
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

  www.elsevier.com/locate/procedia 

2212-8271 © 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of 
existing products for an assembly oriented product family identification 

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat 
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France 

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

The demand for customer-specific product variants leads to a shift to job shop production, in which order scheduling takes a 
mayor role to increase logistical target values without ad-hoc interventions into the running production. Agent applications, e.g. 
combinations of reinforcement learning (RL) and simulation, are promising solutions to solve the scheduling problem. This paper 
designs a methodology for automating the order release decision of real production scenarios by applying a RL agent, which has 
been trained on an application-specific simulation model. By an integrated validation unit the performance can be measured 
against known order release strategies. 
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1. Introduction 

Today’s production management faces the challenge to 
meet changing customer requirements regarding a growing 
individualization level and general sensitivity for logistical 
service levels [1]. In production, the increasing number of 
individual product variants results in smaller batch sizes and a 
more flexible job shop production [2]. By using a job shop 
production, a high flexibility with regard to the quality of 
specific customer requirements as well as the varying quantity 
caused by order fluctuations can be fulfilled [3]. This change 
leads to increased demands concerning production planning 
and control (PPC) [4] to achieve the logistical target values, e.g. 
short throughput times and high utilization rates [5], and at the 
same time to keep margin for disposition [6]. 

A mayor lever is the order release, assigning available 
resources and capacities in the production to specific orders and 
form a short-term production schedule based on determined 
rules [7]. Key elements to be considered are a list of generated 
orders and work plans including corresponding machines and 
lead times as well as batch sizes of each order [5]. In order to 

reduce ad-hoc interventions in dynamic systems, production 
changes must be constantly considered [8]. To meet these 
requirements in production environments that are reacting to 
the ongoing mass customization trend, new dynamic methods 
of scheduling are required [9]. Scheduling methods based on 
reinforcement learning (RL) that allow a constant 
reconsideration of the current status and deciding on the orders 
to be released next might be a promising field of research [10]. 

Therefore, this paper proposes a methodology to automate 
the order release process by using a RL agent and integrating 
near real-time feedback data from the production. The focus on 
order release will reduce efforts for ad-hoc control 
interventions and using the real production status as planning 
base will increase the planning capability. This paper is 
structured as follows. The next section provides background 
information on the area of consideration. Section 3 gives an 
overview of related research approaches and discusses them on 
the basis of currently existing challenges in order release. 
Based on that, section 4 proposes the approach for an 
automated order release methodology and the conclusion as 
well as a further research direction is given in section 5. 
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well as a further research direction is given in section 5. 
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3. Related work 

This section reviews current work on the job shop 
scheduling problem by especially considering the task of order 
release. The related work is classified based on the methods 
used with a special focus on meta-heuristics, because the 
proposed approach in this paper using a RL agent relates to it. 

3.1. Order release in the job shop scheduling problem (JSP) 

In recent years, many authors addressed the JSP with focus 
on either order release, sequencing or both [10]. A mayor 
research direction focuses on the task of order sequencing (or 
dispatching), where decentralized decisions are made to 
optimize the system according to each arising queue at each 
machine [8, 9, 30]. Here, different sequencing rules are used 
and compared to each other [19]. At the same time, the lever of 
an advanced order release strategy is addressed in fewer recent 
approaches, but becomes especially useful for a high-variety 
and low-volume production [31, 32]. 

A specific challenge in order release is the nonlinear 
relationship between resource utilization and throughput time, 
which leads to the fact that it is hardly possible to specify an 
exact completion date at the moment of order release [33]. By 
dynamically optimizing the task of order release, the necessity 
for ad-hoc interventions through dispatching rules to meet the 
logistic target values decreases [34]. Some approaches 
especially focus on the order release to achieve a small overall 
make span or high adherence to delivery dates [10, 33, 35]. 

