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Abstract (English)

Chromatin accessibility, or the physical access to chromatinized DNA, plays an essential role in
controlling the temporal and spatial expression of genes in eukaryotic cells. Assay for transposase-
accessible chromatin followed by high throughput sequencing (ATAC-seq) is a sensitive and straight-
forward protocol for profiling chromatin accessibility in a genome-wide manner. Moreover, combined
with single-cell sequencing technology, the single-cell ATAC-seq (scATAC-seq) is able to map reg-
ulatory variation from hundreds to thousands of cells at single-cell resolution, further expanding its
applications.

However, a major drawback of scATAC-seq data is its inherent sparsity. In other words, many
open chromatin regions are not detected due to low input or loss of DNA material in the scATAC-seq
experiment, leaving a large number of missing values in the derived count matrix. Such a phenomenon
is known as “drop-outs” and is also observed in other single-cell sequencing data, such as scRNA-
seq. Although many computational methods have been proposed to address this issue for scRNA-seq
based on data imputation or denoising, there is a substantial lack of efforts to assess the usability of
these methods on scATAC-seq data. Moreover, the development of specific algorithms for imputing
or denoising scATAC-seq is still poorly explored yet.

Another critical issue when dealing with the scATAC-seq matrix is the high dimensionality. Be-
cause a gene is often regulated by multiple cis-regulatory elements (CREs), the number of features
in scATAC-seq (i.e., peaks) is usually one order magnitude higher compared with the number of
features in scRNA-seq (i.e., genes). This high dimensionality poses a challenge for the analysis of
scATAC-seq, such as clustering and visualization. Therefore, it is a common option to first perform
dimensionality reduction prior to interpreting the data. However, the standard computational meth-
ods for scRNA-seq data are potentially unsuitable for this task due to the low-count information of
scATAC-seq data, i.e., a maximum of 2 digestion events is expected for an individual cell in a specific
open chromatin region.

In this thesis, we propose scOpen, a computation approach for simultaneous quantification of
single-cell open chromatin status and reduction of the dimensionality, to address the aforementioned
issues for scATAC-seq data analysis. More formally, scOpen performs imputation and denoising
of a scATAC-seq matrix via regularized non-negative matrix factorization (NMF) based on term
frequency-inverse document frequency (TF-IDF) transformation. We show that scOpen is able to
improve several crucial downstream analysis steps of scATAC-seq data, such as clustering, visual-
ization, cis-regulatory DNA interactions and delineation of regulatory features. Moreover, we also
demonstrate its power to dissect chromatin accessibility dynamics on large-scale scATAC-seq data
from intact mouse kidney tissue. Finally, we perform additional analyses to investigate the regulatory
programs that drive the development of kidney fibrosis. Our analyses shed novel light on mecha-
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nisms of myofibroblasts differentiation driving kidney fibrosis and chronic kidney disease (CKD).
Altogether, these results demonstrate that scOpen is a useful computational approach in biological
studies involving single-cell open chromatin data processing.



Abstrakt (Deutsch)

Die Zugänglichkeit von Chromatin oder der physikalische Zugang zu chromatinisierter offener DNA
spielt eine wesentliche Rolle bei der Kontrolle der zeitlichen und räumlichen Expression von Genen in
eukaryontischen Zellen. Der Assay für Transposase-zugängliches Chromatin, gefolgt von Hochdurchsatz-
Sequenzierung (ATAC-seq) ist ein sensitives und unkompliziertes Protokoll zur genomweiten Analyse
der Chromatinzugänglichkeit. Darüber hinaus ist das Einzelzell-ATAC-seq (scATAC-seq) in Kom-
bination mit der Einzelzell-Sequenzierungstechnologie in der Lage, regulatorische Variationen von
Hunderten bis Tausenden von Zellen mit Einzelzellauflösung abzubilden, was den Anwendungsbere-
ich weiter ausbaut.

Ein großer Nachteil von scATAC-seq-Daten ist jedoch ihre inhärente Datensparsität. Mit anderen
Worten, viele offene Chromatinregionen werden aufgrund des geringen Inputs oder des Verlustes
von DNA- Material im scATAC-seq-Experiment nicht erkannt, was eine große Anzahl fehlender
Werte in der abgeleiteten Zählmatrix hinterlässt. Ein solches Phänomen ist als "Drop-outs" bekannt
und wird auch in anderen Einzelzell-Sequenzierungsdaten beobachtet, wie z. B. scRNA-seq. Ob-
wohl viele Computermethoden vorgeschlagen wurden, um dieses Problem für scRNA-seq basierend
auf Datenimputation oder Entrauschung anzugehen, gibt es einen erheblichen Mangel an Bemühun-
gen, die Verwendbarkeit dieser Methoden für scATAC-seq-Daten zu bewerten. Darüber hinaus ist
die Entwicklung spezifischer Algorithmen zur Imputation oder Entrauschung von scATAC-seq noch
wenigerforscht.

Ein weiterer kritischer Punkt beim Umgang mit der scATAC-seq-Matrix ist die hohe Datendimen-
sionalität. Da ein Gen oft durch mehrere cis-regulatorische Elemente (CREs) reguliert wird, ist die
Anzahl der Merkmale in scATAC-seq (d.h. Peaks) normalerweise eine Größenordnung höher als die
Anzahl der Merkmale in scRNA-seq (d.h. Gene). Diese hohe Dimensionalität stellt eine Heraus-
forderung für die Analyse von scATAC-seq dar, wie beispielsweise Clustering und Visualisierung.
Daher ist es eine übliche Option, zuerst eine Dimensionsreduktion durchzuführen, bevor die Daten
interpretiert werden. Die Standard-Rechenmethoden für scRNA-seq-Daten sind jedoch aufgrund der
geringen Zählung der scATAC-seq-Daten für diese Aufgabe potenziell ungeeignet, d.h. es werden
maximal 2 Verdauungsereignisse für eine einzelne Zelle in einer bestimmten offenen Chromatinre-
gion erwartet.

In dieser Dissertation schlage ich scOpen vor, einen Berechnungsansatz zur gleichzeitigen Quan-
tifizierung des offenen Chromatinstatus einzelner Zellen und zur Reduzierung der Dimensionalität,
um die oben genannten Probleme für die scATAC-seq-Datenanalyse zu adressieren. Formaler aus
gedrückt führt scOpen die Imputation und Rauschunterdrückung einer scATAC-seq-Matrix über eine
regularisierte nicht-negative Matrixfaktorisierung (NMF) basierend auf einer Term-Frequenzinversen
Dokumentenfrequenz (TF-IDF)-Transformation durch. Ich zeige, dass scOpen mehrere entschei-
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dende nachgelagerte Analyseschritte von scATAC-seq-Daten verbessern kann, wie Clustering, Visual-
isierung, cis-regulatorische DNA-Interaktionen und Abgrenzung regulatorischer Merkmale. Darüber
hinaus demonstriere ich seine Leistungsfähigkeit, die Zugänglichkeitsdynamik von Chromatin auf
groß angelegten scATAC-seq-Daten aus intaktem Nierengewebe der Maus zu analysieren. Schließlich
führen wir zusätzliche Analysen durch, um die regulatorischen Programme zu untersuchen, die die
Entwicklung von Nierenfibrose vorantreiben. Unsere Analysen werfen ein neues Licht auf die Mecha-
nismen der Differenzierung von Myofibroblasten, die Nierenfibrose und chronische Nierenerkrankung
(CKD) antreiben. Insgesamt zeigen diese Ergebnisse, dass scOpen ein nützlicher rechnerischer
Ansatz für biologischen Studien ist, die Einzelzell-Open-Chromatin-Datenverarbeitung beinhalten.
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CHAPTER 1
Introduction

1.1 Motivation

All known living organisms are composed of cells. In a multicellular organism, various cell types
are often specialized to perform a unique and specific function. These cell types express very dif-
ferent sets of genes, despite that they carry the exact genetic instructions encoded in the form of
deoxyribonucleic acid (DNA) molecules. For example, it is estimated that there are approximately
200 different types of cells in a human body, and each cell contains the same genome. Naturally,
a question is how the same genome gives rise to so many kinds of cell types in the human body.
The answer is that each cell can only use a proportion of genes, which are controlled by regulatory
features and chromatin accessibility. Chromatin is a complex of DNA and proteins, and it exists in
two distinct states, i.e., open versus closed. The open chromatin has a loose structure and the genes
in these regions are expressed, while the closed chromatin has a condensed structure and the genes in
these regions are inactive. Therefore, it is essential to identify the accessible DNA regions in a cell
type to understand the molecular mechanism of its gene expression pattern and cell identity.

ATAC-seq (Assay for Transposase-Accessible Chromatin followed by sequencing) is a sensitive
and straightforward protocol for profiling chromatin accessibility in a genome-wide and high-throughput
manner (Buenrostro et al., 2013, 2015a). It has been successfully applied to investigate the chromatin
status during human blood cellular differentiation (Lara-Astiaso et al., 2014), define the chromatin ac-
cessibility landscape of primary human cancer (Corces et al., 2018), create an atlas of open chromatin
for mouse immune system (Yoshida et al., 2019), among others. Moreover, careful consideration
of digestion events by the enzyme Tn5 allows insights on regulatory elements, such as positions of
nucleosomes (Buenrostro et al., 2013; Schep et al., 2015), transcription factor binding sites, and the
activity level of transcription factors (Li et al., 2019).

Traditionally, ATAC-seq takes 500 to 50,000 cells as input and generates an average chromatin ac-
cessibility profile, thus obscuring the biological differences between individual cells. However, cell-
to-cell variation is a universal feature of life that affects a wide range of biological phenomena (Buen-
rostro et al., 2015b). Moreover, technical advances have allowed for characterization of the tran-
scriptome at single-cell resolution (scRNA-seq) (Tang et al., 2009; Islam et al., 2011; Hashimshony
et al., 2012; Klein et al., 2015). By combining ATAC-seq and single-cell sequencing techniques,
single-cell ATAC-seq (scATAC-seq) was developed to allow to measure chromatin states at single-
cell resolution (Buenrostro et al., 2015b; Cusanovich et al., 2015). Figure 1.1a shows an example
of bulk and single-cell ATAC-seq data from the same genomic coordinates in GM12878 cells. Since
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then, scATAC-seq has been dramatically improved by reducing the cost and increasing the throughput
of the assay (Chen et al., 2018; Satpathy et al., 2019; Lareau et al., 2019).
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Figure 1.1: Comparison of bulk and single-cell ATAC-seq. a, Genomic tracks showing bulk (top)
and single-cell ATAC-seq (bottom) profiles from GM12878 B lymphoblasts. The red bars
in the middle represent open chromatin regions (i.e., peaks). For the bulk ATAC-seq, the
y-axis represents the average chromatin accessibility of GM12878 cells. For the scATAC-
seq, profiles are obtained from 100 cells. Source: Satpathy et al. (2019) (modified to fit
thesis format and/or clarify key points). b, A matrix representing the scATAC-seq data
for downstream analysis. Each column represents a cell and each row represents a peak
as shown in a. Each entry in the matrix represent the number of reads observed in each
peak and cell.

Computational methods are crucial for scATAC-seq data analysis, and the rapid development of
scATAC-seq techniques has introduced unprecedented challenges in this regard. After constructing
a count matrix from scATAC-seq data (Figure 1.1b), one challenge is how to deal with sparsity,
i.e., most of the elements in the matrix are zero. Notably, the sparsity is intrinsic to the scATAC-
seq data since even in high-quality experiment, most accessible regions are not transposed due to
Tn5 transposition efficiency, leading to many loci to have zero detected alleles (Granja et al., 2021).
Another challenge is high dimensionality. The features of scATAC-seq data are defined by performing
peak calling based on aggregate data, and the number of peaks is often remarkably high (usually 106

peaks). Finally, scATAC-seq data has low information content for each peak in individual cells, given
that a particular site only has two alleles in a single cell. Altogether, a computational method that
can deal with the sparsity, high-dimensionality and low information content of scATAC-seq data is
clearly needed.

1.2 Contributions

In this thesis, we: (1) present a novel computational method to impute the missing values and reduce
the dimensions of single-cell open chromatin data, (2) technically benchmark the performance of our
method using both simulated and real-world scATAC-seq datasets for matrix imputation and dimen-
sionality reduction, (3) biologically validate our method by applying it to a large-scale scATAC-seq
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data generated from whole mouse kidneys. Figure 1.2 presents an overview of this thesis.
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Figure 1.2: Thesis overview. This figure shows the workflow of the thesis. Boxes with round-shaped
edges represent data, and square-shaped edges describe computational methods. The
proposed computation method is highlighted with blue, technical validation with green
and biological validation with red.

More specifically, we listed our contributions as follows:

• A Novel computational method for scATAC-seq data imputation and dimensionality re-
duction: We derived a computational approach based on term frequency-inverse document
frequency (TF-IDF) transformation and non-negative matrix factorization (NMF) to impute the
missing values and reduce the dimensions for a given scATAC-seq count matrix. The TF-IDF
transformation normalizes the data to appropriately reflect how important a peak is to a par-
ticular cell. Given the non-negativity of TF-IDF transformed matrix, it is a natural choice to
use NMF to perform imputation and dimensionality reduction. The experiments have shown
that our method can estimate single cell chromatin accessibility status accurately by data im-
putation and provide a better low-dimensional representation for downstream analysis than its
competitors. (Figure 1.3) depicts the overall workflow of the proposed method.
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• A Comprehensive approach for simulating scATAC-seq data: To evaluate the hyper-parameters
in our method, we extended the simulation process proposed by Chen et al. (2019) to generate
a simulated scATAC-seq dataset. This new method used a negative binomial distribution to
model the number of fragments per cell. It also introduced a parameter to control the fraction
of reads in peaks (FRiP), thus providing a better simulation for real-world scATAC-seq data.

• A Novel strategy for evaluating scATAC-seq imputation methods: We also proposed a novel
technique to directly access the imputation results. Specifically, we defined the true label for
each peak based on the corresponding bulk data and estimated how many correct peaks become
non-zero and vice-versa. Moreover, we ranked these by the chromatin accessibility scores pro-
vided by imputation methods and calculated the area under the precision-recall curve (AUPR).
This evaluation has the advantage of being independent of downstream analysis, i.e., clustering,
and was used to compare our method to the competing methods.

• A comprehensive evaluation of scATAC-seq imputation methods: We performed a thorough
evaluation for scATAC-seq imputation methods, including: (1) our novel approach; (2) five
state-of-the-art imputation methods for scRNA-seq; (3) two methods for scATAC-seq and one
baseline approach. Moreover, we collected four scATAC-seq datasets where the true labels
are available. We evaluated the imputation results using three different metrics, including the
AUPR-based approach as described above. Our evaluation represents the most comprehensive
comparison for scATAC-seq data imputation methods.

• Biological validation with novel scATAC-seq data: We successfully applied our approach to
novel scATAC-seq data generated from intact mouse kidneys to study fibrosis at different time
points. Our analysis identified Runx1 as a critical regulator for myofibroblast differentiation
which were validated by biological experiments.
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Figure 1.3: A novel computation method for scATAC-seq data imputation and dimensionality
reduction. This figure shows the workflow of proposed method for scATAC-seq data
imputation and dimensionality reduction. An input count matrix first created by counting
number of observed reads in each peak and cells. Next, the matrix is normalized by TF-
IDF transformation and then factorized into two low-dimensional matrices using NMF.
The multiplication of these two matrices represent an imputed and denoised matrix.
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1.3 Thesis Structure

In Chapter 2, we introduce all the concepts needed for the understanding of this thesis. We describe
ATAC-seq as a widely used assay for measuring chromatin accessibility at bulk and single-cell res-
olution. Moreover, we present a computational workflow for bulk and single-cell ATAC-seq data
analysis. Finally, we point out the computational challenges for the analysis of scATAC-seq data and
review published approaches comprehensively.

In Chapter 3, we present the proposed computational approach to perform data imputation and
dimensionality reduction for scATAC-seq data. Our method is based on regularized non-negative ma-
trix factorization (NMF) and term frequency-inverse document frequency (TF-IDF) transformation.
Moreover, we describe a method to automatically determine the number of components for NMF.

In Chapter 4, we describe the experiments performed in this thesis to technically and biologically
validation our method. We first introduce a novel approach to simulate scATAC-seq, which is mainly
used to test the hyper-parameters in our model. Next, we introduce the benchmarking data which is
composed of several real-world scATAC-seq datasets. We also describe the computational strategies
to benchmark the performance of our approach from different perspectives. Moreover, we describe the
experiments performed to generate in-house scATAC-seq and RNA-seq data for biological validation.

In Chapter 5, we outline all analysis results based on our experiments described in Chapter 4.
Finally, we close this thesis in Chapter 6 by discussing all presented results, highlighting all the key
findings, and pointing out future research opportunities.
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CHAPTER 2
Background

In this chapter, we provide the background information required to understand this thesis from both
a biological and computational point of view. First, we introduce necessary concepts from molecular
biology (Section 2.1), including DNA organization, chromatin accessibility, and gene regulation.
Next, we describe biochemical techniques to assess genome-wide chromatin accessibility on bulk
and single-cell resolution (Section 2.2). In particular, we will focus on ATAC-seq, a sensitive and
straightforward protocol for this task. We then present the workflow for analyzing single-cell open
chromatin data (Section 2.3). Afterwards, we give a comprehensive review of competing methods
related to this thesis (Section 2.4). Finally, we close this chapter with concluding remarks on the
definitions made in this chapter and a brief description of our goal to develop a computational method
to analyze single-cell open chromatin data (Section 2.5).

2.1 DNA Organization, Chromatin Accessibility, and Gene Regulation

We start this section by introducing DNA organization in eukaryotic cells (Section 2.1.1). Next,
we describe chromatin accessibility and its function in regulating gene expression. The contents
presented in this section are primarily based on Alberts et al. (2017), Pierce (2012), and Klemm et al.
(2019).

2.1.1 DNA Organization

DNA is macromolecular and carries all genetic instructions for the cell’s development, functioning,
and reproduction. Each DNA molecule consists of two long polynucleotide chains, known as DNA
double strands. Each strand is composed of four types of nucleotide (i.e., adenine (A), cytosine (C),
guanine (G), and thymine (T)). The DNA is highly packaged into the chromosome in all eukaryotic
organisms. For example, the human chromosome 22 has 48 million nucleotide pairs that would
extend for about 1,5 cm if stretched out end-to-end, but it only measures 2 µm in length in mitosis,
representing a compaction ratio of over 7000-fold (Alberts et al., 2017).

The proteins that bind to DNA in the cell nucleus to help condense it into the chromosome by
providing energy are known as histones. The resulting DNA-histone complex, discovered in 1974,
is called nucleosome which folds to form chromatin as the basic repeating structural and functional
units. In condensed chromatin, adjacent nucleosomes fold on themselves to form a dense and tightly-
packed structure that makes up fibers with a diameter of about 30 nm. The next level of chromatin
structure is a series of loops of the fibers. Each loop is folded to produce a 250 nm wide fiber, which
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produces the chromatid of a chromosome. Figure 2.1 illustrates the organization of DNA from the
simple DNA double-helix structure to a complex chromosome.
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Figure 2.1: Chromatin organization. Chromatin has a highly complex structure with several levels
of the organization, from simple DNA double helix structure to complex chromosome.
Histone proteins bind to DNA to form a nucleosome that folds up to produce a 30 nm
fiber. A series of fibers form a loop about 300 nm long, and these 300 nm fibers are
further folded to produce a 250 nm wide fiber that is tightly coiled to create the chromatid
of a chromosome. Source: Pierce (2012) (modified to fit thesis format and/or clarify key
points)

2.1.2 Chromatin Accessibility and Gene Regulation

Although DNA is tightly compacted into an array of nucleosomes in the eukaryotic cell nucleus, as
described above, it nevertheless remains accessible to many enzymes that are responsible for replicat-
ing and repairing DNA, and expressing genes in the cell. This physical access to chromatinized DNA
is known as chromatin accessibility, a highly dynamic property of chromatin that plays an essential
role in establishing and maintaining the cell identity (Klemm et al., 2019). Chromatin accessibility is
mainly determined by the occupancy of nucleosomes and other chromatin-binding proteins, such as
transcription factors (TFs) (Figure 2.2).

Gene regulation is the process by which the cell determines which genes will be active ("ON")
and which genes will be inactive ("OFF"). It is the key for cell specification to perform particular
functions in multicellular eukaryotic organisms, and is substantially determined by chromatin acces-
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Figure 2.2: Chromatin accessibility dynamics. A continuum of accessibility status reflects the dis-
tributions of chromatin dynamics across the genome. In contrast to closed chromatin,
permissive chromatin is sufficiently dynamic for transcription factors to initiate sequence-
specific accessibility remodeling and establish an open chromatin conformation. TF, tran-
scription factor; Pol II, polymerase II. Source: Klemm et al. (2019) (modified to fit thesis
format and/or clarify key points)

sibility. This means that in different biological systems, for instance, different cell types or the same
cell type under distinct conditions (e.g., health vs. disease), the same genomic loci can have differ-
ent chromatin states (i.e., open versus closed). These genomic regions are known as cis-regulatory
elements (CREs) and are associated with gene regulation. More specifically, the gene transcription
rates are controlled by TFs which bind to a specific set of DNA sequences, called transcription factor
binding sites (TFBSs). The binding preference for a particular TF can be modeled with a position
weight matrix (PWM) and visualized as a sequence logo (Figure 2.3).

2.2 Profiling Chromatin Accessibility with ATAC-seq

Over the last decade, a wide variety of biochemical methods have been developed to quantitatively
measure chromatin accessibility in a genome-wide manner using next-generation sequencing (NGS)
technology. Among these methods, ATAC-seq (Assay for Transposase-Accessible Chromatin using
sequencing) (Buenrostro et al., 2013, 2015a) has recently became the standard protocol because it has
a low requirement for the number of input cells and needs less preparation time for library construc-
tion. Moreover, it has been further improved to accommodate single-cell sequencing to assess chro-
matin accessibility at single-cell resolution. In this section, we first introduce bulk ATAC-seq (Sec-
tion 2.2.1). Next, we describe single-cell ATAC-seq (scATAC-seq) in Section 2.2.2. In particular, we
will focus on droplet-based scATAC-seq, as it has been widely used by researchers and is commer-
cially available by 10X Genomics.

2.2.1 Bulk ATAC-seq

ATAC-seq was introduced in 2013 as an advanced method to profile open chromatin (Buenrostro
et al., 2013). In ATAC-seq, the genetically engineered hyperactive Tn5 transposase is loaded in vitro

with two adapters for high-throughput DNA sequencing. Therefore, it can simultaneously fragment
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Figure 2.3: Specificity of TF-DNA interaction. TF binds to specific DNA sequences. These se-
quences can be represented using a position weight matrix where each row represents a
nucleotide, and each column represents a position. The value denotes the probability of a
nucleotide at a particular position. This matrix can also be visualized as a sequence logo.
Source: Klemm et al. (2019) (modified to fit thesis format and/or clarify key points).

and tag genomic regions from accessible chromatin. The low-input requirement of ATAC-seq makes
it possible to profile chromatin accessibility for biological processes consisting of a very limited
number of cells, such as preimplantation development (PD) and zygotic genome activation (ZGA)
of early zygotes (Bentsen et al., 2020). Given the sensitivity and simplicity of the protocol, ATAC-
seq is currently the most commonly used method for measuring chromatin accessibility in research
laboratories. For example, the number of studies using ATAC-seq protocol deposited in Gene Ex-
pression Omnibus (GEO) is about five times higher than the number of studies using DNase-seq
protocol (16,468 ATAC-seq versus 3,454 DNase-seq), as queried using the words "ATAC-seq" and
"DNase-seq" on May 22, 2021.

ATAC-seq begins with cell collection which typically contains 500-50,000 cells. After transposi-
tion, the transposed DNA fragments are PCR (polymerase chain reaction) amplified and sequenced.
In this step, paired-end sequencing is usually preferred as it provides information about fragment size
which can be used to infer nucleosome position (Schep et al., 2015) and improve transcription factor
binding sites prediction (Li et al., 2019). The sequenced DNA fragments are then mapped to the
reference genome to obtain aligned DNA reads, and an ATAC-seq signal can be created by counting
the number of cutting events per genomic position. Finally, the open chromatin regions are identified
by performing peak calling (Figure 2.4).

