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Kurzfassung

Die vorliegende Arbeit befasst sich mit zwei zentralen Themen, der Behand-
lung von Versteifungseffekten im Rahmen einer isogeometrischen Reissner-Mindlin-
Schalenformulierung und der korrekten Beschreibung des sproden Bruches in
Reissner-Mindlin Platten und Schalen mit Hilfe eines Phasen-Feld Modells. In bei-
den Fillen wird die Geometrie durch die Mittelflache der Struktur repridsentiert und
mit Non-Uniform Rational B-Splines (NURBS) Funktionen interpoliert, die im Be-
reich des CAD sehr verbreitet sind. Ein Direktor-Vektor-Feld wird benutzt, um die
Dickenrichtung zu beschreiben. Da nur kleine Verformungen betrachtet werden, wird
der Direktor-Vektor durch eine Differenzvektorformulierung berechnet. Zusitzlich zu
den drei Verschiebungen werden zwei Rotationsfreiheitsgrade, die die Querschubef-
fekte erfassen, definiert.

Beziiglich des ersten Ziels der Behandlung von Versteifungseffekten im Rahmen der
1isogeometrischen Analyse liegt der Fokus auf den zwei Versteifungseffekten die in
der vorliegenden Reissner-Mindlin-Schalenformulierung auftreten, ndmlich den Quer-
schubversteifungen und Membranversteifungen. Diese unerwiinschten Effekte fiihren
zu einer iiberhohten Systemsteifigkeit, einer Unterschidtzung der Verformung und Os-
zillationen in den Spannungsresultierenden. Sie werden ausgeprigter mit abnehmen-
der Dicke, beziehungsweise im Kirchhoff-Limit. In einem ersten Schritt wird eine
Methode zur Eliminierung von Querschubversteifungen in Platten und Schalen vor-
gestellt. Die Methode basiert auf der Tatsache, dass Querschubversteifungen durch
eine Unstimmigkeit der Approximationsriume der Verschiebungen und Rotationen in
der Kompatibilititsbedingung der Schubverzerrungen entstehen. Daher werden fiir die
zwei Rotationen angepasste Approximationsraume definiert, und zwar sind ihre Basis-
funktionen in Richtung der relevanten Rotation um einen Polynomgrad niedriger als
fiir die Verschiebungen. Die drei unterschiedlichen Kontrollnetze werden aus der glei-
chen Ausgangsgeometrie mit unterschiedlicher Polynomgrad-Erhohung erzeugt. Das
bedeutet, dass das isogeometrische Konzept immer noch erfiillt ist. Die Netze haben
die gleiche Anzahl an Elementen und zusammen formen sie das globale Netz, das
fiir die schwache Form des Gleichgewichts eingesetzt wird. Die Effizienz und Ge-
nauigkeit der Methode wird anhand von numerischen Beispielen untersucht. Die Er-
gebnisse unterstreichen die Uberlegenheit der Methode gegeniiber der herkmmlichen
Reissner-Mindlin-Schalenformulierung die keine MaBnahmen gegen Versteifungsef-
fekte enthilt. Oszillationen in den Spannungsresultierenden werden eliminiert und es
zeigt sich, dass die Methode konkurrenzfihig zu anderen Methoden ist, die in der iso-
geometrischen Analyse gegen Versteifungseffekte eingesetzt werden. Die Methode ist
auflerdem allgemein fiir jeden Polynomgrad anwendbar und fiihrt im Vergleich zu der
herkdmmlichen Schalenformulierung zu weniger Freiheitsgraden im Gleichungssys-
tem.

In einem zweiten Schritt wird eine gemischte Verschiebungs-Spannungs-Methode ba-
sierend auf dem Hellinger-Reissner Variationsprinzip vorgestellt, um sowohl die Mem-



branversteifungen als auch die Querschubversteifungen in Platten und Schalen zu redu-
zieren. Die Spannungsresultierenden, die mit diesen Versteifungseffekten zusammen-
hingen werden als zusitzliche Unbekannten beriicksichtigt und miissen mit speziell
gewdhlten Basisfunktionen interpoliert werden. In den entsprechenden Richtungen der
Spannungskomponenten werden Ansatzfunktionen gewdhlt, die um ein Grad niedri-
ger sind als bei den Verschiebungen und Rotationen. Die zusitzlichen Unbekannten,
die fiir die gemischten Formulierungen benutzt werden, werden im Allgemeinen durch
statische Kondensation aus dem resultierenden Gleichungssystem eliminiert. Im Ge-
gensatz zu der klassischen Finite Elemente Methode, in der C' 0 kontinuierliche Ansatz-
funktionen benutzt werden, und in der die statische Kondensation auf Elementebene
durchgefiihrt wird, ist das in der isogeometrischen Analyse durch die hohe Kontinuitét
der Funktionen nicht mehr moglich. Die statische Kondensation muss nun auf Patche-
bene erfolgen, was die Inversion einer Matrix auf Patchebene beinhaltet und zu ei-
ner vollbesetzten Steifigkeitsmatrix fiihrt. Dies wiederum erhoht den Berechnungsauf-
wand und daher werden zwei lokale Methoden vorgestellt, die statische Kondensation
auf Elementebene ermoglichen. Die erste Methode enthiélt Spannungsresultierenden
die diskontinuierlich (C~!) iiber die Elementgrenzen definiert sind. Sie fiihrt zu einer
diinnbesetzten Steifigkeitsmatrix mit der gleichen Bandbreite wie die herkdmmliche
verschiebungsbasierte Schalenformulierung. Es zeigt sich, dass diese Methode die Er-
gebnisse fiir niedrige Polynomgrade verbessert und durch den niedrigen Berechnungs-
aufwand besonders attraktiv ist. Aufgrund der Diskontinuitdt der Spannungsresultie-
renden werden die Versteifungseffekte jedoch nicht ganz eliminiert und die Ergebnisse
werden fiir hohere Polynomgrade nicht erheblich verbessert. In der zweiten lokalen
Methode wird der in Greco et al. (2017, 2018) fiir B Formulierungen vorgestellte Re-
konstruktionsalgorithmus benutzt und die lokalen Kontrollvariablen werden gewichtet,
um die verschmierten globalen Variablen zu ermitteln. In den numerischen Beispielen
wird gezeigt, dass diese Methode fast die gleiche Genauigkeit wie die globale Methode
auf Patchebene besitzt, jedoch fiihrt sie im Gegensatz zu dieser zu einer Bandmatrix
als Steifigkeitsmatrix und dadurch, dass sie teilweise auf Elementebene definiert ist re-
duziert sie die Gesamtberechnungskosten. Die gemischte kontinuierliche Methode auf
Patchebene und die gemischte rekonstruierte Methode sind konkurrenzfihig gegeniiber
anderen Methoden, die gegen Versteifungseffekte eingesetzt werden.

Das zweite wesentliche Ziel dieser Arbeit ist die Entwicklung eines Phasen-Feld Mo-
dells zur Beschreibung des sproden Bruches bei isogeometrischen Reissner-Mindlin
Platten und Schalen. Ein kontinuierliches Riss-Phasen-Feld, das auf der Schalenmit-
telfliche definiert ist und mit NURBS Basisfunktionen interpoliert wird, wird benutzt,
um den Ubergang zwischen gerissenem und ungerissenem Material zu beschreiben. Da
Reissner-Mindlin Formulierungen sowohl fiir diinne als auch fiir dicke Strukturen be-
nutzt werden, ist ein Bruchversagen aufgrund von Querschubverformungen moglich.
Dabher liegt ein besonderer Fokus auf der Einbindung der Querschubverzerrung in das
Phasen-Feld Modell. Die spektrale Zerlegung fiir die Zug-Druck Aufteilung wird auf
den gesamten Verzerrungstensor angewandt, der iiber die Dicke variiert, um ein unphy-
sikalisches Bruchverhalten in Druckbereichen zu vermeiden. Der ebene Spannungs-



zustand kann nicht mehr durch eine einfache Eliminierung der Normalverzerrungen
und Normalspannungen in Dickenrichtung aus dem Materialmodell erfolgen, sondern
muss numerisch erzwungen werden. In jedem Integrationspunkt iiber die Dicke wird
die Normalverzerrung in Dickenrichtung durch einen lokalen Algorithmus mit quadra-
tischer Konvergenz bestimmt, um die Normalspannung in Dickenrichtung auf null zu
bringen. Die Fiahigkeit des Phasen-Feld Modells fiir sproden Bruch die Rissbildung,
das Risswachstum und die Rissverschmelzung in Platten und Schalen korrekt darzu-
stellen wird anhand von verschiedenen Beispielen untersucht. Ein Vergleich mit zwei
bestehenden Formulierungen, einem 3D Solid und einer Kirchhoff-Love Schale, wird
durchgefiihrt. Es wird gezeigt, dass im Falle von diinnen Platten und Schalen eine gu-
te Ubereinstimmung zwischen den drei unterschiedlichen Elementarten zu beobachten
ist. In den Fillen jedoch wo Scherung eine entscheidende Rolle spielt, unterscheiden
sich die Ergebnisse der Kirchhoff-Love Schale von den anderen zwei da die erstere
keine Querschubverformungen beriicksichtigt.



Abstract

The present work focuses on two main topics, the treatment of locking effects in the
framework of an isogeometric Reissner-Mindlin shell formulation and the correct de-
scription of brittle fracture in Reissner-Mindlin plates and shells using a phase-field
model. In both cases the geometry is described by the mid-surface of the structure
with Non-Uniform Rational B-Spline (NURBS) basis functions that are common in
CAD tools and a director vector field is used for the description of the thickness direc-
tion. Since only small deformations are considered, the director vector is updated using
a difference vector formulation. In addition to the three displacements, two rotational
degrees of freedom that account for the transverse shear effects are defined.

Regarding the first objective of treating locking in the framework of isogeometric anal-
ysis, the focus lies on the two main locking effects that occur in the present Reissner-
Mindlin shell formulation, namely, transverse shear locking and membrane locking.
These undesirable effects lead to an artificial stiffening of the system, an underestima-
tion of the deformation and oscillations in the stress resultants. They are intensified
with a decreasing thickness, i.e. in the Kirchoff limit. In a first step, a method to elim-
inate transverse shear locking in plates and shells is introduced. The method is based
on the fact that transverse shear locking occurs due to a mismatch of the approxima-
tion spaces of the displacements and rotations in the strain formulation. Thus, adjusted
approximation spaces are defined for the two rotations, namely, their basis functions
are in the relevant direction one order lower than the ones of the displacements. The
three different control meshes are created using the same starting geometry and ap-
plying different degrees of refinement. This way, the isogeometric concept still holds.
The meshes have the same number of elements and together they form the global mesh
which is used in the weak formulation. The efficiency and accuracy of the method
is assessed with the help of numerical examples. The results highlight the superior
behavior of the method compared to the standard Reissner-Mindlin shell formulation
without any anti-locking measures. Oscillations in the stress resultants are eliminated
and the method is shown to be competitive with other methods used in isogeometric
analysis against locking. It is generally applicable for any polynomial degree and leads
to less degrees of freedom in the system of equations compared to the standard shell
formulation.

In a second step, a displacement-stress mixed method based on the Hellinger-Reissner
variational principle is proposed in order to alleviate both membrane and transverse
shear locking in plates and shells. The stress resultants that are related to these lock-
ing effects are considered to be additional unknowns and have to be interpolated with
carefully chosen shape functions. Namely, in the relevant direction, one order lower
splines are chosen for the stress resultants than for the displacements and rotations.
The additional unknowns that are used in mixed formulations are in general elimi-
nated from the resulting system of equations using static condensation. In contrast
to the classical finite element method where C°-continuous shape functions are used



and static condensation is performed on the element level, in isogeometric analysis the
high continuity of splines does not allow that anymore. Static condensation has to be
performed on the patch level, which includes the inversion of a matrix on the patch
level and leads to a fully populated stiffness matrix. This on the other hand increases
the computational cost and thus, two local approaches are proposed that enable static
condensation on the element level. The first one includes stress resultants that are de-
fined discontinuously (C'~!) across the element boundaries and leads to a sparse matrix
that has the same bandwidth as the standard displacement-based shell formulation. It
is shown that this method improves the results for low polynomial degrees and is at-
tractive due to its low computational cost. However, because of the discontinuity of
the stress resultant fields locking is not completely eliminated and the results are not
greatly improved for higher polynomial degrees. In the second local approach, the
reconstruction algorithm proposed in Greco et al. (2017, 2018) for B formulations is
used and the local control variables are weighted in order to compute blended global
variables. In the numerical examples it is shown that this method has almost the same
accuracy as the global approach on the patch level, however, in contrast to that it leads
to a banded stiffness matrix and is computed partly on the element level, thus, reduc-
ing the overall computational cost. The mixed continuous approach on the patch level
and the mixed reconstructed approach are competitive compared to other methods used
against locking.

The second main objective of this work is the development of a phase-field model for
the description of brittle fracture in isogeometric Reissner-Mindlin plates and shells. A
continuous crack phase-field which is defined on the shell mid-surface and interpolated
with NURBS basis functions is used to describe the transition between cracked and un-
cracked material. Since Reissner-Mindlin formulations are used for both thin and thick
structures, fracture due to transverse shear deformations is possible. Thus, a special
focus lies on the incorporation of the transverse shear strains in the phase-field model.
The spectral decomposition for the tension-compression split is applied on the total
strain tensor, which varies through the thickness, in order to avoid unphysical fracture
in compressive areas. The plane stress condition cannot be applied by a simple elimi-
nation of the thickness normal strain and thickness normal stress from the constitutive
law but has to be enforced numerically. In each integration point through the thickness,
the thickness normal strain is computed using a local algorithm with quadratic conver-
gence in order to achieve a zero thickness normal stress. The ability of the phase-field
model of brittle fracture to correctly describe crack initiation, propagation and merging
in plates and shells is assessed with the help of various numerical examples. A com-
parison to two existing formulations, namely, a 3D solid and a Kirchhoff-Love shell is
carried out. It is shown that in the cases of thin plates and shells a good agreement be-
tween the three different element types is observed. However, in cases where shearing
plays a crucial role, the results of the Kirchhoff-Love shell differ from the other two
since it does not consider transverse shear deformations.
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Chapter 1

Introduction

1.1 Motivation

In engineering, inspiration for the development of new structures and mechanisms is
often drawn from nature. Plates and shells, which are found in various forms and
shapes in plants and animals, such as leaves, seashells and skulls have been adopted
to numerous engineering fields, including architectural and civil engineering (bridge
deck, storage tank, domes), mechanical engineering (wing skin, car body) and marine
engineering (ship hull), see Fig. 1.1. Both plates and shells lead to lightweight struc-
tures and thus are economical solutions. In particular shells offer many advantages due
to their geometrical form, i.e. their curvature. They have an optimal load-carrying be-
havior and a high stiffness. Thus, they are able to span wide areas without the need of
any additional support. Furthermore, since they can take various forms they are often
used for a more aesthetic design. Plates can be considered as special cases of shells
with no curvature.

Figure 1.1: Shells in nature and engineering (Daderot (2014), Sydney (2017), NASA (2002))

A main characteristic of plates and shells is that their thickness is small compared
with their other dimensions. Depending on how small the thickness is, they are further

1



2 1 INTRODUCTION

classified into thick and thin plates/shells. In engineering, a shell is regarded as thin if
the thickness to radius ratio is less than 1/20. In other cases the shell is considered to be
thick. For plates the limit between the thin and thick range is indicated by a thickness
to the average side ratio of 1/10. If the ratio gets smaller than 1/100, flexural rigidity
is almost non existent and the structure is referred to as a membrane, see Ventsel and
Krauthammer (2001). A plate or shell can be defined as a three-dimensional continuum
and described using a three-dimensional constitutive law. However, a much simpler
approach is to represent the geometry of the structure only by its mid-surface while
the thickness direction is described by the normal of the surface or the director vector.
The two main plate/shell theories are the Kirchhoff-Love and the Reissner-Mindlin
theory. Kirchhoff (1850) made an important contribution to the analysis of thin plates
in which he formulated the well-known Kirchhoff-hypotheses. Based on these, Love
(1888) later presented a shell theory for thin elastic shells. In the Kirchhoff-Love
theory transverse shear effects are neglected and the normal to the middle surface is
considered to remain normal after deformation. This applies for thin shells where
shear deformation is so small that it can be considered as non-existent. However, with
increasing thickness the shear strains have a greater influence on the deformation and
thus, new theories had to be introduced for the correct analysis of thick plates/shells.
Reissner (1944) and Mindlin (1951) developed a shell theory where transverse shear
effects are taken into account and which is applicable to both thin and thick plates
and shells. Here, in addition to the displacements, the rotations of the normal or the
transverse shear strains are considered as additional unknowns.

With increasingly complex structures, Computer-Aided Engineering (CAE) has be-
come indispensable for the efficient and accurate determination of the load-bearing
and deformation behavior. In this context, finite element procedures have played a
crucial role in engineering analysis and have found wide application in various engi-
neering fields. Nevertheless, the design process is still carried out separately from the
analysis process. A model is first generated with the help of Computer Aided Design
(CAD) tools and then converted to a geometry which can be used for the Finite El-
ement Analysis (FEA). Thus, Hughes et al. (2005) introduced isogeometric analysis
(IGA) in an attempt to unify the design and analysis process by using for both the
same higher order basis functions that are common in CAD tools, e.g. Non-Uniform
Rational B-Splines (NURBS). Especially in the context of shell structures, isogeomet-
ric analysis offers many advantages. First, the higher continuity of splines enables a
straightforward implementation of Kirchhoff-Love formulations, which include sec-
ond derivatives of the displacements and thus require C''-continuous basis functions.
In the standard finite element method C°-continuous shape functions are used, which
is not sufficient. Furthermore, the high continuity of splines throughout a patch al-
lows for an exact computation of the shell curvature, tangent and normal vectors. Free



1.1 Motivation 3

form shell structures are now computable with much less computational effort than
with the classical finite element method. In addition, shells can be described by their
mid-surface which is in accordance with the approach used in most CAD tools for thin
structures.

In the standard finite element method it was soon noticed that the classical
displacement-based formulations led under certain conditions to incorrect results. This
undesired phenomenon was named locking. Since then a lot of research effort has been
put into the development of methods that eliminate locking. Depending on their criti-
cal parameter, the different existing locking effects can be divided into two main cate-
gories, namely, the geometrical and the material locking effects, see Bischoff (1999).
Geometrical locking effects include transverse shear locking, membrane locking, in-
plane shear locking and curvature thickness locking. These effects strongly depend
on the slenderness of the structure that includes the critical parameter, in this case the
thickness. On the other hand, material locking effects like volumetric locking depend
on critical material parameters such as the Poisson’s ratio v. In the context of plate
and shell formulations in which the geometry is described only by the mid-surface and
where the thickness is assumed to remain constant, the main locking effects that occur
are transverse shear and membrane locking. Transverse shear locking, which results
from the use of equal-order shape functions for the interpolation of the displacements
and rotations (or difference vectors), affects both plates and shells. On the other hand,
membrane locking, which is yielded by a coupling of the membrane strains and cur-
vatures, only arises in shells due to their curved surface. These locking effects lead to
an artificial stiffening of the system, thus, an underestimation of the deformation and
in addition to parasitic oscillations in the stress resultants. This behavior is intensified
with decreasing thickness.

Despite their favorable features in many aspects, splines suffer from the same lock-
ing effects as Lagrange shape functions, see Echter and Bischoff (2010). The higher
order of splines may reduce locking, for instance transverse shear locking, however,
it does not eliminate it completely and leads to a higher computational cost. Further-
more, membrane locking is even intensified when using higher order polynomials with
high continuity, see Cardoso and Cesar de Sa (2014). Thus, the introduction of other
approaches for the treatment of locking in the context of isogeometric analysis is nec-
essary. In the past years, different methods have been proposed that either try to solve
the problem on the theoretical level by using special formulations or that adopt ap-
proaches that have been valuable in the classical finite element analysis by modifying
them for the isogeometric analysis.

Apart from the numerical aspects for the correct representation of shell structures,
their material behavior, for instance in the case of fracture is of great interest. Frac-
ture can lead to the complete failure of a structure, putting human lives at risk and
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leading to financial losses. Especially in the case of brittle fracture, where failure oc-
curs abruptly without any visible indication, the correct description of crack initiation
and propagation is of great importance. A well-known incident that demonstrates the
catastrophic results of brittle fracture is the case of the Liberty ships, see Kobayashi
and Onoue (1943) and Fig. 1.2. Fracture models and their numerical implementation
play a key role in the prediction and prevention of fracture, since experimental test-
ing is not always possible due to the high cost. Griffith and Taylor (1921) described
the propagation of cracks as the counteract of a structure’s bulk energy and surface
energy. In other words, a crack will only grow if the released strain energy exceeds
a critical value, necessary to form a new crack surface. In the context of shell struc-
tures, the correct description of the fracture behavior is not an easy task due to the
complex interaction of shell geometry, shell kinematics and material constitutive law.
Fracture processes are either described discontinuously by discrete crack surfaces or
continuously, i.e. the cracked medium is still considered as a continuum. An approach
that has become quite popular due to its useful mathematical properties is the phase-
field method, where a continuous crack phase-field is used that defines the transition
between cracked and uncracked material. Phase-field models have the advantage of
naturally describing crack initiation, propagation, merging and branching without the
need of remeshing or additional criteria. These properties in addition to the continuous
description of the cracked material make phase-field models a very promising option
for the description of brittle fracture in isogeometric plate and shell formulations.

Figure 1.2: Cargo ship ’Schenectady’ broke in two while lying at the outfitting dock in the
constructors yard (U.S. GPO (1947))
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1.2 State of the art

In the context of the numerical analysis of shells, isogeometric analysis (IGA) has at-
tracted a lot of attention in recent years. It was introduced in Hughes et al. (2005) in
order to unify the design and analysis process by using higher order basis functions
from CAD tools, such as NURBS functions. Thus, a structure which is designed in the
CAD tools can be directly used for the analysis process (isogeometric concept). The
first notable steps for the structural analysis of shells with isogeometric analysis were
done in the context of the Kirchhoff-Love theory in Kiendl et al. (2009) where a geo-
metrically nonlinear shell element is introduced with only displacements as degrees of
freedom. However, clamped edges, external moments and a coupling of patches, that
are all related to the rotational degrees of freedom can only be applied using special
measures. In Kiendl et al. (2010) a bending strip method is employed for the treat-
ment of patch interfaces. Still, these formulations do not include measures against
membrane locking. Benson et al. (2011) introduced a rotation-free isogeometric shell
using a lifting operator for the correct definition of the shell normal vector. These
Kirchhoff-Love shell formulations were later enriched and extended for instance in
Nguyen-Thanh et al. (2011) in combination with PHT-splines, in Kiendl et al. (2015¢)
for hyperelastic materials and in Duong et al. (2017) where a penalty and Lagrange
multiplier approach are used to achieve continuity between patch interfaces.

In the framework of Reissner-Mindlin shell formulations, where transverse shear ef-
fects are taken into account, the first isogeometric shells were introduced in Uhm and
Youn (2009) for T-splines and in Benson et al. (2010b) for NURBS. In the latter for-
mulation, the director vectors are only approximated by closest point projections of the
normal vectors, which reduces the quality of the results for higher order NURBS basis
functions. Thus, Dornisch et al. (2013) presented an isogeometric Reissner-Mindlin
shell with exactly calculated director vectors which was later extended to shells with
kinks in Dornisch and Klinkel (2014). In Kiendl et al. (2017) a Reissner-Mindlin
shell formulation based on the isogeometric collocation method is presented. Blended
shells, which combine the Kirchhoff-LLove and the Reissner-Mindlin shell kinematics,
were introduced in Benson et al. (2013). Hosseini et al. (2013, 2014b) presented an
isogeometric solid-like shell and an isogeometric continuum shell for nonlinear anal-
ysis. In both formulations the shell is represented by its mid-surface, however, in the
first case linear Lagrange shape functions are used for the thickness direction while in
the second case they are replaced by higher order B-splines.

Despite their favorable features, splines suffer from the same locking effects as La-
grange shape functions, see Echter and Bischoff (2010). Locking leads to an artificial
stiffening of the system, an underestimation of the deformation and oscillations in the
stress resultants. All the aforementioned first shell formulations in the framework of
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isogeometric analysis did not include any measures against locking. Some of them
used higher order shape functions in order to reduce locking. Even though this ap-
proach is easy, it does not eliminate locking completely and at the same time increases
the computational cost, see Benson et al. (2010b), Echter and Bischoff (2010) and
Bouclier et al. (2013b). Only in the case of isogeometric collocation methods the com-
putational time is not highly affected by the increase of the polynomial degree, see
Kiendl et al. (2015a) for plates and Kiendl et al. (2017) for shells.

In the past years, various new methods have been proposed in order to eliminate the
undesirable locking effects in the framework of isogeometric analysis. An attempt to
overcome locking on the theoretical level was made by using hierarchic formulations.
Echter et al. (2013) applied a hierarchic difference vector on the rotated Kirchhoff-
Love type director of the deformed configuration in order to consider shear deforma-
tions. This formulation avoids transverse shear locking ab initio. However, it still
exhibits some oscillatory behavior in certain stress resultants when using lower order
shape functions. Thus, Oesterle et al. (2016) proposed a hierarchic shell formulation
where two hierarchic displacements are used that describe the transverse shear defor-
mation. Later, this formulation was extended to geometrically nonlinear problems in
Oesterle et al. (2017). Even though these formulations were able to avoid transverse
shear and curvature thickness locking ab initio, additional methods had to be imple-
mented for the elimination of membrane locking. Similar approaches to these hierar-
chic formulations were presented in Long et al. (2012) for subdivision shells and in
combination with NURBS and triangular NURPS in Beirdo Da Veiga et al. (2015). In
Kiendl et al. (2015b, 2018) the classical Timoshenko beam problem was reformulated
to a single differential equation with only one primal variable in order to avoid shear
locking by construction. A mixed displacement method that avoids the geometrical
locking effects ab initio was presented in Bieber et al. (2018).

In addition to these formulations, methods that have been valuable in the classical finite
element analysis for the elimination of locking effects have been extended to isogeo-
metric analysis, like the Assumed Natural Strain (ANS) method in Caseiro et al. (2014,
2015), where the strain components are interpolated at carefully chosen tying points
instead of the standard quadrature points. The Discrete Shear Gap (DSG) approach,
which is closely related to the ANS method and the B method, was implemented in
Echter and Bischoff (2010) and Echter et al. (2013) in order to treat membrane lock-
ing. In Cardoso and Cesar de Sa (2012) the Enhanced Assumed Strain (EAS) method
was used to alleviate volumetric locking. Non-uniform integration techniques were
implemented for isogeometric Reissner-Mindlin shells in Dornisch et al. (2016) and
Adam et al. (2015) in order to overcome locking and increase the efficiency of the for-
mulations. However, the latter method fails for general non-uniform knot vectors and
is thus not relevant for industrial applications. Reduced integrated fields were applied
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for a solid-shell in Cardoso and Cesar de Sa (2014) in combination with a moving
least square approach to project them back onto the fully integrated space and later
in Leonetti et al. (2018) for composite multi-layered shells. The use of adjusted ap-
proximation spaces for the displacements and the rotations in Reissner-Mindlin plates
was able to eliminate transverse shear locking, see Beirdo da Veiga et al. (2012a). Thai
et al. (2011) proposed a stabilization technique to overcome shear locking in laminated
composite Reissner-Mindlin plates. The method consists of a small modification in the
material matrix related to the shear terms, however, it only alleviates locking and does
not eliminate it.

The B method, one of the most popular methods in the finite element analysis, was in-
troduced for isogeometric analysis in Elguedj et al. (2008) along with an F' projection
in order to alleviate locking in nearly incompressible linear and nonlinear elasticity
and plasticity problems. Later, it was extended to straight and curved Timoshenko
beams in Bouclier et al. (2012) and to plane curved Kirchhoff rods in Greco et al.
(2017). A first attempt to apply the B method to isogeometric 2D solid shells was
made in Bouclier et al. (2013b). As it was often stated in these works, the B method
within the framework of isogeometric analysis leads to a linear system where a ma-
trix defined on the patch level has to be inverted and the resulting stiffness matrix is
fully populated, which increases the computational cost. This led to the introduction
of local B formulations, where the B-projection is applied locally and the global vari-
ables are obtained from the local ones using reconstruction algorithms. Such a local B
formulation was first introduced in Bouclier et al. (2013a) for a NURBS-based solid-
shell. A local 5 formulation based on the Bézier projection proposed by Thomas et al.
(2015) was presented in Miao et al. (2018) to alleviate transverse shear locking in
Timoshenko beams and volumetric locking in nearly incompressible elastic solids. In
addition, Miao et al. (2018) presented a non-symmetric Bézier 53 projection, where the
variation of the assumed variables is discretized with dual basis functions. This way,
the assumed variables are directly condensed out without the need of an inversion and
lead to a sparse stiffness matrix with a slightly higher bandwidth. This method was
later applied to geometrically nonlinear Reissner-Mindlin shells in Zou et al. (2020).
A much simpler reconstruction algorithm which is also based on the work of Thomas
et al. (2015) can be found in Greco et al. (2017, 2018) for plane curved Kirchhoff rods
and Kirchhoff-Love shells. There, the local variables are directly interpolated with lo-
cal B-spline functions without a Bézier projection and transformation to the Bernstein
basis. Local B formulations where the locking strains or stresses are projected onto
interpolation spaces with the lowest possible order for each element leading to differ-
ent projection spaces for the inner, corner and boundary elements are presented in Hu
et al. (2016, 2020). Antolin et al. (2017, 2020) used discontinuous polynomial spaces
for the projection of the strains.
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Mixed formulations, which are equivalent to the B formulations for linear cases as
stated in Bouclier et al. (2013a) and Simo and Hughes (1986), were implemented in
the context of isogeometric analysis for a solid-shell in order to eliminate membrane,
shear and thickness locking in linear, see Bouclier et al. (2013a), and geometrically
nonlinear cases, see Bouclier et al. (2015). Echter et al. (2013), Oesterle et al. (2016)
and Rafetseder and Zulehner (2019) used a mixed formulation to overcome membrane
locking in hierarchic shells and Kirchhoff-Love shells. Mixed variational formulations
for nearly incompressible solids were implemented in Taylor (2011) and Fahrendorf
et al. (2020). However, as it is for the B method, mixed methods involve static con-
densation on the patch level due to the high continuity of the shape functions in isoge-
ometric analysis.

Griffith is considered to be the founder of fracture mechanics with his work on brittle
fracture, see Griffith and Taylor (1921). Since then a lot of progress has been made
in this field with the development of new fracture models and their numerical im-
plementation. There exist two main ways to describe fracture processes, the discrete
approaches where discrete crack surfaces are used and the continuum approaches in
which the cracked medium is still considered as a continuum. One of the discrete
approaches is the cohesive zone modeling approach in which interface or generalized
contact cohesive elements are implemented, either from the beginning or adaptively.
It has been widely used due its simplicity, especially in cases where the crack path is
known. In the framework of shells, many applications of this method can be found e.g.
in Cirak et al. (2005), Zavattieri (2006), Rabczuk and Areias (2008) and Becker et al.
(2011) and in later years in combination with isogeometric analysis, e.g. in Dimitri
et al. (2014).

Another discrete approach is the extended finite element method (XFEM) which was
developed based on the partition of unity method in order to allow for arbitrary crack
paths, independent of the mesh. XFEM describes discontinuities using additional ap-
proximation fields for the displacements and if needed for the director. This method
has been applied to Kirchhoff-Love type shells in Areias et al. (2006), Song and Be-
lytschko (2009) and Areias and Belytschko (2006), to solid-like shell formulations
for modeling through-the-thickness cracks in Areias and Belytschko (2005), Larsson
et al. (2011) and Mostofizadeh et al. (2013) and to a Reissner-Mindlin based plate in
Dolbow et al. (2000). In the framework of isogeometric analysis, a Kirchhoff-Love
based and a Reissner-Mindlin based extended isogeometric element formulation were
introduced for modeling fracture in shells, see Nguyen-Thanh et al. (2015) and Benson
et al. (2010a), respectively.

An approach which is very similar to XFEM and is able to compute mesh-independent
crack propagation is the phantom node method. This method uses overlapping ele-
ments at the cracked regions, which are employed by the so-called phantom nodes.
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Applications of this method can be found in Chau-Dinh et al. (2012), Lua et al. (2016)
and Ahmed et al. (2012). Budarapu et al. (2017) created an adaptive multiscale method
for solid shells by combining a continuum-based phantom node method with a molecu-
lar statics model. Multi-level models have also been used in the framework of debond-
ing between the levels of composite structures in Kocaman et al. (2020). The main
disadvantage of discrete approaches is that diffuse ductile damage, as it is encountered
e.g. in metals, cannot be computed and thus they have mainly been applied to brittle
fracture.

Continuum approaches do not describe the crack as a discontinuity in the structure.
Instead the material is still seen as a continuum with weakened mechanical prop-
erties at the cracked areas. Various approaches of this type have been introduced,
among others in Areias et al. (2011), Woelke and Abboud (2012), in connection with
meshfree formulations in Ren and Li (2012), Caleyron et al. (2012) and based on the
gradient-enhanced damage approach in Hosseini et al. (2014a), Nguyen et al. (2012)
and Pigazzini et al. (2019). The disadvantage of continuum approaches is that they
may have difficulties in properly describing surface decohesion and crack propagation
after the softening and damage localization phase.

A method with especially useful mathematical properties that can be regarded as a
gradient damage model is the phase-field method. Since its introduction in Bourdin
et al. (2000, 2008) it has been extensively investigated for brittle and ductile fracture
for the case of solids, see Ambati et al. (2015b) and Alessi et al. (2018), respectively.
In the phase-field method the transition between cracked and uncracked material is
defined using a continuous crack phase-field. This leads to a regularized representation
of the crack. The model has been proven to converge (in the I'-convergence sense)
to the variational formulation of the classical Griffith’s theory of brittle fracture, see
Griffith and Taylor (1921) and Francfort and Marigo (1998). The advantage of using
phase-field models is that crack initiation, propagation, merging and branching can be
described naturally without the need of remeshing or additional criteria. A degradation
function which is defined by the phase-field is used to reduce the elastic strain energy
density. In general, the degradation function is either applied on the entire elastic strain
energy density or only on the part that corresponds to tension. In the latter case, the
elastic strain energy density has to be split first into its tensile and compressive parts.

