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Abstract
This paper presents a hybrid simulation approach for 1U-, 2U- and coaxial sin-
gle, and field of, borehole heat exchangers. We implement a novel combination
of existing solutions for the simulation of heat transfer processes within the bore-
hole and the surrounding ground. The heat transfer in the ground is modelled
with a combination of analytically determined g-functions, the borehole mod-
els utilize thermal resistance capacity models and the finite volume method.
Critically, we improve the computational efficiency of long-term simulations
by sub-dividing the time scale into multiple periods, where the influence of
past periods on future periods is calculated using the fast Fourier transform
(FFT). The accuracy and efficiency of the proposed method is validated against
single borehole numerical models and a 40 bore field case study. The method
achieves computational times reductions of over 90% in some cases, with greater
improvement as the simulation time increases.
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1 INTRODUCTION

The design and simulation of geothermal systems with borehole heat exchangers can be challenging due to the three-
dimensional heat transfer processes in the ground and the heat exchanger, the large spatial scale differences and the
long operational periods. The scale-distributed geometries and transient transfer processes lead to high computational
costs when using numerical models. For example, traditional design periods of 50 years mean that, such models are not
often used in practice.1 Simplified solutions with some limitations are widely preferred due to their simpler handling and
short computational times. In most common solutions, the spatial domain is divided into two parts, the domain inside
the borehole and the domain outside the borehole (see Figure 1, left). One advantage of this approach is that different
simulation methods can be used for both areas.
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F IGURE 1 Schematic illustrations of a 1U-BHE model: longitudinal section (left); cross section and resistance model with temperature
nodes (middle); vertical discretisation and transfer processes, the resistances and temperature nodes are shown exemplary for one horizontal
plane (right)

A computationally efficient method for the area outside the borehole is the g-function approach introduced by
Eskilson.2 G-functions are thermal response functions that can be used to calculate the temperature response at the bore-
hole wall or any other point in the ground for an imposed constant load. For time-varying loads, as they occur in reality,
Duhamel’s theorem, from now on referred to as superposition principle, is typically applied.3 To speed up computational
time for high-resolution time variable loads, Marcotte and Pasquier4 proposed to solve the problem in the Fourier domain
using the convolution theorem.
G-functions depend on the borehole geometry and the characteristic time2 𝑡s = 𝐻2∕9𝛼s where 𝐻 is the length of the

borehole and 𝛼s the thermal diffusivity of the ground and can be derived with numerical or analytical methods. While
Eskilson2 and others5 determine g-functions numerically, a variety of analytical solutions exist. One key element is the
geometry used to model the borehole in a simplified way. While the infinite line source (ILS) considers the borehole as
an infinite one-dimensional heat source in infinite space,3,6 the finite line source (FLS) considers the finite length of the
borehole in semi-infinite space.7 In contrast to line sources models, cylinder source models consider the actual radius of
the borehole.3,8–10 Philippe et al.11 show the different validity ranges in the time domain of thementioned solutions.While
the FLS provides better results for short boreholes or long observation periods, the cylinder source models lead to more
accurate results for short-term observations because of the relative importance of the borehole geometry initially in the
short-term. Li et al.12 combine the different models and derive a g-function that produces accurate results over the entire
time scale and call it fullscale g-function.
To account for groundwater flow in homogeneous soil, the borehole can be modelled as a moving line3,13,14 or cylinder

sources.15 Other extensions of the FLS consider inhomogeneous soil structure16 and horizontal groundwater flow through
sequences of permeable and impermeable soil layers.17
By dividing the borehole into multiple segments, Cimmino and Bernier18 developed a method based on the FLS for

determining the g-function of BHE fields with different boundary conditions, such as equal borehole wall temperature in
all boreholes.
While the approaches mentioned above are used to calculate temperatures outside and at the borehole wall, others also

include the heat exchanger itself5,19–23
An alternative method to cover the processes inside the borehole are models based on thermal resistances and

capacities.24–30 In this approach, the horizontal heat flows are modelled with a circuit of coupled thermal resistances (see
Figure 1, middle). The convective heat flows in the circulating fluid can be solved analytically with a few simplifications by
coupled partial differential equations31 or numerical methods.32,33 Models that use thermal resistance capacitancemodels
(TRCM) for the horizontal heat transfer and numerical methods for the vertical heat transfer within the fluid are referred
to as numerical borehole models here on. Combining both approaches explained above, various simulation tools use a
combination of numerical borehole models and g-functions. The simulation tool EWS couples a TRCM with numerical
or analytical derived g-functions.34 Ruiz-Calvo et al.35 include the near ground effects in the numerical BHE model and
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couple it with a g-function for the far-field and a load aggregation scheme. The model presented by Düber36 combines
TRCMwith a fullscale analytical g-function. Laferrière et al.37 also use a fullscale analytical g-function coupled to a TRCM
and combine it with a load aggregation scheme. All of the above report accurate results against different conditions. How-
ever, their efficiency in terms of computational time when not using a load aggregation scheme could be improved. This
is of particular importance when the number of boreholes in a field is large or when the modelled times are long, as in
the real-life operation of such systems, e.g. 100 years or longer.
This paper presents an extension to the model from Düber,36 incorporating the application of the fast Fourier trans-

formation to perform high temporal resolution simulations of multiple BHE in a computationally efficient manner. By
using this method, the calculation time could be reduced significantly without the use of a load aggregation scheme. The
paper starts with a description of the model in Section 2, followed by a validation and demonstration in Section 3 using
single borehole with 1U-, 2U- and coaxial type heat exchangers, and a borehole field consisting of 40 2U-BHEs. Finally,
a discussion and conclusions are presented. All models are implemented in Python and are available through a GitHub
repository.38

2 MODEL

2.1 Model structure and simulation process

The presented model has several components: the simulation methods for the domains inside and outside the borehole;
the coupling of the two and; the integration of the FFTmodel for the domain outside the borehole. Furthermore, amethod
for the determination of model specific parameters is presented to demonstrate its use.