2.2.2 Single Cell ATAC-seq

Although ATAC-seq is able to profile chromatin accessibility from low-input samples, the obtained
profiles are still averaged across all input cells, thus masking heterogeneity between and within cell
types. To address this issue, single-cell ATAC-seq (scATAC-seq) was introduced in 2015 (Buenrostro
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Figure 2.4: Measuring chromatin accessibility using ATAC-seq. This figure shows the overall
workflow of ATAC-seq to profile chromatin accessibility. The Tn5 enzyme is used to
cleave and tag double-stranded DNA with sequencing adapters. Next, the DNA frag-
ments are sequenced and mapped to a reference genome. Then, a genome-wide signal
is generated by counting the number of aligned reads per genomic coordinate. Finally,
chromatin accessible regions are detected with peak calling algorithm.

et al., 2015b; Cusanovich et al., 2015). With computational approaches, scATAC-seq enables the
identification of cell-type-specific cis-regulatory elements (CREs) at single-cell resolution and the
recovery of novel cell types from the input samples (Figure 2.5).

There are several techniques to implement scATAC-seq. One of the most used approaches is called
droplet-based scATAC-seq, in which the cells are captured through a microfluidic device. More
specifically, nuclei are first isolated from a single-cell suspension and transposed in bulk with trans-
posase Tn5. Next, transposed nuclei are loaded onto a microfluidic chip for the generation of gel
beads in emulsion (GEM). Each gel bead is barcoded with single-stranded oligonucleotides that con-
sist of a 29-bp sequencing adapter, a 16-bp barcode selected from 750,000 designed sequences to
index GEMs, and the first 14 bp of read 1N, which serves as the priming sequence in the linear am-
plification reaction to incorporate barcodes to transposed DNA. After GEM generation, gel beads
are dissolved, and the oligonucleotides are released for linear amplification of transposed DNA. Fi-
nally, the droplet emulsion is broken, and barcoded DNA fragments are pooled for PCR amplification
to generate indexed libraries for high-throughput sequencing. This technique can profile accessible
chromatin from tens of thousands of cells with high data quality in each experiment. Also, it has been
commercialized by 10x Genomics (Chromium Next Gem Single Cell ATAC-seq Library Kit) (Sat-
pathy et al., 2019), making it the most commonly used protocol for profiling single-cell chromatin
accessibility (Satpathy et al., 2019) (Figure 2.6).
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Figure 2.5: Measuring chromatin accessibility using single cell ATAC-seq. This figure shows
the overall experimental principle of ATAC-seq to profile chromatin accessibility from a
heterogeneous sample containing three different cell populations at single-cell resolution.
The output from single-cell ATAC-seq is a sparse matrix where each row represents a cell
and each column presents a peak.

2.3 Computational Analysis of ATAC-seq

In this section, we describe the computational workflow for analysis of bulk (Section 2.3.1) and single-
cell ATAC-seq (Section 2.3.2) data, respectively. Because the inputs for both analyses are massive
amount of short sequencing reads, they share the same low-level processing procedures, including
quality control and alignment, like other high throughput sequence data. The major difference be-
tween single-cell and bulk ATAC-seq data is that every read in scATAC-seq library carries a unique
cell barcode that is used to distinguish different cells. Because of that, the analysis of bulk ATAC-seq
is usually performed based on all reads from the library, while analyzing scATAC-seq data requires
additional steps, such as cell calling and matrix creation, to first recovery and separate cells. The
following analysis for scATAC-seq usually takes the count matrix as input.
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Figure 2.6: Droplet-based scATAC-seq. Schematic of droplet-based scATAC-seq. Nuclei are iso-
lated and transposed with Tn5 transposase. Next, GEM is generated with barcodes and
subjected to linear amplification. Finally, the emulsion is broken and barcoded DNA
fragments are pooled and sequenced. Source: Satpathy et al. (2019) (modified to fit the-
sis format and/or clarify key points)

2.3.1 Bulk ATAC-seq

Analysis of bulk ATAC-seq data generally consists of three main components: alignment, peak call-
ing, and computational footprinting analysis. We consider the alignment as data preprocessing, peak
calling as core analysis, and computational footprinting as downstream analysis for bulk ATAC-seq.

Alignment

This is the very first step for computational analysis of ATAC-seq data. It takes the raw sequencing
reads as input and finally outputs an alignment file containing all aligned DNA reads by mapping the
reads to a reference genome (Figure 2.7a-b). More formally, this problem can be defined as: given
a large reference genome (usually up to billions of base pairs) and millions of short reads (<200
bps), find the most probable position of the reads in the genome. There are several tools available to
perform the alignment, of which Bowtie2 (Langmead and Salzberg, 2012) and BWA (Li and Durbin,
2009) are the most popular ones. The former is used in the ENCODE ATAC-seq pipeline, and the
latter is used in the Cell Ranger ATAC pipeline by 10X Genomics.

Peak Calling

Peak calling plays an essential role in chromatin accessibility data analysis (Figure 2.7c). It aims to
detect the genomic regions with a high accumulation of reads compared with the expectation (i.e.,
background). These regions are defined as accessible chromatin regions (also referred to as peaks).
More formally, the peak calling problem is defined as find genomic regions of arbitrary size with
more reads than expected by chance. A simply peak caller can be implemented in two steps: 1)
using a fix window to scan through the genome to obtain a distribution of counts per bin, 2) defining
a statistical test to evaluate if the number of reads is higher than expected by chance. However, in
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Figure 2.7: Computational analysis of bulk ATAC-seq. a, The input for ATAC-seq data analysis
is the raw sequencing reads. b, Next, the sequencing reads are aligned to a reference
genome by finding the most probable positions. c, Based on the aligned reads, peak call-
ing is performed to identify the accessible regions, which are usually used as features in
downstream analysis. d, For data interpretation, computation footprinting method (e.g.,
HINT-ATAC) is used to identify transcription factor binding sites for ATAC-seq. More-
over, the differential analysis of TF footprints can be used to compare TF activity between
different conditions. Source: Buenrostro et al. (2013) (modified to fit thesis format and/or
clarify key points).

reality, proper quantification of read counts require several future steps, such as CG bias correction,
duplicated reads, mappability, and fragment size estimation. Currently, the most widely used peak
calling tool for ATAC-seq is MACS2 (Zhang et al., 2008), which was initially designed for ChIP-
seq data. On the other hand, HMMRATAC (the Hidden Markov ModeleR for ATAC-seq) is the first
dedicated tool to identify peaks for ATAC-seq by considering the Tn5 digested DNA fragments that
contain additional nucleosome positioning information (Tarbell and Liu, 2019).

Computational Footprinting Analysis

In addition to profile genome-wide open chromatin states, ATAC-seq can also be used to identify
nucleotide-level transcription factor binding sites (TFBSs) via computational search footprint-like re-
gions with low numbers of Tn5 cuts surrounded by regions with high numbers of cuts (Buenrostro
et al., 2013). This process is called computational footprinting analysis (Gusmao et al., 2016). The in-
tuition is that the binding of a TF will protect DNA from Tn5 cleavage, thus creating a footprint-like
shape in nucleotide resolution ATAC-seq signal (Figure 2.7d). By detecting genomic regions with
such a pattern, active TFBSs can be uncovered. However, TF footprinting for ATAC-seq has some
limitations as it requires a deeply sequenced library and is biased by intrinsic sequence preference for
the Tn5 enzyme. To address these issues, we have developed HINT-ATAC, the first computational
footprinting method tailored to the ATAC-seq protocol, by correcting Tn5 cleavage bias and consid-
ering strand-specific bias of ATAC-seq signal (Li et al., 2019). Moreover, HINT-ATAC also allows
for comparing the TF activity between different conditions by using differential footprinting analysis.
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2.3.2 Single Cell ATAC-seq

We here describe the computational workflow for scATAC-seq data analysis, including preprocessing
(cell calling and matrix construction), core analysis (dimensionality reduction and clustering), and
downstream analysis (cell annotation, motif analysis, and co-accessibility analysis).

Preprocessing

In addition to read alignment, preprocessing of scATAC-seq requires two additional steps: cell calling
and matrix construction. The aim is to generate a peak by cell count matrix for the following analysis.

Cell calling This is a unique and essential step when dealing with scATAC-seq data. In this step,
barcodes with high-quality, aligned reads are identified as valid cells, and all other non-cell
barcodes will be excluded from the data. The barcodes are a set of unique and short DNA
sequences (usually 16 bases) that are carried by gel beads to distinguish different cells (Fig-
ure 2.6). The metrics used for calling cells include the number of unique fragments and signal-
to-noise ratio (SNR). The first metric is straightforward, as cells with few available fragments
usually cannot provide enough information for interpretation and should be removed. The com-
monly used threshold in the community is 1,000. For the second metric, there are several ways
to calculate SNR using scATAC-seq. One of them is known as FRiP (fraction of reads in peaks).
It is worth noting that to calculate FRiP, a pre-defined peak set obtained by performing peak
calling using all cells is needed, which might not capture enough signal from rare cells, leav-
ing these cells undetected in clustering analysis. Another option is to use the TSS enrichment
score, which is defined as the ratio between the aggregate distribution of reads that centered on
TSSs and those flanking the corresponding TSSs. This metric has been widely used to measure
the quality of bulk ATAC-seq data in the ENCODE project. The intuition is that ATAC-seq data
is universally enriched at gene TSS regions, compared to other genomic regions, due to large
protein complexes that bind to the promoter. Another approach is to use fragments in promoter
ratio, similar to the TSS enrichment score but with a lower computational complexity.

Matrix Construction To analyze the scATAC-seq, a binary accessibility matrix is created (Figure 2.8b).
scATAC-seq has a different readout comparing with scRNA-seq (i.e., chromatin accessibility
versus gene expression). For scRNA-seq, one can directly use genes as features to build a count
matrix in which each element represents the measured expression of a gene in a particular cell.
However, in scATAC-seq, the features are unavailable and need to be defined depending on the
downstream analysis. The most common selection is to use the accessible regions or peaks
obtained by performing peak calling on the bulk ATAC-seq or aggregate scATAC-seq data.
Notably, the peaks sometimes are dominated by the major cell types present in the data, and
signals from rare cells can be neglected. Alternatively, the features can be defined as equal-size
window along the genome. One challenge of using this approach is how to choose the optimal
bin size and the large number of the genome.
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Figure 2.8: Analytic workflow of scATAC-seq. a, Preprocessing of scATAC-seq data starts with
cell-specific aligned fragments. b, Next, accessible regions are identified based on ag-
gregate scATAC-seq, and an accessibility matrix is created by counting the number of
reads per cell per peak. c, Based on the accessibility matrix, imputation and denoising
is applied to obtained an imputed matrix, and dimensionality reduction is performed to
learn a low-dimensional representation for the cells. Cell clustering can be down with
both imputation matrix or dimensions reduced matrix. d, Unsupervised clustering anal-
ysis is used to group cells. The colors refer to clusters. e, Cell types are identified by
annotating the obtained clusters, as represented by different colors. f, Line plots visual-
izing motif footprint profiles generated using aggregate ATAC-seq data across cell types
for TF GATA. g, Illustration of co-accessibility analysis. Here, enhancer E3 is often co-
accessible with promoter P across cell type A, B and C, suggesting a potential regulatory
interaction between enhancer E3 and promoter P. Source: Granja et al. (2021) (modified
to fit thesis format and/or clarify key points).

Core Analysis

The core analysis of scATAC-seq involves dimensionality reduction of the scATAC-seq matrix and
cell clustering. The goal is to assign a cluster label to each of the cells.

Dimensionality Reduction The inherent high dimensionality in scATAC-seq data makes it difficult
for further analysis (e.g., cell clustering and visualization). Therefore, it is essential to reduce
the dimensions of the accessibility matrix by projecting the data into a low-dimension space
while persevering similarity between the cells (Figure 2.8c). One of the most commonly used
methods is PCA (Principal Component Analysis), which linearly projects the high-dimension
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data onto only the first few principal components to obtain a low-dimensional representation
while retaining as much data variation as possible. However, it is inappropriate to apply the
same strategy to scATAC-seq due to the low count issue and sparsity of the data. For example,
in a single cell, a chromatin region can either be open or closed, which produces a binary matrix
where 1 represents an accessible region in a cell and 0 is inaccessible otherwise. Moreover,
even in high-quality scATAC-seq data, the majority of accessible regions are not transposed,
causing most of the entries in the matrix to be 0. To address these problems, researchers have
either adapted existing methods from other fields, such as LSI (latent semantic indexing) from
natural language processing, or developed novel techniques (e.g., SnapATAC). We will detail
these methods in Section 2.4.3

Cell Clustering Unsupervised clustering is of central importance for single-cell data analysis. It is
used to identify putative cell types and substantially impacts the biological interpretation of the
data (Figure 2.8d). Many algorithms are available, and they have significant differences in con-
sidering what constitutes a cluster and how to find them efficiently. Currently, most single-cell
methods focus on computing nearest neighbor graphs in reduced dimensions and then detect
"communities", in which cells are densely connected. The most popular algorithm for this
task is called Louvain (Blondel et al., 2008), which has been found to work exceptionally well
and is now a standard practice in the single-cell field (Stuart et al., 2019, 2020; Granja et al.,
2021), although many others are also available (Xie et al., 2013). Recently, a new method,
named scABC (single-cell Accessibility Based Clustering), was developed to perform unsuper-
vised clustering specifically for scATAC-seq data, but it is not widely used in the community.
In sum, for scATAC-seq clustering, the community-detection algorithms are frequently used,
given their speed and accuracy.

Downstream Analysis

After clustering the cells, downstream analysis is needed to characterize the molecular mechanisms
and understand the biological system. Usually, it consists of cell annotation, motif analysis, and
co-accessibility analysis.

Cell Annotation In this step, the goal is to identify the cell types that these clusters represent (Fig-
ure 2.8e). For scATAC-seq, this is very challenging because less is known about the functional
role of non-coding genomic regions. In order to use marker genes to annotate cells, as com-
monly used in the scRNA-seq analysis, one can infer gene activity scores from scATAC-seq.
The intuition is that if a gene is expressed in a cell, then the chromatin around this gene must be
accessible. The simplest model is to quantify the chromatin accessibility associated with each
gene by summing up the fragments intersecting the gene body and promoter region (Stuart
et al., 2020).

Motif and Footprinting Analysis DNA sequence motif analysis provides an alternative way to un-
derstand the scATAC-seq data. In this analysis, the goal is to identify TFs that are relevant for
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different cell types. For this, one can use differential footprinting analysis (Li et al., 2019; Stu-
art et al., 2020; Granja et al., 2021). It first detects the TF footprints based on the pseudo-bulk
data for each cluster or cell type and then quantifies the differences between the footprint pro-
files (Figure 2.8f). Of note, this approach usually requires a relatively deep sequencing library
which in some cases (e.g., rare cells) is not possible to obtain. Nevertheless, it can provide a
clear visualization of TF binding sites accessibility across different conditions.

Co-accessibility analysis Co-correlation of accessible peaks across individual cells has been re-
ported to have a high agreement with previously observed chromosome compartments (Buen-
rostro et al., 2015b; Kalhor et al., 2012). Based on this observation, an algorithm, called Cicero,
was developed to identify co-accessible pairs of cis-regulatory elements (Pliner et al., 2018).
The resulting predictions are called peak-to-peak links and can provide an idea of the overall
structure of the cis-architecture of a genomic region. Furthermore, peak-to-gene links can also
be obtained if the peaks are linked to genes by estimating the correlation of the chromatin ac-
cessibility between the peaks and promoters. In doing so, one can identify the putative target
genes for each peak and build a gene regulatory network in a data-driven manner. Additionally,
comparison of the predicted links between different conditions, such as health vs. disease, al-
lows the characterization of chromatin structure dynamics. This can advance our quantitative
understanding of eukaryotic gene regulation (Figure 2.8g).

Trajectory Analysis Trajectory analysis, also known as pseudotime analysis, aims to computation-
ally order the cells based on the progression through a developmental process using single-cell
sequencing data. This concept was first introduced to analyze scRNA-seq data (Trapnell et al.,
2014). Since then, more than 70 trajectory inference tools have been developed. The most
widely used tool for trajectory inference is called Monocle 3 (Cao et al., 2019), which has been
implemented by Signac to build trajectory for scATAC-seq data. On the other hand, ArchR
first manually creates a trajectory backbone in the form of an ordered vector of cell groups
labels and then fits a supervised trajectory in a low-dimensional space (Granja et al., 2021).
The evaluation shows that both approaches can recover known cell development processes for
hematopoietic cells (Granja et al., 2021). In this thesis, we will use ArchR to perform trajectory
analysis.

2.4 Related Works

In this section, we present the state-of-the-art computational methods for scATAC-seq data analysis.
In particular, we will focus on the algorithms for matrix imputation and dimensionality reduction,
as they sever as the core analysis for scATAC-seq. More specifically, we first point out some chal-
lenges when analyzing scATAC-seq, which motivates this thesis (Section 2.4.1). Next, We give a
comprehensive literature review on published computational methods for single-cell data imputa-
tion (Section 2.4.2) and dimensionality reduction (Section 2.4.3).
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2.4.1 Challenges of Analysis scATAC-seq

The analysis of scATAC-seq data is a newer area compared with scRNA-seq, for which tools such
as Seurat (Stuart et al., 2019) and Scanpy (Wolf et al., 2018) have been developed for years and
considered as a standard practice. Although they share many properties, it is more challenging to
analyze scATAC-seq data than scRNA-seq data for three reasons:

• Single-cell ATAC-seq data has much more features than scRNA-seq because multiple cis-
regulatory modules often regulates a gene (De-Leon and Davidson, 2007). In fact, the number
of features in scATAC-seq is usually one order magnitude higher than that in scRNA-seq (usu-
ally 105 regions vs. 104 genes), as shown in Figure 2.9a.

• Single-cell ATAC-seq data is sparser than scRNA-seq. As with other single-cell data, scATAC-
seq is also affected by dropout events due to the loss of DNA material during library prepa-
ration. Moreover, the number of DNA molecular copies is limited comparing with message
RNA (mRNA). Together, these characteristics render the scATAC-seq count matrix extremely
sparse. In contrast, scRNA-seq has less severe sparsity than scATAC-seq due to smaller dimen-
sions and lower dropout rates for genes with high or moderate expression levels (Figure 2.9b).

• Single-cell ATAC-seq data has a lower count than scRNA-seq (Figure 2.9c). A particular chro-
matin region can either be accessible on one allele, both alleles, or no alleles in a single cell.
Therefore, only two Tn5 insertion events are expected for a region per cell. For example, an
observation of two Tn5 cleavage fragments from a single region in a single cell cannot con-
fidently determine that this region in this cell is two times more accessible than another cell
that only has one Tn5 insertion. For this reason, it makes more sense to work on a binarized
scATAC-seq data matrix, where 1 means accessible and 0 means non-accessible.

2.4.2 Computational Methods for Single Cell Data Denoising and Imputation

The single-cell sequencing data is arguably sparse and noisy because of the low amounts of starting
material from each cell and stochastic fluctuations of cell states (Kharchenko, 2021). Consequently,
the observed non-zeros may not coincide with the true abundance in a single cell. Moreover, the
observed zero values may be either due to truly non-expressed (for scRNA-seq) or non-accessible (for
scATAC-seq) or technical limitations of the sequencing technology (Patruno et al., 2021).

Many computational methods have been developed to address these issues, and they can be broadly
categorized into two groups: (i) denoising methods and (ii) imputation methods. Although both ap-
proaches take as input the raw count matrix and output an estimated matrix with the exact dimensions,
they are based on different assumptions and employ different computational strategies to accomplish
their tasks. Specifically, denoising methods assume that the data has some technical noise and try to
remove the noise by adjusting the values. In contrast, imputation methods assume that the existing
values (i.e., non-zero) are correct and aim to recover the missing entries (zeros) in the data. However,
these two terms are often used interchangeably in the field.
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Figure 2.9: Statistical comparison of scATAC-seq and scRNA-seq data. a, Barplot comparing
the number of features between scATAC-seq and scRNA-seq. b, Barplot comparing the
fraction of non-zeros between scATAC-seq and scRNA-seq. c, Barplot comparing the
distribution of counts in the matrices of scATAC-seq and scRNA. The data was generated
using the 10x Multiome protocol, which simultaneously profiles gene expression and
open chromatin from the same cell. Therefore, the number of cells in scATAC-seq and
scRNA-seq are the same, which allows for a fair comparison across modalities.

We here review the published computational methods for single-cell data denoising and imputation.
It is worth pointing out that comparing to scRNA-seq, denoising and imputation for scATAC-seq data
remains significantly unexplored, and only a few algorithms are tailored for this task. Therefore,
approaches presented here are primarily developed for scRNA-seq and are adapted into scATAC-seq
in this thesis for evaluation. Moreover, these approaches can be categorized into four groups based
on the techniques that they used. The first group contains data-smoothing methods that define a
similarity between cells and then adjust expression values for each cell based on the values in similar
cells (MAGIC). The second group includes model-based methods that model the observed values in
each cell as a random variable and perform imputation (scImpute) and denoising (SAVER). The third
group is composed of methods that use a deep learning approach to learn a latent space representation
of the cells and then denoise the data by reconstructing the input matrix (DCA; SCALE). Finally, the
last group includes methods that denoise the data by solving a matrix factorization problem (scBFA).
Table 2.1 summarizes the computational methods, and Figure 2.10 shows the workflow of each
method.

MAGIC

MAGIC (Markov Affinity-based Graph Imputation of Cells) is, to the best of our knowledge, the first
method for explicitly imputing scRNA-seq data (Van Dijk et al., 2018). It learns the manifold of the
data and uses the resulting graph to smooth the features and restore the structure of the data. MAGIC
takes an observed count matrix as input and produces an imputed matrix representing the likely gene
expression of individual cells. It first constructs an affinity matrix using an adaptive Gaussian kernel
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from which a Markov transition matrix is created, which represents the probability distribution of
transitioning from one cell into another in a single step. Next, MAGIC raises this matrix to the power t

to produce a matrix where each entry represents the probability that a random walk of length t starting
at cell i will reach cell j, a process known as data diffusion. MAGIC multiplies the transition matrix
by the original data matrix for imputation, restoring cells to the underlying manifold. Figure 2.10a
depicts the workflow of the MAGIC algorithm.

scImpute

scImpute is a model-based imputation method (Li and Li, 2018). It first normalizes the input count
matrix by the library size of each cell so that all cells have one million reads. Next, scImpute clusters
the cells into K sub-populations and selects a number of candidate neighbors for each cell from the
same cluster. Instead of treating all zero values as dropouts, scImpute infers which genes are affected
by dropout events in which cells by constructing a statistical model. Specifically, it uses a mixture
model of two components to model the gene expression with dropout events. The first component is
a Gamma distribution used to account for the dropout events, and the second component is a Normal
distribution to represent the actual gene expression levels. Then for each gene i, its expression in cell
population k is modeled as a random variable Xk

i with density function:

fXk
i
(x) = λi ·Gamma

(
x;α

k
i ,β

k
i
)
+(1−λi) ·Normal

(
x; µ

k
i ,σ

k
i
)

(2.1)

where λi is the dropout rate of gene i in sub-population k, αk
i ,β

k
i are the shape and rate parameters

of Gamma distribution, and µk
i ,σ

k
i are the mean and standard deviation of the Normal distribution.

The parameters are estimated using the Expectation-Maximization (EM) algorithm and are denoted
as λ̂i, α̂

k
i , β̂

k
i , µ̂
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i and σ̂ k

i . Then, the dropout probability of gene i in cell j can be calculated as:
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Next, for each cell j, scImpute selects a gene set A j in need of imputation based on a threshold t on
dropout probability. The rest of the genes form a gene set B j that does not need imputation. Finally,
the expression of genes in A j is imputed by borrowing information from similar cells based on gene
set B j. The imputation workflow of scImpute is shown in Figure 2.10b.