In the framework of plates and shells, a first attempt to combine the phase-field method
with Kirchhoff-Love shell formulations was conducted in Ulmer et al. (2012). There,
the elastic strain energy density is separated into its membrane and bending parts. Af-
terwards the membrane part is split with a spectral decomposition into its tensile and
compressive parts. The membrane tensile part and the entire bending part is then de-
graded. This formulation, however, can lead to unphysical crack behavior in certain
loading conditions, see Kiendl et al. (2016). An alternative approach in which the
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total strain energy density is degraded by the phase-field was proposed in Amiri et al.
(2014). However, in this case fracture is going to occur in both tensile and compressive
areas, which is unphysical. In order to overcome these deficiencies of the previous two
approaches, Kiendl et al. (2016) suggested to apply the spectral decomposition on the
total strain energy, without any classification in the different strain terms. In the frame-
work of solid-shell formulations, Ambati and De Lorenzis (2016) used a phase-field
model for the description of brittle and ductile fracture in shells with small rotations
and displacements. Reinoso et al. (2017) used a phase-field model for brittle fracture
in shells with large deformations in combination with a monolithic approach. Further-
more, Areias et al. (2016) used two independent phase-fields, one for the lower and
one for the upper face of the shell, in order to describe correctly bending-dominated
problems.

More recent works on phase-field models for plates and shells include the works of
Raghu et al. (2020) and Raghu et al. (2021), where hybrid phase-field models were
used for the analysis of brittle fracture in thick plates. Furthermore, Paul et al. (2020)
presented an adaptive space-time phase-field model for the analysis of dynamic frac-
ture of brittle shells using Locally Refinable (LR) NURBS. Multipatch shell problems
were examined in the framework of a phase-field model of brittle fracture, see Proser-
pio et al. (2020), and ductile fracture, see Proserpio et al. (2021), using an isogeometric
Kirchhoff-Love shell formulation. Combining the phase-field fracture approach with a
Reissner-Mindlin shell formulation has not been attempted so far.

1.3 Scope and objective

One main objective of this thesis is the development of an efficient and robust shell for-
mulation for the description of thin and thick plate and shell structures through the suc-
cessful treatment of locking effects. The shell formulation is based on the isogeometric
Reissner-Mindlin shell introduced in Dornisch et al. (2013), where the shell structure
is described by its mid-surface and for the thickness direction a director vector is used.
NURBS basis functions, which are common in Computer Aided Design (CAD) tools
are used for the geometry description. The focus lies on the elimination of transverse
shear and membrane locking that are pronounced in the Kirchhoff limit, i.e. for thin
plate and shell structures. Two different approaches are implemented. The first one
is using a displacement-based shell formulation and is concerned with the treatment
of transverse shear locking in Reissner-Mindlin plates and shells. Transverse shear
locking occurs due to a mismatch of the approximation spaces of the displacements
and rotations in the strain formulation. Thus, in this approach adjusted approximation
spaces are defined, i.e. the basis functions of the two rotations are chosen to be in
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the relevant direction one order lower than the ones for the displacements. The idea
of solving the problem of transverse shear locking at its roots by using adjusted ap-
proximation spaces is already known from the finite element method, see e.g. Babu
and Prathap (1986), Babu et al. (1987) and Ishaquddin et al. (2012). It was first imple-
mented in isogeometric analysis in Beirdo da Veiga et al. (2012a). Using this approach,
three separate control meshes are created that have in common the number of elements.
The starting geometry is the same for all three meshes and only the degree of the sub-
sequent refinement is different. Thus, the isogeometric concept, namely, the direct use
of the surface design model in analysis, still holds. A global mesh, which is needed for
the implementation of the weak formulation, is constructed through a combination of
the three meshes. It includes the control points of all three meshes with varying degrees
of freedom depending on which meshes they belong to. The resulting total number of
degrees of freedom is less than for the corresponding standard Reissner-Mindlin shell
formulation without any anti-locking mechanism. Thus, the computational cost for the
solution of the linear equation is reduced. The method is generally applicable for any
polynomial degree and no additional variables have to be introduced, i.e. the unknowns
in the variational formulation are still the three displacements and two rotations.

The second approach is based on the two-field Hellinger-Reissner variational principle
with the stress resultants being the additional unknowns. This time the aim is to elimi-
nate both membrane and transverse shear locking by using appropriate approximation
spaces for the interpolation of the corresponding stress resultants. In the framework
of isogeometric analysis, the best choice for the basis functions of the stress resultants
is to use, in the relevant direction, one order lower splines than the ones used for the
interpolation of the displacements/rotations. All approximation spaces have the same
number of elements and Gauss points as the displacement/rotation mesh. However, the
location and the number of control points varies from approximation space to approx-
imation space. Due to the high continuity of splines in isogeometric analysis, mixed
formulations, as the one presented here, involve static condensation on the patch level,
which includes the inversion of a matrix on the patch level and leads to a fully popu-
lated stiffness matrix. In order to overcome these issues and reduce the computational
cost, in addition to the global approach (on the patch level), two local approaches are
presented that enable static condensation on the element level. The first one includes
stress resultants that are defined discontinuously (C~1) across the element boundaries.
This leads to a sparse stiffness matrix that has the same bandwidth as the standard
displacement-based shell, reducing the computational cost. The second local approach
is based on the reconstruction algorithm used for the B method in Greco et al. (2017,
2018). In this work, it is reformulated for the mixed formulation with stress resultants
as additional unknowns and extended to the case of Reissner-Mindlin plates and shells.
The resulting stiffness matrix of this method has a slightly higher bandwidth than the
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standard displacement-based shell. The two local approaches as well as the global
approach are in general applicable for any polynomial degree.

The second main objective of this thesis is the development of a phase-field model for
the correct description of brittle fracture in isogeometric Reissner-Mindlin plates and
shells. The applied phase-field approach is an extension of the work of Kiendl et al.
(2016), where brittle fracture was modeled for Kirchhoff-Love shells. A continuous
crack phase-field is defined on the shell mid-surface in order to describe the cracked
and uncracked material. In contrast to the phase-field model of Kiendl et al. (2016),
here, a special focus lies on the incorporation of the transverse shear strains in the
phase-field model, since Reissner-Mindlin plates and shells are considered. This way,
fracture due to transverse shear deformations is computable. In order to avoid any
fracture in compressive areas, a spectral decomposition is applied on the total strain
energy which depends on the total strain tensor. Afterwards the tensile part of the
strain energy surface density is degraded, leading to a physically correct behavior of
fracture in the tensile and compressive regions. Since the total strain has to be consid-
ered for the spectral decomposition, the plane stress condition can not be applied by
a simple elimination of the thickness normal strain and thickness normal stress from
the constitutive law. Instead, it has to be enforced numerically. For this reason, a local
algorithm with quadratic convergence presented in the work of Klinkel and Govindjee
(2002) and Ambati et al. (2018) is implemented. The integration through the thickness
is performed numerically and in each integration point the thickness normal strain is
computed for which the thickness normal stress is zero.

1.4 Overview

The present cumulative dissertation consists of three peer-reviewed articles in interna-
tional scientific journals and is organized as follows:

In Chapter 2, an introduction to isogeometric analysis is given. First, the concepts of
knot vectors, control points and patches is explained. Furthermore, B-splines which are
needed for the definition of Non-Uniform Rational B-splines (NURBS) are described.
NURBS curves and NURBS surfaces are detailed. A special focus lies on the different
refinement techniques and continuity of splines.

In Chapter 3, the first peer-reviewed article is presented which focuses on the elimi-
nation of transverse shear locking in isogeometric Reissner-Mindlin plates and shells.
Since transverse shear locking occurs due to a mismatch of the approximation spaces
of the displacements and rotations in the strain formulation, adjusted approximation
spaces are defined for the rotations. Three separate control meshes are created from
which the global mesh for the solution of the weak formulation is formed.
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The second peer-reviewed article is included in Chapter 4. It is concerned with the al-
leviation of both transverse shear and membrane locking in the framework of the iso-
geometric Reissner-Mindlin shell formulation. A displacement-stress mixed method
is derived using the Hellinger-Reissner functional. Appropriate approximation spaces
are chosen for the stress resultants that are related to locking. The main focus lies on
the performance of the static condensation. Three different approaches are presented,
including a continuous approach that performs static condensation on the patch level,
a discontinuous approach that performs the static condensation on the element level
and a reconstructed approach that uses weights for the local control variables in order
to get blended global ones.

Chapter 5 includes the third peer-reviewed article. A phase-field model for the descrip-
tion of brittle fracture in isogeometric Reissner-Mindlin plates and shells is presented.
The transverse shear strains are incorporated in the model in order to allow for fracture
due to transverse shear deformations. The spectral decomposition for the tension-
compression split is applied on the total strain. The plane stress condition is enforced
numerically using a local algorithm with quadratic convergence.

Chapter 6 provides a summary of this thesis and suggestions for future work.

In Appendix A the local algorithm for the enforcement of the plane stress condition
described in Chapter 5 is presented.
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Chapter 2

NURBS-based isogeometric analysis

In this chapter a brief summary of the basic terms and properties in isogeometric anal-
ysis is given based on the works of Piegl and Tiller (1997), Cottrell et al. (2009) and
Rogers (2001). The isogeometric concept, namely, the direct use of the design model
in the analysis, implies that the same basis functions are used for the description of the
geometry in these two processes. The isoparametric concept, namely, the approxima-
tion of the unknown variables with the same basis functions as the geometry, is also
included in isogeometric analysis. The most common basis functions that are used
in Computer-Aided Design and Modeling are the Non-Uniform Rational B-splines
(NURBS). The isogeometric Reissner-Mindlin shell formulation which is going to be
investigated in the context of locking and brittle fracture in this thesis is developed
using NURBS basis functions. Furthermore, regarding brittle fracture, the phase-field,
which is used to describe cracked and uncracked material is also discretized using
NURBS basis functions. With regard to the development of the mixed formulation in
Chapter 4, a special focus is laid in this chapter on the different refinement techniques
common in isogeometric analysis and the continuity properties of splines.

2.1 Preliminaries

In isogeometric analysis the geometry is defined using the control points and the cor-
responding basis functions. The control points include the degrees-of-freedom of the
structure. They define the control mesh which does not have to coincide with the actual
geometry and consists of multilinear elements. On the other hand, the physical mesh
consists of the actual geometry and is divided into patches. Each patch should have
the same material and physical properties and it can be seen as a type of subdomain. A
patch can be represented in the physical space as well as in the parameter space. The
basis functions map the entire patch from the parameter space to the physical space.

15
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Each patch is decomposed into elements which are defined using the knot vector =E.
The knot vector for curves has in general the following form

E= {§17€27"'7£n+p+1} (21)

where n is the number of control points, p the polynomial degree of the basis function

=1l =2

and &; the knots which are non-decreasing values. For surfaces two knot vectors 2°, =

are necessary, while for solids three knot vectors =t EQ, =3 are used. Knot values can
be repeated more than once, i.e. can have a multiplicity m > 1. The multiplicity of a
knot value determines the continuity of the basis functions at this point. This property
is going to be discussed in more detail in Sections 2.4 and 2.5. The intervals [&;, §;11]
with 7 = 1,...,n + p are the so-called knot spans. Only knot spans with non-zero
length, i.e. & # &1 define an element. Knot vectors in which the knot spans have
the same length are referred to as uniform knot vectors. Non-uniform knot vectors
consists of knot spans with different lengths or knot values that have a multiplicity
greater than one. If the first and last entry of the knot vector is repeated p + 1 times,
the vector is referred to as open knot vector and the basis functions are interpolatory at
the endpoints. An example for the definition of a spherical surface in the physical and

parameter space is given in Fig. 2.1.

N?
1
© control points
--- control mesh £
. 2 2
physical ~ N; 4
1
1/2
0o 13 23 1 &,
Physical space Parameter space

Figure 2.1: Physical and parameter space for a spherical surface. The knot vectors are defined
as B! = {0,0,0,1/3,2/3,1,1,1} and E? = {0,0,0,1/2,1,1, 1} and the polynomial degrees

of the basis functions are p = ¢ = 2.
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2.2 B-splines

B-splines build the basis for the definition of the Non-Uniform Rational B-splines
(NURBS). They are piecewise polynomials and are infinitely differentiable within a
knot span [§;, & 1) while at knots they are p — 7 times continuously differentiable,
where m is the multiplicity of the knot value. B-splines are defined using the knot
vector = and the Cox-de Boor recursion formula. Starting from the polynomial degree
p = 0, where

— 1 if fz < 5 < fi+1
NO(€) = ’ 2.2
i) { 0 otherwise 22)
basis functions with higher polynomial degrees are defined as
NP = SN+ S N, 23)

N £i+p - gz ’

The number of basis functions is at the same time the number of control points, i.e. ¢ =

Sivpr1 — Gir1

1,...,n. In contrast to higher order Lagrange shape functions, B-splines are positive in
the entire parametric domain. Another important property of B-splines is the partition
of unity, i.e.

PIRHGES! Ve € E. (2.4)
=1

Furthermore, B-splines have only one maximum when p > 1. The support of a B-
spline of order p is local and includes p + 1 knot spans, i.e. NP(£) # 0 for £ €
(&, &itp+1)- On the other hand, the number of B-spline functions that have an influence
on a given knot span, i.e. are non-zero, is n., = p + 1. More details on the properties
of B-splines are given in Piegl and Tiller (1997).

The k — th derivative of a B-spline basis function with polynomial degree p depends

on the derivatives of lower order basis functions and is defined as

oF M) = P OINPTHY  p OFINEL(E)
o §ivp— & OMIE Civpr1 — &it oF—1¢

An example for B-spline basis functions of p = 2 and their corresponding (in the same

color) first and second derivatives is given in Fig. 2.2.

(2.5)

B-spline geometries are a linear combination of B-spline basis functions and the cor-
responding control points. Here, only the definition of B-spline curves is going to be
presented, however, the extension to B-spline surfaces and solids is straightforward
and is provided in Cottrell et al. (2009). A B-spline curve is defined as

X =Y N(©B: & <E{<&pn (2.6)
=1
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where B; = [z;,y;, 2" is the set of n control points. Affine transformations of the
curve such as rotations, shearings and translations can be applied directly to the control
points. This important property is known as affine covariance. Furthermore, due to the
convex hull property of B-splines, the curve is contained in the union of convex hulls
defined by p + 1 successive control points, see Cottrell et al. (2009). B-splines can
describe a respectable range of geometries, however they lack the ability to exactly
represent geometries like conic sections and circles, see Piegl and Tiller (1997). Thus,
Non-Uniform Rational B-splines are introduced.

. | oz
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51
10}
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Figure 2.2: B-splines of p = 2 (a) and their corresponding first (b) and second (c) derivatives.
The knot vector is defined as = = {0,0,0,1/2,1,1,1}.

2.3 NURBS curves and surfaces

Non-Uniform Rational B-Splines (NURBS) are obtained from the B-splines by using
a weight factor w;, which indicates the influence of a control point on the geometry.
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Each control point B; has its own weigth w; which is included in the definition of the
control point along with the spatial coordinates X;

Bi - [X?»wZ]T - [xi)yiu Zi7wi]T (27)

where ¢ = 1,2, ...n. NURBS basis functions have the same properties as the B-splines,
including the partition of unity, nonnegativity, convex hull property, the continuity and
support of the functions. In the case of affine transformations, the changes are directly
applied to the control points while the weights remain the same.

From a geometric point of view, NURBS objects in R¢ are constructed by a projec-
tive transformation of a corresponding B-spline object in R%*! using the weights w;.
From a mathematical point of view, NURBS surface basis functions are constructed
from the corresponding B-spline functions in combination with the weights w; and the
weighting function W (¢) resulting in

N} (§)wi
NP(g) = —L 500 (2.8)
=W
The definition of the weighting function W (&) is given as follows
W) =) N(&w. (2.9)
=1

B-splines can be seen as a special case of NURBS where the weights have the same
value for all control points.

A NURBS curve is computed analogously to a B-spline curve, see Eq. (2.6), as follows

X =) NMOX;, &<E<bpn (2.10)
i=1

In the case of a surface in R3, the parametric domain is described by two knot vectors
B ={.,8,....6 pntand B = {&, &3, ..., &% .1 }. where n, m are the number of
control points and p, ¢ the polynomial degrees in the respective direction. The number
of control points, the number of elements, the polynomial degree and the continuity
can be chosen differently for each direction. The control points

T
B;; = [Xz;,wij] = [xijayijazijawij]T (2.11)

are identified in this case by a double index (ij) which corresponds to the £ and &2
direction respectively, i.e. i € {1,2,...,n} and j € {1,2,...,m}. The total number
of control points is defined as n., = n - m. Instead of the double index (ij), a single
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node index [ can be used which includes only the non-zero basis functions n., =
(p+1)(g + 1) per element e. This is achieved by the use of a bijective function

fe AL on} x{1,...,m} x{1,...,;numel} — {1, ....,ne} (2.12)

where numel is the number of elements. Thus, the node index [ is defined as I =
f€(i,j,e). In the case where multiple patches are considered the definition of f€ in
Eq. (2.12) and I would have to be extended by the number of patches k = 1,...,n,
see Dornisch (2015). This single index notation is going to be adopted in all following
chapters.

In this sense, a NURBS surface is defined as

Nen

X6 = Z WYISRS (2.13)

The basis functions N; are computed using B-spline basis functions in both parametric
directions

NP (ENNT(E)wi
W, &)

Ni(€',€%) = (2.14)

The weighting function W (&', £€2) which depends on the two parametric directions is
defined as

Nen

Z NP(¢ 2Ywg;. (2.15)

The first derivatives of the NURBS surface basis functions with respect to the para-
metric coordinates £ are given as follows

ON(€1,€2) W(e', €2) 2 &) WL (et
g~ W) (Ve )2 (210
and
&) aw(ELe?) fra e2
ONI(EL, €2) W, e) 25— WEE (e )
— wy; NP 2.1
g~ (e (W (e, )y @1

The definition of higher partial derivatives is achieved by a subsequent differentiation
of these two equations. More details on this topic can be found in Piegl and Tiller
(1997).
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2.4 Refinement

In this section the different refinement techniques which are commonly used in iso-
geometric analysis are presented and demonstrated for the simple case of B-spline
curves. However, these techniques are applicable in the same manner to NURBS basis
functions.

2.4.1 Khnot insertion

Knot insertion involves the insertion of /m new knots in the knot vector
E = {&,&%,..,&4p1} in order to create an extended knot vector E =
{€1,&, .., Enmapi1 ), Wwhere & = & and &, 11 = &y mipr1- This refinement mech-
anism has two main effects, it increases the number of elements in the parametric space
when new knot values are inserted and it changes the continuity of the basis when the
multiplicity of existing knot values is increased. In the first case, knot insertion shows
similarities to the h-refinement from the classical finite element method. However, new
control points are computed using linear combinations of the initial control points. In
addition, the same number of new basis functions is formed while the polynomial de-
gree of the basis is not changing. For a single new knot value, p new control points
have to be computed, where p is the polynomial degree of the basis function, see Piegl
and Tiller (1997). This way, a larger solution space is created and more accurate results
are achieved. On the other hand, the use of knot insertion to change the continuity of
the basis is very useful when discontinuities are expected to form in the geometry. In
both cases, the curve remains the same geometrically and parametrically.

In Fig. 2.3, knot insertion is demonstrated for a curve X (). The initial knot vector
has the value E = {0,0,0,0,%, 2 1,1,1,1} and the polynomial degree is p = 3. An

A ) 3939
extended knot vector 2 = {0,0,0,0, %, %, %, 1,1,1,1} is created by the insertion of
a new knot £ = % As it is seen, the new resulting curve X () is identical to the

initial one. Since only one new knot value has been inserted, p = 3 control points B;
have to be recomputed as it is visible in Fig. 2.3. The first two and last two control
points remain the same while the other three control points have either new positions
or have been newly introduced. The corresponding basis functions N} are depicted
in Figs. 2.4(a) and (b). The polynomial order and continuity have not changed. The
green and yellow squares in Fig. 2.3 denote the split of the curve into three and four
elements, respectively.

In Fig. 2.5 knot insertion is used in order to change the continuity of the basis functions.
In this case the multiplicity of the knots in the knot vector = is increased and the new
knot vector £ = {0,0,0,0, %, %, %, %, %, 1,1,1,1} is formed. This way, the continuity
of the basis functions, which was initially C?, is now reduced in certain areas to C
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Figure 2.3: Knot insertion. Control polygon and element split of curves X (£) and X (). The

original control points are depicted in blue and the new ones in red.

1 1
0.8 , ] , 3Ng 08 \N7 N, ; Ny
06 N, N3 Ny Ns [ 06 N23 N33 N Ng
0.4+ 1 04}

0.2 1 02}
% o0z o4 06 08 1 %0 o2 o4 o6 08
3 3

(@)

(b)

Figure 2.4: Basis functions for the curves (a) X (¢) and (b) X (¢) displayed in Fig. 2.3.

and C°. In the case of C°-continuity the control point By is located on the physical
curve. The new resulting curve X (£) coincides again with the original one X (£). New
control points are introduced with their corresponding basis functions N? depicted in
Fig. 2.6. The polynomial order remains the same and in this case no new elements are

formed.

In the two examples presented here, knot insertion was demonstrated separately for the
increase of elements and the reduction of continuity in order to highlight the effect of
each option. However, both versions of knot insertion can be applied at the same time.
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Figure 2.5: Knot insertion with change of continuity. Control polygon and element split of
curves X (¢) and X (€). The original control points are depicted in blue and the new ones in

red.
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Figure 2.6: Basis functions for the curves (a) X (¢) and (b) X (¢) displayed in Fig. 2.5.

2.4.2 Order elevation

Order elevation includes an increase of the polynomial degree of the basis function that
describes the geometry. This refinement strategy is similar to the p-refinement of the
classical finite element analysis. The basis function is enriched and the accuracy of the
solution is increased. However, the geometry is not changing geometrically or para-
metrically. An interesting aspect of order elevation is that the initial continuity of the
basis functions remains the same. This is important in order to preserve discontinuities
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of the initial geometry. It is achieved by an increase of the knots’ multiplicity. How-
ever, no new knot values are inserted, thus, the number of elements stays the same. For
each increase of the polynomial degree by one, the multiplicity of the knots has to be
increased by one as well. In the case of surfaces, order elevation is applied separately
to the two parametric directions. Efficient algorithms for order elevation are included
in Piegl and Tiller (1997).
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Figure 2.7: Order elevation. Control polygon and element split of curves X (¢) and X ().
The original control points are depicted in blue and the new ones in red.
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Figure 2.8: Basis functions for the curves (a) X (¢) and (b) X (¢) displayed in Fig. 2.7.

The example which was previously examined for the case of knot insertion is now used
to demonstrate order elevation. The polynomial degree of the curve which was initially
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p = 3 is now increased to p = 4. In order to preserve the C*-continuity of the basis
functions the initial knot vector & = {0,0,0,0, 5, 2,1,1,1,1} is adjusted and the new
knot vector reads E = {0,0,0,0,0, %, %, %, %, 1,1,1,1,1}. As it was stated before, the
number of elements does not change. On the other hand, the number of control points
is increased and existing control points have to be relocated, see Fig. 2.7. However,
the initial curve X (£) and the new curve X (£) are identical. The corresponding shape

functions are depicted in Figs. 2.8 (a) and (b).

2.4.3 k-refinement

The refinement strategy denoted as k-refinement is a combination of order elevation
and knot insertion. First, the polynomial degree is increased to p while the continuity
at existing element boundaries remains the same. Afterwards, the number of elements
is increased by inserting new knot values in the knot vector. The continuity at these
new knots is the highest possible, i.e. CP~1, Thus, the resulting basis functions have a
higher order and continuity than the original ones and lead to a higher efficiency and
robustness of the solution. New control points are introduced, however, their number is
limited in comparison to e.g. the p-refinement strategy. The advantages of k-refinement
are highlighted in Cottrell et al. (2009).
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Figure 2.9: k-refinement. Control polygon and element split of curves X (£) and X (¢). The

original control points are depicted in blue and the new ones in red.

In Fig. 2.9 an example for k-refinement is shown. The initial curve X (§) has a
polynomial degree of p = 3, only one element and the knot vector reads & =
{0,0,0,0,1,1,1,1}. First, the polynomial degree is increased to p = 4 and then
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Figure 2.10: Basis functions for the curves (a) X (¢) and (b) X (¢) displayed in Fig. 2.9.

new knot values are inserted until four elements are formed. The resulting knot vector
reads 2 = {0,0,0,0,0,1,3,2,1,1,1,1,1}. The new curve X ({) coincides with the
original one. The continuity across the element boundaries is C*® which is the highest
possible continuity. The corresponding shape functions are depicted in Figs. 2.10 (a)
and (b). Here, a geometry was chosen that can be described by one element. This was
done intentionally in order to demonstrate "pure" k-refinement. However, an initial
geometry that includes more than one element, as the one shown in Fig. 2.3 could be

used. In this case the continuity at the existing knots would be C2.

2.5 Continuity

The higher continuity of splines offers a lot of advantages. In contrast to the stan-
dard Lagrange-based finite element analysis, free form structures are now computable
with a low computational effort. In addition, regarding shell structures, the shell’s
tangent, curvature and normal vectors can be exactly computed throughout the patch.
Kirchhoff-Love type formulations, which require at least C''-continuity because of sec-
ond order derivatives in their kinematics, can be implemented straightforwardly. Fur-
thermore, the higher continuity leads in general to more accurate results, see Cottrell
et al. (2009) and Echter (2013).

On the other hand, the high continuity across element boundaries is an obstacle in
cases where discontinuities arise. Regarding the geometry, such discontinuities are for
instance kinks and sharp bends in the structure. Furthermore, in non-smooth problems
that include contact, material interfaces or boundary layers, the high continuity alters
the solution since local effects are smeared over the domain. Finally, the use of splines
with high continuity for the interpolation of stresses and strains hinders the straight-
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forward implementation of standard methods against locking, such as mixed methods,
the B-method, the Enhanced Assumed Strain (EAS) method and the Assumed Nat-
ural Strain (ANS) method. In the case of mixed methods the high continuity of the
stress resultants prohibits their elimination on the element level by static condensation.
Thus, static condensation has to be performed on the patch level which increases the
computational cost, see Section 4.4.
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Figure 2.11: Basis functions with polynomial degree p = 2 and continuity (a) C' (b) C° (c)
C~! across the element boundaries.

However, as it was shown in Section 2.4.1, isogeometric analysis offers the possibil-
ity of controlling and changing the continuity of splines by repeating existing knot
values in the knot vector. The continuity can even vary from knot to knot. This is
a very special feature in comparison to standard Lagrange-based functions where the
continuity is fixed to C° and can not be changed. In general, the continuity at a knot
is defined as CP~™, where p is the polynomial degree and 7 the multiplicity of the
knot. Thus, the maximum achievable continuity is C?~!. In the case of C°-continuity,
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the basis becomes interpolatory at that knot. On the other hand, C'~!-continuity de-
fines the boundary of a patch when open knot vectors are used. The basis functions
of one patch are independent from other patches and discontinuous across the patch
boundaries. The continuity additionally denotes in general the number of continuous
derivatives across the element boundary. The support of a basis function, which is p+1
knot spans for a multiplicity m = 1 at the knot, is reduced when reducing the conti-
nuity between the elements. Note that the continuity referred to here is the parametric
continuity. There also exist the geometric continuity, see Rogers (2001).

In Figs. 2.11(a-c) basis functions with polynomial degree p = 2 and different continu-
ities across the element boundaries are depicted. In Fig. 2.11(a) the maximum possible
continuity C"* is chosen at the element boundaries and the corresponding knot vector
reads = = {0,0,0, %, %, %, 1,1,1}. In the second case, the continuity across the ele-
ment boundaries is reduced to C° which corresponds to the standard Lagrange shape
functions. The knot vector is then defined as & = {0,0,0, %, i, %, %, %, %, 1,1,1}.
In the last case, C~! continuity is chosen for the element boundaries and each ele-
ment is independent, in terms of their basis functions, from the other elements. Thus,
each element could be seen as a separate patch. The knot vector for this case is

& 111111333
‘—'_{07070717171757575717171717171}'



Chapter 3

Adjusted approximation spaces for the
treatment of transverse shear locking
in isogeometric Reissner-Mindlin shell
analysis
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3.1 Abstract

Transverse shear locking is an issue that occurs in Reissner-Mindlin plate and shell el-
ements. It leads to an artificial stiffening of the system and to oscillations in the stress
resultants for thin structures. The thinner the structure is, the more pronounced are the
effects. Since transverse shear locking is caused by a mismatch in the approximation

29
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spaces of the displacements and the rotations, a field-consistent approach is proposed
for an isogeometric degenerated Reissner-Mindlin shell formulation. The efficiency
and accuracy of the method is investigated for benchmark plate and shell problems. A
comparison to element formulations with locking alleviation methods from the litera-
ture is provided.

3.2 Introduction

Shells are very common in nature and are found in various forms and shapes in plants
and animals. In engineering, shell structures have been of great interest due to their
favorable mechanical features. They are lightweight structures coupled with a high
stiffness and an optimal load-carrying behavior due to their geometrical form. They
are able to span big areas without any additional support and also offer an aesthetic
design. It is therefore not surprising that applications of shell structures are spread
in numerous engineering fields, like architectural and civil engineering, mechanical
engineering and marine engineering. In order to describe the mechanical behavior of a
shell there exist two main theories, namely the Kirchhoff-Love theory and the Reissner-
Mindlin theory. In the Kirchhoff-Love formulation, it is assumed that the normal to
middle surface remains normal after deformation, which is sufficient for thin plates
and shells where the shear deformations are neglectable. However, with increasing
thickness, the shear strains are having a greater influence on the deformation. Thus,
more realistic results can be obtained by considering the associated shear deformations
in the shell theory. This can be done e.g. by employing two rotations of the normal
as additional unknowns in the variational formulation, which is commonly known as
Reissner-Mindlin formulation. This kind of shell formulation is applicable for both
thin and thick shells.

In the context of the numerical analysis of shells, isogeometric analysis (IGA) has at-
tracted a lot of attention in recent years. It was introduced in Hughes et al. (2005) in
order to unify the design and analysis process by using higher order basis functions
from CAD tools, such as NURBS functions. Thus, a model which is designed in the
CAD tools can be directly used for the analysis process (isogeometric concept). In the
framework of shells, the higher continuity of splines throughout a patch is very favor-
able for the correct computation of the curvature and the normal of the shell surface.
Free form structures are computable with much less computational effort than with the
classical finite element method. Furthermore, since CAD tools use surface represen-
tations and boundaries, isogeometric analysis is especially suitable for shell structures
because they are described exclusively by their mid-surface. The first notable steps for
the structural analysis of shells with isogeometric analysis were done in the context of
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the Kirchhoff-Love theory in Kiendl et al. (2009, 2010) and Benson et al. (2011). In the
framework of Reissner-Mindlin shells by Uhm and Youn (2009), Benson et al. (2010b)
and Dornisch et al. (2013) and for solid-shells in the work of Hosseini et al. (2013) and
Bouclier et al. (2013b,a). Blended shells, which combine the Kirchhoff-Love formula-
tion with the Reissner-Mindlin formulation, were introduced in Benson et al. (2013),
as well as a hierarchic family of shells in Echter et al. (2013). Later, these fields were
enriched and extended e.g. for Kirchhoff-Love shells in Nguyen-Thanh et al. (2011),
Kiendl et al. (2015¢) and Duong et al. (2017), for Reissner-Mindlin shells in Dornisch
and Klinkel (2014), Dornisch et al. (2016) and Kiendl et al. (2017) and for solid-shells
in Hosseini et al. (2014b), Caseiro et al. (2014, 2015) and Bouclier et al. (2015). Fur-
thermore, a shear deformable rotation free shell formulation was proposed in Oesterle
et al. (2016).

Despite their favorable features in many aspects, splines suffer from the same locking
phenomena as the Lagrange shape functions, see Echter and Bischoff (2010). In the
past decade, various methods have been proposed to eliminate these undesirable effects
for low order shape functions, most of them are direct extensions from methods that
have been proven valuable in the classical finite element method. One of the first ideas
and easiest ways to treat locking is to use higher order shape functions, see Echter
and Bischoff (2010), however, this method only alleviates locking and increases the
computational effort. In the context of plates and shells higher order functions have
been investigated for Reissner-Mindlin shells in Benson et al. (2010b), 2D solid shell
elements in Bouclier et al. (2013b) and recently, in the framework of an isogeometric
collocation formulation for the Reissner-Mindlin shell problem in Kiendl et al. (2017).
The use of non-uniform integration in order to alleviate locking and at the same time
increase efficiency has been proposed in Adam et al. (2015) and Dornisch et al. (2016)
for isogeometric Reissner-Mindlin shell elements. However, the method, which was
originally proposed in Adam et al. (2014), does not work for general non-uniform knot
vectors and is thus not relevant for industrial applications.

Mixed formulations were implemented in the context of collocation methods in
Beirdo da Veiga et al. (2012b) and Auricchio et al. (2013), without the need of com-
patibility conditions between the discrete approximation spaces of the unknown fields.
However, collocation methods generally lead to non-symmetric linear systems that
may cause difficulties for example in vibration analysis while computing the eigenval-
ues. Kiendl et al. (2015a) proposed a mixed formulation for Reissner-Mindlin plates
and Bouclier et al. used it for solid-shell elements in linear, see Bouclier et al. (2013a)
and geometrically nonlinear problems, see Bouclier et al. (2015). Furthermore, a three-
field mixed variational formulation to handle nearly incompressible solids was pre-
sented in Taylor (2011). Thai et al. (2011) proposed a stabilization technique for the
analysis of laminated composite Reissner-Mindlin plates with a small modification in
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the material matrix related to the shear terms. First used by Elgued; et al. (2008) to
alleviate volumetric locking, the B projection method was extended by Bouclier et al.
(2012) to a Timoshenko beam formulation. In the latter Bouclier et al. showed that for
this case the B method is equivalent to the mixed method. The idea of the approach
is to project relevant strains onto a basis of lower dimension. However, as it is also
for the mixed formulations and Discrete Shear Gap (DSG) approaches, this almost al-
ways leads to a linear system where the global matrix that has to be inverted is fully
populated, increasing the computational cost. Attempts to overcome the problem are
found e.g. in Greco and Cuomo (2016), Greco et al. (2017, 2018) and Antolin et al.
(2017). A similar approach for the case of Timoshenko beams is given via the order
reduction method in Hu et al. (2016). The B projection method was extended to 2D,
see Bouclier et al. (2013b) and 3D solid shells, see Bouclier et al. (2013a), where in
the latter a local least-squares procedure is applied to each element of the mesh in or-
der to produce a sparse global stiffness matrix. The Assumed Natural Strain (ANS)
method, which uses carefully chosen tying points as integration points for the strain
components, was used for a solid-shell formulation in Caseiro et al. (2014) and later
for geometrically nonlinear problems of elasto-plastic shells, see Caseiro et al. (2015).
The DSG method, which is closely related to the ANS method and the B method, is
implemented in Echter and Bischoff (2010) and Bouclier et al. (2012) for straight and
curved Timoshenko beam problems. The Enhanced Assumed Strain (EAS) method
was extended by Cardoso and Cesar de Sa (2012) to the NURBS-based isogeometric
analysis in order to alleviate volumetric locking.