To overcome challenges from industrial practice by 
applying a new order release strategy, the proposed approach 
in this paper cope with four mayor challenges: 

 Comprehensive consideration of the relevant inter-
relationships and influencing factors of a real production  

 Acquisition of feedback data for dynamic reaction to 
malfunctions and order changes 

 Enabling a multidimensional objective function and 
adherence to delivery date as boundary constraint 

 Applicability of the methodology to the order release of a 
practical job shop production 

Three different main methods can be classified for solving 
scheduling problems, which are presented in the following 
paragraphs [9]: Exact methods with mathematical modeling, 
heuristics as well as meta-heuristics involving artificial 
intelligence (AI) [36]. 

3.2. Exact methods 

Since the problem has got a broad attention in research, 
mathematical modeling has been applied [37], e.g. integer 
programming [38] and mixed integer programming [39]. The 
use of exact methods is limited by computational requirements 
as the problem counts as NP-hard. However, this can be 
overcome by more advanced approaches, e.g. decomposing the 
problem into smaller instances, branch-and-bound, Lagrangian 
relaxation and by making use of modern computational 
performance [37]. Therefore, research is being conducted using 

exact methods until today [9, 40]. Nevertheless, finding exact 
solutions for optimization problems is limited to a certain 
complexity level and therefore practical production sizes are 
difficult to depict. 

3.3. Heuristics 

Instead of computing an exact solution upfront or release 
orders into the production directly after their generation, 
several heuristics have been developed to effectively improve 
the production performance [34]. Heuristics allow for a 
significant reduction in complexity and hence, on a basic level, 
compete with generalized software solutions and mathematical 
models [37].  

Two simple and very common heuristics for order release 
used in practice are constant work in process (Conwip) and 
load-oriented order release [12]. Conwip is based on the 
inventory regulation by linking the production input and 
output. Orders are released whenever the production inventory 
level falls below a planned value. In the load-oriented 
approach, an order is released when the inventory limit has not 
been exceeded at any of the work systems through which the 
order will pass. In contrast to Conwip, the procedure does not 
always include the orders with the full order time to the stock 
accounts of the work systems. [12] 

With regard to the formulated challenge of comprehensively 
considering the relevant interrelationships and influencing 
factors of a real production, heuristics try to find general rules 
rather than considering a specific production environment and 
hence are not further considered in this paper. 

3.4. Meta-heuristics including learning-based systems 

The already presented methods have been extended by 
meta-heuristics, genetic algorithms and learning-based systems 
in order to solve the complex problems more effectively [37]. 
Many current research approaches already extend the known 
meta-heuristics by adding AI to their methods [36]. 

[33] propose an adaptive order release mechanism to specify 
order release times using RL. The approach meets the focus of 
applying RL to the task of order release, but aims for solving 
the problem in a flow shop with different constraints compared 
to these of a job shop problem, e.g. alternative routes for each 
specific product. For solving the scheduling problem in a job 
shop regarding more than one objective, [41] developed a 
variable neighborhood search algorithm, that uses 
decomposition techniques to obtain near-optimal sequences of 
performing the operations and generating a schedule. This 
approach does not include, re-scheduling based on a constantly 
changing situation in production and hence does not meet the 
requirement of including feedback data from the production. 

A real-time scheduling of a large number of tasks has been 
introduced in the course of the corona crisis by [35] using an 
end-to-end neural network trained by reinforcement learning 
using negative total tardiness in the reward function. In this 
approach, real-time scheduling is achieved for a practical 
production size, but just one optimization objective is 
considered. 
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2. Background 

In this section, the foundations necessary for understanding 
the role of order release within the tasks of PPC and methods 
used in the proposed approach for solving the scheduling 
problem are established. 

2.1. Role of order release in production control 

The correct application of production control strategies 
determines the fulfillment of the logistical target values, 
shortening throughput time, reducing inventory, increasing 
capacity utilization and increasing adherence to delivery date 
[11]. However, due to a high interdependency of these targets, 
it is not possible to define a simultaneous optimum for all target 
values [12]. For example, reducing inventory may lead to a 
reduction in capacity utilization and therefore to a decreased 
performance level. Production control contains four specific 
tasks (see Fig. 1). 

    

Fig. 1. Task of production control [12] 

The start is a production plan filled by the order generation. 
Based on the capacity control, the task of order release feeds 
orders to be produced into the production. For each working 
system, the task of sequencing determines the sequence in 
which waiting orders are processed.[12].  