SAVER

SAVER (Single-cell Analysis Via Expression Recovery) is a Bayesian model aiming to recover the
true expression of each gene in each cell by borrowing information across genes and cells (Huang
et al., 2018) (Figure 2.10c). It models the observed expression of gene g in cell c Ygc using the
following function:

Ygc ∼ Poisson(scλgc)

λgc ∼ Gamma(αgc,βgc)
(2.3)
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where λgc represents the normalized true expression, sc represents the size normalization factor,
αgc,βgc are the shape and rate parameters of Gamma distribution, a prior of λgc. The goal of SAVER
is to derive the posterior gamma distribution for λgc given the observed count Ygc and use the posterior
mean as the normalized SAVER estimate λ̂gc. To do so, SAVER estimates the prior mean µgc and
variance vgc using an empirical Bayes-like technique. Specifically, it first uses the log-normalized
counts of all other genes g

′
in the same cells as predictors and fits a Poisson generalized linear regress

model with a log link function:

log(µgc) = γg0 + ∑
g′ 6=g

γgg′ log
(Yg′c +1

sc

)
. (2.4)

The prediction µ̂gc is treated as the prior mean for each gene in each cell. Next, SAVER estimates the
prior variance v̂gc by assuming an underlying mean-variance function for a given gene g. Given these
parameters, the posterior distribution can be written as:

λgc|Ygc, α̂gc, β̂gc ∼ Gamma(Ygc + α̂gc,sc + β̂gc). (2.5)

Moreover, the posterior mean can be estimated by:

λ̂gc =
Ygc + α̂gc

sc + β̂gc
=

sc

sc + β̂gc
·
Ygc

sc
+

β̂gc

sc + β̂gc
· µ̂gc. (2.6)

DCA

DCA (Deep Count Autoencoder) is a deep learning based autoencoder with specialized loss function
for scRNA-seq data (Eraslan et al., 2019). In contrast to the traditional autoencoder models that recon-
struct the input data itself, DCA defines the reconstruction error as the likelihood of the distribution
of the noised model, e.g., zero-inflated negative binomial (ZINB):

ZINB(x;π,µ,θ) = πδ0(x)+(1−π)NB(x; µ,θ)

Loss =
n

∑
i=1

p

∑
j=1

(
NLLZINB(xi j;πi j,µi j,θi j)+λπ

2
i j

) (2.7)

where π,µ,θ parameterize the ZINB distribution and NLLZINB represents the negative log-likelihood
of the ZINB distribution. During training, DCA learns feature-specific distribution parameters by
minimizing the reconstruction error in an unsupervised manner. The deep learning framework of
DCA enables the capturing of the complexity and non-linearity in input data. Furthermore, DCA
learns feature-specific parameters mean, dispersion, and dropout probability based on input data. The
inferred mean parameter of the distribution represents the denoised reconstruction and can be used
for downstream analysis. Figure 2.10d shows the process of the DCA algorithm.
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SCALE

SCALE (Single-Cell ATAC-seq analysis via Latent feature Extraction) is another deep learning-based
method specifically developed for scATAC-seq data (Xiong et al., 2019). It combines variational au-
toencoder (VAE) and Gaussian mixture model (GMM) to model the distribution of high-dimensional
scATAC-seq data through the following process:

p(c) = Discrete(c|π)

p(z|c) = N(z|µc,σ
2
c I)

p(x|z) = Bernoulli(x|µx)

(2.8)

where c is a categorical variable following a discrete distribution, p(z|c) is a mixture of Gaussian
model parameterize by µc and σc, and p(x|z) is a multi-variable Bernoulli distribution to model the
scATAC-seq data. During training, the log-likelihood of the observed scATAC-seq data is maximized:

logp(x) =log
∫

z
∑
c

p(x|z)p(z|c)p(c)dz

≥ Eq(z,c|x)

[
log

p(x,z,c)
q(z,c|x)

]
= LELBO(x)

(2.9)

which can be transformed to maximize the evidence lower bound (ELBO). The ELBO can be written
with a reconstruction term and a regularization term:

LELBO(x) = Eq(z,c|x)[logp(x|z)]−DKL
(
q(z,c|x)||p(z,c)

)
. (2.10)

The reconstruction term encourage the imputed data to be similar to the input data, while the regular-
ization term force the latent variable z to a GMM manifold. Distributions q(z,c|x) and p(x|z) are an
encoder and a decoder which can be modeled by two neural networks (Figure 2.10e).

scBFA

scBFA (single-cell Binary Factor Analysis) models the detection pattern observed in the data by
ignoring feature quantification measurements and can be applied to both scRNA-seq and scATAC-
seq (Li and Quon, 2019). It first creates a binary matrix B where each entry represents if a readout
is detected for a cell i (i = 1, · · · ,N) and a feature j ( j = 1, · · · ,G). For scRNA-seq input, Bi j = 1
indicates that at least one read maps to gene j, while for scATAC-seq, it means that at least one read
maps to locus j in cell i. The core idea of scBFA is to explain the high-dimensional detection patter
B using two low-dimensional matrices: a N×K embedding matrix Z, and a K×G loading matrix A.
Subsequently, scBFA defines the following models:

logit(µi j) = xT
i β j + zT

i α j +ui + v j

p(B;A,Z,β ,X,u,v) = ∏
i, j

Bernoulli(Bi j|ui j,A,Z,β ,X,u,v) (2.11)
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Figure 2.10: Computational methods for single-cell data denoising and imputation. a, Schematic
of MAGIC. The input data consist of a matrix of cells by genes of the data. A cell-to-
cell transition matrix is constructed by data diffusion, and imputation is performed using
the transition matrix and original data matrix. b, Illustration of imputation workflow in
scImpute method. scImpute first infers a drop probability for each gene in each cell
by fitting a mixture probabilistic model. Next, it imputes the genes with a high drop
probability for each cell by borrowing information of the same gene in other similar
cells. c, Overview of SAVER method. Low-abundance genes are first filtered and only
high informative genes are used. Next, SAVER model the observed count of a gene
in a cell using a negative binomial random variable through a Poisson-gamma mixture
distribution. The goal is to derive the posterior distribution for each gene and cells. d,
Schematic of DCA with a ZINB loss function. Input is the original count matrix. The
blue nodes depict the mean of the negative binomial distribution, which is the main
output of the method representing denoised data. The green and red nodes represent
the other two parameters of the ZINB distribution, namely dispersion and dropout. e,
Overview of the SCALE framework. SCALE consists of an encoder and a decoder
in the VAE framework. The latent variables are on the GMM manifold parameterized
by µc and σc. Source: Van Dijk et al. (2018); Li and Li (2018); Huang et al. (2018);
Eraslan et al. (2019); Xiong et al. (2019) (modified to fit thesis format and/or clarify
key points). ZINB: zero-inflated negative binomial distribution; VAE: variational au-
toencoder; GMM: gaussian mixture model.

where µi j denotes the mean of the Bernoulli distribution determining whether feature j is detected
in cell i or not, A and Z represent two low-dimensional matrices used to approximate B, ui and v j
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represent the ith cell-level intercept and jth feature-specific intercept. Then, scBFA maximizes the
following likelihood function:

f (B,A,Z,β ,X,u,v) =
[
∑
i, j

lnP(Bi j;A,Z,β ,X,u,v)
]
−λ1||A||22−λ2||Z||22−λ3||β ||22 (2.12)

where λ1,λ2, and λ3 are hyper-parameters for model regularization. After optimization, the two low-
dimensional matrices are used for imputation.

Name Programming Modality Task Technique Reference

MAGIC Python/R scRNA-seq Denoising Data smoothing Van Dijk et al. (2018)
scImpute R scRNA-seq Imputation Model-based Li and Li (2018)
SAVER R scRNA-seq Denoising Model-based Huang et al. (2018)
DCA Python scRNA-seq Denoising Deep learning Eraslan et al. (2019)
scBFA R scRNA-seq Denoising Matrix factorization Li and Quon (2019)
SCALE Python scATAC-seq Denoising Deep learning Xiong et al. (2019)
cisTopic R scATAC-seq Imputation Model-based González-Blas et al. (2019)

Table 2.1: Overview of computational denoising and imputation methods.

2.4.3 Computational Methods for scATAC-seq Dimensionality Reduction

Dimensionality reduction is another critical problem for scATAC-seq as it forms the foundation for
clustering, batch correction, and visualization. Compared to scRNA-seq, generating a meaningful
low-dimensional matrix is more challenging due to data sparsity and low count information as previ-
ously described (Section 2.4.1). We here first introduce latent semantic indexing (LSI), a widely used
method to reduce the dimension of scATAC-seq. Next, we describe cisTopic and SnapATAC, two
recent methods designed explicitly for scATAC-seq by considering previously described properties,
i.e., high dimensionality, ultra-sparsity, and binarization. Table 2.2 summarizes the aforementioned
computational methods.

Latent Semantic Indexing

Latent semantic indexing (LSI) is a commonly used approach in text mining field that can simul-
taneously model the relationships among documents (i.e., observations) based on their constituent
words (i.e., variables) and relationships between words based on their occurrence in documents (Deer-
wester et al., 1990). LSI takes as input a word-document matrix and performs term frequency–inverse
document frequency (TF-IDF) transformation. Next, it finds a low-rank approximation to the trans-
formed matrix using singular value decomposition (SVD), in which the k largest singular values are
retained, and the rest set to 0. Afterward, each document and word is represented as a k-dimensional
vector in the space derived by SVD.

This method has been widely used in natural language processing (NLP) for information retrieval
since its inception, and Cusanovich et al. (2015) first used it to perform dimensionality reduction for
scATAC-seq data by treating cells as documents and peaks as words. Since then, many studies have
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used it for scATAC-seq data dimensionality reduction (Cusanovich et al., 2018a,b; Satpathy et al.,
2019; Domcke et al., 2020). Nevertheless, one challenge of using LSI is determining the optimal
number of dimensions for performing SVD, and there is no method to estimate such a number the-
oretically. Currently, it is a common choice to use 30 dimensions. Another limitation is that the
first LSI component is highly correlated to the sequencing depth, indicating it mainly captures tech-
nical variation rather than biological variation. In this case, it should be excluded from downstream
analysis, thus making LSI less straightforward to use.

cisTopic

cisTopic is a Bayesian model that can discover cis-regulatory topics from scATAC-seq data in an un-
supervised manner (González-Blas et al., 2019). It is based on Latent Dirichlet Allocation (LDA), a
generative probabilistic model used to discover topics from a collection of documents in NLP (Blei
et al., 2003). The input for cisTopic is a region by cell accessibility matrix generated from scATAC-
seq data. Then it uses LDA for the modeling of cis-regulatory topics. Two distributions are derived
from the high-dimensional and sparse scATAC-seq data: i) the probability of a region belonging to
a topic (region–topic distribution); ii) the contribution of a topic within a cell (topic-cell distribu-
tion). Next, a collapsed Gibbs sampler (Griffiths and Steyvers, 2004) is used to assign each region
in each cell to a particular topic by randomly sampling from a distribution where the probability of a
region being assigned to a topic is associated with the contribution of that region to the topic and the
contribution of that topic to the cell:

P(zi = t|z−i,r) ∝
n(r)−i,t +β

n−i,t +Rβ
·

n(r)−i,t +α

nc
−i +T α

(2.13)

where zi is the current assignment to be made, z−i is the rest of the assignments in the dataset, t and
r are the given topic and region, P(zi = t|z−i,r) is the probability of region r being assigned to topic
t given the rest of assignments in the dataset, n(r)−i,t is the number of times that region r is assigned
to topic t across the dataset without considering the current assignment, n−i,t is the total number of
assignments to topic t through the dataset, β and α are Dirichlet hyper-parameters of the prior distri-
bution for the categorical distribution over regions in a topic and over topics in a cell, nc

−i is the total
number of assignments within cell c, R and T are the number of regions in the dataset and number of
topics in the model, respectively. The number of topics can be optimized by selecting the model with
the highest log-likelihood. After fitting the model, cisTopic provides two low-dimensional matrices.
One is a region-topic matrix containing the contribution of each region to a topic, and another is a
topic-cell matrix containing each topic’s contribution to a cell. The latter can be used for clustering
and visualization as a dimension-reduced matrix for cells. cisTopic is reported to uncover the ex-
pected cell types accurately and is more robust compared with LSI, particularly at low sequencing
depth (González-Blas et al., 2019). However, this model needs to infer a posterior distribution which
has been reported to be computationally expensive (Fang et al., 2021), thus suffering from scalability.
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SnapATAC

SnapATAC is a software package for comprehensively analyzing scATAC-seq data and can process
data from up to a million cells (Fang et al., 2021). An essential step in SnapATAC is to reduce the
dimension of scATAC-seq data effectively and efficiently. To do so, SnapATAC resolves cellular
heterogeneity by directly comparing the similarity in genome-wide accessibility profiles between
cells instead of performing matrix decomposition to produce a low-dimension representation as LSI
and cisTopic. Specifically, it takes a binary cell-bin matrix X ∈ Rn×m as input where n represents
the number of cells and m represents bins. First, it constructs a J ∈ Rn×n similarity matrix. The
similarity between cells is calculated using the Jaccard coefficient, which is defined as the size of the
intersection divided by the size of the union:

Jaccard(xi,x j) =
|xi∩ x j|
|xi∪ x j|

. (2.14)

Because the Jaccard similarity between cells is highly correlated to the reads depth (Fang et al., 2021),
SnapATAC-seq next fits a regression model and normalizes the observed Jaccard coefficient matrix.
Using this normalized similarity matrix N, SnapATAC then produces a low-dimension matrix using a
diffusion map (DM) (Coifman et al., 2005) by:

A = D−1/2ND−1/2

A = UΛUT
(2.15)

where D ∈Rn×n is a diagonal matrix composed as Di,i = ∑ j Ni, j, and U ∈Rn×n are a set of eigenvec-
tors, the diagonal matrix Λ ∈ Rn×n has the eigenvalues in descending order as its entries. Finally, the
first k eigenvectors are used as the low-dimensional representation.

Name Programming Task Technique Reference

LSI R Dim. Reduction SVD Cusanovich et al. (2015)
cisTopic R Dim. Reduction/Imputation LDA González-Blas et al. (2019)
SnapATAC R Dim. Reduction DM Fang et al. (2021)

Table 2.2: Overview of computational methods for scATAC-seq dimensionality reduction.

2.5 Discussion

In this chapter, we first introduced the basic concepts of DNA, chromatin organization, and accessibil-
ity from a biological perspective. Then, we described ATAC-seq to measure chromatin accessibility
at bulk and single-cell resolution. Next, we presented the standard computational workflow for ana-
lyzing bulk and single-cell ATAC-seq data. Finally, we discussed the computational challenges and
reviewed the recent development for analyzing scATAC-seq data in the field. In particular, we focused
on two computational problems: data imputation and dimensionality reduction.
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In scATAC-seq, Tn5 insertion generates a maximum of 2 fragments per cell in a small (200 bp)
chromatin-accessible region. Subsequent steps of the ATAC-seq protocol cause a loss of a large
proportion of these fragments. For example, only DNA fragments with two different Tn5 adapters,
which are statistically present in 50% of the fragment, are amplified in the PCR step (Buenrostro et al.,
2015a). Further material losses occur during single-cell isolation, liquid handling, reads capture, or
by simple financial restrictions of sequencing depth.

Usually, the first step for analysis of scATAC-seq is the detection of OC regions by calling peaks on
the scATAC-seq library by ignoring cell information. Next, a matrix is built by counting the number
of digestion events per cell in each of the previously detected regions. This matrix usually has a
very high dimension (up to 106 regions) and a maximum of two digestion events are expected for a
region per cell. These characteristics render the scATAC-seq count matrix sparse, i.e. 3% of non-zero
entries. In contrast, scRNA-seq have less severe sparsity (>10% of non-zeros) than scATAC-seq due
to smaller dimension (< 20,000 genes for mammalian genomes) and lower dropout rates for genes
with high or moderate expression levels, as shown in Figure 2.9. This sparsity poses challenges in the
identification of cell-specific OC regions and is likely to affect downstream analysis as clustering and
detection of regulatory features.

Although several computational methods have been developed to address this issue for scRNA-seq
data (e.g., MAGIC, scImpute, SAVER, DCA, and scBFA, as described in Section 2.4.2), these meth-
ods were not designed to deal with the sparse of scATAC-seq data. Moreover, they assumed that the
data followed a specific distribution, e.g., scImpute used Gamma-Normal distribution (Equation 2.1),
SAVER used Gamma-Poisson mixture (Equation 2.3), and DCA used zero-inflated negative binomial
distribution (Equation 2.7), making them inappropriate for scATAC-seq due to the low count nature of
scATAC-seq data. Until date, there are only two approaches for imputation methods for scATAC-seq
data (SCALE and cisTopic). However, SCALE, a deep learning based method, requires a graphics
processing unit (GPU) for training. The usual small size of GPU memory limits the number of cells
to be analyzed. cisTopic is a Bayesian-based method, which was reported to have an exponential
increase of the running time for an increasing number of reads (Chen et al., 2019). Therefore, both
approaches are likely to have scalability issues with large data sets.

Dimensionality reduction represents another unmet need for scATAC-seq data analysis. Currently,
there are only three methods available for this task (i.e., LSI, cisTopic, and SnapATAC), compared
with the vast number of tools for scRNA-seq (Sun et al., 2019). One reason that makes this task
difficult is because the matrix generated by scATAC-seq is binary where only two possible values
are presented, i.e., 1 means accessible and 0 means non-accessible. The commonly used approaches
for scRNA-seq dimensionality reduction, such as PCA, cannot directly deal with this binary matrix.
Therefore, more specific methods are needed in this regard.

In addition to methods development, the systematic evaluation of imputation and dimensionality
reduction for scATAC-seq data is still an open problem. Although a recent study has benchmarked
several computational methods for scATAC-seq on a number of synthetic and real datasets from dif-
ferent assays (Chen et al., 2019), the results are solely based on clustering of cells which might be
biased by using different algorithms. Furthermore, the clustering is an indirect metric for matrix im-
putation, and it does not reflect the true performance of an imputation method, i.e., what fraction of
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the missing open chromatin regions are recovered after imputation. Moreover, it is still unclear if the
downstream analysis of scATAC-seq can also be benefited by imputation. Altogether, an unbiased
and systematic evaluation with different metrics for scATAC-seq data imputation and dimensionality
reduction methods is required.

In this thesis, we investigate methods for imputing and reducing dimensions of scATAC-seq data.
Our goals are summarized as follows:

• The development of a new computational method that is able to accurately quantify single-cell
chromatin accessibility status by data denoising and imputation. Moreover, this method should
also provide a low-dimensional representation of the raw data. This dimension reduced matrix
will be used for clustering, batch correction, and data visualization when dealing with large-
scale scATAC-seq. Furthermore, we will generate simulated scATAC-seq data and explore how
to perform model selection.

• The evaluation of available imputation methods under the context of scATAC-seq. We will
apply the previously described methods (Section 2.4.2) to impute several real-world scATAC-
seq data sets with available true labels. The performance of each method will be evaluated
based on cell clustering, peaks recovery and cell-to-cell similarity estimation. Moreover, we
will also benchmark the scalability of each method, i.e., the required CPU memory and running
time.

• The evaluation of available dimensionality reduction methods. We will generate the low-
dimensional matrix using our approach and the previously described algorithms (Section 2.4.3).
The results will be evaluated based on clustering and distance accuracy.

• The investigation of the impact of imputation on downstream analysis of scATAC-seq data.
We will test whether the scATAC-seq computational pipelines will benefit using the imputed
matrix, as the sparsity has been eliminated.

• The application of our method to novel scATAC-seq data. In collaboration with Rafael Kra-
mann and Christoph Kuppe in the Institute of Experimental Medicine and Systems Biology,
RWTH Aachen University Medical School, we plan to perform scATAC-seq on whole mouse
kidney tissues in homeostasis and at two time points (day two and day ten) after injuring with
fibrosis. We will also evaluate our approach in its power to detect cells in such a complex
disease dataset by using an independent scRNA-seq dataset generated from the same model as
gold standard. We will also seek to obtain new biological insights about this process.
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CHAPTER 3
Methods

In the previous chapter, we introduced the concepts of ATAC-seq to profile chromatin accessibility at
bulk and single-cell resolution. We also described the standard computational workflow for the analy-
sis of bulk and single-cell ATAC-seq data. One of the main challenges to analyze the scATAC-seq data
is the sparsity and high-dimensionality. Therefore, this thesis aims to develop a new computational
method for scATAC-seq data imputation and dimensionality reduction.

In this chapter, we exclusively present and formalize our computational solution towards this goal.
Specifically, we first introduce the notation that is necessary to formalize our method (Section 3.1).
Next, we describe a two-step strategy to normalize the input data, i.e., data binarization and trans-
formation (Section 3.2). Then, we present our approach for data imputation and dimensionality re-
duction. Moreover, we introduce a computational strategy to automatically determine the number of
components in the model (Section 3.3). Next, we describe the implementation details of the meth-
ods (Section 3.4). Finally, we close this chapter with a few concluding remarks on the methodology
choice and novelty of our approach (Section 3.5).

3.1 Notation

Throughout this chapter, we denote matrices by boldface capital letters (e.g., A), denote vectors by
boldface lowercase letters (e.g., a), denote scalars by lowercase letters (e.g., a), denote the ith entry
of a vector a by ai, denote the ith row of a matrix A by ai:, denote the ith column of a matrix A by a:i,
denote an element of (i, j) of a matrix A by ai j, and denote non-negative real numbers by R+. More
specifically, we define the following notation:

• X ∈ Rm×n
+ , the peak-by-cell count matrix;

• m, the total number of peaks (i.e., variables);

• n, the total number of cells (i.e., observations);

• i ∈ {1, · · · ,m}, the index of peaks;

• j ∈ {1, · · · ,n}, the index of cells;

• B ∈ Rm×n
+ , the binarized matrix of X;

• T ∈ Rm×n
+ , the term frequency matrix;

• d ∈ Rm
+, the vector of inverse document frequency;

• Y ∈ Rm×n
+ , the TF-IDF transformed matrix;
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• M ∈ Rm×n
+ , the L2 normalized matrix of Y;

• W ∈ Rm×k
+ , the low-dimensional representation of peaks;

• H ∈ Rk×n
+ , the low-dimensional representation of cells;

• 1≤ k ≤ min(m,n), the number of components.

3.2 Data Normalization

We first perform data normalization for the input count matrix which is generated as described in Sec-
tion 2.3.2. This procedure includes two steps: (i) data binarization (Section 3.2.1); (ii) data transfor-
mation (Section 3.2.2). We describe each step in detail below.

3.2.1 Binarization

As mentioned in Section 2.4.1, for scATAC-seq data, a particular chromatin site in a single cell can
either be accessible or non-accessible, and a maximum of two Tn5 digestion events are expected due
to limited DNA copies. Consequently, the differences in reads count may largely reflect technical
effect (e.g., reads amplification bias) rather than true biological variation. Therefore, we here create a
binary accessibility matrix B to eliminate the potential technical bias by the following operation:

bi j =

{
1 xi j > 0

0 xi j = 0
(3.1)

where 1 indicates the peak i is accessible in cell j, and 0 could indicate non-accessible or non-
measured (i.e., dropout or missing values). It is worth pointing out that these two inferences rep-
resent very different biological standpoints. Because of this, the 1s contain information, and the 0s
do not (Granja et al., 2021).

3.2.2 Transformation

We next perform data transformation to remove further technical factors, including the number of
detected peaks in each cell, which are usually caused by different reaction efficiency and can mix up
a technical variation with biological heterogeneity. To do so, we apply a statistical technology, called
term frequency-inverse document frequency (TF-IDF), to transform the binary accessibility matrix B
to a TF-IDF transformed matrix Y. TF-IDF technique was originally developed in the nature language
processing (NLP) field to access document similarity based on counts of the word (Salton and McGill,
1986). This method has been widely used for information retrieval and text mining. The intuition of
applying such an approach to scATAC-seq data transformation is that, in the context of scATAC-
seq, we can consider the cells as the documents and the accessible regions/peaks as the words. The
transformed value in matrix Y generally reflects how important a peak is to a specific cell.
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Figure 3.1: A toy example of scATAC-seq data normalization. This figure demonstrates the data
normalization process using a toy accessibility count matrix. First, to remove the po-
tential reads amplification bias, the fragment count matrix X is binarized to generate a
binary matrix B. Next, to further remove technical effects (e.g., sequencing depth), a
term frequency matrix T and an inverse document frequency vector d are calculated, re-
spectively. A TF-IDF transformed matrix Y is obtained by multiplying the vector d with
each column in matrix T. Finally, the L2 normalization approach is used to further nor-
malize the data for each cell, and the normalized matrix M is used for imputation and
dimensionality reduction.

To perform data transformation, we first calculate a term frequency (TF) matrix T by:

ti, j =
bi j

∑
m
m′=1

bm′ j
(3.2)

where ti, j ranges from 0 and 1, representing the importance of a peak i in cell j, and bi j is obtained
from the binary accessibility matrix B by using Equation 3.1. As a way of normalization, this process
aims to remove the sequencing depth bias (i.e., number of detected peaks bias) which is usually
caused by stochastic molecular sampling during sequencing. More specifically, if a cell has more
peaks detected than other cells, the weight of each peak in this cell will be proportionally decreased.