Echter et al. (2013) presented a family of hierarchic 3-, 5-, and 7-parameter NURBS-
based shell formulations where shear and curvature thickness locking is avoided by
construction. Membrane locking, is removed using the DSG method or a hybrid-mixed
element formulation based on a two-field Hellinger-Reissner principle. However, in
Oesterle et al. (2016) it is observed that certain stress resultants exhibit some oscilla-
tory behavior for low order shape functions. Thus, a rotation-free shear deformable
shell formulation is proposed in Oesterle et al. (2016) which includes five pure dis-
placement degrees of freedom, which removes the artificial oscillations in the shear
stress resultants. An extension to geometrically nonlinear problems was recently pro-
posed in Oesterle et al. (2017). Analogous approaches were used for subdivision shells
in Long et al. (2012) and for a Reissner-Mindlin plate formulation using NURBS and
triangular NURPS in Beirdo Da Veiga et al. (2015). Other approaches that avoid shear
locking ab initio were proposed in Kiendl et al. (2015b) and Kiendl et al. (2018) where
the classical Timoshenko beam problem is reformulated to a single differential equa-
tion with only one primal variable, namely, the bending displacement and the rotation,
respectively. A mixed displacement method for removing geometrical locking effects
was introduced firstly for straight Timoshenko beams, Reissner-Mindlin plates and
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Kirchhoff-Love shells in Bieber et al. (2018).

This work is concerned with the treatment of transverse shear locking in the framework
of Reissner-Mindlin shells. Shear locking occurs due to a mismatch of the approxima-
tion spaces of the displacement and the rotation terms in the strain formulation, which
leads to an artificial stiffening of the system, an underestimation of the deformations
and oscillations in the stress resultants. This behavior is intensified the thinner the
structure gets, i.e. the more it approximates the Kirchhoff limit. The proposed ap-
proach attempts to solve the problem at its roots, by using adjusted approximation
spaces for the displacements and the rotations. This method is already known from
the finite element method, see e.g. Babu and Prathap (1986), Babu et al. (1987) and
Ishaquddin et al. (2012). It was first implemented in isogeometric analysis by Beirdo da
Veiga et al. (2012a) in the framework of the Reissner-Mindlin plate bending problem.
Here, it is extended to a Reissner-Mindlin shell formulation. The advantage of this
method is that it is generally applicable for any polynomial degree and no additional
variables have to be introduced, i.e. the unknowns in the variational formulation are
as usual three displacements and two rotations. Furthermore, as it is shown in Section
3.5, the total number of degrees of freedom is actually reduced, decreasing the com-
putational cost for the solution of the linear equation. Several numerical examples are
carried out in order to verify the effectiveness of the method and to compare it with
existing locking-free element formulations.

3.3 Reissner-Mindlin shell formulation

3.3.1 Kinematics and basis systems

The present element is a linear isogeometric Reissner-Mindlin shell element, based
on the element proposed by Dornisch et al. (2013). In contrast to the Kirchhoff-Love
shell formulation, the Reissner-Mindlin shell also considers the shear terms, making it
a suitable formulation not only for thin but also for thick plates. The shell formulation
from Dornisch et al. is derived from continuum mechanics using the direct approach
from Simo and Fox (1989). The shell is represented only by its mid-surface reducing
the computational effort. The thickness direction is described by the director vector
leading to the definition of the reference position vector of an arbitrary point on the
shell

X()=X()+&D("), 3.1)

where £* with o = 1,2 are the parametric coordinates in the shell mid-surface and
—L < & < Lis the thickness coordinate. Parameters without () describe values on
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the mid-surface. The reference director vector D coincides with the normal vector of
the shell surface and has the length |[D(£%)| = 1. Since the shell element is linear, a
difference vector formulation can be applied for the definition of the deformed director
vector

d=D +b, (3.2)
where
b=wxD=W7".w with W =skew(D) (3.3)

is the difference vector, constructed by the vector cross product of the rotational pa-
rameter of the shell mid-surface w and the reference director vector. Its derivative with
respect to the two parametric coordinates £“ is given as follows

bo=waxD+wxD,=W" w,+W. w (3.4)
with W , = skew(D ).

A
€;

Figure 3.1: Basis systems and director vector at a Gauss point.

The inextensibility in thickness direction is ensured due to the condition |d| = |D| =
1. In this manner, the displacement vector w of an arbitrary point on the shell is de-
scribed using the deformed director vector as follows

a(l') = u(€) + £d(E), (3.5)
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where ©(£%) is the displacement vector of the mid-surface. The current position vector
of an arbitrary point on the shell surface is obtained as

B(¢) = (¢ + £d(£), (3.6)
where x(£*) denotes the current position vector of a point on the shell mid-surface
z(£7) = X (&) +u(€"). 3.7)

In this shell formulation there exist two different types of basis systems. The first one
is the covariant basis system with its basis vectors defined as

Go=X,+&D,, G, = D. (3.8)

The corresponding contravariant basis vector is derived with the help of the Kronecker
Delta, G;- G’ = 5{ . In the constitutive relation an orthonormal basis system is needed,
so a second local basis system A; is introduced, see Dornisch et al. (2013). The new
basis system is computed at the Gauss points using the lamina coordinate system, see
Hughes (2000), and is as close as possible to the convected basis system, see Fig. 3.1.
The corresponding local Cartesian coordinate system for the basis vectors A; is 6;.
Since the stress and strain tensors are defined using A;, the displacement and position
vectors, see Eq. (3.1), (3.5), (3.6), (3.7) and all differentiated values, e.g Eq. (3.4), are
now defined with respect to 6;. As it is explained in more detail in Section 3.4, the
nodal Cartesian system A;; at the control points is needed for the definition of the
rotational parameter w. A method for the calculation of the nodal basis systems is
proposed in Dornisch et al. (2013). There, the nodal basis systems are defined so that
their interpolated values at any point of the surface coincide as good as possible with
the basis systems defined by the geometry.

3.3.2 Strains and stresses

As strain measure, the linearized Green-Lagrange strain tensor is used since only linear
problems are considered

E=E,G'®G’ (3.9)
with the covariant components
Ei; = %(GZ ‘u; +Gj-ay). (3.10)
The components F;; are rearranged into in-plane and transverse shear strains
Eop = €ap + ks + (0°)2pas (3.11)
2F43 = Ya (3.12)

E33 =0  (due to the inextensibility constraint), (3.13)
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where €,4 denote the membrane strains

1
€ap = §(X7Oé “upg+ Xﬁ . u@), (3.14)

kqp represent the curvatures of the shell
KaB = %(X,a b+ Xg-bo+D,-ug+Dg-u,) (3.15)
and vy, are the shear strains
Yo=Xqoq-b+u,-D. (3.16)
The second-order curvatures p,s are neglected. The resulting linear shell strains are
arranged in Voigt notation in the strain vector
e=len e 2612 ki K 2K12 M 72}T : (3.17)
Analogously, the stress resultants are assembled into the stress tensor

U:[nll n22 n12 mll m22 m12 ql qQ}T7 (318)

where n®? the membrane forces, m*® the bending moments and ¢* the shear forces.

3.3.3 Variational formulation

The weak form of equilibrium is derived from the strong form, which includes the
static equilibrium and the Neumann and Dirichlet boundary conditions. After a scalar
multiplication of the equations with a test function dv, which represents a virtual de-
formation, the terms are integrated over the whole domain and, considering the present
shell theory, rearranged in the following form

G(v,0v) = / de - odA — / SvlpydA — / svltyds =0 (3.19)
Qo Qo ry

with p, the surface loads, t, the boundary tractions and v = {u] =

B

[u1 uy Uz 1 ﬁz} g the deformation vector. Only two rotations are taken into ac-
count because only smooth surfaces are being considered. In other cases, i.e. for
surfaces with kinks, the third rotation is indispensable. The variation of the shell strain
components reads

1
5€a5 = é(X’a . 5'11’5 + Xﬂ . 5’(1,,04)

1
5I€a5 = §<X7a . 5b”3 + X,g . (Sb,a + D,a . (Suwg -+ Dwg . 511,7&) (3.20)
Vo =X 4 0b+du, - D.
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The relation between the stress resultants and the strains is very simple since only
linear elastic materials are considered and is defined as & = C - g, where C is the
constitutive matrix, see Dornisch et al. (2016).

3.4 Standard NURBS-based isogeometric shell formu-
lation

The Reissner-Mindlin shell theory described in Section 3.3 is now combined with the
isogeometric analysis, see Piegl and Tiller (1997), Cottrell et al. (2009), for the nu-
merical solution of the weak form of equilibrium, Eq. (3.19). As it was mentioned in
Section 3.2, the main advantage of isogeometric analysis is that it uses the same basis
functions for the design and analysis. This does not only reduce the computational
cost but leads to an exact representation of the geometry. Thus, the interpolation of
the mid-surface’s position vector X is not going to be an approximation but the exact
value

Nen

X =) NX,, (3.21)
=1

where N; denotes the NURBS surface basis functions, see Piegl and Tiller (1997).
The variable n.,, defines the number of basis functions that have an influence on one
element, i.e. their value is non zero. In general, it is specified by n.,, = (p+1)-(¢+1),
where p, ¢ are the chosen polynomial degrees for the basis functions in the first and in
the second direction. The same holds for the reference director vector which coincides
with the normal vector of the surface and is calculated using the given geometry

Nen

D=) N/D;. (3.22)
=1
The derivatives of X and D with respect to the local Cartesian basis system 6% are
consequently interpolated by

Nen Nen

Xo=) NoX; D.=> Ny D, (3.23)
I=1 I=1

The other terms of the Reissner-Mindlin shell formulation are going to be approxi-
mated values and are denoted with (...)".

Starting from the solution variables u, the same basis functions are used for their in-
terpolation as for the description of the geometry

Nen

u = Z Nyu;. (3.24)
I=1
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The corresponding derivatives are computed analogously

Nen

wl, =" Npau. (3.25)
I=1

The interpolation of the difference vector b", see Eq. (3.3), and its derivative bfba, see

Eq. (3.4), requires the interpolated value of the rotational parameter w” and its deriva-
h

e’

tive w

b" = wh x D, b, =w" x D+w"x D, (3.26)

On the other hand, the interpolated rotational parameter wh

Nen

I=1

can be reformulated in relation to the nodal rotations 3;. For this purpose, the nodal
transformation matrix 7T's; is introduced, which includes the nodal Cartesian system
A;; of the reference configuration described in Section 3.3.1. Again, for a smooth
surface the transformation matrix T'3; consists only of two nodal basis vectors A,

Ty = [Ay Ayl (3.28)

The third nodal basis vector Ajs; is not included in order to avoid zero energy modes
which arise due to drilling rotations. The final formulation of the interpolated rotational
parameter as well as its derivative reads

Nen Nen

w" =Y "T3N;B, W' =Y T3 N8, (3.29)

I=1 I=1

In this manner the interpolated variation of the shell strains, see Eq. (3.20), is given as

[ Sely ] X - ouly
Seh, X 5 oul
20eh, X 1-ouly+ X 5 ouly
seh — oy | _ X 1-0b' + D - oult (3.30)
Skl X 5 6bly + D, - dul ‘
20k1, X, 0bly+ X 560" + Dy ouly+ D, ouly
yh X, 6b"+oul - D
ok X, 6b" +ouly- D

For a shorter notation the matrix B is introduced, which provides a relation between
the virtual strains and the variations of the nodal displacements and rotations

Nen

geh = Z Bév; (3.31)
I=1
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with
X' Npy 0
XNg, 0
X' Ny + XNy, 0
DNy, XTWTT3 Ny + X TW T3 N,
B = D)N; XOWTTy Ny + XOWHTs Ny | (3.32)

D' Nis+ DNy, X YW Ty N, + X TWLT N,
+X§WTT31NI71 + XLWIT3 N,

DTNLl X?;WTTSINI

D" Ny, XLWTy N,

3.5 Adjusted approximation spaces against transverse
shear locking

Transverse shear locking is a very common problem in the Finite Element Analysis.
It is very profound in pure bending dominated problems and is intensified the thinner
the structure gets. In these kind of problems the transverse shear strains are going to
be zero, i.e., E}% Yo ~ 0. This condition is automatically satisfied in Kirchhoff-Love
type formulations, however in Reissner-Mindlin type models this requirement causes
problems. Looking at the presented shell formulation the resulting compatibility re-
quirement for the interpolated transverse shear strains is computed as follows

Nen Nen

W= XTWTS NiT3 8, + DTS Nygup = 0. (3.33)

I=1 I=1

Normally, the same basis functions are used for the interpolation of the displacements
u; and the rotations [3,. However, that would mean that the first term of the con-
dition, which includes the used basis functions and the second term, which includes
the derivatives of the basis functions, being spline basis functions of one order lower,
should together result in zero. It is clear that this mismatch in polynomial degrees hin-
ders a proper fulfillment of Eq. (3.33). The problem is more visible when considering
plate formulations, where the definition of the shear strains is much simpler

Nen Nen

Y= Nifar +Y_ Nrausr = 0. (3.34)
I=1 I=1

Thus, transverse shear locking is not a physical problem of the plate or shell formu-
lation but a numerical problem. It leads to spurious shear strains which make the
structure much stiffer than it actually is. The resulting deformation is going to be
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smaller than it would have been in reality. Furthermore, the shear stress resultants are
going to exhibit an oscillatory behavior, see Oesterle et al. (2016). In order to over-
come this problem several methods have been suggested for the Finite Element Method
and to some extent also for Isogeometric Analysis, see Section 3.2. Here, the method
proposed by Beirdo da Veiga et al. (2012a) for an isogeometric plate formulation is
extended to the presented isogeometric shell formulation.

Beirdo da Veiga et al. suggested that if the problem lies in using the same basis func-
tions for u; and f3,, then using different basis functions with compatible polynomial
degrees for the relevant direction would solve the problem. However, this necessitates
the use of separate control meshes for the displacements and the two rotations. An ex-
ample for such a differentiation is given in Fig. 3.2 for a polynomial degree of p, = 3
and g, = 2 for the displacements and only one element. The meshes of the rotations
B1 and 35 have a polynomial degree which is reduced by one in the relevant direction
(ps, = 2, g3, = 2 for the 3, mesh and pg, = 3, g, = 1 for the 85 mesh). The only
value that is going to be the same for all three meshes is the number of elements. This
choice is made in order to simplify numerical integration of the weak formulation.

It is important to mention that the starting geometry is the same for all three meshes.
Only by applying different degrees of refinement, the new control meshes are created.
Thus, the isogeometric concept, namely the direct use of the surface design model
in analysis, still holds because the given geometry is not altered but only refined in
different ways. A combination of the three meshes results in the so-called global mesh
which includes all control points from all meshes, see Fig. 3.2. The total number of
control points of the global mesh holds for p,, q, > 2

n?% - mI = (py + s, +2 - Net —2) - (qu + g, +2 - Mg — 2), (3.35)

where n.;, m,; are the number of elements per direction. If p, = 1 or ¢, = 1, the
equation would change to n?** = p, +pg, +2-ng or m? = q, +qg, +2-me, respec-
tively. However, the control points of the global mesh do not have the same degrees
of freedom. Depending on which mesh they belong to, there are control points with
one, three, four or five degrees of freedom. The total number of degrees of freedom
for the global mesh is nj ;. = n, - m, - 3+ ng, - ms, + ng, - mg,, where n,,, m, are
the number of control points per direction for the u mesh and ng,, mg,, ng,, mg, for
the (1, B2 mesh, respectively. This equation can be rewritten regarding the polynomial
degrees and the number of elements as follows

ngz;s = (pu + nel) : (Qu + mel) ©0 — (QU + Mmeg + Pu + nel)' (336)
As it can be seen in Eq. (3.36), the shell formulation with the adjusted approximation
spaces has (g, + me; + pu + 1) less degrees of freedom than its corresponding stan-
dard Reissner-Mindlin shell formulation. That means that the computational effort for
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the solution of the weak form is lowered and at the same time, especially for lower
polynomial degrees and number of elements, the results are more accurate due to the
mechanism against transverse shear locking.

The maximal number of control points which have support on an element of the global
mesh is calculated by

nd’ = (pu+pp, +2) - (qu+ s, +2). (3.37)

The n*, = (p, + 1) - (g, + 1) control points from the u mesh, as well as the nf! =
(ps, +1)- (g, +1) and n?2 = (pg,+1)-(gs, +1) control points from the control meshes
B1, Ba, respectively, that have support on the considered element are all included in the
ng:* control points of the global mesh.

= 62
é-l

Figure 3.2: Adjusted approximation spaces for u; and 3, and the resulting global mesh.

The global mesh is needed for the implementation of the weak formulation. In this
manner, the shell strains (3.31) have to be rewritten in accordance to the new global
mesh. The definition of the B; matrix in (3.32) is conceived for a shell formulation
which uses the same shape functions for all deformations. Now, for the purpose of
employing different basis functions for the displacements and the two rotations, the
B is split into three parts, i.e. B; = [B}‘ Bfl Bff?], which correspond to the u;
(green), 3 (red) and (3, (blue) control mesh, respectively. B is a 8x3 matrix which
includes the basis functions N} from the displacement’s control mesh, whereas Bf !
and B 192 have the dimension 8x1 and contain the corresponding basis functions /V b
N }92 as well as the discrete nodal basis systems Ag}, Aff, from the approximation spaces
of the rotations.
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Accordingly, the virtual shell strains of the new global mesh read

de; = BYdu; + B 6By + B26far. (3.39)

Considering Eq. (3.19), the approximation of the weak form for the new global control
mesh has the form

uT U ul 153 ul B
Nel Mel nen ngﬁs BIT(CB/ B[TCBJI B]TCBJZ
o= (J S ol | [ [5/csy Blcs) Blcn?| -

e=1 I=1J=1 2 Bj“)TCB“ BS-JT(CB& B‘d;(CB“dZ
1 J 1 J 1 J

[Ny 0 0 0 0] [da] N 0 0 0 07 /]

O Ny 0 0 0 a 0O N 0 0 0 u

/ 0 0 Ny 0 0 ]-]g|dA- / 0 0 Nf 0 0 v | ds
“lo 0o o N 0| |md o o0 0 N 0| |md
L0000 NP it o 0 o0 o0 N7 |

The required Gauss points for the surface integrals in the weak formulation are chosen
as the Gauss points of the © mesh, leading to a total number of ng, = (p,+1)- (¢, +1)
Gauss points. Since the elements are the same for all meshes, using the Gauss points of
the « mesh, which has the highest polynomial degrees, is also going to be compatible
with the other meshes.

(3.40)
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3.6 Numerical examples

Remarks. In the following examples, when referring to the shell formulation with
adjusted approximation spaces (AAS shell), the polynomial degrees of the w mesh
(pu, qu) are given. For the rotation meshes only the reduced polynomial degree in the
corresponding direction, see Fig. 3.2, is given, i.e. (ps,, qg,). It is implied that the
polynomial degrees of the rotation meshes in the other directions have the same value
as the ones from the u mesh, i.e. g3, = ¢, and pg, = p,,. For the shell formulation of
Dornisch et al. (w-shell) the polynomial degrees p and ¢ are given.

In the comparison of the relative error of the w-shell with the AAS shell, the total
number of equations for the solution, i.e. the total number of degrees of freedom, were
taken as the reference value. That is because the shell with adjusted approximation
spaces does not have all degrees of freedom in every control point as the w-shell does,
see Section 3.5. Thus, a comparison with respect to the number of control points or
the number of elements would be insufficient.

3.6.1 Simply supported plate with biaxial bending

In the first example a simply supported plate of length L = 10 is considered which is
subjected to a uniformly distributed load ¢, leading to biaxial bending, see Fig. 3.3(a).
The plate has an E-modulus of £/ = 1000 and a Poison’s ratio of v = 0.3. The
analytical solution for the center deflection is taken from Timoshenko (1940) and has
a value of ug’, ., = 0.442892. It corresponds to the center deflection of a Kirchhoft-
Love plate. Here, the dependency of the plate’s center deflection is evaluated over the
slenderness which includes the critical parameter, i.e. the thickness ¢. In order to get
the same value for the center deflection regardless of the considered thickness, the unit

load is scaled with #3. Different element types are used for the investigation, namely:

* 3p. The isogeometric Kirchhoff-Love shell model proposed in Echter et al.
(2013) with 3 independent parameters which correspond to the 3 mid-surface
displacement components.

e Sp-stand. The standard isogeometric 5-parameter shell model proposed in
Echter et al. (2013) with 5 independent parameters which correspond to 3 mid-
surface displacement components and 2 difference vector components.

* Sp-hier. The isogeometric 5-parameter shell model proposed in Echter et al.
(2013) with 5 independent parameters which correspond to 3 mid-surface dis-
placement components and 2 hierarchic difference vector components. The hi-
erarchic difference vector includes the shear deformations and is applied on the
rotated director of the Kirchhoff-Love formulation.
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* w-shell. The isogeometric Reissner-Mindlin shell formulation proposed by Dor-
nisch et al. (2013).

* AAS shell. The isogeometric Reissner-Mindlin shell formulation with adjusted
approximation spaces for the displacements and the rotations proposed in this
work.

q;
L \
]
L
(a)
0.51

| == Analytical

0.49 ~ 3p
=#=5p-stand.

~ w-shell |
\: =A AAS shell|
= = .

CENTER DEFLECTION
o
o
()]

0.43
0.41
0.39 | | —
10" 102 10° 10%
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(b)

Figure 3.3: (a) Simply supported plate subjected to a uniformly distributed load and (b) the

center deflection with increasing slenderness.

The center deflections of the three first shell models are taken from the Dissertation of
Echter (2013). For all element types a refinement of 10x 10 elements with a polyno-
mial degree of two in both directions, i.e. p = ¢ = 2 is used (maximum C"-continuity).

As it can be seen in Fig. 3.3(b), the 3 parameter shell model coincides with the analyt-
ical solution for both the thick and the thin regime. This result is as expected since the
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Figure 3.4: Shear stress resultant ¢' for slenderness % = 10 ((a) w-shell, (a) AAS shell),

% = 100 ((b) w-shell, (b) AAS shell) and % = 10000 ((c) w-shell, () AAS shell).

3p model is based on the Kirchhoff-Love kinematics and does not consider any shear
terms. The Sp-stand and the w-shell elements, which both do not have any measures
against transverse shear locking, yield agreeing results. Namely, in the thick regime
the center deflection is higher than the analytical one, which is physically sound due
to the additional shear terms which are included in the Reissner-Mindlin shell theory.
However, in the thin regime instead of converging to the solution of the Kirchhoff-



3 ADJUSTED APPROXIMATION SPACES FOR THE TREATMENT

46 OF TRANSVERSE SHEAR LOCKING
5 \
AAS shell i
=== ®-shell F/
’I
», ¢,
/l Yo
/,.-'
\—o_ 0 L —’—"’_a’
/’\,//
I,'
{
/
-5 L
0 2 4 6 8 10
X

Figure 3.5: Shear stress resultant ¢! for slenderness % =10 fory = 5.

Love plate, the deflection is underestimated. This behavior illustrates transverse shear
locking, where an additional stiffness leads to reduced deformations. The Sp-hier shell
and the w-shell with adjusted approximation spaces do not exhibit such a behavior due
to their anti-locking mechanisms. In these cases the results converge to the Kirchhoff-
Love results as expected.

Another interesting aspect of transverse shear locking is its influence on the shear
stresses that is more pronounced than for the displacements. This behavior was out-
lined in the work of Oesterle et al. (2016). In Fig. 3.4 the shear force ¢ is presented
only for the w-shell and the AAS shell. Three cases are considered, a plate with mod-
erate thickness, ¢ = 1 ((a) and (a)), a plate with ¢ = 0.1 ((b) and (b)), and a plate
in the thin regime with ¢ = 0.001 ((c) and (c)). Since soft support is used, the high
values of ¢' at the two boundary ends with y = 0 and y = 10 are legitimate and do
not have anything to do with transverse shear locking. In Fig. 3.4(b) it can be seen
that for the w-shell the shear forces ¢' exhibit an oscillating behavior due to transverse
shear locking. The maximum value of the oscillation has almost the same value as
the shear forces at the boundaries due to soft support. In Fig. 3.4(c) it is shown that
the oscillations become even more profound with increasing slenderness due to the
intensification of the transverse shear locking phenomenon. In this case the maximum
value of the oscillation exceeds the shear forces due to soft support by one magnitude,
so in this scale the shear forces at the boundaries are not visible any more. Even for
the thicker plate with ¢ = 1, where the shear force looks fine, see Fig. 3.4(a), at a
closer look some small oscillations still exist, see Fig. 3.5. On the other hand these
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oscillations can not be found in the AAS shell model for all thicknesses (Fig. 3.4(a),
Fig. 3.4(b) and Fig. 3.4(c)). Analogous results are obtained if the other shear stress ¢>
is considered.

3.6.2 Razzaque’s skew plate

This example was proposed and studied by Razzaque (1973). It consists of a skew
plate which is simply supported on two opposite edges, free on the other two and sub-
jected to a uniformly distributed load ¢, = 1, see Fig. 3.6(a). Here, the chosen length
for the plate is L = 10 and the thickness is ¢ = 0.1. The material parameters are
given as £ = 10° and v = 0.31. The analytical solution for the center deflection is
taken from Razzaque (1973) and has the value u§" = 0.7945% with D the flex-
ural rigidity. In this example, the AAS shell’s performance for skew geometries is
examined. The relative error of the center deflection of the w-shell formulation and
the AAS formulation over the number of equations is compared to the relative error of
the 4-node Bathe/Dvorkin plate element, see Fig. 3.6(b) in double logarithmic scale.
The Bathe/Dvorkin element is based on the Reissner-Mindlin theory and uses different
interpolations for bending and transverse shear effects in the element stiffness matrix
in order to avoid locking. Since the Bathe/Dvorkin element is a plate element and the
relative error is evaluated in relation to the number of equations required for the solu-
tion, the plate version of the w-shell and the AAS formulation is taken with A; = e;.
Otherwise, a transparent comparison would not be possible, since the shell elements
have automatically more degrees of freedom than the corresponding plate elements.
The axes of Fig. 3.6(b) are given in double logarithmic scale. As it can be seen, the
w-plate element with a polynomial degree p = ¢ = 1 and p = ¢ = 2 shows strong
locking effects, especially for a low number of elements. On the other hand, the plate
formulation with adjusted approximation spaces and the Bathe/Dvorkin plate element
have better results especially for a low number of elements and a constant conver-
gence rate which indicates that they are locking free. The convergence rate of the
Bathe/Dvorkin element is 1, whereas for the AAS element it is slightly higher with
a value of 1,35. That is because Bathe/Dvorkin uses linear basis functions, whereas
the AAS plate uses quadratic basis functions for the displacements and linear basis
functions for the rotations. Thus, the AAS formulation performs slightly better than
the Bathe/Dvorkin element. With higher number of elements the error of the w-plate
improves and if locking is sufficiently reduced the error gets smaller than for the other
two formulations. That is because the w formulation uses higher polynomial degrees
for the displacements and rotations compared to the other two formulations and thus it
should have a higher convergence rate if locking is reduced.
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Figure 3.6: (a) Razzaques’ skew plate and (b) the error of the center deflection over the number
of equations.

3.6.3 Fully hard clamped square plate

The third example consists of a unitary square block [0, 1]? which has all four sides
clamped, see Fig. 3.7(a). It is subjected to a body load, with the following definition:
L 2 2 2
q:(z,y) = m[uy(y —1)(5a” =52+ 1)(2y°(y — 1)" + z(z — 1)
x (5y* — 5y + 1)) + 12x(z — 1)(5y* — 5y + 1)(22*(z — 1)?

+y(y — 1)(52% — 5z +1))], (3.41)
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see Fig. 3.7(b). The analytical solution of the deflection and the rotations is derived in
Chinosi and Lovadina (1995) and is given for each point (x,y) of the plate as follows:

us(x, y) Z%w?’(w -1’y —1)° - %[@ﬂy —1)%x(z—1)

x (ba® =5z + 1) 4+ 2°(x — 1)%y(y — 1) (5% — 5y + 1)),

Ply~ Yo - 100e - )

Be) = (s 1ty -1y 42

A linear elastic material law with Young’s modulus £ = 1.092 - 107 and Poisson’s
ratio v = 0.3 is used. The thickness of the plate is set to ¢ = 1073, The given example
is examined in Beirdo da Veiga et al. (2012a) for the plate formulation with adjusted
approximation spaces. Here, the example is used to compare the shell formulation with
adjusted approximation spaces to the w-shell for different polynomial degrees.

q,(xy)

%x10°

Figure 3.7: (a) Fully hard clamped square plate and (b) body load ¢ (z,y) .

In Fig. 3.8 the error of the center deflection is illustrated as a function of the number
of equations used for the solution, i.e. as a function of the total number of degrees of
freedom. The diagrams are displayed in a double logarithmic scale. In order to have a
substantive comparison, the polynomial degrees (p, ¢) and (p+ 1, ¢+ 1) of the w-shell
are compared to the polynomial degrees (p, = p + 1,q, = ¢ + 1) and subsequently
(pg, = p.q3 = q+ 1), (ps, = p+1,q8, = q) of the shell formulation with adjusted
approximation spaces.

In this manner, the polynomial degrees p = ¢ = 1 and p = ¢ = 2 of the w-shell show a
very strong locking behavior which is more profound for a lower number of equations,
i.e. alower number of elements. On the other hand, the shell formulation with adjusted
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Figure 3.8: Error of the center deflection over the number of equations for the w-shell and the
AAS shell.

approximation spaces and p,, = ¢, = 2, pg, = 1, g3, = 1 leads to significantly better
results even for a low number of elements. For higher polynomial degrees, the w-shell
exhibits a similar behavior as before; for a low number of elements the displacements
are strongly underestimated due to shear locking and with mesh refinement the locking
effect is alleviated. The shell formulation with adjusted approximation spaces yields
higher accuracy in all discretization ranges than the w-shell formulation and its con-
stant incline for all polynomial degrees shows that it is locking-free. It is interesting
to see that even for the higher polynomial degrees the w-shell formulation gets closer
but never reaches the accuracy of the shell formulation with adjusted approximation
spaces in contrast to the last example of the skew plate, see Section 3.6.2. As it was
mentioned in Section 3.2, the choice of a higher polynomial degree for the w-shell
only alleviates the locking effect, it does not eliminate it. Here, even for a polynomial
degree of p = ¢ = 4 locking is still profound in the w-shell.

3.6.4 Choice of shell examples

The asymptotic behavior of a shell model describes the stress and deformation state as
the thickness tends to zero. Depending on the geometry, the boundary conditions and
the loading, the shell problem is membrane dominated or bending dominated. In the
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best case the convergence rate of a shell element should be independent of its thickness.
Bending dominated problems, where pure bending is non-inhibited, are good tests for
locking phenomena. In the case of bending dominated Reissner-Mindlin shells the
membrane and shear energies tend to zero with decreasing thickness. Two bending
dominated benchmark tests from literature, see Chapelle and Bathe (1998) and Lee and
Bathe (2002), are presented in the following for the verification of the proposed anti-
locking method. Here, no measures have been taken against membrane locking. So
in the following examples, only the assessment of the adjusted approximation spaces
to reduce transverse shear locking is considered. Membrane locking is still going to
influence the results and its elimination should be the objective of research to follow.

3.6.4.1 Bending dominated test I - Pinched hemisphere

15-

u
fixed @ [, rotation
@ [, rotation

sym sym

free

(a)

Figure 3.9: (a) Pinched hemisphere and (b) global mesh of pinched hemisphere for p,, = ¢,, =

3andn =m = 4.

The first bending dominated test that is examined includes a hemisphere, subjected to
a pair of equal but opposite point loads which are placed at antipodal points of the
equator, see Fig. 3.9(a). As a boundary condition only the apex of the hemisphere is
fixed in order to prevent rigid body motions and simultaneously to ensure a bending
dominated behavior with decreasing thickness, see Chapelle and Bathe (1998). The
edge along the equator is free. Due to symmetry only one quarter of the hemisphere is
considered. This problem exhibits almost no membrane strains and is a challenging test
for shell elements regarding their ability to avoid locking, see Bouclier et al. (2013a).
Since large sections of this shell rotate almost as rigid bodies, it is also a good test for
examining the formulation’s ability to represent accurately these rotations about the
normals to the shell surface, see Belytschko et al. (1985). Usually, the thickness for
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Figure 3.10: (a) The error over the number of equations for the w-shell and the AAS shell and

(b) initial mesh and deformed geometry with a scale factor 10 for the displacements

this problem is taken as ¢ = 0.04, however, here a reduced thickness is considered with
t = 0.004 in order to intensify the locking phenomenon. The displacement on which
the focus lies on is at the point and in the direction of the loading, see Fig. 3.9(a).
The global mesh of the hemisphere for p, = ¢, = 3 and n = m = 4 is shown in
Fig. 3.9(b). As a reference solution the displacement calculated with a 80x 80 mesh of
w-shell elements with p = ¢ = 6 is considered. In contrast to the plate examples, in the
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shell examples like this doubly curved surface, higher polynomial degrees are required
in order to represent the geometry exactly. Thus, the w-shell formulation starts with a
polynomial degree of p = ¢ = 2 and the AAS shell starts from p,, = ¢, = 3, pg, = 2,
qp, = 2. The error over the number of equations is represented in a double logarithmic
scale in Fig. 3.10(a).

Comparing the w-shell with p = ¢ = 2 and p = ¢ = 3 with the AAS shell with
Du = Gu = 3, P, = 2, qs, = 2, it can be seen that for a low number of elements the
AAS method is almost the same but still slightly better than the w-shell with the higher
polynomial degree p = ¢ = 3. Furthermore, with a higher number of elements the
difference between the w-shell and the AAS shell is becoming very profound. So, in
contrast to the plate examples, where the difference between the error norms is getting
smaller with a higher number of elements, here the transverse shear locking becomes
more visible. A reason for this is the membrane locking, which is more profound for a
low number of elements, see Choi et al. (1998). Even for the w-shell with p = g = 4,
the relative error for a high number of elements is slightly bigger than for the AAS
shell with p, = q, = 3, ps, = 2, qs, = 2. Going one step further and comparing
higher polynomial degrees, namely the w-shell with p = ¢ = 4 and p = ¢ = 3 with the
AAS shell with p, = ¢, = 4, ps, = 3, g3, = 3, a similar behavior can be observed.
However, the difference between the relative errors has slightly improved due to the
higher polynomial degrees. The undeformed mesh in contrast to the deformed shape
with a scale factor 10 is shown in Fig. 3.10(b).

