
Diese Arbeit wurde vorgelegt am
Lehrstuhl für Hochleistungsrechnen (Informatik 12), IT Center.

HPC Code Generation for Parallel
Pattern Based Algorithms on
Heterogeneous Architectures

HPC Code Generierung für Parallele
Musterbasierte Algorithmen auf Heterogenen

Architekturen
Masterarbeit

Adrian Schmitz
Matrikelnummer: 357201

Aachen, den 01.03.2021
Communicated by Prof. Matthias S. Müller

Erstgutachter: Prof. Dr. rer. nat. Matthias S. Müller (’)
Zweitgutachter: Prof. Dr. Bernhard Rumpe (*)
Betreuer: Julian Miller, M.Sc. (’)

(’) Lehrstuhl für Hochleistungsrechnen, RWTH Aachen University
IT Center, RWTH Aachen University

(*) Lehrstuhl für Software Engineering, RWTH Aachen University

Ich versichere hiermit, dass ich die vorliegende Arbeit selbständig und ohne Be-
nutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Alle Stellen, die
wörtlich oder sinngemäß aus veröffentlichten und nicht veröffentlichten Schriften
entnommen sind, sind als solche kenntlich gemacht. Die Arbeit ist in gleicher oder
ähnlicher Form noch nicht als Prüfungsarbeit eingereicht worden.

Aachen, den 01.03.2021

Kurzfassung
Parallele Programmierung erfreut sich einer immer grösseren Vielfalt in verschiede-
nen Bereichen von Wissenschaft und Wirtschaft. Insbesondere in Bezug auf Simula-
tionen und maschinellem Lernen wird immer mehr Rechenleistung benötigt. Zudem
steigen Spezialisierung und Heterogenität im Aufbau der Systeme.
Zur besseren Ausnutzung der Resourcen werden von der Hardware abhängige Op-
timierungen benötigt. Viele der Anwendungen für solche Systeme werden nicht von
High Performance Computing (HPC)-Experten entwickelt, sondern von Experten in
ihren jeweiligen Fachbereichen.
Die Anwendung Hardware-spezifischer Optimierungen erfordert ein hohes Verständ-
nis der Systemarchitekturen und nimmt daher viel Zeit für die Entwicklung in An-
spruch. Darüber hinaus, schränken Hardware-spezifische Optimierungen die Portabi-
lität des Codes ein, da diese spezifischen Optimierungen nicht zwingend performant
auf anderen Architekturen sind.
Um die Nutzer komplexer Systeme bei der Anwendungsentwicklung zu unterstützen,
ist die Verwendung automatischer Optimierungen mit Hilfe eines Compilers sinnvoll.
Diese Optimierungen sind für gewöhnlich sehr abstrakt und benötigen eine globale
Sicht auf das zugrunde liegende Modell. Die theoretischen Ansätze für diese globa-
len Optimierungen wurden bereits von Miller et al. [?] eingeführt und von Trümper
[?] implementiert. Die derzeitige Implementierung des zugrundeliegenden Systems
kann die Optimierungen derzeit allerdings noch nicht in ausführbaren Code über-
führen. Um die Optimierungen effizient nutzen zu können, sollen diese automatisch
in Binärdateien transformiert werden können.
Die vorliegende Arbeit befasst sich mit der Generierung von optimiertem und aus-
führbarem Code für heterogene Systeme. Zur Verknüpfung des Codegenerators mit
der Optimierung, wird eine zusätzliche Abstraktionsebene eingeführt. Diese erlaubt
es, die globalen Optimierungen im Kontext der Anwendung zu spezifizieren. So kann
der Codegenerator die abstrakte Darstellung verwenden, um parallelen Code zu ge-
nerieren, ohne von der allgemeinen Implementierung der Optimierung abhängig zu
sein.
Der Abstract Mapping Tree (AMT), welcher in dieser Arbeit eingefürt wird, er-
weitert die bereits existierende Intermediate Representation (IR) des übergreifen-
den Projektes. Der implementierte Codegenerator transformiert den entsprechenden
AMT in optimierten Quelltext.
Zur Evaluaierung der Qualität wird der generierte Code mit handgeschriebenen Op-
timierungen verglichen. Die Kriterien der Evaluierung umfassen die Korrektheit des
Codes, den erzeugten Laufzeitoverhead und die Laufzeit des generierten Codes im
Vergleich mit äquivalent optimiertem, handgeschriebenem Code.

v

Zur Sicherstellung der Korrektheit des generierten Codes, wird die Fehlerklassifi-
kation von Schmitz et al. [?] erweitert. Diese Erweiterungen umfassen Fehler auf
verteilten Systemen und Fehler im Bezug auf die Codegenerierung. Basierend auf
dieser erweiterten Klassifikation wird eine Testumgebung eingeführt, welche als Teil
dieser Arbeit entwickelt wurde. Die Testumgebung stellt sicher, dass grundlegende
Konstrukte im generierten Code korrekt umgesetzt werden.
Der generierte und optimierte Code wird auf Basis eines Vergleichs mit handgeschrie-
benem Code evaluiert. Diese Evaluierung umfasst typische parallele Algorithmen,
wie ein forward pass in einem Neuronalen Netz oder Bildverarbeitung. Als Grundla-
ge für den Vergleich mit handgeschriebenem Code werden die Korrektheit, sowie der
Laufzeitoverhead und die Laufzeit des Algorithmus herangezogen. Auf Basis dieser
Evaluierung werden Verbesserungvorschläge für den Generator vorgeschlagen und
diskutiert.

Stichwörter: HPC, Code Generation, MPI, CUDA, PThreads, Cluster

vi

Abstract
Parallel programming is widely used in many different domains in science and en-
gineering. Especially, simulations and machine learning applications require large
amounts of computing power. To solve this demand, large-scale systems use spezial-
ized and heterogeneous hardware architectures. To properly utilize the capabilities
of these specialized systems, hardware-dependant optimizations are necessary. Uti-
lizing these optimizations by hand is a time consuming task which requires deep
understanding of the target system. Many applications are developed by domain
experts and not performance engineers and, thus, may not be able to fully utilize
these systems. Furthermore, applications optimized for one system may not perform
well on a different system restricting the portability of the code.
Automatic optimizations based on an unified and high-level base code could sup-
port the users of such systems. These optimizations are rather abstract and require
a global model of the hardware. Recently, a theoretical approach for such global
optimizations was introduced by Miller et al. [?] and implemented by Trümper [?].
However, they cannot be used to automatically generate optimized executable code
yet. To utilize the generated optimizations, they need to be transformed into an
executable.
In this thesis, optimizations for heterogeneous systems are translated into executable
code. An additional layer of abstraction is introduced to define an interface be-
tween the optimization and the code generator. This layer of abstraction is used to
specify the optimizations in the context of the application. The abstract mapping
tree (AMT), introduced in this thesis, extends the intermediate representation (IR)
of the existing implementation of the overarching project. As a result, the imple-
mented code generator can produce optimized code based on the abstraction without
directly depending on the implementation of the optimizer. The implemented code
generator transforms the AMT into optimized source code. Therefore, the imple-
mentation follows a source-to-source compilation approach.
To ensure the correctness of the generated code, the error classification introduced
by Schmitz et al. [?] is expanded to cover defects on distributed-memory systems
and generated code. Based on the extended error classification a test suite is in-
troduced in this thesis. The test suite covers the correct generation of constructs
utilized in the generated code.
The generated optimized code is evaluated in comparison to handwritten code. The
evaluation covers optimizations on typical parallel algorithms like a neural network
forward pass or image processing. As key indicators for the evaluation the correct-
ness, runtime overhead and runtime in comparison to handwritten code are used,
e.g., for the Monte Carlo estimation of 𝜋 the generated code takes 16.5826 sec-

vii

onds, while the handwritten optimized code takes 21.9670 seconds. Based on the
evaluation, improvements for the implementation of the generator are proposed and
discussed.

Keywords: HPC, Code Generation, MPI, CUDA, PThreads, Cluster

viii

Contents
List of Figures xi

List of Listings xiii

List of Tables xv

1 Introduction 1

2 Related Work 5

3 Background 7
3.1 Overview . 7
3.2 Parallel Pattern Language . 9

3.2.1 Hardware Language . 10
3.3 Abstract Pattern Trees . 11

3.3.1 Model of Parallel Algorithms 11
3.3.2 Implementation . 12

3.4 Optimization . 15
3.4.1 Optimizations . 15
3.4.2 FlatAPT . 16
3.4.3 Target Architectures . 17

4 Abstract Mapping Tree 19
4.1 AMT Structure . 19

4.1.1 Visitor Pattern . 21
4.2 Transformation to AMT . 22

4.2.1 Optimization to AMT . 23
4.2.2 Debug Mode . 26

4.3 Synchronization Model . 27

5 Code Generation 31
5.1 Requirements . 31

5.1.1 Hardware . 31
5.1.2 Optimization Representation 32
5.1.3 Intermediate Representation 33
5.1.4 Design Decisions . 33

5.2 Target Language . 33

ix

Contents

5.3 Shared-Memory Parallelism . 34
5.3.1 Programming Model . 34
5.3.2 Implementation . 35

5.4 Distributed-Memory Parallelism . 38
5.4.1 Programming Model . 38
5.4.2 Implementation . 39

5.5 GPU Offloading . 40
5.5.1 Programming Model . 40
5.5.2 Implementation . 41

5.6 Data Structures . 45
5.7 Code Generator Tool . 46

5.7.1 File Generation . 46
5.7.2 AMT Generation . 47
5.7.3 Expression Printer . 48

5.8 Utility Files . 51
5.8.1 Makefile . 51
5.8.2 Machine File . 52

6 Evaluation 53
6.1 Code Generator Verification . 53

6.1.1 Error Classification . 54
6.1.2 Test Suite Implementation . 57
6.1.3 Test Cases . 58
6.1.4 Results . 59

6.2 Performance of Generated Code . 60
6.2.1 Thread Pool Overhead Measurements 60
6.2.2 Algorithmic Case Study . 66

7 Discussion 73
7.1 Correctness . 74
7.2 Performance . 74
7.3 Reusability . 75
7.4 Integration . 76
7.5 Synchronization and Data Transfers 76

7.5.1 Data Management . 77
7.5.2 Synchronization Overhead . 77

8 Conclusion and Future Work 79

x

List of Figures
3.1 Dependencies and information flow within the parallel pattern DSL. . 8
3.2 APT of a matrix square function, implementing MxM with parallel

patterns. The serial child nodes of MxM and MxV define only the
parallel pattern call expression evaluation. Thus, they can be disre-
garded. 13

4.1 APT, FlatAPT and AMT definitions based on the on the code in
Listing 4.1. 26

4.2 AMT with Synchronization and data transfers based on Figure 4.1b. . 29

5.1 Nested order of the File Generator, the AMT to Source generator and
the Expression Printer. 46

5.2 AMT based on Listing 5.5. 49

6.1 Serial error classification. 54
6.2 Parallel error classification based on the work of Schmitz et al. [?] . . 56
6.3 Static overhead of the thread pool with different thread sizes on two

Intel Xeon Platinum 8160. 61
6.4 Overhead induced by the assignment of work to the task queue in the

thread pool on two Intel Xeon Platinum 8160. 62
6.5 Overhead induced by the assignment of work with the parallel for

construct in OpenMP on two Intel Xeon Platinum 8160. 63
6.6 Overhead induced by a barrier in the thread pool on two Intel Xeon

Platinum 8160. 64
6.7 Overhead induced by a barrier synchronizing all threads in the thread

pool with the main thread on two Intel Xeon Platinum 8160. 65
6.8 Overhead induced by a barrier in OpenMP on two Intel Xeon Plat-

inum 8160. 65

xi

List of Listings

3.1 Example of a simple map in the PPL 9
3.2 Matrix square function implementing MxM with parallel patterns. . . 12
3.3 Element wise multiplication of two one dimensional arrays. 14
3.4 Scalar product using a reduction. 14
3.5 Element wise matrix addition. 14
3.6 Dynamic programming Fibonacci. 15

4.1 A simple Map. 25
4.2 A simple Map transformed by the debug mode. 27

5.1 Example usage of the thread pool. 37
5.2 Example usage of the thread pool for synchronization. 38
5.3 A GPU Kernel defining a map which increments each element. 42
5.4 A GPU wrapper defining the data transfers and allocations for the

kernel in Listing 5.3. 43
5.5 A map pattern which copies the input values into the output. 48
5.6 Generated code based on the AMT in Figure 5.2. 50
5.7 A simplified algorithm which creates a well formed C++ expression

based on an operation expression. 51

6.1 A test case implementing a map pattern covering intra region con-
currency errors on the CPU. 58

xiii

List of Tables
6.1 The test case coverage of the test suite. 59
6.2 Representation of the batch classification performance for generated

and handwritten code. (Runtime in seconds.) 67
6.3 Representation of the Jacobi solver performance for generated and

handwritten code. (Runtime in seconds.) 68
6.4 Representation of the 𝜋 approximation performance with monte carlo

for generated and handwritten code. (Runtime in seconds.) 69
6.5 Representation of the multi filter convolution performance for gener-

ated and handwritten code. (Runtime in seconds.) 70
6.6 Representation of the feed forward neural network performance for

generated and handwritten code. (Runtime in seconds.) 70

xv

1 Introduction
The importance of large computer clusters is increasing for scientific and engineer-
ing purposes. To improve the performance, these systems utilize more dedicated
hardware [?]. The increasing complexity of HPC-systems is mainly caused by the
limitation in the energy consumption [?] and the memory wall [?]. The current
Top500 list [?] is composed of different cluster architectures which contain GPUs
from different vendors, co-processors like the Intel Xeon Phi, specialized accelerators
like the Matrix-2000 or ARM processors like the current top system of the Top500
list. In total ten different accelerator architectures and 24 different CPU architec-
tures are used within the Top500.
The optimization of computer clusters and corresponding applications requires a
deep understanding of the used hardware architecture. To handle the increasing
complexity of HPC-systems, especially regarding exa-scale computing (1018 floating
point operations per second), new programming paradigms are necessary [?].
The developers of applications are experts in their domain, but rarely in HPC, which
may result in code which is not fully optimized. Although, even for HPC experts,
writing optimizations for a specific system is a time consuming and complex task.
On the other hand, utilizing architecture based optimizations reduces the portabil-
ity of parallel applications. One approach to handle these portability issues is the
automatic generation of optimized code.
The automatic generation of global optimizations targeting arbitrary systems was
introduced by Miller et al. [?]. Their work is based on the data-centric optimization
of parallel patterns for a given architecture. The current implementation of Millers
work by Trümper [?] provides the generation of automatic optimization strategies.
These strategies are yet to be transformed into executable binaries.
The generation of optimized code is often focussed on specific algorithms or hard-
ware architectures [?] [?]. Although, there are already optimization and generation
approaches present, the implementation of global optimizations by Trümper [?] were
shown to provide suitable automatic optimizations for many algorithms on different
architectures.
In this thesis, a generator and an interface for automatically transforming the op-
timization introduced by Miller et al. [?] and implemented by Trümper [?] into
binaries are developed and implemented. The user written code is transformed into
an abstract tree based data structure. The abstract pattern tree (APT) is used as
the intermediate representation (IR) of the user written code. The APT and the
details of the optimization are transformed into an abstract mapping tree (AMT),
as part of this thesis. The AMT is a tree based data structure providing an abstract
specification of an optimized algorithm. Based on the definition of the AMT, syn-

1

1 Introduction

chronization points and data transfers are generated.
In the next steps, the implemented generator transforms the AMT into optimized
source code. The generated code supports shared-memory and distributed-memory
parallelism as well as GPU offloading.
The optimized source code is interpreted and compiled by already existing source
compilers.
To ensure the correctness of the generated code, a test suite was developed which
covers a wide range of optimizations representing key features of the generated code.
In order to evaluate the generation of specific optimizations, a debug mode was de-
signed and implemented extending the AMT.
Further, the performance of the generated code is evaluated in comparison to hand-
written optimizations implementing the same strategies defined by the optimization
packages.
For the performance evaluation realistic algorithms are used. These algorithms in-
clude image processing, a forward pass in a neural network, an ensemble based
classification, solving a linear equation system and the estimation of pi.
All evaluations were performed on two nodes of the RWTH Aachen University
CLAIX 2018 cluster [?]. As part of the current Top500 [?] this system represents a
modern architecture. The nodes consist of two Intel Xeon Platinum 8160 and two
NVIDIA Volta 100 GPUs and are connected via Intel Omnipath.
The main contributions of this thesis are the following:

• Definition and implementation of the abstract mapping tree (AMT) as an
abstract representation of optimized parallel pattern based applications. The
AMT extends the existing IR and provides an interface for optimization and
code generation packages.

• The derivation of an automatic process of synchronization and data transfers
based on the AMT.

• The specification and implementation of a code generator transforming the
AMT into correct and compilable source code. The generation of a Make-
file and libraries ensures the correct transformation of the source code into
binaries.

• The categorization of defects for generated code targeting shared-memory,
distributed memory and GPU architectures.

• The definition of a test suite based on the defect classification. The test suite
ensures the correctness of the generated source code.

• The evaluation of the performance of the generated code in comparison to
handwritten code implementing the same optimization strategies on typical
parallel algorithms.

2

The structure of this thesis is the following:
Chapter 2 provides an overview of related work. Chapter 3 introduces the overar-
ching project this thesis contributes to. Furthermore, it gives an overview of the
overarching project to discuss the foundations and the relation of this thesis to the
project. Chapter 4 introduces the AMT and explains how it can be generated.
Additionally, the synchronization and data transfer generation are discussed. In
Chapter 5, the design choices and implementation details for the source code gen-
erator are presented. The error classification with the test suite and a performance
evaluation of the generated code are explained in Chapter 6. The results of this
thesis are discussed in Chapter 7. In Chapter 8, conclusions of this thesis are drawn
and the results of this thesis are summarized and an overview on future steps is
given.

3

2 Related Work
The generation and intermediate representation of optimized parallel code is a com-
plex task. Approaches like autotuners [?, ?] and the parallel code generation for
specific architectures and algorithms provide extensive literature. In this chapter,
the related literature is discussed and the significant differences to this work are
highlighted.

Parallel Intermediate Representation

The intermediate representation is used in compilers to represent the application
and to perform optimizations. The definition of a parallel IR is often strongly con-
nected to specific programming models [?, ?, ?] or to specific algorithms [?, ?, ?].
The abstract mapping tree representation introduced in this thesis follows a parallel
pattern based programming model and extends the IR of the overarching project.
This allows the representation of different typical algorithms as shown in Chap-
ter 6. The use of a parallel pattern based representation allows for the utilization of
different existing programming models when generating code. IR implementations
targeting specific system architectures [?, ?] are developed as well, but much like
TensorFlow [?], LIFT [?] or KORALI [?] the AMT can represent parallel code for
modern heterogeneous cluster systems.
TensorFlow [?] supports a similar graph based IR approach as the AMT defined in
this work. In contrast to this work, TensorFlow is targeted at the optimization of
machine learning systems and especially the training of these systems. In contrast to
the APT (Abstract Pattern Tree), the definition of the LIFT IR is based on OpenCL
constructs and focuses on the generation of GPU code. The KORALI frame work
targets stochastic methods on heterogeneous cluster systems, while the approach in
this thesis covers parallel patterns in order to target a wider range of applications.
There are already IR based approaches targeting the optimization of parallel pat-
terns like LIFT. LIFT is a high-level parallel IR developed by Steuwer et al. [?].
The IR was designed focusing on parallel patterns, similar to APT utilized in this
work. The results of LIFT show a performance on par with manually optimized
code. Thus, revealing that the task of code generation is applicable for data driven
HPC applications.
Low level IR extensions like Tapir [?] are unable by design to properly represent
distributed-memory parallelism. The AMT is designed to represent shared-memory
parallelism, distributed memory parallelism and GPU offloading. While the gen-
eration of FPGA code is currently not supported, an appropriate generator could
generate FPGA, GPU or shared-memory code depending on the optimization.

5

2 Related Work

An FPGA generator can be implemented by extending the generator and AMT
proposed in this work.

Parallel Code Generation

The generation of source code is a topic which is already used in many fields by in-
troducing DSLs (Domain Specific Languages) to improve portability and readability
for code produced in specific domains. The generation of efficient source code to
divide the domain knowledge from the optimizations source-to-source compilation
is beneficial. The generation source code for specific target architectures [?, ?, ?, ?]
is already well developed, similarly the code generation targeting specific algorithms
[?, ?, ?, ?] is also already well understood. The code generator proposed in this
thesis can generate serial, shared-memory parallel, distributed-memory parallel und
GPU code.
The source-to-source transformer by Verdoolaege et al. [?] generates parallel CUDA
code based on polyhedral loops in C code. In contrast, this work generates code
based on parallel patterns supporting, shared-memory parallelism, distributed-
memory parallelism and GPU offloading.
The work by Yount et al. [?] generates and tunes stencil patterns for shared-memory
parallelism with a focus on Intel Xeon architectures like the Intel Xeon Phi. The
generated code is written in C++ like in this thesis. Further, the focus on the stencil
pattern which is also supported by this work and the on focus specific architecture
can improve the quality of the generated code. The goal of this thesis is to support
a wide range of parallel patterns including the stencil and the reduction pattern on
different architectures like GPUs, distributed-memory and shared-memory architec-
tures.