Within production control, the order release marks the point 
from which an order is ready to be produced [6]. Therefore, it 
is considered as a “critical decision point” [13] at which 
production control at the shop floor starts. Order release 
consists of the two parameters order timing and selection 
decision [14]. Basically, four different criteria can be 
distinguished to approach the task of order release [12]: 

 Immediate order release directly after order generation 
 Order release as soon as the planned start date is reached 
 Inventory-controlling order release with a certain value  
 Work system load order release with an expected load 

To assist the production planner, a wide range of software 
systems have been introduced using and combining different 
approaches [11]. These systems build a production schedule on 
basis of several input data, e.g. master production schedule, bill 
of materials, material inventory levels, lead times and batch 
sizes [15]. Leading systems for this purpose are enterprise 
resource planning (ERP), manufacturing execution systems 
(MES) and advanced planning and scheduling systems (APS). 

APS systems can reduce the gap between planned and actual 
production schedule, but the procedure is still based on 
software-specific assumptions and the degree of integration 
into the planning processes [16]. 

2.2. Introduction to the job shop scheduling problem (JSP) 

In literature, solving the described production control tasks 
of order release and sequencing in a job shop production is well 
known as the job shop scheduling problem (JSP) [9, 17]. The 
JSP is considered to be part of the hardest combinatorial 
optimization problems and has proven to be NP-hard [18]. 
Typically, the following assumptions are made [19]: 

 One machine of each type in the shop 
 One operation at a time on each machine and on any job 
 An operation of a job can be performed by just one 

machine 
 An already started job can’t be interrupted 
 The next operation of a job can be started after completing 

its preceding operations 
 No alternative routings for a job 
 Each machine is continuously available for production  
 No restriction on queue length before any machine 

2.3. Use of reinforcement learning in the JSP 

Reinforcement learning is a machine learning method that 
has proven to be a suitable approach for determining a solution 
strategy for highly demanding applications without requiring 
expert knowledge – simply by direct interaction with the 
environment and decision making through "trial and error" [20, 
21]. In recent years, a lot of attention has been paid to apply RL 
to PPC in order to obtain more robust solutions in an 
environment where unpredictable and unplanned machine 
downtime is common [22]. 

RL is based on the interaction of an agent with its 
environment. For each time step, the agent performs an action 
based on the state of the environment and depending on the 
changed state receives a specific reward [23]. In addition to a 
dynamic environment that must be observable by the agent, RL 
problems require a reinforcement and value function defining 
the policy of actions to perform and the value of rewards to be 
received [24]. With this problem formulation, the agent tries to 
maximize the sum of rewards gotten from its actions in order 
to solve the stated problem [25]. To apply this principle, the 
problem needs to be modeled as Markov Decision Problem 
assuming that the achievement of future states only depends on 
the present state and action [26]. 

The decision process requires a simulation model that 
represents the behavior of the production sufficiently 
accurately and that can interact with the agent, because it is not 
applicable to perform this in a real production environment due 
to economic and time constraints [27]. Discrete-event 
simulation is used to model the production environment, which 
depicts a sequence of events representing actions performed on 
orders [28]. Simulation-based approaches can increase 
prediction accuracy by including production-specific 
characteristics as well as realistic processes [29].  
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 One machine of each type in the shop 
 One operation at a time on each machine and on any job 
 An operation of a job can be performed by just one 

machine 
 An already started job can’t be interrupted 
 The next operation of a job can be started after completing 

its preceding operations 
 No alternative routings for a job 
 Each machine is continuously available for production  
 No restriction on queue length before any machine 

2.3. Use of reinforcement learning in the JSP 

Reinforcement learning is a machine learning method that 
has proven to be a suitable approach for determining a solution 
strategy for highly demanding applications without requiring 
expert knowledge – simply by direct interaction with the 
environment and decision making through "trial and error" [20, 
21]. In recent years, a lot of attention has been paid to apply RL 
to PPC in order to obtain more robust solutions in an 
environment where unpredictable and unplanned machine 
downtime is common [22]. 