3.6.4.2 Bending dominated test II - Partly clamped hyperbolic paraboloid

The partly clamped hyperbolic paraboloid was introduced in Chapelle and Bathe
(1998) and recommended as a good test problem for the evaluation of the lock-
ing behavior of a shell element. It was further investigated in Bathe et al. (2000)
and a more detailed asymptotic analysis for this example is given in Lee and Bathe
(2002). The surface of the hyperbolic paraboloid is defined as Z = X? — Y?; with
(X,Y) € [(—L/2;L/2)]%. Tt is clamped along the edge X = —L/2 and subjected
to its self-weight, see Fig. 3.11(a). The global mesh of the hyperbolic paraboloid for
Pu = ¢, = 4and n = m = 4 is exemplarily shown in Fig. 3.11(b). Due to its
symmetric geometry only one half of the shell is considered with respective symmetry
boundary conditions along the side Y = (. The main aim of this test is to examine
the influence of the thickness on the convergence behavior of the shell elements, thus
different slenderness values are considered, i.e. t/L = 1/100, t/L = 1/1000 and
t/L = 1/10000. Since an analytical solution for this problem does not exist, the val-
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Figure 3.11: (a) Partly clamped hyperbolic paraboloid and (b) global mesh of hyperbolic

paraboloid for p, = ¢, =4 andn =m = 4.

t/L Vertical displacementat X = L/2,Y =0
1/100 —9.3521 x 107
1/1000 —6.3974 x 1073
1/10000 —5.3049 x 107!

Table 3.1: Reference values for the vertical displacement at point X = L/2,Y = 0 using a
100 x50 mesh of w-shell elements with p = ¢ = 6.

ues obtained at X = L/2,Y = 0 (point P) using a 100x50 mesh of w-shell elements
with p = ¢ = 6 are used as reference solutions, see Table 3.1. The self-weight is
proportional to the thickness and thus, the displacements scale as 1/t2, see Bathe et al.

(2000).

The material parameters of this example are £ = 2 - 101, v = 0.3, p = 8000 and the
length of the hyperbolic paraboloid is L = 1. In Fig. 3.12(a-c) the error of the vertical
displacement of point P is given in relation to the number of equations used for the
solution. The plots are in double logarithmic scale. For the thicker shell (t = 0.01,
see Fig. 3.12(a)) the difference between the accuracy of the w-shell and the shell with
adjusted approximation spaces is small. For few elements the AAS element is slightly
better than the w-shell. On the other hand, for a large number of elements the w-shell
gets slightly better than the AAS shell because here the locking effect has already been
alleviated and the w-shell has a higher polynomial degree for the rotation compared to
AAS. So in the first case, transverse shear locking has still not such a big influence. In
the second case with ¢ = 0.001, see Fig. 3.12(b), the difference between the elements
is more visible. The AAS element with p, = ¢, = 3, ps, = 2, gz, = 2 leads to
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Figure 3.12: Convergence in the displacement w(L/2,0) for t/L=1/100 (a), t/L=1/1000 (b) and

t/L=1/10000 (c).
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better results compared to the w-shell with p = ¢ = 2 and p = ¢ = 3. Furthermore,
the AAS element with p,, = ¢, = 4, pg, = 3, gz, = 3, still shows a higher accuracy
compared to the w-shell element even though the locking effect is slightly alleviated
due to higher polynomial degrees. However the biggest difference can be seen in the
last case with ¢ = 0.0001, see Fig. 3.12(c), where the transverse shear locking effect
is more profound. Here, the deviation is clearly visible even for higher polynomial
degrees. As it was also noticed in the last example of the pinched hemisphere in
contrast to the plate examples, the difference between the w-shell and the AAS shell
is more profound the higher the number of elements gets due to membrane locking,
which has a bigger influence for a low number of elements, see Choi et al. (1998). Now,
looking at all the three diagrams, it is noticed that the convergence rate is decreasing
(there is a shift in the convergence plot as t decreases), the thinner the shell gets. This
is again due to the membrane locking which is getting more profound the thinner the
shell gets.

3.7 Conclusions

In the current work, a method to treat transverse shear locking was presented in the
context of an isogeometric Reissner-Mindlin shell formulation. The method uses ad-
justed approximation spaces for the displacements and the two rotations in order to
ensure consistency in the interpolated terms of the strain formulation. It is generally
applicable for any polynomial degree and no additional variables have to be introduced.
Furthermore, it was shown that the method leads to less degrees of freedom in the sys-
tem of equations than its corresponding standard Reissner-Mindlin shell formulation.
Regarding computational time, it could be argued that the use of different meshes is
going to increase the processing time. However, since locking is more intense for low
polynomial degrees and a low number of elements the additional computational time
is not profound in these cases and the improvement of the solution’s accuracy is more
significant. In addition, since the system of equations is reduced, it will lead again to a
reduction of the computational time.

The method was tested for several plate problems and has shown a superior behavior in
contrast to the w-shell formulation, in which no anti-locking measures are considered.
Especially for a low polynomial degree and a low number of elements, where trans-
verse locking is more profound, the formulation with adjusted approximation spaces
showed a higher accuracy with fewer degrees of freedom. Furthermore, compared to
other elements that have mechanisms against locking, namely, the hierarchic shell for-
mulation and the Bathe/Dvorkin element from the standard Finite Element Method, the
proposed method shows very good results. Oscillations in the stress resultants due to
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locking is also effectively eliminated. In addition, some bending dominated shell ex-
amples were investigated for the proposed method and the w-shell formulation. As for
the shell examples, the formulation with adjusted approximation spaces shows much
better results than the w-shell formulation, however for both formulations, membrane
locking still has an influence on the results. Thus, an additional elimination of mem-
brane locking and, in a second step, other locking effects is going to be the content of
future work. In particular, the problem of membrane locking could be handled with
existing methods, already mentioned in Section 3.2. One option could be the Assumed
Natural Strain method which has successfully been implemented for the case of iso-
geometric solid-shell elements, see Caseiro et al. (2014). Furthermore, the Discrete
Strain Gap method which was extended to an isogeometric Kirchhoff-Love shell in
Echter et al. (2013) was able to remove membrane locking. Finally, mixed methods
as used in Echter et al. (2013) and Oesterle et al. (2016) for a Kirchhoff-Love shell
formulation and in Bouclier et al. (2013a) for a solid-shell formulation to eliminate
locking could be extended to the proposed Reissner-Mindlin shell formulation.



58

3 ADJUSTED APPROXIMATION SPACES FOR THE TREATMENT
OF TRANSVERSE SHEAR LOCKING




Chapter 4

Two-field formulations for
isogeometric Reissner-Mindlin plates
and shells with global and local
condensation

This chapter was published as:

Kikis, G. and Klinkel, S. (2022). Two-field formulations for isogeometric Reissner-
Mindlin plates and shells with global and local condensation. Computational Mechan-
ics, 69:1-21.

4.1 Abstract

In this paper, mixed formulations are presented in the framework of isogeometric
Reissner-Mindlin plates and shells with the aim of alleviating membrane and shear
locking. The formulations are based on the Hellinger-Reissner functional and use the
stress resultants as additional unknowns, which have to be interpolated in appropriate
approximation spaces. The additional unknowns can be eliminated by static conden-
sation. In the framework of isogeometric analysis static condensation is performed
globally on the patch level, which leads to a high computational cost. Thus, two addi-
tional local approaches to the existing continuous method are presented, an approach
with discontinuous stress resultant fields at the element boundaries and a reconstructed
approach which is blending the local control variables by using weights in order to
compute the global ones. Both approaches allow for a static condensation on the ele-
ment level instead of the patch level. Various numerical examples are investigated in
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order to verify the accuracy and effectiveness of the different approaches and a com-
parison to existing elements that include mechanisms against locking is carried out.

4.2 Introduction

Isogeometric Analysis (IGA) was introduced by Hughes et al. (2005) with the aim of
unifying the design and analysis process. This is achieved by using for both the same
higher order basis functions that are common in CAD tools, such as Non-Uniform
Rational B-splines (NURBS). Since then, isogeometric analysis has been successfully
implemented in structural mechanics and many other fields, e.g. in fluid mechanics,
see Gomez et al. (2010), contact mechanics, see Temizer et al. (2011) and fracture
mechanics, see Kikis et al. (2021).

Especially in the context of shell structures, isogeometric analysis offers many ad-
vantages. The higher continuity of splines over the patch is essential for the correct
computation of the shell’s curvature and the surface’s normal. Furthermore, free form
structures can now be computed with a significantly lower computational cost. Thus,
in the past years a lot of effort was put in integrating isogeometric analysis into the
existing shell formulations. The first step was done with the Kirchhoff-Love shells,
see Kiendl et al. (2009), Benson et al. (2011), Nguyen-Thanh et al. (2011) and Duong
et al. (2017) and later with the Reissner-Mindlin shells in Uhm and Youn (2009), Ben-
son et al. (2010b), Dornisch et al. (2013, 2016) and Kiendl et al. (2017) and the solid-
shells in Hosseini et al. (2013, 2014b) and Bouclier et al. (2013a).

Even though splines are very advantageous due to their higher order and continuity,
they suffer from the same locking effects as Lagrange shape functions, see Echter and
Bischoff (2010). Locking leads to an artificial stiffening of the system, an underesti-
mation of the deformation and oscillations in the stress resultants. Various methods
have been proposed in order to eliminate these undesirable effects in the framework of
isogeometric analysis. The easiest one is to use higher order shape functions, however,
this approach does not eliminate locking completely and at the same time increases the
computational cost, see Benson et al. (2010b), Echter and Bischoff (2010) and Bouclier
et al. (2013b). An attempt to overcome locking effects on the theoretical level by using
hierarchic formulations was made in the framework of Reissner-Mindlin and 3D shells
in Long et al. (2012), Echter et al. (2013), Beirdo Da Veiga et al. (2015) and Oesterle
et al. (2016). Even though these formulations were able to avoid transverse shear and
curvature thickness locking ab initio, additional methods had to be implemented for the
elimination of membrane locking. In Kiendl et al. (2015b, 2018) the classical Timo-
shenko beam problem was reformulated to a single differential equation with only one
primal variable in order to avoid shear locking by construction. A mixed displacement
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method that avoids the geometrical locking effects ab initio was presented in Bieber
et al. (2018).

In addition to these formulations, methods that have been valuable in the classical
finite element analysis for the elimination of locking effects have been extended to
isogeometric analysis, like the Assumed Natural Strain (ANS) method in Caseiro et al.
(2014, 2015), the Discrete Shear Gap (DSG) approach in Echter and Bischoff (2010)
and Echter et al. (2013) and the Enhanced Assumed Strain (EAS) method in Cardoso
and Cesar de Sa (2012). Non-uniform integration techniques were implemented for
1sogeometric Reissner-Mindlin shells in Dornisch et al. (2016) and Adam et al. (2015)
in order to overcome locking and increase the efficiency of the formulations. However,
the latter method fails for general non-uniform knot vectors and is thus not relevant
for industrial applications. Reduced integrated fields were applied for a solid-shell in
Cardoso and Cesar de Sa (2014) in combination with a moving least square approach to
project them back onto the fully integrated space. The use of adjusted approximation
spaces for the displacements and the rotations in Reissner-Mindlin plates and shells
was able to eliminate transverse shear locking, see Beirdo da Veiga et al. (2012a) and
Kikis et al. (2019).

The B method, one of the most popular methods for the finite element analysis, was in-
troduced for isogeometric analysis in Elgued; et al. (2008) along with an F' projection
in order to alleviate locking in nearly incompressible linear and nonlinear elasticity and
plasticity problems. Later, it was extended to straight and curved Timoshenko beams
in Bouclier et al. (2012) and in Greco et al. (2017) to plane curved Kirchhoff rods.
A first attempt to apply the B method to isogeometric 2D solid shells was made in
Bouclier et al. (2013b). As it was often stated in these works, the B method within
the framework of isogeometric analysis leads to a linear system where a matrix de-
fined on the patch level has to be inverted and the resulting stiffness matrix is fully
populated, which increases the computational cost. This led to the introduction of
local B formulations, where the B-projection is applied locally and the global vari-
ables are obtained from the local ones using reconstruction algorithms. Such a local B
formulation was first introduced in Bouclier et al. (2013a) for a NURBS-based solid-
shell. A local B formulation based on the Bézier projection proposed by Thomas et al.
(2015) was presented in Miao et al. (2018) to alleviate transverse shear locking in
Timoshenko beams and volumetric locking in nearly incompressible elastic solids. In
addition, Miao et al. presented a non-symmetric Bézier B projection, where the vari-
ation of the assumed variables is discretized with the dual basis functions. This way,
the assumed variables are directly condensed out without the need of an inversion and
lead to a sparse stiffness matrix with a slightly higher bandwidth. This method was
later applied to geometrically nonlinear Reissner-Mindlin shells in Zou et al. (2020).
A much simpler reconstruction algorithm which is also based on the work of Thomas
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et al. (2015) can be found in Greco et al. (2017, 2018) for plane curved Kirchhoff rods
and Kirchhoff-Love shells. There the local variables are directly interpolated with lo-
cal B-spline functions without a Bézier projection and transformation to the Bernstein
basis. Local B formulations where the locking strains or stresses are projected onto
interpolation spaces with the lowest possible order for each element leading to differ-
ent projection spaces for the inner, corner and boundary elements are presented in Hu
et al. (2016, 2020). Antolin et al. (2017, 2020) used discontinuous polynomial spaces
for the projection of the strains.

Mixed formulations, which are equivalent to the B formulations for linear cases as
stated in Bouclier et al. (2013a) and Simo and Hughes (1986), were implemented in
the context of isogeometric analysis for a solid-shell in order to eliminate membrane,
shear and thickness locking in linear, see Bouclier et al. (2013a) and geometrically
nonlinear cases, see Bouclier et al. (2015). Echter et al. (2013) and Rafetseder and
Zulehner (2019) used a mixed formulation to overcome membrane locking in hierar-
chic shells and Kirchhoff-Love shells, respectively. Mixed variational formulations for
nearly incompressible solids were implemented in Taylor (2011) and Fahrendorf et al.
(2020). However, as it is for the B method, mixed methods involve static condensation
on the patch level due to the high continuity of the shape functions in isogeometric
analysis. This includes the inversion of a matrix on the patch level and leads to a
fully populated stiffness matrix. In order to overcome these issues and reduce the
computational cost, in this work, two approaches are presented based on the two-field
Hellinger-Reissner variational principle which perform static condensation on the ele-
ment level. In the first one, the stress fields are defined discontinuously (C~!) across
the element boundaries. The resulting stiffness matrix is sparse and has the same band-
width as the standard displacement-based shell which additionally reduces the compu-
tational cost. The second approach is based on the reconstruction algorithm used by
Greco et al. (2017, 2018) in the framework of a B method. Here, it is reformulated for
the mixed method with the stress resultants as additional unknowns and is extended to
the case of Reissner-Mindlin plates and shells where membrane and transverse shear
locking occur. The resulting stiffness matrix has a slightly higher bandwidth than the
standard displacement-based formulations. Both methods can be applied for any poly-
nomial degree. They are compared to the mixed formulation where static condensation
is performed on the patch level.

The paper is organized as follows. In Section 4.3, the Reissner-Mindlin shell formu-
lation from Dornisch et al. (2013) and Kikis et al. (2019) is briefly summarized. In
Section 4.4, the isogeometric mixed formulation based on the Hellinger-Reissner vari-
ational principle is presented for alleviating membrane and shear locking. The two
methods for performing static condensation on the element level are presented, and
the existing approach, where static condensation is performed on the patch level is re-
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called. In Section 4.5, the performance of the different approaches is compared on the
basis of various numerical examples. Finally, in Section 4.6, conclusions are drawn
and an outlook for future research is presented.

4.3 Reissner-Mindlin shell formulation

4.3.1 Kinematics and basis systems

The shell formulation presented in this section is based on the Reissner-Mindlin shell
theory and can be found in Dornisch et al. (2013) and Kikis et al. (2019). It is derived
from continuum mechanics and the shell structure is defined with respect to its mid-
surface. In order to describe the thickness direction, the so-called director vector, see
Fig. 4.1, is used. The director vector of the reference configuration D coincides with
the normal vector of the shell’s surface, whereas the director vector of the current
configuration is defined by a difference vector formulation

d=D +b, 4.1
since only linear problems are considered. The difference vector reads
b=wxD=W"w with W =skew(D) (4.2)

and depends on the rotational parameter w of the shell’s mid-surface and the reference
director vector . Only small rotations are considered and the inextensibility condition
in thickness direction is fulfilled in the sense of |d| ~ |D| = 1.

Using the director vector, the reference position vector of an arbitrary point on the shell
is given as

X(£) = X(&") +D(g"), 4.3)

where ¢ = 1,2, 3, £* with o = 1,2 are the two in-plane coordinates of the convected
curvilinear coordinate system of the mid-surface, —% <& 3 < % 1s the thickness coordi-
nate and X (£%) is the position vector of the mid-surface in the reference configuration.
In the same manner, the displacement vector w of an arbitrary point on the shell is de-
fined as

a(¢') = u(€) + £d(E), (4.4)

where u(£”) is the displacement vector of the mid-surface. The current position vector
x(£*) and the displacement vector u(£“) are linked to each other in the following way

w(E%) = X(£7) + u(&?). (4.5)
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The covariant basis vectors G of the shell are defined with respect to £ as follows
G.=X.,+&D,, G; = D, (4.6)

while the contravariant basis vectors G¥ form their dual basis system with G;-G¥ = &/
and 55 the Kronecker delta symbol. However, an orthonormal basis system is needed
for the constitutive relation, thus, a local basis system A; is introduced, see Fig. 4.1.
It is defined with respect to the local Cartesian coordinate system &' and is computed
as close as possible to the convected basis system using the lamina coordinate system,
see Dornisch et al. (2013). In this sense, the displacement and position vectors in
Egs. (4.3-4.4) are now defined with respect to the new coordinate system 6.

Figure 4.1: Basis systems and director vector at a point on the shell’s mid-surface.

The definition of the Jacobian matrix .J is necessary for the computation of the deriva-
tives with respect to the local Cartesian coordinate system as well as for the transfor-
mation of the stress resultant components in Section 4.4. Its entries .J,g are defined
as

Jog = Go - Ag. (4.7)

Since only smooth surfaces are considered, the unknown deformation is summed up in
the following deformation vector

v = [Z] = [U1 Uz U3 51 ﬁz}Ty (4.8)

where u; are the displacements and (3, the rotations. In the case of surfaces with kinks
the third rotation (33 should be considered additionally.
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4.3.2 Strains and stresses

The strains and stresses are expressed with respect to the local Cartesian basis system
A, and its dual basis system A’ = A,. Since only linear problems are considered the
linearized Green-Lagrange strain tensor is used and the strain tensor with respect to A’
is defined as

E=E;A"® A’ (4.9)
The components F;; are split into the in-plane and transverse shear strains as follows

Eop = cap + kg + (0°)pag, (4.10)
2FE,3 = Ya. 4.11)

Es3 1s zero due to the inextensibility constraint. In Eq. (4.10) €,4 denote the membrane
strains

1
Eaf = i(X’a ug+ X g- ’u,voé) (4.12)
and K,z the curvatures

1
Kag = §(X7a . b,g + X”@ . b7a + D7a “upg+ D,g . 'u,ya). 4.13)

The second-order curvatures, which are denoted as
1
paﬁ = é(d’a . dﬁ — D’a . Dﬁ) (414)

are neglected here because only thin shells are considered and their contribution to the
strain energy tends to zero. The shear strains v, in Eq. (4.11) are given as

Yo=Xao btu,- D. (4.15)
The different strain components are assembled in Voigt notation in the strain vector

T
e=len en 2612 ki Ko 2K12 T Yo - (4.16)

The corresponding stress resultant vector in Voigt notation includes the membrane
forces n”, the bending moments m*” and the shear forces ¢

T

o — [nn n2 p2 il o2 g2 g qz} ' (4.17)
Since a linear elastic material is considered, the relation between the stress resultants
and the strains is defined as & = D-e, where D is the constitutive matrix, see Dornisch
et al. (2016).
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4.4 Isogeometric displacement-stress mixed method
for alleviating membrane and shear locking

4.4.1 Hellinger-Reissner variational formulation

In contrast to classical displacement-based formulations, mixed formulations include
as additional unknowns the stresses or strains (Hellinger—Reissner) or both the stresses
and the strains (Hu—Washizu). The approximation spaces for these additional un-
knowns must be chosen accordingly, with the aim of alleviating locking effects. In
this work, the Hellinger—Reissner functional is used within the framework of an isoge-
ometric Reissner-Mindlin shell formulation, in order to alleviate membrane and shear
locking.

The mixed formulation based on the Hellinger-Reissner principle from Hellinger
(1914) and Reissner (1950) reads

G(v,0,0v,00) = /(55Ta' — 6v7py)dQ + / so’(e - D_la) dQ

Q 0
— / Sv1ty00, =0 (4.18)

90
with p, the surface loads, t, the boundary tractions and v = [g} =

[ul, U, u3z, [1, 52}T the deformation vector. The strains € and their variations
de are functions of the unknown displacements and rotations v and their variations
o, respectively. The formulation results from the principle of minimum complemen-
tary energy when employing Lagrangian multipliers in order to additionally include
the equilibrium and traction boundary conditions in the expression. The Hellinger-
Reissner functional leads to a saddle point type problem, thus, the existence of a unique
solution and the stability of the system are only guaranteed when fulfilling additional
conditions, see Andelfinger (1991). In particular, the BabuSka-Brezzi condition (inf-
sup condition), see Babuska and Aziz (1972) and Brezzi (1974), which ensures the
stability of the system should be verified. Here, the condition was not examined, how-
ever, since the results obtained in the numerical examples in Section 4.5 were accurate
and robust it is assumed that the condition is fulfilled. Nevertheless, in order to ensure
the stability of the proposed mixed formulations in general, a mathematical verification
of the condition should be carried out in future work. The corresponding variational
formulation for a classical displacement-based approach of an isogeometric Reissner-
Mindlin shell formulation can be found in Kikis et al. (2019).

The stress resultant components that are considered as additional unknowns and inter-
polated with adjusted approximation spaces are those that correspond to the occurring
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locking effect. In other words, for shear locking the unknown stress resultants include
o = [¢', ¢?], for membrane locking o = [n'', n?? n'?] and in the case where both
11 22 12 gl 2]
7 Y Y *

locking effects occur, e.g. in shells, the unknowns include o = [n'!, n

In the following, the formulation is presented for the case shear and membrane locking
occur. However, in the numerical examples of Section 4.5 all three versions have
been implemented and used for the corresponding examples. The equations are then
adjusted. Furthermore, in the case of shells, the bending parts could be also considered
as additional unknowns. Here, this does not lead to a significant improvement of the
results and increases the computational cost considerably. Thus, only the membrane
and shear terms are considered. However, in cases where the membrane and bending
terms are coupled the consideration of the bending terms as additional unknowns is
mandatory, see Andelfinger (1991). They are then interpolated in the same manner as
the membrane terms.

The Hellinger-Reissner variational formulation from Eq. (4.18) is now modified for
the case where membrane and shear locking is expected

G(v,0,0v,d0) :/56’;0’(194—/5&111_)%%(194—/(SO'TSE,YdQ
Q Q Q

— / s’ (D)o d - / svl Py dQ — svlty 09, = 0. (4.19)
Q Q

0o

Here, eaTA/ [€11, €22, 2612, 71, 72] are the corresponding strains to o and kT =
[K11, K22, 2K12) the curvatures. The strains €.,, & and their variations de.,, 0k are
functions of the unknown displacements and rotations v and their variations dv, re-
spectively. The isotropic linear elastic material tensor is also split into the part that

corresponds to the membrane and transverse shear strains

is the shear correction factor.

o is 0 0 0
or e 0 0 0
DY = 0 S50 0 (4.20)
Ftrg
0 0 5(0t0) EO
tRs
I 0 0 0 2+
and the part that corresponds to the curvatures
Et Et3v 0
B 27 12107
D" = 12?1t—52) 12(%:/2) 0 ) (4.21)
Et3(1-v)
0 0 24(1—1?)
where E is Young’s modulus, v is Poisson’s ratio, ¢ is the shell’s thickness and x; = %
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In the framework of isogeometric analysis, the appropriate shape functions for the
stress resultant fields are, in the relevant direction, one order lower than the ones used
for the interpolation of the deformation, see Table 4.1. There also exists the possibility
to reduce the polynomial degree in both directions by one, see Bouclier et al. (2013a)
and Antolin et al. (2020). However, this version is not considered here. The resulting
approximation spaces for the different stress resultant components for a polynomial
degree of p = 3 and ¢ = 2 is depicted in Fig. 4.2. It should be noted that all approxi-
mation spaces have the same number of elements and the same number of Gauss points
as the deformation mesh. However, the number of control points and their location is
different for each approximation space.

vh(§17§2) =P ®:q INPA {Sp ®SQ}
n" P, €%) and ¢ M€, €) || = 1@ NP {Sh @ 84,)
nPHELE) and PR [ ST T N Sy, o 5T

n?" (¢, &%) Bl 1®”" ' {95, 21® 5a,°1}

Table 4.1: Order of the shape functions for the deformation and stress resultants. Sgl, 532 are
the one-dimensional B-spline spaces with degree p, ¢ and a1, o continuous derivatives across
interior knots, respectively.

Here, NURBS shape functions are used for the approximation of the deformation and
the stress resultants, see Piegl and Tiller (1997) and Cottrell et al. (2009). The shape
functions for the stress resultant components o = [n'!, n*?, n'? ¢!, ¢*] are summed up

in the following way

[NPLbe 0 0 0 0

o vt 0 0 0
N, = 0 0 0 0o |,

0 0 0 NP~1a 0

0 0 0 0 NP

where the color indicates the corresponding approximation space from Fig. 4.2 and
p, q are the polynomial degrees of the deformations in the first and second direction.
NP~ba, NP1 gpd include the shape function’s values at all control points
NP-Ba NP and . This way, the stress resultants o are defined with respect
to the covariant basis GG,. However, they need to be defined with respect to the local
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Cartesian basis Ag, thus, the transformation matrix T, is introduced

gy R 2.J11J1 0 0]
Ity I3 2J12J22 0 O
T, = |Judiz Jadeas Jundoe+JunJia 0 0], (4.22)
0 0 0 Jui Jar
0 0 0 Ji2 Jaa |

where the entries of the Jacobian matrix .J,z are evaluated at the integration points and
are defined in Eq. (4.7). The new resulting shape functions for the stress resultants read
N, =T, N,. Finally, the interpolations of v and o are given in matrix notation as
follows

v = NP9, (4.23)
o" = N,é, (4.24)

where v includes the 5 nodal degrees of freedom of all the control points in the defor-
mation mesh and ¢ includes the stress resultant components of all the control points
in the different stress resultant meshes.

Figure 4.2: Approximation spaces for the deformation v (green) and the stress resultant com-

ponents n11, q1 (red), nag, g2 (blue) and nio (orange)

Isogeometric analysis uses the same shape functions for the design and analysis which
leads to an exact representation of the geometry. Thus, the interpolated values of X
and D are not approximations but exact values and are denoted without (...)". In order
to interpolate the difference vector b", the interpolation of the rotational parameter w”
from Eq. (4.2) has to be calculated first. It depends on the nodal transformation matrix
Ts; = [ Air Ay |, which includes the nodal Cartesian system A, at the I — th
control point. These nodal values A,; are calculated using a method proposed by
Dornisch et al. (2013). There, the nodal Cartesian basis systems are defined in a way
that their interpolated values at any point of the surface coincide as well as possible
with the basis system defined by the geometry. In this sense, the resulting interpolated
rotational parameter reads

nen

wh =" T3 NPB,, (4.25)
I=1
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where nen is the number of shape functions that are non zero for a given element.
The strain-deformation matrices B*” and B" provide a relation between the strains
and the nodal deformation
el = B0, (4.26)
k" = B"0. (4.27)

Egs. (4.26,4.27) are given in matrix notation and B°”7, B" include the values for all
the control points I = 1, n,, of the deformation mesh

XN 0
X,NTY 0
BY = | X N7§ + X,NP] 0 , (4.28)
D' N} X TWTTy NP
| D'N}Y X LW Ty NP
DIN?Y  XAWITy Ny
e LKW TN
DN - XLWITyNT;
| T T p,q
Bi= | g oy xtweraan | 429
’ ) ) ) | ’ )
X WLTy NP
A+ XEWT T NPY
_ X LW Ty N

Inserting the interpolated values from Eqs. (4.23-4.24) and Eqgs. (4.26-4.27) in
Eq. (4.19) leads to the discrete weak form of the Hellinger-Reissner variational for-

mulation
G, 6,60,06) = / 507 (BTN 6 dQ" + / 50" (BT D" B v dQ"
Qh Qh
+ / 56T N. B 9d0" — | 66"N.(D)'N,6d" — [ 667 (NP9)Tp, dQ"
Qh Qh Qh
— / 5T (NPT, 0Q" = 0. (4.30)
o0h

The linear system of equations that results from Eq. (4.30) and has to be solved is given

as follows
r
|- [ wm
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with the different stiffness parts defined as

K., / (B")TD"B*d0" (4.32)
K, = / (BTN ,dQ" (4.33)
K, = / N, I B=1d0" (4.34)
K,, = / ) "IN, dQ" (4.35)

and the force vector defined as

F= [ (N?9)Tp,d0" + / (NPDTE, 00", (4.36)
Nk

Qh

Applying static condensation on the patch level, a new mixed stiffness matrix K /i eq
can be defined

(KUU+KUU.K;01 'KJU>'{’ =F, 4.37)
Klzszcd

that has the same dimension as the stiffness matrix from the classical displacement-
based formulation. This way, the unknowns to be calculated are again only the defor-
mations. In the following three different approaches to perform the static condensation
are presented.

4.4.2 Continuous approach

In the first approach, the approximation spaces for the stress resultant components &
are chosen to be one level of continuity lower than the approximation space of the de-
formation. In other words, the continuity of the deformation across an interior element
boundary is CP~!, while for the stress resultant components the continuity can take
the value CP~2 depending on the direction. The high continuity of the NURBS shape
functions, which is one of the advantages for using isogeometric analysis, is now an
obstacle when doing the static condensation in Eq. (4.31). In the standard C° continu-
ous finite element method, static condensation can be done on the element level since
the stress resultant components are discontinuous across the element boundaries. How-
ever, in isogeometric analysis, due to the higher continuity, static condensation has to
be performed on the patch level. Thus, the stiffness matrix components in Egs. (4.32-
4.35) are going to have the following dimension
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* K, has the dimension (ncp, - ndf) x (ncp, - ndf), where ncp, is the total
number of control points from the displacement/rotation mesh and ndf = 5 are
the degrees of freedom per control point.

+ K,,and K’ have the dimension (ncp,-ndf) x (ncp), where here ncp, includes
the total number of control points ncpi1, ncpes, nepyo from the stress resultant
component meshes. Depending on the locking phenomena to be alleviated, ncp;
can take different values, as can be seen in Table 4.2.

e K, has the dimension ncps X ncp.

neps Continuous Discontinuous
Membrane locking nep11 + nNepaa + Nepia nenyy + nenagg + nenqa
Shear locking nep11 + NCpPao nenii + nengs
Membrane and shear locking || 2ncpi; + 2nepas + nepra || 2nenqy + 2nengy + nengs

Table 4.2: Dimension ncps defined for the continuous and discontinuous approach as well as

for different locking cases.

This way, also the stress resultant components ¢ are defined on the patch level

6 = (Ky) 'K, (4.38)

where
6" =[n", n2 n'?2 ¢, ¢’ (4.39)
with n'! = [n%l,...,n}zlcpn}, n?? = [n?,...,n?fcpm}, n'?2 = [n?,...,n}ipm}, q' =
(4, a4t ] and @* = [}, ..., ¢%,,,]- The inversion of K,, on the patch level

requires a significantly higher computational time since the size of the matrix increases
very quickly, see Table 4.2. Furthermore, the resulting stiffness matrix K ;.4 1S not a
banded matrix anymore but a full one, which additionally increases the computational
cost, see Section 4.4.5.

Since here only linear problems are considered, the continuous mixed formulation is
equivalent to the global B formulation firstly presented in Elgued; et al. (2008) and
later used in Bouclier et al. (2013a) in the framework of an isogeometric NURBS-
based solid-shell with the aim of alleviating membrane, shear and thickness locking.
It was later extended to the case of large rotations and large displacements in Bouclier
et al. (2015). Another continuous mixed formulation can be found in the work of
Echter et al. (2013), where it was applied to a hierarchic family of shells and in the
work of Rafetseder and Zulehner (2019), where it was implemented to an isogeometric
Kirchhoff-Love shell. In both approaches, the aim was to alleviate membrane locking.
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Advantages: The results are in general more accurate than for the following two ap-
proaches as it will be seen in Section 4.5.

Disadvantages: Higher computational cost since K, is inverted on the patch level
and the resulting stiffness matrix is full.

4.4.3 Discontinuous approach

In the discontinuous approach, the shape functions for the stress resultant components
are again chosen with one order lower in the relevant direction than the shape functions
for the deformations. However, this time, in order to enable static condensation on
the element level, the continuity between internal element boundaries is reduced so
that the elements are discontinuous again. This is achieved by repeating the internal
entries of the knot vector until a continuity of C'~! is reached. A discontinuous stress
resultant field for the component n'! and ¢' is depicted in Fig. 4.3 in comparison to the
corresponding continuous deformation field.

N}

ntinuous discontinuous
O continu n11/q1

Figure 4.3: Shape functions of n'!/q! for the continuous and the discontinuous approaches in
comparison to the shape functions of the deformation v (p = g = 3, 2 X 2 elements).

Egs. (4.32-4.35) are now defined on the element level, thus, the integrals are computed
within the element limits, i.e. er d€2.. The stiffness matrix components have the
following dimension

* K, has the dimension (nen,-ndf) x (nen,-ndf), where nen,, = (p+1)-(g+1) is
the number of nonzero shape functions for an element in the deformation mesh.