Compiler Approaches

There already exists excessive literature on compiler optimizations [?, ?, ?, ?, ?, ?]
For example, the Intel Array Building Blocks [?] focus on the dynamic mapping of
parallel code on different multi-core and heterogeneous many-core architecture. The
dynamic approach interoperates with different programming models to improve the
performance. The utilization of dynamic approaches introduces additional overhead
during runtime, but generally contains more information on the program and is able
to achieve potentially better optimizations. The approach of the code generator in
this thesis is the static generation of optimized source code.
The compiler based auto-parallelization like in the work of Tournavitis et al. [?] or
Kombi et al. [?] define compiler based optimizations. These optimizations are based
on the detection of potentially parallel operations and replacing them with parallel
operations. These compiler-based approaches directly generate binary code, which
is limited to the optimizations performed by their compiler. The approach in this
thesis is the implementation of a source-to-source compiler.

6

3 Background
This master thesis is part of a larger project. In order to define the contribution
of this thesis, it is necessary to understand the overarching project. This chapter
presents an overview on the project and the most relevant information provided by
other packages within the overall project in relation to this master thesis.

3.1 Overview
In the overarching project, a modular compiler targeting automatic global optimiza-
tions on algorithms defined via parallel patterns is developed.

• Parallel pattern: A parallel pattern is a set of similar algorithmic building
blocks, originally introduced by Mattson et al. [?] and McCool et al. [?].
In the past, approaches like MapReduce [?] are successfully utilized, e.g., a
map and a reduction for parallel programming models. These patterns have
concurrent potential, e.g., a map pattern processes each element without any
dependencies on other elements of a given input array. Typically, all elements
can be processed in parallel.

• Global optimization: A global optimization describes changes within the
structure of the algorithm. Global optimizations include reordering of state-
ments/expression, splitting/combining parallel patterns etc. Thus, creating
a more favourable algorithmic structure for parallel programming on modern
architectures. Contrarily, local optimizations only affect single statements or
expressions , e.g., loop optimization.

Figure 3.1 provides an overview on how the compiler is structured. It demonstrates
the differentiation into core and exchangeable packages and the classification into
front-end, middle-ware and back-end.
The core packages, depicted in red, build the foundation of the compiler. They de-
fine the interfaces and the implementation of abstraction levels. The exchangeable
packages, depicted in green, are necessary as well for the compiler to work. But
different implementations can be mixed and matched to allow for a wider choice
concerning input and output languages. Thus, it is especially useful for the parallel
pattern language (PPL) and the code generation. Currently, only the prototype
PPL for testing purposes is supported. For future versions of the compiler, it is
intended to add support for other languages, e.g., with annotations like OpenMP
[?]. This would allow existing codes to be reused.

7

3 Background

Front-End Parallel Pattern Language Hardware Language

Middle-Ware

Optimization Intermediate Representation

Back-End

Abstract Mapping Tree

Code Generation

Core Packages Exchangeable Packages

Figure 3.1: Dependencies and information flow within the parallel pattern DSL.

More different output formats are also applicable, since this work generates C++
code combined with PThreads, MPI and CUDA which can be lowered by production
compilers.
The front-end packages provide raw information on the algorithmic structure of a
given source code via the PPL. The environment description is provided via the
hardware language (HL). The HL is crucial for the compiler, since global optimiza-
tions strongly depend on the targeted system.
Within the middle-ware the intermediate representation (IR) processes the informa-
tion provided by the front-end packages to generate further information. Afterwards,
this newly generated information is processed by the optimization package into an
abstracted result, for instance, a mapping of APT nodes to machines. This master
thesis translates the result first into an abstract mapping tree (AMT). The IR is ex-
tended by the AMT which generates additional information from the result, namely,
data transfer and synchronization steps.
The back-end implementation covers the code generation. The code generation in-
terprets the AMT and generates the output. The code generator referred to in this
thesis generates parallel C++ code.

8

3.2 Parallel Pattern Language

Listing 3.1: Example of a simple map in the PPL
1 MapTest {
2 // patter definition
3 map increment ([Int] input): [Int] res{
4 res[INDEX] = input[INDEX] + 1
5 }
6 // program entry point
7 seq main () : Int {
8 // initialize values
9 var [Int] initial = init_List ([200] ,1)

10 var [Int] result = init_List ([200])
11 var [Int] result_seq = init_List ([200])
12
13 // execute the pattern
14 result = increment <<<>>>(initial)
15
16 // checking result
17 for var Int i = 0; i < 200; i++ {
18 result_seq [i] = initial [i] + 1
19 if result_seq [i] != result[i] {
20 print("value at element " {i} " is wrong!")
21 }
22 }
23
24 return 0
25 }}

3.2 Parallel Pattern Language
The parallel pattern language is the prototype programming language of this

project. It is designed to directly integrate parallel pattern programming. To sim-
plify the analysis and increase the number of potential optimizations, two restrictions
were introduced:

1. The data size for all arrays (number of elements) must be statically provided
by the programmer.

2. The execution is pure, which means global variables and function parameters
can only be read, but not be written to.

The first restriction allows to generate data flow for partial arrays in order to reduce
the number of write conflicts and allowing for automatic partitioning approaches
of parallel patterns. The second restriction removes most of the occurring parallel
write conflicts.

9

3 Background

Listing 3.1 provides an example code in the PPL. Lines 3-5 define a map as stated
by the keyword map. The pattern takes input as an input argument and res as an
output argument. Since increment implements a map pattern, the keyword INDEX
covers every possible value, which does not cause an out of bounds access in line 4.
The set of possible index values will be called index range from now on. In line 4 the
access is not shifted or scaled, thus the index range only depends on the length of
input and res. The pattern is executed in line 14, where the pattern call statement
takes initial as a read argument and result as a write argument. The size of
both arrays is 200 elements, therefore resulting in an index range of 0 to 199 cov-
ering all elements in both arrays. The size of all elements is defined and initialized
in lines 9-11. The init_List function is predefined and returns an array with the
shape given by the first argument. Lines 17-22 evaluate and print the parallel result
calculated by the map execution in line 14.
The PPL is implemented and transformed to an abstract syntax tree (AST) using
the MontiCore language workbench [?]. With MontiCore a syntax for the PPL can
be defined based on ANTLR [?]. Additionally, context conditions can be speci-
fied to further restrict the language on a semantic level. Based on the generated
AST multiple other features are generated by MontiCore, e.g., a visitor pattern.
These additional features allow for a rapid prototype development for the PPL and
following steps.

3.2.1 Hardware Language
Another important source of information provided by the front-end is the hardware
language. The HL is aimed to describe the target architecture for the optimized
code. All usable nodes in a cluster should be specified, since unknown nodes are
utilized by neither the optimization nor the code generation. To retain the hierarchy
within a cluster, the following components are necessary:

1. Network: A network is a collection of nodes specifying a connectivity matrix
with latency and bandwidth between all nodes.

2. Node: A node corresponds to a singular compute node within a cluster. It
contains a set of devices and a connectivity matrix specifying the latency and
bandwidth between all devices. Additionally, some node specific information
is defined in form of the address and the name.

3. Device: A device defines a processing unit like a CPU, GPU or an FPGA
and specifies some device specific information like latency and bandwidth to
the main memory, main memory size and the type of device it models.

4. Processor: A processor is a sub group of execution units on a device that form
a Non-uniform memory architecture (NUMA) node. NUMA nodes describe
a sub-clustering of execution units with localized main memory. Non-local
memory can still be accessed by other processors with an increase in latency

10

3.3 Abstract Pattern Trees

and bandwidth.
Every execution unit may only be part of exactly one processor. E.g. for a
given GPU, each streaming multiprocessor can be modelled by a processor.
Though, the modelling of processors is defined by the user.

For the implementation of the HL, we utilized the Java script object notation (JSON)
format with a slightly modified interpreter to allow the combination of multiple
JSON files. This combination allows for identical nodes, devices and processors to
be reused.

3.3 Abstract Pattern Trees
The abstract pattern tree (APT) is the intermediate representation of the compiler.
In this section, the theoretical concept of the APT will be dicussed. Furthermore,
a brief overview of the implementation for the APT will be presented.

3.3.1 Model of Parallel Algorithms
The APT is a tree based abstraction defining the algorithmic structure of a given
pattern based algorithm. The concept of the APT was first introduced by Miller et
al. [?] and implemented by Trümper [?]. The APT is defined by its nodes, most
notably by the difference between serial and parallel pattern nodes. For serial nodes,
the only important property for the optimization is the data flow, defining which
data is read or written to by the node. Since serial nodes are not optimized explicitly
it suffices to store the data flow. For parallel nodes, the data flow can be used to
derive data dependencies between all nodes. After generating the information on
data dependencies, the APT is restructured to globally optimize the data flow.
Each node defines a set of child nodes defining algorithmic structure of a single
node. These child nodes have to be executed in their defined order. This order can
be optimized as mentioned above. The root of the APT is defined by the program-
entry-point. The program-entry-point in the PPL is defined by the main function.
Listing 3.2 defines a matrix-square function (see lines 14-18) sequentially. The
MatrixSquare function executes the MxM pattern in line 16. The matrix matrix
multiplication defined by MxM is based on the nesting of two other patterns. The
lowest level pattern necessary for the matrix multiplication is the scalar product,
defined in lines 2-4. The scalar product is executed within the matrix vector product
MxV defined in lines 6-8. The MxV pattern is again executed by the matrix multipli-
cation MxM defined in lines 10-12.
Transforming the example from Listing 3.2 into an APT results in the APT pre-
sented in Figure 3.2. The root of the APT corresponds to the main function defined
in lines 20-24. The parallel patterns depicted in red specify both the name and the
type of pattern used for the implementation of the algorithm. The theory captures
sequential execution as a serial node.
In reality structures like an expression and a for-loop cannot be stored and handled

11

3 Background

Listing 3.2: Matrix square function implementing MxM with parallel patterns.
1 MatrixSquare {
2 reduction scalar ([Int] input1 , [Int] input2): Int res {
3 res += input1[INDEX] * input2[INDEX]
4 }
5
6 map MxV ([[Int]] input1 , [Int] input2): [Int] res {
7 res[INDEX] = scalar <<<>>>(input1[INDEX], input2)
8 }
9

10 map MxM ([[Int]] input1 , [[Int]] input2): [[Int]] res {
11 res[INDEX] = MxV <<<>>>(input1 , input2[INDEX])
12 }
13
14 seq MatrixSquare ([[Int]] input): [[Int]] {
15 var [[Int]] result = [[0 ,0 ,0 ,0] , [0,0,0,0],

[0,0,0,0], [0 ,0 ,0 ,0]]
16 result = MxM <<<>>>(input , input)
17 return result
18 }
19
20 seq main ():Int {
21 var [[Int]] M1 = init_List ([4 ,4] ,1)
22 M2 = MatrixSquare (M1)
23 return 0
24 }}

in the same way, since the behaviour and implications by control flow structures like
loops are vastly different from expressions like a=b+c.

3.3.2 Implementation
The implementation of APTs solves three major challenges which are adapted by
the AMT introduced in this thesis:

1. Differences in serial nodes like we depicted in Figure 3.2 cannot be ignored. As
stated before different serial patterns need to be supported in order to properly
define loops, branches etc.

2. The index range for each pattern call needs to be derived. According to the
index range the input and output data sizes need to be computed.

3. A subset of all parallel patterns supported by the intermediate representation
needs to be defined.

12

3.3 Abstract Pattern Trees

Main

Serial

Map: MxM Serial

Serial Map: MxV

Serial Reduction: scalar

Serial

Figure 3.2: APT of a matrix square function, implementing MxM with parallel pat-
terns. The serial child nodes of MxM and MxV define only the parallel
pattern call expression evaluation. Thus, they can be disregarded.

All three challenges were solved by the implementation of the intermediate repre-
sentation. This implementation defines the APT interface this thesis builds upon.
The APT implementation differentiates between two types of serial nodes:

• Expressions cover the evaluation of them self, e.g., a = b + 1 is an expres-
sion.

• Statements define the control-flow of the algorithm. Branches and loops
mostly cover this class, but the parallel call is also a statement.

If the expressions are handled separately from the APT, the number of applicable
serial nodes is limited. Thus, the serial nodes defined include expression wrapper,
control statement classes and function definitions. Please refer to the wiki page in
the supplemental material for more details.
The second challenge is directly dependent on the data flow of the source algorithm
which is generated within the expression wrappers and in another step communi-
cated to their ancestors. After the communication between each node and their

13

3 Background

child nodes, all nodes store their incoming and outgoing data as well as how it is
accessed. In the context of parallel pattern definition this analysis regards each
individual elements of an array. The details for this analysis are out of scope for
this work, but the general idea is discussed in Section 3.2. The analysis mentioned
above will provide the information necessary to generate the index range for each
pattern call, as well as the input and output array slices. For each data element
all accessing expressions are stored. Furthermore, for each node all incoming and
outgouing data elements are stored. The stored data elements in combination with
the data accesses depict a partial data flow. By combining this partial data flow
from all node the complete data flow of the application can be reconstructed.
To efficiently optimize and implement the parallel patterns, restrictions on the sup-
ported parallel patterns are necessary. Currently the APT implementation focuses
on the four parallel patterns:

• Map: The map pattern iterates over every index within the index range and
can potentially execute each index in parallel. The example in Listing 3.3
computes an element wise multiplication of two one dimensional arrays.

Listing 3.3: Element wise multiplication of two one dimensional arrays.
1 map matrixAdd ([Int] input1 , [Int] input2): [Int]

res {
2 res[INDEX] = input1[INDEX] * input2[INDEX]
3 }

• Reduction: The reduction pattern first executes a map pattern. In the second
step, the result of each index within the index range is combined into one. The
example in Listing 3.4 describes a reduction over the value res. The preceding
theoretical map covers the element wise multiplication.

Listing 3.4: Scalar product using a reduction.
1 reduction scalar ([Int] input1 , [Int] input2): Int

res {
2 res += input1[INDEX] * input2[INDEX]
3 }

• Stencil: The stencil pattern defines a multidimensional pattern iterating over
one index range per dimension. The multidimensional iteration provides a
simpler and more flexible way of accessing two-dimensional, three-dimensional
arrays than nesting map patterns. The example in Listing 3.5 defines an ele-
ment wise matrix addition, where INDEX0 defines the current row and INDEX1
the current column.

Listing 3.5: Element wise matrix addition.
1 stencil matrixAdd ([[Int]] input1 , [[Int]] input2):

[[Int]] res {

14

3.4 Optimization

2 res[INDEX0][INDEX1] = input1[INDEX0][INDEX1] +
input2[INDEX0][INDEX1]

3 }

• Dynamic Programming: The dynamic programming pattern executes a
simplified map over a fixed number of time steps. The result of the previ-
ous time step is used as the input for the current time step. The example
in Listing 3.6 defines the computation of the Fibonacci numbers. The imple-
mentation computes the Fibonacci numbers 𝑛 and 𝑛 + 1 for a number of time
steps 𝑛, defined only in the pattern call. The Fibonacci computation assumes
an initial input of [1,1].

Listing 3.6: Dynamic programming Fibonacci.
1 dp fibonacci ([Int] input):[Int] res {
2 res [0] = input [1]
3 res [1] = input [0] + input [1]
4 }

These four patterns cover a wide range of algorithms, e.g., neural network training,
computer graphics and matrix operations.
To avoid data races, only local variables and the return variable can be written to.
Furthermore, the return variable should be written to exactly once. The correctness
of the generated code must not be broken. Therefore, these restriction are defined
in order to ensure generation of correct synchronization and data transfers. An
evaluation of the correctness of the generated code will be discussed in Chapter 6.

3.4 Optimization
The Optimization proposed by Miller et al. [?] and implemented by Trümper [?] is
focussed on global optimizations. To perform the global optimizations, the APT is
first transformed into a FlatAPT.

3.4.1 Optimizations
The optimizations implemented by Trümper [?] are realized in the FlatAPT. Cur-
rently the optimizations include re-ordering, pipelining, non-uniform memory archi-
tecture (NUMA) awareness and a hardware mapping.

• Re-ordering: Creating the FlatAPT from the basic APT by sorting the APT
nodes in relation to the data flow. The nodes are ordered to be executed as
soon as possible. The generated order maximizes the potential parallelism by
creating "steps" where all nodes are independent from each other, similar to
bulk-synchronous programming [?], where the complete program synchronizes
at predefined steps.

15

3 Background

• Pipelining: This optimization fuses parallel patterns, if the output of the
predecessor is identical to the input of the current node. The indivdual parallel
patterns stay unchanged in this step. This reduces the number of potential
mapping results and signals the code generation, that no synchronization needs
to be generated between these parallel patterns.

• Hardware mapping: The hardware mapping generated by this optimization
minimizes the total amount of data transfers between devices and/or nodes. In
this step, parallel patterns may be divided to increase the level of parallelism.
To reduce the complexity of this optimization, minimal split sizes for parallel
patterns and data elements are defined. The optimal placement of the parallel
patterns on the hardware is based on a simplified machine model based on
the hardware language. Currently, the optimization is realized by utilizing a
roofline model [?] and solves a mixed integer linear problem (MILP) by using
the Gurobi solver [?].

• NUMA-awareness: A NUMA system is a system with a non-uniform mem-
ory architecture. The NUMA-awareness is optimized, by regarding the dis-
tance between the different processors defined in the hardware language.

3.4.2 FlatAPT
The FlatAPT is a linearized version of the APT based on the root node of the APT.
The FlatAPT in combination with the mapping table, which stores the optimized
hardware mapping for the individual parallel patterns, define the interface to gen-
erate the resulting code. The FlatAPT itself stores a sorted list of steps generated
by the reordering optimization. The mapping table contains the results from the
hardware mapping in form of a look-up table. Each parallel pattern is assigned to
a processor in this mapping table. For the parallel patterns a set of start-point and
iteration counts are defined. The size of the set is defined by the dimensionality of
the pattern, e.g., a map pattern may only have a single start and iteration count,
while a stencil pattern will have 𝑛 elements for an 𝑛-dimensional input array. The
input and output data is also defined as data-splits referencing the corresponding
data element and defining the a fixed slice, if the data element is an array.
The pipeline optimizations are realized by introducing two types of parallel pattern
mappings:

• Pattern mapping: The normal pattern mapping corresponds to a single
parallel pattern which will be executed on the processor defined in the mapping
table.

• Fused-pattern mapping: A pattern mapping containing an ordered set of
parallel patterns combined by the pipelining optimization. The patterns use
the output of the direct predecessor based on the data splits.

16

3.4 Optimization

The transformation of the FlatAPT into the abstract mapping tree (AMT) will be
discussed in Chapter 4.

3.4.3 Target Architectures
The system targets three different forms of parallelism which all need to be handled
appropriately:

• Shared-memory parallelism defines the utilization of multiple threads on
a CPU, all threads can access the same memory space. Data accesses without
proper synchronization can induce data races. The CPU can directly access
the main memory and loads small chunks of the data into their local caches.
Changes made by one thread are directly visible by all other threads on cache
coherent systems. Systems without cache coherency do not communicate
changes for cache local data. NUMA architectures define a sub-clustering
of memory and cores. These sub-clusters are typically aligned improving
the performance by utilizing the distances between sub-clusters of cores and
memory.

• Distributed-memory parallelism defines the utilization of multiple nodes
via an interconnect. Since these nodes do not share the same memory space,
necessary data and changes in data need to be communicated by the user.
Thus, besides synchronization it is necessary to send and receive data between
different nodes. These nodes might not be identical and need to be differ-
entiated. The individual nodes act independent from each other, besides the
communication.

• GPU offloading defines the utilization of GPU architectures. A compute
node can incorporate multiple GPUs. GPUs have a reduced control logic in
comparison to CPU architectures. Data transfers and memory allocations
concerning the GPU must be handled by the CPU. GPUs are optimized to
perform highly parallel computations with identical data access patterns, e.g.,
matrix operation for image processing or neural network training. Modern
GPUs are structured into multiple streaming multiprocessors. Modern archi-
tectures like the Nvidia V100 [?] consist of 80 streaming multiprocessors with
64 FP32, 32 FP64, 64 INT32 and 8 Tensor cores per streaming multiprocessor.
The Intel Xeon Platinum 8160 [?] CPU in comparison supports 24 cores and
48 threads with hyper-threading. GPUs execute the code in subsets of threads
called warps. For Nvidia GPUs a warp is typically of size 32, all threads within
a warp execute the same code and can share a program counter.

17

4 Abstract Mapping Tree
The abstract mapping tree (AMT) is an additional abstraction level between the op-
timization of the abstract pattern tree (APT) and the actual generation of (source)
code. This additional layer of abstraction helps integrating the global optimizations,
while also restructuring existing information. The structural changes are made in
order to adjust the AMT to the task of code generation, while the APT is used to
provide different information to the optimization. The AMT is the first contribution
of this thesis to the overall project.
This chapter lines out the structure of the AMT. It explains how the implemented
global optimizations [?] is transformed into the AMT structure. A debug trans-
formation which directly transforms the APT into an AMT, to help testing the
generated code, is also covered. Finally, the approach of generating synchronization
and data transfer mechanisms used in this thesis is discussed.

4.1 AMT Structure
The AMT is directly related to the APT in terms of structure. Therefore, the AMT
is implemented in a tree structure which defines the targeted application. The root
node specifies the program entry point. The different nodes can be distinguished
into four different categories:

1. Serial nodes cover the behaviour of simple sequential pattern such as: loops,
branches and expressions. This kind of node is mostly identical to their APT
node counter parts.