RL is based on the interaction of an agent with its 
environment. For each time step, the agent performs an action 
based on the state of the environment and depending on the 
changed state receives a specific reward [23]. In addition to a 
dynamic environment that must be observable by the agent, RL 
problems require a reinforcement and value function defining 
the policy of actions to perform and the value of rewards to be 
received [24]. With this problem formulation, the agent tries to 
maximize the sum of rewards gotten from its actions in order 
to solve the stated problem [25]. To apply this principle, the 
problem needs to be modeled as Markov Decision Problem 
assuming that the achievement of future states only depends on 
the present state and action [26]. 

The decision process requires a simulation model that 
represents the behavior of the production sufficiently 
accurately and that can interact with the agent, because it is not 
applicable to perform this in a real production environment due 
to economic and time constraints [27]. Discrete-event 
simulation is used to model the production environment, which 
depicts a sequence of events representing actions performed on 
orders [28]. Simulation-based approaches can increase 
prediction accuracy by including production-specific 
characteristics as well as realistic processes [29].  
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adherence to delivery date as well as the throughput time will 
be optimized. For each time step of the interaction, the agent 
receives a reward and takes the next action based on the 
observed status of the system. During the method development, 
the parameters of the algorithm have to be iteratively adapted 
to create suitable results and to improve the practicability to be 
implemented in a real production environment. 

4.3. Application and validation 

Finally, the described two steps of modeling and training are 
combined into an automated methodology able to efficiently 
control the complex task of order release in a job shop 
production. Therefore, the simulation model in Plant 
Simulation serves as the correspondent production 
environment for the then trained agent. The communication 
protocol is based on the state message logic proposed by [10]. 
The simulation can be used alone or integrated with near-real 
time data from a real production. In this case, the already 
mentioned data is required, e.g. work plans, current machine 
information, current order information and current list of 
generated orders. 

In the application phase, the RL agent acts on basis of the 
strategy derived from training in order to meet the required 
logistical target values addressed in the objective function 
adherence to delivery date and throughput time. According to 
this strategy, the agent releases the most suitable orders from a 
constantly updated list of orders with specific information on 
the delivery date and order type. 

To achieve a fully automated process of order release the 
developed communication interface between agent and 
simulation is not sufficient but needs to be complemented by 
an online application, which calls the agent and triggers the 
task. Moreover, with this instance different scenarios can be 
compared and validated according to the logistic target values. 
By setting up the required simulation parameters, further 
scenarios can be created in the application instance, which are 
then executed either through the agent’s release strategy or by 
choosing a common heuristic such as Conwip. 

5. Conclusion and further research 

This paper elaborates on the importance of order release and 
compares current approaches to the JSP with four established 
challenges that keep remaining in that domain: Consideration 
of specific production parameters, integration of feedback data, 
enabling a multidimensional objective function and 
applicability to a practical job shop production. 

The proposed approach includes the automation of the order 
release task by combining industrial-grade simulation with a 
RL agent. In the training phase, the RL agent interacts with a 
simplified discrete-event simulation in order to quickly derive 
a strategy optimizing the order selection and timing. This 
trained agent is then applied to a more detailed production 
simulation to release orders based on the learned policy that 
tries to optimize the adherence to delivery date and throughput 
time. It is automated by the overlying online application. 

In order to implement this automated order release 
application, the RL algorithm as well as the simulation model 

have to be developed based on the requirements of the order 
release process. Therefore, parameters and the value function 
defining the RL algorithm have to be specified in order to fulfill 
the specified logistical target values able to outperform current 
approaches. To apply the method to a real production 
environment, especially the feedback data requirements need 
to be investigated in order to integrate these into the 
corresponding simulation model. Finally, as a production 
environment dynamically changes over time, at a certain point 
it might be required to reiterate the training phase in order to 
cope with the current production and keep the agent up to date. 
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A solution for handling unforeseen events was introduced 
by [42] as a basic approach towards real-time disruption 
management strategies, that is able to manage dynamic 
conditions while keeping cost effectiveness, product quality 
and adherence to delivery date. The authors integrate a 
schedule state simulator with rescheduling knowledge stored in 
a deep Q-network, that is trained with reward to a goal schedule 
state. Here, it remains unclear if the method can be transferred 
to a job shop production. A hybrid Deep Q Learning (DQN) 
training method with real production data is proposed by [10] 
in order to solve practical production problems combining an 
initial python-based training instance in SimPy with a further 
training instance using an interface to the commercial software 
Plant Simulation. This approach shows how to combine 
performant and scalable training methods using python with 
detailed status information using advanced simulation 
software. While the practical reference becomes clear, it is not 
yet scaled-up to a representative problem instance and the 
second training step proposed in the hybrid approach has not 
yet been validated. 

