated, while case 4 and 5 consider surface diffusion. Case 1 only
considers the diffusion in + phase. Case 2 considers the diffusion in v, « and 6
phases. Case 3 considers the diffusion in v and « phases. Case 4 considers the
diffusion in v phase and surface diffusion. Case 5 considers the diffusion in o and 6
phases and surface diffusion.
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Table 5.1: Thermodynamic and kinetic properties of pearlite transformation

Symbol Definition and units Value
R Gas constant (J/(molK) ) 8.314
T. Temperature of the eutectoid point (K) 1000 [150]
Ce eutectoid composition (mol) 0.034 [150]
Ca Concentration of a at the eutectoid point (mol) 0.000677 [150]
Co Concentration of 6 at the eutectoid point (mol) 0.25 [150]
me/ Slope of v/« transformation line (K/mol) 3155 [150]
m* Slope of « phase line (K/mol) 158572 [150]
mf/ Slope of v/6 transformation line (K/mol) -7503 [150]
m? Slope of # phase line (K/mol) —00
D, Diffusion coefficient in 4 phase (m?/s) 1.5 x 107 exp(—142100/(RT))[150]
D, Diffusion coefficient in o phase (m?/s) 2.2 x 10~* exp(—122500/(RT))[150]
Dp Diffusion coefficient along interface (m?/s) 8.51 x 107° exp(—96851/(RT))[147]
) Interface thicknesses of v/a and /6 (nm) 0.25 [179]

Table 5.2: Dimensionless parameters used in the nondiagoanl phase field simulations
of the pearlite transformation

Symbol Definition Value
44 Interface thickness 1
dr = dy grid size 0.4
V., Atomic Volume 1
D, diffusion coefficient in v phase 1
€y parameters of parabolic free energy function of v phase 1
€a parameters of parabolic free energy function of o phase 50.213
€9 parameters of parabolic free energy function of o phase 1000
! concentration of v phase at eutectoid point 0
cl concentration of o phase at eutectoid point -0.1336
c’ concentration of 3 phase at eutectoid point 0.8664

e The diffusivities along v/« and /6 interfaces are assumed to be the same,
while the diffusivity along the «/6 interface is not considered (v is the austen-
ite, av is the ferrite and 6 is the cementite).

e Equilibrium boundary conditions at the a/v, 8/y and «/0 interfaces are sat-
isfied.

5.3.1 Case 1: diffusion in v phase

To benchmark the presented grand potential based nondiagonal phase field model
in the one-sided case where only the diffusion in v phase is considered, we com-
pare the growth kinetic of pearlite at steady state obtained from the nondiag-
onal phase field simulations with the predictions of the Zener-Hillert model un-
der different undercooling AT = 10K,30K,50K for different lamellar spacings
A Am = 2.667,3.0,3.333. In Ref. [126, 141}, the Zener-Hillert model is

2D, C2/* — 271 Am
VZener = ~ 1= T )

.72
Natlo C%7 — /7 X (5:72)
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where Vzener is the growth velocity of the lamellae at steady state, D, is the diffusion
coefficient in the v phase, which is defined as unity in phase field simulations. 7, and
np are the fractions of @ and @ phases. C2/*, C2/?, 0?7 and C/7 are the equilibrium
concentrations, which are dependent on temperature. A is the lamellar spacing, while
A denotes minimum spacing when the lamellar growth velocity equals to zero.

In the simulations, the diffusion in « and 6 phases and the surface diffusion
along o/ and 6/~ vanish, i.e., D, = Dy = D™ = D% '— (. Hence, the growth
of pearlite is merely controlled by bulk diffusion in the 7 phase. With time, the
curvatures of the o/ and 0/~ interfaces become constant and the growth velocity
of pearlite (V) reaches steady-state. The dimensionless growth velocities V, A, /D,
obtained from nondiagonal phase field simulations are depicted in Fig. 5.4 together
with the predictions of the Zener-Hillert model under given undercooling AT= 10K,
20K and 30K. In Fig. 5.4, the solid lines present the dimensionless growth velocities
according to Zener-Hillert model, while the points indicate the phase field simula-
tion results. The phase field simulation results lead to a similar relation between
growth velocity and lamellar spacing as Zener-Hillert model predicts. However,
when the undercooling becomes large, such as 50K, the deviation between nondiag-
onal phase field simulation results and the predictions of Zener-Hillert model reaches
39%, while it decreases to 18% for AT = 10K. As elucidated in Ref. [173], the de-
viation is caused by the simplification of the Zener-Hillert model rather than the
presented phase field model. The lamellar microstructure at steady state is pre-
sented in Fig. 5.5 where AT = 30K and A\/\,, = 2.667, 3.0, 3.333. In Fig. 5.5, the
curvature of « decreases with the increase of lamellar spacing. Since the diffusion
in a and @ is not considered, the o — # phase boundaries are perpendicular to the
growth front. Overall, the nondiagonal phase field results have a nice agreement
with the predictions of the Zener-Hillert model. The larger the lamellar spacing is,
the smaller the curvature of « phase is, which reduces the deviation between the
simulation results and the predictions of Zener-Hillert model.

5.3.2 Case 2: diffusion in «, # and v phases

In this section, we investigate the capabilities of the nondiagonal phase field in the
two-sided case where the diffusion in «, # and v phases are activated. The diffusion
coefficient in v, a and ¢ phases are defined as D,, D, and Dy, respectively. Thus,
the ratios between the diffusion coefficients in growing phases and mother phase
are prescribed as ftoy = Da/Ds, gy = Dg/D,. Since new diffusion paths for
carbon transportation are introduced, the steady-state growth velocity of pearlite
increases. In the work of Ankit et al. [152], an approximate linear relation is
obtained to describe the steady-state growth velocity of pearlite, V. 1,49, through
simply combining the diffusion flux in the growing phases with the diffusion flux in
the mother phase, which can be written as