Next, we compute an inverse document frequency (IDF) vector d by:

di = ln(
n

∑
n
j=1 bi j

) (3.3)

where n indicates the total number of cells and ln represent the natural logarithm. This term is a
non-negative value, typically representing the importance of a peak across all cells. Intuitively, if
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a peak is common (i.e., it is detected in most cells), it might be less important because it does not
provide too much information to distinguish relevant and non-relevant cells. Therefore, the weight of
this peak should be scaled down. On the other hand, if a peak is rare, it could be a critical feature for
identifying rare cell populations, so the weight of this peak should be scaled up.

Subsequently, we calculate the TF-IDF transformed matrix Y as the product of corresponding TF
and IDF score:

yi, j = ti, j ·di. (3.4)

Finally, we use the L2 normalization technique to further normalize the data for each cell as follows:

mi j =
yi, j√

∑
m
m′=1

(ym′ , j)
2
. (3.5)

This matrix M represents a normalized accessibility matrix which is later used for imputation and
dimensionality reduction. Figure 3.1 shows a toy example of scATAC-seq data normalization process.

3.3 Data Imputation and Dimensionality Reduction

Having obtained the normalized matrix M, we next would like to learn a low-dimensional represen-
tation for the cells by reducing the dimensionality of the data through a mapping function. Moreover,
an imputed matrix recovering the missing signal is also expected. Given that all the elements of M are
non-negative, we here choose to use the NMF technique for this task. In this section, we first give a
brief introduction to NMF and formalize our problem (Section 3.3.1). Next, we describe a numerical
method to solve the optimization problem (Section 3.3.2). Finally, we introduce an approach to auto-
matically determine the number of components, a hyper-parameter in the NMF model (Section 3.3.4).

3.3.1 NMF

Non-negative matrix factorization (NMF) was first introduced in 1994 as a new variant of factor
analysis (Paatero and Tapper, 1994). The problem can be formalized as given a non-negative matrix
V, find matrix factors W and H such that:

V≈WH, s.t. W≥ 0,H≥ 0 (3.6)

where W and H are non-negative and usually have a lower rank than the original matrix V. Solving
this problem results in a compressed version of the original data matrix. In contrast to other dimen-
sionality reduction methods (e.g., PCA), NMF was showed to be able to learn the parts of objects and
provide easily interpretable features because of its non-negativity constraints (Lee and Seung, 1999).
Furthermore, the authors provided a simple and efficient algorithm to solve the optimization prob-
lem (Lee and Seung, 2001). Since then, the NMF technique has been widely applied to a number of
real-world applications for the analysis of high-dimensional data, such as image process (Guillamet
et al., 2003), text mining (Dhillon and Sra, 2005), audio signal processing (Gemmeke et al., 2013),
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3.3. Data Imputation and Dimensionality Reduction

and bioinformatics (Welch et al., 2019; Shiga et al., 2020).

To apply NMF to factorize the normalized matrix M into two smaller matrices, we define the
following model:

M = WH+Z (3.7)

where W is a m by k matrix containing the factor values for peaks, H is a k by n matrix containing
the factor values for cells. Z ∈ Rm×n represents some additive noise present in the matrix M, and we
model it as independently and identically (i.i.d) Gaussian noise:

zi j ∼ N(0,σ2
i j) (3.8)

where σi j represents the variance. Figure 3.2 shows the conceptual illustration of the model. More
specifically, each element in M can be written as:

mi j =
k

∑
k′=1

wik′ ·hk′ j + zi j. (3.9)

Our goal is to find out W and H that can construct M with the lowest error. For this, we use the
sum of square errors to measure construction quality and define the following objective function with
respect to W and H:

f (W,H) =
1
2
||M−WH||2︸ ︷︷ ︸

error

+
λ

2
||W||2 + λ

2
||H||2︸ ︷︷ ︸

regularization

, s.t. W≥ 0,H≥ 0 (3.10)

where || · ||2 is the Frobenius norm of a matrix define as:

||W||2 =
m

∑
i=1

k

∑
k′=1

w2
ik′ . (3.11)

The first item is the estimator of square loss for each element in M, and the second item is the regu-
larization which prevent the model from over-fitting. The parameter λ controls the balance between
reconstruction error and model regularization. We will evaluate the impact of this parameter on the
final results in (Section 5.1.1). Finally, W and H are found by minimizing the above objective func-
tion:

W,H = arg min
W,H

f (W,H) s.t. W≥ 0,H≥ 0. (3.12)

3.3.2 Solving the Optimization Problem

It is worth pointing out that this optimization problem was proved to be non-convex, ill-posed, and
NP-hard (Vavasis, 2010). This means that it is unlikely to find an optimal global resolution in a rea-
sonable computation time. Fortunately, several heuristic algorithms have been proposed to find out the
local optimal, including multiplicative-update algorithm (Lee and Seung, 2001), projected gradient
methods (Lin, 2007), active set method (Kim and Park, 2008), and coordinate descent method (Ci-
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Figure 3.2: Conceptual illustration of the defined NMF model. The normalized matrix M is fac-
torized into two matrices W, H, and a noise matrix Z modeled as Gaussian noise. Both
W and H a have lower rank than M and are non-negative. Therefore, these two low-rank
matrices are considered as a compression of the original matrix M.

chocki and Phan, 2009). Among them, coordinate descent is regarded as one of the state-of-the-art
techniques for solving the problem. The idea is that the objective function can be minimized along
one direction at one time. Specifically, at each iteration, one of the two factors is fixed, and the other
is updated in such a way that the objective function is reduced:

(W0,H0)→ (W1,H0)→ (W1,H1)→ ··· → (WTmax ,HTmax) (3.13)

where W0 and M0 represent the initial matrices, and Tmax represents the maximum number of itera-
tions. This amounts to a two-block coordinate descent method.

Moreover, for each factor, the problem can be further simplified as a simple univariate quadratic
problem if we optimize one single variable at a time with all others fixed. For example, consider
minimizing the function over wit with all other elements in W fixed, then the objective function with
respect to wit can be written as follows:

f (wit) =
1
2

n

∑
j=1

(mi j−
k

∑
k′

wik′hk′ j)+
λ

2
w2

it

=
1
2

n

∑
j=1

(mi j−
k

∑
k′ 6=t

wik′hk′ j−witht j)
2 +

λ

2
w2

it s.t. wit ≥ 0.

(3.14)

The gradient of f with respect to wi j is written as:

∇ f (wi j) =
n

∑
j=1

(mi j−
k

∑
k′ 6=t

wik′hk′ j−withh j)(−ht j)+λwit

=
n

∑
j=1

(with2
t j +ht j

k

∑
k′ 6=t

wik′hk′ j−mi jht j)+λwit

= (
n

∑
j=1

witht j +λwit)+
n

∑
j=1

(ht j

k

∑
k′ 6=t

wik′hk′ j−mi jht j)

= wit(
n

∑
j=1

h2
t j +λ )−

n

∑
j=1

(mi jht j−ht j

k

∑
k′ 6=t

wik′hk′ j).

(3.15)

36



3.3. Data Imputation and Dimensionality Reduction

To minimize the function, we set the gradient to zero:

∇ f (wi j) = wit(
n

∑
j=1

h2
t j +λ )−

n

∑
j=1

(mi jht j−ht j

k

∑
k′ 6=t

wik′hk′ j) = 0. (3.16)

Then the optimal solution is found as:

wit =
∑

n
j=1(mi jht j−ht j ∑

k
k′ 6=t

wik′hk′ j)

∑
n
j=1 h2

t j +λ
. (3.17)

Given the non-negativity constraint of wit , the final solution is written as follows:

wit = max
(
0,

∑
n
j=1(mi jht j−ht j ∑

k
k′ 6=t

wik′hk′ j)

∑
n
j=1 h2

t j +λ

)
. (3.18)

We iteratively apply the above update rule for all elements in W. Of note, the original objective
function remains unchanged when the matrices W and H are transposed, i.e.,

f (W,H) =
1
2
||M−WH||2 + λ

2
||W||2 + λ

2
||H||2

=
1
2
||MT −HT WT ||+ λ

2
||WT ||2 + λ

2
||HT ||2

= f (HT ,WT ).

(3.19)

Based on this observation, we can update H using the same rule:

ht j = max
(
0,

∑
m
i=1(mi jwit −wit ∑

k
k′ 6=t

h jk′wk′ i)

∑
m
i=1 w2

it +λ

)
. (3.20)

In order to make the results more robust, in each step of optimizing the factor, we randomly shuffle the
order of cells in the matrix. The above iteration is carried out until a termination criterion is met, e.g.,
number of iteration performed. Afterward, we multiply the matrix W and H to obtain the imputed
matrix:

M̂ = WH (3.21)

and use H as a dimension reduced matrix for cells.

3.3.3 Initialization

The optimization procedure starts with some initial values of matrices W and H with only non-
negative elements. The simplest way of obtaining such initial values is to generate two random
non-negative matrices. However, this approach suffers from slow convergence and requires more
iterations to achieve an optimal solution. We, therefore, use a more effective method, called non-
negative double singular value decomposition (NNDSVD), to generate the initial values for W and H
based on two processes of SVD (Boutsidis and Gallopoulos, 2008).
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Figure 3.3: Convergence curve of the model with different initialization approaches This figure
compares the convergence rate of the optimization procedure using randomly initialized
values or NNDSVD-based initialization. The x-axis represents the number of iterations,
and the y-axis represents the estimated loss. The results are based on a scATAC-seq
matrix with 125,647 peaks and 1,224 cells.

More formally, the input matrix M is first factorized by SVD as:

M = USVT (3.22)

where U ∈ Rm×m and V ∈ Rn×n are two unitary square matrices with u:i and v:i representing the left
and right singular vectors, S∈Rm×n

+ is a rectangular diagonal matrix with sii representing the singular
values of M. Without loss of generality, we assume that s11 ≥ s22 ≥ ·· · ≥ srr > 0, where r represents
the index of the lowest singular value. Then, for a rank k ≤ r, M can be optimally approximated by:

M≈
k

∑
k′=1

Ci ≈
k

∑
k′=1

∑
k

sk′k′u:k′v
T
:k′ . (3.23)

Suppose we want to generate two matrices W ∈ Rm×k
+ and H ∈ Rk×n

+ , according to the Perron-
Frobenius theorem, because M is non-negative, its maximum left and right singular vectors are also
guaranteed to be non-negative. Therefore, the first column of W and the first row of H can be initial-
ized as:

m:1 =
√

s11 ·u:1

h1: =
√

s11 ·vT
:1.

(3.24)

For other columns and rows of matrices W and H, a similar approach is used. Specifically, for any
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index 2≤ k
′ ≤ k, a matrix Ck′ is obtained by:

Ck′ = sk′k′u:k′ v
T
:k′ . (3.25)

We can zero out all negative elements of Ck′ to obtain a non-negative matrix C+
k′

and use the above
process the initialize the k

′
column and row of W and H. Figure 3.3 shows the convergence curves

by using either randomly initialized matrices or NNDSVD-based initialization for model optimiza-
tion. Finally, by combining the above described steps, we here propose a new computation method
for scATAC-seq data imputation and dimensionality reduction. The algorithm is formalized in Algo-
rithm 3.1.

Algorithm 3.1: Imputation and dimensionality reduction for scATAC-seq data
Input : X, a m×n matrix containing the number of reads for all peaks and cells;

m, the number of peaks;
n, the number of cells;

Parameter: k, the number of components;
λ , the regularization parameter;
Tmax, the maximum of iteration;

Output : W, a m× k matrix of low-dimensional representation of peaks;
H, a k×n matrix of low-dimensional representation of cells;
M̂, a m×n matrix containing imputed data for all peaks and cells;

1 B = BINARIZATION(X) ; // Section 3.2.1
2 M = TRANSFORMATION(B) ; // Section 3.2.2
3 W,H = INITIALIZATION(M) ; // Section 3.3.3
4 while iter < Tmax do
5 for t← 1 to k by 1 do
6 for i← 1 to m by 1 do
7 Update wit using Equation 3.18 ; // Update W
8 end
9 end

10 for t← 1 to k by 1 do
11 for j← 1 to n by 1 do
12 Update ht j using Equation 3.20 ; // Update H
13 end
14 end
15 end
16 M̂ = W H;
17 return W, H, M̂

3.3.4 Determining the Hyper-parameters

There are two hyper-parameters in our proposed method, i.e., regularization parameter λ and number
of components k. The parameter λ is used to prevent the model from overfitting, and it is empirically
evaluated on a simulated scATAC-seq dataset to test its impact on various downstream tasks (Sec-
tion 4.1.2). The number of components k determines the intrinsic dimensions of a matrix and thus
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is highly dataset-specific. Although a higher k is able to better approximate the original matrix, it
is computationally expensive. On the other hand, a lower k may lead to underfitting. In order to
automatically select an appropriate k for a given dataset, we input a number of different values for k,
e.g., from 2 to 30. For each k, we run Algorithm 3.1 to obtain the imputed matrix M̂ and compute the
reconstruction error as:

ek = ||Mk−M̂k||2. (3.26)

Next, we build an error curve and detect the elbow point of this curve using the Kneedel algo-
rithm (Satopaa et al., 2011). The elbow point is roughly defined as the point of maximum curvature
in a system. It represents the best balance between the cost and the expected performance benefit, in
our case., the number of components k and the reconstruction error e. Figure 3.4 shows an example
of using this approach to determine the number of components for a given scATAC-seq dataset com-
posed of 1,224 cells from 8 different cell types. The algorithm correctly detects k = 8 as the elbow
point, corresponding to the number of cell types in the data.
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Elbow point: 8

Figure 3.4: Estimation of the number of components using elbow detection algorithm This figure
shows an example of using elbow detection algorithm to estimate the optimal number of
components. The x-axis represents the number of components, and the y-axis represents
the reconstruction error estimated using Equation 3.26. The dashed line indicates the
detected elbow point.

3.4 Implementation

We implemented our NMF-based strategy for single-cell ATAC-seq data imputation and dimension-
ality reduction as a Python command line tool. Our method is called scOpen (single-cell Open chro-
matin analysis via NMF modeling) and will be referenced as such throughout this thesis. Such a
command line tool implements all the steps described in this chapter. For efficiency, scOpen uses
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compressed sparse row matrix from SciPy (Virtanen et al., 2020) for data processing. The scOpen
tool was first released in May 2021 and is available under GNU General Public License v3.0 (GPL
v3). Figure 3.5 shows the workflow of the scOpen approach, and Table 3.1 summarizes the python
package dependencies of scOpen.

The minimal input data required for scOpen is a peak by cell matrix and different formats for input
data are accepted. For example, the matrix can be stored in a text file with dense format (i.e., each row
represents a peak and each column represents a cell) or sparse format (each row contains the peak, cell
and observed value). Moreover, scOpen can also take as input the outputs generated by Cell Ranger
ATAC pipeline. The ability of supporting various input formats makes scOpen straightforward to use.
The outputs of scOpen include: (i) an imputed matrix with the same dimensions as the input data;
(ii) a text file representing the low-dimensional matrix. In addition, if the model selection options is
enabled, a line plot describing the fitting error against the number of ranks will also be generated.

To ensure that scOpen displays interoperability with other popular Python-based frameworks, such
as Scanpy (Wolf et al., 2018) and EpiScanpy (Danese et al., 2021), we have implemented an appli-
cation programming interface (API) that allows for calling the functions in scOpen. Moreover, we
provided a jupyter notebook (https://github.com/CostaLab/scopen/blob/master/
vignettes/epiScanpy.ipynb) to illustrate how to operate scOpen with Scanpy and EpiS-
canpy. In addition, many popular tools for analyzing scATAC-seq data, including chromVAR (Schep
et al., 2017), Signac (Stuart et al., 2020) and ArchR (Granja et al., 2021), are based on R. We therefore
also provided a comprehensive online vignette (https://github.com/CostaLab/scopen/
blob/master/vignettes/signac_pbmc.Rmd) to demonstrate how to use scOpen under R
environment.
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Figure 3.5: Workflow of scOpen. scOpen receives as input a sparse peak by cell count matrix.
After matrix binarization, scOpen performs TF-IDF transformation followed by NMF
for dimension reduction and matrix imputation. The imputed or reduced matrix can then
be given as input for scATAC-seq methods for clustering, visualization and interpretation
of regulatory features

We have tested scOpen with Python 3.6-3.9 with Numpy 1.20.3, Scipy 1.6.3, H5py 3.2.1, PyTabels
3.6.1, Matplotlib 3.4.2, Scikit-learn 0.24.2 and Kneed 0.7.0. We used a local Linux Ubuntu 20.04 LTS
x86 64-bit machine running with 8 Intel(R) Core(TM) i7-3770 CPU at 3.40GHz and 32 GB RAM.
Moreover, we ran scOpen on an High Performance Computing (HPC) cluster mainly based on AMD
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Package Version Website

Numpy >= 1.20.3 https://numpy.org/
Scipy >= 1.6.3 https://www.scipy.org/
H5py >=3.2.1 https://www.h5py.org/
Pandas >= 1.2.4 https://pandas.pydata.org/
PyTabels >=3.6.1 https://www.pytables.org/
Matplotlib >=3.4.2 https://matplotlib.org/
Scikit-learn >=0.24.2 https://scikit-learn.org/stable/
Kneed >=0.7.0 https://kneed.readthedocs.io/en/stable/

Table 3.1: scOpen tool python package dependencies.

EPYC 7452 64-bit nodes at 2.35 GHz and 1024 GB RAM with CentOS Linux 8.

For more information about scOpen implementation, source code, tutorials and examples, please
see:

https://github.com/CostaLab/scopen

3.5 Discussion

In this chapter, we presented our computational method, called scOpen, for scATAC-seq data analysis.
We first described an approach for scATAC-seq data normalization (Section 3.2). Next, we introduced
the NMF-based strategy for imputation and dimension reduction (Section 3.3) and implementation
details (Section 3.4). The workflow of scOpen is showed in Figure 3.5 and a schematic overview
is given by Algorithm 3.1. To summarize, our computational method applied new concepts to solve
scATAC-seq imputation and dimension reduction problem:

• We introduced a novel scATAC-seq normalization framework that is able to correct potential
technical effects, such as reads amplification and sequencing depth bias. Elements in the nor-
malized matrix typically reflect the importance of a peak to a particular cell.

• We devised regularized NMF to factorize the original matrix into two smaller matrices (also
known as factors) by considering the noise presented in the data. The resulting factors can be
used as dimension reduces matrices for cells or peaks. Moreover, the multiplication of these
two factors is regarded as an imputed or denoised matrix which is used for downstream analysis.

• We applied a computational algorithm to automatically estimate the number of components for
NMF model. This method works by detecting the elbow point of reconstruction error against
the rank of factors. We showed that in an example scATAC-seq dataset, this approach is able to
identify the underlying dimensions, i.e., the number of cell types presented in the data.

• Although our method is implement by Python as a command line tool, we have provided a
tutorial to demonstrate the interoperability between scOpen and other R-based tools, such
as Signac (Stuart et al., 2020) and ArchR (Granja et al., 2021) (https://github.com/
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CostaLab/scopen/blob/master/vignettes/signac_pbmc.Rmd). We hope this
will improve the availability of scOpen by allowing the users from R community to access
scOpen without changing programming languages. Moreover, we also implemented an API
that allows the other Python-based algorithms (e.g., EpiScanpy (Danese et al., 2021)) to directly
use the results from scOpen (https://github.com/CostaLab/scopen/blob/master/
vignettes/epiScanpy.ipynb).

From a methodological perspective, the core idea of our approach is the use of TF-IDF transfor-
mation and NMF. TF-IDF tends to adjust the weight of peaks to reflect the underlying importance of
a peak to a cell. Moreover, the use of NMF for matrix imputation and dimension reduction is the fa-
vorable method of choice given that the TF-IDF transformed matrix is inherently non-negative. Com-
paring with the competing algorithms, including scImpute (Li and Li, 2018), SAVER (Huang et al.,
2018), DCA (Eraslan et al., 2019), scBFA (Li and Quon, 2019), and SCALE (Xiong et al., 2019),
our method made no assumptions about the data distribution in the matrix. Therefore, it is more ro-
bust when applying to a new dataset. Moreover, scOpen makes use of a linear approach, i.e., matrix
factorization, to impute the matrix. However, MAGIC (Van Dijk et al., 2018) used manifold learning
technique through a Gaussian kernel, which has been reported to generate many false positives in
scRNA-seq context (Andrews and Hemberg, 2018). The regularization terms included in scOpen fur-
ther prevented the model from overfitting. Regarding dimension reduction, cisTopic (González-Blas
et al., 2019) used a similar topic modeling approach based on a Bayesian model and was reported
to suffer from scalability problem. Table 3.2 summarizes the comparison between scOpen and other
methods from methodological point of view.
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scOpen NMF Yes Yes None Linear Yes
MAGIC Manifold learning Yes No None Non-linear No
scImpute Probabilistic model Yes No Gaussian Non-linear No
SAVER Bayesian model Yes No Poisson Non-linear No
DCA Autoencoder Yes No ZINB Non-linear No
scBFA FA Yes No Bernoulli Non-linear Yes
SCALE VAE Yes Yes GMM Non-linear No
cisTopic LDA Yes Yes Multinomial Non-linear No
LSI SVD No Yes None Linear No
SnapATAC DM No Yes None Non-linear No

Table 3.2: Methodological comparison between scOpen and other methods. NMF: non-negative ma-
trix factorization, FA: factor analysis, LDA: Latent Dirichlet Allocation, VAE: variational
autoencoder, SVD: singular value decomposition, DM: diffusion map, ZINB: zero-inflated
negative binomial, GMM: Gaussian mixture model.
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CHAPTER 4
Experiments

In the previous chapter, we introduced our computational approach, scOpen, for single-cell ATAC-seq
imputation and dimensionality reduction. Here we present the experimental framework used in this
thesis to validate our method. The framework is divided into two sections: technical validation and bi-
ological validation. In technical validation (Section 4.1), the major goal is to evaluate the performance
of our approach and compare it to the competing methods. For biological validation (Section 4.2),
we will apply scOpen to a novel scATAC-seq data generated from mouse kidney and test its power to
dissect regulatory change in the development of fibrosis in the kidney. We finally close this chapter
with a final discussion on our experimental workflow in Section 4.3.

4.1 Technical Validation

In this section, we present the experimental framework to technically validate our method. We first
describe the scATAC-seq data used in this section (Section 4.1.1). Then, we outline the experiments
to select the hyper-parameters in scOpen (Section 4.1.2). Next, We report the details of executing a
number of computational approaches, including eight imputation methods, three dimensionality re-
duction methods, and three downstream analysis methods (Section 4.1.3). Finally, we describe the
methodology used to evaluate the results produced by executing the computational methods (Sec-
tion 4.1.4).

4.1.1 Data

We here describe the process of generating scATAC-seq data for technical validation. We first in-
troduce a customized pipeline for ATAC-seq data processing. Next, we detail our computational
strategy to generate scATAC-seq simulation data. Finally, we describe the real-world scATAC-seq
datasets that are publicly available. The simulation data is used to validate the parameter selection
strategy in scOpen, and the benchmarking data is used to compare the performance of our approach
against the competing methods.

ATAC-seq Processing Pipeline

We implemented a pipeline to preprocess ATAC-seq data from raw sequencing data to aligned files
according to the description in Section 2.3.1. More formally, for a particular ATAC-seq library, we
first converted the downloaded file to FastQ file using SRA toolkit (http://ncbi.github.io/
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sra-tools/). Next, we trimmed adapter sequences and low-quality ends using Trim Galore (Mar-
tin, 2011). We mapped reads to the reference genome using Bowtie2 (Langmead and Salzberg, 2012)
and removed the reads that were mapped to chrY, mitochondria, and unassembled "random" contigs.
We also filtered out the duplicates with Picard (Institute, 2019) and only kept properly paired reads
with alignment quality >30.