2. Function nodes define a static sub-tree, which can either be a sequential
function definition or a description of a parallel pattern:

• Sequential function nodes define the sub-tree executed when encoun-
tering a serial call node.

• Parallel pattern nodes specify the sub-tree covering the individual
parallel pattern implementations. Since the different parallel patterns
differ in their behaviour, for each pattern a parallel pattern node type
is defined, e.g., a stencil node is different from a reduction node (See
Section 3.3.2).

The function nodes are defined in order to specify templates for the execution
of call nodes. This reduces the memory usage and complexity of the AMT.
Function nodes in the AMT are similar to function nodes in the APT.

19

4 Abstract Mapping Tree

3. Call nodes are the entry point for function nodes. They specify the data flow
into and out of their corresponding function node. Sequential function nodes
are self explanatory. In this context, the parallel pattern calls are important,
since they combine the information from the global optimizations with the
original APT. They define a target processor and an index range regarding
the original computation. To differentiate the behaviour of the parallel calls
additional variants are used extending the basic definition of a parallel call.
The following types of parallel pattern calls further define specific variants:

• Parallel calls are the basic definition of a parallel pattern call. Be-
sides an index range covering multi-dimensional patterns, synchroniza-
tion and data transfer schemes for dynamic programming patterns are
stored within the data structure.

• Serialized parallel calls define parallel pattern calls, that should be
executed sequentially. They extend the basic parallel call to signal the
sequential execution of a parallel pattern.

• Reduction parallel calls specifically define the execution of the re-
duction pattern as explained in Section 3.3.2. The reduction pattern
combines the results of every iteration into a single result. Therefore,
the recombination of partial results is also subject to optimization. By
defining temporary input and output data to express the recombination
hierarchy between multiple reduction parallel calls, the globally optimized
reduction can be expressed. The temporary data represent the partial re-
sults computed by different reduction parallel call nodes.

• The fused parallel call is special, since it is not a single parallel call
node. The fused parallel call is an ordered set of other parallel call nodes,
which are executed via pipelining. Thus, specifying that no synchroniza-
tion or explicit data transfers are necessary between these nodes.

• GPU parallel calls are parallel pattern calls to be executed on a GPU.
As introduced in Section 3.4.3 the GPU architecture is different from the
CPU. Due to the difference in architecture parallel patterns executed on
the GPU are combined into GPU parallel pattern calls. The combination
of multiple GPU calls allows for the utilization of more streaming multi-
processors increasing the performance of the GPU. Therefore, this node
is mainly used to improve the performance on a GPU architecture.
For other different architectures like FPGAs it might also be applicable
to introduce new nodes.

4. Data control nodes specify the synchronization and data transfer mecha-
nisms. They are generated within the AMT and can be differentiated into as
follows:

• Barrier nodes describe a synchronization scheme defined by a set of
processors on different machines, that need to be synchronized.

20

4.1 AMT Structure

• Data movement nodes define a set of destination placements and
a set of source placements. Thus, determining the data needed to be
transferred before the next AMT node. A placement in this context is a
data element and a set of start and length values specifying the subsets
of the data to be transferred.

AMT nodes are executed from left to right to emphasize the order of execution of
child nodes. An example for an AMT is depicted in Figure 4.1b, where the green
nodes define serial nodes and the blue node depicts a GPU parallel call node.
In addition a visitor implementation generating the shape of array data, for travers-
ing the AMT is defined. This visitor strongly simplifies the actual code generation
process defined in Chapter 5. The implementation of the visitor allows for a stan-
dardized traversal. Therefore, the generator can be implemented by defining how
the AMT nodes are transformed into source code.

4.1.1 Visitor Pattern
To properly traverse the AMT, while optimizing the maintainability of the code
the use of design patterns is applicable. The notion of design patterns including
the visitor pattern, discussed by Gamma et al. [?] is especially useful to support
maintainability. For a traversal of a graph or tree based structure the visitor pattern
is the most suitable [?]. The implementation of the visitor pattern is based on the
AST visitor generated by MontiCore [?], by defining an interface where each AMT
node implements the following five functions by overloading the signature:

• accept: This function defines the entry point for an AMT node. The func-
tion needs to be implemented within every AMT node and accepts a given
visitor implementation. When this function is called the current node will be
traversed.

• visit: The visit function is called when the given node is first encountered.
Thus, the function is computed before the child nodes of the given node are
encountered. The default implementation for this function is empty.

• endVisit: The implementation of the endVisit function is executed just before
the visitor leaves the node. All descendants of this node are encountered before
this function is called for the current node. The default implementation for
this function is empty

• traverse: This function defines the traversal strategy of the current node. By
calling accept for each child node the current node possesses, the sub-AMT
spanned by the current node can be traversed. The traverse function can be
used to specify the order in which the child nodes are traversed or if they
should be traversed at all. The default implementation will first cover nodes
explicitly defined in the AMT definition and then iterate over the list of all
remaining child nodes.

21

4 Abstract Mapping Tree

• handle: The handle function is implemented as a part of the visitor definition.
It takes the current node as an argument and ensures the correct order of the
visit, traverse and endVisit functions. The default implementation only
refers to the argument of those specific functions.

This interface for the visitor pattern allows the implementation of specific visitors
for each node type and can be extended for new AMT nodes by implementing the
five functions described above.
Since the generator needs information on the shape of a variable at all times, which is
not ensured within function and pattern definitions, the shape needs to be computed
within the visitor.
To further support the implementation of the generator an extended visitor was
implemented. For the generation of source code it is currently necessary to know
the shape of every data element. The utilization of function nodes and call nodes
decouples the data flow from the definition of function templates. Therefore, the
shape of parameters needs to be replaced by the shape of the argument during
traversal. This allows for the reuse of existing algorithms for the AMT within
function nodes. Recursive calls are not covered by this, since the visitor is incapable
of branch prediction. This would lead to indefinite repetitions in the traversal of the
same node. The extended visitor extends the basic visitor definition and overwrites
the handle function for function and parallel call nodes.
The implementation of these handle functions evaluates the shape of the given
arguments and replaces the dummy shape defined within the function parameters
with the current shape of the arguments. Thus, the information on the shape
of all data elements is clearly defined before encountering them. To ensure the
correct behaviour of this extension, the handle function may not be overwritten
when implementing an instance of the extended visitor.

4.2 Transformation to AMT
The automatic generation of the AMT is a complex task which can be split into two
smaller tasks:

1. The generation of the basic AMT without synchronization and data transfers.

2. The subsequent generation of synchronization and data transfers, as explained
in Section 4.3.

To support a decent evaluation of correctness of the generated code, without con-
sidering potential implications induced by the global optimizations, two different
transformation processes were developed and implemented over the course of this
thesis.
The first process defines the transformation of the global optimizations into an AMT.
This transformation can be used for a complete compiler.
The second process implementation realizes a debug mode for the code generator.

22

4.2 Transformation to AMT

This debug mode evaluates additional parameters from the front-end to create an
artificial mapping. The artificial mapping can be used to evaluate the correctness of
the generated code in different circumstances. In Chapter 6 this feature is utilized
for such an evaluation.
In the following two subsections the transformations into an AMT are explained in
more detail.

4.2.1 Optimization to AMT
The first transformation process converts the global optimizations and the APT
into an AMT. This transformation is strongly dependent on the implemented opti-
mization package. At the point of writing this thesis only the implementation by
Trümper [?] was available providing the necessary information for the transforma-
tion. This implementation of the global optimizations introduces two important
data structures:

• The FlatAPT is an optimized version of the original APT. To improve the
global data flow of the application the direct descendant of the APT root is
abstracted into an ordered list of steps. A step is an unordered set of APT
nodes that are pair-wise data independent. Thus, the nodes within a step can
be executed in an arbitrary order. However, they must be finished before the
start of the following step.

• The mapping is a set of hash maps assigning different parallel pattern splits
to execution units. The different hash maps are also separated into consecutive
steps of parallel assignments.

– Pattern splits are wrapper for the partial execution of a parallel pattern.
– Fused pattern splits define a sequence of pattern splits which should

be executed in direct sequence without synchronization.

The AMT is generated by traversing the FlatAPT. As mentioned in Section 4.1
serial nodes and function nodes can easily be transformed by copying important
information and by transforming their children.
Parallel call nodes are mostly generated from the parallel pattern splits. In the
following passage, it is briefly explained how the different parallel call types for the
AMT are generated:

• Serialized parallel calls are generated when a parallel execution is not appro-
priate.

• Parallel calls are created when a pattern should be executed in parallel on the
CPU.

• GPU parallel calls are used when a pattern should be executed on a GPU in
parallel.

23

4 Abstract Mapping Tree

• Reduction parallel calls are utilized for reduction pattern calls regardless of
their execution device.

• Fused parallel calls are generated for fused pattern splits.

Two major challenges must be handled in order to implement the AMT generation.
The first challenge is that the steps of the mapping and the FlatAPT are not
aligned, since the FlatAPT contains steps with serial nodes which are skipped for
the mapping. This can be handled by searching the parallel patterns splits from the
FlatAPT within the mapping.
The second challenge is induced by computation on GPUs. To properly utilize the
performance of the GPUs architecture, pattern splits targeting the GPU should be
fused. The fusion of GPU nodes is recommended, since the global optimizations
map a pattern split only to a single streaming multiprocessor. Thus, a lot more
compute power can be utilized when fusing GPU nodes.
The APT only supports linearly aligned data accesses within patterns. Therefore,
input data which is aligned in their placement, results in linearly aligned output
data. Thus, the combination of multiple pattern splits considering the following
three conditions internally, enlarges the index range of a pattern and allows to utilize
architectural benefits of the GPU, e.g., the large amount of threads. Furthermore,
the restriction to linear data accesses enables the horizontal fusion of fused parallel
call nodes. This horizontal fusion can only be performed, if and only if these three
conditions are met:

1. The pattern splits must target the same GPU, since the utilization of a single
GPU should be improved.

2. The pattern splits must be based on the same APT node, because only identical
definitions can result in identical GPU kernels.

3. The pattern splits must be "connected". Which means that the index range of
the pattern splits must be combinable without creating any gaps, e.g. "0,1,2"
and "3,4" are combinable, but "0,1,2" and "5,6" are not, since values 3 and
4 would be missing in the index range. This condition must hold, since
the generation of GPU kernels cannot handle gaps in the index range, yet.
The condition could be omitted if GPU call nodes support multiple index
ranges and the generator could statically shift the data accesses based on
the thread_id. The implementation of a multi index range GPU call node
is complicated and could lead in the worst case to large memory overheads
during the source generation.

By identifying these three conditions an algorithm was designed which meets all
three conditions in the above presented order. The algorithm performs the follow-
ing steps:

24

4.2 Transformation to AMT

Listing 4.1: A simple Map.
1 TransformationSample {
2 map add1 ([Int] input) : [Int] res {
3 res[INDEX] = input[INDEX] + 1
4 }
5 seq main ():Int {
6 var [Int] initial = init_List ([LARGE_SIZE],1)
7 var [Int] result = init_List ([LARGE_SIZE],1)
8 result = add1 <<<>>>(initial)
9 return 0

10 }}

1. Splitting the set of all pattern splits available in the current step until the
three conditions for each subset are satisfied.

2. Ordering the subset based on the index range when solving the third condition.
This maximizes the size of the subsets.

3. Combine the pattern splits targeting the same GPU, if they are "connected".

4. Create a GPU pattern call based on the combined pattern splits and the
optimized call.

The algorithm is implemented during the generation of the AMT and can therefore
directly generate the fusing of GPU call nodes without considering the parallel
pattern splits individually.
As an example, to depict the AMT generation, in Listing 4.1 a large map is defined

which increments the values of initial and stores the resulting array in result.
The corresponding APT is depicted in Figure 4.1a, where the left most serial node
defines the code in lines 6 and 7, the map in line 8 and the right most serial node
line 9. The serial node below the map node is defined by the expression in line 3.
Considering a system with a single GPU, the global optimizations would utilize it
as much as possible, if the arrays are large enough. Assuming that the LARGE_SIZE
place holder is sufficiently large for GPU execution, the global optimizations would
map the execution to the GPU. Thus, creating a FlatAPT similar to the one depicted
in Figure 4.1c. The FlatAPT presents a set of map patterns mapped to the GPU. To
avoid a too large depiction, additional GPU maps are combined into the (. . .) node.
Based on the FlatAPT a basic AMT without data transfers and synchronization
is generated. The AMT in Figure 4.1b illustrates this basic AMT based on the
FlatAPT. Since our target architecture only comprises a single GPU, all GPU nodes
from the FlatAPT are combined into a single node within this basic AMT. The
generation of the synchronization and data transfers will be further explained in
Section 4.3.

25

4 Abstract Mapping Tree

main

Map:add1 Serial

Serial

Serial

(a) APT based on Listing 4.1.

main

GPUMap:add1 Serial

Serial

Serial

(b) Basic AMT based on Figure 4.1c.

main

...GPUMap:add1 GPUMap:add1 Serial

Serial Serial

Serial

(c) Optimized APT based on Figure 4.1a.
Executed with one thread

Parallel APT node

Executed on the GPU

Figure 4.1: APT, FlatAPT and AMT definitions based on the on the code in List-
ing 4.1.

4.2.2 Debug Mode

The second realization of the AMT generation is the debug mode defined and imple-
mented in the context of this thesis. The goal of this generator is to artificially create
scenarios, where the synchronization model and the code generator must create cer-
tain global optimizations. This includes the coverage of data transfers and synchro-
nization between different nodes and device. The debug mode is independent from
the global optimizations. Thus, different machine models and optimization strate-
gies do not influence the AMT generated with the debug mode. The quality of the
generated code in terms of correctness can then be evaluated without depending
on global optimizations. To reduce the complexity of this transformation only the
hardware mapping is recreated artificially. Reordering and NUMA-awareness opti-
mizations (see Section 3.4.1) are omitted, since they do not impact the correctness of
the application. Pipeline optimization can affect the generation of synchronization
points, but generally only affect the performance of the execution.

26

4.3 Synchronization Model

Listing 4.2: A simple Map transformed by the debug mode.
1 TransformationSample {
2 map add1 ([Int] input) : [Int] res {
3 res[INDEX] = input[INDEX] + 1
4 }
5 seq main ():Int {
6 var [Int] initial = init_List ([LARGE_SIZE],1)
7 var [Int] result = init_List ([LARGE_SIZE],1)
8 result = add1 <<<[0,0,0],[1,0,0]>>>(initial)
9 return 0

10 }}

Therefore, pipeline optimizations are omitted as well.
An individual mapping is defined as a triple [N,D,P]:

• N defines the node the call should utilize.

• D defines the device the call should utilize.

• P defines the processor the call should utilize.

The additional arguments are utilized to artificially assign these mappings to a par-
allel pattern. The additional arguments are defined within the "<<< >>>" caption
and can contain arbitrarily many mappings. If more than one mapping is defined
the index range is divided between the different mappings. Listing 4.2 defines the
same basic example as Listing 4.1. The codes differ in line 8, which defines the
additional arguments for Listing 4.2. The example in Listing 4.2 defines two map-
pings: [0,0,0], [1,0,0]. Thus, the debug mode splits the index range into two
equal parts. The first part, defined by [0,0,0], executes on the first processor of
the first device on node 0. The exact definition of the hardware depends on the
input provided by the HL (see Section 3.2.1). The second part, defined by [1,0,0],
executes on the first processor of the first device on node 1. This pair of mappings
enforces the generation of data transfers and synchronizations between two nodes
by the synchronization model.
The creation of an artificial mapping replaces the transformations required from
the optimized code. The generation of the structure of the AMT and the node
definitions is the same for the debug mode and the optimization transformation.

4.3 Synchronization Model
The last step of the AMT generation is the generation of synchronization points
and data transfers. As part of this thesis a modular synchronization package was
implemented to generate synchronization and data transfer nodes.

27

4 Abstract Mapping Tree

The synchronization model is implemented as a standalone tool utilizing the AMT
implementation. The AMT does not specify the implementation of the synchro-
nization model, as such the synchronization model can be exchanged by different
implementations.
In this section the implementation developed over the course of this thesis will be
discussed.
To generate a synchronized AMT based on a given basic AMT, two requirements
need to be satisfied:

1. The basic AMT needs to be flat, e.g., all parallel calls must either be direct
descendants of the root node or be executed sequentially. This requirement
may not be necessary for other implementations of a synchronization model.
For the approach implemented in this thesis it strongly reduces the complexity
of the task without restricting the application programmer. A flattening of the
APT is both implemented for the APT and the global optimizations. Thus,
this requirement is sufficiently fulfilled by previous steps.

2. Each node needs to exactly define the incoming and the outgoing data flow.
The information on the data flows is generated within each node of the AMT
based on the data accesses within the node and the index range, e.g., for the
example in Listing 4.2 the synchronization model would define initial from
0 to LARGE_SIZE - 1 as the incoming data flow for the complete pattern call
in line 8, disregarding the pattern split by the additional arguments.

The optimization of synchronization and data transfer nodes is out of scope for this
thesis. Thus, the model generates the synchronization and data transfer nodes as
soon as possible avoiding potential deadlocks and data races. The execution of serial
nodes must be done on the default device. The default device is generally defined
to be the first CPU of the node with rank = 0.
The code generation is defined by the following execution steps:

1. Parallel Groups: In the first step the parallel pattern calls within the AMT
are grouped according to their former APT node. These parallel groups are
used to avoid early synchronization and subsequent data races or deadlocks.
The parallel group associated with a parallel call node is always known by
the node. For each parallel group it is also known if a member is the first
to be handled or the last. Therefore, data transfers and synchronization
can be generated for each parallel group. The data needed by all members
of the group can be transferred before the first member begins computation
and synchronization steps affecting all members can only be done once each
member has started the computation.

2. Definition of the Initial Flow: The second step creates initial values for
the current placement of all variables available in the scope of the root node.
The initial placement for each variable is defined to be in the main memory of
the default device.

28

4.3 Synchronization Model

main

GPUMap:add1Trans1 Sync Trans2 Serial

Serial

Serial

Figure 4.2: AMT with Synchronization and data transfers based on Figure 4.1b.

3. Node Traversal: The following steps are repeated for each child node of the
root. The order of the traversal is defined by the order of the nodes within
the basic AMT.

4. Dynamic Programming Handling: If the current node is a parallel pattern
call referencing a dynamic programming pattern, data transfers and synchro-
nization within the time step loop are generated. The synchronization specifies
all execution units taking part in the dynamic programming recursion. The
data transfer sends all written data to all participating execution units. The
generated nodes are added to the specification of the parallel call node.

5. Synchronization Point: The current data placements are compared with
the data flow of the current node. If the current node is a parallel pattern call
and all other members of the same group were already traversed, all execution
units used by the parallel group are synchronized. This step creates a barrier
node after the current node.

6. Data Transfers: The current data placements and the data flow of the next
child node are compared. The incoming data flow of the next node and the
current data placement detects overlapping data slices on different devices. In
this case a data movement is generated after the current node specifying the
data do be transferred. Since data placements can be arbitrarily small they
are maximized in order to reduce the overall latency.

7. Update Placements: The current data placements are updated in relation
to the data transfers occurring and write accesses discovered in the previous
steps. The new data placements are maximized in order to reduce the runtime
of the algorithm. Data placements written to in the current step are erased
from all other devices.

Figure 4.2 depicts a synchronized AMT based on the AMT in Figure 4.1b. The
AMT was generated by an implementation of the algorithm above. The first data
movement node in Figure 4.2, named Trans1, defines the data transfer from the CPU
to the GPU. The added barrier node Sync defines the synchronization of the CPU

29

4 Abstract Mapping Tree

and the GPU. The synchronization is necessary to ensure that the computation on
the GPU finished before utilizing the result. Afterwards, the second data movement
node Trans2 defines the data transfer from the GPU to the CPU in order to evaluate
the results on the CPU.

30

5 Code Generation
The code generator designed and implemented in this thesis, defines and executes
the transformation from the AMT into a code which can be interpreted by a ma-
chine. As such, it is possible to generate binary files which can be executed directly
by the machine. Another possible approach is the definition and implementation of
a source-to-source compiler. For a source-to-source approach the generator trans-
forms the AMT into optimized source code.
In this chapter, the requirements for the implemented code generator are defined.
Afterwards, the design decisions and the corresponding implementations are dis-
cussed. Finally, the structure of the generator is explained.

5.1 Requirements
The concept of the code generator is dependant on the AMT extending the IR. The
AMT itself is designed to cover features from the optimizations implemented by
Trümper [?] and the available hardware. This leads to a set of requirements induced
by the optimization package, the targeted hardware and the IR.

5.1.1 Hardware
The hardware currently targeted by the overarching project covers CPUs and GPUs
on different machines. Therefore, it is required to also generate code targeting those
systems.
Regarding the architectural differences between the targeted systems the following
requirements for the generated code can be derived:

• The generated code should at least support shared-memory parallelism,
distributed-memory parallelism and GPU offloading.

• The generated code needs to be able to synchronize an arbitrary subset of
devices with each other.

• The generated code must be able to transfer data between an arbitrary pair
of devices.

These three requirements define the minimal capabilities necessary to correctly uti-
lize the targeted architectures. The synchronization of multiple device is necessary
in order to avoid data races between computations depending on each other.