Vita+o = Vypytato; (5.73)

where p.4q4¢ is a factor depending on the phase diagram parameters, which is given
by
aly mo/
Prtaro = 1+ m—aﬂa/fma + m—el‘@/vnﬁw (5.74)
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Figure 5.4: Case 1: Comparison between NPF simulation results with the Zener-
Hillert theory in the one-sided case with AT = 10K, 30K and 50K. The deviation
between NPF simulation results and Zener-Hillert calculations is reduced when the
undercooling is decreased.

with m®7/m® = 50.213 and m%7/m? = 1000 for pearlite transformation, and
Na, Mo are the phase fractions of the a and # phases. The simulation results are
illustrated in Fig. 5.6. The dimensionless growth velocities V,1q19Ac/D., for AT=
10K, 30K, 50K and A\/\,, = 2.667 are presented in Fig. 5.6(a), the points indicate
the NPF simulation results, while the dashed lines are fitted lines for p, = g > 0.
The nondiagonal phase field simulation results show perfect linear relations. Small
deviations between simulation results for p, = pp = 0 (case 1) and the fitted dashed
lines may be caused by the two different diffusivity functions used in case 1 and
2. However, the deviation becomes smaller when the undercooling is decreased.
Then, the velocity ratios V. ,10/V, obtained from NPF simulations are compared
with Ankit’s model, which is shown in Fig. 5.6(b). The NPF simulation results
agree well with the calculation of Ankit’s model, and the ratios are independent of
the undercooling. The deviation is smaller than 7%, which is caused by the lower
growth velocity for u, = pg = 0 as mentioned above. Furthermore, the lamellar
microstructure is presented in Fig. 5.7 for AT = 30K, A/, = 2.667 and fiq/y = fig/
=1, 5, 10, 15. In contrast to case 1, the solute can be transported inside the o phase
due to the concentration gradient and absorbed by the # phase in case 2. Therefore,
the thickening and tapering of cementite is observed near the growth front, which
agrees with the observations in Ref. [150, 152].

Moreover, in the two-sided case, lamellar growth can be controlled by bulk dif-
fusion (diffusion in v phase) or volume diffusion (diffusion in « and € phases) by
choosing different diffusion ratios. For the pearlite transformation, the concentra-
tion gradients in the a and 6 phases are much smaller than in the v phase, i.e.
Vecy < Ve, < Ve, which can be easily found from the Fe-C phase diagram. The
growth velocity ratios (V(ua = po = 15)/V (e = 119 = 0)) is smaller than 1.4, while
these values are larger than 5 for the symmetric phase diagram as shown in Fig. 4.6
in Chapter 4. Consequently, the growth velocity of the lamellae is controlled not
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Figure 5.5: Demonstration of the lamellar microstructure as obtained from nondiag-
onal phase field simulations in case 1 with AT = 30K and A/, = 2.667, 3.0, 3.333.
Figure (a) is the concentration field. Figure (b) is the chemical potential field. The
curvature of the a phase decreases when the lamellar spacing increases.
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Figure 5.6: Case 2: Panel (a) indicates that the nondiagonal phase field (NPF)
simulation results show a perfect linear relation for different undercoolings, i.e.,
AT = 10K, 30K and 50K with A/A. = 2.667. Points are nondiagonal phase field
simulation results, while the dashed lines are fitted lines by using the simulation
results. The deviation between the growth velocity in one-sided case (V(fa/y =
tasy = 0)) and the fitted lines is narrowed when the undercooling decreases. Figure
(b) demonstrates the comparison between velocity ratios (V,1a+0/V,) and pyiate
calculated by using Eq. (5.74). The largest deviation is smaller than 7%, which
implies a good agreement with the predictions by Ankit.
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Figure 5.7: Demonstration of the steady state lamellar microstructure obtained from
nondiagonal phase field simulations with AT = 30K, A/\,, = 2.667 and fia/y = fig/4
=1, 5, 10, 15. With the incorporation of diffusion in « and 6 phases, thickening
and tapering of cementite is observed near the growth front. Figure (a) is the
concentration field. Figure (b) is the chemical potential field.
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only by the diffusivities but also the concentration gradients in the growing phases in
the two-sided case. In the presented simulations, u, and py have to be smaller than
17 to ensure the stability of nondiagonal phase field model. When p, = g = 15, the
bulk diffusion is more dominant than volume diffusion. The transition from a bulk
diffusion dominant growth pattern to a volume diffusion dominant growth pattern
is not included in Fig. 5.6. However, the necessity of introducing a crossing-coupling
term for volume diffusion dominant growth patterns has already been clarified in
Chapter 4. To sum up, Ankit’s model is well reproduced by the presented nondiag-
onal phase field model for diffusion in «, v and 6 phases.

5.3.3 Case 3: diffusion in v and o phases

Since the 6 phase is stoichiometric, the concentration gradient in the 6 phase is 0.
The solute transportation in the 6 phase theoretically vanishes. In this section, we
investigate the growth rate of pearlite when the diffusion in 6 phase is suppress.
Thus, we ignore the diffusion in the € phase and consider the diffusion in the v and
« phases by using a new diffusion coefficient expression presented in Eq. (5.57). The
parameters do, G0, Qoo in Eq. (5.57) are chosen to tune the surface diffusion at o/,
~v/0 and a//6 interfaces. Here, the surface diffusion is eliminated. The nondiagonal
phase field simulations are carried out for AT = 30K, 50K and A/, = 2.667. The
simulation results are presented in Fig. 5.8.
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Figure 5.8: Case 3: Demonstration of nondiagonal phase field simulation results with
diffusion in v and y phases for A/\,;, = 2.667 and AT = 30K, 50K. The nondiagonal
phase field results and the predictions of Eq. (5.75) both indicate the slight influence
of the 6 phase on the growth rate of pearlite growth.

