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Abstract  44 

Pathology diagnostics relies on the assessment of morphological features by trained 45 

experts, which remains subjective and qualitative. Modern image analysis 46 

techniques, particularly deep learning, provide a possible solution, sometimes 47 

exceeding human capabilities, e.g., mutation prediction directly from histology. 48 

However, categorical model outputs are of limited use for further downstream 49 

analyses and limited interpretability. Here we developed a framework for large-50 

scale histomorphometry (FLASH) which performs semantic segmentation and 51 

subsequent large-scale extraction of interpretable morphometric features. Two 52 

internal and three external, multi-centre cohorts of kidney biopsies were used to 53 

generate 40 million data points. Association with clinical data confirmed previous 54 

concepts, e.g., the importance of tubular atrophy for kidney function decline, and 55 

revealed unexpected findings, such as glomerular tuft hypertrophy in biopsies from 56 

patients with vs. without nephrotic range proteinuria. Single-structure analysis 57 

identified distinct glomerular populations and morphometric phenotypes along a 58 

trajectory of disease progression and features were independently associated with 59 

long-term clinical outcomes in IgA nephropathy. These data provide the concept 60 

for Next-generation Morphometry (NGM), opening new possibilities for 61 

comprehensive quantitative pathology data mining, i.e., pathomics, enabling 62 

augmented research and diagnostics. 63 

 64 
 65 
 66 
 67 
 68 
 69 
 70 
 71 
 72 
 73 
 74 
 75 
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 76 

Introduction 77 

 78 
Pathology constitutes a cornerstone in the diagnosis and treatment decisions 79 

across many diseases. It mainly relies on morphology-based 80 

histopathological tissue analysis, which remains manual and requires highly 81 

trained expert pathologists. The same is true for nephropathology, a highly-82 

specialised area of pathology focusing on the complex diagnostics of kidney 83 

diseases. Scoring systems applied by pathologists, such as the Banff-84 

Classification1 of kidney transplant pathology or the Oxford classification of 85 

IgA nephropathy (IgAN)2, have improved standardisation in 86 

nephropathology. These scoring systems provide clinically important 87 

readouts, e.g., regarding response to therapy or assessing the likelihood of 88 

disease progression1–3. Despite such scoring systems, pathology diagnostics 89 

still remain semi-quantitative, labour-intensive, and subjective, sometimes 90 

with high inter-observer variability4,5.  91 

Progresses in digitisation of pathology enable workflows augmented by 92 

advanced image analysis techniques, particularly using deep learning (DL)6,7. 93 

End-to-end DL algorithms showed encouraging performances in various 94 

tasks, mainly explored in oncologic pathology, e.g., in tumour grading8, 95 

subtyping of cancer variants9 and prediction of mutation status10. These 96 

approaches, although promising, provide only qualitative or semi-97 



 

4 

quantitative data and their explainability is limited, mostly remaining a 98 

“black-box”11. An approach to tackle these limitations and enable 99 

histopathology data mining is based on extraction of understandable 100 

quantitative features of histological structures12–16. This however requires 101 

precise and effective segmentation of relevant histopathological structures, 102 

which can be achieved using DL. 103 

Here, we developed an automated framework for large scale 104 

histomorphometry (FLASH) in nephropathology. FLASH extends an existing 105 

DL-segmentation model17 and is applicable to all morphological injury 106 

patterns across major kidney diseases. FLASH-derived quantitative 107 

morphometric features could be traced back directly to histology and 108 

reflected morphological alterations associated with disease progression, 109 

revealed novel associations of morphological alterations with clinical 110 

parameters, and provided independent prognostic factors for disease 111 

progression in IgAN.  112 

 113 

 114 

 115 

 116 
 117 
 118 
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Results 119 

Demographic & clinical characteristics of 120 

cohort 121 

Two internal, single-centre (AC_B & AC_N), and three external, multi-centre 122 

cohorts (HubMAP, KPMP, VALIGA) of kidney biopsies and nephrectomies 123 

were included (Figure 1A). Four cohorts (AC_B, AC_N, HuBMAP, KPMP) 124 

covering the whole spectrum of native and transplant pathology were used 125 

for development, testing and external validation of FLASH. The additional 126 

VALIGA cohort is a multicentric international cohort of IgAN patients, i.e., 127 

the most common glomerulonephritis worldwide, which was used to analyse 128 

the value of FLASH within a potential clinical setting. Demographic and 129 

clinical characteristics between cohorts were comparable, apart from 130 

younger patients and more males in the VALIGA cohort, as well as reduced 131 

kidney function assessed by estimated glomerular filtration rate (eGFR), 132 

which was more common in the AC_B cohort and a higher prevalence of 133 

hypertension in the AC_N cohort. Patient characteristics of all cohorts are 134 

provided in Supp. Table 1. 135 



 

6 

Precise pan-disease segmentation of kidney 136 

specimens 137 

To enable quantitative data mining of kidney histology, the tissue must be 138 

precisely separated into relevant histopathological structures, such as 139 

glomeruli, tubules, vessels and interstitium. Two streamlined segmentation 140 

convolutional neural networks (CNNs) were trained to automate 141 

segmentation inference. One CNN was used for kidney tissue segmentation 142 

and another for instance-level (e.g., one glomerulus is one instance) structure 143 

segmentation of i) glomeruli, ii) their respective tufts, iii) tubules, iv) arteries, 144 

v) their respective lumina and vi) non-tissue background (annotation criteria 145 

are given in Supp. Table 2). Both segmentation CNNs showed high accuracies 146 

in the internal cohorts assessed by Dice-similarity-coefficients (on class- and 147 

instance-level), F1-score and positive predictive value (Table 1, Supp. Figure 148 