Simulation Data

To generate simulated scATAC-seq data, we first obtained a bulk ATAC-seq with different cell types.
For this, we downloaded the ATAC-seq of 13 human primary blood cell types from gene expression
omnibus (GEO) with accession number GSE74912 (Corces et al., 2016). For each cell type, we
processed the data using the pipeline as described above. Next, we called peaks using MACS2 (Zhang
et al., 2008) and merged the peaks from all cell types to create a unique peaks list. We then created a
peak cell-type matrix by offsetting +4 bp for forward strand and −5bp for reverse strand to represent
the cleavage event center (Buenrostro et al., 2013; Li et al., 2019) and counting the number of reads
start sites per cell type in each peak. This provides a peak by cell type matrix A, where ai j indicates
the number of reads for peak i in cell type j.

We next used this bulk ATAC-seq counts matrix A to simulate a scATAC-seq counts matrix X. For
this, we improved the simulation strategy proposed by Chen et al. (2019). Specifically, given m peaks
and T cell types, to simulate a cell j for cell type t, we first sampled the total number of reads by:

N j ∼ NB(r, p) (4.1)

where r and p parameterized a negative binomial distribution, and we estimated them using a real
scATAC-seq dataset. Next, we introduced a parameter f to control the fraction of reads in peaks (FRiP)
and computed the number of reads in peaks n j by:

n j = N j · f . (4.2)

Next, we defined the rate at which the peak i is prevalent in bulk ATAC-seq data for cell type t as the
ratio of reads observed in peak i over the total number of reads:

rt
i =

ait

∑
m
k=1 akt

. (4.3)

Then, we estimated the probability of peak i being accessible in cell type t given the total number of
reads n j as follows:

pt
i = rt

i ·n j · (1−q)+(
1
m
) ·n j ·q (4.4)

where q ∈ [0,1] is a nose parameter. The probability pt
i can be divided into the sum of two terms. The

first term is the scaled ratio of reads for peak i from the bulk ATAC-seq data, and the second term
represents a random distribution of n j reads into m peaks. Intuitively, when q = 0, the simulated data
is noiseless, and when q = 1, pt

i contains no cell-type-specific information. Finally, we obtained the
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accessibility xi j ∈ {0,1} of cell j in peak i by sampling from a Bernoulli distribution:

xi j ∼ Bernoulli(pt
i). (4.5)

In total, we simulated 200 cells per cell type using the above process. We used noise q = 0.6 and
FRiP f = 0.3. Our approach differs from Chen et al. (2019) by sampling the number of reads per
cell from a negative binomial distribution rather than using a fixed number (Equation 4.1). Moreover,
we introduced the FRiP parameter (Equation 4.2). Algorithm 4.1 gives an overview of our simulation
process.

Algorithm 4.1: Single-cell ATAC-seq data simulation
Input : A, a m× t matrix containing the number of reads for all peaks and cell types;

m, the number of peaks;
t, the number of cell types;

Parameter: n, the number of simulated cells for each cell type;
q, the noise parameter;
FRiP, the fraction of reads in peaks;

Output : X, a m×n accessibility matrix;
1 for t← 1 to T by 1 ; // Go over all cell types
2 do
3 for j← 1 to n by 1 ; // Go over all cells
4 do
5 for i← 1 to m by 1 ; // Go over all peaks
6 do
7 Sample the total number of reads N j using Equation 4.1;
8 Calculate the number of reads in peaks n j using Equation 4.2;
9 Compute the rate rt

i for peak i and cell type t using Equation 4.3;
10 Estimate the probability pt

i for peak i and cell type t using Equation 4.4;
11 Sample the observation xi j using Equation 4.5;
12 end
13 end
14 end
15 return X

Benchmarking Data

The benchmarking data is composed of four real-world scATAC-seq datasets generated by using
either plate-based protocol or droplet-based protocol. We selected these datasets due to the presence
of external labels, which were defined independently of the scATAC-seq at hand. We used the labels
as ground truth for evaluation. See Table 4.1 for complete statistics associated with these datasets.

Cell line This dataset was obtained by combining scATAC-seq data from six cell types, namely BJ,
H1-ESC, K562, GM12878, TF1, and HL-60 from Buenrostro et al. (2015b). The data was gen-
erated using the plate-based scATAC-seq protocol. For every single cell, we downloaded the
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sequencing data from GEO with accession number GSE65360 and processed the data using the
pipeline. For quality control, we only kept cells with more than 500 unique fragments. Then,
we created a pseudo-bulk ATAC-seq library by merging all cells. We next called peaks using
MACS2 (Zhang et al., 2008) and extended the peaks by ±250bp from the summits as in Buen-
rostro et al. (2013). After processing and filtering, we obtained 1,224 cells and 125,647 peaks.
We then constructed a peak by cell count matrix and used it as input for evaluation. The cell
types included in this data are quite different from each other, and they should be easily sep-
arated by clustering, meaning that this dataset mainly servers as a baseline for benchmarking.
We will refer to this dataset as Cell line.

Hematopoiesis This dataset includes single-cell chromatin accessibility profiles across right im-
munophenotypically defined human hematopoietic cell types: hematopoietic stem cells (HSC),
multipotent progenitors (MPP), lymphoid-primed multi-potential progenitors (LMPP), com-
mon myeloid progenitors (CMP), common lymphoid progenitors (CLP), granulocyte-macrophage
progenitors (GMP), megakaryocyte–erythroid progenitors (MEP) and plasmacytoid dendritic
cells (pDC) (Buenrostro et al., 2018). The data was generated using the plate-based scATAC-
seq protocol. The cell labels were defined by using cell surface markers. We processed the data
as the same as we did for the dataset Hematopoiesis. Finally, we obtained a count matrix with
2,210 cells and 109,418 peaks. It is worth pointing out that these cells assemble a continuous
process about human hematopoietic differentiation. Therefore, it is relatively hard to cluster
the cells. We will refer to this dataset as Hematopoiesis.

T cells This dataset is composed of single-cell chromatin accessibility data from human T cell sub-
populations, i.e., Jurkat T cells, memory T cells, naive T cells, and Th17 T cells. The sequenc-
ing data was obtained from GSE107816 (Satpathy et al., 2018) and was processed as described
above. Labels were provided in Satpathy et al. (2018) by comparing the profiles to bulk ATAC-
seq of corresponding T-cell subpopulations. We finally obtained 765 cells and 49,344 peaks.
Although this dataset contains much fewer cells, it represents a harder problem for clustering
compared with Cell line and Hematopoiesis, given the highly similar chromatin accessibility
profile of different T cell subpopulations. We will refer to this dataset as T cells.

PBMC To test the scalability of imputation and dimensionality reduction methods, we also included
a multiome peripheral blood mononuclear cells (PBMC) dataset that contains about 10,000
cells with 14 cell types. The data was generated using the Chromium Single Cell Multi-
ome ATAC + Gene Expression assay which simultaneously profiles the epigenomic landscape
and gene expression in the same single nuclei. We downloaded the data as a Seurat ob-
ject from https://raw.githack.com/bioFAM/MOFA2_tutorials/master/R_

tutorials/10x_scRNA_scATAC.html. This object contained the count matrix which
was used as input in the following analysis. For evaluation, we used the cell types annotated by
the 10X Genomics R&D team based on the scRNA-seq modality alone. We will refer to this
dataset as PBMC.
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Dataset Number of
cells

Number of
features

Fraction of
non-zeros

Number of
reads per cell FRiP Number of

total reads

Cell lines 1,224 125,647 0.036 41,467.80 0.248 50,756,587
Hematopoiesis 2,210 109,418 0.039 34.656.15 0.272 76,590,091
T cells 765 49,344 0,033 14,963.39 0.418 11,446,993
PBMC 10,032 106,935 0.067 13,486 0.714 457,001,034

Table 4.1: Statistics of the benchmarking datasets used in this thesis. For each dataset, the num-
ber of detected cells, the number of regions (peaks), the fraction of non-zero entries, the
average number of reads per cell, the fraction of reads in peaks (FRiP), and the total num-
ber of valid reads are showed.

4.1.2 scOpen Parameter Selection

As described in Section 3.3.4, there are two hyper-parameter in scOpen, i.e., regularization parameter
λ and the number of components k. We have introduced a computational approach to select the
number of components in the model. However, there is no such a way to automatically determine the
λ . Therefore, we here used the simulation data to perform model selection. More specifically, we
evaluated the model performance by using a number of λ values with two metrics. Furthermore, we
also verified our strategy to determine the parameter k.

4.1.3 Execution of Computational Methods

In this section, we present the full details of the parameterization and execution of computational
methods that are used evaluated in this thesis.

Competing Imputation Methods

We first describe the execution of computational imputation methods that were described in Sec-
tion 2.4.2. In addition, we also included a PCA-based method (termed here as imputePCA) as a
control for comparison.

MAGIC We installed the MAGIC R and Python package (v3.0.0) according to the tutorial https:
//github.com/KrishnaswamyLab/MAGIC. We applied it to the count matrix with the
default setting. Prior to MAGIC, the count matrix was first normalized by library size and then
root squared, as suggested by the authors (Van Dijk et al., 2018).

SAVER We obtained SAVER (v1.1.2) from https://github.com/mohuangx/SAVER and
ran it on the count matrix. SAVER has two main steps: the first is the prediction step, and
the second is a shrinkage step. We followed the tutorial https://mohuangx.github.
io/SAVER/articles/saver-tutorial.html to perform denoising.

scImpute We downloaded scImpute (v0.0.8) from https://github.com/Vivianstats/

scImpute and executed it using the default setting. It is worth pointing out that scImpute
requires the number of cell sub-populations as an input parameter to determine the candidate

49

https://github.com/KrishnaswamyLab/MAGIC
https://github.com/KrishnaswamyLab/MAGIC
https://github.com/mohuangx/SAVER
https://mohuangx.github.io/SAVER/articles/saver-tutorial.html
https://mohuangx.github.io/SAVER/articles/saver-tutorial.html
https://github.com/Vivianstats/scImpute
https://github.com/Vivianstats/scImpute


4.1. Technical Validation

neighbors of each cell. For this, we used the true cluster number from each benchmarking
dataset.

DCA We installed DCA (v0.3.1) from https://github.com/theislab/dca and ran the au-
toencoder from the command line with the default setting. For evaluation, we used the output,
which represents the mean parameters of the ZINB distribution.

cisTopic-impute We downloaded cisTopic (v2.1.0) from https://github.com/aertslab/

cisTopic and ran it with different numbers of topics (from 5 to 50). The optimal number
of topics was selected based on the highest log-likelihood, as suggested by González-Blas
et al. (2019). We then multiplied the topic-cell and the region-topic distributions to obtain
the predictive distribution González-Blas et al. (2019), which describes the probability of each
region in each cell and is used as the imputed matrix for clustering and visualization. We call
this method cisTopic-impute.

scBFA scBFA is a detection-based model to remove technical variation for both scRNA-seq and
scATAC-seq by analyzing feature detection patterns alone and ignoring feature quantification
measurements Li and Quon (2019). We obtained scBFA (v1.0) from https://github.

com/quon-titative-biology/scBFA and ran it on the raw count matrix using default
parameters.

SCALE SCALE combines the variational auto-encoder (VAE) and the Gaussian Mixture Model (GMM)
to model the distribution of high-dimensional sparse scATAC-seq data Xiong et al. (2019). We
downloaded SCALE (v1.1.0) from https://github.com/jsxlei/SCALE and ran it
with the default setting. We used option –impute to get the imputed data.

imputePCA We also included principal component methods (termed here as imputePCA) on in-
complete data sets as a control for comparison. This method is based on an interactive and
regularized PCA algorithm to predict missing entries, which are considered as latent vari-
ables (Josse and Husson, 2016). We installed R package missMDA (v1.18) from https://

cran.r-project.org/web/packages/missMDA/index.html and performed im-
putation with function imputePCA with default settings. All zero entries were considered as
missing data.

Dimensionality Reduction Methods

Besides imputation, scOpen also provides a dimensions reduced matrix for input scATAC-seq data.
Here, we also compared scOpen with the state-of-the-art scATAC-seq dimension reduction methods:
cisTopic (González-Blas et al., 2019), SnapATAC (Fang et al., 2021), and latent semantic index-
ing (LSI) (termed here as Cusanovich2018 (Chen et al., 2019)), as described in Section 2.4.3. We
applied these methods to obtain a low-dimensional matrix for each benchmarking dataset as detailed
below.

cisTopic We executed cisTopic as described above and used the topic-cell distribution as dimensions
reduced matrix.
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SnapATAC We installed SnapATAC (v2.0) from https://github.com/r3fang/SnapATAC.
Instead of using the count matrix, SnapATAC takes as input the fragments and produces a low-
dimensional matrix as output. Moreover, it specifically works on the snap (Single-Nucleus
Accessibility Profiles) file, which is a hierarchically structured hdf5 file. In order to generate
such input files as required by SnapATAC, for each of the plate-based datasets (including Cell

line, Hematopoiesis, and T cells), we first converted the BAM file to a BED file which contains
the fragments for all cells using the function readBamFileAsGRanges from R package chrom-
staR (Taudt et al., 2016) . For PBMC, we downloaded the file from https://support.

10xgenomics.com/single-cell-multiome-atac-gex/datasets. Next, we in-
stalled SnapTools (v1.2.3) from https://github.com/r3fang/SnapTools to pro-
cess the fragments to generate the snap files. We then followed the tutorial https://github.
com/r3fang/SnapATAC/blob/master/examples/10X_brain_5k/README.md

to compute diffusion maps for dimensionality reduction.

Cusanovich2018 For each dataset, we first segmented the whole genome into 5kb windows and
then scored each cell for any insertions in these windows. This generated a large, sparse, and
binary matrix of 5kb windows by cells. Based on this matrix, we retained the top 20,000 most
commonly used sites. Then, we normalized and re-scaled the matrix using TF-IDF transfor-
mation using the function RunTFIDF from R package Signac (Stuart et al., 2020). Finally,
we performed singular value decomposition (SVD) to generate a PCs-by-cells low dimensional
matrix using the function RunSVD.

Downstream Analysis Methods

We also tested whether the scOpen imputed matrix benefits the downstream analysis of scATAC-seq.
The intuition is that if we improve the count matrix by imputation, we should be able to improve
downstream analysis. For this, we selected three state-of-the-art methods for scATAC-seq analysis,
namely, scABC (Zamanighomi et al., 2018), chromVAR (Schep et al., 2017), and Cicero (Pliner
et al., 2018). We applied these methods using either scOpen imputed matrix or raw scATAC-seq
count matrix as input.

Cicero Cicero is a method that predicts co-accessible pairs of DNA elements using single-cell chro-
matin accessibility data (Pliner et al., 2018). Moreover, Cicero provides a gene activity score
for each cell and gene by assessing the overall accessibility of a promoter and its associated dis-
tal sites. We installed Cicero (v1.3.0) from https://cole-trapnell-lab.github.

io/cicero-release/. For each benchmarking dataset, we followed the document pro-
vided by https://cole-trapnell-lab.github.io/cicero-release/docs/

to generate a gene activity matrix which was used for clustering and visualization of scATAC-
seq data.

chromVAR chromVAR is an R package for analyzing sparse chromatin-accessibility data by mea-
suring the gain or loss of chromatin accessibility within sets of genomic features, as regions
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with sequence predicted transcription factor (TF) binding sites (Schep et al., 2017). We ob-
tained chromVAR (v1.14.0) from https://github.com/GreenleafLab/chromVAR.
For each dataset, we first computed the GC content for the peaks using the function addGCBias

and then detected TF binding sites using the function matchMotifs. The motifs were obtained
from the JASPAR database with version 2020 (Fornes et al., 2020). Finally, we estimated the
deviations in chromatin accessibility across the TF binding sites using the function computeDe-

viations. The deviation scores were used to cluster the cells using 1 - Pearson correlation as
distance.

scABC scABC is an unsupervised clustering algorithm for single-cell epigenomic data (Zamanighomi
et al., 2018). The algorithm can be broken down into three steps. First, the weighted K-medoids
clustering method is used to obtain the initial cluster assignment for every single cell. Second,
the reads of cells within a cluster are summed and a number of peaks with the highest read
counts are obtained to build a landmark for each cluster. Third, the cells are re-clustered by
assigning each cell to the landmark with the highest correlation using the union of all landmark
peaks. We downloaded scABC (v0.1) from https://github.com/SUwonglab/scABC

and executed it by following the tutorial https://github.com/SUwonglab/scABC/
blob/master/vignettes/ClusteringWithCountsMatrix.Rmd. Finally, we eval-
uated the clustering results generated by scABC.

4.1.4 Evaluation of Computational Methods

In this section, we present the methodology used to evaluate the results generated by execution of the
imputation, dimensionality reduction, and downstream analysis methods as previously described.

Imputation Methods

We used several metrics to benchmark the imputation methods, i.e., memory and running time re-
quirements, imputation accuracy, distance accuracy, and clustering accuracy. These metrics evaluated
the results from different perspectives. Figure 4.1 depicts the overview framework of the evaluation
of the imputation methods.

Requirements of Memory and Running Time To compare the memory and running time require-
ments of each imputation method, we ran all of them on a dedicated HPC node with the same
computation resources quota, i.e., 180GB memory, 120 hours, and 4 CPUs. For DCA and
SCALE, two deep learning-based methods, we used GPU with 16GB memory. We measured
the max memory usage during the running of a method and recorded the total running time for
each method.

Imputation Accuracy This was used to test if the imputation methods can improve the detection of
true open chromatin (OC) regions for every single cell. In order to perform this evaluation, we
first defined the ground truth labels for each cell. For this, we created a bulk ATAC-seq profile
for each cell type by aggregating the data from all cells within that cell type with SAMtools (Li
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Figure 4.1: Experimental design for evaluation of the imputation methods. We applied the im-
putation methods on each of the benchmarking datasets to generate an imputed matrix.
Next, we evaluated the results based on imputation accuracy (measured using AUPR),
distance accuracy (measured using silhouette score), and clustering accuracy (measured
using ARI).

et al., 2009). Next, we performed peak calling using MACS2 (Zhang et al., 2008) to identify
cell-type-specific OC regions. These OC regions present in a particular cell type were consid-
ered as positive labels, and OC regions not present in that cell type as negative labels. Then,
for every single cell, we used the labels from the corresponding cell type as ground truth.

Next, we evaluated the imputation results for every single cell against the true labels. Be-
cause the labels are highly imbalanced, i.e., there are much more negatives than positives (Ap-
pendix Table A.1), we chose to use Precision-Recall (PR) metric to evaluate the prediction
quality (Davis and Goadrich, 2006). More formally, for a specific cell, we defined the preci-
sion (P) and recall (R) of the prediction given a certain threshold as follows:

P =
T P

T P+FP

R =
T P

T P+FN

(4.6)

where T P represents the number of true positives, FP represents the number of false positives,
and FN means the number of false negatives. Intuitively, a model with high precision and
low recall means that it predicts very few samples as positive, but most of the predictions are
correct. However, a model with high recall and low precision is just the opposite. We obtained
a PR curve and computed the area under the curve (termed as AUPR) as the metric for every
single cell using the PRROC package (Grau et al., 2015). Figure 4.2 gives an example of the
PR curve for a specific cell from benchmarking dataset Cell line.

Distance Accuracy We also measured how similar a cell is to the cells with the same label compared
to other cell types after imputation. The logic is that if the imputation is working, the cells from
the same cell type should tend to show a high cohesion and vice versa. For this evaluation, we
calculated a silhouette score (Rousseeuw, 1987) for each cell and imputation method. More
specifically, given a cell i from cell type Ck, we first computed the average distance between i
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Figure 4.2: An example of the Precision-Recall curves. This figure shows an example of the
Precision-Recall curves that compares the imputation methods for a single cell in terms
of peak recovery. The colors refer to imputation methods, and AUPR represents the area
under PR curve.

and the other cells from the same cell type as following:

a(i) =
1

|Ck−1| ∑
j∈Ck, j 6=i

d(i, j) (4.7)

where di, j represents the distance between cell i and j. In this evaluation, we estimated the
distance as 1 - Pearson correlation. Next, we computed the smallest mean distance between i

and all cells from other cell types as following:

b(i) = min
1
|Ck′ |

∑
j∈C

k′

d(i, j). (4.8)

This represents the distance between i and its next nearest cluster centroid (Rousseeuw, 1987).
Finally, we calculated the silhouette score for cell i according to:

s(i) =


b(i)−a(i)

max(a(i),b(i)) , if |Ck|> 1

0, otherwise.
(4.9)

It is clear that−1≤ s(i)≤ 1, and a higher silhouette score indicates a higher similarity of a cell
to the cells of the same cell type than the cells from other cell types.

Clustering Accuracy Clustering is one of the core components for scATAC-seq analysis, as it forms
the basis for various downstream analyses. To evaluate the performance of clustering after
imputation, we applied PCA (50 PCs) for the imputed matrix to first generate a low-dimensional
representation. Next, we clustered the cells using 1 - Pearson correlation as distance. To avoid
information leakage and enable a statistical comparison, we included two clustering algorithms,

54



4.1. Technical Validation

i.e., k-medoids and hierarchical clustering. Besides PCA, we also used t-SNE (van der Maaten
and Hinton, 2008) embedding as input and euclidean as distance, given that this approach
is also explored by cisTopic (González-Blas et al., 2019). Furthermore, we also tested the
different numbers of clusters, e.g. k and k+ 1, where k is the true number of clusters for the
corresponding dataset.

For comparison, we used the adjusted rand index (ARI) (Hubert and Arabie, 1985) to evaluate
the clustering results with the labels from each of the benchmarking datasets. The adjusted
rand index measures similarity between two data clustering results by correcting the chance
of grouping elements. More specifically, given a dataset D with n cells, two partitions U =

{U1,U2, · · ·Ur} and V = {V1,V2, · · · ,Vs} representing different clustering results, the number of
common cells for each cluster i and j can be written as:

ci j = |Ui∩Vj| (4.10)

where i ∈ {1,2, · · · ,r} and j ∈ {1,2, · · · ,s}. The ARI can be calculated as following:

ARI =
∑i j
(ci j
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) (4.11)

where ai = ∑
s
j=1 ci j and b j = ∑

r
i=1 ci j, respectively. The ARI has a maximum value 1 and an

expected value 0, with 1 indicating that the data clustering is the exact same and 0 indicating
that the two data clustering agree randomly.

Dimensionality Reduction Methods

To evaluate the performance of the selected dimensionality reduction methods (Section 2.4.3), we
applied them to each of the benchmarking datasets to obtain a dimensions reduced matrix. We mea-
sured the distance accuracy using silhouette score as previously described (Equation 4.9). To achieve
a fair comparison about clustering accuracy, we used a density-based clustering approach for scOpen,
cisTopic, and Cusanovich2018, and a graph-based clustering method for SnapATAC as proposed in
the original papers. We also evaluated the use of both reduced and imputed matrices for scOpen and
cisTopic, as these methods provide both types of representations. Figure 4.3 depicts the overview
framework of evaluation of the dimension reduction methods.

Downstream Analysis Methods

To test if scOpen can improve the performance of scATAC-seq downstream analyses (e.g., gene ex-
pression prediction by Cicero (Pliner et al., 2018), motif analysis by chromVAR (Schep et al., 2017),
and clustering by scABC (Zamanighomi et al., 2018)), we applied these methods to either scATAC
raw count matrix or scOpen imputed matrix for each of the benchmarking datasets as previously de-
scribed. Cicero and chromVAR transformed the peak by cell matrix to a gene by cell matrix and a TF
by cell matrix, respectively. The outputs were evaluated based on distance accuracy as measured by
silhouette score and clustering accuracy as measured by ARI. For scABC, we directly used the clus-
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Figure 4.3: Experimental design for evaluation of the dimensionality reduction methods. We
applied the dimensionality reduction methods on each of the benchmarking datasets to
generate a low-dimensional matrix. Next, we evaluated the results based on distance ac-
curacy (measured using silhouette score) and clustering accuracy (measured using ARI).

tering results and calculated the ARI. Figure 4.4 shows an overview the framework for evaluation of
the downstream analysis methods.
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Figure 4.4: Experimental design for evaluation of the downstream analysis methods. We applied
the downstream analysis method on each of the benchmarking datasets using either raw
count matrix or scOpen imputed matrix as input. The outputs were evaluated based on
different metrics.