2.1.1 Heat transfer inside the borehole

Here we use the implementation of Bauer et al.27 for the thermal resistances and the spatial division of the grout material
for 1U-, 2U- and Coaxial-BHE with an annular inlet.
The heat transfer in the vertical direction is a combination of heat conduction in the grout material and convection in

the fluid and is governed by the transient convection-diffusion equation

𝜚𝑐
𝜕𝑇

𝜕𝑡
= 𝛁 ⋅ (𝜆𝛁𝑇 − 𝜐𝜚𝑐𝑇) + 𝑞h (1)

which is discretised using the finite volume method. In Equation (1) 𝑇 denotes the temperature, 𝑡 the time, 𝜚𝑐 the volu-
metric heat capacity, 𝜆 he thermal conductivity, 𝜐 the fluid velocity and 𝑞h the source term. As shown in Figure 1 on the
right, the equation is discretised and solved in 1D for each temperature node within the borehole. For the grout material
this results in

𝜚𝑐
𝜕𝑇

𝜕𝑡
= 𝛁 ⋅ (𝜆𝛁𝑇) + 𝑞h (2)

and for the temperatures in the fluid, neglecting conduction

𝜚𝑐
𝜕𝑇

𝜕𝑡
= 𝛁 ⋅ (−𝜐𝜚𝑐𝑇) + 𝑞h. (3)

Different numerical interpolation schemes are used for Equations (2) and (3). The diffusion term (Equation 2) is interpo-
latedwith the central difference scheme (CDS)whereas the convective term (Equation 3) is approximatedwith the upwind
scheme to prevent oscillating solutions for high Péclet numbers. Besides being computationally efficient, the upwind
scheme does not produce any non-physical solutions (e.g. oscillations), which may produce problems when coupling the
model with other system component models. On the other hand, the upwind scheme can introduce numerical diffusion,
which can be controlled by adequate spatial and time discretisation, depending on the numerical integration method.
The heat transfer in the horizontal direction is solved with analytical equations based on Fourier’s law. The horizontal

heat flows 𝑞h are integrated as a source term in Equation (1), and they depend on the total thermal resistance 𝑅th (e.g. the
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F IGURE 2 Exemplary illustration of the elements of the thermal resistance between fluid and grout
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F IGURE 3 Computational time per step for forward and backward Euler BHE models depending on vertical discretization. Processing
unit is an Intel i7-7700K processor at 4200 MHz, 16 GB of RAM, Windows version 10

resistance between fluid and grout𝑅fg, or the resistance between grout and soil𝑅gs), the cell heightΔ𝑧 and are driven by the
temperature gradient Δ𝑇 between two temperature nodes (e.g. 𝑇f,in − 𝑇g,in or 𝑇g,in − 𝑇s, as shown in the nodes-resistance
model in Figure 1):

𝑞h =
Δ𝑧 ⋅ Δ𝑇

𝑅th
. (4)

The total thermal resistances 𝑅th are serial connections of convective and diffusive resistances. For example, the resis-
tance between the fluid and the grout is a serial connection of the convective resistance between the fluid and the inner
wall of the pipe 𝑅conv , the conductive resistance of the pipe 𝑅pipe and the conductive resistance between the outer wall of
the pipe and the thermal centre of the grout 𝑅pipe−grout (Figure 2). While the conductive resistances are calculated based
on the geometry and thermal properties of the material, the convective resistance is based on the dimensionless flow
coefficients Reynolds, Nusselt and Prandtl. Detailed compilations of all equations are given in Diersch et al.39 and Bauer
et al.27
For the numerical integration of Equation (1), the forward and backward Euler methods are implemented and com-

pared. The Euler method was chosen for its simplicity and efficiency. Depending on fluid velocity, spatial and temporal
discretization or desired accuracy, one of the methods may be advantageous over the other. While the backward scheme
is preferred in general due to its robustness and unconditional stability, the forward scheme can be more computationally
efficient for certain conditions. It is also easier to reduce the numerical diffusion caused by the upwind method in the
forward scheme by choosing a Courant–Friedrichs–Lewy (CFL) number close to 1, while for the backward method the
spatial and temporal discretisation have to be refined. Figure 3 shows the computational time per timestep for the 2U-
BHE model. The computational times of the BHE models are driven only by the number of cells, as no internal iteration
is required for the forward models and a direct solver (scipy.sparse.linalg.spsolve40) is used for the backward models. For
a model with 100 cells for each temperature node, the Forward Euler implementation is about five times faster than the
backward Euler model. With increasing number of cells, the difference between the two schemes also increases linearly.
Despite these results, it cannot be concluded that the forward scheme will always be the best choice in terms of computa-
tional effort as it depends on the timestep. Themaximum timestep that can be used depends on cell size and fluid velocity,
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according to Fichter,41 it can be calculated using the CFL condition as

Δ𝑡max =

(
𝜐

Δ𝑧
+

2𝛼

(Δ𝑧)2
+
∑
𝑖

Δ𝑧

𝜚𝑐𝑅thΔ𝑉

)−1

. (5)

The first term of Equation (5) accounts for the convection, the second termwith the thermal diffusivity 𝛼 for conduction
in vertical direction and the last termwith the cell volumeΔ𝑉 for the horizontal heat transfer. The total thermal resistance
𝑅th is calculated according to the pipe configuration27,39 and the cell type. To obtain the overall maximum timestep size
for the forward implementation, Equation (5) has to be solved for the grout and the fluid cells. Accordingly, the following
results for a 1U-BHE configuration as shown in Figure 1 with the thermal resistances between fluid and grout𝑅fg, between
the two grout sections 𝑅gg and between grout and soil 𝑅gs:

Δ𝑡max,f luid =

(
𝜐

Δ𝑧
+

Δ𝑧

𝜚𝑐f𝑅fgΔ𝑉

)−1

(6)

and

Δ𝑡max,grout =

(
2𝛼

(Δ𝑧)2
+

Δ𝑧

𝜚𝑐g𝑅fgΔ𝑉
+

Δ𝑧

𝜚𝑐g𝑅ggΔ𝑉
+

Δ𝑧

𝜚𝑐g𝑅gsΔ𝑉

)−1

. (7)

The minimum of Δ𝑡max,f luid and Δ𝑡max,grout is the decisive timestep for the simulation.