1). The structure segmentation CNN correctly segmented glomeruli and 149 

glomerular tufts across all injury patterns, even in complex cases such as 150 

crescents, segmental sclerosis or a membranoproliferative pattern (Figure 151 

2A). High accuracy was also observed for tubules despite large variations in 152 

size and shape, e.g., in tubular atrophy or light chain casts (Figure 3A). 153 

Arteries and especially their lumina were segmented with lower precision 154 

(Table 1). Regardless of large differences in staining protocols (Supp. Figure 155 
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2), segmentation accuracy was comparable or even better in the external, 156 

multi-centre cohorts used only for validation, indicating broad 157 

generalisability (Table 1, Supp. Figure 3). Small segmentation errors were 158 

detected in all classes (Supp. Figure 4). 159 

Taken together, FLASH allowed a broad, “pan-disease” applicability across all 160 

common diseases and morphological injury patterns in multicentric kidney 161 

datasets.  162 

Glomerular morphometry is associated with 163 

specific diseases and clinical readouts  164 

Applying FLASH enabled the extraction of features of more than 11,000 165 

glomeruli and glomerular tufts in the AC_B cohort, the subsequent large-166 

scale comparisons of glomerular morphometric features (Supp. Table 3) and 167 

their distributions in common native kidney diseases (Figure 2C, Supp. 168 

Figure 5A-B). The median glomerular tuft area was significantly increased by 169 

19.71% in lupus nephritis, 18.9% in minimal change disease (MCD) and 40.54% 170 

in membranous glomerulonephritis (GN) all with increased interquartile 171 

range (IQR) compared to the normal baseline (all p < 0.01, Figure 2C, Supp. 172 

Table 4). This effect could also be observed for full glomeruli (i.e., tuft + 173 

Bowman’s space + capsule) in lupus nephritis (7.41% increase, p < 0.01), MCD 174 

(7.91% increase, p < 0.01) and membranous GN (25.21% increase, p < 0.01). 175 
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However, the change of the full glomerular area was less prominent than that 176 

of the tuft (Supp. Figure 5A, Supp. Table 4). In diabetic (DN) or hypertensive 177 

nephropathy (HTN) distributions of glomerular and tuft areas were more 178 

variable with larger IQRs. This was especially pronounced in HTN biopsies 179 

where the median glomerular tuft area was significantly increased while the 180 

percentage of glomeruli without a tuft (e.g., globally sclerotic or empty 181 

Bowman’s space) was considerably higher as well (45.93% compared to 182 

19.68%). This is likely due to glomerulosclerosis and hypertrophy of the 183 

remaining glomeruli.  184 

Next, the hypothesis that proteinuria is associated with glomerular 185 

hypertrophy was investigated18. The glomerular tuft areas in native AC_B 186 

cases with vs.  without nephrotic range proteinuria (i.e. > vs. <3.5g/d) were 187 

significantly larger (9.71%, p < 0.01, Figure 2D, Supp. Table 5). Analysis of 188 

diseases typically associated with proteinuria, i.e., MCD and membranous 189 

GN confirmed these findings with an average increase of mean tuft area by 190 

10.69% in MCD and median tuft area by 51.01% in membranous GN (both p < 191 

0.01, Figure 2D’, Supp. Table 5). Interestingly, the median tuft area was 192 

slightly decreased in MCD suggesting that tuft hypertrophy only affects 193 

subgroups of glomeruli. A similar significant increase in glomerular tuft area 194 

by 18.7% was found in the KPMP cohort (p < 0.01, Figure 2D’’, Supp. Table 5). 195 

Tuft circularity in MCD was not significantly altered in nephrotic range 196 

proteinuria (0.41; IQR: 0.13 vs 0.40; IQR: 0.14, p = 0.39), suggesting that the 197 
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glomerular tufts were enlarged without changes in shape. In contrast, tuft 198 

circularity was significantly decreased by 19.57% (p < 0.01) in membranous 199 

GN with nephrotic range proteinuria, suggesting that the hypertrophic 200 

glomerular tufts in membranous glomerulonephritis were not solely 201 

upscaled, but also deformed (Figure 2E, Supp. Table 5).   202 

In all native kidney biopsy cases from the AC_B cohort, the tuft circularity 203 

progressively decreased with kidney function loss (13.95% overall decrease, p 204 

< 0.01), in cases with eGFR >60 to eGFR of 30-60 (6.98% decrease, p < 0.01) to 205 

eGFR <30ml/min/1.73m² (7.5% decrease, p < 0.01, Figure 2F, Supp. Table 6). 206 

Furthermore, the tuft circularity was significantly reduced by 24.44% (p < 207 

0.01) in DN and 18.89% (p < 0.01) in HTN compared to normal biopsies, 208 

associated with segmentally sclerotic tufts (Supp. Figure 5B, Supp. Table 4). 209 

However, the tuft circularity was significantly reduced by 20.0% (p < 0.01) in 210 

pauci-immune GN as well, likely reflecting the presence of crescents. This 211 

indicates that glomerular tuft deformation reflects structural alterations of 212 

glomeruli that are associated with deterioration of kidney function.  213 

Taken together, FLASH allowed large scale quantitative analysis of 214 

glomerular morphometry, revealing novel clinico-morphological 215 

associations.   216 
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Morphometry of the tubulointerstitium and 217 

vasculature is linked to kidney function & 218 

hypertension 219 

Since the tubulointerstitium and vasculature are often damaged in kidney 220 

diseases, FLASH was used to extract features of over two million tubular 221 

instances. These were compared based on the reported diagnosis, 222 

histopathological scoring and kidney function estimated by eGFR.  223 

The tubular diameter significantly decreased in DN (by 16.04%), HTN (by 224 

14.81%) and IgAN (by 4.58%) compared to normal biopsies (all p < 0.01, Supp. 225 

Figure 5C, Supp. Table 4). When grouping cases based on the interstitial 226 

fibrosis and tubular atrophy score (IFTA) taken from the pathology reports, 227 

the tubular diameters continuously decreased from none/marginal (0-10% 228 

IFTA) to mild (11-25% IFTA) to moderate (26-50% IFTA) to severe (>50% IFTA; 229 

all p < 0.01, Figure 3C, Supp. Table 7), reflecting an increase in tubular 230 

atrophy. Conversely, the tubular distance significantly increased in biopsies 231 