31

5 Code Generation

At this point it is assumed that each computation always fully utilizes the device.
The data transfers between devices are necessary because the GPU typically cannot
access the main memory. The CPU has to handle the data transfers to and from the
GPU. Additionally, machines do not share a memory space in general. Therefore,
the necessary data needs to be actively communicated between machines.

5.1.2 Optimization Representation
The optimizations implemented by Trümper [?] are represented by the AMT, e.g.,
pipeline optimizations are defined in fused parallel call nodes and the mapping is
represented by an assignment to a processor within the HL (see Section 3.2.1).
The following requirements are derived, in order to correctly represent the optimiza-
tions in the generated code:

• Shared-memory parallelism:
Each processor defined in the HL must be accessible. This requirement is
necessary in order to correctly implement the hardware mapping, since tasks
are assigned to these processors.
It has to be clarified on which physical core a thread is executed. In order to
correctly generate the optimized hardware mapping, since the costs for moving
data from one processor to another might be different. For example, NUMA
nodes can have different latencies and bandwidths between different pairs of
sub-NUMA clusters.

• Distributed-memory parallelism:
Each node must be accessible individually in the order defined in the HL.
Therefore, it has to be explicitly clarified during the generation and optimiza-
tion which node handles which tasks. This has an impact on the communica-
tion cost between nodes and can influence the correctness of the computation,
if the used nodes are not identical.

• GPU offloading:
The generated code must have access to each device specified in the HL and
can be used individually in order to realize the defined hardware mappings.

• Pipelining:
Parallel calls within a pipeline should not be synchronized with each other,
since the optimization already discovered, that the structure is synchronized
implicitly. Further, the parallel calls are capable of implementing a loop fusion
behaviour.

These requirements are represented within the AMT, but are originally derived from
the optimization.

32

5.2 Target Language

5.1.3 Intermediate Representation
Most requirements are indirectly dependant on either the targeted hardware or
the optimizations. Although, some design decisions for the IR directly affect the
generated code. These requirements are derived from the APT and AMT definitions
and are defined as follows:

• Data structures: The IR is currently only capable of utilizing multi-
dimensional concatenated data structure, e.g., arrays. Therefore, it is sufficient
to support only these data structures within the generated code.

• Memory management: The memory management is not explicitly stated by
the IR. In order to generated correct code, the code generator must be capable
of handling the memory allocation and deallocation during the generation.

5.1.4 Design Decisions
Based on the requirements stated in the previous sections, the following design
decisions for the generated code must be made. These design decisions focus on
both the code generator and the generated code:

1. Selection of a target language.

2. Selection of programming models for the individual target architectures.

3. Selection of data structures utilized by the generated code.

4. Generation of the parallel patterns based on the target architecture and the
programming model.

5. Definition of the memory management for the different architectures.

6. Selection of strategies ensuring correctness of the generated code.

These design decisions are discussed in the following sections as well as the imple-
mentation of the selection.

5.2 Target Language
The target language is the most basic decision made in this thesis, since it affects
all following decisions. By considering the performance of the generated output the
following three alternatives are the most applicable for the generated code:

• Binary Code: The first alternative, is the creation of executable binary files.
This approach is highly complex and time consuming to implement. The
generation of binary files would only benefit from the global optimizations
performed by the optimization package. Existing local optimizations like

33

5 Code Generation

vectorization would have to be implemented specifically for a generator. The
implementation of these local optimizations would be necessary in order to
achieve performance results comparable to existing production compilers and
frameworks such as the GNU compiler, the Intel compiler or LLVM compiler
frameworks.

• Fortran: The generation of Fortran code is another alternative. This ap-
proach makes use of source-to-source compilation. With source-to-source com-
pilation the generator produces parallel Fortran code which can be compiled
by production compilers to utilize local optimizations. The generation of For-
tran code allows to reuse most of the more well-known parallel programming
models while also creating fast code with production compilers.

• C/C++: C code supports a similar set of parallel programming models as
Fortran and is another source-to-source compilation approach. Furthermore, C
code also performs similar to Fortran. C++ code supports the same concepts
as C code, while providing a much larger variety of standard functionalities.

C++ provides a lot of functionalities, which greatly simplify the realization of IO
and array functions, especially the utilization of C++ templates was a deciding
factor.
Therefore, C++ as a target language is utilized for the code generator to be applied
in this thesis.

5.3 Shared-Memory Parallelism
5.3.1 Programming Model
As stated in Section 5.1, the generated parallel CPU code must fulfil two require-
ments defined by the optimization. Firstly, the individual threads must be mapped
to the hardware in order for the optimizations to target the hardware correctly.
Secondly, each thread must be accessible individually (or at the very least in small
groups defining a processor in the HL) in order to correctly realize the optimization
with the generated code.
Hardware dependant programming models like the Cray XMT [?] are not applicable
for the code generator, since they cannot support different architectures. Program-
ming models like MapReduce [?] or fork-join [?] are not capable of defining different
parallel patterns efficiently, in terms of performance or implementation complexity.
The two most applicable parallel programming models for the generated code are
OpenMP and PThreads.

• OpenMP [?] is a very prominent CPU parallel programming model. The
OpenMP programming model introduces compiler directives to automatically
parallelize structured blocks. Thread pinning with OpenMP is also possible.
But assignments of tasks to individual threads is not possible with OpenMP.

34

5.3 Shared-Memory Parallelism

• PThreads [?] is defined by the C standard for UNIX systems and provides an
interface for using the underlying hardware threads. By utilizing OS-callbacks
like pthread_setaffinity_np the newly created threads can be pinned to
specific cores. PThreads only supports a single task per thread. A threads
pool implementation would be necessary to reuse existing threads avoiding
additional overhead. Existing thread pool implementations mostly support a
single task queue shared by all threads. To assign the tasks to an explicit
thread a new thread pool implementation is necessary.

It is necessary to assign a task to a specific subset of threads which is not possible
with OpenMP. It is possible to define the mapping of threads to specific cores
and utilize a subset of all possible threads to handle a given task with OpenMP.
Although, the arbitrary assignment of these subsets is not possible with OpenMP.
While generating OpenMP code would definitely be the simpler task, the goal of this
thesis is to generate code based on the given optimizations. Thus, a programming
model which cannot express the assignment of tasks to threads on the same level
as the optimization is not desired. The ability to reuse dynamic optimizations and
other features from OpenMP are beneficial. To meet the requirements and model
the generated code as closely to the optimization as possible PThreads was chosen.

5.3.2 Implementation
The thread pool implementation is important for the CPU parallelization. As
mentioned in Section 5.3.1, PThreads is utilized to implement a thread pool and
CPU parallelization. The thread pool is designed to run each thread individually.
The approach followed in the implementation provided by this thesis defines a work
queue for each thread where only the main thread adds tasks. Therefore, dynamic
parallelization approaches are not implemented for this thread pool. It is possible
to improve the implementation by utilizing the HL structure of processors. Since,
a single processor contains multiple cores, a hybrid implementation could be used.
This hybrid implementation would define a task queue for each processor. Thus,
the parallel CPU code would benefit from both dynamic and static optimizations.
To properly utilize the thread pool it needs to be initialized before the parallel
execution and destroyed when the computation is finished. The thread affinity is
defined during the initialization and pins thread 0 to core 0, thread 1 to core 1 etc.
Currently, multi threading is not supported, but could be added by introducing an
additional parameter defining the number of hyper threads per core.
The thread pool uses a C++ standard vector to define the individual threads. Each
thread consists of a set of attributes wrapped in a C++ class:

• thread: The actual pthreads thread object executing the tasks.

• workBuffer: A vector of C++ standard functions defining the task queue of
the thread. The queue is implemented as a ring buffer with a fixed size.

• head: The index of the current first element of the ring buffer.

35

5 Code Generation

• tail: The index of the current last item of the ring buffer.

• size: The number of tasks within the ring buffer. It is used to avoid corner
cases and error messages on an empty or full queue.

• result: The result of the thread creation, used to handle errors from pthreads.

• concluding: A boolean value indicating if the pool should get destroyed once
the task queue is empty.

• queueLock: A mutex to avoid data races when accessing the task queue. A
lock free implementation would be preferable.

In order to avoid the synchronization of more threads than necessary, only the
threads inducing a data race need to be synchronized. To realize this task, the bit
mask is implemented to define synchronization. The bit mask data structure de-
fines a pthread barrier and a bit mask defining the synchronization partners. The
synchronization is then realized by adding a task executing the barrier to the task
queue. If necessary, the threads can be synchronized just with each other or with
the main thread.
The thread pool can be initialized by specifying the number of threads and a
vector containing the threads. Once the pool is created the execution behaviour
needs to be initialized via a function call. The function defines the thread affin-
ity by setting an affinity mask for each threads and enforcing the affinity with the
pthread_setaffinity_np OS callback. The function further initializes the queue
lock and handles errors during the initialization. The destruction of the thread pool
first tells all threads to finish their task queue. Once, a thread has finished its tasks
it joins the main thread again. The thread pool is designed to support an individual
thread pool for each node specified in the HL.
In Listing 5.1 the utilization and initialization of a thread pool is defined. The

numbers are based on two nodes from the CLAIX 2018 cluster [?] equipped with
two Intel Xeon Platinum 8160 with 24 cores each. Thus, resulting in 48 CPU cores
per node. Listing 5.1 is extracted from generated code. In order to simplify the
code some details are omitted. In line 1 the variable NUM_CORES is defined. It is
used to define the number of cores for each individual MPI rank. Lines 3 - 7 ini-
tialize the MPI environment. When the MPI environment is initialized the value
of NUM_CORES is set for each node (see lines 8 - 12). Since, two identical nodes are
used the values do not differ. When utilizing nodes with different architectures, the
thread pools can have different sizes. In line 13 a vector with NUM_CORES elements
is created. The thread pool becomes the utilized thread pool when the setPool
function is used. This function takes a reference to the thread pool and indicates
that the memory for the thread pool is allocated. The startExecution call handles
the initialization and thread pinning. Once this function is called the thread pool
can be utilized for parallel execution similar to MPI_Init. The individual tasks are
defined as lambda functions capturing the original input and output (see line 18 -

36

5.3 Shared-Memory Parallelism

Listing 5.1: Example usage of the thread pool.
1 int NUM_CORES ;
2
3 int rank , nprocs;
4 MPI_Status Stat;
5 MPI_Init (&argc , &argv);
6 MPI_Comm_size (MPI_COMM_WORLD , &nprocs);
7 MPI_Comm_rank (MPI_COMM_WORLD , &rank);
8 if (rank == 0) {
9 NUM_CORES = 48;

10 } else if (rank == 1) {
11 NUM_CORES = 48;
12 }
13 std :: vector <Thread > pool(NUM_CORES);
14 setPool (& pool);
15 startExecution ();
16 // variable initialization
17 if (rank == 0) {
18 auto f_0 = [initial , &result] () {
19 for (int INDEX = 0; INDEX < 0 + 8; ++ INDEX) {
20 result [(INDEX)] = initial [(INDEX)] + 1;
21 }
22 };
23 getPool () ->at (0). addWork (f_0);
24 // partial operations for threads 1 to 23
25 }

22). The lambda function computes a subset of the workload which is computed
during the generation. The workload for the task in lines 18-22 handles the index
range from zero to seven, as specified in the loop in line 19. The task is added to
the task queue of thread zero in line 23. The lambda functions defining the tasks for
threads one through 23 were omitted. The last task for every processor handles all
iteration that could not be assigned to the previous threads. Thus, thread 23 might
have a slightly larger workload compared to the other threads. This load imbalance
is necessary in order to ensure the correctness of the computation.
In some cases, it is not possible to perfectly balance the work for a given number
of threads. For example, a pattern with three iterations cannot be perfectly par-
titioned for two threads. The result of the last computation is still necessary for
the correctness of the computation and the number of threads cannot be changed.
Therefore, one thread has to handle a larger workload than the other. For the cur-
rent implementation it was decided, that the last participating thread has to handle
this increased workload. Thus, thread one handles the first iteration and thread two

37

5 Code Generation

Listing 5.2: Example usage of the thread pool for synchronization.
1 if (rank == 0) {
2 Bit_Mask * mask_ptr = new Bit_Mask (48, true);
3 for (int i = 0; i < 24; ++i) {
4 mask_ptr -> setBarrier (i);
5 }
6 boost :: shared_ptr <Bit_Mask > boost_mask_ptr (mask_ptr);
7 self_barrier (boost_mask_ptr);
8 }
9 finishExecution ();

handles the second and third iterations. This implementation can still be optimized.
The remaining workload, in some scenarios, with more than two threads can still be
assigned more equally.
Listing 5.2 defines the use of the bit mask for synchronization. In line 2 the bit mask

object is created. The first argument defines the total number of threads within the
thread pool. The second argument defines whether all threads are used for synchro-
nization initially or none. true means none are used initially, while false indicates
that all threads should be synchronized. The code in Listing 5.2 is executed directly
after the example in Listing 5.1. Thus, the barrier is set for the first 24 threads
as seen in the loop in lines 3 - 5. In order to preserve the pointer to the barrier
the object pointer is wrapped in a shared pointer provided by the boost library [?].
Boost is widely known and accepted C++ library. The library supports header-only
implementations for many of their applications, such as the shared pointers. The
header-only libraries adopt the functions used during compilation minimizing the
induced overhead during computation.
The self_barrier function in line 7 then synchronizes the threads defined in the
shared pointer with the main thread. barrier would only synchronize the threads
with each other. The function finishExecution in line 9 destroys the thread pool
as explained before.

5.4 Distributed-Memory Parallelism

5.4.1 Programming Model
The communication between nodes is generated utilizing MPI [?] in the generated
code. MPI is a message passing interface well known within the HPC community.
The MPI standard supports data transfer between nodes with different communi-
cation schemes,e.g., point-to-point and collective operations like a reduction. Espe-
cially, the support for collective operations like the before mentioned reduction can
be utilized to efficiently implement data transfers and parallel patterns.
There are other programming models for distributed-memory programming such as

38

5.4 Distributed-Memory Parallelism

GASPI [?] which could be considered, but do not provide the same level of support
MPI does. Therefore, MPI was chosen for the implementation of the code generator
for this thesis.

5.4.2 Implementation
The generation of parallel code across multiple nodes is realized with MPI in this
thesis. The programming model introduced by MPI is based on the direct commu-
nication between nodes via messages. In this thesis mostly the point-to-point com-
munication is utilized to transfer the data between nodes. Although, the structure
to analyse the communication behaviour and make use of collective communication
is provided. The use of collective communication patterns is out of scope for this
work.
During the generation of the AMT the data transfer nodes are grouped by data
elements and all necessary data as well as the current placement of data is provided.
The generation of data transfers can be adopted to enable faster communication
patterns. Therefore, data transfer nodes need to be more specialized in order to
realize more complex communication patterns.
To correctly generate code for multiple nodes two problems needs to be solved:

1. Handling of sequential execution.

2. Handling of the memory management.

Sequential code should, per definition, be executed exactly once. Thus only a single
node should compute sequential results. To implement a strategy solving the first
challenge a single node must be chosen. There are two applicable strategies when
choosing a node for the sequential computation:

• Global: One possibility is to select a node from the beginning, e.g., sequential
code must always execute on rank zero. By analysing the amount of potential
data transfers for each node, the choice could be optimized in order to minimize
the amount of data transfers.

• Local: The other possibility is to select the optimal node for each serial
block individually, optimizing the data transfers locally. Therefore, it would
be possible to change the node computing sequential code every time. The
implementation of this strategy is dependant on the optimization results and
is much more complex to implement compared to a global selection.

The implementation of the code generator currently utilizes a fixed global selection
for simplicity. Sequential computations are all executed on the first node (rank
zero). The performance benefits from improving the global selection or utilizing a
local selection. This can be analysed in the future.

39

5 Code Generation

Secondly, the memory model of generated distributed-memory parallelism needs
to be defined.
Three general strategies for the allocation of memory are possible:

• Complete allocation: The memory for all data elements is fully allocated on
every node. The data transfers only need to move the most recently changed
chunks of data between the nodes.

• Dependency complete allocation: Only the memory for data elements
which are used on the respective node are allocated completely. The data can
be transferred similar to the complete allocation strategy.

• Partial allocation: Only the memory currently used on the node is allocated.
When the data is changed on a another node, it has to be deallocated. The
data transfers need to handle the allocation and deallocation of the transferred
data in order to minimize the memory overhead. Further, the generated code
needs to be adapted in order to handle the offsets induced by this strategy, e.g.,
for a map which computes half of its workload on a different node, memory is
allocated for half of its in- and outputs. Since the data accesses for the second
half also starts from zero, all accesses to this data need to be adapted.

The partial allocation strategy would need to be tested, since the allocation and
deallocation will result in a runtime overhead for both the generated code and the
compiler. Potentially, a partitioned global address space (PGAS) model can be
utilized in the future. A PGAS model would allow direct memory access on remote
memory. Approaches are already implemented by GASPI [?] and could be utilized to
generate distributed memory parallelism. MPI does also provide support for direct
memory accesses. By specifically optimizing data transfers and utilizing existing
features could further improve the performance of distributed memory programming.
One example that already utilizes collective operations provided by MPI is the
parallel reduction pattern. MPI supports the reduction of arrays over multiple nodes
for a predefined set of combiner functions: Maximum, minimum, summation and
multiplication. The generator utilizes the collective MPI_Reduce function in order
to combine the temporary results of partial reductions into a single result. Similar
optimizations could be performed in the future, when splitting data for computation
on multiple nodes, e.g., the MPI_Scatter and MPI_Gather functions could be used.
Due to the limited time available for this thesis the complete allocation strategy is
implemented. The dependency complete allocation would be a reasonable approach
for the next steps.

5.5 GPU Offloading
5.5.1 Programming Model
The restrictions for GPU programming models are met by most of the well-known
GPU programming models, since multi GPU programming is an important feature

40

5.5 GPU Offloading

for many applications. Thus, the more important aspect of the chosen GPU pro-
gramming model is the potential performance. The following three programming
models are the most suitable for the generated code:

• OpenMP [?] does also support GPU programming. The additional compiler
directives allow the choice of a specific GPU with the device clause. The
behaviour of the GPU computation is handled by additional compiler direc-
tives. The compiler directives further include the definition of data transfers.
Generating CPU and GPU code with OpenMP could greatly simplify code
generation, since two types of parallelism can be handled by a single program-
ming model.

• OpenACC [?] similar to OpenMP parallelizes code with compiler directives.
The compiler directives provided by OpenACC provide the same capabilities
as OpenMP. There are frameworks which transform OpenACC and OpenMP
code into one another, such as CCAMP by Lambert et al. [?]. OpenACC does
not support CPU parallelism.

• CUDA [?] in contrast to OpenMP and OpenACC, directly utilizes the driver
callbacks for the GPU. Since CUDA is designed by NVIDIA, the level of
freedom and in turn the potential performance is high. Additionally, CUDA
supports many runtime libraries which can be reused. When generating CUDA
code the generator has to handle data mapping and transfers automatically.
A simple CUDA generation can be used as a baseline and be further improved
in the future.

Using CUDA, especially in combination with PThreads, it is possible to create
threads specifically tasked with handling the GPU offloading asynchronously. Since
the AMT defines synchronization points for individual execution units asynchronous
offloading does not cause data races. For the generation of GPU code, CUDA was
chosen, due to its performance potential.

5.5.2 Implementation
For the generation of GPU code it was decided to utilize CUDA as discussed above.
The direct combination of CUDA code and MPI code is not fully possible, due to the
existing compilers. There are CUDA-aware implementations of MPI, these support
the CUDA runtime during compilation. But the CUDA kernel generation is not
supported by the CUDA-aware MPI. Thus, at least a kernel wrapper needs to be
generated in an additional file. This file can be compiled by the NVIDIA CUDA
compiler and linked with the compiled main code.
Since, the goal of this thesis is to generate code compatible with many architectures
and compilers a CUDA-aware implementation of MPI should not be assumed. Thus,
the complete CUDA runtime must be compiled in a separate file, which must be
generated. In order to avoid additional overhead by wrapping every single callback,
two functions are defined and generated.

41

5 Code Generation

Listing 5.3: A GPU Kernel defining a map which increments each element.
1 __global__
2 void kernel_cuda_wrapper_increment (int32_t * initial ,

int32_t * result) {
3 int tid = blockIdx .x * blockDim .x + threadIdx .x;
4 int exec_range = 0;
5 if (tid < 100) {
6 exec_range ++;
7 }
8 for (int range_iterator = 0; range_iterator <

exec_range + 0; range_iterator ++) {
9 int INDEX = tid * exec_range + range_iterator +

100;
10 if (tid < 100) {
11 INDEX -= 100;
12 }
13 result [(INDEX)] = initial [(INDEX)] + 1;
14 }
15 }

• GPU Wrapper: This function defines the wrapper which is called by the
main file. The function handles the memory allocation on the GPU as well
as the data transfers between CPU and GPU. Further, the GPU kernel is
executed in this function.

• GPU Kernel: The GPU kernel implements the logic defined by the appli-
cation programmer. In order to ensure the correctness of the call additional
control structures are generated.