We should note that the dashed line in Fig. 5.8 is the calculation of the following
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equation
a/y
e L+ Halla mm
Prvo _ e (5.75)
Py+a+6 1+ Halla=,— + HoTo = o™

where p,., indicates the the ratio between the growth velocity when the diffusion
in the v and « phases is considered and the growth velocity in the one-sided case,
while p, 1449 has already been defined in Eq. (5.74). p,+4 is obtained by omitting the
influence of diffusion in the 6 phase, i.e., ugnem?”/mg = 0, which is reasonable for
the cementite phase. From the calculation results of Eq. (5.75) for u, = pe < 10,
we can see that the difference between p,i, and pyigiq is less than 0.1%. The
nondiagonal phase field simulation results presented by the points in Fig. 5.8 indicate
that the difference between V.., and V4,49 is smaller than 2% when the diffusion
in the 6 phase is neglected. In one word, the slight difference indicates that diffusion
in the 0 phase has negligible influence on the growth velocity of pearlite at steady
state as expected. The concentration gradient in the # phase produced by phase
field simulation is small enough in the two-side case to transport solute from « phase
to 6 phase.

Up to here, we have presented the nondiagonal phase field simulation results
when the diffusion occurs in (i) v phase; (ii) «, € and 7 phases; (iii) @ and ~ phases.
In these cases, the free boundary conditions are reproduced and surface diffusion
is all eliminated. The agreement between simulation results and the theoretical
models, i.e., the Zenner-Hillert model and Ankit’s model, illustrates the capabilities
of the nondiagonal phase field model and validates the approximations. Then, in
the following sections, the influence of surface diffusion is investigated.

5.3.4 Case 4: diffusion in v phase and along surfaces

In this section, we investigate the influence of the surface diffusion on the growth
kinetics of pearlite in the one-sided case. The simulation results are benchmarked
with Pandit’s model in Ref. [147]. Firstly, the surface diffusion at a/v and 6/
interfaces are assumed to have the same value. It is integrated in the simulations
by using Eq. (5.68), and the phase dependent diffusion coefficient is

D(¢) = Dygy + 4Df;7ter¢a¢v + 4D$7Zter¢9¢7' (5.76)
In Ref. [147], the growth velocity with surface diffusion is predicted as
1 ol -’ 12Dp0\ 1 A

where Dp is the diffusion coefficient of the o/ and 6/~ interfaces, ¢ is the interface
width. It has to be clarified that Dgd equals to the surface diffusion coefficient
Dy in the phase field simulations. Then, the ratio p,isu, s is defined as pyqsurp =
Vtsurf/Vy, which can be written as

6Dsurf

surf — 1 . 5.78
p’H‘ f + D'y)\ ( )

We should note that, for given D, and A, py4surs is proportional to Dgy,¢. In the

present simulations, the interface diffusivities D;) . and D}, are chosen as 0.25,
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0.5 and 0.75. The corresponding surface diffusion coefficients Dy, s are V2 /2, V2
and 3v/2/2 according to Eq. (5.69). To link the equilibrium boundary conditions,
M and 7 are recalculated to eliminate all the abnormal interface effects except the
surface diffusion.

We compare the simulation results with cross-coupling term (M # 0, NPF)
and without it (M = 0, CPF) for AT = 10K,30K,50K and A/\,, = 2.667. The
comparison results is presented in 5.9(a). In Fig. 5.9(a), the NPF results exhibit
a linear relation and the slope is dependent on the temperature, while the CPF
results are nonlinear. When the undercooling is increased, p obtained from the NPF
simulations becomes closer and closer to the analytical calculations of Eq. (5.78).
In Ref. [147] (see Figure 4), the diffusion in the 7 phase is dominant when the
temperature is close to the highest transformation temperature. However, when
the undercooling decreases, a transition from ~-dominated to interface-dominated
diffusion takes place. Consequently, the ratio of v diffusion to surface diffusion is
converged when the undercooling is continuously decreased. Moreover, when A/, =
1.333, the NPF simulation results in Fig. 5.9(a) are lower than the calculations of
Eq. (5.78).

In Fig. 5.9(b), we plot the curves of p versus dimensionless lamellar spacing
A/Am obtained from NPF and CPF to investigate the influence of lamellar spacing
on the ratio py e, f. From the comparison results, the deviation decreases when the
lamellar spacing is increased as shown in Fig. 5.9(b). This difference is attributed to
the modification of the curvature of lamellar growth fronts. The larger the lamellar
spacing is, the smaller is the curvature of growth front is. Therefore, at larger
lamellar spacing, the flat growth front leads to the decrease of the deviation between
NPF simulation results and p4surs.
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Figure 5.9: Phase field simulation results with diffusion in the v phase and along
surface. Figure (a) depicts the NPF results, CPF results and the predictions of
Eq. (5.78) for different undercooling and \/\,, = 2.667. Figure (b) demonstrates
the NPF results, CPF results and the predictions of Eq. (5.78) for AT = 50K and
different lamellar spacings.

In conclusion, the diffusion in the v phase and along the surface are taken into
account in the phase field simulations in this section. For given undercooling and
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lamellar spacing, the growth velocities obtained from NPF simulations are pro-
portional to the surface diffusion coefficient, which agrees well the linear relation
suggested in Ref. [147]. The higher the undercooling is, the smaller the deviation
between the NPF results and the predictions of Pandit’s model. Additionally, for
given undercooling and surface diffusion coefficient, an increase of the lamellar spac-
ing also decreases the deviation. Furthermore, the comparison between NPF results
and CPF results reveals the necessity of introducing the cross-coupling term and
elimination of abnormal interface effects.

5.3.5 Case 5: diffusion in «, ¢ phases and along surfaces

In this section, we reproduce the growth patterns of the pearlite transformation
with respect to surface diffusion as well as diffusion in o and 6 phase with AT =
20K, 30K, 40K, 50K and 60K and compare the simulation results to experimental
observations. On the one hand, the diffusion coefficient of the o phase obtained from
Table 5.1 is 160 times larger than of they phase. Although the concentration gradient
in the a phase is much smaller than in the v phase, according to the prediction of
Ankit’s model in Ref. [152], the diffusion in the a phase can approximately enhance
the growth velocities of pearlite 4 times. On the other hand, the diffusion in the
f phase has little influence on the growth kinetic of pearlite as aforementioned in
Section 5.3.3. Hence, we assume the diffusivities to be identical in the a and 8 phases.
To obey the stability condition of NPF, i.e., D,/D, < 17, the diffusion in the vy phase
is neglected in the simulations and the one-sided model is used for the nondiagonal
phase field simulations. Furthermore, to match the surface diffusion between the
experimental calculations and phase field simulations, we define a dimensionless
ratio Kgyurf