with mild (by 33.48%), moderate (by 44.12%) and severe IFTA (by 82.35%) 232 

compared to none/marginal IFTA (all p < 0.01, Figure 3D, Supp. Table 7), 233 

indicating an increase in interstitial space, which is most commonly due to 234 

interstitial fibrosis. Similar changes in the distribution of tubular 235 

morphometry were observed when cases were grouped based on stratified 236 
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eGFR. The tubular diameter progressively decreased with kidney function 237 

loss (5.84% overall decrease, p < 0.01), in cases with eGFR >60 to eGFR of 30-238 

60 (2.63% decrease, p < 0.01) to eGFR <30ml/min/1.73m² (3.3% decrease, p < 239 

0.01, Figure 3C’, Supp. Table 6) while the tubular distance significantly 240 

increased (86.42% overall increase, p < 0.01) in cases with eGFR >60 to eGFR 241 

of 30-60 (39.81% increase, p < 0.01) to eGFR <30ml/min/1.73m² (33.33% 242 

increase, p < 0.01, Figure 3D’, Supp. Table 6). Overall, the extracted 243 

tubulointerstitial features confirmed existing concepts of clinical and 244 

morphologic associations. 245 

Arteriosclerosis is a common chronic vascular injury pattern in kidney 246 

diseases, currently only reported in gross grades. The artery wall diameter 247 

(i.e., wall thickness, Figure 3E) significantly increased in cases with none to 248 

moderate to severe reported arteriosclerosis (all p < 0.01), while the measured 249 

lumen diameters significantly decreased (all p < 0.01, Supp. Figure 6, Supp. 250 

Table 8). The median wall diameters of arteries and arterioles significantly 251 

increased by 8.59% (p < 0.01) in the AC_B, 10.85% (p < 0.01) in the AC_N and 252 

20.33% (p < 0.01) in the HuBMAP cohort based on the presence of 253 

hypertension, likely due to thickening of the tunica media and intima (Figure 254 

3F, Supp. Table 8). In the KPMP cohort an increase was also overserved (by 255 

2.4%), although it was not significant (p = 0.15). As a result of increasing wall 256 

thickness, diameters of the arterial lumen decreased in all four cohorts (Supp. 257 

Table 8). Taken together, vascular features reflect the pathologist’s 258 
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assessment of arteriosclerosis, are associated with the presence of 259 

hypertension and allow quantitative assessment of vascular alterations. 260 

Morphometric features are predictive of 261 

disease progression in IgA nephropathy 262 

To assess the utility of FLASH for outcome prediction in a clinical setting, the 263 

multicentric VALIGA cohort of IgAN patients was analysed. Disease 264 

progression was defined as reaching the combined endpoint of end-stage 265 

kidney disease (ESKD) and/or halving of the initial eGFR assessed at the time 266 

of biopsy within eight years after biopsy. Median follow-up time was 4.72 267 

(IQR: 5.28) years. 14.29% of patients (n=92) reached the combined endpoint 268 

(16.31% due to ESKD, 23.91% due to eGFR halving and 59.78% due to both 269 

endpoints) within a median time of 4.53 (IQR: 5.17) years. Comparison of 270 

biopsies of patients reaching the combined endpoint vs. those who did not, 271 

revealed a significant decrease in tuft circularity (0.33; IQR: 0.08 vs. 0.38; 272 

IQR: 0.08, p < 0.01), tuft area (6,788.34; IQR: 3,628.64µm² vs. 9,296.31; IQR: 273 

4,606.89µm², p < 0.01), tubular diameter (28.45; IQR: 7.09µm vs. 30.16; IQR: 274 

6.53µm, p < 0.01), and a significant increase in tubular distance (4.57; IQR: 275 

1.67µm vs 3.31; IQR: 1.85µm, p < 0.01), and Bowman’s area (6,515.6; IQR: 276 

1,630.71µm² vs. 6,009.81; IQR: 2,449.67µm², p < 0.05) (Figure 4A). Univariate 277 

Cox regression models for these five features showed that patients with 278 
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certain feature expressions at the time of biopsy displayed a faster decline of 279 

disease progression-free probability and a higher risk of reaching the 280 

combined endpoint (Figure 4B-C). Adjusted multivariate analysis for each 281 

predictive feature as well as age, sex, MEST-C score and eGFR at time of 282 

biopsy confirmed tubular distance (HR, 2.04; 95% CI 1.18-3.52, p < 0.05), tuft 283 

circularity (HR, 1.99; 95% CI 1.29-3.07, p < 0.05), tuft area (HR, 1.77; 95% CI 284 

1.03-3.03, p < 0.05) and tubular diameter (HR, 1.82; 95% CI 1.13-2.92, p < 0.05) 285 

to be independent predictors for reaching the combined end-point, being 286 

significantly associated with disease progression (Supp. Table 9, Supp. Table 287 