The GPU kernel in Listing 5.3 and the GPU wrapper in Listing 5.4 implement
a map which increments the value of initial and store it in result. Both list-
ings contain generated code which removed randomly generated suffices to increase
readability. These suffices are utilized to differentiate variables and function calls
that are similar. This helps by avoiding unintentional multi-specifications during
the code generation.
To simplify the generation of the wrapper and the kernel they are executed exactly
once with the corresponding input and output. The current example defines the
second half of a map with 200 elements. The last argument of the GPU wrapper
call (Listing 5.4) always defines the output. At first the device pointers are declared
(see lines 2 and 3). In line 4 the device pointers are used to allocate memory on
the GPU. Since, this wrapper computes half of the 200 element map, 100 elements
are allocated. If the offset between multiple input elements or the output element
is different, more memory is allocated to maintain the correct proportions of the

42

5.5 GPU Offloading

Listing 5.4: A GPU wrapper defining the data transfers and allocations for the kernel
in Listing 5.3.

1 void cuda_wrapper_increment (int32_t * initial , int32_t *
result) {

2 int32_t * d_initial ;
3 int32_t * d_result ;
4 cudaMalloc (& d_initial , sizeof(int32_t) * 100);
5 cudaMemcpy (& d_initial [0], & initial [100] , sizeof(

int32_t) * 100, cudaMemcpyHostToDevice);
6 cudaMalloc (& d_result , sizeof(int32_t) * 100);
7 kernel_cuda_wrapper_increment <<<1, 168>>> (d_initial ,

d_result);
8 cudaMemcpy (& result [100] , & d_result [0], sizeof(int32_t

) * 100, cudaMemcpyDeviceToHost);
9 cudaFree (d_result);

10 cudaFree (d_initial);
11 }

parallel pattern. The data transfer in line 5 copies the second 100 elements of the
input to the device. If the proportions need to be handled, the start value of the
device pointer is increased. Thus, the halo data is only allocated but not transferred.
Since the wrapper only handles the second half of the map the data transfer starts
at the 101st element of the input. The allocation and transfers are generated for
each input parameter. The allocation of output memory on the device in line 6 is
handled in the same way as the allocation of input variables. For reductions the
output is replaced with a temporary array which stores the result of each block and
is reduced in an additional step to a single value on the GPU.
Line 7 defines the kernel call with CUDA. In this case there were no kernels fused
thus only one block is used. Further, each block utilizes 168 threads. The threads
are composed of the 64 FP32 cores, the 32 FP64 cores, 64 INT32 cores and 8 Ten-
sor Cores [?]. To execute a task with 100 iterations on the GPU is not applicable.
Especially, when the number of threads is higher than the potential parallelism. For
example, checking the correctness of the generated code is applicable. In line 8 the
result computed on the GPU is transferred back to the CPU, since only the second
half is computed the data transfer starts at index 100 of the CPU array. The data
transfer and the kernel execution both execute on the default CUDA stream, thus
they are synchronized implicitly and explicit synchronization is not necessary. In
the end (lines 9 and 10) the memory on the GPU is deallocated to avoid memory
leaks on the GPU.
The GPU kernel in Listing 5.3 defines the computation on the GPU. As mentioned
before, in order to ensure the correctness of the kernel regardless of the number of
threads, additional branching is introduced. In line 3 the id of the current thread is

43

5 Code Generation

computed. This is necessary to assign an index range for each thread. Line 4 defines
the size of the range per thread. Since the number of threads (168) is larger than
the number of iterations (100) exec_range becomes 0. The first 100 threads have
their workload increased by one iteration in lines 5 - 7 because not all iterations are
covered by the exec_range.
The first threads are chosen in order to optimize the branching behaviour of a warp.
A warp is a group of threads. For NVIDIA GPUs the warps generally have size 32.
During the execution, all threads within a warp compute the exact same steps which
are chosen by the first thread within the warp. Thus, for branches used only by a
subset of a warp, the performance is worse, since some threads need to completely
redo the computation.
Thus, only a single warp contains diverging threads minimizing the potential per-
formance loss. In lines 8 and 9 the INDEX variable is defined according to the index
range of each thread. Potential offsets are handled by the loop header in line 8.
The value of exec_range can be different for different threads. Hence, the complete
offset must be handled for the threads with a smaller index range. In the example
in Listing 5.3 100 threads get an additional increased range leading to an offset of
100 for the threads with a smaller range. This holds since 𝑟 * 𝑚 + 𝑚 = 𝑟 * 𝑛∀𝑟 ∈ N
holds for ∀𝑛, 𝑚 ∈ N with 𝑛 = 𝑚 + 1. This shows, that for an arbitrary amount of
threads 𝑟 can have their workload increased by one and the correct ranges can still
be computed. To ensure an optimal branching behaviour the offset added in line 9
must be subtracted for all threads with the increased range (see lines 10 - 12). In
line 13 the logic for each iteration is generated.
For the generation of reduction patterns the recombination is generated according
to the examples provided by NVIDIA [?]. However the examples do not cover newer
architectures like the NVIDIA Volta GPUs [?]. Volta GPUs have a program counter
for each thread unlike older architectures with a program counter per warp. Thus,
the threads within a single warp can diverge leading to data races during the warp
wide reduction. Therefore, additional synchronization steps within the warp were
introduced in order to avoid data races.
The utilization of the wrapper function forces the executing thread to remain in the
function until the corresponding kernel and data transfers are completed. Thus, the
execution on the main thread is not desirable. The management of asynchronous
behaviour in the limited scope of the wrapper is highly complex and introduces a
substantial overhead in terms of time and memory usage. The solution to this issue,
implemented in this thesis, makes use of the thread pool implementation discussed
in Section 5.3.2.
By introducing a second smaller thread pool, the GPU wrapper can be parallelized.
The GPU pool is handled exactly as the normal thread pool. To explicitly handle
the GPU pool the known functions are extended. The thread pinning is not neces-
sary for the GPU pool but it could improve the performance if the core is physically
close to the GPU. The current implementation utilizes one thread per GPU.
By utilizing the existing thread pool GPU code only needs to call the wrapper in
a lambda function and assign the lambda function to a GPU. Further, the data

44

5.6 Data Structures

transfers between GPU and CPU are already covered by the wrapper. Synchroniz-
ing a GPU is realized by generating a barrier task for the GPU similar to the CPU
parallelization.

5.6 Data Structures
Data structures are an essential part of parallel programming. Currently the APT
only supports arrays as data structure. Thus, it is sufficient to support simple
concatenated data structures. In the context of C++ as the target language, the
following data structures are the most suitable to be used alongside the chosen
programming models:

• C Arrays are supported by all programming models. Though they do not
support arbitrary nesting to create multi-dimensional arrays. Thus, the di-
mensionality of an array must always be known for accesses, needing an inline
implementation by hand. Further, the memory management needs to be con-
sidered, adding further complexity.

• C++ Standard Vectors are a data structure defined by the C++ standard.
They can be nested into each other arbitrarily and the memory management
is handled automatically by an allocator. The standard vectors are supported
neither by CUDA nor by MPI. Even if it is possible to directly access the
underlying C array, for nested vectors the underlying array must be accessed
arbitrarily often to access the values. Thus, for CUDA and MPI operations
the data would need to be transformed every time.

• Thrust vectors are a data structure introduced by the thrust library for
CUDA [?]. The thrust vectors cannot be nested, but multi-dimensional data
structures can be emulated in the same way as C arrays. While thrust vectors
would allow an integration of the thrust library and corresponding performance
improvements, it is incompatible with MPI. Thus, needing to transform the
data structure for every data transfer.

The transformation of data structures depending on the parallel context is costly
during the runtime. Furthermore, a context dependant generation of data is highly
complex and error prone. The inlining process is slightly complicated, but it does
not strongly impact the performance of the generated code. A drawback of the
inlining is the continuous generation of local variables in the root node, increasing
the memory usage of the application. The transformation of data structures are
assumed to create a greater overhead in either runtime or memory. Therefore, the
data structure chosen, in the context of C++, for the implementation in this thesis
were C arrays.
The memory management for different nodes is solved by utilizing the structure of
the AMT. Both the variable scope of the current node and the parent are known.
Thus, before generating any child nodes the variables can be initialized. Further,

45

5 Code Generation

File Generator AMT to Source Generator Expression Printer

Figure 5.1: Nested order of the File Generator, the AMT to Source generator and
the Expression Printer.

upon reaching the last child or a return statement, the memory allocated by the
local variables can be freed.

5.7 Code Generator Tool
The generator is designed to only depend on the AMT. As a result of this depen-
dency, the generator can be implemented by utilizing a visitor pattern for the AMT,
as discussed in Section 4.1.1. The use of the visitor simplifies the addition of new
nodes in the AMT, since only the respective visitor functions for the new node needs
to be defined.
The code generator designed in this thesis can be separated into three different parts:

1. File generation: The creation of output files utilizing FreeMarker [?] tem-
plates and the MontiCore [?] template engine.

• FreeMarker is a template engine used for the creation of template based
text files with changing data.

• The MontiCore template engine utilizes FreeMarker and builds upon it
with their generator functions.

2. AMT to source generation: The traversal of the AMT and the transfor-
mation of AMT nodes to a string.

3. Expression generation: The generation of expressions, since they do not
follow the tree structure of the AMT.

Figure 5.1 depicts the hierarchy in which the File Generator calls the AMT to Source
Generator and the Expression Printer.

5.7.1 File Generation
As mentioned before, the generation of files utilizes the template engine provided
by the MontiCore language workbench [?]. With the template engine a set of
templates for different output files can be generated with FreeMarker templates. By
defining a generator helper, contents based on the AMT generation can be added
dynamically to the defined templates. This allows a static and dynamic definition of
different output files,e.g., runtime libraries, program entry points and Makefiles. The
generator and the generator helper utilize a given AMT to fill the templates. In order
to simplify the generation of the output, multiple files are generated. The generated
files include a program entry point, multiple libraries, header files and utility files

46

5.7 Code Generator Tool

such as a Makefile and a machine-file as described in Section 5.8. The dynamically
generated contents of these files are all gathered in the generator helper and retrieved
via callback in the template definitions. In order to improve the runtime of the
generator, the generator helper executes the generation of the AMT exactly once
during the initialization and stores all the necessary information. Another advantage
of the generator helper is that it can be reused for the definition of each template.

5.7.2 AMT Generation
The AMT generator provides a 4-tupel of strings. The individual elements are
defined as follows and define a part of the dynamically generated contents of the
templates:

1. The Program entry point is the first element of this 4-tupel. It defines
the string generated from the root node and contains the parallel execution of
all patterns targeting shared and distributed memory. This element does not
define sub-AMTs which did not need to be inlined. The information on these
function templates is provided by the AMT generator statically.

2. GPU sources define the second element of the 4-tupel. As explained in
Section 5.5 the generated code targeting the GPU must be defined in a different
file. The contents of this string contain the definition of both the GPU wrapper
and kernel.

3. The third element defines the GPU header. This string defines the function
headers for the GPU wrapper functions. The generation of such a header file
is necessary in order to define the existence of the GPU wrapper, while the
GPU code is compiled by a different compiler from the program entry point.

4. The GPU kernel header defines the GPU kernel and it is used to simplify
the generation of the GPU sources. With the target language (C++) functions
cannot be used before they are defined. In order to utilize functions defined
afterwards the header file can be used to declare the function.

The generator utilizes an AMT visitor for the implementation of the generator. The
visitor always starts from the root node. When encountering a call node which does
not need to be inlined, the visitor traverses the corresponding sub-AMT and stores
the generated code in a hash map with the function identifier as a key. Thus, it
can be checked whether the sub-AMT has already been generated and redundant
traversals can be skipped.
In order to reduce the overhead of generated parallel patterns, the input and output
elements are connected to the parameters of the function node. This connection is
defined as a variable inlining table which indicates how data elements are replaced
within a scope, e.g., Listing 5.5 defines a map pattern in lines 2 - 4 which copies the
contents of input and stores them in res. The pattern is executed in line 8 with
initial[1] and result as its input and output arguments. The call copies the

47

5 Code Generation

Listing 5.5: A map pattern which copies the input values into the output.
1 Pattern_Inlining {
2 map copy ([Int] input):[Int] res {
3 res[INDEX] = input[INDEX]
4 }
5 seq main ():Int {
6 var [[Int]] initial = init_List ([2 ,200] ,3)
7 var [Int] result = init_List ([200] ,0)
8 result = copy <<<>>>(initial [1])
9 return 0

10 }}

values of the second line of the matrix initial into the array result. The data
elements defined in the sub-AMT during the generation of the pattern need to be
replaced. The replacement is indicated by an entry in the data replacement table.
In the example in Listing 5.5 the table contains two entries. Each entry has the
original data element as its key and a replacing expression as its value. The first
entry defines input as the key and the expression initial[1] as its value. The
second, defines res as the key and result as its value.
The complete AMT is depicted in Figure 5.2 including the synchronization step
necessary after the parallel call. The generated code is depicted in Listing 5.6.
Initialization, finalization and multiple thread specific task definitions are omitted
for readability. Inlining the initial[1] expression in Listing 5.5 results in the
expression initial[200 * (1)+ (INDEX)] in Listing 5.6 line 10. This allows for
a reduction of memory and runtime overhead for the generated code, since local
variables are not necessary to replace parallel call arguments.

The expression printer can then replace the data elements of the pattern template
with the corresponding values. The structure of the data replacement table allows
the nesting and replacement of arbitrarily many parallel patterns.

5.7.3 Expression Printer
The structure defined for expressions is different from the tree structure defined for
the AMT. The expressions are originally defined in the APT. Changes to the APT
are out of scope for this work. Therefore, either the definition of a new expression
structure for the AMT needs to be implemented and generated or a generator which
prints the expressions directly into the defined output structure.
The expressions are integrated into the AMT with expression nodes which can hold
one or more expressions. The expressions are structured into two different classes:

• Operation expression: The operation expression defines an expression
which computes a value, like a + b * c or a < b. The data structure is
based on two lists:

48

5.7 Code Generator Tool

main

Map:copy(line 8) Sync:copy Serial(line 9)

Serial(line 3)

Serial(lines 6,7)

Executed with one thread

Parallel AMT node

Data control node

Figure 5.2: AMT based on Listing 5.5.

– Operands: A list of data elements in the order they are used in the
expression.

– Operators: A list of operations in the order they are performed. Paren-
thesis, arithmetic operation like plus and boolean operations are com-
pletely included in this list.

• Assignment expression: An assignment expression defines an assignment
of a data element based on an operation expression. Further, the assignment
specifies an access scheme which defines via a set of operation expressions how
a (multi-dimensional) array is accessed.

To construct a well-formed C++ expression, based on operation expressions, the
arity and the necessity if a left context is defined for all operators, e.g., the plus
operator has an arity of two and needs a left element. With this information a
simplified algorithm was designed to implement the expression printer for operation
expression (see Listing 5.7). The right context can be computed by iterating the
operator list and keeping track of the number of operators with an arity of two,
which need a left element. It defines the index of the next operator in the operator
list. The algorithm iterates over all operands and tests if an operator follows the
current operand. When there are none, all remaining operators are printed before the
operand (see line 4 - 6), otherwise only the operators between the current and next
operator (see line 7 - 10) are printed. Afterwards, the current operand is printed
in line 11. When all operands are handled and operators remain, the remaining
operators are printed at the end.
For example the expression (a + b)* c is defined as the operand list [a,b,c] and
the operator list [(,+,),*]. The C++ expression is generated as follows:

1. a is the first operand with + as its right context.

49

5 Code Generation

Listing 5.6: Generated code based on the AMT in Figure 5.2.
1 int main(int argc , char ** argv) {
2 int32_t * result;
3 int32_t * initial ;
4 // init
5 initial = Init_List (3, initial , 2LL * 200 LL * 1LL);
6 result = Init_List (0, result , 200 LL * 1LL);
7 if (rank == 0) {// Map:copy
8 auto f_0 = [initial , &result] () {
9 for (int INDEX = 0; INDEX < 0 + 8; ++ INDEX) {

10 result [(INDEX)] = initial [200 * (1) + (INDEX)
];

11 }
12 };
13 getPool () ->at (0). addWork (f_0);
14 }// work for threads 1 to 23
15 if (rank == 0) {// sync:copy
16 Bit_Mask * mask_ptr = new Bit_Mask (48, true);
17 for (int i = 0; i < 24; ++i) {
18 mask_ptr -> setBarrier (i);
19 }
20 boost :: shared_ptr <Bit_Mask > boost_mask_ptr (mask_ptr

);
21 self_barrier (boost_mask_ptr);
22 }
23 // finalize
24 return 0;
25 }

2. The operator (is printed since it precedes +.

3. The current operand is printed resulting in (a as the current result

4. The next operand is b with right context)

5. + is printed, since it precedes)

6. The current operand is printed resulting in (a + b

7. The next operand is c with no right context.

8. Since no right context is present the remaining operators) and * are printed.

9. The last operand is printed resulting in (a + b)* c as the output.

50

5.8 Utility Files

The actual implementation of the algorithm in Listing 5.7 is much more complex
than the example provided in Listing 5.7. The additional complexity is based on
the context of array access parenthesis, where the left context dependency changes
whether it is the first array access or not.

5.8 Utility Files
The code generator also provides a set of utility files which are not part of the
executed sources. The files specify the behaviour of the sources. First, the generated
Makefile defines the tool chain of different compilers necessary to transform the
generated source files into a single executable. The second utility file defines the
machine file or host file for MPI. The machine file defines the order in which the
machines are used by MPI, e.g., the first address takes rank zero, the second address
rank one etc. This ensures that the order of the nodes in the HL is the same as the
order used during the computation.

5.8.1 Makefile
The Makefile defines the compiler and compiler flags for each source file. With
make all main source files are compiled into executables, with their respective de-
pendencies. Thus, the thread pool and GPU pool implementations can be compiled
without compiler optimizations. The combination of C++ classes with PThreads

Listing 5.7: A simplified algorithm which creates a well formed C++ expression
based on an operation expression.

1 current operator = 0
2 for int i = 0; i < operandList .size () ; i++
3 int nextOperator = getRightContext (i);
4 if nextOperator == -1
5 for int j = currentOperator ; j < OperatorList .size

(); j++
6 generateOperator (j)
7 if nextOperator > currentOperator
8 for int j = currentOperator ; j < nextOperator ; j++
9 generateOperator (j)

10 currentOperator = nextOperator
11 generateOperand (i)
12 if currentOperator < OperatorList .size () - 1
13 for int j = currentOperator ; j < OperatorList .size ();

j++
14 generateOperator (j)

51

5 Code Generation

is interpreted as constant callback by the GNU and Intel compiler. During the op-
timization step of those libraries, the queue dependant functions are replaced with
constants by the compiler. Additionally, the program entry point and the GPU code
are compiled with the MPI and NVIDIA CUDA compiler respectively. In order to
create the executable, all files are compiled into object files. Afterwards all depen-
dant object files are compiled into an executable binary file. The Makefile is defined
statically.

5.8.2 Machine File
The machine file defines the order of the machines used during the computation.
The definition of a consistent order during optimization and computation is impor-
tant. When all nodes are identical, but the distance between nodes is different,
the performance cannot be modelled correctly resulting in a loss of performance.
Another problem occurs when the nodes are equipped differently. The computa-
tion optimized for a node with GPU devices might crash on a node without GPUs.
Therefore, the machine file is necessary to ensure the correctness of distributed-
memory programming. The machine file is passed to the MPI execution handler
which ensures the order of the defined nodes. To generate the machine file the HL
is traversed and the address defined by all nodes is returned in the order of their
definition.

52

6 Evaluation
The quality of the generated code is important when evaluating a code generator.
In this thesis parallel code is generated. An important factor for quality evaluation
of the generator is the performance of the generated code. The correctness of the
generated code defines another quality assessment discussed in this work. Other
indicators for the quality of a generator and the generated code like maintainability
and reusability is not easily quantifiable and is as such omitted from the evaluation
in this thesis.
The correctness is evaluated by a set of test cases defined for the generator. The
verification suite and the corresponding test results are discussed in Section 6.1. The
results of the test suite can be measured by counting the failed and successful test
cases.
For evaluating the performance of the generated code, the test cases introduced
in the work of Trümper [?] are utilized. The test cases define algorithms that are
optimized using the optimizer implemented in their work. The algorithms were
originally defined in the PPL to get the results from the optimizer.
Since the code generator was not implemented during the implementation of the
optimization package, the optimizations are carried out by hand. To evaluate the
performance of the generated code the runtime of the handwritten and generated
code are compared. The performance evaluation is discussed in detail in Section 6.2.
All test cases are executed on two nodes of the CLAIX-2018-GPU cluster [?]. The
nodes are equipped with two Intel Xeon Platinum 8160 and two NVIDIA Volta 100
GPUs. They are connected via Intel Omnipath. The generated code is compiled
with gcc 9.3.0, openMPI 4.0.3 and the Nvidia CUDA compiler for CUDA 11.0.

6.1 Code Generator Verification
The correctness of the generated code is important. Formal verification is a complex
and time consuming task especially when both the generator and the generated code
need to be verified. Furthermore, when verifying the generated code an additional
test suite is necessary in order to at least verify the correctness of some represen-
tative code examples. Due to time limits relevant for this master thesis a formal
verification is not possible. To still have the opportunity evaluating the correctness
of the generated source, the error classification according to Schmitz et al. [?] will
be extended to cover syntactical errors. In addition, a test suite was created in this
thesis based on the extended error classification. The test suite comprises 85 indi-
vidual test cases designed covering all error classes. The test cases are written in the

53

6 Evaluation

Serial Error

Syntax

Expression Control Statement

Inlining Data Management

Allocation Memory Leaks

Figure 6.1: Serial error classification.