Dinter(S Dsurf
DX\, D\,

The experimental data of Djye,, 6 and D, can be obtained from Table 5.1 for differ-
ent undercoolings. A, at 980K, 970K, 960K, 950K and 940K are 0.319um, 0.215um,
0.158um, 0.126um, 0.104pm, respectively, which are taken from Ref. [150]. Com-
bining these data, we can obtain the corresponding value of kg, s, i.€., kgyrp =2.298,
3.60, 5.20, 6.936, 8.886. For phase field simulation, \,,/W = 120, 80, 60, 48, 40 at
980K, 970K, 960K, 950K, 940K and the dimensionless average capillary length d/W
is 1.0848. Then, the corresponding surface diffusion coefficient D,,, ¢ is obtained by
using the same kg, ¢, i.e., Dgyrp = 275.8, 288.1, 311.6, 332.9, 355.5.

First, we simulate the pearlite growth without surface diffusion. Due to the high
asymmetry of pearlite (7, = 6.4857,), the a phase always overgrows the 6 phase at
different temperatures. The steady state growth velocities cannot be obtained when
only volume diffusion is considered. Afterwards, the surface diffusion is added into
the simulations. The simulation results are presented in Fig. 5.10. In Fig. 5.10, the
relation between the velocity ratios V/Vze,e. and temperature is investigated. The
blue points indicate PF simulation results in Ref. [150], which consider the diffusion
in the v and o phases. The simulation results at T" = 950K are 4 times larger
than Vzener, whereas they are still much smaller than the experimental observations
represented by black points. The red points are the NPF simulation results. From
the comparison, we can see that the nondiagonal phase field (NPF) simulation results
with the consideration of surface diffusion agree well with the experimental results.

ksurf = (579)
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As mentioned in Ref. [147], the surface diffusion is the principle path for solute
transport. A similar trend is observed in the simulation results and experimental
data. When the temperature increases, the velocity ratio V/Vzepe, also decreases.

In Fig. 5.11, the pearlite structures at steady state obtained from NPF simula-
tions are presented at T = 970K and 940K. As mentioned above, they fail to obtain
the steady state when the diffusion in o and 6 phases only is turned on, which
implies that the surface diffusion plays a decisive part in pearlite growth. For high
temperature, such as T=970K, the tapering and thickening of the 6 phase near the
growth front is more obvious. They are mitigated for lower temperature, which
agree well with the observations that the thickening of cementite is not strong in
the experiments [180].

Overall, in this section, we performed nondiagonal phase field simulations to in-
vestigate the growth velocities of the pearlite transformation with respect to diffusion
in o and v phases as well as surface diffusion at different temperatures. To repro-
duce realistic surface diffusion, the surface diffusion coefficients in the simulations
are taken from experimental measurements. The agreement between simulation re-
sults and experimental results implies the importance of surface diffusion and the
quantitative properties of the nondiagonal phase field model. In addition, the ta-
pering and thickening of cementite near the growth front is mitigated by the surface
diffusion at lower temperatures.

5.4 Summary

The capabilities of the free energy based nondiagonal phase field model for the two-
sided case have been benchmarked in the previous chapters. However, the formation
of the free energy demands that the phase diagram has to be symmetric. To break
in this restriction, in this chapter, the grand potential based nondiagonal phase
field model is developed for complex phase transformation according to Onsager’s
principles. Then, the presented nondiagonal phase field simulations are carried out
for 5 cases to investigate the influence of different diffusion paths on the growth
kinetics of pearlite transformation.

When the surface diffusion is eliminated (Case 1 to 3), the nondiagonal phase
field simulation results are compared with the Zener-Hillert model in the one-sided
case (bulk diffusion) and Ankit’s model in the two-sided case (volume diffusion).
The agreement between simulation results and theoretical predictions supports the
quantitative properties of the nondiagonal phase field model. In Case 3, the diffusion
in stoichiometric cementite is eliminated and the simulation results demonstrate
that the diffusion in cementite has only slight influence on the pearlite growth. In
Case 4, the surface diffusion and diffusion in v phase are taken into account. The
growth velocities of the lamellae are proportional to the surface diffusion coefficient,
which agrees well with Pandit’s model. The comparison between simulations results
(M # 0) and without (M = 0) cross-coupling term evidences the importance for
introducing the cross-coupling term. In Case 5, the diffusion in « and 6 phases
and surface diffusion are considered. Through matching the same surface diffusion
between experiments and phase field simulations for different undercoolings, the
growth velocities obtained by the nondiagonal phase field model show a convincing
agreement with experimental observations.

In conclusion, the capabilities of the grand potential based nondiagonal phase
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Figure 5.10: The relative growth velocity with diffusion in «, € phases and along
interfaces normalized to the Zener-Hillert predictions. Red points are NPF simu-
lation results. Blue points are PF simulation results taken from Ref. [150]. Other
black points are experimental observations and taken from Refs. [181-187].
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Figure 5.11: Demonstration of NPF simulation results of pearlite growth at steady
state when the temperature is 970K and 940K. Figure (a) is the concentration field,
while figure (b) is the chemical potential field. The tapering and thickening of
cemenite is mitigated when the temperature decreases.
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field model are systematically benchmarked for pearlite growth with and without
surface diffusion. Based on the advantages of the nondiagonal phase field model,
it may be a promising tool for future studies of peritectic solidification, divorced
pearlite microstructure formation and pearlite colony formation.