10). To further compare the digitally derived morphometric biomarkers with 288 

traditional histopathology scoring for IgAN, two Cox regression models were 289 

fitted, i) Digital Biomarkers (including all five digital features, age, sex and 290 

initial eGFR) and ii) MEST-C (including M, E, S, T, C, age, sex and initial 291 

eGFR) (Supp. Table 11). The fitted Digital Biomarkers model (C-292 

statistic=0.80±0.03, AIC=1003, BIC=1023) was non-inferior to the MEST-C 293 

model (C-statistic=0.80±0.02, AIC=1010, BIC=1030). Combining the Digital 294 

Biomarkers and MEST-C model into a third, hybrid model resulted in a 295 

slight improvement (C-statistic=0.82±0.02, AIC=995, BIC=1028). 296 
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Glomerular morphometric phenotypes along 297 

disease progression trajectory  298 

Animal models and experience from kidney biopsy diagnostics allow 299 

generating hypotheses on the course of morphological alterations during 300 

disease progression, however, an approach to quantitatively analyse this was 301 

missing. To tackle this, an unsupervised analysis using diffusion maps was 302 

performed to find major axes of glomerular morphometric changes in IgAN, 303 

revealing clusters of glomerular instances attributed to the overall kidney 304 

function measured by eGFR (Figure 5A-A’’). Based on this, a trajectory and 305 

an estimated pseudotime score were determined, where glomeruli progress 306 

from a healthy to a diseased morphometric phenotype (Figure 5B). 307 

Histologic examples of glomeruli along the pseudotime supported 308 

morphological changes progressing from normal to increasingly diseased 309 

phenotypes with higher pseudotime scores, e.g., with increasing mesangial 310 

expansion and sclerosis (Figure 5B’, Supp. Figure 7). 311 

A feature expression heatmap along the pseudotime revealed glomerular 312 

morphometric alterations associated with IgAN disease progression, e.g., 313 

decreasing tuft area and tuft circularity, and increasing tuft eccentricity and 314 

elongation, resulting in smaller and more deformed glomerular tufts (Figure 315 

5C). The fraction of glomerular instances at the beginning of the pseudotime 316 
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trajectory that belong to patients with preserved kidney function 317 

(>60ml/min/1.73m²) continuously decreased along the pseudotime (Figure 318 

5D). On the other hand, the fraction of glomeruli from patients with 319 

considerably reduced kidney function (<30ml/min/1.73m²) constantly 320 

increased along the pseudotime trajectory, indicating that the pseudotime 321 

represents the disease progression of IgAN towards ESKD in glomerular 322 

populations (Figure 5D).  323 

Automated visualisation of image patches enabled displaying morphometric 324 

outliers of glomeruli and in a single, representative case of IgAN from the 325 

AC_B cohort. Morphometric outliers of structures of interest were displaying 326 

various pathological lesions i.e., crescents, segmental sclerosis or tubular 327 

atrophy (Supp. Figure 8) which could enable fast-track assessment of kidney 328 

histopathology. 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 
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Discussion 337 

 338 
Our study presents a proof-of-concept for large-scale automated extraction 339 

of large-scale quantitative morphometric data from histopathology, i.e., 340 

Next-Generation Morphometry (NGM). For this, a DL-based instance 341 

segmentation and quantification framework (FLASH) was implemented. 342 

FLASH was developed and validated in heterogeneous multi-centre datasets 343 

using both kidney biopsies and nephrectomies and a large variety of diseases. 344 

The segmentation accuracy of FLASH was high across cohorts, indicating 345 

broad generalisability. We focused on nephropathology, since the kidney is 346 

one of the most complex organs in pathology diagnostics, requiring a high 347 

level of specialisation, and representing a challenging use case. NGM 348 

provides the basis for histopathology morphometry, a novel “omics” 349 

approach we propose to term “pathomics”.  350 

Omics technologies comprehensively quantify biomolecules in an unbiased 351 

manner and on a large scale, e.g., DNA in genomics, RNA in transcriptomics 352 

and proteins in proteomics19. These approaches are increasingly performed 353 

in a comprehensive, multi-omics fashion20 and with spatial resolution21,22. 354 

Although morphological alterations in diseases are very well recognized and 355 

have been used for diagnostics for over a century, approaches for omics-356 

based analysis of histopathology were missing. NGM and pathomics could 357 

serve as a novel, complementary approach to the molecular omics 358 
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techniques, providing unbiased, tissue-based, quantitative (geometrical) 359 

information on histological structures. Compared to established omics 360 

techniques, which are continuously improved, NGM is currently in its 361 

infancy. It is expected that NGM will undergo prominent development, 362 

particularly given that the technological prerequisites are largely met, i.e., the 363 

instruments for high-throughput digitisation of histology slides, graphics 364 

processing units (GPUs) and storage are increasingly being available and 365 

affordable. E.g., in this study we were able to analyse 7,382,198 instances of 366 

histological structures with 6,742,314 tubules, 89,160 glomeruli and 550,724 367 

arteries, showing that NGM can be used to provide data on histology at an 368 

unprecedented scale. 369 

Similarly to Next-generation Sequencing and genomics, which have 370 

revolutionised research and diagnostics by comprehensive genetic molecular 371 

characterisation, NGM opens new frontiers in quantitative assessment of 372 

morphology. As a first proof-of-concept we have shown the potential utility 373 

of NGM and pathomics for quantitative kidney histopathology data mining, 374 

providing clinically relevant and complementary readouts that can constitute 375 

an important step towards precision medicine.  376 

Patients with MCD or membranous GN and nephrotic range proteinuria 377 

showed a prominent increase in mean glomerular tuft area, compared to 378 

those without. In MCD-patients, larger glomeruli identified by manual 379 

analysis were previously associated with an increased risk for kidney function 380 
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deterioration and development of glomerular sclerosis23. With FLASH and 381 