Co-accessibility Analysis

We also tested whether or not the imputed matrix improves the prediction of co-accessible pairs, given
that the sparsity has been reduced. For this, we downloaded the scATAC-seq matrix of GM12878 cells
from GEO with the accession number GSM2970932 and applied the imputation methods to generate
an imputed matrix as described above (Section 4.1.3). Next, we predicted co-accessible peaks using
Cicero based on either raw count or imputed matrix of GM12878. Figure 4.5a depicts the theoret-
ical principle of co-accessibility analysis. For evaluation, we used conformation data as true labels,
given that co-accessible peaks have been reported to have a high agreement with previously observed
chromosome compartments (Buenrostro et al., 2015b; Kalhor et al., 2012). We downloaded promoter-
capture (PC) Hi-C data of GM12878 from GEO (GSE81503), which used CHiCAGO (Cairns et al.,
2016) score as a physical proximity indicator. We also downloaded ChIA-PET data of GM12878
from GEO (GSM1872887), which used the frequency of each interaction PET cluster to represent
how strong the interaction is. We considered all obtained links, as provided by these data sets, as
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true interactions as in (Pliner et al., 2018). Next, we replicated the evaluation analysis performed
in (Pliner et al., 2018) and contrasted the results of Cicero with raw or matrices obtained after impu-
tation. Figure 4.5b compares the predicted links by Cicero based on raw matrix with scores based on
ChIA-PET or Hi-C protocol. Next, we used the built-in function compare_connections of Cicero to
define the true labels for predicted co-accessibility links. Using the correlation as prediction, we fi-
nally computed the AUPR values with the function pr.curve from the R package PRROC (Grau et al.,
2015). To investigate the performance of each method against the number of cells, we also randomly
down-sampled the data to 50% and 25%, and repeated the above analysis.
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Figure 4.5: Co-accessibility prediction and evaluation. a, Schematic workflow for predicting co-
accessible peaks from a scATAC-seq matrix. The cells are first clustered and aggregated.
Next, correlations between peaks are calculated. Source: Granja et al. (2021) (modified
to fit thesis format and/or clarify key points). b, Visualization of co-accessibility scores
(y-axis) of Cicero predicted with raw matrix contrasted with scores based on RNA pol-II
ChIA-PET (purple) and promoter capture Hi-C (green) around the CD79A locus (x-axis).
For ChIA-PET, the log-transformed frequencies of each interaction PET cluster represent
co-accessibility scores, while the negative log-transformed p-values from the CHiCAGO
software indicate Hi-C scores.

4.1.5 Statistical Methods

For comparisons involving multiple methods and datasets, we used the non-parametric Friedman test
with the Nemenyi post-hoc test (Demšar, 2006). The Friedman test (Friedman, 1937, 1940) was used
to compare the average ranks of the methods across all datasets. The null hypothesis is that all the
methods are equivalent, and their ranks are equal. We used the function friedmanTest from the R
package PMCMRplus to perform the Friedman rank sum test. If the null hypothesis was rejected,
meaning that at least one method is significantly different from other methods. We then performed
the Nemenyi post-hoc test (Nemenyi, 1963) to compare all pairs. Therefore, to compare k methods, a
total of k(k−1)/2 hypotheses were tested. This was done using the function frdAllPairsNemenyiTest
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from R package PMCMRplus.

To compare the differences between the distributions of two groups or more groups in a pair-wise
manner, we used the non-parametric Mann–Whitney–Wilcoxon rank-sum test (Mann and Whitney,
1947). The null hypothesis is that the distributions of both groups are equal. All test p-values were
calculated based on confidence levels of 0.95 and the continuity correction was always applied in the
normal approximation for the p-value. We used the function wilcox.test from the R programming
language version 4.0.3 implementation to perform such a test. Moreover, in case of multiple testing,
we used the Benjamini-Hochberg method (Benjamini and Hochberg, 1995) to correct the p-values.
This method is able to control the false discovery rate (FDR) in a practical and powerful manner. We
used the function p.adjust from the R programming language version 4.0.3 implementation to carry
out such correction.

4.2 Biological Validation

In this section, we present the experimental details to biologically validate our method. In particular,
we applied our computational method, scOpen, to a novel scATAC-seq dataset and demonstrated its
power to capture regulatory dynamics in a complex fibrosis system. The work presented in this section
results from a collaboration with the group of Prof. Rafael Kramann in the Institute of Experimental
Medicine and Systems Biology at the RWTH Aachen University Medical School. The biological
experiments were carried out by Christoph Kuppe, Susanne Ziegler, Nazanin Kabgani, and Sylvia
Menzel as specifically described below. All the computational analyses were performed by me.

4.2.1 Applying scOpen to scATAC-seq Data from Complex Disease

Generation of scATAC-seq Data from Mouse Kidneys

We performed unilateral ureter obstruction (UUO) as previously described (Kramann et al., 2015).
Shortly, the left ureter was tied off at the level of the lower pole with two 7.0 ties (Ethicon) after flank
incision. One C57BL/6 male mouse (age 8 weeks) was sacrificed on day 0 (sham), day 2, and 10 after
the surgery. Kidneys were snap-frozen immediately after sacrifice. Pdgfrb-BAC-eGFP reporter mice
(for staining experiments, age 6-10 weeks, C57BL/6) were developed by N. Heintz (The Rockefeller
University) for the GENSAT project. Genotyping of all mice was performed by PCR. Mice were
housed under specific pathogen–free conditions at the University Clinic Aachen. Pdgfrb-BAC-eGFP
were sacrificed on day 10 after the surgery. All animal experiment protocols were approved by the
LANUV-NRW, Düsseldorf, Germany. All animal experiments were carried out in accordance with
their guidelines.

Next, we performed nuclei isolation as recommended by 10X Genomics (demonstrated protocol
CG000169). The nuclei concentration was verified using stained nuclei in a Neubauer chamber with
trypan-blue targeting a concentration of 10,000 nuclei. Tn5 incubation and library preparation was
done by following the 10X scATAC protocol. After checking the quality using Agilent BioAnalyzer,
we pooled the libraries. Finally, we performed sequencing on a NextSeq in 2x75bps paired-end run
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with three runs of the NextSeq 500/550 High Output Kit v2.5 Kit (Illumina), resulting in more than
600 million reads. Sylvia Menzel took care of the animal experiments (breeding, operation etc) and
Christoph Kuppe performed the UUO surgery, nuclei isolation, and the sequencing.

Computational Analysis of scATAC-seq Data with scOpen

We used Cell-Ranger ATAC (v1.1.0) pipeline to perform low-level data processing. We first de-
multiplexed raw base call files using cellranger-atac mkfastq with the default setting to generate
FASTQ files for each flow-cell. Next, we applied cellranger-atac count to perform read trimming,
filtering, and alignment. We then estimated the transcription start site (TSS) enrichment score using
the obtained fragment files and filtered out low-quality cells using a TSS score of 8 and a number
of unique fragments of 1,000 as thresholds. The remaining barcodes were considered as valid cells
for further analysis. We next performed peak calling using MACS2 for each sample and merged the
peaks to generate a union peak set, which was used to create a peak by cell matrix.

We next applied scOpen to generate a low-dimensional representation of the cells. For compar-
ison, we also executed the competing methods (i.e., cisTopic, SnapATAC, and LSI (termed here
Cusanovich2018)) as previously described. We then used Harmony Korsunsky et al. (2019) to inte-
grate the scATAC-seq profiles from different time points (day 0, day 2, and day 10) using either Cu-
sanovich2018, cisTopic, scOpen, or SnapATAC dimension reduced matrix as input. Specifically, we
created a Seurat object for each of the low-dimension matrices and ran the Harmony algorithm with
the function RunHarmony. Next, we used k-medoids to cluster the cells by taking batch-corrected
low-dimension matrix as input. The number of clusters was set to 17, given that the single-nucleus
RNA-seq that we used as a reference for annotation identified 17 unique cell types (See below).

To evaluate and annotate the clusters obtained from data integration, we downloaded a publicly
available snRNA-seq dataset of the same fibrosis model (GSE119531) and performed label transfer
using Seurat3 (Stuart et al., 2019). This dataset contains 6,147 single-nucleus transcriptomes with
17 unique cell types (Wu et al., 2019). For label transferring, we used the gene activity score ma-
trix estimated by ArchR and transferred the cell types from the snRNA-seq dataset to the integrated
scATAC-seq dataset by using the functions FindTransferAnchors and TransferData in Seurat3 (Stuart
et al., 2019). For benchmarking purposes, the predicted labels were used as the true labels to compute
ARI for evaluation of the clustering results and silhouette score for evaluation of the distance accuracy
after using different dimension reduction methods as input for data integration. We also performed
the same analysis for each sample separately and computed the metrics.

Cell Annotation

For the biological interpretation, we estimated doublet scores using ArchR (Granja et al., 2021) and
removed cells with a doublet score above 2.5. Next, we named the cluster by assigning the label
with the highest proportion of cells to the cluster and checking marker genes. In total, we recovered
16 unique cell types from the 17 labels, as two clusters (2 and 17) were annotated as TAL cells.
Specifically, we denoted clusters 6, 1, 3 as proximal tubule (PT) S1, S2, and S3 cells. We annotated
cluster 2 as thick ascending limb (TAL), cluster 5 as distal convoluted tubule (DCT), cluster 7 as
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collecting duct-principal cell (CD-PC), cluster 8 as endothelial cell (EC), cluster 9 as connecting
tubule (CNT), cluster 10 as intercalated cell (IC), cluster 11 as fibroblast, cluster 12 as descending
limb + thin ascending limb (DL & TAL), cluster 13 as macrophage (MAC), cluster 16 as podocytes
(Pod). Cluster 14 was identified as injured PT, which was not described in Wu et al. (2019), given
the increased accessibility of marker Vcam1 and Havcr1. We also renamed the cells of cluster 15,
which were labeled as Mac2 in (Wu et al., 2019), as lymphoid cells given that these cells express B
and T cell markers Ltb and Cd1d, but not macrophage markers C1qa and C1qb. Finally, cluster 4 was
removed based on the doublet analysis. Prof. Rafael Kramann and Christoph Kuppe supported the
cell annotation.

Estimation of Cell-type-specific TF Activity

We adapted the differential TF activity analysis from HINT-ATAC (Li et al., 2019) for scATAC-seq.
In short, we created pseudo-bulk ATAC-seq libraries by combining reads of cells for each cell type
and performed footprinting with HINT-ATAC. Next, we predicted TF binding sites by motif analy-
sis (FDR = 0.0001) inside footprint sequences using the RGT toolkit (v0.12.3). Motifs were obtained
from JASPAR Version 2020 (Fornes et al., 2020). We measured the average digestion profiles around
all binding sites of a given TF for each pseudo bulk ATAC-seq library. We then used the protection
score (Li et al., 2019), which measures the cell-specific activity of a factor by considering the num-
ber of digestion events around the binding sites and depth of the footprint. Higher protection scores
indicated a higher activity (binding) of that factor. Finally, we only considered TFs with more than
1,000 binding sites and variance in activity score higher than 0.3. We also performed smoothing for
visualization of average footprint profiles. In short, we performed a trimmed mean smoothing (5 bps
window) and ignored cleavage values in the top 97.5% quantile for each average profile.

4.2.2 Characterizing Gene Regulation During Myofibroblast Differentiation

Computational Identification of Key TFs for Myofibroblast Differentiation

We performed sub-clustering of fibroblast cells on batch-corrected low-dimension scOpen matrix. In
total, we obtained three clusters which were annotated as pericyte (cluster 1), myofibroblast (cluster
2), and Scara5+ fibroblast (cluster 3) using known marker genes, respectively. For visualization, a
diffusion map 2D embedding was generated using R package density (Angerer et al., 2016). Next, a
trajectory from Scara5+ fibroblast to myofibroblast was created using the function addTrajectory and
visualized using the function plotTrajectory.

To identify TFs that drive this process, we first performed peak calling based on all fibroblasts
using MACS2 (Zhang et al., 2008) to obtain specific peaks and then estimated motif deviation per cell
using chromVAR (Schep et al., 2017). The deviation scores were normalized to allow for comparison
between TFs. Next, we selected the TFs with high variance of deviation and gene activity score along
the trajectory and calculated the correlation of TF activity and gene accessibility. This was done by
using the function correlateTrajectories from ArchR.
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Experimental Validation of Runx1 by Immunofluorescence Staining

To validation the role of Runx1 in myofibroblast differentiation, we used immunofluorescence stain-
ing. Mouse kidney tissues were fixed in 4% formalin for 2 hours at RT and frozen in OCT after
dehydration in 30% sucrose overnight. Using 5-10 µm cryosections, slides were blocked in 5% don-
key serum followed by 1-hour incubation of the primary antibody, washing 3 times for 5 minutes
in PBS, and subsequent incubation of the secondary antibodies for 45 minutes. Following DAPI
(4,6−diamidino-2-phenylindole) staining (Roche, 1:10.000) the slides were mounted with ProLong
Gold (Invitrogen, #P10144). Cells were fixed with 3% paraformaldehyde followed by permeabi-
lization with 0,3% TritonX. Cells were incubated with primary antibodies and secondary antibodies
diluted in 2% bovine serum albumin in PBS for 60 or 30 minutes, respectively. The following antibod-
ies were used: anti-Runx1 (HPA004176, 1:100, Sigma-Aldrich), AF647 donkey anti-rabbit (1:200,
Jackson Immuno Research). Images were acquired using a Nikon A1R con-focal microscope using
40X and 60X objectives (Nikon). Raw imaging data were processed using Nikon Software or Im-
ageJ. Systematic random sampling was applied to the sub-sample of at least 3 representative areas per
image of PDGFRbeGFP mice (n=3 mice per condition). Using QuPath nuclei were segmented and
fluorescent intensity per nuclear size was measured of PDGFRbeGFP positive nuclei. The staining
was performed by Christoph Kuppe.

Computational Prediction of Runx1 Target Genes

After identifying and validating Runx1 as an important regulator, we next sought to computationally
predict the target genes of Runx1. For this, we first performed co-accessibility analysis to link peak to
genes as described in (Section 2.3.2). Next, we obtained the transcription start site (TSS) for each gene
from reference genome mm10 and extended it by 250k bps for both directions. Then, we overlapped
the peaks from fibroblasts and the TSS regions using function findOverlaps to identify putative peak-
to-gene links. We next created 100 pseudo-bulk ATAC-seq profiles by assigning each cell to an
interval along the trajectory of myofibroblast differentiation. The gene score matrix and peak matrix
were aggregated according to the assignment to generate two pseudo-bulk data matrices. For each
putative peak-to-gene link, we calculated the correlation between peak accessibility and gene activity.
The p-values are computed using t distribution and corrected by the Benjamini-Hochberg method. For
comparison, we also performed matrix imputation using the four top methods, i.e., scOpen, SCALE,
MAGIC, and cisTopic, as evaluated by peaks recovering and computed the correlation based on the
imputed matrix.

With each peak being associated with genes, we next sought to link Runx1 to its target genes.
For this, we first performed footprinting with HINT-ATAC using the peaks obtained from above and
pseudo-bulk ATAC-seq profiles. Next, we identified Runx1 binding sites using a motif matching
approach. We defined the genes that have at least one footprint-support binding site of Runx1 in their
associated peaks as Runx1 target genes. We then used the peak-to-gene correlation as a prediction
between Runx1 and the target genes. This procedure was performed using the links estimated by
different input data as described above, thus generating various predictions. To evaluate the results,
we used the DE genes obtained from RNA-seq of Runx1 over-expression as true labels (see below),
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and computed the AUPR.

Experimental Validation of Runx1 Target Genes

To validate the target genes of Runx1, we first a generated human PDGFRb+ cell line that was iso-
lated from the healthy part of the kidney cortex after nephrectomy as previously described in Kuppe
et al. (2021) and over-expressed Runx1. Next, we extracted the RNA according to the manufacturer’s
instructions using the RNeasy Kit (QIAGEN) and performed sequencing on a NextSeq500/550 plat-
form (Illumina) according to the manufacturer’s protocols (Illumina, CA, USA).

For RNA-seq data analysis, we used the pipeline nf-core/rnaseq Patel et al. (2020). Briefly, reads
were aligned to the hg38 reference genome using STAR Dobin et al. (2013) and gene expression
was quantified with Salmon Patro et al. (2017). Deferentially expressed genes were identified using
DESeq2 Love et al. (2014). We used an adjusted p-value of 1e-05 and log2 fold change of 1 as
thresholds to select the significant DE genes, which were used as true labels to evaluate the Runx1
target gene prediction (see above). GO enrichment analysis was performed R package gprofiler2 and
we showed results for biological process and pathways from Human Phenotype Ontology.

Nazanin Kabgani performed the cell culture experiments and generated the PDGFRb+ cell line
together with Susanne Ziegler. Susanne Ziegler also performed the cloning for the over-expression.
The RNA isolation and bulk RNA Seq library preparation were performed by Christoph Kuppe.

4.3 Discussion

In this chapter, we described the experimental framework to evaluate our computational method from
technical and biological points of view. For technical validation, we first introduced a novel simulation
algorithm for scATAC-seq and the described four real-world scATAC-seq datasets. The simulation
data was used to test the hyper-parameters in scOpen and the real-world datasets were used bench-
marking the performance. Next, we provided the full details of the execution and parameterization of
the competing methods, i.e., eight imputation methods (MAGIC, SAVER, scImpute, DCA, cisTopic-
impute, scBFA, SCALE, and imputePCA), three dimensionality reduction methods (cisTopic, Sna-
pATAC, and Cusanovich2018). To achieve a comprehensive evaluation about data imputation and
dimensionality reduction, we also introduced different metrics (Figure 4.1; Figure 4.3). For exam-
ple, we compared the memory and running time requirements for imputation methods. Moreover,
we proposed a novel approach to directly evaluate the imputation accuracy by estimating AUPR
values for each cell against the true labels for the peaks. We also evaluated the distance accuracy
between cells by using the cell labels. Furthermore, to fairly benchmark the clustering performance
of the imputation methods, we employed two different clustering methods (i.e., k-medoids and hier-
archical clustering), and performed the clustering analysis based on different inputs (i.e., PCA and
t-SNE) and the number of clusters (k and k+1). Finally, we also tested whether scOpen can improve
the downstream analysis of scATAC-seq. For this, we selected three different methods (i.e., Cicero,
chromVAR, and scABC) and compared the distance and clustering accuracy between using raw count
and scOpen imputed matrix as input for these methods (Figure 4.4).
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For biological validation, we generated novel single-cell open chromatin data from the whole
mouse kidney at different time points after unilateral ureteral obstruction (day 0, day 2, and day
10) using the droplet-based scATAC-seq protocol. We then applied scOpen on this dataset to produce
a dimension-reduced matrix. Moreover, we also executed the competing method and compared the
performance by using independent snRNA-seq data from the same mouse model as reference. Next,
to investigate the cell-specific regulatory dynamic during fibrosis of kidney, we extended our method
HINT-ATAC to infer differential TF activity between different cell types and time points. Finally, we
performed additional analyses to gain novel biological insights about gene regulation of myofibroblast
differentiation.
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CHAPTER 5
Results

In the previous chapter, we introduced the experimental frameworks for evaluation of our computa-
tional method. In this chapter, we present the results generated by the analysis. The main structure of
this chapter is the same as Chapter 4 for convenience. Specifically, we report the results for technical
validation in Section 5.1 and the results for biological validation in Section 5.2.

5.1 Technical Validation

We here present the results of experiments for technically validating scOpen. First, we describe
the outcomes of scOpen hyper-parameter selection as evaluated by using the simulated scATAC-
seq data (Section 5.1.1). Next, we give the results of benchmarking scOpen and its competitors in
terms of scATAC-seq data imputation (Section 5.1.2). Then, we describe the comparison results
for dimensionality reduction methods in Section 5.1.3. Finally, we give the details of downstream
analysis evaluation results (Section 5.1.4).

5.1.1 scOpen Parameter Selection

We here used the simulation data generated as described in Section 4.1.1 to evaluate the parameters
for our proposed computational approach, i.e., the number of components (or the matrix rank) k and
the regularization parameter λ (Equation 3.10). First, we verified that our computational strategy for
selecting the number of components, and we set λ = 1 in this evaluation. The execution of scOpen on
the simulation data automatically identified the optimal number of components as 8 (Figure 5.1). For
comparison, we also applied scOpen with a range of k from 2 to 30. We then measured the imputation
accuracy by AUPR and clustering accuracy by ARI as previously described in Section 4.1.4. Notably,
we observed that the scOpen automatic procedure for components selection obtained the best results
in terms of imputation accuracy (Figure 5.2a-b; Appendix Table A.2). Moreover, we observed a
similar clustering accuracy between the estimated number of components and the best results (Fig-
ure 5.2c-d; Appendix Table A.3). Together, these results indicated our computational approach is
able to produce a good estimation for the number of components and we will apply this strategy in
the following benchmarking analysis.

Next, we evaluated the regularization parameter λ . For this, we applied scOpen with a number of
values of λ from 0 to 4. We benchmarked the performance by imputation accuracy as measured by
AUPR and clustering accuracy as measured by ARI, respectively. The results revealed that a value of
1 is optimal in the imputation problem (Figure 5.3a; Appendix Table A.4), while values in the range
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Figure 5.1: Estimation of the number of components for the simulation data. The estimated
number of components for the simulation data using elbow detection approach. The x-
axis represents the number of components, and the y-axis represents the reconstruction
error. The dashed line indicates the detected elbow point.

[0,1] are optimal for the clustering problem (Figure 5.3b; Appendix Table A.5). Collectively, these
results highlighted the importance of applying regularization for scATAC-seq data imputation. In the
following benchmarking, we used the λ = 1 as default for scOpen.

5.1.2 Evaluation of Imputation Methods

Having determined the optimal hyper-parameters used by scOpen, we here performed a comprehen-
sive evaluation to compare the performance of scOpen and its competitors in terms of scATAC-seq
data imputation. We executed the selected imputation methods as described in Section 4.1.3 on the
benchmarking data (Section 4.1.1) and evaluated the results from different aspects as detailed below.

Benchmarking Requirements of Memory and Time

We first evaluated the memory and running time requirements of imputation methods (Figure 4.1.4).
Overall, we observed that scOpen had the lowest memory requirements, i.e., it required at least 2
fold less memory as compared to cisTopic, MAGIC and SCALE (Figure 5.4a). Moreover, it had
a maximum requirement of 16GB on the PBMC dataset, meaning that it is possible to run scOpen
on a commonly available laptop even for a large dataset with about 10,000 cells (see Table 4.1).
Regarding computing time, MAGIC was the fastest followed by SCALE and scOpen. These were
the only methods performing imputation for the large PBMC dataset (10k cells vs. 100k peaks) in
less than 3 hours (Figure 5.4b), while imputePCA, SAVER and DCA failed to execute at the PBMC
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Figure 5.3: Evaluation of the regularization parameter using the simulation data. a, Box plots
comparing the imputation accuracy of scOpen by using different regularization param-
eters as measured by AUPR (upper) and the Friedman ranking (lower). Methods are
ranked by the average AUPR or ranking score. b, Same as a for clustering accuracy.

dataset. These results indicated that scOpen had a good scalability.

Benchmarking Imputation Accuracy

We next tested if imputation methods can improve the recovery of true open chromatin (OC) regions.
We termed this metric as imputation accuracy. For this, we created the true positive and negative
OC labels for each single-cell in the benchmarking datasets as described in Section 4.1.4. Next, we
computed the AUPR and performed the non-parametric Friedman test with the Nemenyi post-hoc
test. Notably, we observed that scOpen significantly outperformed most of the competing methods by
presenting the highest average Friedman ranking of the AUPR across all benchmarking datasets (Fig-
ure 5.5; Appendix Table A.6 - Appendix Table A.9). The combined ranking indicated that SCALE
and MAGIC were the runner-up methods (Appendix Figure A.1a). Moreover, we also evaluated the
influence of the number of cells per cluster on the AUPR. Despite an overall decrease in AUPR with
sample size, we observed that top performing methods (i.e., scOpen, SCALE, and MAGIC) were less
sensible to the cell numbers (Figure 5.6).
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Figure 5.4: Evaluation of the memory and running time requirements for imputation methods.
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ber of OC regions by cells). b, Same as a for running time requirements.

Benchmarking Distance Accuracy

We then investigated the impact of imputation on the estimation of distances between cells. We
estimated the cell-to-cell distance as 1 - Pearson correlation for each dataset using the imputed matrix.
We evaluated the results using silhouette score regarding the agreement with known cell labels and
performed the non-parametric Friedman test with the Nemenyi post-hoc test to find out if there are any
significant differences as previously described (Section 4.1.4). We observed that scOpen significantly
outperformed all competing methods in all benchmarking datasets by presenting the highest average
Friedman ranking of the silhouette score (Figure 5.7; Appendix Table A.10 - Appendix Table A.13).
The combined results indicated that cisTopic and MAGIC were the runner-up methods (Appendix
Figure A.1b).