The review of the literature presented shows that newly 
introduced approaches that combine mathematical techniques 
and simulation with learning-based systems such as RL are able 
to solve the JSP in an effective way. However, the authors 
agree that space for improvement remains in different 
dimensions: A demand for a strengthened collaboration and 
integration of different PPC methodologies into one application 
as well as a more practical guide for implementing current 
research approaches into a real production are prospected [11]. 
Still not solved to a sufficient grade is the need for quick 
decision support in the PPC with respect to dynamic production 
state changes [8]. Therefore, the requisite for a higher 
integration of near real-time feedback data from the production 
into the planning and control continues to gain importance [6]. 
Also, many approaches to solve the JSP focus on dispatching 
strategies, while fewer make use of the advantages lying at the 
beginning of production at the time of order release. Also, the 
applicability to a real-sized job shop production has not been 
shown in many cases. 

4. Application of automated order release 

This section presents a methodology for automating the 
order release process by using a RL agent and near real-time 
production data to solve the JSP (see Fig. 2).  

 

  

Fig. 2. Setup for the implementation of an automated order release system 

In a first modeling step, a simulation model (I) is used to 
dynamically represent the status of a production system by 
modeling the production process and output feedback data. 
Second, in the training phase (II) a RL agent is trained by 
interacting with the simulation model to derive a control 
strategy for order release. In the third application and 
validation phase (III), the trained agent is implemented on a 
server to control the order release process of a real production 
process via simulation interface. This setting in a final step can 
be used for comparing and validating different scenarios 
against each other. 

4.1. Model 

The model used in the training phase is implemented in 
SimPy as a custom-made python simulation to quickly 
communicate with the agent implemented in python as well. 
Although this is a simplified simulation model, specially 
designed for this application, the basic requirements are to 
depict the available production workstations, the shift model, 
the machine status and capacities and order information e.g. 
work plans, remaining operation times and order progress. In 
addition, influencing factors of a real production such as 
downtimes can be considered. 

During the training phase, a simplified python simulation on 
a local computer is sufficiently precise and fast, in the 
application phase the simulation model must be synchronizable 
with real production data and hence must be accessible on a 
server. In addition, to guarantee modeling the production 
functionality as real as possible, a more detailed model in Plant 
Simulation is used. This simulation software constitutes an 
industry standard with advanced modeling and automation 
possibilities, which is important for an effective use in practice 
especially when the synchronization with a real production is 
planned. This is done by a set of feedback data that is 
exchanged with the model by using automated file updates or a 
shared data base of the ERP/ MES and the simulation model. 

Based on this setting, if there is a change of the considered 
production system both simulation models – in SimPy and 
Plant Simulation – have to be adapted, because an agent can 
only perform correct strategies, if it has been trained with the 
system at hand. 

4.2. Training 

The described simulation model serves as the training 
environment which a RL algorithm interacts with. The exact 
RL method must be chosen on basis of the problem size and the 
considered scheduling horizon. Related works show the DQN 
training method has proven to be a suitable approach [10, 43]. 

The training requires historical data that in combination with 
the simulation model represents the functionality and common 
product program of the production. In the step-by-step training 
phase, the RL algorithm releases an order from the inserted list 
of generated orders into the simulated production environment 
and gets a reward based on the reinforcement and value 
function. Developing these exact functions will be a key 
component in terms of speed and scalability of the proposed 
approach. Through a multi-dimensional objective function the 
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adherence to delivery date as well as the throughput time will 
be optimized. For each time step of the interaction, the agent 
receives a reward and takes the next action based on the 
observed status of the system. During the method development, 
the parameters of the algorithm have to be iteratively adapted 
to create suitable results and to improve the practicability to be 
implemented in a real production environment. 