NGM, such morphological biomarkers can now be assessed automatically 382 

across all diseases. Importantly, FLASH revealed a decrease in tuft circularity 383 

in membranous GN patients with nephrotic range proteinuria, but not in 384 

MCD, indicating different mechanisms of glomerular hypertrophy in these 385 

diseases. The tuft circularity progressively decreased across all native diseases 386 

in patients with decreased kidney function, indicating that this might be a 387 

general feature of kidney function decline. Thereby, NGM can provide novel 388 

findings and generate novel research questions based on morphology. 389 

NGM and FLASH enabled the identification of morphological features that 390 

are independent predictors of kidney function decline in IgAN, such as the 391 

smallest distance between tubular instances, the glomerular tuft circularity or 392 

the tubular diameter. While some of these were expected, e.g., the distance 393 

between tubules reflecting interstitial fibrosis, others, such as tuft circularity, 394 

were unexpected. These features could be used as a set of digital biomarkers, 395 

potentially improving the predictive value and reproducibility of 396 

histopathology diagnostics. Accordingly, a combined model of only a few of 397 

these digital biomarkers proved to be non-inferior compared to a validated 398 

standard histopathological scoring system, i.e., the MEST-C score24. The 399 

advantage of using NGM over a pathologist-derived score is that it is 400 

quantitative and fully automated, thereby better reproducible, more precise 401 

and faster, sparing the time of pathologists.  402 
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Adapting techniques designed to analyse other omics data, such as single cell 403 

sequencing data, we identified a trajectory of disease progression in a low 404 

dimensional embedding of glomerular features in IgAN. This allowed a 405 

granular analysis of progression of glomerular phenotypes from healthy to 406 

diseased, which can be seen as a novel and unbiased way of identifying 407 

histologic features relevant for disease progression. This first proof of 408 

concept shows that NGM-based data can be used to make histopathology 409 

analysis quantitative, capturing more subtle changes which better reflect the 410 

biological reality of disease progression and modelling disease progression 411 

relevant pathologies. 412 

Some studies previously described the potential of morphometric analysis of 413 

histology17,25–28. Although very specific, these scoring systems were applicable 414 

only in specific use cases and particular pathological alterations. NGM and 415 

FLASH follow a holistic approach of morphometric analysis, prioritising 416 

unbiased data mining, thus enabling a wider variety of possible downstream 417 

analyses, i.e., an exploratory approach comparable to other omics 418 

techniques. 419 

Currently, a major focus in computational pathology is the development of 420 

end-to-end DL solutions, which mostly provide qualitative results, e.g., a 421 

disease class or mutational status10,29–31. On the contrary, NGM and FLASH 422 

use segmentation as a basis for subsequent large-scale quantitative data 423 

mining. Compared to end-to-end pipelines, NGM provides an alternative 424 
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approach with several advantages. The results are visually verifiable, can be 425 

easily checked by pathologists, and are therefore interpretable. This is often 426 

not the case in end-to-end DL solutions, which remain a black-box in terms 427 

of explainability. Therefore, quantitative histology features remain 428 

comprehensible, even if clustered in a lower dimensional space. This can 429 

help reduce potential scepticism towards DL based systems that might hinder 430 

clinical application.  431 

In nephropathology, the majority of cases, including IgAN, are rare diseases. 432 

Large data repositories allowing the effective and robust development of 433 

end-to-end DL pipelines in nephropathology are missing, making the 434 

development of such pipelines considerably more difficult compared to 435 

oncological pathology. In comparison, NGM and FLASH do not require large 436 

datasets for development and can be applied to any type of disease, including 437 

rare diseases such as in MCD, IgAN, etc.   438 

This study has several important limitations. Currently, FLASH includes only 439 

a few, easily explainable morphometric features, focusing on providing a 440 

proof-of-concept of the utility of NGM. One of the challenges we 441 

encountered was the large variability within the stainings, which prohibited 442 

us from extracting additional features, e.g., colour or texture-based features. 443 

Further developments should focus on colour normalisation approaches, a 444 

larger number of additional morphological features, and inclusion of 445 

subvisual features to provide even more comprehensive morphometric data. 446 
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Another limitation is that FLASH is not generic for any kind of tissue, but 447 

specifically developed for the kidney. Particularly because of the required 448 

tissue-specific segmentation and different stains used in various organ 449 

histopathology analysis, it is currently unlikely to have a pipeline applicable 450 

for every kind of tissue histology. In addition, generating the ground truth 451 

for the segmentation algorithm requires considerable effort and time-452 

investment by expert pathologists, which is a limitation in comparison to 453 

end-to-end approaches, which can be trained in a weakly supervised way 454 

with very little manual overhead. Another limitation is the retrospective 455 

design of this study. However, this study should serve as the basis for 456 

designing potential future prospective trials investigating the predictive 457 

potential of NGM.  458 

In conclusion, our study lays the groundwork for introducing NGM and 459 

pathomics for explainable, quantitative, histopathology analysis and 460 

pathomics.  461 

 462 
 463 
 464 

Methods 465 

Cohort assembly & sample collection 466 

 467 
For development, validation and application of FLASH, whole-slide images 468 

(WSIs) and clinical data from five cohorts were gathered (Supp. Table 12): two 469 
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internal (development cohorts) and three external, two of which were used 470 

for validation and the third, the VALIGA trial, for a disease-specific 471 

application use case (Figure 1A). Following exclusion criteria were used in all 472 

cohorts: i) no kidney tissue in the specimen, ii) no Periodic Acid Schiff (PAS)-473 

slide available, iii) only cryosections available and iv) containing less than 474 

eight glomeruli, unless a definitive pathological diagnosis could be made, v) 475 

large artefacts present on the slide, vi) insufficient scan quality (e.g., major 476 

part of tissue being out of focus and blurred), vii) insufficient stain quality 477 

(e.g., unstained tissue) and viii) broken slides (Figure 1A). 478 

Data collection and analysis in this study was approved by the local ethic 479 

committee of the RWTH Aachen University (EK-No. 315/19). 480 

 481 

Development cohorts 482 

Aachen Biopsy cohort (AC_B). A database search identified 355 kidney biopsy 483 

cases in the archive of the Institute of Pathology of the RWTH Aachen 484 

university clinic within the inclusion period (January 1st 2017 - May 1st 2021). 485 

