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Access to N� CF3 Formamides by Reduction of N� CF3 Carbamoyl
Fluorides
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Abstract: The departure into unknown chemical space is
essential for the discovery of new properties and
function. We herein report the first synthetic access to
N-trifluoromethylated formamides. The method in-
volves the reduction of bench-stable NCF3 carbamoyl
fluorides and is characterized by operational simplicity
and mildness, tolerating a broad range of functional
groups as well as stereocenters. The newly made N� CF3

formamide motif proved to be highly robust and
compatible with diverse chemical transformations,
underscoring its potential as building block in complex
functional molecules.

The exploration of unknown chemical space is considered
key to reach the next frontier of innovative materials,
pharmaceuticals or agrochemicals.[1] To this end, the molec-
ular editing of crucial functional groups to currently
unknown structural motifs is expected to result in novel
properties and function.[2] A widely pursued modification of
organic molecules is the introduction of fluorine or fluorine-
containing groups, which allows to modulate the molecules’
physicochemical properties such as solubility, lipophilicity,
basicity, electrophilicity and metabolic stability.[3] In this
context, a functionality that could so far not be edited to a
N-trifluoromethylated analogue, is the formamide motif (i.e.
R2N� COH).

Aside from their uses as organocatalysts,[4] protecting
groups[5] or as synthetic precursors (e.g. in heterocycle
syntheses),[6] formamides are important motifs in various
drugs and biologically active molecules (Figure 1, top).
Representative examples are the drug Arformoterol,[7] used
to fight asthma and COPD, Aplyronine A[8] as potent
antitumor compound, the anti-obesity drugs Lipstatin[9] and
Orlistat,[10] as well as the natural product class of antimycins.
The latter represent over 40 natural products, which all
share the 3-formamidosalicylate unit, and have biological

functions running from antifungal to anticancer and anti-
inflammatory activity.[11] Systematic studies revealed that an
increased conformational flexibility of the formyl unit can
be associated with higher activity.[12,13] As such, a modifica-
tion of the formyl unit that lowers the N-lone pair
availability and hence the rotational barrier could be greatly
enabling. We envisioned that N-trifluoromethylation could
potentially achieve this feat. In addition, such a modification
should also increase the overall metabolic stability[14] and
lipophilicity.[15] Our computational study of the antimycin
core (R1=COMe, R2=Me, see Supporting Information for
details) suggested that trifluoromethylation of the N� H
would lead to an increased acidity of the phenolic OH group
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Figure 1. Importance of formamides, synthesis and challenges.
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of almost one pKa unit (from 9.9 to 9.0) and slight reduction
in barrier to rotation of >1 kcalmol� 1 (c.f. the N� H
congener). This increased flexibility is more pronounced
when compared to the N� Me analogue, with barriers
lowered by over 5 kcalmol� 1,[16] and mirrors our previous
experimental NMR studies with amides.[17] However, despite
the growing accessibility of N� CF3 compounds,[14,17,18] the
corresponding N� CF3 formamides are not accessible with
the existing synthetic repertoire and are hence unknown.

Traditionally, methods for the synthesis of formamides
use primary or secondary amines as the starting material,
relying upon their inherent nucleophilicity to engage an
electrophilic formyl unit.[19] However, the direct translation
of this concept to N� CF3 variants will not likely be a general
solution to this synthetic problem due to the lack of
accessibility (and stability) of secondary N� CF3 amines[18i,20]

as well as their attenuated nucleophilicity (Figure 1, middle).
With a goal to develop a straightforward, efficient and

general method to construct N� CF3 formamides, we turned
our attention to N� CF3 carbamoyl fluorides, which are
bench-stable and easily accessible from primary amines,[17]

and investigated the possibility of an F!H exchange. The
substitution of fluoride by nucleophilic hydride would offer
the most convenient approach. However, this process is so
far unknown (also for carbamoyl halides not carrying a
CF3),

[21] which might be due to challenges relating to
overreduction. Indeed, the reduction of formamides to the
corresponding amine with NaBH4 is known.[22] This reac-
tivity could be aggravated by the withdrawing effect of
fluorine. Despite the lack of procedures to reduce carbamoyl
halides in general, we nevertheless set out to study the
reactivity of the corresponding N� CF3 carbamoyl fluorides
with hydrides.

Using a solvent mixture of DCM/MeOH (1 :1) with
NaBH4 in our initial experiments indicated the formation of
undesired N� CF3 methylcarbamate along with encouraging
traces of the desired N� CF3 formamide. We suspected that
at room temperature MeOH consumes NaBH4

[23] and forms
alkoxyboron species which are known to perform
transesterification.[24] To disfavour this undesired side-proc-
ess, we turned to the sterically more demanding (and less
nucleophilic) tertiary alcohol tAmOH. Pleasingly, using a
mixture of DCM/tAmOH (1 :1), reaction of a benzylic
N� CF3 carbamoyl fluoride with NaBH4 gave the desired
N� CF3 formamide 1 in 80% yield in 1 h at room temper-
ature as the exclusive product (see Scheme 1).

With this encouraging result in hand, we subsequently
explored the wider scope (Scheme 1). Pleasingly, our
method proved to be applicable to a variety of aryl and alkyl
substrates. Both, electron-donating and electron-withdraw-
ing functional groups were tolerated under these conditions,
including valuable halogens (1, 2, 28, 29), medicinally- and
agrochemically-relevant trifluoromethyl and trifluorometh-
oxy groups (26, 27), methoxy (23) as well as heterocycles
(11, 32). Pleasingly, potentially reducible functionalities,
such as ester (13, 14, 18, 19, 32), nitrile (31), nitro (33) or
alkene (6) remained fully untouched.