2.1.2 Heat transfer outside the borehole

For the domain outside the borehole, the g-function approach introduced by Eskilson2 is used. The temperature at the
borehole wall 𝑇b due to an imposed load 𝑞 is calculated as follows:

𝑇b = 𝑇0 +
𝑞

2𝜋𝜆s
⋅ 𝑔

(
𝑡

𝑡s
,
𝑟b
𝐻

,
𝐷

𝐻

)
. (8)

The second term of Equation (8) represents the temperature change due to the imposed load, where 𝑇0 is the undis-
turbed ground temperature. Here 𝜆s denotes the thermal conductivity of the soil, 𝑟b the borehole radius and 𝐷 the
buried depth.
Three of the main analytical solutions to calculate 𝑔 to date are the infinite cylinder source (ICS),10 the FLS7 and the

ILS.3 As shown by Philippe et al.,11 the ICS works most accurately for the shortest dimensionless time, whereas the ILS is
only accurate for themedium termand the FLS for the longer term. Inspired by thework of Li et al.,12 we use a combination
of different analytical derived g-functions to cover the full-time range36,37:

𝑔fullscale = 𝑔ICS + 𝑔FLS − 𝑔ILS. (9)

While for the short- and medium-term ILS and FLS overlap, the same is true for the medium and long terms for ICS
and ILS. This allows us to intersect the different approaches according to Equation (9) and thus calculate a combined
fullscale g-function that is valid for the entire time range. We use the FLS formulation proposed by Claesson and Javed21
to calculate the integral mean temperature along the borehole. For the ICS, we favour the easy to evaluate formulation
proposed by Man et al.10.
For multiple boreholes, the spatial superposition principle3 can be used to account for thermal interaction:

Δ𝑇b,𝑖 =

𝑛b∑
𝑗=1

𝑞𝑗

2𝜋𝜆s
𝑔𝑗(𝑑𝑗𝑖) (10)

𝑑𝑗𝑖 =

{
𝑟b,𝑖√

(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2
for 𝑖 = 𝑗

for 𝑖 ≠ 𝑗
(11)
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F IGURE 4 Application of the superposition principle for time-varying loads: decomposition of the load (1) as load increments (2) and
superposition of the temperature responses (3) to construct the solution (4). After Marcotte and Pasquier4 and Lazzarotto42

This means the temperature change Δ𝑇b at the borehole 𝑖 is the sum of the temperature changes due to all considered
boreholes with coordinates (𝑥𝑗, 𝑦𝑗) and their associated loads 𝑞𝑗 . For the consideration of time variable loads, temporal
superposition can be applied where 𝑞(𝑡) (Figure 4, (1)) is divided into load increments Δ𝑞(𝑡𝑘) = 𝑞(𝑡𝑘) − 𝑞(𝑡𝑘−1) (Figure 4,
(2)). The temperature change at any step 𝑘 (Figure 4, (4)) is the sum of all past temperature responses (Figure 4, (3)) at
their respective load increments. Including the summation over time into Equation (10) leads to

Δ𝑇b,𝑖,𝑘 =

𝑘∑
𝑙=1

𝑛b∑
𝑗=1

Δ𝑞𝑗,𝑙

2𝜋𝜆s
𝑔𝑗,𝑘−𝑙+1(𝑑𝑗𝑖). (12)

2.1.3 Coupling of borehole and underground model

The coupling parameter between the numerical borehole model and the g-function model is the soil temperature at the
borehole wall 𝑇b. Based on the soil temperature and the fluid inlet temperature, the borehole model calculates new tem-
peratures for all BHE components. The difference between the mean grout temperature 𝑇g and the soil temperature 𝑇b

and the thermal resistance between grout and soil 𝑅gs determine the ground load:

𝑞 =
𝑇b − 𝑇g

𝑅gs
. (13)

The ground load serves as input for the g-function model to calculate the soil temperature at the borehole wall. As the
borehole wall temperature depends on the grout temperature, which also depends on the borehole wall temperature, this
problem requires an iterative scheme as shown in Figure 5. As a first guess of the soil temperature, we use the value at
the previous timestep 𝑖 − 1. After calculating a new ground temperature, this process is repeated, until an error tolerance
criterion is fulfilled. The deviation of the outlet fluid temperature between two iterations is used as error criterion:

𝑒 =
|||𝑇

new
f ,out

− 𝑇old
f ,out

𝑇old
f ,out

|||. (14)

The error tolerance has a negligible influence as long as sufficient iterations are allowed. After the error criterion is
met, the g-function model is used to calculate the temperature change according to the ground load increment Δ𝑞(𝑡𝑘) =

𝑞(𝑡𝑘) − 𝑞(𝑡𝑘−1) for all future timesteps.
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2.1.4 Integration of fast Fourier transform

A disadvantage of the previously presented model, from now on referred to as semi-analytical model, is that the computa-
tional time increases exponentially with increasing simulation steps as the ground temperatures have to be calculated for
all future timesteps in each timestep. For example, in the case shown in Figure 4, the temperatures due to the first load
increment (marked with a circle) must be calculated for timesteps 1–6. For the second increment (marked with a triangle)
for steps 2–6 and so on. However,Marcotte and Pasquier4 have shown that the computation of the ground temperature can
be seen as a convolution in the time domain that can be efficiently evaluated by using the fast Fourier transform (FFT).
Applying the FFT to Equation (12) leads to