Biopsies were either native kidney or indication or protocol transplant 486 

biopsies. Diagnoses for all cases are given in Supp. Table 13.  487 

Aachen Nephrectomy cohort (AC_N). 38 nephrectomy specimens (inclusion 488 

period: 2013 - 2021) were included, appreciating that nephropathology is not 489 

limited to biopsy specimens and aiming at applicability also in nephrectomy 490 

samples. The AC_N cohort consists of 13 transplant nephrectomies due to 491 
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severe complications and 25 tumour nephrectomies, including only non-492 

tumour tissue away from tumour borders. Both groups reflect a broad 493 

morphological spectrum of histopathology. More tumour nephrectomies 494 

than transplant nephrectomies were included since they are more common 495 

in routine diagnostics. 496 

In both cohorts 1-3 µm thick formalin-fixed and paraffin-embedded (FFPE) 497 

sections were used. All slides from the AC_B, AC_N and VALIGA cohorts 498 

were digitised using an Aperio AT2 whole-slide scanner with a 40x objective 499 

(Leica Biosystems, Wetzlar, Germany).  500 

 501 

External validation cohorts 502 

Two external publicly available cohorts from independent consortia were 503 

included to validate the generalisability of our CNNs. The cohort from the 504 

Kidney Precision Medicine Project (KPMP)32 (accessed on 15th March 2021) 505 

consists of 90 PAS-stained WSIs from patients with either acute kidney injury 506 

(AKI), chronic kidney disease (CKD) or healthy tumour nephrectomies. It 507 

included 34 biopsy and two nephrectomy cases. After the exclusion process, 508 

85 PAS-stained WSIs were included in the analysis. The cohort from the 509 

Human BioMolecular Atlas Program (HubMAP)33 contains 22 nephrectomy 510 

specimens from 12 deceased organ donors. 13 cryo sections were excluded 511 

since they were out of distribution (we only trained on FFPE material), with 512 

the final cohort consisting of nine nephrectomy WSIs from nine cases. 513 
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Additionally, clinical data from both cohorts were gathered when available 514 

(Supp. Table 12).  515 

 516 

Specific application cohort 517 

After development was finished, the FLASH architecture was applied to the 518 

multi-centre VALIGA trial which represents one of the largest biopsy cohorts 519 

of patients with IgAN. From the initial cohort, 768 cases could be identified 520 

and digitised (scanned). The following problems prevented more cases from 521 

being included: a) it was not possible to identify the slide label (e.g., because 522 

it faded, or fell off), or b) slides broke during transport. Overall, 106 cases 523 

were excluded, since they met at least one of the above-mentioned exclusion 524 

criteria, most often not available digital PAS-stained slides. An additional 14 525 

cases were excluded on slide level due to artefacts, with in total, 648 PAS-526 

stained WSIs of 648 cases being included (Figure 1A). 527 

Framework development 528 

FLASH consists of an automated three-step approach: i) a CNN that 529 

automatically segments kidney tissue on a WSI discarding all non-kidney 530 

tissues (e.g., adipose or muscle tissue), ii) another CNN that segments 531 

histological structures of the kidney tissue segmented by the first CNN and 532 

iii) hand-crafted feature extraction for segmented structures (Figure 1B). The 533 
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framework is applicable to the whole morphological spectrum of non-534 

neoplastic kidney diseases.  535 

 536 

Generation of annotations 537 

For the kidney tissue segmentation, we annotated kidney tissue on slide-538 

level. For the segmentation of histological structures, we annotated patches 539 

of size 174x174µm² using the following six classes (Supp. Table 2): (1) full 540 

glomerulus (including the tuft), (2) glomerular tuft, (3) tubule, (4) artery 541 

(including lumen, intima and media), (5) arterial lumen and (6) non-tissue 542 

background (including veins with a diameter of >30µm). We focused on these 543 

classes since they represent the major kidney compartments and can be 544 

reproducibly annotated even in severe diseases. Further details on the 545 

annotation process are described in the supplementary methods. Overall, we 546 

annotated 1,056 WSIs for the tissue segmentation and 4,031 patches and 547 

27,287 structures for the structure segmentation in the four development and 548 

validation cohorts (Supp. Tables 14-15). Two medical students and two 549 

nephropathologists were involved in the annotation process. 550 

 551 

Tissue & structure segmentation CNNs 552 
 553 
For the segmentation of kidney tissue, we used an nnU-Net, representing the 554 

state-of-the-art for biomedical image segmentation34. For the segmentation 555 
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of histological structures, we have built on our previous study on kidney 556 

structure segmentation in experimental nephropathology by employing the 557 

same U-Net-like architecture and training routine as they were specifically 558 

developed and comprehensively validated for this particular task17. Both 559 

CNNs were developed using the internal AC_B and AC_N cohorts while the 560 

external held-out data from the KPMP and HuBMAP cohorts were used for 561 

external validation only. Detailed information on CNN architecture and 562 

training routines including data splits is provided in the supplementary 563 

methods. 564 

 565 

Performance evaluation 566 

Segmentation accuracy was assessed by Dice-similarity-coefficients (DSC) 567 

for the tissue segmentation. Instance Dice-similarity-coefficients (iDSC) were 568 

used for the structure segmentation, in which the differentiation of 569 

individual instances is essential. In addition to DSCs and iDSCs, other 570 

established metrics such as F1-Scores and positive predictive values (PPVs) 571 

were assessed. Performance metrics were calculated by averaging scores for 572 

all prediction and ground truth instances from all slides of the test/validation 573 

set.  574 

 575 
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Feature extraction  576 