4.3. Application and validation 

Finally, the described two steps of modeling and training are 
combined into an automated methodology able to efficiently 
control the complex task of order release in a job shop 
production. Therefore, the simulation model in Plant 
Simulation serves as the correspondent production 
environment for the then trained agent. The communication 
protocol is based on the state message logic proposed by [10]. 
The simulation can be used alone or integrated with near-real 
time data from a real production. In this case, the already 
mentioned data is required, e.g. work plans, current machine 
information, current order information and current list of 
generated orders. 

In the application phase, the RL agent acts on basis of the 
strategy derived from training in order to meet the required 
logistical target values addressed in the objective function 
adherence to delivery date and throughput time. According to 
this strategy, the agent releases the most suitable orders from a 
constantly updated list of orders with specific information on 
the delivery date and order type. 

To achieve a fully automated process of order release the 
developed communication interface between agent and 
simulation is not sufficient but needs to be complemented by 
an online application, which calls the agent and triggers the 
task. Moreover, with this instance different scenarios can be 
compared and validated according to the logistic target values. 
By setting up the required simulation parameters, further 
scenarios can be created in the application instance, which are 
then executed either through the agent’s release strategy or by 
choosing a common heuristic such as Conwip. 

5. Conclusion and further research 

This paper elaborates on the importance of order release and 
compares current approaches to the JSP with four established 
challenges that keep remaining in that domain: Consideration 
of specific production parameters, integration of feedback data, 
enabling a multidimensional objective function and 
applicability to a practical job shop production. 

The proposed approach includes the automation of the order 
release task by combining industrial-grade simulation with a 
RL agent. In the training phase, the RL agent interacts with a 
simplified discrete-event simulation in order to quickly derive 
a strategy optimizing the order selection and timing. This 
trained agent is then applied to a more detailed production 
simulation to release orders based on the learned policy that 
tries to optimize the adherence to delivery date and throughput 
time. It is automated by the overlying online application. 

In order to implement this automated order release 
application, the RL algorithm as well as the simulation model 

have to be developed based on the requirements of the order 
release process. Therefore, parameters and the value function 
defining the RL algorithm have to be specified in order to fulfill 
the specified logistical target values able to outperform current 
approaches. To apply the method to a real production 
environment, especially the feedback data requirements need 
to be investigated in order to integrate these into the 
corresponding simulation model. Finally, as a production 
environment dynamically changes over time, at a certain point 
it might be required to reiterate the training phase in order to 
cope with the current production and keep the agent up to date. 

Acknowledgements 

Funded by the Deutsche Forschungsgemeinschaft (DFG, 
German Research Foundation) under Germany‘s Excellence 
Strategy – EXC-2023 Internet of Production – 390621612 

References 

[1] Schmidtke N, Behrendt F, Thater L, Meixner S. 
Technical potentials and challenges within internal 
logistics 4.0. In: 2018 4th International Conference on 
Logistics Operations Management (GOL): IEEE; 2018 - 
2018. p. 1. 

[2] Duffie N, Bendul J, Knollmann M, 2017. An analytical 
approach to improving due-date and lead-time dynamics 
in production systems 45, p. 273. 

[3] Thommen, J.-P., Achleitner, A.-K., Gilbert, D.U., 
Hachmeister, D., Kaiser, G., Editors; 2017. Allgemeine 
Betriebswirtschaftslehre. Springer Fachmedien 
Wiesbaden. 

[4] Haeussler S, Stampfer C, Missbauer H, 2020. 
Comparison of two optimization based order release 
models with fixed and variable lead times 227, 
p. 107682. 

[5] Zijm H, Regattieri A. Manufacturing Planning and 
Control Systems. In: Zijm H, Klumpp M, Regattieri A, 
Heragu S (eds.). Operations, Logistics and Supply 
Chain Management. Cham: Springer International 
Publishing; 2019. p. 251. 