Benchmarking Clustering Accuracy

Finally, we evaluated the imputation results based on clustering. For each dataset, we clustered the
cells using the imputed matrix according to Section 4.1.4 and benchmarked the clustering perfor-
mance by calculating ARI. We observed that scOpen was the best in the Hematopoiesis, T cells, and
multi-omics PBMC datasets and the second best for the Cell lines dataset (Figure 5.8; Appendix Ta-
ble A.14 - Appendix Table A.17). When considering the combined ranking, scOpen was the best
performer followed by MAGIC and cisTopic (Appendix Figure A.1c). The discriminative power of
scOpen was also supported by UMAP Becht et al. (2019) projections of these datasets, which pro-
vides a clear separation of the majority of cell labels for each dataset (Figure 5.9 and Figure 5.10).
Altogether, these results supported that scOpen outperformed the state-of-the-art imputation methods
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Figure 5.5: Evaluation of the imputation methods based on imputation accuracy. a, Box-
plot comparing the imputation accuracy of the imputation methods as measured by
AUPR (left) and the Friedman ranking of AUPR (right) for Cell line dataset. The asterisk
and the two asterisks, respectively, mean that the method is outperformed by scOpen with
significance levels of 0.05 and 0.01. b, Same as a for Hematopoiesis dataset. c, Same as
a for T cells dataset. d, Same as a for PBMC dataset.
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dot represents a cell type and color refers to method. The x-axis represents the number
of cells for each cell type. The trend line was fitted for each method.

while providing the lowest memory footprint and an above average running time performance.

5.1.3 Evaluation of Dimensionality Reduction Methods

Another relevant question was to compare scOpen with top performing state-of-the-art scATAC-seq
dimensionality reduction methods: cisTopic, SnapATAC and Cusanovich2018 (Section 2.4.3). Here,
we executed the SnapATAC and Cusanovich2018 for each of the benchmarking datasets to produce a
low-dimensional representation of the cells as described in Section 4.1.4. We also evaluated the use
of both reduced and imputed matrices for scOpen and cisTopic, as these methods provided both types
of representations. We first compared the distance accuracy using the silhouette score with the non-
parametric Friedman-Nemenyi test. Interestingly, we observed that either scOpen imputed or low-
dimension matrices significantly outperformed the competitors by presenting the highest score in 3
out of the benchmarking datasets (Figure 5.11; Appendix Table A.18 - Appendix Table A.21). More-
over, both scOpen matrix representations tied as first in the combined rank (Appendix Figure A.2).
cisTopic, which was the runner-up method, performed well in datasets Cell line, Hematopoiesis, and
T-cells but poorly for PBMC.

Next, we evaluated the clustering performance of these methods. It is worth pointing out that each
competing method has an accompany method for clustering as proposed in the original paper, e.g.,
graph-based clustering for SnapATAC (Fang et al., 2021) and density-based clustering for cisTopic
and Cusanovich2018 (González-Blas et al., 2019). Therefore, we used these clustering approaches
instead of the k-medoids and hierarchical clustering methods to achieve a fair comparison (Sec-
tion 4.1.4). We observed that scOpen performed best on Cell line and Hematopoiesis datasets and
was ranked first/second in the combined rank (Figure 5.12). Overall, this analysis indicated that both
reduced dimension and imputed scOpen matrices obtained the best overall results for distance and
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Figure 5.7: Evaluation of the imputation methods based on distance accuracy. a, Boxplot
comparing the distance accuracy of the imputation methods as measured by silhouette
score (left) and the Friedman ranking of silhouette score (right) for Cell line dataset.
The asterisk and the two asterisks, respectively, mean that the method is outperformed
by scOpen with significance levels of 0.05 and 0.01. b, Same as a for Hematopoiesis
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Figure 5.8: Evaluation of the imputation methods based on clustering accuracy. a, Boxplot com-
paring the clustering accuracy of the imputation methods as measured by rand adjust
index (left) and the Friedman ranking of rank adjust index (right) for Cell line dataset.
The asterisk and the two asterisks, respectively, mean that the method is outperformed
by scOpen with significance levels of 0.05 and 0.01. b, Same as a for Hematopoiesis
dataset. c, Same as a for T cells dataset. d, Same as a for PBMC dataset.
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data for T cells dataset. b, Same as a for PBMC dataset.

clustering representations on benchmarking datasets. Of note, the low dimensional matrix reduced
the memory footprint on the clustering by > 1000 fold in comparison to using full imputed matrices,
serving as an alternative for clustering of the high-dimensional datasets.

5.1.4 Evaluation of Downstream Analysis Methods

Next, we tested the benefit of using scOpen estimated matrices as input for scATAC-seq computa-
tional pipelines, which have as objective the identification of regulatory features associated with single
cells (chromVAR (Schep et al., 2017)), estimation of gene activity scores and DNA-interactions (Ci-
cero (Pliner et al., 2018)), or a clustering method tailored for scATAC-seq data (scABC (Zamanighomi
et al., 2018)). Both chromVAR and Cicero first transformed the scATAC-seq matrix to either tran-
scription factors and genes feature space, respectively. Clustering was then performed using the
standard pipelines from each approach. We compared the distance and clustering accuracy of these
methods using either raw or scOpen estimated matrices as input (Figure 4.4). In all combinations of
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Figure 5.11: Evaluation of the dimensionality reduction methods using distance accuracy. Box-
plot comparing the distance accuracy of the imputation methods for each benchmark-
ing dataset as measured by silhouette score (upper) and Friedman ranking of silhouette
score (lower).

methods and datasets, we observed a higher or equal silhouette and ARI whenever a scOpen matrix
was provided as input (Figure 5.13). These results were also reflected in the UMAP visualization of
the transformed matrices as generated by chromVAR and Cicero using scOpen imputed or raw count
matrix as input (Figure 5.14). Altogether, these results indicated that the use of scOpen estimated
matrices improved downstream analysis of state-of-the-art scATAC-seq methods.

5.1.5 Evaluation of Co-accessibility Analysis

In order to estimate the gene activity score from single-cell open chromatin data, Cicero first pre-
dicted co-accessible pairs of DNA regions in groups of cells, which potentially form cis-regulatory
interactions as demonstrated in Figure 4.5. Here, we also evaluated the predicted interactions made
by Cicero. For this, we applied the imputation methods to obtain the imputed matrices for human
lymphoblastoid cells (GM12878) and then ran Cicero to generate the prediction by using either im-
puted or raw count matrices as described in Section 4.1.4. Next, we compared the prediction with
Hi-C and ChIA-PET data from this cell type as provided by Pliner et al. (2018). Both protocols
quantified the number interactions between genome loci, thus providing the true labels for evaluation.
We calculated the AUPR values and odds ratios using these true labels. Notably, we observed that
the imputation improved the detection of interactions globally and scOpen achieved the best results
as measured by AUPR and odds ratios (Figure 5.15; Appendix Figure A.3). To evaluate the impact
on the number of cell on these predictions, we have down-sampled the data to only consider 50% or
25% of cells. We observed a residual decrease in the AUPR of scOpen for 25% of cells (Appendix
Figure A.5). This supported that chromatin conformation prediction works well even for cell types
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Figure 5.12: Evaluation of the dimensionality reduction methods using clustering accuracy. a,
Barplot comparing the clustering accuracy of the imputation methods for each bench-
marking dataset as measured by ARI. b, he Friedman ranking of dimensionality reduc-
tion methods in terms of the average adjusted rand index for each benchmarking dataset.
Methods are ordered by median value of ranks. Wilcoxon Rank Sum test was used to
compare scOpen-impute with other methods. The asterisk means that the method is
outperformed by scOpen with significance level of 0.05.

with low abundance.

The power of scOpen imputation was clear when checking the individual locus (Figure 5.16), as
previously presented by Cicero Pliner et al. (2018). This is evident when contrasting accessibility
scores between pairs of peak-to-peak links supported by Hi-C predictions (Figure 5.17; Appendix
Figure A.4). scOpen obtained highly correlated accessibility scores, while other imputation methods
showed quite diverse association patterns.

5.2 Biological Validation

In this section, we provide the results obtained by performing the experiments described in Sec-
tion 4.2.

5.2.1 Applying scOpen to Complex Disease scATAC-seq Data

Computational Analysis of scATAC-seq Data with scOpen

We first evaluated scOpen in its power to improve the detection of cells in a complex disease dataset.
For this, we generated scATAC-seq for whole mouse kidney from C57Bl6/WT mice in homeosta-
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input for Cicero and chromVAR. Colors represent datasets and shapes represent meth-
ods. scABC is not evaluated as it does not provide a space transformation. b Same as a
for clustering results (ARI) of Cicero, chromVAR and scABC.

sis (day 0) and at two time points after injury with fibrosis: 2 days and 10 days after unilateral ureteral
obstruction (UUO) as described in Section 4.2.1. After data preprocessing and quality controlling,
we recovered a total of 30,129 cells with average of 13,933 fragments per cell, a fraction of reads
in promoter of 0.46, and high reproducibility between biological duplicates (Appendix Figure A.6).
We next performed peak calling and detected 150,593 peaks. These peaks were used as features to
construct a raw scATAC-seq count matrix with high dimensionality and sparsity (4.2% of non-zeros).

Next, we performed data integration using Harmony algorithm (Korsunsky et al., 2019) to re-
move batch effects. For comparison, we also used dimension reduced matrices from either Cu-
sanovich2018 (LSI), cisTopic, SnapATAC, or scOpen. We annotated the scATAC-seq profiles using
single nuclei RNA-seq (snRNA-seq) data of the same kidney fibrosis model from an independent
study (Wu et al., 2019) via label transfer (Stuart et al., 2019) to serve as true cell labels. We then
evaluated the batch correction results based on clustering accuracy as measured by ARI and distance
accuracy as measured by silhouette score (Section 4.1.4).

Notably, we observed that clusters based on scOpen were more similar to the transferred la-
bels (higher ARI) than clusters based on competing methods (Figure 5.18a). Furthermore, scOpen
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also provided better distance metrics and visualization than competing methods (Figure 5.18b; Ap-
pendix Figure A.7). These results supported the discriminative power of scOpen in this large and
complex scATAC-seq dataset.
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Cell Annotation

Next, we annotated the clusters of scOpen by combining known marker genes and transferred la-
bels after removing doublets with ArchR (Granja et al., 2021) 1. Notably, we identified all major
kidney cell types, including proximal tubular cells (PT), distal/connecting tubular cells (DCT), col-
lecting duct and loop of Henle, endothelial cells (EC), fibroblasts as well as the rare populations of
podocytes (Pod) and lymphocytes (Lymphoid) (Figure 5.19a; Appendix Figure A.8). Lymphocytes
were not described in the previously scRNA-seq study (Wu et al., 2019), which supported the impor-
tance of annotation of scATAC-seq clusters independently of scRNA-seq label transfer. Of particular
interests were cell types with population changes during progression of fibrosis (Figure 5.19b; Ap-
pendix Figure A.9). We observed an overall decrease of normal proximal tubular, glomerular, and
endothelial cells and an increase of immune cells as expected in this fibrosis model with tubule injury,
the influx of inflammatory cells, and capillary loss (Bábíčková et al., 2017; Kramann et al., 2018).
More importantly, we also detected an increased PT sub-population, which we characterized as in-
jured PT, by increased accessibility around the injury markers Vcam1 and Kim1(Havrc1) (Vaidya
et al., 2006) (Appendix Figure A.8).

1Prof. Rafael Kramann and Christoph Kuppe supported the annotation.
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Figure 5.16: Visualization of Cicero predicted DNA regulatory elements interactions. Visual-
ization of co-accessibility scores (y-axis) of Cicero predicted with raw and scOpen es-
timated matrices contrasted with scores based on RNA pol-II ChIA-PET (purple) and
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log-transformed frequencies of each interaction PET cluster represent co-accessibility
scores, while the negative log-transformed p-values from the CHiCAGO software indi-
cate Hi-C scores. The ChIA-PET and Hi-C are used as true labels.

Estimation of Cell-type-specific TF Activity

Next, we adapted HINT-ATAC (Li et al., 2019), a computational methods for detecting transcription
factor binding sites from ATAC-seq (see Section 2.3.1: Computational Footprinting Analysis), to
dissect regulatory changes in scATAC-seq clusters. For each cluster, we created a pseudo-bulk ATAC-
seq library by combining reads from single cells in the cluster. We then performed footprinting
analysis and estimated TF activity scores for all footprint-supported motifs. We only kept TFs with
changes (high variance) in TF activity scores among clusters. We focused here on clusters associated
with proximal tubular cells (PT), fibroblasts, and immune cells, as these represent key players in
kidney remodeling and fibrosis after injury.

As shown in Figure 5.20, the TF activity scores captured regulatory programs associated with these
three major cell populations 1. Interestingly, injured PTs showed overall lower TF activity scores of
all TFs of the PT cluster. TFs with a high decrease in activity in injured PTs included Rxra, which
was known to be important for the regulation of calcium homeostasis in tubular cells (Sugawara et al.,
1997), and Hnf4a, which is important in proximal tubular development (Marable et al., 2018) (Fig-
ure 5.20). Footprint profile of Rxra in injured PTs displayed a gradual loss of TF activity over time, in-
dicating that injured PT acquires a de-differentiated phenotype during fibrosis progression and tubular
dilatation (Figure 5.20c). A group of TFs with high activity scores in injured PTs also had increased

1Prof. Rafael Kramann and Christoph Kuppe provided help to interpret the data.
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Figure 5.17: Visualization of co-accessibility score a, Scatter plot showing single-cell accessibility
scores estimated by top-performing imputation methods for the link between peak 1 and
peak 2 (supported by Hi-C data). Each dot represents a cell and color refers to density.
Pearson correlation is shown on the left-upper corner. b, Same as a for peak 1 and
peak3.

TF activity scores in fibroblasts (Smad2:Smad3 and Batf:Jun), indicating shared regulatory programs
in these cells. Smad proteins are downstream mediators of TGFβ signaling, which is a known key
player of fibroblast to myofibroblast differentiation and fibrosis (Kramann et al., 2013). The high
activity of Smad2::Smad3 also indicated a role of TGFβ in the de-differentiation of injured PTs. In-
terestingly, both Smad2:Smad3 reached a peak in TF activity level at day 2 after UUO in injured
PTs (Figure 5.20c), which indicated these TFs are activated post-transcriptionally. Furthermore, we
also detect the high activity of Nfkb1 in injured PTs (and lymphocytes), which fits with the known
role of Nfkb1 in injured / failed repair PTs (Kirita et al., 2020; Markó et al., 2016). Moreover, our
analysis also showed a gradual TF activity increase over time in injured PT (Figure 5.20c), suggesting
that Nfkb1 plays an important role in sustaining the injured PT phenotype.
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portion of cells of selected clusters on either day 0, day 2, or day 10 experiments.

5.2.2 Characterizing Gene Regulation During Myofibroblast Differentiation
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Figure 5.20: Visualization of TF activity across different cell types and time points. a, Heatmap
with TF activity score (z-transformed) for TFs (y-axis) and selected clusters (x-axis).
We highlight TFs with the decrease in activity scores in injured PTs (Rxra and Hnf4a),
with high TF activity scores in injured PTs (Batf:Jun; Smad2:Smad3) and immune
cells (Creb1; Nfkb1). b, Transcription factor footprints (average ATAC-seq around pre-
dicted binding sites) of Rxra, Smad2::Smad3 and Nfkb1 for selected cell types. The
logo of underlying sequences is shown below and the number of binding sites is shown
top-left corner. c, Transcription factor footprints of Rxra, Smad2::Smad3 and Nfkb1 for
injured PT cells in day 0, day 2 and day 10.

Identification and Validation of TFs for Myofibroblast Differentiation

A key process following kidney injury is fibrosis, which is caused by the differentiation of fibroblasts
and pericytes to matrix secreting myofibroblasts (Kuppe et al., 2021). To dissect potential differenti-
ation trajectories, we performed a diffusion map embedding of the fibroblasts (Figure 5.21a), which
revealed the presence of three major branches formed by fibroblasts, pericytes, and myofibroblasts, as
supported by the expression of Scara5, Ng2(Cspg4), Postn and Col1a1 (Figure 5.21b) (Kuppe et al.,
2021; Muhl et al., 2020). We next created a cellular trajectory across the differentiation from fibrob-
lasts to myofibroblasts using ArchR (Figure 5.21c). We observed that there is an increase in cells
after injury (Day 2 and Day 10) along the trajectory (Figure 5.21d).

To identify the driving regulators for this differentiation process, we characterized TFs by corre-
lating their gene activity inferred by ArchR (Section 2.3.2) with TF activity estimated by chromVAR
along the trajectory (Figure 5.22a) and ranked these by their correlation (Figure 5.22b). The correla-
tion of Runx1, which has a well-known function in blood cells (de Bruijn and Dzierzak, 2017), stood
out, besides showing a steady increase in activity in myofibroblasts. Another TF with high correla-
tion and similar myofibroblast specific activity was Twist2, which has a known role in epithelial to
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Figure 5.21: Visualization of myofibroblast differentiation. a, Diffusion map showing sub-
clustering of fibroblasts. Colors refer to sub-cell-types and arrow represents differen-
tiation trajectory from fibroblast to myofibroblast. Pe (pericyte), Fib (fibroblast), MF
(myofibroblast). b, Scatter plot showing gene activity score for Scara5 (fibroblast),
Cspg4 (pericytes), Postn (myofibroblasts), Col1a1 (myofibroblasts), Twist2, Runx1 and
Tgfbr1. c, Diffusion map showing the inferred pseudotime for each cell along the dif-
ferentiation trajectory. d, Fraction of cell for each sample along the trajectory.

mesenchymal transition in kidney fibrosis (Chan et al., 2018) (Figure 5.22c).

To validate the yet uncharacterized role of Runx1 in myofibroblasts, we performed immunostain-
ing and quantification of Runx1 signal intensity in transgenic PDGFRb-eGFP mice that genetically
tag fibroblasts and myofibroblasts (Kuppe et al., 2021) 1. Runx1 staining in control mice (sham) re-
vealed positive nuclei in tubular epithelial cells and rarely in PDGFRbeGFP+ mesenchymal cells (Fig-
ure 5.22d). In kidney fibrosis after UUO surgery (day 10), Runx1 staining intensity increased signifi-
cantly in PDGFRb+ myofibroblasts (Figure 5.22e-f).

Next, we performed lentiviral overexpression experiments and RNA-sequencing in a human kid-
ney PDGFRb+ fibroblast cell-line that we have generated (Kuppe et al., 2021) to ask whether Runx1

1The experiment was performed by Christoph Kuppe.
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Figure 5.22: Identification and validation of Runx1 for myofibroblast differentiation. a, Pseudo-
time heatmap showing gene activity (left) and TF motif activity (right) along the trajec-
tory. b, Correlation of gene activity score and motif deviation along the trajectory for
selected TFs. Each dot represent a TF and TFs are sorted by their correlation. Runx1 has
the highest correlation, followed by ETS1 and Twist2. Of these, Runx1 and Twist2 have
an increase in gene scores and TF activity. c, Footprinting profiles of Runx1 and Twist2
binding sites along the trajectory. d, Immuno-fluorescence (IF) staining of Runx1 (red)
in PDGFRb-eGFP mouse kidney. In sham-operated mice Runx1 staining shows a re-
duced intensity in PDGFRb-eGFP+ cells compared to remaining kidney cells (arrows).
e, Immuno-fluorescence (IF) staining of Runx1 (red) in PDGFRb-eGFP mouse kidney
at 10 days after UUO as compared to sham. Arrows indicate Runx1 staining in ex-
panding PDGFRb-eGFP+ myofibroblasts. f, Quantification of Runx1 nuclear intensity
in PDGFRb-eGFP+ cells in sham vs. UUO mice. Error bars represent the SD of the
intensity. Data are presented as mean ± SD. Statistical significance was assessed by a
two-tailed Student’s t-test with p < 0.05 being considered statistically significant (n=3
mice). Scale bars in d and e represent 50 µm.

might be functionally involved in myofibroblast differentiation in humans (Figure 5.23a-b) 1. Runx1
overexpression led to reduced proliferation (Figure 5.23c) and strong gene expression changes (Fig-
ure 5.23d). Various extracellular matrix genes (Fn1, Col13A1) as well as a TFGB receptor (Tgfbr1)

1Nazanin Kabgani performed the cell culture experiments together with Susanne Ziegler. Nazanin Kabgani also generated
the PDGFRb cell line and Susanne Ziegler performed the cloning for Runx1 overexpression. The RNA isolation and
bulk RNA Seq library prep was performed by Christoph Kuppe.
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Figure 5.23: Overexpression of Runx1. a, Expression of Runx1 by qPCR after lentiviral Runx1
overexpression in a human kidney PDGRFb+ cell line. Error bars represent the SD of
the intensity. Data are presented as mean ± SD. Statistical significance was assessed
by a two-tailed Student’s t-test with p < 0.05 being considered statistically significant
(n=3). b, Immuno-fluorescence (IF) staining of Runx1 in human kidney PDGFRb+
cells lentivirally transduced with either empty vector (EV) or an Runx1 overexpression
construct (Runx1). Scale bars represent 10 µm. c, Population doubling of Runx1 over-
expressing cells vs. control (EV). Statistical significance was assessed by a two-tailed
Student’s t-test with p < 0.05 being considered statistically significant (n=3). d, Vol-
cano plot showing differential expression analysis between Runx1 overexpression vs.
control. Each dot represents a gene and dashed lines represent the thresholds (x = 1.5
and y = 5) used for selection of DE genes. Colors refer to significance given different
thresholds. e, Barplot showing GO enrichment using up-regulated genes from Runx1
overexpression. Top 10 terms are shown for Biological Process and WikiPathways.

and Twist2 were up-regulated following Runx1 overexpression. GO and pathway enrichment analy-
sis indicated enrichment of cell adhesion, cell differentiation, and TGFB signaling following Runx1
overexpression (Figure 5.23e). Furthermore, we observed increased expression of the myofibroblast
marker gene Postn after Runx1 overexpression. Altogether, this suggests that Runx1 might directly
drive myofibroblast differentiation of human kidney fibroblasts since overexpression reduced cell
proliferation and induced expression of various myofibroblast genes.
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Figure 5.24: Prediction of Runx1 target genes. a, Violin plot showing predicted Peak-to-Gene
(P2G) links using raw or imputed matrix from scOpen, cisTopic, SCALE and MAGIC.
Methods are sorted by average absolute value. b, Average absolute value of correlation
of P2G links. c, Precision-Recall curves of predicted Runx1 target genes using raw,
scOpen, SCALE, MAGIC or cisTopic matrix. d, Barplot showing Performance of top-
performing imputation methods on the prediction of Runx1 target genes as measured by
AUPR.

5.2.3 Identification and Validation of Runx1 Target Genes

Another important application of scATAC-seq is the prediction of cis-regulatory DNA interactions
(i.e., co-accessibility analysis) by measuring the correlation between gene activity and reads counts
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Figure 5.25: Tgfbr1 is regulated by Runx1 in myofibroblast. a Peak-to-Gene links (top) predicted
on scOpen matrix and associated to Tgfbr1 in fibroblast cells. The height of links repre-
sents its significance. Dash line represents the threshold of significance (FDR = 0.001).
ATAC-seq tracks (below) were generated from pseudo-bulk profiles of fibroblast/my-
ofibroblast cells with increasing pseudo time (0-20, 20-40, 40-60, 60-80, and 80-100).
Binding sites of Runx1 (B1-B4) supported by ATAC-seq footprints and overlapping to
peaks are highlighted on the bottom. b Scatter plot showing gene activity of Tgfbr1 and
normalized peak accessibility from raw (upper) or scOpen imputed matrix (lower) for
peak-to-gene link B1, B2, B3 and B4. Each dot represents cells in a given pseudotime
and the overall correlation is shown in the left-upper corner.

in proximal peaks (see Section 2.3.2). As shown in Section 5.1.5, we have demonstrated that this
prediction can be significantly improved by using the imputed matrix. Here, we predicted the peak-
to-gene links in fibroblasts on distinct scATAC-seq matrices after imputation with the top-performing
imputation methods (i.e., scOpen, cisTopic, SCALE and MAGIC). As expected, the use of imputation
methods led to improved signals on peak-to-gene links predictions as indicated by higher correlation
values after imputation compared with the correlation using raw matrix (Figure 5.24a-b).