PPL and are transformed to an AMT with the "Debug Mode" creator introduced in
Section 4.2.2 to enforce the generation of specific scenarios.

6.1.1 Error Classification
The error classes are separated into two distinct sub-classes. The serial errors which
may occur at any point in the source and the parallel errors which will only be
induced when parallel computation is involved.

Serial Error Classes

The serial error classes are mostly related to the syntactic correctness and the
memory allocation strategies of the generated code. The inlining of function calls
with array arguments is also covered by serial correctness. In Figure 6.1 the serial
error classification is depicted. The individual classes and corresponding test cases
will be elaborated in the following:

• Syntax: The syntax is an essential part of the generated code. While it
is not necessary that the generated code is readable, it must be correctly
interpreted by a following production compiler. Thus, it is significant that the
generated code meets the syntactic standards defined by the target language.
The test cases following this class must compile with a production compiler
and represent the semantic defined in the front-end language. The following
two classes further explain the syntax of certain constructs:

– Expression: The expression class represents the correct generation of
expressions utilizing the expression printer. The expression printer trans-
forms expressions into character strings in the target language. Therefore,
test cases implementing this class cover multiple combinations of different
expressions.

– Control Statement: The class of control statements defines the correct
generation of control statements utilizing the AMT generator. This class
covers errors regarding for-loops, while-loops and branches.

• Inlining: Due to the choice of data structures, as stated in Section 5.6 certain
serial function calls need to be inlined during the generation.

54

6.1 Code Generator Verification

To ensure the correct generation of inlined functions two test cases are de-
signed. The first, accepts an array as its input. The second, does not accept
an array. Due to the unknown size of pointer based arrays in C/C++ the first
function must be inlined to retain correctness. This is especially important for
multi-dimensional arrays, because of the nesting strategy implemented, which
skips dimensions using a polynomial access pattern. For the second function
this is not necessary, since data accesses do not depend on the size of a scalar
value. Therefore, it is checked whether the first test case is properly inlined
while the second is not.

• Data Management: This class covers the correctness of allocation and deal-
location in a serial context. To further specify this class the following error
cases are defined:

– Allocation: Errors with this classification do not allocate the memory
specified by the user. Depending on the definition of a variable in the
front-end, the corresponding data element must be allocated on the heap
or the stack. Therefore, initializations need to be handled properly.

– Memory leak: This class of errors relates to the correct deallocation
of memory space. Thus, it is checked whether for each scope all local
memory on the heap is freed at the end, e.g., when allocating an array
within a loop it must be deallocated at the end of the loop iteration.

Parallel Error Classes

The classification of parallel correctness errors depicted in Figure 6.2 is based on
the classification presented by Schmitz et al. [?]. To utilize the classification in
the context of the code generated in this thesis differences between devices are
disregarded. Further, a node defining the correctness of performance was added.
The error classes are defined as follows:

• The On Device error class defines concurrency defects on a single device, e.g.,
a data race.

– Concurrency Defect: A concurrency defect is an error which is caused
by a concurrent execution of source code. The failure (Error manifesta-
tion) does not necessarily occur always, e.g., a data race can potentially
provide the right result even if the race conditions are met.

The differentiation between inter and intra region is especially apparent for
GPU code [?]. The definition of processors in the HL as subsets of cores
within a CPU supports the application of a differentiation. Inter region con-
currency defects on the CPU are induced by the hardware mapping provided
by the optimization. Intra region concurrency defects are induced during the
source code generation. Thus, the source of an error is dependent on different
packages and a differentiation is applicable.

55

6 Evaluation

Parallel Error

Correctness

On Device

Inter Region

Concurrency Defect:
-Atomicity Violation
-Order Violation

Intra Region

Concurrency Defect:
-Atomicity Violation
-Order Violation

Between Multiple
Devices

Mapping
Defect

Stale Data Access

Outdated
Data

Missing
Data

Wrong Data
Allocation

Missing
Memory
Allocation

Failed
Allocation

Out of Bounds
Mapping

Missing
Memory
Deallocation

Concurrency Defect:
-Atomicity Violation
-Order Violation

Performance

Figure 6.2: Parallel error classification based on the work of Schmitz et al. [?]

• Errors Between Multiple Devices define defects which occur when utilizing
multiple devices. Concurrency defects are only possible if the devices support
direct memory access or have a shared memory space, e.g., partitioned global
address space (PGAS) models can induce such concurrency defects. Mapping
defects on the other hand are related to the data transfers between devices:

– Stale Data Accesses depict errors where current data is missing. The
two subcategories are defined as follows:

∗ Outdated Data errors are cases where the data was changed on
another device, but not updated on the current device.

∗ Missing Data errors define defects related to data never has been
copied to the device.

– Wrong Data Allocation defects are categorized by a faulty allocation
of memory on a communicating device. The four following classes defined
by Schmitz et al. [?] further specify different defects:

∗ Missing Memory Allocation errors occur when memory is not
allocated before transferring data.

∗ A Failed Allocation defines cases referring to memory allocation
fails which had not been handled properly before use.

56

6.1 Code Generator Verification

∗ Out of Bounds Mapping errors define defects induced insufficient
memory allocations for the transferred data.

∗ Missing Memory Deallocation classify defects related to allo-
cated memory that is not freed at the end of an execution. Hence,
creating a memory leak.

• Performance errors appear if the optimizations are generated correctly.
Thus, if the optimization package wants to execute on the GPU, then the
code generator should generate GPU code.

6.1.2 Test Suite Implementation
The test suite contains 85 test cases implemented in the PPL. The test cases cover all
error classes in both the serial and parallel correctness classification. The test cases
utilize the debug mode introduced in Section 4.2.2 to avoid dependencies on the
optimization package. Further, it is assumed that the APT is generated correctly.
The test suite utilizes a Makefile generated by the code generator to be compiled
and executed. The code generation supports the generation of parallel CPU, GPU
and MPI code. Thus, the target system must contain at least two nodes with two
GPUs each.
All test cases should be transformed into compilable and executable C++ code.
Since the automatic evaluation of serial test cases is dependant on the same se-
rial constructs, the serial test cases need to be evaluated by hand. The test cases
covering parallel correctness errors are designed to be evaluated by the result of the
computation. This is achieved by defining both a sequential and a parallel execution
of the same algorithm. When both implementations are finished the results of both
runs are compared, if the results are not identical the test case fails and an error
message is printed. The parallel test cases assume the correctness of the generated
sequential code. Hence, errors in both a sequential and a parallel test case may
not imply an error during the generation of parallel code. Therefore, the test suite
should always be evaluated completely in order to avoid false implications.

Listing 6.1 introduces a test case used in the test suite, which will be discussed
for further clarification. The test case implements a map pattern which increments
input and stores the result in res (see lines 2-4). The pattern is executed in line 10
with initial as input and result as its output. result_seq is used to store the
result of the sequential execution. All three arrays are initialized in lines 6-8 and can
store 200 elements each. initial takes 1 as a starting value for each element. As
indicated by the additional argument [0,0,0] the pattern call in line 10 executes
on the first processor of the first device of the first node. The defined device is a
CPU according to the HL used by the test suite. Lines 11-16 define the sequential
error check. In line 12 the sequential result is computed. If the branch condition in
line 13 evaluates to true, the sequential and parallel results are not equal. Thus,
the predefined print function prints an error message. Test cases like the one in
Listing 6.1 which are dependant on the execution of a specific pattern on a specific

57

6 Evaluation

Listing 6.1: A test case implementing a map pattern covering intra region concur-
rency errors on the CPU.

1 MapTest {
2 map increment ([Int] input): [Int] res{
3 res[INDEX] = input[INDEX] + 1
4 }
5 seq main () : Int {
6 var [Int] initial = init_List ([200] ,1)
7 var [Int] result = init_List ([200])
8 var [Int] result_seq = init_List ([200])
9 /* execute the pattern on node 0 device 0 */

10 result = increment <<<[0,0,0]>>>(initial)
11 for var Int i = 0; i < 200; i++ {
12 result_seq [i] = initial [i] + 1
13 if result_seq [i] != result[i] {
14 print("value at element " {i} " is wrong!")
15 }
16 }
17 return 0
18 }}

device are implemented for each covered parallel pattern (see Section 3.3.2) and tar-
get device architecture. Specific MPI test are not necessary, since errors can as well
be covered by the test cases utilizing multiple devices on different nodes. Further,
MPI is mostly utilized for transferring data between nodes.

6.1.3 Test Cases
Table 6.1 depicts the coverage of the test suite. The serial tests include 14 of the
85 test cases. The eight test cases covering the syntax errors combine multiple
scenarios in one. The expression tests combine related expressions into the same
test case, e.g., the arithmetic expressions are all cover in a single test case. The
test cases covering data management errors cannot be further differentiated into
the allocation and memory leak errors, because the data management is handled
implicitly by the AMT and code generator. Therefore, test cases covering data
management error include both sub-classes, e.g., a defect in the code generator can
induce allocation error, memory leaks or both. The utilization of mapping defects
in the parallel context is similar.
The implicit data management during the AMT and code generator stages of the
program compilation causes these types of errors depending on the correctness of
the compilation steps. Thus, the same test cases comprise all sub-classes with the

58

6.1 Code Generator Verification

Serial
Syntax Inlining Data Management
Expression Control Statement 2 44 4
Parallel
On Device Between Multiple Devices
Inter Region Intra Region Mapping Defect Concurrency Defect
10 20 16 25

Table 6.1: The test case coverage of the test suite.

same test case. The mapping defect test cases implement examples of two map
patterns, with data dependencies between architectures, e.g., the first map performs
on the CPU, while the second map pattern performs on the GPU with the output
of the first map. These test cases contain multiple different interaction patterns on
different device combinations.
Concurrency defects between multiple devices make up 25 of the 85 test cases. To

cover different scenarios the test cases implement each of the four parallel patterns
and recursion on multiple combinations of two or more devices on a set of two nodes
with two GPUs each. Therefore, combinations like a Stencil on two GPUs on two
different nodes is included. The combinations covered are:

• Two accelerators on the same node

• Two accelerators on different nodes

• The CPU and an accelerator on the same node

• Two CPUs on different nodes

• Two CPUs and two accelerators on different nodes

Each combination implements every parallel pattern supported and recursion. The
implementation of inter region concurrency defects utilizes two different processors
on the same device. The ten test cases are split into five implementations for the
CPU and five for an accelerator. The five individual test cases implement the four
parallel patterns and recursion.
Similarly for the intra region test cases, half of the 20 tests target an accelerator
and half the CPU.
Furthermore, for each pattern including the recursion a test case is defined imple-
menting the nesting of the pattern within a parallel map pattern.

6.1.4 Results
The implementation of the code generator provided by this thesis successfully com-
pletes all 85 test cases. While the test suite aims to cover as many errors cases as

59

6 Evaluation

possible, the test suite may not include all potential error classes. Further, imple-
mentations of the test suite might need to extend the classification and test cases
when extending the generator or implementing a new generator. For example, errors
on FPGAs can be different from errors on CPU or GPU, similar to the on Device
error class in the work of Schmitz et al. [?]. As such, the test suite is used to prove
the correctness of a minimal capability of the code generator and should be extended
upon in the future.
Predefined functions are not specifically covered in the test suite and are assumed
to be tested before hand. The integration of the predefined functions, is tested as
part of the syntactical expression test cases which are part of the serial correctness
classification. Additionally, the test cases should be extended to cover errors induced
by the optimization and various transformations until generation. The correctness
evaluation of other components is out of scope for this work, but the test suite and
error classification can be utilized as a basis for a group of automatic tests checking
the correctness of the complete project.

6.2 Performance of Generated Code
The performance of the generated code is an important criteria for evaluating parallel
code. One part of the performance assessment is the evaluation of the thread
pool implementation. The thread pool was developed in this thesis, as such no
performance and overhead evaluations exist for the thread pool implementation. The
second part of the performance evaluation covers the runtime differences between
the benchmarks designed by Trümper [?] and the generated code. The test cases
consist of different algorithms implemented as an unoptimized baseline in C, an
optimized C implementation and a PPL implementation of the algorithm. The
PPL implementation is optimized and generated into the C++ code as discussed in
Chapter 5.

6.2.1 Thread Pool Overhead Measurements
The thread pool implementation introduced in Section 5.3 for shared-memory pro-
gramming utilizes additional data structures and functionalities. These are added in
order to satisfy the requirements for the generation of shared-memory parallelism.
Although, the introduction of such a library introduces overhead in terms of run-
time and memory. The focus of this section will be on the runtime overhead. The
memory overhead is static with a dependency on the size of the ring buffers and the
number of threads. To measure the runtime overhead induced by the thread pool,
the EPCC benchmark by Bull et al. [?] is utilized.
The syncbench micro benchmarks introduced in EPCC were adapted in order to
measure the overhead of the thread pool. The syncbench micro benchmarks mea-
sure the work sharing and synchronization overhead for OpenMP. The results of the
adapted EPCC and the original EPCC for OpenMP are compared. Therefore, a

60

6.2 Performance of Generated Code

Static Overhead
R
u
n
ti
m

e
in

 m
ic

ro
se

co
n
d
s

Number of Threads

Reference 1 2 4 8 2416 32 40 48
0.5

1

2

4

8

16

32

64

min max mean

128

256

512

1024

2048

Figure 6.3: Static overhead of the thread pool with different thread sizes on two
Intel Xeon Platinum 8160.

conclusion on the implementation in comparison to a well established programming
model can be drawn. The EPCC benchmark is implemented in C and has portabil-
ity issues with C++.
Further, the high contention of test tasks can induce deadlocks for the barrier and
the initialization of the thread pool, since it is not designed to handle arbitrarily
small tasks. To still be able to generate results comparable to the EPCC implemen-
tation the idea of the executor was implemented to run a fixed set of outer iteration.
The outer loop defines how many results are evaluated. The time is measured for
each outer loop iteration. The number of inner loop iterations is constant in con-
trast to the EPCC implementation to avoid an overflow of the task queues. The
task performed in the inner loop is defined by a delay function adapted from EPCC
benchmark and the operation from which the overhead is measured. The total run-
time of the inner loop is divided by the number of inner loop iterations to avoid
inaccuracies induced by the time measurements. For each function the minimum,
maximum and average runtime are calculated. Both implementation were executed
with a delay of one microsecond and 64 outer iteration. The size if the inner loop for
the original EPCC is computed on demand, the version for the thread pool utilizes
128 iterations for the inner loop.

In contrast to the OpenMP implementation, where the threads are available im-
plicitly, the thread pool needs to be initialized and destroyed explicitly. This induces
measurable overhead described in Figure 6.3. The runtime is shown in a log scale

61

6 Evaluation

R
u
n
ti
m

e
in

 m
ic

ro
se

co
n
d
s

Number of Threads

Reference 1 2 4 8 2416 32 40 48

0

20

40

60

80

100

120

140

min max mean

Task Assignment Overhead

Figure 6.4: Overhead induced by the assignment of work to the task queue in the
thread pool on two Intel Xeon Platinum 8160.

with base two. The total overhead induced by the initialization increases exponen-
tially based on the number of threads used.
The exponential development of the overhead is dominated by the migration of
threads using OS callbacks, since the initialization of data structures can induce
a linearly growing overhead at most. Especially, the context switch necessary to
correctly map the thread id to the core becomes more expensive with increasing
distance between the current and new core. Since the amount of threads for shared-
memory programming is limited and the static overhead happens exactly once per
application, the generated overhead is manageable with 1.6 milliseconds of overhead
for 48 threads. The reference time of 1 microsecond is 1600 times smaller than the
generated overhead.
The main thread of the thread pool implementation does not take part in shared-

memory parallelization. In contrast to OpenMP, where the main thread also handles
a part of the workload. Therefore, the barrier overhead measured defines the com-
plete overhead, while the OpenMP defines the overhead as a difference between the
reference time and the measured time.
Another source for runtime overhead is the assignment of work to the corresponding
threads. Although, the OpenMP task constructs are closer in behaviour and run-
time overhead to the implementation of the thread pool, they are compared to the
parallel for construct. The map, stencil and reduction pattern describe mostly
regular access patterns which do not benefit from dynamic scheduling to improve

62

6.2 Performance of Generated Code

OMP Parallel For
R
u
n
ti
m

e
in

 m
ic

ro
se

co
n
d
s

Number of Threads

Reference 1 2 4 8 2416 32 40 48

0

2

4

6

8

10

12

14

min max mean

Figure 6.5: Overhead induced by the assignment of work with the parallel for con-
struct in OpenMP on two Intel Xeon Platinum 8160.

the load balance. Thus, their implementation in handwritten code would rather
utilize the parallel for construct than the task constructs. The runtime of the
parallel for construct is depicted in Figure 6.5. The reference delay is one mi-
crosecond like in all other measurements as well. The time difference between the
reference and the runtime with n threads defines the overhead. The overhead be-
comes maximum 12 microseconds when utilizing 48 threads. The measurements for
the thread pool implementation (see. Figure 6.4) are much more unstable leading
to more outliers and a larger difference between the maximum overhead and the
average overhead. These outliers are most likely caused by the critical section used
to limit the access to the task queue. The additional threads can start their work
once the task is added to the task queue. Therefore, it is possible that the overall
duration of the assignment is smaller than the reference time, e.g., this is the case
for computations with one or two threads.
The overhead induced by the thread pool increases much faster than the OpenMP
overhead which is also most likely due to the critical section enclosing the task
queue accesses. The overhead when utilizing 24 threads is roughly the same in both
OpenMP and the thread pool. For more than 24 threads used, the overhead be-
comes much larger in the thread pool where the overhead induced with 48 threads
is almost five times the overhead induced by OpenMP. Since the two Intel Xeon
Platinum 8160 used for this measurement are modelled as two processors in the HL,
there are maximum 24 threads used per task assignment. Thus, the two program-

63

6 Evaluation

Barrier Overhead

R
u
n
ti
m

e
in

 m
ic

ro
se

co
n
d
s

Number of Threads

Reference 1 2 4 8 2416 32 40 48
0

5

10

15

20

25

30

35

min max mean

40

Figure 6.6: Overhead induced by a barrier in the thread pool on two Intel Xeon
Platinum 8160.

ming models are comparable for the task assignment. The volatility of the thread
pool overhead is a problem to be solved in the future. To approach this task detailed
profiling results are necessary.

As introduced in Section 5.3, the implementation of a barrier in the thread pool
implementation is realized by defining a task for each node. The task contains the
pthread barrier used to synchronize the individual threads. The graph in Figure 6.6
depicts the scaling behaviour for the runtime overhead induced by a barrier over
the given amount of threads. The development of the overhead is similar to the
task assignment, but slightly higher with about one or two microseconds difference.
Further, the runtime of the barrier is much more stable in comparison to the as-
signment. Since every barrier is also a task, the barrier induces the overhead of
both the assignment and the actual synchronization of threads. The overhead of the
assignment is almost the same as the overhead from the synchronization. Thus, the
assignment of the barrier task is most notably the dominating factor. The barrier
tested does not synchronize the main thread with the parallel threads, only the cre-
ation and assignment of the barrier is measured.
The impact on the computation is measured in Figure 6.7. With a reference time
of one microsecond the self barrier creates an overhead of roughly eleven millisec-
onds. This overhead does not increase for a higher number of threads which is the
expected behaviour seen in Figure 6.6 and Figure 6.8. Therefore, it is assumed,
that this constant overhead is caused by the logic surrounding the actual synchro-

64

6.2 Performance of Generated Code

Self Barrier
R
u
n
ti
m

e
in

 m
ic

ro
se

co
n
d
s

Number of Threads

Reference 1 2 4 8 2416 32 40 48
0

2

4

6

8

10

12

min max mean

Figure 6.7: Overhead induced by a barrier synchronizing all threads in the thread
pool with the main thread on two Intel Xeon Platinum 8160.

OMP Barrier

R
u
n
ti
m

e
in

 m
ic

ro
se

co
n
d
s

Number of Threads

Reference 1 2 4 8 2416 32 40 48

0

0.5

1

1.5

2

2.5

3

3.5

min max mean

4

4.5

5

Figure 6.8: Overhead induced by a barrier in OpenMP on two Intel Xeon Platinum
8160.

65

6 Evaluation

nization, performed by PThreads. To properly detect the cause for the overhead,
a hotspot analysis is necessary, e.g., with the Intel VTune perfomance analyzer [?]
such a hotspot analysis can be performed. Based on the results, the overhead can
be improved, e.g., if the overhead is caused by the boost pointers, global data struc-
tures can be used to ensure the availability of the bit mask. Removing the bit mask
data structure is another approach.
Nevertheless, barriers in the thread pool including the main thread take at least 2000
times more time than the OpenMP implementation. The cost for synchronization
without the main threads cannot be measured accurately due to deadlocks induced
by repeated initialization and destruction of the thread pool.
The OpenMP barrier overhead depicted in Figure 6.8 is generally smaller than the
overhead induced by the thread pool. The cost of a barrier increases logarithmic.
The barrier implemented in OpenMP does not require a task assignment resulting in
better scaling behaviour, than the thread pool implementation. The runtime over-
head measured for OpenMP barriers is always smaller than the overhead measured
thread pool barriers. The overhead induced by the thread pool is twice as high as
the overhead induced by OpenMP for a single thread. The difference increases for
48 threads to about 8.5 times the overhead induced by OpenMP. When including
the main thread into the synchronization becomes 2000 times more costly.