[6] Schuh, G; 2012. Produktionsplanung Und -Steuerung 1: 
Grundlagen der PPS, 4th edn. Springer Berlin / 
Heidelberg, Berlin, Heidelberg. 

[7] Pürgstaller P, Missbauer H, 2012. Rule-based vs. 
optimisation-based order release in workload control: A 
simulation study of a MTO manufacturer 140, p. 670. 

[8] Lang S, Schenk M, Reggelin T, 2019. Towards 
Learning- and Knowledge-Based Methods of Artificial 
Intelligence for Short-Term Operative Planning Tasks in 
Production and Logistics: Research Idea and Framework 
52, p. 2716. 

[9] Xie J, Gao L, Peng K, Li X et al., 2019. Review on 
flexible job shop scheduling 1, p. 67. 

[10] Kemmerling M, Samsonov V, Lütticke D, Schuh G et 
al. Towards Production-Ready Reinforcement Learning 
Scheduling Agents: A Hybrid Two-Step Training 
Approach Based on Discrete-Event Simulations. In: 
Franke J, Schuderer P (eds.). Simulation in Produktion 
und Logistik 2021. Göttingen: Cuvillier Verlag; 2021. p. 
325. 

4 Author name / Procedia CIRP 00 (2019) 000–000 

A solution for handling unforeseen events was introduced 
by [42] as a basic approach towards real-time disruption 
management strategies, that is able to manage dynamic 
conditions while keeping cost effectiveness, product quality 
and adherence to delivery date. The authors integrate a 
schedule state simulator with rescheduling knowledge stored in 
a deep Q-network, that is trained with reward to a goal schedule 
state. Here, it remains unclear if the method can be transferred 
to a job shop production. A hybrid Deep Q Learning (DQN) 
training method with real production data is proposed by [10] 
in order to solve practical production problems combining an 
initial python-based training instance in SimPy with a further 
training instance using an interface to the commercial software 
Plant Simulation. This approach shows how to combine 
performant and scalable training methods using python with 
detailed status information using advanced simulation 
software. While the practical reference becomes clear, it is not 
yet scaled-up to a representative problem instance and the 
second training step proposed in the hybrid approach has not 
yet been validated. 

The review of the literature presented shows that newly 
introduced approaches that combine mathematical techniques 
and simulation with learning-based systems such as RL are able 
to solve the JSP in an effective way. However, the authors 
agree that space for improvement remains in different 
dimensions: A demand for a strengthened collaboration and 
integration of different PPC methodologies into one application 
as well as a more practical guide for implementing current 
research approaches into a real production are prospected [11]. 
Still not solved to a sufficient grade is the need for quick 
decision support in the PPC with respect to dynamic production 
state changes [8]. Therefore, the requisite for a higher 
integration of near real-time feedback data from the production 
into the planning and control continues to gain importance [6]. 
Also, many approaches to solve the JSP focus on dispatching 
strategies, while fewer make use of the advantages lying at the 
beginning of production at the time of order release. Also, the 
applicability to a real-sized job shop production has not been 
shown in many cases. 

4. Application of automated order release 

This section presents a methodology for automating the 
order release process by using a RL agent and near real-time 
production data to solve the JSP (see Fig. 2).  

 

  

Fig. 2. Setup for the implementation of an automated order release system 

In a first modeling step, a simulation model (I) is used to 
dynamically represent the status of a production system by 
modeling the production process and output feedback data. 
Second, in the training phase (II) a RL agent is trained by 
interacting with the simulation model to derive a control 
strategy for order release. In the third application and 
validation phase (III), the trained agent is implemented on a 
server to control the order release process of a real production 
process via simulation interface. This setting in a final step can 
be used for comparing and validating different scenarios 
against each other. 

4.1. Model 

The model used in the training phase is implemented in 
SimPy as a custom-made python simulation to quickly 
communicate with the agent implemented in python as well. 
Although this is a simplified simulation model, specially 
designed for this application, the basic requirements are to 
depict the available production workstations, the shift model, 
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