We were able to extend the exchange to synthesize
deutero isotopologues via introduction of deuteride (3, 5, 10,

12, 22, 24) in high efficiency, offering potentially increased
metabolic stability as well as a tracer in metabolic studies.[26]

Moreover, our method unlocked access to the N� CF3

formamide derivatives of both α- and β-amino acids (14, 18,
19), including the N� CF3 analogue of the important fMet
(13), which has been linked to human immune response and
late-onset diseases.[27] Notably, our mild conditions allowed
for full conservation of the stereochemical integrity of the
employed amino acids.

With a view to exploring the chemical robustness of the
newly accessed N� CF3 formamides, we examined their
compatibility to downstream diversification. Pleasingly, the
N� CF3 formamide motif proved to be highly robust,
tolerating the diversification under high temperature, basic,
acidic, oxidative, transition-metal-catalyzed or light-acti-
vated photo-redox conditions (see Scheme 1, right &
Scheme 2, left). The pendant alkene in 6 (Scheme 1) could
be oxidized (by m-CPBA) to epoxide 7 as well as reduced
by Pd/C under an H2 atmosphere to 8. Additionally,
deprotection of the Boc-group proceeded smoothly with 14,
followed by peptide coupling to give 15. It is worth noting
that formylated peptides are of importance in bacterial
activation of nociceptors.[28] Pleasingly, the N� CF3 formyl
leucine underwent successful alcohol substitution under
Mitsunobu conditions to give 20, which resembles the final
step of the synthesis of the anti-obesity drug Orlistat (and
further underscores the possibility to implement the novel
N� CF3 motif in drug molecules).[29] Similarly, Pd-catalyzed
cross-coupling methodology proved to be equally compat-
ible: powerful Pd-catalyzed Buchwald–Hartwig amidation[30]

(35), Sonogashira alkynylation (36), borylation (37) and
carbonylation[31] (38) were readily performed (see Scheme 2,
left). Using PdI dimer catalysis[32] enabled C� Br selective
cross-coupling with excess organozincate to 39 without
consumption of the N� CF3 formamide motif. Finally, we
were also able to perform an etherification with diacetone
galactose to form 40 under Ni/photoredox conditions.[33]

Collectively, these transformations clearly demonstrate the
exquisite robustness of the novel N� CF3 formamide motif as
well as its potential as building block in functional molecules
for medicinal, agrochemical or material sciences.[34]

Finally, we set out to examine whether our method
potentially also extends to formamides that do not contain
the N� CF3 substituent, as there is currently no straightfor-
ward reduction of carbamoyl halides known. We were able
to reduce several N,N’-disubstituted carbamoyl fluorides
(41–44) and chlorides (45, 46) (Scheme 2, right). Aryl and
alkyl carbamoyl halides were amenable to this protocol,
although extended reaction times and slightly elevated
reaction temperatures were required to reach full conver-
sion. Deuteration was also feasible, which offers an alter-
native approach to the synthesis of d1-formyl compounds,
circumventing the need for high pressure of CO2 gas as
commonly employed in formylations.[35]

To gain insight on the conformational flexibility, we
performed variable temperature NMR studies on com-
pounds 21 and 41 (i.e. biphenyl N� CF3 formamide versus its
N� Me analogue). These studies confirm the anticipated
greater flexibility of the N� CF3 formamide. While the
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N� Me compound 41 showed a second rotamer up to 75°C,
consistent with literature reports,[13a] the corresponding
N� CF3 analogue does not even show a second rotamer at
room temperature. Only upon cooling, a second rotamer
becomes slightly visible from 15°C, and clearly visible at
5°C as judged by 1H NMR and 19F NMR spectroscopic
analyses (see Supporting Information for additional infor-
mation).

In summary, we have developed a mild and operation-
ally simple approach to unlock the first synthetic access to
N� CF3 formamides via straightforward reduction of readily
accessible and bench-stable N� CF3 carbamoyl fluorides with
NaBH4 (or NaBD4 to access the deutero isotopologues).
The method is characterized by simplicity, rapid speed (1 h
at r.t.), tolerating a wide range of functional groups,
including α- and β-amino acids scaffolds under full conserva-
tion of stereochemical integrity. We showed that the method
also extends more generally to carbamoyl halides not

carrying the N� CF3 unit, for which there is—to date—also
no straightforward reduction known. The newly made
N� CF3 formyl motif proved to be highly robust, tolerating a
wide range of synthetic manipulations under oxidative,
reductive, basic or acidic conditions and including light- and/
or transition metal-assisted processes. Given the prevalence
of the formamide motif in therapeutic drugs as well as
numerous other functional molecules, we anticipate wide-
spread interest and application of the presented method to
tailor properties and unleash new function.
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Scheme 1. Scope of N� CF3 reduction.
[25] Reaction conditions: N� CF3 carbamoyl fluoride (1 equiv), NaBH4 (2 equiv), DCM/tAmOH (1 :1) [0.2 M] at

r.t. for 1–2 h. a) m-CPBA (1 equiv), DCM, 0°C to r.t., 16 h; b) H2 (1 atm), Pd/C (10 mol%), MeOH, r.t., 24 h; c) step 1: TFA, DCM, r.t., 16 h; step 2:
HBTU, DIPEA, H-Val-OtBu·HCl, DCM, r.t., 16 h (yield over 2 steps); d) TFA (excess), CHCl3, r.t., 5 h; e) step 1: TFA, DCM, r.t., 16 h; step 2: PPh3

(1 equiv), DIAD (1 equiv), (R)-butan-2-ol (1 equiv), THF, r.t., 16 h (yield over 2 steps).
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