6.2.2 Algorithmic Case Study
To evaluate the performance of the generated code in comparison to handwritten
code, a small case study covering five different algorithms is evaluated. The algo-
rithms were utilized and implemented in the work of Trümper [?]. The evaluation
of the algorithms is based on the average duration of the kernel of the application
for 50 repetition. The baseline implementation is based on a naive parallelization
of the algorithm written by hand. The optimized C code is also written by hand
and optimized in accordance to the optimization package. The baseline and opti-
mized C code were both implemented and defined by Trümper [?]. The generated
code is based on an implementation of the algorithms in the PPL by Trümper. The
PPL implementation was defined to generate the optimizations utilized in the op-
timized C code. The generated code is based on the same PPL and HL code used
for optimizing the handwritten C code. The speed up is defined as: Baseline runtime

Optimized runtime .
Therefore, the speed up is a positive number and a speed up between 0 and 1 defines
an increase in runtime.

Batch Classification Test

The batch classification task defines a three stage classification algorithm over a
219 × 4096 input matrix. The goal for this test is to evaluate the loop fusion and
pipeline optimizations.

1. Normalize the 219 input elements

66

6.2 Performance of Generated Code

Batch class Baseline Optimized C Generated Generated_loop
Mean Runtime 1.1703s 0.8823s 1.8690s 1.7984s
Standard Dev. 0.0540 0.0703 0.0216 0.0353
Speed up 1 1.3264 0.6262 0.6507

Table 6.2: Representation of the batch classification performance for generated and
handwritten code. (Runtime in seconds.)

2. Extract the feature of each element

3. Classify each element based on a majority vote from an ensemble of 4096
classifiers.

The goal defined in the work of Trümper [?] is to generate a pipeline optimization
on the CPU, since the workload is to small for utilizing a GPU. The pipeline
optimization for the three steps is an optimal solution according to the optimization,
because each iteration only depends on a single iteration of the preceding step.
The handwritten optimization is compiled with gcc 9.3.0 with the flags -fopenmp
-std=c99 -O2. For this test case two versions of the generated code are evaluated.
The first one utilizes nested parallel patterns to define internal loops. The other
implementation utilizes for-loops and is extended by the _loop suffix.
The results for the batch classification algorithm can be observed in Table 6.2. The
baseline implementation takes about 1.1703 seconds to compute the evaluation of
all 219 input elements. The loop fusing performed by the optimization yields a speed
up of 1.3264 in the handwritten code C code reducing the runtime to about 0.8823
seconds. The runtime of the generated code yields a speed up of 0.6262 indicating
that the generated codes takes longer to compute with 1.8690 seconds. This increase
in runtime is induced by the higher overhead of the thread pool implementation and
the missing implementation of the fused nodes. The complexity of the reduction
pattern used to implement the majority vote in the third step in most definitely
inducing a large overhead. The overhead induced by the reduction is composed of
the following elements:

• The task assignment for the local results

• A barrier to ensure that all local results are computed

• A reduction over all local results as a task creating a processor local result

• A critical section to compute the global results based on all processor local
results

Since the overhead of each of these components is already much higher in the thread
pool implementation than with OpenMP, an increase in runtime is induced. The
missing implementation of the fused nodes during generation further increases the
runtime, because the optimal optimization strategy cannot be generated yet. The

67

6 Evaluation

runtime of the loop based implementation of algorithm performs slightly better. The
estimated cost for loops is more accurate than the estimated cost for nested parallel
patterns. Thus, the loop based version can perform the optimizations much more
accurate reducing the runtime of the generated code.

Jacobi Test

Jacobi Baseline Optimized C Generated Generated_old
Mean Runtime 1.3197s 0.5883s 4.6822s 4.4027s
Standard Dev. 0.0599 0.0743 0.1840 0.2025
Speed up 1 2.2432 0.2829 0.2998

Table 6.3: Representation of the Jacobi solver performance for generated and hand-
written code. (Runtime in seconds.)

The Jacobi test case implements a linear equation solver utilizing the Jacobi
method. The test case solves three linear equation system on the shared matrix A.
The number of Jacobi iterations is fixed to 50 steps with 8192 unknown variables.
The optimization generated for this algorithm computes the solution for the three
equation systems in parallel by reordering the individual Jacobi iterations from the
three equation systems. The handwritten code is compiled with gcc 9.3.0 with the
flags -fopenmp -std=c99 -O2. For this algorithm two implementations are generated.
The first, replacing inner loops with parallel patterns. The second, denoted by the
suffix _old defines the generated version using inner loops.
The results for the jacobi solver can be observed in Table 6.3. The baseline ap-
plication kernel computes all three linear equations in sequence. The optimization
deems a computation of all three equation systems in parallel more efficient. This
reordering results in a speed up of 2.2432, reaching a runtime of 0.5883 seconds for
the computation. Neither of the generated versions can improve the performance of
the baseline implementation. Most notably, the inner loop based implementation is
nearly 0.3 seconds faster than the PPL implementation utilizing nested patterns.
This difference is induced by the difference in accuracy when analysing the cost for
loops and patterns, the cost for patterns in the optimization is significantly less than
the estimated loop cost. The actual cost should be equivalent.
The increase in runtime is dependant on two factors:

• Overhead: The first reason for the elongated runtime of the generated code
in comparison to the handwritten is the higher overhead induced by the thread
pool implementation. The overhead induced by the assignments and the bar-
rier should be at most 3*50* (90+10) = 15000 microseconds for 50 iterations
of three Jacobi iteration and a maximum difference in overhead around 90 mi-
croseconds for the assignment and 10 microseconds for the barrier definition.
These numbers were taken for the utilization of 24 threads per iteration per

68

6.2 Performance of Generated Code

equation system. When considering the self barrier used for the synchroniza-
tion, with eleven milliseconds of overhead and 50 iterations the synchronization
creates an overhead of 0.55 seconds.

• Horizontal fusing: The optimization defines the execution of the generated
code to be divided among 2 processors on a single device. The handwritten
code with OpenMP allows an explicit loop fusion for each step which is cur-
rently not supported by the code generator. This further increases the amount
of necessary synchronization steps threefold.
Since the optimization can only assign a task to a processor and not a thread
a lot of potential parallelism is lost. This can also increase the load imbal-
ance between the different processors, one processor has effectively twice the
workload. This problem can be solved by increasing the granularity of the
HL definition. By specifying more processor on the same amount of threads
the compilation time increases, but the quality of the generated code should
increase as well. Measurements regarding this behaviour are independent from
the code generation and are therefore out of scope for this work.

Monte Carlo Test

Monte Carlo Baseline Optimized C Generated
Mean Runtime 43.3359s 21.9670s 16.5826s
Standard Deviation 1.4012 0.7351 0.9719
Speed up 1 1.9728 2.6133

Table 6.4: Representation of the 𝜋 approximation performance with monte carlo for
generated and handwritten code. (Runtime in seconds.)

The Monte Carlo test implements the estimation of 𝜋 using a Monte Carlo ap-
proximation. The value is computed based on the average of 96 estimations with 109

random draws each. The code is optimized to perform on two nodes with 48 threads
each. The handwritten code is compiled with OpenMPI 3.1.3 and gcc 9.3.0 with the
flags -fopenmp -std=c99 -O2. With the handwritten code only MPI is utilized for
parallelization.
The result for the Monte Carlo algorithm are depicted in Table 6.4. The baseline
computation on a single node is optimized to utilize a second node which reduces
the original runtime of 43.3359 seconds to 21.9670 seconds achieving a speed up
of 1.9728. Due to additional overhead an ideal speed up of 2 is impossible only by
doubling the number of node/threads. The generated code achieves a speed up of
2.6133 with a runtime of 16.5826 seconds. The generated code utilizes a hybrid
programming model which performs shared-memory computations with the thread
pool and distributed memory computations with MPI. This reduces the amount of
overhead induced during the shared-memory computation.

69

6 Evaluation

Further improvements like thread affinity and memory locality are not considered
in the handwritten C code.

Multi Filter Convolution Test

Multi Filter Baseline Optimized C Generated
Mean Runtime 0.0371s 0.0336s 0.1212s
Standard Deviation 0.0016 0.0048 0.0178
Speed up 1 1.1050 0.3063

Table 6.5: Representation of the multi filter convolution performance for generated
and handwritten code. (Runtime in seconds.)

The multi filter convolution implements image processing with three different
filters on a 8194 × 8194 image. During the first step a Sobel filter operates on the
upper half of the image and a Prewitt filter on the lower half. Additionally, a Laplace
filter is performed on the whole image. The optimized code performs the Sobel filter
and the first half of the Laplace filter on the same processor and the Prewitt, the
second half of the Laplace filter on another processor. This optimizes the memory
accesses for the different filter operation. The handwritten optimization is compiled
with gcc 9.3.0 with the flags -fopenmp -std=c99 -O2.
Table 6.5 shows the results of the multi filter convolution. The baseline takes
about 0.0371 seconds to compute the three individual filters. The handwritten
optimization improves this runtime with a speed up of 1.105 to 0.0336 seconds,
by improving the memory accesses. The generated code takes about three times
as long as the optimized handwritten code. This increase is also implicated by a
speed up of 0.3063 and a runtime of 0.1212 seconds for the generated code. The
increase in runtime is caused by a combination of the higher overhead induced by
the thread pool and an implicit imbalance caused by the assignment of the tasks to
the task queue of the individual threads. The assignment of each task is handled
individually for each thread during runtime. Thus, threads with a higher id get their
work assigned after all tasks to preceding threads are assigned.

Neural Network Test

Neural Network Baseline Optimized C Generated
Mean Runtime 0.3431s 0.1739s 18.5476s
Standard Deviation 0.0458 0.0010 0.9883
Speed up 1 1.9728 0.0185

Table 6.6: Representation of the feed forward neural network performance for gen-
erated and handwritten code. (Runtime in seconds.)

70

6.2 Performance of Generated Code

The neural network implementation defines a forward pass in an eight layer neural
network. The individual layers of the neural network are composed of 64 neurons.
The algorithm computes a batch with 218 elements on the GPU with a block size
of 512, as defined by the optimization. The handwritten code is compiled with the
Nvidia CUDA compiler for CUDA 10.2 and the gcc 8.2.0 with the flags -fopenmp
-std=c99.
The results of the measurements are depicted in Table 6.6. The baseline imple-
mentation is implemented in C and parallelized on the CPU using OpenMP. This
version achieves a runtime of 0.3431 seconds. The optimization deems the algo-
rithm large enough for GPU offloading. Thus, the optimized code computed on a
GPU and achieves a speed up of 1.9728 with a runtime of 0.1739 seconds. The
generated optimization takes 18.5476 seconds to compute the results of the forward
pass, achieving a speed up of 0.0185. This increase in runtime is caused by three
issues:

• No fusing: The optimization does not define a fused node for the eight layers.
Thus, after each layer the GPU is synchronized with the CPU which is not
necessary. The handwritten code does not synchronize the kernel explicitly.

• Wrapper definition: The wrapper function used to implement GPU offload-
ing is defined to always transfer the input data to the GPU and the output
data to the CPU. Since the output from the previous layer is to be reused in
the current layer, most of the data transfers generated are redundant.

• Overhead: Due to the additional control logic implemented a small runtime
overhead is induced. The amount can be neglected in comparison to the cost
of redundant data movement.

71

7 Discussion
The generation of parallel code is a complex task. The generation of efficient parallel
patterns for different architectures increases the complexity of the generated code
even more. As such, there are many challenges to be solved when implementing
the generation of optimized code. The optimization defines where and how the ab-
straction is to be computed. Furthermore, the results are all computed statically
and the generation has to define an application based on limited data. To prop-
erly replicate the semantics of the abstract optimization certain design choices are
necessary. Based on the design choices and the corresponding implementation the
following five major challenges are identified:

• Correctness: This thesis is the implementation of the back-end for code
generation. The correctness of the generated output is more important than
the performance itself, since this is the first implementation of this back-end.
This implementation can be used as a baseline for further optimizations and
extensions of the generator.

• Performance: The runtime of the application is an essential property of HPC
applications. The scalability is mostly covered by the optimization package
and can, therefore, be disregarded partially in this work. In order to improve
the runtime and scalability of the generated code the defined optimization
should be implemented and the runtime overhead needs to be minimized.

• Reusability: The outcomes of this thesis contribute to the last remaining
packages of the prototype implementation of the overarching project. Thus,
the resulting implementation should be (partially-) reusable when extending
the prototype or implementing a release version of the project.

• Integration: As part of a larger project, the results in this thesis have to
properly work within the whole project, by integrating existing packages like
optimizing and providing interfaces for future implementations of the generator
and optimization packages.

• Synchronization and Data Transfers: The optimization packages are en-
forced to define synchronization and data transfer behaviour. The availability
of the nodes is still necessary for the generation of parallel code, targeting
shared-memory parallelism, distributed-memory parallelism and GPU offload-
ing. Furthermore, the integration of barriers and data transfers impacts the
runtime and scalability of the generated code.

73

7 Discussion

7.1 Correctness
The generated code should compute the results intended by the programmer. If the
correctness of the code is not sufficiently reached non-functional requirements like
performance have a reduced significance. The test suite discussed in Section 6.1
defines the minimum requirements in terms of correctness. To proof the correctness
of the generator and the AMT a formal verification of the tool would yield the safest
results. This verification can be similar in structure to the verification of existing
compilers [?, ?]. Further, the verification of parallel code will still be necessary in
order to avoid conceptional errors. The work by Zheng el al. [?] provides a baseline
to verify the correctness of the generated code. The combination of the two above
mentioned approaches very particularly increases the complexity of this task.
A test suite is comparably much easier to define than the verification. Especially, if
targeting only a part of the system. The test suite introduced in Section 6.1 targets
only the code generator. To properly cover the correctness of the code generation
the test suite should be extended towards covering the correctness of AMT, the
AMT transformation as well as the correctness of the optimization and the APT
representation. Since the project is designed to be modular with the AMT and APT
as fixed interfaces, a test suite covering the individual modules will be a suitable
approach for the future. A test suite independent from the front-end package would
be beneficial as well. This can be realized by defining an interface to directly define
an APT with an integrated language. In such a language, the nodes of the APT
could be specified and transformed into the actual APT specification.

7.2 Performance
A key aspect of this thesis is the correctness of the generated code. Although, the
performance is still an important aspect. As discussed in Section 6.2 the perfor-
mance can be improved significantly in future implementations.
The implementation of the thread pool is inefficient in comparison to programming
models like OpenMP. Although, the generation of hybrid MPI + PThreads code
does perform better than pure MPI applications, as seen in Section 6.2.2.
By defining a lock free implementation of the task queues the generated overhead
can be reduced in the future. By further defining task queues for the entire processor
instead of individual threads, dynamic scheduling improvements with less overhead
are realized. The work stealing concept of such an implementation could handle
performance differences not covered by the performance model defined in the opti-
mization.
The generation of fused nodes in order to generate pipelines is not yet supported.
This is especially obvious in Table 6.6 illustrating additional data transfers and syn-
chronization steps between GPU kernels that increased the runtime drastically. The
generation of the fused nodes becomes a complex problem utilizing a basic visitor,
since it does not provide sufficient context information. A possibility to achieve the

74

7.3 Reusability

generation of fused nodes would be the implementation and utilization of a parent
aware visitor. This type of visitor would provide knowledge on the parent node of the
current parallel node. Thus, a context dependant implementation of the fused nodes
can be implemented by generating the fused tasks for shared-memory parallelism
(see Section 5.3.2) into the same lambda function. For the GPU implementation
(see Section 5.5.2) the individual kernel wrapper can be fused, in a way that the ker-
nel calls happen in succession without data movement and synchronization. These
optimizations would greatly impact the performance of the generated code.
The implementation of GPU offloading can also be improved significantly in the
future. Currently, the GPU wrapper handles allocation, data movement and kernel
execution in a single call. By better analysing the required and changed data during
the generation, redundant data transfers can be avoided. By splitting the individual
allocations and data transfers from the kernel call a more diverse generation of GPU
code would be possible. To avoid losing the information on data pointers when split-
ting the wrapper, a global data structure utilizing hash maps can be implemented.
The data structure would dynamically store the device pointer with a given hash
which depends on the parallel pattern call. Thus, the allocation and data transfers
could be defined statically with a dynamic data structure during runtime.
The benefits of implicit synchronization during the generation of barrier and data
transfer nodes is still disregarded. Thus, as long as two nodes access the same data
and the first node has a parallel write access to the data, a barrier is generated. An
exception to this are fused nodes, where no synchronization is happening within. To
reduce the number of barriers while maintaining the correctness of the code, data
accesses regarding the barrier generation can be analysed more accurately. When
the two concatenated data accesses follow the same access pattern on the same pro-
cessor, the tasks for each thread are assigned to the same threads. Therefore, the
data necessary for the computation is already on the thread and synchronization is
not necessary, since the a task within the thread queue cannot be computed prior
to its predecessor.

7.3 Reusability
The results of this thesis are directly used within the prototype implementation
of the overarching project. The implementation of the generator module is closely
related to the choice of the target language. Thus, for other target languages it is
necessary to develop a new code generator. Extensions to the AMT can be directly
integrated into the generator implementation, since the utilization of the visitor pat-
tern, as explained in Section 4.1.1 allows the addition of new nodes as well as the
extension of existing nodes.
The AMT is designed to provide an interface for the optimization output and the
generator input. Therefore, the data structure can and should be reused in combi-
nation with other packages. The implementation of the optimization has to make
sure that the interface defined by the AMT is met.

75

7 Discussion

The implementation of the AMT only covers the optimizations implemented by
Trümper [?], since it is the only optimization package available at the time. In order
to define a different optimization, the AMT will need to be extended. These exten-
sions can be integrated directly, if they exclusively add new nodes or parameters.
Structural changes can also be integrated and adopted by the visitor implementa-
tion.
Essential changes to the interface induce essential changes in the optimization and
generator packages. Thus, the optimization and generator need to be reworked to
ensure a correct functionality.

7.4 Integration
The integration of the results of this thesis into the overarching project depend on
the implementation of the middle-ware. The AMT is integrated into the existing
code by implementing the two transformations discussed in Section 4.2. The instan-
tiation of serial AMT nodes is realized by extracting the necessary information from
the corresponding APT nodes. This direct dependency does simplify the implemen-
tation of both transformations. Although, an extraction where only the transformer
is dependant on the APT would be the better solution. By removing the dependency
between the APT and AMT the data structures could be updated regardless of each
other improving the maintainability. Future implementation of the optimization
packages will need to implement an adaptor to transform internal data structures
into an AMT. The adaptor has to make sure that necessary information remains
available in the AMT.
The integration of the generator is directly dependant on the AMT. The generator
will get the AMT as an argument and can handle the generation arbitrarily. The
implementation of the visitor pattern helps to integrate the generator. The limita-
tions of the visitor are highlighted by the inability to utilize the context of specific
nodes. Most notably, the implementation of fused nodes becomes more complicated,
since depending on the context, the current node has to be generated differently.
This problem can be solved by introducing context dependant visitor implementa-
tions like the extended visitor introduced in Section 4.1.1. This would provide more
flexibility for future generator implementations.

7.5 Synchronization and Data Transfers
The generation of synchronization and data transfers is currently handled by the
AMT. Whenever data is used on a machine, on which the data is available, the
current placement of the data and the new placement of the data is gathered in the
AMT to create a data transfer node. Such nodes contain a set of input placements
and a set of output placements for the same data element. This information on
input and output data placements is used by the generator to define point-to-point

76

7.5 Synchronization and Data Transfers

communication between the different devices/nodes.

7.5.1 Data Management
The global optimization of communication patterns influences the performance
model and cost estimation of the optimization package. Although, a local opti-
mization which can detect communication patterns within the data transfer nodes
can improve the performance in the future.
By analysing the structure of these data transfer nodes, they could be optimized
in order to utilize collective communication approaches. The utilization of efficient
collective communication patterns improves the performance of the code [?], e.g.,
it is more efficient to utilize MPI_Broadcast then communicating with every node
individually. For example, broad casting data to 16 different nodes takes 16 steps
in a sequential unoptimized case, while the utilization of appropriately build binary
trees could reduce the number of steps to five. In this scenario, nodes that already
have the data also participate in the distribution. Such strategies are applicable for
many collective communication patterns. The optimization of the communication
within the AMT should be better handled by the optimization package.
The data allocation strategy is part of the data transfer and synchronization im-
plementation and enforces a specific memory model. In Section 5.4, three different
allocation strategies are introduced. The complete allocation strategy limits the pos-
sibilities of data-centric distributed memory optimizations, since it assumes, that a
sequential implementation of the code would be computable in any case. This is
not true for extremely larger applications where the data does not fit into the main
memory of a single machine. This also holds for the dependency complete allocation
strategy. Therefore, the partial allocation strategy or an abbreviation should extend
the data transfers in the future.