Chapter 6

Summary and conclusions

Due to the artificial enhancement of the interface thickness for typical phase field ap-
plications, the elimination of abnormal interface effects and reproduction of the free
boundary conditions is a long-standing unsolved problem in the phase field commu-
nity. Although the thin-interface limit and the anti-trapping current are proposed
for quantitative phase field modeling in symmetric and one-sided cases, a thermody-
namically consistent solution for the two-sided case has not been elaborated so far.
Recently, a nondiagonal phase field model has been developed based on Onsager’s
reciprocity relations, which introduces a new cross-coupling term to fully remove all
the abnormal interface effects in the two-sided case. The aim of this thesis is to
solve the persistent problem in the phase field community by developing a nondiag-
onal phase field model for more general circumstances during phase transformations
and metallurgical applications. For this purpose, through reproducing the dendrite
growth, eutectic solidification and eutectoid transformations, the capabilities of the
developed nondiagonal phase field model are benchmarked and various new insights
are gathered.

First, a 4-fold surface energy anisotropy is incorporated in the binary nondiag-
onal phase field model to investigate the free dendrite growth of pure substances
solidification in two-dimensions. In the symmetric and one-sided cases, the dimen-
sionless growth velocities obtained from nondiagonal phase field simulations are
benchmarked with Green’s function calculations (sharp-interface method). The de-
viation between simulation results and sharp interface calculations is less than 5%,
which is very satisfactory. In the two-sided case, the nondiagonal phase field sim-
ulation results demonstrate significant deviations from the Baribieri-Langer theory
due to the assumptions of small anisotropy and undercooling (weak out of equilib-
rium) within this model [124]. In view of our simulation results, a generalization
of the prediction is proposed for the two-sided case. The nondiagonal phase field
results for small undercooling have a satisfactory agreement with the predictions.
Furthermore, the phase field results are also presented when the new cross-coupling
term or the elimination of surface diffusion are turned off. These simplifications,
which are used in conventional phase field models, lead to significant deviations to
the sharp interface results and evidence the necessity of using the nondiagonal phase

field model.

The aforementioned nondiagonal phase field model is restricted to two-phase
transformations. For the sake of multi-phase transformation, the nondiagonal phase
field is extended to three-phase transformations, such as eutectic and eutectoid

93
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transformations, again based on Onsager’s principles. The link between the nondi-
agonal phase field model and free boundary description determines the parameters
of the nondiagonal phase field model. The two-dimensional nondiagonal phase field
simulations are carried out not only for eutectic solidification in the one-sided case,
but also for eutectoid transformation in the two-sided case. The obtained simula-
tion results during eutectic solidification are benchmarked against boundary inte-
gral calculations from the literature in the one-sided case. Simulations performed in
the two-sided case during eutectoid transformations reveal that the dimensionless
growth velocities of lamellae are proportional to the ratio of diffusion coefficients, as
described in Ref. [152]. Specifically, when the diffusion coefficients of the growing
phases are smaller than the parent phase, the diffusion path in the parent phase is
the dominant solute transport path. With the increase of the diffusion coefficients of
the growing phases, the transition between parent phase diffusion to growing phases
diffusion happens, which leads to modified growth kinetics. Furthermore, in both
the one- and two-sided cases, the necessity of using the cross-coupling term in the
nondiagonal phase field model is verified for quantitative simulations.

Up to this point, the nondiagonal three-phase field model is derived based on a
free energy functional, which is limited to simple symmetric phase diagrams. There-
fore, we have developed a grand potential based nondiagonal three-phase field model
for complex alloy transformations. The parameters in phase field model are deter-
mined with or without surface diffusion through reproducing the proper free bound-
ary conditions. The corresponding two-dimensional phase field simulations are im-
plemented to investigate the growth kinetics of the pearlite transformation with
respect to different diffusion paths. When the surface diffusion is eliminated, the
simulation results are compared with the Zener-Hillert model in the one-sided case
and Ankit’s model [152] in the two-sided case. Additionally, when only the diffusion
in a and 7 phases are considered, the simulation results indicate that the diffusion
in cemenite has low influence on the growth kinetic of the pearlite transformation.
When the surface diffusion is considered, in the one-sided case, the growth velocities
of the lamellae is proportional to the surface diffusion coefficient, which agrees well
with the predictions of Pandit’s model [147]. Subsequently, we take the diffusion in
«, v phases as well as the surface diffusion into account and reproduce the pearlite
growth for different undercoolings. By matching the surface diffusion coefficient
in the phase field simulations with experimental data, the nondiagonal phase field
simulation results agree well with the experimental observations. Furthermore, the
tapering and thickening of cementite phase near the growth front are mitigated at
lower temperatures.

This thesis shows the quantitative benefits of the thermodynamically consistent
nondiagonal phase field model with the cross-coupling term in symmetric, one- and
two-sided cases. Based on the advantages of the nondiagonal phase field model,
this quantitative model provides a basis for investigation of various microstructure
evolution processes of complex alloys. For instance, this model can be applied not
only for two-phase transformations, such as free dendrite growth, dendrite orienta-
tion transitions, needle-like dendrite growth in Li polymer, but also for multi-phase
transformations, including stable and unstable eutectic solidification, peritectic so-
lidification, monotectic solidification and eutectoid transformation in the solid state.
Meanwhile, the limitations of the nondiagonal phase field model should be improved
for the applicability of this model. The first one is related to the diffusion ratio con-
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trast between growing and parent phases. Secondly, computational techniques, such
as adaptive mesh refinement method and multi-GPU acceleration, should be uti-
lized to accelerate large-scale simulations. Finally, more fields, including elastic,
flow, magnetic and electric fields, need to be coupled to the nondiagonal phase field
model to reproduce the realistic microstructure evolution for various applications in
material science. I believe these challenges will be solved in the future.
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CHAPTER 6. SUMMARY AND CONCLUSIONS



Appendix A

Asmptotic procedure of thin
interface limit

To demonstrate the accurate quantitative solutions of the free boundary conditions
in symmetric model, Karma and Rappel analyzed the convergence of the phase
field model, which is named “thin-interface limit” [82-84]. In the following, this
thin-interface limit is shortly explained.