+ K,, and K have the dimension (nen, - ndf) x (ncps), where ncp, includes
the number of nonzero shape functions neny; = p - (¢ + 1), nenys = (p +
1) - g, nenis = p - q for an element in the stress resultant component meshes.
Again, ncp, varies based on the locking phenomena that have to be alleviated,
see Table 4.2.
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* K, has the dimension ncps X ncps.

The stress resultant components & are now defined on the element level

o= (K¢ 'K 0, (4.40)

where e = 1, numel and
sel [nn’ n2, n'2, q' q2] (4.41)
with n'' = !, 0l ], n? = 02, 02 ], n'? = [ni%,.. 02, ]| ¢ =

[a}y s Ghen,, ] and @* = [q?, ..., ¢2,,,,]. The inversion of K¢, is now computation-
ally much cheaper than for the continuous approach and the resulting stiffness matrix
K )/izeq has the same bandwidth of 2 - p + 1 as the displacement-based formulation,
which additionally reduces the computational cost, see Section 4.4.5. However, due to
the discontinuity of the stress resultant fields, locking is not completely eliminated, as
will be shown in Section 4.5.

In the framework of the B method, a discontinuous approach was presented in Greco
et al. (2017) for plane curved Kirchhoff rods in order to alleviate membrane locking.
However, there, the assumed strain field is not directly implemented discontinuously
from the beginning. The strains are computed on the element level using a local L>*-
projection or a collocation method where only the control variables which have an
influence on the given element are considered. Across the element boundaries the con-
tinuity of the shape functions for the assumed strains are still one continuity lower
than the ones for the displacements. This way the formulation becomes quasi discon-
tinuous. Discontinuous local basis functions as the ones presented here were used in
Caseiro et al. (2014) in the context of an Assumed Natural Strain method for solid
shell NURBS-based elements and in Antolin et al. (2020) again for isogeometric solid
shells. Furthermore, Antolin et al. (2017) chose for the projection space of the vol-
umetric strain piecewise discontinuous polynomials, however, they were built on a
coarser mesh than the displacements.

Advantages: Static condensation can be performed on the element level. The result-
ing stiffness matrix is banded and has the same bandwidth as the displacement-based
formulation. Thus, the computational cost is low.

Disadvantages: The discontinuity of the stress resultants seems to reduce the accuracy
of the results. Larger input file due to the additional control points.
4.4.4 Reconstructed approach

In order to achieve a low computational cost as in the discontinuous approach while
maintaining a high accuracy as in the continuous approach, a reconstruction algorithm
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is implemented. Reconstruction algorithms have been introduced mainly in the frame-
work of the B method when using local approaches. One of these algorithms is pre-
sented in the work of Greco et al. (2018) for a B-spline based isogeometric Kirchhoft-
Love shell with the aim of alleviating membrane locking. There, the assumed mem-
brane strains are first defined with a local L? - projection and later reconstructed by
blending the local control variables using weights in order to get the global ones. Even
though this method is based on the algorithm proposed by Thomas et al. (2015) it is
much simpler and easier to implement. In Thomas’ method, first, Bézier extraction
is applied to project the spline basis functions onto the Bernstein basis of each ele-
ment. In a next step, the Bézier local control points are converted to spline control
points using an element reconstruction operator and then weighted in order to compute
the global spline control values. On the other hand, Greco et al. directly interpolates
the local variables with local B-spline functions and later blends them using the same
weights proposed by Thomas.

The Bézier projection algorithm from Thomas was also implemented in the framework
of the B method in order to alleviate transverse shear locking in Timoshenko beams
and volumetric locking in nearly incompressible solids in Miao et al. (2018). There,
a non-symmetric Bézier B-projection method was additionally proposed where the
variation of the assumed variables is discretized with the dual basis that correspond to
the spline basis functions. This way, the assumed variables are condensed out using
the orthogonality property of the Bézier dual bases and an inversion of a matrix is not
necessary anymore. This method was extended to a geometrically nonlinear isogeo-
metric Reissner-Mindlin shell element to alleviate shear and membrane locking in the
work of Zou et al. (2020). Another reconstruction algorithm that could be compared
to the one proposed in this work is the local B formulation presented in the work of
Bouclier et al. (2013a) for a NURBS-based solid-shell to alleviate membrane, shear
and thickness locking. A local least squares method is applied to each element and
afterwards the resulting local variables are smoothed over the global structure using
the average of the shared local degrees of freedom, as it is proposed in the work of
Mitchell et al. (2011) and Govindjee et al. (2012). However, the weights proposed
by Thomas are more exact compared to the ones proposed by Govindjee and lead to
more accurate results as stated in Thomas et al. (2015). Here, the procedure presented
by Greco et al. (2018) is adopted to the mixed formulation with stress resultants as
additional unknowns and is then extended to the case of the Reissner-Mindlin shell.

As in the continuous approach, the stress resultant fields are in the relevant direction
one order and one level of continuity lower than the deformation field. However, static
condensation is still performed on the element level, as in the discontinuous approach.
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Thus, the stress resultant components ¢ are defined for each element as

~ -1 ~
‘= (K;,) Ko, (4.42)

where e = 1, numel and
el 11 22 12 1 2 4.43
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In order to reconstruct again a continuous stress resultant field on the patch level, the
local stress resultant control variables are blended with a weighted average as follows

N = > niowi? (4.44)
ecDy

G rec = D a7 w2, (4.45)
eceDy

where D; includes the elements where the /-th NURBS shape function is not zero.
The weights w?’g are specified according to the work of Thomas et al. (2015) as the
volume included by the graph of the I — th shape function defined on the element e
divided by the volume included by the graph of the / — th shape function defined on

the whole patch:
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where () is the parametric domain of the patch while Q¢ is the parametric domain of
the element e. In comparison, the weights proposed in the local least squares method
of Mitchell et al. (2011) and Govindjee et al. (2012) are defined as the average of the
shared local degrees of freedom

1 1 1
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Figure 4.4: Control points of the stress resultant component ¢! with polynomial degrees p = 1,
g = 2 and 2 x 2 elements and their weights w'! for each element according to Thomas et al.

(2015). The reconstruction of ¢! for the 5" control point is demonstrated.

where ni!, n??, n}? are the number of elements in the support of the /-th shape func-
tion.

The reconstructed stress resultant components &' ““, which include again the control
variables of the whole patch are used for the definition of K ;.4 in Eq. (4.37). An
example for the reconstruction algorithm is given for a plate in Fig. (4.4). There the
control points of the stress resultant component ¢! with polynomial degrees p = 1,
g = 2 and 2 x 2 elements are depicted with their weights w!! for each element. The
reconstruction of ¢* for the 5" control point is demonstrated. The same example is in
addition illustrated in Fig. 4.5 for the case that the weights of Mitchell et al. (2011) and
Govindjee et al. (2012) are used, see Eq. (4.49).

The dimension of the stiffness matrix components in Eqgs. (4.32-4.35) are now partly
defined as in the continuous method and partly as in the discontinuous method. K,
and K, are defined as in the discontinuous method on the element level. Thus, the
computational cost for the inversion of K, is low. On the other hand K, is defined
as in the continuous method on the patch level. This way, the resulting stiffness matrix
K jjizeq 1s not symmetric anymore. However, K ;.4 1S again a banded matrix with
a bandwidth slightly higher than in the discontinuous case, which additionally reduces
the computational time, see Section 4.4.5. The exact value of the bandwidth is 6 - p — 3
as stated in Bouclier et al. (2013a).
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- 1
q25 _l_q;n"' q15,3+Zq;,4
Figure 4.5: Control points of the stress resultant component ¢! with polynomial degrees p = 1,
g = 2 and 2 x 2 elements and their weights w!'! for each element according to Mitchell
et al. (2011) and Govindjee et al. (2012). The reconstruction of q1 for the 5 control point is
demonstrated.

Advantages: Accuracy almost as good as for the continuous approach, see Section 4.5.
The inversion of K, is done on the element level which reduces the computational
cost. The resulting stiffness matrix is banded which reduces the computational cost
compared to the continuous method.

Disadvantages: The weights for the reconstruction algorithm have to be defined be-
forehand and stored. The resulting stiffness matrix is not symmetric anymore. Loss of
physical meaning since Betti-Maxwell’s theorem is not valid anymore.

4.4.5 Computational time

In the previous sections, while describing the advantages and disadvantages of the
different approaches to the static condensation, the computational time was often men-
tioned as an argument. In this section the computational cost is discussed in more
detail. In particular, the computational time for the inversion of the K, matrix, the
computation of K ,/;,.q and the solution of the equations is going to be the main focus
since they can increase rapidly depending on the approach that is used.

The computational complexity for the inversion of an n X n matrix, based on the
Gauss-Jordan elimination algorithm is O(n?). There also exist other algorithms which
are slightly better concerning the computational time, for instance the Strassen algo-
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rithm (O(n?*%%7)) or the Coppersmith-Winograd algorithm (O(n?37%)), see Petkovié
and Stanimirovi¢ (2009). In the framework of this comparison, only algorithms for the
direct inversion of a matrix are considered. Preconditioned iterative solvers or multi-
grid solvers are not taken into account, since their application to shell problems is often
problematic and not straightforward, see e.g. Gee et al. (2005) and Saint-Georges et al.
(1999). Here, the Gauss-Jordan elimination algorithm is used for the inversion. The
dimension of K, is ncp, X ncps, where nep, was defined for the continuous and the
discontinuous method as well as for different locking effects in Table 4.2. It can be
seen that for the continuous approach where ncp, depends on the number of control
points from the different stress resultant meshes, the dimension of K, and thus the
computational time increases rapidly when increasing the number of elements. On the
other hand, for the discontinuous and the reconstructed approach, where static conden-
sation is performed on the element level, the dimension of the K ,, matrix is constant
for a fixed polynomial degree, regardless of the number of elements. Thus, in this case
the total cost for the inversion increases linearly with an increasing number of elements
numel (if t; the computational time for the inversion of K, for one element, the total
time for the inversions is numel - t1).

The computation of the new mixed stiffness matrix K j;;..q in Eq. (4.37) requires
the matrix multiplication of K, K, and K ,,. The computational complexity for
the multiplication of two (n x m) and (m X k) matrices is, when using the simplest
algorithm, O(nmk). Thus, if the matrices are defined on the patch level as in the
continuous approach, the computational cost for computing K ps;..q 1S a lot higher
than for the discontinuous approach where they are defined on the element level. The
reconstructed approach, as defined in Section 4.4.4, is going to be in between the
continuous and the discontinuous approach since K.} and K, are defined on the

element level whereas K ,,, is defined on the patch level.

The resulting stiffness matrix for the continuous, discontinuous and reconstructed ap-
proach have the same dimension, however, in the first case the stiffness matrix is full,
while in the last two cases the stiffness matrix is banded, see Section 4.5.4. This has an
influence on the computational time for the solution of the equations. In particular, fast
solvers like the pardiso solver, where only the non zero entries of the matrix are stored
and used and which are running parallel can not be applied when the matrix is full.
This additionally increases the total computational time for the continuous approach.

Regarding the question which of these operations is going to dominate the total compu-
tational time and which computational complexity should be expected for each method,
the following has been observed:

* Mixed Continuous method: The operations that dominate in the mixed continu-
ous method are the inversion of K, and the computation of K ,,(K,,) 'K,
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on the patch level. The expected computational complexity is going to be a com-
bination of the computational complexities of these operations, i.e. O(ncp?) +
O((nepy, -ndf) - nep?) + O((nep, - ndf )? - neps ) with nep, as defined in Table 4.2
for the continuous method. The values ncp, and nep, depend on the polynomial
degrees p, ¢ and the number of elements per direction nel,, nel,, i.e. the total
number of elements numel = nel, - nel,. In the case where the polynomial
degrees are fixed and the number of elements is increased, the computational
complexity can be rewritten depending on numel as O(numel®). This cubic
increase of the computational time when the number of elements is increased
is going to be demonstrated in Section 4.5.4 for the case of a pinched cylinder.
In Table 4.3 the computational complexity is defined additionally for the case
that the number of elements and the polynomial degree ¢ are constant while the
polynomial degree p is changing.

Mixed Discontinuous method: The operations that dominate the total time are
the inversion of K¢ _ and the computation of K¢ _(K¢_)"'K¢, on the element
level. Since these operations are carried out for each element, the computational
complexity is going to be a combination of numel - O(ncp?) +numel - O((nen,, -
ndf)-(neps)?) +numel-O((nen, -ndf )*-ncp,), with nep, as defined in Table 4.2
for the discontinuous method. This time ncp, as well as nen, only depend on
the polynomial degrees p, ¢. In the case where the polynomial degrees are fixed
and the number of elements is increased, the computational complexity is going
to be O(numel). This linear increase in computational time when increasing
the number of elements is going to be observed in Section 4.5.4 for the case
of a pinched cylinder. The computational complexity for the case where the
polynomial degree ¢ and the number of elements numel is fixed and only p is
changing is given in Table 4.3.

Mixed Reconstructed method: Since in the mixed reconstructed method the in-
version of K¢ _ and the matrix multiplication (K¢_)"'K¢, are carried out on
the element level, the computational time which is going to dominate is from the
matrix multiplication on the patch level in order to compute K ;... The com-
putational complexity for this is O((ncp, - ndf)? - ncp,), where nep, is defined
as for the continuous method in Table 4.2. Thus, ncps and ncp, depend on the
polynomial degrees p, ¢ and the number of elements numel. In the case where
the polynomial degrees are fixed and the number of elements is increased, the
computational complexity can be rewritten depending on numel as O(numel?).
This is also shown in Section 4.5.4 for the case of a pinched cylinder. In Ta-
ble 4.3 the complexity is additionally defined for the case that numel and q are
constant and p is changing.
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It is important to notice that the computational complexity only describes how the
computational time is going to grow as the input grows. The actual value of the com-

putational time for each method depends on the example. A case study is given in

Sec. 4.5.4 for the pinched cylinder. Furthermore, the computational cost should al-

ways be considered in relation to the accuracy of a method as shown in Section 4.5.4.

numel changing, p, ¢ constant

p changing, numel, q constant

Mixed Continuous O(numel?) O(p?)
Mixed Discontinuous O(numel) O(p?)
Mixed Reconstructed O(numel?) O(p?)

Table 4.3: Computational complexity of the three methods for two different cases.

4.5 Numerical examples

In this section, the presented mixed formulation with its different ways of performing
the static condensation is tested and compared to other existing models. The elements

and their corresponding abbreviations which are going to be used in the examples are
summarized in the following

* w-shell. The isogeometric 5-parameter Reissner-Mindlin shell formulation pro-

posed by Dornisch et al. (2013). It does not include any measures against lock-

ing.

* Mixed Conti. Mixed continuous formulation presented in Section 4.4.2.
* Mixed Discont. Mixed Discontinuous formulation presented in Section 4.4.3.

* Mixed Recon. Mixed reconstructed formulation as presented in Section 4.4.4.

AAS shell. The isogeometric Reissner-Mindlin shell formulation with adjusted
approximation spaces for the displacements and the rotations proposed in Kikis
et al. (2019). The polynomial degrees p,,, g, correspond to the displacements u;
while the rotations (3, are interpolated with one order lower polynomials in the
relevant direction.

Pian/Sumihara. 4 node plane stress element based on the work of Pian and
Sumihara (1984), which uses a mixed formulation.

4.5.1 Cook’s membrane

In the first example Cook’s membrane, see Cook (1974), is examined which has been

widely used as a benchmark example to evaluate, among other things, the sensitivity
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Figure 4.6: Cook’s membrane. Geometry and loading.

of an element to geometric distortions. It was also investigated in the original work
of Pian and Sumihara (1984). Cook’s membrane consists of a tapered panel which is
clamped at one edge and subjected to a uniformly distributed shear load on the opposite
edge, see Fig. 4.6. The material parameters are given as follows: £ = 1, v = 0.33333,
t = 1. The total load on the right side has the value F' = 1. Here, the plane stress
version of Cook’s membrane is considered.
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Figure 4.7: Cook’s membrane. Error of the deflection at Point A over the number of equations.
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Figure 4.8: Cook’s membrane. Error of the deflection at Point B over the number of equations.

The deflection of the panel is examined at two different points, the middle point A of
the right edge and the lower point B of the right edge as shown in Fig. 4.6. As a ref-
erence solution, the result of Pian/Sumihara’s element is considered with a refinement
of 200 x 200 elements and has a value of ug{mf = 23.9659, u3,.; = 23.2162, respec-
tively. The total number of equations neq for the solution includes the total number of
degrees of freedom related to displacements and rotations. It is the same for the mixed
formulations, since the additional degrees of freedom related to the stress resultants
are condensed out. As expected, a significant improvement is observed when using the
Pian/Sumihara compared to the w-shell with p = ¢ = 1, see Fig. 4.7 and Fig. 4.8. For
p = q = 2 the w-shell has better results than the Pian/Sumihara element, which uses
linear basis functions. However, both formulations are surpassed by the mixed formu-
lations presented in this work. Namely, Mixed Discont with p = ¢ = 2 is already
slightly better than the w-shell in both points A and B. Even more accurate are Mixed
Conti and Mixed Recon with p = ¢ = 2. Kinks that occur in their error distributions in
Figs. 4.7 and 4.8, arise because the deflection first converges from above, then crosses
the reference solution to converge again from below. Overall, the mixed formulations,
especially Mixed Conti and Mixed Recon, lead to very satisfying results.
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4.5.2 Clamped plate with point load

In this example a rectangular plate is considered which is clamped at all edges and
subjected to a point load at the center. The material parameters are given as: F =
1-10% v = 0.3. The plate has a length of L = 100 and a thickness of ¢ = 0.1 and
the point load at the center of the plate has a value of F' = 16.367 - 1072, see Fig. 4.9.
Due to symmetry only one quarter of the plate is modeled. Here, shear locking is
expected and the aim is to validate the ability of the presented mixed formulations to
alleviate this effect in comparison to another proven approach, the AAS shell, which
includes adjusted approximation spaces for the interpolation of the displacements and
the rotations, see Kikis et al. (2019). For this purpose, first, the error of the center
deflection is evaluated for the polynomial degrees p = ¢ = 2 and p = ¢ = 3. The
analytical solution is set, according to the Kirchhoff-Love theory, to us,.; = 1, see
Timoshenko (1940). All figures have been plotted in double logarithmic scale.

Clamped edges

Clamped edges

Figure 4.9: Clamped plate. Geometry and loading.

In the case of p = ¢ = 2 transverse shear locking is very profound. This is visible
in Fig. 4.10, where the w-shell is underestimating the deflection, leading to a high
error especially for a low number of elements. The AAS shell on the other hand is
much more accurate and has a constant convergence rate which indicates that it is
locking free. Regarding the mixed methods, Mixed Discont is showing a slight locking
behavior for a low number of elements, which is quickly overcome when increasing
the elements. However, its performance is still significantly better than the w-shell’s.
The best results are obtained with Mixed Conti and Mixed Recon, which both have a
constant convergence rate. Another interesting point is that the three mixed approaches
have the same starting point, since the formulations are identical for a single-element
mesh.
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In the second case, where the polynomial degree is increased to p = ¢ = 3, a slightly
different behavior can be observed, see Fig. 4.11. The w-shell does not exhibit locking
as profound as in the first case since the increase of the polynomial degree is a way to
reduce locking, see Section 4.2. Mixed Discont, which was significantly better than
the w-shell for p = ¢ = 2 is now only slightly improving the results. The AAS shell is
again able to overcome locking as well as Mixed Conti and Mixed Recon. The latter
two methods exhibit again the best behavior and their results lie very close together.

w-shell, p=q=2
—AAS, pu=qu=2
—Mixed Discont, p=q=2
==Mixed Conti, p=q=2
—Mixed Recon, p=q=2

10’ 102 103 10* 10°

Figure 4.10: Clamped plate. Error of the center deflection over the number of equations for

pP=q=2

In conclusion, even though for a low polynomial degree Mixed Discont delivers good
results, for higher polynomial degrees it seems that the discontinuity of the stress resul-
tant fields hinders the complete elimination of locking. Another interesting observation
that can be made is that the convergence rate of the AAS shell is lower than for all the
other methods. This is due to the fact that while the polynomial degrees p,, ¢, of the
displacements are the same as for the other methods, the rotations /3, (3, are interpo-
lated, in the relevant direction, with one polynomial degree less. This slows down the
convergence of the method compared to the others.

As it was outlined in the work of Oesterle et al. (2016), locking does not only distort
the results of the displacements but also the stresses. Its effect is even more severe
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Figure 4.11: Clamped plate. Error of the center deflection over the number of equations for

p=q=3.

and visible for the stresses since oscillations occur with high amplitudes. This phe-
nomenon is now examined for the different element types. In Figs. 4.12(a-¢) the shear
force ¢! is presented for the different methods with p = ¢ = 2 and 10 x 10 elements.
In Fig. 4.12(a) it can be seen that for the w-shell the shear force ¢! exhibits a strong os-
cillating behavior due to locking. The amplitudes of the oscillations have even higher
values than the shear force at the center of the plate where the point load is applied. On
the other hand, the AAS shell in Fig. 4.12(b) successfully eliminates these oscillations.
Regarding the mixed methods, Mixed Discont reduces the amplitudes of the oscilla-
tions, which are now more concentrated around the center of the plate, see Fig. 4.12(c).
This makes sense since Mixed Discont was not able to completely eliminate transverse
shear locking for the center deflection, see Fig. 4.10. Mixed Conti and Mixed Recon
which led to the best results when considering the center deflection, eliminate almost
all oscillations as seen in Figs. 4.12(d) and (e). However, compared to the AAS shell
there are still some minor oscillations visible across the midlines.

4.5.3 Cylindrical shell strip

In this example a cylindrical shell strip that is clamped at one edge and subjected to a
constant line load ¢ at the other is investigated, see Fig. 4.13. The material parameters
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Figure 4.12: Clamped plate. Shear stress resultant ¢* for the (a) w-shell, (b) AAS shell (c)
Mixed Discont (d) Mixed Conti (e) Mixed Recon with p = ¢ = 2 and 10 x 10 elements.
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are £ = 1000 and v = 0. The shell strip has a radius of # = 10 and a width
of b = 1. The radial displacement u,p is computed for different slenderness values
R/t. Here, both membrane and transverse shear locking are expected. These locking
effects depend strongly on the slenderness of the shell, i.e. they are more pronounced
the thinner the structure is. Thus, locking is going to be more pronounced for higher
slenderness values. A reference solution based on Bernoulli beam theory yields . =
0.9451. The applied line load § = 0.1 is scaled with 3 in order to receive the same
reference solution independent of the slenderness. The geometry is refined with 10
elements in circumferential direction and 1 element in axial direction.

q-t°

Figure 4.13: Cylindrical shell strip. Geometry and loading.

In Fig. 4.14 the results are computed for the different element types. As can be seen,
the w-shell, which first matches the reference solution for a slenderness of R/t = 10,
quickly exhibits locking behavior, which is worse the thinner the shell gets. To be more
specific, for the case of p = ¢ = 2 the radial displacement is strongly underestimated
and reaches almost the value 0 for a slenderness of R/t = 10000. An improvement
is visible when using the higher polynomial degree p = 3, however, locking is still
present and visible for an increasing slenderness. On the other hand, Mixed Discont
with p = ¢ = 2 significantly improves the results compared to the w-shell, though
locking is not completely eliminated, as can be seen for a higher slenderness. When
using a higher polynomial degree p = 3 Mixed Discont shows a slight improvement
in the results which is more visible for the highest slenderness, however, it does not
reach such significant differences to the w-shell as for p = 2. Hence, as it was also
observed for the previous example where only shear locking occurred, Mixed Discont
should be preferred when using lower polynomial degrees. The higher the polynomial
degree the smaller the improvement of the solution compared to the w-shell. The AAS
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shell, which includes a mechanism to eliminate shear locking but has nothing against
membrane locking is also illustrated for a polynomial degree p, = 3, ¢, = 2 for the
displacements. As can be seen, for low and medium slenderness values its behavior
is very similar to the one of the w-shell and Mixed Discont. However, for the high-
est slenderness the displacement is strongly underestimated since membrane locking
is more profound. Mixed Conti and Mixed Recon successfully eliminate transverse
shear and membrane locking and lead to the correct displacement regardless of the
slenderness.
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Figure 4.14: Cylindrical shell strip. Radial displacement u; p with increasing slenderness.

4.5.4 Pinched Cylinder

This example is part of the shell obstacle course of Belytschko et al. (1985) and is
a good test to validate the performance of an element in the case of inextensional
bending modes and complex membrane states. This numerical benchmark consists of
a cylinder with a radius of ® = 300, a length of L = 600 and a thickness t = 3.
The material parameters are given as £ = 3 - 10°, v = 0.3. The cylinder has at both
ends a rigid diaphragm and is subjected to a point load /' = 1 in radial direction.
Due to symmetry only one eighth of the geometry is used, see Fig. 4.15. The reference
solution u,.; = —1.82889-107* is obtained by a computation with 100 x 100 elements
of polynomial order p = ¢ = 4.
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Figure 4.15: Pinched cylinder. Geometry and loading.
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Figure 4.16: Pinched Cylinder. Error of deflection in load direction over the number of equa-

tions.

As in the previous example, membrane and shear locking are expected. This example
is used to show again the ability of the proposed methods to alleviate these locking ef-
fects and in addition to take a closer look on the computational cost of each method. In
Fig. 4.16 the error of the deflection under the point load is shown for a varying number



4.5 Numerical examples 91

%10

N
()]
T

N
T

== Mixed Discont

== Mixed Conti

= Mixed Recon 7
Non-uniform integration
Dornisch et al. [12]

—Local B method i

Deformation under the point load
- (@) ]

051
Bouclier et al. [15]
ANS method
Caseiro et al. [26]
0 1 1 1 1 1 1
0 5 10 15 20 25 30 35

control points per edge

Figure 4.17: Pinched Cylinder. Comparison of the deformation convergence behavior of the

mixed methods to other methods against locking.

of equations neq in double logarithmic scale. As expected, the w-shell strongly under-
estimates the deflection, especially for the lower polynomial degree p = ¢ = 2. Again,
the solution can be improved to a certain extent when increasing the polynomial degree
to p = 3, ¢ = 2. Mixed Discont, on the other hand, significantly improves the results
compared to the w-shell. Even for the polynomial degree p = 3, ¢ = 2 the improve-
ment is clearly visible and much greater than, i.e. in the case of the clamped plate,
since here, in addition to the transverse shear locking, membrane locking is alleviated.
Mixed Conti and Mixed Recon lead to the best results and lie very close together. Here,
in addition to the mixed continuous method with static condensation, the case of the
mixed continuous method is depicted when no static condensation is performed and the
full system of equations is solved with the stress resultants as additional unknowns. In
this case the total number of equations is neq;,; = neq + 2 - ncpyy + 2 - nepas + nepro,
where ncpy; is the number of control points of the stress resultant components n'! and
q', ncpoy the number of control points of n?? and ¢ and ncp;, is the number of control
points of n'2. The curve is shifted to the right and is in between Mixed Recon and
Mixed Discont.
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A comparison of the mixed methods proposed in this work with other existing meth-
ods against locking is depicted in Fig. 4.17. The chosen methods are the Non-uniform
integration technique from Dornisch et al. (2016), the local B method presented in
Bouclier et al. (2013a) and the ANS method from Caseiro et al. (2014). The focus
lies on the deformation under the point load when considering an increasing number
of control points per edge. As can be seen in Fig. 4.17, Mixed Discont lies very close
to the Non-uniform integration method from Dornisch et al. (2016), which uses a care-
fully chosen set of integration points in order to reduce locking. Both methods have a
better convergence behavior than the ANS method from Caseiro et al. (2014). More
accurate results are achieved by the local 5 method from Bouclier et al. (2013a), which
uses a local least-squares method for each element and afterwards applies the weights
proposed by Mitchell et al. (2011) and Govindjee et al. (2012) in order to reconstruct
the global variables from the local ones. However, this method is not accurate enough
for a very low number of control points per edge. The best results are achieved by
Mixed Conti and Mixed Recon. However, it should be mentioned here that the meth-
ods from Dornisch et al., Bouclier et al. and Caseiro et al. use in both directions
quadratic basis functions. On the other hand, the mixed methods proposed here use
quadratic basis functions in the axial direction whereas in circumferential direction
cubic basis functions are applied. For these methods the control points per edge in
Fig. 4.17 are the ones from the edge with cubic basis functions.
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cubic fitted curve
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15000 - |— cubic fitted curve

> |
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Figure 4.18: Total time in the case of Mixed Conti and Mixed Recon.
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Figure 4.19: Total time in the case of Mixed Discont and the Mixed Recon.

Regarding the computational cost of Mixed Conti, Mixed Discont and Mixed Recon,
a comparison is made in Figs. 4.18 and 4.19 for p = 3, ¢ = 2. The computational
time which is considered here includes a) the time for inversion of K, b) the time
for the computation of K j;;..q ¢) the time for triangular decomposition d) the time
for the solution of the equations. Time is defined in CPU seconds on one core of an
Inte]l®Core™ 7-3520M CPU (Core™i7 vPro™).

In Fig. 4.18, first, a comparison of the total computational time over the number of
equations neq is made between Mixed Conti and Mixed Recon. It can be seen that
Mixed Conti has a rapid, almost cubic increase of the computational time when neq
increases. This is in line with the observations made in Section 4.4.5. There it was
mentioned that a cubic computational complexity should be expected in the case where
the polynomial degrees are fixed and the number of elements is increased. Here it is
also observed, as expected, that the resulting stiffness matrix is full, see Fig. 4.21.

On the other hand, the computational time for Mixed Recon increases much slower
than for Mixed Conti. The reason for this is again explained in Section 4.4.5 with
reference to the reduced matrix dimension of K ,, and K . Furthermore, the resulting
stiffness matrix is banded, as it is shown in Fig. 4.22, which additionally reduces the
overall computational time. The best time, however, is obtained with Mixed Discont,
see Fig. 4.19. There, an almost linear increase of the computational time over neq is
depicted. This is due to the performance of the static condensation and the definition
of K ;.04 ON the element level, which leads to a constant dimension of K, K, and
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Figure 4.20: Pinched cylinder. Sparsity pattern of stiffness matrix in the displacement-based
method (w-shell) and the mixed discontinuous method (Mixed Discont) for p = 3, ¢ = 2 and
10 x 10 elements.
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Figure 4.21: Pinched cylinder. Sparsity pattern of stiffness matrix in the mixed continuous
method (Mixed Conti) for p = 3, ¢ = 2 and 10 x 10 elements.
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Figure 4.22: Pinched cylinder. Sparsity pattern of stiffness matrix in the mixed reconstructed
method (Mixed Recon) for p = 3, ¢ = 2 and 10 x 10 elements.

K, regardless of the number of elements, see Section 4.4.5. In addition, the resulting
stiffness matrix is banded and has the same bandwidth as the standard displacement-
based method (w-shell), see Fig. 4.20.

Considering now Fig. 4.16 and Figs. 4.18, 4.19 at the same time, it can be seen that in
order to achieve a desired accuracy as fast as possible, it is often better to use Mixed
Recon than Mixed Conti, especially for a higher neq. On the other hand, if a very large
neq is considered it is even advisable to use Mixed Discont, since it is going to reduce
the computational time significantly.

Here, the time depicted in Figs. 4.18, 4.19 should provide an idea on the increase of the
computational time for the three different approaches. Of course, depending on how
efficient the code is programmed and on the system that is used, the values for the time
can slightly vary. However, the relation between the three different approaches should
stay the same.

4.5.5 Partly clamped hyperbolic paraboloid

In the last example, the partly clamped hyperbolic paraboloid which was introduced
in Chapelle and Bathe (1998) and further investigated e.g. in Bathe et al. (2000), is
considered. The geometry of the hyperbolic paraboloid is given as Z = X? — Y2
with (X,Y) € [(—L/2,L/2)]?. The edge X = —L/2 is clamped and the structure is
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subjected to its self-weight, see Fig. 4.23. Due to symmetry only one half of the shell is
considered with respective symmetry boundary conditions along Y = 0. The thickness
of the shell is ¢ = 0.0001 and the length is set to L. = 1. The material parameters are
E =2-10'", v = 0.3 and p = 8000. The thinnest version of this shell is chosen since
it is expected that locking is going to be more severe for this case.

Q@°
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Figure 4.23: Partly clamped hyperbolic paraboloid. Geometry and boundary conditions.

The aim of this example is to evaluate the two superior mixed methods, i.e. Mixed
Conti and Mixed Recon, for the case of a double curved surface. In Fig. 4.24 the error
of the vertical displacement at point P (X = 0.5, Y = 0, Z = 0.25) is depicted in
relation to the number of equations. The plot is given in double logarithmic scale. As
a reference solution, the vertical displacement obtained at point P using a 100 x 50
mesh of w-shell elements with p = ¢ = 6 is used (ug ey = —5.3049 - 1071). As
it can be seen, the w-shell with polynomial degrees p = ¢ = 2 and p = ¢ = 3
strongly underestimates the displacement, especially for a low number of elements,
due to membrane and shear locking. The AAS shell, which alleviates transverse shear
locking, only improves the results for a higher number of elements since for a low
number membrane locking is still profound. On the other hand, Mixed Conti and
Mixed Recon strongly improve the results for a low and moderate number of elements,
which indicates that both membrane and shear locking have been alleviated. However,
the convergence rate of the mixed methods is lower than for the other formulations,
creating a point of intersection from where the other methods lead to better results. In
addition, for a high number of elements the error curves of the mixed methods seem
to flatten. The reason for this is that the matrix K ,,, which has to be inverted, is, in
this example, ill-conditioned. This has an influence on the results especially for a high
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Figure 4.24: Partly clamped hyperbolic paraboloid. Error of the displacement at point P over

the number of equations.

number of elements. This behavior is not observed e.g. for the mixed and the local
B method presented in Bouclier et al. (2013a) for a solid-shell, where thicker versions
of this example were examined and a better convergence behavior was observed. The
choice of a thicker shell does not improve the results. A combination of Mixed Conti
or Mixed Recon for membrane locking and AAS for transverse shear locking could at
least reduce this problematic and should be examined in future work.

4.6 Conclusion

In this work, a displacement-stress mixed method is presented in the framework of
an isogeometric Reissner-Mindlin shell formulation in order to alleviate membrane
and shear locking. The method was derived using the Hellinger-Reissner functional
and by choosing appropriate approximation spaces for the different stress resultant
components. One main issue which was discussed here, is the performance of the
static condensation. Three different approaches were presented, a continuous approach
which performs static condensation on the patch level, a discontinuous approach which
performs static condensation on the element level and a reconstructed approach which
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tries to combine the advantages of the previous two approaches and uses weights for
the local control variables in order to get blended global ones. The advantages and
disadvantages for using each approach were outlined.