FLASH enabled us to extract 7,382,198 instances of segmented histological 577 

structures (6,742,314 tubules, 89,160 glomeruli and 550,724 arteries) from the 578 

five cohorts. Each segmented instance represents a geometrical object, 579 

enabling the quantitative assessment of 35 hand-crafted morphometric 580 

histological features including area, shape, diameter or distance. Due to very 581 

large divergence in staining in the multicentric cohorts, the extraction of 582 

colour or texture-based features was not feasible. Additional information 583 

regarding the computation of morphometrical features is given in the 584 

supplementary methods and in Supp. Table 3. 585 

Single structure trajectory analysis 586 

We used Seurat (4.1.0 version)35 to perform a single structure trajectory 587 

analysis. We considered structures as samples and structure features as 588 

columns. This analysis was done independently for tubules and glomeruli 589 

due to distinct features. Next, we ran NormalizeData with the parameter 590 

normalization.method='RC' (Relative counts) to normalise each structure. 591 

We used the Corral package (version 1.4.0)36 to perform dimension reduction 592 

using Pearson Residuals based correspondence analysis. Next, we produced 593 

a diffusion map using the destiny package (3.8.1)37 with default parameters. 594 

We performed Louvain clustering with the first two components of diffusion 595 
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embeddings by calling FindNeighbors and FindClusters from the Seurat 596 

package. Finally, we found trajectories using ArchR (version 1.0.1)38. 597 

Specifically, we first defined a backbone by selecting a list of clusters from 598 

healthy to disease and using their function addTrajectory to detect a pseudo-599 

time scale from 0 to 100. For line plots, we distributed all patients to 20 600 

buckets from 0 to 100 and calculated the fractions in each bucket of each 601 

condition. We next fitted smoothed lines using method loess (locally 602 

estimated scatterplot smoothing). 603 

Statistical analyses 604 

 605 
All statistical calculations were performed within the computing 606 

environment R (v4.0.3). We performed two-sample k-sample Anderson-607 

Darling tests39 for comparison between different feature distributions. 608 

Comparing groups with smaller sample sizes, e.g., specimen-level 609 

comparison of histopathology, we performed a Kruskal-Wallis test and two-610 

sided pairwise Wilcoxon rank-sum tests. For multiple comparisons, e.g., 611 

diseases, we corrected for multiple testing by Bonferroni-type adjustment. 612 

Probabilities of progression-free survival for VALIGA biopsies were assessed 613 

by calculating Cox regression models with hazard ratios (HR) and 95% 614 

confidence intervals. Categorical variables were interpreted as absolute (n) 615 

and relative (%) frequencies while descriptive continuous features were 616 



 

29 

described as mean/median + IQR. Values of p < 0.05 were considered 617 

significant. 618 

 619 

Code and data availability 620 

Whole-slide images from our internal cohorts and the VALIGA trial cannot 621 

be made publicly available due to regulatory reasons. All data from the 622 

external cohorts are publicly available (at atlas.kpmp.org/repository & 623 

portal.hubmapconsortium.org). NGM data and the trained FLASH models 624 

will be made available to interested research partners on reasonable request 625 

to the corresponding author. The source code of FLASH is freely accessible 626 

including user instructions at: git-ce.rwth-aachen.de/labooratory-ai/flash.  627 

 628 
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Figures & Table 1031 

 1032 
Table 1. Performance metrics for the tissue segmentation convolutional neural network (CNN) and 1033 
structure segmentation CNN. Segmentation performance of the tissue segmentation CNN was 1034 
evaluated by calculating Dice-similarity-coefficients (DSCs). Segmentation performance of the 1035 
structure segmentation CNN was evaluated by averaging all calculated metrics from each instance in 1036 
all test/external validation images.  1037 
iDSC: instance Dice-similarity-coefficient measuring the maximum overlapping area in pixels for each 1038 
instance between model prediction and ground truth; F1: F1-Score; PPV: Positive predictive value. 1039 
 1040 

Tissue Segmentation CNN 

 AC_B AC_N KPMP HuBMAP 

Class DSC 

Kidney Tissue 0.99 0.98 0.92 0.99 

Structure Segmentation CNN 

 AC_B AC_N KPMP HuBMAP 

Class iDSC F1 PPV iDSC F1 PPV iDSC F1 PPV iDSC F1 PPV 

Tubule 0.89 0.93 0.94 0.87 0.92 0.91 0.91 0.94 0.95 0.89 0.94 0.95 

Glomerulus 0.93 0.97 0.99 0.91 0.92 0.95 0.94 0.97 0.98 0.92 0.95 0.94 

Glomerular 
Tuft 

0.87 0.91 0.90 0.91 0.95 0.95 0.94 0.98 0.98 0.94 0.98 0.99 

Non-Tissue 
Background 

0.94 0.96 0.96 0.80 0.84 0.80 0.93 0.96 0.97 0.90 0.92 0.93 

Artery 0.73 0.77 0.84 0.64 0.69 0.77 0.64 0.66 0.69 0.70 0.70 0.78 

Arterial Lumen 0.72 0.78 0.87 0.52 0.56 0.59 0.59 0.63 0.75 0.71 0.78 0.86 



 