Firstly, we can write down a simple form of phase field model for pure substance
solidification

OF (¢, \u)
dp
O = DV?u + 0;h(¢) /2, (A.2)

where 7 is the relaxation time, W is the interface thickness, F'(¢, Au) includes the
double well potential (f4,(¢)) and the chemical free energy (f.(¢)), i.e., F(¢, A\u) =
Jaw (@) + Afe(¢)u, with X being a constant. D is the diffusivity, h(¢) is the interpo-
lation function, which has two forms

hvr(¢) = 15(¢ — 2¢°/3 + ¢°) /8, (A.3)

hrve(¢) = ¢. (A.4)

Then, Eqgs. (A.1) and (A.2) can be rewritten in dimensionless form with length unit
of [, and time unit [./D, with [, ~ D/V, being a mesoscopic length scale,

ap®Oup = p*V2h — faw — Mou, (A.5)

Ou = V*u + 0,h /2, (A.6)

where p = W/l., « = D7/W? is the dimensionless diffusivity. For p < 1, the
solutions of Eqgs. (A.5) and (A.6) are expanded in powers of p in the inner region,

¢ = ¢o+pd1+ pdat -, (A7)

u = ug + puy + pPus + - - -, (A.8)

70,0 = W2V? — (A1)

and expanded in the outer region,
&= o+ pd1 + PPo+ -, (A.9)

U = Ty + piiy + pPtiy + - - - (A.10)
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In the outer region, ¢ is constant in the bulk phase, #; obeys the diffusion equation
Oty = V2@, (A.11)

In the inner region, the phase field equations Eqgs. (A.5) and (A.6) were rewritten in
the curvilinear coordinates (&1, &, £3), where & and & measure arclength along the

two principal directions of the interface, while £3 measures length along the normal
direction. Thus, Egs. (A.5) and (A.6) become

plaw + K)Iyp + 07¢ — Ageu = 0, (A.12)

p(v+ k)Oyu + 8727u — pvo,h/2 =0, (A.13)

where 7 is defined as &3/p, v = Vi./D is the dimensionless interface velocity and
k = l.(1/R; + Ry) is the curvature, where R; and R, indicate the two principal
radii of curvature of the boundary. After substituting Eqs. (A.7) and (A.8) into
Egs. (A.5) and (A.6) without considering the trivial higher order terms in p?, at the
leading order, we obtain

020 — [ — Agguo = 0, (A.14)
B2ug = 0. (A.15)
At the first order, it yields
Lpy = )\ggul — (aw + k)0, 00, (A.16)
v
877 (Gnul - §h0> = 0, (Al?)

with the linear operator £ = 8727 — fd?df Integrating Eq. (A.17) once and twice yields

- %ho +Our = A, (A.18)

n
uy =u + An+ % / dn'h°, (A.19)

0

where A and u4; donate the integration constant. Since the right-hand side of
Eq. (A.16) must be orthogonal to 9,¢ for the existed solution ¢;. For 1 <| n |[< p~*,
we have

WEIEOO Oy = Egli_r}(}i e,y = O, Tio| ™, (A.20)
lim A°(n) = F1. (A.21)
n—=+oo

Inserting Eqgs. (A.20) and (A.21) into Eq. (A.18) yields

g + Ogtio| " = A, (A.22)
v ~ =

— 5 + 8§3u0‘ = A. (A23)

Elimination of A in Eqs. (A.22) and (A.23) recovers the heat conservation condition

V= 653@0|_ - 6531~L0|+. (A24)
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To match the regions on both sides of the solid-liquid interface, the outer and inner
solutions take the form

i = ui + O, 1|6, (A.25)
= p (0 + SF*) + 006, (A.26)
where [+ is defined as e
F* = /0 dn(h® 4 1). (A.27)
Equating the right-hand side of Eqgs. (A.25) and (A.26) yields
uf =p (711 + gFi> . (A.28)

Therefore, when ¢, h are odd functions of ¢, and f is an even function of ¢, we
obtain the expression of

_ I K
(T —/\—J(ow + k) + a7 (A.29)
with
+oo
1= [ o, (A.30)
+o0o
J = —/ dn&,qbogg, (A.31)
+o00 ul
K:/ dn@nqﬁogg/ dn'h®. (A.32)
—00 0
Substituting Eq. (A.29) in Eq. (A.28), we get
R S P (A.33)
Ui = —pR = = az— | pv, :
where /
ay = j, (A34)
K+ JF
= —. A.
(05} i ( 35)

Here, Eq. (A.33) is equivalent to the Gibbs-Thomson condition,

1 1
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Appendix B

Nondiagonal phase field model for
binary alloys

B.1 Evolution equations

In this appendix, we present the non-diagonal phase field model developed for binary
alloys during isothermal solidification in Ref. [108]. Firstly, we introduce the free
energy functional in a standard dimensionless form

Feo) = o {n S50 4 )] +gc.}, (B.1)

2
where W is the interface thickness, H determines the height of the potential. f(¢)
and g(¢) are the double well potential and the chemical free energy density, respec-
tively, which can be written as

f(@) = *(1 - )%, (B.2)
1
9(C,0) = 5 [C = €7 = q(0)(CF = CT)), (B.3)
with

q(¢) = ¢°(10 — 156 + 6¢°). (B.4)

The chemical potential is

dg(C

u= 200 ooy - i - o) (55

oC
¢(z) and C(x) at equilibrium state are

1 x
Geq(T) = 5 {1 - tanh(\/ﬁw)} . (B.6)
Cegl) = (Cg' + CL1) /2 + v(2)(Cs" = C)/2, (B.7)

where v(x) = 2¢[¢eq(x)] — 1.