Δ𝑇b,𝑖 =

𝑛b∑
𝑗=1

ℱ−1

(
ℱ(

Δ𝑞𝑗

2𝜋𝜆s
) ∗ ℱ(𝑔𝑗(𝑑𝑗𝑖))

)
(15)

whereℱ is the direct andℱ−1 the inverse FFT. Here we use the scipy.fftmodule40 to calculateℱ andℱ−1.
Replacing Equation (12) by Equation (15) can reduce the computational time by several orders of magnitude, depending

on the number of timesteps. To make use of Equation (15), the load increments Δ𝑞 for all timesteps have to be known,
which means it cannot be used directly in the semi-analytical model. However, if we divide the simulation time into
multiple time periods (see Figure 6) and use the FFT, each of these periods can be simulated using the semi-analytical
model. After a period is simulated, all load increments of this period are passed to a secondmodel, from now on referred to
as FFTmodel, which uses Equation (15) to calculate the ground temperatures for the following period. These temperatures
become the initial temperatures 𝑇0 for the next period.
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F IGURE 7 Inlet temperature and
simulation setup for an exemplary simulation

F IGURE 8 Results of the semi-analytical model (left) and the FFT model (right) for the first iteration 𝑖 according to Figure 6

F IGURE 9 Results of the semi-analytical model (left) and the FFT model (right) for the second iteration 𝑖 according to Figure 6

To give a more practical example, let us assume a simulation with 26 time steps with a known inlet temperature as
boundary condition. The simulation time is divided into four periods with six time steps each (Figure 7). The undisturbed
ground temperature is 12◦C.With the undisturbed ground temperature and the fluid inlet temperature, the semi-analytical
model is used to simulate the first period. Results of the simulation are, among others, the outlet fluid temperature and the
corresponding ground load (Figure 8, left). This ground load is now passed to the FFT model. According to the number
of time steps of the next period, zeros are appended to the load vector. With this load vector (Figure 8, right), the FFT
model calculates the ground temperature at the borehole wall for the time steps of the first two periods (Figure 8, right).
The temperatures for the first period are a by-product and already known from the simulation with the semi-analytical
model, while the temperatures for the second period serve as inputs for the simulation of the second period with the semi-
analytical model. While for the simulation of the first period with the semi-analytical model, the undisturbed ground
temperature was initialized with 12◦C, it is now set to the values calculated by the FFT model for the time steps of the
second period as shown in Figure 8 on the right.
Finally, this procedure is repeated for all further periods. The semi-analytical model is used to determine the outlet

temperature and the load for the second period (Figure 9, left). Using the loads from the first two periods, the FFT model
is used again to calculate the ground temperatures for simulation of the third period with the semi-analytical model
(Figure 9, left). The procedure is repeated until all periods are calculated (Figure 10). The simulation of the last period
with the semi-analytical model is not shown here, but Figure 11 shows the overall result of the simulation.
In the semi-analytical model, the g-function model has to be solved at each timestep for all following timesteps of the

period (Equation 12). The FFT model, however, needs to be computed only once for each period, as the temperature
responses for all timesteps are obtained simultaneously by solving Equation (15). This procedure reduces the effect of the
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F IGURE 10 Results of the semi-analytical model (left) and the FFT model (right) for the third iteration 𝑖 according to Figure 6

F IGURE 11 Final result of the exemplary
simulation

exponential growth of the computational time as a function of the timesteps. For example, if the computational time is
defined as Δ𝑡 = 𝜓𝑛2

s where 𝑛s is the number of timesteps for the full modelling time, this leads to a computational time of
Δ𝑡 = 𝜓1002. With the sub-division in periods and FFT, the time becomes Δ𝑡 = 10 ⋅ 𝜓102, which is 10 times shorter. Both
the computational time of the semi-analytical model and the FFT model depend on the number of timesteps per period.
This analysis aims to determine the optimal number of periods depending on the total number of timesteps.

2.2 Division of the simulation time

The procedure shown in Figure 6 leads to the question though of how many periods the simulation time must be divided
into for the most efficient simulation, which we solve in this section. To provide a more application-oriented view and
include memory access times, it was decided to base the analysis on measured process times.
Considering one period with the semi-analytical model, the computational time for the temperature response of each

load increment decreases with progressing simulation time, as the temperature response has to be calculated only for the
remaining timesteps 𝑛r.
Due to the linear time complexity of the operations involved, the computational time for a timestep Δ𝑡step can then be

defined, in general, as a linear function of the remaining timesteps 𝑛r times a constant factor 𝜓sa as follows plus a constant
𝑐sa that accounts for setup and memory access time:

Δ𝑡step = 𝜓sa𝑛r + 𝑐sa. (16)

This becomes clear when determining 𝜓sa by measuring the computational time for different 𝑛r as shown in Figure 12.
The line has two sections separated at a breakpoint of 𝑛bp = 130, 000. This breakpoint occurs because of the way the data
are handled within the PC. Their location will change depending on the data types, operating system, compilers and
so forth. Hence, it needs to be calculated for each hardware and software set-up individually. The same applies to the
other parameters derived from measured computational times. Since the calculation is only an array multiplication and
subtraction, the only relevant parameter is the number of elements 𝑛r. The linear fit leads to

𝜓sa =

{
5.8 × 10−10

3.7 × 10−9

for 𝑛r < 130, 000

for 𝑛r ≥ 130, 000
(17)
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F IGURE 1 2 Computational time per timestep of the
ground model in the semi-analytical model depending on the
number of remaining steps. The calculation consists of
multiplying the load increment by the g-function for the
remaining time steps, and adding the calculated temperature
change to the previous temperature

and

𝑐sa =

{
5.4 × 10−6

−9.1 × 10−5

for 𝑛r < 130, 000

for 𝑛r ≥ 130, 000
(18)