Several numerical examples were investigated in order to test the accuracy and effi-
ciency of the different approaches. They range from a simple panel subjected to an
in-plane loading to a plate and shell examples. Depending on the example, different
stress resultant components were considered as additional unknowns for the mixed
formulation. A comparison to existing elements with mechanisms against locking was
additionally carried out. It was shown that the mixed discontinuous approach, while
leading to good results for low polynomial degrees, does not improve the results as
much for higher polynomial degrees. It seems that the discontinuity of the stress re-
sultant fields hinders the alleviation of locking in those cases. On the other hand,
the mixed continuous and the mixed reconstructed approaches surpassed in terms of
accuracy every other formulation that was examined here. However, considering the
computational effort for the continuous approach which leads to a full stiffness matrix
and is computed on the patch level, the use of the reconstructed approach which leads
to a banded stiffness matrix and is computed partly on the element level should be
considered.

An extension of the proposed mixed formulation to nonlinear problems with large
deformations is going to be the focus of future work.
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Phase-field model of brittle fracture in
Reissner-Mindlin plates and shells
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gave conceptual advice, contributed to the discussion of the results, read the article and
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the final version of the manuscript.

5.1 Abstract

In this paper, a phase-field model is presented for the description of brittle frac-
ture in a Reissner-Mindlin plate and shell formulation. The shell kinematics as well
as the phase-field variable are described on the mid-surface of the structure. Non-
Uniform Rational B-Spline basis functions are used for the discretization of both the
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displacement/rotations and the phase-field. The spectral decomposition for the tension-
compression split is applied on the total strain tensor, which varies through the thick-
ness. Thus, the plane stress condition has to be enforced numerically. Various nu-
merical examples are presented in order to verify the accuracy and effectiveness of the
method and a detailed comparison to existing formulations is performed.

5.2 Introduction

Shells are found in various forms in nature and have been adopted in engineering due
to their favorable mechanical features. They span wide areas without the need of ad-
ditional support and their geometrical form leads to an optimal load-carrying behavior
with a high stiffness. Many applications of shell structures are found in architectural
and civil engineering, mechanical engineering and marine engineering, thus, the cor-
rect numerical analysis of shells is of great importance. Almost fifteen years ago,
isogeometric analysis was introduced by Hughes et al. (2005) with the aim of unifying
the design and analysis process by using for both the same higher order basis functions
from CAD tools, i.e. Non-Uniform Rational B-Spline (NURBS) shape functions. Re-
garding shells, the higher continuity of these functions allows the correct computation
of the curvature as well as the normal of the shell surface and reduces significantly the
computational cost. Thus, isogeometric analysis has been applied to Kirchhoff-Love
shell formulations, in Kiendl et al. (2009), Benson et al. (2011), Nguyen-Thanh et al.
(2011) and Duong et al. (2017), in the framework of Reissner-Mindlin shell formula-
tions, in Uhm and Youn (2009), Benson et al. (2010b), Dornisch et al. (2013, 2016)
and Kiendl et al. (2017) and solid shells in Hosseini et al. (2013, 2014b), Bouclier et al.
(2013a, 2015) and Caseiro et al. (2015). Later on, blended shells were introduced in
Benson et al. (2013), as well as a hierarchic family of shells in Echter et al. (2013) and
a shear deformable rotation free shell formulation in Oesterle et al. (2016).

A crucial aspect of shells is their fracture behavior. When considering brittle fracture,
where failure occurs abruptly without any visible indications, the correct description of
crack initiation and propagation is of great interest, see Kobayashi and Onoue (1943).
However, due to the complex interaction of shell geometry, shell kinematics and ma-
terial constitutive law, the correct description of its fracture behavior is not an easy
task. In general, fracture processes can be described discontinuously by discrete crack
surfaces, or continuously, i.e. the cracked medium is still considered as a continuum.
One discontinuous approach, which has been widely used due to its simplicity, espe-
cially in cases where the crack path is known, is the cohesive zone modeling approach.
In this model, interface or generalized contact cohesive elements are implemented, ei-
ther from the beginning or adaptively, and many applications of it in the framework
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of shell elements can be found e.g. in Cirak et al. (2005), Zavattieri (2006), Rabczuk
and Areias (2008) and Becker et al. (2011) and in later years in combination with
1sogeometric analysis, e.g. in Dimitri et al. (2014).

In order to allow for arbitrary crack paths, independent of the mesh, the extended
finite element method (XFEM) was developed based on the partition of unity method.
It uses additional approximation fields for the displacements and if needed for the
director in order to describe the discontinuities. XFEM has been applied to Kirchhoff-
Love type shells in Areias et al. (2006), Areias and Belytschko (2006) and Song and
Belytschko (2009), to solid-like shell formulations for modeling through-the-thickness
cracks in Areias and Belytschko (2005), Larsson et al. (2011) and Mostofizadeh et al.
(2013) and to a Reissner-Mindlin based plate in Dolbow et al. (2000). In the context of
isogeometric analysis, a Kirchhoff-Love based, see Nguyen-Thanh et al. (2015), and
a Reissner-Mindlin based, see Benson et al. (2010a), extended isogeometric element
formulation were introduced for modeling fracture in shells. Another method, which
can compute mesh-independent crack propagation and has proven to be very similar to
XFEM approaches, is the phantom node method. Overlapping elements are used at the
cracked regions, which are employed by the so-called phantom nodes. Applications
of this method can be found in Chau-Dinh et al. (2012), Ahmed et al. (2012) and Lua
et al. (2016). A continuum-based phantom node method combined with a molecular
statics model is presented in Budarapu et al. (2017), creating an adaptive multiscale
method for solid shells. Multi-level models have also been used in the framework of
debonding between the levels of composite structures, see Kocaman et al. (2020). The
problem with discontinuous approaches in general is that diffuse ductile damage, as
it is encountered e.g. in metals, cannot be computed and thus they have mainly been
applied to brittle fracture.

Another group of methods which are used for the description of fracture are the so
called continuum approaches. Here, the crack is not described as a discontinuity
in the structure, but instead the material is still seen as a continuum, however, with
weakened mechanical properties at the cracked areas. Various approaches of this type
have been introduced, among others in Areias et al. (2011) and Woelke and Abboud
(2012), in connection with meshfree formulations in Ren and Li (2012) and Caleyron
et al. (2012) and based on the gradient-enhanced damage approach in Hosseini et al.
(2014a), Nguyen et al. (2012) and Pigazzini et al. (2019). However, general continuum
approaches may have difficulties in properly describing surface decohesion and crack
propagation after the softening and damage localization phase.

An approach that can be regarded as a gradient damage model enjoying especially
useful mathematical properties is the phase-field method. It was firstly introduced in
Bourdin et al. (2000, 2008) and since then has been extensively investigated for brittle,
see Ambati et al. (2015b), and ductile fracture, see Alessi et al. (2018), for the case of
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solids. The main idea is to introduce a continuous crack phase-field that defines the
transition between the cracked and uncracked material leading to a regularized repre-
sentation of the crack. The model contains a length parameter, and has been proven
to converge (in the I'-convergence sense) to the variational formulation of the classical
Griffith’s theory of brittle fracture, see Griffith and Taylor (1921) and Francfort and
Marigo (1998), when this parameter tends to zero. Phase-field models have the ad-
vantage of naturally describing crack initiation, propagation, merging and branching
without the need of remeshing or additional criteria. The elastic strain energy density
is reduced using a degradation function which depends on the phase-field. The degra-
dation function is either applied on the entire elastic strain energy density or only on
the part that corresponds to tension. In the latter case, a previous split of the elastic
strain energy density into its tensile and compressive parts is required.

Regarding plates and shells a few recent works can be found. A first attempt of com-
bining the phase-field method with Kirchhoff-Love shell formulations was conducted
by Ulmer et al. (2012). There, the separation of the elastic strain energy density into its
membrane and bending parts is proposed with a spectral decomposition of the mem-
brane part. The membrane tensile part and the entire bending part is then degraded.
This formulation, however, can lead to unphysical crack behavior in certain loading
conditions, see Kiendl et al. (2016). Amiri et al. (2014) later proposed an isotropic
model with a degradation of the full strain energy density by the phase-field. How-
ever, this formulation is going to lead to fracture in both tensile and compressive ar-
eas, which is unphysical. Kiendl et al. (2016) tried to overcome these defiances of
the previous two approaches by using an anisotropic phase-field formulation, where
the spectral decomposition is applied on the total strain energy, without any classifi-
cation in the different strain terms. Regarding solid-shell formulations, Ambati and
De Lorenzis (2016) used a phase-field model for the description of brittle and ductile
fracture in shells with small rotations and displacements. Furthermore, Reinoso et al.
(2017) used a phase-field model for brittle fracture in shells with large deformations in
combination with a monolithic approach. Finally, Areias et al. (2016) applied indepen-
dent phase-fields for the lower and for the upper face of the shell, in order to describe
correctly bending-dominated problems. The effect of transverse shear deformations,
using Reddy’s third-order shear deformation theory and a hybrid phase-field fracture
model, on the fracture process in thick plates was studied very recently in Raghu et al.
(2020). Combining the phase-field fracture approach with a Reissner-Mindlin shell
formulation has not been attempted so far.

In this work, a phase-field model of brittle fracture is developed for an isogeometric
Reissner-Mindlin shell formulation based on Dornisch et al. (2013) and Kikis et al.
(2019). Reissner-Mindlin shell formulations have the advantage that they are applica-
ble for both thin and thick shells, since they take into account shear deformations.
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The paper is organized as follows. In Section 5.3, the formulation of the isogeometric
Reissner-Mindlin shell from Dornisch et al. (2013) and Kikis et al. (2019) is recalled
in some detail. In Section 5.4, a 3D phase-field model is presented. In Section 5.5,
existing phase-field models of brittle fracture for plate and shell formulations are reca-
pitulated and the phase-field model to be used in this work is illustrated. In Section 5.6,
the verification of the presented model is performed on the basis of various numerical
examples. Finally, in Section 5.7, conclusions are drawn and future research directions
are presented.

5.3 Reissner-Mindlin shell formulation

The Reissner-Mindlin theory is adopted for the present shell formulation. It is based
on the isogeometric shell model proposed in Dornisch et al. (2013) and Kikis et al.
(2019). A concise description of this theory is presented below.

5.3.1 Kinematics and basis systems

The shell is derived from continuum mechanics and degraded to its mid-surface. The
thickness direction is then described using the so-called director vector, see Fig. 5.1.
The director vector D of the reference configuration coincides with the normal vector
N of the shell surface and has the length |[D({*)| = 1. The current director vector
d can be updated by a difference vector formulation, since only linear problems are
considered

d=D +b. 5.1
The difference vector
b=wxD=W7".w with W =skew(D) (5.2)

is defined as the vector cross product of the rotational parameter of the shell mid-
surface w and the reference director vector. The inextensibility condition in thickness
direction is fulfilled since small rotations are considered and thus |d| ~ |D| = 1. In
this sense, the displacement u of an arbitrary point on the shell can be described as
follows

a(¢') = u(g) + £d(E), (5.3)

where u(£%) is the displacement vector on the mid-surface, {* with o = 1,2 are the
parametric coordinates and —% <8< % is the thickness coordinate. The current posi-
tion vector (£%) of an arbitrary point on the shell mid-surface is obtained, depending
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Figure 5.1: Basis systems and director vector at a Gauss point.

on the displacement vector u(£®), as

o) = X(§%) + u(&?), (5.4)
where X (£%) is the position vector in the reference configuration.

In the given shell formulation, the definition of two different basis systems is necessary.
The first one is the well known covariant basis system defined as

G.=X.+&D.  Gy=D, (5.5)

with the corresponding contravariant basis vectors derived with the use of the Kro-
necker Delta, G - G’ = 55 . However, in the constitutive relation an orthonormal basis
system is necessary, so a second local basis system A; is defined with the correspond-
ing local Cartesian coordinate system 6;. It is computed at the Gauss points as close
as possible to the convected basis system using the lamina coordinate system. In this
sense, the displacement and position vectors in Eq. (5.3) and Eq. (5.4) are now defined
with respect to 6;. In addition to A;, the corresponding nodal Cartesian system A;; at
the control points is needed for the interpolation of the rotational parameter w”

Nen

W= TuNip. (5.6)
=1

As it can be seen, the interpolation depends on the nodal rotations 3; and a nodal
transformation matrix 7T's;, which includes the nodal Cartesian system A;;. In the
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case of a smooth surface, the transformation matrix 7T's; consists only of two nodal
basis vectors Ay, thus, T's; = [Asr  Aj;]. The third nodal basis vector A3, can be
neglected in order to avoid zero energy modes which occur due to drilling rotations.
Dornisch et al. (2013) proposed a method where the nodal basis systems are defined
so that their interpolated values at any point of the surface coincide as well as possible
with the basis systems defined by the geometry.

The three unknown displacements u; and the two unknown rotations (; form the de-
formation vector

v = [g} =[u1 us uz B 52]T. (5.7)

Again, only two rotations are taken into account because only smooth surfaces are
being considered. In other cases, i.e. for surfaces with kinks, the third rotation is
indispensable.

5.3.2 Total strains

In the shell formulation, the linearized version of the Green-Lagrange strain tensor is
used, since only linear problems are considered

E=5,G 0, (5.8)
with the covariant components
1 - -
ENZ'j = §<Gl . ’U/’j + Gj . ’U;}i). (59)

However, since the strains and stresses have to be expressed in a dual basis system,
a transformation to the local Cartesian basis system A; is mandatory. The strains in
Eq. (5.8) are now defined as

e=¢c;A'® A, (5.10)

with A’ being the contravariant dual basis vectors defined as A = A;. The compo-
nents €;; can be split into the in-plane and transverse shear strains as follows

Eap = €mg T 0’Kap + (0°)*pagp (5.11)
2843 = Yas (5.12)

where ;s denote the membrane strains

1
Emﬁ = §(X7Oé “upg+ X,g . U,,a), (5.13)

(e}
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kqp represents the curvature of the shell

1
Kag = §<X,a b+ X bo+tDy-usg+Dp-uy) (5.14)

and v, are the shear strains
Yo=Xq - b+u,-D. (5.15)
The second-order curvatures
PaB = %(d,a -dg—D,-Dg) (5.16)

are neglected since only moderate thick plates are considered within the Reissner-
Mindlin theory. The derivatives (...) ,, and (...) g are defined with respect to the coordi-
nate system #°. They are computed by a transformation of the derivatives with respect
to the convected basis system

00

()0 = Jos 65 (5.17)
with J,3 = g%i = G- A being the components of the Jacobian matrix. The resulting
linear shell strains can be rearranged in Voigt notation in the strain vector

a m m m T
E=[en ey 26T K K 2K M ) - (5.18)

5.3.3 Strain energy density and stress resultants

The strain energy density of the shell formulation considering the plane stress condition
(033 = 0) is given as follows

1 2 2 /\2 2
Ve = SA(E) + at(e?) - s t(e), (519

(A +2p)
with A and p as the Lamé constants. An integration of the strain energy density over
the thickness direction 6 gives the strain energy surface density ¥., which describes
the strain energy per unit area of the mid-surface

h/2
U, = V. (6%)d6?. (5.20)
—h/2
As long as v, is defined by Eq. (5.19), depending on the linearized strain tensor €, the
integral can be calculated analytically.

As the total strains were split into the membrane, bending and shear terms, the total
strain energy per unit area of the mid-surface can be divided into the corresponding
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three terms W, = U™ (e™) + W’(k) + U’ (~?). They are defined through an analytical
integration of the strain energy density ). over the thickness and a subsequent split
into the parts that depend on €™, k and A" as follows

U™ (™) = h (émﬁ(em) + ptr((€™)?) — m tr2(sm)> (5.21)
Uh(k) = % (%/\trQ(n) + ptr(k?) — m trQ(n)) (5.22)
Vi (y") = hagptr((v")?), (5.23)

where ' is computed as 7/ 3 = dap’* With d, as the Kronecker Delta.

The stress tensor of the shell is defined as the derivative of the strain energy density

_ OYe(e) A2
o= = Ar(e)l +2pe T2

tr(e)1. (5.24)

The corresponding stress resultants are defined through the integration of the stress
tensor components over the thickness

h/2 ‘

nf = / o j1de? (5.25)
—h/2
h/2

m = / % 1u0°de? (5.26)
—h/2
h/2

¢ = / o pedd?, (5.27)
—h/2

where n®? are the membrane forces, m®® the bending moments and ¢* the shear forces.
The determinant of the shifter tensor u¢ is set to ug = 1, since it is assumed that
the basis vectors GG; are constant over the thickness, see Dornisch et al. (2013). The
integration over the thickness can still be computed analytically here and leads to the
following definition of the stress resultants depending on their corresponding strains

)\2
n=~nh <)\ tr(e™) I +2pue™ — Y 2Iutr(sm)I> (5.28)
h3 A2
m= ()\ tr(k) I +2puk — Y 2’utr(n)I> (5.29)
q = 2ho,uy". (5.30)

Analogously to the strain vector €, a stress tensor in Voigt notation is derived

a.:[nll n22 n12 mll m22 m12 ql q2:| . (531)
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5.4 Phase-field model of brittle fracture

Griffith and Taylor (1921) described the propagation of cracks as the counteract of
the structure’s bulk energy and the surface energy. In other words, a crack will only
grow if the released strain energy exceeds a critical value, necessary to form a new
crack surface. A generalization of Griffith’s theory of brittle fracture was proposed
by Francfort and Marigo (1998) in the variational framework. Here, the free energy
functional in a quasi-static case is given by

Ele, ') /Q Vo(€)d + G /P ar, (5.32)

where 1.(e) is the elastic strain energy density function, € is the strain tensor, G,
is the material fracture toughness and [ is the set of crack surfaces. In this way,
crack initiation, propagation and branching is governed naturally by the minimization
problem. However, since the displacement field becomes discontinuous when cracks
appear, a numerical implementation of the model is not straightforward. In order to
enable an adequate numerical implementation of the model, Bourdin et al. (2000, 2008)
and Bourdin (2007) proposed a regularized version of variational formulation (5.32) as

Bu(e.s) = [ (o(5)0u(e) + (s, V)ae, (5.33)
where
¥s(s,Vs) =G, (ﬁ(l —s)* + 10]V3]2> (5.34)
0

is the fracture energy density function.

The formulation depends now on a smoothly distributed field variable s, which takes
values between 1 (for an undamaged material) and O (for a totally broken material).
The regularization parameter [, > 0 has the dimension of a length and describes the
transition zone between cracked and uncracked material. Bourdin et al. (2008) proved
the I'-convergence of the formulation, which means that when the length parameter [
tends to zero, the model I'-converges to Griffith’s theory of brittle fracture (Eq. (5.32)).
The total elastic strain energy density function (&) is reduced through the degra-
dation function g(s) > 0, which couples the phase-field with the elastic field. The
degradation function computed according to Miehe et al. (2010a) reads

g(s) = (L—n)s* +1. (5.35)

Here, the positive dimensionless parameter < 1 represents a residual stiffness fac-
tor. It is chosen as small as possible in order to circumvent the full degradation of the
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strain energy density and at the same time avoid ill-posedness at a fully broken state
s = 0. This formulation, where the entire strain is degraded, is referred to as “isotropic
model”. Since there is no distinction between the contributions from tension and com-
pression in the model, cracks can occur in regions with compression, which leads to
an unphysical behavior.

In order to overcome this problem and, in addition, to avoid crack interpenetration in
compression, “anisotropic models” have been proposed. In these models, the elastic
strain energy density is split into tensile and compressive parts in order to degrade
only the parts that come from tension. The split can be achieved by separating the
strain energy in a spherical and a deviatoric part and accounting for the sign of the
volumetric strain, as it was done by Amor et al. (2009). The degradation function is
then applied only to the strain energy part related to expansion and shear. In this work,
the energy split based on a spectral decomposition of the strain tensor according to the
work of Miehe et al. (2010b,a) is adopted. The spectral decomposition of the strain is
given by

3
=) £n@n, (5.36)
=1

where {¢; };—1 2 3 are the principal strains and {n; };—1 2 3 the principal strain directions.
The positive and negative principal strain tensor components are then defined as
3
et = () ni@n,, (5.37)
i=1

* = (g % |&|)/2. An additive decomposition of the strain tensor € =

where (g;)
e™ + &7, and of the strain energy density function v, = ¥} 4 ¢_ in tensile and

compressive parts is then performed.

The free energy functional based on the “anisotropic” model is then computed as fol-
lows

Eyy(e.s) = / (9(5)0F (&) + 67 (€) + thals, Vs))dD. (5.38)

The stress tensor is degraded in a similar fashion

00 (e) | O (e)
Oe Oe

In the absence of volume loads, the minimization problem of the functional in

=g(s)ot(e) + o (g). (5.39)

o(e;s) =g(s)

Eq. (5.38) leads to the following Euler-Lagrange equations, which represent the strong
form of the governing equations

dive =0 (5.40)

oVt
<4ZO(1G—UWG+1>3—4Z§AS:1 (5.41)
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with the following Dirichlet and Neumann boundary conditions

v =" on OB (5.42)
o-N =t on OB (5.43)
Vs-N =0 on 0B, (5.44)

where 083, the boundary of the body and 0B and 883 denote the boundary of the body
with prescribed displacements © and boundary tractions &, respectively.

The two coupled balance equations (5.40) and (5.41) include the quasi-static stress
equilibrium and a gradient-type phase-field evolution equation. The first equation can
be seen as the macroscopic equilibrium condition. The second, which defines the
evolution of the phase-field can be seen as the microscopic balance. There exist two
main approaches for the solution of the two balance equations, the monolithic and the
staggered approach. In the monolithic approach the unknown displacement and crack
phase-field are calculated simultaneously, which reduces the computational effort, see
Gerasimov and De Lorenzis (2016). Here, however, a staggered approach is imple-
mented where the two equations are algorithmically decoupled and solved alternately,
see e.g2. Miehe et al. (2010b) and Ambati et al. (2015b). In other words, at each load
increment, the weak formulation of the first equation is solved in order to get the un-
known variable v while s is held constant. Next v is held constant while the weak
formulation of the phase-field evolution equation is solved. The procedure is repeated
until convergence is reached. The advantage of the staggered scheme is that it has
proven to be very robust.

In the second balance equation Eq. (5.41), 1) can be replaced by a history value H
which represents the maximum positive elastic strain energy density that has been
calculated up to the given pseudo time step in the loading process

H(t) := maxpt (7). (5.45)

T€[0,t]
In this way, the irreversibility condition of the crack during loading and unloading is

enforced and an algorithmic decoupling of the system of equations is enabled, see the
work of Miehe et al. (2010a).

5.5 Phase-field fracture models combined with plate
and shell formulations

5.5.1 Existing approaches

Phase-field models of fracture were applied to the special cases of plates and shells
only in a few investigations thus far. Here, a brief recapitulation of the existing ap-
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proaches is presented. In connection with Kirchhoff-Love shell formulations, the first
two approaches can be found in the works of Amiri et al. (2014) and Ulmer et al.
(2012). Amiri et al. (2014) proposed to degrade the full strain energy density by the
phase-field just as it is done in the isotropic model, see Section 5.4. Thus, the free
energy functional is written analogously to Eq. (5.33) in the following way

By (€™, 1, 5) = / (9(3)To(™, &) + W, (s, Vs) dA, (5.46)
A

where A is now the mid-surface while the integration through the thickness is included
in ¥, and ¥,. However, as it was mentioned before, this kind of formulation leads to
cracks in regions where there is only compression, something that is unphysical.

On the other hand, Ulmer et al. (2012) proposed to separate the elastic strain en-
ergy density into its membrane and bending parts, as it was shown in Eq. (5.21) and
Eq. (5.22). The membrane part is split again into its tensile and compressive contribu-
tions by a spectral decomposition of €, whereby only the tensile term is degraded in
the free energy functional. The bending part is not split and it is degraded entirely by
the phase-field. The corresponding free energy functional reads

E, (g™ Kk, s) = /A (9(s) (VI (e™) + Wl(K)) + U (e™) + Uy(s, Vs)) dA.
(5.47)

The problem with this formulation, as it was pointed out in Kiend]l et al. (2016), is that
it does not consider the dependency of the total strain on a combination of both mem-
brane and bending strains. This means that if, for instance, bending and compression is
applied in a way that the total strain is compressive everywhere, the model would still
lead to fracture. Furthermore, since the model does not consider a split of the bending
energy into tensile and compressive parts, it would behave, in the case of pure bending,
basically in the same way as an isotropic model, potentially leading to an unphysical
behavior.

Kiendl et al. (2016) solved the issues of the previous approaches by using a phase-field
formulation where the spectral decomposition is applied to the total strain energy, as
it is done in the anisotropic formulation, without considering a classification into the
different strain terms. In other words, crack propagation is driven by the tensile part
of the strain energy surface density which depends on both the membrane and bending
strains

E, (g™ k,s) = / (g(s)UH(e™ k) + ¥, (€™, k) + ¥ (s, Vs)) dA. (5.48)

A

On the other hand, Areias et al. (2016) applied two independent phase-fields, one for
the lower and one for the upper face of the shell in order to properly describe bending-
dominated problems.



112 5 PHASE-FIELD MODEL OF BRITTLE FRACTURE

To the best of the author’s knowledge, a combination of an isogeometric degenerated
Reissner-Mindlin shell formulation with the phase-field model of fracture has not been
attempted yet. In the following we present such a combination for the case of brittle
fracture. As a starting point, the formulation of Kiendl et al. (2016), which has been
used very successfully for the description of brittle fracture in Kirchhoff-Love shells,
is adopted and extended to the isogeometric Reissner-Mindlin shell formulation from
Dornisch et al. (2013) and Kikis et al. (2019).

5.5.2 Phase-field model of brittle fracture for the Reissner-Mindlin
shell formulation

The goal here is to implement the anisotropic phase-field model of brittle fracture
with a spectral decomposition of the strain tensor from Section 5.4 to the isogeomet-
ric Reissner-Mindlin shell formulation presented in Section 5.3. In order to achieve
this, the approach proposed in Kiendl et al. (2016) is now extended to the case of the
Reissner-Mindlin shell formulation. First, since only the mid-surface of the shell is
considered the strain energy functional defined in Eq. (5.38) can be rewritten in the
following way

Ey(e.s) = / (9()T7 (€) + U (€) + Ui (5, V$))dA, (5.49)

where U£(g) are the positive and negative parts of the strain energy surface density,
defined as

h/2
Uy = Wby (6%)d6°. (5.50)

—h/2

In contrast to the definition given in Eq. (5.20), here the integral cannot be determined
analytically anymore. It has to be performed numerically at the integration points
through the thickness. The phase-field variable s is defined only on the mid-surface of
the shell, see Fig. 5.2. The split of the strain energy density into tensile and compres-
sive contributions reads

VEO?) = %)\ (@) + p (((5(93))i)2) . (5.51)

The split is applied to the total strain tensor and not separately to the membrane, bend-
ing and shear terms of Eq. (5.21-5.23). In the same sense, the tensile and compressive
terms of the stress tensor are defined as

o= (0%) = X {tr(e))FT +2pe®, (5.52)
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Figure 5.2: Phase-field for a degenerated Reissner-Mindlin shell formulation.

where I is the identity tensor with respect to the local Cartesian space. It is impor-
tant to note that these definitions Eq. (5.51-5.52) as well as the material tangent ten-
sors C(g, s) = % have to be modified for the shell model in order to enforce the
plane stress condition, which is usually considered in dimensionally reduced structural
models. In the presented Reissner-Mindlin shell formulation, it is assumed that the
transverse normal strain £33 is zero due to the inextensibility condition. In addition,
the normal stresses o33 have to be zero in order to avoid artificial stiffening effects due
to an unbalance of £33 and o33 for non-zero Poisson’s ratios. This condition is usu-
ally referred to as the plane stress condition, even though ¢ # 0. It should be noted
here that the plane stress condition is a classical assumption for thin shells since in this
case the dominating quantities are the in plane and the transverse shear stresses. The
thickness direction insignificantly contributes to the load transfer. Thus, effects where
the normal stresses o33 play a crucial role, for instance in Reinoso et al. (2016), where
wrinkling and buckling-induced delamination in thermal barrier coatings is examined,
are excluded here. Normally, the plane stress condition could be fulfilled easily by re-
moving €33 and o33 from the constitutive law by static condensation and having in the
end only five strain and stress components. However, in this case €33 is needed for the
spectral decomposition of the strain tensor €. To be more specific, in order to perform
the spectral decomposition of the total strain tensor in Eq. (5.36), first, the eigenvalue
problem

is solved at each integration point through the thickness, with € being the total strain
tensor with respect to the local Cartesian system, see Eq. (5.10). Its components €.,
£q3 are defined in Eq. (5.11) and Eq. (5.12) respectively and for the computation of
33 the plane stress condition has to be enforced numerically. Here, a local algorithm
with quadratic convergence based on the work of Klinkel and Govindjee (2002), as
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well as on the work of Ambati et al. (2018), is used in order to fulfill the zero stress
condition at each integration point. Namely, an additional Newton-Raphson iteration
is applied inside the thickness integration loop in order to define the normal strain €33
for which the normal stress is zero, see Appendix A. For each thickness integration
point a spectral decomposition of the total strain (including normal strain) is applied
and the following condition is enforced

0o 33

ol =0+ a—;(sggl — ghy) = 0. (5.54)
€33
Thus, the newly calculated strain is defined as

el = ey — (CP¥) o) (5.55)

(2

until the stress o obtains a value which is smaller than a given tolerance. In addition,
the material tangent modulus is required for the global Newton-Raphson iteration. The
incremental vector representation of the 3D constitutive law reads

d ak akyl ak33 d
( 033) - <C33 l <C3333) ( aﬂ) : (5.56)
do C»> C d€33
The material tangent is condensed with do®® = 0 in order to obtain the tangent mod-
ulus for the global Newton-Raphson scheme, which fulfills the plane stress condition.

Inserting the second equation of (5.56) in the first one leads to the following tangent
modulus of the element formulation

doo* = CoMlde, with €M = CoMl _ CoRB(CIYICH, (557

The stress resultants are then computed according to Eq. (5.25-5.27) as follows

h/2

n(e™ k,s) = / (9(s)o™(e™ k) + o~ (e™, K)) dO? (5.58)
—h/2
h/2

m(e™ Kk, s) = / (9(s)o(e™ k) + o (e, K)) 6°d0? (5.59)
—h/2
h/2

air')= [ (et (o) o) a8t (5.60)
—h/2

In contrast to Section 5.3, the integration over the thickness for Eq. (5.50) and
Eq. (5.58-5.60) cannot be computed analytically here, due to the spectral decompo-
sition of the strain tensor €. Instead, a numerical integration is necessary. For each
thickness integration point a spectral decomposition of the total strain is applied and
the corresponding stress tensor o= and the strain energy density ¥ are computed. In
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this way, the proposed approach, where fracture is described using a single phase field
which is constant over the thickness, leads to a nonlinear distribution of o and ¥, over
the thickness, see Kiendl et al. (2016).

The strong form of the two balance equations, see Eq. (5.40) and Eq. (5.41), is used as
the basis to formulate the weak form by integration and multiplication with appropriate
test functions. In the end, the following two minimization subproblems result

/ n:06e™+m: 0Kk +q:ovy'dA— / svTp,dA — / svTtyds =0  (5.61)
A A r

N
0

/ th(l—mH | sdsdA+4z§/vs.vasdA:/5sdA, (5.62)
A hG. A A

where P, are the surface loads and %, the boundary tractions. The variation of the shell
strains is defined as

1
Ocnp = §(Xa ug+ X g 0uy,) (5.63)
1
5I€a5 = é(X’a . (Sb’g -+ Xﬂ . 5b7a + D7(1 . 511,”3 -+ Dﬂ . (5'1117&) (564)
o =X o-0b+du, - D. (5.65)

The variables of the shell formulation as well as the phase-field variable s are dis-
cretized using NURBS shape functions, see Piegl and Tiller (1997) and Cottrell et al.
(2009). A detailed NURBS-based isogeometric shell discretization and implementa-
tion can be found in Dornisch et al. (2013) and Kikis et al. (2019). As it was mentioned
in Section 5.4 a staggered approach is used for the solution of the two weak governing
equations. Due to the split of the total strain tensor, the first equation is non-linear and
the Newton-Raphson scheme has to be applied. On the other hand, the equation of
evolution of the phase-field is linear.

5.6 Numerical examples

In this section, the proposed phase-field model applied to the isogeometric Reissner-
Mindlin shell is tested and a comparison to existing models is performed. Namely,
a Kirchhoff-Love shell and a solid are additionally examined and the differences be-
tween the shell types are investigated. The elements that are used in the examples are
summarized here with their corresponding abbreviations

* Solid The standard 3D solid element with one element in thickness direction and
three integration points through the thickness, which uses an anisotropic model
for the description of fracture processes.
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* KL shell The isogeometric Kirchhoff-Love shell formulation proposed in Kiendl
et al. (2016), which applies the spectral decomposition on the total strain and
uses then an anisotropic model of brittle fracture. In order to stay consistent with
the Solid formulation, 3 integration points are taken in the thickness direction.

* RM shell The proposed approach for the isogeometric Reissner-Mindlin shell
formulation from Dornisch et al. (2013) and Kikis et al. (2019). The spectral
decomposition is applied to the total strain energy which includes the membrane,
bending and shear parts. As in Solid and KL shell, three integration points are
considered to perform numerical thickness integration.

In Reissner-Mindlin shell formulations, an issue that arises is locking. It leads to an
artificial stiffening of the system, an underestimation of the deformations and oscilla-
tions in the stress resultants. This phenomenon is intensified with a decreasing shell
thickness, i.e. at the Kirchhoff limit. In the context of isogeometric analysis, different
methods were proposed to alleviate these undesirable effects, such as using adjusted
approximation spaces for the displacements and rotations, increasing the order of the
shape functions, using non-uniform integration or the Assumed Natural Strain (ANS)
method to mention a few, see also Kikis et al. (2019). The two main locking effects that
occur in the present Reissner-Mindlin shell formulation are the transverse shear lock-
ing (for the plates and shell examples) and the membrane locking (only for the shell
example). However, since polynomial degree p = 2 is used, locking is already reduced
compared to linear Lagrange shape functions. Furthermore, due to the required high
refinement in the fracture area, a huge number of elements is used, which additionally
reduces the transverse shear locking. In the end, comparing in the following examples
the linear part before crack initiation, where locking should already occur, no signif-
icant differences are visible for the different shell types. This means that no severe
locking occurs and the different formulations converge to the same solution. There-
fore, in the following examples, locking effects are not investigated in any more detail.
However, locking is not entirely eliminated and the implementation of a method that
fully removes locking would be an interesting topic for future work.