& presents the amount of matter that undergoes the phase transformation per
unit time, which is propotional to the normal velocity of the interface and vanishes
in the bulk phases. The dimensionless concentration ¢ is the conserved field and
obeys

C=-V-J (B.8)
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with J is the diffusion flux. From the perspective of the Onsager relations, J and
¢ are linearly related to the driving forces (-0F/d¢ and —V4&F/3C), which are
derivatives of the free energy functional with respect to the fields ¢ and C. The
driving force conjugated to ¢ is —6F /d¢, while the driving force conjugated to J is
—VoF/6C. Thus, the non-diagonal phase field model can be written as

- ‘;—Z — 7(0))+ [M(HWV] - ], (B.9)
OF . J
— VE = [M(¢)WV¢]¢ + W7 (B.IO)

where 7(¢) is the relaxation time, D(¢) is the diffusivity equation and M (¢) is
the parameter of cross-coupling term. The gradient V¢ in the cross-coupling term

leads to the influence of the crossing-coupling term in the interface zone. Inserting
Egs. (B.1) and (B.8) into Egs. (B.9) and (B.10) yields

f(¢)  9g(C.9)

Ap = HW?V?p — H 36 5o D(¢)Vu (B.11)
ji = VD)V + D)MWV - Lz - e (B.12)

with A = 7(¢) — D(¢)[M(¢)WV¢]?. The interface dissipation is

1 ¥ia 5G
— 2 Qv l=dt — g vZ
h 2/VV{¢5¢ TV5e

D(¢)

To ensure the thermodynamic stability of the non-diagonal phase field model, the
positiveness of the diagonal term should be satisfied,

| (B.13)

—5 [ [Tw)(czs) oM)WV | .

7(¢), D(¢) > 0,A > 0. (B.14)

Hence, the determinant A must be positive, which leads to the positive interface
dissipation and the restriction on the cross-coupling term M (¢), which reads

7(9)
(0)(WVeq)*

M(¢) < (B.15)

B.2 Free boundary descriptions

In the macroscopic description of (slow) solidification, the boundary conditions at
the sharp interface without interface kinetics correspond to a local equilibrium.
Then the chemical potential difference between the two bulk phases at the interface
is determined by the curvature (Gibbs-Thomson correction) alone.

In a binary A-B alloy, the conservation of atoms A and B at a moving interface
between parent and growing phases implies the relations

—DsVClS'TL:VCS—JB, (B16)
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— DLVC‘L N = VCL — JB, (Bl?)

where Dg and Dy, are the diffusion coefficients in the solid phase and liquid phase.
Vg and Ve, are the gradients of concentration at the interface on the side of solid
and liquid phase. Jp is the flux of atom B through the interface. V represents the
total atom flux through the interface, i.e. V = J4 + Jg. Similar to Jg, Jy4 is the
normal flux through the interface of atom type A. n is the unit normal vector to the
interface.

Moreover, the kinetic boundary conditions linearly relate the grand potential
jump (692) and chemical potential jump (du, rigorously the diffusion potential) across
the interface to the fluxes V and Jg. At equilibrium, the driving forces of the
interface motion are zero, i.e. 02 = 0 and du = 0. Near equilibrium, 62 and du
depend on the free energy density ¢, (Cp) and gs(Cs), the second derivative of free
energy density ¢7(Cp) and g4(Cys) and the concentrations Cf, and Cys in liquid and
solid phases, which can be expanded as

09 = Cg'(Cs — Cg")gs(C") — CL'(C — Cgr (CL), (B.18)
op = (Cr = CNgr(Cr) — (Cs — 5 gs(CF). (B.19)
Consequently, the linear relations can be written as
6 = AV + BJg + dok, (B.20)
Su = BV + CJg, (B.21)

where A, B and C are three independent coefficient, which are the components of
the 2 x 2 Onsager matrix. Notice that this matrix is symmetric according to the
principles discussed in Section 2.1. In order to ensure the Onsager matrix to be
positive, 4 > 0 .,C > 0 and the determinant AC — B% > 0 should be satisfied
simultaneously. Then, the interface dissipation

2 2
“4;/ + % + BV Jg (B.22)

1
Ryt = 5(6Q'V+§N'JB) =

is positive for all value of V' and Jp.

Subsequently, the procedure to determine the association between the parameters
in the non-diagonal phase-field model with the kinetic coefficients A, B and C in
Onsager matrix is presented. First of all, a one-dimensional infinite system with
interface normal coordinate x is considered with the interface being located at z = 0.
The interface separates the solid (¢(—o0) = 1) and liquid phase (¢(oc0) = 0).

For a sharp interface, the total dissipation is

10 . Jx) 1> J*(x) ,
_ d - d wnt B2
Rsp 2/ x Ds + 2/0 x D, + Rgr, (B.23)

—00

where R;,; indicates the dissipation along the interface. To map the dissipation of
the sharp interface method to the non-diagonal phase field method, we compare
Eq. (B.23) to the dissipation in the phase field model, Eq. (B.13), which becomes

L) L[ JA(a)
RNPF —5/_ dx—DS +§/5 dl’—DL
J*(x)
D(¢)

(e 9]

(B.24)
+2M (¢)Wod (x)J (z) |

=1 da [r(as)(qs)? "
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where ¢ indicates the interface thickness of the diffusion interface. When = < —d,
¢(z) ~ 1, while ¢(z) = 0 for x > §. The first and second terms in Eq. (B.24) are
the dissipation in the bulk phases since <b and ¢'(x) equal to 0 when ¢ is constant.
Thus, only the diffusion flux J(z) contributes the dissipation in the bulk phases.
Moreover, Eq. (B.24) can also be expressed as

I JAx) 1 JAx) 10 JAx) 1 [0 J*x)
—— [ 4 L | — -/ a —-[a
fixer 2/_me5 +2/0 "D, 2/_595195 2/0 "D,
J*(x)

1 d N2 Y
+ 3 /_5 dz {T(Cﬁ)(@ + W + 2M (¢)W p¢p (x)‘]@)} g

(B.25)

Through comparing Eq. (B.23) with Eq. (B.25), the interfacial dissipation of the
non-diagonal phase field method is

int _1 5:1:7' 1\2 J? () 0o ()T (2
Rithe = [ do [r()@F + 55 +2M@W 60 0)(2)

1 /% gz 10 g2
YT
2 ). Ds 2 /o Dy

where Jg and J, are the fluxes in the bulk phases. In order to identify Eq. (B.26)
with Eq. (B.22), ¢ can be expressed in terms of V' at steady state

(B.26)

. 0¢0x

¢ = 1 Bt ~ -V (x). (B.27)

Moreover, for the quasi-steady concentration field, we have

C~-VC'(x), (B.28)
and by the conservation law
C=—J(z). (B.29)
Thus,
J () = VC'(x). (B.30)