These values depend on the computer used, the operating system and other factors and are not generally valid. A script
for determining the values for any other setup is included in the repository.38
The fitted line though allows predicting the total computational time of the entire period Δ𝑡per, which is defined as a

function of the number of steps per period 𝑛sp:

Δ𝑡per =

𝑛sp−1∑
𝑖=0

𝜓sa(𝑛sp − 𝑖) + 𝑐sa =
𝜓sa

2
(𝑛sp

2 + 𝑛sp) + 𝑐sa𝑛sp. (19)

When resolving the summation in Equation (19), it should be noted that different values of 𝜓sa and 𝑐sa apply depending
on the side of the breakpoint at which the function is evaluated. When 𝑛sp is bigger than 𝑛bp, new values 𝜓̄sa and 𝑐sa are
necessary. By introducing 𝜓sa = 𝜓<

sa for 𝑛r < 𝑛bp and 𝜓sa = 𝜓>
sa for 𝑛r ≥ 𝑛bp and applying the same for 𝑐sa, we can calculate

weighted parameters (see Appendix B for more details on 𝜓̄sa):

𝜓̄sa =
𝑛2
bp
(𝜓<

sa − 𝜓>
sa) + 𝑛bp(𝜓

>
sa − 𝜓<

sa) + 𝜓>
sa(𝑛

2
sp + 𝑛sp)

𝑛2
sp − 𝑛sp

(20)

𝑐sa =
𝑛sp − (𝑛bp − 1)

𝑛sp
𝑐>sa +

𝑛bp − 1

𝑛sp
𝑐<sa (21)

However, the implementation of the FFT has a linearithmic time complexity, which is linearly approximated for sim-
plicity. This will lead to a negative ordinate intersection for an unconstrained linear fit. Since this does not correspond to
reality, and also leads to problems in the following calculations, we will constrain the ordinate intersection to zero for the
linear approximation, so that the relation between the computational time and the number of steps 𝑛 for the FFT model
can be defined as

Δ𝑡 = 𝜓FFT𝑛. (22)

Figure 13 shows the computational time of the FFTmodel depending on the number of steps measured with the model.
The linear approximation leads to 𝜓FFT = 1.58 × 10−6.
The total computational time for the FFT model for all periods is

Δ𝑡FFT =

𝑛per−1∑
𝑖=1

(𝑖 + 1)𝑛sp𝜓FFT =
𝜓FFT

2
𝑛sp(𝑛per

2 + 𝑛per − 2), (23)
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F IGURE 13 Computational time of the FFT model
depending on the number of steps

F IGURE 14 Computational time of the
ground model according to Equation (24) for one
period and the optimal number of periods
according to Equation (25) over the total number
of timesteps (top); optimal number of periods
over the total number of timesteps (bottom)

leading to the total computational time for the ground model:

Δ𝑡t =
1

2

(
𝑛per𝜓sa(

𝑛t

𝑛per

2

+
𝑛t

𝑛per
) +

𝑛t

𝑛per
𝑐sa + 𝜓FFT

𝑛t

𝑛per
(𝑛per

2 + 𝑛per − 2)

)
. (24)

To find the optimal number of periods depending on the overall number of steps Equation (24) can be minimized
(derivation in Appendix A), leading to

𝑛per =

√
𝜓sa𝑛t + 𝑐sa − 2𝜓FFT√

𝜓FFT

. (25)

If the number of steps per period 𝑛sp is bigger than the 𝑛bp, Equation (25) has to be solved iteratively incorporating
Equations (20) and (21). Figure 14 shows the computational time of the groundmodel according toEquations (24) and (20)–
(21) with the optimal number of periods according to Equation (25) and just one period. While the model expects integer
period numbers, Equation (25) also returns floating point numbers, which have to be rounded accordingly. Depending
on the total number of steps the reduction is several orders of magnitude. A value of timesteps equal to approx. 3.4 × 106

represents the break point up to which the equations can be solved with 𝜓<
sa and 𝑐<sa.

3 RESULTS

3.1 Verification of the borehole models

To validate the modelling approach, we compare our results to those obtained using the finite element software FEFLOW.
The TRCMs used here are also implemented in FEFLOW by default, so that the same implementation can be compared.
The boundary conditions are inspired by Diersch et al.39 and have no physical relevance. Nevertheless, they are suitable
to confirm the correct implementation. For the borehole models, the temperature at the borehole wall is set to a constant
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F IGURE 15 Comparison between the presented model and FEFLOW for a 1U-BHE
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F IGURE 16 Comparison between the presented model and FEFLOW for a 2U-BHE
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F IGURE 17 Comparison between the presented model and FEFLOW for a Coax-BHE

value of 10◦C. The inlet temperature is set to 0◦C for the first 1800 s and then switched to 20◦C for another 1800 s. The
time period of 1800 s was chosen because a steady state is reached relatively quickly due to the constant borehole wall
temperature. The temperatures are chosen arbitrarilywithin the range of a real operation as the validation of equations and
methodology is independent of the chosen temperatures. The same applies to any other parameters with the exception
of the flow rate, which is why they are not shown here. Depending on the Reynolds number, different equations27,39 are
used for the Nusselt numbers, which are used to calculate the convective resistances, for a laminar, turbulent or transition
flow. In the examples shown here, the flow rate was set to 41m3d−1, leading to flow in the transition region for all pipes
except for the outlet pipe of the Coax-BHE where the flow is turbulent due to the geometry and cross-sectional area. We
have checked the implementation for other flow conditions with equally satisfying results. Figures 15–17 show the results
for all three BHE models. Both the forward and backward Euler implementations show a very good agreement with the
FEFLOW simulations.
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TABLE 1 BHE and ground properties of the BHE field