As it was shown in Fig. 5.2, in the contour plots of the crack phase-field, blue denotes
an intact material (s = 1) and red a fully cracked material (s = 0).

5.6.1 Beam with transverse loading and different boundary condi-
tions

The first example consists of a rectangular plate which has no initial crack. Different
boundary conditions are chosen, i.e. in the first case the beam is clamped at one edge
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and in the second case it is simply supported at both edges, see Fig. 5.3 and Fig. 5.6
respectively. It is subjected in both cases to a uniformly distributed transverse loading.
The material parameters are given as follows: £/ = 10 x 10° N/ mm?, v =0, G, =
3 N/mm and [y = 0.01 mm. The plate has a length L = 10 mm and a width W =
2 mm, while different thicknesses are considered in order to investigate the influence
of transverse shear on the fracture behavior. The KL shell and the RM shell described
at the beginning of Section 5.6 are compared for this purpose. For the calculations,
the plate is divided into a total of 7701 elements for the clamped version and 7225
elements for the simply supported version, with a local refinement at the clamped edge
or at the middle of the plate where the crack is expected to form, in order to fulfill the
requirement of i/l = 1/10. Arc-length control is adopted for the simulation until
failure occurs.

p:

|

\/

Figure 5.3: Clamped beam with transverse loading.

Figure 5.4: Crack phase-field at final fracture stage.

Due to the plate’s length to width ratio and since v = 0, the problem could also be
seen as a beam problem. When considering Bernoulli beams, which basically cor-
respond to the Kirchhoff-Love theory, the results are reasonable up to a thickness to
length ratio of 1—10. For higher values, the transverse shear has a greater influence and
the use of the Timoshenko theory, which corresponds here to the Reissner-Mindlin
theory, is preferable. In the first case of the clamped beam this behavior is visible in
the load-displacement curves in Fig. 5.5. The focus here lies on the norm of the to-

tal displacement vector, which is given as Upom = ,/f—a where u is the vector of
cp
the control point displacements and n., is the total number of control points. For a
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Figure 5.5: Load-displacement curves for the clamped beam with a thickness of (a) t = 0.01,
bt=10t=2,(d)t=3.

Simply supported

Figure 5.6: Simply supported beam with transverse loading.

thickness to length ratio smaller than or equal to % the load-displacement curves of
the KL shell and the RM shell are almost identical, see Fig. 5.5(a) and Fig. 5.5(b). As
soon as the thickness increases, deviations regarding the maximum applied load and
the total displacement are visible, see Fig. 5.5(c) and Fig. 5.5(d). This effect intensifies
for thicker beams, leading to very clear differences in Fig. 5.5(d). The deformations
for the RM shell are higher due to the consideration of the additional transverse shear
deformations. On the other hand, the maximum applied load before failure of the
RM shell is lower due to the shear terms considered in the phase-field formulation. A
snap-back behavior is visible for both the KL shell and the RM shell. This could be
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Figure 5.7: Crack phase-field of simply supported beam at final fracture stage.
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Figure 5.8: Load-displacement curves for the simply supported beam with a thickness of (a)
t=0.05 ()t =2.

explained as follows: in the beginning, the beam’s curvature is increasing since it is
clamped on one side and subjected to the uniformly distributed load. However, as soon
as the crack forms at the clamped edge, it has no moment anymore and the curvature
of the beam decreases again. Since in the load-displacement distribution the total dis-
placement norm U, is considered, i.e. the displacements of all points of the beam,
a reduction of the deformation in total after crack initiation is reasonable. The crack
phase-field shows a similar pattern for both element types and is illustrated for the final
fracture stage in Fig. 5.4. In the case of the simply supported beam a similar behavior
is observed, i.e. for thin plates the KL shell and the RM shell have almost identical
results while for thicker shells differences are observed especially regarding the dis-
placement since the KL shell does not consider the transverse shear deformations, see
Fig. 5.8(a-b). Here the focus lied on the vertical displacement u, at point A in Fig. 5.6.
The crack phase-field for the final fracture stage is given in Fig. 5.7.

5.6.2 Square plate with changing surface load

In the following, a square plate without initial cracks that is simply supported along
its boundary is examined. The plate is subjected to a pressure loading which is ap-
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plied on an area of a X a, see Fig. 5.9. The material parameters are given as follows:
E =190 x 10> N/mm?, v = 0.29, G, = 0.295 N/mm and [, = 0.02 mm. This exam-
ple is known from literature, e.g. Areias et al. (2011) and Kiendl et al. (2016) for the
case of a = L, i.e. when the load is applied to the whole plate. Here, however, differ-
ent values for a,i.e.a € {L, L 2 L L L1 are considered in order to demonstrate the
influence of the shear terms on the fracture procedure. Namely, when a < L a jump in
the transverse load occurs and the shear forces are going to be high close to this discon-
tinuity boundary. This phenomenon should influence the results of the RM shell and
the Solid which consider shear deformations in contrast to the KL shell. The thickness
of the plate is chosen to ¢ = 0.02 mm in order to allow a reasonable comparison to the
KL shell element. Due to symmetry only one quarter of the plate is considered for the
calculations and discretized uniformly with a number of 7225 elements, i.e. 2 = 0.6.

lo
The simulation is performed using arc-length control.
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r—— Simply
i l”” supported
i ...................................... i +
2 i p i a
O N N 1IR3
+ :
[ »|
™ a =1

Figure 5.9: Simply supported plate subjected to transverse loading with changing area.

In the case of a = L, the expected crack path, according to Areias et al. (2011) and
Kiendl et al. (2016), starts with four cracks at the center of the plate which propagate
towards its corners. As soon as the cracks reach the boundary, the plate is divided into
four separate triangular plates and complete failure occurs. The crack path for the other
load cases is the same, however the crack is propagating slower the smaller a is. This
is expected, since, for decreasing a, the maximum bending moments and shear forces
become more concentrated close to the center of the plate. So, the crack initiation is
going to occur fast in the middle of the plate, however, as the crack propagates along
the diagonals the internal forces reduce significantly and the propagation is going to
slow down. In Fig. 5.10(a) and Fig. 5.10(b) the crack phase-field is depicted at different
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Figure 5.10: Simply supported plate. Crack phase-field and deflection at various fracture

L

10> respectively.

stages for a transverse load with (a),(a) a = L and (b),(b) a =

fracture stages for a transverse load witha = L and a = %,

a = L it is visible that even at the first stage, when the crack is initiated at the center,
the rest of the plate has already weakened along its diagonals, since there the value of
s is less than 1. So, the crack has already a given path to follow where the stiffness
of the structure is lowered. On the other hand, for the case of a = % the damage

respectively. In the case of

is limited close to the cracks and the rest of the plate is more or less undamaged. In

Fig. 5.10(a) and Fig. 5.10(b) the contour plot of the deflection is depicted for the same
L

10°
for both cases in order to emphasize the differences in the values of the deflection. At

the first stage, where the crack is very small at the center and the curvature of the plate

fracture stages and with @ = L and a = respectively. The same scale was used

is still more or less smooth, the deflection has the characteristic contour plot as it is
known from the uncracked plate. The stiffness of the structure decreases as the crack
propagates which leads to higher deformations. At the last stage, the crack has fully
propagated and the kinks in the plate are visible in the contour plot of the deflection.
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Figure 5.11: Simply supported plate. Load-displacement curves for a transverse load with (a)
a=1L,(bya=L/2,(c)a=L/6,(d)a= L/10.

In Fig. 5.11 the pressure-total displacement norm curves are exemplarily given for
the cases of a € {L, %, %, L}. The observations made above are visible in the load-
displacement curves, especially the delay in the propagation of the cracks. For the
cases where a < L, the crack forms at the center (first kink in the curve), slowly grows
uniformly around the center (no further significant reduction of the stiffness, the curve
continues) before starting propagating along the diagonals (stiffness reduces again,
second kink). The curves of the RM shell and the Solid show very good agreement,
especially for the cases where @ < L. On the other hand, the KL shell is always
overestimating the maximum applicable load before crack initiation. This is reasonable
since strong shearing occurs at the load boundaries, however, the KL shell does not
consider shear terms in the phase-field formulation. Another interesting observation
regarding the RM shell is a slight snap back behavior, i.e. a more brittle behavior,
which is not occurring in the other two element types. The reason for this could be the
choice of the load increment for the arc-length control. Here, it has the same value for
all three element types for reasons of consistency, however, it depends on the degrees
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Figure 5.12: Simply supported plate. Maximum load for (a) a = L, (b) a = L/2, (¢c) a = L/6,
(d) a = L/10.

of freedom and since the RM shell has two additional degrees of freedom, namely the
two rotations, it should be modified. Another reason could be that all three element
types have a snap back behavior, which is however only visible for the RM shell due
to the chosen parameters. In Fig. 5.12, the maximum applicable pressure is depicted
for the six different load cases. An almost exponential increase in the limit load with
decreasing a can be observed for all element types. However, it is also visible that
although the limit loads of the RM shell and the Solid are almost equal for all cases,
the difference to the KL shell grows gradually with decreasing a due to the absence of
the shear deformations.

5.6.3 Annular plate

In this example an annular plate which is simply supported at the inner and the outer
edges is considered, see e.g. Ambati and De Lorenzis (2016) and Kiendl et al. (2016).
The plate is subjected to a uniformly distributed transverse load and is firstly exam-
ined as initially uncracked and later with four small initial circumferential cracks,
see Fig. 5.13(a) and Fig. 5.13(b), respectively. In the latter case the ability of the
phase-field formulation to correctly describe crack interaction and merging is investi-
gated. The material parameters read: £ = 10.92 x 10" N/mm?, G, = 3 N/mm and
lo = 0.01 mm, v = 0 and the plate has a thickness of ¢ = 0.01 mm. Due to sym-
metry, the calculation is performed only on one quarter of the geometry. The plate is
discretized with 8670 elements for the initially uncracked case and with 7395 elements
for the case with initial cracks. In the expected crack propagation region an additional
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local mesh refinement is applied for both cases with h/ly = 1/10. The simulation is
performed using arc-length control.
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Figure 5.13: Annular plate. Geometry and boundary conditions, (a) without initial cracks and
(b) with initial cracks.

In the case of the initially uncracked plate, a circumferential crack develops close to the
middle of the annulus, see Fig. 5.15(a) for the RM shell and the Solid. In Fig. 5.15(b)
the crack phase-field is depicted for the deformed state, where it can be seen that for
the Solid the plate is totally cracked along the thickness direction. A slight loss of
symmetry for the RM shell could result from the use of the rotations as additional de-
grees of freedom at each interpolation point. The load-displacement curves for both
cases are depicted in Fig. 5.14. The load-displacement curves of the three different
element types are compared for the initially uncracked plate in Fig. 5.14(a). A slight
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Figure 5.14: Annular plate. Load-displacement curves, (a) without initial cracks and (b) with
initial cracks.
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Figure 5.15: Annular plate without initial cracks. Crack phase-field at final fracture stage, on
the undeformed (a) and the deformed configuration (b). Comparison between RM shell and
Solid.
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snap back behavior is visible for the RM shell, as it was previously observed in the
example with the square plate. The reasons for this behavior are the same, namely,
since the RM shell has two additional degrees of freedom the load increment for the
arc-length control should be chosen differently compared to the other two elements.
However, it is also possible that the snap back behavior occurs for all three elements
but is only visible for the RM shell due to the chosen parameters. In the case of the
plate with four initial cracks, a good agreement between the three element types is
observed, see Fig. 5.14(b). The load-displacement curve of the RM shell is between
those of the Solid and the KL shell. The crack path evolves from the four initial cracks
and propagates along the circumferential direction of the plate until a closed circum-
ferential crack is formed. Small oscillations observed in all three element types could
be a result of interlocking between the elements where the load carrying behavior goes
from the bending-dominated state to the membrane-dominated state. The results con-
firm that the proposed phase-field approach is able to naturally describe the interaction
and merging of different cracks.

5.6.4 Pressurized cylinder with initial crack

In the last example two shell setups are investigated in order to verify the good per-
formance of the Reissner-Mindlin element for shell structures. In the first case, a
cylindrical shell under internal pressure is considered as shown in Fig. 5.17, see also
Kiendl et al. (2016) and Ambati and De Lorenzis (2016). The cylinder has a longitu-
dinal crack at the center and is fixed at both ends in X and Y direction. The material
parameters read: £ = 70 x 10> N/mm?, G, = 1.5 N/mm and Iy = 0.05 mm, v = 0.3
and the cylinder has a thickness of ¢ = 0.125 mm. The spatial discretization of the
model comprises 9180 elements and an a priori local refinement of the mesh at the
area where the crack is expected to propagate is performed with i/l = 1/125. Be-
cause of symmetry only one quarter of the cylinder is modeled. The main intention of
the present example is to perform a comparison of the results of the KL shell element
to the RM shell element. The thickness of the cylinder is relatively small, which makes
a comparison valid. Due to the internal pressure, the initial crack is going to propa-
gate longitudinally along the cylinder height. The crack path is presented for different
stages in Fig. 5.18. The elements where s < 0.05 are removed (only for visualization
purposes). Arc-length control is adopted for the application of the inner pressure until
failure.

In the second case, the same cylinder is considered, however, reinforced with two tear
straps along its circumference, as shown in Fig. 5.19. This example is well-known
in the literature, see Areias and Belytschko (2005), Kiendl et al. (2016), Ambati and
De Lorenzis (2016) and Areias et al. (2016) and is based on experiments carried out
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by Keesecker et al. (2003). The model is discretized with 28980 elements and the
local refinement of the mesh is performed with h/l; = 1/60. An interesting aspect
of this example is the "flapping" behavior, i.e. the crack turning when reaching the
tear straps. At the beginning the initial crack is going to propagate axially, however,
when reaching the tear straps, the crack deviates to the circumferential direction and
continues its path along the straps. This behavior is observed in Fig. 5.20, where the
crack path is presented for different stages. Thus, the presented model is able to fully
capture the flapping behavior. In Fig. 5.16 the applied pressure over the norm of the
total displacement is shown for the cylinder with and without tear straps. A very good
agreement is observed between the KL shell and the RM shell for both cases. Small
oscillations can be observed for both shell types as it was already seen in the case of
the annular plate, see Section 5.6.3. Again, a reason for that could be an interlocking of
the elements in the transition zone between the membrane-dominated (without crack)
and the bending-dominated state (with crack). The corresponding diagrams of the
Pressure-Total displacement norm for a solid-shell is provided in Kiendl et al. (2016),
showing an overall good agreement between the results of the KL shell and the solid-
shell.
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Figure 5.16: Pressure-norm of the total displacement curves for pressurized cylinder with
initial crack.
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Figure 5.18: Pressurized cylinder without tear straps. (a-f) Crack phase-field at different frac-

ture stages.
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5.7 Conclusion

In this work, a phase-field model of brittle fracture was presented for the application
to plate and shell structures. An isogeometric Reissner-Mindlin shell formulation was
adopted from Dornisch et al. (2013) and Kikis et al. (2019) in order to make the for-
mulation applicable for both thick and thin plates/shells. According to this formulation
both the displacement/rotation fields as well as the phase-field are only defined on the
mid-surface. The thickness direction is described with the help of the director vec-
tor. Regarding the formulation of the brittle phase-field model, the focus lied on the
correct description of crack initiation, propagation and merging in the context of the
degenerated plate/shell formulation with its corresponding Reissner-Mindlin kinemat-
ics. For this purpose, the phase-field model that was successfully applied in the work
of Kiendl et al. (2016) to the case of Kirchhoff-Love plates and shells was here ex-
tended to the more general case of thick plates/shells. The spectral decomposition
for the tension-compression split was again applied on the total strain, which changes
over the thickness, without considering a decomposition into the membrane, curva-
ture and shear terms first. In this way, unphysical fracture in compressed regions is
avoided. On the other hand, the spectral decomposition of the total strain can only
be applied if the plane stress condition is enforced numerically. A local algorithm
which was proposed in the work of Klinkel and Govindjee (2002) was used in order to
fulfill the zero stress condition in each integration point. The ability of the proposed
brittle phase-field model to correctly describe fracture in plates and shells has been
proven on the basis of various numerical examples. Furthermore, the results obtained
by the Reissner-Mindlin shell formulation have been compared to those delivered by
a 3D solid element and the Kirchhoff-Love shell formulation by Kiendl et al. (2016).
A good agreement between all three element types could be observed. Pronounced
differences between the Reissner-Mindlin and the Kirchhoff-Love shell were visible
for cases where the transverse shear deformations played an important role, since they
are not considered in the Kirchhoff-Love shell formulation. Thus, when shearing is
crucial the phase-field model in combination with the Reissner-Mindlin shell formula-
tion leads to more accurate results. Furthermore, in moderate thick plates and shells
it is computationally more efficient to consider a Reissner-Mindlin shell formulation
rather than a solid element. In addition, the performance of the proposed method for
the cases of shell structures could be verified. In particular the "flapping" behavior of
a reinforced cylinder was fully captured by the present model. Further extensions of
the proposed method to nonlinear shell formulations as well as other fracture types,
e.g. ductile fracture and fatigue are going to be the focus of future work. In addition, a
comparison to other fracture models like GFEM or XFEM could highlight the benefits
of the phase-field formulation compared to other existing models. Finally, a future goal
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is to verify the numerical model based on experimental data.
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Chapter 6

Outlook and conclusion

6.1 Summary and concluding points

This work is concerned with the treatment of locking effects in thin plates and shells
within the framework of isogeometric analysis and the development of a phase-field
model of brittle fracture for the application to plate and shell structures. An isogeo-
metric Reissner-Mindlin shell formulation is used since it allows for the description of
both thin and thick plates and shells. The geometry is described by the mid-surface
using NURBS shape functions and for the thickness direction a director vector is used.
In addition to the three displacements, two rotational degrees of freedom are defined
since only smooth surfaces are considered.

First, a method to treat transverse shear locking in plates and shells has been intro-
duced. Adjusted approximation spaces are used for the displacements and the two
rotations in order to ensure consistency in the interpolated terms of the strain formu-
lation. Namely, the two rotations are interpolated in the relevant direction with one
degree lower shape functions than the displacements. In the framework of plates, the
method has shown superior behavior compared to a standard Reissner-Mindlin shell
formulation where no measures against locking have been taken. In particular in cases
where transverse shear locking is more pronounced, i.e. for lower polynomial degrees,
the proposed method has a higher accuracy with fewer degrees of freedom. In addi-
tion, the method has been compared to other well-known approaches that eliminate
locking and showed that it is a competitive alternative. Except for the underestimation
of the deformation, the other undesirable effect of locking that is solved using adjusted
approximation spaces are the oscillations in the stress resultants. Regarding shell struc-
tures, transverse shear locking is eliminated and the remaining defiances in the results
are due to the additional presence of membrane locking in shells. An advantage of
this method is that no additional variables have to be introduced and it is generally ap-
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plicable for any polynomial degree. Furthermore, it has been shown that compared to
the standard Reissner-Mindlin shell formulation without any measures against locking,
this method leads to a system of equations with less degrees of freedom.

A displacement-stress mixed method has been presented in order to alleviate both
membrane and transverse shear locking in thin plates and shells in the framework
of isogeometric analysis. The method is derived using a two-field Hellinger-Reissner
variational principle where the stress resultants are considered as additional unknowns.
Appropriate approximation spaces for the interpolation of the stresses that are related
to locking had to be chosen. Namely, in the relevant direction, one order lower splines
are chosen for the stresses compared to the deformation. The main focus lied on the
implementation of the static condensation, which is performed in mixed formulations
in order to eliminate the additional unknowns from the system of equations. Three dif-
ferent approaches have been presented. The first one is the standard approach where
static condensation is performed on the patch level due to the high continuity of splines.
This leads to the inversion of a matrix on the patch level and a fully populated stiffness
matrix, which on the other hand increases the computational cost. Thus, two local ap-
proaches have been proposed that perform the static condensation on the element level.
In the first one the stress resultants are defined discontinuously (C~1) across the ele-
ment boundaries, thus, leading to a sparse stiffness matrix that has the same bandwidth
as the standard displacement-based shell. This method showed good results for low
polynomial degrees, however, it did not improve the results greatly for higher polyno-
mial degrees. This indicates that the discontinuity in the stress resultant fields hinders
the complete elimination of locking. Thus, a second approach has been proposed that
uses weights for the local control variables in order to get blended global ones. This
method is based on the reconstruction algorithm used for B formulations in Greco
et al. (2017, 2018). The mixed reconstructed approach shows a high accuracy, close
to the results of the global approach which is performed on the patch level. However,
since it is computed partly on the element level and leads to a banded stiffness matrix
it reduces the computational cost compared to the global approach. The advantages
and disadvantages of each approach have been outlined in detail and a comparison to
existing formulations with measures against locking has been carried out and showed
the superiority of the mixed continuous and mixed reconstructed approach.

A phase-field model has been presented for the description of brittle fracture in isogeo-
metric Reissner-Mindlin plates and shells. A special focus lied on the incorporation of
the transverse shear strains in the model in order to allow for fracture due to transverse
shear deformations. For this reason the phase-field model presented in Kiendl et al.
(2016) for Kirchhoff-Love plates and shells was extended to the general case of thick
plates and shells with Reissner-Mindlin kinematics. A continuous crack phase-field
is introduced that is defined on the shell mid-surface and describes the transition be-
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tween the cracked and uncracked material. In order to avoid any unphysical fracture in
compressed regions, the spectral decomposition for the tension-compression split was
applied on the total strain which changes over the thickness. Thus, the application of
the plane stress condition is not straightforward anymore, i.e. it can not be applied by
a simple elimination of the thickness normal strain and thickness normal stress from
the constitutive law but has to be enforced numerically. For this purpose a local al-
gorithm with quadratic convergence proposed in the work of Klinkel and Govindjee
(2002) and Ambati et al. (2018) was used in order to enforce the zero stress condi-
tion in each integration point through the thickness. The ability of the proposed brittle
phase-field model to correctly describe crack initiation, propagation and merging has
been proven on the basis of different numerical examples considering plate and shell
structures. A comparison of the proposed model to the existing 3D solid element and
the Kirchhoff-Love shell element by Kiendl et al. (2016) showed a good agreement.
In cases were shearing played an important role in the fracture behavior, the Reissner-
Mindlin shell and the 3D solid had very similar results while noticeable differences
were visible in the Kirchhoff-Love shell, since in the latter transverse shear deforma-
tions are not considered. Furthermore, the "flapping" behavior that is observed in the
case of a reinforced cylinder was fully captured by the presented model.

6.2 Outlook

The proposed methods to treat locking effects in plates and shells, including adjusted
approximation spaces and global or local mixed formulations, have been successfully
tested for geometrically linear problems. In a next step, their extension to geometri-
cal and material nonlinear problems is of great interest. In the case of geometrically
nonlinear problems, an orthogonal rotation that is described by the Rodrigues’ tensor
could be used to define the director vector in the current configuration as it has been
proposed in Dornisch et al. (2016). There, various concepts for the interpolation of the
current director vector have been introduced and examined. In the framework of the
global and local mixed formulations an extension to the Hu-Washizu variational prin-
ciple should be carried out, where in addition to the stress resultants, the strains are
considered as unknowns and interpolated in carefully chosen approximation spaces.
In contrast to the Hellinger-Reissner variational principle, the Hu-Washizu has the ad-
vantage of reducing the computational cost when considering nonlinear problems. In
addition, a detailed investigation of the BabuSka-Brezzi condition should be carried out
for the mixed formulations. Here it was assumed that the condition is fulfilled because
the obtained results were accurate and robust. However, in order to ensure the stability
of the system in general, the condition should be verified mathematically.
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Regarding fracture in isogeometric Reissner-Mindlin plate and shell analysis, an ex-
tension of the presented phase-field model to other types of fracture, such as ductile
fracture or fatigue should be the focus of future work. For this purpose, a nonlin-
ear Reissner-Mindlin shell formulation as the one presented in Dornisch et al. (2016)
should be implemented. In the framework of ductile fracture, the phase-field model
presented in Ambati et al. (2015a) and Ambati and De Lorenzis (2016) could be
adopted to isogeometric Reissner-Mindlin plate and shell formulations. There, the
total free energy functional additionally includes the plastic strain energy density func-
tion which depends on a hardening variable. In this case, instead of a spectral de-
composition of the elastic strain energy density, a decomposition into the volumetric
and deviatoric contributions is more suitable. Furthermore, a detailed investigation of
locking effects in the framework of fracture should be carried out in the future. In a
first step, the anti-locking mechanisms presented in this thesis for transverse shear and
membrane locking should be combined with the phase-field model. Furthermore, other
locking effects that are interesting for fracture should be examined and mechanisms to
treat them should be implemented. A comparison of the presented phase-field model to
other fracture models like GFEM or XFEM could highlight the benefits of this model.
Finally, a future goal is the verification of the numerical model based on experimental
data.
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Local plane stress algorithm
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Figure A.1: Local plane stress algorithm.

137



138 A LOCAL PLANE STRESS ALGORITHM




Bibliography

Adam, C., Bouabdallah, S., Zarroug, M., and Maitournam, H. (2014). Improved nu-
merical integration for locking treatment in isogeometric structural elements, Part I:
Beams. Computer Methods in Applied Mechanics and Engineering, 279:1-28.

Adam, C., Bouabdallah, S., Zarroug, M., and Maitournam, H. (2015). Improved nu-
merical integration for locking treatment in isogeometric structural elements. Part
II: Plates and shells. Computer Methods in Applied Mechanics and Engineering,
284:106-137.

Ahmed, A., van der Meer, F. P,, and Sluys, L. J. (2012). A geometrically nonlinear
discontinuous solid-like shell element (DSLS) for thin shell structures. Computer
Methods in Applied Mechanics and Engineering, 201-204:191-207.

Alessi, R., Ambati, M., Gerasimov, T., Vidoli, S., and De Lorenzis, L. (2018). Com-
parison of Phase-Field Models of Fracture Coupled with Plasticity, pages 1-21.
Springer International Publishing.

Ambati, M. and De Lorenzis, L. (2016). Phase-field modeling of brittle and ductile
fracture in shells with isogeometric NURBS-based solid-shell elements. Computer
Methods in Applied Mechanics and Engineering, 312:351-373.

Ambati, M., Gerasimov, T., and De Lorenzis, L. (2015a). Phase-field modeling of
ductile fracture. Computational Mechanics, 55:1017-1040.

Ambati, M., Gerasimov, T., and De Lorenzis, L. (2015b). A review on phase-field
models of brittle fracture and a new fast hybrid formulation. Computational Me-
chanics, 55:383—405.

Ambati, M., Kiendl, J., and De Lorenzis, L. (2018). Isogeometric Kirchhoff-Love
shell formulation for elasto-plasticity. Computer Methods in Applied Mechanics
and Engineering, 340:320-339.

Amiri, F., Millan, D., Shen, Y., Rabczuk, T., and Arroyo, M. (2014). Phase-field mod-
eling of fracture in linear thin shells. Theoretical and Applied Fracture Mechanics,
69:102-1009.

139



140 BIBLIOGRAPHY

Amor, H., Marigo, J.-J., and Maurini, C. (2009). Regularized formulation of the varia-
tional brittle fracture with unilateral contact: Numerical experiments. Journal of the
Mechanics and Physics of Solids, 57:1209-1229.

Andelfinger, U. (1991). Untersuchungen zur Zuverldssigkeit hybrid-gemischter Finiter
Elemente fiir Flichentragwerke. Ph.D. thesis, Institute for Structural Mechanics -
University of Stuttgart.

Antolin, P., Bressan, A., Buffa, A., and Sangalli, G. (2017). An isogeometric method
for linear nearly-incompressible elasticity with local stress projection. Computer
Methods in Applied Mechanics and Engineering, 316:694—719.

Antolin, P., Kiendl, J., Pingaro, M., and Reali, A. (2020). A simple and effective
method based on strain projections to alleviate locking in isogeometric solid shells.
Computational Mechanics, 65:1621-1631.

Areias, P., Garc¢do, J., Pires, E. B., and Barbosa, J. I. (2011). Exact corotational shell
for finite strains and fracture. Computational Mechanics, 48:385—-406.

Areias, P., Rabczuk, T., and Msekh, M. A. (2016). Phase-field analysis of finite-strain
plates and shells including element subdivision. Computer Methods in Applied Me-
chanics and Engineering, 312:322-350.

Areias, P. M. A. and Belytschko, T. (2005). Non-linear analysis of shells with arbi-
trary evolving cracks using XFEM. International Journal for Numerical Methods in
Engineering, 62:384-415.

Areias, P. M. A. and Belytschko, T. (2006). Analysis of Finite Strain Anisotropic
Elastoplastic Fracture in Thin Plates and Shells. Journal of Aerospace Engineering,
19:259-270.

Areias, P. M. A., Song, J. H., and Belytschko, T. (2006). Analysis of fracture in thin
shells by overlapping paired elements. Computer Methods in Applied Mechanics
and Engineering, 195:5343-5360.

Auricchio, F., Beirdo da Veiga, L., Kiendl, J., Lovadina, C., and Reali, A. (2013).
Locking-free isogeometric collocation methods for spatial Timoshenko rods. Com-
puter Methods in Applied Mechanics and Engineering, 263:113—126.

Babu, C. R. and Prathap, G. (1986). A linear thick curved beam element. International
Journal for Numerical Methods in Engineering, 23:1313—-1328.

Babu, C. R., Subramanian, G., and Prathap, G. (1987). Mechanics of field-consistency
in finite element analysis-a penalty function approach. Computers & Structures,
25:161-173.



BIBLIOGRAPHY 141

Babuska, I. and Aziz, A. (1972). The Mathematical Foundations of the Finite Element
Method with Applications to Partial Differential Equations, chapter Survey Lectures
on the Mathematical Foundations of the Finite Element Method, pages 3-362. Aca-
demic Press, New York.

Bathe, K.-J., Tosilevich, A., and Chapelle, D. (2000). An evaluation of the MITC shell
elements. Computers & Structures, 75:1-30.

Becker, G., Geuzaine, C., and Noels, L. (2011). A one field full discontinuous Galerkin
method for Kirchhoff-Love shells applied to fracture mechanics. Computer Methods
in Applied Mechanics and Engineering, 200:3223-3241.

Beirdo da Veiga, L., Buffa, A., Lovadina, C., Martinelli, M., and Sangalli, G. (2012a).
An isogeometric method for the Reissner-Mindlin plate bending problem. Computer
Methods in Applied Mechanics and Engineering, 209-212:45-53.

Beirdo Da Veiga, L., Hughes, T. J. R., Kiendl, J., Lovadina, C., Niiranen, J., Reali, A.,
and Speleers, H. (2015). A locking-free model for Reissner-Mindlin plates: Analysis
and isogeometric implementation via NURBS and triangular NURPS. Mathematical
Models and Methods in Applied Sciences, 25:1519-1551.

Beirdo da Veiga, L., Lovadina, C., and Reali, A. (2012b). Avoiding shear locking for
the Timoshenko beam problem via isogeometric collocation methods. Computer
Methods in Applied Mechanics and Engineering, 241-244:38-51.

Belytschko, T., Stolarski, H., Liu, W. K., Carpenter, N., and Ong, J. S. J. (1985).
Stress projection for membrane and shear locking in shell finite elements. Computer
Methods in Applied Mechanics and Engineering, 51:221-258.

Benson, D. J., Bazilevs, Y., De Luycker, E., Hsu, M.-C., Scott, M., Hughes, T. J. R,
and Belytschko, T. (2010a). A generalized finite element formulation for arbitrary
basis functions: From isogeometric analysis to XFEM. [International Journal for
Numerical Methods in Engineering, 83:765-785.

Benson, D. J., Bazilevs, Y., Hsu, M.-C., and Hughes, T. J. R. (2010b). Isogeometric
shell analysis: The Reissner-Mindlin shell. Computer Methods in Applied Mechan-
ics and Engineering, 199:276-289.

Benson, D. J., Bazilevs, Y., Hsu, M.-C., and Hughes, T. J. R. (2011). A large defor-
mation, rotation-free, isogeometric shell. Computer Methods in Applied Mechanics
and Engineering, 200:1367-1378.



142 BIBLIOGRAPHY

Benson, D. J., Hartmann, S., Bazilevs, Y., Hsu, M.-C., and Hughes, T. J. R. (2013).
Blended isogeometric shells. Computer Methods in Applied Mechanics and Engi-
neering, 255:133-146.

Bieber, S., Oesterle, B., Ramm, E., and Bischoff, M. (2018). A variational method to
avoid locking-independent of the discretization scheme. International Journal for
Numerical Methods in Engineering, 114:801-827.

Bischoff, M. (1999). Theorie und Numerik einer dreidimensionalen Schalenfor-
mulierung. PhD thesis, Institut fiir Baustatik der Universitit Stuttgart.

Bouclier, R., Elguedj, T., and Combescure, A. (2012). Locking free isogeometric
formulations of curved thick beams. Computer Methods in Applied Mechanics and
Engineering, 245-246:144—-162.

Bouclier, R., Elguedj, T., and Combescure, A. (2013a). Efficient isogeometric
NURBS-based solid-shell elements: Mixed formulation and B-method. Computer
Methods in Applied Mechanics and Engineering, 267:86—110.

Bouclier, R., Elguedj, T., and Combescure, A. (2013b). On the development of
NURBS-based isogeometric solid shell elements: 2D problems and preliminary ex-
tension to 3D. Computational Mechanics, 52:1085-1112.

Bouclier, R., Elguedj, T., and Combescure, A. (2015). An isogeometric locking-free
NURBS-based solid-shell element for geometrically nonlinear analysis. Interna-
tional Journal for Numerical Methods in Engineering, 101:774-808.

Bourdin, B. (2007). Numerical implementation of the variational formulation for
quasi-static brittle fracture. Interfaces and Free Boundaries, 9:411-430.

Bourdin, B., Francfort, G. A., and Marigo, J.-J. (2000). Numerical experiments in
revisited brittle fracture. Journal of the Mechanics and Physics of Solids, 48:797—
826.

Bourdin, B., Francfort, G. A., and Marigo, J.-J. (2008). The Variational Approach to
Fracture. Journal of elasticity, 91:5-148.

Brezzi, F. (1974). On the existence, uniqueness and approximation of saddle-
point problems arising from Lagrangian multipliers. ESAIM: Mathematical Mod-
elling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique,
8:129-151.

Budarapu, P., Reinoso, J., and Paggi, M. (2017). Concurrently coupled solid shell-
based adaptive multiscale method for fracture. Computer Methods in Applied Me-
chanics and Engineering, 319:338-365.