Through integrating Eq. (B.30) with an integration constant —Jg, we can obtain
J(x)=VC(x) — Jp. (B.31)

At the equilibrium state, ¢(x) and C(z) can be replaced by ¢,(x) and Cey(x), which
give the equilibrium distributions of ¢ and C'. In addition, we have Jg = VO — Jp
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and J;, = VC7!— Jp in the bulk phases. Consequently, R¥% . in Eq. (B.26) becomes

Ribr =5 | om0ty @PV? = | ded(0)WIol )PV IVCaale) = i)

1[0 [VCq(z) = g (VO —Jp)*  (VCI' = Jp)®
i 2 /_5 & { D(¢eq) 2Dg 2D; }
[ e 0@ — M) W, @I

W-g-g
+V g /Z dz {M(qﬁeq)W[Gﬁ’eq(x)]z - {g(ﬁ)) - 2051 - 2%1”

J2 1 1 1
Sy / dx{ D(tg) 2Ds_2DL]

We should note that R%%, .. is independent of § can be extend to (—oo, 00) without
alteration. Comparing Eq. (B.32) with Eq. (B.22), we can obtain the expression of
parameters of Onsager matrix, i.e. A, B,C

A= / " de {r(0u)dly (@)} —2 / Az M (feq) W[y (7)) [Cog ()]

oG

(B.32)

oo 2 (0 ea\2 cqr2 (B.33)

o [ aps - G~ Gh
o~ [Larfuoamisior-[59-F G} wso
c- [ dx[ éeq) B 2119} (B.35)

An alternative way to derive the parameters A, B and C is presented in Ref. [107].
The phase field equations are integrated over the interface region to reproduce the
equilibrium boundary conditions formed in Egs. (B.16) and (B.17). On the one
hand, through integrating Eq. (B.11) with the combination of Eqgs. (B.27), (B.28)
and (B.31), the jump of the diffusion chemical potential is

S =V {MW /W dz[¢l,(z)]* — /W dxCeq(z)/D(d)eq)}
+ 7 [ da/D(on).

On the other hand, through multiplying Eq. (B.9) by ¢'(x) and integrating over the
interface, we can obtain the grand potential jump

50 :v{weq) | aslety o + / 42C2 () /D(6ey)
oMW / dz[¢l, () } (B.37)

+J5 {MW/ da[el,( / z)/D( ¢eq)}

(B.36)
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After identifying Eqgs. (B.36) and (B.37) with the Onsager linear relations presented
in Egs. (B.20) and (B.21), the parameters A, B and C have the same formulation.
Egs. (B.33) to (B.35) connect the parameters A, B and C with the phase field pa-
rameters 7(¢), M(¢) and D(¢). By choosing appropriate phase field parameters,
the desired boundary conditions can be reproduced. For instance, during solidifica-
tion with low undercooling, the free boundary conditions are usually assumed at the
solid/liquid interfaces. Thus, the jumps of diffusion chemical potential and grand
potential disappear, i.e. du = Q = 0. Under this circumstances, A = B=C =0
has to be satisfied, which leads to diffusion limited interface motion.

B.3 Determination of parameters

In the symmetric case, the diffusivity in the parent phase is equal to one in the
growing phase, i.e. D(¢) = Dy, = Dg = D. Obviously, 1/D(¢¢,)—1/2Ds—1/2D, =
0. Since v(x) in Eq. (B.7) is an odd function, Cey(2)/D(¢eq) —C§'/2Ds—C1! /2D, =
0. Consequently, The parameters A, B and C become

ar(¢)  BW(C' — Cih?

1 — €q €q
B =aM(¢), (B.39)
C =0, (B.40)
where

a= W/ dz[¢l, (x)]? ~ 0.23570, (B.41)
8= / S~ 0?(2)] ~ 1.40748. (B.42)

Then, for local equilibrium boundary conditions, 7(¢) and M (¢) are
M(¢) =M =0, (B.43)

B _ 5w2(cgq _ CZQ)Q

T(¢) =7 = oD : (B.44)

For two phase solidification, 7(¢) and M (¢) are constants. In the symmetric case,
the cross-coupling term between phase field and diffusion field vanishes, which re-
covers the results of thin-interface limit analysis.

In the one-sided case for binary alloy during solidification, the diffusivity in solid
phase is negligible, i.e. Dg < Dy. According to Eq. (B.16), we have

Jp = VL. (B.45)

Then, the difference of diffusion chemical potential and grand potential in Eqs. (B.20)
and (B.21) become

= (A+ BCV + dyr, (B.46)
Su = (B+CCV. (B.47)

Therefore, the elimination of the difference of diffusion chemical potential and grand
potential yields -
A+BC =0 (B.48)
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B+CC{ =0 (B.49)
The ¢ dependent diffusivity equation in one-sided case is
D() = Di(1 - ¢). (B.50)

Here, we should note that D(¢ = 1) =0, D(¢ = 0) = Dy, and the surface diffusion,
i.e., Dyyrp = [72 (D(¢) — Dr,/2)dz, is automatically eliminated. After substituting
Egs. (B.33) to (B.35) into Egs. (B.48) and (B.49), we have

(CL = Cs"Wp

= aeq B
B+ CC = aM (o) 5D, : (B.51)
eq _ eqy2 o
Atpog =10 (G CTWE e ieey).  ms)
L
where p and £ are constants, which are given by
© Az peg(z) — v(2)
= — 7~ 212132, B.53
1—
£ = / dx 12080 s gorrs. (B.54)
1= deg()
Consequently, 7(¢) and M (¢) are
N (e SRS
T(¢)=7= D, : (B.55)
L GO
M(¢p)=M = 50D, . (B.56)

Looking back at Eq. (B.12), the anti-trapping current naturally appears in the
flux equation based on the Onsager relations, and reads

Ju = —D(¢) MV ¢

Cel — CW . (B.57)
:_( L 2@5) p(1—¢>W2¢V¢,

which is identical with the anti-trapping current derivated by Karmal[85]. Notice,
however, that according to the Onsager symmetry, also a new term appears in the
phase field equation, which has not been considered in Ref. [85].
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