Parameter Value Units
Fuild properties
Thermal conductivity 0.43 W m−1K−1

Density 1054 kg m−3

Volumetric heat capacity 3800000 J m−3K−1

Dynamic viscosity 0.0035 Pa s
BHE geometry
Length 100 m
Diameter 0.152 m
Shank space 0.04 m
Outer diameter pipes 0.032 m
Pipe wall thickness 0.0029 m
BHE-properties
Thermal conductivity grout 2.0 W m−1K−1

Volumetric heat capacity grout 1000,000 J m−3K−1

Thermal conductivity pipe 0.3 W m−1 K−1

Ground properties
Average thermal conductivity 2.3 W m−1K−1

Average volumetric heat capacity 2300,000 J m−1 K−1

Undisturbed ground temperature 12.0a ◦C
aIncreased from 10.7◦C to 12◦C to account for the predominant cooling operation of the past 6 years of operation.
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F IGURE 18 Schematic representation
of the BHE arrangement at E.ON ERC
building

3.2 Comparison with monitored field data

This section shows a comparison with a real bore field consisting of 40 2U-BHEs that provides heating and cooling energy
for the office building of the E.ON Energy Research Centre (E.ON ERC) at RWTH Aachen University. The entire supply
system of the building is monitored in the framework of a research project of the E.ON ERC. In addition to themonitoring
data, there is a high-quality ground model, which was created using outcrops, logging measurements, enhanced thermal
response tests and measurements with temperature sensor modules. A detailed description of the bore field and related
parameters can be found in Clauser et al.43 The ground consists of various soil types with varying thermal properties. For
the calculations here, however, the smeared properties obtained from a thermal response test were used as listed in Table 1
together with all other parameters.
Fluid inlet and outlet temperatures as well as flow rate were recorded for each borehole individually at an interval of

30 s from July 2018 to June 2019. The BHE field is divided into three manifolds (Figure 18). The manifolds are connected
in parallel to the heat pump. Within the manifolds, the associated BHEs are then connected in parallel with the same
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TABLE 2 Computational time per timestep for different discretizations

𝑽̇ BHEmodel 𝒏𝐜 [-] 𝚫 𝒕 [s]
Comp. time per
step [𝟏 × 𝟏𝟎−𝟓𝐬]

Comp. time for
𝚫 𝒕 = 𝟑𝟎𝐬 [𝟏 × 𝟏𝟎−𝟓𝐬]

Const. Forward 5 30 4.4 4.4
Backward 5 1.5 / 30 6.6 6.6
Forward 100 1.5 4.7 20 ⋅ 4.7 = 94

Backward 100 1.5 / 30 24.7 24.7
Variable Forward 5 30 4.8 4.8

Backward 5 1.5 / 30 24.5 24.5
Forward 100 1.5 5.2 20 ⋅ 5.2 = 104

Backward 100 1.5 / 30 244 244

flow rate and inlet temperature. The measuring units are installed in the manifolds. The horizontal supply pipes between
the manifolds and the top of the BHEs are up to 60-m long. Any heat losses or heat gains along these supply pipes are
not considered in our model. This simplification still allows obtaining satisfactory results against the measured data and
does not detract from the objective of showing the efficiency of our proposed algorithm. A first comparison is made with a
single BHE, and then for the entire BHE field. However, the large distances between the BHEs and the thermal properties
of the ground prevent any significant thermal interactions between the BHEs for the investigated periods.

3.2.1 Modelling of a single BHE

BHE 18 was chosen for the single BHE comparison, as the length of the supply pipe between the BHE head and the
measuring point is only 3 m. Multiple scenarios are to be investigated with respect to computational time and accuracy.
These include a coarse and a fine vertical discretization as well as simulations with constant and time-variable flow rates.
The simulations are carried out with both the forward and backward Euler borehole models. The maximum measured
flow rate of the fluid in the entire field is 52.4m−1d−1. Applying Equation (5) to this flow rate and the BHE properties in
Table 1 leads to a minimum cell height of 18.51m for the recorded 30 s timestep or to a maximum timestep of 1.77 s if the
cell height is set to 1 m. For the 30-s timestep we choose five cells with a height of 20 m. Both cases are considered below
as examples of a coarse and a fine vertical discretization. The chosen timestep for the fine discretization is 1.5 s, leading to
20 timesteps for each measured timestep of 30 s.
Table 2 shows the computational time of the borehole models. These are the times required by the BHE models to

calculate the new temperatures within the BHE. Further steps, such as reading the ground temperature and setting it as a
boundary condition at the borehole wall, are not considered as they are independent of the Euler scheme or discretization.
The computational times per timestep are independent of the timestep size Δ𝑡. Looking at scenarios with constant flow
rates, the forward implementation is faster for both cases and rather independent of the vertical discretization. However, if
the goal is to simulate a BHE with 100 cells, which corresponds to a vertical cell height of 1 m for this case and a timestep
of Δ𝑡 = 30s and a constant flow rate, the backward implementation is faster as 20 timesteps with the forward model
would correspond to one timestep with the backward model (20 ⋅ 4.7 = 94 < 1 ⋅ 24.7, note that the computational time
for Δ𝑡 = 30s equal to the computational time for Δ𝑡 = 1.5s). For the scenarios with time-variable flow rates, the forward
implementation is superior in terms of computational time for both discretizations. Unlike the backward model, where
the entire BHE matrix needs to be rebuilt, only the flow rate dependent coefficients have to be recalculated. Even for the
fine discretization, it would be twice as fast to compute 20 timesteps at 1.5 s with the forward model compared to one
30-s timestep with the backward model. The vertical discretization must be chosen according to the stability criterion as a
function of the maximum flow rate. For any lower flow rates, the numerical diffusion increases due to the chosen upwind
scheme, which may result in decreasing accuracy.
July 2018 was chosen for the first simulation, containing 89,280 values of each measured quantity. Applying Equa-

tion (25) leads to an optimal number of 5.8 periods for this simulation. To verify the presented hybrid approach and
Equation (25), multiple simulations with different number of periods as listed in Table 3 are carried out. The minimum
measured calculation time is at 6 periods as projected, although the variations between all simulations are rather small.
Figure 19 shows the observed total computational times as listed in Table 3 compared to the calculated computational

times using Equation (24). The curves have the same shape with an offset of around 13 s between both values. An offset
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TABLE 3 Computational time for varying periods (forward model, 𝑛c = 5, Δ𝑡 = 30 s, 𝑉̇= const.)