BIBLIOGRAPHY 143

Caleyron, F., Combescure, A., Faucher, V., and Potapov, S. (2012). Dynamic sim-
ulation of damage-fracture transition in smoothed particles hydrodynamics shells.
International Journal for Numerical Methods in Engineering, 90:707-738.

Cardoso, R. P. R. and Cesar de Sa, J. M. A. (2012). The enhanced assumed strain
method for the isogeometric analysis of nearly incompressible deformation of solids.
International Journal for Numerical Methods in Engineering, 92:56-78.

Cardoso, R. P. R. and Cesar de Sa, J. M. A. (2014). Blending moving least squares
techniques with NURBS basis functions for nonlinear isogeometric analysis. Com-
putational Mechanics, 53:1327-1340.

Caseiro, J. F.,, Valente, R. A. F.,, Reali, A., Kiendl, J., Auricchio, F., and Alves de Sousa,
R.J. (2014). On the Assumed Natural Strain method to alleviate locking in solid-
shell NURBS-based finite elements. Computational Mechanics, 53:1341-1353.

Caseiro, J. F., Valente, R. A. F., Reali, A., Kiendl, J., Auricchio, F., and Alves de
Sousa, R. J. (2015). Assumed Natural Strain NURBS-based solid-shell element
for the analysis of large deformation elasto-plastic thin-shell structures. Computer
Methods in Applied Mechanics and Engineering, 284:861-880.

Chapelle, D. and Bathe, K.-J. (1998). Fundamental considerations for the finite ele-
ment analysis of shell structures. Computers & Structures, 66:19-36.

Chau-Dinh, T., Zi, G., Lee, P.-S., Rabczuk, T., and Song, J.-H. (2012). Phantom-node
method for shell models with arbitrary cracks. Computers & Structures, 92-93:242—
256.

Chinosi, C. and Lovadina, C. (1995). Numerical analysis of some mixed finite element
methods for Reissner-Mindlin plates. Computational Mechanics, 16:36-44.

Choi, D., Palma, F. J., Sanchez-Palencia, E., and Vilarifio, M. A. (1998). Membrane
locking in the finite element computation of very thin elastic shells. RAIRO, Mod-
élisation Math. Anal. Numér., 32:131-152.

Cirak, F., Ortiz, M., and Pandolfi, A. (2005). A cohesive approach to thin-shell frac-
ture and fragmentation. Computer Methods in Applied Mechanics and Engineering,
194:2604-2618.

Cook, R. D. (1974). Improved two-dimensional finite element. Journal of the Struc-
tural Division, 100:1851-1863.

Cottrell, J. A., Hughes, T. J. R., and Bazilevs, Y. (2009). Isogeometric Analysis: To-
ward Integration of CAD and FEA. Wiley, Chichester.



144 BIBLIOGRAPHY

Daderot (2014). Exhibit in the Fernbank Museum of Natural His-
tory, Atlanta, Georgia, USA. CCo, via Wikimedia Commons.

https://commons.wikimedia.org/wiki/File:Nautilus_pompilius_-_Fernbank_
Museum_of_Natural_History_-_DSC00294.JPG.

Dimitri, R., De Lorenzis, L., Wriggers, P., and Zavarise, G. (2014). NURBS- and
T-spline-based isogeometric cohesive zone modeling of interface debonding. Com-
putational Mechanics, 54:369-388.

Dolbow, J., Moés, N., and Belytschko, T. (2000). Modeling fracture in Mindlin-
Reissner plates with the extended finite element method. International Journal of
Solids and Structures, 37:7161-7183.

Dornisch, W. (2015). Interpolation of Rotations and Coupling of Patches in Isogeo-
metric Reissner-Mindlin Shell Analysis. PhD thesis, Chair of Structural Analysis
and Dynamics - RWTH Aachen.

Dornisch, W. and Klinkel, S. (2014). Treatment of Reissner-Mindlin shells with kinks
without the need for drilling rotation stabilization in an isogeometric framework.
Computer Methods in Applied Mechanics and Engineering, 276:35-66.

Dornisch, W., Klinkel, S., and Simeon, B. (2013). Isogeometric Reissner-Mindlin shell
analysis with exactly calculated director vectors. Computer Methods in Applied
Mechanics and Engineering, 253:491-504.

Dornisch, W., Miiller, R., and Klinkel, S. (2016). An efficient and robust rotational
formulation for isogeometric Reissner-Mindlin shell elements. Computer Methods
in Applied Mechanics and Engineering, 303:1-34.

Duong, T. X., Roohbakhshan, F., and Sauer, R. A. (2017). A new rotation-free isoge-
ometric thin shell formulation and a corresponding continuity constraint for patch
boundaries. Computer Methods in Applied Mechanics and Engineering, 316:43-83.

Echter, R. (2013). Isogeometric analysis of shells. PhD thesis, Institute for Structural
Mechanics - University of Stuttgart.

Echter, R. and Bischoff, M. (2010). Numerical efficiency, locking and unlocking of
NURBS finite elements. Computer Methods in Applied Mechanics and Engineering,
199:374-382.

Echter, R., Oesterle, B., and Bischoff, M. (2013). A hierarchic family of isogeometric
shell finite elements. Computer Methods in Applied Mechanics and Engineering,
254:170-180.



BIBLIOGRAPHY 145

Elguedj, T., Bazilevs, Y., Calo, V. M., and Hughes, T. J. R. (2008). B and F projection
methods for nearly incompressible linear and non-linear elasticity and plasticity us-

ing higher-order NURBS elements. Computer Methods in Applied Mechanics and
Engineering, 197:2732-2762.

Fahrendorf, F., Morganti, S., Reali, A., Hughes, T. J. R., and De Lorenzis, L. (2020).
Mixed stress-displacement isogeometric collocation for nearly incompressible elas-
ticity and elastoplasticity. Computer Methods in Applied Mechanics and Engineer-
ing, 369:113112.

Francfort, G. A. and Marigo, J.-J. (1998). Revisiting brittle fracture as an energy
minimization problem. Journal of the Mechanics and Physics of Solids, 46:1319—
1342.

Gee, M., Ramm, E., and Wall, W. A. (2005). Parallel multilevel solution of nonlin-
ear shell structures. Computer Methods in Applied Mechanics and Engineering,
194(21):2513-2533.

Gerasimoyv, T. and De Lorenzis, L. (2016). A line search assisted monolithic approach
for phase-field computing of brittle fracture. Computer Methods in Applied Mechan-
ics and Engineering, 312:276-303.

Gomez, H., Hughes, T. J. R., Nogueira, X., and Calo, V. M. (2010). Isogeometric
analysis of the isothermal Navier-Stokes-Korteweg equations. Computer Methods
in Applied Mechanics and Engineering, 199(25):1828-1840.

Govindjee, S., Strain, J., Mitchell, T. J., and Taylor, R. L. (2012). Convergence of an
efficient local least-squares fitting method for bases with compact support. Com-
puter Methods in Applied Mechanics and Engineering, 213-216:84-92.

Greco, L. and Cuomo, M. (2016). An isogeometric implicit G mixed finite element for
Kirchhoff space rods. Computer Methods in Applied Mechanics and Engineering,
298:325-349.

Greco, L., Cuomo, M., and Contrafatto, L. (2018). A reconstructed local B formulation
for isogeometric Kirchhoff-Love shells. Computer Methods in Applied Mechanics
and Engineering, 332:462-487.

Greco, L., Cuomo, M., Contrafatto, L., and Gazzo, S. (2017). An efficient blended
mixed B-spline formulation for removing membrane locking in plane curved Kirch-
hoff rods. Computer Methods in Applied Mechanics and Engineering, 324:476-511.



146 BIBLIOGRAPHY

Griffith, A. A. and Taylor, G. I. (1921). VI. The phenomena of rupture and flow
in solids. Philosophical Transactions of the Royal Society of London. Series A,
Containing Papers of a Mathematical or Physical Character, 221:163—-198.

Hellinger, E. (1914). Engyklopddie der Mathematischen Wissenschaften, chapter
Die Allgemeinen Ansitze der Mechanik der Kontinua, pages 601-694. Teubner,
Leipzig.

Hosseini, S., Remmers, J. J. C., and de Borst, R. (2014a). The incorporation of gradient
damage models in shell elements. International Journal for Numerical Methods in
Engineering, 98:391-398.

Hosseini, S., Remmers, J. J. C., Verhoosel, C. V., and de Borst, R. (2013). An iso-
geometric solid-like shell element for nonlinear analysis. International Journal for
Numerical Methods in Engineering, 95:238-256.

Hosseini, S., Remmers, J. J. C., Verhoosel, C. V., and de Borst, R. (2014b). An iso-
geometric continuum shell element for non-linear analysis. Computer Methods in
Applied Mechanics and Engineering, 271:1-22.

Hu, P, Hu, Q., and Xia, Y. (2016). Order reduction method for locking free isoge-
ometric analysis of Timoshenko beams. Computer Methods in Applied Mechanics
and Engineering, 308:1-22.

Hu, Q., Xia, Y., Natarajan, S., Zilian, A., Hu, P, and Bordas, S. P. A. (2020). Iso-
geometric analysis of thin Reissner-Mindlin shells: locking phenomena and B-bar
method. Computational Mechanics, 65:1323-1341.

Hughes, T. J. R. (2000). The finite element method: Linear static and dynamic finite
element analysis. Dover Publications, Mineola, reprinted edition edition.

Hughes, T. J. R., Cottrell, J. A., and Bazilevs, Y. (2005). Isogeometric analysis: CAD,
finite elements, NURBS, exact geometry and mesh refinement. Computer Methods
in Applied Mechanics and Engineering, 194:4135-4195.

Ishaquddin, M., Raveendranath, P., and Reddy, J. N. (2012). Flexure and torsion lock-
ing phenomena in out-of-plane deformation of Timoshenko curved beam element.
Finite Elements in Analysis and Design, 51:22-30.

Keesecker, A. L., Dévila, C. G., Johnson, E. R., and Starnes, J. H. (2003). Crack path
bifurcation at a tear strap in a pressurized shell. Computers & Structures, 81:1633—
1642.



BIBLIOGRAPHY 147

Kiendl, J., Ambati, M., Lorenzis, L. D., Gomez, H., and Reali, A. (2016). Phase-field
description of brittle fracture in plates and shells. Computer Methods in Applied
Mechanics and Engineering, 312:374-394.

Kiendl, J., Auricchio, F., Beirdo da Veiga, L., Lovadina, C., and Reali, A. (2015a). Iso-
geometric collocation methods for the Reissner-Mindlin plate problem. Computer
Methods in Applied Mechanics and Engineering, 284:489-507.

Kiendl, J., Auricchio, F., Hughes, T. J. R., and Reali, A. (2015b). Single-variable for-
mulations and isogeometric discretizations for shear deformable beams. Computer
Methods in Applied Mechanics and Engineering, 284:988-1004.

Kiendl, J., Auricchio, F., and Reali, A. (2018). A displacement-free formulation for the
Timoshenko beam problem and a corresponding isogeometric collocation approach.
Meccanica, 53:1403-1413.

Kiendl, J., Bazilevs, Y., Hsu, M.-C., Wiichner, R., and Bletzinger, K.-U. (2010). The
bending strip method for isogeometric analysis of Kirchhoff-Love shell structures
comprised of multiple patches. Computer Methods in Applied Mechanics and Engi-
neering, 199:2403-2416.

Kiendl, J., Bletzinger, K.-U., Linhard, J., and Wiichner, R. (2009). Isogeometric shell
analysis with Kirchhoff-Love elements. Computer Methods in Applied Mechanics
and Engineering, 198:3902-3914.

Kiendl, J., Hsu, M.-C., Wu, M. C. H., and Reali, A. (2015c). Isogeometric Kirchhoft-
Love shell formulations for general hyperelastic materials. Computer Methods in
Applied Mechanics and Engineering, 291:280-303.

Kiendl, J., Marino, E., and De Lorenzis, L. (2017). Isogeometric collocation for the
Reissner-Mindlin shell problem. Computer Methods in Applied Mechanics and En-
gineering, 325:645—-665.

Kikis, G., Ambati, M., De Lorenzis, L., and Klinkel, S. (2021). Phase-field model of
brittle fracture in Reissner-Mindlin plates and shells. Computer Methods in Applied
Mechanics and Engineering, 373:113490.

Kikis, G., Dornisch, W., and Klinkel, S. (2019). Adjusted approximation spaces for the
treatment of transverse shear locking in isogeometric Reissner-Mindlin shell analy-
sis. Computer Methods in Applied Mechanics and Engineering, 354:850-870.

Kirchhoff, G. (1850). Uber das Gleichgewicht und die Bewegung einer elastischen
Scheibe. Journal fiir die reine und angewandte Mathematik, 40:51-88.



148 BIBLIOGRAPHY

Klinkel, S. and Govindjee, S. (2002). Using finite strain 3D-material models in beam
and shell elements. Engineering Computations, 19:902-921.

Kobayashi, H. and Onoue, H. (1943). Brittle fracture of Liberty Ships. Technical
Report 100, Failure Knowledge Database.

Kocaman, E., Chen, B., and Pinho, S. (2020). A floating connector element formu-
lation for multi-level modelling of composite structures. Composite Structures,
251:112532.

Larsson, R., Mediavilla, J., and Fagerstrom, M. (2011). Dynamic fracture modeling in
shell structures based on XFEM. [International Journal for Numerical Methods in
Engineering, 86:499-527.

Lee, P.-S. and Bathe, K.-J. (2002). On the asymptotic behavior of shell structures and
the evaluation in finite element solutions. Computers & Structures, 80:235-255.

Leonetti, L., Liguori, F., Magisano, D., and Garcea, G. (2018). An efficient isogeo-
metric solid-shell formulation for geometrically nonlinear analysis of elastic shells.
Computer Methods in Applied Mechanics and Engineering, 331:159-183.

Long, Q., Bornemann, P. B., and Cirak, F. (2012). Shear-flexible subdivision shells.
International Journal for Numerical Methods in Engineering, 90:1549—-1577.

Love, A. E. H. (1888). The Small Free Vibrations and Deformation of a Thin Elastic
Shell. Philosophical Transactions of the Royal Society of London, 179:491-546.

Lua, J., Zhang, T., Fang, E., and Song, J.-H. (2016). Explicit phantom paired shell
element approach for crack branching and impact damage prediction of aluminum
structures. International Journal of Impact Engineering, 87:28—43.

Miao, D., Borden, M. J., Scott, M. A., and Thomas, D. C. (2018). Bézier B projection.
Computer Methods in Applied Mechanics and Engineering, 335:273-297.

Miehe, C., Hofacker, M., and Welschinger, F. (2010a). A phase field model for rate-
independent crack propagation: Robust algorithmic implementation based on oper-

ator splits. Computer Methods in Applied Mechanics and Engineering, 199:2765—
27178.

Miehe, C., Welschinger, F., and Hofacker, M. (2010b). Thermodynamically consistent
phase-field models of fracture: Variational principles and multi-field FE implemen-
tations. International Journal for Numerical Methods in Engineering, 83:1273—
1311.



BIBLIOGRAPHY 149

Mindlin, R. D. (1951). Influence of rotatory inertia and shear on flexural motions of
isotropic elastic plates. Journal of Applied Mechanics, 18:31-38.

Mitchell, T. J., Govindjee, S., and Taylor, R. L. (2011). Recent Developments and In-
novative Applications in Computational Mechanics, chapter A Method for Enforce-
ment of Dirichlet Boundary Conditions in Isogeometric Analysis, pages 283-293.
Springer, Berlin.

Mostofizadeh, S., Fagerstrom, M., and Larsson, R. (2013). Dynamic crack propaga-
tion in elastoplastic thin-walled structures: Modelling and validation. International
Journal for Numerical Methods in Engineering, 96:63-86.

NASA (2002).  Atlantis carrying the S1 Truss segment. NASA, Public do-
main, via Wikimedia Commons. https://commons.wikimedia.org/wiki/File:STS-
112_Atlantis_carrying_S1_truss.jpg.

Nguyen, A. D., Stoffel, M., and Weichert, D. (2012). A gradient-enhanced damage
approach for viscoplastic thin-shell structures subjected to shock waves. Computer
Methods in Applied Mechanics and Engineering, 217-220:236-246.

Nguyen-Thanh, N., Kiendl, J., Nguyen-Xuan, H., Wiichner, R., Bletzinger, K.-U.,
Bazilevs, Y., and Rabczuk, T. (2011). Rotation free isogeometric thin shell analysis
using PHT-splines. Computer Methods in Applied Mechanics and Engineering,
200:3410-3424.

Nguyen-Thanh, N., Valizadeh, N., Nguyen, M. N., Nguyen-Xuan, H., Zhuang, X.,
Areias, P, Zi, G., Bazilevs, Y., De Lorenzis, L., and Rabczuk, T. (2015). An ex-
tended isogeometric thin shell analysis based on Kirchhoff-Love theory. Computer
Methods in Applied Mechanics and Engineering, 284:265-291.

Oesterle, B., Ramm, E., and Bischoff, M. (2016). A shear deformable, rotation-free
isogeometric shell formulation. Computer Methods in Applied Mechanics and En-
gineering, 307:235-255.

Oesterle, B., Sachse, R., Ramm, E., and Bischoff, M. (2017). Hierarchic isogeometric
large rotation shell elements including linearized transverse shear parametrization.
Computer Methods in Applied Mechanics and Engineering, 321:383-405.

Paul, K., Zimmermann, C., Mandadapu, K. K., Hughes, T. J. R., Landis, C. M., and
Sauer, R. A. (2020). An adaptive space-time phase field formulation for dynamic
fracture of brittle shells based on LR NURBS. Computational Mechanics, 65:1039—
1062.



150 BIBLIOGRAPHY

Petkovi¢, M. D. and Stanimirovié, P. S. (2009). Generalized matrix inversion is not
harder than matrix multiplication. Journal of Computational and Applied Mathe-
matics, 230(1):270-282.

Pian, T. H. H. and Sumihara, K. (1984). Rational approach for assumed stress finite el-
ements. International Journal for Numerical Methods in Engineering, 20(9):1685—
1695.

Piegl, L. and Tiller, W. (1997). The NURBS Book. Monographs in Visual Communi-
cations, second edition. Springer, Berlin.

Pigazzini, M. S., Kamensky, D., van Iersel, D. A. P., Alaydin, M. D., Remmers, J.
J. C., and Bazilevs, Y. (2019). Gradient-enhanced damage modeling in Kirchhoff-
Love shells: Application to isogeometric analysis of composite laminates. Computer
Methods in Applied Mechanics and Engineering, 346:152—-179.

Proserpio, D., Ambati, M., De Lorenzis, L., and Kiendl, J. (2020). A framework for
efficient isogeometric computations of phase-field brittle fracture in multipatch shell
structures. Computer Methods in Applied Mechanics and Engineering, 372:113363.

Proserpio, D., Ambati, M., De Lorenzis, L., and Kiendl, J. (2021). Phase-field simula-
tion of ductile fracture in shell structures. Computer Methods in Applied Mechanics
and Engineering, 385:114019.

Rabczuk, T. and Areias, P. (2008). A meshfree thin shell for arbitrary evolving cracks
based on an extrinsic basis. In Computer Modeling in Engineering & Sciences,
volume 16, pages 115-130.

Rafetseder, K. and Zulehner, W. (2019). A new mixed approach to Kirchhoff-Love
shells. Computer Methods in Applied Mechanics and Engineering, 346:440—455.

Raghu, P., Rajagopal, A., Jalan, S. K., and Reddy, J. N. (2021). Modeling of brittle
fracture in thick plates subjected to transient dynamic loads using a hybrid phase
field model. Meccanica, 56:1269-1286.

Raghu, P., Rajagopal, A., and Reddy, J. N. (2020). Thermodynamically Consistent
Variational Approach for Modeling Brittle Fracture in Thick Plates by a Hybrid
Phase Field Model. Journal of Applied Mechanics, 87:021002.

Razzaque, A. (1973). Program for triangular bending elements with derivative smooth-
ing. International Journal for Numerical Methods in Engineering, 6:333—-343.

Reinoso, J., Paggi, M., and Linder, C. (2017). Phase field modeling of brittle fracture
for enhanced assumed strain shells at large deformations: formulation and finite
element implementation. Computational Mechanics, 59:981-1001.



BIBLIOGRAPHY 151

Reinoso, J., Paggi, M., and Rolfes, R. (2016). A computational framework for the
interplay between delamination and wrinkling in functionally graded thermal barrier
coatings. Computational Materials Science, 116:82-95.

Reissner, E. (1944). On the Theory of Bending of Elastic Plates. Journal of Mathe-
matics and Physics, 23(1-4):184—191.

Reissner, E. (1950). On a Variational Theorem in Elasticity. Journal of Mathematics
and Physics, 29(1-4):90-95.

Ren, B. and Li, S. (2012). Modeling and simulation of large-scale ductile fracture in
plates and shells. International Journal of Solids and Structures, 49:2373-2393.

Rogers, D. F. (2001). An introduction to NURBS with historical perspective. Academic
Press, San Diego.

Saint-Georges, P., Warzee, G., Notay, Y., and Beauwens, R. (1999). Problem-
dependent preconditioners for iterative solvers in FE elastostatics. Computers &
Structures, 73(1):33-43.

Simo, J. C. and Fox, D. D. (1989). On a stress resultant geometrically exact shell
model. Part I: Formulation and optimal parametrization. Computer Methods in Ap-
plied Mechanics and Engineering, 72:267-304.

Simo, J. C. and Hughes, T. J. R. (1986). On the Variational Foundations of Assumed
Strain Methods. Journal of Applied Mechanics, 53:51-54.

Song, J.-H. and Belytschko, T. (2009). Dynamic fracture of shells subjected to impul-
sive loads. Journal of Applied Mechanics, 76(5):051301.

Sydney (2017). The Sydney Opera House in Sydney, Australia.
Taken from Circular Quay in 2017. CCO, via Wikimedia Commons.
https://commons.wikimedia.org/wiki/File:Sydney_Opera_House_(2017).jpg.

Taylor, R. L. (2011). Isogeometric analysis of nearly incompressible solids. Interna-
tional Journal for Numerical Methods in Engineering, 87:273-288.

Temizer, 1., Wriggers, P., and Hughes, T. J. R. (2011). Contact treatment in isogeomet-
ric analysis with NURBS. Computer Methods in Applied Mechanics and Engineer-
ing, 200(9):1100-1112.

Thai, C. H., Nguyen-Xuan, H., Nguyen-Thanh, N., Le, T.-H., Nguyen-Thoi, T., and
Rabczuk, T. (2011). Static, free vibration, and buckling analysis of laminated com-
posite Reissner-Mindlin plates using NURBS-based isogeometric approach. Inter-
national Journal for Numerical Methods in Engineering, 91:571-603.



152 BIBLIOGRAPHY

Thomas, D. C., Scott, M. A., Evans, J. A., Tew, K., and Evans, E. J. (2015). Bézier
projection: A unified approach for local projection and quadrature-free refinement
and coarsening of NURBS and T-splines with particular application to isogeometric
design and analysis. Computer Methods in Applied Mechanics and Engineering,

284:55-105.

Timoshenko, S. (1940). Theory of Plates and Shells. Engineering Societies mono-
graph. McGraw-Hill.

Uhm, T.-K. and Youn, S.-K. (2009). T-spline finite element method for the analysis
of shell structures. International Journal for Numerical Methods in Engineering,

80:507-536.

Ulmer, H., Hofacker, M., and Miehe, C. (2012). Phase field modeling of fracture in
plates and shells. PAMM, 12:171-172.

U.S. GPO (1947). The Design and Methods of Construction of Welded
Steel Merchant Vessels. Public domain, via Wikimedia Commons.
https://commons.wikimedia.org/wiki/File: TankerSchenectady.jpg ?uselang=de#file.

Ventsel, E. and Krauthammer, T. (2001). Thin Plates and Shells - Theory, Analysis and
Applications. CRC Press.

Woelke, P. B. and Abboud, N. N. (2012). Modeling fracture in large scale shell struc-
tures. Journal of the Mechanics and Physics of Solids, 60:2044-2063.

Zavattieri, P. (2006). Modeling of Crack Propagation in Thin-Walled Structures Using
a Cohesive Model for Shell Elements. Journal of Applied Mechanics, 73:948-958.

Zou, Z., Scott, M. A., Miao, D., Bischoff, M., Oesterle, B., and Dornisch, W. (2020).
An isogeometric Reissner-Mindlin shell element based on Bézier dual basis func-
tions: Overcoming locking and improved coarse mesh accuracy. Computer Methods
in Applied Mechanics and Engineering, 370:113283.



Schriftenreihe
des Lehrstuhls fiir Baustatik und Baudynamik
der RWTH Aachen

Verzeichnis der bisher erschienenen Dissertationen/Habilitationen:

98/1:

00/1:

00/2:

01/1:

02/1:

02/2:

03/1:

04/1:

04/2:

06/1:

06/2:

06/3:

Ruth Feill, Zum Einfluss frequenzabhingiger aerodynamischer Beiwerte
auf das Antwortverhalten schlanker Strukturen unter stochastischer Wind-
belastung, 1998.

Uwe Weitkemper, Zur numerischen Untersuchung seismisch erregter
Hochbauten mit Aussteifungssystemen aus Stahlbetonwandscheiben, 2000.

Carsten Konke, Schiadigungssimulationsverfahren zur Lebensdauerab-
schitzung von Tragwerken, 2000.

Sam-Young Noh, Beitrag zur numerischen Analyse der Schidigungsmech-
anismen von Naturzugkiihltiirmen, 2001.

Hamid Sadegh-Azar, Schnellbewertung der Erdbebengefihrdung von
Gebiuden, 2002.

Falko Schube, Beitrag zur numerischen Simulation des Wirbelsédulenver-
haltens eines Kraftfahrers infolge durch StraBenunebenheiten induzierter
Ganzkorperschwingungen, 2002.

Jorg Rocco Wagner, Seismisch belastete Schiittgutsilos, 2003.

Arno Grunendahl, Beitrag zur numerischen Simulationen des sitzenden
Menschen zur Beurteilung der Auswirkung von Ganzkorperschwingungen,
2004.

Wolfram Kuhlmann, Gesamtkonzept zur Ermittlung der seismischen Vul-
nerabilitit von Bauwerken am Beispiel unterirdischer Rohrleitungen, 2004.

Iman Karimi, Risk Management of Natural Disasters: A Fuzzy-Probabilis-
tic Methodology and its Application to Seismic Hazard, 2006.

Stefan Holler, Dynamisches Mehrphasenmodell mit hypoplastischer Mate-
rialformulierung der Feststoffphase, 2006.

Michael Mistler, Verformungsbasiertes seismisches Bemessungskonzept
fiir Mauerwerksbauten, 2006.



07/1:

07/2:

08/1:

08/2:

09/1:

10/1:

10/2:

11/1:

12/1:

12/2:

13/1:

13/2:

01 (2013):

02 (2015):

Ines Kalker, Numerische Simulation von unbewehrten und textilverstiarkten
Mauerwerksscheiben unter zyklischer Belastung, 2007.

Philippe Renault, Bewertungsverfahren zur Beurteilung der Erdbeben-
sicherheit von Briickenbauwerken, 2007.

Frank Peiffer, Framework for adaptive multi-scale simulation of textile re-
inforced concrete, 2008.

Martin Konrad, Effect of multifilament yarn crack bridging on uniaxial be-
havior of textile reinforced concrete, 2008.

Britta Holtschoppen, Beitrag zur Auslegung von Industrieanlagen auf seis-
mische Belastungen, 2009.

Andreas Gommel, Modellbildung und Fluid-Struktur-Interaktion in der
Biomechanik am Beispiel der menschlichen Phonation, 2010.

Christoph Gellert, Nichtlinearer Nachweis von unbewehrten Mauerwerks-
bauten unter Erdbebeneinwirkung, 2010.

Jakub Jerabek, Numerical Framework for Modeling of Cementitious Com-
posites at the Meso-Scale, 2011.

Timo Schmitt, Zusammenhinge zwischen makroseismischen Intensitdten
und Antwortspektren, Erdbebendauer und Bauwerksvulnerabilitit, 2012.

Jaime Campbell, Numerical Model of Nonlinear Analysis of Masonry
Walls, 2012.

Jin Park, Makroelemente fiir unbewehrte Mauerwerkswandscheiben unter
Erdbebeneinwirkung, 2013.

Hannah Norda, Beitrag zum statischen nichtlinearen Erdbebennachweis
von unbewehrten Mauerwerksbauten unter Beriicksichtigung einer und
hiiherer Modalformen, 2013.

Okyay Altay, Fliissigkeitsdampfer zur Reduktion periodischer und stochas-
tischer Schwingungen turmartiger Bauwerke, 2013, ISBN: 978-3-946090-
01-4.

Francesca Taddei, Numerical Investigation of Soil-Structure Interaction for
Onshore Wind Turbines Grounded on a Layered Soil, 2015, ISBN: 978-3-
946090-00-7.



03 (2015):

04 (2015):

05 (2015):

06 (2016):

07 (2016):

08 (2019):

09 (2020):

10 (2020):

11 (2021):

12 (2021):

13 (2021):

14 (2022):

Wolfgang Dornisch, Interpolation of Rotations and Coupling of Patches
in Isogeometric Reissner—Mindlin Shell Analysis, 2015, ISBN: 978-3-
946090-02-1.

Konstantinos Mykoniou, Dynamic analysis of multiple liquid-storage
tanks, 2015, ISBN: 978-3-946090-03-8.

Benedikt Kohlhaas, Ein Finite-Elemente-Modell zur Analyse des Ver-
haltens von Formgedéchtnisfaserkompositen mit beliebiger Mikrostruktur,
2015, ISBN: 978-3-946090-04-5.

Lin Chen, Numerical Models for the Analysis of Soil, Structure and Their
Interaction, 2016, ISBN: 978-3-946090-05-2.

Julia Rosin, Seismische Auslegung von Tankbauwerken, 2016, ISBN: 978-
3-946090-06-9.

Sreelakshmy Rajan, Probabilistic Seismic Safety Analysis of Multicompo-
nent Systems, 2019, ISBN: 978-3-946090-07-6.

Maximilian Praster, Entwicklung eines adaptiven FE2 Ansatzes zur Sim-
ulation von thermomechanisch beanspruchten Faser-Matrix-Kompositen,
2020, ISBN: 978-3-9460901-08-3.

Margarita Chasapi, Nonlinear Formulations and Coupling of Patches for
Isogeometric Analysis of Solids in Boundary Representation, 2020, ISBN:
978-3-946090-09-0.

Philipp Michel, Boden-Bauwerk-Fluid-Interaktion fliissigkeitsgefiillter
Tankbauwerke auf nachgiebigen, vielfach geschichteten Boden unter seis-
mischer Einwirkung, 2021, ISBN: 978-3-946090-10-6.

Okyay Altay, Structural Vibration Control with Semi-Active and Shape
Memory Alloy Based Systems, 2021, ISBN: 978-3-946090-11-3.

Niklas Boesen, Trag- und Verformungsverhalten von unbewehrten Mauer-
werksscheiben unter Beriicksichtigung der Interaktion mit der Gebdude-
struktur, 2021, ISBN: 978-3-946090-12-0.

Simon Schleiter, Entwicklung einer numerischen Methode zur Identi-
fikation von Bauwerk-Didmpfer-Systemparametern, 2022, ISBN: 978-3-
946090-13-7.






Lebenslauf

Name
Geburtsdatum
Geburtsort

09/2005 — 06/2008
06/2008
10/2008 —09/2009

10/2009 — 04/2013
04/2013

04/2013 — 05/2015

0572015
06/2015 - 09/2020

Georgia Kikis
13. Juli 1990
Kozani - Griechenland

Besuch des 1. Lyzeum Kozani (gymnasiale Oberstufe)
Griechisches Abitur

Bachelorstudium der Mathematik
Technische Universitat Miinchen

Bachelorstudium des Bauingenieurwesens
Karlsruher Institut fiir Technologie

Bachelor of Science

Masterstudium des Bauingenieurwesens
mit Schwerpunkt Konstruktiver Ingenieurbau
Rheinisch-Westfilische Technische Hochschule Aachen

Master of Science

Wissenschaftliche Mitarbeiterin
Lehrstuhl fiir Baustatik und Baudynamik
Rheinisch-Westfilische Technische Hochschule Aachen

157



Fakultat fur Bauingenieurwesen
Lehrstuhl fur Baustatik und Baudynamik ISSN 1437-0840
Univ.-Prof. Dr.-Ing. habil. Sven Klinkel ISBN 978-3-946090-14-4



	Introduction
	Motivation
	State of the art
	Scope and objective
	Overview

	NURBS-based isogeometric analysis
	Preliminaries
	B-splines
	NURBS curves and surfaces
	Refinement
	Knot insertion
	Order elevation
	k-refinement

	Continuity

	Adjusted approximation spaces for the treatment of transverse shear locking in isogeometric Reissner-Mindlin shell analysis
	Abstract
	Introduction
	Reissner-Mindlin shell formulation
	Kinematics and basis systems
	Strains and stresses
	Variational formulation

	Standard NURBS-based isogeometric shell formulation
	Adjusted approximation spaces against transverse shear locking
	Numerical examples
	Simply supported plate with biaxial bending
	Razzaque's skew plate
	Fully hard clamped square plate
	Choice of shell examples

	Conclusions

	Two-field formulations for isogeometric Reissner-Mindlin plates and shells with global and local condensation
	Abstract
	Introduction
	Reissner-Mindlin shell formulation
	Kinematics and basis systems
	Strains and stresses

	Isogeometric displacement-stress mixed method for alleviating membrane and shear locking
	Hellinger-Reissner variational formulation
	Continuous approach
	Discontinuous approach
	Reconstructed approach
	Computational time

	Numerical examples
	Cook’s membrane
	Clamped plate with point load
	Cylindrical shell strip
	Pinched Cylinder
	Partly clamped hyperbolic paraboloid

	Conclusion

	Phase-field model of brittle fracture in Reissner-Mindlin plates and shells
	Abstract
	Introduction
	Reissner-Mindlin shell formulation
	Kinematics and basis systems
	Total strains
	Strain energy density and stress resultants

	Phase-field model of brittle fracture
	Phase-field fracture models combined with plate and shell formulations
	Existing approaches
	Phase-field model of brittle fracture for the Reissner-Mindlin shell formulation

	Numerical examples
	Beam with transverse loading and different boundary conditions
	Square plate with changing surface load
	Annular plate
	Pressurized cylinder with initial crack

	Conclusion

	Outlook and conclusion
	Summary and concluding points
	Outlook

	A Local plane stress algorithm
	References