We next sought to identify the target genes of Runx1 by leveraging the predicted peak-to-gene
links. For this, we considered all genes with at least one link, where the peak has a footprint sup-
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ported Runx1 binding site, as Runx1 targets. We then compared the predicted Runx1 targets from
distinct scATAC-seq imputed matrices with differentially expressed genes after Runx1 overexpres-
sion (true labels). Interestingly, all imputation methods obtained higher AUPR values than the use
of a raw matrix, while scOpen obtained the highest AUPR (Figure 5.24c-d). Among others, scOpen
predicted Tgfbr1 and Twist2 as prominent Runx1 target genes (Figure 5.25a;Appendix Figure A.10a).
We observed several peaks with high peak-to-gene correlation, increasing accessibility upon myofi-
broblast differentiation and presence of Runx1 binding sites. The positive impact of imputation was
clear when observing scatter plots contrasting gene activity and peak accessibility of these peak-to-
gene links (Figure 5.25b;Appendix Figure A.10b).

These results suggest that Runx1 is an important regulator of myofibroblast differentiation by reg-
ulating the EMT-related TF Twist2 and by increasing the expression of a TGFB receptor to amplify
TGFB signaling by and affect the expression of extracellular matrix genes. Altogether, these results
uncover a complex cascade of regulatory events across cells during the progression of fibrosis and
reveal a yet unknown function of Runx1 in myofibroblast differentiation in kidney fibrosis.

5.3 Discussion

In this chapter, we presented all the benchmarking results obtained by performed the experiments
described in Chapter 4. For technical validation, we evaluated the performance of our proposed
method, scOpen, and showed the outperformance of scOpen compared with the competing methods
from different perspectives. For biological validation, we applied scOpen to a complex scATAC-seq
data generated from the intact mouse kidneys at different time points after injuring. Our analyses
indicated that scOpen can provide better integration results and is able to identify all major cell types
for mouse kidney, as evaluated using an independent snRNA-seq from the same via label transferring
approach (Stuart et al., 2019). Moreover, we identified and validated Runx1 as an important regulator
for myofibroblast differentiation, thus revealing novel biological insights for the fibrosis process.
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CHAPTER 6
Discussion and Conclusion

6.1 Discussion

The sparsity and high-dimensionality in scATAC-seq pose serious challenges to the computation com-
munity. The main goal of this work was to develop an algorithm that addresses these two issues. For
this, we derived scOpen, an efficient and effective computational method for single-cell open chro-
matin data analysis via non-negative matrix factorization (NMF) modeling. scOpen is a linear model
that performs matrix imputation and dimensionality reduction on scATAC-seq data. By taking the
raw count matrix as input, it first normalizes the data to correct potential technical effects by bina-
rization and term frequency-inverse document frequency (TF-IDF) transformation. Elements in the
normalized matrix typically reflect the importance of a peak to a particular cell. Next, it factorizes
the normalized matrix into two low-rank matrices (i.e., factors) by using regularized NMF technique.
The estimated factors are used as dimension-reduced matrices for either cells or peaks. Furthermore,
the multiplication of these two factors is regarded as an imputed or denoised matrix which is used for
downstream analysis.

Two parameter, i.e., the number of components k and regularization λ , are introduced in this
step (see Section 3.3.4). To determine the parameter k, we introduced a computational algorithm
to automatically estimate the number of components for NMF model by detecting the elbow point of
reconstruction error against the rank of factors. We showed that in an example scATAC-seq dataset,
this approach is able to identify the underlying dimensions, i.e., the number of cell types presented in
the data. To further investigate the influence of the hyper-parameter on imputation and dimensionality
reduction, we simulated a scATAC-seq dataset by using a novel strategy (Section 4.1.1) and evaluated
the performance of scOpen given different parameters in Section 5.1.1.

Comprehensive Evaluation of Computational Methods for scATAC-seq Analysis

We performed an in-depth evaluation to benchmark a number of computational methods for scATAC-
seq data imputation, dimensionality reduction, and downstream analysis. In Section 5.1.2, we demon-
strated here that scOpen estimated matrices have a higher recovery of dropout events and also im-
proved distance and clustering results when compared to imputation methods developed for scRNA-
seq (Van Dijk et al., 2018; Huang et al., 2018; Li and Li, 2018; Eraslan et al., 2019; Li and Quon,
2019) and the few available imputation methods tailored for scATAC-seq (cisTopic-impute González-
Blas et al. (2019), SCALE (Xiong et al., 2019)). scOpen also presented very good scalability with the
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lowest memory requirements and tractable computational time on large data sets. From a method-
ological perspective, scOpen is one of the two methods (another one is scBFA) that regularize the
models to prevent over-fitting. This is in line with a previous study, which indicated over-fitting as
one of the largest issues on scRNA-seq imputation (Andrews and Hemberg, 2018). Moreover, it is
also possible to use the scOpen factorized matrix as a dimension reduction. We have shown that
both dimensions reduced and imputed matrices from scOpen displayed the best performance on dis-
tance representation and clustering when compared to diverse state-of-the-art scATAC-seq dimension
reduction/clustering pipelines (cisTopic, SnapATAC and Cusanovich2018) in Section 5.1.3

Finally, we demonstrated that the use of scOpen imputed matrices improves the accuracy of exist-
ing state-of-art scATAC-seq methods (cisTopic (González-Blas et al., 2019), chromVAR (Schep et al.,
2017), Cicero (Pliner et al., 2018)) in Section 5.1.4. Particularly positive results were obtained in the
prediction of chromatin conformation with Cicero, where all methods perform better than raw matri-
ces. Cicero works by measuring the correlation between pairs of proximal links. Due to the fact that
dropout events are independent for two regions, it is not surprising that imputation has strong benefits.
This is equivalent to observations from Van Dijk et al. (2018) in the context of scRNA-seq, where the
prediction of gene-gene interactions after MAGIC imputation was significantly improved. Altogether,
these results support the importance of dropout event correction with scOpen in any computational
analysis of scATAC-seq (Section 5.1.5).

Gaining Novel Biological Insights with scOpen

For biological validation, we used scOpen to characterize complex cascades of regulatory changes
associated with kidney injury and fibrosis in Section 5.2.1. Our analyses demonstrated that a major
expanding population of cells, i.e. injured PTs, myofibroblasts, and immune cells, share regulatory
programs, which are associated with cell de-/differentiation and proliferation. Of all methods evalu-
ated, scOpen obtained the best clustering results in the kidney cell repertoire using a scRNA-seq on
the same kidney injury model as a reference (Figure 5.18). Moreover, we estimated cell-type-specific
TF binding activity by computational footprinting analysis using HINT-ATAC (Li et al., 2019) as
described in Section 2.3.1 and identified a number of specific TFs for the relevant cell types.

The differentiation from fibroblasts to myofibroblast, also known as fibrosis, plays a key role in
kidney injury (Kuppe et al., 2021). To understand the gene regulatory mechanisms, we further ana-
lyzed the fibroblast cells (Section 5.2.2). We identified Runx1 as the major TF driving myofibroblast
differentiation by trajectory analysis. This was validated by Runx1 staining in the mouse model and
by lentiviral over-expression studies in human PDGFRb+ kidney cells. Computational prediction
with peak-to-gene links combined with footprint-supported Runx1 binding sites indicated the role of
Runx1 in the regulation of Tgfbr1 and Twist2. These were validated on over-expression experiments
in human fibroblasts. Altogether, the results suggested that Runx1 makes fibroblasts more sensitive
to TGFB signaling via increasing expression of the TGFB receptors. Here, we showed for the first
time in-vivo and in-vitro evidence that Runx1 in myofibroblasts regulates scar formation following
a fibrogenic kidney injury in mice. Runx1 deficiency caused reduced myofibroblast formation and
enhanced recovery. To this end, inhibiting Runx1 could lead to reduced myofibroblast differentiation
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and increased endogenous repair after fibrogenic organ injuries in the kidney and heart. Our results
shed light on mechanisms of myofibroblasts differentiation driving kidney fibrosis and chronic kidney
disease (CKD). Altogether, this demonstrated how scOpen can be used to dissect complex regulatory
processes by footprinting analysis combined with peak-to-gene link predictions.

6.2 Conclusion and Future Work

Improving the Scalability of scOpen

With the advancement of single-cell sequencing technology, scATAC-seq data continues to grow at an
unprecedented pace and atlas-scale datasets have been rapidly generated. For example, In one study,
Silvia et al. (2020) profiled the chromatin accessibility of nearly 800,000 cells from 59 human sam-
ples across 15 organs. In another study, Zhang et al. (2021) applied scATAC-seq to 25 adult human
tissues, generating the open chromatin profiles for roughly 500,000 cells. Although we have demon-
strated that scOpen has better scalability compared with the competitors in Section 5.1.2 (Figure 5.4),
the largest benchmarking dataset (i.e., PBMC) contains only about 10,000 cells (see Table 4.1), rep-
resenting a relatively small dataset. Therefore, it is interesting to further improve the scalability of
scOpen. To reduce the memory usage, a promising approach is to use online machine learning for
non-negative matrix factorization in which only a subset of the data is used to update the parameters
at each step of the algorithm (Mairal et al., 2010; Lefevre et al., 2011). For example, the online NMF
has been shown to be able to iteratively and incrementally integrate more than 1 million cells using
about 1.9GB of RAM (Gao et al., 2021). To speed scOpen up, one can seek to employ a graphics
processing unit (GPU) to solve the NMF optimization problem by taking advantages of the high com-
puting performance delivered by GPU (Mejía-Roa et al., 2015). We envision that incorporating the
online learning into scOpen and implementing the NMF algorithm based on GPU would significantly
extend its application to large-scale scATAC-seq data.

Applying scOpen to Other Single-cell Protocols

In this thesis, we applied scOpen to single-cell chromatin accessibility data as measured by scATAC-
seq protocol. On one hand, we have demonstrated that scOpen is able to produce a better imputed
matrix and dimension reduced matrix compared with the competing methods. On the other hand,
the development of technology has allowed for profiling other chromatin features at single-cell res-
olution, such as histone modification by scChIP-seq (Rotem et al., 2015; Bartosovic et al., 2021),
transcription factor binding sites by scCUT&Tag (Kaya-Okur et al., 2019), and DNA methylation by
scBisulfite-seq (Smallwood et al., 2014). Although these protocols aim at measuring different type of
chromatin states (i.e., open versus closed in scATAC-seq, modified versus unmodified in scChIP-seq,
bound versus unbound in scCUT&Tag, and methylated versus unmethylated in scBisulfite-seq), the
data generated by them share similar properties, i.e., sparsity, high-dimensionality, and low count
information. Therefore, it is interesting to use the same methodology from scOpen to perform impu-
tation and dimensionality reduction for these protocols.
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Exploiting the Low-dimensional Matrix for Peaks

In addition to generate a dimension reduced matrix for cells (i.e., H), scOpen produces a low-
dimensional representation for peaks via NMF (i.e., W, see Section 3.3.1 and Figure 3.2). In this
thesis, we showed that the matrix H can be used for cell clustering, integration and visualization (Sec-
tion 5.1.3). Similar to scOpen, cisTopic also generates a low-dimensional matrix containing cis-
regulatory topics (see Section 2.4.3). Furthermore, González-Blas et al. (2019) demonstrated that the
topics can be used for motif discovery to predict transcription factors and to explore chromatin state
variations. Therefore, how to exploit the low-dimensional matrix for peaks as generated by scOpen
represents a future challenge.

Extending scOpen to Single-cell Multimodal Omics Data Integration

Advances in single-cell genomics technologies have enabled measurement gene expression and chro-
matin accessibility simultaneously in the same cell, such as Paired-seq (Zhu et al., 2019) and SHARE-
seq (Ma et al., 2020). A key challenge in analyzing the single-cell multimodal omics data is how to
perform cross-modal integration for downstream analysis (e.g., clustering and visualization) while
controlling confounding factors (e.g., batch effects), given that the data from each modality has char-
acteristic statistical, technical and biological features. This problem can be formalized as multi-view
learning where each modality is considered as a view for an individual cell. Interestingly, several
works have demonstrated that NMF is a powerful and flexible model for addressing this issue (Liu
et al., 2013, 2014; Zhang et al., 2018; Liang et al., 2020). Therefore, we would like to investigate how
to extend scOpen to allow for learning a low-dimensional representation from single-cell multimodal
data efficiently and effectively in the future.
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A.1 Technical Validation
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Figure A.1: Overall rank of the imputation methods. a, The Friedman ranking of imputation
methods in terms of the average AUPR for each benchmarking dataset. Methods are
ordered by median value of ranks. b, Same as a for distance accuracy. c, Same as a for
clustering accuracy.
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A.1. Technical Validation

Dataset Cell type Number of cells Positives Negatives

Cell line

BJ 79 23,222 102,425
GM12878 348 29,954 95,693
H1ESC 95 16,442 109,205
HL60 96 9,034 116,613
K562 510 30,044 95,603
TF1 96 13,299 112,348

Hematopoiesis

CLP 88 7,726 101,692
CMP 630 55,791 53,627
GMP 502 49,760 59658
HSC 377 40,217 69,201
LMPP 93 15,003 94,415
MEP 188 34,440 74,978
MPP 162 17,761 91,657
pDC 170 28,233 81,185

T cells

Jurkat T cell 296 10,573 38,771
Memory T cell 135 5,341 44,003
Naive T cell 185 12,645 36,699
Th17 T cell 149 6,207 43,137

PBMC

CD56 bright NK cells 507 33,378 73,557
CD56 dim NK cells 472 31,696 75,239
Classical monocytes 1,929 66,799 40,136
Effector CD8 T cells 385 35,540 71,395
Intermediate monocytes 664 57,199 49,736
MAIT T cells 106 25,548 81,387
Memory B cells 420 41,046 65,889
Memory CD4 T cells 1,611 43,931 63,004
Myeloid DC 242 49,564 57,371
Naive B cells 295 34,320 72,615
Naive CD4 T cells 1,462 42,617 64,318
Naive CD8 T cells 1,549 43,596 63,339
Non-classical monocytes 383 50,312 56,623
Plasmacytoid DC 107 34,492 72,443

Table A.1: Statistics of the positive and negative peaks in each benchmarking dataset.
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1 2 4 0.1 0.01 0.001 0

2 **
4 **

0.1 ** * *
0.01 ** ** ** **

0.001 ** ** ** **
0 ** ** ** **

Raw ** ** ** ** ** ** **

Table A.4: Friedman-Nemenyi test of the regularization based on imputation accuracy. We ap-
plied scOpen with different number regularization parameters of and measured the impu-
tation accuracy by AUPR. The asterisk and the two asterisks, respectively, mean that the
method in the column outperformed the method in the row with significance levels of 0.05
and 0.01.

0.1 1 0.01 0 0.001 Raw 2

1
0.01

0
0.001
Raw *

2 ** * *
4 ** ** ** ** *

Table A.5: Friedman-Nemenyi test of the regularization parameters for simulation data based
on clustering accuracy. We applied scOpen with different number regularization param-
eters of and measured the clustering accuracy by ARI. The asterisk and the two asterisks,
respectively, mean that the method in the column outperformed the method in the row
with significance levels of 0.05 and 0.01.
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Raw ** ** ** ** ** ** ** **
imputePCA ** ** ** ** ** ** ** ** **

Table A.6: Friedman-Nemenyi test of the imputation accuracy for Cell line dataset. We applied
the imputation methods on Cell line dataset and measured the imputation accuracy by
AUPR. The asterisk and the two asterisks, respectively, mean that the method in the col-
umn outperformed the method in the row with significance levels of 0.05 and 0.01.
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Table A.7: Friedman-Nemenyi test of the imputation accuracy for Hematopoiesis dataset. We
applied the imputation methods on Hematopoiesis dataset and measured the imputation
accuracy by AUPR. The asterisk and the two asterisks, respectively, mean that the method
in the column outperformed the method in the row with significance levels of 0.05 and
0.01.
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imputePCA ** ** ** ** ** ** ** ** **

Table A.8: Friedman-Nemenyi test of the imputation accuracy for T cells dataset. We applied the
imputation methods on T cells dataset and measured the imputation accuracy by AUPR.
The asterisk and the two asterisks, respectively, mean that the method in the column out-
performed the method in the row with significance levels of 0.05 and 0.01.
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Table A.9: Friedman-Nemenyi test of the imputation accuracy for PBMC dataset. We applied
the imputation methods on PBMC dataset and measured the imputation accuracy by
AUPR. The asterisk and the two asterisks, respectively, mean that the method in the col-
umn outperformed the method in the row with significance levels of 0.05 and 0.01.
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Raw ** ** ** ** ** ** **
imputePCA ** ** ** ** ** ** ** ** *

Table A.10: Friedman-Nemenyi test of the distance accuracy for Cell line dataset. We applied
the imputation methods on Cell line dataset and measured the distance accuracy by sil-
houette score. The asterisk and the two asterisks, respectively, mean that the method
in the column outperformed the method in the row with significance levels of 0.05 and
0.01.
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scImpute ** ** ** ** ** ** ** ** **

Table A.11: Friedman-Nemenyi test of the distance accuracy for Hematopoiesis dataset. We
applied the imputation methods on Hematopoiesis dataset and measured the distance
accuracy by silhouette score. The asterisk and the two asterisks, respectively, mean that
the method in the column outperformed the method in the row with significance levels
of 0.05 and 0.01.
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Table A.12: Friedman-Nemenyi test of the distance accuracy for T cells dataset. We applied the
imputation methods on T cells dataset and measured the distance accuracy by silhouette
score. The asterisk and the two asterisks, respectively, mean that the method in the
column outperformed the method in the row with significance levels of 0.05 and 0.01.
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Table A.13: Friedman-Nemenyi test of the distance accuracy for PBMC dataset. We applied the
imputation methods on PBMC dataset and measured the distance accuracy by silhouette
score. The asterisk and the two asterisks, respectively, mean that the method in the
column outperformed the method in the row with significance levels of 0.05 and 0.01.
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Table A.14: Friedman-Nemenyi test of the clustering accuracy for Cell line dataset. We applied
the imputation methods on Cell line dataset and measured the clustering accuracy by
ARI. The asterisk and the two asterisks, respectively, mean that the method in the column
outperformed the method in the row with significance levels of 0.05 and 0.01.
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Table A.15: Friedman-Nemenyi test of the clustering accuracy for Hematopoiesis dataset. We
applied the imputation methods on Hematopoiesis dataset and measured the clustering
accuracy by ARI. The asterisk and the two asterisks, respectively, mean that the method
in the column outperformed the method in the row with significance levels of 0.05 and
0.01.
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Table A.16: Friedman-Nemenyi test of the clustering accuracy for T cells dataset. We applied
the imputation methods on T cells dataset and measured the clustering accuracy by ARI.
The asterisk and the two asterisks, respectively, mean that the method in the column
outperformed the method in the row with significance levels of 0.05 and 0.01.
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Table A.17: Friedman-Nemenyi test of the clustering accuracy for PBMC dataset. We applied
the imputation methods on PBMC dataset and measured the clustering accuracy by ARI.
The asterisk and the two asterisks, respectively, mean that the method in the column
outperformed the method in the row with significance levels of 0.05 and 0.01.
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Table A.18: Friedman-Nemenyi test of the distance accuracy of dimensionality reduction meth-
ods for Cell line dataset. We applied the dimensionality reduction methods on Cell line
dataset and measured the distance accuracy by silhouette score. The asterisk and the two
asterisks, respectively, mean that the method in the column outperformed the method in
the row with significance levels of 0.05 and 0.01.
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Table A.19: Friedman-Nemenyi test of the distance accuracy of dimensionality reduction meth-
ods for Hematopoiesis dataset. We applied the dimensionality reduction methods on
Hematopoiesis dataset and measured the distance accuracy by silhouette score. The
asterisk and the two asterisks, respectively, mean that the method in the column outper-
formed the method in the row with significance levels of 0.05 and 0.01.
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Table A.20: Friedman-Nemenyi test of the distance accuracy of dimensionality reduction meth-
ods for T cells dataset. We applied the dimensionality reduction methods on T cells
dataset and measured the distance accuracy by silhouette score. The asterisk and the two
asterisks, respectively, mean that the method in the column outperformed the method in
the row with significance levels of 0.05 and 0.01.
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Table A.21: Friedman-Nemenyi test of the distance accuracy of dimensionality reduction meth-
ods for PBMC dataset. We applied the dimensionality reduction methods on PBMC
dataset and measured the distance accuracy by silhouette score. The asterisk and the two
asterisks, respectively, mean that the method in the column outperformed the method in
the row with significance levels of 0.05 and 0.01.
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Figure A.2: The combined rank of the dimensionality reduction methods based on distance and
clustering accuracy. The Friedman ranking of dimensionality reduction methods in
terms of the average silhouette score for each benchmarking dataset. Methods are or-
dered by median value of ranks. Wilcoxon Rank Sum test was used to compare scOpen
with scOpen-impute and MAGIC. The asterisk means that the method is outperformed
by scOpen with significance level of 0.05.
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Figure A.3: Evaluation of the predicted interactions by Cicero. a, Barplots showing AUPR of the
predicted peak-to-peak co-accessibility links using either raw or imputed matrix with
GM12878 single-cell ATAC-seq data. Analysis was executed with Cicero. Left, links
are evaluated using ChIA-PET data as true labels. Right, links are evaluated using Hi-
C data as true labels. b, Odds ratio (y-axis) of Cicero predicted co-accessible sites (n
= 3,853,260) also supported by pol-II ChIA-PET (left) and Hi-C (right) vs. distance
between sites (x-axis). Error bars indicate 95% confidence intervals calculated using
Fisher’s exact test. Odds ratio superior than 1 indicates a positive relationship.
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Figure A.4: Visualization of co-accessibility score a, Scatter plot showing single-cell accessibility
scores estimated by top-performing imputation methods for the link between peak 1 and
peak 4. Each dot represents a cell and color refers to density. Pearson correlation is
shown on the left-upper corner. b, Same as a for peak 1 and peak5.
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Figure A.5: Evaluation of the predicted interactions by Cicero using down-sampled data. a,
Precision-recall curves showing the evaluation of the predicted links on GM12878 cells
using the raw and imputed matrix as input after down-sampling to 50%. b Same as a
after down-sampling to 25%.
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Figure A.6: Quality control of UUO scATAC-seq data. a, Scatter plot showing number of unique
fragments vs. TSS enrichment of UUO scATAC-seq for each sample. Each dot repre-
sents a cell and the dash lines represent cut-off used for cell filtering. The number of cells
that pass filtering is shown on right-upper corner. b, Heatmap showing the correlation
between samples.
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Figure A.7: Visualization of integrated data by using different dimensionality reduction meth-
ods. a, UMAP plots showing data integration results by using different scATAC-seq
dimension reduction/clustering pipelines. Each dot represent a cell and cells are colored
by different time points. b, UMAP plots showing clustering results for each dimension
reduction method. Cells are colored by clusters. c, UMAP plots showing label trans-
ferred results from a public UUO scRNA-seq dataset. Cells are colored by predicted
labels.
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Figure A.8: Visualization of marker genes for each annotated cell type. Violin plot showing clus-

ter specific (y-axis) gene accessibility score associated to known marker genes for kidney
cells (x-axis).
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Figure A.9: Visualization of annotated cell types for each time point. a, Scatter plots showing
condition-specific UMAP visualization of UUO scATAC-seq data for each sample. b,
Visualization of the data quality for each sample. Colors refer to number of fragments
per cell after log10 transformation. c, Bar plots showing proportion of each cell type
across different time points.
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Figure A.10: Twist2 is regulated by Runx1 in myofibroblast. a Peak-to-Gene links (top) predicted
on scOpen matrix and associated to Twist2 in fibroblast cells. The height of links repre-
sents its significance. Dash line represents the threshold of significance (FDR = 0.001).
ATAC-seq tracks (below) were generated from pseudo-bulk profiles of fibroblast/my-
ofibroblast cells with increasing pseudo time (0-20, 20-40, 40-60, 60-80, and 80-100).
Binding sites of Runx1 (B1-B2) supported by ATAC-seq footprints and overlapping to
peaks are highlighted on the bottom. b Scatter plot showing gene activity of Twist2 and
normalized peak accessibility from raw (upper) or scOpen imputed matrix (lower) for
peak-to-gene link B1 and B2. Each dot represents cells in a given pseudotime and the
overall correlation is shown in the left-upper corner.
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