𝒏𝐩𝐞𝐫 𝒏𝐬𝐩 Comp. time [s]
1 89,280 15.05
2 44,640 14.03
4 22,320 13.52
5 17,856 13.27
6 14,880 13.05
10 8928 13.26
20 4464 13.74
30 2976 14.40
40 2232 15.31
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F IGURE 19 Measured total computational time and calculated computational time for the ground model for a simulation period with
89,280 steps

TABLE 4 Computational time per timestep for different discretizations

𝑽̇ BHEmodel 𝒏𝐜 [-] 𝚫 𝒕 [s] Comp. time [s] MAE [K]
Const. Forward 5 30 13.3 0.049

Backward 5 30 17.5 0.044
Forward 100 1.5 217.2 0.042
Backward 100 30 51.6 0.039

Variable Forward 5 30 13.8 0.049
Backward 5 30 37.1 0.044
Forward 100 1.5 222.6 0.042
Backward 100 30 276.2 0.039

is expected as the calculated computational time neglects the computational time for the BHEmodel and any framework
around the models, e.g. caching the initial state of the BHE model, setting the boundary conditions or calculating the
ground load increments. Critically, the comparison shows that the chosen approach predicts the relative computational
time improvements for different periods correctly. For the given example, the computational time can be reduced by 13%
by increasing 𝑛per from 1 to 6. With further increasing 𝑛per, the computational time increases rather slowly as indicated
by Equation (24).
Based on these results, all of the followingmodels are simulatedwith six periods. Table 4 summarizes the results in terms

of computational time and accuracy. The use of a constant flow rate averaged over time has no effect on the accuracy for
the period investigated. Thiswas to be expected, as the flow rate fluctuates only slightly around a constant value (Figure 20,
middle).
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F IGURE 20 Measured fluid temperatures (top), flow
rate (middle) and difference between measured and simulated
outlet temperatures (bottom) for the 1-month simulation

F IGURE 2 1 Two-hour segment of the 1-month
simulation. Comparison of the measured and simulated outlet
temperatures

Figure 20 shows the results for backward model with 100 cells and a time variable flow rate. While the top and middle
part of Figure 20 show the measured values, the bottom part shows the difference between the measured and simulated
outlet temperatures. The figure shows that the difference is decreasing within the first 100 h. The deviation at the start of
the simulation is due to the thermal impact of the past operation of the BHE, which was not considered in the simulation.
Figure 21 shows a 2-h period extracted fromFigure 20. The influence of the time variable flow rate is so small that the curves
for the 100 cell backward model overlap and are indistinguishable. The deviations between measurement and simulation
are caused by three components shown in Figure 22. All models have a slight offset in the simulated return temperatures
(𝑒1). Furthermore, all models have a slight offset along the time axis (𝑒2). The third type of error 𝑒3 is a smeared reaction
to rapidly changing fluid inlet temperatures. In Figure 22, this can be seen clearly for the backward model. This error
is caused by the numerical diffusion due to the upwind scheme and can be reduced with finer discretizations for the
backwardmodel. For the forwardmodel, it can be completely eliminated by forcing the CFL number to 1. However, a CFL
number of 1 does not necessarily lead to the most accurate result, as the model does not consider natural diffusion that
occurs in reality. For the forwardmodel in Figure 22, the CFL number is approximately 0.6, which coincidentally matches
the slope of the measured curve quite well. While error types 𝑒1 and 𝑒2 are rather independent of the BHEmodel type and
discretization, error type 𝑒3 can be influenced accordingly. Figure 22 also shows the problems that arise when using the
mean absolute error (MAE). Although the forward model generally represents the characteristic of the curve better, the
deviations for the backward model are smaller overall due to smearing. The MAEs are, therefore, only given to show that
the models basically work; they are unsuitable for comparing the models with each other without further consideration,
which is not the focus of this paper.
Next, the simulation period is extended to a full year consisting of 1051, 200 timesteps at 30 s. Applying Equation (25)

results in an optimal number of 19.7 periods for this simulation. To incorporate the small influence of the variable flow
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F IGURE 22 Different types of deviation between
measured and simulated outlet temperatures

TABLE 5 Computational time for varying periods (forward model, 𝑛c = 5, Δ𝑡 = 30 s)

𝒏𝐩𝐞𝐫 𝒏𝐬𝐩 Comp. time [s]
1 1051,200 1726.6
5 210,240 350.2
10 105,120 183.3
16 65,700 172.2
18 58,400 174.6
20 52,560 175.5
30 35,040 176.2
40 26,280 180.1
80 13,140 202.3
120 8760 231.9
240 4380 312.0
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F IGURE 2 3 Measured total computational time and
calculated computational time for the ground model for a
simulation period with 1051,200 steps

rate, the flow rate in the following simulations is only adjusted if it changes by more than ±5% between different consec-
utive timesteps. All simulations are performed with the five cell forward model, leading to a MAE of 0.032K. Table 5 and
Figure 23 show the results for different 𝑛per. In this case, the calculated optimum of 𝑛per = 19.7 does not lead to the lowest
computational time, which is at 16. Although the calculated optimum is four periods off, the computational times in this
range differ only slightly. By increasing the number of periods from 1 to 16, the computational time could be reduced by
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F IGURE 24 Measured fluid temperatures (top), flow rate
(middle) and difference between measured and simulated
outlet temperatures (bottom) for the 1-year simulation

90% while the difference between 𝑛per = 20 and 𝑛per = 16 in relation to 𝑛per = 1 is less than 1%. It shows nevertheless that
Equation (25) is only an approximation.
Figure 24 shows the results analogue to Figure 20 for the 1-year simulation. The increasing deviation between calculated

and measured outlet temperatures towards the end of the simulation period is related to the short cycle times of the
circulation pump, which are sometimes less than 30 m. Every time the circulation pump is switched on again, there are
briefly larger deviations due to the fluid stagnating in the supply line, which is not considered in the simulation.