43 

 1041 
 1042 
Figure 1. Flowchart of the patient cohorts and the integration of our framework for large-scale 1043 
histomorphometry (FLASH) into a digital pathology workflow. (A) Overview of the cohort 1044 
refinement process. Cases and whole-slide images (WSIs) were excluded based on predefined criteria 1045 
on case- and slide-level. 1,051 cases from five cohorts and 1,751 WSIs were included in this study. (B) 1046 
Integration of FLASH into the digital pathology workspace. FLASH combines deep learning-based 1047 
segmentation with bioinformatics analysis of quantitative morphometric features. The framework 1048 
consists of two convolutional neural networks (CNNs) for tissue and structure segmentation, 1049 
computational feature extraction and Next-generation Morphometry (NGM) analysis.    1050 
IgAN: IgA nephropathy; WSIs: Whole-slide images; PAS: Periodic Acid Schiff.  1051 
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 1052 
 1053 
 1054 
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Figure 2: NGM-derived glomerular features reveal distinct morphometric patterns in native kidney 1055 
diseases and different clinical conditions, such as nephrotic range proteinuria and reduced kidney 1056 
function. (A-A’’’’) Segmentation visualisations of glomeruli in major glomerular injury patterns (images 1057 
stem from the internal AC_B cohort excluding training samples). (B) Visual representation for 1058 
calculation of glomerular tuft circularity as an example of one of the extracted morphometric features. 1059 
(C) Comparison of glomerular tuft area [μm²] with 11,077 instances in different native kidney diseases 1060 
from the AC_B cohort. Glomeruli from biopsies without pathological findings were used as a control 1061 
(depicted in grey). (D) Feature analysis of glomerular tuft area based on nephrotic range proteinuria in 1062 
all native biopsies from the AC_B cohort, (D’) for glomeruli from biopsies diagnosed with minimal 1063 
change disease (MCD) or membranous glomerulonephritis (GN) and (D’’) for glomeruli with large 1064 
proteinuria from the external KPMP cohort. Visualisations highlight the increase in glomerular tuft 1065 
area in cases with nephrotic range proteinuria. (E) Comparison of glomerular tuft circularity between 1066 
cases of MCD and membranous GN with or without nephrotic range proteinuria. (F) Analysis of 1067 
glomerular tuft shape based on reported estimated glomerular filtration rate in all native biopsies from 1068 
our internal biopsy cohort including additional visualisation examples. All displayed patches of 1069 
histopathology images have an edge length of 300μm.  1070 
GN: Glomerulonephritis; Seg.: Segmental; HTN: Hypertensive nephropathy; IgAN: IgA nephropathy; 1071 
MCD: Minimal change disease; Membranous: Membranous glomerulonephritis; Pauci: Pauci-immune 1072 
glomerulonephritis, DN: Diabetic nephropathy; eGFR: estimated glomerular filtration rate. * = p < 1073 
0.05.   1074 
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 1075 
 1076 
 1077 
 1078 
 1079 
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Figure 3: NGM-derived features of tubules and arteries are associated with pathologist derived 1080 
scoring and clinical hypertension status. (A-A’’’’) Segmentation visualisations of tubules with large 1081 
variation in size and shape in various diseases and morphological injury patterns present in the patch. 1082 
Visualisations stem from the internal AC_B cohort excluding training samples. (B) Visual 1083 
representation of feature calculation of tubular diameter and tubular distance. (C) Feature analysis of 1084 
tubular diameter based on the quantified amount of interstitial fibrosis and tubular atrophy (IFTA) of 1085 
all biopsies with reported IFTA from the AC_B cohort. (C’) Analysis of tubular diameter based on the 1086 
measured estimated glomerular filtration rate (eGFR) of all native biopsies from our internal biopsy 1087 
cohort. (D) Feature analysis of tubular distance based on the quantified IFTA of all biopsies with 1088 
reported IFTA from the internal biopsy cohort. (D’) Analysis of tubular distance based on the measured 1089 
eGFR of all native biopsies from our internal biopsy cohort. (E) Feature visualisation for 1090 
arterial/arteriolar wall diameter. (F) Analysis of the wall diameter based on the presence of 1091 
hypertension regardless of aetiology in two internal and two external cohorts where hypertension 1092 
status was reported. All displayed patches of histopathology have an edge length of 300μm. 1093 
DN: Diabetic nephropathy; ABMR: Antibody-mediated rejection; d: Instance diameter; IFTA: 1094 
Interstitial fibrosis and tubular atrophy; eGFR: estimated glomerular filtration rate.  * = p < 0.05.   1095 
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 1124 
 1125 
Figure 4: NGM-derived quantitative features are predictive of disease progression in IgA 1126 
nephropathy (IgAN). (A) Comparison of five predictive digital biomarkers based on reaching the 1127 
defined combined endpoint, i.e., end-stage kidney disease and/or halving of initial estimated 1128 
glomerular filtration rate (eGFR) within 8 years after biopsy. (B) Univariate Cox regression models for 1129 
the five predictive features summarised at patient-level including the hazard ratios of each individual 1130 
feature. Cumulative events for each group in the univariate Cox regression models are provided in 1131 
Supp. Table 10. (C) Hazard ratios and their 95% confidence interval from the univariate Cox regression 1132 
models of the respective features. 1133 
ESKD: End-stage kidney disease; eGFR: estimated glomerular filtration rate; HR: Hazard ratio; CI: 1134 
Confidence interval. * = p < 0.05.   1135 
 1136 
 1137 
 1138 
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 1139 

 1140 
 1141 
Figure 5: Pseudotime analysis of NGM-derived glomerular features identifies distinct glomerular 1142 
groups along a trajectory of disease progression in IgA nephropathy (IgAN). (A-A’’) Diffusion map 1143 
embedding of 24,227 glomerular instances with 14 morphometric features with IgAN based on the 1144 
reported estimated glomerular filtration rate (eGFR) [ml/min/1.73m²]. (B) Diffusion mapping of 1145 
glomerular instances with pseudotime indicating ordering of glomerular instances along their 1146 
progression from healthy to diseased. (B’) Visualisation of glomerular phenotypes along the 1147 
pseudotime. (C) Scaled feature expression heatmap including eGFR along the pseudotime trajectory. 1148 
(D) Morphometric progression of glomerular instances in clinical subgroups based on the overall 1149 
reported eGFR. 1150 
eGFR: estimated glomerular filtration rate; Dim: Diffusion map; IgAN: IgA nephropathy. 1151 
 1152 
 1153 
 1154 
 1155 
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