7.5.2 Synchronization Overhead
Barriers are created with a focus on the correctness of the generated code, to
avoid data races and deadlocks. As already mentioned in the discussion on perfor-
mance, the amount of synchronization points can be reduced in future enhancements.
By increasing the accuracy when analysing data accesses, implicit synchronization
schemes can be utilized. The order of the tasks within the task queue of each thread
is fixed. Therefore, tasks that only depend on their predecessor are synchronized
implicitly, if and only if they are performed on the same thread. The utilization of
such an implicit synchronization scheme cannot be utilized when the task queues
are shared for multiple threads to utilize dynamic load balancing.
The implementation of the synchronization is by a factor of 2000 to 11000 more ex-
pensive compared to OpenMP. Therefore, it is necessary to improve the generated
overhead in the future. In some cases, it is not possible to avoid synchronization.
To be able to achieve good performance in these scenarios, the barrier implementa-

77

7 Discussion

tion must be improved. To improve the synchronization implementation, overhead
measurements are necessary in order to derive the cause for the elongated runtime.
The average synchronization overhead of about eleven milliseconds measured in Sec-
tion 6.2 indicates, that a large constant overhead dominates the synchronization in
the thread pool. By detecting and improving upon the cause of the constant over-
head, the generated code will be greatly improved. The cause for the overhead can
be detected with the Intel VTune perfomance analyzer [?] in a hotspot analysis.
Then the implementation can be improved to reduce the runtime overhead.

78

8 Conclusion and Future Work
The goal of the overarching project is to automatically apply global optimizations
targeting heterogeneous cluster systems. The goal of this work is to provide the code
generation for the overarching project. This thesis extended the IR defined in the
overarching project by introducing the AMT. The AMT is a tree based structure
which describes an algorithm after being globally optimized. It provides an interface
for the optimization and the code generation. The structure contains information
on the targeted architectures as well as the data flow between different nodes.
In this thesis, a code generator was developed and implemented based on the AMT.
The code generator is the first implementation of the back-end for the overarching
project. As such, the main focus of its development is primarily the correctness of
the generated code in order to provide a suitable baseline for future implementa-
tions. The code generator supports shared-memory parallelism, distributed-memory
parallelism and GPU offloading.
To measure the correctness of generated code, a test suite is developed. This test
suite adopts the error classification defined by Schmitz et al. [?] in order to cover
most of the potential error patterns within the generated code. The code generator
developed in this thesis successfully generated correct code for all test cases.
The performance of the generated code is another important factor once the cor-
rectness is satisfactorily covered. The first results of the performance measurement
are strongly influenced by the overhead of the thread pool implementation. The
unoptimized thread pool implementation leads to multiplying the runtime overhead
in comparison to OpenMP, e.g., the synchronization with a barrier takes multiple
times as long compared to OpenMP. The complete synchronization takes about 2000
times longer than the OpenMP synchronization.
The performance evaluation against handwritten optimizations, as discussed in Sec-
tion 6.2.2, shows that the performance is not on par with handwritten code yet.
The generated code shows slowdowns between 2 and 100. Nevertheless, the result
of the Monte Carlo test case shows that the generated MPI+PThreads hybrid code
performs much better in comparison to the handwritten MPI code, because the
shared-memory parallelism with PThreads scales much better than MPI. This in-
dicates that the utilization of hybrid code is an appropriate step towards efficient
generated code.
Towards real-world usage, the code generator can be improved in many areas in the
future. Especially, performance improvements for shared-memory and GPU offload-
ing are required. Reducing the overhead of synchronization and improving the use
of fused nodes will further improve the performance of the generated code.
This is demonstrated in the Monte Carlo test case. The generated code already has

79

8 Conclusion and Future Work

the potential to perform faster than handwritten optimizations, since hybrid code in
general performs better on shared memory than by using MPI by itself. Therefore,
algorithms targeting multiple nodes will benefit from the generated MPI+PThreads
hybrid code. Furthermore, the global optimization greatly increases the portability
of the original code, since the compiler package can automatically target different
systems and optimize the code accordingly.
The next steps should include, the reduction of synchronization overhead in shared
memory.
First, to achieve performance comparable to handwritten OpenMP code, the cost of
barriers needs to be reduced drastically. Currently, a shared-memory synchroniza-
tion is about 2000 to 11000 times more expansive than an OpenMP barrier.
Secondly, the generator needs to improve the generated code based on fused nodes,
by generating combined tasks. This enables the production compilers to perform
loop fusion optimizations. Especially, the generated GPU code benefits from these
improvements, since additional data transfers and synchronizations will be avoided.
Dynamic scheduling strategies and reducing the number of synchronization and
communication steps also benefits the efficiency of the generated code.

80

Bibliography
[1] FreeMarker tamplate engine. https://freemarker.apache.org/. Accessed:

2021-01-23.

[2] Intel Xeon Platinum 8160 Prozessor . https://
ark.intel.com/content/www/de/de/ark/products/120501/
intel-xeon-platinum-8160-processor-33m-cache-2-10-ghz.html. Ac-
cessed: 2021-02-15.

[3] I. C. R. Aachen. Hardware of the rwth compute cluster. https:
//help.itc.rwth-aachen.de/service/rhr4fjjutttf/article/
e018f684c5624ae6b9bf7f0994d399f2. Accessed: 2021-02-15.

[4] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine
learning. In 12th {USENIX} symposium on operating systems design and im-
plementation ({OSDI} 16), pages 265–283, 2016.

[5] H. Arabnejad, J. Bispo, J. M. Cardoso, and J. G. Barbosa. Source-to-source
compilation targeting openmp-based automatic parallelization of c applications.
The Journal of Supercomputing, pages 1–33, 2019.

[6] N. Bell and J. Hoberock. Thrust: A productivity-oriented library for cuda. In
GPU computing gems Jade edition, pages 359–371. Elsevier, 2012.

[7] T. Ben-Nun, J. de Fine Licht, A. N. Ziogas, T. Schneider, and T. Hoefler. State-
ful dataflow multigraphs: A data-centric model for performance portability on
heterogeneous architectures. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pages 1–14,
2019.

[8] S. Blazy, Z. Dargaye, and X. Leroy. Formal verification of a c compiler front-
end. In International Symposium on Formal Methods, pages 460–475. Springer,
2006.

[9] B. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua, P. Pe-
tersen, B. Pottenger, L. Rauchwerger, P. Tu, et al. Polaris: The next generation
in parallelizing compilers. In Proceedings of the Seventh Workshop on Languages
and Compilers for Parallel Computing, pages 141–154. Citeseer, 1994.

81

https://freemarker.apache.org/
https://ark.intel.com/content/www/de/de/ark/products/120501/intel-xeon-platinum-8160-processor-33m-cache-2-10-ghz.html
https://ark.intel.com/content/www/de/de/ark/products/120501/intel-xeon-platinum-8160-processor-33m-cache-2-10-ghz.html
https://ark.intel.com/content/www/de/de/ark/products/120501/intel-xeon-platinum-8160-processor-33m-cache-2-10-ghz.html
https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/article/e018f684c5624ae6b9bf7f0994d399f2
https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/article/e018f684c5624ae6b9bf7f0994d399f2
https://help.itc.rwth-aachen.de/service/rhr4fjjutttf/article/e018f684c5624ae6b9bf7f0994d399f2

Bibliography

[10] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. Pluto: A
practical and fully automatic polyhedral program optimization system. In
Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language
Design and Implementation (PLDI 08), Tucson, AZ (June 2008). Citeseer,
2008.

[11] Boost Community. Boost C++ Library V. 1.75.0. https://www.boost.org/
doc/libs/1_75_0/. Accessed: 2021-02-15.

[12] P. Bose. Power Wall, pages 1593–1608. Springer US, Boston, MA, 2011.

[13] J. M. Bull, F. Reid, and N. McDonnell. A microbenchmark suite for openmp
tasks. In International Workshop on OpenMP, pages 271–274. Springer, 2012.

[14] M. Christen, O. Schenk, and H. Burkhart. Patus: A code generation and au-
totuning framework for parallel iterative stencil computations on modern mi-
croarchitectures. In 2011 IEEE International Parallel & Distributed Processing
Symposium, pages 676–687. IEEE, 2011.

[15] G. D. Costa, T. Fahringer, J. A. R. Gallego, I. Grasso, A. Hristov, H. Karatza,
A. Lastovetsky, F. Marozzo, D. Petcu, G. Stavrinides, D. Talia, P. Trunfio, and
H. Astsatryan. Exascale Machines Require New Programming Paradigms and
Runtimes. Supercomputing Frontiers and Innovations, 2(2), 2015.

[16] C. Dave, H. Bae, S.-J. Min, S. Lee, R. Eigenmann, and S. Midkiff. Cetus: A
source-to-source compiler infrastructure for multicores. Computer, 42(12):36–
42, 2009.

[17] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[18] J. Dongarra, H. Meuer, E. Strohmeier, H. Simon, and M. Meuer. Top 500 Super-
computer Sites. November 2020. https://www.top500.org/lists/top500/
2020/11/. Accessed: 2021-02-15.

[19] D. Etiemble. 45-year cpu evolution: one law and two equations. arXiv preprint
arXiv:1803.00254, 2018.

[20] E. Gamma. Design patterns: elements of reusable object-oriented software.
Pearson Education India, 1995.

[21] A. V. Gerbessiotis and L. G. Valiant. Direct bulk-synchronous parallel algo-
rithms. Journal of parallel and distributed computing, 22(2):251–267, 1994.

[22] T. Grosser, A. Groesslinger, and C. Lengauer. Polly: performing polyhedral
optimizations on a low-level intermediate representation. Parallel Processing
Letters, 22(04):1250010, 2012.

82

https://www.boost.org/doc/libs/1_75_0/
https://www.boost.org/doc/libs/1_75_0/
https://www.top500.org/lists/top500/2020/11/
https://www.top500.org/lists/top500/2020/11/

Bibliography

[23] Z. Guo, B. Buyukkurt, J. Cortes, A. Mitra, and W. Najjar. A compiler in-
termediate representation for reconfigurable fabrics. International Journal of
Parallel Programming, 36(5):493–520, 2008.

[24] L. Gurobi Optimization. Gurobi Optimizer Reference Manual. http://www.
gurobi.com. Accessed: 2021-02-15.

[25] T. Gysi, C. Müller, O. Zinenko, S. Herhut, E. Davis, T. Wicky, O. Fuhrer,
T. Hoefler, and T. Grosser. Domain-specific multi-level ir rewriting for gpu.
arXiv preprint arXiv:2005.13014, 2020.

[26] M. Harris et al. Optimizing parallel reduction in cuda. https://developer.
download.nvidia.com/assets/cuda/files/reduction.pdf. Accessed: 2021-
02-15.

[27] J. Holewinski, L.-N. Pouchet, and P. Sadayappan. High-performance code
generation for stencil computations on gpu architectures. In Proceedings of the
26th ACM international conference on Supercomputing, pages 311–320, 2012.

[28] S. Jeanmart, Y.-G. Gueheneuc, H. Sahraoui, and N. Habra. Impact of the
visitor pattern on program comprehension and maintenance. In 2009 3rd In-
ternational Symposium on Empirical Software Engineering and Measurement,
pages 69–78. IEEE, 2009.

[29] H. Jordan, S. Pellegrini, P. Thoman, K. Kofler, and T. Fahringer. Inspire:
The insieme parallel intermediate representation. In Proceedings of the 22nd
international conference on Parallel architectures and compilation techniques,
pages 7–17. IEEE, 2013.

[30] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams. An auto-tuning frame-
work for parallel multicore stencil computations. In 2010 IEEE international
symposium on parallel & distributed processing (IPDPS), pages 1–12. IEEE,
2010.

[31] D. Khaldi, P. Jouvelot, F. Irigoin, C. Ancourt, and B. Chapman. Llvm parallel
intermediate representation: Design and evaluation using openshmem com-
munications. In Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC, pages 1–8, 2015.

[32] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih. Pycuda
and pyopencl: A scripting-based approach to gpu run-time code generation.
Parallel Computing, 38(3):157–174, 2012.

[33] R. K. Kombi, N. Lumineau, and P. Lamarre. A preventive auto-parallelization
approach for elastic stream processing. In 2017 IEEE 37th International Con-
ference on Distributed Computing Systems (ICDCS), pages 1532–1542. IEEE,
2017.

83

http://www.gurobi.com
http://www.gurobi.com
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Bibliography

[34] P. Konecny. Introducing the cray xmt. In Proc. Cray User Group meeting
(CUG 2007). Seattle, WA: CUG Proceedings, 2007.

[35] J. Lambert, S. Lee, A. Malony, and J. S. Vetter. Ccamp: Openmp and openacc
interoperable framework. In European Conference on Parallel Processing, pages
357–369. Springer, 2019.

[36] X. Leroy. Formal verification of a realistic compiler. Communications of the
ACM, 52(7):107–115, 2009.

[37] A. R. Mamidala, R. Kumar, D. De, and D. K. Panda. Mpi collectives on modern
multicore clusters: Performance optimizations and communication characteris-
tics. In 2008 Eighth IEEE International Symposium on Cluster Computing and
the Grid (CCGRID), pages 130–137. IEEE, 2008.

[38] S. M. Martin, D. Wälchli, G. Arampatzis, and P. Koumoutsakos. Korali: a high-
performance computing framework for stochastic optimization and bayesian
uncertainty quantification. arXiv preprint arXiv:2005.13457, 2020.

[39] T. G. Mattson, B. Sanders, and B. Massingill. Patterns for Parallel Program-
ming. Pearson Education, Amsterdam, 2004.

[40] M. D. McCool, A. D. Robison, and J. Reinders. Structured Parallel Program-
ming - Patterns for Efficient Computation. Elsevier, Amsterdam, 2012.

[41] S. A. McKee and R. W. Wisniewski. Memory Wall, pages 1110–1116. Springer
US, Boston, MA, 2011.

[42] J. Miller, L. Trümper, C. Terboven, and M. S. Müller. Poster: Efficiency
of algorithmic structures. In International Conference on High Performance
Computing, Networking, Storage and Analysis (SC19). IEEE/ACM, november
2019.

[43] MPI Forum. MPI: A Message-Passing Interface Standard, Version 3.1. https:
//www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf. Accessed: 2021-
02-15.

[44] C. J. Newburn, B. So, Z. Liu, M. McCool, A. Ghuloum, S. D. Toit, Z. G.
Wang, Z. H. Du, Y. Chen, G. Wu, P. Guo, Z. Liu, and D. Zhang. Intel’s array
building blocks: A retargetable, dynamic compiler and embedded language. In
International Symposium on Code Generation and Optimization (CGO 2011),
pages 224–235, 2011.

[45] B. Nichols, D. Buttlar, and J. P. Farrell. Pthreads programming - a POSIX
standard for better multiprocessing. O’Reilly, 1996.

[46] Nvidia. Cuda 11 documentation. https://docs.nvidia.com/cuda/. Accessed:
2021-02-15.

84

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://docs.nvidia.com/cuda/

Bibliography

[47] NVIDIA V100 GPU ARCHITECTURE. https://images.nvidia.com/
content/volta-architecture/pdf/volta-architecture-whitepaper.pdf.
Accessed: 2021-02-15.

[48] OpenACC User Group. OpenACC 3.0 Specification. https://www.openacc.
org/sites/default/files/inline-images/Specification/OpenACC.3.0.
pdf. Accessed: 2021-01-23.

[49] OpenMP Architecture Review Board. OpenMP 5.1 Specification. https:
//www.openmp.org/wp-content/uploads/openmp-5-1.pdf. Accessed: 2021-
02-01.

[50] T. J. Parr and R. W. Quong. Antlr: A predicated-ll (k) parser generator.
Software: Practice and Experience, 25(7):789–810, 1995.

[51] M. J. Quinn. Parallel programming. TMH CSE, 526:105, 2003.

[52] J. Reinders. Vtune performance analyzer essentials. Intel Press, 2005.

[53] B. Rumpe and K. Hölldobler. Monticore 5 language workbench. edition 2017.
Shaker Verlag, 2017.

[54] C. A. Schaefer, V. Pankratius, and W. F. Tichy. Atune-il: An instrumentation
language for auto-tuning parallel applications. In European Conference on
Parallel Processing, pages 9–20. Springer, 2009.

[55] T. B. Schardl, W. S. Moses, and C. E. Leiserson. Tapir: Embedding fork-join
parallelism into llvm’s intermediate representation. In Proceedings of the 22Nd
ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, pages 249–265, 2017.

[56] A. Schmitz, J. Protze, L. Yu, S. Schwitanski, and M. S. Müller. Dataraceonac-
celerator a micro-benchmark suite for evaluating correctness tools targeting
accelerators. In European Conference on Parallel Processing, pages 245–257.
Springer, 2019.

[57] C. Silvano, G. Agosta, S. Cherubin, D. Gadioli, G. Palermo, A. Bartolini,
L. Benini, J. Martinovič, M. Palkovič, K. Slaninová, et al. The antarex approach
to autotuning and adaptivity for energy efficient hpc systems. In Proceedings
of the ACM International Conference on Computing Frontiers, pages 288–293,
2016.

[58] C. Simmendinger, M. Rahn, and D. Gruenewald. The GASPI API: A failure
tolerant PGAS API for asynchronous dataflow on heterogeneous architectures.
In Sustained Simulation Performance 2014, pages 17–32. Springer, 2015.

85

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC.3.0.pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC.3.0.pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC.3.0.pdf
https://www.openmp.org/wp-content/uploads/openmp-5-1.pdf
https://www.openmp.org/wp-content/uploads/openmp-5-1.pdf

Bibliography

[59] M. Steuwer, T. Remmelg, and C. Dubach. Lift: a functional data-parallel ir
for high-performance gpu code generation. In 2017 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pages 74–85. IEEE,
2017.

[60] G. Tournavitis, Z. Wang, B. Franke, and M. F. O’Boyle. Towards a holistic ap-
proach to auto-parallelization: integrating profile-driven parallelism detection
and machine-learning based mapping. ACM Sigplan notices, 44(6):177–187,
2009.

[61] L. Trümper. Global optimization of parallel pattern-based algorithms for het-
erogeneous architectures. In Master thesis, RWTH Aachen University, 2020.

[62] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gomez, C. Tenllado, and
F. Catthoor. Polyhedral parallel code generation for cuda. ACM Transactions
on Architecture and Code Optimization (TACO), 9(4):1–23, 2013.

[63] J. Vitay, H. Ü. Dinkelbach, and F. H. Hamker. Annarchy: a code generation
approach to neural simulations on parallel hardware. Frontiers in neuroinfor-
matics, 9:19, 2015.

[64] D. Wälchli, S. M. Martin, A. Economides, L. Amoudruz, G. Arampatzis,
X. Bian, and P. Koumoutsakos. Load balancing in large scale bayesian inference.
In Proceedings of the Platform for Advanced Scientific Computing Conference,
PASC ’20, New York, NY, USA, 2020. Association for Computing Machinery.

[65] S. Williams, A. Waterman, and D. Patterson. Roofline: An Insightful Visual
Performance Model for Multicore Architectures. Commun. ACM, 52(4):65–76,
Apr. 2009.

[66] C. Yount, J. Tobin, A. Breuer, and A. Duran. Yask:yet another stencil kernel:
A framework for hpc stencil code-generation and tuning. In 2016 Sixth Inter-
national Workshop on Domain-Specific Languages and High-Level Frameworks
for High Performance Computing (WOLFHPC), pages 30–39. IEEE, 2016.

[67] J. Zhao and V. Sarkar. Intermediate language extensions for parallelism. In
Proceedings of the compilation of the co-located workshops on DSM’11, TMC’11,
AGERE! 2011, AOOPES’11, NEAT’11, & VMIL’11, pages 329–340, 2011.

[68] M. Zheng, M. S. Rogers, Z. Luo, M. B. Dwyer, and S. F. Siegel. Civl: for-
mal verification of parallel programs. In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 830–835. IEEE,
2015.

86

	Titelseite
	Abstract
	Contents
	List of Figures
	List of Listings
	List of Tables
	1 Introduction
	2 Related Work
	3 Background
	3.1 Overview
	3.2 Parallel Pattern Language
	3.2.1 Hardware Language

	3.3 Abstract Pattern Trees
	3.3.1 Model of Parallel Algorithms
	3.3.2 Implementation

	3.4 Optimization
	3.4.1 Optimizations
	3.4.2 FlatAPT
	3.4.3 Target Architectures

	4 Abstract Mapping Tree
	4.1 AMT Structure
	4.1.1 Visitor Pattern

	4.2 Transformation to AMT
	4.2.1 Optimization to AMT
	4.2.2 Debug Mode

	4.3 Synchronization Model

	5 Code Generation
	5.1 Requirements
	5.1.1 Hardware
	5.1.2 Optimization Representation
	5.1.3 Intermediate Representation
	5.1.4 Design Decisions

	5.2 Target Language
	5.3 Shared-Memory Parallelism
	5.3.1 Programming Model
	5.3.2 Implementation

	5.4 Distributed-Memory Parallelism
	5.4.1 Programming Model
	5.4.2 Implementation

	5.5 GPU Offloading
	5.5.1 Programming Model
	5.5.2 Implementation

	5.6 Data Structures
	5.7 Code Generator Tool
	5.7.1 File Generation
	5.7.2 AMT Generation
	5.7.3 Expression Printer

	5.8 Utility Files
	5.8.1 Makefile
	5.8.2 Machine File

	6 Evaluation
	6.1 Code Generator Verification
	6.1.1 Error Classification
	6.1.2 Test Suite Implementation
	6.1.3 Test Cases
	6.1.4 Results

	6.2 Performance of Generated Code
	6.2.1 Thread Pool Overhead Measurements
	6.2.2 Algorithmic Case Study

	7 Discussion
	7.1 Correctness
	7.2 Performance
	7.3 Reusability
	7.4 Integration
	7.5 Synchronization and Data Transfers
	7.5.1 Data Management
	7.5.2 Synchronization Overhead

	8 Conclusion and Future Work
	Bibliography