3.2.2 Modelling the whole field

For the simulation of multiple BHEs, the effort of the ground simulation increases theoretically quadratically to the num-
ber of boreholes, as the temperature change for each borehole has to be calculated not just for the borehole itself but for
the rest. For further reduction of the computational time, the calculation of the FFT model for the simulation of multiple
BHEs is parallelised. Accordingly, the time reduction potential when using the hybrid model should be even greater than
for the single BHE. To illustrate this, all 40 BHE are simulated as one bore field over a simulation period of one year cor-
responding to 1051, 200 timesteps of 30 s. With consideration of the parallelisation, 𝜓FFT was redetermined to 7.8 × 10−4,
which is one order of magnitude smaller than 1.58 × 10−6 ⋅ 402 = 2.53 × 10−3. To check for possible scaling effects in the
semi-analytical model, its parameters were also redetermined for the simulation of 40 BHE, leading to

𝜓sa =

{
1.9 × 10−6

5.3 × 10−6

for 𝑛r < 130, 000

for 𝑛r ≥ 130, 000
(26)

and

𝑐sa =

{
3.4 × 10−3

−5.5 × 10−2

for 𝑛r < 130, 000

for 𝑛r ≥ 130, 000
(27)

The newly determined values are partly above, below or in the range of the old valuesmultiplied by 402, indicating some
scaling effects, and showing the uncertainties associated with the measurement of the computational times. Applying
Equation (25) with these parameters leads to an optimal number of 50.6 periods.
The computational times for different numbers of periods are listed in Table 6 and displayed in Figure 25. By increasing

the number of periods from 1 to 50, the computational time could be reduced by 98.4%. In this case, the optimal number
of periods coincides with the measured computational times. Figure 26 shows the MAE for all BHE for the full year
simulation. Some of the BHEs have only been in operation towards the end of the investigated period when the short
cycle times of the heat pump started or hadmeasurement problems. These BHEs are displayed as empty circles. Excluding
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TABLE 6 Computational time for varying periods for all 40 BHE (forward model, 𝑛c = 5, Δ𝑡 = 30) s

𝒏𝐩𝐞𝐫 𝒏𝐬𝐩 Comp. time [h]
1 1051,200 873.1
10 105,120 40.3
20 52,560 22.3
30 35,040 17.8
40 26,280 16.6
50 21,024 14.1
60 17,520 16.2
80 13,140 17.1
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F IGURE 2 5 Measured total computational time and
calculated computational time for the ground model for a
simulation period with 1051,200 steps and 40 BHE

F IGURE 26 BHE layout with MAE for the 1-year
simulation. BHEs with measurement problems as empty circles

these, the MAE of all BHEs is within the accuracy of the sensors, which is ±0.1 K for both inlet and outlet temperatures
in the given temperature range.

4 DISCUSSION AND CONCLUSIONS

By extending a semi-analytical simulation model for BHE with the FFT approach, the computational time of the model
could be reduced significantly. As the reduction occurs in the simulation of the ground, the extent depends on the share
of the ground simulation in the total simulation. Furthermore, it was shown that the computational efficiency becomes
especially significant for high numbers of timesteps, since the calculation time of the original model grows exponentially
with the number of timesteps. While the time reduction for a simulation of a single BHE with 89, 280 timesteps was
only 13%, the reduction for a simulation with 1051200 timesteps increased to 90%. When simulating the entire field with
40 BHEs, the reduction was in fact 98%. By integrating the FFT into the model, real operating periods of several years
can now be simulated efficiently with high temporal resolution without the use of a load aggregation scheme. This can
be particularly interesting for cases where the BHE simulation is coupled with other models that require high temporal
resolutions. A simple equation based on measured computational times of the model was derived for the determination
of the optimal number of periods depending on the total number of timesteps of a simulation period. Increasing the
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number of periods initially leads to a considerable improvement up to this optimal. After reaching the optimal number
of periods, the computational time increases only moderately with further increasing number of periods. It is, therefore,
rather advisable to round up the number of selected periods. The simplified assumption of a linear relation between
timesteps and computational time for the groundmodels can introduce amismatch between the projected optimal number
of periods and the actual number of periods with the lowest computational time in some cases. However, the deviations
are negligible compared to the improvement achieved by the hybrid approach.
Furthermore, the forward and backward Euler implementations were compared for different use cases. Depending on

the use case, one or the other model is superior with respect to computational time as summarised below:

∙ The forward Euler model has a much lower computational time per timestep and is comparatively independent of the
spatial discretization.

∙ Depending on the discretization, time-variable flow rates lead to a multiplication of the computing time for the
backward Euler model.

∙ The forward Euler model must be discretized according to the CFL criteria for the maximum volume flow rate for
time-variable flow rates. For all smaller flow rates the numerical diffusion increases, which can lead to a accuracy
reduction.

∙ The backward model is advantageous for larger timesteps or high flow rates.

By implementing and publishing the model in Python, easy adaptation and further development are possible. In future
work, the model will be coupled with other system models such as heat pumps or solar collectors.
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APPENDIX A: DETERMINATION OF THE OPTIMAL NUMBER OF PERIODS
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